Sample records for micromanipulator-based loading device

  1. Equipment and New Products

    ERIC Educational Resources Information Center

    Poitras, Adrian W., Ed.

    1973-01-01

    The following items are discussed: Digital Counters and Readout Devices, Automatic Burette Outfits, Noise Exposure System, Helium-Cadmium Laser, New pH Buffers and Flip-Top Dispenser, Voltage Calibrator Transfer Standard, Photomicrographic Stereo Zoom Microscope, Portable pH Meter, Micromanipulators, The Snuffer, Electronic Top-Loading Balances,…

  2. 21 CFR 884.6150 - Assisted reproduction micromanipulators and microinjectors.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... controls) (design specifications, labeling requirements, and clinical testing). .... Assisted reproduction micromanipulators are devices intended to control the position of an assisted reproduction microtool. Assisted reproduction microinjectors are any device intended to control aspiration or...

  3. 21 CFR 884.6150 - Assisted reproduction micromanipulators and microinjectors.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... controls) (design specifications, labeling requirements, and clinical testing). .... Assisted reproduction micromanipulators are devices intended to control the position of an assisted reproduction microtool. Assisted reproduction microinjectors are any device intended to control aspiration or...

  4. 21 CFR 884.6150 - Assisted reproduction micromanipulators and microinjectors.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... controls) (design specifications, labeling requirements, and clinical testing). .... Assisted reproduction micromanipulators are devices intended to control the position of an assisted reproduction microtool. Assisted reproduction microinjectors are any device intended to control aspiration or...

  5. 21 CFR 884.6150 - Assisted reproduction micromanipulators and microinjectors.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... controls) (design specifications, labeling requirements, and clinical testing). .... Assisted reproduction micromanipulators are devices intended to control the position of an assisted reproduction microtool. Assisted reproduction microinjectors are any device intended to control aspiration or...

  6. 21 CFR 884.6150 - Assisted reproduction micromanipulators and microinjectors.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... controls) (design specifications, labeling requirements, and clinical testing). .... Assisted reproduction micromanipulators are devices intended to control the position of an assisted reproduction microtool. Assisted reproduction microinjectors are any device intended to control aspiration or...

  7. A micromanipulation cell including a tool changer

    NASA Astrophysics Data System (ADS)

    Clévy, Cédric; Hubert, Arnaud; Agnus, Joël; Chaillet, Nicolas

    2005-10-01

    This paper deals with the design, fabrication and characterization of a tool changer for micromanipulation cells. This tool changer is part of a manipulation cell including a three linear axes robot and a piezoelectric microgripper. All these parts are designed to perform micromanipulation tasks in confined spaces such as a microfactory or in the chamber of a scanning electron microscope (SEM). The tool changer principle is to fix a pair of tools (i.e. the gripper tips) either on the tips of the microgripper actuator (piezoceramic bulk) or on a tool magazine. The temperature control of a thermal glue enables one to fix or release this pair of tools. Liquefaction and solidification are generated by surface mounted device (SMD) resistances fixed on the surface of the actuator or magazine. Based on this principle, the tool changer can be adapted to other kinds of micromanipulation cells. Hundreds of automatic tool exchanges were performed with a maximum positioning error between two consecutive tool exchanges of 3.2 µm, 2.3 µm and 2.8 µm on the X, Y and Z axes respectively (Z refers to the vertical axis). Finally, temperature measurements achieved under atmospheric pressure and in a vacuum environment and pressure measurements confirm the possibility of using this device in the air as well as in a SEM.

  8. Kinematics of mechanical and adhesional micromanipulation under a scanning electron microscope

    NASA Astrophysics Data System (ADS)

    Saito, Shigeki; Miyazaki, Hideki T.; Sato, Tomomasa; Takahashi, Kunio

    2002-11-01

    In this paper, the kinematics of mechanical and adhesional micromanipulation using a needle-shaped tool under a scanning electron microscope is analyzed. A mode diagram is derived to indicate the possible micro-object behavior for the specified operational conditions. Based on the diagram, a reasonable method for pick and place operation is proposed. The keys to successful analysis are to introduce adhesional and rolling-resistance factors into the kinematic system consisting of a sphere, a needle-shaped tool, and a substrate, and to consider the time dependence of these factors due to the electron-beam (EB) irradiation. Adhesional force and the lower limit of maximum rolling resistance are evaluated quantitatively in theoretical and experimental ways. This analysis shows that it is possible to control the fracture of either the tool-sphere or substrate-sphere interface of the system selectively by the tool-loading angle and that such a selective fracture of the interfaces enables reliable pick or place operation even under EB irradiation. Although the conventional micromanipulation was not repeatable because the technique was based on an empirically effective method, this analysis should provide us with a guideline to reliable micromanipulation.

  9. Design of a Minimum Surface-Effect Three Degree-of-Freedom Micromanipulator

    NASA Technical Reports Server (NTRS)

    Goldfarb, Michael; Speich, John E.

    1997-01-01

    This paper describes the fundamental physical motivations for small-scale minimum surface-effect design, and presents a three degree-of-freedom micromanipulator design that incorporates a minimum surface-effect approach. The primary focus of the design is the split-tube flexure, a unique small-scale revolute joint that exhibits a considerably larger range of motion and significantly better multi-axis revolute joint characteristics than a conventional flexure. The development of this joint enables the implementation of a small-scale spatially-loaded revolute joint-based manipulator with well-behaved kinematic characteristics and without the backlash and stick-slip behavior that would otherwise prevent precision control

  10. The mechanical properties of nanofilled resin-based composites: characterizing discrete filler particles and agglomerates using a micromanipulation technique.

    PubMed

    Curtis, Andrew R; Palin, William M; Fleming, Garry J P; Shortall, Adrian C C; Marquis, Peter M

    2009-02-01

    To assess the mechanical properties of discrete filler particles representative of several inorganic fillers in modern dental resin-based composites (RBCs) and to assess the validity of a novel micromanipulation technique. RBCs with microhybrid (Filtek Z250), 'nanohybrid' (Grandio) and 'nanofilled' (Filtek Supreme), filler particle morphologies were investigated. Filler particles were provided by the manufacturer or separated from the unpolymerized resin using a dissolution technique. Filler particles (n=30) were subjected to compression using a micromanipulation technique between a descending glass probe and a glass slide. The number of distinct fractures particles underwent was determined from force/displacement and stress/deformation curves and the force at fracture and pseudo-modulus of stress was calculated. Agglomerated fillers ('nanoclusters') exhibited up to four distinct fractures, while spheroidal and irregular particles underwent either a single fracture or did not fracture following micromanipulation. Z-tests highlighted failure of nanoclusters to be significant compared with spheroidal and irregular particles (P<0.05). The mean force at first fracture of the nanoclusters was greater (1702+/-909 microN) than spheroidal and irregular particles (1389+/-1342 and 1356+/-1093 microN, respectively). Likewise, the initial pseudo-modulus of stress of nanoclusters (797+/-555 MPa) was also greater than spheroidal (587+/-439 MPa) or irregular (552+/-275 MPa) fillers. The validity of employing the micromanipulation technique to determine the mechanical properties of filler particulates was established. The 'nanoclusters' exhibited a greater tendency to multiple fractures compared with conventional fillers and possessed a comparatively higher variability of pseudo-modulus and load prior to and at fracture, which may modify the damage tolerance of the overall RBC system.

  11. Different micromanipulation applications based on common modular control architecture

    NASA Astrophysics Data System (ADS)

    Sipola, Risto; Vallius, Tero; Pudas, Marko; Röning, Juha

    2010-01-01

    This paper validates a previously introduced scalable modular control architecture and shows how it can be used to implement research equipment. The validation is conducted by presenting different kinds of micromanipulation applications that use the architecture. Conditions of the micro-world are very different from those of the macro-world. Adhesive forces are significant compared to gravitational forces when micro-scale objects are manipulated. Manipulation is mainly conducted by automatic control relying on haptic feedback provided by force sensors. The validated architecture is a hierarchical layered hybrid architecture, including a reactive layer and a planner layer. The implementation of the architecture is modular, and the architecture has a lot in common with open architectures. Further, the architecture is extensible, scalable, portable and it enables reuse of modules. These are the qualities that we validate in this paper. To demonstrate the claimed features, we present different applications that require special control in micrometer, millimeter and centimeter scales. These applications include a device that measures cell adhesion, a device that examines properties of thin films, a device that measures adhesion of micro fibers and a device that examines properties of submerged gel produced by bacteria. Finally, we analyze how the architecture is used in these applications.

  12. Robust self-cleaning and micromanipulation capabilities of gecko spatulae and their bio-mimics

    NASA Astrophysics Data System (ADS)

    Xu, Quan; Wan, Yiyang; Hu, Travis Shihao; Liu, Tony X.; Tao, Dashuai; Niewiarowski, Peter H.; Tian, Yu; Liu, Yue; Dai, Liming; Yang, Yanqing; Xia, Zhenhai

    2015-11-01

    Geckos have the extraordinary ability to prevent their sticky feet from fouling while running on dusty walls and ceilings. Understanding gecko adhesion and self-cleaning mechanisms is essential for elucidating animal behaviours and rationally designing gecko-inspired devices. Here we report a unique self-cleaning mechanism possessed by the nano-pads of gecko spatulae. The difference between the velocity-dependent particle-wall adhesion and the velocity-independent spatula-particle dynamic response leads to a robust self-cleaning capability, allowing geckos to efficiently dislodge dirt during their locomotion. Emulating this natural design, we fabricate artificial spatulae and micromanipulators that show similar effects, and that provide a new way to manipulate micro-objects. By simply tuning the pull-off velocity, our gecko-inspired micromanipulators, made of synthetic microfibers with graphene-decorated micro-pads, can easily pick up, transport, and drop-off microparticles for precise assembling. This work should open the door to the development of novel self-cleaning adhesives, smart surfaces, microelectromechanical systems, biomedical devices, and more.

  13. Microheater as an alternative to lasers for in-vitro fertilization applications

    NASA Astrophysics Data System (ADS)

    Palanker, Daniel V.; Turovets, Igor; Glazer, Rima; Reubinoff, Benjamin E.; Hilman, Dalia; Lewis, Aaron

    1999-06-01

    During the last decade various lasers have been applied to drilling of the micrometer-sized holes in the zona pellucida of oocytes for in-vitro fertilization applications. In this paper we describe an alternative approach to laser instrumentation based on microfabricated device capable of precise drilling of uniform holes in the zona pellucida of oocytes. This device consists of a thin (1 micrometer) film microheater built on the tip of glass capillary with a diameter varying between a few to a few tens of micrometers. Duration of the pulse of heat produced by this microheater determines the spatial confinement of the heat wave in the surrounding liquid medium. We have demonstrated that gradual microdrilling of the zona pellucida can be accomplished using a series of pulses with duration of about 300 microseconds when the microheater was held in contact with the zona pellucida. Pulse energy applied to 20 micrometer tip was about 4 (mu) J. In vitro development and hatching of 127 micromanipulated embryos was compared to 103 non-drilled control embryos. The technique was found to be highly efficient in creating round, uniform, well defined holes with a smooth wall surface, matching the size of the heating source. The architecture of the surrounding zona pellucida was unaffected by the drilling, as demonstrated by scanning electron microscopy. Micromanipulated embryos presented no signs of thermal damage under light microscopy. The rate of blastocyst formation and hatching was similar in the micromanipulated and control groups. Following further testing in animal models, this methodology may be used as a cost- effective alternative to laser-based instrumentation in clinical applications such as assisted hatching and embryo biopsy.

  14. Soft, flexible micromanipulators comprising polypyrrole trilayer microactuators

    NASA Astrophysics Data System (ADS)

    Khaldi, Alexandre; Maziz, Ali; Alici, Gursel; Spinks, Geoffrey M.; Jager, Edwin W. H.

    2015-04-01

    Within the areas of cell biology, biomedicine and minimal invasive surgery, there is a need for soft, flexible and dextrous biocompatible manipulators for handling biological objects, such as single cells and tissues. Present day technologies are based on simple suction using micropipettes for grasping objects. The micropipettes lack the possibility of accurate force control, nor are they soft and compliant and may thus cause damage to the cells or tissue. Other micromanipulators use conventional electric motors however the further miniaturization of electrical motors and their associated gear boxes and/or push/pull wires has reached its limits. Therefore there is an urgent need for new technologies for micromanipulation of soft biological matter. We are developing soft, flexible micromanipulators such as micro- tweezers for the handling and manipulation of biological species including cells and surgical tools for minimal invasive surgery. Our aim is to produce tools with minimal dimensions of 100 μm to 1 mm in size, which is 1-2 orders of magnitude smaller than existing technology. We present newly developed patterning and microfabrication methods for polymer microactuators as well as the latest results to integrate these microactuators into easy to use manipulation tools. The outcomes of this study contribute to the realisation of low-foot print devices articulated with electroactive polymer actuators for which the physical interface with the power source has been a significant challenge limiting their application. Here, we present a new bottom-up microfabrication process. We show for the first time that such a bottom-up fabricated actuator performs a movement in air. This is a significant step towards widening the application areas of the soft microactuators.

  15. Electromagnetically actuated micromanipulator using an acoustically oscillating bubble

    NASA Astrophysics Data System (ADS)

    Kwon, J. O.; Yang, J. S.; Lee, S. J.; Rhee, K.; Chung, S. K.

    2011-11-01

    A novel non-invasive micromanipulation technique has been developed where a microrobot swimming in an aqueous medium manipulates micro-objects, through electromagnetic actuation using an acoustically oscillating bubble attached to the microrobot as a grasping tool. This micromanipulation concept was experimentally verified; an investigation of electromagnetic actuation and acoustic excitation was also performed. Two-dimensional propulsion of a magnetic piece was demonstrated through electromagnetic actuation, using three pairs of electric coils surrounding the water chamber, and confirming that the propulsion speed of the magnetic piece was linearly proportional to the applied current intensity. Micro-object manipulation was separately demonstrated using an air bubble with glass beads (80 µm diameter) and a steel ball (800 µm diameter) in an aqueous medium. Upon acoustic excitation of the bubble by a piezo-actuator around its resonant frequency, the generated radiation force attracted and captured the neighboring glass beads and steel ball. The grasping force was indirectly measured by exposing the glass beads captured by the oscillating bubble to a stream generated by an auto-syringe pump in a mini-channel. By measuring the maximum speed of the streaming flow when the glass beads detached from the oscillating bubble and flowed downstream, the grasping force was calculated as 50 nN, based on Stokes' drag approximation. Finally, a fish egg was successfully manipulated with the integration of electromagnetic actuation and acoustic excitation, using a mini-robot consisting of a millimeter-sized magnetic piece with a bubble attached to its bottom. This novel micromanipulation may be an efficient tool for both micro device assembly and single-cell manipulation.

  16. Development master arm of 2-DOF planar parallel manipulator for In-Vitro Fertilization

    NASA Astrophysics Data System (ADS)

    Thamrongaphichartkul, Kitti; Vongbunyong, Supachai; Nuntakarn, Lalana

    2018-01-01

    Micromanipulator is a mechanical device used for manipulating miniature objects in the order of micron. It is widely used in In-Vitro Fertilization (IVF) in which sperms will be held in a micro-needle and penetrate to an oocyte for fertilization. IVF needs to be performed by high skill embryologists to control the movement of the needle accurately due to the lack of tactile perception of the user. Haptic device is a device that can transmit and simulate position, velocity and force in order to enhance interaction between the user and system. However, commercially available haptic devices have unnecessary degrees of freedom and limited workspace which are inappropriate for IVF process. This paper focuses on development of a haptic device for using in IVF process. It will be used as a master arm for the master-slave system for IVF process in order to enhance the ability of users to control the micromanipulator. As a result, the embryologist is able to carry out the IVF process more effectively with having tactile perception.

  17. Dynamic generation of Ince-Gaussian modes with a digital micromirror device

    NASA Astrophysics Data System (ADS)

    Ren, Yu-Xuan; Fang, Zhao-Xiang; Gong, Lei; Huang, Kun; Chen, Yue; Lu, Rong-De

    2015-04-01

    Ince-Gaussian (IG) beam with elliptical profile, as a connection between Hermite-Gaussian (HG) and Laguerre-Gaussian (LG) beams, has showed unique advantages in some applications such as quantum entanglement and optical micromanipulation. However, its dynamic generation with high switching frequency is still challenging. Here, we experimentally reported the quick generation of Ince-Gaussian beam by using a digital micro-mirror device (DMD), which has the highest switching frequency of 5.2 kHz in principle. The configurable properties of DMD allow us to observe the quasi-smooth variation from LG (with ellipticity ɛ = 0 ) to IG and HG ( ɛ = ∞ ) beam. This approach might pave a path to high-speed quantum communication in terms of IG beam. Additionally, the characterized axial plane intensity distribution exhibits a 3D mould potentially being employed for optical micromanipulation.

  18. The application of robotics to microlaryngeal laser surgery.

    PubMed

    Buckmire, Robert A; Wong, Yu-Tung; Deal, Allison M

    2015-06-01

    To evaluate the performance of human subjects, using a prototype robotic micromanipulator controller in a simulated, microlaryngeal operative setting. Observational cross-sectional study. Twenty-two human subjects with varying degrees of laser experience performed CO2 laser surgical tasks within a simulated microlaryngeal operative setting using an industry standard manual micromanipulator (MMM) and a prototype robotic micromanipulator controller (RMC). Accuracy, repeatability, and ablation consistency measures were obtained for each human subject across both conditions and for the preprogrammed RMC device. Using the standard MMM, surgeons with >10 previous laser cases performed superior to subjects with fewer cases on measures of error percentage and cumulative error (P = .045 and .03, respectively). No significant differences in performance were observed between subjects using the RMC device. In the programmed (P/A) mode, the RMC performed equivalently or superiorly to experienced human subjects on accuracy and repeatability measures, and nearly an order of magnitude better on measures of ablation consistency. The programmed RMC performed significantly better for repetition error when compared to human subjects with <100 previous laser cases (P = .04). Experienced laser surgeons perform better than novice surgeons on tasks of accuracy and repeatability using the MMM device but roughly equivalently using the novel RMC. Operated in the P/A mode, the RMC performs equivalently or superior to experienced laser surgeons using the industry standard MMM for all measured parameters, and delivers an ablation consistency nearly an order of magnitude better than human laser operators. NA. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.

  19. Handheld Micromanipulation with Vision-Based Virtual Fixtures

    PubMed Central

    Becker, Brian C.; MacLachlan, Robert A.; Hager, Gregory D.; Riviere, Cameron N.

    2011-01-01

    Precise movement during micromanipulation becomes difficult in submillimeter workspaces, largely due to the destabilizing influence of tremor. Robotic aid combined with filtering techniques that suppress tremor frequency bands increases performance; however, if knowledge of the operator's goals is available, virtual fixtures have been shown to greatly improve micromanipulator precision. In this paper, we derive a control law for position-based virtual fixtures within the framework of an active handheld micromanipulator, where the fixtures are generated in real-time from microscope video. Additionally, we develop motion scaling behavior centered on virtual fixtures as a simple and direct extension to our formulation. We demonstrate that hard and soft (motion-scaled) virtual fixtures outperform state-of-the-art tremor cancellation performance on a set of artificial but medically relevant tasks: holding, move-and-hold, curve tracing, and volume restriction. PMID:23275860

  20. Optical micromanipulation of nanoparticles and cells inside living zebrafish.

    PubMed

    Johansen, Patrick Lie; Fenaroli, Federico; Evensen, Lasse; Griffiths, Gareth; Koster, Gerbrand

    2016-03-21

    Regulation of biological processes is often based on physical interactions between cells and their microenvironment. To unravel how and where interactions occur, micromanipulation methods can be used that offer high-precision control over the duration, position and magnitude of interactions. However, lacking an in vivo system, micromanipulation has generally been done with cells in vitro, which may not reflect the complex in vivo situation inside multicellular organisms. Here using optical tweezers we demonstrate micromanipulation throughout the transparent zebrafish embryo. We show that different cells, as well as injected nanoparticles and bacteria can be trapped and that adhesion properties and membrane deformation of endothelium and macrophages can be analysed. This non-invasive micromanipulation inside a whole-organism gives direct insights into cell interactions that are not accessible using existing approaches. Potential applications include screening of nanoparticle-cell interactions for cancer therapy or tissue invasion studies in cancer and infection biology.

  1. Dynamic generation of Ince-Gaussian modes with a digital micromirror device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Yu-Xuan, E-mail: yxren@ustc.edu.cn; Fang, Zhao-Xiang; Chen, Yue

    Ince-Gaussian (IG) beam with elliptical profile, as a connection between Hermite-Gaussian (HG) and Laguerre-Gaussian (LG) beams, has showed unique advantages in some applications such as quantum entanglement and optical micromanipulation. However, its dynamic generation with high switching frequency is still challenging. Here, we experimentally reported the quick generation of Ince-Gaussian beam by using a digital micro-mirror device (DMD), which has the highest switching frequency of 5.2 kHz in principle. The configurable properties of DMD allow us to observe the quasi-smooth variation from LG (with ellipticity ε=0) to IG and HG (ε=∞) beam. This approach might pave a path to high-speedmore » quantum communication in terms of IG beam. Additionally, the characterized axial plane intensity distribution exhibits a 3D mould potentially being employed for optical micromanipulation.« less

  2. Biomedical device prototype based on small scale hydrodynamic cavitation

    NASA Astrophysics Data System (ADS)

    Ghorbani, Morteza; Sozer, Canberk; Alcan, Gokhan; Unel, Mustafa; Ekici, Sinan; Uvet, Huseyin; Koşar, Ali

    2018-03-01

    This study presents a biomedical device prototype based on small scale hydrodynamic cavitation. The application of small scale hydrodynamic cavitation and its integration to a biomedical device prototype is offered as an important alternative to other techniques, such as ultrasound therapy, and thus constitutes a local, cheap, and energy-efficient solution, for urinary stone therapy and abnormal tissue ablation (e.g., benign prostate hyperplasia (BPH)). The destructive nature of bubbly, cavitating, flows was exploited, and the potential of the prototype was assessed and characterized. Bubbles generated in a small flow restrictive element (micro-orifice) based on hydrodynamic cavitation were utilized for this purpose. The small bubbly, cavitating, flow generator (micro-orifice) was fitted to a small flexible probe, which was actuated with a micromanipulator using fine control. This probe also houses an imaging device for visualization so that the emerging cavitating flow could be locally targeted to the desired spot. In this study, the feasibility of this alternative treatment method and its integration to a device prototype were successfully accomplished.

  3. Design and control of a multi-DOF micromanipulator dedicated to multiscale micromanipulation

    NASA Astrophysics Data System (ADS)

    Yang, Yi-Ling; Wei, Yan-Ding; Lou, Jun-Qiang; Fu, Lei; Fang, Sheng

    2017-11-01

    This paper presents the design, implementation and control of a new piezoelectrically actuated compliant micromanipulator dedicated to multiscale, precision and reliable operations. To begin with, the manipulator is devised to obtain multi degrees of freedom and large workspace ranges. Two-stage amplification mechanisms (consists of the leverage and the rocker mechanisms) and composite parallelogram mechanisms are combined to construct the lower microstage. Meanwhile, the structure design of the upper dual-driven microgripper is based on the bridge-type mechanism and the unilateral parallelogram mechanism. Through finite-element analysis, the structural parameters of the micromanipulator are optimized and the structural interaction performances are examined. Moreover, a cooperative control strategy is proposed to achieve the synchronous control of the motion trajectory, the gripper position and the contact force. Precision motion control in terms of the hysteresis phenomenon and system disturbances is ensured by using an adaptive sliding mode control (SMC). In particular, an improved nonsymmetrical Bouc-Wen model and a fuzzy regulator are proposed in the SMC. Several experimental investigations are conducted to validate the effectiveness of the developed micromanipulator by performing transferring operations of a micro-object. Experimental results demonstrate that the micromanipulator presents good characteristics, and precision and robust operation can be acquired using the cooperative controller.

  4. High-speed wavefront modulation in complex media (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Turtaev, Sergey; Leite, Ivo T.; Cizmár, TomáÅ.¡

    2017-02-01

    Using spatial light modulators(SLM) to control light propagation through scattering media is a critical topic for various applications in biomedical imaging, optical micromanipulation, and fibre endoscopy. Having limited switching rate, typically 10-100Hz, current liquid-crystal SLM can no longer meet the growing demands of high-speed imaging. A new way based on binary-amplitude holography implemented on digital micromirror devices(DMD) has been introduced recently, allowing to reach refreshing rates of 30kHz. Here, we summarise the advantages and limitations in speed, efficiency, scattering noise, and pixel cross-talk for each device in ballistic and diffusive regimes, paving the way for high-speed imaging through multimode fibres.

  5. In situ wavefront correction and its application to micromanipulation

    NASA Astrophysics Data System (ADS)

    Čižmár, Tomáš; Mazilu, Michael; Dholakia, Kishan

    2010-06-01

    In any optical system, distortions to a propagating wavefront reduce the spatial coherence of a light field, making it increasingly difficult to obtain the theoretical diffraction-limited spot size. Such aberrations are severely detrimental to optimal performance in imaging, nanosurgery, nanofabrication and micromanipulation, as well as other techniques within modern microscopy. We present a generic method based on complex modulation for true in situ wavefront correction that allows compensation of all aberrations along the entire optical train. The power of the method is demonstrated for the field of micromanipulation, which is very sensitive to wavefront distortions. We present direct trapping with optimally focused laser light carrying power of a fraction of a milliwatt as well as the first trapping through highly turbid and diffusive media. This opens up new perspectives for optical micromanipulation in colloidal and biological physics and may be useful for various forms of advanced imaging.

  6. Vision-Based Control of a Handheld Surgical Micromanipulator with Virtual Fixtures

    PubMed Central

    Becker, Brian C.; MacLachlan, Robert A.; Lobes, Louis A.; Hager, Gregory D.; Riviere, Cameron N.

    2012-01-01

    Performing micromanipulation and delicate operations in submillimeter workspaces is difficult because of destabilizing tremor and imprecise targeting. Accurate micromanipulation is especially important for microsurgical procedures, such as vitreoretinal surgery, to maximize successful outcomes and minimize collateral damage. Robotic aid combined with filtering techniques that suppress tremor frequency bands increases performance; however, if knowledge of the operator’s goals is available, virtual fixtures have been shown to further improve performance. In this paper, we derive a virtual fixture framework for active handheld micromanipulators that is based on high-bandwidth position measurements rather than forces applied to a robot handle. For applicability in surgical environments, the fixtures are generated in real-time from microscope video during the procedure. Additionally, we develop motion scaling behavior around virtual fixtures as a simple and direct extension to the proposed framework. We demonstrate that virtual fixtures significantly outperform tremor cancellation algorithms on a set of synthetic tracing tasks (p < 0.05). In more medically relevant experiments of vein tracing and membrane peeling in eye phantoms, virtual fixtures can significantly reduce both positioning error and forces applied to tissue (p < 0.05). PMID:24639624

  7. Towards Vision-Based Control of a Handheld Micromanipulator for Retinal Cannulation in an Eyeball Phantom

    PubMed Central

    Becker, Brian C.; Yang, Sungwook; MacLachlan, Robert A.; Riviere, Cameron N.

    2012-01-01

    Injecting clot-busting drugs such as t-PA into tiny vessels thinner than a human hair in the eye is a challenging procedure, especially since the vessels lie directly on top of the delicate and easily damaged retina. Various robotic aids have been proposed with the goal of increasing safety by removing tremor and increasing precision with motion scaling. We have developed a fully handheld micromanipulator, Micron, that has demonstrated reduced tremor when cannulating porcine retinal veins in an “open sky” scenario. In this paper, we present work towards handheld robotic cannulation with the goal of vision-based virtual fixtures guiding the tip of the cannula to the vessel. Using a realistic eyeball phantom, we address sclerotomy constraints, eye movement, and non-planar retina. Preliminary results indicate a handheld micromanipulator aided by visual control is a promising solution to retinal vessel occlusion. PMID:24649479

  8. Microrobots for in vitro fertilization applications.

    PubMed

    Boukallel, M; Gauthier, M; Piat, E; Abadie, J; Roux, C

    2004-05-01

    The Micromanipulation and Micro-actuation Research Group at the LAB has activities related to biological and surgical applications. Concerning cells micromanipulation, our laboratory works in collaboration with the research team "Genetic and Reproduction" of the Besançon's hospital (France). The global final objective is the development of an automatic intra cytoplasmic sperm injection (ICSI) device in order to improve performances and ergonomics of current devices. In the future this new device will contain various modules: module for removal of cumulus cells, modules for characterization of oocytes, microinjection module, cells transport system. The first subsystem developed is a new single cell transport system. It consists in a so-called micropusher which pushes single cells without having contact with the external environment. This micropusher is a ferromagnetic particle (from 400 x 400 x 20 microm3 to 100 x 100 x 5 microm3) which follows the movement of a permanent magnet located under the biological medium. A 2D micro-positioning table moves this magnet under the glass slide. The pusher and cells positions are measured through an optical microscope with a CCD camera located above the biological medium. The second subsystem is developed to measure oocytes mechanical stiffness in order to sort them. We have then developed a micro/nano-force sensor based on the diamagnetic levitation principle: a glass tip end-effector (with 20 microm in diameter) is fixed on the equipment which is in levitation (0.5 mm in diameter, 100 mm in length). When a force is applied to the levitated glass tip, it moves to a new equilibrium position. Thanks to themeasurement of this displacement, the applied force can be measured. Since there is no contact and friction between the levitated tip and the fixed part, the resolution of this sensor is very high (10 nN).

  9. A magnetic micro-manipulator for application of three dimensional forces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Punyabrahma, P.; Jayanth, G. R.

    2015-02-15

    Magnetic manipulation finds diverse applications in actuation, characterization, and manipulation of micro- and nano-scale samples. This paper presents the design and development of a novel magnetic micro-manipulator for application of three-dimensional forces on a magnetic micro-bead. A simple analytical model is proposed to obtain the forces of interaction between the magnetic micro-manipulator and a magnetic micro-bead. Subsequently, guidelines are proposed to perform systematic design and analysis of the micro-manipulator. The designed micro-manipulator is fabricated and evaluated. The manipulator is experimentally demonstrated to possess an electrical bandwidth of about 1 MHz. The ability of the micro-manipulator to apply both in-plane andmore » out-of-plane forces is demonstrated by actuating permanent-magnet micro-beads attached to micro-cantilever beams. The deformations of the micro-cantilevers are also employed to calibrate the dependence of in-plane and out-of-plane forces on the position of the micro-bead relative to the micro-manipulator. The experimentally obtained dependences are found to agree well with theory.« less

  10. Micromanipulation and microfabrication for optical microrobotics

    NASA Astrophysics Data System (ADS)

    Palima, Darwin; Bañas, Andrew Rafael; Vizsnyiczai, Gaszton; Kelemen, Lóránd; Aabo, Thomas; Ormos, Pál.; Glückstad, Jesper

    2012-10-01

    Robotics can use optics feedback in vision-based control of intelligent robotic guidance systems. With light's miniscule momentum, shrinking robots down to the microscale regime creates opportunities for exploiting optical forces and torques in microrobotic actuation and control. Indeed, the literature on optical trapping and micromanipulation attests to the possibilities for optical microrobotics. This work presents an optical microrobotics perspective on the optical microfabrication and micromanipulation work that we performed. We designed different three-dimensional microstructures and fabricated them by two-photon polymerization. These microstructures were then handled using our biophotonics workstation (BWS) for proof-of-principle demonstrations of optical actuation, akin to 6DOF actuation of robotic micromanipulators. Furthermore, we also show an example of dynamic behavior of the trapped microstructure that can be achieved when using static traps in the BWS. This can be generalized, in the future, towards a structural shaping optimization strategy for optimally controlling microstructures to complement approaches based on lightshaping. We also show that light channeled to microfabricated, free-standing waveguides can be used not only to redirect light for targeted delivery of optical energy but can also for targeted delivery of optical force, which can serve to further extend the manipulation arms in optical robotics. Moreover, light deflection with waveguide also creates a recoil force on the waveguide, which can be exploited for controlling the optical force.

  11. Teaching Insect Retinal Physiology with Newly Designed, Inexpensive Micromanipulators

    ERIC Educational Resources Information Center

    Krans, Jacob; Gilbert, Cole; Hoy, Ron

    2006-01-01

    In this article, we detail how to produce two inexpensive micromanipulators that offer high precision (approximately 25 micrometers) along a single axis of movement. The more expensive of the designs provides improved versatility along multiple axes. Both manipulators offer substantial savings over commercially available micromanipulators with…

  12. Decoupled macro/micro-manipulator for fast and precise assembly operations: design and experiments

    NASA Astrophysics Data System (ADS)

    Hodac, Agathe; Siegwart, Roland Y.

    1999-08-01

    This paper presents a high performance single arm robot configuration, based on a macro-manipulator coupled with a micro-manipulator. The system is well suited to fast and precise positioning tasks for repetitive pick and place applications in the manufacturing industry. Firstly, the paper focuses on the design of the micro-manipulator, particularly on the selection of the proper micro-actuator type and location. We show that the micro-manipulator's design with an actuator placed between endpoint and ground and with a flexible suspension system can reduce the dynamic coupling between the macro-manipulator and the micro- manipulator. The overall system performance can then be improved. We describe two different designs of compact and fast micro-manipulators composed of voice coil actuators and a monolithic flexure suspension with notch hinges. Secondly, the paper presents a control strategy that allows both correction of possible misalignments of the end-effector relative to the target and compensation of tip oscillations. The dynamic interaction is analyzed and stability is verified. Finally, experimental results demonstrate significant improvements in acceleration, endpoint accuracy and settling time achieved by the novel configuration of the macro/micro-manipulator.

  13. Novel CO2 laser robotic controller outperforms experienced laser operators in tasks of accuracy and performance repeatability.

    PubMed

    Wong, Yu-Tung; Finley, Charles C; Giallo, Joseph F; Buckmire, Robert A

    2011-08-01

    To introduce a novel method of combining robotics and the CO(2) laser micromanipulator to provide excellent precision and performance repeatability designed for surgical applications. Pilot feasibility study. We developed a portable robotic controller that appends to a standard CO(2) laser micromanipulator. The robotic accuracy and laser beam path repeatability were compared to six experienced users of the industry standard micromanipulator performing the same simulated surgical tasks. Helium-neon laser beam video tracking techniques were employed. The robotic controller demonstrated superiority over experienced human manual micromanipulator control in accuracy (laser path within 1 mm of idealized centerline), 97.42% (standard deviation [SD] 2.65%), versus 85.11% (SD 14.51%), P = .018; and laser beam path repeatability (area of laser path divergence on successive trials), 21.42 mm(2) (SD 4.35 mm(2) ) versus 65.84 mm(2) (SD 11.93 mm(2) ), P = .006. Robotic micromanipulator control enhances accuracy and repeatability for specific laser tasks. Computerized control opens opportunity for alternative user interfaces and additional safety features. Copyright © 2011 The American Laryngological, Rhinological, and Otological Society, Inc.

  14. Natural cellulose ionogels for soft artificial muscles.

    PubMed

    Nevstrueva, Daria; Murashko, Kirill; Vunder, Veiko; Aabloo, Alvo; Pihlajamäki, Arto; Mänttäri, Mika; Pyrhönen, Juha; Koiranen, Tuomas; Torop, Janno

    2018-01-01

    Rapid development of soft micromanipulation techniques for human friendly electronics has raised the demand for the devices to be able to carry out mechanical work on a micro- and macroscale. The natural cellulose-based ionogels (CEL-iGEL) hold a great potential for soft artificial muscle application, due to its flexibility, low driving voltage and biocompatibility. The CEL-iGEL composites undergo reversible bending already at ±500mV step-voltage values. A fast response to the voltage applied and high ionic conductivity of membranous actuator is achieved by a complete dissolution of cellulose in 1-ethyl-3-methylimidazolium acetate [EMIm][OAc]. The CEL-iGEL supported cellulose actuator films were cast out of cellulose-[EMIm][OAc] solution via phase inversion in H 2 O. The facile preparation method ensured uniform morphology along the layers and stand for the high ionic-liquid loading in a porous cellulose scaffold. During the electromechanical characterization, the CEL-iGEL actuators showed exponential dependence to the voltage applied with the max strain difference values reaching up to 0.6% at 2 V. Electrochemical analysis confirmed the good stability of CEL-iGEL actuators and determined the safe working voltage value to be below 2.5V. To predict and estimate the deformation for various step input voltages, a mathematical model was proposed. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Note: On-chip multifunctional fluorescent-magnetic Janus helical microswimmers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, G., E-mail: gilgueng.hwang@lpn.cnrs.fr; Decanini, D.; Leroy, L.

    Microswimmers integrated into microfluidic devices that are capable of self-illumination through fluorescence could revolutionize many aspects of technology, especially for biological applications. Few illumination and propulsion techniques of helical microswimmers inside microfluidic channels have been demonstrated. This paper presents the fabrication, detachment, and magnetic propulsions of multifunctional fluorescent-magnetic helical microswimmers integrated inside microfluidics. The fabrication process is based on two-photon laser lithography to pattern 3-D nanostructures from fluorescent photoresist coupled with conventional microfabrication techniques for magnetic thin film deposition by shadowing. After direct integration inside a microfluidic device, injected gas bubble allows gentle detachment of the integrated helical microswimmers whosemore » magnetic propulsion can then be directly applied inside the microfluidic channel using external electromagnetic coil setup. With their small scale, fluorescence, excellent resistance to liquid/gas surface tension, and robust propulsion capability inside the microfluidic channel, the microswimmers can be used as high-resolution and large-range mobile micromanipulators inside microfluidic channels.« less

  16. A vacuum microgripping tool with integrated vibration releasing capability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rong, Weibin; Fan, Zenghua, E-mail: zenghua-fan@163.com; Wang, Lefeng

    2014-08-01

    Pick-and-place of micro-objects is a basic task in various micromanipulation demands. Reliable releasing of micro-objects is usually disturbed due to strong scale effects. This paper focuses on a vacuum micro-gripper with vibration releasing functionality, which was designed and assembled for reliable micromanipulation tasks. Accordingly, a vibration releasing strategy of implementing a piezoelectric actuator on the vacuum microgripping tool is presented to address the releasing problem. The releasing mechanism was illustrated using a dynamic micro contact model. This model was developed via theoretical analysis, simulations and pull-off force measurement using atomic force microscopy. Micromanipulation experiments were conducted to verify the performancemore » of the vacuum micro-gripper. The results show that, with the assistance of the vibration releasing, the vacuum microgripping tool can achieve reliable release of micro-objects. A releasing location accuracy of 4.5±0.5 μm and a successful releasing rate of around 100% (which is based on 110 trials) were achieved for manipulating polystyrene microspheres with radius of 35–100 μm.« less

  17. Generation of three-dimensional optical cusp beams with ultrathin metasurfaces.

    PubMed

    Liu, Weiwei; Zhang, Yuchao; Gao, Jie; Yang, Xiaodong

    2018-06-22

    Cusp beams are one type of complex structured beams with unique multiple self-accelerating channels and needle-like field structures owning great potentials to advance applications such as particle micromanipulation and super-resolution imaging. The traditional method to generate optical catastrophe is based on cumbrous reflective diffraction optical elements, which makes optical system complicated and hinders the nanophotonics integration. Here we design geometric phase based ultrathin plasmonic metasurfaces made of nanoslit antennas to produce three-dimensional (3D) optical cusp beams with variable numbers of self-accelerating channels in a broadband wavelength range. The entire beam propagation profiles of the cusp beams generated from the metasurfaces are mapped theoretically and experimentally. The special self-accelerating behavior and caustics concentration property of the cups beams are also demonstrated. Our results provide great potentials for promoting metasurface-enabled compact photonic devices used in wide applications of light-matter interactions.

  18. Liquid micrurgy chamber and microsyringe designs allow more efficient micromanipulations

    NASA Technical Reports Server (NTRS)

    Daniels, E. W.

    1967-01-01

    More efficient micromanipulations on large amoebae achieved by liquid micrurgy chamber and microsyringe. These innovations move the system closer to the specimen, and flatten the specimen for a clear view of the nuclei, also eliminating spherical abberation and evaporation.

  19. An integrated micro-manipulation and biosensing platform built in glass-based LTPS TFT technology

    NASA Astrophysics Data System (ADS)

    Chen, Lei-Guang; Wu, Dong-Yi; S-C Lu, Michael

    2012-09-01

    The glass-based low-temperature polycrystalline-silicon (LTPS) thin-film transistor (TFT) process, widely known for making liquid crystal displays, is utilized in this work to realize a fully integrated, microbead-based micro-manipulation and biosensing platform. The operation utilizes arrays of microelectrodes made of transparent iridium tin oxide (ITO) to move the immobilized polystyrene microbeads to the sensor surface by dielectrophoresis (DEP). Detection of remaining microbeads after a specific antigen/antibody reaction is accomplished by photo-detectors under the transparent electrodes. It was found that microbeads can be driven successfully by the 30 × 30 µm2 microelectrodes separated by 10 µm with no more than 6 Vp-p, which is compatible with the operating range of thin-film transistors. Microbeads immobilized with antimouse immunoglobulin (IgG) and prostate-specific antigen (PSA) antibody were successfully detected after specific binding, illustrating the potential of LTPS TFT microarrays for more versatile biosensing applications.

  20. Isolation of a single rice chromosome by optical micromanipulation

    NASA Astrophysics Data System (ADS)

    Wang, Haowei; Liu, Xiaohui; Li, Yinmei; Han, Bin; Lou, Liren; Wang, Kangjun

    2004-01-01

    A new method based on optical tweezers technology is reported for the isolation of a single chromosome. A rice cell suspended in liquid was first fragmented by laser pulses (optical scalpel). Then a single released chromosome from the cell was manipulated and pulled away from other cells and oddments by optical tweezers without any direct mechanical contact. Finally the isolated single chromosome was extracted individually into a glass capillary nearby. After molecular cloning of the isolated chromosome, we obtained some specific DNA segments from the single chromosome. All these segments can be used for rice genomic sequencing. Different methods of extracting a single chromosome are compared. The advantages of optical micromanipulation method are summarized.

  1. Active Guidance of a Handheld Micromanipulator using Visual Servoing.

    PubMed

    Becker, Brian C; Voros, Sandrine; Maclachlan, Robert A; Hager, Gregory D; Riviere, Cameron N

    2009-05-12

    In microsurgery, a surgeon often deals with anatomical structures of sizes that are close to the limit of the human hand accuracy. Robotic assistants can help to push beyond the current state of practice by integrating imaging and robot-assisted tools. This paper demonstrates control of a handheld tremor reduction micromanipulator with visual servo techniques, aiding the operator by providing three behaviors: snap-to, motion-scaling, and standoff-regulation. A stereo camera setup viewing the workspace under high magnification tracks the tip of the micromanipulator and the desired target object being manipulated. Individual behaviors activate in task-specific situations when the micromanipulator tip is in the vicinity of the target. We show that the snap-to behavior can reach and maintain a position at a target with an accuracy of 17.5 ± 0.4μm Root Mean Squared Error (RMSE) distance between the tip and target. Scaling the operator's motions and preventing unwanted contact with non-target objects also provides a larger margin of safety.

