Survey of Active Vibration Isolation Systems for Microgravity Applications
NASA Technical Reports Server (NTRS)
Grodsinsky, Carlos M.; Whorton, Mark S.
2000-01-01
In view of the utility of space vehicles as orbiting science laboratories, the need for vibration isolation systems for acceleration-sensitive experiments has gained increasing visibility. To date, three active microgravity vibration isolation systems have successfully been demonstrated in flight. A tutorial discussion of the microgravity vibration isolation problem, including a description of the acceleration environment of the International Space Station and attenuation requirements, as well as a comparison or the dynamics of passive isolation, active rack-level isolation, and active payload-level isolation is provided. The flight test results of the three demonstrated systems: suppression of transient accelerations by levitation, the microgravity vibration isolation mount, and the active rack isolation system are surveyed.
A Survey of Active Vibration Isolation Systems for Microgravity Applications
NASA Technical Reports Server (NTRS)
Grodsinsky, Carlos M.; Whorton, Mark S.
2000-01-01
In view of the utility of space vehicles as orbiting science laboratories, the need for vibration isolation systems for acceleration sensitive experiments has gained increasing visibility. To date, three active microgravity vibration isolation systems have successfully been demonstrated in flight. This paper provides a tutorial discussion of the microgravity vibration isolation problem including a description of the acceleration environment of the International Space Station and attenuation requirements as well as a comparison of the dynamics of passive isolation, active rack-level isolation, and active payload-level isolation. This paper also surveys the flight test results of the three demonstrated systems: Suppression of Transient Accelerations By Levitation (STABLE); the Microgravity Vibration Isolation Mount (MIM); and the Active Rack Isolation System (ARIS).
Equations of Motion for the g-LIMIT Microgravity Vibration Isolation System
NASA Technical Reports Server (NTRS)
Kim, Y. K.; Whorton, M. S.
2001-01-01
A desirable microgravity environment for experimental science payloads may require an active vibration isolation control system. A vibration isolation system named g-LIMIT (GLovebox Integrated Microgravity Isolation Technology) is being developed by NASA Marshall Space Flight Center to support microgravity science experiments using the microgravity science glovebox. In this technical memorandum, the full six-degree-of-freedom nonlinear equations of motion for g-LIMIT are derived. Although the motivation for this model development is control design and analysis of g-LIMIT, the equations are derived for a general configuration and may be used for other isolation systems as well.
NASA Technical Reports Server (NTRS)
Alhorn, Dean
1998-01-01
Vibration isolation is a necessity in the development of science in space and especially those experiments destined for operation on the International Space Station (ISS). The premise of microgravity scientific research is that in space, disturbances are minimized and experiments can be conducted in the absence of gravity. Although microgravity conditions exist in space, disturbances are still present in various forms and can be detrimental to the success of a microgravity experiment. Due to the plethora of disturbances and the various types that will occur on the space station, the microgravity community has elected to incorporate various means of isolating scientific payloads from these unwanted vibrations. Designing these vibration isolators is a crucial task to achieve true microgravity science. Since conventional methods of isolating payloads can achieve only limited isolation, new technologies are being developed to achieve the goal of designing a generic vibration isolation system. One such system being developed for the Microgravity Science Glovebox (MSG) is called g-LIMIT which stands for Glovebox Integrated Microgravity Isolation Technology. The g-LIMIT system is a miniaturized active vibration isolator for glovebox experiments. Although the system is initially developed for glovebox experiments, the g-LIMIT technology is designed to be upwardly scaleable to provide isolation for a broad range of users. The g-LIMIT system is scheduled to be flown on the UF-2 mission in August of the year 2000 and will be tested shortly thereafter. Once the system has been fully qualified, the hardware will become available for other researchers and will provide a platform upon which the goal of microgravity science can be achieved.
Fundamentals of Microgravity Vibration Isolation
NASA Technical Reports Server (NTRS)
Whorton, Mark S.
2000-01-01
In view of the utility of space vehicles as orbiting science laboratories, the need for vibration isolation systems for acceleration sensitive experiments has gained increasing visibility. This presentation provides a tutorial discussion of microgravity vibration isolation technology with the objective of elaborating on the relative merits of passive and active isolation approaches. The concepts of control bandwidth, isolation performance, and robustness will be addressed with illustrative examples. Concluding the presentation will be a suggested roadmap for future technology development activities to enhance the acceleration environment for microgravity science experiments.
International Workshop on Vibration Isolation Technology for Microgravity Science Applications
NASA Technical Reports Server (NTRS)
Lubomski, Joseph F. (Editor)
1992-01-01
The International Workshop on Vibration Isolation Technology for Microgravity Science Applications was held on April 23-25, 1991 at the Holiday Inn in Middleburg Heights, Ohio. The main objective of the conference was to explore vibration isolation requirements of space experiments and what level of vibration isolation could be provided both by present and planned systems on the Space Shuttle and Space Station Freedom and by state of the art vibration isolation technology.
Microgravity Vibration Isolation for the International Space Station
NASA Technical Reports Server (NTRS)
Whorton, Mark S.
2000-01-01
The International Space Station (ISS) is being envisioned as a laboratory for experiments in numerous microgravity (micrograms) science disciplines. Predictions of the ISS acceleration environment indicate that the ambient acceleration levels ill exceed levels that can be tolerated by the science experiments. Hence, microgravity vibration isolation systems are being developed to attenuate the accelerations to acceptable levels. While passive isolation systems are beneficial in certain applications, active isolation systems are required to provide attenuation at low frequencies and to mitigate directly induced payload disturbances. To date, three active isolation systems have been successfully tested in the orbital environment. A fourth system called g-LIMIT is currently being developed for the Microgravity Science Glovebox and is manifested for launch on the UF-1 mission. This paper presents an overview of microgravity vibration isolation technology and the g-LIMIT system in particular.
Control issues of microgravity vibration isolation
NASA Technical Reports Server (NTRS)
Knospe, Carl R.; Hampton, Richard D.
1991-01-01
Active vibration isolation systems contemplated for microgravity space experiments may be designed to reach given performance requirements in a variety of ways. An analogy to passive isolation systems proves to be illustrative but lacks the flexibility as a design tool of a control systems approach and may lead to poor design. Control theory as applied to vibration isolation is reviewed and passive analogies discussed.
Development of a vibration isolation prototype system for microgravity space experiments
NASA Technical Reports Server (NTRS)
Logsdon, Kirk A.; Grodsinsky, Carlos M.; Brown, Gerald V.
1990-01-01
The presence of small levels of low-frequency accelerations on the space shuttle orbiters has degraded the microgravity environment for the science community. Growing concern about this microgravity environment has generated interest in systems that can isolate microgravity science experiments from vibrations. This interest has resulted primarily in studies of isolation systems with active methods of compensation. The development of a magnetically suspended, six-degree-of-freedom active vibration isolation prototype system capable of providing the needed compensation to the orbital environment is presented. A design for the magnetic actuators is described, and the control law for the prototype system that gives a nonintrusive inertial isolation response to the system is also described. Relative and inertial sensors are used to provide an inertial reference for isolating the payload.
Magnetic Actuators and Suspension for Space Vibration Control
NASA Technical Reports Server (NTRS)
Knospe, Carl R.; Allaire, Paul E.; Lewis, David W.
1993-01-01
The research on microgravity vibration isolation performed at the University of Virginia is summarized. This research on microgravity vibration isolation was focused in three areas: (1) the development of new actuators for use in microgravity isolation; (2) the design of controllers for multiple-degree-of-freedom active isolation; and (3) the construction of a single-degree-of-freedom test rig with umbilicals. Described are the design and testing of a large stroke linear actuator; the conceptual design and analysis of a redundant coarse-fine six-degree-of-freedom actuator; an investigation of the control issues of active microgravity isolation; a methodology for the design of multiple-degree-of-freedom isolation control systems using modern control theory; and the design and testing of a single-degree-of-freedom test rig with umbilicals.
Robust Control for The G-Limit Microgravity Vibration Isolation System
NASA Technical Reports Server (NTRS)
Whorton, Mark S.
2004-01-01
Many microgravity science experiments need an active isolation system to provide a sufficiently quiescent acceleration environment. The g-LIMIT vibration isolation system will provide isolation for Microgravity Science Glovebox experiments in the International Space Station. While standard control system technologies have been demonstrated for these applications, modern control methods have the potential for meeting performance requirements while providing robust stability in the presence of parametric uncertainties that are characteristic of microgravity vibration isolation systems. While H2 and H infinity methods are well established, neither provides the levels of attenuation performance and robust stability in a compensator with low order. Mixed H2/mu controllers provide a means for maximizing robust stability for a given level of mean-square nominal performance while directly optimizing for controller order constraints. This paper demonstrates the benefit of mixed norm design from the perspective of robustness to parametric uncertainties and controller order for microgravity vibration isolation. A nominal performance metric analogous to the mu measure for robust stability assessment is also introduced in order to define an acceptable trade space from which different control methodologies can be compared.
Advanced Technology for Isolating Payloads in Microgravity
NASA Technical Reports Server (NTRS)
Alhorn, Dean C.
1997-01-01
One presumption of scientific microgravity research is that while in space disturbances are minimized and experiments can be conducted in the absence of gravity. The problem with this assumption is that numerous disturbances actually occur in the space environment. Scientists must consider all disturbances when planning microgravity experiments. Although small disturbances, such as a human sneeze, do not cause most researchers on earth much concern, in space, these minuscule disturbances can be detrimental to the success or failure of an experiment. Therefore, a need exists to isolate experiments and provide a quiescent microgravity environment. The objective of microgravity isolation is to quantify all possible disturbances or vibrations and then attenuate the transmission of the disturbance to the experiment. Some well-defined vibration sources are: experiment operations, pumps, fans, antenna movements, ventilation systems and robotic manipulators. In some cases, it is possible to isolate the source using simple vibration dampers, shock absorbers and other isolation devices. The problem with simple isolation systems is that not all vibration frequencies are attenuated, especially frequencies less than 0.1 Hz. Therefore, some disturbances are actually emitted into the environment. Sometimes vibration sources are not well defined, or cannot be controlled. These include thermal "creak," random acoustic vibrations, aerodynamic drag, crew activities, and other similar disturbances. On some "microgravity missions," such as the United States Microgravity Laboratory (USML) and the International Microgravity Laboratory (IML) missions, the goal was to create extended quiescent times and limit crew activity during these times. This might be possible for short periods, but for extended durations it is impossible due to the nature of the space environment. On the International Space Station (ISS), vehicle attitude readjustments are required to keep the vehicle in a minimum torque orientation and other experimental activities will occur continually, both inside and outside the station. Since all vibration sources cannot be controlled, the task of attenuating the disturbances is the only realistic alternative. Several groups have independently developed technology to isolate payloads from the space environment. Since 1970, Honeywell's Satellite Systems Division has designed several payload isolation systems and vibration attenuators. From 1987 to 1992, NASA's Lewis Research Center (LeRC) performed research on isolation technology and developed a 6 degree-of-freedom (DOF) isolator and tested the system during 70 low gravity aircraft flight trajectories. Beginning in early 1995, NASA's Marshall Space Flight Center (MSFC) and McDonnell Douglas Aerospace (MDA) jointly developed the STABLE (Suppression of Transient Accelerations By Levitation Evaluation) isolation system. This 5 month accelerated effort produced the first flight of an active microgravity vibration isolation system on STS-73/USML-02 in late October 1995. The Canadian Space Agency developed the Microgravity Vibration Isolation Mount (MIM) for isolating microgravity payloads and this system began operating on the Russian Mir Space Station in May 1996. The Boeing Defense & Space Group, Missiles & Space Division developed the Active Rack Isolation System (ARIS) for isolating payloads in a standard payload rack. ARIS was tested in September 1996 during the STS-79 mission to Mir. Although these isolation systems differ in their technological approach, the objective is to isolate payloads from disturbances. The following sections describe the technologies behind these systems and the different types of hardware used to perform isolation. The purpose of these descriptions is not to detail the inner workings of the hardware but to give the reader an idea of the technology and uses of the hardware components. Also included in the component descriptions is a paragraph detailing some of the advances in isolation technology for that particular component. The final section presents some concluding thoughts and a summary of anticipated advances in research and development for isolating microgravity experiments.
Umbilical Stiffness Matrix Characterization and Testing for Microgravity Science Payloads
NASA Technical Reports Server (NTRS)
Engberg, Robert C.
2003-01-01
This paper describes efforts of testing and analysis of various candidate cables and umbilicals for International Space Station microgravity science payloads. The effects of looping, large vs. small displacements, and umbilical mounting configurations were assessed. A 3-DOF stepper motor driven fixture was used to excite the umbilicals. Forces and moments were directly measured in all three axes with a 6-DOF load cell in order to derive suitable stiffness matrices for design and analysis of vibration isolation controllers. Data obtained from these tests were used to help determine the optimum type and configuration of umbilical cables for the International Space Station microgravity science glovebox (MSG) vibration isolation platform. The data and procedures can also be implemented into control algorithm simulations to assist in validation of actively controlled vibration isolation systems. The experimental results of this work are specific in support of the Glovebox Integrated Microgravity Isolation Technology (g-LIMIT) isolation platform, to be located in the microgravity science glovebox aboard the U.S. Destiny Laboratory Module.
Microgravity isolation system design: A modern control synthesis framework
NASA Technical Reports Server (NTRS)
Hampton, R. D.; Knospe, C. R.; Allaire, P. E.; Grodsinsky, C. M.
1994-01-01
Manned orbiters will require active vibration isolation for acceleration-sensitive microgravity science experiments. Since umbilicals are highly desirable or even indispensable for many experiments, and since their presence greatly affects the complexity of the isolation problem, they should be considered in control synthesis. In this paper a general framework is presented for applying extended H2 synthesis methods to the three-dimensional microgravity isolation problem. The methodology integrates control and state frequency weighting and input and output disturbance accommodation techniques into the basic H2 synthesis approach. The various system models needed for design and analysis are also presented. The paper concludes with a discussion of a general design philosophy for the microgravity vibration isolation problem.
Microgravity isolation system design: A modern control synthesis framework
NASA Technical Reports Server (NTRS)
Hampton, R. D.; Knospe, C. R.; Allaire, P. E.; Grodsinsky, C. M.
1994-01-01
Manned orbiters will require active vibration isolation for acceleration-sensitive microgravity science experiments. Since umbilicals are highly desirable or even indispensable for many experiments, and since their presence greatly affects the complexity of the isolation problem, they should be considered in control synthesis. A general framework is presented for applying extended H2 synthesis methods to the three-dimensional microgravity isolation problem. The methodology integrates control and state frequency weighting and input and output disturbance accommodation techniques into the basic H2 synthesis approach. The various system models needed for design and analysis are also presented. The paper concludes with a discussion of a general design philosophy for the microgravity vibration isolation problem.
A TREETOPS Simulation of the STABLE Microgravity Vibration Isolation System
NASA Technical Reports Server (NTRS)
Nurre, G. S.; Whorton, M. S.; Kim, Y. K.
1999-01-01
As a research facility for microgravity science, the International Space Station (ISS) will be used for numerous experiments which require a quiescent acceleration environment across a broad spectrum of frequencies. For many micro-gravity science experiments, the ambient acceleration environment on ISS will significantly exceed desirable levels. The ubiquity of acceleration disturbance sources and the difficulty in characterization of these sources precludes source isolation, requiring, vibration isolation to attenuate the disturbances to an acceptable level at the experiment. To provide a more quiescent acceleration environment, a vibration isolation system named STABLE (Suppression of Transient Accelerations By LEvitation) was developed. STABLE was the first successful flight test of an active isolation device for micro-gravity science payloads and was flown on STS-73/USML-2 in October 1995. This report documents the development of the high fidelity, nonlinear, multibody simulation developed using TREETOPS which was used to design the control laws and define the expected performance of the STABLE isolation system.
NASA Technical Reports Server (NTRS)
Whorton, M. S.; Eldridge, J. T.; Ferebee, R. C.; Lassiter, J. O.; Redmon, J. W., Jr.
1998-01-01
As a research facility for microgravity science, the International Space Station (ISS) will be used for numerous investigations such as protein crystal growth, combustion, and fluid mechanics experiments which require a quiescent acceleration environment across a broad spectrum of frequencies. These experiments are most sensitive to low-frequency accelerations and can tolerate much higher accelerations at higher frequency. However, the anticipated acceleration environment on ISS significantly exceeds the required acceleration level. The ubiquity and difficulty in characterization of the disturbance sources precludes source isolation, requiring vibration isolation to attenuate the anticipated disturbances to an acceptable level. This memorandum reports the results of research in active control methods for microgravity vibration isolation.
Robust Control for Microgravity Vibration Isolation using Fixed Order, Mixed H2/Mu Design
NASA Technical Reports Server (NTRS)
Whorton, Mark
2003-01-01
Many space-science experiments need an active isolation system to provide a sufficiently quiescent microgravity environment. Modern control methods provide the potential for both high-performance and robust stability in the presence of parametric uncertainties that are characteristic of microgravity vibration isolation systems. While H2 and H(infinity) methods are well established, neither provides the levels of attenuation performance and robust stability in a compensator with low order. Mixed H2/H(infinity), controllers provide a means for maximizing robust stability for a given level of mean-square nominal performance while directly optimizing for controller order constraints. This paper demonstrates the benefit of mixed norm design from the perspective of robustness to parametric uncertainties and controller order for microgravity vibration isolation. A nominal performance metric analogous to the mu measure, for robust stability assessment is also introduced in order to define an acceptable trade space from which different control methodologies can be compared.
Payload vibration isolation in a microgravity environment
NASA Technical Reports Server (NTRS)
Alexander, Richard M.
1990-01-01
Many in-space research experiments require the microgravity environment attainable near the center of mass of the Space Station. Disturbances to the structure surrounding an experiment may lead to vibration levels that will degrade the microgravity environment and undermine the experiment's validity. In-flight disturbances will include vibration transmission from nearby equipment and excitation from crew activity. Isolation of these vibration-sensitive experiments is required. Analytical and experimental work accomplished to develop a payload (experiment) isolation system for use in space is described. The isolation scheme allows the payload to float freely within a prescribed boundary while being kept centered with forces generated by small jets of air. The vibration criterion was a maximum payload acceleration of 10 micro-g's (9.81x10(exp -5)m/s(exp 2), independent of frequency. An experimental setup, composed of a cart supported by air bearings on a flat granite slab, was designed and constructed to simulate the microgravity environment in the horizontal plane. Experimental results demonstrate that the air jet control system can effectively manage payload oscillatory response. An analytical model was developed and verified by comparing predicted and measured payload response. The mathematical model, which includes payload dynamics, control logic, and air jet forces, is used to investigate payload response to disturbances likely to be present in the Space Station.
The g-LIMIT Microgravity Vibration Isolation System for the Microgravity Science Glovebox
NASA Technical Reports Server (NTRS)
Whorton, Mark S.; Ryan, Stephen G. (Technical Monitor)
2001-01-01
For many microgravity science experiments in the International Space Station, the ambient acceleration environment will be exceed desirable levels. To provide a more quiescent acceleration environment to the microgravity payloads, a vibration isolation system named g-LIMIT (GLovebox Integrated Microgravity Isolation Technology) is being designed. g-LIMIT is a sub-rack level isolation system for the Microgravity Science Glovebox that can be tailored to a variety of applications. Scheduled for launch on the UF-1 mission, the initial implementation of g-LIMIT will be a Characterization Test in the Microgravity Science Glovebox. g-LIMIT will be available to glovebox investigators immediately after characterization testing. Standard MSG structural and umbilical interfaces will be used so that the interface requirements are minimized. g-LIMIT consists of three integrated isolator modules, each of which is comprised of a dual axis actuator, two axes of acceleration sensing, two axes of position sensing, control electronics, and data transmission capabilities in a small-volume package. In addition, this system provides the unique capability for measuring quasi-steady acceleration of the experiment independent of accelerometers as a by-product of the control system and will have the capability of generating user-specified pristine accelerations to enhance experiment operations.
Microgravity Disturbance Predictions in the Combustion Integrated Rack
NASA Astrophysics Data System (ADS)
Just, M.; Grodsinsky, Carlos M.
2002-01-01
This paper will focus on the approach used to characterize microgravity disturbances in the Combustion Integrated Rack (CIR), currently scheduled for launch to the International Space Station (ISS) in 2005. Microgravity experiments contained within the CIR are extremely sensitive to vibratory and transient disturbances originating on-board and off-board the rack. Therefore, several techniques are implemented to isolate the critical science locations from external vibration. A combined testing and analysis approach is utilized to predict the resulting microgravity levels at the critical science location. The major topics to be addressed are: 1) CIR Vibration Isolation Approaches, 2) Disturbance Sources and Characterization, 3) Microgravity Predictive Modeling, 4) Science Microgravity Requirements, 6) Microgravity Control, and 7) On-Orbit Disturbance Measurement. The CIR is using the Passive Rack Isolation System (PaRIS) to isolate the rack from offboard rack disturbances. By utilizing this system, CIR is connected to the U.S. Lab module structure by either 13 or 14 umbilical lines and 8 spring / damper isolators. Some on-board CIR disturbers are locally isolated by grommets or wire ropes. CIR's environmental and science on board support equipment such as air circulation fans, pumps, water flow, air flow, solenoid valves, and computer hard drives cause disturbances within the rack. These disturbers along with the rack structure must be characterized to predict whether the on-orbit vibration levels during experimentation exceed the specified science microgravity vibration level requirements. Both vibratory and transient disturbance conditions are addressed. Disturbance levels/analytical inputs are obtained for each individual disturber in a "free floating" condition in the Glenn Research Center (GRC) Microgravity Emissions Lab (MEL). Flight spare hardware is tested on an Orbital Replacement Unit (ORU) basis. Based on test and analysis, maximum disturbance level allocations are developed for each ORU. The worst-case disturbances are input into an on-orbit analytical dynamic model of the rack. These models include both NASTRAN and MATLAB Simulink models , which include eigenvector and frequency inputs of the rack rigid body modes, the rack umbilical modes, and the racks' structural modes. The disturbance areas and science locations need to be modeled accurately to give valid predictions. The analytically determined microgravity vibration levels are compared to the CIR science requirements contained in the FCF Science Requirements Envelope Document (SRED). The predicted levels will be compared with the on-orbit measurements provided by the Space Acceleration Measurement System (SAMS) sensor, which is to be mounted on the CIR optics bench.
Vibration Isolation Technology (VIT) ATD Project
NASA Technical Reports Server (NTRS)
Lubomski, Joseph F.; Grodsinsky, Carlos M.; Logsdon, Kirk A.; Rohn, Douglas A.; Ramachandran, N.
1994-01-01
A fundamental advantage for performing material processing and fluid physics experiments in an orbital environment is the reduction in gravity driven phenomena. However, experience with manned spacecraft such as the Space Transportation System (STS) has demonstrated a dynamic acceleration environment far from being characterized as a 'microgravity' platform. Vibrations and transient disturbances from crew motions, thruster firings, rotating machinery etc. can have detrimental effects on many proposed microgravity science experiments. These same disturbances are also to be expected on the future space station. The Microgravity Science and Applications Division (MSAD) of the Office of Life and Microgravity Sciences and Applications (OLMSA), NASA Headquarters recognized the need for addressing this fundamental issue. As a result an Advanced Technology Development (ATD) project was initiated in the area of Vibration Isolation Technology (VIT) to develop methodologies for meeting future microgravity science needs. The objective of the Vibration Isolation Technology ATD project was to provide technology for the isolation of microgravity science experiments by developing methods to maintain a predictable, well defined, well characterized, and reproducible low-gravity environment, consistent with the needs of the microgravity science community. Included implicitly in this objective was the goal of advising the science community and hardware developers of the fundamental need to address the importance of maintaining, and how to maintain, a microgravity environment. This document will summarize the accomplishments of the VIT ATD which is now completed. There were three specific thrusts involved in the ATD effort. An analytical effort was performed at the Marshall Space Flight Center to define the sensitivity of selected experiments to residual and dynamic accelerations. This effort was redirected about half way through the ATD focusing specifically on the sensitivity of protein crystals to a realistic orbital environment. The other two thrusts of the ATD were performed at the Lewis Research Center. The first was to develop technology in the area of reactionless mechanisms and robotics to support the eventual development of robotics for servicing microgravity science experiments. This activity was completed in 1990. The second was to develop vibration isolation and damping technology providing protection for sensitive science experiments. In conjunction with the this activity, two workshops were held. The results of these were summarized and are included in this report.
Microgravity Vibration Control and Civil Applications
NASA Technical Reports Server (NTRS)
Whorton, Mark Stephen; Alhorn, Dean Carl
1998-01-01
Controlling vibration of structures is essential for both space structures as well as terrestrial structures. Due to the ambient acceleration levels anticipated for the International Space Station, active vibration isolation is required to provide a quiescent acceleration environment for many science experiments. An overview is given of systems developed and flight tested in orbit for microgravity vibration isolation. Technology developed for vibration control of flexible space structures may also be applied to control of terrestrial structures such as buildings and bridges subject to wind loading or earthquake excitation. Recent developments in modern robust control for flexible space structures are shown to provide good structural vibration control while maintaining robustness to model uncertainties. Results of a mixed H-2/H-infinity control design are provided for a benchmark problem in structural control for earthquake resistant buildings.
Actively Controlled Magnetic Vibration-Isolation System
NASA Technical Reports Server (NTRS)
Grodsinky, Carlos M.; Logsdon, Kirk A.; Wbomski, Joseph F.; Brown, Gerald V.
1993-01-01
Prototype magnetic suspension system with active control isolates object from vibrations in all six degrees of freedom at frequencies as low as 0.01 Hz. Designed specifically to protect instruments aboard spacecraft by suppressing vibrations to microgravity levels; basic control approach used for such terrestrial uses as suppression of shocks and other vibrations in trucks and railroad cars.
NASA Technical Reports Server (NTRS)
Banerjee, B. B.; Allaire, P. E.; Grodsinsky, C. M.
1996-01-01
Microgravity experiments will require active vibration isolation in the low to mid frequency range of 0.1 Hz to 10 Hz. Approximately two orders of acceleration reduction (40 dB) will be required. Previous works have reported results for accelerations transmitted through the umbilical. This paper describes experimental and theoretical results for vibration isolation in one dimension (horizontal) where the simulated experiment is connected to the spacecraft by a spring umbilical. The experiment consisted of a spacecraft (shaker), experiment (mass), umbilical, accelerometer, control electronics, and Lorentz actuator. The experiment mass was supported in magnetic bearings to avoid any stiction problems. Acceleration feedback control was employed to obtain the vibration isolation. Three different spring umbilicals were employed. Acceleration reductions on the order of 40 dB were obtained over the frequency range of 0.1 Hz to 10 Hz. Good agreement was obtained between theory and experiment.
Microgravity Active Vibration Isolation System on Parabolic Flights
NASA Astrophysics Data System (ADS)
Dong, Wenbo; Pletser, Vladimir; Yang, Yang
2016-07-01
The Microgravity Active Vibration Isolation System (MAIS) aims at reducing on-orbit vibrations, providing a better controlled lower gravity environment for microgravity physical science experiments. The MAIS will be launched on Tianzhou-1, the first cargo ship of the China Manned Space Program. The principle of the MAIS is to suspend with electro-magnetic actuators a scientific payload, isolating it from the vibrating stator. The MAIS's vibration isolation capability is frequency-dependent and a decrease of vibration of about 40dB can be attained. The MAIS can accommodate 20kg of scientific payload or sample unit, and provide 30W of power and 1Mbps of data transmission. The MAIS is developed to support microgravity scientific experiments on manned platforms in low earth orbit, in order to meet the scientific requirements for fluid physics, materials science, and fundamental physics investigations, which usually need a very quiet environment, increasing their chances of success and their scientific outcomes. The results of scientific experiments and technology tests obtained with the MAIS will be used to improve future space based research. As the suspension force acting on the payload is very small, the MAIS can only be operative and tested in a weightless environment. The 'Deutsches Zentrum für Luft- und Raumfahrt e.V.' (DLR, German Aerospace Centre) granted a flight opportunity to the MAIS experiment to be tested during its 27th parabolic flight campaign of September 2015 performed on the A310 ZERO-G aircraft managed by the French company Novespace, a subsidiary of the 'Centre National d'Etudes Spatiales' (CNES, French Space Agency). The experiment results confirmed that the 6 degrees of freedom motion control technique was effective, and that the vibration isolation performance fulfilled perfectly the expectations based on theoretical analyses and simulations. This paper will present the design of the MAIS and the experiment results obtained during the parabolic flight campaign.
NASA Technical Reports Server (NTRS)
Grodsinsky, C. M.; Logsdon, K. A.; Lubomski, J. F.
1993-01-01
A program was organized to develop the enabling technologies needed for the use of Space Station Freedom as a viable microgravity experimental platform. One of these development programs was the Vibration Isolation Technology (VIT). This technology development program grew because of increased awareness that the acceleration disturbances present on the Space Transportation System (STS) orbiter can and are detrimental to many microgravity experiments proposed for STS, and in the future, Space Station Freedom (SSF). Overall technological organization are covered of the VIT program. Emphasis is given to the results from development and demonstration of enabling technologies to achieve the acceleration requirements perceived as those most likely needed for a variety of microgravity science experiments. In so doing, a brief summary of general theoretical approaches to controlling the acceleration environment of an isolated space based payload and the design and/or performance of two prototype six degree of freedom active magnetic isolation systems is presented.
The Microgravity Vibration Isolation Mount: A Dynamic Model for Optimal Controller Design
NASA Technical Reports Server (NTRS)
Hampton, R. David; Tryggvason, Bjarni V.; DeCarufel, Jean; Townsend, Miles A.; Wagar, William O.
1997-01-01
Vibration acceleration levels on large space platforms exceed the requirements of many space experiments. The Microgravity Vibration Isolation Mount (MIM) was built by the Canadian Space Agency to attenuate these disturbances to acceptable levels, and has been operational on the Russian Space Station Mir since May 1996. It has demonstrated good isolation performance and has supported several materials science experiments. The MIM uses Lorentz (voice-coil) magnetic actuators to levitate and isolate payloads at the individual experiment/sub-experiment (versus rack) level. Payload acceleration, relative position, and relative orientation (Euler-parameter) measurements are fed to a state-space controller. The controller, in turn, determines the actuator currents needed for effective experiment isolation. This paper presents the development of an algebraic, state-space model of the MIM, in a form suitable for optimal controller design.
Verification of the Microgravity Active Vibration Isolation System based on Parabolic Flight
NASA Astrophysics Data System (ADS)
Zhang, Yong-kang; Dong, Wen-bo; Liu, Wei; Li, Zong-feng; Lv, Shi-meng; Sang, Xiao-ru; Yang, Yang
2017-12-01
The Microgravity active vibration isolation system (MAIS) is a device to reduce on-orbit vibration and to provide a lower gravity level for certain scientific experiments. MAIS system is made up of a stator and a floater, the stator is fixed on the spacecraft, and the floater is suspended by electromagnetic force so as to reduce the vibration from the stator. The system has 3 position sensors, 3 accelerometers, 8 Lorentz actuators, signal processing circuits and a central controller embedded in the operating software and control algorithms. For the experiments on parabolic flights, a laptop is added to MAIS for monitoring and operation, and a power module is for electric power converting. The principle of MAIS is as follows: the system samples the vibration acceleration of the floater from accelerometers, measures the displacement between stator and floater from position sensitive detectors, and computes Lorentz force current for each actuator so as to eliminate the vibration of the scientific payload, and meanwhile to avoid crashing between the stator and the floater. This is a motion control technic in 6 degrees of freedom (6-DOF) and its function could only be verified in a microgravity environment. Thanks for DLR and Novespace, we get a chance to take the DLR 27th parabolic flight campaign to make experiments to verify the 6-DOF control technic. The experiment results validate that the 6-DOF motion control technique is effective, and vibration isolation performance perfectly matches what we expected based on theoretical analysis and simulation. The MAIS has been planned on Chinese manned spacecraft for many microgravity scientific experiments, and the verification on parabolic flights is very important for its following mission. Additionally, we also test some additional function by microgravity electromagnetic suspension, such as automatic catching and locking and working in fault mode. The parabolic flight produces much useful data for these experiments.
Vibration isolation technology: An executive summary of systems development and demonstration
NASA Technical Reports Server (NTRS)
Grodsinsky, Carlos M.; Logsdon, Kirk A.; Lubomski, Joseph F.
1993-01-01
A program was organized to develop the enabling technologies needed for the use of Space Station Freedom as a viable microgravity experimental platform. One of these development programs was the Vibration Isolation Technology (VIT). This technology development program grew because of increased awareness that the acceleration disturbances present on the Space Transportation System (STS) orbiter can and are detrimental to many microgravity experiments proposed for STS, and in the future, Space Station Freedom (SSF). Overall technological organization are covered of the VIT program. Emphasis is given to the results from development and demonstration of enabling technologies to achieve the acceleration requirements perceived as those most likely needed for a variety of microgravity science experiments. In so doing, a brief summary of general theoretical approaches to controlling the acceleration environment of an isolated space based payload and the design and/or performance of two prototype six degree of freedom active magnetic isolation systems is presented.
Vibration isolation technology - An executive summary of systems development and demonstration
NASA Astrophysics Data System (ADS)
Grodsinsky, C. M.; Logsdon, K. A.; Lubomski, J. F.
1993-01-01
A program was organized to develop the enabling technologies needed for the use of Space Station Freedom as a viable microgravity experimental platform. One of these development programs was the Vibration Isolation Technology (VIT). This technology development program grew because of increased awareness that the acceleration disturbances present on the Space Transportation System (STS) orbiter can and are detrimental to many microgravity experiments proposed for STS, and in the future, Space Station Freedom (SSF). Overall technological organization are covered of the VIT program. Emphasis is given to the results from development and demonstration of enabling technologies to achieve the acceleration requirements perceived as those most likely needed for a variety of microgravity science experiments. In so doing, a brief summary of general theoretical approaches to controlling the acceleration environment of an isolated space based payload and the design and/or performance of two prototype six degree of freedom active magnetic isolation systems is presented.
Microgravity isolation system design: A modern control analysis framework
NASA Technical Reports Server (NTRS)
Hampton, R. D.; Knospe, C. R.; Allaire, P. E.; Grodsinsky, C. M.
1994-01-01
Many acceleration-sensitive, microgravity science experiments will require active vibration isolation from the manned orbiters on which they will be mounted. The isolation problem, especially in the case of a tethered payload, is a complex three-dimensional one that is best suited to modern-control design methods. These methods, although more powerful than their classical counterparts, can nonetheless go only so far in meeting the design requirements for practical systems. Once a tentative controller design is available, it must still be evaluated to determine whether or not it is fully acceptable, and to compare it with other possible design candidates. Realistically, such evaluation will be an inherent part of a necessary iterative design process. In this paper, an approach is presented for applying complex mu-analysis methods to a closed-loop vibration isolation system (experiment plus controller). An analysis framework is presented for evaluating nominal stability, nominal performance, robust stability, and robust performance of active microgravity isolation systems, with emphasis on the effective use of mu-analysis methods.
Low frequency vibration isolation technology for microgravity space experiments
NASA Technical Reports Server (NTRS)
Grodsinsky, Carlos M.; Brown, Gerald V.
1989-01-01
The dynamic acceleration environment observed on Space Shuttle flights to date and predicted for the Space Station has complicated the analysis of prior microgravity experiments and prompted concern for the viability of proposed space experiments requiring long-term, low-g environments. Isolation systems capable of providing significant improvements in this environment exist, but have not been demonstrated in flight configurations. This paper presents a summary of the theoretical evaluation for two one degree-of-freedom (DOF) active magnetic isolators and their predicted response to both direct and base excitations, that can be used to isolate acceleration sensitive microgravity space experiments.
NASA Technical Reports Server (NTRS)
Owen, R. G.; Jones, D. I.; Owens, A. R.; Roberts, G.; Hadfield, P.
1992-01-01
The Microgravity Isolation Mount (MGIM) is a facility for providing active vibration isolation for sensitive experiments on the Columbus Attached Laboratory and the Columbus Free-Flying Laboratory. The facility is designed to be accommodated in a standard Columbus rack, and it iterfaces with existing rack utility services. The design is based on a non-contact strategy, whereby the payload 'floats' inside the rack, and its position is controlled by a number of magnetic actuators. The main advantage of using this non-contact strategy is the improved microgravity quality available. The overall design of the facility and a description of its elements are given.
Passive Isolators for use on the International Space Station
NASA Technical Reports Server (NTRS)
Houston, Janice; Gattis, Christy
2003-01-01
The value of the International Space Station (ISS) as a premier microgravity environment is currently at risk due to structure-borne vibration. The vibration sources are varied and include crew activities such as exercising or simply moving from module to module, and electro- mechanical equipment such as fans and pumps. Given such potential degradation of usable microgravity, anything that can be done to dampen vibration on-orbit will significantly benefit microgravity users. Most vibration isolation schemes, both active and passive, have proven to be expensive - both operationally and from the cost of integrating isolation systems into primary/secondary structural interfaces (e.g., the ISS module/rack interface). Recently, passively absorptive materials have been tested at the bolt interfaces between the operating equipment and support structure (secondary/tertiary structural interfaces). The results indicate that these materials may prove cost-effective in mitigating the vibrational problems of the ISS. We report herein tests of passive absorbers placed at the interface of a vibration-inducing component: the Development Distillation Assembly, a subassembly of the Urine Processing Assembly, which is a rotating centrifuge and cylinder assembly attached to a mounting plate. Passive isolators were installed between this mounting plate and its support shelf. Three materials were tested: BISCO HT-800, Sorbothane 30 and Sorbothane 50, plus a control test with a hard shim. In addition, four distinct combinations of the HT-800 and Sorbothane 50 were tested. Results show a significant (three orders of magnitude) reduction of transmitted energy, as measured in power spectral density (PSD), using the isolation materials. It is noted, however, that passive materials cannot prevent the transmission of very strong forces or absorb the total energy induced from structural resonances.
g-LIMIT: A Vibration Isolation System for the Microgravity Science Glovebox
NASA Technical Reports Server (NTRS)
Whorton, Mark S.
1998-01-01
For many microgravity science experiments using the Microgravity Science Glovebox (MSG), the ambient acceleration environment will exceed desirable levels. To provide a more quiescent acceleration environment, a vibration isolation system named g-LIMIT (GLovebox Integrated Microgravity Isolation Technology) is being designed. g-LIMIT is the next generation of technology developed for and demonstrated by STABLE on the USML-2 mission in October 1995. Although g-LIMIT is a sub-rack level isolation system that can be used in a variety of applications, g-LIMIT is uniquely optimized for MSG implementation. Standard MSG structural and umbilical interfaces will be used so that the isolation mount is transparent to the user with no additional accommodation requirements. g-LIMIT consists of three integrated isolator modules, each of which is comprised of a dual axis actuator, two axes of acceleration sensing, two axes of position sensing, control electronics, and data transmission capabilities in a minimum-volume package. In addition, this system provides the unique capability for measuring absolute acceleration of the experiment independent of accelerometers as a by-product of the control system and will have the capability of generating pristine accelerations to enhance experiment operations. g-LIMIT is scheduled for flight during the UF-2 mission and will be available to glovebox investigators immediately after characterization testing.
NASA Technical Reports Server (NTRS)
Berg, Robert F.; Grodsinsky, Carlos M.
1992-01-01
Critical point viscosity measurements are limited to their reduced temperature approach to T(sub c) in an Earth bound system, because of density gradients imposed by gravity. Therefore, these classes of experiments have been proposed as good candidates for 'microgravity' science experiments where this limitation is not present. The nature of these viscosity measurements dictate hardware that is sensitive to low frequency excitations. Because of the vibratory acceleration sensitivity of a torsion oscillator viscometer, used to acquire such measurements, a vibration isolation sensitivity test was performed on candidate 'microgravity' hardware to study the possibility of meeting the stringent oscillatory sensitivity requirements of a National Institute of Standards and Technology (NIST) torsion oscillator viscometer. A prototype six degree of freedom active magnetic isolation system, developed at NASA Lewis Research Center, was used as the isolation system. The ambient acceleration levels of the platform were reduced to the noise floor levels of its control sensors, about one microgravity in the 0.1 to 10 Hz bandwidth.
Microgravity Isolation Control System Design Via High-Order Sliding Mode Control
NASA Technical Reports Server (NTRS)
Shkolnikov, Ilya; Shtessel, Yuri; Whorton, Mark S.; Jackson, Mark
2000-01-01
Vibration isolation control system design for a microgravity experiment mount is considered. The controller design based on dynamic sliding manifold (DSM) technique is proposed to attenuate the accelerations transmitted to an isolated experiment mount either from a vibrating base or directly generated by the experiment, as well as to stabilize the internal dynamics of this nonminimum phase plant. An auxiliary DSM is employed to maintain the high-order sliding mode on the primary sliding manifold in the presence of uncertain actuator dynamics of second order. The primary DSM is designed for the closed-loop system in sliding mode to be a filter with given characteristics with respect to the input external disturbances.
NASA Technical Reports Server (NTRS)
McCrory, Jean L.; Lemmon, David R.; Sommer, H. Joseph; Prout, Brian; Smith, Damon; Korth, Deborah W.; Lucero, Javier; Greenisen, Michael; Moore, Jim
1999-01-01
A treadmill with vibration isolation and stabilization designed for the International Space Station (ISS) was evaluated during Shuttle mission STS-81. Three crew members ran and walked on the device, which floats freely in zero gravity. For the majority of the more than 2 hours of locomotion studied, the treadmill showed peak to peak linear and angular displacements of less than 2.5 cm and 2.5 deg, respectively. Vibration transmitted to the vehicle was within the microgravity allocation limits that are defined for the ISS. Refinements to the treadmill and harness system are discussed. This approach to treadmill design offers the possibility of generating 1G-like loads on the lower extremities while preserving the microgravity environment of the ISS for structural safety and vibration free experimental conditions.
McCrory, J L; Lemmon, D R; Sommer, H J; Prout, B; Smith, D; Korth, D W; Lucero, J; Greenisen, M; Moore, J; Kozlovskaya, I; Pestov, I; Stepansov, V; Miyakinchenko, Y; Cavanagh, P R
1999-08-01
A treadmill with vibration isolation and stabilization designed for the International Space Station (ISS) was evaluated during Shuttle mission STS-81. Three crew members ran and walked on the device, which floats freely in zero gravity. For the majority of the more than 2 hours of locomotion studied, the treadmill showed peak to peak linear and angular displacements of less than 2.5 cm and 2.5 degrees, respectively. Vibration transmitted to the vehicle was within the microgravity allocation limits that are defined for the ISS. Refinements to the treadmill and harness system are discussed. This approach to treadmill design offers the possibility of generating 1G-like loads on the lower extremities while preserving the microgravity environment of the ISS for structural safety and vibration free experimental conditions.
A six degree-of-freedom Lorentz vibration isolator with nonlinear controller
NASA Astrophysics Data System (ADS)
Fenn, Ralph C.
1992-05-01
The results of a phase 2 Small Business Innovation Research Program sponsored by MSFC are presented. Technology is developed for isolating acceleration sensitive microgravity experiments from structural vibration of a spacecraft, such as a space station. Two hardware articles are constructed: a six degree of freedom Lorentz force isolation and a one degree of freedom low acceleration testbed capable of tests at typical experiment accelerations.
Fluids and Materials Science Studies Utilizing the Microgravity-vibration Isolation Mount (MIM)
NASA Technical Reports Server (NTRS)
Herring, Rodney; Tryggvason, Bjarni; Duval, Walter
1998-01-01
Canada's Microgravity Sciences Program (MSP) is the smallest program of the ISS partners and so can participate in only a few, highly focused projects in order to make a scientific and technological impact. One focused project involves determining the effect of accelerations (g-jitter) on scientific measurements in a microgravity environment utilizing the Microgravity-vibration Isolation Mount (MIM). Many experiments share the common characteristic of having a fluid stage in their process. The quality of the experimental measurements have been expected to be affected by g-jitters which has lead the ISS program to include specifications to limit the level of acceleration allowed on a subset of experimental racks. From finite element analysis (FEM), the ISS structure will not be able to meet the acceleration specifications. Therefore, isolation systems are necessary. Fluid science results and materials science results show significant sensitivity to g-jitter. The work done to date should be viewed only as a first look at the issue of g-jitter sensitivity. The work should continue with high priority such that the international science community and the ISS program can address the requirement and settle on an agreed to overall approach as soon as possible.
Utilizing Advanced Vibration Isolation Technology to Enable Microgravity Science Operations
NASA Technical Reports Server (NTRS)
Alhorn, Dean Carl
1999-01-01
Microgravity scientific research is performed in space to determine the effects of gravity upon experiments. Until recently, experiments had to accept the environment aboard various carriers: reduced-gravity aircraft, sub-orbital payloads, Space Shuttle, and Mir. If the environment is unacceptable, then most scientists would rather not expend the resources without the assurance of true microgravity conditions. This is currently the case on the International Space Station, because the ambient acceleration environment will exceed desirable levels. For this reason, the g-LIMIT (Glovebox Integrated Microgravity Isolation Technology) system is currently being developed to provide a quiescent acceleration environment for scientific operations. This sub-rack isolation system will provide a generic interface for a variety of experiments for the Microgravity Science Glovebox. This paper describes the motivation for developing of the g-LIMIT system, presents the design concept and details some of the advanced technologies utilized in the g-LIMIT flight design.
Planning Experiments for a Microgravity Environment
NASA Technical Reports Server (NTRS)
Rogers, Melissa J. B.
1998-01-01
Prior to performing science experiments in a microgravity environment, scientists must understand and appreciate a variety of issues related to that environment. The microgravity conditions required for optimum performance of the experiment will help define an appropriate carrier, drop facility, sounding rocket, free-flyer, or manned orbiting spacecraft. Within a given carrier, such as the International Space Station, experiment sensitivity to vibrations and quasi-steady accelerations should also influence the location and orientation of the experiment apparatus; the flight attitude of the carrier (if selectable); and the scheduling of experiment operations in conjunction with other activities. If acceptable microgravity conditions are not expected from available carriers or experiment scheduling cannot avoid disruptive activities, then a vibration isolation system should be considered. In order to best interpret the experimental results, appropriate accelerometer data must be collected contemporaneously with the experimental data. All of this requires a good understanding of experiment sensitivity to the microgravity environment.
NASA Technical Reports Server (NTRS)
Hampton, R. David; Whorton, Mark S.
2000-01-01
Many microgravity space-science experiments require active vibration isolation, to attain suitably low levels of background acceleration for useful experimental results. The design of state-space controllers by optimal control methods requires judicious choices of frequency-weighting design filters. Kinematic coupling among states greatly clouds designer intuition in the choices of these filters, and the masking effects of the state observations cloud the process further. Recent research into the practical application of H2 synthesis methods to such problems, indicates that certain steps can lead to state frequency-weighting design-filter choices with substantially improved promise of usefulness, even in the face of these difficulties. In choosing these filters on the states, one considers their relationships to corresponding design filters on appropriate pseudo-sensitivity- and pseudo-complementary-sensitivity functions. This paper investigates the application of these considerations to a single-degree-of-freedom microgravity vibration-isolation test case. Significant observations that were noted during the design process are presented. along with explanations based on the existent theory for such problems.
NASA Technical Reports Server (NTRS)
Hampton, R. David; Whorton, Mark S.
2000-01-01
Many space science experiments need an active isolation system to provide them with the requisite microgravity environment. The isolation systems planned for use with the International Space Station have been appropriately modeled using relative position, relative velocity, and acceleration states. In theory, frequency design filters can be applied to these state-space models, in order to develop optimal H, or mixed-norm controllers with desired stability- and performance characteristics. In practice. however, the kinematic coupling among the various states can lead, through the associated frequency-weighting-filters, to conflicting demands on the Riccati design "machinery." The results can be numerically ill-conditioned regulator and estimator Riccati equations and/or reduced intuition in the design process. In addition, kinematic coupling can result in a redundancy in the demands imposed by the frequency weights. Failure properly to account for this type of coupling can lead to an unnecessary increase in controller dimensionality and, in turn, controller complexity. This paper suggests a rational approach to the assignment of frequency weighting design filters, in the presence of the kinematic coupling among states that exists in the microgravity vibration isolation problem.
NASA Technical Reports Server (NTRS)
Hampton, R. David; Whorton, Mark S.
2000-01-01
Many space-science experiments need an active isolation system to provide them with the requisite microgravity environment. The isolation systems planned for use with the International Space Station have been appropriately modeled using relative position relative velocity, and acceleration states. In theory, frequency-weighting design filters can be applied to these state-space models, in order to develop optimal H2 or mixed-norm controllers with desired stability and performance characteristics. In practice, however, the kinematic coupling among the various states can lead, through the associated frequency-weighting-filters, to conflicting demands on the Riccati design "machinery." The results can be numerically ill-conditioned regulator and estimator Riccati equations and/or reduced intuition in the design process. In addition, kinematic coupling can result in a redundancy in the demands imposed by the frequency weights. Failure properly to account for this type of coupling can lead to an unnecessary increase in controller dimensionality and, in turn, controller complexity. This paper suggests a rational approach to the assignment of frequency-weighting design filters, in the presence of the kinematic coupling among states that exists in the microgravity vibration isolation problem.
Effects of g-Jitter on Diffusion in Binary Liquids
NASA Technical Reports Server (NTRS)
Duval, Walter M. B.
1999-01-01
The microgravity environment offers the potential to measure the binary diffusion coefficients in liquids without the masking effects introduced by buoyancy-induced flows due to Earth s gravity. However, the background g-jitter (vibrations from the shuttle, onboard machinery, and crew) normally encountered in many shuttle experiments may alter the benefits of the microgravity environment and introduce vibrations that could offset its intrinsic advantages. An experiment during STS-85 (August 1997) used the Microgravity Vibration Isolation Mount (MIM) to isolate and introduce controlled vibrations to two miscible liquids inside a cavity to study the effects of g-jitter on liquid diffusion. Diffusion in a nonhomogeneous liquid system is caused by a nonequilibrium condition that results in the transport of mass (dispersion of the different kinds of liquid molecules) to approach equilibrium. The dynamic state of the system tends toward equilibrium such that the system becomes homogeneous. An everyday example is the mixing of cream and coffee (a nonhomogeneous system) via stirring. The cream diffuses into the coffee, thus forming a homogeneous system. At equilibrium the system is said to be mixed. However, during stirring, simple observations show complex flow field dynamics-stretching and folding of material interfaces, thinning of striation thickness, self-similar patterns, and so on. This example illustrates that, even though mixing occurs via mass diffusion, stirring to enhance transport plays a major role. Stirring can be induced either by mechanical means (spoon or plastic stirrer) or via buoyancy-induced forces caused by Earth s gravity. Accurate measurements of binary diffusion coefficients are often inhibited by buoyancy-induced flows. The microgravity environment minimizes the effect of buoyancy-induced flows and allows the true diffusion limit to be achieved. One goal of this experiment was to show that the microgravity environment suppresses buoyancy-induced convection, thereby mass diffusion becomes the dominant mechanism for transport. Since g-jitter transmitted by the shuttle to the experiment can potentially excite buoyancy-induced flows, we also studied the effects of controlled vibrations on the system.
The Microgravity Isolation Mount: A Linearized State-Space Model a la Newton and Kane
NASA Technical Reports Server (NTRS)
Hampton, R. David; Tryggvason, Bjarni V.; DeCarufel, Jean; Townsend, Miles A.; Wagar, William O.
1999-01-01
Vibration acceleration levels on large space platforms exceed the requirements of many space experiments. The Microgravity Vibration Isolation Mount (MIM) was built by the Canadian Space Agency to attenuate these disturbances to acceptable levels, and has been operational on the Russian Space Station Mir since May 1996. It has demonstrated good isolation performance and has supported several materials science experiments. The MIM uses Lorentz (voice-coil) magnetic actuators to levitate and isolate payloads at the individual experiment/sub-experiment (versus rack) level. Payload acceleration, relative position, and relative orientation (Euler-parameter) measurements are fed to a state-space controller. The controller, in turn, determines the actuator currents needed for effective experiment isolation. This paper presents the development of an algebraic, state-space model of the MIM, in a form suitable for optimal controller design. The equations are first derived using Newton's Second Law directly; then a second derivation (i.e., validation) of the same equations is provided, using Kane's approach.
NASA Technical Reports Server (NTRS)
Fialho, Ian J.; Thampi, Sreekumar
2000-01-01
A primary mission of the International Space Station (ISS) is to provide a premier microgravity laboratory environment for conducting acceleration sensitive scientific research. In order to accomplish this goal, vibroacoustic disturbances caused by station activities that occur during the microgravity mode of operation, must be controlled. In addition to source isolation and other passive isolation methods, the ISS uses active isolation at the receiver, through the use of an Active Rack Isolation System (ARIS), as part of its overall vibration isolation strategy. A schematic diagram of a typical ARIS payload rack is shown. The ARIS isolation control system senses rack acceleration via three triaxial accelerometer heads and uses eight pushrod actuators to perform active vibration attenuation. Position sensors housed in the actuator assembly are used to sense the relative position between the rack and the station. Electrical power, data and other essential resources are routed through a set of umbilicals that interface with a passthrough panel at the bottom of the rack. A representative umbilical set is shown.
NASA Technical Reports Server (NTRS)
Calhoun, Philip C.; Hampton, R. David
2002-01-01
The acceleration environment on the International Space Station (ISS) will likely exceed the requirements of many micro-gravity experiments. The Glovebox Integrated Microgravity Isolation Technology (g-LIMIT) is being built by the NASA Marshall Space Flight Center to attenuate the nominal acceleration environment and provide some isolation for microgravity science experiments. G-LIMIT uses Lorentz (voice-coil) magnetic actuators to isolate a platform for mounting science payloads from the nominal acceleration environment. The system utilizes payload acceleration, relative position, and relative orientation measurements in a feedback controller to accomplish the vibration isolation task. The controller provides current commands to six magnetic actuators, producing the required experiment isolation from the ISS acceleration environment. This paper presents the development of a candidate control law to meet the acceleration attenuation requirements for the g-LIMIT experiment platform. The controller design is developed using linear optimal control techniques for frequency-weighted H(sub 2) norms. Comparison of the performance and robustness to plant uncertainty for this control design approach is included in the discussion.
NASA Technical Reports Server (NTRS)
Calhoun, Philip C.; Hampton, R. David
2004-01-01
The acceleration environment on the International Space Station (ISS) exceeds the requirements of many microgravity experiments. The Glovebox Integrated Microgravity Isolation Technology (g-LIMIT) has been built by the NASA Marshall Space Flight Center to attenuate the nominal acceleration environment and provide some isolation for microgravity science experiments. The g-LIMIT uses Lorentz (voice-coil) magnetic actuators to isolate a platform, for mounting science payloads, from the nominal acceleration environment. The system utilizes payload-acceleration, relative-position, and relative-orientation measurements in a feedback controller to accomplish the vibration isolation task. The controller provides current commands to six magnetic actuators, producing the required experiment isolation from the ISS acceleration environment. The present work documents the development of a candidate control law to meet the acceleration attenuation requirements for the g-LIMIT experiment platform. The controller design is developed using linear optimal control techniques for frequency-weighted H2 norms. Comparison of performance and robustness to plant uncertainty for this control design approach is included in the discussion. System performance is demonstrated in the presence of plant modeling error.
NASA Technical Reports Server (NTRS)
Calhoun, Phillip C.; Hampton, R. David; Whorton, Mark S.
2001-01-01
The acceleration environment on the International Space Station (ISS) will likely exceed the requirements of many micro-gravity experiments. The Glovebox Integrated Microgravity Isolation Technology (g-LIMIT) is being built by the NASA Marshall Space Flight Center to attenuate the nominal acceleration environment and provide some isolation for micro-gravity science experiments. G-LIMIT uses Lorentz (voice-coil) magnetic actuators to isolate a platform for mounting science payloads from the nominal acceleration environment. The system utilizes payload acceleration, relative position, and relative orientation measurements in a feedback controller to accomplish the vibration isolation task. The controller provides current command to six magnetic actuators, producing the required experiment isolation from the ISS acceleration environment. This paper presents the development of a candidate control law to meet the acceleration attenuation requirements for the g-LIMIT experiment platform. The controller design is developed using linear optimal control techniques for both frequency-weighted H(sub 2) and H(sub infinity) norms. Comparison of the performance and robustness to plant uncertainty for these two optimal control design approaches are included in the discussion.
Microgravity vibration isolation: An optimal control law for the one-dimensional case
NASA Technical Reports Server (NTRS)
Hampton, Richard D.; Grodsinsky, Carlos M.; Allaire, Paul E.; Lewis, David W.; Knospe, Carl R.
1991-01-01
Certain experiments contemplated for space platforms must be isolated from the accelerations of the platform. An optimal active control is developed for microgravity vibration isolation, using constant state feedback gains (identical to those obtained from the Linear Quadratic Regulator (LQR) approach) along with constant feedforward gains. The quadratic cost function for this control algorithm effectively weights external accelerations of the platform disturbances by a factor proportional to (1/omega) exp 4. Low frequency accelerations are attenuated by greater than two orders of magnitude. The control relies on the absolute position and velocity feedback of the experiment and the absolute position and velocity feedforward of the platform, and generally derives the stability robustness characteristics guaranteed by the LQR approach to optimality. The method as derived is extendable to the case in which only the relative positions and velocities and the absolute accelerations of the experiment and space platform are available.
Microgravity vibration isolation: An optimal control law for the one-dimensional case
NASA Technical Reports Server (NTRS)
Hampton, R. D.; Grodsinsky, C. M.; Allaire, P. E.; Lewis, D. W.; Knospe, C. R.
1991-01-01
Certain experiments contemplated for space platforms must be isolated from the accelerations of the platforms. An optimal active control is developed for microgravity vibration isolation, using constant state feedback gains (identical to those obtained from the Linear Quadratic Regulator (LQR) approach) along with constant feedforward (preview) gains. The quadratic cost function for this control algorithm effectively weights external accelerations of the platform disturbances by a factor proportional to (1/omega)(exp 4). Low frequency accelerations (less than 50 Hz) are attenuated by greater than two orders of magnitude. The control relies on the absolute position and velocity feedback of the experiment and the absolute position and velocity feedforward of the platform, and generally derives the stability robustness characteristics guaranteed by the LQR approach to optimality. The method as derived is extendable to the case in which only the relative positions and velocities and the absolute accelerations of the experiment and space platform are available.
Design of a Long-Stroke Noncontact Electromagnetic Actuator for Active Vibration Isolation
NASA Technical Reports Server (NTRS)
Banerjee, Bibhuti; Allaire, Paul E.
1996-01-01
A long-stroke moving coil Lorentz Actuator was designed for use in a microgravity vibration isolation experiment. The final design had a stroke of 5.08 cm (2 in) and enough force capability to isolate a mass of the order of 22.7-45.4 kg. A simple dynamic magnetic circuit analysis, using an electrical analog, was developed for the initial design of the actuator. A neodymium-iron-boron material with energy density of 278 T-kA/m (35 MGOe) was selected to supply the magnetic field. The effect of changes in the design parameters of core diameter, shell outer diameter, pole face length, and coil wire layers were investigated. An extensive three-dimensional finite element analysis was carried out to accurately determine linearity with regard to axial position of the coil and coil current levels. The actuator was constructed and tested on a universal testing machine. Example plots are shown, indicating good linearity over the stroke of approximately 5.08 cm (2 in) and a range of coil currents from -1.5 A to +1.5 A. The actuator was then used for the microgravity vibration isolation experiments, described elsewhere.
Microgravity vibration isolation: Optimal preview and feedback control
NASA Technical Reports Server (NTRS)
Hampton, R. D.; Knospe, C. R.; Grodsinsky, C. M.; Allaire, P. E.; Lewis, D. W.
1992-01-01
In order to achieve adequate low-frequency vibration isolation for certain space experiments an active control is needed, due to inherent passive-isolator limitations. Proposed here are five possible state-space models for a one-dimensional vibration isolation system with a quadratic performance index. The five models are subsets of a general set of nonhomogeneous state space equations which includes disturbance terms. An optimal control is determined, using a differential equations approach, for this class of problems. This control is expressed in terms of constant, Linear Quadratic Regulator (LQR) feedback gains and constant feedforward (preview) gains. The gains can be easily determined numerically. They result in a robust controller and offers substantial improvements over a control that uses standard LQR feedback alone.
NASA Technical Reports Server (NTRS)
Hampton, Roy David; Whorton, Mark S.
1999-01-01
Many space-science experiments need an active isolation system to provide them with the requisite microgravity environment. The isolation systems planned for use with the International Space Station (ISS) have been appropriately modeled using relative position, relative velocity, and acceleration states. In theory, frequency-weighting design filters can be applied to these state-space models, in order to develop optimal H2 or mixed-norm controllers with desired stability and performance characteristics. In practice, however, since there is a kinematic relationship among the various states, any frequency weighting applied to one state will implicitly weight other states. These implicit frequency-weighting effects must be considered, for intelligent frequency-weighting filter assignment. This paper suggests a rational approach to the assignment of frequency-weighting design filters, in the presence of the kinematic coupling among states that exists in the microgravity vibration isolation problem.
Aerospace Applications of Magnetic Suspension Technology, part 1
NASA Technical Reports Server (NTRS)
Groom, Nelson J. (Editor); Britcher, Colin P. (Editor)
1991-01-01
Papers presented at the conference on aerospace applications of magnetic suspension technology are compiled. The following subject areas are covered: pointing and isolation systems; microgravity and vibration isolation; bearing applications; wind tunnel model suspension systems; large gap magnetic suspension systems; control systems; rotating machinery; science and application of superconductivity; and sensors.
PI Microgravity Services Role for International Space Station Operations
NASA Technical Reports Server (NTRS)
DeLombard, Richard
1998-01-01
During the ISS era, the NASA Lewis Research Center's Principal Investigator Microgravity Services (PIMS) project will provide to principal investigators (PIs) microgravity environment information and characterization of the accelerations to which their experiments were exposed during on orbit operations. PIMS supports PIs by providing them with microgravity environment information for experiment vehicles, carriers, and locations within the vehicle. This is done to assist the PI with their effort to evaluate the effect of acceleration on their experiments. Furthermore, PIMS responsibilities are to support the investigators in the area of acceleration data analysis and interpretation, and provide the Microgravity science community with a microgravity environment characterization of selected experiment carriers and vehicles. Also, PIMS provides expertise in the areas of microgravity experiment requirements, vibration isolation, and the implementation of requirements for different spacecraft to the microgravity community and other NASA programs.
NASA Technical Reports Server (NTRS)
Whorton, Mark; Perkins, Brad T.
2000-01-01
For many microgravity science experiments in the International Space Station, the ambient acceleration environment will be exceed desirable levels. To provide a more quiescent acceleration environment to the microgravity payloads, a vibration isolation system named g-LIMIT (GLovebox Integrated Microgravity Isolation Technology) is being designed. g-LIMIT is a sub-rack level isolation system that can be tailored to a variety of applications. Scheduled for launch on the UF-1 mission, the initial implementation of g-LIMIT will be a Characterization Test in the Microgravity Science Glovebox (MSG). g-LIMIT will be available to glovebox investigators immediately after characterization testing. Standard MSG structural and umbilical interfaces will be used so that the isolation mount is transparent to the user with no additional accommodation requirements. g-LIMIT consists of three integrated isolator modules, each of which is comprised of a dual axis actuator, two axes of acceleration sensing, two axes of position sensing, control electronics, and data transmission capabilities in a minimum-volume package. In addition, this system provides the unique capability for measuring absolute acceleration of the experiment independent of accelerometers as a by-product of the control system and will have the capability of generating pristine accelerations to enhance experiment operations.
Results of the Stable Microgravity Vibration Isolation Flight Experiment
NASA Technical Reports Server (NTRS)
Edberg, Donald; Boucher, Robert; Schenck, David; Nurre, Gerald; Whorton, Mark; Kim, Young; Alhorn, Dean
1996-01-01
This paper presents an overview of the STABLE microgravity isolation system developed and successfully flight tested in October 1995. A description of the hardware design and operational principles is given. A sample of the measured flight data is presented, including an evaluation of attenuation performance provided by the actively controlled electromagnetic isolation system. Preliminary analyses of flight data show that the acceleration environment aboard STABLE's isolated platform was attenuated by a factor of more than 25 between 0.1 and 100 Hz. STABLE was developed under a cooperative agreement between National Aeronautics and Space Administration, Marshall Space Flight Center, and McDonnell Douglas Aerospace. The flight hardware was designed, fabricated, integrated, tested, and delivered to the Cape during a five month period.
RME 1328, MIM - PS Tryggvason works with FLEX experiment
1997-08-25
STS085-312-006 (7-19 August 1997) --- Payload specialist Bjarni Tryggvason, representing the Canadian Space Agency (CSA), inputs data into a computer regarding the Microgravity Vibration Isolation Mount (MIM) experiment on the mid-deck of the Space Shuttle Discovery.
Modeling of PCG fluid dynamics: Salient results
NASA Technical Reports Server (NTRS)
Ramachandran, N.
1993-01-01
Materials processing in space-based laboratories has already yielded higher quality crystals during previous space flights, and opportunities for several fluids experiments are anticipated during the extended duration missions planned for the future. Crystal growth in space benefits not only from its reduced gravity environment but also from the absence of the hydrostatic pressure which assists certain crystal growth and refinement methods. Gravity-driven phenomena are thus reduced in strength, and a purely diffusive fluid's behavior can be attained. In addition, past materials science experiments have shown that microgravity can also help produce larger crystals. While gravity-related effects are definitely curtailed in space, they are nevertheless present to some degree due to the acceleration environment onboard the spacecraft. This residual acceleration level is comprised of quasi-steady, oscillatory, and transient components, and is caused by a variety of mechanisms. For example, gravity gradient forces produce low frequency disturbances, and the operation of machinery, control thrusters, solar panels, human activity, etc. contribute to higher frequency accelerations. These disturbances are collectively referred to as g-jitter, and they can be deleterious to certain experiments where the minimization of the acceleration level is important. Advanced vibration isolation techniques can be utilized to actively filter out some of the detrimental frequencies and help in obtaining optimum results. However, the successful application of this technology requires the detailed analysis of candidate fluids experiments to gauge their response to g-jitter and to determine their acceleration sensitivities. Several crystal growth experiments in the Protein Crystal Growth (PCG) area, besides others, are expected to be carried out on future shuttle flights and on Space Station Freedom. The need for vibration isolation systems or components for microgravity science experiments can be expected to grow as experiments and available hardware becomes more complex. This technology will also find increased application as the science community develops an awareness of their specific needs relative to the environment available in manned space missions. Vibration isolation research strives to develop a microgravity environment requirement that defines tolerance limits on the allowable g-level, and provides the required technology to achieve it. This effort will assist in establishing the tolerable acceleration levels for specific fluids experiments. The primary effort is directed towards modeling PCG and the approach undertaken for this investigation is outlined. The objectives of this research are: (1) to computationally determine vibration sensitivity of protein crystal growth experiments; (2) determine if these experiments can benefit from vibration isolation techniques; and (3) provide realistic requirements for vibration isolation technology.
NASA Technical Reports Server (NTRS)
Nurre, Gerald S.; Edberg, Donald L.
1998-01-01
Microgravity science payloads can be extremely sensitive to vibrations from machinery, acoustics, ventilation, and crew activity. Suppression of Transient Acceleration by Levitation (STABLE) is an active vibration isolation system designed to protect payloads from these disturbances. This paper gives an account of results from the flight demonstration of the STABLE microgravity isolation system, which was developed and successfully flight tested in orbit during USML-2, with the participation of Astronaut Fred Leslie. Following a very brief description of the operational principles, the hardware and software design, and performance criteria, results of the analysis of measured flight data are presented to provide an evaluation of system performance parameters, including acceleration attenuation, assessment of sway space, system power consumption, and other factors critical to the performance of an isolation system. Lessons learned and potential design improvements and evolutions are discussed. Data reduction by Robert Boucher of McDonnell Douglas Aerospace (MDA) was substantially assisted by Kenneth Hrovat of Tal-Cut, Inc., under support from National Aeronautics and Space Administration/Lewis Research Center (LeRC), Cleveland, OH.
Stereo Imaging Velocimetry of Mixing Driven by Buoyancy Induced Flow Fields
NASA Technical Reports Server (NTRS)
Duval, W. M. B.; Jacqmin, D.; Bomani, B. M.; Alexander, I. J.; Kassemi, M.; Batur, C.; Tryggvason, B. V.; Lyubimov, D. V.; Lyubimova, T. P.