  2. Vision-Based Haptic Feedback for Remote Micromanipulation in-SEM Environment

    NASA Astrophysics Data System (ADS)

    Bolopion, Aude; Dahmen, Christian; Stolle, Christian; Haliyo, Sinan; Régnier, Stéphane; Fatikow, Sergej

    2012-07-01

    This article presents an intuitive environment for remote micromanipulation composed of both haptic feedback and virtual reconstruction of the scene. To enable nonexpert users to perform complex teleoperated micromanipulation tasks, it is of utmost importance to provide them with information about the 3-D relative positions of the objects and the tools. Haptic feedback is an intuitive way to transmit such information. Since position sensors are not available at this scale, visual feedback is used to derive information about the scene. In this work, three different techniques are implemented, evaluated, and compared to derive the object positions from scanning electron microscope images. The modified correlation matching with generated template algorithm is accurate and provides reliable detection of objects. To track the tool, a marker-based approach is chosen since fast detection is required for stable haptic feedback. Information derived from these algorithms is used to propose an intuitive remote manipulation system that enables users situated in geographically distant sites to benefit from specific equipments, such as SEMs. Stability of the haptic feedback is ensured by the minimization of the delays, the computational efficiency of vision algorithms, and the proper tuning of the haptic coupling. Virtual guides are proposed to avoid any involuntary collisions between the tool and the objects. This approach is validated by a teleoperation involving melamine microspheres with a diameter of less than 2 μ m between Paris, France and Oldenburg, Germany.

  3. Magnetic tweezers: micromanipulation and force measurement at the molecular level.

    PubMed Central

    Gosse, Charlie; Croquette, Vincent

    2002-01-01

    Cantilevers and optical tweezers are widely used for micromanipulating cells or biomolecules for measuring their mechanical properties. However, they do not allow easy rotary motion and can sometimes damage the handled material. We present here a system of magnetic tweezers that overcomes those drawbacks while retaining most of the previous dynamometers properties. Electromagnets are coupled to a microscope-based particle tracking system through a digital feedback loop. Magnetic beads are first trapped in a potential well of stiffness approximately 10(-7) N/m. Thus, they can be manipulated in three dimensions at a speed of approximately 10 microm/s and rotated along the optical axis at a frequency of 10 Hz. In addition, our apparatus can work as a dynamometer relying on either usual calibration against the viscous drag or complete calibration using Brownian fluctuations. By stretching a DNA molecule between a magnetic particle and a glass surface, we applied and measured vertical forces ranging from 50 fN to 20 pN. Similarly, nearly horizontal forces up to 5 pN were obtained. From those experiments, we conclude that magnetic tweezers represent a low-cost and biocompatible setup that could become a suitable alternative to the other available micromanipulators. PMID:12023254

  4. Noninvasive micromanipulation of live HIV-1 infected cells via laser light

    NASA Astrophysics Data System (ADS)

    Mthunzi, Patience

    2015-12-01

    Live mammalian cells from various tissues of origin can be aseptically and noninvasively micromanipulated via lasers of different regimes. Laser-driven techniques are therefore paving a path toward the advancement of human immuno-deficiency virus (HIV-1) investigations. Studies aimed at the interaction of laser light, nanomaterials, and biological materials can also lead to an understanding of a wealth of disease conditions and result in photonics-based therapies and diagnostic tools. Thus, in our research, both continuous wave and pulsed lasers operated at varying wavelengths are employed, as they possess special properties that allow classical biomedical applications. This paper discusses photo-translocation of antiretroviral drugs into HIV-1 permissive cells and preliminary results of low-level laser therapy (LLLT) in HIV-1 infected cells.

  5. Load power device, system and method of load control and management employing load identification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yi; Luebke, Charles John; Schoepf, Thomas J.

    A load power device includes a power input, at least one power output for at least one load, a plurality of sensors structured to sense voltage and current at the at least one power output, and a processor. The processor provides: (a) load identification based upon the sensed voltage and current, and (b) load control and management based upon the load identification.

  6. Treatment of severe male infertility by micromanipulation-assisted fertilization: an update.

    PubMed

    Tesarik, Jan; Mendoza, Carmen

    2007-01-01

    In the past 5-10 years the evolution of micromanipulation-assisted fertilization for the treatment of severe male infertility was marked by the introduction of new technical support, refinement of diagnostic methods for the evaluation of sperm developmental potential, and development of new treatment regimens for the newly discovered abnormalities. The new technical support involves the use of non-contact laser technology to assist micromanipulation for fertilization, the evolution of polarized microscopy-based optical systems to non-invasively detect the position of the meiotic spindle in living human oocytes, and the development of high-magnification optical systems for a better morphological selection of spermatozoa to be used for fertilization. Diagnostic approaches were enriched by commercial availability of kits for the analysis of sperm DNA integrity, leading to the definition of sperm nuclear DNA damage as a distinct cause of male infertility, and by the development of tests, based on heterologous ICSI, for detection of sperm failure to activate oocytes. Several treatment options for these conditions have been proposed and are currently being tested in larger-scale trials. Some technical improvement was also achieved in the field of in vitro maturation of germ cells from men with in vivo maturation arrest, but only a modest clinical improvement resulted from their application. As to the risk for the offspring, recent data are rather reassuring. Except for the risk of transmission of genetically based infertility, no straightforward evidence for a health risk derived from these techniques has been provided. Nevertheless, caution is necessary, particularly concerning the eventual increase in genomic-imprinting abnormalities.

  7. Micropuncture retrieval of epididymal sperm with in vitro fertilization: importance of in vitro micromanipulation techniques.

    PubMed

    Schlegel, P N; Palermo, G D; Alikani, M; Adler, A; Reing, A M; Cohen, J; Rosenwaks, Z

    1995-08-01

    To evaluate the importance of in vitro micromanipulation techniques, specifically intracytoplasmic sperm injection (ICSI), for the fertility treatment of men with congenital absence of the vas deferens (CAV) or other unreconstructable male reproductive tract obstruction. Results using ICSI during in vitro fertilization (IVF) were compared to previously published results of IVF alone and IVF with other micromanipulation techniques at the same infertility center. Main outcome parameters evaluated were: fertilization rate per oocyte, clinical pregnancy rate, and ongoing pregnancies and deliveries. IVF with ICSI yielded a fertilization rate per oocyte of 140 of 312 (45%) and a clinical pregnancy rate of 14 of 27 (52%) per cycle of sperm and egg retrieval. Ongoing pregnancies or deliveries have occurred for 13 of 27 (48%) cycles with ICSI. These results were better than our previously published results of IVF alone or in conjunction with the micromanipulation techniques of subzonal insertion (SuZI) or partial zona dissection (PZD) that yielded a 119 of 631 (19%; P < 0.0001) fertilization rate, clinical pregnancy rate of 14 of 51 (27%; P < 0.001) and ongoing pregnancy or delivery for 12 of 51 cycles (24%; P < 0.001). Epididymal sperm retrieval should be performed only when micromanipulation is available in conjunction with IVF to maximize chances of fertilization and subsequent pregnancies. The use of ICSI for epididymal sperm appears to maximize chances of pregnancy for couples with surgically unreconstructable obstructive male infertility.

  8. Noninvasive micromanipulation of live HIV-1 infected cells via laser light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mthunzi, Patience

    Live mammalian cells from various tissues of origin can be aseptically and noninvasively micromanipulated via lasers of different regimes. Laser-driven techniques are therefore paving a path toward the advancement of human immuno-deficiency virus (HIV-1) investigations. Studies aimed at the interaction of laser light, nanomaterials, and biological materials can also lead to an understanding of a wealth of disease conditions and result in photonics-based therapies and diagnostic tools. Thus, in our research, both continuous wave and pulsed lasers operated at varying wavelengths are employed, as they possess special properties that allow classical biomedical applications. This paper discusses photo-translocation of antiretroviral drugsmore » into HIV-1 permissive cells and preliminary results of low-level laser therapy (LLLT) in HIV-1 infected cells.« less

  9. Properties of oscillating refractive optical wings with one reflective surface

    NASA Astrophysics Data System (ADS)

    Artusio-Glimpse, Alexandra B.; Swartzlander, Grover A.

    2013-09-01

    A new modality for optical micromanipulation is under investigation. Optical wings are shaped refractive objects that experience a force and torque owing to the reflection and transmission of uniform light at the object surface. We present wing designs that provide a restoring torque that returns the wing to a source facing orientation while preserving efficient thrust from radiation pressure. The torsional stiffness and orbital period of a set of optical wing cross-sectional shapes are determined from numerical ray-tracing analyses. These results demonstrate the potential to develop an efficient optomechanical device for applications in microbiology and space flight systems.

  10. New CO2 laser waveguide systems: advances in surgery of tracheal stenosis

    NASA Astrophysics Data System (ADS)

    Stasche, Norbert; Bernecker, Frank; Hoermann, Karl

    1996-01-01

    The carbon dioxide laser is a well established tool in the surgical treatment of laryngeal and tracheal stenosis. Usually the laser beam is applied by a microscope/micromanipulator device. Different types of rigid laryngoscopes and bronchoscopes provide access to nearly every area of larynx, trachea and main bronchi. In order to be treated with this equipment the target tissue has to be in a straight optical axis with the laser beam output at the micromanipulator. We report about one patient who presented with severe dyspnea due to granulation tissue directly below his left vocal cord. He was suffering from tracheomalacia for several years and was successfully treated by tracheostomy and a Montgomery's silicone T-tube as a stent. Then granulation tissue blocked the upper orifice of the Montgomery's T-tube. First removal by a carbon dioxide laser beam through the laryngoscope would have required sacrificing his intact left vocal cord. We removed the obstructing tissue by using the ArthroLaseTM System: the carbon dioxide laser beam was conducted through a 90 degree bent rigid probe, using the tracheostomy as an access. This ArthroLaseTM System was originally designed for arthroscopic surgery. In this special case however it successfully extends the use of the carbon dioxide laser in otolaryngology.

  11. Cloning Mice.

    PubMed

    Ogura, Atsuo

    2017-08-01

    Viable and fertile mice can be generated by somatic nuclear transfer into enucleated oocytes, presumably because the transplanted somatic cell genome becomes reprogrammed by factors in the oocyte. The first somatic cloned offspring of mice were obtained by directly injecting donor nuclei into recipient enucleated oocytes. When this method is used (the so-called Honolulu method of somatic cell nuclear transfer [SCNT]), the donor nuclei readily and completely condense within the enucleated metaphase II-arrested oocytes, which contain high levels of M-phase-promoting factor (MPF). It is believed that the condensation of the donor chromosomes promotes complete reprogramming of the donor genome within the mouse oocytes. Another key to the success of mouse cloning is the use of blunt micropipettes attached to a piezo impact-driving micromanipulation device. This system saves a significant amount of time during the micromanipulation of oocytes and thus minimizes the loss of oocyte viability in vitro. For example, a group of 20 oocytes can be enucleated within 10 min by an experienced operator. This protocol is composed of seven parts: (1) preparing micropipettes, (2) setting up the enucleation and injection micropipettes, (3) collecting and enucleating oocytes, (4) preparing nucleus donor cells, (5) injecting donor nuclei, (6) activating embryos and culturing, and (7) transferring cloned embryos. © 2017 Cold Spring Harbor Laboratory Press.

  12. Towards Robot-Assisted Retinal Vein Cannulation: A Motorized Force-Sensing Microneedle Integrated with a Handheld Micromanipulator †

    PubMed Central

    Gonenc, Berk; Chae, Jeremy; Gehlbach, Peter; Taylor, Russell H.; Iordachita, Iulian

    2017-01-01

    Retinal vein cannulation is a technically demanding surgical procedure where therapeutic agents are injected into the retinal veins to treat occlusions. The clinical feasibility of this approach has been largely limited by the technical challenges associated with performing the procedure. Among the challenges to successful vein cannulation are identifying the moment of venous puncture, achieving cannulation of the micro-vessel, and maintaining cannulation throughout drug delivery. Recent advances in medical robotics and sensing of tool-tissue interaction forces have the potential to address each of these challenges as well as to prevent tissue trauma, minimize complications, diminish surgeon effort, and ultimately promote successful retinal vein cannulation. In this paper, we develop an assistive system combining a handheld micromanipulator, called “Micron”, with a force-sensing microneedle. Using this system, we examine two distinct methods of precisely detecting the instant of venous puncture. This is based on measured tool-tissue interaction forces and also the tracked position of the needle tip. In addition to the existing tremor canceling function of Micron, a new control method is implemented to actively compensate unintended movements of the operator, and to keep the cannulation device securely inside the vein following cannulation. To demonstrate the capabilities and performance of our uniquely upgraded system, we present a multi-user artificial phantom study with subjects from three different surgical skill levels. Results show that our puncture detection algorithm, when combined with the active positive holding feature enables sustained cannulation which is most evident in smaller veins. Notable is that the active holding function significantly attenuates tool motion in the vein, thereby reduces the trauma during cannulation. PMID:28946634

  13. Cosmetic micromanipulation of vitrified-warmed cleavage stage embryos does not improve ART outcomes: An ultrastructural study of fragments.

    PubMed

    Safari, Somayyeh; Khalili, Mohammad Ali; Barekati, Zeinab; Halvaei, Iman; Anvari, Morteza; Nottola, Stefania A

    2017-09-01

    The aim was to study the ultrastructure of cytoplasmic fragments along with the effect of cosmetic micromanipulation (CM) on the morphology and development of vitrified-warmed embryos as well as assisted reproductive technology (ART) outcomes. A total of 96 frozen embryo transfer (FET) cycles were included in this prospective randomized study. They were divided into three groups of CM (n=32), sham (n=32) and control (n=32). In the CM group, the vitrified- warmed embryos were subjected to fragments and coarse granules removal (cosmetic micromanipulation) after laser assisted zona hatching (LAH); sham group subjected only to LAH and no intervention was taken for the control group. Fragmented embryo was evaluated by transmission electron microscopy (TEM). Significant improvement was observed in the morphological parameters, such as fragmentation degrees, evenness of the blastomeres and embryo grade during the subsequent development, after applying cosmetic micromanipulation, when compared to sham or control groups (P=0.00001). However, there were no differences in the clinical outcomes amongst the three studied groups e.g. the rates of clinical, ongoing and multiple pregnancies, implantation, delivery and live birth. In fine structure view, fragments exhibited uniform cytoplasmic texture containing majority of organelles that were observed in normal blastomeres including mitochondria. In conclusion, application of cosmetic micromanipulation in low-grade vitrified-warmed embryos showed significant improvement on embryo morphology parameters; however, did not result in noticeable improvements in clinical outcomes of the patients undergoing ART program. In addition, embryo vitrification had no adverse effects on fine structure of the fragments. Copyright © 2017 Society for Biology of Reproduction & the Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  14. Development of a New Rapid Isolation Device for Circulating Tumor Cells (CTCs) Using 3D Palladium Filter and Its Application for Genetic Analysis

    PubMed Central

    Yusa, Akiko; Toneri, Makoto; Masuda, Taisuke; Ito, Seiji; Yamamoto, Shuhei; Okochi, Mina; Kondo, Naoto; Iwata, Hiroji; Yatabe, Yasushi; Ichinosawa, Yoshiyuki; Kinuta, Seichin; Kondo, Eisaku; Honda, Hiroyuki; Arai, Fumihito; Nakanishi, Hayao

    2014-01-01

    Circulating tumor cells (CTCs) in the blood of patients with epithelial malignancies provide a promising and minimally invasive source for early detection of metastasis, monitoring of therapeutic effects and basic research addressing the mechanism of metastasis. In this study, we developed a new filtration-based, sensitive CTC isolation device. This device consists of a 3-dimensional (3D) palladium (Pd) filter with an 8 µm-sized pore in the lower layer and a 30 µm-sized pocket in the upper layer to trap CTCs on a filter micro-fabricated by precise lithography plus electroforming process. This is a simple pump-less device driven by gravity flow and can enrich CTCs from whole blood within 20 min. After on-device staining of CTCs for 30 min, the filter cassette was removed from the device, fixed in a cassette holder and set up on the upright fluorescence microscope. Enumeration and isolation of CTCs for subsequent genetic analysis from the beginning were completed within 1.5 hr and 2 hr, respectively. Cell spike experiments demonstrated that the recovery rate of tumor cells from blood by this Pd filter device was more than 85%. Single living tumor cells were efficiently isolated from these spiked tumor cells by a micromanipulator, and KRAS mutation, HER2 gene amplification and overexpression, for example, were successfully detected from such isolated single tumor cells. Sequential analysis of blood from mice bearing metastasis revealed that CTC increased with progression of metastasis. Furthermore, a significant increase in the number of CTCs from the blood of patients with metastatic breast cancer was observed compared with patients without metastasis and healthy volunteers. These results suggest that this new 3D Pd filter-based device would be a useful tool for the rapid, cost effective and sensitive detection, enumeration, isolation and genetic analysis of CTCs from peripheral blood in both preclinical and clinical settings. PMID:24523941

  15. Open-dish incubator for live cell imaging with an inverted microscope.

    PubMed

    Heidemann, Steven R; Lamoureux, Phillip; Ngo, Kha; Reynolds, Matthew; Buxbaum, Robert E

    2003-10-01

    Here we describe the design and fabrication of an inexpensive cell culture incubator for the stage of an inverted light microscope for use in live cell imaging. This device maintains the temperature of the cell culture at 37 degrees C with great stability and, after reaching equilibrium, provides focal stability of an image for 20-25 min with oil-immersion lenses. We describe two versions of the incubator: one for use with standard 60-mm plastic culture dishes, and the other version for imaging of cells on glass coverslips. Either can be made for less than $400. Most components are widely available commercially, and it requires only simple wiring and 3 h to assemble. Although the device is generally useful for live cell imaging on an inverted microscope, it is particularly suitable for work in which instruments are introduced into the culture, such as electrophysiology or micromanipulation. The design is based on the principle that control performance is limited by the lag time between detection and response. The key element of the design is a heated, temperature-controlled aluminum ring serving as a mini-incubator surrounding the culture vessel. For this reason, we call our design a "ringcubator."

  16. A three-dimensional optical photonic crystal with designed point defects

    NASA Astrophysics Data System (ADS)

    Qi, Minghao; Lidorikis, Elefterios; Rakich, Peter T.; Johnson, Steven G.; Joannopoulos, J. D.; Ippen, Erich P.; Smith, Henry I.

    2004-06-01

    Photonic crystals offer unprecedented opportunities for miniaturization and integration of optical devices. They also exhibit a variety of new physical phenomena, including suppression or enhancement of spontaneous emission, low-threshold lasing, and quantum information processing. Various techniques for the fabrication of three-dimensional (3D) photonic crystals-such as silicon micromachining, wafer fusion bonding, holographic lithography, self-assembly, angled-etching, micromanipulation, glancing-angle deposition and auto-cloning-have been proposed and demonstrated with different levels of success. However, a critical step towards the fabrication of functional 3D devices, that is, the incorporation of microcavities or waveguides in a controllable way, has not been achieved at optical wavelengths. Here we present the fabrication of 3D photonic crystals that are particularly suited for optical device integration using a lithographic layer-by-layer approach. Point-defect microcavities are introduced during the fabrication process and optical measurements show they have resonant signatures around telecommunications wavelengths (1.3-1.5µm). Measurements of reflectance and transmittance at near-infrared are in good agreement with numerical simulations.

  17. Behavioral Implications of Piezoelectric Stack Actuators for Control of Micromanipulation

    NASA Technical Reports Server (NTRS)

    Goldfarb, Michael; Celanovic, Nikola

    1996-01-01

    A lumped-parameter model of a piezoelectric stack actuator has been developed to describe actuator behavior for purposes of control system analysis and design, and in particular for microrobotic applications requiring accurate position and/or force control. In addition to describing the input-output dynamic behavior, the proposed model explains aspects of non-intuitive behavioral phenomena evinced by piezoelectric actuators, such as the input-output rate-independent hysteresis and the change in mechanical stiffness that results from altering electrical load. The authors incorporate a generalized Maxwell resistive capacitor as a lumped-parameter causal representation of rate-independent hysteresis. Model formulation is validated by comparing results of numerical simulations to experimental data.

  18. Usage monitoring of electrical devices in a smart home.

    PubMed

    Rahimi, Saba; Chan, Adrian D C; Goubran, Rafik A

    2011-01-01

    Profiling the usage of electrical devices within a smart home can be used as a method for determining an occupant's activities of daily living. A nonintrusive load monitoring system monitors the electrical consumption at a single electrical source (e.g., main electric utility service entry) and the operating schedules of individual devices are determined by disaggregating the composite electrical consumption waveforms. An electrical device's load signature plays a key role in nonintrusive load monitoring systems. A load signature is the unique electrical behaviour of an individual device when it is in operation. This paper proposes a feature-based model, using the real power and reactive power as features for describing the load signatures of individual devices. Experimental results for single device recognition for 7 devices show that the proposed approach can achieve 100% classification accuracy with discriminant analysis using Mahalanobis distances.

  19. Controllable light capsules employing modified Bessel-Gauss beams

    PubMed Central

    Gong, Lei; Liu, Weiwei; Zhao, Qian; Ren, Yuxuan; Qiu, Xingze; Zhong, Mincheng; Li, Yinmei

    2016-01-01

    We report, in theory and experiment, on a novel class of controlled light capsules with nearly perfect darkness, directly employing intrinsic properties of modified Bessel-Gauss beams. These beams are able to naturally create three-dimensional bottle-shaped region during propagation as long as the parameters are properly chosen. Remarkably, the optical bottle can be controlled to demonstrate various geometries through tuning the beam parameters, thereby leading to an adjustable light capsule. We provide a detailed insight into the theoretical origin and characteristics of the light capsule derived from modified Bessel-Gauss beams. Moreover, a binary digital micromirror device (DMD) based scheme is first employed to shape the bottle beams by precise amplitude and phase manipulation. Further, we demonstrate their ability for optical trapping of core-shell magnetic microparticles, which play a particular role in biomedical research, with holographic optical tweezers. Therefore, our observations provide a new route for generating and controlling bottle beams and will widen the potentials for micromanipulation of absorbing particles, aerosols or even individual atoms. PMID:27388558

  20. Innovative energy absorbing devices based on composite tubes

    NASA Astrophysics Data System (ADS)

    Tiwari, Chandrashekhar

    Analytical and experimental study of innovative load limiting and energy absorbing devices are presented here. The devices are based on composite tubes and can be categorized in to two groups based upon the energy absorbing mechanisms exhibited by them, namely: foam crushing and foam fracturing. The device based on foam crushing as the energy absorbing mechanism is composed of light weight elastic-plastic foam filling inside an angle ply composite tube. The tube is tailored to have a high Poisson’s ratio (>20). Upon being loaded the device experiences large transverse contraction resulting in rapid decrease in diameter. At a certain axial load the foam core begins to crush and energy is dissipated. This device is termed as crush tube device. The device based upon foam shear fracture as the energy absorbing mechanism involves an elastic-plastic core foam in annulus of two concentric extension-twist coupled composite tubes with opposite angles of fibers. The core foam is bonded to the inner and outer tube walls. Upon being loaded axially, the tubes twist in opposite directions and fracture the core foam in out of plane shear and thus dissipate the energy stored. The device is termed as sandwich core device (SCD). The devices exhibit variations in force-displacement characteristics with changes in design and material parameters, resulting in wide range of energy absorption capabilities. A flexible matrix composite system was selected, which was composed of high stiffness carbon fibers as reinforcements in relatively low stiffness polyurethane matrix, based upon large strain to failure capabilities and large beneficial elastic couplings. Linear and non-linear analytical models were developed encapsulating large deformation theory of the laminated composite shells (using non-linear strain energy formulation) to the fracture mechanics of core foam and elastic-plastic deformation theory of the foam filling. The non-linear model is capable of including material and geometric nonlinearities that arise from large deformation and fiber reorientation. Developed non-linear analysis predicts the behavior of extension-twist coupled and angle ply flexible matrix composite tubes under multi-axial loadings. The predicted results show close correlation with experimental findings. It was also found that these devices exhibit variations with respect to rate of loading. It was found that the novel energy absorbing devices are capable of providing 4-5 times higher specific energy absorption (SEA) than currently used devices for similar purposes (such as wire bender which has SEA of 3.6 J/g).

  1. High developmental potential in vitro and in vivo of cattle embryos cloned without micromanipulators

    PubMed Central

    Rodríguez, Lleretny; Navarrete, Felipe I.; Tovar, Heribelt; Cox, José F.

    2008-01-01

    Purpose In order to simplify cloning, a new method that does not require micromanipulators was used. We aimed to evaluate the developmental potential of two bovine cell lines upon cloning. Materials and methods In vitro matured bovine oocytes, were released from zona pellucida, enucleated, fused to foetal or adult somatic donor cells. The reconstructed embryos were reprogrammed, activated and cultured until blastocyst stage. No micromanipulators were used. Blastocyst rate and quality was scored. Some expanded (d7) blastocysts were transferred to recipient cattle and collected back at d17 to assess elongation. Results High developmental potential in vitro of cloned embryos to expanded (d7) blastocysts was achieved (52.6%). In one cell line, 65.7% of blastocysts was scored. Most blastocysts (87.4%) were graded as excellent. In vivo development to elongation (day-17) in temporary recipient cows also showed a high developmental potential (11/18 transferred blastocysts elongated). Conclusions Hand-made cloning is an efficient alternative for cloning in cattle. PMID:18205035

  2. Optical micromanipulation of active cells with minimal perturbations: direct and indirect pushing.

    PubMed

    Wang, Chenlu; Chowdhury, Sagar; Gupta, Satyandra K; Losert, Wolfgang

    2013-04-01

    The challenge to wide application of optical tweezers in biological micromanipulation is the photodamage caused by high-intensity laser exposure to the manipulated living systems. While direct exposure to infrared lasers is less likely to kill cells, it can affect cell behavior and signaling. Pushing cells with optically trapped objects has been introduced as a less invasive alternative, but the technique includes some exposure of the biological object to parts of the optical tweezer beam. To keep the cells farther away from the laser, we introduce an indirect pushing-based technique for noninvasive manipulation of sensitive cells. We compare how cells respond to three manipulation approaches: direct manipulation, pushing, and indirect pushing. We find that indirect manipulation techniques lessen the impact of manipulation on cell behavior. Cell survival increases, as does the ability of cells to maintain shape and wiggle. Our experiments also demonstrate that indirect pushing allows cell-cell contacts to be formed in a controllable way, while retaining the ability of cells to change shape and move.

  3. Directed assembly of nanoparticles to isolated diatom valves using the non-wetting characteristics after pyrolysis

    NASA Astrophysics Data System (ADS)

    Jantschke, A.; Fischer, C.; Hensel, R.; Braun, H.-G.; Brunner, E.

    2014-09-01

    A novel strategy for a directed nanoparticle coupling to isolated Stephanopyxis turris valves is presented. After pyrolysis, the valves exhibit incomplete wetting due to their characteristic T-shaped profiles as a prerequisite for a regioselective coupling reaction. A micromanipulation system allows for precise handling and their immobilization onto an adhesive substrate and manipulation into arrays.A novel strategy for a directed nanoparticle coupling to isolated Stephanopyxis turris valves is presented. After pyrolysis, the valves exhibit incomplete wetting due to their characteristic T-shaped profiles as a prerequisite for a regioselective coupling reaction. A micromanipulation system allows for precise handling and their immobilization onto an adhesive substrate and manipulation into arrays. Electronic supplementary information (ESI) available: BET surface area, TG/DTA measurements, HIM images and a video of an array of six valves of S. turris in a wetting experiment as well as a 3D animation based on CLSM measurements. See DOI: 10.1039/c4nr02662d

  4. Development of a micromanipulation method for single cell isolation of prokaryotes and its application in food safety.

    PubMed

    Hohnadel, Marisa; Maumy, Myriam; Chollet, Renaud

    2018-01-01

    For nearly a century, conventional microbiological methods have been standard practice for detecting and identifying pathogens in food. Nevertheless, the microbiological safety of food has improved and various rapid methods have been developed to overcome the limitations of conventional methods. Alternative methods are expected to detect low cell numbers, since the presence in food of even a single cell of a pathogenic organism may be infectious. With respect to low population levels, the performance of a detection method is assessed by producing serial dilutions of a pure bacterial suspension to inoculate representative food matrices with highly diluted bacterial cells (fewer than 10 CFU/ml). The accuracy of data obtained by multiple dilution techniques is not certain and does not exclude some colonies arising from clumps of cells. Micromanipulation techniques to capture and isolate single cells from environmental samples were introduced more than 40 years ago. The main limitation of the current micromanipulation technique is still the low recovery rate for the growth of a single cell in culture medium. In this study, we describe a new single cell isolation method and demonstrate that it can be used successfully to grow various types of microorganism from picked individual cells. Tests with Gram-positive and Gram-negative organisms, including cocci, rods, aerobes, anaerobes, yeasts and molds showed growth recovery rates from 60% to 100% after micromanipulation. We also highlight the use of our method to evaluate and challenge the detection limits of standard detection methods in food samples contaminated by a single cell of Salmonella enterica.

  5. Enhanced control of a flexure-jointed micromanipulation system using a vision-based servoing approach

    NASA Astrophysics Data System (ADS)

    Chuthai, T.; Cole, M. O. T.; Wongratanaphisan, T.; Puangmali, P.

    2018-01-01

    This paper describes a high-precision motion control implementation for a flexure-jointed micromanipulator. A desktop experimental motion platform has been created based on a 3RUU parallel kinematic mechanism, driven by rotary voice coil actuators. The three arms supporting the platform have rigid links with compact flexure joints as integrated parts and are made by single-process 3D printing. The mechanism overall size is approximately 250x250x100 mm. The workspace is relatively large for a flexure-jointed mechanism, being approximately 20x20x6 mm. A servo-control implementation based on pseudo-rigid-body models (PRBM) of kinematic behavior combined with nonlinear-PID control has been developed. This is shown to achieve fast response with good noise-rejection and platform stability. However, large errors in absolute positioning occur due to deficiencies in the PRBM kinematics, which cannot accurately capture flexure compliance behavior. To overcome this problem, visual servoing is employed, where a digital microscopy system is used to directly measure the platform position by image processing. By adopting nonlinear PID feedback of measured angles for the actuated joints as inner control loops, combined with auxiliary feedback of vision-based measurements, the absolute positioning error can be eliminated. With controller gain tuning, fast dynamic response and low residual vibration of the end platform can be achieved with absolute positioning accuracy within ±1 micron.

  6. Full Body Loading for Small Exercise Devices Project

    NASA Technical Reports Server (NTRS)

    Downs, Meghan; Hanson, Andrea; Newby, Nathaniel

    2015-01-01

    Protecting astronauts' spine, hip, and lower body musculoskeletal strength will be critical to safely and efficiently perform physically demanding vehicle egress, exploration, and habitat building activities necessary to expand human presence in the solar system. Functionally limiting decrements in musculoskeletal health are likely during Mars proving-ground and Earth-independent missions given extended transit times and the vehicle limitations for exercise devices (low-mass, small volume). Most small exercise device concepts are designed with single-cable loading, which inhibits the ability to perform full body exercises requiring two-point loading at the shoulders. Shoulder loading is critical to protect spine, hip, and lower body musculoskeletal strength. We propose a novel low-mass, low-maintenance, and rapid deploy pulley-based system that can attach to a single-cable small exercise device to enable two-point loading at the shoulders. This attachment could protect astronauts' health and save cost, space, and energy during all phases of the Journey to Mars.

  7. Comparative evaluation of user interfaces for robot-assisted laser phonomicrosurgery.

    PubMed

    Dagnino, Giulio; Mattos, Leonardo S; Becattini, Gabriele; Dellepiane, Massimo; Caldwell, Darwin G

    2011-01-01

    This research investigates the impact of three different control devices and two visualization methods on the precision, safety and ergonomics of a new medical robotic system prototype for assistive laser phonomicrosurgery. This system allows the user to remotely control the surgical laser beam using either a flight simulator type joystick, a joypad, or a pen display system in order to improve the traditional surgical setup composed by a mechanical micromanipulator coupled with a surgical microscope. The experimental setup and protocol followed to obtain quantitative performance data from the control devices tested are fully described here. This includes sets of path following evaluation experiments conducted with ten subjects with different skills, for a total of 700 trials. The data analysis method and experimental results are also presented, demonstrating an average 45% error reduction when using the joypad and up to 60% error reduction when using the pen display system versus the standard phonomicrosurgery setup. These results demonstrate the new system can provide important improvements in terms of surgical precision, ergonomics and safety. In addition, the evaluation method presented here is shown to support an objective selection of control devices for this application.

  8. Parallel single-cell analysis of active caspase-3/7 in apoptotic and non-apoptotic cells.

    PubMed

    Ledvina, Vojtěch; Janečková, Eva; Matalová, Eva; Klepárník, Karel

    2017-01-01

    Analysing the chemical content of individual cells has already been proven to reveal unique information on various biological processes. Single-cell analysis provides more accurate and reliable results for biology and medicine than analyses of extracts from cell populations, where a natural heterogeneity is averaged. To meet the requirements in the research of important biologically active molecules, such as caspases, we have developed a miniaturized device for simultaneous analyses of individual cells. A stainless steel body with a carousel holder enables high-sensitivity parallel detections in eight microvials. The holder is mounted in front of a photomultiplier tube with cooled photocathode working in photon counting mode. The detection of active caspase-3/7, central effector caspases in apoptosis, in single cells is based on the bioluminescence chemistry commercially available as Caspase-Glo ® 3/7 reagent developed by Promega. Individual cells were captured from a culture medium under microscope and transferred by micromanipulator into detection microvial filled with the reagent. As a result of testing, the limits of detection and quantification were determined to be 0.27/0.86 of active caspase-3/7 content in an average apoptotic cell and 0.46/2.92 for non-apoptotic cells. Application potential of this technology in laboratory diagnostics and related medical research is discussed. Graphical abstract Miniaturized device for simultaneous analyses of individual cells.

  9. Functional testing of space flight induced changes in tonic motor control by using limb-attached excitation and load devices

    NASA Astrophysics Data System (ADS)

    Gallasch, Eugen; Kozlovskaya, Inessa

    2007-02-01

    Long term space flights induce atrophy and contractile changes on postural muscles such effecting tonic motor control. Functional testing of tonic motor control structures is a challenge because of the difficulties to deliver appropriate test forces on crew members. In this paper we propose two approaches for functional testing by using limb attached loading devices. The first approach is based on a frequency and amplitude controllable moving magnet exciter to deliver sinusoidal test forces during limb postures. The responding limb deflection is recorded by an embedded accelerometer to obtain limb impedance. The second approach is based on elastic limb loading to evoke self-excited oscillations during arm extensions. Here the contraction force at the oscillation onset provides information about limb stiffness. The rationale for both testing approaches is based on Feldman's λ-model. An arm expander based on the second approach was probed in a 6-month MIR space flight. The results obtained from the load oscillations, confirmed that this device is well suited to capture space flight induced neuromuscular changes.

  10. Novel Musculoskeletal Loading and Assessment System

    NASA Technical Reports Server (NTRS)

    Downs, Meghan E.

    2017-01-01

    Ground based and ISS (International Space Station) exercise research have shown that axial loading via two-point loading at the shoulders and load quality (i.e. consistent load and at least 1:1 concentric to eccentric ratio) are extremely important to optimize musculoskeletal adaptations to resistance exercise. The Advanced Resistance Exercise Device (ARED) is on ISS now and is the "state of the art" for resistance exercise capabilities in microgravity; however, the ARED is far too large and power consuming for exploration vehicles. The single cable exercise device design selected for MPCV (Multi-Purpose Crew Vehicle), does not readily allow for the two-point loading at the shoulders.

  11. Determination of the NOx Loading of an Automotive Lean NOx Trap by Directly Monitoring the Electrical Properties of the Catalyst Material Itself

    PubMed Central

    Fremerey, Peter; Reiß, Sebastian; Geupel, Andrea; Fischerauer, Gerhard; Moos, Ralf

    2011-01-01

    Recently, it has been shown that the degree of loading of several types of automotive exhaust aftertreatment devices can be directly monitored in situ and in a contactless way by a microwave-based method. The goal of this study was to clarify whether this method can also be applied to NOx storage and reduction catalysts (lean NOx traps) in order to obtain further knowledge about the reactions occurring in the catalyst and to compare the results with those obtained by wirebound NOx loading sensors. It is shown that both methods are able to detect the different catalyst loading states. However, the sensitivity of the microwave-based method turned out to be small compared to that previously observed for other exhaust aftertreatment devices. This may limit the practical applicability of the microwave-based NOx loading detection in lean NOx traps. PMID:22164074

  12. 49 CFR 38.159 - Mobility aid accessibility.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... boarding device (e.g., lift or ramp) complying with paragraph (b) or (c) of this section and sufficient...) Exception. If portable or station-based lifts, ramps or bridge plates meeting the applicable requirements of... device. (b) Vehicle lift—(1) Design load. The design load of the lift shall be at least 600 pounds (2665...

  13. 49 CFR 38.159 - Mobility aid accessibility.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... boarding device (e.g., lift or ramp) complying with paragraph (b) or (c) of this section and sufficient...) Exception. If portable or station-based lifts, ramps or bridge plates meeting the applicable requirements of... device. (b) Vehicle lift—(1) Design load. The design load of the lift shall be at least 600 pounds (2665...

  14. Photonic crystal microprisms obtained by carving artificial opals

    NASA Astrophysics Data System (ADS)

    Fenollosa, R.; Ibisate, M.; Rubio, S.; López, C.; Meseguer, F.; Sánchez-Dehesa, J.

    2003-01-01

    A method for fabrication of photonic crystal prisms is demonstrated. The procedure is based on micromanipulation techniques, here applied to artificial opals. By means of a microgrinder an opal prism comprising a single crystal (several tens of microns in size) has been carved with three different faces: (111), (110), and (100). The faces were morphologically characterized by scanning electron microscopy and their optical reflectance spectra measured and compared with the theoretical band structure.

  15. Apparatus and method of inserting a microelectrode in body tissue or the like using vibration means

    NASA Technical Reports Server (NTRS)

    Feldstein, C.; Crawford, D. W.; Kanabus, E. W. (Inventor)

    1979-01-01

    An arrangement for and method of inserting a glass microelectrode having a tip in the micron range into body tissue is presented. The arrangement includes a microelectrode. The top of the microelectrode is attached to the diaphragm center of a first speaker. The microelectrode tip is brought into contact with the tissue by controlling a micromanipulator. Thereafter, an audio signal is applied to the speaker to cause the microelectrode to vibrate and thereby pierce the tissue surface without breaking the microelectrode tip. Thereafter, the tip is inserted into the tissue to the desired depth by operating the micromanipulator with the microelectrode in a vibratory or non-vibratory state.

  16. Microwave Assisted Synthesis of Porous NiCo2O4 Microspheres: Application as High Performance Asymmetric and Symmetric Supercapacitors with Large Areal Capacitance

    PubMed Central

    Khalid, Syed; Cao, Chuanbao; Wang, Lin; Zhu, Youqi

    2016-01-01

    Large areal capacitance is essentially required to integrate the energy storage devices at the microscale electronic appliances. Energy storage devices based on metal oxides are mostly fabricated with low mass loading per unit area which demonstrated low areal capacitance. It is still a challenge to fabricate supercapacitor devices of porous metal oxides with large areal capacitance. Herein we report microwave method followed by a pyrolysis of the as-prepared precursor is used to synthesize porous nickel cobaltite microspheres. Porous NiCo2O4 microspheres are capable to deliver large areal capacitance due to their high specific surface area and small crystallite size. The facile strategy is successfully demonstrated to fabricate aqueous-based asymmetric & symmetric supercapacitor devices of porous NiCo2O4 microspheres with high mass loading of electroactive materials. The asymmetric & symmetric devices exhibit maximum areal capacitance and energy density of 380 mF cm−2 & 19.1 Wh Kg−1 and 194 mF cm−2 & 4.5 Wh Kg−1 (based on total mass loading of 6.25 & 6.0 mg) respectively at current density of 1 mA cm−2. The successful fabrication of symmetric device also indicates that NiCo2O4 can also be used as the negative electrode material for futuristic asymmetric devices. PMID:26936283

  17. Microwave Assisted Synthesis of Porous NiCo2O4 Microspheres: Application as High Performance Asymmetric and Symmetric Supercapacitors with Large Areal Capacitance

    NASA Astrophysics Data System (ADS)

    Khalid, Syed; Cao, Chuanbao; Wang, Lin; Zhu, Youqi

    2016-03-01

    Large areal capacitance is essentially required to integrate the energy storage devices at the microscale electronic appliances. Energy storage devices based on metal oxides are mostly fabricated with low mass loading per unit area which demonstrated low areal capacitance. It is still a challenge to fabricate supercapacitor devices of porous metal oxides with large areal capacitance. Herein we report microwave method followed by a pyrolysis of the as-prepared precursor is used to synthesize porous nickel cobaltite microspheres. Porous NiCo2O4 microspheres are capable to deliver large areal capacitance due to their high specific surface area and small crystallite size. The facile strategy is successfully demonstrated to fabricate aqueous-based asymmetric & symmetric supercapacitor devices of porous NiCo2O4 microspheres with high mass loading of electroactive materials. The asymmetric & symmetric devices exhibit maximum areal capacitance and energy density of 380 mF cm-2 & 19.1 Wh Kg-1 and 194 mF cm-2 & 4.5 Wh Kg-1 (based on total mass loading of 6.25 & 6.0 mg) respectively at current density of 1 mA cm-2. The successful fabrication of symmetric device also indicates that NiCo2O4 can also be used as the negative electrode material for futuristic asymmetric devices.

  18. In situ TEM visualization of superior nanomechanical flexibility of shear-exfoliated phosphorene

    DOE PAGES

    Xu, Feng; Ma, Hongyu; Lei, Shuangying; ...

    2016-06-20

    Recently discovered atomically thin black phosphorus (called phosphorene) holds great promise for applications in flexible nanoelectronic devices. Experimentally identifying and characterizing nanomechanical properties of phosphorene are challenging, but also potentially rewarding. Our work combines for the first time in situ transmission electron microscopy (TEM) imaging and an in situ micro-manipulation system to directly visualize the nanomechanical behaviour of individual phosphorene nanoflakes. Furthermore, we demonstrate that the phosphorene nanoflakes can be easily bent, scrolled, and stretched, showing remarkable mechanical flexibility rather than fracturing. An out-of-plane plate-like bending mechanism and in-plane tensile strain of up to 34% were observed. Moreover, a facilemore » liquid-phase shear exfoliation route has been developed to produce such mono-layer and few-layer phosphorene nanoflakes in organic solvents using only a household kitchen blender. The effects of surface tensions of the applied solvents on the ratio of average length and thickness (L/T) of the nanoflakes were studied systematically. These results reported here will pave the way for potential industrial-scale applications of flexible phosphorene nanoelectronic devices.« less

  19. An Energy Saving Green Plug Device for Nonlinear Loads

    NASA Astrophysics Data System (ADS)

    Bloul, Albe; Sharaf, Adel; El-Hawary, Mohamed

    2018-03-01

    The paper presents a low cost a FACTS Based flexible fuzzy logic based modulated/switched tuned arm filter and Green Plug compensation (SFC-GP) scheme for single-phase nonlinear loads ensuring both voltage stabilization and efficient energy utilization. The new Green Plug-Switched filter compensator SFC modulated LC-Filter PWM Switched Capacitive Compensation Devices is controlled using a fuzzy logic regulator to enhance power quality, improve power factor at the source and reduce switching transients and inrush current conditions as well harmonic contents in source current. The FACTS based SFC-GP Device is a member of family of Green Plug/Filters/Compensation Schemes used for efficient energy utilization, power quality enhancement and voltage/inrush current/soft starting control using a dynamic error driven fuzzy logic controller (FLC). The device with fuzzy logic controller is validated using the Matlab / Simulink Software Environment for enhanced power quality (PQ), improved power factor and reduced inrush currents. This is achieved using modulated PWM Switching of the Filter-Capacitive compensation scheme to cope with dynamic type nonlinear and inrush cyclical loads..

  20. How safe is gamete micromanipulation by laser tweezers?

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten; Tromberg, Bruce J.; Tadir, Yona; Berns, Michael W.

    1998-04-01

    Laser tweezers, used as novel sterile micromanipulation tools of living cells, are employed in laser-assisted in vitro fertilization (IVF). For example, controlled spermatozoa transport with 1064 nm tweezers to human egg cells has been performed in European clinics in cases of male infertility. The interaction of approximately 100 mW near infrared (NIR) trapping beams at MW/cm2 intensity with human gametes results in low mean less than 2 K temperature increases and less than 100 pN trapping forces. Therefore, photothermal or photomechanical induced destructive effects appear unlikely. However, the high photon flux densities may induce simultaneous absorption of two NIR photons resulting in nonlinear interactions. These nonlinear interactions imply non-resonant two-photon excitation of endogenous cellular chromophores. In the case of less than 800 nm tweezers, UV- like damage effects may occur. The destructive effect is amplified when multimode cw lasers are used as tweezer sources due to longitudinal mode-beating effects and partial mode- locking. Spermatozoa damage within seconds using 760 nm traps due to formation of unstable ps pulses in a cw Ti:Sa ring laser is demonstrated. We recommend the use of greater than or equal to 800 nm traps for optical gamete micromanipulation. To our opinion, further basic studies on the influence of nonlinear effects of laser tweezers on human gamete are necessary.

  1. Horizontal Magnetic Tweezers for Micromanipulation of Single DNA-Protein Complexes

    NASA Astrophysics Data System (ADS)

    McAndrew, C.; Sarkar, A.; Mehl, P.

    2011-03-01

    We report on the development of a new magnetic force transducer or ``tweezer'' that can apply pico-Newton forces on single DNA molecules in the focus plane. Since the changes in DNA's end-to-end extension are coplanar with the pulling force, there is no need to continually refocus. The DNA constructs (λ -DNA end labeled with a 3 μ m polystyrene bead and a 2.8 μ m paramagnetic sphere) and appropriate buffer are introduced to a custom built 400 μ L to 650 μ L closed cell. This closed cell isolates our sample and produces low-noise force and extension measurements. This chamber rests on a stage fixed to a three axis micromanipulator. Entering the flat chamber are two micropipettes, a 2.5 μ m id pipette for aspirating the polystyrene bead and a 20 μ m id pipette for injecting proteins of interest. The suction and the injection pipettes are rigidly mounted to a hydraulic, three-axis micromanipulator. DNA-bead constructs, once introduced to the chamber, can be located by moving the stage over the objective. We have shown that we can easily and reputably find, capture, and manipulate single molecules of DNA within a force range of 0.1pN to 100pN.

  2. VOLTTRON-Based System for Providing Ancillary Services with Residential Building Loads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Xin

    2016-07-01

    Ancillary services entail controlled modulation of building equipment to maintain a stable balance of generation and load in the power system. Ancillary services include frequency regulation and contingency reserves, whose acting time ranges from several seconds to several minutes. Many pilot studies have been implemented to use industrial loads to provide ancillary services, and some have explored services from commercial building loads or electric vehicle charging loads. Residential loads, such as space conditioning and water heating, represent a largely untapped resource for providing ancillary services. The residential building sector accounts for a significant fraction of the total electricity use inmore » the United States. Many loads in residential buildings are flexible and could potentially be curtailed or shifted at the request of the grid. However, there are many barriers that prevent residential loads being widely used for ancillary services. One of the major technical barriers is the lack of communication capabilities between end-use devices and the grid. End-use devices need to be able to receive the automatic generation control (AGC) signal from the grid operator and supply certain types of telemetry to verify response. With the advance of consumer electronics, communication-enabled, or 'connected,' residential equipment has emerged to overcome the communication barrier. However, these end-use devices have introduced a new interoperability challenge due to the existence of numerous standards and communication protocols among different end devices. In this paper, we present a VOLTTRON-based system that overcomes these technical challenges and provides ancillary services with residential loads. VOLTTRON is an open-source control and sensing platform for building energy management, facilitating interoperability solutions for end devices. We have developed drivers to communicate and control different types of end devices through standard-based interfaces, manufacturer-provided application programming interfaces, and proprietary communication interfaces. We document the ability to manage nine appliances, using four different standards or proprietary communication methods. A hardware-in-the-loop test was performed in a laboratory environment where the loads of a laboratory home and a large number of simulated homes are controlled by an aggregator. Upon receipt of an AGC signal, the VOLTTRON home energy management system (HEMS) of the laboratory home adjusts the end-device controls based on the comfort criteria set by the end users and sends telemetry to the aggregator to verify response. The aggregator then sends the AGC signal to other simulated homes in attempts to match the utility request as closely as possible. Frequency regulation is generally considered a higher value service than other ancillary services but it is also more challenging due to the constraint of short response time. A frequency regulation use case has been implemented with the regulation signals sent every 10 seconds. Experimental results indicate that the VOLTTRON-controlled residential loads are able to be controlled with sufficient fidelity to enable an aggregator to meet frequency regulation requirements. Future work is warranted, such as understanding the impact of this type of control on equipment life, and market requirements needed to open up residential loads to ancillary service aggregators.« less

  3. Monitoring system of hydraulic lifting device based on the fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Fajkus, Marcel; Nedoma, Jan; Novak, Martin; Martinek, Radek; Vanus, Jan; Mec, Pavel; Vasinek, Vladimir

    2017-10-01

    This article deals with the description of the monitoring system of hydraulic lifting device based on the fiber-optic sensors. For minimize the financial costs of the proposed monitoring system, the power evaluation of measured signal has been chosen. The solution is based on an evaluation of the signal obtained using the single point optic fiber sensors with overlapping reflective spectra. For encapsulation of the sensors was used polydimethylsiloxane (PDMS) polymer. To obtain a information of loading is uses the action of deformation of the lifting device on the pair single point optic fiber sensors mounted on the lifting device of the tested car. According to the proposed algorithm is determined information of pressure with an accuracy of +/- 5 %. Verification of the proposed system was realized on the various types of the tested car with different loading. The original contribution of the paper is to verify the new low-cost system for monitoring the hydraulic lifting device based on the fiber-optic sensors.

  4. Laboratory techniques for human embryos.

    PubMed

    Geber, Selmo; Sales, Liana; Sampaio, Marcos A C

    2002-01-01

    This review is concerned with laboratory techniques needed for assisted conception, particularly the handling of gametes and embryos. Such methods are being increasingly refined. Successive stages of fertilization and embryogenesis require especial care, and often involve the use of micromanipulative methods for intracytoplasmic sperm injection (ICSI) or preimplantation genetic diagnosis. Embryologists must take responsibility for gamete collection and preparation, and for deciding on the means of insemination or ICSI. Embryos must be assessed in culture, during the 1-cell, cleaving and morula/blastocyst stages, and classified according to quality. Co-culture methods may be necessary. The best embryos for transfer must be selected and loaded into the transfer catheter. Embryos not transferred must be cryopreserved, which demands the correct application of current methods of media preparation, seeding and the correct speed for cooling and warming. Before too long, methods of detecting abnormal embryos and avoiding their transfer may become widespread.

  5. Automated micromanipulation desktop station based on mobile piezoelectric microrobots

    NASA Astrophysics Data System (ADS)

    Fatikow, Sergej

    1996-12-01

    One of the main problems of present-day research on microsystem technology (MST) is to assemble a whole micro- system from different microcomponents. This paper presents a new concept of an automated micromanipulation desktop- station including piezoelectrically driven microrobots placed on a high-precise x-y-stage of a light microscope, a CCD-camera as a local sensor subsystem, a laser sensor unit as a global sensor subsystem, a parallel computer system with C167 microcontrollers, and a Pentium PC equipped additionally with an optical grabber. The microrobots can perform high-precise manipulations (with an accuracy of up to 10 nm) and a nondestructive transport (at a speed of about 3 cm/sec) of very small objects under the microscope. To control the desktop-station automatically, an advanced control system that includes a task planning level and a real-time execution level is being developed. The main function of the task planning sub-system is to interpret the implicit action plan and to generate a sequence of explicit operations which are sent to the execution level of the control system. The main functions of the execution control level are the object recognition, image processing and feedback position control of the microrobot and the microscope stage.

  6. Why soft UV-A damages DNA: An optical micromanipulation study

    NASA Astrophysics Data System (ADS)

    Rapp, A.; Greulich, K. O.

    2013-09-01

    Optical micromanipulation studies have solved a puzzle on DNA damage and repair. Such knowledge is crucial for understanding cancer and ageing. So far it was not understood, why the soft UV component of sunlight, UV-A, causes the dangerous DNA double strand breaks. The energy of UV-A photons is below 4 eV per photon, too low to directly cleave the corresponding chemical bonds in DNA. This is occasionally used to claim that artificial sunbeds, which mainly use UV-A, would not impose a risk on health. UV-A is only sufficient for induction of single strand breaks. The essential new observation is that, when on the opposite strand there is another single strand break at a distance of up to 20 base pairs. These two breaks will be converted into a break of the whole double strand with all its known consequences for cancer and ageing. However, in natural sun the effect is counteracted. Simultaneous red light illumination reduces UV induced DNA damages to 1/3. Since sunlight has a red component, skin tanning with natural sun is not as risky as might appear at a first glance.

  7. Localized viscoelasticity measurements with untethered intravitreal microrobots.

    PubMed

    Pokki, Juho; Ergeneman, Olgaç; Bergeles, Christos; Torun, Hamdi; Nelson, Bradley J

    2012-01-01

    Microrobots are a promising tool for medical interventions and micromanipulation. In this paper, we explore the concept of using microrobots for microrheology. Untethered magnetically actuated microrobots were used to characterize one of the most complex biofluids, the vitreous humor. In this work we began by experimentally characterizing the viscoelastic properties of an artificial vitreous humor. For comparison, its properties were also measured using special microcantilevers in an atomic force microscope (AFM) setup. Subsequently, an untethered device was used to study the vitreous humor of a porcine eye, which is a valid ex-vivo model of a human eye. Its viscoelasticity model was extracted, which was in agreement with the model of the artificial vitreous. The existing characterization methodology requires eye and vitreous humor dissection for the microrheology measurements. We envision that the method proposed here can be used in in vivo.

  8. Robotics and neurosurgery.

    PubMed

    Nathoo, Narendra; Pesek, Todd; Barnett, Gene H

    2003-12-01

    Ultimately, neurosurgery performed via a robotic interface will serve to improve the standard of a neurosurgeon's skills, thus making a good surgeon a better surgeon. In fact, computer and robotic instrumentation will become allies to the neurosurgeon through the use of these technologies in training, diagnostic, and surgical events. Nonetheless, these technologies are still in an early stage of development, and each device developed will entail its own set of challenges and limitations for use in clinical settings. The future operating room should be regarded as an integrated information system incorporating robotic surgical navigators and telecontrolled micromanipulators, with the capabilities of all principal neurosurgical concepts, sharing information, and under the control of a single person, the neurosurgeon. The eventual integration of robotic technology into mainstream clinical neurosurgery offers the promise of a future of safer, more accurate, and less invasive surgery that will result in improved patient outcome.

  9. Development of implant loading device for animal study about various loading protocol: a pilot study

    PubMed Central

    Yoon, Joon-Ho; Park, Young-Bum; Cho, Yuna; Kim, Chang-Sung; Choi, Seong-Ho; Moon, Hong-Seok; Lee, Keun-Woo

    2012-01-01

    PURPOSE The aims of this pilot study were to introduce implant loading devices designed for animal study and to evaluate the validity of the load transmission ability of the loading devices. MATERIALS AND METHODS Implant loading devices were specially designed and fabricated with two implant abutments and cast metal bars, and orthodontic expansion screw. In six Beagles, all premolars were extracted and two implants were placed in each side of the mandibles. The loading device was inserted two weeks after the implant placement. According to the loading protocol, the load was applied to the implants with different time and method,simulating early, progressive, and delayed loading. The implants were clinically evaluated and the loading devices were removed and replaced to the master cast, followed by stress-strain analysis. Descriptive statistics of remained strain (µε) was evaluated after repeating three cycles of the loading device activation. Statistic analysis was performed using nonparametric, independent t-test with 5% significance level and Friedman's test was also used for verification. RESULTS The loading devices were in good action. However, four implants in three Beagles showed loss of osseointegration. In stress-strain analysis, loading devices showed similar amount of increase in the remained strain after applying 1-unit load for three times. CONCLUSION Specialized design of the implant loading device was introduced. The loading device applied similar amount of loads near the implant after each 1-unit loading. However, the direction of the loads was not parallel to the long axis of the implants as predicted before the study. PMID:23236575

  10. Sample injection and electrophoretic separation on a simple laminated paper based analytical device.

    PubMed

    Xu, Chunxiu; Zhong, Minghua; Cai, Longfei; Zheng, Qingyu; Zhang, Xiaojun

    2016-02-01

    We described a strategy to perform multistep operations on a simple laminated paper-based separation device by using electrokinetic flow to manipulate the fluids. A laminated crossed-channel paper-based separation device was fabricated by cutting a filter paper sheet followed by lamination. Multiple function units including sample loading, sample injection, and electrophoretic separation were integrated on a single paper based analytical device for the first time, by applying potential at different reservoirs for sample, sample waste, buffer, and buffer waste. As a proof-of-concept demonstration, mixed sample solution containing carmine and sunset yellow were loaded in the sampling channel, and then injected into separation channel followed by electrophoretic separation, by adjusting the potentials applied at the four terminals of sampling and separation channel. The effects of buffer pH, buffer concentration, channel width, and separation time on resolution of electrophoretic separation were studied. This strategy may be used to perform multistep operations such as reagent dilution, sample injection, mixing, reaction, and separation on a single microfluidic paper based analytical device, which is very attractive for building micro total analysis systems on microfluidic paper based analytical devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Structural Turnbuckle Bears Compressive or Tensile Loads

    NASA Technical Reports Server (NTRS)

    Bateman, W. A.; Lang, C. H.

    1985-01-01

    Column length adjuster based on turnbuckle principle. Device consists of internally and externally threaded bushing, threaded housing and threaded rod. Housing attached to one part and threaded rod attached to other part of structure. Turning double threaded bushing contracts or extends rod in relation to housing. Once adjusted, bushing secured with jamnuts. Device used for axially loaded members requiring length adjustment during installation.

  12. Non-perturbative manipulation through a 3D microfluidic treadmill

    NASA Astrophysics Data System (ADS)

    Gonzalez, Jeremias; Liu, Bin

    2017-11-01

    Our capabilities of micromanipulation have evolved with advances in contact-free trapping techniques under various disciplines, such as optical, magnetic, and microfluidic traps. In these techniques, a microscale particle is held in place under compression due to electromagnetic or hydrodynamic forces. In this work, we present a trap-free design of a microfluidic ``treadmill'' (MFC), realized by a uniform flow along arbitrary directions in a 3D microfluidic device, which is composed of a central chamber and pairs of x - and y - channels at different elevations. Through boundary element simulations, we demonstrate that 3D background flows along any direction can be generated in the middle of the chamber, controlled by a set of syringe pumps. By tuning the detailed geometry of the MFC, we show the optimized shape of the device that leads to minimized strain rate, allowing for manipulation of the suspended particles with negligible perturbations. We also show an experimental realization of the MFC device, using laser stereolithography. The x - , y - , and z - manipulation modes are obtained independently by a syringe pump with push/pull mechanisms, and are compared with the above simulation results. The authors thank the support of National Science Foundation CREST: Center for Cellular and Biomolecular Machines at UC Merced (NSF-HRD-1547848).

  13. Controlled rotation and translation of spherical particles or living cells by surface acoustic waves.

    PubMed

    Bernard, Ianis; Doinikov, Alexander A; Marmottant, Philippe; Rabaud, David; Poulain, Cédric; Thibault, Pierre

    2017-07-11

    We show experimental evidence of the acoustically-assisted micromanipulation of small objects like solid particles or blood cells, combining rotation and translation, using high frequency surface acoustic waves. This was obtained from the leakage in a microfluidic channel of two standing waves arranged perpendicularly in a LiNbO 3 piezoelectric substrate working at 36.3 MHz. By controlling the phase lag between the emitters, we could, in addition to translation, generate a swirling motion of the emitting surface which, in turn, led to the rapid rotation of spherical polystyrene Janus beads suspended in the channel and of human red and white blood cells up to several rounds per second. We show that these revolution velocities are compatible with a torque caused by the acoustic streaming that develops at the particles surface, like that first described by [F. Busse et al., J. Acoust. Soc. Am., 1981, 69(6), 1634-1638]. This device, based on standard interdigitated transducers (IDTs) adjusted to emit at equal frequencies, opens a way to a large range of applications since it allows the simultaneous control of the translation and rotation of hard objects, as well as the investigation of the response of cells to shear stress.

  14. Bacterial handling under the influence of non-uniform electric fields: dielectrophoretic and electrohydrodynamic effects.

    PubMed

    Fernádez-Morales, Flavio H; Duarte, Julio E; Samitier-Martí, Josep

    2008-12-01

    This paper describes the modeling and experimental verification of a castellated microelectrode array intended to handle biocells, based on common dielectrophoresis. The proposed microsystem was developed employing platinum electrodes deposited by lift-off, silicon micromachining, and photoresin patterning techniques. Having fabricated the microdevice it was tested employing Escherichia coli as bioparticle model. Positive dielectrophoresis could be verified with the selected cells for frequencies above 100 kHz, and electrohydrodynamic effects were observed as the dominant phenomena when working at lower frequencies. As a result, negative dielectrophoresis could not be observed because its occurrence overlaps with electrohydrodynamic effects; i.e. the viscous drag force acting on the particles is greater than the dielectrophoretic force at frequencies where negative dielectrophoresis should occur. The experiments illustrate the convenience of this kind of microdevices to micro handling biological objects, opening the possibility for using these microarrays with other bioparticles. Additionally, liquid motion as a result of electrohydrodynamic effects must be taken into account when designing bioparticle micromanipulators, and could be used as mechanism to clean the electrode surfaces, that is one of the most important problems related to this kind of devices.

  15. Polypyrrole Actuator Based on Electrospun Microribbons.

    PubMed

    Beregoi, Mihaela; Evanghelidis, Alexandru; Diculescu, Victor C; Iovu, Horia; Enculescu, Ionut

    2017-11-01

    The development of soft actuators by using inexpensive raw materials and straightforward fabrication techniques, aiming at creating and developing muscle like micromanipulators, represents an important challenge nowadays. Providing such devices with biomimetic qualities, for example, sensing different external stimuli, adds even more complexity to the task. We developed electroactive polymer-coated microribbons that undergo conformational changes in response to external physical and chemical parameters. These were prepared following three simple steps. During the first step nylon-6/6 microribbons were fabricated by electrospinning. In a second step the microribbons were one side coated with a metallic layer. Finally, a conducting layer of polypyrrole was added by means of electrochemical deposition. Strips of polypyrrole-coated aligned microribbon meshes were tested as actuators responding to current, pH, and temperature. The electrochemical activity of the microstructured actuators was investigated by recording cyclic voltammograms. Chronopontentiograms for specific current, pH, and temperature values were obtained in electrolytes with different compositions. It was shown that, upon variation of the external stimulus, the actuator undergoes conformational changes due to the reduction processes of the polypyrrole layer. The ability of the actuator to hold and release thin wires, and to collect polystyrene microspheres from the bottom of the electrochemical cell, was also investigated.

  16. The high frequency light load fatigue testing machine based on giant magnetostrictive material and stroke multiplier

    NASA Astrophysics Data System (ADS)

    Wang, M. D.; Li, D. S.; Huang, Y.; Zhang, C.; Zhong, K. M.; Sun, L. N.

    2013-08-01

    In the notebook and clamshell mobile phone, data communication wire often requires repeated bending. Generally, communication wire with the actual application conditions, the test data cannot assess bending resistance performance of data communication wire is tested conventionally using wires with weights of 90 degree to test bending number, this test method and device is not fully reflect the fatigue performance in high frequency and light load application condition, at the same time it has a large difference between the test data of the long-term reliability of high frequency and low load conditions. In this paper, high frequency light load fatigue testing machine based on the giant magnetostrictive material and stroke multiplier is put forward, in which internal reflux stroke multiplier is driven by giant magnetostrictive material to realize the rapid movement of light load. This fatigue testing device has the following advantages: (1) When the load is far less than the friction, reducing friction is very effective to improve the device performance. Because the body is symmetrical, the friction loss of radial does not exist in theory, so the stress situation of mechanism is good with high transmission efficiency and long service life. (2) The installation position of the output hydraulic cylinder, can be arranged conveniently as ordinary cylinder. (3) Reciprocating frequency, displacement and speed of high frequency movement can be programmed easily to change with higher position precision. (4)Hydraulic oil in this device is closed to transmit, which does not produce any environment pollution. The device has no hydraulic pump and tank, and less energy conversion processes, so it is with the trend of green manufacturing.

  17. Magnus force effect in optical manipulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cipparrone, Gabriella; Pagliusi, Pasquale; Istituto per i Processi Chimici e Fisici, Consiglio Nazionale delle Ricerche, Ponte P. Bucci, Cubo 33B, I-87036 Rende

    2011-07-15

    The effect of the Magnus force in optical micromanipulation has been observed. An ad hoc experiment has been designed based on a one-dimensional optical trap that carries angular momentum. The observed particle dynamics reveals the occurrence of this hydrodynamic force, which is neglected in the common approach. Its measured value is larger than the one predicted by the existing theoretical models for micrometric particles and low Reynolds number, showing that the Magnus force can contribute to unconventional optohydrodynamic trapping and manipulation.

  18. Cloning of ES cells and mice by nuclear transfer.

    PubMed

    Wakayama, Sayaka; Kishigami, Satoshi; Wakayama, Teruhiko

    2009-01-01

    We have been able to develop a stable nuclear transfer (NT) method in the mouse, in which donor nuclei are directly injected into the oocyte using a piezo-actuated micromanipulator. Although the piezo unit is a complex tool, once mastered it is of great help not only in NT experiments, but also in almost all other forms of micromanipulation. Using this technique, embryonic stem (ntES) cell lines established from somatic cell nuclei can be generated relatively easily from a variety of mouse genotypes and cell types. Such ntES cells can be used not only for experimental models of human therapeutic cloning but also as a means of preserving mouse genomes instead of preserving germ cells. Here, we describe our most recent protocols for mouse cloning.

  19. The optical stretcher: a novel laser tool to micromanipulate cells.

    PubMed Central

    Guck, J; Ananthakrishnan, R; Mahmood, H; Moon, T J; Cunningham, C C; Käs, J

    2001-01-01

    When a dielectric object is placed between two opposed, nonfocused laser beams, the total force acting on the object is zero but the surface forces are additive, thus leading to a stretching of the object along the axis of the beams. Using this principle, we have constructed a device, called an optical stretcher, that can be used to measure the viscoelastic properties of dielectric materials, including biologic materials such as cells, with the sensitivity necessary to distinguish even between different individual cytoskeletal phenotypes. We have successfully used the optical stretcher to deform human erythrocytes and mouse fibroblasts. In the optical stretcher, no focusing is required, thus radiation damage is minimized and the surface forces are not limited by the light power. The magnitude of the deforming forces in the optical stretcher thus bridges the gap between optical tweezers and atomic force microscopy for the study of biologic materials. PMID:11463624

  20. Trapping and Collection of Lymphocytes Using Microspot Array Chip and Magnetic Beads

    NASA Astrophysics Data System (ADS)

    Hashioka, Shingi; Obata, Tsutomu; Tokimitsu, Yoshiharu; Fujiki, Satoshi; Nakazato, Hiroyoshi; Muraguchi, Atsushi; Kishi, Hiroyuki; Tanino, Katsumi

    2006-04-01

    A microspot array chip, which has microspots of a magnetic thin film patterned on a glass substrate, was fabricated for trapping individual cells and for measuring their cellular response. The chip was easily fabricated by conventional semiconductor fabrication techniques on a mass production level as a disposable medical device. When a solution of lymphocyte-bound-magnetic beads was poured into the magnetized chip, each lymphocyte was trapped on each microspot of the magnetic thin film. The trapped cells were easily recovered from the chip using a micromanipulator. The micro-spot array chip can be utilized for arraying live cells and for measuring the response of each cell. The chip will be useful for preparing on array of different kinds of cells and for analyzing cellular response at the single cell level. The chip will be particularly useful for detecting antigen-specific B-lymphocytes and antigen-specific antibody complementary deoxyribonucleic acid (cDNA).

  1. Distributed smart device for monitoring, control and management of electric loads in domotic environments.

    PubMed

    Morales, Ricardo; Badesa, Francisco J; García-Aracil, Nicolas; Perez-Vidal, Carlos; Sabater, Jose María

    2012-01-01

    This paper presents a microdevice for monitoring, control and management of electric loads at home. The key idea is to compact the electronic design as much as possible in order to install it inside a Schuko socket. Moreover, the electronic Schuko socket (electronic microdevice + Schuko socket) has the feature of communicating with a central unit and with other microdevices over the existing powerlines. Using the existing power lines, the proposed device can be installed in new buildings or in old ones. The main use of this device is to monitor, control and manage electric loads to save energy and prevent accidents produced by different kind of devices (e.g., iron) used in domestic tasks. The developed smart device is based on a single phase multifunction energy meter manufactured by Analog Devices (ADE7753) to measure the consumption of electrical energy and then to transmit it using a serial interface. To provide current measurement information to the ADE7753, an ultra flat SMD open loop integrated circuit current transducer based on the Hall effect principle manufactured by Lem (FHS-40P/SP600) has been used. Moreover, each smart device has a PL-3120 smart transceiver manufactured by LonWorks to execute the user's program, to communicate with the ADE7753 via serial interface and to transmit information to the central unit via powerline communication. Experimental results show the exactitude of the measurements made using the developed smart device.

  2. Optical high temperature sensor based on fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Zhang, Bowei

    The aim of this thesis is to fabricate a fiber Bragg grating (FBG) temperature sensor that is capable to measure temperatures in excess of 1100°C. For this purpose, two topics have been studied and investigated during this project. One of them is the development of a high temperature resistant molecular-water induced FBGs; and the other is to investigate the effect of microwave-irradiation on the hydrogen-loaded FBG. The molecular-water induced FBGs are different from the other types of FBG. In these devices the refractive index is modulated by the periodic changes of molecular-water concentration within the grating. The device was developed using thermal annealing technology based on hydrogen-load FBG. Thermal stability of these devices was studied by measuring the grating reflectivity from room temperature to 1000°C. The stability of the device was tested by examining the FBG reflectivity for a period of time at certain temperatures. The results show that these devices are extremely stable at temperatures in excess of 1000°C. The hydroxyl concentration in the grating has been also investigated during this thesis. Based on the knowledge of hydroxyl groups inside FBG, a microwave treatment was designed to increase the hydroxyl concentration in the FBG area. The results show that the molecular-water induced grating, which was fabricated using microwave radiated hydrogen-loaded FBI, are stable at temperatures above 1100°C.

  3. A tensile machine with a novel optical load cell for soft biological tissues application.

    PubMed

    Faturechi, Rahim; Hashemi, Ata; Abolfathi, Nabiollah

    2014-11-01

    The uniaxial tensile testing machine is the most common device used to measure the mechanical properties of industrial and biological materials. The need for a low-cost uniaxial tension testing device for small research centers has always been the subject of research. To address this need, a novel uniaxial tensile testing machine was designed and fabricated to measure the mechanical properties of soft biological tissues. The device is equipped with a new low-cost load cell which works based on the linear displacement/force relationship of beams. The deflection of the beam load cell is measured optically by a digital microscope with an accuracy of 1 µm. The stiffness of the designed load cell was experimentally and theoretically determined at 100 N mm(-1). The stiffness of the load cell can be easily adjusted according to the tissue's strength. The force-time behaviour of soft tissue specimens was obtained by an in-house image processing program. To demonstrate the efficiency of the fabricated device, the mechanical properties of amnion tissue was measured and compared with available data. The obtained results indicate a strong agreement with that of previous studies.

  4. Fracture Tests of Etched Components Using a Focused Ion Beam Machine

    NASA Technical Reports Server (NTRS)

    Kuhn, Jonathan, L.; Fettig, Rainer K.; Moseley, S. Harvey; Kutyrev, Alexander S.; Orloff, Jon; Powers, Edward I. (Technical Monitor)

    2000-01-01

    Many optical MEMS device designs involve large arrays of thin (0.5 to 1 micron components subjected to high stresses due to cyclic loading. These devices are fabricated from a variety of materials, and the properties strongly depend on size and processing. Our objective is to develop standard and convenient test methods that can be used to measure the properties of large numbers of witness samples, for every device we build. In this work we explore a variety of fracture test configurations for 0.5 micron thick silicon nitride membranes machined using the Reactive Ion Etching (RIE) process. Testing was completed using an FEI 620 dual focused ion beam milling machine. Static loads were applied using a probe. and dynamic loads were applied through a piezo-electric stack mounted at the base of the probe. Results from the tests are presented and compared, and application for predicting fracture probability of large arrays of devices are considered.

  5. A Mechatronic System for Quantitative Application and Assessment of Massage-Like Actions in Small Animals

    PubMed Central

    Wang, Qian; Zeng, Hansong; Best, Thomas M.; Haas, Caroline; Heffner, Ned T.; Agarwal, Sudha; Zhao, Yi

    2013-01-01

    Massage therapy has a long history and has been widely believed effective in restoring tissue function, relieving pain and stress, and promoting overall well-being. However, the application of massage-like actions and the efficacy of massage are largely based on anecdotal experiences that are difficult to define and measure. This leads to a somewhat limited evidence-based interface of massage therapy with modern medicine. In this study, we introduce a mechatronic device that delivers highly reproducible massage-like mechanical loads to the hind limbs of small animals (rats and rabbits), where various massage-like actions are quantified by the loading parameters (magnitude, frequency and duration) of the compressive and transverse forces on the subject tissues. The effect of massage is measured by the difference in passive viscoelastic properties of the subject tissues before and after mechanical loading, both obtained by the same device. Results show that this device is useful in identifying the loading parameters that are most conducive to a change in tissue mechanical properties, and can determine the range of loading parameters that result in sustained changes in tissue mechanical properties and function. This device presents the first step in our effort for quantifying the application of massage-like actions used clinically and measurement of their efficacy that can readily be combined with various quantitative measures (e.g., active mechanical properties and physiological assays) for determining the therapeutic and mechanistic effects of massage therapies. PMID:23943071

  6. Microfluidic-based screening of resveratrol and drug-loading PLA/Gelatine nano-scaffold for the repair of cartilage defect.

    PubMed

    Ming, Li; Zhipeng, Yuan; Fei, Yu; Feng, Rao; Jian, Weng; Baoguo, Jiang; Yongqiang, Wen; Peixun, Zhang

    2018-03-26

    Cartilage defect is common in clinical but notoriously difficult to treat for low regenerative and migratory capacity of chondrocytes. Biodegradable tissue engineering nano-scaffold with a lot of advantages has been the direction of material to repair cartilage defect in recent years. The objective of our study is to establish a biodegradable drug-loading synthetic polymer (PLA) and biopolymer (Gelatine) composite 3D nano-scaffold to support the treatment of cartilage defect. We designed a microfluidic chip-based drug-screening device to select the optimum concentration of resveratrol, which has strong protective capability for chondrocyte. Then biodegradable resveratrol-loading PLA/Gelatine 3D nano-scaffolds were fabricated and used to repair the cartilage defects. As a result, we successfully cultured primary chondrocytes and screened the appropriate concentrations of resveratrol by the microfluidic device. We also smoothly obtained superior biodegradable resveratrol-loading PLA/Gelatine 3D nano-scaffolds and compared the properties and therapeutic effects of cartilage defect in rats. In summary, our microfluidic device is a simple but efficient platform for drug screening and resveratrol-loading PLA/Gelatine 3D nano-scaffolds could greatly promote the cartilage formation. It would be possible for materials and medical researchers to explore individualized pharmacotherapy and drug-loading synthetic polymer and biopolymer composite tissue engineering scaffolds for the repair of cartilage defect in future.

  7. FACTS Devices Cost Recovery During Congestion Management in Deregulated Electricity Markets

    NASA Astrophysics Data System (ADS)

    Sharma, Ashwani Kumar; Mittapalli, Ram Kumar; Pal, Yash

    2016-09-01

    In future electricity markets, flexible alternating current transmission system (FACTS) devices will play key role for providing ancillary services. Since huge cost is involved for the FACTS devices placement in the power system, the cost invested has to be recovered in their life time for the replacement of these devices. The FACTS devices in future electricity markets can act as an ancillary services provider and have to be remunerated. The main contributions of the paper are: (1) investment recovery of FACTS devices during congestion management such as static VAR compensator and unified power flow controller along with thyristor controlled series compensator using non-linear bid curves, (2) the impact of ZIP load model on the FACTS cost recovery of the devices, (3) the comparison of results obtained without ZIP load model for both pool and hybrid market model, (4) secure bilateral transactions incorporation in hybrid market model. An optimal power flow based approach has been developed for maximizing social welfare including FACTS devices cost. The optimal placement of the FACTS devices have been obtained based on maximum social welfare. The results have been obtained for both pool and hybrid electricity market for IEEE 24-bus RTS.

  8. Effects of electrical loads containing non-resistive components on electromagnetic vibration energy harvester performance

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Corr, Lawrence R.; Ma, Tianwei

    2018-02-01

    To further advance the existing knowledge base on rectified vibration energy harvester design, this study investigates the fundamental effects of electrical loads containing non-resistive components (e.g., rectifiers and capacitors) on electromagnetic energy harvester performance. Three types of electrical loads, namely (I) a resistor with a rectifier, (II) a resistor with a rectifier and a capacitor, and (III) a simple charging circuit consisting of a rectifier and a capacitor, were considered. A linear electromagnetic energy harvester was used as an illustrative example. Results have verified that device performance obtained from pure-resistive loads cannot be generalized to applications involving rectifier and/or capacitor loads. Such generalization caused not only an overestimation in the maximum power delivered to the load resistance for cases (I) and (II), but also an underestimation of the optimal load resistance and an overestimation of device natural frequency for case (II). Results obtained from case (II) also showed that it is possible to tune the mechanical natural frequency of device using an adjustable regulating capacitor. For case (III), it was found that a larger storing capacitor, with a low rectifier voltage drop, improves the performance of the electromagnetic harvester.

  9. Advancement Of Tritium Powered Betavoltaic Battery Systems FY16 EOY Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staack, G.; Gaillard, J.; Hitchcock, D.

    2016-10-12

    The goal of this work is to increase the power output of tritium-powered betavoltaic batteries and investigate the change in power output and film resistance in real-time during tritium loading of adsorbent films. To this end, several tritium-compatible test vessels with the capability of measuring both the resistivity of a tritium trapping film and the power output of a betavoltaic device in-situ have been designed and fabricated using four electrically insulated feedthroughs in tritium-compatible load cells. Energy conversion devices were received from Widetronix, a betavoltaic manufacturing firm based in Ithaca, NY. Thin films were deposited on the devices and cappedmore » with palladium to facilitate hydrogen loading. Gold contacts were then deposited on top of the films to allow resistivity measurements of the film during hydrogen loading. Finally, the chips were wire bonded and installed in the test cells. The cells were then baked-out under vacuum and leak checked at temperature to reduce the chances of tritium leaks during loading. Following the bake-out, IV curves were measured to verify no internal wires were compromised, and the cells were delivered to Tritium for loading. Tritium loading is anticipated in October, 2017.« less

  10. Analysis of the dynamics of movement of the landing vehicle with an inflatable braking device on the final trajectory under the influence of wind load

    NASA Astrophysics Data System (ADS)

    Koryanov, V.; Kazakovtsev, V.; Harri, A.-M.; Heilimo, J.; Haukka, H.; Aleksashkin, S.

    2015-10-01

    This research work is devoted to analysis of angular motion of the landing vehicle (LV) with an inflatable braking device (IBD), taking into account the influence of the wind load on the final stage of the movement. Using methods to perform a calculation of parameters of angular motion of the landing vehicle with an inflatable braking device based on the availability of small asymmetries, which are capable of complex dynamic phenomena, analyzes motion of the landing vehicle at the final stage of motion in the atmosphere.

  11. A literature review of the effects of computer input device design on biomechanical loading and musculoskeletal outcomes during computer work.

    PubMed

    Bruno Garza, J L; Young, J G

    2015-01-01

    Extended use of conventional computer input devices is associated with negative musculoskeletal outcomes. While many alternative designs have been proposed, it is unclear whether these devices reduce biomechanical loading and musculoskeletal outcomes. To review studies describing and evaluating the biomechanical loading and musculoskeletal outcomes associated with conventional and alternative input devices. Included studies evaluated biomechanical loading and/or musculoskeletal outcomes of users' distal or proximal upper extremity regions associated with the operation of alternative input devices (pointing devices, mice, other devices) that could be used in a desktop personal computing environment during typical office work. Some alternative pointing device designs (e.g. rollerbar) were consistently associated with decreased biomechanical loading while other designs had inconsistent results across studies. Most alternative keyboards evaluated in the literature reduce biomechanical loading and musculoskeletal outcomes. Studies of other input devices (e.g. touchscreen and gestural controls) were rare, however, those reported to date indicate that these devices are currently unsuitable as replacements for traditional devices. Alternative input devices that reduce biomechanical loading may make better choices for preventing or alleviating musculoskeletal outcomes during computer use, however, it is unclear whether many existing designs are effective.

  12. Protocol for chromosome-specific probe construction using PRINS, micromanipulation and DOP-PCR techniques.

    PubMed

    Passamani, Paulo Z; Carvalho, Carlos R; Soares, Fernanda A F

    2018-01-01

    Chromosome-specific probes have been widely used in molecular cytogenetics, being obtained with different methods. In this study, a reproducible protocol for construction of chromosome-specific probes is proposed which associates in situ amplification (PRINS), micromanipulation and degenerate oligonucleotide-primed PCR (DOP-PCR). Human lymphocyte cultures were used to obtain metaphases from male and female individuals. The chromosomes were amplified via PRINS, and subcentromeric fragments of the X chromosome were microdissected using microneedles coupled to a phase contrast microscope. The fragments were amplified by DOP-PCR and labeled with tetramethyl-rhodamine-5-dUTP. The probes were used in fluorescent in situ hybridization (FISH) procedure to highlight these specific regions in the metaphases. The results show one fluorescent red spot in male and two in female X chromosomes and interphase nuclei.

  13. Tensile testing of thin-film microstructures

    NASA Astrophysics Data System (ADS)

    Greek, Staffan; Johansson, Stefan A. I.

    1997-09-01

    The mechanical properties of thin film microstructures depend on size and shape and on the film manufacturing process. Hence, the test structures that are used to measure mechanical properties should have dimensions of the same order of magnitude as an application structure. The microstructures are easily monitored in a scanning electron microscope (SEM), but to be handled and tested in situ a micromanipulator was developed. The parts of the micromanipulator essential to the tests are two independently moveable tables driven by electric motors. The test structures and a testing unit are mounted on the tables. A testing unit was designed to measure force and displacement with high resolution. The testing unit consists of an arm actuated by a piezoelectric element and equipped with a probe. An optical encoder measures the movement of the arm, while strain gauges measure the force in the arm. Test structures consist typically of a released beam fixed at one end with a ring at the other. The micromanipulator is used to position the probe of the testing unit in the ring. The testing unit then executed a tensile test of the beam. Test structures of polysilicon films produced under various process conditions were used to verify the possibility of measuring Young's modulus with an accuracy of +/- 5 percent, as well as fracture strength.Young's modulus is calculated using the difference in elongation for different beam lengths. The fracture strength of the beams was evaluated with Weibull statistics.

  14. Controlling release from 3D printed medical devices using CLIP and drug-loaded liquid resins.

    PubMed

    Bloomquist, Cameron J; Mecham, Michael B; Paradzinsky, Mark D; Janusziewicz, Rima; Warner, Samuel B; Luft, J Christopher; Mecham, Sue J; Wang, Andrew Z; DeSimone, Joseph M

    2018-05-28

    Mass customization along with the ability to generate designs using medical imaging data makes 3D printing an attractive method for the fabrication of patient-tailored drug and medical devices. Herein we describe the application of Continuous Liquid Interface Production (CLIP) as a method to fabricate biocompatible and drug-loaded devices with controlled release properties, using liquid resins containing active pharmaceutical ingredients (API). In this work, we characterize how the release kinetics of a model small molecule, rhodamine B-base (RhB), are affected by device geometry, network crosslink density, and the polymer composition of polycaprolactone- and poly (ethylene glycol)-based networks. To demonstrate the applicability of using API-loaded liquid resins with CLIP, the UV stability was evaluated for a panel of clinically-relevant small molecule drugs. Finally, select formulations were tested for biocompatibility, degradation and encapsulation of docetaxel (DTXL) and dexamethasone-acetate (DexAc). Formulations were shown to be biocompatible over the course of 175 days of in vitro degradation and the clinically-relevant drugs could be encapsulated and released in a controlled fashion. This study reveals the potential of the CLIP manufacturing platform to serve as a method for the fabrication of patient-specific medical and drug-delivery devices for personalized medicine. Copyright © 2018. Published by Elsevier B.V.

  15. Analyses of power output of piezoelectric energy-harvesting devices directly connected to a load resistor using a coupled piezoelectric-circuit finite element method.

    PubMed

    Zhu, Meiling; Worthington, Emma; Njuguna, James

    2009-07-01

    This paper presents, for the first time, a coupled piezoelectric-circuit finite element model (CPC-FEM) to analyze the power output of a vibration-based piezoelectric energy-harvesting device (EHD) when it is connected to a load resistor. Special focus is given to the effect of the load resistor value on the vibrational amplitude of the piezoelectric EHD, and thus on the current, voltage, and power generated by the device, which are normally assumed to be independent of the load resistor value to reduce the complexity of modeling and simulation. The presented CPC-FEM uses a cantilever with a sandwich structure and a seismic mass attached to the tip to study the following characteristics of the EHD as a result of changing the load resistor value: 1) the electric outputs: the current through and voltage across the load resistor; 2) the power dissipated by the load resistor; 3) the displacement amplitude of the tip of the cantilever; and 4) the shift in the resonant frequency of the device. It is found that these characteristics of the EHD have a significant dependence on the load resistor value, rather than being independent of it as is assumed in most literature. The CPC-FEM is capable of predicting the generated output power of the EHD with different load resistor values while simultaneously calculating the effect of the load resistor value on the displacement amplitude of the tip of the cantilever. This makes the CPC-FEM invaluable for validating the performance of a designed EHD before it is fabricated and tested, thereby reducing the recurring costs associated with repeat fabrication and trials. In addition, the proposed CPC-FEM can also be used for producing an optimized design for maximum power output.