2000-01-01
Mixing of two fluids generated by steady and particularly g-jitter acceleration is fundamental towards the understanding of transport phenomena in a microgravity environment. We propose to carry out flight and ground-based experiments to quantify flow fields due to g-jitter type of accelerations using Stereo Imaging Velocimetry (SIV), and measure the concentration field using laser fluorescence. The understanding of the effects of g-jitter on transport phenomena is of great practical interest to the microgravity community and impacts the design of experiments for the Space Shuttle as well as the International Space Station. The aim of our proposed research is to provide quantitative data to the community on the effects of g-jitter on flow fields due to mixing induced by buoyancy forces. The fundamental phenomenon of mixing occurs in a broad range of materials processing encompassing the growth of opto-electronic materials and semiconductors, (by directional freezing and physical vapor transport), to solution and protein crystal growth. In materials processing of these systems, crystal homogeneity, which is affected by the solutal field distribution, is one of the major issues. The understanding of fluid mixing driven by buoyancy forces, besides its importance as a topic in fundamental science, can contribute towards the understanding of how solutal fields behave under various body forces. The body forces of interest are steady acceleration and g-jitter acceleration as in a Space Shuttle environment or the International Space Station. Since control of the body force is important, the flight experiment will be carried out on a tunable microgravity vibration isolation mount, which will permit us to precisely input the desired forcing function to simulate a range of body forces. To that end, we propose to design a flight experiment that can only be carried out under microgravity conditions to fully exploit the effects of various body forces on fluid mixing. Recent flight experiments, by the P.I. through collaboration with the Canadian Space Agency (STS-85, August 1997), aimed at determining the stability of the interface between two miscible liquids inside an enclosure show that a long liquid column (5 cm) under microgravity isolation conditions can be stable, i.e. the interface remains sharp and vertical over a short time scale; thus transport occurs by molecular mass diffusion. On the other hand, when the two liquids were excited from a controlled vibration source (Microgravity Vibration Isolation Mount) two to four mode large amplitude quasi-stationary waves were observed. The data was limited to CCD recording of the dynamics of the interface between the two fluids. We propose to carry out flight experiments to quantify the dynamics of the flow field using Stereo Imaging Velocimetry and measure the concentration field using laser fluorescence. The results will serve as a basis to understand effects of g-jitter on transport phenomena, in this case mass diffusion. As the measurement of the kinematics of the flow field will shed light on the instability mechanism. The research will allow measurement of the flow field in microgravity environment to prove two hypotheses: (1) Maxwell's hypothesis: finite convection always exists in diffusing systems, and (2) Quasi-stationary waves inside a bounded enclosure in a microgravity environment is generated by Kelvin-Helmholtz instability; resonance of the interface which produces incipient mixing is due to Rayleigh-Taylor instability. The first hypothesis can be used as a benchmark experiment to illustrate diffusive mixing. The second hypothesis will lead to the understanding of g-jitter effects on buoyancy driven flow fields which occur in many situations involving materials processing, and other basic fluid physics phenomena. In addition, the second hypothesis will also provide insight in how Rayleigh-Taylor and Kelvin-Helmholtz instabilities propagate concentration fronts during mixing. Measurement of the flow field using SIV is important because it is the flow field which causes instability at the interface between the two fluids. Mixing driven by buoyancy induced flow fields will be addressed both experimentally and computationally. The experimental effort will address the kinematics of mixing: stretching, transport and chaos. Quantification of the mechanisms of mixing will consists of measuring the flow field using the SIV system at Glenn and capturing the dynamics of the interface, to measure mass transport, using a CCD camera. These experiments will be carried out within the framework of Earth's gravity and g-jitter microgravity acceleration as in a Space Shuttle environment or the International Space Station. The g-jitter will be induced and controlled using a tunable vibration isolation platform to isolate against vibration as well as input periodic and random vibration to the system. The parametric range of the microgravity experiment will be extended from the experiments on STS-85 to investigate higher mode quasi-stationary waves (8 to 12), as well as resonance regions which leads to chaos and turbulence. Ground-based experiments will focus on effects of vibration on stably stratified fluid layers in order to scale for possible scenarios in a microgravity environment. These vibrations will be subjected perpendicular to the concentration field on the ground since the parallel case can only be carried out in a microgravity environment. The concept of dynamical similarity will be applied to tune the experiments as closely as possible to a Space Shuttle environment or the International Space Station. The computational effort will take advantage of the Computational Laboratory at Glenn to corroborate the experimental findings with predictions of the dynamics of the flow field using the codes FLUENT (finite difference based) and FIDAP (finite element based). We will investigate two important cases, single-fluid model to address dilute systems with negligible jump in viscosity and the more general two-fluid model which accounts for finite jump in viscosity. Apart from its microgravity relevance, this experiment is well suited to study dynamics in nonlinear systems.
Vibration Isolation and Stabilization System for Spacecraft Exercise Treadmill Devices
NASA Technical Reports Server (NTRS)
Fialho, Ian; Tyer, Craig; Murphy, Bryan; Cotter, Paul; Thampi, Sreekumar
2011-01-01
A novel, passive system has been developed for isolating an exercise treadmill device from a spacecraft in a zero-G environment. The Treadmill 2 Vibration Isolation and Stabilization System (T2-VIS) mechanically isolates the exercise treadmill from the spacecraft/space station, thereby eliminating the detrimental effect that high impact loads generated during walking/running would have on the spacecraft structure and sensitive microgravity science experiments. This design uses a second stage spring, in series with the first stage, to achieve an order of magnitude higher exercise- frequency isolation than conventional systems have done, while maintaining desirable low-frequency stability performance. This novel isolator design, in conjunction with appropriately configured treadmill platform inertia properties, has been shown (by on-orbit zero-G testing onboard the International Space Station) to deliver exceedingly high levels of isolation/ stability performance.
Glovebox Integrated Microgravity Isolation Technology (g-LIMIT): A Linearized State-Space Model
NASA Technical Reports Server (NTRS)
Hampton, R. David; Calhoun, Philip C.; Whorton, Mark S.
2001-01-01
Vibration acceleration levels on large space platforms exceed the requirements of many space experiments. The Glovebox Integrated Microgravity Isolation Technology (g-LIMIT) is being built by the NASA Marshall Space Flight Center to attenuate these disturbances to acceptable levels. G-LIMIT uses Lorentz (voice-coil) magnetic actuators to levitate and isolate payloads at the individual experiment/sub-experiment (versus rack) level. Payload acceleration, relative position, and relative orientation measurements are fed to a state-space controller. The controller, in turn, determines the actuator Currents needed for effective experiment isolation. This paper presents the development of an algebraic, state-space model of g-LIMIT, in a form suitable for optimal controller design. The equations are first derived using Newton's Second Law directly, then simplified to a linear form for the purpose of controller design.
Adaptive Control for Microgravity Vibration Isolation System
NASA Technical Reports Server (NTRS)
Yang, Bong-Jun; Calise, Anthony J.; Craig, James I.; Whorton, Mark S.
2005-01-01
Most active vibration isolation systems that try to a provide quiescent acceleration environment for space science experiments have utilized linear design methods. In this paper, we address adaptive control augmentation of an existing classical controller that employs a high-gain acceleration feedback together with a low-gain position feedback to center the isolated platform. The control design feature includes parametric and dynamic uncertainties because the hardware of the isolation system is built as a payload-level isolator, and the acceleration Sensor exhibits a significant bias. A neural network is incorporated to adaptively compensate for the system uncertainties, and a high-pass filter is introduced to mitigate the effect of the measurement bias. Simulations show that the adaptive control improves the performance of the existing acceleration controller and keep the level of the isolated platform deviation to that of the existing control system.
1997-08-07
STS-85 Payload Specialist Bjarni V. Tryggvason gives a thumbs up as he is assisted with his ascent/reentry flight suit in the Operations and Checkout (O&C) Building. He is a Canadian Space Agency astronaut and was born in Iceland. Tryggvason has also been a flight instructor for the Canadian Air Force. Tryggvason is the principal investigator of the Microgravity Vibration Isolation Mount now flying on the Russian Mir space station. During STS-85, Tryggvason will conduct vibration isolation mount and fluid physics investigations. His work to study how Shuttle vibrations affect the results of experiments will be valuable to the International Space Station program, since this experiment is planned for use on that space platform. Tryggvason will also conduct Bioreactor experiments and assist Mission Specialist Stephen K. Robinson with photography
NASA Technical Reports Server (NTRS)
Cooper, Beth A.
2001-01-01
The NASA John H. Glenn Research Center at Lewis Field has designed and constructed an Acoustical Testing Laboratory to support the low-noise design of microgravity space flight hardware. This new laboratory will provide acoustic emissions testing and noise control services for a variety of customers, particularly for microgravity space flight hardware that must meet International Space Station limits on noise emissions. These limits have been imposed by the space station to support hearing conservation, speech communication, and safety goals as well as to prevent noise-induced vibrations that could impact microgravity research data. The Acoustical Testing Laboratory consists of a 23 by 27 by 20 ft (height) convertible hemi/anechoic chamber and separate sound-attenuating test support enclosure. Absorptive 34-in. fiberglass wedges in the test chamber provide an anechoic environment down to 100 Hz. A spring-isolated floor system affords vibration isolation above 3 Hz. These criteria, along with very low design background levels, will enable the acquisition of accurate and repeatable acoustical measurements on test articles, up to a full space station rack in size, that produce very little noise. Removable floor wedges will allow the test chamber to operate in either a hemi/anechoic or anechoic configuration, depending on the size of the test article and the specific test being conducted. The test support enclosure functions as a control room during normal operations but, alternatively, may be used as a noise-control enclosure for test articles that require the operation of noise-generating test support equipment.
Nineteenth International Microgravity Measurements Group Meeting
NASA Technical Reports Server (NTRS)
DeLombard, Richard (Compiler)
2000-01-01
The Microgravity Measurements Group meetings provide a forum for an exchange of information and ideas about various aspects of microgravity acceleration research in international microgravity research programs. These meetings are sponsored by the PI Microgravity Services (PIMS) project at the NASA Glenn Research Center. The 19th MGMG meeting was held 11-13 July 2000 at the Sheraton Airport Hotel in Cleveland, Ohio. The 44 attendees represented NASA, other space agencies, universities, and commercial companies; 8 of the attendees were international representatives from Japan, Italy, Canada, Russia, and Germany. Twenty-seven presentations were made on a variety of microgravity environment topics including the International Space Station (ISS), acceleration measurement and analysis results, science effects from microgravity accelerations, vibration isolation, free flyer satellites, ground testing, vehicle characterization, and microgravity outreach and education. The meeting participants also toured three microgravity-related facilities at the NASA Glenn Research Center. Contained within the minutes is the conference agenda, which indicates each speaker, the title of their presentation, and the actual time of their presentation. The minutes also include the charts for each presentation, which indicate the authors' name(s) and affiliation. In some cases, a separate written report was submitted and has been Included here
A simple microgravity table for the Orbiter or Space Station
NASA Technical Reports Server (NTRS)
Garriott, O. K.; Debra, D. B.
1985-01-01
Methods of limiting perturbations in microgravity experiments are proposed. An acceleration level below 10 to the -4th m/s-squared is necessary to maintain an undisturbed microgravity environment. Machinery vibrations, crew motion, and the firing of vernier thrusters produce acceleration levels greate than 10 to the -4th m/s-squared. The use of a weak spring system or simple electromagnets to isolate an experimental table from these factors is described. The manners in which crew motion and vernier firing are countered by the springs are examined. The steady acceleration caused by atmospheric drag, gravity gradient force, and steady rotation can be maintained below 10 to the -th m/s-squared; however, the springs can protect the table from these accelerations if required.
Proceedings of the Twentieth International Microgravity Measurements Group Meeting
NASA Technical Reports Server (NTRS)
DeLombard, Richard (Compiler)
2001-01-01
The International Microgravity Measurements Group annual meetings provide a forum for an exchange of information and ideas about various aspects of microgravity acceleration research in international microgravity research programs. These meetings are sponsored by the PI Microgravity Services (PIMS) project at the NASA Glenn Research Center. The twentieth MGMG meeting was held 7-9 August 2001 at the Hilton Garden Inn Hotel in Cleveland, Ohio. The 35 attendees represented NASA, other space agencies, universities, and commercial companies; eight of the attendees were international representatives from Canada, Germany, Italy, Japan, and Russia. Seventeen presentations were made on a variety of microgravity environment topics including the International Space Station (ISS), acceleration measurement and analysis results, science effects from microgravity accelerations, vibration isolation, free flyer satellites, ground testing, and microgravity outreach. Two working sessions were included in which a demonstration of ISS acceleration data processing and analyses were performed with audience participation. Contained within the minutes is the conference agenda which indicates each speaker, the title of their presentation, and the actual time of their presentation. The minutes also include the charts for each presentation which indicate the author's name(s) and affiliation. In some cases, a separate written report was submitted and has been included here.
NASA Technical Reports Server (NTRS)
Loehr, James A.; Lee, Stuart M. C.; Schneider, Suzanne M.
2003-01-01
The treadmill with vibration isolation system (TVIS) was developed to counteract cardiovascular, musculoskeletal, and neurovestibular deconditioning during long-duration missions to the International Space Station (ISS). However, recent hardware failures have necessitated the development of a short-term, temporary contingency exercise countermeasure for TVIS until nominal operations could be restored. The purpose of our evaluation was twofold: 1) to examine whether a slick-plate/contingency exercise surface (CES) could be used as a walking/running surface and could elicit a heart rate (HR) greater than or equal to 70% HR maximum and 2) to determine the optimal hardware configuration, in microgravity, to simulate running/walking in a 1-g environment. One subject (male) participated in the slick surface evaluation and two subjects (one male, one female) participated in the microgravity evaluation of the slick surface configuration. During the slick surface evaluation, the subject was suspended in a parachute harness and bungee cord configuration to offset the subject#s body weight. Using another bungee cord configuration, we added a vertical load back to the subject, who was then asked to run for 20 minutes on the slick surface. The microgravity evaluation simulated the ISS TVIS, and we evaluated two different slick surfaces (Teflon surface and an aluminum surface coated with Tufram) for use as a CES. We evaluated each surface with the subject walking and running, with and without a handrail, and while wearing either socks or nylon booties over shoes. In the slick surface evaluation, the subject ran for 20 minutes and reached a maximum HR of 170 bpm. In the microgravity evaluation, the subjects chose the aluminum plate coated with Tufram as the CES, while wearing a pair of nylon booties over running shoes and using a handrail, as the optimal hardware configuration.
Aerospace Applications of Magnetic Suspension Technology, part 2
NASA Technical Reports Server (NTRS)
Groom, Nelson J. (Editor); Britcher, Colin P. (Editor)
1991-01-01
In order to examine the state of technology of all areas of magnetic suspension with potential aerospace applications, and to review related recent developments in sensors and control approaches, superconducting technology, and design/implementation practices, a workshop was held at NASA-Langley. Areas of concern are pointing and isolation systems, microgravity and vibration isolation, bearing applications, wind tunnel model suspension systems, large gap magnetic suspension systems, controls, rotating machinery, science and applications of superconductivity, and sensors. Papers presented are included.
Digital active material processing platform effort (DAMPER), SBIR phase 2
NASA Technical Reports Server (NTRS)
Blackburn, John; Smith, Dennis
1992-01-01
Applied Technology Associates, Inc., (ATA) has demonstrated that inertial actuation can be employed effectively in digital, active vibration isolation systems. Inertial actuation involves the use of momentum exchange to produce corrective forces which act directly on the payload being actively isolated. In a typical active vibration isolation system, accelerometers are used to measure the inertial motion of the payload. The signals from the accelerometers are then used to calculate the corrective forces required to counteract, or 'cancel out' the payload motion. Active vibration isolation is common technology, but the use of inertial actuation in such systems is novel, and is the focus of the DAMPER project. A May 1991 report was completed which documented the successful demonstration of inertial actuation, employed in the control of vibration in a single axis. In the 1 degree-of-freedom (1DOF) experiment a set of air bearing rails was used to suspend the payload, simulating a microgravity environment in a single horizontal axis. Digital Signal Processor (DSP) technology was used to calculate in real time, the control law between the accelerometer signals and the inertial actuators. The data obtained from this experiment verified that as much as 20 dB of rejection could be realized by this type of system. A discussion is included of recent tests performed in which vibrations were actively controlled in three axes simultaneously. In the three degree-of-freedom (3DOF) system, the air bearings were designed in such a way that the payload is free to rotate about the azimuth axis, as well as translate in the two horizontal directions. The actuator developed for the DAMPER project has applications beyond payload isolation, including structural damping and source vibration isolation. This report includes a brief discussion of these applications, as well as a commercialization plan for the actuator.
Digital active material processing platform effort (DAMPER), SBIR phase 2
NASA Astrophysics Data System (ADS)
Blackburn, John; Smith, Dennis
1992-11-01
Applied Technology Associates, Inc., (ATA) has demonstrated that inertial actuation can be employed effectively in digital, active vibration isolation systems. Inertial actuation involves the use of momentum exchange to produce corrective forces which act directly on the payload being actively isolated. In a typical active vibration isolation system, accelerometers are used to measure the inertial motion of the payload. The signals from the accelerometers are then used to calculate the corrective forces required to counteract, or 'cancel out' the payload motion. Active vibration isolation is common technology, but the use of inertial actuation in such systems is novel, and is the focus of the DAMPER project. A May 1991 report was completed which documented the successful demonstration of inertial actuation, employed in the control of vibration in a single axis. In the 1 degree-of-freedom (1DOF) experiment a set of air bearing rails was used to suspend the payload, simulating a microgravity environment in a single horizontal axis. Digital Signal Processor (DSP) technology was used to calculate in real time, the control law between the accelerometer signals and the inertial actuators. The data obtained from this experiment verified that as much as 20 dB of rejection could be realized by this type of system. A discussion is included of recent tests performed in which vibrations were actively controlled in three axes simultaneously. In the three degree-of-freedom (3DOF) system, the air bearings were designed in such a way that the payload is free to rotate about the azimuth axis, as well as translate in the two horizontal directions. The actuator developed for the DAMPER project has applications beyond payload isolation, including structural damping and source vibration isolation. This report includes a brief discussion of these applications, as well as a commercialization plan for the actuator.
Design of a vibration isolation system for a cycle ergometer to be used onboard the Space Shuttle
NASA Technical Reports Server (NTRS)
Pearson, Lillian; Tait, Steven; Trevino, Maurice
1991-01-01
Low frequency vibrations generated during exercise using the cycle ergometer onboard the Space Shuttle are disrupting sensitive microgravity experiments. The design team is asked by NASA/USRA to generate alternatives for the design of a vibration isolation system for the cycle ergometer. It is the design team's objective to present alternative designs and a problem solution for a vibration isolation system for an exercise cycle ergometer to be used onboard the Space Shuttle. In the development of alternative designs, the design team emphasizes passive systems as opposed to active control systems. This decision is made because the team feels that passive systems are less complex than active control systems, external energy sources are not required, and mass is reduced due to the lack of machinery such as servomotors or compressors typical of active control systems. Eleven alternative designs are developed by the design team. From these alternatives, three active control systems are included to compare the benefits of active and passive systems. Also included in the alternatives is an isolation system designed by an independent engineer that was acquired late in the project. The eight alternatives using passive isolation systems are narrowed down by selection criteria to four considered to be the most promising by the design team. A feasibility analysis is performed on these four passive isolation systems. Based on the feasibility analysis, a final design solution is chosen and further developed. From the development of the design, the design team has concluded that passive systems are not effective at isolating vibrations for the low frequencies considered for this project. Recommendations are made for guidelines of passive isolation design and application of such systems.
Effects of G-Jitter on Interfacial Dynamics of Two Miscible Liquids: Application of MIM
NASA Technical Reports Server (NTRS)
Duval, Walter M. B.; Tryggvason, Bjarni V.
2000-01-01
We designed an experiment to examine the effects of g-jitter on mixing of two miscible liquids using the Microgravity Vibration Isolation Mount (MIM). The global bifurcation of the interface was observed with the MIM operating alternatively to either transmit the g-jitter, isolate from the g-jitter or to provide controlled vibration levels with well defined amplitude and frequency content. With the MIM in isolation mode, the interface remains stationary indicating buoyancy induced convection is negligibly small such that mixing occurs via intrinsic mass diffusion without the masking effect of vibration driven convection. Analytical and computational results are in agreement with the experimental findings. Operation of the MIM in forced mode with conditions typical of g-jitter shows that vibration induced convective flows can excite instability mechanisms such as Kelvin-Helmholtz to generate large amplitude quasi-stationary waves oriented vertically for various cases with Stokes-Reynolds number in the range of 0.003 to 0.5. The two and four mode quasi-stationary waves are also predicted with a mathematical model. Though unplanned, the effect of a primary thruster filing was captured and shown to cause a catastrophic bifurcation, enhancing local mass transport. In light of the findings, experiments planned for the International Space Station should consider the potential effects of g-jitter.
A "Kanes's Dynamics" Model for the Active Rack Isolation System
NASA Technical Reports Server (NTRS)
Hampton, R. David; Beech, Geoffrey
1999-01-01
Many microgravity space-science experiments require vibratory acceleration levels unachievable without active isolation. The Boeing Corporation's Active Rack Isolation System (ARIS) employs a novel combination of magnetic actuation and mechanical linkages, to address these isolation requirements on the International Space Station (ISS). ARIS provides isolation at the rack (international Standard Payload Rack, or ISPR) level. Effective model-based vibration isolation requires (1) an appropriate isolation device, (2) an adequate dynamic (i.e., mathematical) model of that isolator, and (3) a suitable, corresponding controller. ARIS provides the ISS response to the first requirement. This paper presents one response to the second, in a state-space framework intended to facilitate an optimal-controls approach to the third. The authors use "Kane's Dynamics" to develop an state-space, analytical (algebraic) set of linearized equations of motion for ARIS.
A "Kane's Dynamics" Model for the Active Rack Isolation System
NASA Technical Reports Server (NTRS)
Hampton, R. D.; Beech, G. S.; Rao, N. N. S.; Rupert, J. K.; Kim, Y. K.
2001-01-01
Many microgravity space science experiments require vibratory acceleration levels unachievable without active isolation. The Boeing Corporation's Active Rack Isolation System (ARIS) employs a novel combination of magnetic actuation and mechanical linkages to address these isolation requirements on the International Space Station (ISS). ARIS provides isolation at the rack (International Standard Payload Rack (ISPR)) level. Effective model-based vibration isolation requires: (1) an appropriate isolation device, (2) an adequate dynamic (i.e., mathematical) model of that isolator, and (3) a suitable, corresponding controller. ARIS provides the ISS response to the first requirement. This paper presents one response to the second, in a state space framework intended to facilitate an optimal-controls approach to the third. The authors use "Kane's Dynamics" to develop a state-space, analytical (algebraic) set of linearized equations of motion for ARIS.
International Symposium on Magnetic Suspension Technology, Part 2
NASA Technical Reports Server (NTRS)
Groom, Nelson J. (Editor); Britcher, Colin P. (Editor)
1992-01-01
In order to examine the state of technology of all areas of magnetic suspension and to review related recent developments in sensors and controls approaches, superconducting magnet technology, and design/implementation practices, a symposium was held. The proceedings are presented. The sessions covered the areas of bearings, sensors and controls, microgravity and vibration isolation, superconductivity, manufacturing applications, wind tunnel magnetic suspension systems, magnetically levitated trains (MAGLEV), space applications, and large gap magnetic suspension systems.
Practical Applications of Cables and Ropes in the ISS Countermeasures System
NASA Technical Reports Server (NTRS)
Svetlik, Randall G.; Moore, Cherice; Williams, Antony
2017-01-01
National Aeronautics and Space Administration (NASA) uses exercise countermeasures on the International Space Station (ISS) to maintain crew health and combat the negative effects of long-duration spaceflight on the human body. Most ISS exercise countermeasures system (CMS) equipment rely heavily on the use of textile and wire ropes to transmit resistive loads and provide stability in a microgravity environment. For a variety of reasons, including challenges in simulating microgravity environments for testing and limits on time available for life cycle testing, the textiles and wire ropes have contributed significantly to on-orbit planned and unplanned maintenance time. As a result, continued ground testing and on-orbit experience since the first expedition on the ISS in 2000 provide valuable data and lessons learned in materials selection, applications, and design techniques to increase service life of these ropes. This paper will present a review of the development and failure history of textile and wire ropes for four exercise countermeasure systems-the Treadmill with Vibration Isolation and Stabilization (TVIS) System, Cycle Ergometer with Vibration Isolation and Stabilization (CEVIS) System, Interim Resistive Exercise Device (IRED), and the Advanced Resistive Exercise Device (ARED)-to identify lessons learned in order to improve future systems. These lessons learned, paired with thorough testing on the ground, offer a forward path towards reduced maintenance time and up-mass for future space missions.
NASA Technical Reports Server (NTRS)
Grodsinsky, Carlos M.
1993-01-01
The low gravity environment provided by space flight has afforded the science community a unique area for the study of fundamental and technological sciences. However, the dynamic environment observed on space shuttle flights and predicted for Space Station Freedom has complicated the analysis of prior 'microgravity' experiments and prompted concern for the viability of proposed space experiments requiring long term, low gravity environments. Thus, isolation systems capable of providing significant improvements to this random environment have been developed. This dissertation deals with the design constraints imposed by acceleration sensitive, microgravity experiment payloads in the unique environment of space. A theoretical background for the inertial feedback and feedforward isolation of a payload was developed giving the basis for two experimental active inertial isolation systems developed for the demonstration of these advanced active isolation techniques. A prototype six degree of freedom digital active isolation system was designed and developed for the ground based testing of an actively isolated payload in three horizontal degrees of freedom. A second functionally equivalent system was built for the multi-dimensional testing of an active inertial isolation system in a reduced gravity environment during low gravity aircraft trajectories. These multi-input multi-output control systems are discussed in detail with estimates on acceleration noise floor performance as well as the actual performance acceleration data. The attenuation performance is also given for both systems demonstrating the advantages between inertial and non-inertial control of a payload for both the ground base environment and the low gravity aircraft acceleration environment. A future goal for this area of research is to validate the technical approaches developed to the 0.01 Hz regime by demonstrating a functional active inertial feedforward/feedback isolation system during orbital flight. A NASA IN-STEP flight experiment has been proposed to accomplish this goal, and the expected selection for the IN-STEP program has been set for Jul. of 1993.
NASA Technical Reports Server (NTRS)
Pollock, N. W.; Natoli, M. J.; Martina, S. D.; Conkin, J.; Wessel, J. H., III; Gernhardt, M. L.
2016-01-01
Musculoskeletal activity accelerates inert gas elimination during oxygen breathing prior to decompression (prebreathe), but may also promote bubble formation (nucleation) and increase the risk of decompression sickness (DCS). The timing, pattern and intensity of musculoskeletal activity are likely critical to the net effect. The NASA Prebreathe Reduction Program (PRP) combined oxygen prebreathe and exercise preceding a 4.3 psia exposure in non-ambulatory subjects (a microgravity analog) to produce two protocols now used by astronauts preparing for extravehicular activity - one employing cycling and non-cycling exercise (CEVIS: 'cycle ergometer vibration isolation system') and one relying on non-cycling exercise only (ISLE: 'in-suit light exercise'). Current efforts investigate whether light exercise normal to 1 G environments increases the risk of DCS over microgravity simulation.
Tether Elevator Crawler Systems (TECS)
NASA Technical Reports Server (NTRS)
Swenson, Frank R.
1987-01-01
One of the needs of the experimenters on the space station is access to steady and controlled-variation microgravity environments. A method of providing these environments is to place the experiment on a tether attached to the space station. This provides a high degree of isolation from structural oscillations and vibrations. Crawlers can move these experiments along the tethers to preferred locations, much like an elevator. This report describes the motion control laws developed for these crawlers and the testing of laboratory models of these tether elevator crawlers.
International Symposium on Magnetic Suspension Technology, Part 1
NASA Technical Reports Server (NTRS)
Groom, Nelson J. (Editor); Britcher, Colin P. (Editor)
1992-01-01
The goal of the symposium was to examine the state of technology of all areas of magnetic suspension and to review related recent developments in sensors and controls approaches, superconducting magnet technology, and design/implementation practices. The symposium included 17 technical sessions in which 55 papers were presented. The technical session covered the areas of bearings, sensors and controls, microgravity and vibration isolation, superconductivity, manufacturing applications, wind tunnel magnetic suspension systems, magnetically levitated trains (MAGLEV), space applications, and large gap magnetic suspension systems.
Extended H2 synthesis for multiple degree-of-freedom controllers
NASA Technical Reports Server (NTRS)
Hampton, R. David; Knospe, Carl R.
1992-01-01
H2 synthesis techniques are developed for a general multiple-input-multiple-output (MIMO) system subject to both stochastic and deterministic disturbances. The H2 synthesis is extended by incorporation of anticipated disturbances power-spectral-density information into the controller-design process, as well as by frequency weightings of generalized coordinates and control inputs. The methodology is applied to a simple single-input-multiple-output (SIMO) problem, analogous to the type of vibration isolation problem anticipated in microgravity research experiments.
The Low Temperature Microgravity Physics Experiments Project
NASA Technical Reports Server (NTRS)
Holmes, Warren; Lai, Anthony; Croonquist, Arvid; Chui, Talso; Eraker, J. H.; Abbott, Randy; Mills, Gary; Mohl, James; Craig, James; Balachandra, Balu;
2000-01-01
The Low Temperature Microgravity Physics Facility (LTMPF) is being developed by NASA to provide long duration low temperature and microgravity environment on the International Space Station (ISS) for performing fundamental physics investigations. Currently, six experiments have been selected for flight definition studies. More will be selected in a two-year cycle, through NASA Research Announcement. This program is managed under the Low Temperature Microgravity Physics Experiments Project Office at the Jet Propulsion Laboratory. The facility is being designed to launch and returned to earth on a variety of vehicles including the HII-A and the space shuttle. On orbit, the facility will be connected to the Exposed Facility on the Japanese Experiment Module, Kibo. Features of the facility include a cryostat capable of maintaining super-fluid helium at a temperature of 1.4 K for 5 months, resistance thermometer bridges, multi-stage thermal isolation system, thermometers capable of pico-Kelvin resolution, DC SQUID magnetometers, passive vibration isolation, and magnetic shields with a shielding factor of 80dB. The electronics and software architecture incorporates two VME buses run using the VxWorks operating system. Technically challenging areas in the design effort include the following: 1) A long cryogen life that survives several launch and test cycles without the need to replace support straps for the helium tank. 2) The minimization of heat generation in the sample stage caused by launch vibration 3) The design of compact and lightweight DC SQUID electronics. 4) The minimization of RF interference for the measurement of heat at pico-Watt level. 5) Light weighting of the magnetic shields. 6) Implementation of a modular and flexible electronics and software architecture. The first launch is scheduled for mid-2003, on an H-IIA Rocket Transfer Vehicle, out of the Tanegashima Space Center of Japan. Two identical facilities will be built. While one facility is onboard the ISS, the other is re-integrated on the ground with new experiments. When the cryogen of the facility in space are exhausted, it will be swapped with the other facility with the new experiment. A total of 20 science missions are envisioned over the next 20 years.
The CFVib Experiment: Control of Fluids in Microgravity with Vibrations
NASA Astrophysics Data System (ADS)
Fernandez, J.; Sánchez, P. Salgado; Tinao, I.; Porter, J.; Ezquerro, J. M.
2017-10-01
The Control of Fluids in Microgravity with Vibrations (CFVib) experiment was selected for the 2016 Fly Your Thesis! programme as part of the 65th ESA Parabolic Flight Campaign. The aim of the project is to observe the potentially complex behaviour of vibrated liquids in weightless environments and to investigate the extent to which small-amplitude vibrations can be used to influence and control this behaviour. Piezoelectric materials are used to generate high-frequency vibrations to drive surface waves and large-scale reorientation of the interface. The theory of vibroequilibria, which treats the quasi-stationary surface configurations achieved by this reorientation, was used to predict interesting parameter regimes and interpret fluid behaviour. Here we describe the scientific motivation, objectives, and design of the experiment.
Wehland, Markus; Aleshcheva, Ganna; Schulz, Herbert; Saar, Katrin; Hübner, Norbert; Hemmersbach, Ruth; Braun, Markus; Ma, Xiao; Frett, Timo; Warnke, Elisabeth; Riwaldt, Stefan; Pietsch, Jessica; Corydon, Thomas Juhl; Infanger, Manfred; Grimm, Daniela
2015-03-20
Chondrocytes are the main cellular component of articular cartilage. In healthy tissue, they are embedded in a strong but elastic extracelluar matrix providing resistance against mechanical forces and friction for the joints. Osteoarthritic cartilage, however, disrupted by heavy strain, has only very limited potential to heal. One future possibility to replace damaged cartilage might be the scaffold-free growth of chondrocytes in microgravity to form 3D aggregates. To prepare for this, we have conducted experiments during the 20th DLR parabolic flight campaign, where we fixed the cells after the first (1P) and the 31st parabola (31P). Furthermore, we subjected chondrocytes to isolated vibration and hypergravity conditions. Microarray and quantitative real time PCR analyses revealed that hypergravity regulated genes connected to cartilage integrity (BMP4, MMP3, MMP10, EDN1, WNT5A, BIRC3). Vibration was clearly detrimental to cartilage (upregulated inflammatory IL6 and IL8, downregulated growth factors EGF, VEGF, FGF17). The viability of the cells was not affected by the parabolic flight, but showed a significantly increased expression of anti-apoptotic genes after 31 parabolas. The IL-6 release of chondrocytes cultured under conditions of vibration was not changed, but hypergravity (1.8 g) induced a clear elevation of IL-6 protein in the supernatant compared with corresponding control samples. Taken together, this study provided new insights into the growth behavior of chondrocytes under short-term microgravity.
NASA Technical Reports Server (NTRS)
Grugel, Richard N.
1999-01-01
It has been demonstrated in floating-zone configurations utilizing silicone oil and nitrate salts that mechanically induced vibration effectively minimizes detrimental, gravity independent, thermocapillary flow. The processing parameters leading to crystal improvement and aspects of the on-going modeling effort are discussed. Plans for applying the crystal growth technique to commercially relevant materials, e.g., silicon, as well as the value of processing in a microgravity environment are presented.
Characterization of spacecraft and environmental disturbances on a SmallSat
NASA Technical Reports Server (NTRS)
Johnson, Thomas A.; Nguyen, Dung Phu Chi; Cuda, Vince; Freesland, Doug
1994-01-01
The objective of this study is to model the on-orbit vibration environment encountered by a SmallSat. Vibration control issues are common to the Earth observing, imaging, and microgravity communities. A spacecraft may contain dozens of support systems and instruments each a potential source of vibration. The quality of payload data depends on constraining vibration so that parasitic disturbances do not affect the payload's pointing or microgravity requirement. In practice, payloads are designed incorporating existing flight hardware in many cases with nonspecific vibration performance. Thus, for the development of a payload, designers require a thorough knowledge of existing mechanical devices and their associated disturbance levels. This study evaluates a SmallSat mission and seeks to answer basic questions concerning on-orbit vibration. Payloads were considered from the Earth observing, microgravity, and imaging communities. Candidate payload requirements were matched to spacecraft bus resources of present day SmallSats. From the set of candidate payloads, the representative payload GLAS (Geoscience Laser Altimeter System) was selected. The requirements of GLAS were considered very stringent for the 150 - 500 kg class of payloads. Once the payload was selected, a generic SmallSat was designed in order to accommodate the payload requirements (weight, size, power, etc.). This study seeks to characterize the on-orbit vibration environment of a SmallSat designed for this type of mission and to determine whether a SmallSat can provide the precision pointing and jitter control required for earth observing payloads.
Saradjian, Anahid H.; Paleressompoulle, Dany; Louber, Didier; Coyle, Thelma; Blouin, Jean; Mouchnino, Laurence
2014-01-01
We recently found that the cortical response to proprioceptive stimulation was greater when participants were planning a step than when they stood still, and that this sensory facilitation was suppressed in microgravity. The aim of the present study was to test whether the absence of gravity-related sensory afferents during movement planning in microgravity prevented the proprioceptive cortical processing to be enhanced. We reestablished a reference frame in microgravity by providing and translating a horizontal support on which the participants were standing and verified whether this procedure restored the proprioceptive facilitation. The slight translation of the base of support (lateral direction), which occurred prior to step initiation, stimulated at least cutaneous and vestibular receptors. The sensitivity to proprioceptive stimulation was assessed by measuring the amplitude of the cortical somatosensory-evoked potential (SEP, over the Cz electrode) following the vibration of the leg muscle. The vibration lasted 1 s and the participants were asked to either initiate a step at the vibration offset or to remain still. We found that the early SEP (90–160 ms) was smaller when the platform was translated than when it remained stationary, revealing the existence of an interference phenomenon (i.e., when proprioceptive stimulation is preceded by the stimulation of different sensory modalities evoked by the platform translation). By contrast, the late SEP (550 ms post proprioceptive stimulation onset) was greater when the translation preceded the vibration compared to a condition without pre-stimulation (i.e., no translation). This suggests that restoring a body reference system which is impaired in microgravity allowed a greater proprioceptive cortical processing. Importantly, however, the late SEP was similarly increased when participants either produced a step or remained still. We propose that the absence of step-induced facilitation of proprioceptive cortical processing results from a decreased weight of proprioception in the absence of balance constraints in microgravity. PMID:25259838
The Impact of Hypergravity and Vibration on Gene and Protein Expression of Thyroid Cells
NASA Astrophysics Data System (ADS)
Wehland, Markus; Warnke, Elisabeth; Frett, Timo; Hemmersbach, Ruth; Hauslage, Jens; Ma, Xiao; Aleshcheva, Ganna; Pietsch, Jessica; Bauer, Johann; Grimm, Daniela
2016-06-01
Experiments in space either on orbital missions on-board the ISS, or in suborbital missions using sounding rockets, like TEXUS as well as parabolic flight campaigns are still the gold standard to achieve real microgravity conditions in the field of gravitational biology and medicine. However, during launch, and in flight, hypergravity and vibrations occur which might interfere with the effects of microgravity. It is therefore important to know these effects and discriminate them from the microgravity effects. This can be achieved by ground-based facilities like centrifuges or vibration platforms. Recently, we have conducted several experiments with different thyroid cancer cell lines. This study, as part of the ESA-CORA-GBF 2010-203 project, focused on the influence of vibration and hypergravity on benign human thyroid follicular epithelial cells (Nthy-ori 3-1 cell line). Gene and in part protein expression regulation under both conditions were analyzed for VCAN, ITGA10, ITGB1, OPN, ADAM19, ANXA1, TNFA, ABL2, ACTB, PFN2, TLN1, EZR, RDX, MSN, CTGF, PRKCA, and PRKAA1 using quantitative real-time PCR and Western Blot. We found that hypergravity and vibration affected genes and proteins involved in the extracellular matrix, the cytoskeleton, apoptosis, cell growth and signaling. Vibration always led to a down-regulation, whereas hypergravity resulted in a more heterogeneous expression pattern. Overall we conclude that both conditions can influence gene regulation and production of various genes and proteins. As a consequence, it is important to perform control experiments on hypergravity and vibration facilities in parallel to flight experiments.
NASA Technical Reports Server (NTRS)
Klaus, David M.; Benoit, Michael R.; Nelson, Emily S.; Hammond, Timmothy G.
2004-01-01
Conducting biological research in space requires consideration be given to isolating appropriate control parameters. For in vitro cell cultures, numerous environmental factors can adversely affect data interpretation. A biological response attributed to microgravity can, in theory, be explicitly correlated to a specific lack of weight or gravity-driven motion occurring to, within or around a cell. Weight can be broken down to include the formation of hydrostatic gradients, structural load (stress) or physical deformation (strain). Gravitationally induced motion within or near individual cells in a fluid includes sedimentation (or buoyancy) of the cell and associated shear forces, displacement of cytoskeleton or organelles, and factors associated with intra- or extracellular mass transport. Finally, and of particular importance for cell culture experiments, the collective effects of gravity must be considered for the overall system consisting of the cells, their environment and the device in which they are contained. This does not, however, rule out other confounding variables such as launch acceleration, on orbit vibration, transient acceleration impulses or radiation, which can be isolated using onboard centrifuges or vibration isolation techniques. A framework is offered for characterizing specific cause-and-effect relationships for gravity-dependent responses as a function of the above parameters.
NASA Technical Reports Server (NTRS)
Cubano, L. A.; Lewis, M. L.
2001-01-01
Heat shock protein levels are increased in cells as a result of exposure to stress. To determine whether heat shock protein regulation could be used to evaluate stress in cells during spaceflight, the response of Jurkat cells to spaceflight and simulated space shuttle launch vibration was investigated by evaluating hsp70 and hsp27 gene expression. Gene expression was assessed by reverse transcription-polymerase chain reaction using mRNA extracted from vibrated, nonvibrated, space-flown, and ground control cells. Results indicate that mechanical stresses of vibration and low gravity do not up-regulate the mRNA for hsp70, although the gene encoding hsp27 is up-regulated by spaceflight but not by vibration. In ground controls, the mRNA for hsp70 and hsp27 increased with time in culture. We conclude that hsp70 gene expression is a useful indicator of stress related to culture density but is not an indicator of the stresses of launch vibration or microgravity. Up-regulation of hsp27 gene expression in microgravity is a new finding.
Cubano, L A; Lewis, M L
2001-05-01
Heat shock protein levels are increased in cells as a result of exposure to stress. To determine whether heat shock protein regulation could be used to evaluate stress in cells during spaceflight, the response of Jurkat cells to spaceflight and simulated space shuttle launch vibration was investigated by evaluating hsp70 and hsp27 gene expression. Gene expression was assessed by reverse transcription-polymerase chain reaction using mRNA extracted from vibrated, nonvibrated, space-flown, and ground control cells. Results indicate that mechanical stresses of vibration and low gravity do not up-regulate the mRNA for hsp70, although the gene encoding hsp27 is up-regulated by spaceflight but not by vibration. In ground controls, the mRNA for hsp70 and hsp27 increased with time in culture. We conclude that hsp70 gene expression is a useful indicator of stress related to culture density but is not an indicator of the stresses of launch vibration or microgravity. Up-regulation of hsp27 gene expression in microgravity is a new finding.
Musculoskeletal-induced Nucleation in Altitude Decompression Sickness
NASA Technical Reports Server (NTRS)
Pollock, N. W.; Natoli, M. J.; Conkin, J.; Wessel, J. H., III; Gernhardt, M. L.
2014-01-01
Musculoskeletal activity has the potential to both improve and compromise decompression safety. Exercise enhances inert gas elimination during oxygen breathing prior to decompression (prebreathe), but it may also promote bubble nuclei formation (nucleation), which can lead to gas phase separation and bubble growth and increase the risk of decompression sickness (DCS). The timing, pattern and intensity of musculoskeletal activity and the level of tissue supersaturation may be critical to the net effect. There are limited data available to evaluate cost-benefit relationships. Understanding the relationship is important to improve our understanding of the underlying mechanisms of nucleation in exercise prebreathe protocols and to quantify risk in gravity and microgravity environments. Data gathered during NASA's Prebreathe Reduction Program (PRP) studies combined oxygen prebreathe and exercise followed by low pressure (4.3 psi; altitude equivalent of 30,300 ft [9,235 m]) microgravity simulation to produce two protocols used by astronauts preparing for extravehicular activity. Both the Phase II/CEVIS (cycle ergometer vibration isolation system) and ISLE (in-suit light exercise) trials eliminated ambulation to more closely simulate the microgravity environment. The CEVIS results (35 male, 10 female) serve as control data for this NASA/Duke study to investigate the influence of ambulation exercise on bubble formation and the subsequent risk of DCS.
NASA Astrophysics Data System (ADS)
Hou, M.; Liu, R.; Li, Y.; Lu, K.; Garrabos, Y.; Evesque, P.
2009-06-01
Dynamics of quasi-2d dissipative granular gas is studied in microgravity condition (of the order of 10-4 g) in the limit of Knudsen regime. The gas, made of 4 spheres, is confined in a square cell enforced to follow linear sinusoidal vibration in ten different vibration modes. The trajectory of one of the particles is tracked and reconstructed from the 2-hour video data. From statistical analysis, we find that (i) loss due to wall friction is small, (ii) trajectory looks ergodic in space, and (iii) distribution ρ(v) of speed follows an exponential distribution, i.e. ρ(v)≈exp(-v/vxo,yo), with vxo,yo being a characteristic velocity along a direction parallel (y) or perpendicular (x) to vibration direction. This law deviates strongly from the Boltzmann distribution of speed in molecular gas. Comparisons of this result with previous measurements in earth environment, and what was found in 3d cell [1] performed in 10-2 g environment are given.
NASA Technical Reports Server (NTRS)
Veldhuijzen, Jean Paul; Vanloon, Jack J. W. A.
1994-01-01
An experiment using isolated skeletal tissues under microgravity, is reported. Fetal mouse long bones (metatarsals) were cultured for 4 days in the Biorack facility of Spacelab during the IML-1 (International Microgravity Laboratory) mission of the Space Shuttle. Overall growth was not affected, however glucose consumption was significantly reduced under microgravity. Mineralization of the diaphysis was also strongly reduced under microgravity as compared to the on-board 1 g group. In contrast, mineral resorption by osteoclasts was signficantly increased. These results indicate that these fetal mouse long bones are a sensitive and useful model to further study the cellular mechanisms involved in the changed mineral metabolism of skeletal tissues under microgravity.
Ambulation During Periods of Supersaturation Increase Decompression Stress in Spacewalk Simulations
NASA Technical Reports Server (NTRS)
Pollock, N. W.; Natoli, M. J.; Martina, S. D.; Conkin, J.; Wessel, J. H., III; Gernhardt, M. L.
2016-01-01
Musculoskeletal activity accelerates inert gas elimination during oxygen breathing prior to decompression (prebreathe), but may also promote bubble formation (nucleation) and increase the risk of decompression sickness (DCS). The timing, pattern and intensity of musculoskeletal activity and the level of tissue supersaturation are likely critical to the net effect. Understanding the relationships is important to evaluate exercise prebreathe protocols and quantify decompression risk in gravity and microgravity environments. The NASA Prebreathe Reduction Program (PRP) combined oxygen prebreathe and exercise preceding a low pressure (4.3 psia; altitude equivalent of 30,300 ft [9,235 m]) simulation exposure of non-ambulatory subjects (a microgravity analog) to produce two protocols now used by astronauts preparing for extravehicular activity. One protocol included both upright cycling and non-cycling exercise (CEVIS: 'cycle ergometer vibration isolation system') and one protocol relied on non-cycling exercise only (ISLE: 'in-suit light exercise'). CEVIS trial data serve as control data for the current study to investigate the influence of ambulation exercise in 1G environments on bubble formation and the subsequent risk of DCS.
Effects of vibration (G-jitters) on convection in micro-gravity
NASA Technical Reports Server (NTRS)
Wang, Francis C.
1994-01-01
To obtain high quality crystals, it is desirable to maintain a diffusion-limited transport process in a planar solidification surface between the solid and the melt during the crystal growth process. Due to the presence of buoyancy-driven convection, however, this situation is difficult to maintain on Earth. The microgravity environment of an orbiting space laboratory presents an alternative worth pursuing. With reduced gravity, convections very much suppressed in a space laboratory, making the environment more conducive for growing crystals with better quality. However, a space laboratory is not immune from any undesirable disturbances. Nonuniform and transient accelerations such as vibrations, g-jitters, and impulsive accelerations exist as a result of crew activities, space maneuvering, and the operations of on-board equipment. Measurements conducted on-board a U.S. Spacelab mission showed the existence of vibrations in the frequency range of 1 to 100 Hz. It was reported that a dominant mode of 17 Hz and harmonics of 54 Hz were observed and these were attributed to antenna operations. The vibration is not limited to any single plane but exists in all directions. Some data from the Russian MIR space station indicates the existence of vibration also at this frequency range.
NASA Technical Reports Server (NTRS)
Rasmussen, Ole
1992-01-01
The primary goal of this project is to investigate if microgravity has any influence on growth and differentiation of protoplasts. Formation of new cell walls on rapeseed protoplasts takes place within the first 24 hours after isolation. Cell division can be observed after 2-4 days and formation of cell aggregates after 5-7 days. Therefore, it is possible during the 7 day IML-1 Mission to investigate if cell wall formation, cell division, and cell differentiation are influenced by microgravity. Protoplasts of rapeseeds and carrot will be prepared shortly before launch and injected into 0.6 ml polyethylene bags. Eight bags are placed in an aluminum block inside the ESA Type 1 container. The containers are placed at 4 C in PTCU's and transferred to orbiter mid-deck. At 4 C all cell processes are slowed down, including cell wall formation. Latest access to the shuttle will be 12 hours before launch. In orbit the containers will be transferred from the PTC box to the 22 C Biorack incubator. The installation of a 1 g centrifuge in Biorack will make it possible to distinguish between effects of near weightlessness and effects caused by cosmic radiation and other space flight factors including vibrations. Parallel control experiments will be carried out on the ground. Other aspects of the experiment are discussed.
More than a feeling: bringing touch into astronauts' spatial orientation
NASA Astrophysics Data System (ADS)
van Erp Jan, B. F.; van Veen Hendrik, A. H. C.; Mark, Ruijsendaal
2007-09-01
Data show that spatial orientation in microgravity differs from that on Earth possibly facilitating space motion sickness and degrading performance. As a technology demonstration, we developed a Tactile Orientation Awareness Support Tool (TOAST) consisting of a vest with 56 vibrators. TOAST presents an artificial gravity vector by a localised vibration on the torso that points in the direction of down. Here, we report on the operational issues of TOAST. In an experiment with a single male austronaut, we tested if he could detect the vibrations in mircogravity as fast as on Earth. We used several questionnaires to investigate issues such as comfort and usability. The results show that, on average, the astronaut responds faster in microgravity than on Earth. However, the data also showed that the fit of the vest could be improved. The questionnaires show that the tool supported the astronaut in orientation tasks and has potential in challenging situations, but is not needed during daily operations. Although the comfort of the vest is OK, the somewhat bulky equipment of the demonstrator reduced its wearibility. We conclude that the demonstration was successful but that more microgravity data are needed to corroborate the findings. We expect a spin- off to applications for pilots, divers, individuals with a visual or vestibular dysfunction, emergency services, and the automobile and sports industry.
Microgravity Boiling Enhancement Using Vibration-Based Fluidic Technologies
NASA Astrophysics Data System (ADS)
Smith, Marc K.; Glezer, Ari; Heffington, Samuel N.
2002-11-01
Thermal management is an important subsystem in many devices and technologies used in a microgravity environment. The increased power requirements of new Space technologies and missions mean that the capacity and efficiency of thermal management systems must be improved. The current work addresses this need through the investigation and development of a direct liquid immersion heat transfer cell for microgravity applications. The device is based on boiling heat transfer enhanced by two fluidic technologies developed at Georgia Tech. The first of these fluidic technologies, called vibration-induced bubble ejection, is shown in Fig. 1. Here, an air bubble in water is held against a vibrating diaphragm by buoyancy. The vibrations at 440 Hz induce violent oscillations of the air/water interface that can result in small bubbles being ejected from the larger air bubble (Fig. 1a) and, simultaneously, the collapse of the air/water interface against the solid surface (Fig. 1b). Both effects would be useful during a heat transfer process. Bubble ejection would force vapor bubbles back into the cooler liquid so that they can condense. Interfacial collapse would tend to keep the hot surface wet thereby increasing liquid evaporation and heat transfer to the bulk liquid. Figure 2 shows the effect of vibrating the solid surface at 7.6 kHz. Here, small-scale capillary waves appear on the surface of the bubble near the attachment point on the solid surface (the grainy region). The vibration produces a net force on the bubble that pushes it away from the solid surface. As a result, the bubble detaches from the solid and is propelled into the bulk liquid. This force works against buoyancy and so it would be even more effective in a microgravity environment. The benefit of the force in a boiling process would be to push vapor bubbles off the solid surface, thus helping to keep the solid surface wet and increasing the heat transfer. The second fluidic technology to be employed in this work is a synthetic jet, shown schematically in Fig. 3. The jet is produced using a small, sealed cavity with a sharp-edged orifice on one side and a vibrating diaphragm on the opposite side. The jet is formed when fluid is alternately sucked into and then expelled from the cavity by the motion of the diaphragm. This alternating motion means that there is no net mass addition to the system. Thus, there is no need for input piping or complex fluidic packaging.
NASA Technical Reports Server (NTRS)
Beech, G. S.; Hampton, R. D.; Rupert, J. K.
2004-01-01
Many microgravity space-science experiments require vibratory acceleration levels that are unachievable without active isolation. The Boeing Corporation's active rack isolation system (ARIS) employs a novel combination of magnetic actuation and mechanical linkages to address these isolation requirements on the International Space Station. Effective model-based vibration isolation requires: (1) An isolation device, (2) an adequate dynamic; i.e., mathematical, model of that isolator, and (3) a suitable, corresponding controller. This Technical Memorandum documents the validation of that high-fidelity dynamic model of ARIS. The verification of this dynamics model was achieved by utilizing two commercial off-the-shelf (COTS) software tools: Deneb's ENVISION(registered trademark), and Online Dynamics Autolev(trademark). ENVISION is a robotics software package developed for the automotive industry that employs three-dimensional computer-aided design models to facilitate both forward and inverse kinematics analyses. Autolev is a DOS-based interpreter designed, in general, to solve vector-based mathematical problems and specifically to solve dynamics problems using Kane's method. The simplification of this model was achieved using the small-angle theorem for the joint angle of the ARIS actuators. This simplification has a profound effect on the overall complexity of the closed-form solution while yielding a closed-form solution easily employed using COTS control hardware.
Fluid behavior in microgravity environment
NASA Technical Reports Server (NTRS)
Hung, R. J.; Lee, C. C.; Tsao, Y. D.
1990-01-01
The instability of liquid and gas interface can be induced by the presence of longitudinal and lateral accelerations, vehicle vibration, and rotational fields of spacecraft in a microgravity environment. In a spacecraft design, the requirements of settled propellant are different for tank pressurization, engine restart, venting, or propellent transfer. In this paper, the dynamical behavior of liquid propellant, fluid reorientation, and propellent resettling have been carried out through the execution of a CRAY X-MP super computer to simulate fluid management in a microgravity environment. Characteristics of slosh waves excited by the restoring force field of gravity jitters have also been investigated.
NASA Technical Reports Server (NTRS)
Martin, Gary L.; Baugher, Charles R.; Delombard, Richard
1990-01-01
In order to define the acceleration requirements for future Shuttle and Space Station Freedom payloads, methods and hardware characterizing accelerations on microgravity experiment carriers are discussed. The different aspects of the acceleration environment and the acceptable disturbance levels are identified. The space acceleration measurement system features an adjustable bandwidth, wide dynamic range, data storage, and ability to be easily reconfigured and is expected to fly on the Spacelab Life Sciences-1. The acceleration characterization and analysis project describes the Shuttle acceleration environment and disturbance mechanisms, and facilitates the implementation of the microgravity research program.
Development and approach to low-frequency microgravity isolation systems
NASA Technical Reports Server (NTRS)
Grodsinsky, Carlos M.
1990-01-01
The low-gravity environment provided by space flight has afforded the science community a unique arena for the study of fundamental and technological sciences. However, the dynamic environment observed on space shuttle flights and predicted for Space Station Freedom has complicated the analysis of prior microgravity experiments and prompted concern for the viability of proposed space experiments requiring long-term, low-gravity environments. Thus, isolation systems capable of providing significant improvements to this random environment are being developed. The design constraints imposed by acceleration-sensitive, microgravity experiment payloads in the unique environment of space and a theoretical background for active isolation are discussed. A design is presented for a six-degree-of-freedom, active, inertial isolation system based on the baseline relative and inertial isolation techniques described.
Mauclaire, Laurie; Egli, Marcel
2010-08-01
Microorganisms tend to form biofilms on surfaces, thereby causing deterioration of the underlaying material. In addition, biofilm is a potential health risk to humans. Therefore, microorganism growth is not only an issue on Earth but also in manned space habitats like the International Space Station (ISS). The aim of the study was to identify physiological processes relevant for Micrococcus luteus attachment under microgravity conditions. The results demonstrate that simulated microgravity influences physiological processes which trigger bacterial attachment and biofilm formation. The ISS strains produced larger amounts of exopolymeric substances (EPS) compared with a reference strain from Earth. In contrast, M. luteus strains were growing faster, and Earth as well as ISS isolates produced a higher yield of biomass under microgravity conditions than under normal gravity. Furthermore, microgravity caused a reduction of the colloidal EPS production of ISS isolates in comparison with normal gravity, which probably influences biofilm thickness and stability as well.
NASA Technical Reports Server (NTRS)
Weaver, A. S.; Funk, J. H.; Funk, N. W.; Sheehan, C. C.; Humphreys, B. T.; Perusek, G. P.
2015-01-01
Long-duration space flight poses many hazards to the health of the crew. Among those hazards is the physiological deconditioning of the musculoskeletal and cardiovascular systems due to prolonged exposure to microgravity. To combat this erosion of physical condition space flight may take on the crew, the Human Research Program (HRP) is charged with developing Advanced Exercise Concepts to maintain astronaut health and fitness during long-term missions, while keeping device mass, power, and volume to a minimum. The goal of this effort is to preserve the physical capability of the crew to perform mission critical tasks in transit and during planetary surface operations. The HULK is a pneumatic-based exercise system, which provides both resistive and aerobic modes to protect against human deconditioning in microgravity. Its design targeted the International Space Station (ISS) Advanced Resistive Exercise Device (ARED) high level performance characteristics and provides up to 600 foot pounds resitive loading with the capability to allow for eccentric to concentric (E:C) ratios of higher than 1:1 through a DC motor assist component. The device's rowing mode allows for high cadence aerobic activity. The HULK parabolic flight campaign, conducted through the NASA Flight Opportunities Program at Ellington Field, resulted in the creation of device specific data sets including low fidelity motion capture, accelerometry and both inline and ground reaction forces. These data provide a critical link in understanding how to vibration isolate the device in both ISS and space transit applications. Secondarily, the study of human exercise and associated body kinematics in microgravity allows for more complete understanding of human to machine interface designs to allow for maximum functionality of the device in microgravity.
Experiment-to-Experiment Disturbance of Microgravity Environment
NASA Technical Reports Server (NTRS)
DeLombard, Richard; Hrovat, Kenneth; McPherson, Kevin
1998-01-01
The STS-87 Shuttle mission carried the Fourth United States MicroGravity Payload (USMP-4) as one of the primary payloads. Four USMP-4 science experiments were installed on two carriers in the cargo bay of the Shuttle. The Confined Helium Experiment (CHeX), located on the aft carrier, was particularly susceptible to vibrations in several frequency ranges due to structural resonances of the CHeX apparatus and the extreme sensitivity of the sample to vibrations. Shortly after activation of the USMP-4 payload, a strong, vibratory disturbance within the susceptibility region of the CHeX apparatus was detected. After investigating the characteristics of the disturbance and the time at which it first appeared, it was deduced that the vibration was generated by cooling fans in the Isothermal Dendritic Growth Experiment (IDGE). This paper will summarize the development of the conflict, briefly describe the disturbance source, and the susceptibility of the CHeX apparatus, and summarize the results of post-mission tests of IDGE.
Iwaya, Katsuya; Shimizu, Ryota; Hashizume, Tomihiro; Hitosugi, Taro
2011-08-01
We designed and constructed an effective vibration isolation system for stable scanning tunneling microscopy measurements using a separate foundation and two vibration isolation stages (i.e., a combination of passive and active vibration isolation dampers). Systematic analyses of vibration data along the horizontal and vertical directions are present, including the vibration transfer functions of each stage and the overall vibration isolation system. To demonstrate the performance of the system, tunneling current noise measurements are conducted with and without the vibration isolation. Combining passive and active vibration isolation dampers successfully removes most of the vibration noise in the tunneling current up to 100 Hz. These comprehensive vibration noise data, along with details of the entire system, can be used to establish a clear guideline for building an effective vibration isolation system for various scanning probe microscopes and electron microscopes.
NASA Technical Reports Server (NTRS)
Lin, Paul P.; Jules, Kenol
2002-01-01
An intelligent system for monitoring the microgravity environment quality on-board the International Space Station is presented. The monitoring system uses a new approach combining Kohonen's self-organizing feature map, learning vector quantization, and back propagation neural network to recognize and classify the known and unknown patterns. Finally, fuzzy logic is used to assess the level of confidence associated with each vibrating source activation detected by the system.
Application of impact dampers in vibration control of flexible structures
NASA Technical Reports Server (NTRS)
Akl, Fred A.; Butt, Aamir S.
1995-01-01
Impact dampers belong to the category of passive vibration devices used to attenuate the vibration of discrete and continuous systems. An impact damper generally consists of a mass which is allowed to travel freely between two defined stops. Under the right conditions, the vibration of the structure to which the impact damper is attached will cause the mass of the impact damper to strike the structure. Previous analytical and experimental research work on the effect of impact dampers in attenuating the vibration of discrete and continuous systems have demonstrated their effectiveness. It has been shown in this study that impact dampers can increase the intrinsic damping of a lightly-damped flexible structure. The test structure consists of a slender flexible beam supported by a pin-type support at one end and supported by a linear helical flexible spring at another location. Sinusoidal excitation spanning the first three natural frequencies was applied in the horizontal plane. The orientation of the excitation and the test structure in the horizontal plane minimizes the effect of gravity on the behavior of the test structure. The excitation was applied using a linear sine sweep technique. The span of the test structure, the mass of the impact damper, the distance of travel, and the location of the impact damper along the span of the test structure were varied. The damping ratio are estimated for sixty test configurations. The results show that the impact damper significantly increases the damping ratio of the test structure. Statistical analysis of the results using the method of multiple linear regression indicates that a reasonable fit has been accomplished. It is concluded that additional experimental analysis of flexible structures in microgravity environment is needed in order to achieve a better understanding of the behavior of impact damper under conditions of microgravity. Numerical solution of the behavior of flexible structures equipped with impact dampers is also needed to predict stresses and deformations under operating conditions of microgravity in space applications.
Smith, R W; Yang, B J; Huang, W D
2004-11-01
Liquid diffusion experiments conducted on the MIR space station using the Canadian Space Agency QUELD II processing facility and the microgravity isolation mount (MIM) showed that g-jitter significantly increased the measured solute diffusion coefficients. In some experiments, milli-g forced vibration was superimposed on the sample when isolated from the ambient g-jitter; this resulted in markedly increased solute transport. To further explore the effects arising in these long capillary diffusion couples from the absence of unit-gravity and the presence of the forced g-jitter, the effects of a 1 milli-g forcing vibration on the mass transport in a 1.5 mm diameter long capillary diffusion couple have been simulated. In addition, to increase understanding of the role of unit gravity in determining the extent to which gravity can influence measured diffusion coefficient values, comparative experiments involving gold, silver, and antimony diffusing in liquid lead have been carried out using a similar QUELD II facility to that employed in the QUELD II/MIM/MIR campaign but under terrestrial conditions. It was found that buoyancy-driven convection may still persist in the liquid even when conditions are arranged for a continuously decreasing density gradient up the axis of a vertical long capillary diffusion couple due to the presence of small radial temperature gradients.
NASA Technical Reports Server (NTRS)
Hailey, M.; Bayuse, T.
2010-01-01
Fluid Isolation in the medication vial: Air/ fluid isolation maneuvers were used to move the medication to the septum end of vial. This isolation may be achieved in multiple ways based on the experience of the astronaut with fluid management in microgravity. If vial adaptors/blunt cannula or syringe assembly is inserted into the to vial before fluid isolation commences, the stability of this assembly should be considered in an effort to limit the risk of "slinging off" of the vial during isolation. Alternatively, fluid isolation can be performed prior to attaching the syringe/vial adaptor assembly. Terrestrial practices for medication withdrawal from a nonvented vial require injection of an equivalent amount of air as the expected medication volume prior to withdrawing liquid. In microgravity, this action is still valid, however the injection of additional air into the vial creates a multitude of micro bubbles and increases the volume of medication mixed with air that then must be withdrawn to achieve the desired drug volume in syringe. This practice is more likely to be required when using vials >30ml in size and injection volumes >10mL. It is felt that based on the microgravity flight, the practice of air injection is more of a hindrance than help.
Development of vibration isolation platform for low amplitude vibration
NASA Astrophysics Data System (ADS)
Lee, Dae-Oen; Park, Geeyong; Han, Jae-Hung
2014-03-01
The performance of high precision payloads on board a satellite is extremely sensitive to vibration. Although vibration environment of a satellite on orbit is very gentle compared to the launch environment, even a low amplitude vibration disturbances generated by reaction wheel assembly, cryocoolers, etc may cause serious problems in performing tasks such as capturing high resolution images. The most commonly taken approach to protect sensitive payloads from performance degrading vibration is application of vibration isolator. In this paper, development of vibration isolation platform for low amplitude vibration is discussed. Firstly, single axis vibration isolator is developed by adapting three parameter model using bellows and viscous fluid. The isolation performance of the developed single axis isolator is evaluated by measuring force transmissibility. The measured transmissibility shows that both the low Q-factor (about 2) and the high roll-off rate (about -40 dB/dec) are achieved with the developed isolator. Then, six single axis isolators are combined to form Stewart platform in cubic configuration to provide multi-axis vibration isolation. The isolation performance of the developed multi-axis isolator is evaluated using a simple prototype reaction wheel model in which wheel imbalance is the major source of vibration. The transmitted force without vibration isolator is measured and compared with the transmitted force with vibration isolator. More than 20 dB reduction of the X and Y direction (radial direction of flywheel) disturbance is observed for rotating wheel speed of 100 Hz and higher.
Diagnostics in Japan's microgravity experiments
NASA Technical Reports Server (NTRS)
Kadota, Toshikazu
1995-01-01
The achievement of the combustion research under microgravity depends substantially on the availability of diagnostic systems. The non-intrusive diagnostic systems are potentially applicable for providing the accurate, realistic and detailed information on momentum, mass and energy transport, complex gas phase chemistry, and phase change in the combustion field under microgravity. The non-intrusive nature of optical instruments is essential to the measurement of combustion process under microgravity which is very nervous to any perturbation. However, the implementation of the non-intrusive combustion diagnostic systems under microgravity is accompanied by several constraints. Usually, a very limited space is only available for constructing a highly sophisticated system which is so sensitive that it is easily affected by the magnitude of the gravitational force, vibration and heterogeneous field of temperature and density of the environments. The system should be properly adjusted prior to the experiment. Generally, it is quite difficult to tune the instruments during measurements. The programmed sequence of operation should also be provided. Extensive effort has been toward the development of non-intrusive diagnostic systems available for the combustion experiments under microgravity. This paper aims to describe the current art and the future strategy on the non-intrusive diagnostic systems potentially applicable to the combustion experiments under microgravity in Japan.
Alterations of the cytoskeleton in human cells in space proved by life-cell imaging.
Corydon, Thomas J; Kopp, Sascha; Wehland, Markus; Braun, Markus; Schütte, Andreas; Mayer, Tobias; Hülsing, Thomas; Oltmann, Hergen; Schmitz, Burkhard; Hemmersbach, Ruth; Grimm, Daniela
2016-01-28
Microgravity induces changes in the cytoskeleton. This might have an impact on cells and organs of humans in space. Unfortunately, studies of cytoskeletal changes in microgravity reported so far are obligatorily based on the analysis of fixed cells exposed to microgravity during a parabolic flight campaign (PFC). This study focuses on the development of a compact fluorescence microscope (FLUMIAS) for fast live-cell imaging under real microgravity. It demonstrates the application of the instrument for on-board analysis of cytoskeletal changes in FTC-133 cancer cells expressing the Lifeact-GFP marker protein for the visualization of F-actin during the 24(th) DLR PFC and TEXUS 52 rocket mission. Although vibration is an inevitable part of parabolic flight maneuvers, we successfully for the first time report life-cell cytoskeleton imaging during microgravity, and gene expression analysis after the 31(st) parabola showing a clear up-regulation of cytoskeletal genes. Notably, during the rocket flight the FLUMIAS microscope reveals significant alterations of the cytoskeleton related to microgravity. Our findings clearly demonstrate the applicability of the FLUMIAS microscope for life-cell imaging during microgravity, rendering it an important technological advance in live-cell imaging when dissecting protein localization.
Alterations of the cytoskeleton in human cells in space proved by life-cell imaging
Corydon, Thomas J.; Kopp, Sascha; Wehland, Markus; Braun, Markus; Schütte, Andreas; Mayer, Tobias; Hülsing, Thomas; Oltmann, Hergen; Schmitz, Burkhard; Hemmersbach, Ruth; Grimm, Daniela
2016-01-01
Microgravity induces changes in the cytoskeleton. This might have an impact on cells and organs of humans in space. Unfortunately, studies of cytoskeletal changes in microgravity reported so far are obligatorily based on the analysis of fixed cells exposed to microgravity during a parabolic flight campaign (PFC). This study focuses on the development of a compact fluorescence microscope (FLUMIAS) for fast live-cell imaging under real microgravity. It demonstrates the application of the instrument for on-board analysis of cytoskeletal changes in FTC-133 cancer cells expressing the Lifeact-GFP marker protein for the visualization of F-actin during the 24th DLR PFC and TEXUS 52 rocket mission. Although vibration is an inevitable part of parabolic flight maneuvers, we successfully for the first time report life-cell cytoskeleton imaging during microgravity, and gene expression analysis after the 31st parabola showing a clear up-regulation of cytoskeletal genes. Notably, during the rocket flight the FLUMIAS microscope reveals significant alterations of the cytoskeleton related to microgravity. Our findings clearly demonstrate the applicability of the FLUMIAS microscope for life-cell imaging during microgravity, rendering it an important technological advance in live-cell imaging when dissecting protein localization. PMID:26818711
Validation of a "Kane's Dynamics" Model for the Active Rack Isolation System
NASA Technical Reports Server (NTRS)
Beech, Geoffrey S.; Hampton, R. David
2000-01-01
Many microgravity space-science experiments require vibratory acceleration levels unachievable without active isolation. The Boeing Corporation's Active Rack Isolation System (ARIS) employs a novel combination of magnetic actuation and mechanical linkages, to address these isolation requirements on the International Space Station (ISS). ARIS provides isolation at the rack (international Standard Payload Rack, or ISPR) level. Effective model-based vibration isolation requires (1) an isolation device, (2) an adequate dynamic (i.e., mathematical) model of that isolator, and (3) a suitable, corresponding controller, ARIS provides the ISS response to the first requirement. In November 1999, the authors presented a response to the second ("A 'Kane's Dynamics' model for the Active Rack Isolation System", Hampton and Beech) intended to facilitate an optimal-controls approach to the third. This paper documents the validation of that high-fidelity dynamic model of ARIS. As before, this model contains the full actuator dynamics, however, the umbilical models are not included in this presentation. The validation of this dynamics model was achieved by utilizing two Commercial Off the Shelf (COTS) software tools: Deneb's ENVISION, and Online Dynamics' AUTOLEV. ENVISION is a robotics software package developed for the automotive industry that employs 3-dimensional (3-D) Computer Aided Design (CAD) models to facilitate both forward and inverse kinematics analyses. AUTOLEV is a DOS based interpreter that is designed in general to solve vector based mathematical problems and specifically to solve Dynamics problems using Kane's method.