  16. Development of an Open Building Automation System Specification Based on ANSI/ASHRAE 135-2004 (BACnet(R) Communications Protocol: A Technical Assessment

    DTIC Science & Technology

    2007-02-01

    on/off control), trending and trend reports, load shedding/load manage- ment, remote setpoint adjustment, initial diagnosis of a service call and...building-specific operational data such as on/off scheduling com- mands, setpoints , and outside air temperature. With help from several other agencies and...interface for monitoring 3. Provide one interface for device/system management/configuration 4. ( Optimally ) provide one interface for device

  17. Development of an Open Building Automation System Specification Based on ANSI/ASHRAE 135-2004 (BACnet(Registered) Communications Protocol): A Technical Assessment

    DTIC Science & Technology

    2007-02-01

    on/off control), trending and trend reports, load shedding/load manage- ment, remote setpoint adjustment, initial diagnosis of a service call and...building-specific operational data such as on/off scheduling com- mands, setpoints , and outside air temperature. With help from several other agencies and...interface for monitoring 3. Provide one interface for device/system management/configuration 4. ( Optimally ) provide one interface for device

  18. Smart sensing to drive real-time loads scheduling algorithm in a domotic architecture

    NASA Astrophysics Data System (ADS)

    Santamaria, Amilcare Francesco; Raimondo, Pierfrancesco; De Rango, Floriano; Vaccaro, Andrea

    2014-05-01

    Nowadays the focus on power consumption represent a very important factor regarding the reduction of power consumption with correlated costs and the environmental sustainability problems. Automatic control load based on power consumption and use cycle represents the optimal solution to costs restraint. The purpose of these systems is to modulate the power request of electricity avoiding an unorganized work of the loads, using intelligent techniques to manage them based on real time scheduling algorithms. The goal is to coordinate a set of electrical loads to optimize energy costs and consumptions based on the stipulated contract terms. The proposed algorithm use two new main notions: priority driven loads and smart scheduling loads. The priority driven loads can be turned off (stand by) according to a priority policy established by the user if the consumption exceed a defined threshold, on the contrary smart scheduling loads are scheduled in a particular way to don't stop their Life Cycle (LC) safeguarding the devices functions or allowing the user to freely use the devices without the risk of exceeding the power threshold. The algorithm, using these two kind of notions and taking into account user requirements, manages loads activation and deactivation allowing the completion their operation cycle without exceeding the consumption threshold in an off-peak time range according to the electricity fare. This kind of logic is inspired by industrial lean manufacturing which focus is to minimize any kind of power waste optimizing the available resources.

  19. Development of a Portable Knee Rehabilitation Device That Uses Mechanical Loading.

    PubMed

    Fitzwater, Daric; Dodge, Todd; Chien, Stanley; Yokota, Hiroki; Anwar, Sohel

    2013-12-01

    Joint loading is a recently developed mechanical modality, which potentially provides a therapeutic regimen to activate bone formation and prevent degradation of joint tissues. To our knowledge, however, few joint loading devices are available for clinical or point-of-care applications. Using a voice-coil actuator, we developed an electromechanical loading system appropriate for human studies and preclinical trials that should prove both safe and effective. Two specific tasks for this loading system were development of loading conditions (magnitude and frequency) suitable for humans, and provision of a convenient and portable joint loading apparatus. Desktop devices have been previously designed to evaluate the effects of various loading conditions using small and large animals. However, a portable knee loading device is more desirable from a usability point of view. In this paper, we present such a device that is designed to be portable, providing a compact, user-friendly loader. The portable device was employed to evaluate its capabilities using a human knee model. The portable device was characterized for force-pulse width modulation duty cycle and loading frequency properties. The results demonstrate that the device is capable of producing the necessary magnitude of forces at appropriate frequencies to promote the stimulation of bone growth and which can be used in clinical studies for further evaluations.

  20. 36 CFR 1192.23 - Mobility aid accessibility.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... subpart shall provide a level-change mechanism or boarding device (e.g., lift or ramp) complying with... 22 feet in length or less. (b) Vehicle lift—(1) Design load. The design load of the lift shall be at... upon which the lift depends for support of the load, shall have a safety factor of at least six, based...

  1. 36 CFR 1192.23 - Mobility aid accessibility.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... subpart shall provide a level-change mechanism or boarding device (e.g., lift or ramp) complying with... 22 feet in length or less. (b) Vehicle lift—(1) Design load. The design load of the lift shall be at... upon which the lift depends for support of the load, shall have a safety factor of at least six, based...

  2. Minimum Surface-Effect Microgripper Design for Force-Reflective Telemanipulation of a Microscopic Environment

    NASA Technical Reports Server (NTRS)

    Goldfarb, Michael; Celanovic, Nikola

    1996-01-01

    This paper describes the fundamental physical motivations for minimum surface effect design, and presents a microgripper that incorporates a piezoelectric ceramic actuator and a flexure-based structure and transmission. The microgripper serves effectively as a one degree-of-freedom prototype of minimum surface effect micromanipulator design. Data is presented that characterizes the microgripper performance under both pure position and pure force control, followed by a discussion of the attributes and limitations of flexure-based design. The microgripper is interfaced with a force-reflective macrogripper, and the pair controlled with a hybrid position/force scheme. Data is presented that illustrates the effective operation of the telerobotic pair.

  3. Investigation on the fiber based approach to estimate the axial load carrying capacity of the circular concrete filled steel tube (CFST)

    NASA Astrophysics Data System (ADS)

    Piscesa, B.; Attard, M. M.; Suprobo, P.; Samani, A. K.

    2017-11-01

    External confining devices are often used to enhance the strength and ductility of reinforced concrete columns. Among the available external confining devices, steel tube is one of the most widely used in construction. However, steel tube has some drawbacks such as local buckling which needs to be considered when estimating the axial load carrying capacity of the concrete-filled-steel-tube (CFST) column. To tackle this problem in design, Eurocode 4 provided guidelines to estimate the effective yield strength of the steel tube material. To study the behavior of CFST column, in this paper, a non-linear analysis using a fiber-based approach was conducted. The use of the fiber-based approach allows the engineers to predict not only the axial load carrying capacity but also the complete load-deformation curve of the CFST columns for a known confining pressure. In the proposed fiber-based approach, an inverse analysis is used to estimate the constant confining pressure similar to design-oriented models. This paper also presents comparisons between the fiber-based approach model with the experimental results and the 3D non-linear finite element analysis.

  4. Experimental research on a modular miniaturization nanoindentation device

    NASA Astrophysics Data System (ADS)

    Huang, Hu; Zhao, Hongwei; Mi, Jie; Yang, Jie; Wan, Shunguang; Yang, Zhaojun; Yan, Jiwang; Ma, Zhichao; Geng, Chunyang

    2011-09-01

    Nanoindentation technology is developing toward the in situ test which requires miniaturization of indentation instruments. This paper presents a miniaturization nanoindentation device based on the modular idea. It mainly consists of macro-adjusting mechanism, x-y precise positioning platform, z axis precise driving unit, and the load-depth measuring unit. The device can be assembled with different forms and has minimum dimensions of 200 mm × 135 mm × 200 mm. The load resolution is about 0.1 mN and the displacement resolution is about 10 nm. A new calibration method named the reference-mapping method is proposed to calibrate the developed device. Output performance tests and indentation experiments indicate the feasibility of the developed device and calibration method. This paper gives an example that combining piezoelectric actuators with flexure hinge to realize nanoindentation tests. Integrating a smaller displacement sensor, a more compact nanoindentation device can be designed in the future.

  5. The use of medication compliance devices by district nursing services.

    PubMed

    McGraw, C; Drennan, V

    2000-07-01

    This article presents a critical review of the literature relating to medication compliance devices and the findings of a survey that examined the use of such devices by district nursing services. The UKCC (1992) does not regard the loading of compliance devices by nurses as safe practice; however, compliance devices continue to be used by district nurses. The evidence base concerning the value and use of medication compliance devices is examined and significant gaps in the literature relating to the use of such devices are identified. There is an absence of studies that focus on the effect of compliance devices on adherence among older patients and the nature and frequency of drug administration errors involving these devices. The survey findings show that nurse-loaded compliance devices are used in over one-third of the sample. Further research is necessary to assess the clinical effectiveness of, and clinical risk attached to, compliance devices for older patients in the community. It is suggested that this is an issue of serious concern for primary care groups considering the principles of clinical governance.

  6. 49 CFR 1242.74 - Adjusting and transferring loads, and car loading devices and grain doors (accounts XX-33-71 and...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Adjusting and transferring loads, and car loading devices and grain doors (accounts XX-33-71 and XX-33-72). 1242.74 Section 1242.74 Transportation Other... loads, and car loading devices and grain doors (accounts XX-33-71 and XX-33-72). These accounts pertain...

  7. Evaluation of the Multi-Chambered Treatment Train, a retrofit water-quality management device

    USGS Publications Warehouse

    Corsi, Steven R.; Greb, Steven R.; Bannerman, Roger T.; Pitt, Robert E.

    1999-01-01

    This paper presents the results of an evaluation of the benefits and efficiencies of a device called the Multi-Chambered Treatment Train (MCTT), which was installed below the pavement surface at a municipal maintenance garage and parking facility in Milwaukee, Wisconsin. Flow-weighted water samples were collected at the inlet and outlet of the device during 15 storms, and the efficiency of the device was based on reductions in the loads of 68 chemical constituents and organic compounds. High reduction efficiencies were achieved for all particulate-associated constituents, including total suspended solids (98 percent), total phosphorus (88 percent), and total recoverable zinc (91 percent). Reduction rates for dissolved fractions of the constituents were substantial, but somewhat lower (dissolved solids, 13 percent; dissolved phosphorus, 78 percent; dissolved zinc, 68 percent). The total dissolved solids load, which originated from road salt storage, was more than four times the total suspended solids load. No appreciable difference was detected between particle-size distributions in inflow and outflow samples.

  8. Fabrication and wireless micromanipulation of magnetic-biocompatible microrobots using microencapsulation for microrobotics and microfluidics applications.

    PubMed

    Li, Hui; Zhang, Jinyong; Zhang, Nannan; Kershaw, Joe; Wang, Lei

    2016-12-01

    It is important to fabricate biocompatible and chemical-resistant microstructures that can be powered and controlled without a tether in fluid environment for applications when contamination must be avoided, like cell manipulation, and applications where connecting the power source to the actuator would be cumbersome, like targeted delivery of chemicals. In this work, a novel fabrication method was described to encapsulate magnetic composite into pure SU-8 structures, enabling the truly microscale ferromagnetic microrobots biocompatible and chemical resistant. The microrobots were developed using the simple multilayer photolithography that allows us to mass produce and were actuated contact-free by external magnetic field to complete micromanipulations of micro-objects. The microrobots were actuated moving along a preplanned path to transport a glass microsphere object at an approximately average speed of 1.1 mm/sec and can be operated to rotate, aim at targets and collect objects.

  9. Whole Genome Amplification of Labeled Viable Single Cells Suited for Array-Comparative Genomic Hybridization.

    PubMed

    Kroneis, Thomas; El-Heliebi, Amin

    2015-01-01

    Understanding details of a complex biological system makes it necessary to dismantle it down to its components. Immunostaining techniques allow identification of several distinct cell types thereby giving an inside view of intercellular heterogeneity. Often staining reveals that the most remarkable cells are the rarest. To further characterize the target cells on a molecular level, single cell techniques are necessary. Here, we describe the immunostaining, micromanipulation, and whole genome amplification of single cells for the purpose of genomic characterization. First, we exemplify the preparation of cell suspensions from cultured cells as well as the isolation of peripheral mononucleated cells from blood. The target cell population is then subjected to immunostaining. After cytocentrifugation target cells are isolated by micromanipulation and forwarded to whole genome amplification. For whole genome amplification, we use GenomePlex(®) technology allowing downstream genomic analysis such as array-comparative genomic hybridization.

  10. The Load Capability of Piezoelectric Single Crystal Actuators

    NASA Technical Reports Server (NTRS)

    Xu, Tian-Bing; Su, Ji; Jiang, Xiaoning; Rehrig, Paul W.; Hackenberger, Wesley S.

    2006-01-01

    Piezoelectric lead magnesium niobate-lead titanate (PMN-PT) single crystal is one of the most promising materials for electromechanical device applications due to its high electrical field induced strain and high electromechanical coupling factor. PMN-PT single crystal-based multilayer stack actuators and multilayer stack-based flextensional actuators have exhibited high stroke and high displacement-voltage ratios. The actuation capabilities of these two actuators were evaluated using a newly developed method based upon a laser vibrometer system under various loading conditions. The measured displacements as a function of mechanical loads at different driving voltages indicate that the displacement response of the actuators is approximately constant under broad ranges of mechanical load. The load capabilities of these PMN-PT single crystal-based actuators and the advantages of the capability for applications will be discussed.

  11. The Load Capability of Piezoelectric Single Crystal Actuators

    NASA Technical Reports Server (NTRS)

    Xu, Tian-Bing; Su, Ji; Jiang, Xiaoning; Rehrig, Paul W.; Hackenberger, Wesley S.

    2007-01-01

    Piezoelectric lead magnesium niobate-lead titanate (PMN-PT) single crystal is one of the most promising materials for electromechanical device applications due to its high electrical field induced strain and high electromechanical coupling factor. PMN-PT single crystal-based multilayer stack actuators and multilayer stack-based flextensional actuators have exhibited high stroke and high displacement-voltage ratios. The actuation capabilities of these two actuators were evaluated using a newly developed method based upon a laser vibrometer system under various loading conditions. The measured displacements as a function of mechanical loads at different driving voltages indicate that the displacement response of the actuators is approximately constant under broad ranges of mechanical load. The load capabilities of these PMN-PT single crystal-based actuators and the advantages of the capability for applications will be discussed.

  12. Finite element simulation of structural performance on flexible pavements with stabilized base/treated subbase materials under accelerated loading.

    DOT National Transportation Integrated Search

    2011-12-01

    Accelerated pavement testing (APT) has been increasingly used by state highway agencies in recent years for evaluating pavement structures and/or materials. However, running an APT experiment is expensive. It requires costly accelerated loading devic...

  13. Compact, Controlled Resistance Exercise Device

    NASA Technical Reports Server (NTRS)

    Paulus, David C.; DeWitt, John K.; Reich, Alton J.; Shaw, James E.; Deaconu, Stelu S.

    2011-01-01

    Spaceflight leads to muscle and bone atrophy. Isoinertial (free-weight) exercises provide a sufficient stimulus to elicit increases in both muscle strength and bone mineral density in Earth-based studies. While exercise equipment is in use on the International Space Station for crewmember health maintenance, current devices are too large to place in a transport vehicle or small spacecraft. Therefore, a portable computer controlled resistance exercise device is being developed that is able to simulate the inertial loading experienced when lifting a mass on Earth. This portable device weighs less than 50 lb and can simulate the resistance of lifting and lowering up to 600 lb of free-weights. The objective is to allow crewmembers to perform resistance exercise with loads capable of maintaining muscle and bone health. The device is reconfigurable and allows for the performance of typical Earth-based free-weight exercises. Forces exerted, volume of work, range of motion, time-under-tension, and speed/ acceleration of movement are recorded and can be remotely monitored to track progress and modify individual protocols based on exercise session data. A performance evaluation will be completed and data will be presented that include ground-reaction force comparisons between the device and free-weight dead-lifts over a spectrum of resistance levels. Movement biomechanics will also be presented.

  14. Gas loading of graphene-quartz surface acoustic wave devices

    NASA Astrophysics Data System (ADS)

    Whitehead, E. F.; Chick, E. M.; Bandhu, L.; Lawton, L. M.; Nash, G. R.

    2013-08-01

    Graphene was transferred to the propagation path of quartz surface acoustic wave devices and the attenuation due to gas loading of air and argon measured at 70 MHz and 210 MHz and compared to devices with no graphene. Under argon loading, there was no significant difference between the graphene and non-graphene device and the values of measured attenuation agree well with those calculated theoretically. Under air loading, at 210 MHz, there was a significant difference between the non-graphene and graphene devices, with the average value of attenuation obtained with the graphene devices being approximately twice that obtained from the bare quartz devices.

  15. Load Modeling – A Review

    DOE PAGES

    Arif, Anmar; Wang, Zhaoyu; Wang, Jianhui; ...

    2017-05-02

    Load modeling has significant impact on power system studies. This paper presents a review on load modeling and identification techniques. Load models can be classified into two broad categories: static and dynamic models, while there are two types of approaches to identify model parameters: measurement-based and component-based. Load modeling has received more attention in recent years because of the renewable integration, demand-side management, and smart metering devices. However, the commonly used load models are outdated, and cannot represent emerging loads. There is a need to systematically review existing load modeling techniques and suggest future research directions to meet the increasingmore » interests from industry and academia. In this study, we provide a thorough survey on the academic research progress and industry practices, and highlight existing issues and new trends in load modeling.« less

  16. Load Modeling – A Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arif, Anmar; Wang, Zhaoyu; Wang, Jianhui

    Load modeling has significant impact on power system studies. This paper presents a review on load modeling and identification techniques. Load models can be classified into two broad categories: static and dynamic models, while there are two types of approaches to identify model parameters: measurement-based and component-based. Load modeling has received more attention in recent years because of the renewable integration, demand-side management, and smart metering devices. However, the commonly used load models are outdated, and cannot represent emerging loads. There is a need to systematically review existing load modeling techniques and suggest future research directions to meet the increasingmore » interests from industry and academia. In this study, we provide a thorough survey on the academic research progress and industry practices, and highlight existing issues and new trends in load modeling.« less

  17. Development of polypyrrole based solid-state on-chip microactuators using photolithography

    NASA Astrophysics Data System (ADS)

    Zhong, Yong; Lundemo, Staffan; Jager, Edwin W. H.

    2018-07-01

    There is a need for soft microactuators, especially for biomedical applications. We have developed a microfabrication process to create such soft, on-chip polymer based microactuators that can operate in air. The on-chip microactuators were fabricated using standard photolithographic techniques and wet etching, combined with special designed process to micropattern the electroactive polymer polypyrrole that drives the microactuators. By immobilizing a UV-patternable gel containing a liquid electrolyte on top of the electroactive polypyrrole layer, actuation in air was achieved although with reduced movement. Further optimization of the processing is currently on-going. The result shows the possibility to batch fabricate complex microsystems such as microrobotics and micromanipulators based on these solid-state on-chip microactuators using microfabrication methods including standard photolithographic processes.

  18. Low cost electronic ultracapacitor interface technique to provide load leveling of a battery for pulsed load or motor traction drive applications

    DOEpatents

    King, Robert Dean; DeDoncker, Rik Wivina Anna Adelson

    1998-01-01

    A battery load leveling arrangement for an electrically powered system in which battery loading is subject to intermittent high current loading utilizes a passive energy storage device and a diode connected in series with the storage device to conduct current from the storage device to the load when current demand forces a drop in battery voltage. A current limiting circuit is connected in parallel with the diode for recharging the passive energy storage device. The current limiting circuit functions to limit the average magnitude of recharge current supplied to the storage device. Various forms of current limiting circuits are disclosed, including a PTC resistor coupled in parallel with a fixed resistor. The current limit circuit may also include an SCR for switching regenerative braking current to the device when the system is connected to power an electric motor.

  19. Mechanisms governing the visco-elastic responses of living cells assessed by foam and tensegrity models.

    PubMed

    Cañadas, P; Laurent, V M; Chabrand, P; Isabey, D; Wendling-Mansuy, S

    2003-11-01

    The visco-elastic properties of living cells, measured to date by various authors, vary considerably, depending on the experimental methods and/or on the theoretical models used. In the present study, two mechanisms thought to be involved in cellular visco-elastic responses were analysed, based on the idea that the cytoskeleton plays a fundamental role in cellular mechanical responses. For this purpose, the predictions of an open unit-cell model and a 30-element visco-elastic tensegrity model were tested, taking into consideration similar properties of the constitutive F-actin. The quantitative predictions of the time constant and viscosity modulus obtained by both models were compared with previously published experimental data obtained from living cells. The small viscosity modulus values (10(0)-10(3) Pa x s) predicted by the tensegrity model may reflect the combined contributions of the spatially rearranged constitutive filaments and the internal tension to the overall cytoskeleton response to external loading. In contrast, the high viscosity modulus values (10(3)-10(5) Pa x s) predicted by the unit-cell model may rather reflect the mechanical response of the cytoskeleton to the bending of the constitutive filaments and/or to the deformation of internal components. The present results suggest the existence of a close link between the overall visco-elastic response of micromanipulated cells and the underlying architecture.

  20. Minimum surface-effect microgripper design for force-reflective telemanipulation of a microscopic environment

    NASA Technical Reports Server (NTRS)

    Goldfarb, Michael; Celanovic, Nikola

    1996-01-01

    This paper describes the fundamental physical motivations for a minimum surface effect design, and presents a microgripper that incorporates a piezoelectric ceramic actuator and a flexure-based structure and transmission. The microgripper serves effectively as a one degree-of-freedom prototype of a minimum surface effect micromanipulator design. Data is presented that characterizes the microgripper performance under both pure position and pure force control, followed by a discussion of the attributes and limitations of flexure-based design. The microgripper is interfaced with a force reflective macrogripper, and the pair is controlled with a hybrid position/force scheme. Data is presented that illustrates the effective operation of the telerobotic pair.

  1. Thermomicrocapillaries as temperature biosensors in single cells

    NASA Astrophysics Data System (ADS)

    Herth, Simone; Giesguth, Miriam; Wedel, Waldemar; Reiss, Günther; Dietz, Karl-Josef

    2013-03-01

    Temperature is an important physical parameter in biology and its deviation from optimum can cause damage in biosystems. Thermocouples based on the Seebeck effect can be structured on glass microcapillaries to obtain thermomicrocapillaries (TMCs) usable in a micromanipulation setup. The suitability of the setup was proven by monitoring the temperature increase upon illumination of leaves and single cells following insertion of the TMC. The increase was 1.5 K in green tissue and 0.75 K in white leaf sections due to lower absorption. In single cells of trichomes, the increase was 0.5 K due to heat dissipation to the surrounding air.

  2. Piezoelectric energy harvesting based on shear mode 0.71Pb(Mg(1/3)Nb(2/3))O3-0.29PbTiO3 single crystals.

    PubMed

    Ren, Bo; Or, Siu Wing; Wang, Feifei; Zhao, Xiangyong; Luo, Haosu; Li, Xiaobing; Zhang, Qinhui; Di, Wenning; Zhang, Yaoyao

    2010-06-01

    In this paper we theoretically and experimentally present a nonresonant vibration energy harvesting device based on the shear mode of 0.71Pb(Mg(1/3)Nb(2/3))O3-0.29PbTiO3 single crystals. The electrical properties of the energy harvesting device were evaluated using an analytical method. Good consistency was obtained between the analytical and experimental results. Under a mass load of 200 g, a peak voltage of 11.3 V and maximum power of 0.70 mW were obtained at 500 Hz when connecting a matching load resistance of 91 komega. A high output could always be obtained within a very wide frequency range. The results demonstrate the potential of the device in energy harvesting applied to low-power portable electronics and wireless sensors.

  3. Use of Mobile Device Data To Better Estimate Dynamic Population Size for Wastewater-Based Epidemiology.

    PubMed

    Thomas, Kevin V; Amador, Arturo; Baz-Lomba, Jose Antonio; Reid, Malcolm

    2017-10-03

    Wastewater-based epidemiology is an established approach for quantifying community drug use and has recently been applied to estimate population exposure to contaminants such as pesticides and phthalate plasticizers. A major source of uncertainty in the population weighted biomarker loads generated is related to estimating the number of people present in a sewer catchment at the time of sample collection. Here, the population quantified from mobile device-based population activity patterns was used to provide dynamic population normalized loads of illicit drugs and pharmaceuticals during a known period of high net fluctuation in the catchment population. Mobile device-based population activity patterns have for the first time quantified the high degree of intraday, week, and month variability within a specific sewer catchment. Dynamic population normalization showed that per capita pharmaceutical use remained unchanged during the period when static normalization would have indicated an average reduction of up to 31%. Per capita illicit drug use increased significantly during the monitoring period, an observation that was only possible to measure using dynamic population normalization. The study quantitatively confirms previous assessments that population estimates can account for uncertainties of up to 55% in static normalized data. Mobile device-based population activity patterns allow for dynamic normalization that yields much improved temporal and spatial trend analysis.

  4. Development of a pneumatic tensioning device for gap measurement during total knee arthroplasty.

    PubMed

    Kwak, Dai-Soon; Kong, Chae-Gwan; Han, Seung-Ho; Kim, Dong-Hyun; In, Yong

    2012-09-01

    Despite the importance of soft tissue balancing during total knee arthroplasty (TKA), all estimating techniques are dependent on a surgeon's manual distraction force or subjective feeling based on experience. We developed a new device for dynamic gap balancing, which can offer constant load to the gap between the femur and tibia, using pneumatic pressure during range of motion. To determine the amount of distraction force for the new device, 3 experienced surgeons' manual distraction force was measured using a conventional spreader. A new device called the consistent load pneumatic tensor was developed on the basis of the biomechanical tests. Reliability testing for the new device was performed using 5 cadaveric knees by the same surgeons. Intraclass correlation coefficients (ICCs) were calculated. The distraction force applied to the new pneumatic tensioning device was determined to be 150 N. The interobserver reliability was very good for the newly tested spreader device with ICCs between 0.828 and 0.881. The new pneumatic tensioning device can enable us to properly evaluate the soft tissue balance throughout the range of motion during TKA with acceptable reproducibility.

  5. Load regulating expansion fixture

    DOEpatents

    Wagner, Lawrence M.; Strum, Michael J.

    1998-01-01

    A free standing self contained device for bonding ultra thin metallic films, such as 0.001 inch beryllium foils. The device will regulate to a predetermined load for solid state bonding when heated to a bonding temperature. The device includes a load regulating feature, whereby the expansion stresses generated for bonding are regulated and self adjusting. The load regulator comprises a pair of friction isolators with a plurality of annealed copper members located therebetween. The device, with the load regulator, will adjust to and maintain a stress level needed to successfully and economically complete a leak tight bond without damaging thin foils or other delicate components.

  6. Evaluation of the XSENS Force Shoe on ISS

    NASA Technical Reports Server (NTRS)

    Hanson, A. M.; Peters, B. T.; Newby, N.; Ploutz-Snyder, L

    2014-01-01

    The Advanced Resistive Exercise Device (ARED) offers crewmembers a wide range of resistance exercises but does not provide any type of load monitoring; any load data received are based on crew self-report of dialed in load. This lack of real-time ARED load monitoring severely limits research analysis. To address this issue, portable load monitoring technologies are being evaluated to act as a surrogate to ARED's failed instrumentation. The XSENS ForceShoe"TM" is a commercial portable load monitoring tool, and performed well in ground tests. The ForceShoe "TM" was recently deployed on the International Space Station (ISS), and is being evaluated as a tool to monitor ARED loads.

  7. Field data collection of miscellaneous electrical loads in Northern California: Initial results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenblatt, Jeffery B.; Pratt, Stacy; Willem, Henry

    This report describes efforts to measure energy use of miscellaneous electrical loads (MELs) in 880 San Francisco Bay Area homes during the summer of 2012. Ten regions were selected for metering: Antioch, Berkeley, Fremont, Livermore, Marin County (San Rafael, Novato, Fairfax, and Mill Valley), Oakland/Emeryville, Pleasanton, Richmond, San Leandro, and Union City. The project focused on three major categories of devices: entertainment (game consoles, set-top boxes, televisions and video players), home office (computers, monitors and network equipment), and kitchen plug-loads (coffee/espresso makers, microwave ovens/toaster ovens/toasters, rice/slow cookers and wine chillers). These categories were important to meter because they either dominatedmore » the estimated overall energy use of MELs, are rapidly changing, or there are very little energy consumption data published. A total of 1,176 energy meters and 143 other sensors were deployed, and 90% of these meters and sensors were retrieved. After data cleaning, we obtained 711 valid device energy use measurements, which were used to estimate, for a number of device subcategories, the average time spent in high power, low power and “off” modes, the average energy use in each mode, and the average overall energy use. Consistent with observations made in previous studies, we find on average that information technology (IT) devices (home entertainment and home office equipment) consume more energy (15.0 and 13.0 W, respectively) than non-IT devices (kitchen plug-loads; 4.9 W). Opportunities for energy savings were identified in almost every device category, based on the time spent in various modes and/or the power levels consumed in those modes. Future reports will analyze the collected data in detail by device category and compare results to those obtained from prior studies.« less

  8. Three-Dimensional Printing of Vitrification Loop Prototypes for Aquatic Species.

    PubMed

    Tiersch, Nolan J; Childress, William M; Tiersch, Terrence R

    2018-05-16

    Vitrification is a method of cryopreservation that freezes samples rapidly, while forming an amorphous solid ("glass"), typically in small (μL) volumes. The goal of this project was to create, by three-dimensional (3D) printing, open vitrification devices based on an elliptical loop that could be efficiently used and stored. Vitrification efforts can benefit from the application of 3D printing, and to begin integration of this technology, we addressed four main variables: thermoplastic filament type, loop length, loop height, and method of loading. Our objectives were to: (1) design vitrification loops with varied dimensions; (2) print prototype loops for testing; (3) evaluate loading methods for the devices; and (4) classify vitrification responses to multiple device configurations. The various configurations were designed digitally using 3D CAD (Computer Aided Design) software, and prototype devices were produced with MakerBot ® 3D printers. The thermoplastic filaments used to produce devices were acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA). Vitrification devices were characterized by the film volumes formed with different methods of loading (pipetting or submersion). Frozen films were classified to determine vitrification quality: zero (opaque, or abundant crystalline ice formation); one (translucent, or partial vitrification), or two (transparent, or substantial vitrification, glass). A published vitrification solution was used to conduct experiments. Loading by pipetting formed frozen films more reliably than by submersion, but submersion yielded fewer filling problems and was more rapid. The loop designs that yielded the highest levels of vitrification enabled rapid transfer of heat, and most often were characterized as being longer and consisting of fewer layers (height). 3D printing can assist standardization of vitrification methods and research, yet can also provide the ability to quickly design and fabricate custom devices when needed.

  9. An optimal design of magnetostrictive material (MsM) based energy harvester

    NASA Astrophysics Data System (ADS)

    Hu, Jingzhen; Yuan, Fuh-Gwo; Xu, Fujun; Huang, Alex Q.

    2010-04-01

    In this study, an optimal vibration-based energy harvesting system using magnetostrictive material (MsM) has been designed to power the Wireless Intelligent Sensor Platform (WISP), developed at North Carolina State University. A linear MsM energy harvesting device has been modeled and optimized to maximize the power output. The effects of number of MsM layers and glue layers, and load matching on the output power of the MsM energy harvester have been analyzed. From the measurement, the open circuit voltage can reach 1.5 V when the MsM cantilever beam operates at the 2nd natural frequency 324 Hz. The AC output power is 0.97 mW, giving power density 279 μW/cm3. Since the MsM device has low open circuit output voltage characteristics, a full-wave quadrupler has been designed to boost the rectified output voltage. To deliver the maximum output power to the load, a complex conjugate impedance matching between the load and the MsM device has been implemented using a discontinuous conduction mode (DCM) buck-boost converter. The maximum output power after the voltage quadrupler is now 705 μW and power density reduces to 202.4 μW/cm3, which is comparable to the piezoelectric energy harvesters given in the literature. The output power delivered to a lithium rechargeable battery is around 630 μW, independent of the load resistance.

  10. Monitoring Walker Assistive Devices: A Novel Approach Based on Load Cells and Optical Distance Measurements †

    PubMed Central

    Viegas, Vítor; Dias Pereira, J. M.; Postolache, Octavian; Girão, Pedro Silva

    2018-01-01

    This paper presents a measurement system intended to monitor the usage of walker assistive devices. The goal is to guide the user in the correct use of the device in order to prevent risky situations and maximize comfort. Two risk indicators are defined: one related to force unbalance and the other related to motor incoordination. Force unbalance is measured by load cells attached to the walker legs, while motor incoordination is estimated by synchronizing force measurements with distance data provided by an optical sensor. The measurement system is equipped with a Bluetooth link that enables local supervision on a computer or tablet. Calibration and experimental results are included in the paper. PMID:29439428

  11. Load regulating expansion fixture

    DOEpatents

    Wagner, L.M.; Strum, M.J.

    1998-12-15

    A free standing self contained device for bonding ultra thin metallic films, such as 0.001 inch beryllium foils is disclosed. The device will regulate to a predetermined load for solid state bonding when heated to a bonding temperature. The device includes a load regulating feature, whereby the expansion stresses generated for bonding are regulated and self adjusting. The load regulator comprises a pair of friction isolators with a plurality of annealed copper members located therebetween. The device, with the load regulator, will adjust to and maintain a stress level needed to successfully and economically complete a leak tight bond without damaging thin foils or other delicate components. 1 fig.

  12. Development of a Ground-Based Analog to the Advanced Resistive Exercise Device Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Newby, Nathaniel J.; Scott-Pandorf, M. M.; Caldwell, E.; DeWitt, J.K.; Fincke, R.; Peters, B.T.

    2010-01-01

    NASA and Wyle engineers constructed a Horizontal Exercise Fixture (HEF) that was patented in 2006. Recently modifications were made to HEF with the goal of creating a device that mimics squat exercise on the Advanced Resistive Exercise Device (ARED) and can be used by bed rest subjects who must remain supine during exercise. This project posed several engineering challenges, such as how best to reproduce the hip motions (we used a sled that allowed hip motion in the sagittal plane), how to counterweight the pelvis against gravity (we used a pulley and free-weight mechanism), and how to apply large loads (body weight plus squat load) to the shoulders while simultaneously supporting the back against gravity (we tested a standard and a safety bar that allowed movement in the subject s z-axis, both of which used a retractable plate for back support). METHODS An evaluation of the HEF was conducted with human subjects (3F, 3M), who performed sets of squat exercises of increasing load from 10-repetition maximum (RM) up to 1-RM. Three pelvic counterweight loads were tested along with each of the two back-support squat bars. Data collection included 3-dimensional ground reaction forces (GRF), muscle activation (EMG), body motion (video-based motion capture), and subjective comments. These data were compared with previous ground-based ARED study data. RESULTS All subjects in the evaluation were able to perform low- to high-loading squats on the HEF. Four of the 6 subjects preferred a pelvic counterweight equivalent to 60 percent of their body weight. Four subjects preferred the standard squat bar, whereas 2 female subjects preferred the safety bar. EMG data showed muscle activation in the legs and low back typical of squat motion. GRF trajectories and eccentric-concentric loading ratios were similar to ARED. CONCLUSION: Squat exercise performed on HEF approximated squat exercise on ARED.

  13. Definition and maintenance of a telemetry database dictionary

    NASA Technical Reports Server (NTRS)

    Knopf, William P. (Inventor)

    2007-01-01

    A telemetry dictionary database includes a component for receiving spreadsheet workbooks of telemetry data over a web-based interface from other computer devices. Another component routes the spreadsheet workbooks to a specified directory on the host processing device. A process then checks the received spreadsheet workbooks for errors, and if no errors are detected the spreadsheet workbooks are routed to another directory to await initiation of a remote database loading process. The loading process first converts the spreadsheet workbooks to comma separated value (CSV) files. Next, a network connection with the computer system that hosts the telemetry dictionary database is established and the CSV files are ported to the computer system that hosts the telemetry dictionary database. This is followed by a remote initiation of a database loading program. Upon completion of loading a flatfile generation program is manually initiated to generate a flatfile to be used in a mission operations environment by the core ground system.

  14. An Evidence-Based Multidisciplinary Practice Guideline to Reduce the Workload due to Lifting for Preventing Work-Related Low Back Pain

    PubMed Central

    2014-01-01

    We developed an evidence-based practice guideline to support occupational safety and health (OSH) professionals in assessing the risk due to lifting and in selecting effective preventive measures for low back pain (LBP) in the Netherlands. The guideline was developed at the request of the Dutch government by a project team of experts and OSH professionals in lifting and work-related LBP. The recommendations for risk assessment were based on the quality of instruments to assess the risk on LBP due to lifting. Recommendations for interventions were based on a systematic review of the effects of worker- and work directed interventions to reduce back load due to lifting. The quality of the evidence was rated as strong (A), moderate (B), limited (C) or based on consensus (D). Finally, eight experts and twenty-four OSH professionals commented on and evaluated the content and the feasibility of the preliminary guideline. For risk assessment we recommend loads heavier than 25 kg always to be considered a risk for LBP while loads less than 3 kg do not pose a risk. For loads between 3–25 kg, risk assessment shall be performed using the Manual handling Assessment Charts (MAC)-Tool or National Institute for Occupational Safety and Health (NIOSH) lifting equation. Effective work oriented interventions are patient lifting devices (Level A) and lifting devices for goods (Level C), optimizing working height (Level A) and reducing load mass (Level C). Ineffective work oriented preventive measures are regulations to ban lifting without proper alternatives (Level D). We do not recommend worker-oriented interventions but consider personal lift assist devices as promising (Level C). Ineffective worker-oriented preventive measures are training in lifting technique (Level A), use of back-belts (Level A) and pre-employment medical examinations (Level A). This multidisciplinary evidence-based practice guideline gives clear criteria whether an employee is at risk for LBP while lifting and provides an easy-reference for (in)effective risk reduction measures based on scientific evidence, experience, and consensus among OSH experts and practitioners. PMID:24999432

  15. An Evidence-Based Multidisciplinary Practice Guideline to Reduce the Workload due to Lifting for Preventing Work-Related Low Back Pain.

    PubMed

    Kuijer, P Paul Fm; Verbeek, Jos Ham; Visser, Bart; Elders, Leo Am; Van Roden, Nico; Van den Wittenboer, Marion Er; Lebbink, Marian; Burdorf, Alex; Hulshof, Carel Tj

    2014-01-01

    We developed an evidence-based practice guideline to support occupational safety and health (OSH) professionals in assessing the risk due to lifting and in selecting effective preventive measures for low back pain (LBP) in the Netherlands. The guideline was developed at the request of the Dutch government by a project team of experts and OSH professionals in lifting and work-related LBP. The recommendations for risk assessment were based on the quality of instruments to assess the risk on LBP due to lifting. Recommendations for interventions were based on a systematic review of the effects of worker- and work directed interventions to reduce back load due to lifting. The quality of the evidence was rated as strong (A), moderate (B), limited (C) or based on consensus (D). Finally, eight experts and twenty-four OSH professionals commented on and evaluated the content and the feasibility of the preliminary guideline. For risk assessment we recommend loads heavier than 25 kg always to be considered a risk for LBP while loads less than 3 kg do not pose a risk. For loads between 3-25 kg, risk assessment shall be performed using the Manual handling Assessment Charts (MAC)-Tool or National Institute for Occupational Safety and Health (NIOSH) lifting equation. Effective work oriented interventions are patient lifting devices (Level A) and lifting devices for goods (Level C), optimizing working height (Level A) and reducing load mass (Level C). Ineffective work oriented preventive measures are regulations to ban lifting without proper alternatives (Level D). We do not recommend worker-oriented interventions but consider personal lift assist devices as promising (Level C). Ineffective worker-oriented preventive measures are training in lifting technique (Level A), use of back-belts (Level A) and pre-employment medical examinations (Level A). This multidisciplinary evidence-based practice guideline gives clear criteria whether an employee is at risk for LBP while lifting and provides an easy-reference for (in)effective risk reduction measures based on scientific evidence, experience, and consensus among OSH experts and practitioners.

  16. [Research of joint-robotics-based design of biomechanics testing device on human spine].

    PubMed

    Deng, Guoyong; Tian, Lianfang; Mao, Zongyuan

    2009-12-01

    This paper introduces the hardware and software of a biomechanical robot-based testing device. The bottom control orders, posture and torque data transmission, and the control algorithms are integrated in a unified visual control platform by Visual C+ +, with easy control and management. By using hybrid force-displacement control method to load the human spine, we can test the organizational structure and the force state of the FSU (Functional spinal unit) well, which overcomes the shortcomings due to the separation of the force and displacement measurement, thus greatly improves the measurement accuracy. Also it is esay to identify the spinal degeneration and the load-bearing impact on the organizational structure of the FSU after various types of surgery.

  17. Appendix C: Automated Vitrification of Mammalian Embryos on a Digital Microfluidic Device.

    PubMed

    Liu, Jun; Pyne, Derek G; Abdelgawad, Mohamed; Sun, Yu

    2017-01-01

    This chapter introduces a digital microfluidic device that automates sample preparation for mammalian embryo vitrification. Individual microdroplets manipulated on the microfluidic device were used as microvessels to transport a single mouse embryo through a complete vitrification procedure. Advantages of this approach, compared to manual operation and channel-based microfluidic vitrification, include automated operation, cryoprotectant concentration gradient generation, and feasibility of loading and retrieval of embryos.

  18. Material selection indices for design of surgical instruments with long tubular shafts.

    PubMed

    Nelson, Carl A

    2013-02-01

    In any medical device design process, material selection plays an important role. For devices which sustain mechanical loading, strength and stiffness requirements can be significant drivers of the design. This paper examines the specific case of minimally invasive surgical instruments, including robotic instruments, having long, tubular shafts. Material properties-based selection indices are derived for achieving high performance of these devices in terms of strength and stiffness, and the use of these indices for informing the medical device design problem is illustrated.

  19. Customized electric power storage device for inclusion in a microgrid

    DOEpatents

    Goldsmith, Steven Y.; Wilson, David; Robinett, III, Rush D.

    2017-08-01

    An electric power storage device included in a microgrid is described herein. The electric power storage device has at least one of a charge rate, a discharge rate, or a power retention capacity that has been customized for the microgrid. The at least one of the charge rate, the discharge rate, or the power retention capacity of the electric power storage device is computed based at least in part upon specified power source parameters in the microgrid and specified load parameters in the microgrid.

  20. Use of flexible hollow-core CO2 laser in microsurgical resection of CNS lesions: early surgical experience.

    PubMed

    Killory, Brendan D; Chang, Steve W; Wait, Scott D; Spetzler, Robert F

    2010-06-01

    The CO2 laser has a long history in both experimental and clinical neurosurgery. However, its use over the past decade has been limited by its cumbersome design and bulky set-up of the micromanipulator. These limitations are amplified when it is used with the operating microscope. These restrictions are addressed by the Omniguide fiber, which delivers the beam through flexible hollow-core photonic bandgap mirror fibers and allows the laser to be wielded like any other surgical instrument. The attending neurosurgeon prospectively assessed the usefulness of the laser in its first 45 consecutive uses at our institution based on a scale of 1 to 5. The series included 11 cavernous malformations, 14 meningiomas, 7 ependymomas, 3 metastases, 3 astrocytomas, and 7 miscellaneous lesions. The laser was set up 91 times and used in 45 cases. The Omniguide fiber failed 5 times. No adverse events involving patients or staff were associated with laser use. The mean utility score was 3.7 +/- 0.8 (range, 2-5). The laser was most helpful in debulking fibrous lesions too tough for ultrasonic aspiration and lesions adherent to delicate neurovascular structures. The laser was not helpful with highly vascular tumors. In our early experience, the Omniguide laser was very helpful in selected cases in resecting specific types of lesions without complications; we have added the device to our neurosurgical armamentarium.

  1. Anisotropic electrical transport of flexible tungsten carbide nanostructures: towards nanoscale interconnects and electron emitters

    NASA Astrophysics Data System (ADS)

    Sun, Bo; Sun, Yong; Wang, Chengxin

    2017-11-01

    Due to the coexistence of metal- and ionic-bonds in a hexagonal tungsten carbide (WC) lattice, disparate electron behaviors were found in the basal plane and along the c-axial direction, which may create an interesting anisotropic mechanical and electrical performance. To demonstrate this, low-dimensional nanostructures such as nanowires and nanosheets are suitable for investigation because they usually grow in single crystals with special orientations. Herein, we report the experimental research regarding the anisotropic conductivity of [0001] grown WC nanowires and basal plane-expanded nanosheets, which resulted in a conductivity of 7.86 × 103 Ω-1 · m-1 and 7.68 × 104 Ω-1 · m-1 respectively. This conforms to the fact that the highly localized W d state aligns along the c direction, while there is little intraplanar directional bonding in the W planes. With advanced micro-manipulation technology, the conductivity of a nanowire was tested to be approximately constant, even under a considerable bending state. Moreover, the field electron emission of WC was evaluated based on large area emission and single nanowire (nanosheet) emission. A single nanowire exhibits a stable electron emission performance, which can output emission currents >3 uA before fusing. These results provide useful references to assess low-dimensional WC nanostructures as electronic materials in flexible devices, such as nanoscale interconnects and electron emitters.

  2. Fabrication of photonic crystal microprisms based on artificial opals

    NASA Astrophysics Data System (ADS)

    Fenollosa, Roberto; Ibisate, Marta; Rubio, Silvia; Lopez, Ceferino; Meseguer, Francisco; Sanchez-Dehesa, Jose

    2002-04-01

    This paper reports a new method for faceting artificial opals based on micromanipulation techniques. By this means it was possible to fabricate an opal prism in a single domain with different faces: (111), (110) and (100), which were characterized by Scanning Electron Microscopy and Optical Reflectance Spectroscopy. Their spectra exhibit different characteristics depending on the orientation of the facet. While (111)-oriented face gives rise to a high Bragg reflection peak at about a/(lambda) equals 0.66 (where a is the lattice parameter), (110) and (100) faces show much less intense peaks corresponding to features in the band structure at a/(lambda) equals 1.12 and a/(lambda) equals 1.07 respectively. Peaks at higher energies have less obvious explanation.

  3. Research Based on AMESim of Electro-hydraulic Servo Loading System

    NASA Astrophysics Data System (ADS)

    Li, Jinlong; Hu, Zhiyong

    2017-09-01

    Electro-hydraulic servo loading system is a subject studied by many scholars in the field of simulation and control at home and abroad. The electro-hydraulic servo loading system is a loading device simulation of stress objects by aerodynamic moment and other force in the process of movement, its function is all kinds of gas in the lab condition to analyze stress under dynamic load of objects. The purpose of this paper is the design of AMESim electro-hydraulic servo system, PID control technology is used to configure the parameters of the control system, complete the loading process under different conditions, the optimal design parameters, optimization of dynamic performance of the loading system.

  4. A Mechatronic Loading Device to Stimulate Bone Growth via a Human Knee.

    PubMed

    Prabhala, Sai Krishna; Chien, Stanley; Yokota, Hiroki; Anwar, Sohel

    2016-09-29

    This paper presents the design of an innovative device that applies dynamic mechanical load to human knee joints. Dynamic loading is employed by applying cyclic and periodic force on a target area. The repeated force loading was considered to be an effective modality for repair and rehabilitation of long bones that are subject to ailments like fractures, osteoporosis, osteoarthritis, etc. The proposed device design builds on the knowledge gained in previous animal and mechanical studies. It employs a modified slider-crank linkage mechanism actuated by a brushless Direct Current (DC) motor and provides uniform and cyclic force. The functionality of the device was simulated in a software environment and the structural integrity was analyzed using a finite element method for the prototype construction. The device is controlled by a microcontroller that is programmed to provide the desired loading force at a predetermined frequency and for a specific duration. The device was successfully tested in various experiments for its usability and full functionality. The results reveal that the device works according to the requirements of force magnitude and operational frequency. This device is considered ready to be used for a clinical study to examine whether controlled knee-loading could be an effective regimen for treating the stated bone-related ailments.

  5. A Mechatronic Loading Device to Stimulate Bone Growth via a Human Knee

    PubMed Central

    Prabhala, Sai Krishna; Chien, Stanley; Yokota, Hiroki; Anwar, Sohel

    2016-01-01

    This paper presents the design of an innovative device that applies dynamic mechanical load to human knee joints. Dynamic loading is employed by applying cyclic and periodic force on a target area. The repeated force loading was considered to be an effective modality for repair and rehabilitation of long bones that are subject to ailments like fractures, osteoporosis, osteoarthritis, etc. The proposed device design builds on the knowledge gained in previous animal and mechanical studies. It employs a modified slider-crank linkage mechanism actuated by a brushless Direct Current (DC) motor and provides uniform and cyclic force. The functionality of the device was simulated in a software environment and the structural integrity was analyzed using a finite element method for the prototype construction. The device is controlled by a microcontroller that is programmed to provide the desired loading force at a predetermined frequency and for a specific duration. The device was successfully tested in various experiments for its usability and full functionality. The results reveal that the device works according to the requirements of force magnitude and operational frequency. This device is considered ready to be used for a clinical study to examine whether controlled knee-loading could be an effective regimen for treating the stated bone-related ailments. PMID:27690057

  6. Cryopreservation of human insulin expressing cells macro-encapsulated in a durable therapeutic immunoisolating device theracyte.

    PubMed

    Yakhnenko, Ilya; Wong, Wallace K; Katkov, Igor I; Itkin-Ansari, Pamela

    2012-01-01

    Encapsulating insulin producing cells (INPCs) in an immunoisolation device have been shown to cure diabetes in rodents without the need for immunosuppression. However, micro-encapsulation in semi-solid gels raises longevity and safety concerns for future use of stem cell derived INPCs. We have focused on a durable and retrievable macro-encapsulation (> 10(6) cells) device (TheraCyte). Cryopreservation (CP) of cells preloaded into the device is highly desirable but may require prolonged exposure to cryoprotectants during loading and post-thaw manipulations. Here, we are reporting survival and function of a human islet cell line frozen as single cells or as islet-like cell clusters. The non-clusterized cells exhibited high cryosurvival after prolonged pre-freeze or post-thaw exposure to 10 percent DMSO. However, both clusterization and especially loading INPCs into the device reduced viable yield even without CP. The survived cryopreserved macro-encapsulated INPCs remained fully functional suggesting that CP of macro-encapsulated cells is a promising tool for cell based therapies.

  7. Power control system and method

    DOEpatents

    Steigerwald, Robert Louis [Burnt Hills, NY; Anderson, Todd Alan [Niskayuna, NY

    2008-02-19

    A power system includes an energy harvesting device, a battery coupled to the energy harvesting device, and a circuit coupled to the energy harvesting device and the battery. The circuit is adapted to deliver power to a load by providing power generated by the energy harvesting device to the load without delivering excess power to the battery and to supplement the power generated by the energy harvesting device with power from the battery if the power generated by the energy harvesting device is insufficient to fully power the load. A method of operating the power system is also provided.

  8. Power control system and method

    DOEpatents

    Steigerwald, Robert Louis; Anderson, Todd Alan

    2006-11-07

    A power system includes an energy harvesting device, a battery coupled to the energy harvesting device, and a circuit coupled to the energy harvesting device and the battery. The circuit is adapted to deliver power to a load by providing power generated by the energy harvesting device to the load without delivering excess power to the battery and to supplement the power generated by the energy harvesting device with power from the battery if the power generated by the energy harvesting device is insufficient to fully power the load. A method of operating the power system is also provided.

  9. Tailored vectorial light fields: flower, spider web and hybrid structures

    NASA Astrophysics Data System (ADS)

    Otte, Eileen; Alpmann, Christina; Denz, Cornelia

    2017-04-01

    We present the realization and analysis of tailored vector fields including polarization singularities. The fields are generated by a holographic method based on an advanced system including a spatial light modulator. We demonstrate our systems capabilities realizing specifically customized vector fields including stationary points of defined polarization in its transverse plane. Subsequently, vectorial flowers and spider webs as well as unique hybrid structures of these are introduced, and embedded singular points are characterized. These sophisticated light fields reveal attractive properties that pave the way to advanced application in e.g. optical micromanipulation. Beyond particle manipulation, they contribute essentially to actual questions in singular optics.

  10. Tablet based distributed intelligent load management

    DOEpatents

    Lu, Yan; Zhou, Siyuan

    2018-01-09

    A facility is connected to an electricity utility and is responsive to Demand Response Events. A plurality of devices is each individually connected to the electricity grid via an addressable switch connected to a secure network that is enabled to be individually switched off by a server. An occupant of a room in control of the plurality of devices provides via a Human Machine Interface on a tablet a preferred order of switching off the plurality of devices in case of a Demand Response Event. A configuration file based at least partially on the preferred order and on a severity of the Demand Response Events determines which devices which of the plurality devices will be switched off. The server accesses the configuration file and switches off the devices included in the configuration file.

  11. Note: Motor-piezoelectricity coupling driven high temperature fatigue device

    NASA Astrophysics Data System (ADS)

    Ma, Z. C.; Du, X. J.; Zhao, H. W.; Ma, X. X.; Jiang, D. Y.; Liu, Y.; Ren, L. Q.

    2018-01-01

    The design and performance evaluation of a novel high temperature fatigue device simultaneously driven by servo motor and piezoelectric actuator is our focus. The device integrates monotonic and cyclic loading functions with a maximum tensile load of 1800 N, driving frequency of 50 Hz, alternating load of 95 N, and maximum service temperature of 1200 °C. Multimodal fatigue tests with arbitrary combinations of static and dynamic loads are achieved. At temperatures that range from RT to 1100 °C, the tensile and tensile-fatigue coupling mechanical behaviors of UM Co50 alloys are investigated to verify the feasibility of the device.

  12. The influence of ergonomic devices on mechanical load during patient handling activities in nursing homes.

    PubMed

    Koppelaar, Elin; Knibbe, Hanneke J J; Miedema, Harald S; Burdorf, Alex

    2012-07-01

    Mechanical load during patient handling activities is an important risk factor for low back pain among nursing personnel. The aims of this study were to describe required and actual use of ergonomic devices during patient handling activities and to assess the influence of these ergonomic devices on mechanical load during patient handling activities. For each patient, based on national guidelines, it was recorded which specific ergonomic devices were required during distinct patient handling activities, defined by transferring a patient, providing personal care, repositioning patients in the bed, and putting on and taking off anti-embolism stockings. During real-time observations over ~60 h among 186 nurses on 735 separate patient handling activities in 17 nursing homes, it was established whether ergonomic devices were actually used. Mechanical load was assessed through observations of frequency and duration of a flexed or rotated trunk >30° and frequency of pushing, pulling, lifting or carrying requiring forces <100 N, between 100 and 230 N, and >230 N from start to end of each separate patient handling activity. The number of patients and nurses per ward and the ratio of nurses per patient were used as ward characteristics with potential influence on mechanical load. A mixed-effect model for repeated measurements was used to determine the influence of ergonomic devices and ward characteristics on mechanical load. Use of ergonomic devices was required according to national guidelines in 520 of 735 (71%) separate patient handling activities, and actual use was observed in 357 of 520 (69%) patient handling activities. A favourable ratio of nurses per patient was associated with a decreased duration of time spent in awkward back postures during handling anti-embolism stocking (43%), patient transfers (33%), and personal care of patients (24%) and also frequency of manually lifting patients (33%). Use of lifting devices was associated with a lower frequency of forces exerted (64%), adjustable bed and shower chairs with a shorter duration of awkward back postures (38%), and an anti-embolism stockings slide with a lower frequency of forces exerted (95%). In wards in nursing homes with a higher number of staff less awkward back postures as well as forceful lifting were observed during patient handling activities. The use of ergonomic devices was high and associated with less forceful movements and awkward back postures. Both aspects will most likely contribute to the prevention of low back pain among nurses.

  13. Biomechanical Modeling Analysis of Loads Configuration for Squat Exercise

    NASA Technical Reports Server (NTRS)

    Gallo, Christopher A.; Thompson, William K.; Lewandowski, Beth E.; Jagodnik, Kathleen; De Witt, John K.

    2017-01-01

    INTRODUCTION: Long duration space travel will expose astronauts to extended periods of reduced gravity. Since gravity is not present to assist loading, astronauts will use resistive and aerobic exercise regimes for the duration of the space flight to minimize loss of bone density, muscle mass and aerobic capacity that occurs during exposure to a reduced gravity environment. Unlike the International Space Station (ISS), the area available for an exercise device in the next generation of spacecraft for travel to the Moon or to Mars is limited and therefore compact resistance exercise device prototypes are being developed. The Advanced Resistive Exercise Device (ARED) currently on the ISS is being used as a benchmark for the functional performance of these new devices. Biomechanical data collection and computational modeling aid the device design process by quantifying the joint torques and the musculoskeletal forces that occur during exercises performed on the prototype devices. METHODS The computational models currently under development utilize the OpenSim [1] software platform, consisting of open source code for musculoskeletal modeling, using biomechanical input data from test subjects for estimation of muscle and joint loads. The OpenSim Full Body Model [2] is used for all analyses. The model incorporates simplified wrap surfaces, a new knee model and updated lower body muscle parameters derived from cadaver measurements and magnetic resonance imaging of young adults. The upper body uses torque actuators at the lumbar and extremity joints. The test subjects who volunteer for this study are instrumented with reflective markers for motion capture data collection while performing squat exercising on the Hybrid Ultimate Lifting Kit (HULK) prototype device (ZIN Technologies, Middleburg Heights, OH). Ground reaction force data is collected with force plates under the feet, and device loading is recorded through load cells internal to the HULK. Test variables include the applied device load and the dual cable long bar or single cable T-bar interface between the test subject and the device. Data is also obtained using free weights with the identical loading for a comparison to the resistively loaded exercise device trials. The data drives the OpenSim biomechanical model, which has been scaled to match the anthropometrics of the test subject, to calculate the body loads. RESULTS Lower body kinematics, joint moments, joint forces and muscle forces are obtained from the OpenSim biomechanical analysis of the squat exercises under different loading conditions. Preliminary results from the model for the loading conditions will be presented as will hypotheses developed for follow on work.

  14. Optoelectronic tweezers for the measurement of the relative stiffness of erythrocytes

    NASA Astrophysics Data System (ADS)

    Neale, Steven L.; Mody, Nimesh; Selman, Colin; Cooper, Jonathan M.

    2012-10-01

    In this paper we describe the first use of Optoelectronic Tweezers (OET), an optically controlled micromanipulation method, to measure the relative stiffness of erythrocytes in mice. Cell stiffness is an important measure of cell health and in the case of erythrocytes, the most elastic cells in the body, an increase in cell stiffness can indicate pathologies such as type II diabetes mellitus or hypertension (high blood pressure). OET uses a photoconductive device to convert an optical pattern into and electrical pattern. The electrical fields will create a dipole within any polarisable particles in the device, such as cells, and non-uniformities of the field can be used to place unequal forces onto each side of the dipole thus moving the particle. In areas of the device where there are no field gradients, areas of constant illumination, the force on each side of the dipole will be equal, keeping the cell stationary, but as there are opposing forces on each side of the cell it will be stretched. The force each cell will experience will differ slightly so the stretching will depend on the cells polarisability as well as its stiffness. Because of this a relative stiffness rather than absolute stiffness is measured. We show that with standard conditions (20Vpp, 1.5MHz, 10mSm-1 medium conductivity) the cell's diameter changes by around 10% for healthy mouse erythrocytes and we show that due to the low light intensities required for OET, relative to conventional optical tweezers, multiple cells can be measured simultaneously.

  15. 29 CFR 1919.75 - Determination of crane or derrick safe working loads and limitations in absence of manufacturer's...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Determination of crane or derrick safe working loads and limitations in absence of manufacturer's data. 1919.75 Section 1919.75 Labor Regulations Relating to Labor... Certification of Shore-Based Material Handling Devices § 1919.75 Determination of crane or derrick safe working...

  16. 29 CFR 1919.75 - Determination of crane or derrick safe working loads and limitations in absence of manufacturer's...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Determination of crane or derrick safe working loads and limitations in absence of manufacturer's data. 1919.75 Section 1919.75 Labor Regulations Relating to Labor... Certification of Shore-Based Material Handling Devices § 1919.75 Determination of crane or derrick safe working...

  17. Measurement of Trap Length for an Optical Trap

    NASA Technical Reports Server (NTRS)

    Wrbanek, Susan Y.

    2009-01-01

    The trap length along the beam axis for an optical trap formed with an upright, oil-immersion microscope was measured. The goals for this effort were twofold. It was deemed useful to understand the depth to which an optical trap can reach for purposes of developing a tool to assist in the fabrication of miniature devices. Additionally, it was desired to know whether the measured trap length favored one or the other of two competing theories to model an optical trap. The approach was to trap a microsphere of known size and mass and raise it from its initial trap position. The microsphere was then dropped by blocking the laser beam for a pre-determined amount of time. Dropping the microsphere in a free-fall mode from various heights relative to the coverslip provides an estimate of how the trapping length changes with depth in water in a sample chamber on a microscope slide. While it was not possible to measure the trap length with sufficient precision to support any particular theory of optical trap formation, it was possible to find regions where the presence of physical boundaries influenced optical traps, and determine that the trap length, for the apparatus studied, is between 6 and 7 m. These results allow more precise control using optical micromanipulation to assemble miniature devices by providing information about the distance over which an optical trap is effective.

  18. Dynamic Loading and Characterization of Fiber-Reinforced Composites

    NASA Astrophysics Data System (ADS)

    Sierakowski, Robert L.; Chaturvedi, Shive K.

    1997-02-01

    Emphasizing polymer based fiber-reinforced composites, this book is designed to provide readers with a significant understanding of the complexities involved in characterizing dynamic events and the corresponding response of advanced fiber composite materials and structures. These elements include dynamic loading devices, material properties characterization, analytical and experimental techniques to assess the damage and failure modes associated with various dynamic loading events. Concluding remarks are presented throughout the text which summarize key points and raise issues related to important research needed.

  19. Squat Biomechanical Modeling Results from Exercising on the Hybrid Ultimate Lifting Kit

    NASA Technical Reports Server (NTRS)

    Gallo, Christopher A.; Thompson, William K.; Lewandowski, Beth E.; Jagodnik, Kathleen M.

    2016-01-01

    Long duration space travel will expose astronauts to extended periods of reduced gravity. Since gravity is not present to aid loading, astronauts will use resistive and aerobic exercise regimes for the duration of the space flight to minimize loss of bone density, muscle mass and aerobic capacity that occurs during exposure to a reduced gravity environment. Unlike the International Space Station (ISS), the area available for an exercise device in the next generation of spacecraft is limited and therefore compact resistance exercise device prototypes are being developed. The Advanced Resistive Exercise Device (ARED) currently on the ISS is being used as a benchmark for the functional performance of these new devices. Biomechanical data collection and computational modeling aid the device design process by quantifying the joint torques and the musculoskeletal forces that occur during exercises performed on the prototype devices. The computational models currently under development utilize the OpenSim software, an open source code for musculoskeletal modeling, with biomechanical input data from test subjects for estimation of muscle and joint loads. The subjects are instrumented with reflective markers for motion capture data collection while exercising on the Hybrid Ultimate Lifting Kit (HULK) prototype device. Ground reaction force data is collected with force plates under the feet and device loading is recorded through load cells internal to the HULK. Test variables include applied device load, narrow or wide foot stance, slow or fast cadence and the harness or long bar interface between the test subject and the device. Data is also obtained using free weights for a comparison to the resistively loaded exercise device. This data is input into the OpenSim biomechanical model, which has been scaled to match the anthropometrics of the test subject, to calculate the body loads. The focus of this presentation is to summarize the results from the full squat exercises across the different test variables.

  20. Catch and Patch: A Pipette-Based Approach for Automating Patch Clamp That Enables Cell Selection and Fast Compound Application.

    PubMed

    Danker, Timm; Braun, Franziska; Silbernagl, Nikole; Guenther, Elke

    2016-03-01

    Manual patch clamp, the gold standard of electrophysiology, represents a powerful and versatile toolbox to stimulate, modulate, and record ion channel activity from membrane fragments and whole cells. The electrophysiological readout can be combined with fluorescent or optogenetic methods and allows for ultrafast solution exchanges using specialized microfluidic tools. A hallmark of manual patch clamp is the intentional selection of individual cells for recording, often an essential prerequisite to generate meaningful data. So far, available automation solutions rely on random cell usage in the closed environment of a chip and thus sacrifice much of this versatility by design. To parallelize and automate the traditional patch clamp technique while perpetuating the full versatility of the method, we developed an approach to automation, which is based on active cell handling and targeted electrode placement rather than on random processes. This is achieved through an automated pipette positioning system, which guides the tips of recording pipettes with micrometer precision to a microfluidic cell handling device. Using a patch pipette array mounted on a conventional micromanipulator, our automated patch clamp process mimics the original manual patch clamp as closely as possible, yet achieving a configuration where recordings are obtained from many patch electrodes in parallel. In addition, our implementation is extensible by design to allow the easy integration of specialized equipment such as ultrafast compound application tools. The resulting system offers fully automated patch clamp on purposely selected cells and combines high-quality gigaseal recordings with solution switching in the millisecond timescale.

  1. Biomechanical Modeling of Split-leg Squat and Heel Raise on the Hybrid Ultimate Lifting Kit (HULK)

    NASA Technical Reports Server (NTRS)

    Thompson, William K.; Gallo, Christopher A.; Lewandowski, Beth E.; Jagodnik, Kathleen M.; Humphreys, Brad; Funk, Justin; Funk, Nathan; Dewitt, John K.

    2016-01-01

    Long duration space travel will expose astronauts to extended periods of reduced gravity. Since gravity is not present to aid loading, astronauts will use resistive and aerobic exercise regimes for the duration of the space flight to minimize the loss of bone density, muscle mass and aerobic capacity that occurs during exposure to a reduced gravity environment. Unlike the International Space Station (ISS), the area available for an exercise device in the next generation of spacecraft is limited and therefore compact resistance exercise device prototypes are being developed. The Advanced Resistive Exercise Device (ARED) currently on the ISS is being used as a benchmark for the functional performance of these new devices. Biomechanical data collection and computational modeling aid the device design process by quantifying the joint torques and musculoskeletal forces that occur during exercises performed on the prototype devices. Computational models currently use OpenSim software, an open source code for musculoskeletal modeling, with biomechanical input data from subjects for estimation of muscle and joint loads. Subjects are instrumented with reflective markers for motion capture data collection while exercising on the Hybrid Ultimate Lifting Kit (HULK) prototype device. Ground reaction force data is collected with force plates under the feet and device loading is recorded through load cells internal to the HULK. This data is input into the OpenSim biomechanical model, which has been scaled to match the anthropometrics of the test subject, to calculate the loads on the body. Multiple exercises are performed and evaluated during a test session such as a full squat, single leg squat, heel raise and dead lift. Variables for these exercises include applied device load, narrow or wide foot stance, slow or fast cadence and the harness or long bar interface between the test subject and the device. Data from free weights are compared to the resistively loaded exercise device. The focus of this presentation is to summarize the results from the single-leg squat and heel raise exercises performed during three sessions occurring in 2015. Differences in loading configuration, cadence and stance produce differences in kinematics, joint toques and force and muscle forces.

  2. In-vivo orthopedic implant diagnostic device for sensing load, wear, and infection

    DOEpatents

    Evans, III, Boyd McCutchen; Thundat, Thomas G.; Komistek, Richard D.; Dennis, Douglas A.; Mahfouz, Mohamed

    2006-08-29

    A device for providing in vivo diagnostics of loads, wear, and infection in orthopedic implants having at least one load sensor associated with the implant, at least one temperature sensor associated with the implant, at least one vibration sensor associated with the implant, and at least one signal processing device operatively coupled with the sensors. The signal processing device is operable to receive the output signal from the sensors and transmit a signal corresponding with the output signal.

  3. A Bankruptcy Problem Approach to Load-shedding in Multiagent-based Microgrid Operation

    PubMed Central

    Kim, Hak-Man; Kinoshita, Tetsuo; Lim, Yujin; Kim, Tai-Hoon

    2010-01-01

    A microgrid is composed of distributed power generation systems (DGs), distributed energy storage devices (DSs), and loads. To maintain a specific frequency in the islanded mode as an important requirement, the control of DGs’ output and charge action of DSs are used in supply surplus conditions and load-shedding and discharge action of DSs are used in supply shortage conditions. Recently, multiagent systems for autonomous microgrid operation have been studied. Especially, load-shedding, which is intentional reduction of electricity use, is a critical problem in islanded microgrid operation based on the multiagent system. Therefore, effective schemes for load-shedding are required. Meanwhile, the bankruptcy problem deals with dividing short resources among multiple agents. In order to solve the bankruptcy problem, division rules, such as the constrained equal awards rule (CEA), the constrained equal losses rule (CEL), and the random arrival rule (RA), have been used. In this paper, we approach load-shedding as a bankruptcy problem. We compare load-shedding results by above-mentioned rules in islanded microgrid operation based on wireless sensor network (WSN) as the communication link for an agent’s interactions. PMID:22163386

  4. A bankruptcy problem approach to load-shedding in multiagent-based microgrid operation.

    PubMed

    Kim, Hak-Man; Kinoshita, Tetsuo; Lim, Yujin; Kim, Tai-Hoon

    2010-01-01

    A microgrid is composed of distributed power generation systems (DGs), distributed energy storage devices (DSs), and loads. To maintain a specific frequency in the islanded mode as an important requirement, the control of DGs' output and charge action of DSs are used in supply surplus conditions and load-shedding and discharge action of DSs are used in supply shortage conditions. Recently, multiagent systems for autonomous microgrid operation have been studied. Especially, load-shedding, which is intentional reduction of electricity use, is a critical problem in islanded microgrid operation based on the multiagent system. Therefore, effective schemes for load-shedding are required. Meanwhile, the bankruptcy problem deals with dividing short resources among multiple agents. In order to solve the bankruptcy problem, division rules, such as the constrained equal awards rule (CEA), the constrained equal losses rule (CEL), and the random arrival rule (RA), have been used. In this paper, we approach load-shedding as a bankruptcy problem. We compare load-shedding results by above-mentioned rules in islanded microgrid operation based on wireless sensor network (WSN) as the communication link for an agent's interactions.

  5. Effect of counter-pulsation control of a pulsatile left ventricular assist device on working load variations of the native heart.

    PubMed

    Choi, Seong Wook; Nam, Kyoung Won; Lim, Ki Moo; Shim, Eun Bo; Won, Yong Soon; Woo, Heung Myong; Kwak, Ho Hyun; Noh, Mi Ryoung; Kim, In Young; Park, Sung Min

    2014-04-03

    When using a pulsatile left ventricular assist device (LVAD), it is important to reduce the cardiac load variations of the native heart because severe cardiac load variations can induce ventricular arrhythmia. In this study, we investigated the effect of counter-pulsation control of the LVAD on the reduction of cardiac load variation. A ventricular electrocardiogram-based counter-pulsation control algorithm for a LVAD was implemented, and the effects of counter-pulsation control of the LVAD on the reduction of the working load variations of the left ventricle were determined in three animal experiments. Deviations of the working load of the left ventricle were reduced by 51.3%, 67.9%, and 71.5% in each case, and the beat-to-beat variation rates in the working load were reduced by 84.8%, 82.7%, and 88.2% in each ease after counter-pulsation control. There were 3 to 12 premature ventricle contractions (PVCs) before counter-pulsation control, but no PVCs were observed during counter-pulsation control. Counter-pulsation control of the pulsatile LVAD can reduce severe cardiac load variations, but the average working load is not markedly affected by application of counter-pulsation control because it is also influenced by temporary cardiac outflow variations. We believe that counter-pulsation control of the LVAD can improve the long-term safety of heart failure patients equipped with LVADs.

  6. Load power device and system for real-time execution of hierarchical load identification algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yi; Madane, Mayura Arun; Zambare, Prachi Suresh

    A load power device includes a power input; at least one power output for at least one load; and a plurality of sensors structured to sense voltage and current at the at least one power output. A processor is structured to provide real-time execution of: (a) a plurality of load identification algorithms, and (b) event detection and operating mode detection for the at least one load.

  7. Evaluation of load transfer devices : final report.

    DOT National Transportation Integrated Search

    1975-11-01

    This report describes the procedures and findings of a study conducted to evaluate two types of load transfer devices used in Louisiana--steel dowel bars and starlugs (a patented device). A statistical comparison was accomplished by evaluating existi...

  8. 46 CFR 64.59 - Spring loaded pressure relief valve.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Spring loaded pressure relief valve. 64.59 Section 64.59... AND CARGO HANDLING SYSTEMS Pressure Relief Devices and Vacuum Relief Devices for MPTs § 64.59 Spring loaded pressure relief valve. A spring loaded pressure relief valve must— (a) Be set at a nominal...

  9. 46 CFR 64.59 - Spring loaded pressure relief valve.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Spring loaded pressure relief valve. 64.59 Section 64.59... AND CARGO HANDLING SYSTEMS Pressure Relief Devices and Vacuum Relief Devices for MPTs § 64.59 Spring loaded pressure relief valve. A spring loaded pressure relief valve must— (a) Be set at a nominal...

  10. 46 CFR 64.59 - Spring loaded pressure relief valve.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Spring loaded pressure relief valve. 64.59 Section 64.59... AND CARGO HANDLING SYSTEMS Pressure Relief Devices and Vacuum Relief Devices for MPTs § 64.59 Spring loaded pressure relief valve. A spring loaded pressure relief valve must— (a) Be set at a nominal...

  11. 46 CFR 64.59 - Spring loaded pressure relief valve.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Spring loaded pressure relief valve. 64.59 Section 64.59... AND CARGO HANDLING SYSTEMS Pressure Relief Devices and Vacuum Relief Devices for MPTs § 64.59 Spring loaded pressure relief valve. A spring loaded pressure relief valve must— (a) Be set at a nominal...

  12. 46 CFR 64.59 - Spring loaded pressure relief valve.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Spring loaded pressure relief valve. 64.59 Section 64.59... AND CARGO HANDLING SYSTEMS Pressure Relief Devices and Vacuum Relief Devices for MPTs § 64.59 Spring loaded pressure relief valve. A spring loaded pressure relief valve must— (a) Be set at a nominal...

  13. Humidity-controlled preparation of frozen-hydrated biological samples for cryogenic coherent x-ray diffraction microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takayama, Yuki; Nakasako, Masayoshi; RIKEN Harima Institute/SPring-8, 1-1-1 Kouto, Mikaduki, Sayo, Hyogo 679-5148

    2012-05-15

    Coherent x-ray diffraction microscopy (CXDM) has the potential to visualize the structures of micro- to sub-micrometer-sized biological particles, such as cells and organelles, at high resolution. Toward advancing structural studies on the functional states of such particles, here, we developed a system for the preparation of frozen-hydrated biological samples for cryogenic CXDM experiments. The system, which comprised a moist air generator, microscope, micro-injector mounted on a micromanipulator, custom-made sample preparation chamber, and flash-cooling device, allowed for the manipulation of sample particles in the relative humidity range of 20%-94%rh at 293 K to maintain their hydrated and functional states. Here, wemore » report the details of the system and the operation procedure, including its application to the preparation of a frozen-hydrated chloroplast sample. Sample quality was evaluated through a cryogenic CXDM experiment conducted at BL29XUL of SPring-8. Taking the performance of the system and the quality of the sample, the system was suitable to prepare frozen-hydrated biological samples for cryogenic CXDM experiments.« less

  14. Bio-applications of ionic polymer metal composite transducers

    NASA Astrophysics Data System (ADS)

    Aw, K. C.; McDaid, A. J.

    2014-07-01

    Traditional robotic actuators have advanced performance which in some aspects can surpass that of humans, however they are lacking when it comes to developing devices which are capable of operating together with humans. Bio-inspired transducers, for example ionic polymer metal composites (IPMC), which have similar properties to human tissue and muscle, demonstrate much future promise as candidates for replacing traditional robotic actuators in medical robotics applications. This paper outlines four biomedical robotics applications, an IPMC stepper motor, an assistive glove exoskeleton/prosthetic hand, a surgical robotic tool and a micromanipulation system. These applications have been developed using mechanical design/modelling techniques with IPMC ‘artificial muscle’ as the actuation system. The systems are designed by first simulating the performance using an IPMC model and dynamic models of the mechanical system; the appropriate advanced adaptive control schemes are then implemented to ensure that the IPMCs operate in the correct manner, robustly over time. This paper serves as an overview of the applications and concludes with some discussion on the future challenges of developing real-world IPMC applications.

  15. A real-time plantar pressure feedback device for foot unloading.

    PubMed

    Femery, Virginie G; Moretto, Pierre G; Hespel, Jean-Michel G; Thévenon, André; Lensel, Ghislaine

    2004-10-01

    To develop and test a plantar pressure control device that provides both visual and auditory feedback and is suitable for correcting plantar pressure distribution patterns in persons susceptible to neuropathic foot ulceration. Pilot test. Sports medicine laboratory in a university in France. One healthy man in his mid thirties. Not applicable. Main outcome measures A device was developed based on real-time feedback, incorporating an acoustic alarm and visual signals, adjusted to a specific pressure load. Plantar pressure measured during walking, at 6 sensor locations over 27 steps under 2 different conditions: (1) natural and (2) unloaded in response to device feedback. The subject was able to modify his gait in response to the auditory and visual signals. He did not compensate for the decrease of peak pressure under the first metarsal by increasing the duration of the load shift under this area. Gait pattern modification centered on a mediolateral load shift. The auditory signal provided a warning system alerting the user to potentially harmful plantar pressures. The visual signal warned of the degree of pressure. People who have lost nociceptive perception, as in cases of diabetic neuropathy, may be able to change their walking pattern in response to the feedback provided by this device. The visual may have diagnostic value in determining plantar pressures in such patients. This pilot test indicates that further studies are warranted.

  16. RoboGlove - A Robonaut Derived Multipurpose Assistive Device

    NASA Technical Reports Server (NTRS)

    Diftler, Myron; Ihrke, C. A.; Bridgwater, L. B.; Davis, D. R.; Linn, D. M.; Laske, E. A.; Ensley, K. G.; Lee, J. H.

    2014-01-01

    The RoboGlove is an assistive device that can augment human strength, endurance or provide directed motion for use in rehabilitation. RoboGlove is a spinoff of the highly successful Robonaut 2 (R2) system developed as part of a partnership between General Motors and NASA. This extremely lightweight device employs an actuator system based on the R2 finger drive system to transfer part or the entire grasp load from human tendons to artificial ones contained in the glove. Steady state loads ranging from 15 to 20 lbs. and peaks approaching 50 lbs. are achievable. The technology holds great promise for use with space suit gloves to reduce fatigue during space walks. Tactile sensing, miniaturized electronics, and on-board processing provide sufficient flexibility for applications in many industries. The following describes the design, mechanical/electrical integration, and control features of the glove.

  17. Study and characterization of a MEMS micromirror device

    NASA Astrophysics Data System (ADS)

    Furlong, Cosme; Pryputniewicz, Ryszard J.

    2004-08-01

    In this paper, advances in our study and characterization of a MEMS micromirror device are presented. The micromirror device, of 510 mm characteristic length, operates in a dynamic mode with a maximum displacement on the order of 10 mm along its principal optical axis and oscillation frequencies of up to 1.3 kHz. Developments are carried on by analytical, computational, and experimental methods. Analytical and computational nonlinear geometrical models are developed in order to determine the optimal loading-displacement operational characteristics of the micromirror. Due to the operational mode of the micromirror, the experimental characterization of its loading-displacement transfer function requires utilization of advanced optical metrology methods. Optoelectronic holography (OEH) methodologies based on multiple wavelengths that we are developing to perform such characterization are described. It is shown that the analytical, computational, and experimental approach is effective in our developments.

  18. Piglets born from handmade cloning, an innovative cloning method without micromanipulation.

    PubMed

    Du, Y; Kragh, P M; Zhang, Y; Li, J; Schmidt, M; Bøgh, I B; Zhang, X; Purup, S; Jørgensen, A L; Pedersen, A M; Villemoes, K; Yang, H; Bolund, L; Vajta, G

    2007-11-01

    Porcine handmade cloning (HMC), a simplified alternative of micromanipulation based traditional cloning (TC) has been developed in multiple phases during the past years, but the final evidence of its biological value, births of piglets was missing. Here we report the first births of healthy piglets after transfer of blastocysts produced by HMC. As a cumulative effect of technical optimization, 64.3+/-2.3 (mean+/-S.E.M.) reconstructed embryos from 151.3+/-4.8 oocytes could be obtained after 3-4h manual work, including 1h pause between fusion and activation. About half (50.1+/-2.8%, n=16) of HMC reconstructed embryos developed to blastocysts with an average cell number of 77+/-3 (n=26) after 7 days in vitro culture (IVC). According to our knowledge, this is the highest in vitro developmental rate after porcine somatic cell nuclear transfer (SCNT). A total of 416 blastocysts from HMC, mixed with 150 blastocysts from TC using a cell line from a different breed were transferred surgically to nine synchronized recipients. Out of the four pregnancies (44.4%) two were lost, while two pregnancies went to term and litters of 3 and 10 piglets were delivered by Caesarean section, with live birth/transferred embryo efficiency of 17.2% (10/58) for HMC. Although more in vivo experiments are still needed to further stabilize the system, our data proves that porcine HMC may result in birth of healthy offspring. Future comparative examinations are required to prove the value of the new technique for large-scale application.

  19. Production of cloned mice by somatic cell nuclear transfer.

    PubMed

    Kishigami, Satoshi; Wakayama, Sayaka; Thuan, Nguyen Van; Ohta, Hiroshi; Mizutani, Eiji; Hikichi, Takafusa; Bui, Hong-Thuy; Balbach, Sebastian; Ogura, Atsuo; Boiani, Michele; Wakayama, Teruhiko

    2006-01-01

    Although it has now been 10 years since the first cloned mammals were generated from somatic cells using nuclear transfer (NT), the success rate for producing live offspring by cloning remains < 5%. Nevertheless, the techniques have potential as important tools for future research in basic biology. We have been able to develop a stable NT method in the mouse, in which donor nuclei are directly injected into the oocyte using a piezo-actuated micromanipulator. Although manipulation of the piezo unit is complex, once mastered it is of great help not only in NT experiments but also in almost all other forms of micromanipulation. In addition to this technique, embryonic stem (ES) cell lines established from somatic cell nuclei by NT can be generated relatively easily from a variety of mouse genotypes and cell types. Such NT-ES cells can be used not only for experimental models of human therapeutic cloning but also as a backup of the donor cell's genome. Our most recent protocols for mouse cloning, as described here, will allow the production of cloned mice in > or = 3 months.

  20. B-chromosome systems in the greater glider, Petauroides volans (Marsupialia: Pseudocheiridae). II. Investigation of B-chromosome DNA sequences isolated by micromanipulation and PCR.

    PubMed

    McQuade, L R; Hill, R J; Francis, D

    1994-01-01

    B chromosomes, despite their common occurrence throughout the animal and plant kingdoms, have not been investigated extensively at the molecular level. While the majority of B chromosomes occurring in animals have been described as heterochromatic, only a few researchers have examined the DNA of these chromosomes beyond this gross cytological level. This is the case in the largest of the gliding marsupial possums, the greater glider, Petauroides volans. To examine the molecular composition and localization of B-chromosome DNA sequences in P. volans, a combination of micromanipulation and the polymerase chain reaction was used in this study to isolate and then amplify the DNA of the B chromosomes. Localization of the isolated B-chromosome sequences to metaphase chromosomes was investigated using fluorescence in situ hybridization. The B chromosomes in this species are shown to be composed of a heterogeneous mixture of sequences, some of which are unique to the B chromosomes, while others exhibit homology to the centromeric regions of the autosomal complement.

  1. DNA Micromanipulation Using Novel High-Force, In-Plane Magnetic Tweezer

    NASA Astrophysics Data System (ADS)

    McAndrew, Christopher; Mehl, Patrick; Sarkar, Abhijit

    2010-03-01

    We report the development of a magnetic force transducer that can apply piconewton forces on single DNA molecules in the focus plane allowing continuous high precision tethered-bead tracking. The DNA constructs, proteins, and buffer are introduced into a 200μL closed cell created using two glass slides separated by rigid spacers interspersed within a thin viscoelastic perimeter wall. This closed cell configuration isolates our sample and produces low-noise force-extension measurements. Specially-drawn micropipettes are used for capturing the polystyrene bead, pulling on the magnetic sphere, introducing proteins of interest, and maintaining flow. Various high-precision micromanipulators allow us to move pipettes and stage as required. The polystyrene bead is first grabbed, and held using suction; then the magnetic particle at the other end of the DNA is pulled by a force created by either two small (1mm x 2mm x 4mm) bar magnets or a micro magnet-tipped pipette. Changes in the end-to-end length of the DNA are observable in real time. We will present force extension data obtained using the magnetic tweezer.

  2. RF-MEMS Load Sensors with Enhanced Q-factor and Sensitivity in a Suspended Architecture.

    PubMed

    Melik, Rohat; Unal, Emre; Perkgoz, Nihan Kosku; Puttlitz, Christian; Demir, Hilmi Volkan

    2011-03-01

    In this paper, we present and demonstrate RF-MEMS load sensors designed and fabricated in a suspended architecture that increases their quality-factor (Q-factor), accompanied with an increased resonance frequency shift under load. The suspended architecture is obtained by removing silicon under the sensor. We compare two sensors that consist of 195 μm × 195 μm resonators, where all of the resonator features are of equal dimensions, but one's substrate is partially removed (suspended architecture) and the other's is not (planar architecture). The single suspended device has a resonance of 15.18 GHz with 102.06 Q-factor whereas the single planar device has the resonance at 15.01 GHz and an associated Q-factor of 93.81. For the single planar device, we measured a resonance frequency shift of 430 MHz with 3920 N of applied load, while we achieved a 780 MHz frequency shift in the single suspended device. In the planar triplet configuration (with three devices placed side by side on the same chip, with the two outmost ones serving as the receiver and the transmitter), we observed a 220 MHz frequency shift with 3920 N of applied load while we obtained a 340 MHz frequency shift in the suspended triplet device with 3920 N load applied. Thus, the single planar device exhibited a sensitivity level of 0.1097 MHz/N while the single suspended device led to an improved sensitivity of 0.1990 MHz/N. Similarly, with the planar triplet device having a sensitivity of 0.0561 MHz/N, the suspended triplet device yielded an enhanced sensitivity of 0.0867 MHz/N.