Understanding of the Dynamics of the Stirling Convertor Advanced by Structural Testing
NASA Technical Reports Server (NTRS)
Hughes, William O.
2003-01-01
The NASA Glenn Research Center, the U.S. Department of Energy, and the Stirling Technology Company (STC) are developing a highly efficient, long-life, free-piston Stirling convertor for use as an advanced spacecraft power system for future NASA missions, including deep-space and Mars surface applications. As part of this development, four structural dynamic test programs were recently performed on Stirling Technology Demonstration Convertors (TDC's) that were designed and built by STC under contract to the Department of Energy. This testing was performed in Glenn's Structural Dynamics Laboratory and Microgravity Emissions Laboratory. The first test program, in November and December 1999, demonstrated that the Stirling TDC could withstand the harsh random vibration experienced during a typical spacecraft launch and survive with no structural damage or functional power performance degradation. This was a critical step in enabling the use of Stirling convertors for future spacecraft power systems. The most severe test was a 12.3grms random vibration test, with test durations of 3 min per axis. The random vibration test levels were chosen to simulate, with margin, the maximum anticipated launch vibration conditions. The Microgravity Emissions Laboratory is typically used to measure the dynamics produced by operating space experiments and the resulting impact to the International Space Station's microgravity environment. For the second Stirling dynamic test program, performed in January 2001, the Microgravity Emissions Laboratory was used to characterize the structure-borne disturbances produced by the normal operation of a pair of Stirling convertors. The forces and moments produced by the normal operation of a Stirling system must be recognized and controlled, if necessary, so that other nearby spacecraft components, such as cameras, are not adversely affected. The Stirling convertor pair emitted relatively benign tonal forces at its operational frequency and associated harmonics. Therefore, Stirling power systems will not disturb spacecraft science experiments if minimal appropriate mounting efforts are made. The third test program, performed in February and May 2001, resulted in a modal characterization of a Stirling convertor. Since the deflection of the TDC piston rod, under vibration excitation, was of particular interest, the outer pressure shell was removed to allow access to the rod. Through this testing, the Stirling TDC's natural frequencies and modes were identified. This knowledge advanced our understanding of the successful 1999 vibration test and may be utilized to optimize the output power of future Stirling designs. The fourth test program, in April 2001, was conducted to characterize the structural response of a pair of Stirling convertors, as a function of their mounting interface stiffness. The test results provide guidance for the Stirling power package interface design. Properly designed, the interface may lead to increased structural capability and power performance beyond what was demonstrated in the successful 1999 vibration test. Dynamic testing performed to date at Glenn has shown that the Stirling convertors can withstand liftoff random vibration environments and meet "good neighbor" vibratory emission requirements. Furthermore, the future utilization of the information obtained during the tests will allow the corporation selected to be the Stirling system integrator to optimize their convertor and system interfaces designs. Glenn's Thermo-Mechanical Systems Branch provides Stirling technology expertise under a Space Act Agreement with the Department of Energy. Additional vibration testing by Glenn's Structural Systems Dynamics Branch is planned to continue to demonstrate the Stirling power system's vibration capability as its technology and flight system designs progress.
NASA Astrophysics Data System (ADS)
Lu, Boyin; Zhao, Meirong
1994-09-01
A new-type active vibration isolation system is developed for ultra-precision measuring system. It is composed of three sets of 3D Laser interferometer transducer and six groups of piezoelectric displacement executor to constrain six degrees of space movement and to realize real-time compensation of vibration. The active vibration isolation system can effectively eliminate low-frequency vibrations. Combined with passive vibration isolation system, it gives better vibration isolation effect.
Plant and Animal Gravitational Biology. Part 1
NASA Technical Reports Server (NTRS)
1997-01-01
Session TA2 includes short reports covering: (1) The Interaction of Microgravity and Ethylene on Soybean Growth and Metabolism; (2) Structure and G-Sensitivity of Root Statocytes under Different Mass Acceleration; (3) Extracellular Production of Taxanes on Cell Surfaces in Simulated Microgravity and Hypergravity; (4) Current Problems of Space Cell Phytobiology; (5) Biological Consequences of Microgravity-Induced Alterations in Water Metabolism of Plant Cells; (6) Localization of Calcium Ions in Chlorella Cells Under Clinorotation; (7) Changes of Fatty Acids Content of Plant Cell Plasma Membranes under Altered Gravity; (8) Simulation of Gravity by Non-Symmetrical Vibrations and Ultrasound; and (9) Response to Simulated weightlessness of In Vitro Cultures of Differentiated Epithelial Follicular Cells from Thyroid.
Control of the induced microgravity environment of the Man Tended Free Flyer (MTFF)
NASA Technical Reports Server (NTRS)
Schlund, Juergen
1988-01-01
Induced disturbance sources have been identified on board the Man Tended Free Flyer (MTFF). Vibration responses at sensitive payload/spacecraft interfaces have been predicted by the application of an empirically found spacecraft dynamic transfer function. Vibrations from fluid loops (Freon, water) and of reaction wheels are assessed to be the main contributors to the induced microgravity environment. The expected payload acceleration response amplitudes presented here are more than one hundred times higher than the admissible values given by the MTFF system requirement, not considering the structural striction-friction effects which could be avoided by appropriate design. Real responses will be significantly lower because the derivation of excitation and transmission functions are based on worst case assumptions. The results indicate that future activities must be concentrated on equipment design improvement and the implementation of vibration reduction along the disturbance transmission path. The activities must be accompanied by early equipment and assembly development tests and transmissibility measurements with the integrated spacecraft engineering and structural models in order to improve the accuracy of payload response predictions.
2004-04-15
Protein isolated from hen egg-white and functions as a bacteriostatic enzyme by degrading bacterial cell walls. First enzyme ever characterized by protein crystallography. It is used as an excellent model system for better understanding parameters involved in microgravity experiments with data from laboratory experiments to study the equilibrium rate of hanging drop experiments in microgravity.
Delta L: An Apparatus for Measuring Macromolecule Crystal Growth Rates in Microgravity
NASA Technical Reports Server (NTRS)
Judge, Russell A.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
Strongly diffracting high quality macromolecule crystals of suitable volume are keenly sought for X-ray diffraction analysis so that high-resolution molecular structure data can be obtained. Such data is of tremendous value to medical research, agriculture and commercial biotechnology. In previous studies by many investigators microgravity has been reported in some instances to improve biological macromolecule X-ray crystal quality while little or no improvement was observed in other cases. A better understanding of processes effecting crystal quality improvement in microgravity will therefore be of great benefit in optimizing crystallization success in microgravity. In ground based research with the protein lysozyme we have previously shown that a population of crystals grown under the same solution conditions, exhibit a variation in X-ray diffraction properties (Judge et al., 1999). We have also observed that under the same solution conditions, individual crystals will grow at slightly different growth rates. This phenomenon is called growth rate dispersion. For small molecule materials growth rate dispersion has been directly related to crystal quality (Cunningham et al., 1991; Ristic et al., 1991). We therefore postulate that microgravity may act to improve crystal quality by reducing growth rate dispersion. If this is the case then as different, Materials exhibit different degrees of growth rate dispersion on the ground then growth rate dispersion could be used to screen which materials may benefit the most from microgravity crystallization. In order to assess this theory the Delta L hardware is being developed so that macromolecule crystal growth rates can be measured in microgravity. Crystal growth rate is defined as the change or delta in crystal size (defined as a characteristic length, L) over time; hence the name of the hardware. Delta L will consist of an optics, a fluids, and a data acquisition sub-assemblies. The optics assembly will consist of a video microscope camera mounted on three axis computer controlled translation stages. The fluids assembly consists of macromolecule and precipitant reservoirs, a temperature controlled growth cell and waste container, The data acquisition is achieved by using a frame-gabber, with images being stored on a hard drive. In operation, macromolecule and precipitant solution will be injected into the temperature controlled growth cell. As macromolecule crystals grow, the video microscope camera controlled by the translation stages, will be used to locate and record images of individual crystals, returning to the same crystals at specific time intervals. The images will be stored on the hard drive and used to calculate the crystal growth rate. To prevent vibrations interfering in the crystal growth rate measurements (Snell et al., 1997) Delta L will be used in connection with the Glovebox Integrated Microgravity Isolation Technology (g-LIMIT) inside the Microgravity Science Glovebox (MSG), onboard the International Space Station (ISS).
Recent advances in micro-vibration isolation
NASA Astrophysics Data System (ADS)
Liu, Chunchuan; Jing, Xingjian; Daley, Steve; Li, Fengming
2015-05-01
Micro-vibration caused by disturbance sources onboard spacecraft can severely degrade the working environment of sensitive payloads. Some notable vibration control methods have been developed particularly for the suppression or isolation of micro-vibration over recent decades. Usually, passive isolation techniques are deployed in aerospace engineering. Active isolators, however, are often proposed to deal with the low frequency vibration that is common in spacecraft. Active/passive hybrid isolation has also been effectively used in some spacecraft structures for a number of years. In semi-active isolation systems, the inherent structural performance can be adjusted to deal with variation in the aerospace environment. This latter approach is potentially one of the most practical isolation techniques for micro-vibration isolation tasks. Some emerging advanced vibration isolation methods that exploit the benefits of nonlinearity have also been reported in the literature. This represents an interesting and highly promising approach for solving some challenging problems in the area. This paper serves as a state-of-the-art review of the vibration isolation theory and/or methods which were developed, mainly over the last decade, specifically for or potentially could be used for, micro-vibration control.
Air-Bearing-Piston Suspension System
NASA Technical Reports Server (NTRS)
Mullen, Donald; Bishop, Stephen J.
1992-01-01
Suspension system based on air-bearing piston holds up steel ball against gravitation while allowing ball to translate vertically and rotate freely. System designed to simulate effect of microgravity on ball. Applicable to suppression of vibrations and delicate machining processes.
Precision gravity measurement utilizing Accelerex vibrating beam accelerometer technology
NASA Astrophysics Data System (ADS)
Norling, Brian L.
Tests run using Sundstrand vibrating beam accelerometers to sense microgravity are described. Lunar-solar tidal effects were used as a highly predictable signal which varies by approximately 200 billionths of the full-scale gravitation level. Test runs of 48-h duration were used to evaluate stability, resolution, and noise. Test results on the Accelerex accelerometer show accuracies suitable for precision applications such as gravity mapping and gravity density logging. The test results indicate that Accelerex technology, even with an instrument design and signal processing approach not optimized for microgravity measurement, can achieve 48-nano-g (1 sigma) or better accuracy over a 48-h period. This value includes contributions from instrument noise and random walk, combined bias and scale factor drift, and thermal modeling errors as well as external contributions from sampling noise, test equipment inaccuracies, electrical noise, and cultural noise induced acceleration.
Simulating the Effect of Space Vehicle Environments on Directional Solidification of a Binary Alloy
NASA Technical Reports Server (NTRS)
Westra, D. G.; Heinrich, J. C.; Poirier, D. R.
2003-01-01
Space microgravity missions are designed to provide a microgravity environment for scientific experiments, but these missions cannot provide a perfect environment, due to vibrations caused by crew activity, on-board experiments, support systems (pumps, fans, etc.), periodic orbital maneuvers, and water dumps. Therefore, it is necessary to predict the impact of these vibrations on space experiments, prior to performing them. Simulations were conducted to study the effect of the vibrations on the directional solidification of a dendritic alloy. Finite element ca!cu!attie?ls were dme with a simd2titcr based on a continuum model of dendritic solidification, using the Fractional Step Method (FSM). The FSM splits the solution of the momentum equation into two steps: the viscous intermediate step, which does not enforce continuity; and the inviscid projection step, which calculates the pressure and enforces continuity. The FSM provides significant computational benefits for predicting flows in a directionally solidified alloy, compared to other methods presently employed, because of the efficiency gains in the uncoupled solution of velocity and pressure. finite differences, arises when the interdendritic liquid reaches the eutectic temperature and concentration. When a node reaches eutectic temperature, it is assumed that the solidification of the eutectic liquid continues at constant temperature until all the eutectic is solidified. With this approach, solidification is not achieved continuously across an element; rather, the element is not considered solidified until the eutectic isotherm overtakes the top nodes. For microgravity simulations, where the convection is driven by shrinkage, it introduces large variations in the fluid velocity. When the eutectic isotherm reaches a node, all the eutectic must be solidified in a short period, causing an abrupt increase in velocity. To overcome this difficulty, we employed a scheme to numerically predict a more accurate value for the rate of change of fraction of liquid as the liquid in an element solidifies. The new method enables us to contrast results of simulations in which the alloy is subjected to no gravity or a steady-state acceleration versus simulations when the alloy is subjected to vibration disturbances; therefore, the effect of vibration disturbances can be assessed more accurately. To assess the impact of these vibration-perturbations, transient accelerometer data from a space shuttle mission are used as inputs for the simulation model. These on-orbit acceleration data were obtained from the Microgravity Science Division at Glenn Research Center (GRC- MSD) and are applied to the buoyancy term of the momentum equation in a simulation of a Pb-5.8 wt. % Sb alloy that solidifies in a thermal gradient of 4000 K/m and a translation velocity of 3 p d s . Figure 2 shows the vertical velocity of a node that begins in the all-liquid region and subsequently solidifies; the vibrations are applied at 5000 seconds in this simulation. An important difficulty, common to all solidification models based on finite elements or 2 The magnitudes of the velocity oscillations that are vibration-induced are very small and acceptable. The biggest concern is whether the concentration of the liquid near the dendrite tips is distorted because of the vibration-induced perturbations. Results for this case show no concentration oscillations present in the all-liquid region.
Terrestrial Applications of a Nano-g Accelerometer
NASA Technical Reports Server (NTRS)
Hartley, Frank T.
1996-01-01
The ultra-sensitive accelerometer, developed for NASA to monitor the microgravity environments of Space Shuttle, five orbiters and Space Station, needed to measure accelerations up to 10 mg with an absolute accuracy of 10 nano-g (10(exp -8)g) for at least two orbits (10(exp 4) seconds) to resolve accelerations associated with orbital drag. Also, the accelerometers needed to have less than 10(exp -9) F.S. off-axis sensitivity; to be thermally and magnetically inert; to be immune to quiescent shock, and to have an in-situ calibration capability. Multi-axis compact seismometers, designs that have twelve decades of dynamic range will be described. Density profilometers, precision gradiometers, gyros and vibration isolation designs and applications will be discussed. Finally, examples of transformations of the accelerometer into sensitive anemometers and imaging spectrometers will be presented.
I.C.E.: a transportable atomic inertial sensor for test in microgravity
NASA Astrophysics Data System (ADS)
Nyman, R. A.; Varoquaux, G.; Clement, J.-F.; Bouyer, P.; Santarelli, G.; Pereira Dos Santos, F.; Clairon, A.; Landragin, A.; Chambon, D.; Lienhart, F.; Boussen, S.; Bresson, A.
2017-11-01
We present our the construction of an atom interferometer for inertial sensing in microgravity, as part of the I.C.E. (Interferometrie Coherente pour l'Espace) collaboration. On-board laser systems have been developed based on fibre-optic components, which are insensitive to mechanical vibrations and acoustic noise, have sub-MHz linewidth, and remain frequency stabilised for weeks at a time. A compact, transportable vacuum system has been built, and used for laser cooling and magneto-optical trapping. We will use a mixture of quantum degenerate gases, bosonic 87Rb and fermionic 40K, in order to find the optimal conditions for precision and sensitivity of inertial measurements. Microgravity will be realised in parabolic flights lasting up to 20s in an Airbus.
Vibration isolation using six degree-of-freedom quasi-zero stiffness magnetic levitation
NASA Astrophysics Data System (ADS)
Zhu, Tao; Cazzolato, Benjamin; Robertson, William S. P.; Zander, Anthony
2015-12-01
In laboratories and high-tech manufacturing applications, passive vibration isolators are often used to isolate vibration sensitive equipment from ground-borne vibrations. However, in traditional passive isolation devices, where the payload weight is supported by elastic structures with finite stiffness, a design trade-off between the load capacity and the vibration isolation performance is unavoidable. Low stiffness springs are often required to achieve vibration isolation, whilst high stiffness is desired for supporting payload weight. In this paper, a novel design of a six degree of freedom (six-dof) vibration isolator is presented, as well as the control algorithms necessary for stabilising the passively unstable maglev system. The system applies magnetic levitation as the payload support mechanism, which realises inherent quasi-zero stiffness levitation in the vertical direction, and zero stiffness in the other five dofs. While providing near zero stiffness in multiple dofs, the design is also able to generate static magnetic forces to support the payload weight. This negates the trade-off between load capacity and vibration isolation that often exists in traditional isolator designs. The paper firstly presents the novel design concept of the isolator and associated theories, followed by the mechanical and control system designs. Experimental results are then presented to demonstrate the vibration isolation performance of the proposed system in all six directions.
Fecundity of Quail in Spacelab Microgravity
NASA Technical Reports Server (NTRS)
Wentworth, B. C.; Wentworth, A. L.
1996-01-01
Flight experiments in which fertilized Japanese quail eggs were allowed to develop to various ages in space, and the results of the following laboratory tests are described. Laboratory-based experiments concerned with the embryonic development of Japanese quail in gravity using simulated vibrations and G-force are reported. Effect of turning and ambient temperature at various days of incubation on the development of Japanese quail, and method to feed and water adult and newly hatched Japanese quail in microgravity using a gelatin-based diet as a solid water supply, are also described.
Effect of Longitudinal Oscillations on Downward Flame Spread over Thin Solid Fuels
NASA Technical Reports Server (NTRS)
Nayagam, Vedha; Sacksteder, Kurt
2013-01-01
Downward flame spread rates over vertically vibrated thin fuel samples are measured in air at one atmospheric pressure under normal gravity. Unlike flame spread against forced-convective flows, the present results show that with increasing vibration acceleration the flame spread rate increases before being blown off at high acceleration levels causing flame extinction. A simple scaling analysis seems to explain this phenomenon, which may have important implications to flammability studies including in microgravity environments.
Kim, MyeongHyeon; Kim, Hyunchang; Gweon, Dae-Gab
2012-10-01
This paper describes the design, modeling, optimization, and validation of an active vibration isolation system using a voice coil motor. The active vibration isolating method was constructed with a passive isolator and an active isolator. A spring was used for passive isolating; an actuator was used for active isolating. The proposed active vibration isolation system (AVIS) can isolate disturbances for many kinds of instruments. Until now, developed AVIS were able to isolate a six degree-of-freedom disturbance effectively. This paper proposes the realization of such a six degree-of-freedom active vibration isolation system that can work as a bench top device for precision measuring machines such as atomic force microscope, scanning probe microscope, etc.
Note: Effect of the parasitic forced vibration in an atom gravimeter
NASA Astrophysics Data System (ADS)
Chen, Le-Le; Luo, Qin; Zhang, Heng; Duan, Xiao-Chun; Zhou, Min-Kang; Hu, Zhong-Kun
2018-06-01
The vibration isolator usually plays an important role in atom interferometry gravimeters to improve their sensitivity. We show that the parasitic forced vibration of the Raman mirror, which is induced by external forces acting on the vibration isolator, can cause a bias in atom gravimeters. The mechanism of how this effect induces an additional phase shift in our interferometer is analyzed. Moreover, modulation experiments are performed to measure the dominant part of this effect, which is caused by the magnetic force between the passive vibration isolator and the coil of the magneto-optic trap. In our current apparatus, this forced vibration contributes a systematic error of -2.3(2) × 10-7 m/s2 when the vibration isolator works in the passive isolation mode. Even suppressed with an active vibration isolator, this effect can still contribute -6(1) × 10-8 m/s2; thus, it should be carefully considered in precision atom gravimeters.
Development of a Simulation Capability for the Space Station Active Rack Isolation System
NASA Technical Reports Server (NTRS)
Johnson, Terry L.; Tolson, Robert H.
1998-01-01
To realize quality microgravity science on the International Space Station, many microgravity facilities will utilize the Active Rack Isolation System (ARIS). Simulation capabilities for ARIS will be needed to predict the microgravity environment. This paper discusses the development of a simulation model for use in predicting the performance of the ARIS in attenuating disturbances with frequency content between 0.01 Hz and 10 Hz. The derivation of the model utilizes an energy-based approach. The complete simulation includes the dynamic model of the ISPR integrated with the model for the ARIS controller so that the entire closed-loop system is simulated. Preliminary performance predictions are made for the ARIS in attenuating both off-board disturbances as well as disturbances from hardware mounted onboard the microgravity facility. These predictions suggest that the ARIS does eliminate resonant behavior detrimental to microgravity experimentation. A limited comparison is made between the simulation predictions of ARIS attenuation of off-board disturbances and results from the ARIS flight test. These comparisons show promise, but further tuning of the simulation is needed.
NASA Technical Reports Server (NTRS)
Kanemitsu, Yoichi; Watanabe, Katsuhide; Yano, Kenichi; Mizuno, Takayuki
1994-01-01
This paper introduces a study on an Electromagnetically Levitated Vibration Isolation System (ELVIS) for isolation control of large-scale vibration. This system features no mechanical contact between the isolation table and the installation floor, using a total of four electromagnetic actuators which generate magnetic levitation force in the vertical and horizontal directions. The configuration of the magnet for the vertical direction is designed to prevent any generation of restoring vibratory force in the horizontal direction. The isolation system is set so that vibration control effects due to small earthquakes can be regulated to below 5(gal) versus horizontal vibration levels of the installation floor of up t 25(gal), and those in the horizontal relative displacement of up to 30 (mm) between the floor and levitated isolation table. In particular, studies on the relative displacement between the installation floor and the levitated isolation table have been made for vibration control in the horizontal direction. In case of small-scale earthquakes (Taft wave scaled: max. 25 gal), the present system has been confirmed to achieve a vibration isolation to a level below 5 gal. The vibration transmission ratio of below 1/10 has been achieved versus continuous micro-vibration (approx. one gal) in the horizontal direction on the installation floor.
A Vibration Isolation System for Use in a Large Thermal Vacuum Test Facility
NASA Technical Reports Server (NTRS)
Hershfeld, Donald; VanCampen, Julie
2002-01-01
A thermal vacuum payload platform that is isolated from background vibration is required to support the development of future instruments for Hubble Space Telescope (HST) and the Next Generation Space Telescope (NGST) at the Goddard Space Flight Center (GSFC). Because of the size and weight of the thermal/vacuum facility in which the instruments are tested, it is not practical to isolate the entire facility externally. Therefore, a vibration isolation system has been designed and fabricated to be installed inside the chamber. The isolation system provides a payload interface of 3.05 m (10 feet) in diameter and is capable of supporting a maximum payload weight of 4536 kg (10,000 Lbs). A counterweight system has been included to insure stability of payloads having high centers of gravity. The vibration isolation system poses a potential problem in that leakage into the chamber could compromise the ability to maintain vacuum. Strict specifications were imposed on the isolation system design to minimize leakage. Vibration measurements, obtained inside the chamber, prior to installing the vibration isolation system, indicated levels in all axes of approximately 1 milli-g at about 20 Hz. The vibration isolation system was designed to provide a minimum attenuation of 40 dB to these levels. This paper describes the design and testing of this unique vibration isolation system. Problems with leakage and corrective methods are presented. Isolation performance results are also presented.
NASA Astrophysics Data System (ADS)
Park, Ji Hyung; Seo, Dong-Hyun; Cho, Seungkwan; Kim, Seo-Hyun; Eom, Sinae; Kim, Han Sung
2015-09-01
Musculoskeletal disorders during and after spaceflight are considered as a serious health issue. In space, weight-bearing exercise recognized as the main countermeasure to bone loss, since many anti-resorptive medications have not yet been approved for spaceflight or have been unsuccessful in their limited application. We need to investigate a complementary or alternative way to prevent bone loss and muscle atrophy resulting from microgravity condition. Partial vibration was chosen because it is one of the most feasible ways to adopt safely and effectively. Moreover, although the influence of hind-limb suspension has been studied in both male and female rodents, only rarely are both genders evaluated in the same study. Thus, to further extend our knowledge, the present study performed comparative analysis between genders. A total of 36 12-week-old male and female Sprague-Dawley rats were used and were randomly assigned to control (CON), hind-limb suspension without vibration stimulus (HS), and hind-limb suspension with vibration stimulus (HV) groups. Hind-limb suspension has led to increasing the rate of bone loss and muscle atrophy regardless of gender. The rates of bone loss in male group obviously increased than that of female group. All structural parameters were showed significant difference between HS and HV ( p < 0.05) in male group whereas there are no significant differences in female group. In female, the muscle volume with treatment of partial vibration stimulus significantly increased which compared with that of hind-limb suspension ( p < 0.05) whereas there are no significant differences in male group. Thus partial vibration could prevent bone loss of tibia in males and muscle atrophy in females induced by hind-limb suspension. In other words, partial vibration has positive effects on damaged musculoskeletal tissues that differ based on gender.
A programmable broadband low frequency active vibration isolation system for atom interferometry.
Tang, Biao; Zhou, Lin; Xiong, Zongyuan; Wang, Jin; Zhan, Mingsheng
2014-09-01
Vibration isolation at low frequency is important for some precision measurement experiments that use atom interferometry. To decrease the vibrational noise caused by the reflecting mirror of Raman beams in atom interferometry, we designed and demonstrated a compact stable active low frequency vibration isolation system. In this system, a digital control subsystem is used to process and feedback the vibration measured by a seismometer. A voice coil actuator is used to control and cancel the motion of a commercial passive vibration isolation platform. With the help of field programmable gate array-based control subsystem, the vibration isolation system performed flexibly and accurately. When the feedback is on, the intrinsic resonance frequency of the system will change from 0.8 Hz to about 0.015 Hz. The vertical vibration (0.01-10 Hz) measured by the in-loop seismometer is reduced by an additional factor of up to 500 on the basis of a passive vibration isolation platform, and we have proved the performance by adding an additional seismometer as well as applying it in the atom interferometry experiment.
STS-93 Flight Day 4 Highlights and Crew Activities
NASA Technical Reports Server (NTRS)
1999-01-01
The five astronauts aboard the Space Shuttle Columbia began their fourth flight day preparing to make additional celestial observations through the shuttle's windows and continue work with a variety of instruments. Pilot Jeff Ashby and Mission Specialists Steve Hawley and Michael Tognini set up an exercise treadmill and the Treadmill Vibration Information System (TVIS) which measures vibrations and changes in microgravity levels caused by on-orbit workouts. Astronomer Hawley again made observations of Venus, Jupiter and the Moon with the Southwest Ultraviolet Imaging System (SWUIS) as Commander Eileen Collins and Pilot Jeff Ashby put the shuttle in the proper orientation for his observations. Tognini and Coleman checked the bioprocessing experiments, and harvested mouse-ear cress plants as part of the Plant Growth in Microgravity experiment. Collins and Ashby once again fired the shuttle's engines so that the sensors of the Midcourse Space Experiment (MSX) satellite were able to collect ultraviolet, infrared and visible light data. Columbia was orbiting at an altitude of 182 statute miles with all of its systems in excellent condition.
1996-01-25
Dan Carter and Charles Sisk center a Lysozyme Protein crystal grown aboard the USML-2 shuttle mission. Protein isolated from hen egg-white and functions as a bacteriostatic enzyme by degrading bacterial cell walls. First enzyme ever characterized by protein crystallography. It is used as an excellent model system for better understanding parameters involved in microgravity crystal growth experiments. The goal is to compare kinetic data from microgravity experiments with data from laboratory experiments to study the equilibrium.
Effect of science laboratory centrifuge of space station environment
NASA Technical Reports Server (NTRS)
Searby, Nancy
1990-01-01
It is argued that it is essential to have a centrifuge operating during manned space station operations. Background information and a rationale for the research centrifuge are given. It is argued that we must provide a controlled acceleration environment for comparison with microgravity studies. The lack of control groups in previous studies throws into question whether the obseved effects were the result of microgravity or not. The centrifuge could be used to provide a 1-g environment to supply specimens free of launch effects for long-term studies. With the centrifuge, the specimens could be immediately transferred to microgravity without undergoing gradual acclimation. Also, the effects of artificial gravity on humans could be investigated. It is also argued that the presence of the centrifuge on the space station will not cause undo vibrations or other disturbing effects.
NASA Astrophysics Data System (ADS)
Urban, James E.; Supra, Laura; MacKnight, Allen
2000-01-01
A unique combination of researchers are investigating biological and engineering aspects of a biological wastewater treatment system which could effectively function to treat gray water in a microgravity environment such as that on the International Space Station and human-occupied interplanetary spacecraft. As part of the effort, 23 bacterial strains have been isolated from a bioprocessor operating at unit gravity and various strain combinations have been tested in microgravity for survivability and reduction of total organic carbon in ersatz gray water. All tested strains survive equally well in microgravity and unit gravity and each is capable of reducing TOC in microgravity. While the results reported are encouraging, they also reveal that current testing procedures and equipment are inadequate for fully evaluating bioprocessing in microgravity. .
Alidoust, Leila; Soltani, Neda; Modiri, Sima; Haghighi, Omid; Azarivand, Aisan; Khajeh, Khosro; Shahbani Zahiri, Hossein; Vali, Hojatollah; Akbari Noghabi, Kambiz
2016-02-01
Among nine cyanobacterial strains isolated from oil-contaminated regions in southern Iran, an isolate with maximum cadmium uptake capacity was selected and identified on the basis of analysis of morphological criteria and 16S rRNA gene sequence similarity as Nostoc entophytum (with 99% similarity). The isolate was tentatively designated N. entophytum ISC32. The phylogenetic affiliation of the isolates was determined on the basis of their 16S rRNA gene sequence. The maximum amount of Cd(II) adsorbed by strain ISC32 was 302.91 mg g(-1) from an initial exposure to a solution with a Cd(II) concentration of 150 mg l(-1). The cadmium uptake by metabolically active cells of cyanobacterial strain N. entophytum ISC32, retained in a clinostat for 6 days to simulate microgravity conditions, was examined and compared with that of ground control samples. N. entophytum ISC32 under the influence of microgravity was able to take up cadmium at amounts up to 29% higher than those of controls. The activity of antioxidant enzymes including catalase and peroxidase was increased in strain ISC32 exposed to microgravity conditions in a clinostat for 6 days, as catalase activity of the cells was more than three times higher than that of controls. The activity of the peroxidase enzyme increased by 36% compared with that of the controls. Membrane lipid peroxidation was also increased in the cells retained under microgravity conditions, up to 2.89-fold higher than in non-treated cells. Images obtained using scanning electron microscopy showed that cyanobacterial cells form continuous filaments which are drawn at certain levels, while the cells placed in a clinostat appeared as round-shaped, accumulated together and distorted to some extent.
New findings and instrumentation from the NASA Lewis microgravity facilities
NASA Technical Reports Server (NTRS)
Ross, Howard D.; Greenberg, Paul S.
1990-01-01
The study of fundamental combustion and fluid physics in a microgravity environment is a relatively new scientific endeavor. The microgravity environment enables a new range of experiments to be performed since: buoyancy-induced flows are nearly eliminated; normally obscured forces and flows may be isolated; gravitational settling or sedimentation is nearly eliminated; and larger time or length scales in experiments become permissible. Unexpected phenomena have been observed, with surprising frequency, in microgravity experiments, raising questions about the degree of accuracy and completeness of the classical understanding. An overview is provided of some new phenomena found through ground-based, microgravity research, the instrumentation used in this research, and plans for new instrumentation.
NASA Technical Reports Server (NTRS)
Ramachandran, Narayanan
2000-01-01
Normal vibrational modes on large spacecraft are excited by crew activity, operating machinery, and other mechanical disturbances. Periodic engine burns for maintaining vehicle attitude and random impulse type disturbances also contribute to the acceleration environment of a Spacecraft. Accelerations from these vibrations (often referred to as g-jitter) are several orders of magnitude larger than the residual accelerations from atmospheric drag and gravity gradient effects. Naturally, the effects of such accelerations have been a concern to prospective experimenters wishing to take advantage of the microgravity environment offered by spacecraft operating in low Earth orbit and the topic has been studied extensively, both numerically and analytically. However, these studies have not produced a general theory that predicts the effects of multi-spectral periodic accelerations on a general class of experiments nor have they produced scaling laws that a prospective experimenter could use to assess how his/her experiment might be affected by this acceleration environment. Furthermore, there are no actual flight experimental data that correlates heat or mass transport with measurements of the periodic acceleration environment. The present investigation approaches this problem with carefully conducted terrestrial experiments and rigorous numerical modeling thereby providing comparative theoretical and experimental data. The modeling, it is hoped will provide a predictive tool that can be used for assessing experiment response to Spacecraft vibrations.
Low Magnitude, High Frequency Signals Could Reduce Bone Loss During Spaceflight
NASA Astrophysics Data System (ADS)
Hawkey, A.
The removal of gravitational loading results in a loss of homeostasis of the skeleton. This leads to significant losses of bone mass during long-duration missions in space. Conventional exercise countermeasures, such as running and resistance training, have only limited effectiveness in reducing the rate at which bone is demineralised in microgravity. Bone loss, therefore, remains a major concern and if not annulled could be so severe as to jeopardise an extended human presence in space. In addition, current exercise regimes occupy valuable crew time, and astronauts often find the equipment cumbersome and uncomfortable to use. Recent studies suggest that exposing the body to short periods (<20mins) of low magnitude (<1g), high frequency (15-35Hz) signals (vibration) everyday could reduce, even prevent, bone loss during conditions such as osteoporo- sis on earth. The new vibration therapy treatment could also have several advantages over existing exercise countermeasures used in spaceflight due to it being very simple to operate, relatively inexpensive, and requiring only short periods of time `training', unlike the complicated, expensive and time-consuming devices currently used. This review highlights the detrimen- tal effects that microgravity has on the strength and integrity of bone, how current countermeasures are ineffective at stemming this level of deterioration, and how new vibration techniques could significantly reduce space-induced bone loss.
Integrated passive/active vibration absorber for multi-story buildings
NASA Technical Reports Server (NTRS)
Lee-Glauser, Gina J.; Ahmadi, Goodarz; Horta, Lucas G.
1995-01-01
Passive isolator, active vibration absorber, and an integrated passive/active (hybrid) control are studied for their effectiveness in reducing structural vibration under seismic excitations. For the passive isolator, a laminated rubber bearing base isolator which has been studied and used extensively by researchers and seismic designers is considered. An active vibration absorber concept, which can provide guaranteed closed-loop stability with minimum knowledge of the controlled system, is used to reduce the passive isolator displacement and to suppress the top floor vibration. A three-story building model is used for the numerical simulation. The performance of an active vibration absorber and a hybrid vibration controller in reducing peak structural responses is compared with the passively isolated structural response and with absence of vibration control systems under the N00W component of El Centro 1940 and N90W component of the Mexico City earthquake excitation records. The results show that the integrated passive/active vibration control system is most effective in suppressing the peak structural acceleration for the El Centro 1940 earthquake when compared with the passive or active vibration absorber alone. The active vibration absorber, however, is the only system that suppresses the peak acceleration of the structure for the Mexico City 1985 earthquake.
NASA Technical Reports Server (NTRS)
Anilkumar, A. V.; Bhowmick, J.; Grugel, R. N.
2001-01-01
Our previous experiments with NaNO3 float-zones revealed that steady thermocapillary flow can be balanced/offset by the controlled surface streaming flow induced by end-wall vibration. In the current experiments we are examining the effects of streaming flow on steadying/stabilizing nonsteady thermocapillary flow in such zones. To this effect we have set up a controlled NaNO3 half-zone experiment, where the processing parameters, like zone dimensions and temperature gradients, can be easily varied to generate nonsteady thermocapillary flows. In the present paper we present preliminary results of our investigations into stabilizing such flows by employing endwall vibration.
NASA Technical Reports Server (NTRS)
Anilkumar, A. V.; Bhowmick, J.; Grugel, R. N.a
2000-01-01
Our previous experiments with NaNO3 float-zones revealed that steady thermocapillary flow can be balanced/offset by the controlled surface streaming flow induced by end-wall vibration. In the current experiments we are examining the effects of streaming flow on steadying/stabilizing nonsteady thermocapillary flow in such zones. To this effect we have set up a controlled NaNO3 half-zone experiment, where the processing parameters, like zone dimensions and temperature gradients, can be easily varied to generate nonsteady thermocapillary flows. In the present paper we present preliminary results of our investigations into stabilizing such flows by employing end-wall vibration.
EFFECTOF ISOLATION WALL USING SCRAP TIRE ON GROUND VIBRATION REDUCTION
NASA Astrophysics Data System (ADS)
Kashimoto, Takahiko; Kashimoto, Yusuke; Hayakawa, Kiyoshi; Matsui, Tamotsu; Fujimoto, Hiroaki
Some countermeasure methods against the environmental ground vibration caused by some traffic vibrations have been proposed so far. The authors have developed a new type ground vibration isolation wall using scrap tire, and evaluated its effectiveness on the ground vibration reduction by full scale field tests. In this paper, the authors discussed and examined the effectiveness of the developed countermeasure method by two field tests. The one concerns on the effect of scrap tire as soft material of vibration isolation wall, and the other on the effect of the developed countermeasure method practically applied in a residential area close to monorail traffic. As the results, it was elucidated that the ground vibration of 2-3 dB was reduced in case of two times volume of the soft material, the conversion ratio of the vibration energy of the soft material to the kinetic energy was higher than that of the core material of PHC pile, the vibration acceleration of 0.19 - 1.26 gal was reduced by the developed countermeasure method in case of the monorail traffic, and the vibration reduction measured behind the isolation wall agreed well with the proposed theoretical value, together with confirming the effectiveness of the ground vibration isolation wall using scrap tire as the countermeasure method against the environmental ground vibration.
Vibration isolation system for the Stratospheric Observatory For Infrared Astronomy (SOFIA)
NASA Technical Reports Server (NTRS)
Kaiser, T.; Kunz, N.
1988-01-01
The Vibration Isolation System for the Stratospheric Observatory for Infrared Astronomy (SOFIA) is studied. Included are discussions of the various concepts, design goals, concerns, and the proposed configuration for the Vibration Isolation System.
A reliable data collection/control system
NASA Technical Reports Server (NTRS)
Maughan, Thom
1988-01-01
The Cal Poly Space Project requires a data collection/control system which must be able to reliably record temperature, pressure and vibration data. It must also schedule the 16 electroplating and 2 immiscible alloy experiments so as to optimize use of the batteries, maintain a safe package temperature profile, and run the experiment during conditions of microgravity (and minimum vibration). This system must operate unattended in the harsh environment of space and consume very little power due to limited battery supply. The design of a system which meets these requirements is addressed.
Analysis of Design Parameters Effects on Vibration Characteristics of Fluidlastic Isolators
NASA Astrophysics Data System (ADS)
Deng, Jing-hui; Cheng, Qi-you
2017-07-01
The control of vibration in helicopters which consists of reducing vibration levels below the acceptable limit is one of the key problems. The fluidlastic isolators become more and more widely used because the fluids are non-toxic, non-corrosive, nonflammable, and compatible with most elastomers and adhesives. In the field of the fluidlastic isolators design, the selection of design parameters is very important to obtain efficient vibration-suppressed. Aiming at getting the effect of design parameters on the property of fluidlastic isolator, a dynamic equation is set up based on the theory of dynamics. And the dynamic analysis is carried out. The influences of design parameters on the property of fluidlastic isolator are calculated. Dynamic analysis results have shown that fluidlastic isolator can reduce the vibration effectively. Analysis results also showed that the design parameters such as the fluid density, viscosity coefficient, stiffness (K1 and K2) and loss coefficient have obvious influence on the performance of isolator. The efficient vibration-suppressed can be obtained by the design optimization of parameters.
Passive and active vibration isolation systems using inerter
NASA Astrophysics Data System (ADS)
Alujević, N.; Čakmak, D.; Wolf, H.; Jokić, M.
2018-03-01
This paper presents a theoretical study on passive and active vibration isolation schemes using inerter elements in a two degree of freedom (DOF) mechanical system. The aim of the work is to discuss basic capabilities and limitations of the vibration control systems at hand using simple and physically transparent models. Broad frequency band dynamic excitation of the source DOF is assumed. The purpose of the isolator system is to prevent vibration transmission to the receiving DOF. The frequency averaged kinetic energy of the receiving mass is used as the metric for vibration isolation quality. It is shown that the use of inerter element in the passive vibration isolation scheme can enhance the isolation effect. In the active case, a feedback disturbance rejection scheme is considered. Here, the error signal is the receiving body absolute velocity which is directly fed to a reactive force actuator between the source and the receiving bodies. In such a scheme, the so-called subcritical vibration isolation problems exist. These problems are characterised by the uncoupled natural frequency of the receiving body larger than the uncoupled natural frequency of the source body. In subcritical vibration isolation problems, the performance of the active control is limited by poor stability margins. This is because the stable feedback gain is restricted in a narrow range between a minimum and a maximum. However, with the inclusion of an inerter in the isolator, one of the two stability margins can be opened. This enables large, theoretically unlimited negative feedback gains and large active damping of the receiving body vibration. A simple expression for the required inertance is derived.
NASA Technical Reports Server (NTRS)
Moskowitz, Milton; Hrovat, Kenneth; McPherson, Kevin; Tschen, Peter; DeLombard, Richard; Nati, Maurizio
1998-01-01
Four microgravity acceleration measurement instruments were included on MSL-1 to measure the accelerations and vibrations to which science experiments were exposed during their operation on the mission. The data were processed and presented to the principal investigators in a variety of formats to aid their assessment of the microgravity environment during their experiment operations. Two accelerometer systems managed by the NASA Lewis Research Center (LeRC) supported the MSL-1 mission: the Orbital Acceleration Research Experiment (OARE), and the Space Acceleration Measurement System (SAMS). In addition, the Microgravity Measurement Assembly (MMA) and the Quasi- Steady Acceleration Measurement (QSAM) system, both sponsored by the Microgravity Research Division, collected acceleration data as a part of the MSL-1 mission. The NIMA was funded and designed by the European Space Agency in the Netherlands (ESA/ESTEC), and the QSAM system was funded and designed by the German Space Agency (DLR). The Principal Investigator Microgravity Services (PIMS) project at the NASA Lewis Research Center (LeRC) supports Principal Investigators (PIs) of the Microgravity science community as they evaluate the effects of acceleration on their experiments. PIMS primary responsibility is to support NASA-sponsored investigators in the area of acceleration data analysis and interpretation. A mission summary report was prepared and published by PIMS in order to furnish interested experiment investigators with a guide for evaluating the acceleration environment during the MSL-1 mission.
The influence of vertical load to the natural vibration of series isolation system
NASA Astrophysics Data System (ADS)
Lin, Z. D.; Shi, H.
2018-02-01
The influence of axial load to the natural vibration of series isolation system is analyzed. The natural frequency of series isolation system is solved by differential quadrature method. According to the vertical load which is the main factor of natural vibration characteristic on the series isolation system, the parameter analysis is carried out. It should provide the basis for the vibration characteristic analysis for the structure of bearing on the top of first story column, and it can also provide evidence for the overall stability analysis of series isolation structure.
NASA Technical Reports Server (NTRS)
2004-01-01
Protein isolated from hen egg-white and functions as a bacteriostatic enzyme by degrading bacterial cell walls. First enzyme ever characterized by protein crystallography. It is used as an excellent model system for better understanding parameters involved in microgravity experiments with data from laboratory experiments to study the equilibrium rate of hanging drop experiments in microgravity.
Seismic isolation device having charging function by a transducer
NASA Astrophysics Data System (ADS)
Yamaguchi, Takashi; Miura, Nanako; Takahashi, Masaki
2016-04-01
In late years, many base isolated structures are planned as the seismic design, because they suppress vibration response significantly against large earthquake. To achieve greater safety, semi-active or active vibration control system is installed in the structures as earthquake countermeasures. Semi-active and active vibration control systems are more effective than passive vibration control system to large earthquake in terms of vibration reduction. However semi-active and active vibration control system cannot operate as required when external power supply is cut off. To solve the problem of energy consumption, we propose a self-powered active seismic isolation floor which achieve active control system using regenerated vibration energy. This device doesn't require external energy to produce control force. The purpose of this study is to propose the seismic isolation device having charging function and to optimize the control system and passive elements such as spring coefficients and damping coefficients using genetic algorithm. As a result, optimized model shows better performance in terms of vibration reduction and electric power regeneration than the previous model. At the end of this paper, the experimental specimen of the proposed isolation device is shown.
Low vibration laboratory with a single-stage vibration isolation for microscopy applications.
Voigtländer, Bert; Coenen, Peter; Cherepanov, Vasily; Borgens, Peter; Duden, Thomas; Tautz, F Stefan
2017-02-01
The construction and the vibrational performance of a low vibration laboratory for microscopy applications comprising a 100 ton floating foundation supported by passive pneumatic isolators (air springs), which rest themselves on a 200 ton solid base plate, are discussed. The optimization of the air spring system leads to a vibration level on the floating floor below that induced by an acceleration of 10 ng for most frequencies. Additional acoustic and electromagnetic isolation is accomplished by a room-in-room concept.
Positioning and Microvibration Control by Electromagnets of an Air Spring Vibration Isolation System
NASA Technical Reports Server (NTRS)
Watanabe, Katsuhide; Cui, Weimin; Haga, Takahide; Kanemitsu, Yoichi; Yano, Kenichi
1996-01-01
Active positioning and microvibration control has been attempted by electromagnets equipped in a bellows-type, air-spring vibration isolation system. Performance tests have been carried out to study the effects. The main components of the system's isolation table were four electromagnetic actuators and controllers. The vibration isolation table was also equipped with six acceleration sensors for detecting microvibration of the table. The electromagnetic actuators were equipped with bellows-type air springs for passive support of the weight of the item placed on the table, with electromagnets for active positioning, as well as for microvibration control, and relative displacement sensors. The controller constituted a relative feedback system for positioning control and an absolute feedback system for vibration isolation control. In the performance test, a 1,490 kg load (net weight of 1,820 kg) was placed on the vibration isolation table, and both the positioning and microvibration control were carried out electromagnetically. Test results revealed that the vibration transmission was reduced by 95%.
NASA Technical Reports Server (NTRS)
Hampton, R. David; Quraishi, Naveed (Technical Monitor)
2003-01-01
The International Space Station (ISS) relies on the Active Rack Isolation System (ARIS) as the central component of an integrated, station-wide strategy to isolate microgravity space-science experiments. ARIS uses electromechanical actuators to isolate an International Standard Payload Rack (ISPR) from disturbances due to the motion of the ISS. Disturbances to microgravity experiments on ARIS-isolated racks are primarily transmitted via the ARTS power and vacuum umbilicals. Recent experimental tests indicate that these umbilicals resonate at frequencies outside the ARIS controller's bandwidth, at levels of potential concern for certain microgravity experiments. Reduction in the umbilical resonant frequencies could help to address this issue. This report develops equations for the in-plane deflections and flexibilities of an idealized umbilical (thin, flexible, cantilever beam) under end-point, in-plane loading (inclined-force and moment). The effect of gravity is neglected due to the on-orbit application. The analysis assumes an initially straight, cantilevered umbilical with uniform cross-section, which undergoes large deflections with no plastic deformation, such that the umbilical terminus remains in a single quadrant and the umbilical slope changes monotonically. The analysis is applicable to the ARIS power and vacuum umbilicals, under the indicated assumptions.
NASA Technical Reports Server (NTRS)
Hampton, R. David; Quraishi, Naveed; Rupert, Jason K.
2000-01-01
The International Space Station (ISS) relies on the Active Rack Isolation System (ARIS) as the central component of an integrated, station-wide strategy to isolate microgravity space-science experiments. ARIS uses electromechanical actuators to isolate an International Standard Payload Rack (ISPR) from disturbances due to the motion of the ISS. Disturbances to microgravity experiments on ARIS-isolated racks are primarily transmitted via the ARIS power and vacuum umbilicals. Recent experimental tests indicate that these umbilicals resonate at frequencies outside the ARIS controller's bandwidth. at levels of potential concern for certain microgravity experiments. Reduction in the umbilical resonant frequencies could help to address this issue. This paper develops equations for the in-plane deflections and flexibilities of an idealized umbilical (thin, flexible, cantilever beam) under end-point, in-plane loading (inclined-force and moment). The effect of gravity is neglected due to the on:orbit application. The analysis assumes an initially straight. cantilevered umbilical with uniform cross-section. which undergoes large deflections with no plastic deformation, such that the umbilical terminus remains in a single quadrant and the umbilical slope changes monotonically. The analysis is applicable to the ARIS power and vacuum umbilicals. under the indicated assumptions.
Deformation and Flexibility Equations for ARIS Umbilicals Idealized as Planar Elastica
NASA Technical Reports Server (NTRS)
Hampton, R. David; Leamy, Michael J.; Bryant, Paul J.; Quraishi, Naveed
2005-01-01
The International Space Station relies on the active rack isolation system (ARIS) as the central component of an integrated, stationwide strategy to isolate microgravity space-science experiments. ARIS uses electromechanical actuators to isolate an international standard payload rack from disturbances due to the motion of the Space Station. Disturbances to microgravity experiments on ARIS isolated racks are transmitted primarily via the ARIS power and vacuum umbilicals. Experimental tests indicate that these umbilicals resonate at frequencies outside the ARIS controller s bandwidth at levels of potential concern for certain microgravity experiments. Reduction in the umbilical resonant frequencies could help to address this issue. This work documents the development and verification of equations for the in-plane deflections and flexibilities of an idealized umbilical (thin, flexible, inextensible, cantilever beam) under end-point, in-plane loading (inclined-force and moment). The effect of gravity is neglected due to the on-orbit application. The analysis assumes an initially curved (not necessarily circular), cantilevered umbilical with uniform cross-section, which undergoes large deflections with no plastic deformation, such that the umbilical slope changes monotonically. The treatment is applicable to the ARIS power and vacuum umbilicals under the indicated assumptions.
Suppression of Antigen-Specific Lymphocyte Activation in Simulated Microgravity
NASA Technical Reports Server (NTRS)
Cooper, David; Pride, Michael W.; Brown, Eric L.; Risin, Diana; Pellis, Neal R.
1999-01-01
Various parameters of immune suppression are observed in astronauts during and after spaceflight, and in isolated immune cells in true and simulated microgravity. Specifically, polyclonal activation of T cells is severely suppressed in true and simulated microgravity. These recent findings with various polyclonal activators suggests a suppression of oligoclonal lymphocyte activation in microgravity. We utilized rotating wall vessel (RWV) bioreactors that simulate aspects of microgravity for cell cultures to analyze three models of antigen-specific activation. A mixed-lymphocyte reaction (MLR), as a model for a primary immune response; a tetanus toxoid (TT) response and a B. burgdorferi (Bb) response, as models of a secondary immune response, were all suppressed in the RWV bioreactor. Our findings confirm that the suppression of activation observed with polyclonal models also encompasses oligoclonal antigen-specific activation.
The Development of Novel, High-Flux, Heat Transfer Cells for Thermal Control in Microgravity
NASA Technical Reports Server (NTRS)
Smith, Marc K.; Glezer, Ari
1996-01-01
In order to meet the future needs of thermal management and control in space applications such as the Space Lab, new heat-transfer technology capable of much larger heat fluxes must be developed. To this end, we describe complementary numerical and experimental investigations into the fundamental fluid mechanics and heat-transfer processes involved in a radically new, self contained, heat transfer cell for microgravity applications. In contrast to conventional heat pipes, the heat transfer in this cell is based on a forced droplet evaporation process using a fine spray. The spray is produced by a novel fluidic technology recently developed at Georgia Tech. This technology is based on a vibration induced droplet atomization process. In this technique, a liquid droplet is placed on a flexible membrane and is vibrated normal to itself. When the proper drop size is attained, the droplet resonates with the surface motion of the membrane and almost immediately bursts into a shower of very fine secondary droplets. The small droplets travel to the opposite end of the cell where they impact a heated surface and are evaporated. The vapor returns to the cold end of the cell and condenses to form the large droplets that are fragmented to form the spray. Preliminary estimates show that a heat transfer cell based on this technology would have a heat-flux capacity that is an order of magnitude higher than those of current heat pipes designs used in microgravity applications.
ADVERSE EFFECTS OF MICROGRAVITY ON THE MAGNETOTACTIC BACTERIUM Magnetospirillum magnetotacticum
NASA Astrophysics Data System (ADS)
Urban, James E.
2000-11-01
Bacteria that contain magnetosomes display magnetotaxis and align themselves to the earth's magnetic field. When magnetotactic bacteria were first isolated several decades ago it was presumed that geomagnetic orientation allowed magnetotactic bacteria to orient themselves downward towards sediments where the habitat is favorable to their growth and metabolism. As more species of magnetotactic bacteria have been isolated and studied, differences in magnetotactic responses have been observed which suggested that the primary role of magnetosomes might simply be to enhance a microorganism's response to gravity. To resolve if gravity influences magnetotactic behavior in bacteria, Magnetospirillum magnetotacticum was used to examine magnetotaxis in the absence of gravity. Experiments to compare the orientation of bacteria to north- or south-pole magnets were conducted in normal gravity and in the microgravity environments aboard the Space Shuttle and Space Station MIR. In each of the microgravity situations studied, bacteria were impaired in their ability to orient to magnets and the failure to exhibit magnetotaxis appeared to be a function of the loss of magnetosomes. The disappearance of aggregated magnetosomes seemed to correlate with a general loss of cellular integrity in microgravity.
Effect of vertical active vibration isolation on tracking performance and on ride qualities
NASA Technical Reports Server (NTRS)
Dimasi, F. P.; Allen, R. E.; Calcaterra, P. C.
1972-01-01
An investigation to determine the effect on pilot performance and comfort of an active vibration isolation system for a commercial transport pilot seat is reported. The test setup consisted of: a hydraulic shaker which produced random vertical vibration inputs; the active vibration isolation system; the pilot seat; the pilot control wheel and column; the side-arm controller; and a two-axis compensatory tracking task. The effects of various degrees of pilot isolation on short-term (two-minute) tracking performance and comfort were determined.
Wang, Chongzhen; Luo, Haiying; Zhu, Linnan; Yang, Fan; Chu, Zhulang; Tian, Hongling; Feng, Meifu; Zhao, Yong; Shang, Peng
2014-01-01
Microgravity environments in space can cause major abnormalities in human physiology, including decreased immunity. The underlying mechanisms of microgravity-induced inflammatory defects in macrophages are unclear. RAW264.7 cells and primary mouse macrophages were used in the present study. Lipopolysaccharide (LPS)-induced cytokine expression in mouse macrophages was detected under either simulated microgravity or 1g control. Freshly isolated primary mouse macrophages and RAW264.7 cells were cultured in a standard simulated microgravity situation using a rotary cell culture system (RCCS-1) and 1g control conditions. The cytokine expression was determined by real-time PCR and ELISA assays. Western blots were used to investigate the related intracellular signals. LPS-induced tumor necrosis factor-α (TNF-α) expression, but not interleukin-1β expression, in mouse macrophages was significantly suppressed under simulated microgravity. The molecular mechanism studies showed that LPS-induced intracellular signal transduction including phosphorylation of IKK and JNK and nuclear translocation of NF-κB in macrophages was identical under normal gravity and simulated microgravity. Furthermore, TNF-α mRNA stability did not decrease under simulated microgravity. Finally, we found that heat shock factor-1 (HSF1), a known repressor of TNF-α promoter, was markedly activated under simulated microgravity. Short-term treatment with microgravity caused significantly decreased TNF-α production. Microgravity-activated HSF1 may contribute to the decreased TNF-α expression in macrophages directly caused by microgravity, while the LPS-induced NF-κB pathway is resistant to microgravity.
NASA Astrophysics Data System (ADS)
Voigtländer, Bert; Coenen, Peter; Cherepanov, Vasily; Borgens, Peter; Duden, Thomas; Tautz, F. Stefan
2018-01-01
The construction and the vibrational performance of a low vibration laboratory for microscopy applications comprising a 100 ton floating foundation supported by passive pneumatic isolators (air springs), which rest themselves on a 200 ton solid base plate is discussed. The optimization of the air spring system lead to a vibration level on the floating floor below that induced by an acceleration of 10 ng for most frequencies. Additional acoustic and electromagnetic isolation is accomplished by a room-in-room concept.
NASA Technical Reports Server (NTRS)
Hasha, Martin D.
1990-01-01
NASA is developing a Life Sciences Centrifuge Facility for Space Station Freedom. In includes a 2.5-meter artificial gravity Bioresearch Centrifuge (BC), which is perhaps the most critical single element in the life sciences space research program. It rotates continuously at precise selectable rates, and utilizes advanced reliable technologies to reduce vibrations. Three disturbance types are analyzed using a current Space Station Freedom dynamic model in the 0.0 to 5.0 Hz range: sinusoidal, random, and transient. Results show that with proper selection of proven design techniques, BC vibrations are compatible with requirements.
Investigation of Vibrational Control of the Bridgman Crystal Growth Technique
NASA Technical Reports Server (NTRS)
Fedoseyev, Alexandre I.
1998-01-01
The objectives are: Conduct a parametric theoretical and numerical investigation of vibro-convective buoyancy-driven flow in differentially heated cylindrical containers. Investigate buoyant vibro-convective transport regimes in Bridgman-type systems with a focus on the use of vibration to suppress, or control, convection in order to achieve transport control during crystal growth. Assess the feasibility of vibro-convective control as a means of offsetting "g-jitter" effects under microgravity conditions, Exchange information with the experimental group at the General Physics Institute (GPI) of the Russian Academy of Science who are undertaking a complementary experimental program.
Microgravity experiments on vibrated granular gases in a dilute regime: non-classical statistics
NASA Astrophysics Data System (ADS)
Leconte, M.; Garrabos, Y.; Falcon, E.; Lecoutre-Chabot, C.; Palencia, F.; Évesque, P.; Beysens, D.
2006-07-01
We report on an experimental study of a dilute gas of steel spheres colliding inelastically and excited by a piston performing sinusoidal vibration, in low gravity. Using improved experimental apparatus, here we present some results concerning the collision statistics of particles on a wall of the container. We also propose a simple model where the non-classical statistics obtained from our data are attributed to the boundary condition playing the role of a 'velostat' instead of a thermostat. The significant differences from the kinetic theory of usual gas are related to the inelasticity of collisions.
Combined Euler column vibration isolation and energy harvesting
NASA Astrophysics Data System (ADS)
Davis, R. B.; McDowell, M. D.
2017-05-01
A new device that combines vibration isolation and energy harvesting is modeled, simulated, and tested. The vibration isolating portion of the device uses post-buckled beams as its spring elements. Piezoelectric film is applied to the beams to harvest energy from their dynamic flexure. The entire device operates passively on applied base excitation and requires no external power or control system. The structural system is modeled using the elastica, and the structural response is applied as forcing on the electric circuit equation to predict the output voltage and the corresponding harvested power. The vibration isolation and energy harvesting performance is simulated across a large parameter space and the modeling approach is validated with experimental results. Experimental transmissibilities of 2% and harvested power levels of 0.36 μW are simultaneously demonstrated. Both theoretical and experimental data suggest that there is not necessarily a trade-off between vibration isolation and harvested power. That is, within the practical operational range of the device, improved vibration isolation will be accompanied by an increase in the harvested power as the forcing frequency is increased.
Experimental demonstration of 1.5Hz passive isolation system for precision optical payloads
NASA Astrophysics Data System (ADS)
Guan, Xin; Wang, Guang-yuan; Cao, Dong-jing; Tang, Shao-fan; Chen, Xiang; Liang, Lu; Zheng, Gang-tie
2017-11-01
The ground resolution of remote sensing satellite has been raised from hundreds of meters to less than one meter in recent few decades. As a result, the precision optical payload becomes more and more sensitive to structure vibrations of satellite buses. Although these vibrations generally have extremely low magnitude, they can result in significant image quality degradation to an optical payload. The suggestion of using vibration isolators to isolate payload from the satellite bus has been put forward in 1980s'[1]. Recently, WorldView-2 achieved its perfect image quality via using a set of low frequency isolators[2]. Recently, some of the optical payload manufacturers begin to provide vibration isolators as standard parts together with their main products . During the prototype testing of an earth resource satellite, the image of the optical payload was found to jitter for 5 10 pixels due to disturbances transmitted from the satellite bus structure. Test results indicated that the acceleration level of the vibration was of mG magnitude. To solve the problem, a highly sensitive vibration isolation system was developed to reduce the transmission of disturbances. Integrated isolation performance tests showed that the image jitter can be decreased to below 0.3 pixels.
Shen, Hui; Wang, Chun; Li, Liufeng; Chen, Lisheng
2013-05-01
Being small in size and weight, piezoelectric transducers hold unique positions in vibration sensing and control. Here, we explore the possibility of building a compact vibration isolation system using piezoelectric sensors and actuators. The mechanical resonances of a piezoelectric actuator around a few kHz are suppressed by an order of magnitude via electrical damping, which improves the high-frequency response. Working with a strain gauge located on the piezoelectric actuator, an auxiliary control loop eliminates the drift associated with a large servo gain at dc. Following this approach, we design, optimize, and experimentally verify the loop responses using frequency domain analysis. The vibration isolation between 1 Hz and 200 Hz is achieved and the attenuation peaks at 60 near vibration frequency of 20 Hz. Restrictions and potentials for extending the isolation to lower vibration frequencies are discussed.
Human-simulated intelligent control of train braking response of bridge with MRB
NASA Astrophysics Data System (ADS)
Li, Rui; Zhou, Hongli; Wu, Yueyuan; Wang, Xiaojie
2016-04-01
The urgent train braking could bring structural response menace to the bridge under passive control. Based on the analysis of breaking dynamics of a train-bridge vibration system, a magnetorheological elastomeric bearing (MRB) whose mechanical parameters are adjustable is designed, tested and modeled. A finite element method (FEM) is carried out to model and optimize a full scale vibration isolation system for railway bridge based on MRB. According to the model above, we also consider the effect of different braking stop positions on the vibration isolation system and classify the bridge longitudinal vibration characteristics into several cases. Because the train-bridge vibration isolation system has multiple vibration states and strongly coupling with nonlinear characteristics, a human-simulated intelligent control (HSIC) algorithm for isolating the bridge vibration under the impact of train braking is proposed, in which the peak shear force of pier top, the displacement of beam and the acceleration of beam are chosen as control goals. The simulation of longitudinal vibration control system under the condition of train braking is achieved by MATLAB. The results indicate that different braking stop positions significantly affect the vibration isolation system and the structural response is the most drastic when the train stops at the third cross-span. With the proposed HSIC smart isolation system, the displacement of bridge beam and peak shear force of pier top is reduced by 53.8% and 34.4%, respectively. Moreover, the acceleration of bridge beam is effectively controlled within limited range.
Electrostatic spring softening in redundant degree of freedom resonators
NASA Technical Reports Server (NTRS)
Hayworth, Ken J. (Inventor); Shcheglov, Kirill V. (Inventor); Humphreys, Todd E. (Inventor); Challoner, A. Dorian (Inventor)
2004-01-01
The present invention discloses an isolated electrostatic biased resonator gyroscope. The gyroscope includes an isolated resonator having a first and a second differential vibration mode, a baseplate supporting the isolated resonator, a plurality of excitation affixed to the baseplate for exciting the first differential vibration mode, a plurality of sensing electrodes affixed to the baseplate for sensing movement of the gyroscope through the second differential vibration mode and a plurality of bias electrodes affixed to the baseplate for trimming isolation of the resonator and substantially minimizing frequency split between the first and second differential vibration modes. Typically, the isolated resonator comprises a proof mass and a counterbalancing plate with the bias electrodes disposed on the baseplate below.
MSG in the Columbus Laboratory during Expedition 22
2010-01-28
ISS022-E-041766 (28 Jan. 2010) --- Japan Aerospace Exploration Agency (JAXA) astronaut Soichi Noguchi, Expedition 22 flight engineer, works with the European Space Agency (ESA) science payload Selectable Optical Diagnostics Instrument / Influence of Vibration on Diffusion in Liquids (SODI/IVIDIL) hardware in the Microgravity Science Glovebox (MSG) facility located in the Columbus laboratory of the International Space Station.
MSG in the Columbus Laboratory during Expedition 22
2010-01-28
ISS022-E-041767 (28 Jan. 2010) --- Japan Aerospace Exploration Agency (JAXA) astronaut Soichi Noguchi, Expedition 22 flight engineer, works with the European Space Agency (ESA) science payload Selectable Optical Diagnostics Instrument / Influence of Vibration on Diffusion in Liquids (SODI/IVIDIL) hardware in the Microgravity Science Glovebox (MSG) facility located in the Columbus laboratory of the International Space Station.
MSG in the Columbus Laboratory during Expedition 22
2010-01-28
ISS022-E-041769 (28 Jan. 2010) --- Japan Aerospace Exploration Agency (JAXA) astronaut Soichi Noguchi, Expedition 22 flight engineer, works with the European Space Agency (ESA) science payload Selectable Optical Diagnostics Instrument / Influence of Vibration on Diffusion in Liquids (SODI/IVIDIL) hardware in the Microgravity Science Glovebox (MSG) facility located in the Columbus laboratory of the International Space Station.
Optimal Controller Design for the Microgravity Isolation Mount (MIM)
NASA Technical Reports Server (NTRS)
Hampton, R. David
1998-01-01
H2 controllers, when designed using an appropriate design model and carefully chosen frequency weightings, appear to provide robust performance and robust stability for Microgravity Isolation Mount (MIM). The STS-85 flight data will be used to evaluate the H2 controllers' performance on the actual hardware under working conditions. Next, full-order H-infinity controllers will be developed, as an intermediate step, in order to determine appropriate H-infinity performance weights for use in the mixed-norm design. Finally the basic procedure outlined above will be used to develop fixed-order mixed-norm controllers for MIM.
Suppression of antigen-specific lymphocyte activation in modeled microgravity
NASA Technical Reports Server (NTRS)
Cooper, D.; Pride, M. W.; Brown, E. L.; Risin, D.; Pellis, N. R.; McIntire, L. V. (Principal Investigator)
2001-01-01
Various parameters of immune suppression are observed in lymphocytes from astronauts during and after a space flight. It is difficult to ascribe this suppression to microgravity effects on immune cells in crew specimens, due to the complex physiological response to space flight and the resultant effect on in vitro immune performance. Use of isolated immune cells in true and modeled microgravity in immune performance tests, suggests a direct effect of microgravity on in vitro cellular function. Specifically, polyclonal activation of T-cells is severely suppressed in true and modeled microgravity. These recent findings suggest a potential suppression of oligoclonal antigen-specific lymphocyte activation in microgravity. We utilized rotating wall vessel (RWV) bioreactors as an analog of microgravity for cell cultures to analyze three models of antigen-specific activation. A mixed-lymphocyte reaction, as a model for a primary immune response, a tetanus toxoid response and a Borrelia burgdorferi response, as models of a secondary immune response, were all suppressed in the RWV bioreactor. Our findings confirm that the suppression of activation observed with polyclonal models also encompasses oligoclonal antigen-specific activation.
The effect of simulated microgravity on bacteria from the mir space station
NASA Astrophysics Data System (ADS)
Baker, Paul W.; Leff, Laura
2004-03-01
The effects of simulated microgravity on two bacterial isolates, Sphingobacterium thalpophilium and Ralstonia pickettii (formerly Burkholderia pickettii), originally recovered from water systems aboard the Mir space station were examined. These bacteria were inoculated into water, high and low concentrations of nutrient broth and subjected to simulated microgravity conditions. S. thalpophilium (which was motile and had flagella) showed no significant differences between simulated microgravity and the normal gravity control regardless of the method of enumeration and medium. In contrast, for R. pickettii (that was non-motile and lacked flagella), there were significantly higher numbers in high nutrient broth under simulated microgravity compared to normal gravity. Conversely, when R. pikkettii was inoculated into water (i.e., starvation conditions) significantly lower numbers were found under simulated microgravity compared to normal gravity. Responses to microgravity depended on the strain used (e.g., the motile strain exhibited no response to microgravity, while the non-motile strain did), the method of enumeration, and the nutrient concentration of the medium. Under oligotrophic conditions, non-motile cells may remain in geostationary orbit and deplete nutrients in their vicinity, while in high nutrient medium, resources surrounding the cell may be sufficient so that high growth is observed until nutrients becoming limiting.
The effect of simulated microgravity on bacteria from the Mir space station.
Baker, Paul W; Leff, Laura
2004-01-01
The effects of simulated microgravity on two bacterial isolates, Sphingobacterium thalpophilium and Ralstonia pickettii (formerly Burkholderia pickettii), originally recovered from water systems aboard the Mir space station were examined. These bacteria were inoculated into water, high and low concentrations of nutrient broth and subjected to simulated microgravity conditions. S. thalpophilium (which was motile and had flagella) showed no significant differences between simulated microgravity and the normal gravity control regardless of the method of enumeration and medium. In contrast, for R. pickettii (that was non-motile and lacked flagella), there were significantly higher numbers in high nutrient broth under simulated microgravity compared to normal gravity. Conversely, when R. pikkettii was inoculated into water (i.e., starvation conditions) significantly lower numbers were found under simulated microgravity compared to normal gravity. Responses to microgravity depended on the strain used (e.g., the motile strain exhibited no response to microgravity, while the non-motile strain did), the method of enumeration, and the nutrient concentration of the medium. Under oligotrophic conditions, non-motile cells may remain in geostationary orbit and deplete nutrients in their vicinity, while in high nutrient medium, resources surrounding the cell may be sufficient so that high growth is observed until nutrients becoming limiting.
The effect of simulated microgravity on bacteria from the Mir space station
NASA Technical Reports Server (NTRS)
Baker, Paul W.; Leff, Laura
2004-01-01
The effects of simulated microgravity on two bacterial isolates, Sphingobacterium thalpophilium and Ralstonia pickettii (formerly Burkholderia pickettii), originally recovered from water systems aboard the Mir space station were examined. These bacteria were inoculated into water, high and low concentrations of nutrient broth and subjected to simulated microgravity conditions. S. thalpophilium (which was motile and had flagella) showed no significant differences between simulated microgravity and the normal gravity control regardless of the method of enumeration and medium. In contrast, for R. pickettii (that was non-motile and lacked flagella), there were significantly higher numbers in high nutrient broth under simulated microgravity compared to normal gravity. Conversely, when R. pikkettii was inoculated into water (i.e., starvation conditions) significantly lower numbers were found under simulated microgravity compared to normal gravity. Responses to microgravity depended on the strain used (e.g., the motile strain exhibited no response to microgravity, while the non-motile strain did), the method of enumeration, and the nutrient concentration of the medium. Under oligotrophic conditions, non-motile cells may remain in geostationary orbit and deplete nutrients in their vicinity, while in high nutrient medium, resources surrounding the cell may be sufficient so that high growth is observed until nutrients becoming limiting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Min-Kang; Xiong, Xin; Chen, Le-Le
An ultra-low frequency active vibration isolator, simultaneously suppressing three-dimensional vibration noise, is demonstrated experimentally. The equivalent natural period of the isolator is 100 s and 12 s for the vertical and horizontal direction, respectively. The vibration noise in the vertical direction is about 50 times reduced during 0.2 and 2 Hz, and 5 times reduced in the other two orthogonal directions in the same frequency range. This isolator is designed for atom gravimeters, especially suitable for the gravimeter whose sensitivity is limited by vibration couplings.
NASA Technical Reports Server (NTRS)
Lyons, Valerie; Friedman, Robert
1996-01-01
The near-zero (microgravity) environment of orbiting spacecraft minimizes buoyant flows, greatly simplifying combustion processes and isolating important phenomena ordinarily concealed by the overwhelming gravity-driven forces and flows. Fundamental combustion understanding has greatly benefited from analyses and experiments conducted in the microgravity environment. Because of the economic and commercial importance of combustion in practice, there is strong motivation to seek wider applications for the microgravity-combustion findings. This paper reviews selected technology developments to illustrate some emerging applications. Topics cover improved fire-safety technology in spacecraft and terrestrial systems, innovative combustor designs for aerospace and ground propulsion, applied sensors and controls for combustion processes, and self-sustaining synthesis techniques for advanced materials.
Potential Commercial Applications from Combustion and Fire Research in Space
NASA Technical Reports Server (NTRS)
Friedman, Robert; Lyons, Valerie J.
1996-01-01
The near-zero (microgravity) environment of orbiting spacecraft minimizes buoyant flows, greatly simplifying combustion processes and isolating important phenomena ordinarily concealed by the overwhelming gravity-driven forces and flows. Fundamental combustion understanding - the focus to date of the NASA microgravity-combustion program - has greatly benefited from analyses and experiments conducted in the microgravity environment. Because of the economic and commercial importance of combustion in practice, there is strong motivation to seek wider applications for the microgravity-combustion findings. This paper reviews selected technology developments to illustrate some emerging applications. Topics cover improved fire-safety technology in spacecraft and terrestrial systems, innovative combustor designs for aerospace and ground propulsion, applied sensors and controls for combustion processes, and self-sustaining synthesis techniques for advanced materials.
Microgravity Program strategic plan, 1991
NASA Technical Reports Server (NTRS)
1991-01-01
The all encompassing objective of the NASA Microgravity Program is the use of space as a lab to conduct research and development. The on-orbit microgravity environment, with its substantially reduced buoyancy forces, hydrostatic pressures, and sedimentation, enables the conduction of scientific studies not possible on Earth. This environment allows processes to be isolated and controlled with an accuracy that cannot be obtained in the terrestrial environment. The Microgravity Science and Applications Div. has defined three major science categories in order to develop a program structure: fundamental science, including the study of the behavior of fluids, transport phenomena, condensed matter physics, and combustion science; materials science, including electronic and photonic materials, metals and alloys, and glasses and ceramics; and biotechnology, focusing on macromolecular crystal growth as well as cell and molecular science. Experiments in these areas seek to provide observations of complex phenomena and measurements of physical attributes with a precision that is enabled by the microgravity environment.
A 6DOF passive vibration isolator using X-shape supporting structures
NASA Astrophysics Data System (ADS)
Wu, Zhijing; Jing, Xingjian; Sun, Bo; Li, Fengming
2016-10-01
A novel 6 degree of freedom (6-DOF) passive vibration isolator is studied theoretically and validated with experiments. Based on the Stewart platform configuration, the 6-DOF isolator is constructed by 6 X-shape structures as legs, which can realize very good and tunable vibration isolation performance in all 6 directions with a passive manner. The mechanic model is established for static analysis of the working range, static stiffness and loading capacity. Thereafter, the equation of motion of the isolator is derived with the Hamilton principle. The equivalent stiffness and the displacement transmissibility in the six decoupled DOFs direction are then discussed with experimental results for validation. The results reveal that (a) by designing the structure parameters, the system can possess flexible stiffness such as negative, quasi-zero and positive stiffness, (b) due to the combination of the Stewart platform and the X-shape structure, the system can have very good vibration isolation performance in all the 6 directions and in a passive manner, and (c) compared with the simplified linear-stiffness legs, the nonlinearity of the X-shape structures enhance the passive isolator to have much better vibration isolation performance.
The thermo-vibrational convection in microgravity condition. Ground-based modelling.
NASA Astrophysics Data System (ADS)
Zyuzgin, A. V.; Putin, G. F.; Harisov, A. F.
In 1995-2000 at orbital station "Mir" has been carried out the series of experiments with the equipment "Alice" for the studying regimes of heat transfer in the supercritical fluids under influence inertial microaccelerations. The experiments have found out existence of the thermo-vibrational and thermo-inertial convective movements in the real weightlessness[1] and controlling microgravity fields[2]. However regarding structures of thermovibrational convection the results of experiments have inconsistent character. Therefore carrying out the ground-based modeling of the given problem is actually. In this work in laboratory conditions were investigated the thermo-vibrational convective movements from the dot heat source at high-frequency vibrations of the cavity with the fluid and presence quasi-static microacceleration. As the result of ground-based modeling, the regimes of convective flows, similar observed in the space experiment are received. Evolution of the convective structures and the spatial-temporary characteristics of movements are investigated in a wide range of the problem parameters. The control criteria and its critical value are determined. The received results well coordinated to the data of space experiments and allow adding and expanding representation about thermo-vibrational effects in conditions of real weightlessness and remove the contradictions concerning structures thermo-vibrational convective flows, received at the analysis of the given orbital experiments. The research described in this publication was made possible in part by Russian Foundation for Basic Research and Administration of Perm Region, Russia, under grant 04-02-96038, and Award No. PE-009-0 of the U.S. Civilian Research & Development Foundation for the Independent States of the Former Soviet Union (CRDF). A.V. Zyuzgin, A. I. Ivanov, V. I. Polezhaev, G. F. Putin, E. B. Soboleva Convective Motions in Near-Critical Fluids under Real Zero-Gravity Conditions. Cosmic Research, Vol. 39, No. 2, 2001, pp. 175--186. A.V. Zyuzgin, G.F. Putin, N.G. Ivanova, A.V. Chudinov, A.I. Ivanov, A.V. Kalmykov, V. I. Polezhaev, V.M. Emelianov The heat convection of nearcritical fluid in the controlled microacceleration field under zero-gravity condition. Advances in Space Research, 2003, Vol. 32, No 2, pp. 205-210.
An Active Micro Vibration Isolator with Zero-Power Controlled Magnetic Suspension Technology
NASA Astrophysics Data System (ADS)
Hoque, Md. Emdadul; Takasaki, Masaya; Ishino, Yuji; Suzuki, Hirohisa; Mizuno, Takeshi
In this paper, a three-degree-of-freedom vibration isolation system using active zero-power controlled magnetic suspension is presented in order to isolate vibrations transmitted from the ground and to attenuate the effect of direct disturbances on the table. The zero-compliance of the isolator for direct disturbances was realized by connecting a conventional mechanical spring in series with a negative spring produced by an active magnetic suspension mechanism. In this work, each degree-of-freedom-of-motion of the vibration isolator is treated analytically and it is shown that the developed system is capable to generate infinite stiffness in each mode. Experimental studies have been conducted as well to measure the effectiveness of the isolator under both types of disturbances. Further improvements for the developed system as well as the control techniques are also discussed.
NASA Astrophysics Data System (ADS)
Krause, Lars; Braun, Markus; Hauslage, Jens; Hemmersbach, Ruth
2018-05-01
In single-celled rhizoids of the green algae Chara, positively gravitropic growth is governed by statoliths kept in a dynamically stable position 10-25 μ m above the cell tip by a complex interaction of gravity and actomyosin forces. Any deviation of the tube-like cells from the tip-downward orientation causes statoliths to sediment onto the gravisensitive subapical cell flank which initiates a gravitropic curvature response. Microgravity experiments have shown that abolishing the net tip-directed gravity force results in an actomyosin-mediated axial displacement of statoliths away from the cell tip. The present study was performed to critically assess the quality of microgravity simulation provided by different operational modes of a Random Positioning Machine (RPM) running with one axis (2D mode) or two axes (3D mode) and different rotational speeds (2D), speed ranges and directions (3D). The effects of 2D and 3D rotation were compared with data from experiments in real microgravity conditions (MAXUS sounding rocket missions). Rotational speeds in the range of 60-85 rpm in 2D and 3D modes resulted in a similar kinetics of statolith displacement as compared to real microgravity data, while slower clinorotation (2-11 rpm) caused a reduced axial displacement and a more dispersed arrangement of statoliths closer to the cell tip. Increasing the complexity of rotation by adding a second rotation axis in case of 3D clinorotation did not increase the quality of microgravity simulation, however, increased side effects such as the level of vibrations resulting in a more dispersed arrangement of statoliths. In conclusion, fast 2D clinorotation provides the most appropriate microgravity simulation for investigating the graviperception mechanism in Chara rhizoids, whereas slower clinorotation speeds and rotating samples around two axes do not improve the quality of microgravity simulation.
NASA Astrophysics Data System (ADS)
Krause, Lars; Braun, Markus; Hauslage, Jens; Hemmersbach, Ruth
2018-01-01
In single-celled rhizoids of the green algae Chara, positively gravitropic growth is governed by statoliths kept in a dynamically stable position 10-25 μ m above the cell tip by a complex interaction of gravity and actomyosin forces. Any deviation of the tube-like cells from the tip-downward orientation causes statoliths to sediment onto the gravisensitive subapical cell flank which initiates a gravitropic curvature response. Microgravity experiments have shown that abolishing the net tip-directed gravity force results in an actomyosin-mediated axial displacement of statoliths away from the cell tip. The present study was performed to critically assess the quality of microgravity simulation provided by different operational modes of a Random Positioning Machine (RPM) running with one axis (2D mode) or two axes (3D mode) and different rotational speeds (2D), speed ranges and directions (3D). The effects of 2D and 3D rotation were compared with data from experiments in real microgravity conditions (MAXUS sounding rocket missions). Rotational speeds in the range of 60-85 rpm in 2D and 3D modes resulted in a similar kinetics of statolith displacement as compared to real microgravity data, while slower clinorotation (2-11 rpm) caused a reduced axial displacement and a more dispersed arrangement of statoliths closer to the cell tip. Increasing the complexity of rotation by adding a second rotation axis in case of 3D clinorotation did not increase the quality of microgravity simulation, however, increased side effects such as the level of vibrations resulting in a more dispersed arrangement of statoliths. In conclusion, fast 2D clinorotation provides the most appropriate microgravity simulation for investigating the graviperception mechanism in Chara rhizoids, whereas slower clinorotation speeds and rotating samples around two axes do not improve the quality of microgravity simulation.
Vibration Isolation for Launch of a Space Station Orbital Replacement Unit
NASA Technical Reports Server (NTRS)
Maly, Joseph R.; Sills, Joel W., Jr.; Pendleton, Scott C.; James, George H., III; Mimovich, Mark
2004-01-01
Delivery of Orbital Replacement Units (ORUs) to on-orbit destinations such a the International Space Station (ISS) and the Hubble Space Telescope is an important component of the space program. ORUs are integrated on orbit with space assets to maintain and upgrade functionality. For ORUs comprised of sensitive equipment, the dynamic launch environment drives design and testing requirements, and high frequency random vibrations are generally the cause for failure. Vibration isolation can mitigate the structure-borne vibration environment during launch, and hardware has been developed that can provide a reduced environment for current and future launch environments. Random vibration testing of one ORU to equivalent Space Shuttle launch levels revealed that its qualification and acceptance requirements were exceeded. An isolation system was designed to mitigate the structure-borne launch vibration environment. To protect this ORU, the random vibration levels at 50 Hz must be attenuated by a factor of two and those at higher frequencies even more. Design load factors for Shuttle launch are high, so a metallic load path is needed to maintain strength margins. Isolation system design was performed using a finite element model of the ORU on its carrier with representative disturbance inputs. Iterations on the modelled to an optimized design based on flight proven SoftRide MultiFlex isolators. Component testing has been performed on prototype isolators to validate analytical predictions.
2001-01-24
An artist's concept of the Primary Atomic Clock Reference System (PARCS) plarned to fly on the International Space Station (ISS). PARCS will make even more accurate atomic time available to everyone, from physicists testing Einstein's Theory of Relativity, to hikers using the Global Positioning System to find their way. In ground-based atomic clocks, lasers are used to cool and nearly stop atoms of cesium whose vibrations are used as the time base. The microgravity of space will allow the atoms to be suspended in the clock rather than circulated in an atomic fountain, as required on Earth. PARCS is being developed by the Jet Propulsion Laboratory with principal investigators at the National Institutes of Standards and Technology and the University of Colorado, Boulder. See also No. 0103191
The Strata-1 Regolith Dynamics Experiment: Class 1E Science on ISS
NASA Technical Reports Server (NTRS)
Fries, Marc; Graham, Lee; John, Kristen
2016-01-01
The Strata-1 experiment studies the evolution of small body regolith through long-duration exposure of simulant materials to the microgravity environment on the International Space Station (ISS). This study will record segregation and mechanical dynamics of regolith simulants in a microgravity and vibration environment similar to that experienced by regolith on small Solar System bodies. Strata-1 will help us understand regolith dynamics and will inform design and procedures for landing and setting anchors, safely sampling and moving material on asteroidal surfaces, processing large volumes of material for in situ resource utilization (ISRU) purposes, and, in general, predicting the behavior of large and small particles on disturbed asteroid surfaces. This experiment is providing new insights into small body surface evolution.
Atomic force microscopy capable of vibration isolation with low-stiffness Z-axis actuation.
Ito, Shingo; Schitter, Georg
2018-03-01
For high-resolution imaging without bulky external vibration isolation, this paper presents an atomic force microscope (AFM) capable of vibration isolation with its internal Z-axis (vertical) actuators moving the AFM probe. Lorentz actuators (voice coil actuators) are used for the Z-axis actuation, and flexures guiding the motion are designed to have a low stiffness between the mover and the base. The low stiffness enables a large Z-axis actuation of more than 700 µm and mechanically isolates the probe from floor vibrations at high frequencies. To reject the residual vibrations, the probe tracks the sample by using a displacement sensor for feedback control. Unlike conventional AFMs, the Z-axis actuation attains a closed-loop control bandwidth that is 35 times higher than the first mechanical resonant frequency. The closed-loop AFM system has robustness against the flexures' nonlinearity and uses the first resonance for better sample tracking. For further improvement, feedforward control with a vibration sensor is combined, and the resulting system rejects 98.4% of vibrations by turning on the controllers. The AFM system is demonstrated by successful AFM imaging in a vibrational environment. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Guang-yuan; Guan, Xin; Cao, Dong-jing; Tang, Shao-fan; Chen, Xiang; Liang, Lu; Zheng, Gang-tie
2017-11-01
With the raise of resolution, optical payloads are becoming increasingly sensitive to satellite jitter. An approach where the entire spacecraft is pointed with great accuracy requires sophisticated and expensive bus design. In an effort to lower the overall cost of space missions that require highly stable line-of-sight pointing, a method of separating the bus and the payload with low frequency isolators is proposed. This isolation system can block the transmission of disturbance and allow relatively large bus motion. However, if the isolator is linear then there is a trade-off between isolation and static deflection as the launch and the on-orbit stage have difference requirements on the isolation frequency. Otherwise, an extra locking system should be appended to protect the payload before getting into orbit, as the STABLE isolation system[1] and the MIM isolation system[2] did. To overcome this limitation, an alternative approach is to design a nonlinear isolator with high-static stiffness during launch and low dynamic stiffness on orbit. Several specially designed nonlinear isolators have achieved low dynamic stiffness with large static load capacity. Virgin[3] considered a structure made from a highly deformed elastic element to achieve a softening spring. Platus[4] exploited the buckling of beams under axial load in a specific configuration to achieve a negative stiffness in combination with a positive stiffness, and hence low-dynamic stiffness. Others have achieved the same by connecting linear springs with positive stiffness in parallel with elements of negative stiffness[5] [7]. In the present study, a bifunctional isolator has been developed for optical payloads. The isolator have good performance both during launch and on orbit because of its specially designed nonlinear stiffness and damping. The isolator works in a linear part with low stiffness and small damping ratio under the micro-vibration and microgravity on orbit. The transmissibility requirement and the displacement restriction during launch are satisfied by tuning the nonlinear stiffness and damping parameters. A group of sample isolators are designed tested both statically and dynamically.
NASA Technical Reports Server (NTRS)
Manouchehri, Davoud; Lindsay, Thomas; Ghosh, David
1994-01-01
NASA's Langley Research Center (LaRC) is addressing the problem of isolating the vibrations of the Shuttle remote manipulator system (RMS) from its end-effector and/or payload by modeling an RMS flat-floor simulator with a dynamic payload. Analysis of the model can lead to control techniques that will improve the speed, accuracy, and safety of the RMS in capturing satellites and eventually facilitate berthing with the space station. Rockwell International Corporation, also involved in vibration isolation, has developed a hardware interface unit to isolate the end-effector from the vibrations of an arm on a Shuttle robotic tile processing system (RTPS). To apply the RTPS isolation techniques to long-reach arms like the RMS, engineers have modeled the dynamics of the hardware interface unit with simulation software. By integrating the Rockwell interface model with the NASA LaRC RMS simulator model, investigators can study the use of a hardware interface to isolate dynamic payloads from the RMS. The interface unit uses both active and passive compliance and damping for vibration isolation. Thus equipped, the RMS could be used as a telemanipulator with control characteristics for capture and berthing operations. The hardware interface also has applications in industry.
NASA Astrophysics Data System (ADS)
Kamesh, D.; Pandiyan, R.; Ghosal, Ashitava
2012-03-01
Reaction wheel assemblies (RWAs) are momentum exchange devices used in fine pointing control of spacecrafts. Even though the spinning rotor of the reaction wheel is precisely balanced to minimize emitted vibration due to static and dynamic imbalances, precision instrument payloads placed in the neighborhood can always be severely impacted by residual vibration forces emitted by reaction wheel assemblies. The reduction of the vibration level at sensitive payloads can be achieved by placing the RWA on appropriate mountings. A low frequency flexible space platform consisting of folded continuous beams has been designed to serve as a mount for isolating a disturbance source in precision payloads equipped spacecrafts. Analytical and experimental investigations have been carried out to test the usefulness of the low frequency flexible platform as a vibration isolator for RWAs. Measurements and tests have been conducted at varying wheel speeds, to quantify and characterize the amount of isolation obtained from the reaction wheel generated vibration. These tests are further extended to other variants of similar design in order to bring out the best isolation for given disturbance loads. Both time and frequency domain analysis of test data show that the flexible beam platform as a mount for reaction wheels is quite effective and can be used in spacecrafts for passive vibration control.
Overview of NASA's microgravity combustion science and fire safety program
NASA Technical Reports Server (NTRS)
Ross, Howard D.
1993-01-01
The study of fundamental combustion processes in a microgravity environment is a relatively new scientific endeavor. A few simple, precursor experiments were conducted in the early 1970's. Today the advent of the U.S. space shuttle and the anticipation of the Space Station Freedom provide for scientists and engineers a special opportunity -- in the form of long duration microgravity laboratories -- and need -- in the form of spacecraft fire safety and a variety of terrestrial applications -- to pursue fresh insight into the basic physics of combustion. Through microgravity, a new range of experiments can be performed since: (1) Buoyancy-induced flows are nearly eliminated; (2) Normally obscured forces and flows may be isolated; (3) Gravitational settling or sedimentation is nearly eliminated; and (4) Larger time or length scales in experiments become permissible.
Evaluation of passive and active vibration control mechanisms in a microgravity environment
NASA Technical Reports Server (NTRS)
Ellison, J.; Ahmadi, G.; Grodsinsky, C.
1993-01-01
The behavior of equipment and their light secondary attachments in large space structures under orbital excitation is studied. The equipment is modeled as a shear beam and its secondary attachment is treated as a single-degree-of-freedom lumped mass system. Peak responses of the equipment and its secondary system for a variety of vibration control mechanisms are evaluated. A novel active friction control mechanism, by varying the normal force, is suggested. The device uses a magnetic field control to minimize the stick condition, thereby reducing the overall structural response. The results show that the use of the passive vibration control devices could reduce the peak equipment responses to a certain extent. However, major reduction of vibration levels could be achieved only by the use of active devices. Using active control of the interface normal force, the peak responses of the equipment and its attachment are reduced by a factor of 10 over the fixed-base equipment response.
NASA Astrophysics Data System (ADS)
Sun, Xiuting; Jing, Xingjian
2016-12-01
This study investigates theoretically and experimentally a vibration isolator constructed by an n-layer Scissor-Like Structure (SLS), focusing on the analysis and design of nonlinear stiffness and damping characteristics for advantageous isolation performance in both orthogonal directions. With the mathematical modeling, the influence incurred by different structural parameters on system isolation performance is studied. It is shown that, (a) nonlinear high-static-low-dynamic stiffness and damping characteristics can be seen such that the system can achieve good isolation performance in both directions, (b) an anti-resonance frequency band exists due to the coupling effect between the linear and nonlinear stiffness in the two orthogonal directions within the structure, and (c) all these performances are designable with several structural parameters. The advantages of the proposed system are shown through comparisons with an existing quasi-zero-stiffness vibration isolator (QZS-VI) and a traditional mass-spring-damper vibration isolator (MSD-VI), and further validated by experimental results.
Robotic Sample Manipulator for Handling Astromaterials Inside the Geolab Microgravity Glovebox
NASA Technical Reports Server (NTRS)
Bell, Mary S.; Calaway, M. J.; Evans, C. A.; Li,Z.; Tong, S.; Zhong, Y.; Dahiwala, R.; Wang, L.; Porter, F.
2013-01-01
Future human and robotic sample return missions will require isolation containment systems with strict protocols and procedures for reducing inorganic and organic contamination. Robotic handling and manipulation of astromaterials may be required for preliminary examination inside such an isolation containment system. In addition, examination of astromaterials in microgravity will require constant contact to secure samples during manipulation. The National Space Grant Foundation exploration habitat (XHab) academic innovative challenge 2012 administered through the NASA advanced exploration systems (AES) deep space habitat (DSH) project awarded funding to the University of Bridgeport team to develop an engineering design for tools to facilitate holding and handling geological samples for analysis in a microgravity glovebox environment. The Bridgeport XHab team developed a robotic arm system with a three-finger gripper that could manipulate geologic samples within the existing GeoLab glovebox integrated into NASA's DSH called the GeoLab Robotic Sample Manipulator (see fig. 1 and 2). This hardware was deployed and tested during the 2012 DSH mission operations tests [1].
NASA Astrophysics Data System (ADS)
Chujo, Toshihiro; Mori, Osamu; Kawaguchi, Junichiro; Yano, Hajime
2018-03-01
Due to its important role in the sorting of particles on microgravity bodies by size, Brazil nut effect (BNE) is a major subject of study for understanding the evolution of planetesimals. Recent studies have revealed that the mechanism for the BNE on microgravity bodies is the percolation of particles or void-filling, rather than granular convection. This study also considers the mechanism for the BNE under `less-convective' conditions and introduces three categories of behaviour for particles that mainly depend on the dimensionless acceleration of vibration Γ (ratio of maximum acceleration to gravitational acceleration), using a simplified analytical model. The conditions for Γ proposed by the model for each category are verified by both numerical simulations and laboratory experiments. `Less-convective' conditions are realized by reducing the friction force between particles and the wall. We found three distinct behaviours of the particles when Γ > 1: the (i) `slow BNE', (ii) `fast BNE', and (iii) `fluid motion' (the reverse BNE may be induced), and the thresholds for Γ correspond well with those proposed by the simple model. We also applied this categorization to low-gravity environments and found that the categorization scales with gravity level. These results imply that laboratory experiments can provide knowledge of granular mobility on the surface of microgravity bodies.
Kim, Yongdae; Kim, Sangyoo; Park, Kyihwan
2009-04-01
A six-axis active vibration isolation system (AVIS) is developed using voice coil actuators. Point contact configuration is employed to have an easy assembly of eight voice coil actuators to an upper and a base plates. The velocity sensor, using an electromagnetic principle that is commonly used in the vibration control, is investigated since its phase lead characteristic causes an instability problem for a low frequency vibration. The performances of the AVIS are investigated in the frequency domain and finally validated by comparing with the passive isolation system using the atomic force microscope images.
Vibration Isolation, Suppression, Steering, and Pointing (VISSP)
NASA Technical Reports Server (NTRS)
Wada, Ben K.; Rahman, Zahidul; Kedikian, Roland
1996-01-01
The design of a six degree of freedom flight vibration isolation suppression and steering (VISS) subsystem for a mid-wave infrared camera on the top of a spacecraft is presented. The development of a long stroke piezoelectric, redundant, compact, low stiffness and power efficient actuator is summarized. A subsystem that could be built and validated for flight within 15 months was investigated. The goals of the VISS are 20 dB vibration isolation above 2 Hz, 15 dB vibration suppression of disturbances at about 60 Hz and 120 Hz, and +/- 0.3 deg steering at 2 Hz and 4 Hz.
Park, Kyihwan; Choi, Dongyoub; Ozer, Abdullah; Kim, Sangyoo; Lee, Yongkwan; Joo, Dongik
2008-06-01
We develop a four-mount active vibration isolation system (AVIS) using voice coil actuators. The flexible body modes in the upper plate of the AVIS can cause an instability problem due to control signal whose frequency is close to the resonant frequency of the flexible modes. The loop shaping technique is applied to reduce the amplitude of the control signal. We investigate the performances of the active vibration isolation system proposed in the word in the time domain and frequency domain by comparing to the passive isolation system.
Planning for Crew Exercise for Future Deep Space Mission Scenarios
NASA Technical Reports Server (NTRS)
Moore, Cherice; Ryder, Jeff
2015-01-01
Providing the necessary exercise capability to protect crew health for deep space missions will bring new sets of engineering and research challenges. Exercise has been found to be a necessary mitigation for maintaining crew health on-orbit and preparing the crew for return to earth's gravity. Health and exercise data from Apollo, Space Lab, Shuttle, and International Space Station missions have provided insight into crew deconditioning and the types of activities that can minimize the impacts of microgravity on the physiological systems. The hardware systems required to implement exercise can be challenging to incorporate into spaceflight vehicles. Exercise system design requires encompassing the hardware required to provide mission specific anthropometrical movement ranges, desired loads, and frequencies of desired movements as well as the supporting control and monitoring systems, crew and vehicle interfaces, and vibration isolation and stabilization subsystems. The number of crew and operational constraints also contribute to defining the what exercise systems will be needed. All of these features require flight vehicle mass and volume integrated with multiple vehicle systems. The International Space Station exercise hardware requires over 1,800 kg of equipment and over 24 m3 of volume for hardware and crew operational space. Improvements towards providing equivalent or better capabilities with a smaller vehicle impact will facilitate future deep space missions. Deep space missions will require more understanding of the physiological responses to microgravity, understanding appropriate mitigations, designing the exercise systems to provide needed mitigations, and integrating effectively into vehicle design with a focus to support planned mission scenarios. Recognizing and addressing the constraints and challenges can facilitate improved vehicle design and exercise system incorporation.
A Fiber Optic Probe for Monitoring Protein Aggregation, Nucleation, and Crystallization
NASA Technical Reports Server (NTRS)
Ansari, Rafat R.; Suh, Kwang I.; Arabshahi, Alireza; Wilson, William W.; Bray, Terry L.; DeLucas, Lawrence J.
1996-01-01
Protein crystals are experimentally grown in hanging drops in microgravity experiments on-board the Space Shuttle orbiter. The technique of dynamic light scattering (DLS) can be used to monitor crystal growth process in hanging droplets (approx. 30 (L)) in microgravity experiments, but elaborate instrumentation and optical alignment problems have made in-situ applications difficult. In this paper we demonstrate that such experiments are now feasible. We apply a newly developed fiber optic probe to various earth and space (micro- gravity) bound protein crystallization system configurations to test its capability. These include conventional batch (cuvette or capillary) systems, hanging drop method in a six-pack hanging drop vapor diffusion apparatus (HDVDA), a modified HDVDA for temperature- induced nucleation and aggregation studies, and a newly envisioned dynamically controlled vapor diffusion system (DCVDS) configuration. Our compact system exploits the principles of DLS and offers a fast (within a few seconds) means of quantitatively and non-invasively monitoring the various growth stages of protein crystallization. In addition to DLS capability, the probe can also be used for performing single-angle static light scattering measurements. It utilizes extremely low levels of laser power (approx. few (W)) without a need of having any optical alignment and vibration isolation. The compact probe is also equipped with a miniaturized microscope for visualization of macroscopic protein crystals. This new optical diagnostic system opens up enormous opportunity for exploring new ways to grow good quality crystals suitable for x-ray crystallographic analysis and may help develop a concrete scientific basis for understanding the process of crystallization.
NASA Astrophysics Data System (ADS)
Karsten, Roman; Flittner, Klaus; Haus, Henry; Schlaak, Helmut F.
2013-04-01
This paper describes the development of an active isolation mat for cancelation of vibrations on sensitive devices with a mass of up to 500 gram. Vertical disturbing vibrations are attenuated actively while horizontal vibrations are damped passively. The dimensions of the investigated mat are 140 × 140 × 20 mm. The mat contains 5 dielectric elastomer stack actuators (DESA). The design and the optimization of active isolation mat are realized by ANSYS FEM software. The best performance shows a DESA with air cushion mounted on its circumference. Within the mounting encased air increases static and reduces dynamic stiffness. Experimental results show that vibrations with amplitudes up to 200 μm can be actively eliminated.
A method of transmissibility design for dual-chamber pneumatic vibration isolator
NASA Astrophysics Data System (ADS)
Lee, Jeung-Hoon; Kim, Kwang-Joon
2009-06-01
Dual-chamber pneumatic vibration isolators have a wide range of applications for vibration isolation of vibration-sensitive equipment. Recent advances in precision machine tools and instruments such as medical devices and those related to nano-technology require better isolation performance, which can be efficiently achieved by precise modeling- and design- of the isolation system. This paper discusses an efficient transmissibility design method of a pneumatic vibration isolator wherein a complex stiffness model of a dual-chamber pneumatic spring developed in our previous study is employed. Three design parameters, the volume ratio between the two pneumatic chambers, the geometry of the capillary tube connecting the two pneumatic chambers, and, finally, the stiffness of the diaphragm employed for prevention of air leakage, were found to be important factors in transmissibility design. Based on a design technique that maximizes damping of the dual-chamber pneumatic spring, trade-offs among the resonance frequency of transmissibility, peak transmissibility, and transmissibility in high frequency range were found, which were not ever stated in previous researches. Furthermore, this paper discusses the negative role of the diaphragm in transmissibility design. The design method proposed in this paper is illustrated through experimental measurements.
G-300: The first French Getaway Special microgravity measurements of fluid thermal conductivity
NASA Technical Reports Server (NTRS)
Perron, J. C.; Chretien, P.; Garnier, C.; Lecaude, N.
1987-01-01
Thermal conductivity measurements on liquids are difficult to perform on Earth because of thermal motions due to convection. In microgravity, the convection due to buoyancy is evanescent, and a strong reduction of Rayleigh and Nusselt numbers can be expected. Three low viscosity liquids are selected to carry out the measurements; distilled water (standard) and two silicone oils. A modified hot plate method with a simplified guard ring is used; the reduction of convective motions permitted the use in the experimental cells of larger interplate distances and/or temperature differences than in Earth measurements, improving the accuracy. Comparisons between Earth and orbit results may help to understand the convection occurrence in the cells. Thermal, vibrational, and EMI tests have proved that the design satisfies the NASA requirements.
Note: A component-level frequency tunable isolator for vibration-sensitive chips using SMA beams.
Zhang, Xiaoyong; Ding, Xin; Wu, Di; Qi, Junlei; Wang, Ruixin; Lu, Siwei; Yan, Xiaojun
2016-06-01
This note presents a component-level frequency tunable isolator for vibration-sensitive chips. The isolator employed 8 U-shaped shape memory alloy (SMA) beams to support an isolation island (used for mounting chips). Due to the temperature-induced Young's modulus variation of SMA, the system stiffness of the isolator can be controlled through heating the SMA beams. In such a way, the natural frequency of the isolator can be tuned. A prototype was fabricated to evaluate the concept. The test results show that the natural frequency of the isolator can be tuned in the range of 64 Hz-97 Hz by applying different heating strategies. Moreover, resonant vibration can be suppressed significantly (the transmissibility decreases about 65% near the resonant frequency) using a real-time tuning method.
NASA Astrophysics Data System (ADS)
Beijen, Michiel A.; Voorhoeve, Robbert; Heertjes, Marcel F.; Oomen, Tom
2018-07-01
Vibration isolation is essential for industrial high-precision systems to suppress external disturbances. The aim of this paper is to develop a general identification approach to estimate the frequency response function (FRF) of the transmissibility matrix, which is a key performance indicator for vibration isolation systems. The major challenge lies in obtaining a good signal-to-noise ratio in view of a large system weight. A non-parametric system identification method is proposed that combines floor and shaker excitations. Furthermore, a method is presented to analyze the input power spectrum of the floor excitations, both in terms of magnitude and direction. In turn, the input design of the shaker excitation signals is investigated to obtain sufficient excitation power in all directions with minimum experiment cost. The proposed methods are shown to provide an accurate FRF of the transmissibility matrix in three relevant directions on an industrial active vibration isolation system over a large frequency range. This demonstrates that, despite their heavy weight, industrial vibration isolation systems can be accurately identified using this approach.
NASA Astrophysics Data System (ADS)
Chen, Yanhao; Lu, Qi; Jing, Bo; Zhang, Zhiyi
2016-09-01
This paper addresses dynamic modelling and experiments on a passive vibration isolator for application in the space environment. The isolator is composed of a pretensioned plane cable net structure and a fluid damper in parallel. Firstly, the frequency response function (FRF) of a single cable is analysed according to the string theory, and the FRF synthesis method is adopted to establish a dynamic model of the plane cable net structure. Secondly, the equivalent damping coefficient of the fluid damper is analysed. Thirdly, experiments are carried out to compare the plane cable net structure, the fluid damper and the vibration isolator formed by the net and the damper, respectively. It is shown that the plane cable net structure can achieve substantial vibration attenuation but has a great amplification at its resonance frequency due to the light damping of cables. The damping effect of fluid damper is acceptable without taking the poor carrying capacity into consideration. Compared to the plane cable net structure and the fluid damper, the isolator has an acceptable resonance amplification as well as vibration attenuation.
NASA Astrophysics Data System (ADS)
Hu, Zhan; Zheng, Gangtie
2016-08-01
A combined analysis method is developed in the present paper for studying the dynamic properties of a type of geometrically nonlinear vibration isolator, which is composed of push-pull configuration rings. This method combines the geometrically nonlinear theory of curved beams and the Harmonic Balance Method to overcome the difficulty in calculating the vibration and vibration transmissibility under large deformations of the ring structure. Using the proposed method, nonlinear dynamic behaviors of this isolator, such as the lock situation due to the coulomb damping and the usual jump resulting from the nonlinear stiffness, can be investigated. Numerical solutions based on the primary harmonic balance are first verified by direct integration results. Then, the whole procedure of this combined analysis method is demonstrated and validated by slowly sinusoidal sweeping experiments with different amplitudes of the base excitation. Both numerical and experimental results indicate that this type of isolator behaves as a hardening spring with increasing amplitude of the base excitation, which makes it suitable for isolating both steady-state vibrations and transient shocks.
Multi-resonant electromagnetic shunt in base isolation for vibration damping and energy harvesting
NASA Astrophysics Data System (ADS)
Pei, Yalu; Liu, Yilun; Zuo, Lei
2018-06-01
This paper investigates multi-resonant electromagnetic shunts applied to base isolation for dual-function vibration damping and energy harvesting. Two multi-mode shunt circuit configurations, namely parallel and series, are proposed and optimized based on the H2 criteria. The root-mean-square (RMS) value of the relative displacement between the base and the primary structure is minimized. Practically, this will improve the safety of base-isolated buildings subjected the broad bandwidth ground acceleration. Case studies of a base-isolated building are conducted in both the frequency and time domains to investigate the effectiveness of multi-resonant electromagnetic shunts under recorded earthquake signals. It shows that both multi-mode shunt circuits outperform traditional single mode shunt circuits by suppressing the first and the second vibration modes simultaneously. Moreover, for the same stiffness ratio, the parallel shunt circuit is more effective at harvesting energy and suppressing vibration, and can more robustly handle parameter mistuning than the series shunt circuit. Furthermore, this paper discusses experimental validation of the effectiveness of multi-resonant electromagnetic shunts for vibration damping and energy harvesting on a scaled-down base isolation system.
Inner structural vibration isolation method for a single control moment gyroscope
NASA Astrophysics Data System (ADS)
Zhang, Jingrui; Guo, Zixi; Zhang, Yao; Tang, Liang; Guan, Xin
2016-01-01
Assembling and manufacturing errors of control moment gyros (CMG) often generate high frequency vibrations which are detrimental to spacecrafts with high precision pointing requirement. In this paper, some design methods of vibration isolation between CMG and spacecraft is dealt with. As a first step, the dynamic model of the CMG with and without supporting isolation structures is studied and analyzed. Subsequently, the frequency domain analysis of CMG with isolation system is performed and the effectiveness of the designed system is ascertained. Based on the above studies, an adaptive design suitable with appropriate design parameters are carried out. A numerical analysis is also performed to understand the effectiveness of the system and the comparison made. The simulation results clearly indicate that when the ideal isolation structure was implemented in the spacecraft, the vibrations generated by the rotor were found to be greatly reduced, while the capacity of the output torque was not lost, which means that the isolation system will not affect the performance of attitude control.
Molecular vibrations in metal-single-molecule-metal junctions
NASA Astrophysics Data System (ADS)
Yokota, Kazumichi; Taniguchi, Masateru; Kawai, Tomoji
2010-03-01
Molecular vibrations in a metal-single-molecule-metal junction were studied based on density functional theory using a single benzenedithiolate molecule connected between gold clusters. We found that the difference in vibrational energy between an isolated benzenedithiol and the single-molecule junction is less than 3% in the energy range above 540 cm -1, where sulfur atoms contribute little to molecular vibrations. The finding implies that we can predict the peak energy in the inelastic electron tunneling spectrum of the single-molecule junction in the high energy range by vibrational analyses of isolated molecules.
NASA Astrophysics Data System (ADS)
Xu, Zhenlong; Tong, Jie; Wu, Fugen
2018-03-01
Magnetorheological elastomers (MREs) are used as cladding in three-dimensional locally resonant acoustic metamaterial (LRAM) cores. The metamaterial units are combined into a vibration isolator. Two types of LRAMs, namely, cubic and spherical kernels, are constructed. The finite element method is used to analyze the elastic band structures, transmittances, and vibration modes of the incident elastic waves. Results show that the central position and width of the LRAM elastic bandgap can be controlled by the application of an external magnetic field; furthermore, they can be adjusted by changing the MRE cladding thickness. These methods contribute to the design of metamaterial MRE vibration isolators.
Fitzgerald, Wendy; Chen, Silvia; Walz, Carl; Zimmerberg, Joshua; Margolis, Leonid
2013-01-01
The immune responses of human lymphoid tissue explants or cells isolated from this tissue were studied quantitatively under normal gravity and microgravity. Microgravity was either modeled by solid body suspension in a rotating, oxygenated culture vessel or was actually achieved on the International Space Station (ISS). Our experiments demonstrate that tissues or cells challenged by recall antigen or by polyclonal activator in modeled microgravity lose all their ability to produce antibodies and cytokines and to increase their metabolic activity. In contrast, if the cells were challenged before being exposed to modeled microgravity suspension culture, they maintained their responses. Similarly, in microgravity in the ISS, lymphoid cells did not respond to antigenic or polyclonal challenge, whereas cells challenged prior to the space flight maintained their antibody and cytokine responses in space. Thus, immune activation of cells of lymphoid tissue is severely blunted both in modeled and true microgravity. This suggests that suspension culture via solid body rotation is sufficient to induce the changes in cellular physiology seen in true microgravity. This phenomenon may reflect immune dysfunction observed in astronauts during space flights. If so, the ex vivo system described above can be used to understand cellular and molecular mechanisms of this dysfunction. PMID:19609626
Evaluation of actuators for the SDOF and MDOF active microgravity isolation systems
NASA Technical Reports Server (NTRS)
1993-01-01
The University of Virginia examined the design of actuators for both single-degree-of-freedom (SDOF) and multiple-degree-of-freedom (MDOF) active microgravity isolation systems. For SDOF systems, two actuators were considered: a special large gap magnetic actuator and a large stroke Lorentz actuator. The magnetic actuator was viewed to be of greater difficulty than the Lorentz actuator with little compelling technical advantage and was dropped from consideration. A Lorentz actuator was designed and built for the SDOF test rig using magnetic circuit and finite element analysis. The design and some experimental results are discussed. The University also examined the design of actuators for MDOF isolation systems. This includes design of an integrated 1 cm gap 6-DOF noncontacting magnetic suspension system and of a 'coarse' follower which permits the practical extension of magnetic suspension to large strokes. The proposed 'coarse' actuator was a closed kinematic chain manipulator known as a Stewart Platform. The integration of the two isolation systems together, the isolation tasks assigned to each, and possible control architectures were also explored. The results of this research are examined.
NASA Technical Reports Server (NTRS)
1997-01-01
On this eighth day of the STS-85 mission, the flight crew, Cmdr. Curtis L. Brown, Jr., Pilot Kent V. Rominger, Payload Cmdr. N. Jan Davis (Ph.D.), Mission Specialists Robert L. Curbeam, Jr. and Stephen K. Robinson (Ph.D.), and Payload Specialist Bjarni V. Tryggvason entered the final portion of its flight. The new Mir 24 crew of Commander Anatoly Solovyev and Flight Engineer Pavel Vinogradov, who arrived on the station the same day Discovery was launched, bid farewell to Mir 23 Commander Vasily Tsibliev and Flight Engineer Alexander Lazutkin who are returning home after 185 days in space. The Soyuz vehicle carrying the Mir 23 crew home undocked from the station. Robinson again used the Southwest Ultraviolet Imaging System (SWUIS), a 7-inch imaging telescope that is pointed out of the orbiter's middeck hatch window, to observe the Hale-Bopp comet. Curbeam continued his work with the Bioreactor Demonstration System designed to perform cell biology experiments under controlled conditions. Tryggvason spent part of his time troubleshooting a computer hard drive system that supports the Microgravity Vibration Isolation Mount experiment.
NASA Astrophysics Data System (ADS)
Siami, A.; Karimi, H. R.; Cigada, A.; Zappa, E.; Sabbioni, E.
2018-01-01
Preserving cultural heritage against earthquake and ambient vibrations can be an attractive topic in the field of vibration control. This paper proposes a passive vibration isolator methodology based on inerters for improving the performance of the isolation system of the famous statue of Michelangelo Buonarroti Pietà Rondanini. More specifically, a five-degree-of-freedom (5DOF) model of the statue and the anti-seismic and anti-vibration base is presented and experimentally validated. The parameters of this model are tuned according to the experimental tests performed on the assembly of the isolator and the structure. Then, the developed model is used to investigate the impact of actuation devices such as tuned mass-damper (TMD) and tuned mass-damper-inerter (TMDI) in vibration reduction of the structure. The effect of implementation of TMDI on the 5DOF model is shown based on physical limitations of the system parameters. Simulation results are provided to illustrate effectiveness of the passive element of TMDI in reduction of the vibration transmitted to the statue in vertical direction. Moreover, the optimal design parameters of the passive system such as frequency and damping coefficient will be calculated using two different performance indexes. The obtained optimal parameters have been evaluated by using two different optimization algorithms: the sequential quadratic programming method and the Firefly algorithm. The results prove significant reduction in the transmitted vibration to the structure in the presence of the proposed tuned TMDI, without imposing a large amount of mass or modification to the structure of the isolator.
Recent advances in nonlinear passive vibration isolators
NASA Astrophysics Data System (ADS)
Ibrahim, R. A.
2008-07-01
The theory of nonlinear vibration isolation has witnessed significant developments due to pressing demands for the protection of structural installations, nuclear reactors, mechanical components, and sensitive instruments from earthquake ground motion, shocks, and impact loads. In view of these demands, engineers and physicists have developed different types of nonlinear vibration isolators. This article presents a comprehensive assessment of recent developments of nonlinear isolators in the absence of active control means. It does not deal with other means of linear or nonlinear vibration absorbers. It begins with the basic concept and features of nonlinear isolators and inherent nonlinear phenomena. Specific types of nonlinear isolators are then discussed, including ultra-low-frequency isolators. For vertical vibration isolation, the treatment of the Euler spring isolator is based on the post-buckling dynamic characteristics of the column elastica and axial stiffness. Exact and approximate analyses of axial stiffness of the post-buckled Euler beam are outlined. Different techniques of reducing the resonant frequency of the isolator are described. Another group is based on the Gospodnetic-Frisch-Fay beam, which is free to slide on two supports. The restoring force of this beam resembles to a great extent the restoring roll moment of biased ships. The base isolation of buildings, bridges, and liquid storage tanks subjected to earthquake ground motion is then described. Base isolation utilizes friction elements, laminated-rubber bearings, and the friction pendulum. Nonlinear viscoelastic and composite material springs, and smart material elements are described in terms of material mechanical characteristics and the dependence of their transmissibility on temperature and excitation amplitude. The article is closed by conclusions, which highlight resolved and unresolved problems and recommendations for future research directions.
Vibro-acoustic model of a piezoelectric-based stethoscope for chest sound measurements
NASA Astrophysics Data System (ADS)
Nelson, G.; Rajamani, R.; Erdman, A.
2015-09-01
This article focuses on the influence of noise and vibration on chest sound measurements with a piezoelectric stethoscope. Two types of vibrations, namely inputs through the patient chest and disturbances from the physician, influence the acoustic measurement. The goal of this work is to develop a model to understand the propagation of these vibrational noises through the stethoscope and to the piezoelectric sensing element. Using the model, methods to reduce the influence of disturbances acting on the stethoscope from the physician handling the device are explored. A multi-DOF rigid body vibration model consisting of discrete connected components is developed for the piezoelectric stethoscope. Using a two-port lumped parameter model, the mechanical vibrations are related to the resulting electrical signal. The parameterized state space model is experimentally validated and its parameters are identified by using a thorax simulator and vibration shaker. Based on predictions from the model, the introduction of vibration isolation to reduce the influence of physician noise on the transducer is then pursued. It is shown that direct vibration isolation between the transducer and the rest of the stethoscope structure leads to a reduction in coupling with the patient’s chest. However, if isolation is instead introduced between the transducer housing and the rest of the stethoscope, then vibration isolation from the physician is achieved with far less reduction in patient coupling. Experimental results are presented to study the influence of the proposed design changes and confirm the predicted model behavior.
Scientist prepare Lysozyme Protein Crystal
NASA Technical Reports Server (NTRS)
1996-01-01
Dan Carter and Charles Sisk center a Lysozyme Protein crystal grown aboard the USML-2 shuttle mission. Protein isolated from hen egg-white and functions as a bacteriostatic enzyme by degrading bacterial cell walls. First enzyme ever characterized by protein crystallography. It is used as an excellent model system for better understanding parameters involved in microgravity crystal growth experiments. The goal is to compare kinetic data from microgravity experiments with data from laboratory experiments to study the equilibrium.
Candle Flames in Microgravity Experiment
1992-07-09
Closeup view inside glovebox showing a candle flame. The Candle Flames in Microgravity experiment is carried onboard Columbia to examine whether candle flames can be sustained in space; to study the interaction and physical properties of diffusion flames. In space, where buoyancy-driven convection is reduced, the role diffusion plays in sustaining candle flames can be isolated. Results have implications for other diffusion flame studies. Diffusion flames are the most common type of flame on Earth.
NASA Astrophysics Data System (ADS)
Fang, Yuanyuan; Zuo, Yanyan; Xia, Zhaowang
2018-03-01
The noise level is getting higher with the development of high-power marine power plant. Mechanical noise is one of the most obvious noise sources which not only affect equipment reliability, riding comfort and working environment, but also enlarge underwater noise. The periodic truss type device which is commonly applied in fields of aerospace and architectural is introduced to floating raft construction in ship. Four different raft frame structure are designed in the paper. The vibration transmissibility is taken as an evaluation index to measure vibration isolation effect. A design scheme with the best vibration isolation effect is found by numerical method. Plate type and the optimized periodic truss type raft frame structure are processed to experimental verify vibration isolation effect of the structure of the periodic raft. The experimental results demonstrate that the same quality of the periodic truss floating raft has better isolation effect than that of the plate type floating raft.
Microgravity Research Results and Experiences from the NASA Mir Space Station Program
NASA Technical Reports Server (NTRS)
Schagheck, R. A.; Trach, B.
2000-01-01
The Microgravity Research Program Office (MRPO) participated aggressively in Phase I of the International Space Station Program using the Russian Mir Space Station. The Mir Station offered an otherwise unavailable opportunity to explore the advantages and challenges to long duration microgravity space research. Payloads with both NASA and commercial backing were included as well as cooperative research with the Canadian Space Agency (CSA). From this experience, much was learned about dealing with long duration on orbit science utilization and developing new working relationships with our Russian partner to promote efficient planning, operations, and integration to solve complexities associated with a multiple partner program. Microgravity participation in the NASA Mir Program began with the first joint NASA Mir flight to the Mir Space Station. The earliest participation setup acceleration measurement capabilities that were used throughout the Program. Research, conducted by all Microgravity science disciplines, continued on each subsequent increment for the entire three-year duration of the Program. The Phase I Program included the Microgravity participation of over 30 Fluids, Combustion, Materials, and Biotechnology Sciences and numerous commercially sponsored research payloads. In addition to the research gained from Microgravity investigations, long duration operation of facility hardware was tested. Microgravity facilities operated on Mir included the Space Acceleration Measurement System (SAMS), the Microgravity Glovebox (MGBX), the Biotechnology System (BTS) and the Canadian Space Agency sponsored Microgravity Isolation Mount (MIM). The Russian OPTIZONE Furnace was also incorporated into our material science research. All of these efforts yielded significant and useful scientific research data. This paper focuses on the microgravity research conducted onboard the Mir space station. It includes the Program preparation and planning necessary to support this type of cross increment research experience; the payloads which were flown; and summaries of significant microgravity science findings. Most importantly this paper highlights the various disciplines of microgravity research conducted during the International Space Station, Phase 1 Program onboard the Mir Station. A capsulation of significant research and the applicability of our findings are provided. In addition, a brief discussion of how future microgravity science gathering capabilities, hardware development and payload operations techniques have enhanced our ability to conduct long duration microgravity research.
Fincke uses Cycle Ergometer with Vibration Isolation System (CEVIS)
2009-03-26
ISS018-E-043414 (26 March 2009) --- Astronaut Michael Fincke, Expedition 18 commander, exercises on the Cycle Ergometer with Vibration Isolation System (CEVIS) in the Destiny laboratory of the International Space Station.
On the emission of radiation by an isolated vibrating metallic mirror
NASA Astrophysics Data System (ADS)
Arkhipov, M. V.; Babushkin, I.; Pul'kin, N. S.; Arkhipov, R. M.; Rosanov, N. N.
2017-04-01
Quantum electrodynamics predicts the appearance of radiation in an empty cavity in which one of the mirrors is vibrating. It also predicts the appearance of radiation from an isolated vibrating mirror. Such effects can be described within the framework of classical electrodynamics. We present the qualitative explanation of the effect, along with the results of numerical simulation of the emission of radiation by an isolated vibrating metallic mirror, which can be induced by mirror illumination by an ultrashort pulse of light. The dynamics of conduction electrons in the metallic mirror is described by the classical Drude model. Simulation was performed for the cases of mirror illumination by either a bipolar or a unipolar pulse.
Vibration Isolation Design for the Micro-X Rocket Payload
NASA Technical Reports Server (NTRS)
Heine, S. N. T.; Figueroa-Feliciano, E.; Rutherford, J. M.; Wikus, P.; Oakley, P.; Porter, Frederick S.; McCammon, D.
2014-01-01
Micro-X is a NASA-funded, sounding rocket-borne X-ray imaging spectrometer that will allow high precision measurements of velocity structure, ionization state and elemental composition of extended astrophysical systems. One of the biggest challenges in payload design is to maintain the temperature of the detectors during launch. There are several vibration damping stages to prevent energy transmission from the rocket skin to the detector stage, which causes heating during launch. Each stage should be more rigid than the outer stages to achieve vibrational isolation. We describe a major design effort to tune the resonance frequencies of these vibration isolation stages to reduce heating problems prior to the projected launch in the summer of 2014.
Delta L: An Apparatus for Measuring Macromolecular Crystal Growth Rates in Microgravity
NASA Technical Reports Server (NTRS)
Judge, Russell A.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
In order to determine how macromolecule crystal quality improvement in microgravity is related to crystal growth characteristics, is was necessary to develop new hardware that could measure the crystal growth rates of a population of crystals growing under the same solution conditions. As crystal growth rate is defined as the change or delta in a defined dimension or length (L) of a crystal over time, the hardware was named Delta L. Delta L consists of fluids, optics, and data acquisition, sub-assemblies. Temperature control is provided for the crystal growth chamber. Delta L will be used in connection with the Glovebox Integrated Microgravity Isolation Technology (g-LIMIT) inside the Microgravity Science Glovebox (MSG), onboard the International Space Station (ISS). Delta L prototype hardware has been assembled. This paper will describe an overview of the design of Delta L and present preliminary crystal growth rate data.
Zhu, Yu; Li, Qiang; Xu, Dengfeng; Hu, Chuxiong; Zhang, Ming
2012-09-01
This paper presents a negative stiffness magnetic suspension vibration isolator (NSMSVI) using magnetic spring and rubber ligaments. The positive stiffness is obtained by repulsive magnetic spring while the negative stiffness is gained by rubber ligaments. In order to study the vibration isolation performance of the NSMSVI, an analytical expression of the vertical stretch force of the rubber ligament is constructed. Experiments are carried out, which demonstrates that the analytical expression is effective. Then an analytical expression of the vertical stiffness of the rubber ligament is deduced by the derivative of the stretch force of the rubber ligament with respect to the displacement of the inner magnetic ring. Furthermore, the parametric study of the magnetic spring and rubber ligament are carried out. As a case study, the size dimensions of the magnetic spring and rubber ligament are determined. Finally, an NSMSVI table was built to verify the vibration isolation performance of the NSMSVI. The transmissibility curves of the NSMSVI are subsequently calculated and tested by instruments. The experimental results reveal that there is a good consistency between the measured transmissibility and the calculated ones, which proves that the proposed NSMSVI is effective and can realize low-frequency vibration isolation.
Study of providing omnidirectional vibration isolation to entire space shuttle payload packages
NASA Technical Reports Server (NTRS)
Chang, C. S.; Robinson, G. D.; Weber, D. E.
1974-01-01
Techniques to provide omnidirectional vibration isolation for a space shuttle payload package were investigated via a reduced-scale model. Development, design, fabrication, assembly and test evaluation of a 0.125-scale isolation model are described. Final drawings for fabricated mechanical components are identified, and prints of all drawings are included.
2001-01-24
The Protein Crystallization for Microgravity (DCAM) was developed at NASA's Marshall Space Flight Center. A droplet of solution with protein molecules dissolved in it is isolated in the center of a small well. In orbit, an elastomer seal is lifted so the solution can evaporate and be absorbed by a wick material. This raises the concentration of the solution, thus prompting protein molecules in the solution to form crystals. The principal investigator is Dr. Dan Carter of New Century Pharmaceuticals in Huntsville, AL.
Selected OAST/OSSA space experiment activities in support of Space Station Freedom
NASA Astrophysics Data System (ADS)
Delombard, Richard
The Space Experiments Division at NASA Lewis Research Center is developing technology and science space experiments for the Office of Aeronautics and Space Technology (OAST) and the Office of Space Sciences and Applications (OSSA). Selected precursor experiments and technology development activities supporting the Space Station Freedom (SSF) are presented. The Tank Pressure Control Experiment (TPCE) is an OAST-funded cryogenic fluid dynamics experiment, the objective of which is to determine the effectiveness of jet mixing as a means of equilibrating fluid temperatures and controlling tank pressures, thereby permitting the design of lighter cryogenic tanks. The information from experiments such as this will be utilized in the design and operation of on board cryogenic storage for programs such as SSF. The Thermal Energy Storage Flight Project (TES) is an OAST-funded thermal management experiment involving phase change materials for thermal energy storage. The objective of this project is to develop and fly in-space experiments to characterize void shape and location in phase change materials used in a thermal energy storage configuration representative of an advanced solar dynamic system design. The information from experiments such as this will be utilized in the design of future solar dynamic power systems. The Solar Array Module Plasma Interaction Experiment (SAMPIE) is an OAST-funded experiment to determine the environmental effects of the low earth orbit (LEO) space plasma environment on state-of-the-art solar cell modules biased to high potentials relative to the plasma. Future spacecraft designs and structures will push the operating limits of solar cell arrays and other high voltage systems. SAMPIE will provide key information necessary for optimum module design and construction. The Vibration Isolation Technology (VIT) Advanced Technology Development effort is funded by OSSA to provide technology necessary to maintain a stable microgravity environment for sensitive payloads on board spacecraft. The proof of concept will be demonstrated by laboratory tests and in low-gravity aircraft flights. VIT is expected to be utilized by many SSF microgravity science payloads. The Space Acceleration Measurement System (SAMS) is an OSSA-funded instrument to measure the microgravity acceleration environment for OSSA payloads on the shuttle and SSF.
Selected OAST/OSSA space experiment activities in support of Space Station Freedom
NASA Technical Reports Server (NTRS)
Delombard, Richard
1992-01-01
The Space Experiments Division at NASA Lewis Research Center is developing technology and science space experiments for the Office of Aeronautics and Space Technology (OAST) and the Office of Space Sciences and Applications (OSSA). Selected precursor experiments and technology development activities supporting the Space Station Freedom (SSF) are presented. The Tank Pressure Control Experiment (TPCE) is an OAST-funded cryogenic fluid dynamics experiment, the objective of which is to determine the effectiveness of jet mixing as a means of equilibrating fluid temperatures and controlling tank pressures, thereby permitting the design of lighter cryogenic tanks. The information from experiments such as this will be utilized in the design and operation of on board cryogenic storage for programs such as SSF. The Thermal Energy Storage Flight Project (TES) is an OAST-funded thermal management experiment involving phase change materials for thermal energy storage. The objective of this project is to develop and fly in-space experiments to characterize void shape and location in phase change materials used in a thermal energy storage configuration representative of an advanced solar dynamic system design. The information from experiments such as this will be utilized in the design of future solar dynamic power systems. The Solar Array Module Plasma Interaction Experiment (SAMPIE) is an OAST-funded experiment to determine the environmental effects of the low earth orbit (LEO) space plasma environment on state-of-the-art solar cell modules biased to high potentials relative to the plasma. Future spacecraft designs and structures will push the operating limits of solar cell arrays and other high voltage systems. SAMPIE will provide key information necessary for optimum module design and construction. The Vibration Isolation Technology (VIT) Advanced Technology Development effort is funded by OSSA to provide technology necessary to maintain a stable microgravity environment for sensitive payloads on board spacecraft. The proof of concept will be demonstrated by laboratory tests and in low-gravity aircraft flights. VIT is expected to be utilized by many SSF microgravity science payloads. The Space Acceleration Measurement System (SAMS) is an OSSA-funded instrument to measure the microgravity acceleration environment for OSSA payloads on the shuttle and SSF.
Some space shuttle tile/strain-isolator-pad sinusoidal vibration tests
NASA Technical Reports Server (NTRS)
Miserentino, R.; Pinson, L. D.; Leadbetter, S. A.
1980-01-01
Vibration tests were performed on the tile/strain-isolator-pad system used as thermal protection for the space shuttle orbiter. Experimental data on normal and in-plane vibration response and damping properties are presented. Three test specimens exhibited shear type motion during failures that occurred in the tile near the tile/strain-isolator-pad bond-line. A dynamic instability is described which has large in-plane motion at a frequency one-half that of the nominal driving frequency. Analysis shows that this phenomenon is a parametric response.
ISS Expedition 18 Fincke on Cycle Egrometer with Vibration Isolation System (CEVIS)
2008-10-29
ISS018-E-005710 (29 Oct. 2008) --- Astronaut Michael Fincke, Expedition 18 commander, exercises on the Cycle Ergometer with Vibration Isolation System (CEVIS) in the Destiny laboratory of the International Space Station.
NASA Technical Reports Server (NTRS)
Young, Ken (Inventor); Hindle, Timothy (Inventor); Barber, Tim Daniel (Inventor)
2016-01-01
Mounting systems for structural members, fastening assemblies thereof, and vibration isolation systems including the same are provided. Mounting systems comprise a pair of mounting brackets, each clamped against a fastening assembly forming a mounting assembly. Fastening assemblies comprise a spherical rod end comprising a spherical member having a through opening and an integrally threaded shaft, first and second seating members on opposite sides of the spherical member and each having a through opening that is substantially coaxial with the spherical member through opening, and a partially threaded fastener that threadably engages each mounting bracket forming the mounting assembly. Structural members have axial end portions, each releasably coupled to a mounting bracket by the integrally threaded shaft. Axial end portions are threaded in opposite directions for permitting structural member rotation to adjust a length thereof to a substantially zero strain position. Structural members may be vibration isolator struts in vibration isolation systems.
Vibration-Induced Droplet Atomization
NASA Technical Reports Server (NTRS)
Smith, M. K.; James, A.; Vukasinovic, B.; Glezer, A.
1999-01-01
Thermal management is critical to a number of technologies used in a microgravity environment and in Earth-based systems. Examples include electronic cooling, power generation systems, metal forming and extrusion, and HVAC (heating, venting, and air conditioning) systems. One technique that can deliver the large heat fluxes required for many of these technologies is two-phase heat transfer. This type of heat transfer is seen in the boiling or evaporation of a liquid and in the condensation of a vapor. Such processes provide very large heat fluxes with small temperature differences. Our research program is directed toward the development of a new, two-phase heat transfer cell for use in a microgravity environment. In this paper, we consider the main technology used in this cell, a novel technique for the atomization of a liquid called vibration-induced droplet atomization. In this process, a small liquid droplet is placed on a thin metal diaphragm that is made to vibrate by an attached piezoelectric transducer. The vibration induces capillary waves on the free surface of the droplet that grow in amplitude and then begin to eject small secondary droplets from the wave crests. In some situations, this ejection process develops so rapidly that the entire droplet seems to burst into a small cloud of atomized droplets that move away from the diaphragm at speeds of up to 50 cm/s. By incorporating this process into a heat transfer cell, the active atomization and transport of the small liquid droplets could provide a large heat flux capability for the device. Experimental results are presented that document the behavior of the diaphragm and the droplet during the course of a typical bursting event. In addition, a simple mathematical model is presented that qualitatively reproduces all of the essential features we have seen in a burst event. From these two investigations, we have shown that delayed droplet bursting results when the system passes through a resonance condition. This occurs when the initial acceleration of the diaphragm is higher than the critical acceleration and the driving frequency is larger than the initial resonance frequency of the diaphragm-droplet system. We have incorporated this droplet atomization device into a design for a new heat transfer cell for use in a microgravity environment. The cell is essentially a cylindrical container with a hot surface on one end and a cold surface on the other. The vibrating diaphragm is mounted in the center of the cold surface. Heat transfer occurs through droplet evaporation and condensation on the hot and cold ends of the cell. A prototype of this heat transfer cell has been built and tested. It can operate continuously and provides a modest level of heat transfer, about 20 W/sq cm. Our work during the next few years will be to optimize the design of this cell to see if we can produce a device that has significantly better performance than conventional heat exchangers and heat pipes.
Shock and vibration technology with applications to electrical systems
NASA Technical Reports Server (NTRS)
Eshleman, R. L.
1972-01-01
A survey is presented of shock and vibration technology for electrical systems developed by the aerospace programs. The shock environment is surveyed along with new techniques for modeling, computer simulation, damping, and response analysis. Design techniques based on the use of analog computers, shock spectra, optimization, and nonlinear isolation are discussed. Shock mounting of rotors for performance and survival, and vibration isolation techniques are reviewed.
NASA Astrophysics Data System (ADS)
Manzano, Ana I.; Herranz, Raúl; van Loon, Jack J. W. A.; Medina, F. Javier
2012-12-01
Seeds of Arabidopsis thaliana were exposed to hypergravity environments (2 g and 6 g) and germinated during centrifugation. Seedlings grew for 2 and 4 days before fixation. In all cases, comparisons were performed against an internal (subjected to rotational vibrations and other factors of the machine) and an external control at 1 g. On seedlings grown in hypergravity the total length and the root length were measured. The cortical root meristematic cells were analyzed to investigate the alterations in cell proliferation, which were quantified by counting the number of cells per millimeter in the specific cell files, and cell growth, which were appraised through the rate of ribosome biogenesis, assessed by morphological and morphometrical parameters of the nucleolus. The expression of cyclin B1, a key regulator of entry in mitosis, was assessed by the use of a CYCB1:GUS genetic construction. The results showed significant differences in some of these parameters when comparing the 1 g internal rotational control with the 1 g external control, indicating that the machine by itself was a source of alterations. When the effect of hypergravity was isolated from other environmental factors, by comparing the experimental conditions with the rotational control, cell proliferation appeared depleted, cell growth was increased and there was an enhanced expression of cyclin B1. The functional meaning of these effects is that cell proliferation and cell growth, which are strictly associated functions under normal 1 g ground conditions, are uncoupled under hypergravity. This uncoupling was also described by us in previous experiments as an effect of microgravity, but in an opposite way. Furthermore, root meristems appear thicker in hypergravity-treated than in control samples, which can be related to changes in the cell wall induced by altered gravity.
Design and control of six degree-of-freedom active vibration isolation table.
Hong, Jinpyo; Park, Kyihwan
2010-03-01
A six-axis active vibration isolation system (AVIS) is designed by using the direct driven guide and ball contact mechanisms in order to have no cross-coupling between actuators. The point contact configuration gives an advantage of having an easy assembly of eight voice coil actuators to an upper and a base plate. A voice coil actuator is used since it can provide a large displacement and sufficient bandwidth required for vibration control. The AVIS is controlled considering the effect of flexible vibration mode in the upper plate and velocity sensor dynamics. A loop shaping technique and phase margin condition are applied to design a vibration controller. The performances of the AVIS are investigated in the frequency domain and finally validated by comparing with the passive isolation system. The scanning profiles of the specimen are compared together by using the atomic force microscope. The robustness of the AVIS is verified by showing the impulse response.