  3. Antiangiogenic activity of a bevacizumab-loaded polyurethane device in animal neovascularization models.

    PubMed

    Ferreira, A E R; Castro, B F M; Vieira, L C; Cassali, G D; Souza, C M; Fulgêncio, G O; Ayres, E; Oréfice, R L; Jorge, R; Silva-Cunha, A; Fialho, S L

    2017-03-01

    To evaluate the antiangiogenic activity of bevacizumab-loaded polyurethane using two animal models of neovascularization. The percentage of blood vessels was evaluated in a chicken chorioallantoic membrane model (n=42) and in the rabbit cornea (n=24) with neovascularization induced by alkali injury. In each model, the animals were randomly divided into the groups treated with the bevacizumab-loaded polyurethane device, phosphate-buffered-saline (negative control) and bevacizumab commercial solution (positive control). Clinical examination, as well as histopathological and immunohistochemical evaluation, were performed in the rabbit eyes. Microvascular density in hot spot areas was determined in semi-thin sections of corneal tissue by hematoxylin-eosin staining and factor VIII immunohistochemistry. Immunohistochemical analysis was also performed to evaluate VEGF expression. In the evaluated models, the use of bevacizumab (Avastin ® ) and the bevacizumab-loaded polyurethane device led to similar results with regard to inhibition of neovascularization. In the chorioallantoic membrane model, the bevacizumab-loaded polyurethane device reduced angiogenesis by 50.27% when compared to the negative control group. In the rabbit model of corneal neovascularization, the mean density of vessels/field was reduced by 46.87% on analysis of factor VIII immunohistochemistry photos in the bevacizumab-loaded polyurethane device group as compared to the negative control (PBS) sections. In both models, no significant difference could be identified between the bevacizumab-loaded polyurethane device and the positive control group, leading to similar results with regard to inhibition of neovascularization. The present study shows that the bevacizumab-loaded polyurethane device may release bevacizumab and inhibit neovascularization similarly to commercial bevacizumab solution in the short-term. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. Is bearing resistance negligible during wheelchair locomotion? Design and validation of a testing device.

    PubMed

    Bascou, Joseph; Sauret, Christophe; Lavaste, Francois; Pillet, Hélène

    2017-01-01

    Among the different resistances occurring during wheelchair locomotion and that limit the user autonomy, bearing resistance is generally neglected, based on a few studies carried out in static conditions and by manufacturer's assertion. Therefore, no special attention is generally paid to the mounting and the maintenance of manual wheelchair bearings. However, the effect of inadequate mounting or maintenance on wheelchair bearing resistance has still to be clarified. This study aimed at filling this gap by developing and validating a specific device allowing the measurement of wheelchair bearing friction, characterized by low speed velocities, with an accuracy lower than 0.003 Nm. The bearing resistance measured by the device was compared to free deceleration measurement, intra and inter operator reproducibility were assessed. A factorial experiment allowed the effects of various functioning parameters (axial and radial loads, velocity) to be classified. The device allowed significant differences in the bearing resistance of static and rotating conditions to be measured, even if a relatively high proportionality was found between both conditions. The factorial experiment allowed the expected impact of the radial load on bearing resistance as well as the predominant effect of the axial load to be demonstrated. As a consequence, it appeared that the control of the axial load is compulsory for measurement purposes or during wheel mounting, to avoid significant increase of global resistance during wheelchair locomotion. The findings of this study could help enhancing the models which assess manual wheelchair mechanical power from its settings and use conditions.

  5. A Hierarchical Framework for Demand-Side Frequency Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moya, Christian; Zhang, Wei; Lian, Jianming

    2014-06-02

    With large-scale plans to integrate renewable generation, more resources will be needed to compensate for the uncertainty associated with intermittent generation resources. Under such conditions, performing frequency control using only supply-side resources become not only prohibitively expensive but also technically difficult. It is therefore important to explore how a sufficient proportion of the loads could assume a routine role in frequency control to maintain the stability of the system at an acceptable cost. In this paper, a novel hierarchical decentralized framework for frequency based load control is proposed. The framework involves two decision layers. The top decision layer determines themore » optimal droop gain required from the aggregated load response on each bus using a robust decentralized control approach. The second layer consists of a large number of devices, which switch probabilistically during contingencies so that the aggregated power change matches the desired droop amount according to the updated gains. The proposed framework is based on the classical nonlinear multi-machine power system model, and can deal with timevarying system operating conditions while respecting the physical constraints of individual devices. Realistic simulation results based on a 68-bus system are provided to demonstrate the effectiveness of the proposed strategy.« less

  6. A pneumatic device for rapid loading of DNA sequencing gels.

    PubMed

    Panussis, D A; Cook, M W; Rifkin, L L; Snider, J E; Strong, J T; McGrane, R M; Wilson, R K; Mardis, E R

    1998-05-01

    This work describes the design and construction of a device that facilitates the loading of DNA samples onto polyacrylamide gels for detection in the Perkin Elmer/Applied Biosystems (PE/ABI) 373 and 377 DNA sequencing instruments. The device is mounted onto the existing gel cassettes and makes the process of loading high-density gels less cumbersome while the associated time and errors are reduced. The principle of operation includes the simultaneous transfer of the entire batch of samples, in which a spring-loaded air cylinder generates positive pressure and flexible silica capillaries transfer the samples. A retractable capillary array carrier allows the delivery ends of the capillaries to be held up clear of the gel during loader attachment on the gel plates, while enabling their insertion in the gel wells once the device is securely mounted. Gel-loading devices capable of simultaneously transferring 72 samples onto the PE/ABI 373 and 377 are currently being used in our production sequencing groups while a 96-sample transfer prototype undergoes testing.

  7. Dynamic-load-enabled ultra-low power multiple-state RRAM devices.

    PubMed

    Yang, Xiang; Chen, I-Wei

    2012-01-01

    Bipolar resistance-switching materials allowing intermediate states of wide-varying resistance values hold the potential of drastically reduced power for non-volatile memory. To exploit this potential, we have introduced into a nanometallic resistance-random-access-memory (RRAM) device an asymmetric dynamic load, which can reliably lower switching power by orders of magnitude. The dynamic load is highly resistive during on-switching allowing access to the highly resistive intermediate states; during off-switching the load vanishes to enable switching at low voltage. This approach is entirely scalable and applicable to other bipolar RRAM with intermediate states. The projected power is 12 nW for a 100 × 100 nm(2) device and 500 pW for a 10 × 10 nm(2) device. The dynamic range of the load can be increased to allow power to be further decreased by taking advantage of the exponential decay of wave-function in a newly discovered nanometallic random material, reaching possibly 1 pW for a 10×10 nm(2) nanometallic RRAM device.

  8. The Circuit Theory Behind Coupled-Mode Magnetic Resonance-Based Wireless Power Transmission.

    PubMed

    Kiani, Mehdi; Ghovanloo, Maysam

    2012-09-01

    Inductive coupling is a viable scheme to wirelessly energize devices with a wide range of power requirements from nanowatts in radio frequency identification tags to milliwatts in implantable microelectronic devices, watts in mobile electronics, and kilowatts in electric cars. Several analytical methods for estimating the power transfer efficiency (PTE) across inductive power transmission links have been devised based on circuit and electromagnetic theories by electrical engineers and physicists, respectively. However, a direct side-by-side comparison between these two approaches is lacking. Here, we have analyzed the PTE of a pair of capacitively loaded inductors via reflected load theory (RLT) and compared it with a method known as coupled-mode theory (CMT). We have also derived PTE equations for multiple capacitively loaded inductors based on both RLT and CMT. We have proven that both methods basically result in the same set of equations in steady state and either method can be applied for short- or midrange coupling conditions. We have verified the accuracy of both methods through measurements, and also analyzed the transient response of a pair of capacitively loaded inductors. Our analysis shows that the CMT is only applicable to coils with high quality factor ( Q ) and large coupling distance. It simplifies the analysis by reducing the order of the differential equations by half compared to the circuit theory.

  9. The Circuit Theory Behind Coupled-Mode Magnetic Resonance-Based Wireless Power Transmission

    PubMed Central

    Kiani, Mehdi; Ghovanloo, Maysam

    2014-01-01

    Inductive coupling is a viable scheme to wirelessly energize devices with a wide range of power requirements from nanowatts in radio frequency identification tags to milliwatts in implantable microelectronic devices, watts in mobile electronics, and kilowatts in electric cars. Several analytical methods for estimating the power transfer efficiency (PTE) across inductive power transmission links have been devised based on circuit and electromagnetic theories by electrical engineers and physicists, respectively. However, a direct side-by-side comparison between these two approaches is lacking. Here, we have analyzed the PTE of a pair of capacitively loaded inductors via reflected load theory (RLT) and compared it with a method known as coupled-mode theory (CMT). We have also derived PTE equations for multiple capacitively loaded inductors based on both RLT and CMT. We have proven that both methods basically result in the same set of equations in steady state and either method can be applied for short- or midrange coupling conditions. We have verified the accuracy of both methods through measurements, and also analyzed the transient response of a pair of capacitively loaded inductors. Our analysis shows that the CMT is only applicable to coils with high quality factor (Q) and large coupling distance. It simplifies the analysis by reducing the order of the differential equations by half compared to the circuit theory. PMID:24683368

  10. Study of node and mass sensitivity of resonant mode based cantilevers with concentrated mass loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Kewei, E-mail: drzkw@126.com; Chai, Yuesheng; Fu, Jiahui

    2015-12-15

    Resonant-mode based cantilevers are an important type of acoustic wave based mass-sensing devices. In this work, the governing vibration equation of a bi-layer resonant-mode based cantilever attached with concentrated mass is established by using a modal analysis method. The effects of resonance modes and mass loading conditions on nodes and mass sensitivity of the cantilever were theoretically studied. The results suggested that the node did not shift when concentrated mass was loaded on a specific position. Mass sensitivity of the cantilever was linearly proportional to the square of the point displacement at the mass loading position for all the resonancemore » modes. For the first resonance mode, when mass loading position x{sub c} satisfied 0 < x{sub c} < ∼ 0.3l (l is the cantilever beam length and 0 represents the rigid end), mass sensitivity decreased as the mass increasing while the opposite trend was obtained when mass loading satisfied ∼0.3l ≤ x{sub c} ≤ l. Mass sensitivity did not change when concentrated mass was loaded at the rigid end. This work can provide scientific guidance to optimize the mass sensitivity of a resonant-mode based cantilever.« less

  11. Research on the parallel load sharing principle of a novel self-decoupled piezoelectric six-dimensional force sensor.

    PubMed

    Li, Ying-Jun; Yang, Cong; Wang, Gui-Cong; Zhang, Hui; Cui, Huan-Yong; Zhang, Yong-Liang

    2017-09-01

    This paper presents a novel integrated piezoelectric six-dimensional force sensor which can realize dynamic measurement of multi-dimensional space load. Firstly, the composition of the sensor, the spatial layout of force-sensitive components, and measurement principle are analyzed and designed. There is no interference of piezoelectric six-dimensional force sensor in theoretical analysis. Based on the principle of actual work and deformation compatibility coherence, this paper deduces the parallel load sharing principle of the piezoelectric six-dimensional force sensor. The main effect factors which affect the load sharing ratio are obtained. The finite element model of the piezoelectric six-dimensional force sensor is established. In order to verify the load sharing principle of the sensor, a load sharing test device of piezoelectric force sensor is designed and fabricated. The load sharing experimental platform is set up. The experimental results are in accordance with the theoretical analysis and simulation results. The experiments show that the multi-dimensional and heavy force measurement can be realized by the parallel arrangement of the load sharing ring and the force sensitive element in the novel integrated piezoelectric six-dimensional force sensor. The ideal load sharing effect of the sensor can be achieved by appropriate size parameters. This paper has an important guide for the design of the force measuring device according to the load sharing mode. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Efficient transformer for electromagnetic waves

    DOEpatents

    Miller, R.B.

    A transformer structure for efficient transfer of electromagnetic energy from a transmission line to an unmatched load provides voltage multiplication and current division by a predetermined constant. Impedance levels are transformed by the square of that constant. The structure includes a wave splitter, connected to an input transmission device and to a plurality of output transmission devices. The output transmission devices are effectively connected in parallel to the input transmission device. The output transmission devices are effectively series connected to provide energy to a load. The transformer structure is particularly effective in increasing efficiency of energy transfer through an inverting convolute structure by capturing and transferring energy losses from the inverter to the load.

  13. Flexible Power Distribution Based on Point of Load Converters

    NASA Astrophysics Data System (ADS)

    Dhallewin, G.; Galiana, D.; Mollard, J. M.; Schaper, W.; Strixner, E.; Tonicello, F.; Triggianese, M.

    2014-08-01

    Present digital electronic loads require low voltages and suffer from high currents. In addition, they need several different voltage levels to supply the different parts of digital devices like the core, the input/output I/F, etc. Distributed Power Architectures (DPA) with point-of- load (POL) converters (synchronous buck type) offer excellent performance in term of efficiency and load step behaviour. They occupy little PCB area and are well suited for very low voltage (VLV) DC conversion (1V to 3.3V). The paper presents approaches to architectural design of POL based supplies including redundancy and protection as well as the requirements on a European hardware implementation. The main driver of the analysis is the flexibility of each element (DC/DC converter, protection, POL core) to cover a wide range of space applications.

  14. Giant optical rotation in a three-dimensional semiconductor chiral photonic crystal.

    PubMed

    Takahashi, S; Tandaechanurat, A; Igusa, R; Ota, Y; Tatebayashi, J; Iwamoto, S; Arakawa, Y

    2013-12-02

    Optical rotation is experimentally demonstrated in a semiconductor-based three-dimensional chiral photonic crystal (PhC) at a telecommunication wavelength. We design a rotationally-stacked woodpile PhC structure, where neighboring layers are rotated by 45° and four layers construct a single helical unit. The mirror-asymmetric PhC made from GaAs with sub-micron periodicity is fabricated by a micro-manipulation technique. The linearly polarized light incident on the structure undergoes optical rotation during transmission. The obtained results show good agreement with numerical simulations. The measurement demonstrates the largest optical rotation angle as large as ∼ 23° at 1.3 μm wavelength for a single helical unit.

  15. Silicon microfluidic flow focusing devices for the production of size-controlled PLGA based drug loaded microparticles.

    PubMed

    Keohane, Kieran; Brennan, Des; Galvin, Paul; Griffin, Brendan T

    2014-06-05

    The increasing realisation of the impact of size and surface properties on the bio-distribution of drug loaded colloidal particles has driven the application of micro fabrication technologies for the precise engineering of drug loaded microparticles. This paper demonstrates an alternative approach for producing size controlled drug loaded PLGA based microparticles using silicon Microfluidic Flow Focusing Devices (MFFDs). Based on the precise geometry and dimensions of the flow focusing channel, microparticle size was successfully optimised by modifying the polymer type, disperse phase (Qd) flow rate, and continuous phase (Qc) flow rate. The microparticles produced ranged in sizes from 5 to 50 μm and were highly monodisperse (coefficient of variation <5%). A comparison of Ciclosporin (CsA) loaded PLGA microparticles produced by MFFDs vs conventional production techniques was also performed. MFFDs produced microparticles with a narrower size distribution profile, relative to the conventional approaches. In-vitro release kinetics of CsA was found to be influenced by the production technique, with the MFFD approach demonstrating the slowest rate of release over 7 days (4.99 ± 0.26%). Finally, MFFDs were utilised to produce pegylated microparticles using the block co-polymer, PEG-PLGA. In contrast to the smooth microparticles produced using PLGA, PEG-PLGA microparticles displayed a highly porous surface morphology and rapid CsA release, with 85 ± 6.68% CsA released after 24h. The findings from this study demonstrate the utility of silicon MFFDs for the precise control of size and surface morphology of PLGA based microparticles with potential drug delivery applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Semi-active control of helicopter vibration using controllable stiffness and damping devices

    NASA Astrophysics Data System (ADS)

    Anusonti-Inthra, Phuriwat

    Semi-active concepts for helicopter vibration reduction are developed and evaluated in this dissertation. Semi-active devices, controllable stiffness devices or controllable orifice dampers, are introduced; (i) in the blade root region (rotor-based concept) and (ii) between the rotor and the fuselage as semi-active isolators (in the non-rotating frame). Corresponding semi-active controllers for helicopter vibration reduction are also developed. The effectiveness of the rotor-based semi-active vibration reduction concept (using stiffness and damping variation) is demonstrated for a 4-bladed hingeless rotor helicopter in moderate- to high-speed forward flight. A sensitivity study shows that the stiffness variation of root element can reduce hub vibrations when proper amplitude and phase are used. Furthermore, the optimal semi-active control scheme can determine the combination of stiffness variations that produce significant vibration reduction in all components of vibratory hub loads simultaneously. It is demonstrated that desired cyclic variations in properties of the blade root region can be practically achieved using discrete controllable stiffness devices and controllable dampers, especially in the flap and lag directions. These discrete controllable devices can produce 35--50% reduction in a composite vibration index representing all components of vibratory hub loads. No detrimental increases are observed in the lower harmonics of blade loads and blade response (which contribute to the dynamic stresses) and controllable device internal loads, when the optimal stiffness and damping variations are introduced. The effectiveness of optimal stiffness and damping variations in reducing hub vibration is retained over a range of cruise speeds and for variations in fundamental rotor properties. The effectiveness of the semi-active isolator is demonstrated for a simplified single degree of freedom system representing the semi-active isolation system. The rotor, represented by a lumped mass under harmonic force excitation, is supported by a spring and a parallel damper on the fuselage (assumed to have infinite mass). Properties of the spring or damper can then be controlled to reduce transmission of the force into the fuselage or the support structure. This semi-active isolation concept can produce additional 30% vibration reduction beyond the level achieved by a passive isolator. Different control schemes (i.e. open-loop, closed-loop, and closed-loop adaptive schemes) are developed and evaluated to control transmission of vibratory loads to the support structure (fuselage), and it is seen that a closed-loop adaptive controller is required to retain vibration reduction effectiveness when there is a change in operating condition. (Abstract shortened by UMI.)

  17. Model-Based Dead Time Optimization for Voltage-Source Converters Utilizing Silicon Carbide Semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zheyu; Lu, Haifeng; Costinett, Daniel J.

    Dead time significantly affects the reliability, power quality, and efficiency of voltage-source converters. For silicon carbide (SiC) devices, considering the high sensitivity of turn-off time to the operating conditions (> 5× difference between light load and full load) and characteristics of inductive loads (> 2× difference between motor load and inductor), as well as large additional energy loss induced by the freewheeling diode conduction during the superfluous dead time (~15% of the switching loss), then the traditional fixed dead time setting becomes inappropriate. This paper introduces an approach to adaptively regulate the dead time considering the current operating condition andmore » load characteristics via synthesizing online monitored turn-off switching parameters in the microcontroller with an embedded preset optimization model. Here, based on a buck converter built with 1200-V SiC MOSFETs, the experimental results show that the proposed method is able to ensure reliability and reduce power loss by 12% at full load and 18.2% at light load (8% of the full load in this case study).« less

  18. Model-Based Dead Time Optimization for Voltage-Source Converters Utilizing Silicon Carbide Semiconductors

    DOE PAGES

    Zhang, Zheyu; Lu, Haifeng; Costinett, Daniel J.; ...

    2016-12-29

    Dead time significantly affects the reliability, power quality, and efficiency of voltage-source converters. For silicon carbide (SiC) devices, considering the high sensitivity of turn-off time to the operating conditions (> 5× difference between light load and full load) and characteristics of inductive loads (> 2× difference between motor load and inductor), as well as large additional energy loss induced by the freewheeling diode conduction during the superfluous dead time (~15% of the switching loss), then the traditional fixed dead time setting becomes inappropriate. This paper introduces an approach to adaptively regulate the dead time considering the current operating condition andmore » load characteristics via synthesizing online monitored turn-off switching parameters in the microcontroller with an embedded preset optimization model. Here, based on a buck converter built with 1200-V SiC MOSFETs, the experimental results show that the proposed method is able to ensure reliability and reduce power loss by 12% at full load and 18.2% at light load (8% of the full load in this case study).« less

  19. MEMS resonant load cells for micro-mechanical test frames: feasibility study and optimal design

    NASA Astrophysics Data System (ADS)

    Torrents, A.; Azgin, K.; Godfrey, S. W.; Topalli, E. S.; Akin, T.; Valdevit, L.

    2010-12-01

    This paper presents the design, optimization and manufacturing of a novel micro-fabricated load cell based on a double-ended tuning fork. The device geometry and operating voltages are optimized for maximum force resolution and range, subject to a number of manufacturing and electromechanical constraints. All optimizations are enabled by analytical modeling (verified by selected finite elements analyses) coupled with an efficient C++ code based on the particle swarm optimization algorithm. This assessment indicates that force resolutions of ~0.5-10 nN are feasible in vacuum (~1-50 mTorr), with force ranges as large as 1 N. Importantly, the optimal design for vacuum operation is independent of the desired range, ensuring versatility. Experimental verifications on a sub-optimal device fabricated using silicon-on-glass technology demonstrate a resolution of ~23 nN at a vacuum level of ~50 mTorr. The device demonstrated in this article will be integrated in a hybrid micro-mechanical test frame for unprecedented combinations of force resolution and range, displacement resolution and range, optical (or SEM) access to the sample, versatility and cost.

  20. Nanopore thin film enabled optical platform for drug loading and release.

    PubMed

    Song, Chao; Che, Xiangchen; Que, Long

    2017-08-07

    In this paper, a drug loading and release device fabricated using nanopore thin film and layer-by-layer (LbL) nanoassembly is reported. The nanopore thin film is a layer of anodic aluminum oxide (AAO), consisting of honeycomb-shape nanopores. Using the LbL nanoassembly process, the drug, using gentamicin sulfate (GS) as the model, can be loaded into the nanopores and the stacked layers on the nanopore thin film surface. The drug release from the device is achieved by immersing it into flowing DI water. Both the loading and release processes can be monitored optically. The effect of the nanopore size/volume on drug loading and release has also been evaluated. Further, the neuron cells have been cultured and can grow normally on the nanopore thin film, verifying its bio-compatibility. The successful fabrication of nanopore thin film device on silicon membrane render it as a potential implantable controlled drug release device.

  1. Load-Flow in Multiphase Distribution Networks: Existence, Uniqueness, Non-Singularity, and Linear Models

    DOE PAGES

    Bernstein, Andrey; Wang, Cong; Dall'Anese, Emiliano; ...

    2018-01-01

    This paper considers unbalanced multiphase distribution systems with generic topology and different load models, and extends the Z-bus iterative load-flow algorithm based on a fixed-point interpretation of the AC load-flow equations. Explicit conditions for existence and uniqueness of load-flow solutions are presented. These conditions also guarantee convergence of the load-flow algorithm to the unique solution. The proposed methodology is applicable to generic systems featuring (i) wye connections; (ii) ungrounded delta connections; (iii) a combination of wye-connected and delta-connected sources/loads; and, (iv) a combination of line-to-line and line-to-grounded-neutral devices at the secondary of distribution transformers. Further, a sufficient condition for themore » non-singularity of the load-flow Jacobian is proposed. Finally, linear load-flow models are derived, and their approximation accuracy is analyzed. Theoretical results are corroborated through experiments on IEEE test feeders.« less

  2. Load-Flow in Multiphase Distribution Networks: Existence, Uniqueness, Non-Singularity, and Linear Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernstein, Andrey; Wang, Cong; Dall'Anese, Emiliano

    This paper considers unbalanced multiphase distribution systems with generic topology and different load models, and extends the Z-bus iterative load-flow algorithm based on a fixed-point interpretation of the AC load-flow equations. Explicit conditions for existence and uniqueness of load-flow solutions are presented. These conditions also guarantee convergence of the load-flow algorithm to the unique solution. The proposed methodology is applicable to generic systems featuring (i) wye connections; (ii) ungrounded delta connections; (iii) a combination of wye-connected and delta-connected sources/loads; and, (iv) a combination of line-to-line and line-to-grounded-neutral devices at the secondary of distribution transformers. Further, a sufficient condition for themore » non-singularity of the load-flow Jacobian is proposed. Finally, linear load-flow models are derived, and their approximation accuracy is analyzed. Theoretical results are corroborated through experiments on IEEE test feeders.« less

  3. Analysis and design of negative resistance oscillators using surface transverse wave-based single port resonators.

    PubMed

    Avramov, Ivan D

    2003-03-01

    This practically oriented paper presents the fundamentals for analysis, optimization, and design of negative resistance oscillators (NRO) stabilized with surface transverse wave (STW)-based single-port resonators (SPR). Data on a variety of high-Q, low-loss SPR devices in the 900- to 2000-MHz range, suitable for NRO applications, are presented, and a simple method for SPR parameter extraction through Pi-circuit measurements is outlined. Negative resistance analysis, based on S-parameter data of the active device, is performed on a tuned-base, grounded collector transistor NRO, known for its good stability and tuning at microwave frequencies. By adding a SPR in the emitter network, the static transducer capacitance is absorbed by the circuit and is used to generate negative resistance only over the narrow bandwidth of the acoustic device, eliminating the risk of spurious oscillations. The analysis allows exact prediction of the oscillation frequency, tuning range, loaded Q, and excess gain. Simulation and experimental data on a 915-MHz fixed-frequency NRO and a wide tuning range, voltage-controlled STW oscillator, built and tested experimentally, are presented. Practical design aspects including the choice of transistor, negative feedback circuits, load coupling, and operation at the highest phase slope for minimum phase noise are discussed.

  4. Transportation and handling loads

    NASA Technical Reports Server (NTRS)

    Ostrem, F. E.

    1971-01-01

    Criteria and recommended practices are presented for the prediction and verification of transportation and handling loads for the space vehicle structure and for monitoring these loads during transportation and handling of the vehicle or major vehicle segments. Elements of the transportation and handling systems, and the forcing functions and associated loads are described. The forcing functions for common carriers and typical handling devices are assessed, and emphasis is given to the assessment of loads at the points where the space vehicle is supported during transportation and handling. Factors which must be considered when predicting the loads include the transportation and handling medium; type of handling fixture; transport vehicle speed; types of terrain; weather (changes in pressure of temperature, wind, etc.); and dynamics of the transportation modes or handling devices (acceleration, deceleration, and rotations of the transporter or handling device).

  5. Investigation of subcellular localization and dynamics of membrane proteins in living bacteria by combining optical micromanipulation and high-resolution microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Barroso Peña, Álvaro; Nieves, Marcos; Teper, Konrad; Wedlich-Soldner, Roland; Denz, Cornelia

    2016-09-01

    The plasma membrane serves as protective interface between cells and their environment. It also constitutes a hub for selective nutrient uptake and signal transduction. Increasing evidence over the last years indicates that, similar to eukaryotic cells, lateral membrane organization plays an important role in the regulation of prokaryotic signaling pathways. However, the mechanisms underlying this phenomenon are still poorly understood. Spatiotemporal characterization of bacterial signal transduction demands very sensitive high-resolution microscopy techniques due to the low expression levels of most signaling proteins and the small size of bacterial cells. In addition, direct study of subcellular confinement and dynamics of bacterial signaling proteins during the different stages of the signal transduction also requires immobilization in order to avoid cell displacement caused by Brownian motion, local fluid flows and bacterial self-propulsion. In this work we present a novel approach based on the combination of high resolution imaging and optical manipulation that enables the investigation of the distribution and dynamics of proteins at the bacterial plasma membrane. For this purpose, we combine the versatility of holographic optical tweezers (HOT) with the sensitivity and resolution of total internal reflection fluorescence (TIRF) microscopy. Furthermore, we discuss the implementation of microfluidic devices in our integrated HOT+TIRF system for the control of growth conditions of bacterial cells. The capabilities of our workstation provides thus new valuable insights into the fundamental cellular and physical mechanisms underlying the regulation of bacterial signal transduction.

  6. Wind Tunnel Testing of Microtabs and Microjets for Active Load Control of Wind Turbine Blades

    NASA Astrophysics Data System (ADS)

    Cooperman, Aubryn Murray

    Increases in wind turbine size have made controlling loads on the blades an important consideration for future turbine designs. One approach that could reduce extreme loads and minimize load variation is to incorporate active control devices into the blades that are able to change the aerodynamic forces acting on the turbine. A wind tunnel model has been constructed to allow testing of different active aerodynamic load control devices. Two such devices have been tested in the UC Davis Aeronautical Wind Tunnel: microtabs and microjets. Microtabs are small surfaces oriented perpendicular to an airfoil surface that can be deployed and retracted to alter the lift coefficient of the airfoil. Microjets produce similar effects using air blown perpendicular to the airfoil surface. Results are presented here for both static and dynamic performance of the two devices. Microtabs, located at 95% chord on the lower surface and 90% chord on the upper surface, with a height of 1% chord, produce a change in the lift coefficient of 0.18, increasing lift when deployed on the lower surface and decreasing lift when deployed on the upper surface. Microjets with a momentum coefficient of 0.006 at the same locations produce a change in the lift coefficient of 0.19. The activation time for both devices is less than 0.3 s, which is rapid compared to typical gust rise times. The potential of active device to mitigate changes in loads was tested using simulated gusts. The gusts were produced in the wind tunnel by accelerating the test section air speed at rates of up to 7 ft/s 2. Open-loop control of microtabs was tested in two modes: simultaneous and sequential tab deployment. Activating all tabs along the model span simultaneously was found to produce a change in the loads that occurred more rapidly than a gust. Sequential tab deployment more closely matched the rates of change due to gusts and tab deployment. A closed-loop control system was developed for the microtabs using a simple feedback control based on lift measurements from a six-component balance. An alternative input to the control system that would be easier to implement on a turbine was also investigated: the lift force was estimated using the difference in surface pressure at 15% chord. Both control system approaches were found to decrease lift deviations by around 50% during rapid changes in the free stream air speed.

  7. Torsional Rigidity of Single Actin Filaments and Actin-Actin Bond Breaking Force under Torsion Measured Directly by in vitro Micromanipulation

    NASA Astrophysics Data System (ADS)

    Tsuda, Yuri; Yasutake, Hironori; Ishijima, Akihiko; Yanagida, Toshio

    1996-11-01

    Knowledge of the elastic properties of actin filaments is crucial for considering its role in muscle contraction, cellular motile events, and formation of cell shape. The stiffness of actin filaments in the directions of stretching and bending has been determined. In this study, we have directly determined the torsional rigidity and breaking force of single actin filaments by measuring the rotational Brownian motion and tensile strength using optical tweezers and microneedles, respectively. Rotational angular fluctuations of filaments supplied the torsional rigidity as (8.0 ± 1.2) × 10-26 Nm2. This value is similar to that deduced from the longitudinal rigidity, assuming the actin filament to be a homogeneous rod. The breaking force of the actin-actin bond was measured while twisting a filament through various angles using microneedles. The breaking force decreased greatly under twist, e.g., from 600-320 pN when filaments were turned through 90 degrees, independent of the rotational direction. Our results indicate that an actin filament exhibits comparable flexibility in the rotational and longitudinal directions, but breaks more easily under torsional load.

  8. Force Outputs during Squats Performed Using a Rotational Inertia Device under Stable versus Unstable Conditions with Different Loads.

    PubMed

    Vázquez-Guerrero, Jairo; Moras, Gerard; Baeza, Jennifer; Rodríguez-Jiménez, Sergio

    2016-01-01

    The purpose of the study was to compare the force outputs achieved during a squat exercise using a rotational inertia device in stable versus unstable conditions with different loads and in concentric and eccentric phases. Thirteen male athletes (mean ± SD: age 23.7 ± 3.0 years, height 1.80 ± 0.08 m, body mass 77.4 ± 7.9 kg) were assessed while squatting, performing one set of three repetitions with four different loads under stable and unstable conditions at maximum concentric effort. Overall, there were no significant differences between the stable and unstable conditions at each of the loads for any of the dependent variables. Mean force showed significant differences between some of the loads in stable and unstable conditions (P < 0.010) and peak force output differed between all loads for each condition (P < 0.045). Mean force outputs were greater in the concentric than in the eccentric phase under both conditions and with all loads (P < 0.001). There were no significant differences in peak force between concentric and eccentric phases at any load in either stable or unstable conditions. In conclusion, squatting with a rotational inertia device allowed the generation of similar force outputs under stable and unstable conditions at each of the four loads. The study also provides empirical evidence of the different force outputs achieved by adjusting load conditions on the rotational inertia device when performing squats, especially in the case of peak force. Concentric force outputs were significantly higher than eccentric outputs, except for peak force under both conditions. These findings support the use of the rotational inertia device to train the squatting exercise under unstable conditions for strength and conditioning trainers. The device could also be included in injury prevention programs for muscle lesions and ankle and knee joint injuries.

  9. Force Outputs during Squats Performed Using a Rotational Inertia Device under Stable versus Unstable Conditions with Different Loads

    PubMed Central

    Vázquez-Guerrero, Jairo; Moras, Gerard

    2016-01-01

    The purpose of the study was to compare the force outputs achieved during a squat exercise using a rotational inertia device in stable versus unstable conditions with different loads and in concentric and eccentric phases. Thirteen male athletes (mean ± SD: age 23.7 ± 3.0 years, height 1.80 ± 0.08 m, body mass 77.4 ± 7.9 kg) were assessed while squatting, performing one set of three repetitions with four different loads under stable and unstable conditions at maximum concentric effort. Overall, there were no significant differences between the stable and unstable conditions at each of the loads for any of the dependent variables. Mean force showed significant differences between some of the loads in stable and unstable conditions (P < 0.010) and peak force output differed between all loads for each condition (P < 0.045). Mean force outputs were greater in the concentric than in the eccentric phase under both conditions and with all loads (P < 0.001). There were no significant differences in peak force between concentric and eccentric phases at any load in either stable or unstable conditions. In conclusion, squatting with a rotational inertia device allowed the generation of similar force outputs under stable and unstable conditions at each of the four loads. The study also provides empirical evidence of the different force outputs achieved by adjusting load conditions on the rotational inertia device when performing squats, especially in the case of peak force. Concentric force outputs were significantly higher than eccentric outputs, except for peak force under both conditions. These findings support the use of the rotational inertia device to train the squatting exercise under unstable conditions for strength and conditioning trainers. The device could also be included in injury prevention programs for muscle lesions and ankle and knee joint injuries. PMID:27111766

  10. Vertical accelerator device to apply loads simulating blast environments in the military to human surrogates.

    PubMed

    Yoganandan, Narayan; Pintar, Frank A; Schlick, Michael; Humm, John R; Voo, Liming; Merkle, Andrew; Kleinberger, Michael

    2015-09-18

    The objective of the study was to develop a simple device, Vertical accelerator (Vertac), to apply vertical impact loads to Post Mortem Human Subject (PMHS) or dummy surrogates because injuries sustained in military conflicts are associated with this vector; example, under-body blasts from explosive devices/events. The two-part mechanically controlled device consisted of load-application and load-receiving sections connected by a lever arm. The former section incorporated a falling weight to impact one end of the lever arm inducing a reaction at the other/load-receiving end. The "launch-plate" on this end of the arm applied the vertical impact load/acceleration pulse under different initial conditions to biological/physical surrogates, attached to second section. It is possible to induce different acceleration pulses by using varying energy absorbing materials and controlling drop height and weight. The second section of Vertac had the flexibility to accommodate different body regions for vertical loading experiments. The device is simple and inexpensive. It has the ability to control pulses and flexibility to accommodate different sub-systems/components of human surrogates. It has the capability to incorporate preloads and military personal protective equipment (e.g., combat helmet). It can simulate vehicle roofs. The device allows for intermittent specimen evaluations (x-ray and palpation, without changing specimen alignment). The two free but interconnected sections can be used to advance safety to military personnel. Examples demonstrating feasibilities of the Vertac device to apply vertical impact accelerations using PMHS head-neck preparations with helmet and booted Hybrid III dummy lower leg preparations under in-contact and launch-type impact experiments are presented. Published by Elsevier Ltd.

  11. Use of loading-unloading compression curves in medical device design

    NASA Astrophysics Data System (ADS)

    Ciornei, M. C.; Alaci, S.; Ciornei, F. C.; Romanu, I. C.

    2017-08-01

    The paper presents a method and experimental results regarding mechanical testing of soft materials. In order to characterize the mechanical behaviour of technological materials used in prosthesis, a large number of material constants are required, as well as the comparison to the original. The present paper proposes as methodology the comparison between compression loading-unloading curves corresponding to a soft biological tissue and to a synthetic material. To this purpose, a device was designed based on the principle of the dynamic harness test. A moving load is considered and the force upon the indenter is controlled for loading-unloading phases. The load and specimen deformation are simultaneously recorded. A significant contribution of this paper is the interpolation of experimental data by power law functions, a difficult task because of the instability of the system of equations to be optimized. Finding the interpolation function was simplified, from solving a system of transcendental equations to solving a unique equation. The characteristic parameters of the experimentally curves must be compared to the ones corresponding to actual tissue. The tests were performed for two cases: first, using a spherical punch, and second, for a flat-ended cylindrical punch.

  12. High power density microbial fuel cell with flexible 3D graphene-nickel foam as anode

    NASA Astrophysics Data System (ADS)

    Wang, Hanyu; Wang, Gongming; Ling, Yichuan; Qian, Fang; Song, Yang; Lu, Xihong; Chen, Shaowei; Tong, Yexiang; Li, Yat

    2013-10-01

    The structure and electrical conductivity of anode play a significant role in the power generation of microbial fuel cells (MFCs). In this study, we developed a three-dimensional (3D) reduced graphene oxide-nickel (denoted as rGO-Ni) foam as an anode for MFC through controlled deposition of rGO sheets onto the nickel foam substrate. The loading amount of rGO sheets and electrode surface area can be controlled by the number of rGO loading cycles. 3D rGO-Ni foam anode provides not only a large accessible surface area for microbial colonization and electron mediators, but also a uniform macro-porous scaffold for effective mass diffusion of the culture medium. Significantly, at a steady state of the power generation, the MFC device with flexible rGO-Ni electrodes produced an optimal volumetric power density of 661 W m-3 calculated based on the volume of anode material, or 27 W m-3 based on the volume of the anode chamber. These values are substantially higher than that of plain nickel foam, and other conventional carbon based electrodes (e.g., carbon cloth, carbon felt, and carbon paper) measured in the same conditions. To our knowledge, this is the highest volumetric power density reported for mL-scale MFC device with a pure strain of Shewanella oneidensis MR-1. We also demonstrated that the MFC device can be operated effectively in a batch-mode at least for a week. These new 3D rGO-Ni electrodes show great promise for improving the power generation of MFC devices.The structure and electrical conductivity of anode play a significant role in the power generation of microbial fuel cells (MFCs). In this study, we developed a three-dimensional (3D) reduced graphene oxide-nickel (denoted as rGO-Ni) foam as an anode for MFC through controlled deposition of rGO sheets onto the nickel foam substrate. The loading amount of rGO sheets and electrode surface area can be controlled by the number of rGO loading cycles. 3D rGO-Ni foam anode provides not only a large accessible surface area for microbial colonization and electron mediators, but also a uniform macro-porous scaffold for effective mass diffusion of the culture medium. Significantly, at a steady state of the power generation, the MFC device with flexible rGO-Ni electrodes produced an optimal volumetric power density of 661 W m-3 calculated based on the volume of anode material, or 27 W m-3 based on the volume of the anode chamber. These values are substantially higher than that of plain nickel foam, and other conventional carbon based electrodes (e.g., carbon cloth, carbon felt, and carbon paper) measured in the same conditions. To our knowledge, this is the highest volumetric power density reported for mL-scale MFC device with a pure strain of Shewanella oneidensis MR-1. We also demonstrated that the MFC device can be operated effectively in a batch-mode at least for a week. These new 3D rGO-Ni electrodes show great promise for improving the power generation of MFC devices. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr03487a

  13. Low-back electromyography (EMG) data-driven load classification for dynamic lifting tasks.

    PubMed

    Totah, Deema; Ojeda, Lauro; Johnson, Daniel D; Gates, Deanna; Mower Provost, Emily; Barton, Kira

    2018-01-01

    Numerous devices have been designed to support the back during lifting tasks. To improve the utility of such devices, this research explores the use of preparatory muscle activity to classify muscle loading and initiate appropriate device activation. The goal of this study was to determine the earliest time window that enabled accurate load classification during a dynamic lifting task. Nine subjects performed thirty symmetrical lifts, split evenly across three weight conditions (no-weight, 10-lbs and 24-lbs), while low-back muscle activity data was collected. Seven descriptive statistics features were extracted from 100 ms windows of data. A multinomial logistic regression (MLR) classifier was trained and tested, employing leave-one subject out cross-validation, to classify lifted load values. Dimensionality reduction was achieved through feature cross-correlation analysis and greedy feedforward selection. The time of full load support by the subject was defined as load-onset. Regions of highest average classification accuracy started at 200 ms before until 200 ms after load-onset with average accuracies ranging from 80% (±10%) to 81% (±7%). The average recall for each class ranged from 69-92%. These inter-subject classification results indicate that preparatory muscle activity can be leveraged to identify the intent to lift a weight up to 100 ms prior to load-onset. The high accuracies shown indicate the potential to utilize intent classification for assistive device applications. Active assistive devices, e.g. exoskeletons, could prevent back injury by off-loading low-back muscles. Early intent classification allows more time for actuators to respond and integrate seamlessly with the user.

  14. Distributed Economic Dispatch in Microgrids Based on Cooperative Reinforcement Learning.

    PubMed

    Liu, Weirong; Zhuang, Peng; Liang, Hao; Peng, Jun; Huang, Zhiwu; Weirong Liu; Peng Zhuang; Hao Liang; Jun Peng; Zhiwu Huang; Liu, Weirong; Liang, Hao; Peng, Jun; Zhuang, Peng; Huang, Zhiwu

    2018-06-01

    Microgrids incorporated with distributed generation (DG) units and energy storage (ES) devices are expected to play more and more important roles in the future power systems. Yet, achieving efficient distributed economic dispatch in microgrids is a challenging issue due to the randomness and nonlinear characteristics of DG units and loads. This paper proposes a cooperative reinforcement learning algorithm for distributed economic dispatch in microgrids. Utilizing the learning algorithm can avoid the difficulty of stochastic modeling and high computational complexity. In the cooperative reinforcement learning algorithm, the function approximation is leveraged to deal with the large and continuous state spaces. And a diffusion strategy is incorporated to coordinate the actions of DG units and ES devices. Based on the proposed algorithm, each node in microgrids only needs to communicate with its local neighbors, without relying on any centralized controllers. Algorithm convergence is analyzed, and simulations based on real-world meteorological and load data are conducted to validate the performance of the proposed algorithm.

  15. A new after-loading intrauterine packing device: ten years experience.

    PubMed

    Sklaroff, D M; Baker, A S; Tasbas, M

    1985-12-01

    A new variation of the uterine packing device for the treatment of endometrial carcinoma is described. It combines the advantages of the Holter technique with the after-loading method described by Simon. This device has been in use for more than 10 years and has been found most satisfactory.