Design and control of six degree-of-freedom active vibration isolation table
NASA Astrophysics Data System (ADS)
Hong, Jinpyo; Park, Kyihwan
2010-03-01
A six-axis active vibration isolation system (AVIS) is designed by using the direct driven guide and ball contact mechanisms in order to have no cross-coupling between actuators. The point contact configuration gives an advantage of having an easy assembly of eight voice coil actuators to an upper and a base plate. A voice coil actuator is used since it can provide a large displacement and sufficient bandwidth required for vibration control. The AVIS is controlled considering the effect of flexible vibration mode in the upper plate and velocity sensor dynamics. A loop shaping technique and phase margin condition are applied to design a vibration controller. The performances of the AVIS are investigated in the frequency domain and finally validated by comparing with the passive isolation system. The scanning profiles of the specimen are compared together by using the atomic force microscope. The robustness of the AVIS is verified by showing the impulse response.
Vibration Isolation System for Cryocoolers of Soft X-Ray Spectrometer (SXS) Onboard ASTRO-H (Hitomi)
NASA Technical Reports Server (NTRS)
Takei, Yoh; Yasuda, Susumu; Ishimura, Kosei; Iwata, Naoko; Okamoto, Atsushi; Sato, Yoichi; Ogawa, Mina; Sawada, Makoto; Kawano, Taro; Obara, Shingo;
2016-01-01
Soft X-ray Spectrometer (SXS) onboard ASTRO-H (named Hitomi after launch) is a micro-calorimeter-type spectrometer, installed in a dewar to be cooled at 50 mK. The energy resolution of the SXS engineering model suffered from micro-vibration from cryocoolers mounted on the dewar. This is mitigated for the flight model by introducing vibration isolation systems between the cryocoolers and the dewar. The detector performance of the flight model was verified before launch of the spacecraft in both ambient condition and thermal-vac condition, showing no detectable degradation in energy resolution. The in-orbit performance was also consistent with that on ground, indicating that the cryocoolers were not damaged by launch environment. The design and performance of the vibration isolation system along with the mechanism of how the micro-vibration could degrade the cryogenic detector is shown.
Genetic and molecular dosimetry of HZE radiation (US-1 RADIAT)
NASA Technical Reports Server (NTRS)
Nelson, Gregory A.; Schubert, W. W.; Kazarians, G. A.; Richards, G. F.; Benton, E. V.; Benton, E. R.; Henke, R. P.
1995-01-01
In order to estimate radiation exposure in space, experiments were conducted during the 1st International Microgravity Laboratory (IML-1) mission in order to isolate genetic changes in animal cells caused by cosmic rays. The space measurements were evaluated against results from synthetic cosmic rays produced by particle accelerators on the ground. The biological material used was the tiny soil nematode, Caenorhabditis elegans. The measurements were made by thermoluminescent detectors and plastic nuclear track detectors. The development and the chromosome mechanics in microgravity were studied, and the mutagenesis induced by radiation exposure was analyzed. The results showed that there are no obvious differences in the development, behavior and chromosome mechanics, as a function of gravity unloading (reproduction, self-fertilization and mating of males with hermaphrodites, gross anatomy, symmetry and gametogenesis, pairing, disjoining and recombination of chromosomes). A variety of mutants were isolated, and it was noted that mutants isolated from regions of identified high particles were more severely affected than those isolated by random screening. Linear energy transfer particles seem to favor large scale genetic lesions.
Static and dynamic stability of pneumatic vibration isolators and systems of isolators
NASA Astrophysics Data System (ADS)
Ryaboy, Vyacheslav M.
2014-01-01
Pneumatic vibration isolation is the most widespread effective method for creating vibration-free environments that are vital for precise experiments and manufacturing operations in optoelectronics, life sciences, microelectronics, nanotechnology and other areas. The modeling and design principles of a dual-chamber pneumatic vibration isolator, basically established a few decades ago, continue to attract attention of researchers. On the other hand, behavior of systems of such isolators was never explained in the literature in sufficient detail. This paper covers a range of questions essential for understanding the mechanics of pneumatic isolation systems from both design and application perspectives. The theory and a model of a single standalone isolator are presented in concise form necessary for subsequent analysis. Then the dynamics of a system of isolators supporting a payload is considered with main attention directed to two aspects of their behavior: first, the static stability of payloads with high positions of the center of gravity; second, dynamic stability of the feedback system formed by mechanical leveling valves. The direct method of calculating the maximum stable position of the center of gravity is presented and illustrated by three-dimensional stability domains; analytic formulas are given that delineate these domains. A numerical method for feedback stability analysis of self-leveling valve systems is given, and the results are compared with the analytical estimates for a single isolator. The relation between the static and dynamic phenomena is discussed.
Lessons learned about spaceflight and cell biology experiments
NASA Technical Reports Server (NTRS)
Hughes-Fulford, Millie
2004-01-01
Conducting cell biology experiments in microgravity can be among the most technically challenging events in a biologist's life. Conflicting events of spaceflight include waiting to get manifested, delays in manifest schedules, training astronauts to not shake your cultures and to add reagents slowly, as shaking or quick injection can activate signaling cascades and give you erroneous results. It is important to select good hardware that is reliable. Possible conflicting environments in flight include g-force and vibration of launch, exposure of cells to microgravity for extended periods until hardware is turned on, changes in cabin gases and cosmic radiation. One should have an on-board 1-g control centrifuge in order to eliminate environmental differences. Other obstacles include getting your funding in a timely manner (it is not uncommon for two to three years to pass between notification of grant approval for funding and actually getting funded). That said, it is important to note that microgravity research is worthwhile since all terrestrial life evolved in a gravity field and secrets of biological function may only be answered by removing the constant of gravity. Finally, spaceflight experiments are rewarding and worth your effort and patience.
Advanced Smart Structures Flight Experiments for Precision Spacecraft
NASA Astrophysics Data System (ADS)
Denoyer, Keith K.; Erwin, R. Scott; Ninneman, R. Rory
2000-07-01
This paper presents an overview as well as data from four smart structures flight experiments directed by the U.S. Air Force Research Laboratory's Space Vehicles Directorate in Albuquerque, New Mexico. The Middeck Active Control Experiment $¯Flight II (MACE II) is a space shuttle flight experiment designed to investigate modeling and control issues for achieving high precision pointing and vibration control of future spacecraft. The Advanced Controls Technology Experiment (ACTEX-I) is an experiment that has demonstrated active vibration suppression using smart composite structures with embedded piezoelectric sensors and actuators. The Satellite Ultraquiet Isolation Technology Experiment (SUITE) is an isolation platform that uses active piezoelectric actuators as well as damped mechanical flexures to achieve hybrid passive/active isolation. The Vibration Isolation, Suppression, and Steering Experiment (VISS) is another isolation platform that uses viscous dampers in conjunction with electromagnetic voice coil actuators to achieve isolation as well as a steering capability for an infra-red telescope.
Wakata on Cycle Ergometer with Vibration Isolation System (CEVIS)
2009-03-30
ISS018-E-043723 (30 March 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 18/19 flight engineer, exercises on the Cycle Ergometer with Vibration Isolation System (CEVIS) in the Destiny laboratory of the International Space Station.
Development of the Vibration Isolation System for the Advanced Resistive Exercise Device
NASA Technical Reports Server (NTRS)
Niebuhr, Jason H.; Hagen, Richard A.
2011-01-01
This paper describes the development of the Vibration Isolation System for the Advanced Resistive Exercise Device from conceptual design to lessons learned. Maintaining a micro-g environment on the International Space Station requires that experiment racks and major vibration sources be isolated. The challenge in characterizing exercise loads and testing the system in the presence of gravity led to a decision to qualify the system by analysis. Available data suggests that the system is successful in attenuating loads, yet there has been a major component failure and several procedural issues during its 3 years of operational use.
Accelerated lifetime test of vibration isolator made of Metal Rubber material
NASA Astrophysics Data System (ADS)
Ao, Hongrui; Ma, Yong; Wang, Xianbiao; Chen, Jianye; Jiang, Hongyuan
2017-01-01
The Metal Rubber material (MR) is a kind of material with nonlinear damping characteristics for its application in the field of aerospace, petrochemical industry and so on. The study on the lifetime of MR material is impendent to its application in engineering. Based on the dynamic characteristic of MR, the accelerated lifetime experiments of vibration isolators made of MR working under random vibration load were conducted. The effects of structural parameters of MR components on the lifetime of isolators were studied and modelled with the fitting curves of degradation data. The lifetime prediction methods were proposed based on the models.
NASA Technical Reports Server (NTRS)
Li, Y.; Cutright, S.; Dyke, R.; Templeton, J.; Gasbarre, J.; Novak, F.
2015-01-01
The Stratospheric Aerosol and Gas Experiment (SAGE) III - International Space Station (ISS) instrument will be used to study ozone, providing global, long-term measurements of key components of the Earth's atmosphere for the continued health of Earth and its inhabitants. SAGE III is launched into orbit in an inverted configuration on SpaceX;s Falcon 9 launch vehicle. As one of its four supporting elements, a Contamination Monitoring Package (CMP) mounted to the top panel of the Interface Adapter Module (IAM) box experiences high-frequency response due to structural coupling between the two structures during the SpaceX launch. These vibrations, which were initially observed in the IAM Engineering Development Unit (EDU) test and later verified through finite element analysis (FEA) for the SpaceX launch loads, may damage the internal electronic cards and the Thermoelectric Quartz Crystal Microbalance (TQCM) sensors mounted on the CMP. Three-dimensional (3D) vibration isolators were required to be inserted between the CMP and IAM interface in order to attenuate the high frequency vibrations without resulting in any major changes to the existing system. Wire rope isolators were proposed as the isolation system between the CMP and IAM due to the low impact to design. Most 3D isolation systems are designed for compression and roll, therefore little dynamic data was available for using wire rope isolators in an inverted or tension configuration. From the isolator FEA and test results, it is shown that by using the 3D wire rope isolators, the CMP high-frequency responses have been suppressed by several orders of magnitude over a wide excitation frequency range. Consequently, the TQCM sensor responses are well below their qualification environments. It is indicated that these high-frequency responses due to the typical instrument structural coupling can be significantly suppressed by a vibration passive control using the 3D vibration isolator. Thermal and contamination issues were also examined during the isolator selection period for meeting the SAGE III-ISS instrument requirements.
Soot agglomeration in isolated, free droplet combustion
NASA Technical Reports Server (NTRS)
Choi, M. Y.; Dryer, F. L.; Green, G. J.; Sangiovanni, J. J.
1993-01-01
Under the conditions of an isolated, free droplet experiment, hollow, carbonaceous structures, called soot spheres, were observed to form during the atmospheric pressure, low Reynolds number combustion of 1-methylnaphthalene. These structures which are agglomerates composed of smaller spheroidal units result from both thermophoretic effects induced by the envelope flame surrounding each drop and aerodynamic effects caused by changes in the relative gas/drop velocities. A chemically reacting flow model was used to analyze the process of sootshell formation during microgravity droplet combustion. The time-dependent temperature and gas property field surrounding the droplet was determined, and the soot cloud location for microgravity combustion of n-heptane droplets was predicted. Experiments showed that the sooting propensity of n-alkane fuel droplets can be varied through diluent substitution, oxygen-index variations, and ambient pressure reductions.
NASA Astrophysics Data System (ADS)
Sun, W.; Thompson, D. J.; Zhou, J.; Gong, D.
2016-09-01
Helical springs within the primary suspension are critical components for isolating the whole vehicle system from vibration generated at the wheel/rail contact. As train speeds increase, the frequency region of excitation becomes larger, and a simplified static stiffness can no longer represent the real stiffness property in a vehicle dynamic model. Coil springs in particular exhibit strong internal resonances, which lead to high vibration amplitudes within the spring itself as well as degradation of the vibration isolation. In this paper, the dynamic stiffness matrix method is used to determine the dynamic stiffness of a helical spring from a vehicle primary suspension. Results are confirmed with a finite element analysis. Then the spring dynamic stiffness is included within a vehicle-track coupled dynamic model of a high speed train and the effect of the dynamic stiffening of the spring on the vehicle vibration is investigated. It is shown that, for frequencies above about 50 Hz, the dynamic stiffness of the helical spring changes sharply. Due to this effect, the vibration transmissibility increases considerably which results in poor vibration isolation of the primary suspension. Introducing a rubber layer in series with the coil spring can attenuate this effect.
Comparison Tools for Assessing the Microgravity Environment of Missions, Carriers and Conditions
NASA Technical Reports Server (NTRS)
DeLombard, Richard; McPherson, Kevin; Moskowitz, Milton; Hrovat, Ken
1997-01-01
The Principal Component Spectral Analysis and the Quasi-steady Three-dimensional Histogram techniques provide the means to describe the microgravity acceleration environment of an entire mission on a single plot. This allows a straight forward comparison of the microgravity environment between missions, carriers, and conditions. As shown in this report, the PCSA and QTH techniques bring both the range and median of the microgravity environment onto a single page for an entire mission or another time period or condition of interest. These single pages may then be used to compare similar analyses of other missions, time periods or conditions. The PCSA plot is based on the frequency distribution of the vibrational energy and is normally used for an acceleration data set containing frequencies above the lowest natural frequencies of the vehicle. The QTH plot is based on the direction and magnitude of the acceleration and is normally used for acceleration data sets with frequency content less than 0.1 Hz. Various operating conditions are made evident by using PCSA and QTH plots. Equipment operating either full or part time with sufficient magnitude to be considered a disturbance is very evident as well as equipment contributing to the background acceleration environment. A source's magnitude and/or frequency variability is also evident by the source's appearance on a PCSA plot. The PCSA and QTH techniques are valuable tools for extracting useful information from acceleration data taken over large spans of time. This report shows that these techniques provide a tool for comparison between different sets of microgravity acceleration data, for example different missions, different activities within a mission, and/or different attitudes within a mission. These techniques, as well as others, may be employed in order to derive useful information from acceleration data.
Modeling and dynamic properties of dual-chamber solid and liquid mixture vibration isolator
NASA Astrophysics Data System (ADS)
Li, F. S.; Chen, Q.; Zhou, J. H.
2016-07-01
The dual-chamber solid and liquid mixture (SALiM) vibration isolator, mainly proposed for vibration isolation of heavy machines with low frequency, consists of four principle parts: SALiM working media including elastic elements and incompressible oil, multi-layers bellows container, rigid reservoir and the oil tube connecting the two vessels. The isolation system under study is governed by a two-degrees-of-freedom (2-DOF) nonlinear equation including quadratic damping. Simplifying the nonlinear damping into viscous damping, the equivalent stiffness and damping model is derived from the equation for the response amplitude. Theoretical analysis and numerical simulation reveal that the isolator's stiffness and damping have multiple properties with different parameters, among which the effects of exciting frequency, vibrating amplitude, quadratic damping coefficient and equivalent stiffness of the two chambers on the isolator's dynamics are discussed in depth. Based on the boundary characteristics of stiffness and damping and the main causes for stiffness hardening effect, improvement strategies are proposed to obtain better dynamic properties. At last, experiments were implemented and the test results were generally consistent with the theoretical ones, which verified the reliability of the nonlinear dynamic model.
Experimental research on a vibration isolation platform for momentum wheel assembly
NASA Astrophysics Data System (ADS)
Zhou, Weiyong; Li, Dongxu
2013-03-01
This paper focuses on experimental research on a vibration isolation platform for momentum wheel assembly (MWA). A vibration isolation platform, consisting of four folded beams, was designed to isolate the microvibrations produced by MWA during operation. The performance of the platform was investigated with an impact test to verify the natural frequencies and damping coefficients of the system when the MWA was at rest, and with a measurement system consisting of a Kistler table and an optical tabletop to monitor the microvibrations produced when the MWA operated at stable speed. The results show that although the sixth natural frequency of the system is 26.29 Hz (1577 rev/min) when the MWA is at rest, the critical speed occurs at 2600 rev/min due to the gyroscopic effect of the flywheel, and that the platform can effectively isolate the high frequency disturbances in the 100-300 Hz range in all six degrees of freedom. Thus, the gyroscopic effect force deserves more attention in the design and analysis of vibration isolation platform for rotating wheel assembly, and the platform in this paper is particularly effective for MWA, which generally operates at high rotating speed range.
NASA Technical Reports Server (NTRS)
Brown, Henry B., Jr.; Buzby, Jared G.; Doyle, Barbara J.; Wibisono, Benedict C.
1994-01-01
This MQP is an ongoing part of the NASA Advanced Space Design Program which examines the integration of the WPI/MITRE Get Away Special Canister (GASCan 2). GASCan 2 contains the Ionospheric Properties and Propagation, Micro-Gravity Ignition, and Rotational Fluid Flow experiments, as well as the integrated support structure. The objectives this year were to finalize the power supply system, connections for experiments, mechanical design of the IPPE's antenna, and to update the structural and vibrational analysis of the integrated support structure.
A 6-DOF vibration isolation system for hydraulic hybrid vehicles
NASA Astrophysics Data System (ADS)
Nguyen, The; Elahinia, Mohammad; Olson, Walter W.; Fontaine, Paul
2006-03-01
This paper presents the results of vibration isolation analysis for the pump/motor component of hydraulic hybrid vehicles (HHVs). The HHVs are designed to combine gasoline/diesel engine and hydraulic power in order to improve the fuel efficiency and reduce the pollution. Electric hybrid technology is being applied to passenger cars with small and medium engines to improve the fuel economy. However, for heavy duty vehicles such as large SUVs, trucks, and buses, which require more power, the hydraulic hybridization is a more efficient choice. In function, the hydraulic hybrid subsystem improves the fuel efficiency of the vehicle by recovering some of the energy that is otherwise wasted in friction brakes. Since the operation of the main component of HHVs involves with rotating parts and moving fluid, noise and vibration are an issue that affects both passengers (ride comfort) as well as surrounding people (drive-by noise). This study looks into the possibility of reducing the transmitted noise and vibration from the hydraulic subsystem to the vehicle's chassis by using magnetorheological (MR) fluid mounts. To this end, the hydraulic subsystem is modeled as a six degree of freedom (6-DOF) rigid body. A 6-DOF isolation system, consisting of five mounts connected to the pump/motor at five different locations, is modeled and simulated. The mounts are designed by combining regular elastomer components with MR fluids. In the simulation, the real loading and working conditions of the hydraulic subsystem are considered and the effects of both shock and vibration are analyzed. The transmissibility of the isolation system is monitored in a wide range of frequencies. The geometry of the isolation system is considered in order to sustain the weight of the hydraulic system without affecting the design of the chassis and the effectiveness of the vibration isolating ability. The simulation results shows reduction in the transmitted vibration force for different working cycles of the regenerative system.
Microgravity combustion science: A program overview
NASA Technical Reports Server (NTRS)
1989-01-01
The promise of microgravity combustion research is introduced by way of a brief survey of results, the available set of reduced gravity facilities, and plans for experimental capabilities in the Space Station era. The study of fundamental combustion processes in a microgravity environment is a relatively new scientific endeavor. A few simple, precursor experiments were conducted in the early 1970's. Today the advent of the U.S. space shuttle and the anticipation of the Space Station Freedom provide for scientists and engineers a special opportunity, in the form of long duration microgravity laboratories, and need, in the form of spacecraft fire safety and a variety of terrestrial applications, to pursue fresh insight into the basic physics of combustion. The microgravity environment enables a new range of experiments to be performed since buoyancy-induced flows are nearly eliminated, normally obscured forces and flows may be isolated, gravitational settling or sedimentation is nearly eliminated, and larger time or length scales in experiments become permissible. The range of experiments completed to date was not broad, but is growing. Unexpected phenomena have been observed often in microgravity combustion experiments, raising questions about the degree of accuracy and completion of our classical understanding and our ability to estimate spacecraft fire hazards. Because of the field's relative immaturity, instrumentation has been restricted primarily to high-speed photography. To better explain these findings, more sophisticated diagnostic instrumentation, similar to that evolving in terrestrial laboratories, is being developed for use on Space Station Freedom and, along the way, in existing microgravity facilities.
Dietary nucleotides prevent decrease in cellular immunity in ground-based microgravity analog
NASA Technical Reports Server (NTRS)
Yamauchi, Keiko; Hales, Nathan W.; Robinson, Sandra M.; Niehoff, Michael L.; Ramesh, Vani; Pellis, Neal R.; Kulkarni, Anil D.
2002-01-01
Microgravity and stress of spaceflights result in immune dysfunction. The role of nutrition, especially nucleotide supplementation, has become an area of intensive research and significant interest in immunomodulation for maintenance of cellular immune responses. The studies presented here evaluate the plausibility of administering nucleotides to obviate immune dysfunction in an Earth-based in vivo analog of microgravity as studied in anti-orthostatic tail suspension (AOS) of mice. Mice were divided into three housing groups: group, isolation, and AOS. Mice were fed either control chow diet (CD), or RNA-, adenine-, or uracil-supplemented CD for the 1-wk duration of the experiments. In AOS mice, supplemental nucleotides significantly increased in vivo lymph node proliferation and ex vivo lymphoproliferation response to alloantigen and mitogens, respectively, and interleukin-2 and interferon-gamma production. A lower corticosterone level was observed in uracil-supplemented CD compared with CD. These results suggest that exogenous nucleotide supplementation, especially uracil, of normal diet is beneficial in the maintenance and restoration of the immune response during the microgravity analog conditions.
Microgravity Combustion Science: 1995 Program Update
NASA Technical Reports Server (NTRS)
Ross, Howard D. (Editor); Gokoglu, Suleyman A. (Editor); Friedman, Robert (Editor)
1995-01-01
Microgravity greatly benefits the study of fundamental combustion processes. In this environment, buoyancy-induced flow is nearly eliminated, weak or normally obscured forces and flows can be isolated, gravitational settling or sedimentation is nearly eliminated, and temporal and spatial scales can be expanded. This document reviews the state of knowledge in microgravity combustion science with the emphasis on NASA-sponsored developments in the current period of 1992 to early 1995. The subjects cover basic research in gaseous premixed and diffusion-flame systems, flame structure and sooting, liquid droplets and pools, and solid-surface ignition and flame spread. They also cover applied research in combustion synthesis of ceramic-metal composites, advanced diagnostic instrumentation, and on-orbit fire safety. The review promotes continuing research by describing the opportunities for Principal Investigator participation through the NASA Research Announcement program and the available NASA Lewis Research Center ground-based facilities and spaceflight accommodations. This review is compiled by the members and associates of the NASA Lewis Microgravity Combustion Branch, and it serves as an update of two previous overview reports.
1994-07-01
In this photograph, astronaut Carl Walz performs the Performance Assessment Workstation (PAWS) experiment at the flight deck of the Space Shuttle Orbiter Columbia during the STS-65 mission. Present day astronauts are subject to a variety of stresses during spaceflight. These include microgravity, physical isolation, confinement, lack of privacy, fatigue, and changing work/rest cycles. The purpose of this experiment is to determine the effects of microgravity upon thinking skills critical to the success of operational tasks in space. The principle objective is to distinguish between the effects of microgravity on specific information-processing skills affecting performance and those of fatigue caused by long work periods. To measure these skills, the investigators use a set of computerized performance tests called the Performance Assessment Workstation, which is based on current theoretical models of human performance. The tests were selected by analyzing tasks related to space missions and their hypothesized sensitivity to microgravity. Multiple subjective measures of cumulative fatigue and changing mood states are also included for interpreting performance data.
STS-65 Mission Onboard Photograph
NASA Technical Reports Server (NTRS)
1994-01-01
In this photograph, astronaut Carl Walz performs the Performance Assessment Workstation (PAWS) experiment at the flight deck of the Space Shuttle Orbiter Columbia during the STS-65 mission. Present day astronauts are subject to a variety of stresses during spaceflight. These include microgravity, physical isolation, confinement, lack of privacy, fatigue, and changing work/rest cycles. The purpose of this experiment is to determine the effects of microgravity upon thinking skills critical to the success of operational tasks in space. The principle objective is to distinguish between the effects of microgravity on specific information-processing skills affecting performance and those of fatigue caused by long work periods. To measure these skills, the investigators use a set of computerized performance tests called the Performance Assessment Workstation, which is based on current theoretical models of human performance. The tests were selected by analyzing tasks related to space missions and their hypothesized sensitivity to microgravity. Multiple subjective measures of cumulative fatigue and changing mood states are also included for interpreting performance data.
Studies on Normal and Microgravity Annular Two Phase Flows
NASA Technical Reports Server (NTRS)
Balakotaiah, V.; Jayawardena, S. S.; Nguyen, L. T.
1999-01-01
Two-phase gas-liquid flows occur in a wide variety of situations. In addition to normal gravity applications, such flows may occur in space operations such as active thermal control systems, power cycles, and storage and transfer of cryogenic fluids. Various flow patterns exhibiting characteristic spatial and temporal distribution of the two phases are observed in two-phase flows. The magnitude and orientation of gravity with respect to the flow has a strong impact on the flow patterns observed and on their boundaries. The identification of the flow pattern of a flow is somewhat subjective. The same two-phase flow (especially near a flow pattern transition boundary) may be categorized differently by different researchers. Two-phase flow patterns are somewhat simplified in microgravity, where only three flow patterns (bubble, slug and annular) have been observed. Annular flow is obtained for a wide range of gas and liquid flow rates, and it is expected to occur in many situations under microgravity conditions. Slug flow needs to be avoided, because vibrations caused by slugs result in unwanted accelerations. Therefore, it is important to be able to accurately predict the flow pattern which exists under given operating conditions. It is known that the wavy liquid film in annular flow has a profound influence on the transfer of momentum and heat between the phases. Thus, an understanding of the characteristics of the wavy film is essential for developing accurate correlations. In this work, we review our recent results on flow pattern transitions and wavy films in microgravity.
Wang, G; Wu, K; Hu, H; Li, G; Wang, L J
2016-10-01
To reduce seismic and environmental vibration noise, ultra-low-frequency vertical vibration isolation systems play an important role in absolute gravimetry. For this purpose, an isolator based on a two-stage beam structure is proposed and demonstrated. The isolator has a simpler and more robust structure than the present ultra-low-frequency vertical active vibration isolators. In the system, two beams are connected to a frame using flexural pivots. The upper beam is suspended from the frame with a normal hex spring and the lower beam is suspended from the upper one using a zero-length spring. The pivot of the upper beam is not vertically above the pivot of the lower beam. With this special design, the attachment points of the zero-length spring to the beams can be moved to adjust the effective stiffness. A photoelectric detector is used to detect the angle between the two beams, and a voice coil actuator attached to the upper beam is controlled by a feedback circuit to keep the angle at a fixed value. The system can achieve a natural period of 100 s by carefully moving the attachment points of the zero-length spring to the beams and tuning the feedback parameters. The system has been used as an inertial reference in the T-1 absolute gravimeter. The experiment results demonstrate that the system has significant vibration isolation performance that holds promise in applications such as absolute gravimeters.
NASA Astrophysics Data System (ADS)
Wang, G.; Wu, K.; Hu, H.; Li, G.; Wang, L. J.
2016-10-01
To reduce seismic and environmental vibration noise, ultra-low-frequency vertical vibration isolation systems play an important role in absolute gravimetry. For this purpose, an isolator based on a two-stage beam structure is proposed and demonstrated. The isolator has a simpler and more robust structure than the present ultra-low-frequency vertical active vibration isolators. In the system, two beams are connected to a frame using flexural pivots. The upper beam is suspended from the frame with a normal hex spring and the lower beam is suspended from the upper one using a zero-length spring. The pivot of the upper beam is not vertically above the pivot of the lower beam. With this special design, the attachment points of the zero-length spring to the beams can be moved to adjust the effective stiffness. A photoelectric detector is used to detect the angle between the two beams, and a voice coil actuator attached to the upper beam is controlled by a feedback circuit to keep the angle at a fixed value. The system can achieve a natural period of 100 s by carefully moving the attachment points of the zero-length spring to the beams and tuning the feedback parameters. The system has been used as an inertial reference in the T-1 absolute gravimeter. The experiment results demonstrate that the system has significant vibration isolation performance that holds promise in applications such as absolute gravimeters.
Material Science Experiments on Mir
NASA Technical Reports Server (NTRS)
Kroes, Roger L.
1999-01-01
This paper describes the microgravity materials experiments carried out on the Shuttle/Mir program. There were six experiments, all of which investigated some aspect of diffusivity in liquid melts. The Liquid Metal Diffusion (LMD) experiment investigated the diffusivity of molten Indium samples at 185 C using a radioactive tracer, In-114m. By monitoring two different gamma ray energies (190 keV and 24 keV) emitted by the samples it was possible to measure independently the diffusion rates in the bulk and at the surface of the samples. The Queens University Experiment in Liquid Diffusion (QUELD) was the furnace facility used to process 213 samples for the five other experiments. These experiments investigated the diffusion, ripening, crystal growth, and glass formation in metal, semiconductor, and glass samples. This facility had the capability to process samples in an isothermal or gradient configuration for varying periods of time at temperatures up to 900 C. Both the LMD and the QUELD furnaces were mounted on the Microgravity Isolation Mount (MIM) which provided isolation from g-jitter. All the microgravity experiments were supported by the Space Acceleration Measurement System (SAMS); a three head three axes acceleration monitoring system which measured and recorded the acceleration environment.
NASA Astrophysics Data System (ADS)
Fonda, James; Rao, Vittal S.; Sana, Sridhar
2001-08-01
This paper provides an account of a student research project conducted under the sponsoring of the National Science Foundation (NSF) program on Research Experience for Undergraduates (REU) in Mechatronics and Smart Strictures in the summer of 2000. The objective of the research is to design and test a stand-alone controller for a vibration isolation/suppression system. The design specification for the control system is to suppress the vibrations induced by the external disturbances by at least fiver times and hence to achieve vibration isolation. Piezo-electric sensors and actuators are utilized for suppression of unwanted vibrations. Various steps such as modeling of the system, controller design, simulation, closed-loop testing using d- Space rapid prototyping system, and analog control implementation are discussed in the paper. Procedures for data collection, the trade-offs carried out in the design, and analog controller implementation issues are also presented in the paper. The performances of various controllers are compared. The experiences of an undergraduate student are summarized in the conclusion of the paper.
NASA Astrophysics Data System (ADS)
Gurova, E. G.
2016-08-01
During the researches the mathematical description of the traction characteristics of the stiffness compensators of the vibration isolation devices, relatively of the each axis, has been done. Representation of the compensators properties considers the variable load, thereby provide the wide enough spectrum of the action of the suggested vibration isolators. The derived expressions are valid for all three axes of space at the different stiffnesses, i.e. basic basic and two compensating. The research was supported by the scholarships of Russian Federation President for young scientists №184 from 10th of March 2015.
2009-02-12
ISS018-E-030101 (12 Feb. 2009) --- Astronaut Sandra Magnus, Expedition 18 flight engineer, equipped with a bungee harness, exercises on the Treadmill Vibration Isolation System (TVIS) in the Zvezda Service Module of the International Space Station.
Magnus on Cycle Ergometer with Vibration Isolation System (CEVIS) in US Laboratory Destiny
2009-03-22
ISS018-E-042649 (22 March 2009) --- Astronaut Sandra Magnus, STS-119 mission specialist, exercises on the Cycle Ergometer with Vibration Isolation System (CEVIS) in the Destiny laboratory of the International Space Station while Space Shuttle Discovery remains docked with the station.
2009-02-12
ISS018-E-030096 (12 Feb. 2009) --- Astronaut Sandra Magnus, Expedition 18 flight engineer, equipped with a bungee harness, exercises on the Treadmill Vibration Isolation System (TVIS) in the Zvezda Service Module of the International Space Station.
Experimental and Theoretical Vibrational Spectra of Sideridiol Isolated from Sideritis Species
NASA Astrophysics Data System (ADS)
Kilic, Turgut; Sagir, Züleyha Ozer; Carikci, Sema; Azizoğlu, Akın
2017-12-01
Sideridiol ( ent-7α,18β-dihydroxykaur-15-ene) one of the ent-kaurene diterpenoid, is isolated from the genus Sideritis L. belongs to the family of Lamiaceae. The vibrational frequencies of sideridiol in the ground state have been calculated using the Density Functional Theory (DFT) method with the 6-31G( d) and 6 31+G( d, p) basis sets. The calculated vibrational frequencies have been compared with that of obtained experimental IR spectrum.
The Strata-l Experiment on Microgravity Regolith Segregation
NASA Technical Reports Server (NTRS)
Fries, M.; Abell, P.; Brisset, J.; Britt, D.; Colwell, J.; Durda, D.; Dove, A.; Graham, L.; Hartzell, C.; John, K.;
2016-01-01
The Strata-1 experiment studies the segregation of small-body regolith through long-duration exposure of simulant materials to the microgravity environment on the International Space Station (ISS). Many asteroids feature low bulk densities, which implies high values of porosity and a mechanical structure composed of loosely bound particles, (i.e. the "rubble pile" model), a prime example of a granular medium. Even the higher-density, mechanically coherent asteroids feature a significant surface layer of loose regolith. These bodies will evolve in response to very small perturbations such as micrometeoroid impacts, planetary flybys, and the YORP effect. A detailed understanding of asteroid mechanical evolution is needed in order to predict the surface characteristics of as-of-yet unvisited bodies, to understand the larger context of samples from sample return missions, and to mitigate risks for both manned and unmanned missions to asteroidal bodies. Due to observation of rocky regions on asteorids such as Eros and Itokawa, it has been hypothesized that grain size distribution with depth on an asteroid may be inhomogeneous: specifically, that large boulders have been mobilized to the surface. In terrestrial environments, this size-dependent sorting to the surface of the sample is called the Brazil Nut Effect. The microgravity and acceleration environment on the ISS is similar that of a small asteroid. Thus, Strata-1 investigates size segregation of regolith in an environment analogous to that of small bodies. Strata-1 consists of four regolith simulants in evacuated tubes, as shown in Figure 1 (Top and Middle). The simulants are (1) a crushed and sieved ordinary chondrite meteorite to simulate an asteroidal surface, (2) a carbonaceous chondrite simulant with a mixture of fine and course particles, and two simplified silicate glass simulants; (3) one with angular and (4) another with spherical particles. These materials were chosen to span a range of granular complexity. The materials were sorted into three size species pre-launch, and maintained during launch and return by a device called the Entrapulator. The hypothesis under test is that the particles that constitute a granular medium in a micro-gravity environment, subjected to a known vibration environemnt, will segregate in accordance to modeled predictions. Strata-1 is currently operating on ISS, with cameras capturing images of simulant motion throughout the one year mission. Vibration data is recorded and downlinked, and the simulants will be analyzed after return to Earth.
NASA Astrophysics Data System (ADS)
Kim, Hyung Tae; Jeong, An Mok; Kim, Hyo Young; An, Jong Wook; Kim, Cheol Ho; Jin, Kyung Chan; Choi, Seung-Bok
2018-03-01
In a previous work, magneto-rheological (MR) dampers were originally designed and implemented for reducing the vertical low-frequency vibration occurring in precise semi-conductor manufacturing equipment. To reduce the vibrations, an isolator levitated the manufacturing machine from the floor using pneumatic pressure which cut off the external vibration, while the MR damper was used to decrease the transient response of the isolator. However, it has been found that the MR damper also provides a damping effect on the lateral vibration induced by the high-speed plane motions. Therefore, in this work both vertical and lateral vibrations are controlled using the yield and shear stresses of the lateral directions generated from the MR fluids by applying a magnetic field. After deriving a vibration control model, an overall control logic is formulated considering both vertical and lateral vibrations. In this control strategy, a feedback loop associated with the laser sensor is used for vertical vibration control, while a feed-forward loop with the motion information is used for lateral vibration control. The experimental results show that the proposed concept is highly effective for lateral vibration control using the damping effect on multiple directions.
Ultra-low frequency vertical vibration isolator based on LaCoste spring linkage.
Li, G; Hu, H; Wu, K; Wang, G; Wang, L J
2014-10-01
For the applications in precision measurement such as absolute gravimeter, we have designed and built an ultra-low frequency vertical vibration isolator based on LaCoste spring linkage. In the system, an arm with test mass is suspended by a mechanical extension spring, and one end of the arm is connected to the frame with flexible pivots. The displacement of the arm is detected by an optical reflection method. With the displacement signal, a feedback control force is exerted on the arm to keep it at the balance position. This method can also correct the systematic drift caused by temperature change. In order to study the vibration isolation performance of the system, we analyze the dynamic characteristics of the spring linkage in the general case, and present key methods to adjust the natural oscillating period of the system. With careful adjustment, the system can achieve a steady oscillation with a natural period up to 32 s. This isolator has been tested based on the T-1 absolute gravimeter. A statistical uncertainty of 2 μGal has been achieved within a typical 12 h measurement. The experimental results verify that the isolator has significant vibration isolation performance, and it is very suitable for applications in high precision absolute gravity measurement.
State observers and Kalman filtering for high performance vibration isolation systems.
Beker, M G; Bertolini, A; van den Brand, J F J; Bulten, H J; Hennes, E; Rabeling, D S
2014-03-01
There is a strong scientific case for the study of gravitational waves at or below the lower end of current detection bands. To take advantage of this scientific benefit, future generations of ground based gravitational wave detectors will need to expand the limit of their detection bands towards lower frequencies. Seismic motion presents a major challenge at these frequencies and vibration isolation systems will play a crucial role in achieving the desired low-frequency sensitivity. A compact vibration isolation system designed to isolate in-vacuum optical benches for Advanced Virgo will be introduced and measurements on this system are used to present its performance. All high performance isolation systems employ an active feedback control system to reduce the residual motion of their suspended payloads. The development of novel control schemes is needed to improve the performance beyond what is currently feasible. Here, we present a multi-channel feedback approach that is novel to the field. It utilizes a linear quadratic regulator in combination with a Kalman state observer and is shown to provide effective suppression of residual motion of the suspended payload. The application of state observer based feedback control for vibration isolation will be demonstrated with measurement results from the Advanced Virgo optical bench suspension system.
Ultra-low frequency vertical vibration isolator based on LaCoste spring linkage
NASA Astrophysics Data System (ADS)
Li, G.; Hu, H.; Wu, K.; Wang, G.; Wang, L. J.
2014-10-01
For the applications in precision measurement such as absolute gravimeter, we have designed and built an ultra-low frequency vertical vibration isolator based on LaCoste spring linkage. In the system, an arm with test mass is suspended by a mechanical extension spring, and one end of the arm is connected to the frame with flexible pivots. The displacement of the arm is detected by an optical reflection method. With the displacement signal, a feedback control force is exerted on the arm to keep it at the balance position. This method can also correct the systematic drift caused by temperature change. In order to study the vibration isolation performance of the system, we analyze the dynamic characteristics of the spring linkage in the general case, and present key methods to adjust the natural oscillating period of the system. With careful adjustment, the system can achieve a steady oscillation with a natural period up to 32 s. This isolator has been tested based on the T-1 absolute gravimeter. A statistical uncertainty of 2 μGal has been achieved within a typical 12 h measurement. The experimental results verify that the isolator has significant vibration isolation performance, and it is very suitable for applications in high precision absolute gravity measurement.
NASA Technical Reports Server (NTRS)
Russell, James W.; Marshall, Robert A.; Finley, Tom D.; Lawrence, George F.
1994-01-01
This report presents a description of the test apparatus and the method of testing the low frequency disturbance source characteristics of small pumps, fans, camera motors, and recorders that are typical of those used in microgravity science facilities. The test apparatus will allow both force and acceleration spectra of these disturbance devices to be obtained from acceleration measurements over the frequency range from 2 to 300 Hz. Some preliminary calibration results are presented.
NASA Technical Reports Server (NTRS)
Trolinger, James D.; Rangel, Roger; Witherow, William; Rogers, Jan; Lal, Ravindra B.
1999-01-01
A need exists for understanding precisely how particles move and interact in a fluid in the absence of gravity. Such understanding is required, for example, for modeling and predicting crystal growth in space where crystals grow from solution around nucleation sites as well as for any study of particles or bubbles in liquids or in experiments where particles are used as tracers for mapping microconvection. We have produced an exact solution to the general equation of motion of particles at extremely low Reynolds number in microgravity that covers a wide range of interesting conditions. We have also developed diagnostic tools and experimental techniques to test the validity of the general equation . This program, which started in May, 1998, will produce the flight definition for an experiment in a microgravity environment of space to validate the theoretical model. We will design an experiment with the help of the theoretical model that is optimized for testing the model, measuring g, g-jitter, and other microgravity phenomena. This paper describes the goals, rational, and approach for the flight definition program. The first objective of this research is to understand the physics of particle interactions with fluids and other particles in low Reynolds number flows in microgravity. Secondary objectives are to (1) observe and quantify g-jitter effects and microconvection on particles in fluids, (2) validate an exact solution to the general equation of motion of a particle in a fluid, and (3) to characterize the ability of isolation tables to isolate experiments containing particle in liquids. The objectives will be achieved by recording a large number of holograms of particle fields in microgravity under controlled conditions, extracting the precise three-dimensional position of all of the particles as a function of time and examining the effects of all parameters on the motion of the particles. The feasibility for achieving these results has already been established in the ongoing ground-based NRA, which led to the "virtual spaceflight chamber" concept.
A Sub-Hertz, Low-Frequency Vibration Isolation Platform
NASA Technical Reports Server (NTRS)
Ortiz, Gerardo, G.; Farr, William H.; Sannibale, Virginio
2011-01-01
One of the major technical problems deep-space optical communication (DSOC) systems need to solve is the isolation of the optical terminal from vibrations produced by the spacecraft navigational control system and by the moving parts of onboard instruments. Even under these vibration perturbations, the DSOC transceivers (telescopes) need to be pointed l000 fs of times more accurately than an RF communication system (parabolic antennas). Mechanical resonators have been extensively used to provide vibration isolation for groundbased, airborne, and spaceborne payloads. The effectiveness of these isolation systems is determined mainly by the ability of designing a mechanical oscillator with the lowest possible resonant frequency. The Low-Frequency Vibration Isolation Platform (LFVIP), developed during this effort, aims to reduce the resonant frequency of the mechanical oscillators into the sub-Hertz region in order to maximize the passive isolation afforded by the 40 dB/decade roll-off response of the resonator. The LFVIP also provides tip/tilt functionality for acquisition and tracking of a beacon signal. An active control system is used for platform positioning and for dampening of the mechanical oscillator. The basic idea in the design of the isolation platform is to use a passive isolation strut with an approximately equal to 100-mHz resonance frequency. This will extend the isolation range to lower frequencies. The harmonic oscillator is a second-order lowpass filter for mechanical disturbances. The resonance quality depends on the dissipation mechanisms, which are mainly hysteretic because of the low resonant frequency and the absence of any viscous medium. The LFVIP system is configured using the well-established Stewart Platform, which consists of a top platform connected to a base with six extensible struts (see figure). The struts are attached to the base and to the platform via universal joints, which permit the extension and contraction of the struts. The struts ends are connected in pairs to the base and to the platform, forming an octahedron. The six struts provide the vibration isolation due to the properties of mechanical oscillators that behave as second-order lowpass filters for frequencies above the resonance. At high frequency, the ideal second-order low-pass filter response is spoiled by the distributed mass and the internal modes of membrane and of the platform with its payload.
Variable-Tension-Cord Suspension/Vibration-Isolation System
NASA Technical Reports Server (NTRS)
Villemarette, Mark L.; Boston, Joshua; RInks, Judith; Felice, Pat; Stein, Tim; Payne, Patrick
2006-01-01
A system for mechanical suspension and vibration isolation of a machine or instrument is based on the use of Kevlar (or equivalent aromatic polyamide) cord held in variable tension between the machine or instrument and a surrounding frame. The basic concept of such a tensioned-cord suspension system (including one in which the cords are made of aromatic polyamide fibers) is not new by itself; what is new here is the additional provision for adjusting the tension during operation to optimize vibration- isolation properties. In the original application for which this system was conceived, the objective is to suspend a reciprocating cryocooler aboard a space shuttle and to prevent both (1) transmission of launch vibrations to the cryocooler and (2) transmission of vibrations from the cryocooler to samples in a chamber cooled by the cryocooler. The basic mechanical principle of this system can also be expected to be applicable to a variety of other systems in which there are requirements for cord suspension and vibration isolation. The reciprocating cryocooler of the original application is a generally axisymmetric object, and the surrounding frame is a generally axisymmetric object with windows (see figure). Two cords are threaded into a spoke-like pattern between attachment rings on the cryocooler, holes in the cage, and cord-tension- adjusting assemblies. Initially, the cord tensions are adjusted to at least the level necessary to suspend the cryocooler against gravitation. Accelerometers for measuring vibrations are mounted (1) on the cold tip of the cryocooler and (2) adjacent to the cage, on a structure that supports the cage. During operation, a technician observes the accelerometer outputs on an oscilloscope while manually adjusting the cord tensions in an effort to minimize the amount of vibration transmitted to and/or from the cryocooler. A contemplated future version of the system would include a microprocessor-based control subsystem that would include cord-tension actuators. This control subsystem would continually adjust the cord tension in response to accelerometer feedback to optimize vibration-isolation properties as required for various operating conditions. The control system could also adjust cord tensions (including setting the two cords to different tensions) to suppress resonances. Other future enhancements could include optimizing the cord material, thickness, and braid; optimizing the spoke patterns; and adding longitudinal cords for applications in which longitudinal stiffness and vibration suppression are required.
NASA Astrophysics Data System (ADS)
Buryan, Yu. A.; Babichev, D. O.; Silkov, M. V.; Shtripling, L. O.; Kalashnikov, B. A.
2017-08-01
This research refers to the problems of processing equipment protection from vibration influence. The theory issues of vibration isolation for vibroactive objects such as engines, pumps, compressors, fans, piping, etc. are considered. The design of the perspective air spring with the parallel mounted mechanical inertial motion converter is offered. The mathematical model of the suspension, allowing selecting options to reduce the factor of the force transmission to the base in a certain frequency range is obtained.
High performance rotational vibration isolator
NASA Astrophysics Data System (ADS)
Sunderland, Andrew; Blair, David G.; Ju, Li; Golden, Howard; Torres, Francis; Chen, Xu; Lockwood, Ray; Wolfgram, Peter
2013-10-01
We present a new rotational vibration isolator with an extremely low resonant frequency of 0.055 ± 0.002 Hz. The isolator consists of two concentric spheres separated by a layer of water and joined by very soft silicone springs. The isolator reduces rotation noise at all frequencies above its resonance which is very important for airborne mineral detection. We show that more than 40 dB of isolation is achieved in a helicopter survey for rotations at frequencies between 2 Hz and 20 Hz. Issues affecting performance such as translation to rotation coupling and temperature are discussed. The isolator contains almost no metal, making it particularly suitable for electromagnetic sensors.
High performance rotational vibration isolator.
Sunderland, Andrew; Blair, David G; Ju, Li; Golden, Howard; Torres, Francis; Chen, Xu; Lockwood, Ray; Wolfgram, Peter
2013-10-01
We present a new rotational vibration isolator with an extremely low resonant frequency of 0.055 ± 0.002 Hz. The isolator consists of two concentric spheres separated by a layer of water and joined by very soft silicone springs. The isolator reduces rotation noise at all frequencies above its resonance which is very important for airborne mineral detection. We show that more than 40 dB of isolation is achieved in a helicopter survey for rotations at frequencies between 2 Hz and 20 Hz. Issues affecting performance such as translation to rotation coupling and temperature are discussed. The isolator contains almost no metal, making it particularly suitable for electromagnetic sensors.
Marshak Lectureship: Vibrational properties of isolated color centers in diamond
NASA Astrophysics Data System (ADS)
Alkauskas, Audrius
In this talk we review our recent work on first-principles calculations of vibrational properties of isolated defect spin qubits and single photon emitters in diamond. These properties include local vibrational spectra, luminescence lineshapes, and electron-phonon coupling. They are key in understanding physical mechanisms behind spin-selective optical initialization and read-out, quantum efficiency of single-photon emitters, as well as in the experimental identification of as yet unknown centers. We first present the methodology to calculate and analyze vibrational properties of effectively isolated defect centers. We then apply the methodology to the nitrogen-vacancy and the silicon-vacancy centers in diamond. First-principles calculations yield important new insights about these important defects. Work performed in collaboration with M. W. Doherty, A. Gali, E. Londero, L. Razinkovas, and C. G. Van de Walle. Supported by the Research Council of Lithuania (Grant M-ERA.NET-1/2015).
Vibration isolation and damping in high precision equipment
NASA Astrophysics Data System (ADS)
Bukkems, B.; Ruijl, T.; Simons, J.
2017-06-01
All systems located in a laboratory environment or factory are subject to disturbances. These disturbances can either come from the surroundings, e.g. floor-induced vibrations, or from the system itself, e.g. stage-induced vibrations. In many cases it is needed to minimize the effect of these disturbances. This can either be done by isolating the system from its disturbance source or by applying damping to the system. In this paper we present various cases in which we have effectively reduced the impact of disturbances on the system's performance, either by improving its isolation system, by minimizing the impact of stage reaction forces, or by designing polymer damping into the system.
Vibration isolation and pressure compensation apparatus for sensitive instrumentation
NASA Technical Reports Server (NTRS)
Averill, R. D. (Inventor)
1983-01-01
A system for attenuating the inherent vibration associated with a mechanical refrigeration unit employed to cryogenically cool sensitive instruments used in measuring chemical constituents of the atmosphere is described. A modular system including an instrument housing and a reaction bracket with a refrigerator unit floated there between comprise the instrumentation system. A pair of evacuated bellows that "float' refrigerator unit and provide pressure compensation at all levels of pressure from seal level to the vacuum of space. Vibration isolators and when needed provide additional vibration damping for the refrigerator unit. A flexible thermal strap (20 K) serves to provide essentially vibration free thermal contact between cold tip of the refrigerator unit and the instrument component mounted on the IDL mount. Another flexible strap (77 K) serves to provide vibration free thermal contact between the TDL mount thermal shroud and a thermal shroud disposed about the thermal shaft.
Novel Euler-LaCoste linkage as a very low frequency vertical vibration isolator.
Hosain, M A; Sirr, A; Ju, L; Blair, D G
2012-08-01
LaCoste linkage vibration isolators have shown excellent performance for ultra-low frequency vertical vibration isolation. However, such isolators depend on the use of conventional pre-stressed coil springs, which suffer from creep. Here, we show that compressional Euler springs can be configured to create a stable tension unit for use in a LaCoste structure. In a proof of concept experiment, we demonstrate a vertical resonance frequency of 0.15 Hz in an Euler-LaCoste configuration with 200 mm height. The system enables the use of very low creep maraging steel as spring elements to eliminate the creep while minimising spring mass and reducing the effect of parasitic resonances. Larger scale systems with optimized Euler spring boundary conditions should achieve performance suitable for applications on third generation gravitational wave detectors such as the proposed Einstein telescope.
Mechanisms of Microgravity Effect on Vascular Function
NASA Technical Reports Server (NTRS)
Purdy, Ralph E.
1995-01-01
The overall goal of the project is to characterize the effects of simulated microgravity on vascular function. Microgravity is simulated using the hindlimb unweighted (HU) rat, and the following vessels are removed from HU and paired control rats for in vitro analysis: abdominal aorta, carotid and femoral arteries, jugular and femoral veins. These vessels are cut into 3 mm long rings and mounted in tissue baths for the measurement of either isometric contraction, or relaxation of pre- contracted vessels. The isolated mesenteric vascular bed is perfused for the measurement of changes in perfusion pressure as an index of arteriolar constriction or dilation. This report presents, in addition to the statement of the overall goal of the project, a summary list of the specific hypotheses to be tested. These are followed by sections on results, conclusions, significance and plans for the next year.
Microgravity combustion science: Progress, plans, and opportunities
NASA Technical Reports Server (NTRS)
1992-01-01
An earlier overview is updated which introduced the promise of microgravity combustion research and provided a brief survey of results and then current research participants, the available set of reduced gravity facilities, and plans for experimental capabilities in the space station era. Since that time, several research studies have been completed in drop towers and aircraft, and the first space based combustion experiments since Skylab have been conducted on the Shuttle. The microgravity environment enables a new range of experiments to be performed since buoyancy induced flows are nearly eliminated, normally obscured forces and flows may be isolated, gravitational settling or sedimentation is nearly eliminated, and larger time or length scales in experiments are feasible. In addition to new examinations of classical problems, (e.g., droplet burning), current areas of interest include soot formation and weak turbulence, as influenced by gravity.
Wakata uses Treadmill Vibration Isolation and Stabilization (TVIS)
2009-03-22
ISS018-E-042662 (22 March 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 18 flight engineer, equipped with a bungee harness, exercises on the Treadmill Vibration Isolation System (TVIS) in the Zvezda Service Module of the International Space Station while Space Shuttle Discovery (STS-119) remains docked with the station.
A multiple functional connector for high-resolution optical satellites
NASA Astrophysics Data System (ADS)
She, Fengke; Zheng, Gangtie
2017-11-01
For earth observation satellites, perturbations from actuators, such as CMGs and momentum wheels, and thermal loadings from support structures often have significant impact on the image quality of an optical. Therefore, vibration isolators and thermal deformation releasing devices nowadays often become important parts of an image satellite. However, all these devices will weak the connection stiffness between the optical instrument and the satellite bus structure. This will cause concern of the attitude control system design for worrying about possible negative effect on the attitude control. Therefore, a connection design satisfying all three requirements is a challenge of advanced image satellites. Chinese scientists have proposed a large aperture high-resolution satellite for earth observation. To meet all these requirements and ensure image quality, specified multiple function connectors are designed to meet these challenging requirements, which are: isolating vibration, releasing thermal deformation and ensuring whole satellite dynamic properties [1]. In this paper, a parallel spring guide flexure is developed for both vibration isolation and thermal deformation releasing. The stiffness of the flexure is designed to meet the vibration isolation requirement. To attenuate vibration, and more importantly to satisfy the stability requirement of the attitude control system, metal damping, which has many merits for space applications, are applied in this connecter to provide a high damping ratio and nonlinear stiffness. The capability of the connecter for vibration isolation and attenuation is validated through numerical simulation and experiments. Connecter parameter optimization is also conducted to meet both requirements of thermal deformation releasing and attitude control. Analysis results show that the in-orbit attitude control requirement is satisfied while the thermal releasing performance is optimized. The design methods and analysis results are also provided in the present paper.
NASA Astrophysics Data System (ADS)
Bauer, Johann; Wehland, Markus; Pietsch, Jessica; Sickmann, Albert; Weber, Gerhard; Grimm, Daniela
2016-06-01
In a series of studies, human thyroid and endothelial cells exposed to real or simulated microgravity were analyzed in terms of changes in gene expression patterns or protein content. Due to the limitation of available cells in many space research experiments, comparative and control experiments had to be done in a serial manner. Therefore, detected genes or proteins were annotated with gene names and SwissProt numbers, in order to allow searches for interconnections between results obtained in different experiments by different methods. A crosscheck of several studies on the behavior of cytoskeletal genes and proteins suggested that clusters of cytoskeletal components change differently under the influence of microgravity and/or vibration in different cell types. The result that LOX and ISG15 gene expression were clearly altered during the Shenzhou-8 spaceflight mission could be estimated by comparison with the results of other experiments. The more than 100-fold down-regulation of LOX supports our hypothesis that the amount and stability of extracellular matrix have a great influence on the formation of three-dimensional aggregates under microgravity. The approximately 40-fold up-regulation of ISG15 cannot yet be explained in detail, but strongly suggests that ISGylation, an alternative form of posttranslational modification, plays a role in longterm cultures.
Volkmann, D; Buchen, B; Hejnowicz, Z; Tewinkel, M; Sievers, A
1991-01-01
During five rocket flights (TEXUS 18, 19, 21, 23 and 25), experiments were performed to investigate the behaviour of statoliths in rhizoids of the green alga Charo globularia Thuill. and in statocytes of cress (Lepidium sativum L.) roots, when the gravitational field changed to approx. l0(-4) g (i.e. microgravity) during the parabolic flight (lasting for 301-390 s) of the rockets. The position of statoliths was only slightly influenced by the conditions during launch, e.g. vibration, acceleration and rotation of the rocket. Within approx. 6 min of microgravity conditions the shape of the statolith complex in the rhizoids changed from a transversely oriented lens into a longitudinally oriented spindle. The center of the statolith complex moved approx. 14 micrometers and 3.6 micrometers in rhizoids and root statocytes, respectively, in the opposite direction to the originally acting gravity vector. The kinetics of statolith displacement in rhizoids demonstrate that the velocity was nearly constant under microgravity whereas it decreased remarkably after inversion of rhizoids on Earth. It can be concluded that on Earth the position of statoliths in both rhizoids and root statocytes depends on the balance of two forces, i.e. the gravitational force and the counteracting force mediated by microfilaments.
Volkmann, D; Buchen, B; Hejnowicz, Z; Tewinkel, M; Sievers, A
1991-09-01
During five rocket flights (TEXUS 18, 19, 21, 23 and 25), experiments were performed to investigate the behaviour of statoliths in rhizoids of the green alga Chara globularia Thuill. and in statocytes of cress (Lepidium sativum L.) roots, when the gravitational field changed to approx. 10(-4) · g (i.e. microgravity) during the parabolic flight (lasting for 301-390 s) of the rockets. The position of statoliths was only slightly influenced by the conditions during launch, e.g. vibration, acceleration and rotation of the rocket. Within approx. 6 min of microgravity conditions the shape of the statolith complex in the rhizoids changed from a transversely oriented lens into a longitudinally oriented spindle. The center of the statolith complex moved approx. 14 μm and 3.6 μm in rhizoids and root statocytes, respectively, in the opposite direction to the originally acting gravity vector. The kinetics of statolith displacement in rhizoids demonstrate that the velocity was nearly constant under microgravity whereas it decreased remarkably after inversion of rhizoids on Earth. It can be concluded that on Earth the position of statoliths in both rhizoids and root statocytes depends on the balance of two forces, i.e. the gravitational force and the counteracting force mediated by microfilaments.
NASA Technical Reports Server (NTRS)
Johnson, Corinne F.; Dreschel, Thomas W.; Brown, Christopher S.; Wheeler, Raymond M.
1994-01-01
The Porous Tube Plant Nutrient Delivery System (PTPNDS), a hydrophilic, microporous ceramic tube hydroponic system designed for microgravity, will be tested in a middeck locker of the Space Shuttle. The flight experiment will focus on hardware operation and assess its ability to support seed germination and early seedling growth in microgravity. The water controlling system of the PTPNDS hardware has been successfully tested during the parabolic flight of the KC-135. One challenge to the development of the spaceflight experiment was to devise a method of holding seeds to the cylindrical porous tube. The seed holder must provide water and air to the seed, absorb water from the porous tube, withstand sterilization, provide a clear path for shoots and roots to emerge, and be composed of flight qualified materials. In preparation for the flight experiment, a wheat seed-holder has been designed that utilizes a cellulose acetate plug to facilitate imbibition and to hold the wheat seeds in contact with the porous tube in the correct orientation during the vibration of launch and the microgravity environment of orbit. Germination and growth studies with wheat at a range of temperatures showed that optimal moisture was 78% (by weight) in the cellulose acetate seed holders. These and other design considerations are discussed.
NASA Technical Reports Server (NTRS)
Johnson, C. F.; Dreschel, T. W.; Brown, C. S.; Wheeler, R. M.
1996-01-01
The Porous Tube Plant Nutrient Delivery System (PTPNDS), a hydrophilic, microporous ceramic tube hydroponic system designed for microgravity, will be tested in a middeck locker of the Space Shuttle. The flight experiment will focus on hardware operation and assess its ability to support seed germination and early seedling growth in microgravity. The water controlling system of the PTPNDS hardware has been successfully tested during the parabolic flight of the KC-135. One challenge to the development of the space flight experiment was to devise a method of holding seeds to the cylindrical porous tube. The seed-holder must provide water and air to the seed, absorb water from the porous tube, withstand sterilization, provide a clear path for shoots and roots to emerge, and be composed of flight qualified materials. In preparation for the flight experiment, a wheat seed-holder has been designed that utilizes a cellulose acetate plug to facilitate imbibition and to hold the wheat seeds in contact with the porous tube in the correct orientation during the vibration of launch and the microgravity environment of orbit. Germination and growth studies with wheat at a range of temperatures showed that optimal moisture was 78% (by weight) in the cellulose acetate seed holders. These and other design considerations are discussed.
Effects of local vibration on bone loss in -tail-suspended rats.
Sun, L W; Luan, H Q; Huang, Y F; Wang, Y; Fan, Y B
2014-06-01
We investigated the effects of vibration (35 Hz, 45 Hz and 55 Hz) as countermeasure locally applied to unloading hind limbs on bone, muscle and Achilles tendon. 40 female Sprague Dawley rats were divided into 5 groups (n=8, each): tail-suspension (TS), TS plus 35 Hz/0.3 g vibration (TSV35), TS plus 45 Hz/0.3 g vibration (TSV45), TS plus 55 Hz/0.3 g vibration (TSV55) and control (CON). After 21 days, bone mineral density (BMD) and the microstructure of the femur and tibia were evaluated by μCT in vivo. The biomechanical properties of the femur and Achilles tendon were determined by a materials testing system. Ash weight of bone, isotonic contraction and wet weight of soleus were also investigated. 35 Hz and 45 Hz localized vibration were able to significantly ameliorate the decrease in trabecular BMD (expressed as the percentage change from TS, TSV35: 48.11%, TSV45: 31.09%), microstructure and ash weight of the femur and tibia induced by TS. Meanwhile, 35 Hz vibration significantly improved the biomechanical properties of the femur (57.24% bending rigidity and 41.66% Young's modulus vs. TS) and Achilles tendon (45.46% maximum load and 66.67% Young's modulus vs. TS). Additionally, Young's modulus of the femur was highly correlated with microstructural parameters. Localized vibration was useful for counteracting microgravity-induced musculoskeletal loss. In general, the efficacy of 35 Hz was better than 45 Hz or 55 Hz in tail-suspended rats. © Georg Thieme Verlag KG Stuttgart · New York.
Incipient fault detection study for advanced spacecraft systems
NASA Technical Reports Server (NTRS)
Milner, G. Martin; Black, Michael C.; Hovenga, J. Mike; Mcclure, Paul F.
1986-01-01
A feasibility study to investigate the application of vibration monitoring to the rotating machinery of planned NASA advanced spacecraft components is described. Factors investigated include: (1) special problems associated with small, high RPM machines; (2) application across multiple component types; (3) microgravity; (4) multiple fault types; (5) eight different analysis techniques including signature analysis, high frequency demodulation, cepstrum, clustering, amplitude analysis, and pattern recognition are compared; and (6) small sample statistical analysis is used to compare performance by computation of probability of detection and false alarm for an ensemble of repeated baseline and faulted tests. Both detection and classification performance are quantified. Vibration monitoring is shown to be an effective means of detecting the most important problem types for small, high RPM fans and pumps typical of those planned for the advanced spacecraft. A preliminary monitoring system design and implementation plan is presented.
The 58th Shock and Vibration Symposium, volume 1
NASA Technical Reports Server (NTRS)
Pilkey, Walter D. (Compiler); Pilkey, Barbara F. (Compiler)
1987-01-01
The proceedings of the 58th Shock and Vibration Symposium, held in Huntsville, Alabama, October 13 to 15, 1987 are given. Mechanical shock, dynamic analysis, space shuttle main engine vibration, isolation and damping, and analytical methods are discussed.
Effectiveness of a passive-active vibration isolation system with actuator constraints
NASA Astrophysics Data System (ADS)
Sun, Lingling; Sun, Wei; Song, Kongjie; Hansen, Colin H.
2014-05-01
In the prediction of active vibration isolation performance, control force requirements were ignored in previous work. This may limit the realization of theoretically predicted isolation performance if control force of large magnitude cannot be supplied by actuators. The behavior of a feed-forward active isolation system subjected to actuator output constraints is investigated. Distributed parameter models are developed to analyze the system response, and to produce a transfer matrix for the design of an integrated passive-active isolation system. Cost functions comprising a combination of the vibration transmission energy and the sum of the squared control forces are proposed. The example system considered is a rigid body connected to a simply supported plate via two passive-active isolation mounts. Vertical and transverse forces as well as a rotational moment are applied at the rigid body, and resonances excited in elastic mounts and the supporting plate are analyzed. The overall isolation performance is evaluated by numerical simulation. The simulation results are then compared with those obtained using unconstrained control strategies. In addition, the effects of waves in elastic mounts are analyzed. It is shown that the control strategies which rely on unconstrained actuator outputs may give substantial power transmission reductions over a wide frequency range, but also require large control force amplitudes to control excited vibration modes of the system. Expected power transmission reductions for modified control strategies that incorporate constrained actuator outputs are considerably less than typical reductions with unconstrained actuator outputs. In the frequency range in which rigid body modes are present, the control strategies can only achieve 5-10 dB power transmission reduction, when control forces are constrained to be the same order of the magnitude as the primary vertical force. The resonances of the elastic mounts result in a notable increase of power transmission in high frequency range and cannot be attenuated by active control. The investigation provides a guideline for design and evaluation of active vibration isolation systems.
Launch vehicle payload adapter design with vibration isolation features
NASA Astrophysics Data System (ADS)
Thomas, Gareth R.; Fadick, Cynthia M.; Fram, Bryan J.
2005-05-01
Payloads, such as satellites or spacecraft, which are mounted on launch vehicles, are subject to severe vibrations during flight. These vibrations are induced by multiple sources that occur between liftoff and the instant of final separation from the launch vehicle. A direct result of the severe vibrations is that fatigue damage and failure can be incurred by sensitive payload components. For this reason a payload adapter has been designed with special emphasis on its vibration isolation characteristics. The design consists of an annular plate that has top and bottom face sheets separated by radial ribs and close-out rings. These components are manufactured from graphite epoxy composites to ensure a high stiffness to weight ratio. The design is tuned to keep the frequency of the axial mode of vibration of the payload on the flexibility of the adapter to a low value. This is the main strategy adopted for isolating the payload from damaging vibrations in the intermediate to higher frequency range (45Hz-200Hz). A design challenge for this type of adapter is to keep the pitch frequency of the payload above a critical value in order to avoid dynamic interactions with the launch vehicle control system. This high frequency requirement conflicts with the low axial mode frequency requirement and this problem is overcome by innovative tuning of the directional stiffnesses of the composite parts. A second design strategy that is utilized to achieve good isolation characteristics is the use of constrained layer damping. This feature is particularly effective at keeping the responses to a minimum for one of the most important dynamic loading mechanisms. This mechanism consists of the almost-tonal vibratory load associated with the resonant burn condition present in any stage powered by a solid rocket motor. The frequency of such a load typically falls in the 45-75Hz range and this phenomenon drives the low frequency design of the adapter. Detailed finite element analysis is used throughout to qualify the design for vibration isolation performance as well as confirm its static and dynamic strength.
Combustion of interacting droplet arrays in a microgravity environment
NASA Technical Reports Server (NTRS)
Dietrich, Daniel L.
1995-01-01
This research program involves the study of one and two dimensional arrays of droplets in a buoyant-free environment. The purpose of the work is to extend the database and theories that exist for single droplets into the regime where droplet interactions are important. The eventual goal being to use the results of this work as inputs to models on spray combustion where droplets seldom burn individually; instead the combustion history of a droplet is strongly influenced by the presence of the neighboring droplets. Throughout the course of the work, a number of related aspects of isolated droplet combustion have also been investigated. This paper will review our progress in microgravity droplet array combustion, advanced diagnostics (specifically L2) applied to isolated droplet combustion, and radiative extinction large droplet flames. A small-scale droplet combustion experiment being developed for the Space Shuttle will also be described.
NASA Astrophysics Data System (ADS)
Valdivia-Silva, Julio E.; Lavan, David; Diego Orihuela-Tacuri, M.; Sanabria, Gabriela
2016-07-01
Currently, studies in Drosophila melanogaster has shown emerging evidence that microgravity stimuli can be detected at the genetic level. Analysis of the transcriptome in the pupal stage of the fruit flies under microgravity conditions versus ground controls has suggested the presence of a few candidate genes as "gravity sensors" which are experimentally validated. Additionally, several studies have shown that microgravity causes inhibitory effects in different types of cancer cells, although the genes involved and responsible for these effects are still unknown. Here, we demonstrate that the genes suggested as the sensors of gravitational waves in Drosophila melanogaster and their human counterpart (orthologous genes) are highly involved in carcinogenesis, proliferation, anti-apoptotic signals, invasiveness, and metastatic potential of breast cancer cell tumors. The transcriptome analyses suggested that the observed inhibitory effect in cancer cells could be due to changes in the genetic expression of these candidates. These results encourage the possibility of new therapeutic targets managed together and not in isolation.
Nonlinear model and attitude dynamics of flexible spacecraft with large amplitude slosh
NASA Astrophysics Data System (ADS)
Deng, Mingle; Yue, Baozeng
2017-04-01
This paper is focused on the nonlinearly modelling and attitude dynamics of spacecraft coupled with large amplitude liquid sloshing dynamics and flexible appendage vibration. The large amplitude fuel slosh dynamics is included by using an improved moving pulsating ball model. The moving pulsating ball model is an equivalent mechanical model that is capable of imitating the whole liquid reorientation process. A modification is introduced in the capillary force computation in order to more precisely estimate the settling location of liquid in microgravity or zero-g environment. The flexible appendage is modelled as a three dimensional Bernoulli-Euler beam and the assumed modal method is employed to derive the nonlinear mechanical model for the overall coupled system of liquid filled spacecraft with appendage. The attitude maneuver is implemented by the momentum transfer technique, and a feedback controller is designed. The simulation results show that the liquid sloshing can always result in nutation behavior, but the effect of flexible deformation of appendage depends on the amplitude and direction of attitude maneuver performed by spacecraft. Moreover, it is found that the liquid sloshing and the vibration of flexible appendage are coupled with each other, and the coupling becomes more significant with more rapid motion of spacecraft. This study reveals that the appendage's flexibility has influence on the liquid's location and settling time in microgravity. The presented nonlinear system model can provide an important reference for the overall design of the modern spacecraft composed of rigid platform, liquid filled tank and flexible appendage.
Non-Coalescence in Microgravity: Science and Technology
NASA Technical Reports Server (NTRS)
Neitzel, G. Paul; Nagy, P.; Carnasciali, M. I.; DellAversana, P.; Vetrano, M. R.; Chen, J.-C.; Kuo, C. W.
2002-01-01
In this project we examine non-coalescence and non-wetting phenomena driven by either thermocapillary convection or forced motion of one surface relative to the other. In both cases, the non-coalescence or non-wetting is enabled by the existence of a lubricating layer of gas that exists to keep the two surfaces in question from coming into contact with one another. Recent progress has been made on several fronts: 1) measurement of the vibrational modes of pinned droplets; 2) development of an apparatus for the measurement of the frictional forces associated with a non-wetting droplet sliding over a solid surface; 3) measurements of the failure modes for non-wetting droplets and the influence of static electric charge on failure-, and 4) numerical simulation of a two-dimensional non-wetting droplet revealing a possible explanation for why the phenomenon has not been able to be observed using water as the droplet liquid. Issue 1) above is of relevance to the use of non-wetting droplets as positioning mechanisms and vibration dampers in a microgravity environment; issue 2) relates to the use of non-wetting droplets as nearly 'frictionless' bearings in low-load applications. Understanding of the failure modes identified in 3) is of importance to any potential application and the numerical simulations conducted under 4) allow us to obtain information about these systems that is currently not available through experimentation Each of these topics will be discussed briefly during the presentation.
NASA Astrophysics Data System (ADS)
Li, Yan; He, Lin; Shuai, Chang-geng; Wang, Chun-yu
2017-10-01
A hybrid isolator consisting of maglev actuator and air spring is proposed and developed for application in active-passive vibration isolation system of ship machinery. The dynamic characteristics of this hybrid isolator are analyzed and tested. The stability and adaptability of this hybrid isolator to shock and swing in the marine environment are improved by a compliant gap protection technique and a disengageable suspended structure. The functions of these new engineering designs are proved by analytical verification and experimental validation of the designed stiffness of such a hybrid isolator, and also by shock adaptability testing of the hybrid isolator. Finally, such hybrid isolators are installed in an engineering mounting loaded with a 200-kW ship diesel generator, and the broadband and low-frequency sinusoidal isolation performance is tested.
Effects of simulated microgravity on arterial nitric oxide synthase and nitrate and nitrite content
NASA Technical Reports Server (NTRS)
Ma, Jin; Kahwaji, Chadi I.; Ni, Zhenmin; Vaziri, Nosratola D.; Purdy, Ralph E.
2003-01-01
The aim of the present work was to investigate the alterations in nitric oxide synthase (NOS) expression and nitrate and nitrite (NOx) content of different arteries from simulated microgravity rats. Male Wistar rats were randomly assigned to either a control group or simulated microgravity group. For simulating microgravity, animals were subjected to hindlimb unweighting (HU) for 20 days. Different arterial tissues were removed for determination of NOS expression and NOx. Western blotting was used to measure endothelial NOS (eNOS) and inducible NOS (iNOS) protein content. Total concentrations of NOx, stable metabolites of nitric oxide, were determined by the chemiluminescence method. Compared with controls, isolated vessels from simulated microgravity rats showed a significant increase in both eNOS and iNOS expression in carotid arteries and thoracic aorta and a significant decrease in eNOS and iNOS expression of mesenteric arteries. The eNOS and iNOS content of cerebral arteries, as well as that of femoral arteries, showed no differences between the two groups. Concerning NOx, vessels from HU rats showed an increase in cerebral arteries, a decrease in mesenteric arteries, and no change in carotid artery, femoral artery and thoracic aorta. These data indicated that there were differential alterations in NOS expression and NOx of different arteries after hindlimb unweighting. We suggest that these changes might represent both localized adaptations to differential body fluid redistribution and other factors independent of hemodynamic shifts during simulated microgravity.
Research on LQR optimal control method of active engine mount
NASA Astrophysics Data System (ADS)
Huan, Xie; Yu, Duan
2018-04-01
In this paper, the LQR control method is applied to the active mount of the engine, and a six-cylinder engine excitation model is established. Through the joint simulation of AMESim and MATLAB, the vibration isolation performance of the active mount system and the passive mount system is analyzed. Excited by the multi-engine operation, the simulation results of the vertical displacement, acceleration and dynamic deflection of the vehicle body show that the vibration isolation capability of the active mount system is superior to that of the passive mount system. It shows that compared with the passive mount, LQR active mount can greatly improve the vibration isolation performance, which proves the feasibility and effectiveness of the LQR control method.
Analysis of material parameter effects on fluidlastic isolators performance
NASA Astrophysics Data System (ADS)
Cheng, Q. Y.; Deng, J. H.; Feng, Z. Z.; Qian, F.
2018-01-01
Control of vibration in helicopters has always been a complex and challenging task. The fluidlastic isolators become more and more widely used because the fluids are non-toxic, non-corrosive, nonflammable, and compatible with most elastomers and adhesives. In the field of the fluidlastic isolators design, the selection of design parameters of fluid and rubber is very important to obtain efficient vibration-suppressed. Aiming at getting the property of fluidlastic isolator to material design parameters, a dynamic equation is set up based on the dynamic theory. And the dynamic analysis is carried out. The influences of design parameters on the property of fluidlastic isolator are calculated. The material parameters examined are the properties of fluid and rubber. Analysis results showed that the design parameters such as density of fluid, viscosity coefficient of fluid, stiffness of rubber (K1) and loss coefficient of rubber have obvious influence on the performance of isolator. Base on the results of the study it is concluded that the efficient vibration-suppressed can be obtained by the selection of design parameters.
Vibration influence on control of single motor unit activity.
Malouin, F; Simard, T
1978-03-01
Effects of vibratory stimulation and maximal isometric contraction on a fine motor control task were evaluated in 17 human subjects. Electromyographic audiovisual feedback cues derived from two fine-wire bipolar electrodes, inserted to a depth of 12 and 6 mm respectively, were used to train the subjects to isolate a motor unit in the extensor carpi radialis brevis muscle. A specially designed compressed air driven vibrator providing vibratory stimulation with an amplitude of 2 mm and a frequency range of 120-160 cycles per second was applied to the muscle tendon. A significant decrease was found in the subjects; ability to isolate the pretest motor unit during and after continuous and interrupted periods of vibration and following a maximal isometric contraction of the extensor carpi radials brevis muscle. Individual variations in the subjects' responses to the forms of application of the vibratory stimulus, electrode preference and feedback specificity were observed. Results suggest that marked spatial recruitment of motor units, brought into action by the vibration stimulus or by the maximal isometric contraction, interfered with inhibitory mechanisms necessary to achieve isolation and control of a single motor unit. A therapeutic application of vibration, based on the marked spatial recruitment observed during and after vibration, is proposed for muscle reeducation.
Investigation on active vibration isolation of a Stewart platform with piezoelectric actuators
NASA Astrophysics Data System (ADS)
Wang, Chaoxin; Xie, Xiling; Chen, Yanhao; Zhang, Zhiyi
2016-11-01
A Stewart platform with piezoelectric actuators is presented for micro-vibration isolation. The Jacobi matrix of the Stewart platform, which reveals the relationship between the position/pointing of the payload and the extensions of the six struts, is derived by kinematic analysis. The dynamic model of the Stewart platform is established by the FRF (frequency response function) synthesis method. In the active control loop, the direct feedback of integrated forces is combined with the FxLMS based adaptive feedback to dampen vibration of inherent modes and suppress transmission of periodic vibrations. Numerical simulations were conducted to prove vibration isolation performance of the Stewart platform under random and periodical disturbances, respectively. In the experiment, the output consistencies of the six piezoelectric actuators were measured at first and the theoretical Jacobi matrix as well as the feedback gain of each piezoelectric actuator was subsequently modified according to the measured consistencies. The direct feedback loop was adjusted to achieve sufficient active damping and the FxLMS based adaptive feedback control was adopted to suppress vibration transmission in the six struts. Experimental results have demonstrated that the Stewart platform can achieve 30 dB attenuation of periodical disturbances and 10-20 dB attenuation of random disturbances in the frequency range of 5-200 Hz.
A NASA/Industry/University Partnership for Development of Dual-Use Vibration Isolation Technology
NASA Technical Reports Server (NTRS)
Tinker, Michael L.
1994-01-01
A partnership is described that was formed as a result of a NASA university grant for the study of wire rope vibration isolation systems. Vibration isolators of this type are currently used in the Space Shuttle Orbiter and engine test facility, and have potential application in the international space station and other space vehicles. Wire rope isolators were considered for use on the Hubble Space Telescope and the military has used wire rope technology extensively. The desire of the wire rope industry to expand sales in commercial markets coupled with results of the prior NASA funded study, led to the formation of a partnership including NASA, the university involved in the research grant, and a small company that designs wire rope systems. Goals include the development of improved mathematical models and a designers handbook to facilitate the use of the new modeling tools.
Semi-active control of helicopter vibration using controllable stiffness and damping devices
NASA Astrophysics Data System (ADS)
Anusonti-Inthra, Phuriwat
Semi-active concepts for helicopter vibration reduction are developed and evaluated in this dissertation. Semi-active devices, controllable stiffness devices or controllable orifice dampers, are introduced; (i) in the blade root region (rotor-based concept) and (ii) between the rotor and the fuselage as semi-active isolators (in the non-rotating frame). Corresponding semi-active controllers for helicopter vibration reduction are also developed. The effectiveness of the rotor-based semi-active vibration reduction concept (using stiffness and damping variation) is demonstrated for a 4-bladed hingeless rotor helicopter in moderate- to high-speed forward flight. A sensitivity study shows that the stiffness variation of root element can reduce hub vibrations when proper amplitude and phase are used. Furthermore, the optimal semi-active control scheme can determine the combination of stiffness variations that produce significant vibration reduction in all components of vibratory hub loads simultaneously. It is demonstrated that desired cyclic variations in properties of the blade root region can be practically achieved using discrete controllable stiffness devices and controllable dampers, especially in the flap and lag directions. These discrete controllable devices can produce 35--50% reduction in a composite vibration index representing all components of vibratory hub loads. No detrimental increases are observed in the lower harmonics of blade loads and blade response (which contribute to the dynamic stresses) and controllable device internal loads, when the optimal stiffness and damping variations are introduced. The effectiveness of optimal stiffness and damping variations in reducing hub vibration is retained over a range of cruise speeds and for variations in fundamental rotor properties. The effectiveness of the semi-active isolator is demonstrated for a simplified single degree of freedom system representing the semi-active isolation system. The rotor, represented by a lumped mass under harmonic force excitation, is supported by a spring and a parallel damper on the fuselage (assumed to have infinite mass). Properties of the spring or damper can then be controlled to reduce transmission of the force into the fuselage or the support structure. This semi-active isolation concept can produce additional 30% vibration reduction beyond the level achieved by a passive isolator. Different control schemes (i.e. open-loop, closed-loop, and closed-loop adaptive schemes) are developed and evaluated to control transmission of vibratory loads to the support structure (fuselage), and it is seen that a closed-loop adaptive controller is required to retain vibration reduction effectiveness when there is a change in operating condition. (Abstract shortened by UMI.)
Characterization of Multilayer Piezoelectric Actuators for Use in Active Isolation Mounts
NASA Technical Reports Server (NTRS)
Wise, Stephanie A.; Hooker, Matthew W.
1997-01-01
Active mounts are desirable for isolating spacecraft science instruments from on-board vibrational sources such as motors and release mechanisms. Such active isolation mounts typically employ multilayer piezoelectric actuators to cancel these vibrational disturbances. The actuators selected for spacecraft systems must consume minimal power while exhibiting displacements of 5 to 10 micron under load. This report describes a study that compares the power consumption, displacement, and load characteristics of four commercially available multilayer piezoelectric actuators. The results of this study indicate that commercially available actuators exist that meet or exceed the design requirements used in spacecraft isolation mounts.
Evaporation from a meniscus within a capillary tube in microgravity
NASA Technical Reports Server (NTRS)
Hallinan, K. P.
1993-01-01
The following represents a summary of progress made on the project 'Evaporation from a Capillary Meniscus in Microgravity' being conducted at the University of Dayton during the period 1 Dec. 1992 to 30 Nov. 1993. The efforts during this first year of the grant focused upon the following specific tasks: (1) application of a 3-D scattering particle image velocimetry technique to thin film velocity field measurement; (2) modeling the thermo-fluid behavior of the evaporating meniscus in 0-g within large diameter capillaries; (3) conceptualization of the space flight test cell (loop) configuration; (4) construction of prototypes of the test loop configuration; (5) conduct of experiments in 0-g in the 2.2 second drop tower at NASA-LeRC to study evaporation from a capillary meniscus within a square cuvette; and (6) investigation of the effect of vibrations on the stability of the meniscus. An overview of the work completed within these six task areas is presented.
Method of vibration isolating an aircraft engine
NASA Technical Reports Server (NTRS)
Bender, Stanley I. (Inventor); Butler, Lawrence (Inventor); Dawes, Peter W. (Inventor)
1991-01-01
A method for coupling an engine to a support frame for mounting to a fuselage of an aircraft using a three point vibration isolating mounting system in which the load reactive forces at each mounting point are statically and dynamically determined. A first vibration isolating mount pivotably couples a first end of an elongated support beam to a stator portion of an engine with the pivoting action of the vibration mount being oriented such that it is pivotable about a line parallel to a center line of the engine. An aft end of the supporting frame is coupled to the engine through an additional pair of vibration isolating mounts with the mounts being oriented such that they are pivotable about a circumference of the engine. The aft mounts are symmetrically spaced to each side of the supporting frame by 45 degrees. The relative orientation between the front mount and the pair of rear mounts is such that only the rear mounts provide load reactive forces parallel to the engine center line, in support of the engine to the aircraft against thrust forces. The forward mount is oriented so as to provide only radial forces to the engine and some lifting forces to maintain the engine in position adjacent a fuselage. Since each mount is connected to provide specific forces to support the engine, forces required of each mount are statically and dynamically determinable.
Vibration isolation of a ship's seat
NASA Astrophysics Data System (ADS)
Agahi, Maryam; Samani, Mehrdad B.; Behzad, Mehdi
2005-05-01
Different factors cause vibration. These vibrations make the voyages difficult and reduce comfort and convenience in passenger ships. In this paper, the creating factors of vibration have discussed first, then with mathematical modelling it will be attempted to minimize the vibration over the crew's seat. The modelling consists of a system with two degrees of freedom and by using vibrationisolation with passive method of Tuned Mass Damper (TMD) it will be tried to reduce the vibration over personnel. Moreover using active control systems will be compared with passive systems.
Cherng, John G; Eksioglu, Mahmut; Kizilaslan, Kemal
2009-03-01
This paper presents a systematic design approach, which is the result of years of research effort, to ergonomic re-design of rivet tools, i.e. rivet hammers and bucking bars. The investigation was carried out using both ergonomic approach and mechanical analysis of the rivet tools dynamic behavior. The optimal mechanical design parameters of the re-designed rivet tools were determined by Taguchi method. Two ergonomically re-designed rivet tools with vibration damping/isolation mechanisms were tested against two conventional rivet tools in both laboratory and field tests. Vibration characteristics of both types of tools were measured by laboratory tests using a custom-made test fixture. The subjective field evaluations of the tools were performed by six experienced riveters at an aircraft repair shop. Results indicate that the isolation spring and polymer damper are very effective in reducing the overall level of vibration under both unweighted and weighted acceleration conditions. The mass of the dolly head and the housing played a significant role in the vibration absorption of the bucking bars. Another important result was that the duct iron has better vibration reducing capability compared to steel and aluminum for bucking bars. Mathematical simulation results were also consistent with the experimental results. Overall conclusion obtained from the study was that by applying the design principles of ergonomics and by adding vibration damping/isolation mechanisms to the rivet tools, the vibration level can significantly be reduced and the tools become safer and user friendly. The details of the experience learned, design modifications, test methods, mathematical models and the results are included in the paper.
ELITE-3 active vibration isolation workstation
NASA Astrophysics Data System (ADS)
Anderson, Eric H.; Houghton, Bowie
2001-06-01
This paper describes the development and capabilities of ELITE-3, a product that incorporates piezoelectric actuators to provide ultrastable work surfaces for very high resolution wafer production, metrology, microscopy, and other applications. The electromechanical, electronic, and software/firmware parts of the ELITE-3 active workstation are described, with an emphasis on considerations relating to the piezoelectric transducers. Performance of the system and its relation to the smart materials is discussed. As the floor beneath a vibration-sensitive instrument supported by ELITE-3 moves, piezoelectrics are controlled to minimize the motion of the instrument. A digital signal processor (DSP) determines the appropriate signals to apply to the actuators. A PC-based interface allows reprogramming of control algorithms and resetting of other parameters within the firmware. The modular product allows incorporation of vibration isolator, actuator and sensor modules into original equipment manufacturer (OEM) products. Alternatively, a workstation can be integrated as an integrated standalone system. The paper describes the system architecture, overall approach to vibration isolation, and various system components, and summarizes motivations for key design approaches.
A feasibility work on the applications of MRE to automotive components
NASA Astrophysics Data System (ADS)
Kim, S. H.; Park, Y. J.; Cha, A. R.; Kim, G. W.; Bang, J. H.; Lim, C. S.; Choi, S. B.
2018-03-01
A feasibility work on the application of magneto-rheological elastomers (MREs) to automotive components, such as engine mounts is presented. While vehicle components require the high resonance frequency in terms of ride quality and handling, it is required to have the low resonance frequency to isolate the incoming vibration. With the conventional automotive technologies, it is challenging to combine these two conflicting performance trade-offs, ride quality including handling, and NVH (noise, vibration and harshness). Over the last decades, MREs, one of the new emerging smart materials, have been widely used to resolve this technical limitation. For example, an advanced engine mount was developed by using MRE to isolate the vibration transmitting from engines. In this paper, we will focus on rear cross member bushes, which is a key component for isolating the vibration from the road, and demonstrate their improved performance by utilizing MRE. The resonance frequency shift induced by the stiffness change of MRE will be presented through the frequency response functions estimated by simulation result.
A vibration correction method for free-fall absolute gravimeters
NASA Astrophysics Data System (ADS)
Qian, J.; Wang, G.; Wu, K.; Wang, L. J.
2018-02-01
An accurate determination of gravitational acceleration, usually approximated as 9.8 m s-2, has been playing an important role in the areas of metrology, geophysics, and geodetics. Absolute gravimetry has been experiencing rapid developments in recent years. Most absolute gravimeters today employ a free-fall method to measure gravitational acceleration. Noise from ground vibration has become one of the most serious factors limiting measurement precision. Compared to vibration isolators, the vibration correction method is a simple and feasible way to reduce the influence of ground vibrations. A modified vibration correction method is proposed and demonstrated. A two-dimensional golden section search algorithm is used to search for the best parameters of the hypothetical transfer function. Experiments using a T-1 absolute gravimeter are performed. It is verified that for an identical group of drop data, the modified method proposed in this paper can achieve better correction effects with much less computation than previous methods. Compared to vibration isolators, the correction method applies to more hostile environments and even dynamic platforms, and is expected to be used in a wider range of applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xiaoyong, E-mail: zhangxy@buaa.edu.cn, E-mail: yanxiaojun@buaa.edu.cn; Yan, Xiaojun, E-mail: zhangxy@buaa.edu.cn, E-mail: yanxiaojun@buaa.edu.cn; Collaborative Innovation Center of Advanced Aero-Engine, Beijing 100191
This note presents a component-level frequency tunable isolator for vibration-sensitive chips. The isolator employed 8 U-shaped shape memory alloy (SMA) beams to support an isolation island (used for mounting chips). Due to the temperature-induced Young’s modulus variation of SMA, the system stiffness of the isolator can be controlled through heating the SMA beams. In such a way, the natural frequency of the isolator can be tuned. A prototype was fabricated to evaluate the concept. The test results show that the natural frequency of the isolator can be tuned in the range of 64 Hz–97 Hz by applying different heating strategies.more » Moreover, resonant vibration can be suppressed significantly (the transmissibility decreases about 65% near the resonant frequency) using a real-time tuning method.« less
Checinska Sielaff, Aleksandra; Singh, Nitin K; Allen, Jonathan E; Thissen, James; Jaing, Crystal; Venkateswaran, Kasthuri
2016-12-29
The draft genome sequences of 20 biosafety level 2 (BSL-2) opportunistic pathogens isolated from the environmental surfaces of the International Space Station (ISS) were presented. These genomic sequences will help in understanding the influence of microgravity on the pathogenicity and virulence of these strains when compared with Earth strains. Copyright © 2016 Checinska Sielaff et al.
Effect of structural flexibility on the design of vibration-isolating mounts for aircraft engines
NASA Technical Reports Server (NTRS)
Phillips, W. H.
1984-01-01
Previous analyses of the design of vibration-isolating mounts for a rear-mounted engine to decouple linear and rotational oscillations are extended to take into account flexibility of the engine-mount structure. Equations and curves are presented to allow the design of mount systems and to illustrate the results for a range of design conditions.
NASA Technical Reports Server (NTRS)
Heyman, Joseph S.
1993-01-01
Pump uses acoustic-radiation forces. Momentum transferred from sound waves to sound-propagating material in way resulting in net pumping action on material. Acoustic pump is solid-state pump. Requires no moving parts, entirely miniaturized, and does not invade pumped environment. Silent, with no conventional vibration. Used as pump for liquid, suspension, gas, or any other medium interacting with radiation pressure. Also used where solid-state pump needed for reliability and controllability. In microgravity environment, device offers unusual control for low flow rates. For medical or other applications in which contamination cannot be allowed, offers noninvasive pumping force.
Self-charging of identical grains in the absence of an external field.
Yoshimatsu, R; Araújo, N A M; Wurm, G; Herrmann, H J; Shinbrot, T
2017-01-06
We investigate the electrostatic charging of an agitated bed of identical grains using simulations, mathematical modeling, and experiments. We simulate charging with a discrete-element model including electrical multipoles and find that infinitesimally small initial charges can grow exponentially rapidly. We propose a mathematical Turing model that defines conditions for exponential charging to occur and provides insights into the mechanisms involved. Finally, we confirm the predicted exponential growth in experiments using vibrated grains under microgravity, and we describe novel predicted spatiotemporal states that merit further study.
Self-charging of identical grains in the absence of an external field
NASA Astrophysics Data System (ADS)
Yoshimatsu, R.; Araújo, N. A. M.; Wurm, G.; Herrmann, H. J.; Shinbrot, T.
2017-01-01
We investigate the electrostatic charging of an agitated bed of identical grains using simulations, mathematical modeling, and experiments. We simulate charging with a discrete-element model including electrical multipoles and find that infinitesimally small initial charges can grow exponentially rapidly. We propose a mathematical Turing model that defines conditions for exponential charging to occur and provides insights into the mechanisms involved. Finally, we confirm the predicted exponential growth in experiments using vibrated grains under microgravity, and we describe novel predicted spatiotemporal states that merit further study.
Something from nothing: self-charging of identical grains
NASA Astrophysics Data System (ADS)
Shinbrot, Troy; Yoshimatsu, Ryuta; Nuno Araujo, Nuno; Wurm, Gerhard; Herrmann, Hans
We investigate the electrostatic charging of an agitated bed of identical grains using simulations, mathematical modeling, and experiments. We simulate charging with a discrete-element model including electrical multipoles and find that infinitesimally small initial charges can grow exponentially rapidly. We propose a mathematical Turing model that defines conditions for exponential charging to occur and provides insights into the mechanisms involved. Finally, we confirm the predicted exponential growth in experiments using vibrated grains under microgravity, and we describe novel predicted spatiotemporal states that merit further study. I acknowledge support from NSF/DMR, award 1404792.
Self-charging of identical grains in the absence of an external field
Yoshimatsu, R.; Araújo, N. A. M.; Wurm, G.; Herrmann, H. J.; Shinbrot, T.
2017-01-01
We investigate the electrostatic charging of an agitated bed of identical grains using simulations, mathematical modeling, and experiments. We simulate charging with a discrete-element model including electrical multipoles and find that infinitesimally small initial charges can grow exponentially rapidly. We propose a mathematical Turing model that defines conditions for exponential charging to occur and provides insights into the mechanisms involved. Finally, we confirm the predicted exponential growth in experiments using vibrated grains under microgravity, and we describe novel predicted spatiotemporal states that merit further study. PMID:28059124
NASA Technical Reports Server (NTRS)
Hailey, Melinda; Bayuse, Tina
2009-01-01
The need for a new system of injectable medications aboard the International Space Station (ISS) was identified. It is desired that this system fly medications in their original manufacturer's packaging, allowing the system to comply with United States Pharmacopeia (USP) guidelines while minimizing the resupply frequency due to medication expiration. Pre-filled syringes are desired, however, the evolving nature of the healthcare marketplace requires flexibility in the redesign. If medications must be supplied in a vial, a system is required that allows for the safe withdrawal of medication from the vial into a syringe for administration in microgravity. During two reduced gravity flights, the effectiveness of two versions of a blunt cannula and needleless vial adaptors was evaluated to facilitate the withdrawal of liquid medication from a vial into a syringe for injection. Other parameters assessed included the ability to withdraw the required amount of medication and whether this is dependent on vial size, liquid, or the total volume of fluid within the vial. Injectable medications proposed for flight on ISS were used for this evaluation. Due to differing sizes of vials and the fluid properties of the medications, the needleless vial adaptors proved to be too cumbersome to recommend for use on the ISS. The blunt cannula, specifically the plastic version, proved to be more effective at removing medication from the various sizes of vials and are the recommended hardware for ISS. Fluid isolation within the vials and syringes is an important step in preparing medication for injection regardless of the hardware used. Although isolation is a challenge in the relatively short parabolas during flight, it is not an obstacle for sustained microgravity. This presentation will provide an overview of the products tested as well as the challenges identified during the microgravity flights.
Vibration Isolation for a Pulse-Tube Research Cryostat
NASA Astrophysics Data System (ADS)
Boyd, S. T. P.
2007-03-01
Commercial pulse-tube refrigerators (PTRs) now provide base temperatures < 3K, low vibration, and long life. However, vibration levels are still often too large for LT and ULT measurements. One highly successful approach to vibration isolation in very small cryostats has been the use of 1-atm He exchange gas, in an envelope with a flexible element, interposed between the cold head and the cryostat. A design study to scale up this technique for a PTR research cryostat has previously been presented. However, some questions remained, given the violation of ``adiabaticity'' of the ``pulse tubes'' in the PTR and the potential for convective flow and Taconis oscillations of the exchange gas in the open geometry. We present experimental results obtained on the cryostat with a rigid exchange-gas volume, which permitted the variation of exchange-gas pressure. The news is all good so far: the heat exchangers perform well and in reasonable agreement with calculations, no evidence is seen of deleterious effects due to convection or Taconis oscillations or gas permeation, and the 2.8K PTR base temperature is only raised by 0.1K or less. Work to implement the fully-vibration-isolated cryostat is now underway.
Dynamics and control of high precision magnetically levitated vibration isolation systems
NASA Technical Reports Server (NTRS)
Youcef-Toumi, K.; Yeh, T-J.
1992-01-01
Vibration control of flexible structures has received a great deal of interest in recent years. Several authors have investigated this topic in the areas of robot manipulators, space structures, and flexible rotors. Key issues associated with the dynamics and control of vibration isolation systems are addressed. Among other important issues to consider in the control of such systems, the location and number of actuators and sensors are essential to effectively control and suppress vibration. We first address the selection of proper actuator and sensor locations leading to a controllable and observable system. The Rayleigh-Ritz modal analysis method is used to develop a lumped-parameter model of a flexible vibration isolation table top. This model is then used to investigate the system's controllability and observability including the coupling effects introduced by the magnetic bearing. This analysis results in necessary and sufficient conditions for proper selection of actuator and sensor locations. These locations are also important for both controller system's complexity and stability of point of views. A favorable pole-zero plot of the open loop transfer functions is presented. Necessary and sufficient conditions for reducing the controller complexity are derived. The results are illustrated by examples using approximate mode shape functions.
The Characteristics of Vibration Isolation System with Damping and Stiffness Geometrically Nonlinear
NASA Astrophysics Data System (ADS)
Lu, Ze-Qi; Chen, Li-Qun; Brennan, Michael J.; Li, Jue-Ming; Ding, Hu
2016-09-01
The paper concerns an investigation into the use of both stiffness and damping nonlinearity in the vibration isolator to improve its effectiveness. The nonlinear damping and nonlinear stiffness are both achieved by horizontal damping and stiffness as the way of the geometrical nonlinearity. The harmonic balance method is used to analyze the force transmissibility of such vibration isolation system. It is found that as the horizontal damping increasing, the height of the force transmissibility peak is decreased and the high-frequency force transmissibility is almost the same. The results are also validated by some numerical method. Then the RMS of transmissibility under Gaussian white noise is calculated numerically, the results demonstrate that the beneficial effects of the damping nonlinearity can be achieved under random excitation.
Impact of conditions at start-up on thermovibrational convective flow.
Melnikov, D E; Shevtsova, V M; Legros, J C
2008-11-01
The development of thermovibrational convection in a cubic cell filled with high Prandtl number liquid (isopropanol) is studied. Direct nonlinear simulations are performed by solving three-dimensional Navier-Stokes equations in the Boussinesq approximation. The cell is subjected to high frequency periodic oscillations perpendicular to the applied temperature gradient under zero gravity. Two types of vibrations are imposed: either as a sine or cosine function of time. It is shown that the initial vibrational phase plays a significant role in the transient behavior of thermovibrational convective flow. Such knowledge is important to interpret correctly short-duration experimental results performed in microgravity, among which the most accessible are drop towers ( approximately 5s) and parabolic flights ( approximately 20s) . It is obtained that under sine vibrations, the flow reaches steady state within less than one thermal time. Under cosine acceleration, this time is 2 times longer. For cosine excitations, the Nusselt number is approximately 10 times smaller in comparison with the sine case. Besides, in the case of cosine, the Nusselt number oscillates with double frequency. However, at the steady state, time-averaged and oscillatory characteristics of the flow are independent of the vibrational start-up. The only feature that always differs the two cases is the phase difference between the velocity, temperature, and accelerations. We have found that due to nonlinear response of the system to the imposed vibrations, the phase shift between velocity and temperature is never equal exactly to pi2 , at least in weightlessness. Thus, heat transport always exists from the beginning of vibrations, although it might be weak.
Evaluating the effectiveness of gloves in reducing the hazards of hand-transmitted vibration.
Griffin, M J
1998-05-01
A method of evaluating the effectiveness of gloves in reducing the hazards of hand-transmitted vibration is proposed. The glove isolation effectiveness was calculated from: (a) the measured transmissibility of a glove, (b) the vibration spectrum on the handle of a specific tool (or class of tools), and (c) the frequency weighting indicating the degree to which different frequencies of vibration cause injury. With previously reported tool vibration spectra and glove transmissibilities (from 10-1000 Hz), the method was used to test 10 gloves with 20 different powered tools. The frequency weighting for hand-transmitted vibration advocated in British standard 6842 (1987) and international standard 5349 (1986) greatly influences the apparent isolation effectiveness of gloves. With the frequency weighting, the gloves had little effect on the transmission of vibration to the hand from most of the tools. Only for two or three tools (those dominated by high frequency vibration) did any glove provide useful attenuation. Without the frequency weighting, some gloves showed useful attenuation of the vibration on most powered tools. In view of the uncertain effect of the vibration frequency in the causation of disorders from hand-transmitted vibration, it is provisionally suggested that the wearing of a glove by the user of a particular vibratory tool could be encouraged if the glove reduces the transmission of vibration when it is evaluated without the frequency weighting and does not increase the vibration when it is evaluated with the frequency weighting. A current international standard for the measurement and evaluation of the vibration transmitted by gloves can classify a glove as an antivibration glove when it provides no useful attenuation of vibration, whereas a glove providing useful attenuation of vibration on a specific tool can fail the test.
NASA Astrophysics Data System (ADS)
Unruh, E.; Brungs, S.; Langer, S.; Bornemann, G.; Frett, T.; Hansen, P.-D.
2016-06-01
Microgravity induces alterations in the functioning of immune cell; however, the underlying mechanisms have not yet been identified. In this study, hemocytes (blood cells) of the blue mussel Mytilus edulis were investigated under altered gravity conditions. The study was conducted on the ground in preparation for the BIOLAB TripleLux-B experiment, which will be performed on the International Space Station (ISS). On-line kinetic measurements of reactive oxygen species (ROS) production during the oxidative burst and thus cellular activity of isolated hemocytes were performed in a photomultiplier (PMT)-clinostat (simulated microgravity) and in the 1 g operation mode of the clinostat in hypergravity on the Short-Arm Human Centrifuge (SAHC) as well as during parabolic flights. In addition to studies with isolated hemocytes, the effect of altered gravity conditions on whole animals was investigated. For this purpose, whole mussels were exposed to hypergravity (1.8 g) on a multi-sample incubator centrifuge (MuSIC) or to simulated microgravity in a submersed clinostat. After exposure for 48 h, hemocytes were taken from the mussels and ROS production was measured under 1 g conditions. The results from the parabolic flights and clinostat studies indicate that mussel hemocytes respond to altered gravity in a fast and reversible manner. Hemocytes (after cryo-conservation) exposed to simulated microgravity ( μ g), as well as fresh hemocytes from clinorotated animals, showed a decrease in ROS production. Measurements during a permanent exposure of hemocytes to hypergravity (SAHC) show a decrease in ROS production. Hemocytes of mussels measured after the centrifugation of whole mussels did not show an influence to the ROS response at all. Hypergravity during parabolic flights led to a decrease but also to an increase in ROS production in isolated hemocytes, whereas the centrifugation of whole mussels did not influence the ROS response at all. This study is a good example how ground-based facility experiments can be used to prepare for an upcoming ISS experiment, in this case the TRIPLE LUX B experiment.
Reducing vibration transfer from power plants by active methods
NASA Astrophysics Data System (ADS)
Kiryukhin, A. V.; Milman, O. O.; Ptakhin, A. V.
2017-12-01
The possibility of applying the methods of active damping of vibration and pressure pulsations for reducing their transfer from power plants into the environment, the seating, and the industrial premises are considered. The results of experimental works implemented by the authors on the active broadband damping of vibration and dynamic forces after shock-absorption up to 15 dB in the frequency band up to 150 Hz, of water pressure pulsations in the pipeline up to 20 dB in the frequency band up to 600 Hz, and of spatial low-frequency air noise indoors of a diesel generator at discrete frequency up to 20 dB are presented. It is shown that a reduction of vibration transfer through a vibration-isolating junction (expansion joints) of pipelines with liquid is the most complicated and has hardly been developed so far. This problem is essential for vibration isolation of power equipment from the seating and the environment through pipelines with water and steam in the power and transport engineering, shipbuilding, and in oil and gas pipelines in pumping stations. For improving efficiency, reducing the energy consumption, and decreasing the overall dimensions of equipment, it is advisable to combine the work of an active system with passive damping means, the use of which is not always sufficient. The executive component of the systems of active damping should be placed behind the vibration isolators (expansion joints). It is shown that the existence of working medium and connection of vibration with pressure pulsations in existing designs of pipeline expansion joints lead to growth of vibration stiffness of the expansion joint with the environment by two and more orders as compared with the static stiffness and makes difficulties for using the active methods. For active damping of vibration transfer through expansion joints of pipelines with a liquid, it is necessary to develop expansion joint structures with minimal connection of vibrations and pulsations and minimal vibration stiffness in the specified frequency range. The example of structure of such expansion joint and its test results are presented.
Modeling and analysis of a flywheel microvibration isolation system for spacecrafts
NASA Astrophysics Data System (ADS)
Wei, Zhanji; Li, Dongxu; Luo, Qing; Jiang, Jianping
2015-01-01
The microvibrations generated by flywheels running at full speed onboard high precision spacecrafts will affect stability of the spacecraft bus and further degrade pointing accuracy of the payload. A passive vibration isolation platform comprised of multi-segment zig-zag beams is proposed to isolate disturbances of the flywheel. By considering the flywheel and the platform as an integral system with gyroscopic effects, an equivalent dynamic model is developed and verified through eigenvalue and frequency response analysis. The critical speeds of the system are deduced and expressed as functions of system parameters. The vibration isolation performance of the platform under synchronal and high-order harmonic disturbances caused by the flywheel is investigated. It is found that the speed range within which the passive platform is effective and the disturbance decay rate of the system are greatly influenced by the locations of the critical speeds. Structure optimization of the platform is carried out to enhance its performance. Simulation results show that a properly designed vibration isolation platform can effectively reduce disturbances emitted by the flywheel operating above the critical speeds of the system.
NASA Technical Reports Server (NTRS)
Fries, M.; Abell, P.; Brisset, J.; Britt, D.; Colwell, J.; Durda, D.; Dove, A.; Graham, L.; Hartzell, C.; John, K.;
2016-01-01
The Strata-1 experiment will study the evolution of asteroidal regolith through long-duration exposure of simulant materials to the microgravity environment on the International Space Station (ISS). Many asteroids feature low bulk densities, which implies high values of porosity and a mechanical structure composed of loosely bound particles, (i.e. the "rubble pile" model), a prime example of a granular medium. Even the higher-density, mechanically coherent asteroids feature a significant surface layer of loose regolith. These bodies are subjected to a variety of forces and will evolve in response to very small perturbations such as micrometeoroid impacts, planetary flybys, and the YORP effect. Our understanding of this dynamical evolution and the inter-particle forces involved would benefit from long-term observations of granular materials exposed to small vibrations in microgravity. A detailed understanding of asteroid mechanical evolution is needed in order to predict the surface characteristics of as-of-yet unvisited bodies, to understand the larger context of samples collected by missions such as OSIRIS-REx and Hayabusa 1 and 2, and to mitigate risks for both manned and unmanned missions to asteroidal bodies. Understanding regolith dynamics will inform designs of how to land and set anchors, safely sample/move material on asteroidal surfaces, process large volumes of material for in situ resource utilization (ISRU) purposes, and, in general, predict behavior of large and small particles on disturbed asteroid surfaces.
NASA Astrophysics Data System (ADS)
Hou, Junfang; jing, Min; Zhang, Weihua; Lu, Yahui; He, Haiwen
2017-12-01
As for the isolation problem of electronic equipments on vehicle, the vibration response characteristics of dry friction damping isolation system under base displacement excitation was analyzed in theory by harmonic balance method, and the displacement response was compared between the isolation systems with dry friction damping and vicious damping separately. The results show that the isolation system with small dry friction damping can’t meet the demands of displacement reduction close to the natural frequency, and it can realize full-frequency vibration isolation by improving dry friction damping when the lock frequency passes beyond the resonance frequency band. The results imply that the damping mechanism of dry friction isolator can’t be described only by dry friction damping, and the composite damping with dry friction and vicious damping is more appropriate.
Modeling of vibrations isolation and arrest by shape memory parts and permanent magnets
NASA Astrophysics Data System (ADS)
Belyaev, Fedor S.; Volkov, Aleksandr E.; Evard, Margarita E.; Vikulenkov, Andrey V.; Uspenskiy, Evgeniy S.
2018-05-01
A vibration protection system under consideration consists of a payload connected to a vibrating housing by shape memory alloy (SMA) slotted springs. To provide an arrest function two permanent magnets are inserted into the system. The slotted SMA elements are preliminary deformed in the martensitic state. Activation of one element by heating initiates force and displacement generation, which provide an arrest of the payload by magnets. The magnets also secure the arrest mode after cooling of the SMA element. Activation of the other element results in uncaging of the payload and switching to the vibration isolation mode. Computer simulations of arrest and uncaging when the housing is quiescent or producing sine-wave displacements were carried out. Functional-mechanical behavior of SMA parts was described by means of a microstructural model.
Kodejska, Milos; Mokry, Pavel; Linhart, Vaclav; Vaclavik, Jan; Sluka, Tomas
2012-12-01
An adaptive system for the suppression of vibration transmission using a single piezoelectric actuator shunted by a negative capacitance circuit is presented. It is known that by using a negative-capacitance shunt, the spring constant of a piezoelectric actuator can be controlled to extreme values of zero or infinity. Because the value of spring constant controls a force transmitted through an elastic element, it is possible to achieve a reduction of transmissibility of vibrations through the use of a piezoelectric actuator by reducing its effective spring constant. Narrow frequency range and broad frequency range vibration isolation systems are analyzed, modeled, and experimentally investigated. The problem of high sensitivity of the vibration control system to varying operational conditions is resolved by applying an adaptive control to the circuit parameters of the negative capacitor. A control law that is based on the estimation of the value of the effective spring constant of a shunted piezoelectric actuator is presented. An adaptive system which achieves a self-adjustment of the negative capacitor parameters is presented. It is shown that such an arrangement allows the design of a simple electronic system which offers a great vibration isolation efficiency under variable vibration conditions.
The influence of flywheel micro vibration on space camera and vibration suppression
NASA Astrophysics Data System (ADS)
Li, Lin; Tan, Luyang; Kong, Lin; Wang, Dong; Yang, Hongbo
2018-02-01
Studied the impact of flywheel micro vibration on a high resolution optical satellite that space-borne integrated. By testing the flywheel micro vibration with six-component test bench, the flywheel disturbance data is acquired. The finite element model of the satellite was established and the unit force/torque were applied at the flywheel mounting position to obtain the micro vibration data of the camera. Integrated analysis of the data of the two parts showed that the influence of flywheel micro vibration on the camera is mainly concentrated around 60-80 Hz and 170-230 Hz, the largest angular displacement of the secondary mirror along the optical axis direction is 0.04″ and the maximum angular displacement vertical to optical axis is 0.032″. After the design and installation of vibration isolator, the maximum angular displacement of the secondary mirror is 0.011″, the decay rate of root mean square value of the angular displacement is more than 50% and the maximum is 96.78%. The whole satellite was suspended to simulate the boundary condition on orbit; the imaging experiment results show that the image motion caused by the flywheel micro vibrationis less than 0.1 pixel after installing the vibration isolator.
The Shock and Vibration Bulletin. Part 3. Acoustic and Vibration Testing, Impact and Blast
1976-08-01
Research Institute, San Antonio, Texas DESIGN OF A BLAST LOAD GENERATOR FOR OVERPRESSURE TESTING .................................. 261I P. Lieberman...Mathews and B. W. Duggin, Sandia Laboratories, Albuquerque, New Mexico ESTIMATION OF SHIP SHOCK PARAMETERS FOR CONSISTENT DESIGN AND TEST SPECIFICATION G. C...Seattle, Washington COMPONENT TESTING OF LIQUID SHOCK ISOLATORS AND ELASTOMERS IN SUPPORT OF RECENT SHOCK ISOLATION SYSTEM DESIGNS AJ.IP. Ashley, Boeing
Nonlinear damping for vibration isolation of microsystems using shear thickening fluid
NASA Astrophysics Data System (ADS)
Iyer, S. S.; Vedad-Ghavami, R.; Lee, H.; Liger, M.; Kavehpour, H. P.; Candler, R. N.
2013-06-01
This work reports the measurement and analysis of nonlinear damping of micro-scale actuators immersed in shear thickening fluids (STFs). A power-law damping term is added to the linear second-order model to account for the shear-dependent viscosity of the fluid. This nonlinear model is substantiated by measurements of oscillatory motion of a torsional microactuator. At high actuation forces, the vibration velocity amplitude saturates. The model accurately predicts the nonlinear damping characteristics of the STF using a power-law index extracted from independent rheology experiments. This result reveals the potential to use STFs as adaptive, passive dampers for vibration isolation of microelectromechanical systems.
Six-degree-of-freedom active vibration isolation using a Stewart platform mechanism
NASA Technical Reports Server (NTRS)
Geng, Zheng; Haynes, Leonard S.
1993-01-01
The design and control problems of a class of multidegree-of-freedom vibration isolation systems (VISs) based on a Stewart platform mechanism are studied. A prototype of a six-degree-of-freedom VIS for precision control of a wide range of space-based structures implemented in Intelligent Automation, Inc. is described. The feasibility of using a Stewart platform to achieve 6-degree-of-freedom vibration control in space applications is shown. A new Terfenol-D actuator characterized by significantly longer stroke than any commercially available Terfenol-D actuator and direct flux and strain sensors integral to the actuator is described.
Vibration isolation by exploring bio-inspired structural nonlinearity.
Wu, Zhijing; Jing, Xingjian; Bian, Jing; Li, Fengming; Allen, Robert
2015-10-08
Inspired by the limb structures of animals/insects in motion vibration control, a bio-inspired limb-like structure (LLS) is systematically studied for understanding and exploring its advantageous nonlinear function in passive vibration isolation. The bio-inspired system consists of asymmetric articulations (of different rod lengths) with inside vertical and horizontal springs (as animal muscle) of different linear stiffness. Mathematical modeling and analysis of the proposed LLS reveal that, (a) the system has very beneficial nonlinear stiffness which can provide flexible quasi-zero, zero and/or negative stiffness, and these nonlinear stiffness properties are adjustable or designable with structure parameters; (b) the asymmetric rod-length ratio and spring-stiffness ratio present very beneficial factors for tuning system equivalent stiffness; (c) the system loading capacity is also adjustable with the structure parameters which presents another flexible benefit in application. Experiments and comparisons with existing quasi-zero-stiffness isolators validate the advantageous features above, and some discussions are also given about how to select structural parameters for practical applications. The results would provide an innovative bio-inspired solution to passive vibration control in various engineering practice.
Vibration isolation using extreme geometric nonlinearity
NASA Astrophysics Data System (ADS)
Virgin, L. N.; Santillan, S. T.; Plaut, R. H.
2008-08-01
A highly deformed, slender beam (or strip), attached to a vertically oscillating base, is used in a vibration isolation application to reduce the motion of a supported mass. The isolator is a thin strip that is bent so that the two ends are clamped together, forming a loop. The clamped ends are attached to an excitation source and the supported system is attached at the loop midpoint directly above the base. The strip is modeled as an elastica, and the resulting nonlinear boundary value problem is solved numerically using a shooting method. First the equilibrium shapes of the loop with varying static loads and lengths are studied. The analysis reveals a large degree of stiffness tunability; the stiffness is dependent on the geometric configuration, which itself is determined by the supported mass, loop length, and loop self-weight. Free vibration frequencies and mode shapes are also found. Finally, the case of forced vibration is studied, and the displacement transmissibility over a large range of forcing frequencies is determined for varying parameter values. Experiments using polycarbonate strips are conducted to verify equilibrium and dynamic behavior.
Kim, J-J; Joo, S H; Lee, K S; Yoo, J H; Park, M S; Kwak, J S; Lee, Jinho
2017-04-01
The Low Temperature Scanning Tunneling Microscope (LT-STM) is an extremely valuable tool not only in surface science but also in condensed matter physics. For years, numerous new ideas have been adopted to perfect LT-STM performances-Ultra-Low Vibration (ULV) laboratory and the rigid STM head design are among them. Here, we present three improvements for the design of the ULV laboratory and the LT-STM: tip treatment stage, sample cleaving stage, and vibration isolation system. The improved tip treatment stage enables us to perform field emission for the purpose of tip treatment in situ without exchanging samples, while our enhanced sample cleaving stage allows us to cleave samples at low temperature in a vacuum without optical access by a simple pressing motion. Our newly designed vibration isolation system provides efficient space usage while maintaining vibration isolation capability. These improvements enhance the quality of spectroscopic imaging experiments that can last for many days and provide increased data yield, which we expect can be indispensable elements in future LT-STM designs.
Ground and flight test results of a total main rotor isolation system
NASA Technical Reports Server (NTRS)
Halwes, Dennis R.
1987-01-01
A six degree-of-freedom (DOF) isolation system using six LIVE units has been installed under an Army/NASA contract on a Bell 206LM helicopter. This system has been named the Total Rotor Isolation System, or TRIS. To determine the effectiveness of TRIS in reducing helicopter vibration, a flight verification study was conducted at Bell's Flight Research Center in Arlington, Texas. The flight test data indicate that the 4/rev vibration level at the pilot's seat were suppressed below the 0.04g level throughout the transition envelope. Flight tests indicate over 95% suppression of vibration level from the rotor hub to the pilot's seat. The TRIS installation was designed with a decoupled control system and has shown a significant improvement in aircraft flying qualities, such that it permitted the trimmed aircraft to be flown hands-off for a significant period of time, over 90 seconds. The TRIS flight test program has demonstrated a system that greatly reduces vibration levels of a current-generation helicopter, while significantly improving the flying qualities to a point where stability augmentation is no longer a requirement.
Aerodynamic and engineering design of a 1.5 s high quality microgravity drop tower facility
NASA Astrophysics Data System (ADS)
Belser, Valentin; Breuninger, Jakob; Reilly, Matthew; Laufer, René; Dropmann, Michael; Herdrich, Georg; Hyde, Truell; Röser, Hans-Peter; Fasoulas, Stefanos
2016-12-01
Microgravity experiments are essential for research in space science, biology, fluid mechanics, combustion, and material sciences. One way to conduct microgravity experiments on Earth is by using drop tower facilities. These facilities combine a high quality of microgravity, adequate payload masses and have the advantage of virtually unlimited repeatability under same experimental conditions, at a low cost. In a collaboration between the Institute of Space Systems (IRS) at the University of Stuttgart and Baylor University (BU) in Waco, Texas, a new drop tower is currently under development at the Center for Astrophysics, Space Physics and Engineering Research (CASPER). The design parameters of the drop tower ask for at least 1.5 s in free fall duration while providing a quality of at least 10-5 g. Previously, this quality has only been achieved in vacuum drop tower facilities where the capsule experiences virtually zero aerodynamic drag during its free fall. Since this design comes at high costs, a different drop tower design concept, which does not require an evacuated drop shaft, was chosen. It features a dual-capsule system in which the experiment capsule is shielded from aerodynamic forces by surrounding it with a drag shield during the drop. As no other dual-capsule drop tower has been able to achieve a quality as good as or better than 10-5 g previous work optimized the design with an aerodynamic perspective by using computational fluid dynamics (CFD) simulations to determine the ideal shape and size of the outer capsule and to specify the aerodynamically crucial dimensions for the overall system. Experiments later demonstrated that the required quality of microgravity can be met with the proposed design. The main focus of this paper is the mechanical realization of the capsule as well as the development and layout of the surrounding components, such as the release mechanism, the deceleration device and the drop shaft. Because the drop tower facility is a complex system with many interdependencies between all of the components, several engineering challenges had to be addressed. For example, initial disturbances that are caused by the release mechanism are a common issue that arises at drop tower facilities. These vibrations may decrease the quality of microgravity during the initial segment of free fall. Because this would reduce the free fall time experiencing high quality microgravity, a mechanism has been developed to provide a soft release. Challenges and proposed solutions for all components are highlighted in this paper.
[The hand-arm vibration syndrome: (II). The diagnostic aspects and fitness criteria].
Bovenzi, M
1999-01-01
Part II of this paper reviews the clinical and laboratory methods to diagnose the neurological, vascular and osteoarticular components of the hand-arm vibration syndrome. The prognosis and reversibility of vibration-induced neurological and vascular disorders after cessation of vibration exposure or the introduction of powered tools equipped with vibration isolation systems are discussed on the basis of the results of follow-up clinical investigations and longitudinal epidemiologic studies. Finally, the review debates some of the methodological aspects connected with the health surveillance of vibration-exposed workers and considers the possible medical contra-indications for prolonged exposure to hand-transmitted vibration.
NASA Astrophysics Data System (ADS)
Wang, Chun-yu; He, Lin; Li, Yan; Shuai, Chang-geng
2018-01-01
In engineering applications, ship machinery vibration may be induced by multiple rotational machines sharing a common vibration isolation platform and operating at the same time, and multiple sinusoidal components may be excited. These components may be located at frequencies with large differences or at very close frequencies. A multi-reference filtered-x Newton narrowband (MRFx-Newton) algorithm is proposed to control these multiple sinusoidal components in an MIMO (multiple input and multiple output) system, especially for those located at very close frequencies. The proposed MRFx-Newton algorithm can decouple and suppress multiple sinusoidal components located in the same narrow frequency band even though such components cannot be separated from each other by a narrowband-pass filter. Like the Fx-Newton algorithm, good real-time performance is also achieved by the faster convergence speed brought by the 2nd-order inverse secondary-path filter in the time domain. Experiments are also conducted to verify the feasibility and test the performance of the proposed algorithm installed in an active-passive vibration isolation system in suppressing the vibration excited by an artificial source and air compressor/s. The results show that the proposed algorithm not only has comparable convergence rate as the Fx-Newton algorithm but also has better real-time performance and robustness than the Fx-Newton algorithm in active control of the vibration induced by multiple sound sources/rotational machines working on a shared platform.
Microgravity Science and Applications: Program Tasks and Bibliography for Fiscal Year 1996
NASA Technical Reports Server (NTRS)
1997-01-01
NASA's Microgravity Science and Applications Division (MSAD) sponsors a program that expands the use of space as a laboratory for the study of important physical, chemical, and biochemical processes. The primary objective of the program is to broaden the value and capabilities of human presence in space by exploiting the unique characteristics of the space environment for research. However, since flight opportunities are rare and flight research development is expensive, a vigorous ground-based research program, from which only the best experiments evolve, is critical to the continuing strength of the program. The microgravity environment affords unique characteristics that allow the investigation of phenomena and processes that are difficult or impossible to study an Earth. The ability to control gravitational effects such as buoyancy driven convection, sedimentation, and hydrostatic pressures make it possible to isolate phenomena and make measurements that have significantly greater accuracy than can be achieved in normal gravity. Space flight gives scientists the opportunity to study the fundamental states of physical matter-solids, liquids and gasses-and the forces that affect those states. Because the orbital environment allows the treatment of gravity as a variable, research in microgravity leads to a greater fundamental understanding of the influence of gravity on the world around us. With appropriate emphasis, the results of space experiments lead to both knowledge and technological advances that have direct applications on Earth. Microgravity research also provides the practical knowledge essential to the development of future space systems. The Office of Life and Microgravity Sciences and Applications (OLMSA) is responsible for planning and executing research stimulated by the Agency's broad scientific goals. OLMSA's Microgravity Science and Applications Division (MSAD) is responsible for guiding and focusing a comprehensive program, and currently manages its research and development tasks through five major scientific areas: biotechnology, combustion science, fluid physics, fundamental physics, and materials science. FY 1996 was an important year for MSAD. NASA continued to build a solid research community for the coming space station era. During FY 1996, the NASA Microgravity Research Program continued investigations selected from the 1994 combustion science, fluid physics, and materials science NRAS. MSAD also released a NASA Research Announcement in microgravity biotechnology, with more than 130 proposals received in response. Selection of research for funding is expected in early 1997. The principal investigators chosen from these NRAs will form the core of the MSAD research program at the beginning of the space station era. The third United States Microgravity Payload (USMP-3) and the Life and Microgravity Spacelab (LMS) missions yielded a wealth of microgravity data in FY 1996. The USMP-3 mission included a fluids facility and three solidification furnaces, each designed to examine a different type of crystal growth.
NASA Astrophysics Data System (ADS)
Hilbig, Reinhard; Weigele, Jochen; Knie, Miriam; Hendrik Anken, Ralf
In vertebrates altered gravitational environments such as weightlessness (microgravity, g) in-duce changes in central and peripheral interpretation of sensory input leading to alterations in motor behaviour (e.g., intersensory-conflicts) including space motion sickness, a sensory motor kinetosis normally accompanied by malaise and vomiting. In fish it had been repeatedly shown that some fish of a given batch reveal motion sickness after transition from hypergravity (pull up) to microgravity microgravity in the course of parabolic aircraft flight (PF= low quality microgravity = LQM) experiments or in the case of drop tower experiments at ZARM (Bre-men) immediately after release of the capsule. The drop-tower studies were designed to further elucidate the role of otolith asymmetry concerning an individually different susceptibility to kinetoses. In order to test, whether the differing results between the PF and the drop-tower experiment were based exclusively on the differing quality of diminished gravity, or, if further parameters of the PF and the drop-tower environment need to be taken into consideration (e.g., vibrations and changing accelerations during PFs or the brisk compression of the drop-capsule at its release) to explain the differing results, drop-tower flights were performed at a series of increasing accelerations, by centrifugation in the drop capsule. This simulation of "differ-ent micro" gravity was carried out in housing larval cichlid fish (Oreochromis mossambicus) within a centrifuge at high quality microgravity 10-6g (HQM) and 10-4g to 0.3g during the drop-tower flights. The percentual ratios of the swimming behaviour at drop-tower changed significantly according to the increasing acceleration force of the centrifuge during flight. With increasing acceleration (= detectable gravity for fish) the relative proportion of looping an d spinning movements decreased in favour of normal swimming an at 0.3g nearly no kinetotic behaviour was observed. When during centrifugation in the drop-tower capsule LQM ranged between those of PF LQM the fish displayed comparable types of behaviour (normal and kine-totic swimming). This indicates that some normally swimming fish during PFs and drop-tower LQM use the residual gravity as a cue for orientation. Whereas kinetoses were exhibited by some 90 The present findings on otolith asymmetry support the concept, according to which kinetosis susceptibility is based on highly asymmetric inner ear stones.
NASA Technical Reports Server (NTRS)
Dietrich, D. L.; Ross, H. D.; Tien, J. S.
1995-01-01
The candle flame in both normal and microgravity is non-propagating. In microgravity, however, the candle flame is also non-convective where (excepting Stefan flow) pure diffusion is the only transport mode. It also shares many characteristics with another classical problem, that of isolated droplet combustion. Given their qualitatively similar flame shapes and the required heat feedback to condensed-phase fuels, the gas-phase flow and temperature fields should be relatively similar for a droplet and a candle in reduced gravity. Unless the droplet diameter is maintained somehow through non-intrusive replenishment of fuel, the quasi-steady burning characteristics of a droplet can be maintained for only a few seconds. In contrast, the candle flame in microgravity may achieve a nearly steady state over a much longer time and is therefore ideal for examining a number of combustion-related phenomena. In this paper, we examine candle flame behavior in both short-duration and long-duration, quiescent, microgravity environments. Interest in this type of flame, especially 'candle flames in weightlessness', is demonstrated by very frequent public inquiries. The question is usually posed as 'will a candle flame burn in zero gravity', or, 'will a candle burn indefinitely (or steadily) in zero gravity in a large volume of quiescent air'. Intuitive speculation suggests to some that, in the absence of buoyancy, the accumulation of products in the vicinity of the flame will cause flame extinction. The classical theory for droplet combustion with its spherically-shaped diffusion flame, however, shows that steady combustion is possible in the absence of buoyancy if the chemical kinetics are fast enough. Previous experimental studies of candle flames in reduced and microgravity environments showed the flame could survive for at least 5 seconds, but did not reach a steady state in the available test time.
Combustion of Unconfined Droplet Clusters in Microgravity
NASA Technical Reports Server (NTRS)
Ruff, G. A.; Liu, S.
2001-01-01
Combustion experiments using arrays of droplets seek to provide a link between single droplet combustion phenomena and the behavior of complex spray combustion systems. Both single droplet and droplet array studies have been conducted in microgravity to better isolate the droplet interaction phenomena and eliminate or reduce the confounding effects of buoyancy-induced convection. In most experiments involving droplet arrays, the droplets are supported on fibers to keep them stationary and close together before the combustion event. The presence of the fiber, however, disturbs the combustion process by introducing a source of heat transfer and asymmetry into the configuration. As the number of drops in a droplet array increases, supporting the drops on fibers becomes less practical because of the cumulative effect of the fibers on the combustion process. To eliminate the effect of the fiber, several researchers have conducted microgravity experiments using unsupported droplets. Jackson and Avedisian investigated single, unsupported drops while Nomura et al. studied droplet clouds formed by a condensation technique. The overall objective of this research is to extend the study of unsupported drops by investigating the combustion of well-characterized drop clusters in a microgravity environment. Direct experimental observations and measurements of the combustion of droplet clusters would fill a large gap in our current understanding of droplet and spray combustion and provide unique experimental data for the verification and improvement of spray combustion models. In this work, the formation of drop clusters is precisely controlled using an acoustic levitation system so that dilute, as well as dense clusters can be created and stabilized before combustion in microgravity is begun. This paper describes the design and performance of the 1-g experimental apparatus, some preliminary 1-g results, and plans for testing in microgravity.
1993-04-29
The major storage protein of leguminous plants and a major source of dietary protein for humans and domestic animals. It is studied in efforts to enhance nutritional value of proteins through protein engineerings. It is isolated from Jack Bean because of it's potential as a nutritional substance. Principal Investigator was Alexander McPherson.
Design and test of aircraft engine isolators for reduced interior noise
NASA Technical Reports Server (NTRS)
Unruh, J. F.; Scheidt, D. C.
1982-01-01
Improved engine vibration isolation was proposed to be the most weight and cost efficient retrofit structure-borne noise control measure for single engine general aviation aircraft. A study was carried out the objectives: (1) to develop an engine isolator design specification for reduced interior noise transmission, (2) select/design candidate isolators to meet a 15 dB noise reduction design goal, and (3) carry out a proof of concept evaluation test. Analytical model of the engine, vibration isolators and engine mount structure were coupled to an empirical model of the fuselage for noise transmission evaluation. The model was used to develop engine isolator dynamic properties design specification for reduced noise transmission. Candidate isolators ere chosen from available product literature and retrofit to a test aircraft. A laboratory based test procedure was then developed to simulate engine induced noise transmission in the aircraft for a proof of concept evaluation test. Three candidate isolator configurations were evaluated for reduced structure-borne noise transmission relative to the original equipment isolators.
NASA Astrophysics Data System (ADS)
Kwon, Seong-Cheol; Jeon, Young-Hyeon; Oh, Hyun-Ung
2017-10-01
In this study, the primary design objective is to develop a passive isolator that can guarantee structural safety of the cooler assembly in a launch vibration environment without a launch locking mechanism, while effectively isolating the cooler-induced micro-jitter during the on-orbit operation of the cooler. To achieve the design objective, we focused on the utilization of characteristics of the hyperelastic shape memory effects. The major advantage of the isolator is that the micro-jitter isolation performance is much less sensitive to the aligned position of the isolator in comparison with the conventional isolator. Moreover, implementation of an additional 0g compensation device during a satellite level on-ground test, such as a jitter measurement test, is not required. In this study, the basic characteristics of the isolator were measured using the torque test and free vibration test. The micro-jitter attenuation capability and position sensitivity of the proposed isolator design were validated by the micro-jitter measurement test.
Summary Report of Mission Acceleration Measurements for STS-65, Launched 8 July 1994
NASA Technical Reports Server (NTRS)
Rogers, Melissa J. B.; Delombard, Richard
1995-01-01
The second flight of the International Microgravity Laboratory (IML-2) payload on board the STS-65 mission was supported by three accelerometer instruments: The Orbital Acceleration Research Experiment (OARE) located close to the orbiter center of mass; the Quasi-Steady Acceleration Measurement experiment, and the Space Acceleration Measurement System (SAMS), both in the Spacelab module. A fourth accelerometer, the Microgravity Measuring Device recorded data in the middeck in support of exercise isolation tests.Data collected by OARE and SAMS during IML-2 are displayed in this report. The OARE data represent the microgravity environment below 1 Hz. The SAMS data represent the environment in the 0.01 Hz to 100 Hz range. Variations in the environment caused by unique activities are presented. Specific events addressed are: crew activity, crew exercise, experiment component mixing activities, experiment centrifuge operations, refrigerator/freezer operations and circulation pump operations. The analyses included in this report complement analyses presented in other mission summary reports.
Verhaar, Auke P.; Hoekstra, Elmer; Tjon, Angela S. W.; Utomo, Wesley K.; Deuring, J. Jasper; Bakker, Elvira R. M.; Muncan, Vanesa; Peppelenbosch, Maikel P.
2014-01-01
Space flight strongly moderates human immunity but is in general well tolerated. Elucidation of the mechanisms by which zero gravity interacts with human immunity may provide clues for developing rational avenues to deal with exaggerated immune responses, e.g. as in autoimmune disease. Using two sounding rockets and one manned Soyuz launch, the influence of space flight on immunological signal transduction provoked by lipopolysaccharide (LPS) stimulation was investigated in freshly isolated peripheral blood monocytes and was compared to samples obtained from on-board centrifuge-loaded 1 g controls. The effect of microgravity on immunological signal transduction is highly specific, since LPS dependent Jun-N-terminal kinase activation is impaired in the 0 g condition, while the corresponding LPS dependent activation of p38 MAP kinase remains unaffected. Thus our results identify Jun-N-terminal kinase as a relevant target in immunity for microgravity and support using Jun-N-terminal kinase specific inhibitors for combating autoimmune disease. PMID:24968806
NASA Technical Reports Server (NTRS)
Nayagam, Vedha; Dietrich, Daniel L.; Ferkul, Paul V.; Hicks, Michael C.; Williams, Forman A.
2012-01-01
Motivated by the need to understand the flammability limits of condensed-phase fuels in microgravity, isolated single droplet combustion experiments were carried out in the Combustion Integrated Rack Facility onboard the International Space Station. Experimental observations of methanol droplet combustion and extinction in oxygen/carbon-dioxide/nitrogen mixtures at 0.7 and 1 atmospheric pressure in quiescent microgravity environment are reported for initial droplet diameters varying between 2 mm to 4 mm in this study.The ambient oxygen concentration was systematically lowered from test to test so as to approach the limiting oxygen index (LOI) at fixed ambient pressure. At one atmosphere pressure, ignition and some burning were observed for an oxygen concentration of 13% with the rest being nitrogen. In addition, measured droplet burning rates, flame stand-off ratios, and extinction diameters are presented for varying concentrations of oxygen and diluents. Simplified theoretical models are presented to explain the observed variations in extinction diameter and flame stand-off ratios.
Aortic baroreflex control of heart rate after 15 days of simulated microgravity exposure
NASA Technical Reports Server (NTRS)
Crandall, Craig G.; Engelke, Keith A.; Convertino, Victor A.; Raven, Peter B.
1994-01-01
To determine the effects of simulated microgravity on aortic baroreflex control of heart rate, we exposed seven male subjects to 15 days of bed rest in the 6 deg head-down position. The sensitivity of the aortic-cardiac baroreflex was determined during a steady-state phenylephrine-induced increase in mean arterial pressure combined with lower body negative pressure to counteract central venous pressure increases and neck pressure to offset the increased carotid sinus transmural pressure. The aortic-cardiac baroreflex gain was assessed by determining the ratio of the change in heart rate to the change in mean arterial pressure between baseline conditions and aortic baroreceptor-isolated conditions (i.e., phenylephrine + lower body negative pressure + neck pressure stage). Fifteen days of head-down tilt increased the gain of the aortic-cardiac baroreflex. Reductions in blood volume and/or maximal aerobic capacity may represent the underlying mechanism(s) responsible for increased aortic baroreflex responsiveness after exposure to a ground-based analogue of microgravity.
Verhaar, Auke P; Hoekstra, Elmer; Tjon, Angela S W; Utomo, Wesley K; Deuring, J Jasper; Bakker, Elvira R M; Muncan, Vanesa; Peppelenbosch, Maikel P
2014-06-27
Space flight strongly moderates human immunity but is in general well tolerated. Elucidation of the mechanisms by which zero gravity interacts with human immunity may provide clues for developing rational avenues to deal with exaggerated immune responses, e.g. as in autoimmune disease. Using two sounding rockets and one manned Soyuz launch, the influence of space flight on immunological signal transduction provoked by lipopolysaccharide (LPS) stimulation was investigated in freshly isolated peripheral blood monocytes and was compared to samples obtained from on-board centrifuge-loaded 1 g controls. The effect of microgravity on immunological signal transduction is highly specific, since LPS dependent Jun-N-terminal kinase activation is impaired in the 0 g condition, while the corresponding LPS dependent activation of p38 MAP kinase remains unaffected. Thus our results identify Jun-N-terminal kinase as a relevant target in immunity for microgravity and support using Jun-N-terminal kinase specific inhibitors for combating autoimmune disease.
A surgical support system for Space Station Freedom
NASA Technical Reports Server (NTRS)
Campbell, M. R.; Billica, R. D.; Johnston, S. L.