  16. Development and Initial Results of a Low Cost, Disposable, Point-of-Care Testing Device for Pathogen Detection

    PubMed Central

    Dugan, Lawrence C.; Baker, Brian R.; Hall, Sara B.; Ebert, Katja; Mioulet, Valerie; Madi, Mikidache; King, Donald P.

    2011-01-01

    Development of small footprint, disposable, fast, and inexpensive devices for pathogen detection in the field and clinic would benefit human and veterinary medicine by allowing evidence-based responses to future out breaks. We designed and tested an integrated nucleic acid extraction and amplification device employing a loop-mediated isothermal amplification (LAMP) or reverse transcriptase-LAMP assay. Our system provides a screening tool with polymerase-chain-reaction-level sensitivity and specificity for outbreak detection, response, and recovery. Time to result is ~90 min. The device utilizes a swab that collects sample and then transfers it to a disc of cellulose-based nucleic acid binding paper. The disc is positioned within a disposable containment tube with a manual loading port. In order to test for the presence of target pathogens, LAMP reagents are loaded through the tube’s port into contact with the sample containing cellulose disc. The reagents then are isothermally heated to 63°C for ~1 h to achieve sequence-specific target nucleic acid amplification. Due to the presence of a colorimetric dye, amplification induces visible color change in the reagents from purple to blue. As initial demonstrations, we detected methicillin resistant Staphylococcus aureus genomic DNA, as well as recombinant and live foot-and-mouth disease virus. PMID:21342806

  17. Flexible Architecture for FPGAs in Embedded Systems

    NASA Technical Reports Server (NTRS)

    Clark, Duane I.; Lim, Chester N.

    2012-01-01

    Commonly, field-programmable gate arrays (FPGAs) being developed in cPCI embedded systems include the bus interface in the FPGA. This complicates the development because the interface is complicated and requires a lot of development time and FPGA resources. In addition, flight qualification requires a substantial amount of time be devoted to just this interface. Another complication of putting the cPCI interface into the FPGA being developed is that configuration information loaded into the device by the cPCI microprocessor is lost when a new bit file is loaded, requiring cumbersome operations to return the system to an operational state. Finally, SRAM-based FPGAs are typically programmed via specialized cables and software, with programming files being loaded either directly into the FPGA, or into PROM devices. This can be cumbersome when doing FPGA development in an embedded environment, and does not have an easy path to flight. Currently, FPGAs used in space applications are usually programmed via multiple space-qualified PROM devices that are physically large and require extra circuitry (typically including a separate one-time programmable FPGA) to enable them to be used for this application. This technology adds a cPCI interface device with a simple, flexible, high-performance backend interface supporting multiple backend FPGAs. It includes a mechanism for programming the FPGAs directly via the microprocessor in the embedded system, eliminating specialized hardware, software, and PROM devices and their associated circuitry. It has a direct path to flight, and no extra hardware and minimal software are required to support reprogramming in flight. The device added is currently a small FPGA, but an advantage of this technology is that the design of the device does not change, regardless of the application in which it is being used. This means that it needs to be qualified for flight only once, and is suitable for one-time programmable devices or an application specific integrated circuit (ASIC). An application programming interface (API) further reduces the development time needed to use the interface device in a system.

  18. Finite element analysis of a pseudoelastic compression-generating intramedullary ankle arthrodesis nail.

    PubMed

    Anderson, Ryan T; Pacaccio, Douglas J; Yakacki, Christopher M; Carpenter, R Dana

    2016-09-01

    Tibio-talo-calcaneal (TTC) arthrodesis is an end-stage treatment for patients with severe degeneration of the ankle joint. This treatment consists of using an intramedullary nail (IM) to fuse the calcaneus, talus, and tibia bones together into one construct. Poor bone quality within the joint prior to surgery is common and thus the procedure has shown complications due to non-union. However, a new FDA-approved IM nail has been released that houses a nickel titanium (NiTi) rod that uses its inherent pseudoelastic material properties to apply active compression across the fusion site. Finite element analysis was performed to model the mechanical response of the NiTi within the device. A bone model was then developed based on a quantitative computed tomography (QCT) image for anatomical geometry and bone material properties. A total bone and device system was modeled to investigate the effect of bone quality change and gather load-sharing properties during gait loading. It was found that during the highest magnitude loading of gait, the load taken by the bone was more than 50% higher than the load taken by the nail. When comparing the load distribution during gait, results from this study would suggest that the device helps to prevent stress shielding by allowing a more even distribution of load between bone and nail. In conditions where bone quality may vary patient-to-patient, the model indicates that a 10% decrease in overall bone modulus (i.e. material stiffness) due to reduced bone mineral density would result in higher stresses in the nail (3.4%) and a marginal decrease in stress for the bone (0.5%). The finite element model presented in this study can be used as a quantitative tool to further understand the stress environment of both bone and device for a TTC fusion. Furthermore, the methodology presented gives insight on how to computationally program and use the unique material properties of NiTi in an active compression state useful for bone fracture healing or fusion treatments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. 30 CFR 57.9311 - Anchoring stationary sizing devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Loading, Hauling, and Dumping Safety Devices, Provisions, and Procedures for Roadways, Railroads, and Loading and...

  20. Customized electric power storage device for inclusion in a collective microgrid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinett, III, Rush D.; Wilson, David G.; Goldsmith, Steven Y.

    An electric power storage device is described herein, wherein the electric power storage device is included in a microgrid. The electric power storage device has at least one of a charge rate, a discharge rate, or a power retention capacity that has been customized for a collective microgrid. The collective microgrid includes at least two connected microgrids. The at least one of the charge rate, the discharge rate, or the power retention capacity of the electric power storage device is computed based at least in part upon specified power source parameters in the at least two connected microgrids and specifiedmore » load parameters in the at least two connected microgrids.« less

  1. An exploratory investigation of cumulative shock fatigue.

    NASA Technical Reports Server (NTRS)

    Simonson, D.; Byrne, J. G.

    1972-01-01

    A simple device for producing cumulative shock loading in solids is described. The device uses a ballistic-impact-driven projectile to introduce high-stress waves into a solid. The impact time and load amplitude can be varied to produce fracture in one or several impacts in PMMA rods. The wavefront approached a square wave shape. Materials other than PMMA were loaded to failure to demonstrate the versatility of the device. Fracture morphologies observed with optical and scanning-electron microscopy are described.

  2. Chlorhexidine salt-loaded polyurethane orthodontic chains: in vitro release and antibacterial activity studies.

    PubMed

    Padois, Karine; Bertholle, Valérie; Pirot, Fabrice; Hyunh, Truc Thanh Ngoc; Rossi, Alessandra; Colombo, Paolo; Falson, Françoise; Sonvico, Fabio

    2012-12-01

    The widespread use of indwelling medical devices has enormously increased the interest in materials incorporating antibiotics and antimicrobial agents as a means to prevent dangerous device-related infections. Recently, chlorhexidine-loaded polyurethane has been proposed as a material suitable for the production of devices which are able to resist microbial contamination. The aim of the present study was to characterize the in vitro release of chlorhexidine from new polymeric orthodontic chains realized with polyurethane loaded with two different chlorhexidine salts: chlorhexidine diacetate or chlorhexidine digluconate. The orthodontic chains constituted of three layers: a middle polyurethane layer loaded with chlorhexidine salt inserted between two layers of unloaded polymer. In vitro release of chlorhexidine diacetate and digluconate from orthodontic chains loaded with 10% or 20% (w/w) chlorhexidine salt was sustained for 42 days and followed Fickian diffusion. The drug diffusion through the polyurethane was found to be dependent not only on chlorhexidine loading, but also on the type of chlorhexidine salt. The antibacterial activity of 0.2% (w/w) chlorhexidine diacetate-loaded orthodontic chain was successfully tested towards clinically isolated biofilm forming ica-positive Staphylococcus epidermidis via agar diffusion test. In conclusion, the chlorhexidine salt-loaded chains could provide an innovative approach in the prevention of oral infections related to the use of orthodontic devices.

  3. Apparatus for Controlling Low Power Voltages in Space Based Processing Systems

    NASA Technical Reports Server (NTRS)

    Petrick, David J. (Inventor)

    2017-01-01

    A low power voltage control circuit for use in space missions includes a switching device coupled between an input voltage and an output voltage. The switching device includes a control input coupled to an enable signal, wherein the control input is configured to selectively turn the output voltage on or off based at least in part on the enable signal. A current monitoring circuit is coupled to the output voltage and configured to produce a trip signal, wherein the trip signal is active when a load current flowing through the switching device is determined to exceed a predetermined threshold and is inactive otherwise. The power voltage control circuit is constructed of space qualified components.

  4. 49 CFR 174.101 - Loading Class 1 (explosive) materials.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... in a rail car equipped with any type of lighted heater or open-flame device, or electric devices... stock cars or in flat bottom gondola cars only if they are adequately braced. Boxed bombs, rocket... be loaded in closed cars, may be loaded in open-top cars or on flatcars, provided they are protected...

  5. 49 CFR 174.101 - Loading Class 1 (explosive) materials.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... in a rail car equipped with any type of lighted heater or open-flame device, or electric devices... stock cars or in flat bottom gondola cars only if they are adequately braced. Boxed bombs, rocket... be loaded in closed cars, may be loaded in open-top cars or on flatcars, provided they are protected...

  6. 49 CFR 174.101 - Loading Class 1 (explosive) materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... in a rail car equipped with any type of lighted heater or open-flame device, or electric devices... stock cars or in flat bottom gondola cars only if they are adequately braced. Boxed bombs, rocket... be loaded in closed cars, may be loaded in open-top cars or on flatcars, provided they are protected...

  7. 49 CFR 174.101 - Loading Class 1 (explosive) materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... in a rail car equipped with any type of lighted heater or open-flame device, or electric devices... stock cars or in flat bottom gondola cars only if they are adequately braced. Boxed bombs, rocket... be loaded in closed cars, may be loaded in open-top cars or on flatcars, provided they are protected...

  8. Biomechanical comparison of effects of the Dynesys and Coflex dynamic stabilization systems on range of motion and loading characteristics in the lumbar spine: a finite element study.

    PubMed

    Kulduk, Ahmet; Altun, Necdet S; Senkoylu, Alpaslan

    2015-12-01

    The primary purpose of dynamic stabilization is to preserve the normal range of motion (ROM) by restricting abnormal movement in the spine. Our aim was to analyze the effects of two different dynamic stabilization systems using finite element modeling (FEM). Coflex and Dynesys dynamic devices were modeled and implanted at the L4-L5 segment using virtual FEM. A 400 N compressive force combined with 6 N flexion, extension, bending and axial rotation forces was applied to the L3-4 and L4-5 segments. ROM and disc loading forces were analyzed. Both systems reduced ROM and disc loading forces at the implanted lumbar segment, with the exception of the Coflex interspinous device, which increased ROM by 19% and did not change disc-loading forces in flexion. The Coflex device prevented excessive disc loading, but increased ROM abnormally in flexion. Neither device provided satisfactory motion preservation or load sharing in other directions. Copyright © 2015 John Wiley & Sons, Ltd.

  9. Hydrogel ionotronics

    NASA Astrophysics Data System (ADS)

    Yang, Canhui; Suo, Zhigang

    2018-06-01

    An ionotronic device functions by a hybrid circuit of mobile ions and mobile electrons. Hydrogels are stretchable, transparent, ionic conductors that can transmit electrical signals of high frequency over long distance, enabling ionotronic devices such as artificial muscles, skins and axons. Moreover, ionotronic luminescent devices, ionotronic liquid crystal devices, touchpads, triboelectric generators, artificial eels and gel-elastomer-oil devices can be designed based on hydrogels. In this Review, we discuss first-generation hydrogel ionotronic devices and the challenges associated with the mechanical properties and the chemistry of the materials. We examine how strong and stretchable adhesion between hydrophilic and hydrophobic polymer networks can be achieved, how water can be retained in hydrogels and how to design hydrogels that resist fatigue under cyclic loads. Finally, we highlight applications of hydrogel ionotronic devices and discuss the future of the field.

  10. Energy absorber uses expanded coiled tube

    NASA Technical Reports Server (NTRS)

    Johnson, E. F.

    1972-01-01

    Mechanical shock mitigating device, based on working material to its failure point, absorbs mechanical energy by bending or twisting tubing. It functions under axial or tangential loading, has no rebound, is area independent, and is easy and inexpensive to build.

  11. Simultaneous recordings of force and sliding movement between a myosin-coated glass microneedle and actin cables in vitro.

    PubMed

    Chaen, S; Oiwa, K; Shimmen, T; Iwamoto, H; Sugi, H

    1989-03-01

    To elucidate the molecular mechanism of muscle contraction resulting from the ATP-dependent actin-myosin interaction, we constructed an assay system with which both the force and the movement produced by the actin-myosin interaction in vitro can be simultaneously recorded and analyzed. The assay system consisted of the giant internodal cells of an alga, Nitellopsis obtusa, which contain well-organized arrays of actin filaments (actin cables) running along the cell long axis, and a glass microneedle (tip diameter, approximately 7 microns; elastic coefficient, approximately 40 pN/microns), which was coated with skeletal muscle myosin at the tip and extended from a micromanipulator at right angles with the actin cables. When the myosin-coated tip of the microneedle was brought into contact with the exposed surface of the actin cables, it exhibited ATP-dependent movement along the actin cables over a distance of 20-150 microns in 20-200 s (20-23 degrees C) and eventually stopped due to a balance between forces generated by the actin-myosin interaction (800-6000 pN) and by the bent microneedle. Since the load on the force-generating myosin molecules increased with the bending displacement of the microneedle (auxotonic condition), the relation between the load and the sliding velocity of the myosin heads past the actin cables was determined from the time course of the microneedle movement recorded with a video system. The shape of the force-velocity curve thus obtained was convex upwards, similar to that of the force-velocity curve of intact frog muscle fibers obtained under the auxotonic condition.

  12. Development of Multi-Functional Voltage Restore System

    NASA Astrophysics Data System (ADS)

    Suzuki, Satoshi; Ueda, Yoshinobu; Koganezawa, Takehisa; Ogihara, Yoshinori; Mori, Kenjiro; Fukazu, Naoaki

    Recently, with the dawn of the electric deregulation, the installation of distributed generation with power electronics device has grown. This current causes a greater concern of power quality, primarily voltage disturbance for power companies, and their interest in power quality is peaking. Utilities are also interested in keeping their customers satisfied, as well as keeping them on-line and creating more revenue for the utility. As a countermeasure against the above surroundings, a variety type of devices based on power electronics has been developed to protect customers' load from power line voltage disturbance. One of them is the series type voltage restore. The series device is an active device, designed to provide a pure sinusoidal load voltage at all times, correcting voltage disturbance. Series type device compensates for voltage anomalies by inserting the ‘missing’ voltage onto the line through insertion transformer and inverter. This paper shows the setting guideline of target level to compensate voltage disturbance, that is, voltage dip, voltage harmonics, voltage imbalance and voltage flicker, and the design approach of the prototype of series voltage restores to accomplish the required compensation level. The prototype system gives satisfactory compensation performance through evaluation tests, which confirm the validity and effectiveness of the system.

  13. Toward Automated Intraocular Laser Surgery Using a Handheld Micromanipulator

    PubMed Central

    Yang, Sungwook; MacLachlan, Robert A.; Riviere, Cameron N.

    2014-01-01

    This paper presents a technique for automated intraocular laser surgery using a handheld micromanipulator known as Micron. The novel handheld manipulator enables the automated scanning of a laser probe within a cylinder of 4 mm long and 4 mm in diameter. For the automation, the surface of the retina is reconstructed using a stereomicroscope, and then preplanned targets are placed on the surface. The laser probe is precisely located on the target via visual servoing of the aiming beam, while maintaining a specific distance above the surface. In addition, the system is capable of tracking the surface of the eye in order to compensate for any eye movement introduced during the operation. We compared the performance of the automated scanning using various control thresholds, in order to find the most effective threshold in terms of accuracy and speed. Given the selected threshold, we conducted the handheld operation above a fixed target surface. The average error and execution time are reduced by 63.6% and 28.5%, respectively, compared to the unaided trials. Finally, the automated laser photocoagulation was demonstrated also in an eye phantom, including compensation for the eye movement. PMID:25893135

  14. Assisted reproduction techniques in the horse.

    PubMed

    Hinrichs, Katrin

    2012-01-01

    This paper reviews current equine assisted reproduction techniques. Embryo transfer is the most common equine ART, but is still limited by the inability to superovulate mares effectively. Immature oocytes may be recovered by transvaginal ultrasound-guided aspiration of immature follicles, or from ovaries postmortem, and can be effectively matured in vitro. Notably, the in vivo-matured oocyte may be easily recovered from the stimulated preovulatory follicle. Standard IVF is still not repeatable in the horse; however, embryos and foals can be produced by surgical transfer of mature oocytes to the oviducts of inseminated recipient mares or via intracytoplasmic sperm injection (ICSI). Currently, ICSI and in vitro embryo culture are routinely performed by only a few laboratories, but reported blastocyst development rates approach those found after bovine IVF (i.e. 25%-35%). Nuclear transfer can be relatively efficient (up to 26% live foal rate per transferred embryo), but few laboratories are working in this area. Equine blastocysts may be biopsied via micromanipulation, with normal pregnancy rates after biopsy, and accurate genetic analysis. Equine expanded blastocysts may be vitrified after collapsing them via micromanipulation, with normal pregnancy rates after warming and transfer. Many of these recently developed techniques are now in clinical use.

  15. Switched Fuzzy-PD Control of Contact Forces in Robotic Microbiomanipulation.

    PubMed

    Zhang, Weize; Dong, Xianke; Liu, Xinyu

    2017-05-01

    Force sensing and control are of paramount importance in robotic micromanipulation. A contact force regulator capable of accurately applying mechanical stimuli to a live Drosophila larva could greatly facilitate mechanobiology research on Drosophila and may eventually lead to novel discoveries in mechanotransduction mechanisms of neuronal circuitries. In this paper, we present a novel contact force control scheme implemented in an automated Drosophila larvae micromanipulation system, featuring a switched fuzzy to proportional-differential (PD) controller and a noise-insensitive extended high gain observer (EHGO). The switched fuzzy-PD control law inherits the fast convergence of fuzzy control and overcomes its drawbacks such as large overshoot and steady-state oscillation. The noise-insensitive EHGO can reliably estimate system modeling errors and is robust to force measurement noises, which is advantageous over conventional high gain observers (sensitive to signal noises). Force control experiments show that, compared to a proportional-integral-differential (PID) controller, this new force control scheme significantly enhances the system dynamic performance in terms of rising time, overshoot, and oscillation. The developed robotic system and the force control scheme will be applied to mechanical stimulation and fluorescence imaging of Drosophila larvae for identifying new mechanotransduction mechanisms.

  16. Inductively heated shape memory polymer for the magnetic actuation of medical devices.

    PubMed

    Buckley, Patrick R; McKinley, Gareth H; Wilson, Thomas S; Small, Ward; Benett, William J; Bearinger, Jane P; McElfresh, Michael W; Maitland, Duncan J

    2006-10-01

    Presently, there is interest in making medical devices such as expandable stents and intravascular microactuators from shape memory polymer (SMP). One of the key challenges in realizing SMP medical devices is the implementation of a safe and effective method of thermally actuating various device geometries in vivo. A novel scheme of actuation by Curie-thermoregulated inductive heating is presented. Prototype medical devices made from SMP loaded with nickel zinc ferrite ferromagnetic particles were actuated in air by applying an alternating magnetic field to induce heating. Dynamic mechanical thermal analysis was performed on both the particle-loaded and neat SMP materials to assess the impact of the ferrite particles on the mechanical properties of the samples. Calorimetry was used to quantify the rate of heat generation as a function of particle size and volumetric loading of ferrite particles in the SMP. These tests demonstrated the feasibility of SMP actuation by inductive heating. Rapid and uniform heating was achieved in complex device geometries and particle loading up to 10% volume content did not interfere with the shape recovery of the SMP.

  17. Giving Learning a Helping Hand: Finger Tracing of Temperature Graphs on an iPad

    ERIC Educational Resources Information Center

    Agostinho, Shirley; Tindall-Ford, Sharon; Ginns, Paul; Howard, Steven J.; Leahy, Wayne; Paas, Fred

    2015-01-01

    Gesturally controlled information and communication technologies, such as tablet devices, are becoming increasingly popular tools for teaching and learning. Based on the theoretical frameworks of cognitive load and embodied cognition, this study investigated the impact of explicit instructions to trace out elements of tablet-based worked examples…

  18. Comparison of cyclic and impact-based reference point indentation measurements in human cadaveric tibia.

    PubMed

    Karim, Lamya; Van Vliet, Miranda; Bouxsein, Mary L

    2018-01-01

    Although low bone mineral density (BMD) is strongly associated with increased fracture risk, up to 50% of those who suffer fractures are not detected as high-risk patients by BMD testing. Thus, new approaches may improve identification of those at increased risk for fracture by in vivo assessment of altered bone tissue properties, which may contribute to skeletal fragility. Recently developed reference point indentation (RPI) allows for assessment of cortical bone indentation properties in vivo using devices that apply cyclic loading or impact loading, but there is little information available to assist with interpretation of RPI measurements. Our goals were to use human cadaveric tibia to determine: 1) the associations between RPI variables, cortical bone density, and morphology; 2) the association between variables obtained from RPI systems using cyclic, slow loading versus a single impact load; and 3) age-related differences in RPI variables. We obtained 20 human tibia and femur pairs from female donors (53-97years), measured total hip BMD using dual-energy X-ray absorptiometry, assessed tibial cortical microarchitecture using high-resolution peripheral quantitative computed tomography (HR-pQCT), and assessed cortical bone indentation properties at the mid-tibial diaphysis using both the cyclic and impact-based RPI systems (Biodent and Osteoprobe, respectively, Active Life Scientific, Santa Barbara, CA). We found a few weak associations between RPI variables, BMD, and cortical geometry; a few weak associations between measurements obtained by the two RPI systems; and no age-related differences in RPI variables. Our findings indicate that in cadaveric tibia from older women RPI measurements are largely independent of age, femoral BMD, and cortical geometry. Furthermore, measurements from the cyclic and impact loading RPI devices are weakly related to each other, indicating that each device reflects different aspects of cortical bone indentation properties. Copyright © 2016. Published by Elsevier Inc.

  19. Formalization, equivalence and generalization of basic resonance electrical circuits

    NASA Astrophysics Data System (ADS)

    Penev, Dimitar; Arnaudov, Dimitar; Hinov, Nikolay

    2017-12-01

    In the work are presented basic resonance circuits, which are used in resonance energy converters. The following resonant circuits are considered: serial, serial with parallel load parallel capacitor, parallel and parallel with serial loaded inductance. For the circuits under consideration, expressions are generated for the frequencies of own oscillations and for the equivalence of the active power emitted in the load. Mathematical expressions are graphically constructed and verified using computer simulations. The results obtained are used in the model based design of resonant energy converters with DC or AC output. This guaranteed the output indicators of power electronic devices.

  20. Deviations of frequency and the mode of vibration of commercially available whole-body vibration training devices.

    PubMed

    Kaeding, T S

    2015-06-01

    Research in the field of whole body vibration (WBV) training and the use of it in practice might be hindered by the fact that WBV training devices generate and transmit frequencies and/or modes of vibration which are different to preset adjustments. This research project shall clarify how exact WBV devices apply the by manufacturer information promised preset frequency and mode of vibration. Nine professional devices for WBV training were tested by means of a tri-axial accelerometer. The accelerations of each device were recorded under different settings with a tri-axial accelerometer. Beneath the measurement of different combinations of preset frequency and amplitude the repeatability across 3 successive measurements with the same preset conditions and one measurement under loaded condition were carried out. With 3 exceptions (both Board 3000 & srt medical PRO) we did not find noteworthy divergences between preset and actual applied frequencies. In these 3 devices we found divergences near -25%. Loading the devices did not affect the applied frequency or mode of vibration. There were no important divergences measurable for the applied frequency and mode of vibration regarding repeatability. The results of our measurements cannot be generalized as we only measured one respectively at most two devices of one model in terms of a random sample. Based on these results we strongly recommend that user in practice and research should analyse their WBV training devices regarding applied frequency and mode of vibration.

  1. A piezoelectric shock-loading response simulator for piezoelectric-based device developers

    NASA Astrophysics Data System (ADS)

    Rastegar, J.; Feng, Z.

    2017-04-01

    Pulsed loading of piezoelectric transducers occurs in many applications, such as those in munitions firing, or when a mechanical system is subjected to impact type loading. In this paper, an electronic simulator that can be programmed to generate electrical charges that a piezoelectric transducer generates as it is subjected to various shock loading profiles is presented. The piezoelectric output simulator can provide close to realistic outputs so that the circuit designer can use it to test the developed system under close to realistic conditions without the need for the costly and time consuming process of performing actual tests. The design of the electronic simulator and results of its testing are presented.

  2. IGZO TFT-based circuit with tunable threshold voltage by laser annealing

    NASA Astrophysics Data System (ADS)

    Huang, Xiaoming; Yu, Guang; Wu, Chenfei

    2017-11-01

    In this work, a high-performance inverter based on amorphous indium-gallium-zinc oxide thin-film transistors (TFTs) has been fabricated, which consists of a driver TFT and a load TFT. The threshold voltage (Vth) of the load TFT can be tuned by applying an area-selective laser annealing. The transfer curve of the load TFT shows a parallel shift into the negative bias direction upon laser annealing. Based on x-ray photoelectron spectroscopy analyses, the negative Vth shift can be attributed to the increase of oxygen vacancy concentration within the device channel upon laser irradiation. Compared to the untreated inverter, the laser annealed inverter shows much improved switching characteristics, including a large output swing range which is close to full swing, as well as an enhanced output voltage gain. Furthermore, the dynamic performance of ring oscillator based on the laser-annealed inverter is improved.

  3. Apparatus for checking dimensions of workpieces

    DOEpatents

    Possati, Mario; Golinelli, Guido

    1992-01-01

    An apparatus for checking features of workpieces with rotational symmetry defining a geometrical axis, which includes a base, rest devices fixed to the base for supporting the workpiece with the geometrical axis horizontally arranged, and a support structure coupled to the base for rotation about a horizontal axis. A counterweight and sensor are coupled to the support structure and movable with the support structure from a rest position, allowing loading of the workpiece to be checked onto the rest devices to a working position where the sensor is brought into cooperation with the workpiece. The axis of rotation of the support structure is arranged below the axis of the workpiece, in correspondence to a vertical geometrical plane passing through the workpiece geometric axis when the workpiece is positioned on the rest devices.

  4. A modified SILCS contraceptive diaphragm for long-term controlled release of the HIV microbicide dapivirine.

    PubMed

    Major, Ian; Boyd, Peter; Kilbourne-Brook, Maggie; Saxon, Gene; Cohen, Jessica; Malcolm, R Karl

    2013-07-01

    There is considerable interest in developing new multipurpose prevention technologies to address women's reproductive health needs. This study describes an innovative barrier contraceptive device--based on the SILCS diaphragm--that also provides long-term controlled release of the lead candidate anti-HIV microbicide dapivirine. Diaphragm devices comprising various dapivirine-loaded polymer spring cores overmolded with a nonmedicated silicone elastomer sheath were fabricated by injection molding processes. In vitro release testing, thermal analysis and mechanical characterization were performed on the devices. A diaphragm device containing a polyoxymethylene spring core loaded with 10% w/w dapivirine provided continuous and controlled release of dapivirine over a 6-month period, with a mean in vitro daily release rate of 174 mcg/day. The mechanical properties of the new diaphragm were closely matched to the SILCS diaphragm. The study demonstrates proof of concept for a dapivirine-releasing diaphragm with daily release quantities potentially capable of preventing HIV transmission. In discontinuous clinical use, release of dapivirine may be readily extended over 1 or more years. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Low-back electromyography (EMG) data-driven load classification for dynamic lifting tasks

    PubMed Central

    Ojeda, Lauro; Johnson, Daniel D.; Gates, Deanna; Mower Provost, Emily; Barton, Kira

    2018-01-01

    Objective Numerous devices have been designed to support the back during lifting tasks. To improve the utility of such devices, this research explores the use of preparatory muscle activity to classify muscle loading and initiate appropriate device activation. The goal of this study was to determine the earliest time window that enabled accurate load classification during a dynamic lifting task. Methods Nine subjects performed thirty symmetrical lifts, split evenly across three weight conditions (no-weight, 10-lbs and 24-lbs), while low-back muscle activity data was collected. Seven descriptive statistics features were extracted from 100 ms windows of data. A multinomial logistic regression (MLR) classifier was trained and tested, employing leave-one subject out cross-validation, to classify lifted load values. Dimensionality reduction was achieved through feature cross-correlation analysis and greedy feedforward selection. The time of full load support by the subject was defined as load-onset. Results Regions of highest average classification accuracy started at 200 ms before until 200 ms after load-onset with average accuracies ranging from 80% (±10%) to 81% (±7%). The average recall for each class ranged from 69–92%. Conclusion These inter-subject classification results indicate that preparatory muscle activity can be leveraged to identify the intent to lift a weight up to 100 ms prior to load-onset. The high accuracies shown indicate the potential to utilize intent classification for assistive device applications. Significance Active assistive devices, e.g. exoskeletons, could prevent back injury by off-loading low-back muscles. Early intent classification allows more time for actuators to respond and integrate seamlessly with the user. PMID:29447252

  6. On the reduction of dynamic loads during actuation of separation devices of advanced orbital astrophysical observatories

    NASA Astrophysics Data System (ADS)

    Efanov, V. V.; Birukov, A. S.; Demenko, O. G.

    2014-12-01

    The paper gives a brief description of pyromechanical and detonation devices separating spacecraft (SC) from the upper stage. Causes of significant shock loads in the design and equipment are explained. Technical solutions to reduce these loads implemented in future SC using the mechanism of gas-dynamic and mechanical damping are described.

  7. A single-stage optical load-balanced switch for data centers.

    PubMed

    Huang, Qirui; Yeo, Yong-Kee; Zhou, Luying

    2012-10-22

    Load balancing is an attractive technique to achieve maximum throughput and optimal resource utilization in large-scale switching systems. However current electronic load-balanced switches suffer from severe problems in implementation cost, power consumption and scaling. To overcome these problems, in this paper we propose a single-stage optical load-balanced switch architecture based on an arrayed waveguide grating router (AWGR) in conjunction with fast tunable lasers. By reuse of the fast tunable lasers, the switch achieves both functions of load balancing and switching through the AWGR. With this architecture, proof-of-concept experiments have been conducted to investigate the feasibility of the optical load-balanced switch and to examine its physical performance. Compared to three-stage load-balanced switches, the reported switch needs only half of optical devices such as tunable lasers and AWGRs, which can provide a cost-effective solution for future data centers.

  8. An investigation of pupil-based cognitive load measurement with low cost infrared webcam under light reflex interference.

    PubMed

    Chen, Siyuan; Epps, Julien; Chen, Fang

    2013-01-01

    Using the task-evoked pupillary response (TEPR) to index cognitive load can contribute significantly to the assessment of memory function and cognitive skills in patients. However, the measurement of pupillary response is currently limited to a well-controlled lab environment due to light reflex and also relies heavily on expensive video-based eye trackers. Furthermore, commercial eye trackers are usually dedicated to gaze direction measurement, and their calibration procedure and computing resource are largely redundant for pupil-based cognitive load measurement (PCLM). In this study, we investigate the validity of cognitive load measurement with (i) pupil light reflex in a less controlled luminance background; (ii) a low-cost infrared (IR) webcam for the TEPR in a controlled luminance background. ANOVA results show that with an appropriate baseline selection and subtraction, the light reflex is significantly reduced, suggesting the possibility of less constrained practical applications of PCLM. Compared with the TEPR from a commercial remote eye tracker, a low-cost IR webcam achieved a similar TEPR pattern and no significant difference was found between the two devices in terms of cognitive load measurement across five induced load levels.

  9. A new solution of measuring thermal response of prestressed concrete bridge girders for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Jiao, Pengcheng; Borchani, Wassim; Hasni, Hassene; Lajnef, Nizar

    2017-08-01

    This study develops a novel buckling-based mechanism to measure the thermal response of prestressed concrete bridge girders under continuous temperature changes for structural health monitoring. The measuring device consists of a bilaterally constrained beam and a piezoelectric polyvinylidene fluoride transducer that is attached to the beam. Under thermally induced displacement, the slender beam is buckled. The post-buckling events are deployed to convert the low-rate and low-frequency excitations into localized high-rate motions and, therefore, the attached piezoelectric transducer is triggered to generate electrical signals. Attaching the measuring device to concrete bridge girders, the electrical signals are used to detect the thermal response of concrete bridges. Finite element simulations are conducted to obtain the displacement of prestressed concrete girders under thermal loads. Using the thermal-induced displacement as input, experiments are carried out on a 3D printed measuring device to investigate the buckling response and corresponding electrical signals. A theoretical model is developed based on the nonlinear Euler-Bernoulli beam theory and large deformation assumptions to predict the buckling mode transitions of the beam. Based on the presented theoretical model, the geometry properties of the measuring device can be designed such that its buckling response is effectively controlled. Consequently, the thermally induced displacement can be designed as limit states to detect excessive thermal loads on concrete bridge girders. The proposed solution sufficiently measures the thermal response of concrete bridges.

  10. Advanced resistive exercise device

    NASA Technical Reports Server (NTRS)

    Raboin, Jasen L. (Inventor); Niebuhr, Jason (Inventor); Cruz, Santana F. (Inventor); Lamoreaux, Christopher D. (Inventor)

    2008-01-01

    The present invention relates to an exercise device, which includes a vacuum cylinder and a flywheel. The flywheel provides an inertial component to the load, which is particularly well suited for use in space as it simulates exercising under normal gravity conditions. Also, the present invention relates to an exercise device, which has a vacuum cylinder and a load adjusting armbase assembly.

  11. Electric terminal performance and characterization of solid oxide fuel cells and systems

    NASA Astrophysics Data System (ADS)

    Lindahl, Peter Allan

    Solid Oxide Fuel Cells (SOFCs) are electrochemical devices which can effect efficient, clean, and quiet conversion of chemical to electrical energy. In contrast to conventional electricity generation systems which feature multiple discrete energy conversion processes, SOFCs are direct energy conversion devices. That is, they feature a fully integrated chemical to electrical energy conversion process where the electric load demanded of the cell intrinsically drives the electrochemical reactions and associated processes internal to the cell. As a result, the cell's electric terminals provide a path for interaction between load side electric demand and the conversion side processes. The implication of this is twofold. First, the magnitude and dynamic characteristics of the electric load demanded of the cell can directly impact the long-term efficacy of the cell's chemical to electrical energy conversion. Second, the electric terminal response to dynamic loads can be exploited for monitoring the cell's conversion side processes and used in diagnostic analysis and degradation-mitigating control schemes. This dissertation presents a multi-tier investigation into this electric terminal based performance characterization of SOFCs through the development of novel test systems, analysis techniques and control schemes. First, a reference-based simulation system is introduced. This system scales up the electric terminal performance of a prototype SOFC system, e.g. a single fuel cell, to that of a full power-level stack. This allows realistic stack/load interaction studies while maintaining explicit ability for post-test analysis of the prototype system. Next, a time-domain least squares fitting method for electrochemical impedance spectroscopy (EIS) is developed for reduced-time monitoring of the electrochemical and physicochemical mechanics of the fuel cell through its electric terminals. The utility of the reference-based simulator and the EIS technique are demonstrated through their combined use in the performance testing of a hybrid-source power management (HSPM) system designed to allow in-situ EIS monitoring of a stack under dynamic loading conditions. The results from the latter study suggest that an HSPM controller allows an opportunity for in-situ electric terminal monitoring and control-based mitigation of SOFC degradation. As such, an exploration of control-based SOFC degradation mitigation is presented and ideas for further work are suggested.

  12. A fluidic diode, valves, and a sequential-loading circuit fabricated on layered paper.

    PubMed

    Chen, Hong; Cogswell, Jeremy; Anagnostopoulos, Constantine; Faghri, Mohammad

    2012-08-21

    Current microfluidic paper-based devices lack crucial components for fluid manipulation. We created a fluidic diode fabricated entirely on a single layer of paper to control the wicking of fluids. The fluidic diode is a two-terminal component that promotes or stops wicking along a paper channel. We further constructed a trigger and a delay valve based on the fluidic diode. Furthermore, we demonstrated a high-level functional circuit, consisting of a diode and a delay valve, to manipulate two fluids in a sequential manner. Our study provides new, transformative tools to manipulate fluid in microfluidic paper-based devices.

  13. Femtosecond laser based enucleation of porcine oocytes for somatic cell nuclear transfer

    NASA Astrophysics Data System (ADS)

    Kütemeyer, K.; Lucas-Hahn, A.; Petersen, B.; Hassel, P.; Lemme, E.; Niemann, H.; Heisterkamp, A.

    2009-07-01

    Cloning of several mammalian species has been achieved by somatic cell nuclear transfer (SCNT) in recent years. However, this method still results in very low efficiencies around 1% which originate from suboptimal culture conditions and highly invasive techniques for oocyte enucleation and injection of the donor cell using micromanipulators. In this paper, we present a new minimal invasive method for oocyte imaging and enucleation based on the application of femtosecond (fs) laser pulses. After imaging of the oocyte with multiphoton microscopy, ultrashort pulses are focused onto the metaphase plate of MII-oocytes in order to ablate the DNA molecules. We show that fs laser based enucleation of porcine oocytes completely inhibits the first mitotic cleavage after parthenogenetic activation while maintaining intact oocyte morphology in most cases. In contrast, control groups without previous irradiation of the metaphase plate are able to develop to the blastocyst stage. Further experiments have to clarify the suitability of fs laser based enucleated oocytes for SCNT.

  14. System for energy harvesting and/or generation, storage, and delivery

    NASA Technical Reports Server (NTRS)

    DeGreeff, Jenniffer Leigh (Inventor); Trainor, John T. (Inventor); Fleig, Patrick Franz (Inventor); Lakeman, Charles D. E. (Inventor)

    2011-01-01

    A device and method for harvesting, generating, storing, and delivering energy to a load, particularly for remote or inaccessible applications. The device preferably comprises one or more energy sources, at least one supercapacitor, at least one rechargeable battery, and a controller. The charging of the energy storage devices and the delivery of power to the load is preferably dynamically varied to maximize efficiency. A low power consumption charge pump circuit is preferably employed to collect power from low power energy sources while also enabling the delivery of higher voltage power to the load. The charging voltage is preferably programmable, enabling one device to be used for a wide range of specific applications.

  15. System for energy harvesting and/or generation, storage, and delivery

    NASA Technical Reports Server (NTRS)

    DeGreeff, Jenniffer Leigh (Inventor); Trainor, John T. (Inventor); Fleig, Patrick Franz (Inventor); Lakeman, Charles D. E. (Inventor)

    2010-01-01

    A device and method for harvesting, generating, storing, and delivering energy to a load, particularly for remote or inaccessible applications. The device preferably comprises one or more energy sources, at least one supercapacitor, at least one rechargeable battery, and a controller. The charging of the energy storage devices and the delivery of power to the load is preferably dynamically varied to maximize efficiency. A low power consumption charge pump circuit is preferably employed to collect power from low power energy sources while also enabling the delivery of higher voltage power to the load. The charging voltage is preferably programmable, enabling one device to be used for a wide range of specific applications.

  16. An accurate and efficient method for piezoelectric coated functional devices based on the two-dimensional Green’s function for a normal line force and line charge

    NASA Astrophysics Data System (ADS)

    Hou, Peng-Fei; Zhang, Yang

    2017-09-01

    Because most piezoelectric functional devices, including sensors, actuators and energy harvesters, are in the form of a piezoelectric coated structure, it is valuable to present an accurate and efficient method for obtaining the electro-mechanical coupling fields of this coated structure under mechanical and electrical loads. With this aim, the two-dimensional Green’s function for a normal line force and line charge on the surface of coated structure, which is a combination of an orthotropic piezoelectric coating and orthotropic elastic substrate, is presented in the form of elementary functions based on the general solution method. The corresponding electro-mechanical coupling fields of this coated structure under arbitrary mechanical and electrical loads can then be obtained by the superposition principle and Gauss integration. Numerical results show that the presented method has high computational precision, efficiency and stability. It can be used to design the best coating thickness in functional devices, improve the sensitivity of sensors, and improve the efficiency of actuators and energy harvesters. This method could be an efficient tool for engineers in engineering applications.

  17. Mechanical and biomechanical analysis of a linear piston design for angular-velocity-based orthotic control.

    PubMed

    Lemaire, Edward D; Samadi, Reza; Goudreau, Louis; Kofman, Jonathan

    2013-01-01

    A linear piston hydraulic angular-velocity-based control knee joint was designed for people with knee-extensor weakness to engage knee-flexion resistance when knee-flexion angular velocity reaches a preset threshold, such as during a stumble, but to otherwise allow free knee motion. During mechanical testing at the lowest angular-velocity threshold, the device engaged within 2 degrees knee flexion and resisted moment loads of over 150 Nm. The device completed 400,000 loading cycles without mechanical failure or wear that would affect function. Gait patterns of nondisabled participants were similar to normal at walking speeds that produced below-threshold knee angular velocities. Fast walking speeds, employed purposely to attain the angular-velocity threshold and cause knee-flexion resistance, reduced maximum knee flexion by approximately 25 degrees but did not lead to unsafe gait patterns in foot ground clearance during swing. In knee collapse tests, the device successfully engaged knee-flexion resistance and stopped knee flexion with peak knee moments of up to 235.6 Nm. The outcomes from this study support the potential for the linear piston hydraulic knee joint in knee and knee-ankle-foot orthoses for people with lower-limb weakness.

  18. Non-Invasive Tension Measurement Devices for Parachute Cordage

    NASA Technical Reports Server (NTRS)

    Litteken, Douglas A.; Daum, Jared S.

    2016-01-01

    The need for lightweight and non-intrusive tension measurements has arisen alongside the development of high-fidelity computer models of textile and fluid dynamics. In order to validate these computer models, data must be gathered in the operational environment without altering the design, construction, or performance of the test article. Current measurement device designs rely on severing a cord and breaking the load path to introduce a load cell. These load cells are very reliable, but introduce an area of high stiffness in the load path, directly affecting the structural response, adding excessive weight, and possibly altering the dynamics of the parachute during a test. To capture the required data for analysis validation without affecting the response of the system, non-invasive measurement devices have been developed and tested by NASA. These tension measurement devices offer minimal impact to the mass, form, fit, and function of the test article, while providing reliable, axial tension measurements for parachute cordage.

  19. Influence of the ambient temperature on the cooling efficiency of the high performance cooling device with thermosiphon effect

    NASA Astrophysics Data System (ADS)

    Nemec, Patrik; Malcho, Milan

    2018-06-01

    This work deal with experimental measurement and calculation cooling efficiency of the cooling device working with a heat pipe technology. The referred device in the article is cooling device capable transfer high heat fluxes from electric elements to the surrounding. The work contain description, working principle and construction of cooling device. The main factor affected the dissipation of high heat flux from electronic elements through the cooling device to the surrounding is condenser construction, its capacity and option of heat removal. Experimental part describe the measuring method cooling efficiency of the cooling device depending on ambient temperature in range -20 to 40°C and at heat load of electronic components 750 W. Measured results are compared with results calculation based on physical phenomena of boiling, condensation and natural convection heat transfer.