1992-01-01
Surgical techniques in microgravity are being developed for the Health Maintenance Facility (HMF) on Space Station Freedom (SSF). This will be a presentation of the proposed surgical capabilities and ongoing hardware and procedural investigations. Methods: Procedures and prototype hardware, which include a medical restraint system, a surgical overhead isolation canopy, a suction device, and a regional laminar flow device were evaluated. This was accomplished by realistic sterile surgical simulations involving both mannequins and animals during KC-135 parabolic flight and in a high fidelity ground based HMF mockup. Results: Animal surgery in the environment of microgravity allowed the observation of unique arterial and venous bleeding characteristics for the first time. The ability to control bleeding and to prevent cabin atmosphere contamination was also demonstrated. Conclusions: The procedures and prototype hardware tested provided valuable information and should be investigated and developed further. The use of standard surgical techniques are possible in microgravity if the principles of personnel and supply restraint and operative field containment are adhered to.
1992-06-01
The first United States Microgravity Laboratory (USML-1) was one of NASA's science and technology programs that provided scientists an opportunity to research various scientific investigations in a weightlessness environment inside the Spacelab module. It also provided demonstrations of new equipment to help prepare for advanced microgravity research and processing aboard the Space Station. The USML-1 flew in orbit for extended periods, providing greater opportunities for research in materials science, fluid dynamics, biotechnology (crystal growth), and combustion science. This is a close-up view of the Drop Physics Module (DPM) in the USML science laboratory. The DPM was dedicated to the detailed study of the dynamics of fluid drops in microgravity: their equilibrium shapes, the dynamics of their flows, and their stable and chaotic behaviors. It also demonstrated a technique known as containerless processing. The DPM and microgravity combine to remove the effects of the container, such as chemical contamination and shape, on the sample being studied. Sound waves, generating acoustic forces, were used to suspend a sample in microgravity and to hold a sample of free drops away from the walls of the experiment chamber, which isolated the sample from potentially harmful external influences. The DPM gave scientists the opportunity to test theories of classical fluid physics, which have not been confirmed by experiments conducted on Earth. This image is a close-up view of the DPM. The USML-1 flew aboard the STS-50 mission on June 1992, and was managed by the Marshall Space Flight Center.
NASA Technical Reports Server (NTRS)
Toder, Carly; Gipson, Iona; Conly, Danielle; Nieschwitz, Linda; Perk, Austin
2010-01-01
This slide presentation reviews attempts to counteract the effects of being in space. It includes information on the Resistive Exercise Device (RED), the Advanced Resistive Exercise Device (ARED), Cycle Ergometer with Vibration Isolation and Stabilization (CEVIS), Treadmill with Vibration Isolation and Stabilization (TVIS) and periodic fitness evaluation with specific information on BP/ECG, heart rate monitor 2 and data distribution.
NASA Technical Reports Server (NTRS)
Neff, Daniel J.; Britcher, Colin P.
1996-01-01
This paper discusses the recommissioning of the Annular Suspension and Pointing System (ASPS), originally developed in the mid 1970's for pointing and vibration isolation of space experiments. The hardware was developed for NASA Langley Research Center by Sperry Flight Systems (now Honeywell Satellite Systems), was delivered to NASA in 1983. Recently, the hardware was loaned to Old Dominion University (ODU). The ASPS includes coarse gimbal assemblies and a Vernier Pointing Assembly (VPA) that utilize magnetic suspension to provide noncontacting vibration isolation and vernier pointing of the payload. The VPA is the main focus of this research. At ODU, the system has been modified such that it can now be operated in a l-g environment without a gravity offload. Suspension of the annular iron rotor in five degrees-of-freedom has been achieved with the use of modern switching power amplifiers and a digital controller implemented on a 486-class PC.
Experiments on active isolation using distributed PVDF error sensors
NASA Technical Reports Server (NTRS)
Lefebvre, S.; Guigou, C.; Fuller, C. R.
1992-01-01
A control system based on a two-channel narrow-band LMS algorithm is used to isolate periodic vibration at low frequencies on a structure composed of a rigid top plate mounted on a flexible receiving plate. The control performance of distributed PVDF error sensors and accelerometer point sensors is compared. For both sensors, high levels of global reduction, up to 32 dB, have been obtained. It is found that, by driving the PVDF strip output voltage to zero, the controller may force the structure to vibrate so that the integration of the strain under the length of the PVDF strip is zero. This ability of the PVDF sensors to act as spatial filters is especially relevant in active control of sound radiation. It is concluded that the PVDF sensors are flexible, nonfragile, and inexpensive and can be used as strain sensors for active control applications of vibration isolation and sound radiation.
Total main rotor isolation system analysis
NASA Technical Reports Server (NTRS)
Sankewitsch, V.
1981-01-01
Requirements, preliminary design, and verification procedures for a total main rotor isolation system at n/rev are presented. The fuselage is isolated from the vibration inducing main rotor at one frequency in all degrees of freedom by four antiresonant isolation units. Effects of parametric variations on isolation system performance are evaluated.
NASA Astrophysics Data System (ADS)
Barriga, P.; Dumas, J. C.; Woolley, A. A.; Zhao, C.; Blair, D. G.
2009-11-01
This paper describes the first demonstration of vibration isolation and suspension systems, which have been developed with view to application in the proposed Australian International Gravitational Observatory. In order to achieve optimal performance at low frequencies new components and techniques have been combined to create a compact advanced vibration isolator structure. The design includes two stages of horizontal preisolation and one stage of vertical preisolation with resonant frequencies ˜100 mHz. The nested structure facilitates a compact design and enables horizontal preisolation stages to be configured to create a superspring configuration, where active feedback can enable performance close to the limit set by seismic tilt coupling. The preisolation stages are combined with multistage three-dimensional (3D) pendulums. Two isolators suspending mirror test masses have been developed to form a 72 m optical cavity with finesse ˜700 in order to test their performance. The suitability of the isolators for use in suspended optical cavities is demonstrated through their ease of locking, long term stability, and low residual motion. An accompanying paper presents the local control system and shows how simple upgrades can substantially improve residual motion performance.
Barriga, P; Dumas, J C; Woolley, A A; Zhao, C; Blair, D G
2009-11-01
This paper describes the first demonstration of vibration isolation and suspension systems, which have been developed with view to application in the proposed Australian International Gravitational Observatory. In order to achieve optimal performance at low frequencies new components and techniques have been combined to create a compact advanced vibration isolator structure. The design includes two stages of horizontal preisolation and one stage of vertical preisolation with resonant frequencies approximately 100 mHz. The nested structure facilitates a compact design and enables horizontal preisolation stages to be configured to create a superspring configuration, where active feedback can enable performance close to the limit set by seismic tilt coupling. The preisolation stages are combined with multistage three-dimensional (3D) pendulums. Two isolators suspending mirror test masses have been developed to form a 72 m optical cavity with finesse approximately 700 in order to test their performance. The suitability of the isolators for use in suspended optical cavities is demonstrated through their ease of locking, long term stability, and low residual motion. An accompanying paper presents the local control system and shows how simple upgrades can substantially improve residual motion performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beker, M. G., E-mail: M.Beker@Nikhef.nl; Bertolini, A.; Hennes, E.
There is a strong scientific case for the study of gravitational waves at or below the lower end of current detection bands. To take advantage of this scientific benefit, future generations of ground based gravitational wave detectors will need to expand the limit of their detection bands towards lower frequencies. Seismic motion presents a major challenge at these frequencies and vibration isolation systems will play a crucial role in achieving the desired low-frequency sensitivity. A compact vibration isolation system designed to isolate in-vacuum optical benches for Advanced Virgo will be introduced and measurements on this system are used to presentmore » its performance. All high performance isolation systems employ an active feedback control system to reduce the residual motion of their suspended payloads. The development of novel control schemes is needed to improve the performance beyond what is currently feasible. Here, we present a multi-channel feedback approach that is novel to the field. It utilizes a linear quadratic regulator in combination with a Kalman state observer and is shown to provide effective suppression of residual motion of the suspended payload. The application of state observer based feedback control for vibration isolation will be demonstrated with measurement results from the Advanced Virgo optical bench suspension system.« less
Kim, Yong Tae; Park, Kyun Joo; Kim, Seyl; Kim, Soon Ae; Lee, Seok Jae; Kim, Do Hyun; Lee, Tae Jae; Lee, Kyoung G
2018-03-01
Isolation of specific cells from whole blood is important to monitor disease prognosis and diagnosis. In this study, a vibration-assisted filtration (VF) device has been developed for isolation and recovery of specific cells such as leukocytes and pathogenic bacteria from human whole blood. The VF device is composed of three layers which was fabricated using injection molding with cyclic olefin copolymer (COC) pellets consisting of: a top layer with coin-type vibration motor (Ф = 10mm), a middle plate with a 1μm or 3μm-pore filter membrane to separate of Staphylococcus aureus (S. aureus) cells or leukocytes (i.e. white blood cells) respectively, and a bottom chamber with conical-shaped microstructure. One milliliter of human whole blood was injected into a sample loading chamber using a 3μm-pore filter equipped in the VF device and the coin-type vibration motor applied external vibration force by generating a rotational fluid which enhances the filtration velocity due to the prevention of the cell clogging on the filter membrane. The effluent blood such as erythrocytes, platelet, and plasma was collected at the bottom chamber while the leukocytes were sieved by the filter membrane. The vibration-assisted leukocyte separation was able to finish within 200s while leukocyte separation took 1200s without vibration. Moreover, we successfully separated S. aureus from human whole blood using a 1μm-pore filter equipped VF device and it was further confirmed by genetic analysis. The proposed VF device provides an advanced cell separation platform in terms of simplicity, fast separation, and portability in the fields of point-of-care diagnostics. Copyright © 2017 Elsevier B.V. All rights reserved.
Control of elasticity in cast elastomeric shock/vibration isolators
NASA Technical Reports Server (NTRS)
Owens, L.; Bright, C.
1974-01-01
Elasticity is determined by isolators physical dimensions and by type of elastomer used. Once elastomer is selected and cast between two concentric tubes of device, isolator elasticity will remain fixed. Isolators having same dimensions can be built to different elasticity requirements using same elastomer.
An experimental nonlinear low dynamic stiffness device for shock isolation
NASA Astrophysics Data System (ADS)
Francisco Ledezma-Ramirez, Diego; Ferguson, Neil S.; Brennan, Michael J.; Tang, Bin
2015-07-01
The problem of shock generated vibration is very common in practice and difficult to isolate due to the high levels of excitation involved and its transient nature. If not properly isolated it could lead to large transmitted forces and displacements. Typically, classical shock isolation relies on the use of passive stiffness elements to absorb energy by deformation and some damping mechanism to dissipate residual vibration. The approach of using nonlinear stiffness elements is explored in this paper, focusing in providing an isolation system with low dynamic stiffness. The possibilities of using such a configuration for a shock mount are studied experimentally following previous theoretical models. The model studied considers electromagnets and permanent magnets in order to obtain nonlinear stiffness forces using different voltage configurations. It is found that the stiffness nonlinearities could be advantageous in improving shock isolation in terms of absolute displacement and acceleration response when compared with linear elastic elements.
NASA Astrophysics Data System (ADS)
Yang, Jian; Sun, Shuaishuai; Tian, Tongfei; Li, Weihua; Du, Haiping; Alici, Gursel; Nakano, Masami
2016-03-01
Protecting civil engineering structures from uncontrollable events such as earthquakes while maintaining their structural integrity and serviceability is very important; this paper describes the performance of a stiffness softening magnetorheological elastomer (MRE) isolator in a scaled three storey building. In order to construct a closed-loop system, a scaled three storey building was designed and built according to the scaling laws, and then four MRE isolator prototypes were fabricated and utilised to isolate the building from the motion induced by a scaled El Centro earthquake. Fuzzy logic was used to output the current signals to the isolators, based on the real-time responses of the building floors, and then a simulation was used to evaluate the feasibility of this closed loop control system before carrying out an experimental test. The simulation and experimental results showed that the stiffness softening MRE isolator controlled by fuzzy logic could suppress structural vibration well.
Development and validation of a lateral MREs isolator
NASA Astrophysics Data System (ADS)
Xing, Zhi-Wei; Yu, Miao; Fu, Jie; Zhao, Lu-Jie
2015-02-01
A novel lateral vibration isolator utilizing magnetorheological elastomers (MREs) with the field-dependent damping and stiffness was proposed in order to improve the adaptive performance. First, soft silicone rubber MREs with a highly adjustable shear storage modulus was fabricated. Then, the lateral MREs isolator was developed with a unique laminated structure of MRE layers and steel plates, which enables to withstand large vertical loads and adapts to the situation of large lateral displacement. Also, the electromagnetic analysis and design employed electromagnetic finite element method (FEM) to optimize magnetic circuit inside the proposed device. To evaluate the effectiveness of the lateral MREs isolator, a series of experimental tests were carried out under various applied magnetic fields. Experimental results show that the proposed MREs isolator can triumphantly change the lateral stiffness and equivalent damping up to 140% and 125%, respectively. This work demonstrates the performance of the designed lateral MREs isolator and its capacity in vibration mitigation for the complex situation.
2-D Clinostat for Simulated Microgravity Experiments with Arabidopsis Seedlings
NASA Astrophysics Data System (ADS)
Wang, Hui; Li, Xugang; Krause, Lars; Görög, Mark; Schüler, Oliver; Hauslage, Jens; Hemmersbach, Ruth; Kircher, Stefan; Lasok, Hanna; Haser, Thomas; Rapp, Katja; Schmidt, Jürgen; Yu, Xin; Pasternak, Taras; Aubry-Hivet, Dorothée; Tietz, Olaf; Dovzhenko, Alexander; Palme, Klaus; Ditengou, Franck Anicet
2016-04-01
Ground-based simulators of microgravity such as fast rotating 2-D clinostats are valuable tools to study gravity related processes. We describe here a versatile g-value-adjustable 2-D clinostat that is suitable for plant analysis. To avoid seedling adaptation to 1 g after clinorotation, we designed chambers that allow rapid fixation. A detailed protocol for fixation, RNA isolation and the analysis of selected genes is described. Using this clinostat we show that mRNA levels of LONG HYPOCOTYL 5 (HY5), MIZU-KUSSEI 1 (MIZ1) and microRNA MIR163 are down-regulated in 5-day-old Arabidopsis thaliana roots after 3 min and 6 min of clinorotation using a maximal reduced g-force of 0.02 g, hence demonstrating that this 2-D clinostat enables the characterization of early transcriptomic events during root response to microgravity. We further show that this 2-D clinostat is able to compensate the action of gravitational force as both gravitropic-dependent statolith sedimentation and subsequent auxin redistribution (monitoring D R5 r e v :: G F P reporter) are abolished when plants are clinorotated. Our results demonstrate that 2-D clinostats equipped with interchangeable growth chambers and tunable rotation velocity are suitable for studying how plants perceive and respond to simulated microgravity.
Clinostat rotation induces apoptosis in luteal cells of the pregnant rat
NASA Technical Reports Server (NTRS)
Yang, Hyunwon; Bhat, Ganapathy K.; Sridaran, Rajagopala
2002-01-01
Recent studies have shown that microgravity induces changes at the cellular level, including apoptosis. However, it is unknown whether microgravity affects luteal cell function. This study was performed to assess whether microgravity conditions generated by clinostat rotation induce apoptosis and affect steroidogenesis by luteal cells. Luteal cells isolated from the corpora lutea of Day 8 pregnant rats were placed in equal numbers in slide flasks (chamber slides). One slide flask was placed in the clinostat and the other served as a stationary control. At 48 h in the clinostat, whereas the levels of progesterone and total cellular protein decreased, the number of shrunken cells increased. To determine whether apoptosis occurred in shrunken cells, Comet and TUNEL assays were performed. At 48 h, the percentage of apoptotic cells in the clinostat increased compared with that in the control. To investigate how the microgravity conditions induce apoptosis, the active mitochondria in luteal cells were detected with JC-1 dye. Cells in the control consisted of many active mitochondria, which were evenly distributed throughout the cell. In contrast, cells in the clinostat displayed fewer active mitochondria, which were distributed either to the outer edge of the cell or around the nucleus. These results suggest that mitochondrial dysfunction induced by clinostat rotation could lead to apoptosis in luteal cells and suppression of progesterone production.
NASA Technical Reports Server (NTRS)
Sato, Atsushige
1993-01-01
The human body consists of 10(exp 13) cells. Understanding the mechanisms by which the cells sense and respond to microgravity is very important as the basis for space biology. The cells were originally isolated aseptically from mammalian bodies and cultured in vitro. A set of cell culture vessels was developed to be applied to three kinds of space flight experiments. Experiment 1 is to practice the cell culture technique in a space laboratory and obtain favorable growth of the cells. Aseptic handling in tryspin treatment and medium renewal will be tested. The cells, following space flight, will be returned to the ground and cultured continuously to investigate the effects of space flight on the cellular characteristics. Experiment 2 is to examine the cytoskeletal structure of the cells under microgravity conditions. The cytoskeletal structure plays essential roles in the morphological construction, movements, axonal transport, and differentiation of the cells. The cells fixed during space flight will be returned and the cytoskeleton and ultrastructure observed using electron microscopy and fluorescence microscopy. Experiment 3 is to study the cellular productivity of valuable substances. The waste medium harvested during space flight are returned and quantitated for the cellular products. The effects of microgravity on mammalian cells will be clarified from the various aspects.
Unsteady Thermocapillary Migration of Isolated Drops in Creeping Flow
NASA Technical Reports Server (NTRS)
Dill, Loren H.; Balasubramaniam, R.
1992-01-01
The problem of an isolated immiscible drop that slowly migrates due to unsteady thermocapillary stresses is considered. All physical properties except for interfacial tension are assumed constant for the two Newtonian fluids. Explicit expressions are found for the migration rate and stream functions in the Laplace domain. The resulting microgravity theory is useful, e.g., in predicting the distance a drop will migrate due to an impulsive interfacial temperature gradient as well as the time required to attain steady flow conditions from an initially resting state.
Recent Advances In Science Support For Isolated Droplet Combustion Experiments
NASA Technical Reports Server (NTRS)
Dryer, F. L.; Kazakov, A.; Urban, B. D.; Kroenlein, K.
2003-01-01
In a joint program involving Prof. F.A. Williams of the University of California, San Diego and Dr. V. Nayagam of the National Center for Microgravity Research, the combustion characteristics of isolated liquid fuel droplets of n-heptane, n-decane, methanol, methanol-water, ethanol and ethanol-water having initial diameters between about 1 mm and 6 mm continues to be investigated. The objectives of the work are to improve fundamental knowledge of droplet combustion dynamics for pure fuels and fuel-water mixtures through microgravity experiments and theoretical analyses. The Princeton contributions support the engineering design, data analysis, and data interpretation requirements for the study of initially single component, spherically symmetric, isolated droplet combustion studies through experiments and numerical modeling. UCSD contributions are described in a companion communication in this conference. The Princeton effort also addresses the analyses of Fiber Supported Droplet Combustion (FSDC) experiments conducted with the above fuels and collaborative work with others who are investigating droplet combustion in the presence of steady convection. A thorough interpretation of droplet burning behavior for n-heptane and n-decane over a relatively wide range of conditions also involves the influences of sooting on the combustion behavior, and this particular aspect on isolated burning of droplets is under consideration in a collaborative program underway with Drexel University. This collaboration is addressed in another communication at this conference. The one-dimensional, time-dependent, numerical modeling approach that we have continued to evolve for analyzing isolated, quiescent droplet combustion data has been further applied to investigate several facets of isolated droplet burning of simple alcohols, n-heptane, and n-decane. Some of the new results are described below.
Active control of turbulent boundary layer sound transmission into a vehicle interior
NASA Astrophysics Data System (ADS)
Caiazzo, A.; Alujević, N.; Pluymers, B.; Desmet, W.
2016-09-01
In high speed automotive, aerospace, and railway transportation, the turbulent boundary layer (TBL) is one of the most important sources of interior noise. The stochastic pressure distribution associated with the turbulence is able to excite significantly structural vibration of vehicle exterior panels. They radiate sound into the vehicle through the interior panels. Therefore, the air flow noise becomes very influential when it comes to the noise vibration and harshness assessment of a vehicle, in particular at low frequencies. Normally, passive solutions, such as sound absorbing materials, are used for reducing the TBL-induced noise transmission into a vehicle interior, which generally improve the structure sound isolation performance. These can achieve excellent isolation performance at higher frequencies, but are unable to deal with the low-frequency interior noise components. In this paper, active control of TBL noise transmission through an acoustically coupled double panel system into a rectangular cavity is examined theoretically. The Corcos model of the TBL pressure distribution is used to model the disturbance. The disturbance is rejected by an active vibration isolation unit reacting between the exterior and the interior panels. Significant reductions of the low-frequency vibrations of the interior panel and the sound pressure in the cavity are observed.
Concepts and effects of damping in isolators
NASA Technical Reports Server (NTRS)
Kerley, J.
1984-01-01
A series of innovative designs and inventions which led to the solution of many aerospace vibration and shock problems through damping techniques is presented. The design of damped airborne structures has presented a need for such creative innovation. The primary concern was to discover what concepts were necessary for good structural damping. Once these concepts are determined and converted into basic principles, the design of hardware follows. The following hardware and techniques were developed in support of aerospace program requirements: shipping containers, alignment cables for precision mechanisms, isolation of small components such as relays and flight instruments, isolation for heavy flight equipment, coupling devices, universal joints, use of wire mesh to replace cable, isolation of 16-dB, 5000 lb horn, and compound damping devices to get better isolation from shock and vibration in a high steady environment.
Miniature vibration isolation system for space applications
NASA Astrophysics Data System (ADS)
Quenon, Dan; Boyd, Jim; Buchele, Paul; Self, Rick; Davis, Torey; Hintz, Timothy L.; Jacobs, Jack H.
2001-06-01
In recent years, there has been a significant interest in, and move towards using highly sensitive, precision payloads on space vehicles. In order to perform tasks such as communicating at extremely high data rates between satellites using laser cross-links, or searching for new planets in distant solar systems using sparse aperture optical elements, a satellite bus and its payload must remain relatively motionless. The ability to hold a precision payload steady is complicated by disturbances from reaction wheels, control moment gyroscopes, solar array drives, stepper motors, and other devices. Because every satellite is essentially unique in its construction, isolating or damping unwanted vibrations usually requires a robust system over a wide bandwidth. The disadvantage of these systems is that they typically are not retrofittable and not tunable to changes in payload size or inertias. Previous work, funded by AFRL, DARPA, BMDO and others, developed technology building blocks that provide new methods to control vibrations of spacecraft. The technology of smart materials enables an unprecedented level of integration of sensors, actuators, and structures; this integration provides the opportunity for new structural designs that can adaptively influence their surrounding environment. To date, several demonstrations have been conducted to mature these technologies. Making use of recent advances in smart materials, microelectronics, Micro-Electro Mechanical Systems (MEMS) sensors, and Multi-Functional Structures (MFS), the Air Force Research Laboratory along with its partner DARPA, have initiated an aggressive program to develop a Miniature Vibration Isolation System (MVIS) (patent pending) for space applications. The MVIS program is a systems-level demonstration of the application of advanced smart materials and structures technology that will enable programmable and retrofittable vibration control of spacecraft precision payloads. The current effort has been awarded to Honeywell Space Systems Operation. AFRL is providing in-house research and testing in support of the program as well. The MVIS program will culminate in a flight demonstration that shows the benefits of applying smart materials for vibration isolation in space and precision payload control.
Fiber-Supported Droplet Combustion Experiment-2
NASA Technical Reports Server (NTRS)
Colantonio, Renato O.
1998-01-01
A major portion of the energy produced in the world today comes from the burning of liquid hydrocarbon fuels in the form of droplets. Understanding the fundamental physical processes involved in droplet combustion is not only important in energy production but also in propulsion, in the mitigation of combustion-generated pollution, and in the control of the fire hazards associated with handling liquid combustibles. Microgravity makes spherically symmetric combustion possible, allowing investigators to easily validate their droplet models without the complicating effects of gravity. The Fiber-Supported Droplet Combustion (FSDC-2) investigation was conducted in the Microgravity Glovebox facility of the shuttles' Spacelab during the reflight of the Microgravity Science Laboratory (MSL- 1R) on STS-94 in July 1997. FSDC-2 studied fundamental phenomena related to liquid fuel droplet combustion in air. Pure fuels and mixtures of fuels were burned as isolated single and duo droplets with and without forced air convection. FSDC-2 is sponsored by the NASA Lewis Research Center, whose researchers are working in cooperation with several investigators from industry and academia. The rate at which a droplet burns is important in many commercial applications. The classical theory of droplet burning assumes that, for an isolated, spherically symmetric, single-fuel droplet, the gas-phase combustion processes are much faster than the droplet surface regression rate and that the liquid phase is at a uniform temperature equal to the boiling point. Recent, more advanced models predict that both the liquid and gas phases are unsteady during a substantial portion of the droplet's burning history, thus affecting the instantaneous and average burning rates, and that flame radiation is a dominant mechanism that can extinguish flames in a microgravity environment. FSDC-2 has provided well-defined, symmetric droplet burning data including radiative emissions to validate these theoretical models for heptane, decane, ethanol, and methanol fuels. Since most commercial combustion systems burn droplets in a convective environment, data were obtained without and with convective flow over the burning droplet (see the following photos).
A Study of Bubble and Slug Gas-Liquid Flow in a Microgravity Environment
NASA Technical Reports Server (NTRS)
McQuillen, J.
2000-01-01
The influence of gravity on the two-phase flow dynamics is obvious.As the gravity level is reduced,there is a new balance between inertial and interfacial forces, altering the behavior of the flow. In bubbly flow,the absence of drift velocity leads to spherical-shaped bubbles with a rectilinear trajectory.Slug flow is a succession of long bubbles and liquid slug carrying a few bubbles. There is no flow reversal in the thin liquid film as the long bubble and liquid slug pass over the film. Although the flow structure seems to be simpler than in normal gravity conditions,the models developed for the prediction of flow behavior in normal gravity and extended to reduced gravity flow are unable to predict the flow behavior correctly.An additional benefit of conducting studies in microgravity flows is that these studies aide the development of understanding for normal gravity flow behavior by removing the effects of buoyancy on the shape of the interface and density driven shear flows between the gas and the liquid phases. The proposal calls to study specifically the following: 1) The dynamics of isolated bubbles in microgravity liquid flows will be analyzed: Both the dynamics of spherical isolated bubbles and their dispersion by turbulence, their interaction with the pipe wall,the behavior of the bubbles in accelerated or decelerated flows,and the dynamics of isolated cylindrical bubbles, their deformation in accelerated/decelerated flows (in converging or diverging channels), and bubble/bubble interaction. Experiments will consist of the use of Particle Image Velocimetry (PIV) and Laser Doppler Velocimeters (LDV) to study single spherical bubble and single and two cylindrical bubble behavior with respect to their influence on the turbulence of the surrounding liquid and on the wall 2) The dynamics of bubbly and slug flow in microgravity will be analyzed especially for the role of the coalescence in the transition from bubbly to slug flow (effect of fluid properties and surfactant), to identify clusters that promote coalescence and transition the void fraction distribution in bubbly and slug flow,to measure the wall friction in bubbly flow. These experiments will consist of multiple bubbles type flows and will utilize hot wire and film anemometers to measure liquid velocity and wall shear stress respectively and double fiber optic probes to measure bubble size and velocity as a function of tube radius and axial location.
Microgravity experiments on a granular gas of elongated grains
NASA Astrophysics Data System (ADS)
Harth, K.; Trittel, T.; Kornek, U.; Höme, S.; Will, K.; Strachauer, U.; Stannarius, R.
2013-06-01
Granular gases represent well-suited systems to investigate statistical granular dynamics. The literature comprises numerous investigations of ensembles of spherical or irregularly shaped grains. Mainly computer models, analytical theories and experiments restricted to two dimensions were reported. In three-dimensions, the gaseous state can only be maintained by strong external excitation, e. g. vibrations or electro-magnetic fields, or in microgravity. A steady state, where the dynamics of a weakly disturbed granular gas are governed by particle-particle collisions, is hard to realize with spherical grains due to clustering. We present the first study of a granular gas of elongated cylinders in three dimensions. The mean free path is considerably reduced with respect to spheres at comparable filling fractions. The particles can be tracked in 3D over a sequence of frames. In a homogeneous steady state, we find non-Gaussian velocity distributions and a lack of equipartition of kinetic energy. We discuss the relations between energy input and vibrating plate accelerations. At the request of the authors and the Proceedings Editors, the PDF file of this article has been updated to amend some references present in the PDF file submitted to AIP Publishing. The references affected are listed here:[1] (c) K. Nichol and K. E. Daniels, Phys. Rev. Lett. 108, 018001 (2012); [11] (e) P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, Clarendon Press, Oxford (1993); [17] (b) K. Harth, et al., Phys. Rev. Lett. 110, 144102 (2013).A LaTeX processing error resulted in changes to the authors reference formatting, which was not detected prior to publication. Due apologies are given to the authors for this oversight. The updated article PDF was published on 12 August 2013.
Mechanical Vibrations Reduce the Intervertebral Disc Swelling and Muscle Atrophy from Bed Rest
NASA Technical Reports Server (NTRS)
Holguin, Nilsson; Muir, Jesse; Evans, Harlan J.; Qin, Yi-Xian; Rubin, Clinton; Wagshul, Mark; Judex, Stefan
2007-01-01
Loss of functional weight bearing, such as experienced during space flight or bed rest (BR), distorts intervertebral disc (IVD) and muscle morphology. IVDs are avascular structures consisting of cells that may derive their nutrition and waste removal from the load induced fluid flow into and out of the disc. A diurnal cycle is produced by forces related to weight bearing and muscular activity, and comprised of a supine and erect posture over a 24 hr period. A diurnal cycle will include a disc volume change of approx. 10-13%. However, in space there are little or no diurnal changes because of the microgravity, which removes the gravitational load and compressive forces to the back muscles. The BR model and the etiology of the disc swelling and muscle atrophy could provide insight into those subjects confined to bed for chronic disease/injury and aging. We hypothesize that extremely low-magnitude, high frequency mechanical vibrations will abate the disc degeneration and muscle loss associated with long-term BR.
MEMS Micro-Valve for Space Applications
NASA Technical Reports Server (NTRS)
Chakraborty, I.; Tang, W. C.; Bame, D. P.; Tang, T. K.
1998-01-01
We report on the development of a Micro-ElectroMechanical Systems (MEMS) valve that is designed to meet the rigorous performance requirements for a variety of space applications, such as micropropulsion, in-situ chemical analysis of other planets, or micro-fluidics experiments in micro-gravity. These systems often require very small yet reliable silicon valves with extremely low leak rates and long shelf lives. Also, they must survive the perils of space travel, which include unstoppable radiation, monumental shock and vibration forces, as well as extreme variations in temperature. Currently, no commercial MEMS valve meets these requirements. We at JPL are developing a piezoelectric MEMS valve that attempts to address the unique problem of space. We begin with proven configurations that may seem familiar. However, we have implemented some major design innovations that should produce a superior valve. The JPL micro-valve is expected to have an extremely low leak rate, limited susceptibility to particulates, vibration or radiation, as well as a wide operational temperature range.
Influence of Chair Vibrations on Indoor Sonic Boom Annoyance
NASA Technical Reports Server (NTRS)
Rathsam, Jonathan; Klos, Jacob; Loubeau, Alexandra
2015-01-01
One goal of NASA’s Commercial Supersonic Technology Project is to identify candidate noise metrics suitable for regulating quiet sonic boom aircraft. A suitable metric must consider the short duration and pronounced low frequency content of sonic booms. For indoor listeners, rattle and creaking sounds and floor and chair vibrations may also be important. The current study examined the effect of such vibrations on the annoyance of test subjects seated indoors. The study involved two chairs exposed to nearly identical acoustic levels: one placed directly on the floor, and the other isolated from floor vibrations by pneumatic elastomeric mounts. All subjects experienced both chairs, sitting in one chair for the first half of the experiment and the other chair for the remaining half. Each half of the experiment consisted of 80 impulsive noises played at the exterior of the sonic boom simulator. When all annoyance ratings were analyzed together there appeared to be no difference in mean annoyance with isolation condition. When the apparent effect of transfer bias was removed, a subtle but measurable effect of vibration on annoyance was identified.
NASA Astrophysics Data System (ADS)
Fakhari, Vahid; Choi, Seung-Bok; Cho, Chang-Hyun
2015-04-01
This work presents a new robust model reference adaptive control (MRAC) for vibration control caused from vehicle engine using an electromagnetic type of active engine mount. Vibration isolation performances of the active mount associated with the robust controller are evaluated in the presence of large uncertainties. As a first step, an active mount with linear solenoid actuator is prepared and its dynamic model is identified via experimental test. Subsequently, a new robust MRAC based on the gradient method with σ-modification is designed by selecting a proper reference model. In designing the robust adaptive control, structured (parametric) uncertainties in the stiffness of the passive part of the mount and in damping ratio of the active part of the mount are considered to investigate the robustness of the proposed controller. Experimental and simulation results are presented to evaluate performance focusing on the robustness behavior of the controller in the face of large uncertainties. The obtained results show that the proposed controller can sufficiently provide the robust vibration control performance even in the presence of large uncertainties showing an effective vibration isolation.
Active transmission isolation/rotor loads measurement system
NASA Technical Reports Server (NTRS)
Kenigsberg, I. J.; Defelice, J. J.
1973-01-01
Modifications were incorporated into a helicopter active transmission isolation system to provide the capability of utilizing the system as a rotor force measuring device. These included; (1) isolator redesign to improve operation and minimize friction, (2) installation of pressure transducers in each isolator, and (3) load cells in series with each torque restraint link. Full scale vibration tests performed during this study on a CH-53A helicopter airframe verified that these modifications do not degrade the systems wide band isolation characteristics. Bench tests performed on each isolator unit indicated that steady and transient loads can be measured to within 1 percent of applied load. Individual isolator vibratory load measurement accuracy was determined to be 4 percent. Load measurement accuracy was found to be independent of variations in all basic isolator operating characteristics. Full scale system load calibration tests on the CH-53A airframe established the feasibility of simultaneously providing wide band vibration isolation and accurate measurement of rotor loads. Principal rotor loads (lift, propulsive force, and torque) were measured to within 2 percent of applied load.
1989-02-03
(PCG) Protein Crystal Growth Canavalin. The major storage protein of leguminous plants and a major source of dietary protein for humans and domestic animals. It is studied in efforts to enhance nutritional value of proteins through protein engineerings. It is isolated from Jack Bean because of it's potential as a nutritional substance. Principal Investigator on STS-26 was Alex McPherson.
1998-10-10
Isolation of human mammary epithelial cells (HMEC) from breast cancer susceptible tissue. Isolate of long-term growth human mammary epithelial cells (HMEC) from outgrowth of duct element; cells shown soon after isolation and early in culture in a dish. NASA's Marshall Space Flight Center (MSFC) is sponsoring research with Bioreactors, rotating wall vessels designed to grow tissue samples in space, to understand how breast cancer works. This ground-based work studies the growth and assembly of human mammary epithelial cell (HMEC) from breast cancer susceptible tissue. Radiation can make the cells cancerous, thus allowing better comparisons of healthy vs. tunorous tissue. Credit: Dr. Robert Tichmond, NASA/Marshall Space Flight Center (MSFC).
NASA Astrophysics Data System (ADS)
Ain Abd Wahab, Nurul; Amri Mazlan, Saiful; Ubaidillah; Kamaruddin, Shamsul; Intan Nik Ismail, Nik; Choi, Seung-Bok; Haziq Rostam Sharif, Amirul
2016-10-01
This study presents a laminated magnetorheological elastomer (MRE) isolator which applies to vibration control in practice. The proposed isolator is fabricated with multilayer MRE sheets associated with the natural rubber (NR) as a matrix, and steel plates. The fabricated MRE isolator is then magnetically analysed to achieve high magnetic field intensity which can produce high damping force required for effective vibration control. Subsequently, the NR-based MRE specimen is tested to identify the field-dependent rheological properties such as storage modulus with 60 weight percentage of carbonyl iron particles. It is shown from this test that the MR effect of MRE specimen is quantified to reach up to 120% at 0.8 T. Following the design stage, the electromagnetic simulation using the finite element method magnetic (FEMM) software is carried out for analysing the magnetic flux distribution in the laminated MRE isolator. The laminated MRE isolator is then examined to a series of compression for static and dynamic test under various applied currents using the dynamic fatigue machine and biaxial dynamic testing machine. It is shown that the static compression force is increased by 14.5% under strong magnetic field compared to its off-state. Meanwhile, the dynamic compression test results show that the force increase of the laminated MRE isolator is up to 16% and 7% for low and high frequency respectively. From the results presented in this work, it is demonstrated that the full-scale concept of the MRE isolator can be one of the potential candidates for vibration control applications by tunability of the dynamic stiffness.
Computational Analysis of Gravitational Effects in Low-Density Gas Jets
NASA Technical Reports Server (NTRS)
Satti, Rajani P.; Agrawal, Ajay K.
2004-01-01
This study deals with the computational analysis of buoyancy-induced instability in the nearfield of an isothermal helium jet injected into quiescent ambient air environment. Laminar, axisymmetric, unsteady flow conditions were considered for the analysis. The transport equations of helium mass fraction coupled with the conservation equations of mixture mass and momentum were solved using a staggered grid finite volume method. The jet Richardson numbers of 1.5 and 0.018 were considered to encompass both buoyant and inertial jet flow regimes. Buoyancy effects were isolated by initiating computations in Earth gravity and subsequently, reducing gravity to simulate the microgravity conditions. Computed results concur with experimental observations that the periodic flow oscillations observed in Earth gravity subside in microgravity.
Rationale for two phase polymer system microgravity separation experiments
NASA Technical Reports Server (NTRS)
Brooks, D. E.; Bamberger, S. B.; Harris, J. M.; Vanalstine, J.
1984-01-01
The two-phase systems that result when aqueous solutions of dextran and poly(ethylene glycol) are mixed at concentrations above a few percent are discussed. They provide useful media for the partition and isolation of macromolecules and cell subpopulations. By manipulating their composition, separations based on a variety of molecular and surface properties are achieved, including membrane hydrophobic properties, cell surface charge, and membrane antigenicity. Work on the mechanism of cell partition shows there is a randomizing, nonthermal energy present which reduces separation resolution. This stochastic energy is probably associated with hydrodynamic interactions present during separation. Because such factors should be markedly reduced in microgravity, a series of shuttle experiments to indicate approaches to increasing the resolution of the procedure are planned.
NASA Astrophysics Data System (ADS)
Poojary, Umanath R.; Hegde, Sriharsha; Gangadharan, K. V.
2016-11-01
Magneto rheological elastomer (MRE) is a potential resilient element for the semi active vibration isolator. MRE based isolators adapt to different frequency of vibrations arising from the source to isolate the structure over wider frequency range. The performance of MRE isolator depends on the magnetic field and frequency dependent characteristics of MRE. Present study is focused on experimentally evaluating the dynamic stiffness and loss factor of MRE through dynamic blocked transfer stiffness method. The dynamic stiffness variations of MRE exhibit strong magnetic field and mild frequency dependency. Enhancements in dynamic stiffness saturate with the increase in magnetic field and the frequency. The inconsistent variations of loss factor with the magnetic field substantiate the inability of MRE to have independent control over its damping characteristics.
Plant cell transformation with Agrobacterium tumefaciens under simulated microgravity
NASA Astrophysics Data System (ADS)
Sarnatska, Veresa; Gladun, Hanna; Padalko, Svetlana
To investigate simulated microgravity (clinorotation) effect on plant cell transformation with Agrobacterium tumefaciens and crown gall formation, the culture of primary explants of potato and Jerusalem artichoke tubers was used. It is found that the efficiency of tumor formation and development in clinorotated explants are considerably reduced. When using the explants isolated from potato tubers clinorotated for 3, 5 and 19 days, drastic reduction of formation and development of crown gall tumors was observed. Conversely, the tumor number and their development increased when potato tubers were clinorotated for one day. As was estimated by us previously, cells of Jerusalem artichoke explants are the most sensitive to agrobacteria on 4-5 h of in vitro culturing and this time corresponds to the certain period of G1-stage of the cell cycle. We have also estimated that this period is characterized by the increase of binding of acridine orange by nuclear chromatin and increase in activity of RNA-polymerase I and II. Inoculation of explants with agrobacteria in this period was the most optimal for transformation and crown gall induction. We estimated that at four - hour clinorotation of explants the intensity of acridine orange binding to nuclei was considerably lower than on 4h in the control. At one-day clinorotation of potato tubers, a considerable increase in template accessibility of chromatin and in activity of RNA-polymerase I and II occurred. These results may serve as an evidence for the ability of plant dormant tissues to respond to microgravity. Another demonstration of dormant tissue response to changed gravity we obtained when investigating pathogenesis-related proteins (PR-proteins). PR-proteins were subjected to nondenaturing PAGE.and we have not found any effect of microgravity on PR-proteins of potato explants with normal or tumorous growth. We may suggest that such response derives from the common effects of two stress factors - wounding and changed gravity. Investigation of the effect of microgravity on PR-proteins of dormant potato tubers showed that an intensity of several electrophoretic fractions of these proteins with middle electrophoretic mobility increased and appeared two new minor fractions with high electrophoretic mobility under clinorotation of tubers. We discuss the possibility to use short term clinorotation of plant organs, from which the explants for the transformation with A. tumefaciens will be isolated, for an increase in the transformation efficiency of recalcitrant plants.
Vibration isolation system for cryocoolers of soft x-ray spectrometer on-board ASTRO-H (Hitomi)
NASA Astrophysics Data System (ADS)
Takei, Yoh; Yasuda, Susumu; Ishimura, Kosei; Iwata, Naoko; Okamoto, Atsushi; Sato, Yoichi; Ogawa, Mina; Sawada, Makoto; Kawano, Taro; Obara, Shingo; Natsukari, Chikara; Wada, Atsushi; Yamada, Shinya; Fujimoto, Ryuichi; Kokubun, Motohide; Yamasaki, Noriko Y.; Sugita, Hiroyuki; Minesugi, Kenji; Nakamura, Yasuo; Mitsuda, Kazuhisa; Takahashi, Tadayuki; Yoshida, Seiji; Tsunematsu, Shoji; Kanao, Kenichi; Narasaki, Katsuhiro; Otsuka, Kiyomi; Scott Porter, F.; Kilbourne, Caroline A.; Chiao, Meng P.; Eckart, Megan E.; Sneiderman, Gary A.; Pontius, James T.; McCammon, Dan; Wilke, Paul; Basile, John
2018-01-01
The soft x-ray spectrometer (SXS) onboard ASTRO-H (named Hitomi after launch) is a microcalorimeter-type spectrometer, installed in a dewar to be cooled at 50 mK. The energy resolution of the SXS engineering model suffered from microvibration from cryocoolers mounted on the dewar. This is mitigated for the flight model (FM) by introducing vibration isolation systems between the cryocoolers and the dewar. The detector performance of the FM was verified before launch of the spacecraft in both ambient condition and thermal-vacuum condition, showing no detectable degradation in energy resolution. The in-orbit detector spectral performance and cryocooler cooling performance were also consistent with that on ground, indicating that the cryocoolers were not damaged by launch environment. The design and performance of the vibration isolation system along with the mechanism of how the microvibration could degrade the cryogenic detector is shown. Lessons learned from the development to mitigate unexpected issues are also described.
NASA Astrophysics Data System (ADS)
Yang, Tao; Cao, Qingjie
2018-03-01
This work presents analytical studies of the stiffness nonlinearities SD (smooth and discontinuous) oscillator under displacement and velocity feedback control with a time delay. The SD oscillator can capture the qualitative characteristics of quasi-zero-stiffness and negative-stiffness. We focus mainly on the primary resonance of the quasi-zero-stiffness SD oscillator and the stochastic resonance (SR) of the negative-stiffness SD oscillator. Using the averaging method, we have been analyzed the amplitude response of the quasi-zero-stiffness SD oscillator. In this regard, the optimum time delay for changing the control intensity according to the optimization standard proposed can be obtained. For the optimum time delay, increasing the displacement feedback intensity is advantageous to suppress the vibrations in resonant regime where vibration isolation is needed, however, increasing the velocity feedback intensity is advantageous to strengthen the vibrations. Moreover, the effects of time-delayed feedback on the SR of the negative-stiffness SD oscillator are investigated under harmonic forcing and Gaussian white noise, based on the Langevin and Fokker-Planck approaches. The time-delayed feedback can enhance the SR phenomenon where vibrational energy harvesting is needed. This paper established the relationship between the parameters and vibration properties of a stiffness nonlinearities SD which provides the guidance for optimizing time-delayed control for vibration isolation and vibrational energy harvesting of the nonlinear systems.
A Glass Can Be Half Full: Even in Microgravity
NASA Technical Reports Server (NTRS)
Sutliff, Thomas
2004-01-01
When conducting physical science research in space, the smallest vibration or disturbance can disrupt sensitive experiments. Back in the 1990s we developed an instrument, the Space Acceleration Measurement System (SAMS) that flew on the shuttle to monitor the vibration environment - but it wasn't very flexible. It could only measure vibrations for three users and only at fixed frequency ranges, and it had to be disassembled after each two-week mission to be readied for reuse. Then the International Space Station came along. Our researchers needed a second-generation system, the SAMS-II, which would measure acceleration and vibrations for multiple payloads conducting experiments throughout the life of the station. Measurement requirements were all over the map with a variety of frequencies that needed measuring over a broad dynamic range, so it was essential to develop a robust system that would be flexible enough to accommodate all the particular users. We came up with a concept using the Space Station's Ethernet as the means to talk between multiple remote triaxial sensor systems and a remote controller box. Ultimately, our job was to acquire data within the existing constraints of the station and to quickly and effectively get that information to the scientists. In 1994 we had a $2.1-million budget and a four-year development schedule aimed at achieving these goals. Technical risks were few and primarily resulted from uncertainty of ISS capabilities. At that point, we didn't worry about a thing programmatically; our cup runneth over.
A micro-vibration generated method for testing the imaging quality on ground of space remote sensing
NASA Astrophysics Data System (ADS)
Gu, Yingying; Wang, Li; Wu, Qingwen
2018-03-01
In this paper, a novel method is proposed, which can simulate satellite platform micro-vibration and test the impact of satellite micro-vibration on imaging quality of space optical remote sensor on ground. The method can generate micro-vibration of satellite platform in orbit from vibrational degrees of freedom, spectrum, magnitude, and coupling path. Experiment results show that the relative error of acceleration control is within 7%, in frequencies from 7Hz to 40Hz. Utilizing this method, the system level test about the micro-vibration impact on imaging quality of space optical remote sensor can be realized. This method will have an important applications in testing micro-vibration tolerance margin of optical remote sensor, verifying vibration isolation and suppression performance of optical remote sensor, exploring the principle of micro-vibration impact on imaging quality of optical remote sensor.
Do Scaphoideus titanus (Hemiptera: Cicadellidae) nymphs use vibrational communication?
NASA Astrophysics Data System (ADS)
Chuche, Julien; Thiéry, Denis; Mazzoni, Valerio
2011-07-01
Small Auchenorrhyncha use substrate-borne vibrations to communicate. Although this behaviour is well known in adult leafhoppers, so far no studies have been published on nymphs. Here we checked the occurrence of vibrational communication in Scaphoideus titanus (Hemiptera: Cicadellidae) nymphs as a possible explanation of their aggregative distributions on host plants. We studied possible vibratory emissions of isolated and grouped nymphs, as well as their behavioural responses to vibration stimuli that simulated presence of conspecifics, to disturbance noise, white noise and predator spiders. None of our synthetic stimuli or pre-recorded substrate vibrations from nymphs elicited specific vibration responses and only those due to grooming or mechanical contacts of the insect with the leaf were recorded. Thus, S. titanus nymphs showed to not use species-specific vibrations neither for intra- nor interspecific communication and also did not produce alarm vibrations when facing potential predators. We conclude that their aggregative behaviour is independent from a vibrational communication.
Simulation of the Effect of Realistic Space Vehicle Environments on Binary Metal Alloys
NASA Technical Reports Server (NTRS)
Westra, Douglas G.; Poirier, D. R.; Heinrich, J. C.; Sung, P. K.; Felicelli, S. D.; Phelps, Lisa (Technical Monitor)
2001-01-01
Simulations that assess the effect of space vehicle acceleration environments on the solidification of Pb-Sb alloys are reported. Space microgravity missions are designed to provide a near zero-g acceleration environment for various types of scientific experiments. Realistically. these space missions cannot provide a perfect environment. Vibrations caused by crew activity, on-board experiments, support systems stems (pumps, fans, etc.), periodic orbital maneuvers, and water dumps can all cause perturbations to the microgravity environment. In addition, the drag on the space vehicle is a source of acceleration. Therefore, it is necessary to predict the impact of these vibration-perturbations and the steady-state drag acceleration on the experiments. These predictions can be used to design mission timelines. so that the experiment is run during times that the impact of the acceleration environment is acceptable for the experiment of interest. The simulations reported herein were conducted using a finite element model that includes mass, species, momentum, and energy conservation. This model predicts the existence of "channels" within the processing mushy zone and subsequently "freckles" within the fully processed solid, which are the effects of thermosolutal convection. It is necessary to mitigate thermosolutal convection during space experiments of metal alloys, in order to study and characterize diffusion-controlled transport phenomena (microsegregation) that are normally coupled with macrosegregation. The model allows simulation of steady-state and transient acceleration values ranging from no acceleration (0 g). to microgravity conditions (10(exp -6) to 10(exp -3) g), to terrestrial gravity conditions (1 g). The transient acceleration environments simulated were from the STS-89 SpaceHAB mission and from the STS-94 SpaceLAB mission. with on-orbit accelerometer data during different mission periods used as inputs for the simulation model. Periods of crew exercise, quiet (no crew activity), and nominal conditions from STS-89 were used as simulation inputs as were periods of nominal. overboard water-dump, and free-drift (no orbit maneuvering operations) from STS-94. Steady-state acceleration environments of 0.0 and 10(exp -6) to 10(exp -1) g were also simulated, to serve as a comparison to the transient data and to assess an acceptable magnitude for the steady-state vehicle drag
A Future Large-Aperture UVOIR Space Observatory: Key Technologies and Capabilities
NASA Technical Reports Server (NTRS)
Bolcar, Matthew Ryan; Stahle, Carl M.; Balasubramaniam, Kunjithapatham; Clampin, Mark; Feinberg, Lee D.; Mosier, Gary E.; Quijada, Manuel A.; Rauscher, Bernard J.; Redding, David C.; Rioux, Norman M.;
2015-01-01
We present the key technologies and capabilities that will enable a future, large-aperture ultravioletopticalinfrared (UVOIR) space observatory. These include starlight suppression systems, vibration isolation and control systems, lightweight mirror segments, detector systems, and mirror coatings. These capabilities will provide major advances over current and near-future observatories for sensitivity, angular resolution, and starlight suppression. The goals adopted in our study for the starlight suppression system are 10-10 contrast with an inner working angle of 20 milliarcsec and broad bandpass. We estimate that a vibration and isolation control system that achieves a total system vibration isolation of 140 dB for a vibration-isolated mass of 5000 kg is required to achieve the high wavefront error stability needed for exoplanet coronagraphy. Technology challenges for lightweight mirror segments include diffraction-limited optical quality and high wavefront error stability as well as low cost, low mass, and rapid fabrication. Key challenges for the detector systems include visible-blind, high quantum efficiency UV arrays, photon counting visible and NIR arrays for coronagraphic spectroscopy and starlight wavefront sensing and control, and detectors with deep full wells with low persistence and radiation tolerance to enable transit imaging and spectroscopy at all wavelengths. Finally, mirror coatings with high reflectivity ( 90), high uniformity ( 1) and low polarization ( 1) that are scalable to large diameter mirror substrates will be essential for ensuring that both high throughput UV observations and high contrast observations can be performed by the same observatory.
The Advanced Technology Large-Aperture Space Telescope (ATLAST) Technology Roadmap
NASA Technical Reports Server (NTRS)
Stahle, Carl; Balasubramanian, K.; Bolcar, M.; Clampin, M.; Feinberg, L.; Hartman, K.; Mosier, C.; Quijada, M.; Rauscher, B.; Redding, D.;
2014-01-01
We present the key technologies and capabilities that will enable a future, large-aperture ultravioletopticalinfrared (UVOIR) space observatory. These include starlight suppression systems, vibration isolation and control systems, lightweight mirror segments, detector systems, and mirror coatings. These capabilities will provide major advances over current and near-future observatories for sensitivity, angular resolution, and starlight suppression. The goals adopted in our study for the starlight suppression system are 10-10 contrast with an inner working angle of 40 milliarcsec and broad bandpass. We estimate that a vibration and isolation control system that achieves a total system vibration isolation of 140 dB for a vibration-isolated mass of 5000 kg is required to achieve the high wavefront error stability needed for exoplanet coronagraphy. Technology challenges for lightweight mirror segments include diffraction-limited optical quality and high wavefront error stability as well as low cost, low mass, and rapid fabrication. Key challenges for the detector systems include visible-blind, high quantum efficiency UV arrays, photon counting visible and NIR arrays for coronagraphic spectroscopy and starlight wavefront sensing and control, and detectors with deep full wells with low persistence and radiation tolerance to enable transit imaging and spectroscopy at all wavelengths. Finally, mirror coatings with high reflectivity ( 90), high uniformity ( 1) and low polarization ( 1) that are scalable to large diameter mirror substrates will be essential for ensuring that both high throughput UV observations and high contrast observations can be performed by the same observatory.
Salanova, Michele; Gambara, Guido; Moriggi, Manuela; Vasso, Michele; Ungethuem, Ute; Belavý, Daniel L; Felsenberg, Dieter; Cerretelli, Paolo; Gelfi, Cecilia; Blottner, Dieter
2015-11-24
Disuse-induced muscle atrophy is a major concern in aging, in neuromuscular diseases, post-traumatic injury and in microgravity life sciences affecting health and fitness also of crew members in spaceflight. By using a laboratory analogue to body unloading we perform for the first time global gene expression profiling joined to specific proteomic analysis to map molecular adaptations in disused (60 days of bed rest) human soleus muscle (CTR) and in response to a resistive exercise (RE) countermeasure protocol without and with superimposed vibration mechanosignals (RVE). Adopting Affymetrix GeneChip technology we identified 235 differently transcribed genes in the CTR group (end- vs. pre-bed rest). RE comprised 206 differentially expressed genes, whereas only 51 changed gene transcripts were found in RVE. Most gene transcription and proteomic changes were linked to various key metabolic pathways (glycolysis, oxidative phosphorylation, tricarboxylic acid (TCA) cycle, lipid metabolism) and to functional contractile structures. Gene expression profiling in bed rest identified a novel set of genes explicitly responsive to vibration mechanosignals in human soleus. This new finding highlights the efficacy of RVE protocol in reducing key signs of disuse maladaptation and atrophy, and to maintain a close-to-normal skeletal muscle quality outcome following chronic disuse in bed rest.
NASA Technical Reports Server (NTRS)
Feigelson, Robert S.; Zharikov, Evgenii
2002-01-01
The principal goal of this ground-based program, which started on February 1, 1998 and concluded on April 30, 2002, was to investigate the influence of low frequency vibrations on the fluid flow and quality of dielectric oxide crystals grown by the vertical Bridgman method. This experimental program was a collaborative effort between Stanford University and the General Physics Institute of the Russian Academy of Sciences in Moscow, and included a strong emphasis on both physical modeling and the growth of some technologically important materials. Additionally it was carried out initially in collaboration with the theoretical and numerical investigations of A.Fedoseyev and I.Alexander (ongoing in another NASA sponsored program). This latter program involved a study of vibro-convective buoyancy-driven flows in cylindrical configurations with the expectation of being able to use vibrational flows to control buoyancy driven fluid transport to off-set the effect of "g-jitter" during microgravity Bridgman crystal growth. These two programs taken together, were designed to lead to a new parametric control variable which can be used to either suppress or control convection, and thereby heat and mass transport during Bridgman crystal growth. It was expected to be effective in either a terrestrial or space environment.
Research opportunities with the Centrifuge Facility
NASA Technical Reports Server (NTRS)
Funk, Glenn A.
1992-01-01
The Centrifuge Facility on Space Station Freedom will consist of a 2.5-meter diameter Centrifuge accommodating two concentric rings of habitats and providing variable g-forces between 0.01 g and 2.0 g; modular habitats providing housing and lifesupport for rats, mice, and plants; a habitat holding system providing power, water, airflow and other utilities to several modular habitats; and a life sciences glovebox, an isolated work volume accommodating simultaneous operations by at least two scientists and providing lighting, airflow, video and data access, and other experiment support functions. The centrifuge facility will enable long-duration animal and plant microgravity research not previously possible in the NASA flight research program. It will offer unprecedented opportunities for use of on-board 1-g control populations and statistically significant numbers of specimens. On orbit 1-g controls will allow separation of the effects of microgravity from other environmental factors. Its selectable-g and simultaneous multiple-g capabilities will enable studies of gravitational thresholds, the use of artificial gravity as a countermeasure to the effects of microgravity, and ready simulation of Lunar and Martian gravities.
Summary of Research Adaptions of Visceral and Cerebral Resistance Arteries to Simulated Microgravity
NASA Technical Reports Server (NTRS)
Delp, Michael
2003-01-01
The proposed studies were designed address the effects of simulated microgravity on vascular smooth muscle and endothelial cell function in resistance arteries isolated from visceral tissues (spleen, mesentery and kidneys) and cerebrum. Alterations in vascular function induced by microgravity are particularly relevant to the problems of orthostatic intolerance and reduced exercise capacity experienced by astronauts upon re-entry into the earth's gravitational field. Decrements in contractile function or enhanced vasodilatory responsiveness of peripheral resistance arteries could lead to decreased peripheral resistance and orthostatic hypotension. Alternatively, augmentation of contractile function in cerebral resistance arteries could lead to increased cerebral vascular resistance and diminished perfusion of the brain. The Specific Aims and hypotheses were proposed in this grant. Following each of the Specific Aims, progress toward addressing that specific aim is presented. With the exception of Specific Aim VI (see aim for details), all aims have been experimentally addressed as proposed. The final six months of the granting period will be used for manuscript preparation; manuscripts in preparation will contain results from Specific Aims I-IV. Results from Specific Aims V and VI have been published.
NASA Astrophysics Data System (ADS)
Li, Zhuoyuan; Sheng, Meiping; Wang, Minqing; Dong, Pengfei; Li, Bo; Chen, Hualing
2018-07-01
In this paper, a novel fabrication process of stacked dielectric elastomer actuator (SDEA) is developed based on casting process and elastomeric electrode. The so-fabricated SDEA benefits the advantages of homogenous and reproducible properties as well as little performance degradation after one-year use. A coupling model of SDEA is established by taking into consideration of the elastomeric electrode and the calculated results agree with the experiments. Based on the model, we attain the method to optimize the SDEA’s parameters. Finally, the SDEA is used as an isolator in active vibration isolation system to verify the feasibility in dynamic application. And the experiment results show a great prospect for SDEA in such application.
Design of vibration isolation systems using multiobjective optimization techniques
NASA Technical Reports Server (NTRS)
Rao, S. S.
1984-01-01
The design of vibration isolation systems is considered using multicriteria optimization techniques. The integrated values of the square of the force transmitted to the main mass and the square of the relative displacement between the main mass and the base are taken as the performance indices. The design of a three degrees-of-freedom isolation system with an exponentially decaying type of base disturbance is considered for illustration. Numerical results are obtained using the global criterion, utility function, bounded objective, lexicographic, goal programming, goal attainment and game theory methods. It is found that the game theory approach is superior in finding a better optimum solution with proper balance of the various objective functions.
NASA Technical Reports Server (NTRS)
Jammu, V. B.; Danai, K.; Lewicki, D. G.
1998-01-01
This paper presents the experimental evaluation of the Structure-Based Connectionist Network (SBCN) fault diagnostic system introduced in the preceding article. For this vibration data from two different helicopter gearboxes: OH-58A and S-61, are used. A salient feature of SBCN is its reliance on the knowledge of the gearbox structure and the type of features obtained from processed vibration signals as a substitute to training. To formulate this knowledge, approximate vibration transfer models are developed for the two gearboxes and utilized to derive the connection weights representing the influence of component faults on vibration features. The validity of the structural influences is evaluated by comparing them with those obtained from experimental RMS values. These influences are also evaluated ba comparing them with the weights of a connectionist network trained though supervised learning. The results indicate general agreement between the modeled and experimentally obtained influences. The vibration data from the two gearboxes are also used to evaluate the performance of SBCN in fault diagnosis. The diagnostic results indicate that the SBCN is effective in directing the presence of faults and isolating them within gearbox subsystems based on structural influences, but its performance is not as good in isolating faulty components, mainly due to lack of appropriate vibration features.
Structure-borne noise at hotels
NASA Astrophysics Data System (ADS)
Wilson, George Paul; Jue, Deborah A.
2002-11-01
Hotels present a challenging environment for building designers to provide suitable noise and vibration isolation between very incompatible uses. While many are familiar with ways to reduce traditional sources of airborne noise and vibration, structure-borne noise and vibration are often overlooked, often with costly repercussions. Structure-borne noise can be very difficult to pinpoint, and troubleshooting the sources of the vibration can be a tedious process. Therefore, the best approach is to avoid the problem altogether during design, with attention to the building construction, potential vibration sources, building uses and equipment locations. In this paper, the relationship between structure-borne vibration and noise are reviewed, typical vibration sources discussed (e.g., aerobic rooms, laundry rooms, mechanical equipment/building services, and subway rail transit), and key details and design guidance to minimize structure-borne noise provided.
NASA Astrophysics Data System (ADS)
Kari, Leif
2017-09-01
The dynamic stiffness of a chemically and physically ageing rubber vibration isolator in the audible frequency range is modelled as a function of ageing temperature, ageing time, actual temperature, time, frequency and isolator dimension. In particular, the dynamic stiffness for an axially symmetric, homogeneously aged rubber vibration isolator is derived by waveguides where the eigenmodes given by the dispersion relation for an infinite cylinder satisfying traction free radial surface boundary condition are matched to satisfy the displacement boundary conditions at the lateral surface ends of the finite rubber cylinder. The constitutive equations are derived in a companion paper (Part 1). The dynamic stiffness is calculated over the whole audible frequency range 20-20,000 Hz at several physical ageing times for a temperature history starting at thermodynamic equilibrium at +25°C and exposed by a sudden temperature step down to -60°C and at several chemical ageing times at temperature +25°C with simultaneous molecular network scission and reformation. The dynamic stiffness results are displaying a strong frequency dependence at a short physical ageing time, showing stiffness magnitude peaks and troughs, and a strong physical ageing time dependence, showing a large stiffness magnitude increase with the increased physical ageing time, while the peaks and troughs are smoothed out. Likewise, stiffness magnitude peaks and troughs are frequency-shifted with increased chemical ageing time. The developed model is possible to apply for dynamic stiffness prediction of rubber vibration isolator over a broad audible frequency range under realistic environmental condition of chemical ageing, mainly attributed to oxygen exposure from outside and of physical ageing, primarily perceived at low-temperature steps.
Psychophysiology in microgravity and the role of exercise
NASA Technical Reports Server (NTRS)
Shaw, J. M.; Hackney, A. C.
1994-01-01
The Space Transportation-Shuttle (STS) Program has greatly expanded our capabilities in space by allowing for missions to be flown more frequently, less expensively, and to encompass a greater range of goals than ever before. However, the scope of the United State's role and involvement in space is currently at the edge of a new and exciting era. The National Aeronautics and Space Administration (NASA) has plans for placing an orbiting space station (Space Station Freedom) into operation before the year 2000. Space Station Freedom promises to redefine the extent of our involvement in space even further than the STS program. Space Station crewmembers will be expected to spend extended periods of time (approximately 30 to 180 days) in space exposed to an extremely diverse and adverse environment (e.g., the major adversity being the chronic microgravity condition). Consequently, the detrimental effects of exposure to the microgravity environment is of primary importance to the biomedical community responsible for the health and well-being of the crewmembers. Space flight and microgravity exposure present a unique set of stressors for the crewmember; weightlessness, danger, isolation/confinement, irregular work-rest cycles, separation from family/friends, and mission/ground crew interrelationships. A great deal is beginning to be known about the physiological changes associated with microgravity exposure, however, limited objective psychological findings exist. Examination of this latter area will become of critical concern as NASA prepares to place crewmembers on the longer space missions that will be required on Space Station Freedom. Psychological factors, such as interpersonal relations will become increasingly important issues, especially as crews become more heterogeneous in the way of experience, professional background, and assigned duties. In an attempt to minimize the detrimental physiological effects of prolonged space flight and microgravity exposure, the United States and Russian space agencies have taken steps to implement various countermeasure programs. One of the principle countermeasures used by both nations is exercise during space flight. The purpose is to present a brief overview of the major research findings examining the psychophysiological changes associated with microgravity exposure, and to address the potential role of exercise as a countermeasure in affecting these psychophysiological changes.
Immune Response in Microgravity: Genetic Basis and Countermeasure Development Implications
NASA Technical Reports Server (NTRS)
Risin, Diana; Ward, Nancy E.; Risin, Semyon A.; Pellis, Neal R.
2006-01-01
Impairment of the immunity in astronauts and cosmonauts even in shortterm flights is a recognized risk. Longterm orbital space missions and anticipated interplanetary flights increase the concern for more pronounced effects on the immune system with potential clinical consequences. Studies in true and modeled microgravity (MG) have demonstrated that MG directly affects numerous lymphocyte functions. The purpose of this study was to screen for genes involved in lymphocytes response to modeled microgravity (MMG) that could explain the functional and structural changes observed earlier. The microgravity-induced changes in gene expression were analyzed by microarray DNA chip technology. CD3and IL2activated Tcells were cultured in 1g (static) and modeled microgravity (NASA Rotating Wall Vessel bioreactor) conditions for 24 hours. Total RNA was extracted using the RNeasy isolation kit (Qiagen, Valencia, CA). Microarray experiments were performed utilizing Affymetrix Gene Chips (U133A), allowing testing for 18,400 human genes. To decrease the biological variation and aid in detecting microgravity-associated changes, experiments were performed in triplicate using cells obtained from three different donors. Exposure to modeled microgravity resulted in alteration of 89 genes, 10 of which were upregulated and 79 down-regulated. Altered genes were categorized by their function, structural role and by association with metabolic and regulatory pathways. A large proportion was found to be involved in fundamental cellular processes: signal transduction, DNA repair, apoptosis, and multiple metabolic pathways. There was a group of genes directly related to immune and inflammatory responses (IL7R, granulysin, proteasome activator subunit 2, peroxiredoxin 4, HLADRA, lymphocyte antigen 75, IL18R and DOCK2 genes). Among these genes only one (IL7R) was upregulated, the rest were downregulated. The upregulation of the IL7 receptor gene was confirmed by RT PCR. Three genes with altered expression were identified in the apoptosis related group (Granzyme B, APO2 ligand and Beta3endonexin). All of them were downregulated. Gene expression changes in MG might appear pivotal in identifying potential molecular targets for countermeasure development. (Supported by NRA OLMSA02 and NSCORT NAG54072 grants).
Low-frequency vibration isolation in sandwich plates by piezoelectric shunting arrays
NASA Astrophysics Data System (ADS)
Chen, Shengbing; Wang, Gang; Song, Yubao
2016-12-01
Piezoelectric shunting arrays are proposed to isolate low-frequency vibrations transmitted in sandwich plates. The performance is characterized through application of finite element method. The numerical result shows that a complete band gap, whose width is about 20 Hz, is produced in the desired low-frequency ranges. The band gap is induced by local resonances of the shunting circuits, whose location is strongly related to the inductance, while the resistance can broaden the band gap to some extent. Vibration experiments are conducted on a 1200 × 1000 × 15 mm aluminum honeycomb plate with two arrays of 5 × 5 shunted piezoelectric patches bonded on the surface panels. Significant attenuation is found in the experimental results, which agree well with the theoretical predictions. Consequently, the proposed idea is feasible and effective.
Astronauts Exercising in Space Video
NASA Technical Reports Server (NTRS)
2001-01-01
To minimize the effects of weightlessness and partial gravity, astronauts use several counter measures to maintain health and fitness. One counter measure is exercise to help reduce or eliminate muscle atrophy and bone loss, and to improve altered cardiovascular function. This video shows astronauts on the International Space Station (ISS) using the stationary Cycle/ Ergometer Vibration Isolation System (CVIS), the Treadmill Vibration Isolation System (TVIS), and the resistance exercise device. These technologies and activities will be crucial to keeping astronauts healthy and productive during the long missions to the Moon. Mars, and beyond.
Simulation of a tethered microgravity robot pair and validation on a planar air bearing
NASA Astrophysics Data System (ADS)
Mantellato, R.; Lorenzini, E. C.; Sternberg, D.; Roascio, D.; Saenz-Otero, A.; Zachrau, H. J.
2017-09-01
A software model has been developed to simulate the on-orbit dynamics of a dual-mass tethered system where one or both of the tethered spacecraft are able to produce propulsive thrust. The software simulates translations and rotations of both spacecraft, with the visco-elastic tether being simulated as a lumped-mass model. Thanks to this last feature, tether longitudinal and lateral modes of vibration and tether tension can be accurately assessed. Also, the way the spacecraft motion responds to sudden tether tension spikes can be studied in detail. The code enables the simulation of different scenarios, including space tug missions for deorbit maneuvers in a debris mitigation context and general-purpose tethered formation flight missions. This study aims to validate the software through a representative test campaign performed with the MIT Synchronized Position Hold Engage and Reorient Experimental Satellites (SPHERES) planar air bearing system. Results obtained with the numerical simulator are compared with data from direct measurements in different testing setups. The studied cases take into account different initial conditions of the spacecraft velocities and relative attitudes, and thrust forces. Data analysis is presented comparing the results of the simulations with direct measurements of acceleration and Azimuth rate of the two bodies in the planar air bearing test facility using a Nylon tether. Plans for conducting a microgravity test campaign using the SPHERES satellites aboard the International Space Station are also being scheduled in the near future in order to further validate the simulation using data from the relevant operational environment of extended microgravity with full six degree of freedom (per body) motion.
Vibrational spectra (FT-IR, Raman and MI-IR) of α- and β-alanine
NASA Astrophysics Data System (ADS)
Rosado, Mário Túlio S.; Duarte, Maria Leonor R. S.; Fausto, Rui
1997-06-01
The vibrational spectra of α- and β-alaine molecules in both their zwitterionic and neutral forms are studied by FT-IR, Raman and MI-IR spectroscopy. Together with results from theoretical SCF-MO ab initio calculations, the spectroscopic data obtained under the various experimental conditions used in this study (crystalline phase; low temperature matrix isolated molecules) enable to undertake a detailed assignment of the vibrational spectra of the studied compounds.
Post-capture vibration suppression of spacecraft via a bio-inspired isolation system
NASA Astrophysics Data System (ADS)
Dai, Honghua; Jing, Xingjian; Wang, Yu; Yue, Xiaokui; Yuan, Jianping
2018-05-01
Inspired by the smooth motions of a running kangaroo, a bio-inspired quadrilateral shape (BIQS) structure is proposed to suppress the vibrations of a free-floating spacecraft subject to periodic or impulsive forces, which may be encountered during on-orbit servicing missions. In particular, the BIQS structure is installed between the satellite platform and the capture mechanism. The dynamical model of the BIQS isolation system, i.e. a BIQS structure connecting the platform and the capture mechanism at each side, is established by Lagrange's equations to simulate the post-capture dynamical responses. The BIQS system suffering an impulsive force is dealt with by means of a modified version of Lagrange's equations. Furthermore, the classical harmonic balance method is used to solve the nonlinear dynamical system subject to periodic forces, while for the case under impulsive forces the numerical integration method is adopted. Due to the weightless environment in space, the present BIQS system is essentially an under-constrained dynamical system with one of its natural frequencies being identical to zero. The effects of system parameters, such as the number of layers in BIQS, stiffness, assembly angle, rod length, damping coefficient, masses of satellite platform and capture mechanism, on the isolation performance of the present system are thoroughly investigated. In addition, comparisons between the isolation performances of the presently proposed BIQS isolator and the conventional spring-mass-damper (SMD) isolator are conducted to demonstrate the advantages of the present isolator. Numerical simulations show that the BIQS system has a much better performance than the SMD system under either periodic or impulsive forces. Overall, the present BIQS isolator offers a highly efficient passive way for vibration suppressions of free-floating spacecraft.
Space headache on Earth: head-down-tilted bed rest studies simulating outer-space microgravity.
van Oosterhout, W P J; Terwindt, G M; Vein, A A; Ferrari, M D
2015-04-01
Headache is a common symptom during space travel, both isolated and as part of space motion syndrome. Head-down-tilted bed rest (HDTBR) studies are used to simulate outer space microgravity on Earth, and allow countermeasure interventions such as artificial gravity and training protocols, aimed at restoring microgravity-induced physiological changes. The objectives of this article are to assess headache incidence and characteristics during HDTBR, and to evaluate the effects of countermeasures. In a randomized cross-over design by the European Space Agency (ESA), 22 healthy male subjects, without primary headache history, underwent three periods of -6-degree HDTBR. In two of these episodes countermeasure protocols were added, with either centrifugation or aerobic exercise training protocols. Headache occurrence and characteristics were daily assessed using a specially designed questionnaire. In total 14/22 (63.6%) subjects reported a headache during ≥1 of the three HDTBR periods, in 12/14 (85.7%) non-specific, and two of 14 (14.4%) migraine. The occurrence of headache did not differ between HDTBR with and without countermeasures: 12/22 (54.5%) subjects vs. eight of 22 (36.4%) subjects; p = 0.20; 13/109 (11.9%) headache days vs. 36/213 (16.9%) headache days; p = 0.24). During countermeasures headaches were, however, more often mild (p = 0.03) and had fewer associated symptoms (p = 0.008). Simulated microgravity during HDTBR induces headache episodes, mostly on the first day. Countermeasures are useful in reducing headache severity and associated symptoms. Reversible, microgravity-induced cephalic fluid shift may cause headache, also on Earth. HDTBR can be used to study space headache on Earth. © International Headache Society 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
NASA Technical Reports Server (NTRS)
Bhat, G. K.; Yang, H.; Sridaran, R.
2001-01-01
The purpose of this study was to assess whether simulated conditions of microgravity induce changes in the production of progesterone by luteal cells of the pregnant rat ovary using an in vitro model system. The microgravity environment was simulated using either a high aspect ratio vessel (HARV) bioreactor with free fall or a clinostat without free fall of cells. A mixed population of luteal cells isolated from the corpora lutea of day 8 pregnant rats was attached to cytodex microcarrier beads (cytodex 3). These anchorage dependent cells were placed in equal numbers in the HARV or a spinner flask control vessel in culture conditions. It was found that HARV significantly reduced the daily production of progesterone from day 1 through day 8 compared to controls. Scanning electron microscopy showed that cells attached to the microcarrier beads throughout the duration of the experiment in both types of culture vessels. Cells cultured in chamber slide flasks and placed in a clinostat yielded similar results when compared to those in the HARV. Also, when they were stained by Oil Red-O for lipid droplets, the clinostat flasks showed a larger number of stained cells compared to control flasks at 48 h. Further, the relative amount of Oil Red-O staining per milligram of protein was found to be higher in the clinostat than in the control cells at 48 h. It is speculated that the increase in the level of lipid content in cells subjected to simulated conditions of microgravity may be due to a disruption in cholesterol transport and/or lesions in the steroidogenic pathway leading to a fall in the synthesis of progesterone. Additionally, the fall in progesterone in simulated conditions of microgravity could be due to apoptosis of luteal cells.
Acharya, Aviseka; Brungs, Sonja; Henry, Margit; Rotshteyn, Tamara; Singh Yaduvanshi, Nirmala; Wegener, Lucia; Jentzsch, Simon; Hescheler, Jürgen; Hemmersbach, Ruth; Boeuf, Helene; Sachinidis, Agapios
2018-06-15
Embryonic developmental studies under microgravity conditions in space are very limited. To study the effects of short-term altered gravity on embryonic development processes, we exposed mouse embryonic stem cells (mESCs) to phases of hypergravity and microgravity and studied the differentiation potential of the cells using wide-genome microarray analysis. During the 64th European Space Agency's parabolic flight campaign, mESCs were exposed to 31 parabolas. Each parabola comprised phases lasting 22 s of hypergravity, microgravity, and a repeat of hypergravity. On different parabolas, RNA was isolated for microarray analysis. After exposure to 31 parabolas, mESCs (P31 mESCs) were further differentiated under normal gravity (1 g) conditions for 12 days, producing P31 12-day embryoid bodies (EBs). After analysis of the microarrays, the differentially expressed genes were analyzed using different bioinformatic tools to identify developmental and nondevelopmental biological processes affected by conditions on the parabolic flight experiment. Our results demonstrated that several genes belonging to GOs associated with cell cycle and proliferation were downregulated in undifferentiated mESCs exposed to gravity changes. However, several genes belonging to developmental processes, such as vasculature development, kidney development, skin development, and to the TGF-β signaling pathway, were upregulated. Interestingly, similar enriched and suppressed GOs were obtained in P31 12-day EBs compared with ground control 12-day EBs. Our results show that undifferentiated mESCs exposed to alternate hypergravity and microgravity phases expressed several genes associated with developmental/differentiation and cell cycle processes, suggesting a transition from the undifferentiated pluripotent to a more differentiated stage of mESCs.
NASA Astrophysics Data System (ADS)
Dumas, Jean-Charles; Barriga, Pablo; Zhao, Chunnong; Ju, Li; Blair, David G.
2009-11-01
High performance vibration isolators are required for ground based gravitational wave detectors. To attain very high performance at low frequencies we have developed multistage isolators for the proposed Australian International Gravitational Observatory detector in Australia. New concepts in vibration isolation including self-damping, Euler springs, LaCoste springs, Roberts linkages, and double preisolation require novel sensors and actuators. Double preisolation enables internal feedback to be used to suppress low frequency seismic noise. Multidegree of freedom control systems are required to attain high performance. Here we describe the control components and control systems used to control all degrees of freedom. Feedback forces are injected at the preisolation stages and at the penultimate suspension stage. There is no direct actuation on test masses. A digital local control system hosted on a digital signal processor maintains alignment and position, corrects drifts, and damps the low frequency linear and torsional modes without exciting the very high Q-factor test mass suspension. The control system maintains an optical cavity locked to a laser with a high duty cycle even in the absence of an autoalignment system. An accompanying paper presents the mechanics of the system, and the optical cavity used to determine isolation performance. A feedback method is presented, which is expected to improve the residual motion at 1 Hz by more than one order of magnitude.
Dumas, Jean-Charles; Barriga, Pablo; Zhao, Chunnong; Ju, Li; Blair, David G
2009-11-01
High performance vibration isolators are required for ground based gravitational wave detectors. To attain very high performance at low frequencies we have developed multistage isolators for the proposed Australian International Gravitational Observatory detector in Australia. New concepts in vibration isolation including self-damping, Euler springs, LaCoste springs, Roberts linkages, and double preisolation require novel sensors and actuators. Double preisolation enables internal feedback to be used to suppress low frequency seismic noise. Multidegree of freedom control systems are required to attain high performance. Here we describe the control components and control systems used to control all degrees of freedom. Feedback forces are injected at the preisolation stages and at the penultimate suspension stage. There is no direct actuation on test masses. A digital local control system hosted on a digital signal processor maintains alignment and position, corrects drifts, and damps the low frequency linear and torsional modes without exciting the very high Q-factor test mass suspension. The control system maintains an optical cavity locked to a laser with a high duty cycle even in the absence of an autoalignment system. An accompanying paper presents the mechanics of the system, and the optical cavity used to determine isolation performance. A feedback method is presented, which is expected to improve the residual motion at 1 Hz by more than one order of magnitude.
Evaluation of the performance of a passive-active vibration isolation system
NASA Astrophysics Data System (ADS)
Sun, L. L.; Hansen, C. H.; Doolan, C.
2015-01-01
The behavior of a feedforward active isolation system subjected to actuator output constraints is investigated. Distributed parameter models are developed to analyze the system response, and to produce a transfer matrix for the design of an integrated passive-active isolation system. Cost functions considered here comprise a combination of the vibration transmission energy and the sum of the squared control forces. The example system considered is a rigid body connected to a simply supported plate via two isolation mounts. The overall isolation performance is evaluated by numerical simulation. The results show that the control strategies which rely on unconstrained actuator outputs may give substantial power transmission reductions over a wide frequency range, but also require large control force amplitudes to control excited vibration modes of the system. Expected power transmission reductions for modified control strategies that incorporate constrained actuator outputs are considerably less than typical reductions with unconstrained actuator outputs. The active system with constrained control force outputs is shown to be more effective at the resonance frequencies of the supporting plate. However, in the frequency range in which rigid body modes are present, the control strategies employed using constrained actuator outputs can only achieve 5-10 dB power transmission reduction, while at off-resonance frequencies, little or no power transmission reduction can be obtained with realistic control forces. Analysis of the wave effects in the passive mounts is also presented.
NASA Technical Reports Server (NTRS)
Tessarzik, J. M.; Chiang, T.; Badgley, R. H.
1973-01-01
The vibration response of a gas-bearing rotor-support system was analyzed experimentally documented for sinusoidal and random vibration environments. The NASA Brayton Rotating Unit (BRU), 36,000 rpm; 10 KWe turbogenerator; was subjected in the laboratory to sinusoidal and random vibrations to evaluate the capability of the BRU to (1) survive the vibration levels expected to be encountered during periods of nonoperation and (2) operate satisfactorily (that is, without detrimental bearing surface contacts) at the vibration levels expected during normal BRU operation. Response power spectral density was calculated for specified input random excitation, with particular emphasis upon the dynamic motions of the thrust bearing runner and stator. A three-mass model with nonlinear representation of the engine isolator mounts was used to calculate axial rotor-bearing shock response.
A novel approach to reduce environmental noise in microgravity measurements using a Scintrex CG5
NASA Astrophysics Data System (ADS)
Boddice, Daniel; Atkins, Phillip; Rodgers, Anthony; Metje, Nicole; Goncharenko, Yuriy; Chapman, David
2018-05-01
The accuracy and repeatability of microgravity measurements for surveying purposes are affected by two main sources of noise; instrument noise from the sensor and electronics, and environmental sources of noise from anthropogenic activity, wind, microseismic activity and other sources of vibrational noise. There is little information in the literature on the quantitative values of these different noise sources and their significance for microgravity measurements. Experiments were conducted to quantify these sources of noise with multiple instruments, and to develop methodologies to reduce these unwanted signals thereby improving the accuracy or speed of microgravity measurements. External environmental sources of noise were found to be concentrated at higher frequencies (> 0.1 Hz), well within the instrument's bandwidth. In contrast, the internal instrumental noise was dominant at frequencies much lower than the reciprocal of the maximum integration time, and was identified as the limiting factor for current instruments. The optimum time for integration was found to be between 120 and 150 s for the instruments tested. In order to reduce the effects of external environmental noise on microgravity measurements, a filtering and despiking technique was created using data from noisy environments next to a main road and outside on a windy day. The technique showed a significant improvement in the repeatability of measurements, with between 40% and 50% lower standard deviations being obtained over numerous different data sets. The filtering technique was then tested in field conditions by using an anomaly of known size, and a comparison made between different filtering methods. Results showed improvements with the proposed method performing better than a conventional, or boxcar, averaging process. The proposed despiking process was generally found to be ineffective, with greater gains obtained when complete measurement records were discarded. Field survey results were worse than static measurement results, possibly due to the actions of moving the Scintrex during the survey which caused instability and elastic relaxation in the sensor, or the liquid tilt sensors, which generated additional low frequency instrument noise. However, the technique will result in significant improvements to accuracy and a reduction of measurement time, both for static measurements, for example at reference sites and observatories, and for field measurements using the next generation of instruments based on new technology, such as atom interferometry, resulting in time and cost savings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Hailong; Vibration Control Lab, School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing 210042; Zhang, Ning
Magneto-rheological (MR) damper possesses inherent hysteretic characteristics. We investigate the resulting nonlinear behaviors of a two degree-of-freedom (2-DoF) MR vibration isolation system under harmonic external excitation. A MR damper is identified by employing the modified Bouc-wen hysteresis model. By numerical simulation, we characterize the nonlinear dynamic evolution of period-doubling, saddle node bifurcating and inverse period-doubling using bifurcation diagrams of variations in frequency with a fixed amplitude of the harmonic excitation. The strength of chaos is determined by the Lyapunov exponent (LE) spectrum. Semi-physical experiment on the 2-DoF MR vibration isolation system is proposed. We trace the time history and phasemore » trajectory under certain values of frequency of the harmonic excitation to verify the nonlinear dynamical evolution of period-doubling bifurcations to chaos. The largest LEs computed with the experimental data are also presented, confirming the chaotic motion in the experiment. We validate the chaotic motion caused by the hysteresis of the MR damper, and show the transitions between distinct regimes of stable motion and chaotic motion of the 2-DoF MR vibration isolation system for variations in frequency of external excitation.« less
Vibration isolation and dual-stage actuation pointing system for space precision payloads
NASA Astrophysics Data System (ADS)
Kong, Yongfang; Huang, Hai
2018-02-01
Pointing and stability requirements for future space missions are becoming more and more stringent. This work follows the pointing control method which consists of a traditional spacecraft attitude control system and a payload active pointing loop, further proposing a vibration isolation and dual-stage actuation pointing system for space precision payloads based on a soft Stewart platform. Central to the concept is using the dual-stage actuator instead of the traditional voice coil motor single-stage actuator to improve the payload active pointing capability. Based on a specified payload, the corresponding platform was designed to be installed between the spacecraft bus and the payload. The performance of the proposed system is demonstrated by preliminary closed-loop control investigations in simulations. With the ordinary spacecraft bus, the line-of-sight pointing accuracy can be controlled to below a few milliarcseconds in tip and tilt. Meanwhile, utilizing the voice coil motor with the softening spring in parallel, which is a portion of the dual-stage actuator, the system effectively achieves low-frequency motion transmission and high-frequency vibration isolation along the other four degree-of-freedom directions.
Passive Vibration Control of Airborne Equipment using a Circular Steel Ring
NASA Technical Reports Server (NTRS)
Ellison, Joseph; Ahmadi, Goodarz; Kehoe, Mike
1997-01-01
Vibration isolation is needed to protect avionics equipment from adverse aircraft vibration environments. Passive isolation is the simplest means to achieve this goal. The system used here consists of a circular steel ring with a lump mass on top and exposed to base excitation. Sinusoidal and filtered zero-mean Gaussian white noise are used to excite the structure and the acceleration response spectra at the top of the ring are computed. An experiment is performed to identify the natural frequencies and modal damping of the circular ring. Comparison is made between the analytical and experimental results and good agreement is observed. The ring response is also evaluated with a concentrated mass attached to the top of the ring. The effectiveness of the ring in isolating the equipment from base excitation is studied. The acceleration response spectra of a single degree of freedom system attached to the top of the ring are evaluated and the results are compared with those exposed directly to the base excitation. It is shown that a properly designed ring could effectively protect the avionics from possible damaging excitation levels.
Optimal design and experimental analyses of a new micro-vibration control payload-platform
NASA Astrophysics Data System (ADS)
Sun, Xiaoqing; Yang, Bintang; Zhao, Long; Sun, Xiaofen
2016-07-01
This paper presents a new payload-platform, for precision devices, which possesses the capability of isolating the complex space micro-vibration in low frequency range below 5 Hz. The novel payload-platform equipped with smart material actuators is investigated and designed through optimization strategy based on the minimum energy loss rate, for the aim of achieving high drive efficiency and reducing the effect of the magnetic circuit nonlinearity. Then, the dynamic model of the driving element is established by using the Lagrange method and the performance of the designed payload-platform is further discussed through the combination of the controlled auto regressive moving average (CARMA) model with modified generalized prediction control (MGPC) algorithm. Finally, an experimental prototype is developed and tested. The experimental results demonstrate that the payload-platform has an impressive potential of micro-vibration isolation.
NASA Astrophysics Data System (ADS)
Zhang, G. Q.; Ji, L. C.; Hu, X.
2017-04-01
The vortex-induced vibration behind an isolated cylinder under the wake interference of an oscillating airfoil at different oscillating frequencies and amplitudes have been studied numerically. Our previous research [11] mainly focused on the two degree of freedom vibration problem, several types of the phase portraits of the displacement have been newly found, including the "half -8″ and "cone-net" types as reduced velocity increases. At present, we have continued the research to the single degree of freedom vibration, the corresponding results had been found that under the wake of the free steady flow, as the reduced velocity increases, the phase portraits displacements of the single degree of freedom vibrating cylinder will begin to rotate counterclockwise from the first and third quadrants to the second and fourth quadrants in a Cartesian coordinate system. Under the wake of the oscillating airfoil, the single bending curve and the single closed orbit (double "8-shape" like) of the displacements are newly found in the drag and thrust producing cases respectively. Except this, the two triplets of vortices have also been newly found in the pair and single plus pair wakes at each cycle. The vorticity dynamics behind the vibrating cylinder together with the corresponding force variations have also been obtained computationally and analyzed in details.
A "Kane's Dynamics" Model for the Active Rack Isolation System
NASA Astrophysics Data System (ADS)
Rupert, J. K.; Hampton, R. D.; Beech, G. S.
2005-02-01
In the late 1980s, microgravity researchers began to voice their concern that umbilical-transmitted energy could significantly degrade the acceleration environment of microgravity space science experiments onboard manned spacecraft. Since umbilicals are necessary for many experiments, control designers began to seek ways to compensate for these "indirect" disturbances. Hampton, et al., used the Kane s method to develop a model of the active rack isolation system (ARIS) that includes (1) actuator control forces, (2) direct disturbance forces, and (3) indirect, actuator-transmitted disturbances. Their model does not, however, include the indirect, umbilical-transmitted disturbances. Since the umbilical stiffnesses are not negligible, these indirect disturbances must be included in the model. Until the umbilicals have been appropriately included, the model will be incomplete. This Technical Memorandum presents a nonlinear model of ARIS with umbilicals included. Model verification was achieved by utilizing two commercial-off-the-shelf software tools. Various forces and moments were applied to the model to yield simulated responses of the system. Plots of the simulation results show how various critical points on an ARIS-outfitted international standard payload rack behave under the application of direct disturbances, indirect disturbances, and control forces. Simulations also show system response to a variety of initial conditions.
Use of Microgravity to Control the Microstructure of Eutectics
NASA Technical Reports Server (NTRS)
Wilcox. William R.; Regel, Liya L.
1999-01-01
This grant began in June of 1996. Its long term goal is to be able to control the microstructure of directionally solidified eutectic alloys, through an improved understanding of the influence of convection. The primary objective of the projects in the present grant is to test hypotheses for the reported influence of microgravity on the microstructure of eutectics. The prior experimental results on the influence of microgravity on the microstructure of eutectics have been contradictory. With lamellar eutectics, microgravity had a negligible effect on the microstructure. Microgravity experiments with fibrous eutectics sometimes showed a finer microstructure and sometimes a coarser microstructure. Most research has been done on the MnBi/Bi rod-like eutectic. Larson and Pirich obtained a two-fold finer microstructure both from microgravity and by use of a magnetic field to quench buoyancy-driven convection. Smith, on the other hand, observed no change in microgravity. Prior theoretical work at Clarkson University showed that buoyancy-driven convection in the vertical Bridgman configuration is not vigorous enough to alter the concentration field in front of a growing eutectic sufficiently to cause a measurable change in microstructure. We assumed that the bulk melt was at the eutectic composition and that freezing occurred at the extremum, i.e. with minimum total undercooling at the freezing interface. There have been four hypotheses attempting to explain the observed changes in microstructure of fibrous eutectics caused by convection: I .A fluctuating freezing rate, combined with unequal kinetics for fiber termination and branching. 2. Off-eutectic composition, either in the bulk melt due to an off-eutectic feed or at the freezing interface because of departure from the extremum condition. 3. Presence of a strong habit modifying impurity whose concentration at the freezing interface would be altered by convection. At the beginning of the present grant, we favored the first of these hypotheses and set out to test it both experimentally and theoretically. We planned the following approaches: I .Pass electric current pulses through the MnBi/Bi eutectic during directional solidification in order to produce an oscillatory freezing rate. 2. Directionally solidify the MnBi/Bi eutectic on Mir using the QUELD II gradient freeze furnace developed by Professor Smith at Queen's University. 3. Select another fibrous eutectic system for investigation using the Accelerated Crucible Rotation Technique to introduce convection. 4. Develop theoretical models for eutectic solidification with an oscillatory freezing rate. Because of the problems with Mir, we substituted ground-based experiments at Queen's University with QUELD II vertical and horizontal, with and without vibration of the furnace. The Al-Si system was chosen for the ACRT experiments. Three related approaches were used to model eutectic solidification with an oscillatory freezing rate. A sharp interface model was used to calculate composition oscillations at the freezing interface in response to imposed freezing rate oscillations.
System Measures Thermal Noise In A Microphone
NASA Technical Reports Server (NTRS)
Zuckerwar, Allan J.; Ngo, Kim Chi T.
1994-01-01
Vacuum provides acoustic isolation from environment. System for measuring thermal noise of microphone and its preamplifier eliminates some sources of error found in older systems. Includes isolation vessel and exterior suspension, acting together, enables measurement of thermal noise under realistic conditions while providing superior vibrational and accoustical isolation. System yields more accurate measurements of thermal noise.
Multistage position-stabilized vibration isolation system for neutron interferometry
NASA Astrophysics Data System (ADS)
Arif, Muhammad; Brown, Dennis E.; Greene, Geoffrey L.; Clothier, R.; Littrell, K.
1994-10-01
A two stage, position stabilized vibration isolation system has been constructed and is now in operation at the Cold Neutron Research Facility of the National Institute of Standards and Technology, Gaithersburg, MD. The system employs pneumatic isolators with a multiple input/multiple output pneumatic servo system based upon pulse width modulation control loops. The first stage consists of a 40,000 kg reinforced concrete table supported by pneumatic isolators. A large environmentally isolated laboratory enclosure rests on the concrete table. The second stage consists of a 3000 kg granite optical table located within the enclosure and supported by another set of pneumatic isolators. The position of the two stages is monitored by proximity sensors and inclinometers with 12 degrees of freedom. The system controls 12 independent pneumatic airsprings. The signals from these sensors are fed into a personal computer based control system. The control system has maintained the position of the two stages to better than 1 micrometers in translation and 5 (mu) rad in orientation for a period of a few months. A description of the system and its characteristics is given.
Attitude tracking control of flexible spacecraft with large amplitude slosh
NASA Astrophysics Data System (ADS)
Deng, Mingle; Yue, Baozeng
2017-12-01
This paper is focused on attitude tracking control of a spacecraft that is equipped with flexible appendage and partially filled liquid propellant tank. The large amplitude liquid slosh is included by using a moving pulsating ball model that is further improved to estimate the settling location of liquid in microgravity or a zero-g environment. The flexible appendage is modelled as a three-dimensional Bernoulli-Euler beam, and the assumed modal method is employed. A hybrid controller that combines sliding mode control with an adaptive algorithm is designed for spacecraft to perform attitude tracking. The proposed controller has proved to be asymptotically stable. A nonlinear model for the overall coupled system including spacecraft attitude dynamics, liquid slosh, structural vibration and control action is established. Numerical simulation results are presented to show the dynamic behaviors of the coupled system and to verify the effectiveness of the control approach when the spacecraft undergoes the disturbance produced by large amplitude slosh and appendage vibration. Lastly, the designed adaptive algorithm is found to be effective to improve the precision of attitude tracking.
Kapitonova, M Y; Muid, S; Froemming, G R A; Yusoff, W N W; Othman, S; Ali, A M; Nawawi, H M
2012-12-01
Microgravity, hypergravity, vibration, ionizing radiation and temperature fluctuations are major factors of outer space flight affecting human organs and tissues. There are several reports on the effect of space flight on different human cell types of mesenchymal origin while information regarding changes to vascular endothelial cells is scarce. Ultrastructural and cytophysiological features of macrovascular endothelial cells in outer space flight and their persistence during subsequent culturing were demonstrated in the present investigation. At the end of the space flight, endothelial cells displayed profound changes indicating cytoskeletal lesions and increased cell membrane permeability. Readapted cells of subsequent passages exhibited persisting cytoskeletal changes, decreased metabolism and cell growth indicating cellular senescence.
2001-01-24
The Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002 will measure the viscous behavior of liquid xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. Resembling a tiny bit of window screen, the oscillator at the heart of CVX-2 will vibrate between two pairs of paddle-like electrodes. The slight bend in the shape of the mesh has no effect on the data. What counts are the mesh's displacement in the xenon fluid and the rate at which the displacement dampens. The unit shown here is encased in a small test cell and capped with a sapphire windown to contain the xenon at high pressure.
Nutrition beyond nutrition: plausibility of immunotrophic nutrition for space travel.
Kulkarni, A D; Yamauchi, K; Hales, N W; Ramesh, V; Ramesh, G T; Sundaresan, A; Andrassy, R J; Pellis, N R
2002-06-01
Microgravity has adverse effects on the immune system. We examined the effects of supplemental dietary nucleotides on immune function in ground-based in vivo anti-orthostatic tail-suspended (AOS) mice and in vitro (bioreactor-BIO) analogs of microgravity. BALB/c mice were divided into the following three groups: group housed, single isolation, and AOS. Mice were fed either control chow or chow supplemented with RNA or uracil. Immune function was assessed by in vivo popliteal lymph node proliferation (PLN), in vitro PHA-stimulated proliferation of splenocytes and cytokine production. BIO splenocytes were cultured in vitro with/without PHA, a nucleoside-nucleotide mixture (NS/NT) or uridine. The cell proliferation and scanning electron microscopic examination for cells were carried out. PLN response was significantly suppressed in AOS mice (P<0.05) and was restored by RNA and uracil diets. Splenocytes from AOS mice had decreased phytohemagglutinin (PHA)-stimulated proliferation, decreased IL-2 and IFN-gamma cytokine levels (P<0.05). These responses were restored by RNA and uracil diets. In BIO cultures, PHA response was suppressed significantly, and uridine and NS/NT restored the proliferative responses. Scanning electron microscopic analysis of cells cultured in BIO revealed cells with pinched, distorted and eroded membranes. Nucleotide supplementation especially uridine restored normal activated cell surface appearance and ruffling. In the microgravity analog environment of AOS and BIO, supplemental nucleotides and especially uracil/uridine have up-regulating and immunoprotective effects with potential as a countermeasure to the observed immune dysfunction in true microgravity.
Microgravity and immunity: Changes in lymphocyte gene expression.
NASA Astrophysics Data System (ADS)
Risin, D.; Ward, N. E.; Risin, S. A.; Pellis, N. R.
Earlier studies had shown that modeled and true microgravity MG cause multiple direct effects on human lymphocytes MG inhibits lymphocyte locomotion suppresses polyclonal and antigen-specific activation affects signal transduction mechanisms as well as activation-induced apoptosis In this study we assessed changes in gene expression associated with lymphocyte exposure to microgravity in an attempt to identify microgravity-sensitive genes MGSG in general and specifically those genes that might be responsible for the functional and structural changes observed earlier Two sets of experiments targeting different goals were conducted In the first set T-lymphocytes from normal donors were activated with anti-CD3 and IL2 and then cultured in 1g static and modeled MG MMG conditions Rotating Wall Vessel bioreactor for 24 hours This setting allowed searching for MGSG by comparison of gene expression patterns in zero and 1 g gravity In the second set - activated T-cells after culturing for 24 hours in 1g and MMG were exposed three hours before harvesting to a secondary activation stimulus PHA thus triggering the apoptotic pathway Total RNA was extracted using the RNeasy isolation kit Qiagen Valencia CA Affymetrix Gene Chips U133A allowing testing for 18 400 human genes were used for microarray analysis The experiments were performed in triplicates with T-cells obtained from different blood donors to minimize the possible input of biological variation in gene expression and discriminate changes that are associated with the
Gene expression variations during Drosophila metamorphosis in real and simulated gravity
NASA Astrophysics Data System (ADS)
Marco, R.; Leandro-García, L. J.; Benguría, A.; Herranz, R.; Zeballos, A.; Gassert, G.; van Loon, J. J.; Medina, F. J.
Establishing the extent and significance of the effects of the exposure to microgravity of complex living organisms is a critical piece of information if the long-term exploration of near-by planets involving human beings is going to take place in the Future As a first step in this direction we have started to look into the patterns of gene expression during Drosophila development in real and simulated microgravity using microarray analysis of mRNA isolated from samples exposed to different environmental conditions In these experiments we used Affymetrix chips version 1 0 containing probes for more than 14 000 genes almost the complete Drosophila genome 55 of which are tagged with some molecular or functional designation while 45 are still waiting to be identified in functional terms The real microgravity exposure was imposed on the samples during the crew exchanging Soyuz 8 Mission to the ISS in October 2003 when after 11 days in Microgravity the Spanish-born astronaut Pedro Duque returned in the Soyuz 7 capsule carrying the experiments prepared by our Team Due to the constraints in the current ISS experiments in these Missions we limited the stages explored in our experiment to the developmental processes occurring during Drosophila metamorphosis As the experimental conditions at the launch site Baikonour were fairly limited we prepared the experiment in Madrid Toulouse and transp o rted the samples at 15 C in a temperature controlled container to slow down the developmental process a
Long-Term Simulated Microgravity Causes Cardiac RyR2 Phosphorylation and Arrhythmias in Mice
Respress, Jonathan L.; Gershovich, Pavel M.; Wang, Tiannan; Reynolds, Julia O.; Skapura, Darlene G.; Sutton, Jeffrey P.; Miyake, Christina Y.; Wehrens, Xander H.T.
2014-01-01
Background Long-term exposure to microgravity during space flight may lead to cardiac remodeling and rhythm disturbances. In mice, hindlimb unloading (HU) mimics the effects of microgravity and stimulates physiological adaptations, including cardiovascular deconditioning. Recent studies have demonstrated an important role played by changes in intracellular Ca handling in the pathogenesis of heart failure and arrhythmia. In this study, we tested the hypothesis that cardiac remodeling following HU in mice involves abnormal intracellular Ca regulation through the cardiac ryanodine receptor (RyR2). Methods and Results Mice were subjected to HU by tail suspension for 28 to 56 days in order to induce cardiac remodeling (n=15). Control mice (n=19) were treated equally, with the exception of tail suspension. Echocardiography revealed cardiac enlargement and depressed contractility starting at 28 days post-HU versus control. Moreover, mice were more susceptible to pacing-induced ventricular arrhythmias after HU. Ventricular myocytes isolated from HU mice exhibited an increased frequency of spontaneous sarcoplasmic reticulum (SR) Ca release events and enhanced SR Ca leak via RyR2. Western blotting revealed increased RyR2 phosphorylation at S2814, and increased CaMKII auto-phosphorylation at T287, suggesting that CaMKII activation of RyR2 might underlie enhanced SR Ca release in HU mice. Conclusion These data suggest that abnormal intracellular Ca handling, likely due to increased CaMKII phosphorylation of RyR2, plays a role in cardiac remodeling following simulated microgravity in mice. PMID:25227892
Microgravity Emissions Laboratory Testing of the Light Microscopy Module Control Box Fan
NASA Technical Reports Server (NTRS)
McNelis, Anne M.; Samorezov, Sergey; Haecker, Anthony H.
2003-01-01
The Microgravity Emissions Laboratory (MEL) was developed at the NASA Glenn Research Center for the characterization, simulation, and verification of the International Space Station (ISS) microgravity environment. This Glenn lab was developed in support of the Fluids and Combustion Facility (FCF). The MEL is a six-degrees-of-freedom inertial measurement system that can characterize the inertial response forces (emissions) of components, subrack payloads, or rack-level payloads down to 10 7g. The inertial force output data generated from the steady-state or transient operations of the test article are used with finite element analysis, statistical energy analysis, and other analysis tools to predict the on-orbit environment at specific science or rack interface locations. Customers of the MEL have used benefits in isolation performance testing in defining available attenuation during the engineering hardware design phase of their experiment s development. The Light Microscopy Module (LMM) Control Box (LCB) fan was tested in the MEL in June and July of 2002. The LMM is planned as a remotely controllable on-orbit microscope subrack facility that will be accommodated in an FCF Fluids Integrated Rack on the ISS. The disturbances measured in the MEL test resulted from operation of the air-circulation fan within the LCB. The objectives of the testing were (1) to identify an isolator to be added to the LCB fan assembly to reduce fan-speed harmonics and (2) to identify the fan-disturbance forcing functions for use in rack-response analysis of the LMM and Fluids Integrated Rack facility. This report describes the MEL, the testing process, and the results from ground-based MEL LCB fan testing.
Hypogravity's Effect on the Life Cycle of Japanese Quail
NASA Technical Reports Server (NTRS)
Hester, Patricia Y.
1999-01-01
A series of studies were conducted to determine the effect of activities preceding space-flight and during space-flight on quail embryonic development. While the overall development of the quail embryos was evaluated, the report presented herein, focused on calcium utilization or uptake from eggshells by developing embryos during incubation in space and on earth. In the pre-space trials, fertilized quail eggs were subjected to pre-night dynamics including forces of centrifugation, vibration, or a combination of vibration and centrifugation prior to incubation for 6 or 16 days. In another trial, fertile quail eggs were tested for survivability in a refrigerator stowage kit for eggs (RSKE) which was subsequently used to transport the eggs to space. Eggs in the RSKE were subjected to shuttle launch dynamics including G force and random vibration profiles. In the space- flight trials, 48 fertile quail eggs were launched on space shuttle Flight STS-76 and were subsequently incubated in a Slovakian incubator onboard space station, MIR. Two sets of ground controls each with 48 fertile eggs with and without exposure to launch dynamics were initiated 5 days post-launch. There was a laboratory control (incubated in Lyon RX2 incubator at 37.5 C) and a synchronous control (incubated in Lyon RX2 incubator at 39 - 400 C), which simulated the temperature of the space-flight incubator. Following space-flight trials, post-flight trials were conducted where quail eggs were incubated in Lyon RX2 or Slovakian incubators under various temperatures with or without launch dynamics. Eggshells from all study trials were retrieved and analyzed for calcium content to determine if its utilization by developing quail embryos was affected by activities preceding space-flight or during incubation in space under microgravity. Results from the pre-flight and post-flight showed that pre-flight activities and shuttle launch dynamics had no effect on calcium uptake from the eggshell by developing embryos. However, calcium uptake from the eggshell by developing embryos incubated in micro,aravity was impaired by 12.6% when compared to embryos incubated on earth under laboratory control environment. This impairment was unlikely due to factors other than microgravity. In general, calcium utilization by developing embryos increased with age of incubation with the most increase occurring at day 16 of incubation.
Combination sound and vibration isolation curb for rooftop air-handling systems
NASA Astrophysics Data System (ADS)
Paige, Thomas S.
2005-09-01
This paper introduces the new Model ESSR Sound and Vibration Isolation Curb manufactured by Kinetics Noise Control, Inc. This product was specially designed to address all of the common transmission paths associated with noise and vibration sources from roof-mounted air-handling equipment. These include: reduction of airborne fan noise in supply and return air ductwork, reduction of duct rumble and breakout noise, reduction of direct airborne sound transmission through the roof deck, and reduction of vibration and structure-borne noise transmission to the building structure. Upgrade options are available for increased seismic restraint and wind-load protection. The advantages of this new system over the conventional approach of installing separate duct silencers in the room ceiling space below the rooftop unit are discussed. Several case studies are presented with the emphasis on completed projects pertaining to classrooms and school auditorium applications. Some success has also been achieved by adding active noise control components to improve low-frequency attenuation. This is an innovative product designed for conformance with the new classroom acoustics standard ANSI S12.60.
Origin of the OH vibrational blue shift in the LiOH crystal.
Hermansson, Kersti; Gajewski, Grzegorz; Mitev, Pavlin D
2008-12-25
The O-H vibrational frequency in crystalline hydroxides is either upshifted or downshifted by its crystalline surroundings. In the LiOH crystal, the experimental gas-to-solid O-H frequency upshift ("blue shift") is approximately +115 cm(-1). Here plane-wave DFT calculations for the isotope-isolated LiOH crystal have been performed and we discuss the origin of the OH frequency upshift, and the nature of the OH group and the interlayer interactions. We find that (1) the vibrational frequency upshift originates from interactions within the LiOH layer; this OH upshift is slightly lessened by the interlayer interactions; (2) the interlayer O-H - - - H-O interaction is largely electrostatic in character (but there is no hydrogen bonding); (3) the gas-to-solid vibrational shift for OH in LiOH(s) and its subsystems qualitatively adheres to a parabola-like "frequency vs electric field strength" correlation curve, which has a maximum for a positive electric field, akin to the correlation curve earlier found in the literature for an isolated OH(-) ion in an electric field.
Vibration isolation mounting system
NASA Technical Reports Server (NTRS)
Carter, Sam D. (Inventor); Bastin, Paul H. (Inventor)
1995-01-01
A system is disclosed for mounting a vibration producing device onto a spacecraft structure and also for isolating the vibration forces thereof from the structure. The system includes a mount on which the device is securely mounted and inner and outer rings. The rings and mount are concentrically positioned. The system includes a base (secured to the structure) and a set of links which are interconnected by a set of torsion bars which allow and resist relative rotational movement therebetween. The set of links are also rotatably connected to a set of brackets which are rigidly connected to the outer ring. Damped leaf springs interconnect the inner and outer rings and the mount allow relative translational movement therebetween in X and Y directions. The links, brackets and base are interconnected and configured so that they allow and resist translational movement of the device in the Z direction so that in combination with the springs they provide absorption of vibrational energy produced by the device in all three dimensions while providing rotational stiffness about all three axes to prevent undesired rotational motions.
1987-01-01
PULLERS AND SEPARATION JOINTS M. J. Evans and V. H. Neubert , The Pennsylvania State Univevsity, University Partk, PA, and L. J. Bement, NASA, Langley...Laboratory, Wshingt’,, DC Wednesday Nondevelopment Mr. James W. Daniel, Mr. Paul Hahn, 15 October, A.M. Items Workshop, U.S. Army Missile Martl.n Marietta...Session i, Command, Orlando Aerospace, Methods Redstone Arseral, AL Orlando, FL Wednesday Structural Mr. Etanley Barrett, Hr. W. Paul Dunn, 15
1981-05-01
Neubert , The Pennsylvania State University, University Park, PA tv Irv If N OF ANALYSIS OF THE EFFECTS OF EXPLOSIVE FUEL IGNITION ON A AIRCRAFT NOISE...Charles Moening, The Aerospace A.M. Laboratory, Washington, DC Corporation, El Segundo, CA Thursday, 23 Oct. Analysis Dr. Ben Wads, Jet Propulsion Mr. Paul ...Trials Report being published in April 1975 [ 251, Vibration Symposium the Advisory Committee for Ship Vi- while the El Paso PAUL KAYSER Vibration Trials
Shock and Vibration Symposium (59th) Held in Albuquerque, New Mexico on 18-20 October 1988. Volume 2
1988-10-01
030 in. Thick V-45 Rubber Shear Ply Aluminum Coated Steel Snap- FM-73 Film NAS 6703 Bolts ring 7 Polar Layers - M7885/4 Rivets 76 Required 11.5 Deg...Feedback Q. Zhang, S. Shelley 1. N. Lou and R. J. Allemang Relating Material Properties and Wave Effects in Vibration Isolators M. C. Reid, S. 0...Load-Deflection Characteristics of Rubber Element for Vibration Control Devices E. I. Rivin and B. S. Lee Vi ______ _____________ AIRBLAST Envelope
The effects of simulated hypogravity on murine bone marrow cells
NASA Technical Reports Server (NTRS)
Lawless, Desales
1989-01-01
Mouse bone marrow cells grown in complete medium at unit gravity were compared with a similar population cultured in conditions that mimic some aspects of microgravity. After the cells adjusted to the conditions that simulated microgravity, they proliferated as fetal or oncogenic populations; their numbers doubled in twelve hour periods. Differentiated subpopulations were depleted from the heterogeneous mixture with time and the undifferentiated hematopoietic stem cells increased in numbers. The cells in the control groups in unit gravity and those in the bioreactors in conditions of microgravity were monitored under a number of parameters. Each were phenotyped as to cell surface antigens using a panel of monoclonal antibodies and flow cytometry. Other parameters compared included: pH, glucose uptake, oxygen consumption and carbon-dioxide production. Nuclear DNA was monitored by flow cytometry. Functional responses were studied by mitogenic stimulation by various lectins. The importance of these findings should have relevance to the space program. Cells should behave predictably in zero gravity; specific populations can be eliminated from diverse populations and other populations isolated. The availability of stem cell populations will enhance both bone marrow and gene transplant programs. Stem cells will permit developmental biologists study the paths of hematopoiesis.
Enhancements of Nucleate Boiling Under Microgravity Conditions
NASA Technical Reports Server (NTRS)
Zhang, Nengli; Chao, David F.; Yang, W. J.
2000-01-01
This paper presents two means for enhancing nucleate boiling and critical heat flux under microgravity conditions: using micro-configured metal-graphite composites as the boiling surface and dilute aqueous solutions of long-chain alcohols as the working fluid. In the former, thermocapillary force induced by temperature difference between the graphite-fiber tips and the metal matrix plays an important role in bubble detachment. Thus boiling-heat transfer performance does not deteriorate in a reduced-gravity environment. In the latter cases, the surface tension-temperature gradient of the long-chain alcohol solutions turns positive as the temperature exceeds a certain value. Consequently, the Marangoni effect does not impede, but rather aids in bubble departure from the heating surface. This feature is most favorable in microgravity. As a result, the bubble size of departure is substantially reduced at higher frequencies. Based on the existing experimental data, and a two-tier theoretical model, correlation formulas are derived for nucleate boiling on the copper-graphite and aluminum-graphite composite surfaces, in both the isolated and coalesced bubble regimes. In addition, performance equations for nucleate boiling and critical heat flux in dilute aqueous solutions of long-chain alcohols are obtained.
Weakly Nonlinear Description of Parametric Instabilities in Vibrating Flows
NASA Technical Reports Server (NTRS)
Knobloch, E.; Vega, J. M.
1999-01-01
This project focuses on the effects of weak dissipation on vibrational flows in microgravity and in particular on (a) the generation of mean flows through viscous effects and their reaction on the flows themselves, and (b) the effects of finite group velocity and dispersion on the resulting dynamics in large domains. The basic mechanism responsible for the generation of such flows is nonlinear and was identified by Schlichting [21] and Longuet-Higgins. However, only recently has it become possible to describe such flows self-consistently in terms of amplitude equations for the parametrically excited waves coupled to a mean flow equation. The derivation of these equations is nontrivial because the limit of zero viscosity is singular. This project focuses on various aspects of this singular problem (i.e., the limit C equivalent to (nu)((g)(h(exp 3)))exp -1/2 << 1,where nu is the kinematic viscosity and h is the liquid depth) in the weakly nonlinear regime. A number of distinct cases is identified depending on the values of the Bond number, the size of the nonlinear terms, distance above threshold and the length scales of interest. The theory provides a quantitative explanation of a number of experiments on the vibration modes of liquid bridges and related experiments on parametric excitation of capillary waves in containers of both small and large aspect ratio. The following is a summary of results obtained thus far.
Li, Jin; Liu, Zilong; Liu, Si
2017-02-20
In on-board photographing processes of satellite cameras, the platform vibration can generate image motion, distortion, and smear, which seriously affect the image quality and image positioning. In this paper, we create a mathematical model of a vibrating modulate transfer function (VMTF) for a remote-sensing camera. The total MTF of a camera is reduced by the VMTF, which means the image quality is degraded. In order to avoid the degeneration of the total MTF caused by vibrations, we use an Mn-20Cu-5Ni-2Fe (M2052) manganese copper alloy material to fabricate a vibration-isolation mechanism (VIM). The VIM can transform platform vibration energy into irreversible thermal energy with its internal twin crystals structure. Our experiment shows the M2052 manganese copper alloy material is good enough to suppress image motion below 125 Hz, which is the vibration frequency of satellite platforms. The camera optical system has a higher MTF after suppressing the vibration of the M2052 material than before.
NASA Astrophysics Data System (ADS)
Zhang, S.; Wang, B.; Cao, X. S.; Yang, Z.; Sun, X. Q.
2008-12-01
AuthorPurposeThis study was aimed to explore the effect of flow shear stress on the expression of Cbfa1 in human osteosarcoma cells and to survey its functional alteration in simulated microgravity. After culture for 48 h in two different gravitational environments, i.e. 1 G terrestrial gravitational condition and simulated microgravity condition, human osteosarcoma cells (MG-63) were treated with 0.5 or 1.5 Pa fluid shear stress (FSS) in a flow chamber for 15, 30, and 60 min, respectively. The total RNA in cells was isolated. RT-PCR analysis was made to examine the gene expression of Cbfa1. The total protein of cells was extracted and the expression of Cbfa1 protein was detected by means of Western blotting. ResultsMG-63 cells cultured in 1 G condition reacted to FSS treatment with an enhanced expression of Cbfa1. Compared with no-FSS control group, Cbfa1 mRNA expression increased significantly at 30 and 60 min with the treatment of FSS ( P < 0.01). And there was remarkable difference on the Cbfa1 mRNA expression between the treatments of 0.5 and 1.5 Pa FSS at 30 or 60 min ( P < 0.01). Cbfa1 protein expressions had a trend to increase at 30 min with the treatment of FSS and they increased significantly at 60 min with the treatment of 0.5 or 1.5 Pa FSS ( P < 0.05). As to the cells cultured in simulated microgravity by using clinostat, the expression of Cbfa1 was significantly different between 1 G and simulated microgravity conditions at each test time ( P < 0.05). Compared with no-FSS control group cultured in simulated microgravity, Cbfa1 mRNA expression increased significantly at 30 and 60 min with the treatment of FSS ( P < 0.05). And Cbfa1 protein expression increased significant at 60 min with the treatment of 1.5 Pa FSS under simulated microgravity conditions ( P < 0.05). ConclusionsFSS can significantly increase the gene and protein expression of Cbfa1 in human osteosarcoma cells. And this inducible function of FSS was adversely affected by simulated microgravity.
NASA Astrophysics Data System (ADS)
Palomares, E.; Nieto, A. J.; Morales, A. L.; Chicharro, J. M.; Pintado, P.
2018-02-01
This paper presents a Negative Stiffness System (NSS) based on a set of two double-acting pneumatic linear actuators (PLA). The NSS is added to a system with a single degree of freedom, which consists of a sprung mass and a pneumatic spring. One end of each PLA is jointed to the sprung mass while the other end is jointed to the vibrating frame. In addition, the PLAs are symmetrically arranged so that they remain horizontal while the sprung mass is in static conditions. When the rear chamber is pressurised, the vertical component of the force applied by the PLAs will work against the pneumatic spring reducing the dynamic resonance frequency of the overall system. Experimental tests and simulations showed improvements regarding sprung mass isolation in comparison to the passive system without NSS, decreasing the resonance frequency by up to 58 % and improving the vibration attenuation for different experimental excitations.
How to detect when cells in space perceive gravity
NASA Technical Reports Server (NTRS)
Bjoerkman, Thomas
1989-01-01
It is useful to be able to measure when and whether cells detect gravity during spaceflights. For studying gravitational physiology, gravity perception is the response the experimentalist needs to measure. Also, for growing plants in space, plant cells may have a non-directional requirement for gravity as a development cue. The main goals of spaceflight experiments in which gravity perception would be measured are to determine the properties of the gravity receptor and how it is activated, and to determine fundamental characteristics of the signal generated. The main practical difficulty with measuring gravity sensing in space is that gravity sensing cannot be measured with certainty on earth. Almost all experiments measure gravitropic curvature. Reciprocity and intermittent stimulation are measurements which were made to some degree on earth using clinostatting, but which would provide clearer results if done with microgravity rather than clinostatting. These would be important uses of the space laboratory for determining the nature of gravity sensing in plants. Those techniques which do not use gravitropic curvature to measure gravity sensing are electrophysiological. The vibrating probe would be somewhat easier to adapt to space conditions than the intracellular microelectrode because it can be positioned with less precision. Ideally, a non-invasive technique would be best suited if an appropriate measure could be developed. Thus, the effect of microgravity on cultured cells is more likely to be by large-scale physical events than gravity sensing in the culture cells. It is not expected that it will be necessary to determine whether individual cultured cells perceive gravity unless cells grow abnormally even after the obvious microgravity effects on the culture as a whole can be ruled out as the cause.
NASA Astrophysics Data System (ADS)
Beijer, Åsa; Degens, Hans; May, Francisca; Bloch, Wilhelm; Rittweger, Joern; Rosenberger, Andre
2012-07-01
Both Resistance Exercise and Whole-Body-Vibration training are currently considered as countermeasures against microgravity-induced physiological deconditioning. Here we investigated the effects of whole-body vibration superimposed upon resistance exercise. Within this context, the present study focuses on changes in circulating angiogenic factors as indicators of skeletal muscle adaption. Methods: Twenty-six healthy male subjects (25.2 ± 4.2 yr) were included in this two-group parallel-designed study and randomly assigned to one of the training interventions: either resistance exercise (RE) or resistance vibration exercise (RVE). Participants trained 2-3 times per week for 6 weeks (completing 16 training sessions), where one session took 9 ± 1 min. Participants trained with weights on a guided barbell. The individual training load was set at 80% of their 1-Repetition-Maximum. Each training session consisted of three sets with 8 squats and 12 heel raises, following an incremental training design with regards to weight (RE and RVE) and vibration frequency (RVE only). The vibration frequency was increased from 20 Hz in the first week till 40 Hz during the last two weeks with 5-Hz weekly increments. At the first and 16 ^{th} training session, six blood samples (pre training and 2 min, 5 min, 15 min, 35 min and 75 min post training) were taken. Circulating levels of vascular endothelial growth factor (VEGF), Endostatin and Matrix Metalloproteinases -2 and -9 (MMPs) were determined in serum using Enzyme-linked Immunosorbent Assays. Results: MMP-2 levels increased by 7.0% (SE = 2.7%, P < 0.001) within two minutes after the exercise bout and then decreased to 5.7% below baseline (SE = 2.4%, P < 0.001) between 15 and 75 minutes post exercise. This response was comparable before and after the training programs (P = 0.70) and also between the two intervention groups (P = 0.42). Preliminary analyses indicate that a similar pattern applies to circulating MMP-9, VEGF and Endostatin levels. Conclusion: The present findings suggest 1) that resistance exercise, both with and without superimposed vibration, leads to a transient rise in circulating angiogenic factors, 2) which is not altered after a period of resistance exercise with or without vibration.
Altered Innate and Lymphocytic Immunity in Murine Splenocytes Following Short-Duration Spaceflight
NASA Technical Reports Server (NTRS)
Crucian, Brian E.; Hwang, Shen-An; Actor, Jeffrey K.; Quiriarte, Heather; Sams, Clarence F.
2011-01-01
Immune dysregulation has been demonstrated following spaceflight of varying durations and limited in-flight studies indicate this phenomenon may persist during spaceflight. Causes may include microgravity, physiological stress, isolation, confinement and disrupted circadian rhythms. To further investigate the mechanisms associated with flight-associated immune changes, murine splenocytes immune parameters were assessed following 14 day space flight on Space Shuttle mission STS-135.
Changes in gravity inhibit lymphocyte locomotion through type I collagen
NASA Technical Reports Server (NTRS)
Pellis, N. R.; Goodwin, T. J.; Risin, D.; McIntyre, B. W.; Pizzini, R. P.; Cooper, D.; Baker, T. L.; Spaulding, G. F.
1997-01-01
Immunity relies on the circulation of lymphocytes through many different tissues including blood vessels, lymphatic channels, and lymphoid organs. The ability of lymphocytes to traverse the interstitium in both nonlymphoid and lymphoid tissues can be determined in vitro by assaying their capacity to locomote through Type I collagen. In an attempt to characterize potential causes of microgravity-induced immunosuppression, we investigated the effects of simulated microgravity on human lymphocyte function in vitro using a specialized rotating-wall vessel culture system developed at the Johnson Space Center. This very low shear culture system randomizes gravitational vectors and provides an in vitro approximation of microgravity. In the randomized gravity of the rotating-wall vessel culture system, peripheral blood lymphocytes did not locomote through Type I collagen, whereas static cultures supported normal movement. Although cells remained viable during the entire culture period, peripheral blood lymphocytes transferred to unit gravity (static culture) after 6 h in the rotating-wall vessel culture system were slow to recover and locomote into collagen matrix. After 72 h in the rotating-wall vessel culture system and an additional 72 h in static culture, peripheral blood lymphocytes did not recover their ability to locomote. Loss of locomotory activity in rotating-wall vessel cultures appears to be related to changes in the activation state of the lymphocytes and the expression of adhesion molecules. Culture in the rotating-wall vessel system blunted the ability of peripheral blood lymphocytes to respond to polyclonal activation with phytohemagglutinin. Locomotory response remained intact when peripheral blood lymphocytes were activated by anti-CD3 antibody and interleukin-2 prior to introduction into the rotating-wall vessel culture system. Thus, in addition to the systemic stress factors that may affect immunity, isolated lymphocytes respond to gravitational changes by ceasing locomotion through model interstitium. These in vitro investigations suggest that microgravity induces non-stress-related changes in cell function that may be critical to immunity. Preliminary analysis of locomotion in true microgravity revealed a substantial inhibition of cellular movement in Type I collagen. Thus, the rotating-wall vessel culture system provides a model for analyzing the microgravity-induced inhibition of lymphocyte locomotion and the investigation of the mechanisms related to lymphocyte movement.
Systemic Microgravity Response: Utilizing GeneLab to Develop Hypotheses for Spaceflight Risks
NASA Technical Reports Server (NTRS)
Beheshti, Afshin; Ray, Shayoni; Fogle, Homer W.; Berrios, Daniel C.; Costes, Sylvain V.
2017-01-01
Biological risks associated with microgravity are a major concern for long-term space travel. Although determination of risk has been a focus for NASA research, data examining systemic (i.e., multi- or pan-tissue) responses to space flight are sparse. To perform our analysis, we utilized the NASA GeneLab database which is a publicly available repository containing a wide array of omics results from experiments conducted with: i) with different flight conditions (space shuttle (STS) missions vs. International Space Station (ISS); ii) a variety of tissues; and 3) assays that measure epigenetic, transcriptional, and protein expression changes. Meta-analysis of the transcriptomic data from 7 different murine and rat data sets, examining tissues such as liver, kidney, adrenal gland, thymus, mammary gland, skin, and skeletal muscle (soleus, extensor digitorum longus, tibialis anterior, quadriceps, and gastrocnemius) revealed for the first time, the existence of potential master regulators coordinating systemic responses to microgravity in rodents. We identified p53, TGF1 and immune related pathways as the highly prevalent pan-tissue signaling pathways that are affected by microgravity. Some variability in the degree of change in their expression across species, strain and time of flight was also observed. Interestingly, while certain skeletal muscle (gastrocnemius and soleus) exhibited an overall down-regulation of these genes, some other muscle types such as the extensor digitorum longus, tibialis anterior and quadriceps, showed an up-regulated expression, indicative of potential compensatory mechanisms to prevent microgravity-induced atrophy. Key genes isolated by unbiased systems analyses displayed a major overlap between tissue types and flight conditions and established TGF1 to be the most connected gene across all data sets. Finally, a set of microgravity responsive miRNA signature was identified and based on their predicted functional state and subsequent impact on health, a theoretical health risk score was calculated. The genes and miRNAs identified from our analyses can be targeted for future research involving efficient countermeasure design. Our study thus exemplifies the utility of GeneLab data repository to aid in the process of performing novel hypothesis based spaceflight research aimed at elucidating the global impact of environmental stressors at multiple biological scales.
14 CFR 25.1707 - System separation: EWIS.
Code of Federal Regulations, 2013 CFR
2013-01-01
... installed to ensure adequate physical separation and electrical isolation so that damage to circuits... ensure adequate physical separation and electrical isolation so that a fault in any one airplane power... minimize potential for abrasion/chafing, vibration damage, and other types of mechanical damage. ...
14 CFR 25.1707 - System separation: EWIS.
Code of Federal Regulations, 2014 CFR
2014-01-01
... installed to ensure adequate physical separation and electrical isolation so that damage to circuits... ensure adequate physical separation and electrical isolation so that a fault in any one airplane power... minimize potential for abrasion/chafing, vibration damage, and other types of mechanical damage. ...
14 CFR 25.1707 - System separation: EWIS.
Code of Federal Regulations, 2010 CFR
2010-01-01
... installed to ensure adequate physical separation and electrical isolation so that damage to circuits... ensure adequate physical separation and electrical isolation so that a fault in any one airplane power... minimize potential for abrasion/chafing, vibration damage, and other types of mechanical damage. ...
14 CFR 25.1707 - System separation: EWIS.
Code of Federal Regulations, 2012 CFR
2012-01-01
... installed to ensure adequate physical separation and electrical isolation so that damage to circuits... ensure adequate physical separation and electrical isolation so that a fault in any one airplane power... minimize potential for abrasion/chafing, vibration damage, and other types of mechanical damage. ...
14 CFR 25.1707 - System separation: EWIS.
Code of Federal Regulations, 2011 CFR
2011-01-01
... installed to ensure adequate physical separation and electrical isolation so that damage to circuits... ensure adequate physical separation and electrical isolation so that a fault in any one airplane power... minimize potential for abrasion/chafing, vibration damage, and other types of mechanical damage. ...
Canuteson, E L; Zumberge, M
1996-07-01
In an absolute gravity meter, a laser interferometer measures the position of a test mass that is falling ina vacuum. The calculated value of gravity is the average acceleration of the mass during a set ofdrops. Since systematic accelerations of the optical system will bias the measured value of gravity,various interferometer geometries have been implemented in the past to isolate the optical system fromground motion. We have developed and tested a low-finesse fiber-optic extrinsic Fabry-Perotinterferometer that is fixed to the mass of a critically damped seismometer in which the effects ofsystematic ground motion and acoustic vibrations are reduced.
The isolation limits of stochastic vibration
NASA Technical Reports Server (NTRS)
Knopse, C. R.; Allaire, P. E.
1993-01-01
The vibration isolation problem is formulated as a 1D kinematic problem. The geometry of the stochastic wall trajectories arising from the stroke constraint is defined in terms of their significant extrema. An optimal control solution for the minimum acceleration return path determines a lower bound on platform mean square acceleration. This bound is expressed in terms of the probability density function on the significant maxima and the conditional fourth moment of the first passage time inverse. The first of these is found analytically while the second is found using a Monte Carlo simulation. The rms acceleration lower bound as a function of available space is then determined through numerical quadrature.
NASA Astrophysics Data System (ADS)
Unuh, M. H.; Muhamad, P.; Norfazrina, H. M. Y.; Ismail, M. A.; Tanasta, Z.
2018-01-01
The applications of semi-active damper employing magnetorheological (MR) fluids keep increasing in fulfilling the demand to control undesired vibration effect. The aim of this study is to introduce the new design of damper for Malaysian vehicle model as well to evaluate its effectiveness in promoting comfort. The vibration isolation performance of the OEM damper featuring MR fluid was analysed physically under real road profile excitation experimentally. An experiment using quarter car rig suspension and LMS SCADAS Mobile was conducted to demonstrate the influence of current in controlling the characteristics of MR fluid in alter the damping behaviour under 5 cm bump impact. Subsequently, the displacement values were measured with respect to time. The new design OEM damper featuring MR fluid was validated by comparing the data with original equipment manufacturer (OEM) passive damper results under the same approach of testing. Comparison of numerical data of the new design OEM damper shown that it can reduce the excitation amplitude up to 40% compared to those obtained by OEM passive damper. Finally, the new design OEM damper featuring MR fluid has effectively isolated the disturbance from the road profile and control the output force.
NASA Technical Reports Server (NTRS)
Estep, P. A.; Kovach, J. J.; Waldstein, P.; Karr, C., Jr.
1972-01-01
Infrared and Raman vibrational spectroscopic data, yielding direct information on molecular structure, were obtained for single grains ( 150 microns) of minerals, basalts, and glasses isolated from Apollo 11, 12, 14, and 15 rock and dust samples, and for grains in Apollo 14 polished butt samples. From the vibrational data, specification substitutions were determined for the predominant silicate minerals of plagioclase, pyroxene, and olivine. Unique spectral variations for grains of K-feldspar, orthopyroxene, pyroxenoid, and ilmenite were observed to exceed the ranges of terrestrial samples, and these variations may be correlatable with formation histories. Alpha-quartz was isolated as pure single grains, in granitic grains composited with sanidine, and in unique grains that were intimately mixed with varying amounts of glass. Accessory minerals of chromite and ulvospinel were isolated as pure grains and structurally characterized from their distinctive infrared spectra. Fundamental vibrations of the SiO4 tetrahedra in silicate minerals were used to classify bulk compositions in dust sieved fractions, basalt grains and glass particles, and to compare modal characteristics for maria, highland and rille samples. No hydrated minerals were found in any of the samples studied, indicating anhydrous formation conditions.
A novel eddy current damper: theory and experiment
NASA Astrophysics Data System (ADS)
Ebrahimi, Babak; Khamesee, Mir Behrad; Golnaraghi, Farid
2009-04-01
A novel eddy current damper is developed and its damping characteristics are studied analytically and experimentally. The proposed eddy current damper consists of a conductor as an outer tube, and an array of axially magnetized ring-shaped permanent magnets separated by iron pole pieces as a mover. The relative movement of the magnets and the conductor causes the conductor to undergo motional eddy currents. Since the eddy currents produce a repulsive force that is proportional to the velocity of the conductor, the moving magnet and the conductor behave as a viscous damper. The eddy current generation causes the vibration to dissipate through the Joule heating generated in the conductor part. An accurate, analytical model of the system is obtained by applying electromagnetic theory to estimate the damping properties of the proposed eddy current damper. A prototype eddy current damper is fabricated, and experiments are carried out to verify the accuracy of the theoretical model. The experimental test bed consists of a one-degree-of-freedom vibration isolation system and is used for the frequency and transient time response analysis of the system. The eddy current damper model has a 0.1 m s-2 (4.8%) RMS error in the estimation of the mass acceleration. A damping coefficient as high as 53 Ns m-1 is achievable with the fabricated prototype. This novel eddy current damper is an oil-free, inexpensive damper that is applicable in various vibration isolation systems such as precision machinery, micro-mechanical suspension systems and structure vibration isolation.
NASA Astrophysics Data System (ADS)
Przybylski, Michal; Sun, Shuaishuai; Li, Weihua
2016-10-01
Most existing vibration isolators and dampers based on magnetorheological (MR) materials need electrical power to feed magnetic coils to stimulate the MR material, so if there is a loss of power, such as during a strong earthquake or system failure, they are unable to protect the structure. This paper outlines the design and test of a controllable multilayered magnetorheological elastomer (MRE) isolator based on a circular dipolar Halbach array; which is a set of magnets that generates a strong and uniform magnetic field. Combining an MRE layered isolator system with the Halbach array allows for constant vibration isolation with very low power consumption, where the power generated is only used to adjust the Halbach position. When this system was tested it successfully altered the lateral stiffness and damping force by 81.13% and 148.72%, respectively. This paper also includes an extended analysis of the magnetic field generated by the circular dipolar Halbach array and a discussion of the improvements that may potentially improve the range of magnetic fields generated.
Active damping of modal vibrations by force apportioning
NASA Technical Reports Server (NTRS)
Hallauer, W. L., Jr.
1980-01-01
Force apportioning, a method of active structural damping based on that used in modal vibration testing of isolating modes by multiple shaker excitation, was analyzed and numerically simulated. A distribution of as few forces as possible on the structure is chosen so as to maximally affect selected vibration modes while minimally exciting all other modes. The accuracy of numerical simulations of active damping, active damping of higher-frequency modes, and studies of imperfection sensitivity are discussed. The computer programs developed are described and possible refinements of the research are examined.
Workshop on Structural Dynamics and Control Interaction of Flexible Structures
NASA Technical Reports Server (NTRS)
Davis, L. P.; Wilson, J. F.; Jewell, R. E.
1987-01-01
The Hubble Space Telescope features the most exacting line of sight jitter requirement thus far imposed on a spacecraft pointing system. Consideration of the fine pointing requirements prompted an attempt to isolate the telescope from the low level vibration disturbances generated by the attitude control system reaction wheels. The primary goal was to provide isolation from axial component of wheel disturbance without compromising the control system bandwidth. A passive isolation system employing metal springs in parallel with viscous fluid dampers was designed, fabricated, and space qualified. Stiffness and damping characteristics are deterministic, controlled independently, and were demonstrated to remain constant over at least five orders of input disturbance magnitude. The damping remained purely viscous even at the data collection threshold of .16 x .000001 in input displacement, a level much lower than the anticipated Hubble Space Telescope disturbance amplitude. Vibration attenuation goals were obtained and ground test of the vehicle has demonstrated the isolators are transparent to the attitude control system.
Residual acceleration data on IML-1: Development of a data reduction and dissemination plan
NASA Technical Reports Server (NTRS)
Rogers, Melissa J. B.; Alexander, J. Iwan D.; Wolf, Randy
1992-01-01
The need to record some measure of the low-gravity environment of an orbiting space vehicle was recognized at an early stage of the U.S. Space Program. Such information was considered important for both the assessment of an astronaut's physical condition during and after space missions and the analysis of the fluid physics, materials processing, and biological sciences experiments run in space. Various measurement systems were developed and flown on space platforms beginning in the early 1970's. Similar in concept to land based seismometers that measure vibrations caused by earthquakes and explosions, accelerometers mounted on orbiting space vehicles measure vibrations in and of the vehicle due to internal and external sources, as well as vibrations in a sensor's relative acceleration with respect to the vehicle to which it is attached. The data collected over the years have helped to alter the perception of gravity on-board a space vehicle from the public's early concept of zero-gravity to the science community's evolution of thought from microgravity to milligravity to g-jitter or vibrational environment. Since the advent of the Shuttle Orbiter Program, especially since the start of Spacelab flights dedicated to scientific investigations, the interest in measuring the low-gravity environment in which experiments are run has increased. This interest led to the development and flight of numerous accelerometer systems dedicated to specific experiments. It also prompted the development of the NASA MSAD-sponsored Space Acceleration Measurement System (SAMS). The first SAMS units flew in the Spacelab on STS-40 in June 1991 in support of the first Spacelab Life Sciences mission (SLS-1). SAMS is currently manifested to fly on all future Spacelab missions.