  20. A highly versatile and easily configurable system for plant electrophysiology.

    PubMed

    Gunsé, Benet; Poschenrieder, Charlotte; Rankl, Simone; Schröeder, Peter; Rodrigo-Moreno, Ana; Barceló, Juan

    2016-01-01

    In this study we present a highly versatile and easily configurable system for measuring plant electrophysiological parameters and ionic flow rates, connected to a computer-controlled highly accurate positioning device. The modular software used allows easy customizable configurations for the measurement of electrophysiological parameters. Both the operational tests and the experiments already performed have been fully successful and rendered a low noise and highly stable signal. Assembly, programming and configuration examples are discussed. The system is a powerful technique that not only gives precise measuring of plant electrophysiological status, but also allows easy development of ad hoc configurations that are not constrained to plant studies. •We developed a highly modular system for electrophysiology measurements that can be used either in organs or cells and performs either steady or dynamic intra- and extracellular measurements that takes advantage of the easiness of visual object-oriented programming.•High precision accuracy in data acquisition under electrical noisy environments that allows it to run even in a laboratory close to electrical equipment that produce electrical noise.•The system makes an improvement of the currently used systems for monitoring and controlling high precision measurements and micromanipulation systems providing an open and customizable environment for multiple experimental needs.

  1. A new insole measurement system to detect bending and torsional moments at the human foot during footwear condition: a technical report.

    PubMed

    Stief, Thomas; Peikenkamp, Klaus

    2015-01-01

    Stress occurring at the feet while wearing footwear is often determined using pressure measurement systems. However, other forms of stress, such as bending, torsional and shear loadings, cannot be detected in shoes during day-to-day activities. Nevertheless, the detection of these types of stresses would be helpful for understanding the mechanical aspects of various kinds of hard and soft tissue injuries. Therefore, we describe the development of a new measuring device that allows the reliable determination of bending and torsional load at the foot in shoes. The system consists of a measuring insole and an analogue device with Bluetooth interface. The specific shape of the insole base layer, the positions of the strain gauges, and the interconnections between them have all been selected in such a way so as to isolate bending and torsional moment detections in the medial and lateral metatarsal region. The system was calibrated using a classical two-point test procedure. A single case study was executed to evaluate the new device for practical use. This application consisted of one subject wearing neutral shoes walking on a treadmill. The calibration results (coefficients of determination R(2) > 0.999) show that bending and torsional load can be reliably detected using the measurement system presented. In the single case study, alternating bending and torsional load can be detected during walking, and the shape of the detected bending moments can be confirmed by the measurements of Arndt et al. (J Biomech 35:621-8, 2002). Despite some limitations, the presented device allows for the reliable determination of bending and torsional stresses at the foot in shoes.

  2. Multicoil resonance-based parallel array for smart wireless power delivery.

    PubMed

    Mirbozorgi, S A; Sawan, M; Gosselin, B

    2013-01-01

    This paper presents a novel resonance-based multicoil structure as a smart power surface to wirelessly power up apparatus like mobile, animal headstage, implanted devices, etc. The proposed powering system is based on a 4-coil resonance-based inductive link, the resonance coil of which is formed by an array of several paralleled coils as a smart power transmitter. The power transmitter employs simple circuit connections and includes only one power driver circuit per multicoil resonance-based array, which enables higher power transfer efficiency and power delivery to the load. The power transmitted by the driver circuit is proportional to the load seen by the individual coil in the array. Thus, the transmitted power scales with respect to the load of the electric/electronic system to power up, and does not divide equally over every parallel coils that form the array. Instead, only the loaded coils of the parallel array transmit significant part of total transmitted power to the receiver. Such adaptive behavior enables superior power, size and cost efficiency then other solutions since it does not need to use complex detection circuitry to find the location of the load. The performance of the proposed structure is verified by measurement results. Natural load detection and covering 4 times bigger area than conventional topologies with a power transfer efficiency of 55% are the novelties of presented paper.

  3. TSC (Temperature Sensitive suppressors of the Calcium sensitivity of csg2 delta) Mutants; A Tool to Investigate Sphingolipid Metabolism in the Yeast Saccharomyces cerevisiae

    DTIC Science & Technology

    1998-08-14

    Boehringer Mannheim GmbH, Zymolase lOOT was obtained from Seikagaku Corp... Tokyo, E. coli comPetent cells, AG -I and XLI-blue, were obtained from...The spores are encapsulated in a glycoprotein complex., the ascus , which can be digested with glucuronidase and the spores removed by micro-manipulation

  4. A highly redundant robot system for inspection

    NASA Technical Reports Server (NTRS)

    Lee, Thomas S.; Ohms, Tim; Hayati, Samad

    1994-01-01

    The work on the serpentine inspection system at JPL is described. The configuration of the inspection system consists of 20 degrees of freedom in total. In particular, the design and development of the serpentine micromanipulator end-effector tool which has 12 degrees of freedom is described. The inspection system is used for application in JPL's Remote Surface Inspection project and as a research tool in redundant manipulator control.

  5. Intracytoplasmic sperm injection: a state of the art technique.

    PubMed

    Mansour, R

    1998-01-01

    Of the micromanipulation techniques developed in the twentieth century, intracytoplasmic sperm injection (ICSI) has been the major breakthrough in the field of assisted fertilization. This article reviews the indications for the use of ICSI, its clinical application, the establishment of an ICSI programme including protocol and the results obtained since the introduction of ICSI and the potential risks. In addition, intracytoplasmic spermatid injection is briefly discussed.

  6. Calibration Device Designed for proof ring used in SCC Experiment

    NASA Astrophysics Data System (ADS)

    Hu, X. Y.; Kang, Z. Y.; Yu, Y. L.

    2017-11-01

    In this paper, a calibration device for proof ring used in SCC (Stress Corrosion Cracking) experiment was designed. A compact size loading device was developed to replace traditional force standard machine or a long screw nut. The deformation of the proof ring was measured by a CCD (Charge-Coupled Device) during the calibration instead of digital caliper or a dial gauge. The calibration device was verified at laboratory that the precision of force loading is ±0.1% and the precision of deformation measurement is ±0.002mm.

  7. Biomechanical Modeling of the Deadlift Exercise to Improve the Efficacy of Resistive Exercise Microgravity Countermeasures

    NASA Technical Reports Server (NTRS)

    Jagodnik, K. M.; Thompson, W. K.; Gallo, C. A.; DeWitt, J. K.; Funk, J. H.; Funk, N. W.; Perusek, G. P.; Sheehan, C. C.; Lewandowski, B. E.

    2016-01-01

    During long-duration spaceflight missions, astronauts exposure to microgravity without adequate countermeasures can result in losses of muscular strength and endurance, as well as loss of bone mass. As a countermeasure to this challenge, astronauts engage in resistive exercise during spaceflight to maintain their musculoskeletal function. The Hybrid Ultimate Lifting Kit (HULK) has been designed as a prototype exercise device for an exploration-class vehicle; the HULK features a much smaller footprint than previous devices such as the Advanced Resistive Exercise Device (ARED) on the International Space Station (ISS), which makes the HULK suitable for extended spaceflight missions in vehicles with limited volume. As current ISS exercise countermeasure equipment represents an improvement over previous generations of such devices, the ARED is being employed as a benchmark of functional performance. This project involves the development of a biomechanical model of the deadlift exercise, and is novel in that it is the first exercise analyzed in this context to include the upper limbs in the loading path, in contrast to the squat, single-leg squat, and heel raise exercises also being modeled by our team. OpenSim software is employed to develop these biomechanical models of humans performing resistive exercises to assess and improve the new exercise device designs. Analyses include determining differences in joint and muscle forces when using different loading strategies with the device, comparing and contrasting with the ARED benchmark, and determining whether the loading is sufficient to maintain musculoskeletal health. During data collection, the number of repetitions, load, cadence, stance, and grip width are controlled in order to facilitate comparisons between loading configurations. To date, data have been collected for two human subjects performing the deadlift exercise on the HULK device using two different loading conditions. Recorded data include motion capture, electromyography (EMG), ground reaction forces, device load cell data, photos and videos, and anthropometric data. Work is ongoing to perform biomechanical analyses including inverse kinematics and inverse dynamics to compare different versions of the deadlift model in order to determine which provides an appropriate level of detail to study this exercise. This work is supported by the National Space Biomedical Research Institute through NCC 9-58.

  8. A Diffusion-Based and Dynamic 3D-Printed Device That Enables Parallel in Vitro Pharmacokinetic Profiling of Molecules

    PubMed Central

    Lockwood, Sarah Y.; Meisel, Jayda E.; Monsma, Frederick J.; Spence, Dana M.

    2016-01-01

    The process of bringing a drug to market involves many steps, including the preclinical stage, where various properties of the drug candidate molecule are determined. These properties, which include drug absorption, distribution, metabolism, and excretion, are often displayed in a pharmacokinetic (PK) profile. While PK profiles are determined in animal models, in vitro systems that model in vivo processes are available, although each possesses shortcomings. Here, we present a 3D-printed, diffusion-based, and dynamic in vitro PK device. The device contains six flow channels, each with integrated porous membrane-based insert wells. The pores of these membranes enable drugs to freely diffuse back and forth between the flow channels and the inserts, thus enabling both loading and clearance portions of a standard PK curve to be generated. The device is designed to work with 96-well plate technology and consumes single-digit milliliter volumes to generate multiple PK profiles, simultaneously. Generation of PK profiles by use of the device was initially performed with fluorescein as a test molecule. Effects of such parameters as flow rate, loading time, volume in the insert well, and initial concentration of the test molecule were investigated. A prediction model was generated from this data, enabling the user to predict the concentration of the test molecule at any point along the PK profile within a coefficient of variation of ~5%. Depletion of the analyte from the well was characterized and was determined to follow first-order rate kinetics, indicated by statistically equivalent (p > 0.05) depletion half-lives that were independent of the starting concentration. A PK curve for an approved antibiotic, levofloxacin, was generated to show utility beyond the fluorescein test molecule. PMID:26727249

  9. RoboGlove-A Grasp Assist Device for Earth and Space

    NASA Technical Reports Server (NTRS)

    Diftler, M. A.; Ihrke, C. A.; Bridgwater, L. B.; Rogers, J. M.; Davis, D. R.; Linn, D. M.; Laske, E. A.; Ensley, K. G.; Lee, J. H.

    2015-01-01

    The RoboGlove is an assistive device that can augment human strength, endurance or provide directed motion for use in rehabilitation. RoboGlove is a spinoff of the highly successful Robonaut 2 (R2) system developed as part of a partnership between General Motors and NASA. This extremely lightweight device employs an actuator system based on the R2 finger drive system to transfer part or the entire grasp load from human tendons to artificial ones contained in the glove. Steady state loads ranging from 15 to 20 lbs. and peaks approaching 50 lbs. are achievable. Work is underway to integrate the RoboGlove system with a space suit glove to add strength or reduce fatigue during spacewalks. Tactile sensing, miniaturized electronics, and on-board processing provide sufficient flexibility for applications in many industries. The following describes the design, mechanical/electrical integration, and control features of the glove in an assembly-line configuration and discusses work toward the space suit application.

  10. New valve and bonding designs for microfluidic biochips containing proteins.

    PubMed

    Lu, Chunmeng; Xie, Yubing; Yang, Yong; Cheng, Mark M-C; Koh, Chee-Guan; Bai, Yunling; Lee, L James; Juang, Yi-Je

    2007-02-01

    Two major concerns in the design and fabrication of microfluidic biochips are protein binding on the channel surface and protein denaturing during device assembly. In this paper, we describe new methods to solve these problems. A "fishbone" microvalve design based on the concept of superhydrophobicity was developed to replace the capillary valve in applications where the chip surface requires protein blocking to prevent nonspecific binding. Our experimental results show that the valve functions well in a CD-like ELISA device. The packaging of biochips containing pre-loaded proteins is also a challenging task since conventional sealing methods often require the use of high temperatures, electric voltages, or organic solvents that are detrimental to the protein activity. Using CO2 gas to enhance the diffusion of polymer molecules near the device surface can result in good bonding at low temperatures and low pressure. This bonding method has little influence on the activity of the pre-loaded proteins after bonding.

  11. High-performance, low-voltage, and easy-operable bending actuator based on aligned carbon nanotube/polymer composites.

    PubMed

    Chen, Luzhuo; Liu, Changhong; Liu, Ke; Meng, Chuizhou; Hu, Chunhua; Wang, Jiaping; Fan, Shoushan

    2011-03-22

    In this work, we show that embedding super-aligned carbon nanotube sheets into a polymer matrix (polydimethylsiloxane) can remarkably reduce the coefficient of thermal expansion of the polymer matrix by two orders of magnitude. Based on this unique phenomenon, we fabricated a new kind of bending actuator through a two-step method. The actuator is easily operable and can generate an exceptionally large bending actuation with controllable motion at very low driving DC voltages (<700 V/m). Furthermore, the actuator can be operated without electrolytes in the air, which is superior to conventional carbon nanotube actuators. Proposed electrothermal mechanism was discussed and confirmed by our experimental results. The exceptional bending actuation performance together with easy fabrication, low-voltage, and controllable motion demonstrates the potential ability of using this kind of actuator in various applicable areas, such as artificial muscles, microrobotics, microsensors, microtransducers, micromanipulation, microcantilever for medical applications, and so on.

  12. A first packet processing subdomain cluster model based on SDN

    NASA Astrophysics Data System (ADS)

    Chen, Mingyong; Wu, Weimin

    2017-08-01

    For the current controller cluster packet processing performance bottlenecks and controller downtime problems. An SDN controller is proposed to allocate the priority of each device in the SDN (Software Defined Network) network, and the domain contains several network devices and Controller, the controller is responsible for managing the network equipment within the domain, the switch performs data delivery based on the load of the controller, processing network equipment data. The experimental results show that the model can effectively solve the risk of single point failure of the controller, and can solve the performance bottleneck of the first packet processing.

  13. Fiber pressure sensors based on periodical mode coupling effects

    NASA Astrophysics Data System (ADS)

    Lotem, Haim; Wang, Wen C.; Wang, Michael; Schaafsma, David; Skolnick, Bob; Grebel, Haim

    2005-05-01

    Fiber optic sensor technology offers the possibility of implementing low weight, high performance and cost effective health and damage assessment for infrastructure elements. Common fiber sensors are based on the effect of external action on the spectral response of a Fabry-Perot or a Bragg grating section, or on the modal dynamics in multimode (MM) fiber. In the latter case, the fiber itself acts as the sensor, giving it the potential for large range coverage. We were interested in this type of sensor because of its cost advantage in monitoring structural health. In the course of the research, a new type of a rugged modal filter device, based on off-center splicing, was developed. This device, in combination with a MM fiber, was found to be a potential single point-pressure sensing device. Additionally, by translating the pressing point along a MM sensing fiber with a constant load and speed, a sinusoidal intensity modulation was observed. This harmonic behavior, during load translation, is explained by the theory of mode coupling and dispersion. The oscillation period, L~0.43. mm, obtained at 980 nm in a Corning SMF-28 fiber, corresponds to the wavevector difference, Db, between the two-coupled modes, by L = 2p/Db. An additional outcome of the present research is the observation that the response of the loaded MM fiber is strongly dependent on the polarization state of the light traveling along the MM fiber due to different response of the modes to polarization active elements. Our main conclusions are that in MM fiber optic sensor design, special cautions need to be taken in order to stabilize the system, and that the sensitivity along a MM fiber sensor is periodic with a period of ~ 0.4 - 0.5 mm, depending on various fiber parameters and excited modes.

  14. Towards Optical Coherence Tomography-based elastographic evaluation of human cartilage.

    PubMed

    Nebelung, Sven; Brill, Nicolai; Müller, Felix; Tingart, Markus; Pufe, Thomas; Merhof, Dorit; Schmitt, Robert; Jahr, Holger; Truhn, Daniel

    2016-03-01

    Optical Coherence Tomography (OCT) is an imaging technique that allows the surface and subsurface evaluation of semitransparent tissues by generating microscopic cross-sectional images in real time, to millimetre depths and at micrometre resolutions. As the differentiation of cartilage degeneration remains diagnostically challenging to standard imaging modalities, an OCT- and MRI-compatible indentation device for the assessment of cartilage functional properties was developed and validated in the present study. After describing the system design and performing its comprehensive validation, macroscopically intact human cartilage samples (n=5) were indented under control of displacement (δ1=202µm; δ2=405µm; δ3=607µm; δ4=810µm) and simultaneous OCT imaging through a transparent indenter piston in direct contact with the sample; thus, 3-D OCT datasets from surface and subsurface areas were obtained. OCT-based evaluation of loading-induced changes included qualitative assessment of image morphology and signal characteristics. For inter-method cross referencing, the device׳s compatibility with MRI as well as qualitative morphology changes under analogous indentation loading conditions were evaluated by a series of T2 weighted gradient echo sequences. Cartilage thickness measurements were performed using the needle-probe technique prior to OCT and MRI imaging, and subsequently referenced to sample thickness as determined by MRI and histology. Dynamic indentation testing was performed to determine Young׳s modulus for biomechanical reference purposes. Distinct differences in sample thickness as well as corresponding strains were found; however, no significant differences in cartilage thickness were found between the used techniques. Qualitative assessment of OCT and MRI images revealed either distinct or absent sample-specific patterns of morphological changes in relation to indentation loading. For OCT, the tissue area underneath the indenter piston could be qualitatively assessed and displayed in multiple reconstructions, while for MRI, T2 signal characteristics indicated the presence of water and related tissue pressurisation within the sample. In conclusion, the present indentation device has been developed, constructed and validated for qualitative assessment of human cartilage and its response to loading by OCT and MRI. Thereby, it may provide the basis for future quantitative approaches that measure loading-induced deformations within the tissue to generate maps of local tissue properties as well as investigate their relation to degeneration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Side-polished fiber based gain-flattening filter for erbium doped fiber amplifiers

    NASA Astrophysics Data System (ADS)

    Varshney, R. K.; Singh, A.; Pande, K.; Pal, B. P.

    2007-03-01

    A simple and accurate novel normal mode analysis has been developed to take into account the effect of the non-uniform depth of polishing in the study of the transmission characteristics of optical waveguide devices based on loading of a side-polished fiber half-coupler with a multimode planar waveguide. We apply the same to design and fabricate a gain-flattening filter suitable for fiber amplifiers. The wavelength dependent filtering action of the overall device could demonstrate flattening of an EDFA gain spectrum within ±0.7 dB over a bandwidth of 30 nm in the C-band. Results obtained by the present analysis agree very well with our experimental results. This present analysis should be very useful in the accurate design and analysis of any SPF-MMOW device/component including side-polished fiber based sensors.

  16. Optimization of PEDOT films in ionic liquid supercapacitors: demonstration as a power source for polymer electrochromic devices.

    PubMed

    Österholm, Anna M; Shen, D Eric; Dyer, Aubrey L; Reynolds, John R

    2013-12-26

    We report on the optimization of the capacitive behavior of poly(3,4-ethylenedioxythiophene) (PEDOT) films as polymeric electrodes in flexible, Type I electrochemical supercapacitors (ESCs) utilizing ionic liquid (IL) and organic gel electrolytes. The device performance was assessed based on figures of merit that are critical to evaluating the practical utility of electroactive polymer ESCs. PEDOT/IL devices were found to be highly stable over hundreds of thousands of cycles and could be reversibly charged/discharged at scan rates between 500 mV/s and 2 V/s depending on the polymer loading. Furthermore, these devices exhibit leakage currents and self-discharge rates that are comparable to state of the art electrochemical double-layer ESCs. Using an IL as device electrolyte allowed an extension of the voltage window of Type I ESCs by 60%, resulting in a 2.5-fold increase in the energy density obtained. The efficacies of tjese PEDOT ESCs were assessed by using them as a power source for a high-contrast and fast-switching electrochromic device, demonstrating their applicability in small organic electronic-based devices.

  17. A Model of BGA Thermal Fatigue Life Prediction Considering Load Sequence Effects

    PubMed Central

    Hu, Weiwei; Li, Yaqiu; Sun, Yufeng; Mosleh, Ali

    2016-01-01

    Accurate testing history data is necessary for all fatigue life prediction approaches, but such data is always deficient especially for the microelectronic devices. Additionally, the sequence of the individual load cycle plays an important role in physical fatigue damage. However, most of the existing models based on the linear damage accumulation rule ignore the sequence effects. This paper proposes a thermal fatigue life prediction model for ball grid array (BGA) packages to take into consideration the load sequence effects. For the purpose of improving the availability and accessibility of testing data, a new failure criterion is discussed and verified by simulation and experimentation. The consequences for the fatigue underlying sequence load conditions are shown. PMID:28773980

  18. In situ multi-axial loading frame to probe elastomers using X-ray scattering.

    PubMed

    Pannier, Yannick; Proudhon, Henry; Mocuta, Cristian; Thiaudière, Dominique; Cantournet, Sabine

    2011-11-01

    An in situ tensile-shear loading device has been designed to study elastomer crystallization using synchrotron X-ray scattering at the Synchrotron Soleil on the DiffAbs beamline. Elastomer tape specimens of thickness 2 mm can be elongated by up to 500% in the longitudinal direction and sheared by up to 200% in the transverse direction. The device is fully automated and plugged into the TANGO control system of the beamline allowing synchronization between acquisition and loading sequences. Experimental results revealing the evolution of crystallization peaks under load are presented for several tension/shear loading sequences.

  19. Optimization of thermoelectric cooling regimes for heat-loaded elements taking into account the thermal resistance of the heat-spreading system

    NASA Astrophysics Data System (ADS)

    Vasil'ev, E. N.

    2017-09-01

    A mathematical model has been proposed for analyzing and optimizing thermoelectric cooling regimes for heat-loaded elements of engineering and electronic devices. The model based on analytic relations employs the working characteristics of thermoelectric modules as the initial data and makes it possible to determine the temperature regime and the optimal values of the feed current for the modules taking into account the thermal resistance of the heat-spreading system.

  20. 24 CFR 3280.302 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... any device or other means designed to transfer home anchoring loads to the ground. Anchoring equipment... means a specific anchoring assembly device designed to transfer home anchoring loads to the ground... DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Body and Frame Construction Requirements...

  1. Wideband electromagnetic energy harvesting from ambient vibrations

    NASA Astrophysics Data System (ADS)

    Mallick, Dhiman; Podder, Pranay; Roy, Saibal

    2015-06-01

    Different bandwidth widening schemes of electromagnetic energy harvesters have been reported in this work. The devices are fabricated on FR4 substrate using laser micromachining techniques. The linear device operate in a narrow band around the resonance; in order to tune resonant frequency of the device electrically, two different types of complex load topologies are adopted. Using capacitive load, the resonant frequency is tuned in the low frequency direction whereas using inductive load, the resonant frequency is tuned in the high frequency direction. An overall tuning range of ˜2.4 Hz is obtained at 0.3g though the output power dropped significantly over the tuning range. In order to improve the off-resonance performance, nonlinear oscillation based systems are adopted. A specially designed spring arm with fixed-guided configuration produced single well nonlinear monostable configuration. With increasing input acceleration, wider bandwidth is obtained with such a system as large displacement, stretching nonlinearity comes into play and 9.55 Hz bandwidth is obtained at 0.5g. The repulsive force between one static and one vibrating oppositely polarized magnets are used to generate bistable nonlinear potential system. The distance between the mentioned magnets is varied between 4 to 10 mm to produce tunable nonlinearity with a maximum half power bandwidth over 3 Hz at 0.5g.

  2. High-resolution optical polarimetric elastography for measuring the mechanical properties of tissue

    NASA Astrophysics Data System (ADS)

    Hudnut, Alexa W.; Armani, Andrea M.

    2018-02-01

    Traditionally, chemical and molecular markers have been the predominate method in diagnostics. Recently, alternate methods of determining tissue and disease characteristics have been proposed based on testing the mechanical behavior of biomaterials. Existing methods for performing elastography measurements, such as atomic force microscopy, compression testing, and ultrasound elastography, require either extensive sample processing or have poor resolution. In the present work, we demonstrate an optical polarimetric elastography device to characterize the mechanical properties of salmon skeletal muscle. A fiber-coupled 1550nm laser paired with an optical polarizer is used to create a fiber optic sensing region. By measuring the change in polarization from the initial state to the final state within the fiber sensing region with a polarimeter, the loading-unloading curves can be determined for the biomaterial. The device is used to characterize the difference between samples with a range of collagen membranes. The loading-unloading curves are used to determine the change in polarization phase and energy loss of the samples at 10%, 20% and 30% strain. As expected, the energy loss is a better metric for measuring the mechanical properties of the tissues because it incorporates the entire loading-unloading curve rather than a single point. Using this metric, it is demonstrated the device can repeatedly differentiate between the different membrane configurations.

  3. Experimental evaluation of cooling efficiency of the high performance cooling device

    NASA Astrophysics Data System (ADS)

    Nemec, Patrik; Malcho, Milan

    2016-06-01

    This work deal with experimental evaluation of cooling efficiency of cooling device capable transfer high heat fluxes from electric elements to the surrounding. The work contain description of cooling device, working principle of cooling device, construction of cooling device. Experimental part describe the measuring method of device cooling efficiency evaluation. The work results are presented in graphic visualization of temperature dependence of the contact area surface between cooling device evaporator and electronic components on the loaded heat of electronic components in range from 250 to 740 W and temperature dependence of the loop thermosiphon condenser surface on the loaded heat of electronic components in range from 250 to 740 W.

  4. Epifluorescence light collection for multiphoton microscopic endoscopy

    NASA Astrophysics Data System (ADS)

    Brown, Christopher M.; Rivera, David R.; Xu, Chris; Webb, Watt W.

    2011-03-01

    Multiphoton microscopic endoscopy (MPM-E) is a promising medical in vivo diagnostic imaging technique because it captures intrinsic fluorescence and second harmonic generation signals to reveal anatomical and histological information about disease states in tissue. However, maximizing light collection from multiphoton endoscopes remains a challenge: weak nonlinear emissions from endogenous structures, miniature optics, large imaging depths, and light scattering in tissue all hamper light collection. The quantity of light that may be collected using a dual-clad fiber system from scattering phantoms that mimic the properties of the in vivo environment is measured. In this experiment, 800nm excitation light from a Ti:Sapphire laser is dispersion compensated and focused through a SM800 optical fiber and lens system into the tissue phantom. Emission light from the phantom passes through the lens system, reflects off the dichroic and is then collected by a second optical fiber actuated by a micromanipulator. The lateral position of the collection fiber varies, measuring the distribution of emitted light 2000μm on either side of the focal point reimaged to the object plane. This spatial collection measurement is performed at depths up to 200μm from the phantom surface. The tissue phantoms are composed of a 15.8 μM fluorescein solution mixed with microspheres, approximating the scattering properties of human bladder and dermis tissue. Results show that commercially available dual-clad optical fibers collect more than 47% of the total emission returning to the object plane from both phantoms. Based on these results, initial MPM-E devices will image the surface of epithelial tissues.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nemec, Patrik, E-mail: patrik.nemec@fstroj.uniza.sk; Malcho, Milan, E-mail: milan.malcho@fstroj.uniza.sk

    This work deal with experimental evaluation of cooling efficiency of cooling device capable transfer high heat fluxes from electric elements to the surrounding. The work contain description of cooling device, working principle of cooling device, construction of cooling device. Experimental part describe the measuring method of device cooling efficiency evaluation. The work results are presented in graphic visualization of temperature dependence of the contact area surface between cooling device evaporator and electronic components on the loaded heat of electronic components in range from 250 to 740 W and temperature dependence of the loop thermosiphon condenser surface on the loaded heatmore » of electronic components in range from 250 to 740 W.« less

  6. Motorized support jack

    DOEpatents

    Haney, Steven J.; Herron, Donald Joe

    2003-05-13

    A compact, vacuum compatible motorized jack for supporting heavy loads and adjusting their positions is provided. The motorized jack includes: (a) a housing having a base; (b) a first roller device that provides a first slidable surface and that is secured to the base; (c) a second roller device that provides a second slidable surface and that has an upper surface; (d) a wedge that is slidably positioned between the first roller device and the second roller device so that the wedge is in contact with the first slidable surface and the second slidable surface; (e) a motor; and (d) a drive mechanism that connects the motor and the wedge to cause the motor to controllably move the wedge forwards or backwards. Individual motorized jacks can support and lift of an object at an angle. Two or more motorized jacks can provide tip, tilt and vertical position adjustment capabilities.

  7. Motorized support jack

    DOEpatents

    Haney, Steven J.; Herron, Donald Joe

    2001-01-01

    A compact, vacuum compatible motorized jack for supporting heavy loads and adjusting their positions is provided. The motorized jack includes: (a) a housing having a base; (b) a first roller device that provides a first slidable surface and that is secured to the base; (c) a second roller device that provides a second slidable surface and that has an upper surface; (d) a wedge that is slidably positioned between the first roller device and the second roller device so that the wedge is in contact with the first slidable surface and the second slidable surface; (e) a motor; and (d) a drive mechanism that connects the motor and the wedge to cause the motor to controllably move the wedge forwards or backwards. Individual motorized jacks can support and lift of an object at an angle. Two or more motorized jacks can provide tip, tilt and vertical position adjustment capabilities.

  8. The Hopper: A Wearable Robotic Device Testbed for Micro-Gravity Bone-Loading Proof-of-Concept

    NASA Technical Reports Server (NTRS)

    Beck, C. E.; Rovekamp, R. N.; Neuhaus, P. D.

    2015-01-01

    Wearable robotic systems are showing increased potential for addressing crew countermeasures needs. Wearable robots offer a compactness, programmability, and eccentric loading capability not present in more conventional exercise equipment. Correspondingly, advancements in the man to machine interface has progressed, allowing for higher loads to be applied directly to the person in new and novel ways. Recently, the X1 exoskeleton, a lower extremity wearable robot originally designed for mobility assistance and rehabilitation, underwent human subject testing to assess its potential as a knee dynamometer. This was of interest to NASA physiologists because currently strength is not assessed in flight due to hardware limitations, and thus there is a poor understanding of the time course of in-flight changes to muscle strength. The study concluded that the X1 compared well with the Biodex, the "gold standard" in terrestrial dynamometry, with coefficients of variation less than 6.0%. In a following study, the X1 powered ankle was evaluated for its efficacy in exercising calf muscles. Current on-orbit countermeasures equipment does not adequately protect the calf from atrophy. The results of this study were also positive (targeted muscle activity demonstrated via comparing pre- and post-exercise magnetic resonance imaging T2 measurements), again showing the efficacy of wearable robotic devices for addressing the countermeasure needs of our astronauts. Based on these successes and lessons learned, the Grasshopper was co-developed between IHMC (Florida Institute for Human and Machine Cognition) and NASA. The Grasshopper, or the Hopper for short, is a wearable robotic device designed to address muscle and bone density loss for astronauts spending extended periods of time in micro-gravity. The Grasshopper connects to the user's torso like a hiking backpack, over the shoulders and around the waist. At the feet are footplates that strap to the user. There are two actuators, one at each "knee" joint, which are capable of high fidelity torque control. Because the Hopper uses motors instead of gravity to create the load on the user, the device is suited for use on space missions. Exercise in zero-gravity conditions is critical to maintain muscle strength and bone mass. In operation, the actuators try to fold up, or collapse, the device, putting a compressive load between the user's feet and torso. This force is similar to carrying a heavy backpack. The user then bends and extends his or her knees, replicating a weightlifting squat exercise. The applied load is precisely controlled by a computer, and can be programmed to simulate gravitation loads or any desired load prescription, such as free-weight squat exercise. It is even possible to perform eccentric exercises, or negatives, without the need for a spotter. Because the hip joints, as well as the spine and long leg bones, are in the applied load path, there is the potential to stimulate bone growth, countering the typical bone loss when astronauts return from extended duration space travel.

  9. Smart Materials for Electromagnetic and Optical Applications

    NASA Astrophysics Data System (ADS)

    Ramesh, Prashanth

    The research presented in this dissertation focuses on the development of solid-state materials that have the ability to sense, act, think and communicate. Two broad classes of materials, namely ferroelectrics and wideband gap semiconductors were investigated for this purpose. Ferroelectrics possess coupled electromechanical behavior which makes them sensitive to mechanical strains and fluctuations in ambient temperature. Use of ferroelectrics in antenna structures, especially those subject to mechanical and thermal loads, requires knowledge of the phenomenological relationship between the ferroelectric properties of interest (especially dielectric permittivity) and the external physical variables, viz. electric field(s), mechanical strains and temperature. To this end, a phenomenological model of ferroelectric materials based on the Devonshire thermodynamic theory was developed. This model was then used to obtain a relationship expressing the dependence of the dielectric permittivity on the mechanical strain, applied electric field and ambient temperature. The relationship is shown to compare well with published experimental data and other related models in literature. A model relating ferroelectric loss tangent to the applied electric field and temperature is also discussed. Subsequently, relationships expressing the dependence of antenna operating frequency and radiation efficiency on those external physical quantities are described. These relationships demonstrate the tunability of load-bearing antenna structures that integrate ferroelectrics when they are subjected to mechanical and thermal loads. In order to address the inability of ferroelectrics to integrate microelectronic devices, a feature needed in a material capable of sensing, acting, thinking and communicating, the material Gallium Nitride (GaN) is pursued next. There is an increasing utilization of GaN in the area of microelectronics due to the advantages it offers over other semiconductors. This dissertation demonstrates GaN as a candidate material well suited for novel microelectromechanical systems. The potential of GaN for MEMS is demonstrated via the design, analysis, fabrication, testing and characterization of an optical microswitch device actuated by piezoelectric and electrostrictive means. The piezoelectric and electrostrictive properties of GaN and its differences from common piezoelectrics are discussed before elaborating on the device configuration used to implement the microswitch device. Next, the development of two recent fabrication technologies, Photoelectrochemical etch and Bias-enabled Dark Electrochemical etch, used to realize the 3-dimensional device structure in GaN are described in detail. Finally, an ultra-low-cost, laser-based, non-contact approach to test and characterize the microswitch device is described, followed by the device testing results.

  10. Inkjet-printing of non-volatile organic resistive devices and crossbar array structures

    NASA Astrophysics Data System (ADS)

    Sax, Stefan; Nau, Sebastian; Popovic, Karl; Bluemel, Alexander; Klug, Andreas; List-Kratochvil, Emil J. W.

    2015-09-01

    Due to the increasing demand for storage capacity in various electronic gadgets like mobile phones or tablets, new types of non-volatile memory devices have gained a lot of attention over the last few years. Especially multilevel conductance switching elements based on organic semiconductors are of great interest due to their relatively simple device architecture and their small feature size. Since organic semiconductors combine the electronic properties of inorganic materials with the mechanical characteristics of polymers, this class of materials is suitable for solution based large area device preparation techniques. Consequently, inkjet based deposition techniques are highly capable of facing preparation related challenges. By gradually replacing the evaporated electrodes with inkjet printed silver, the preparation related influence onto device performance parameters such as the ON/OFF ratio was investigated with IV measurements and high resolution transmission electron microscopy. Due to the electrode surface roughness the solvent load during the printing of the top electrode as well as organic layer inhomogeneity's the utilization in array applications is hampered. As a prototypical example a 1diode-1resistor element and a 2×2 subarray from 5×5 array matrix were fully characterized demonstrating the versatility of inkjet printing for device preparation.

  11. Real-time Graphics Processing Unit Based Fourier Domain Optical Coherence Tomography and Surgical Applications

    NASA Astrophysics Data System (ADS)

    Zhang, Kang

    2011-12-01

    In this dissertation, real-time Fourier domain optical coherence tomography (FD-OCT) capable of multi-dimensional micrometer-resolution imaging targeted specifically for microsurgical intervention applications was developed and studied. As a part of this work several ultra-high speed real-time FD-OCT imaging and sensing systems were proposed and developed. A real-time 4D (3D+time) OCT system platform using the graphics processing unit (GPU) to accelerate OCT signal processing, the imaging reconstruction, visualization, and volume rendering was developed. Several GPU based algorithms such as non-uniform fast Fourier transform (NUFFT), numerical dispersion compensation, and multi-GPU implementation were developed to improve the impulse response, SNR roll-off and stability of the system. Full-range complex-conjugate-free FD-OCT was also implemented on the GPU architecture to achieve doubled image range and improved SNR. These technologies overcome the imaging reconstruction and visualization bottlenecks widely exist in current ultra-high speed FD-OCT systems and open the way to interventional OCT imaging for applications in guided microsurgery. A hand-held common-path optical coherence tomography (CP-OCT) distance-sensor based microsurgical tool was developed and validated. Through real-time signal processing, edge detection and feed-back control, the tool was shown to be capable of track target surface and compensate motion. The micro-incision test using a phantom was performed using a CP-OCT-sensor integrated hand-held tool, which showed an incision error less than +/-5 microns, comparing to >100 microns error by free-hand incision. The CP-OCT distance sensor has also been utilized to enhance the accuracy and safety of optical nerve stimulation. Finally, several experiments were conducted to validate the system for surgical applications. One of them involved 4D OCT guided micro-manipulation using a phantom. Multiple volume renderings of one 3D data set were performed with different view angles to allow accurate monitoring of the micro-manipulation, and the user to clearly monitor tool-to-target spatial relation in real-time. The system was also validated by imaging multiple biological samples, such as human fingerprint, human cadaver head and small animals. Compared to conventional surgical microscopes, GPU-based real-time FD-OCT can provide the surgeons with a real-time comprehensive spatial view of the microsurgical region and accurate depth perception.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiaohu; Shi, Di; Wang, Zhiwei

    Shunt FACTS devices, such as, a Static Var Compensator (SVC), are capable of providing local reactive power compensation. They are widely used in the network to reduce the real power loss and improve the voltage profile. This paper proposes a planning model based on mixed integer conic programming (MICP) to optimally allocate SVCs in the transmission network considering load uncertainty. The load uncertainties are represented by a number of scenarios. Reformulation and linearization techniques are utilized to transform the original non-convex model into a convex second order cone programming (SOCP) model. Numerical case studies based on the IEEE 30-bus systemmore » demonstrate the effectiveness of the proposed planning model.« less

  13. A cryostat to hold frozen-spin polarized HD targets in CLAS. HDice-II

    DOE PAGES

    Lowry, Michael M.; Bass, Christopher D.; D'Angelo, Annalisa; ...

    2016-01-07

    The design, fabrication, operation, and performance of a helium-3/4 dilution refrigerator and superconducting magnet system for holding a frozen-spin polarized hydrogen deuteride target in the Jefferson Laboratory CLAS detector during photon beam running is reported. The device operates both vertically (for target loading) and horizontally (for target bombardment). Moreover, the device proves capable of maintaining a base temperature of 50 mK and a holding field of 1 Tesla for extended periods.

  14. A droplet-based passive force sensor for remote tactile sensing applications

    NASA Astrophysics Data System (ADS)

    Nie, Baoqing; Yao, Ting; Zhang, Yiqiu; Liu, Jian; Chen, Xinjian

    2018-01-01

    A droplet-based flexible wireless force sensor has been developed for remote tactile-sensing applications. By integration of a droplet-based capacitive sensing unit and two circular planar coils, this inductor-capacitor (LC) passive sensor offers a platform for the mechanical force detection in a wireless transmitting mode. Under external loads, the membrane surface of the sensor deforms the underlying elastic droplet uniformly, introducing a capacitance response in tens of picofarads. The LC circuit transduces the applied force into corresponding variations of its resonance frequency, which is detected by an external electromagnetic coupling coil. Specifically, the liquid droplet features a mechanosensitive plasticity, which results in an increased device sensitivity as high as 2.72 MHz N-1. The high dielectric property of the droplet endows our sensor with high tolerance for noise and large capacitance values (20-40 pF), the highest value in the literature for the LC passive devices in comparable dimensions. It achieves excellent reproducibility under periodical loads ranging from 0 to 1.56 N and temperature fluctuations ranging from 10 °C to 55 °C. As an interesting conceptual demonstration, the flexible device has been configured into a fingertip-amounted setting in a highly compact package (of 11 mm × 11 mm × 0.25 mm) for remote contact force sensing in the table tennis game.

  15. BowMapCL: Burrows-Wheeler Mapping on Multiple Heterogeneous Accelerators.

    PubMed

    Nogueira, David; Tomas, Pedro; Roma, Nuno

    2016-01-01

    The computational demand of exact-search procedures has pressed the exploitation of parallel processing accelerators to reduce the execution time of many applications. However, this often imposes strict restrictions in terms of the problem size and implementation efforts, mainly due to their possibly distinct architectures. To circumvent this limitation, a new exact-search alignment tool (BowMapCL) based on the Burrows-Wheeler Transform and FM-Index is presented. Contrasting to other alternatives, BowMapCL is based on a unified implementation using OpenCL, allowing the exploitation of multiple and possibly different devices (e.g., NVIDIA, AMD/ATI, and Intel GPUs/APUs). Furthermore, to efficiently exploit such heterogeneous architectures, BowMapCL incorporates several techniques to promote its performance and scalability, including multiple buffering, work-queue task-distribution, and dynamic load-balancing, together with index partitioning, bit-encoding, and sampling. When compared with state-of-the-art tools, the attained results showed that BowMapCL (using a single GPU) is 2 × to 7.5 × faster than mainstream multi-threaded CPU BWT-based aligners, like Bowtie, BWA, and SOAP2; and up to 4 × faster than the best performing state-of-the-art GPU implementations (namely, SOAP3 and HPG-BWT). When multiple and completely distinct devices are considered, BowMapCL efficiently scales the offered throughput, ensuring a convenient load-balance of the involved processing in the several distinct devices.

  16. Large-scale load tests and data base of spread footings on sand

    DOT National Transportation Integrated Search

    1978-05-01

    The objective of the experiment is to develop and evaluate the relative merit of warning signs and other devices, used singly or in combination, in improving traffic flow and safety in the presence of a variety of different types of roadside friction...

  17. Invited Article: A review of haptic optical tweezers for an interactive microworld exploration

    NASA Astrophysics Data System (ADS)

    Pacoret, Cécile; Régnier, Stéphane

    2013-08-01

    This paper is the first review of haptic optical tweezers, a new technique which associates force feedback teleoperation with optical tweezers. This technique allows users to explore the microworld by sensing and exerting picoNewton-scale forces with trapped microspheres. Haptic optical tweezers also allow improved dexterity of micromanipulation and micro-assembly. One of the challenges of this technique is to sense and magnify picoNewton-scale forces by a factor of 1012 to enable human operators to perceive interactions that they have never experienced before, such as adhesion phenomena, extremely low inertia, and high frequency dynamics of extremely small objects. The design of optical tweezers for high quality haptic feedback is challenging, given the requirements for very high sensitivity and dynamic stability. The concept, design process, and specification of optical tweezers reviewed here are focused on those intended for haptic teleoperation. In this paper, two new specific designs as well as the current state-of-the-art are presented. Moreover, the remaining important issues are identified for further developments. The initial results obtained are promising and demonstrate that optical tweezers have a significant potential for haptic exploration of the microworld. Haptic optical tweezers will become an invaluable tool for force feedback micromanipulation of biological samples and nano- and micro-assembly parts.

  18. An enhanced SOCP-based method for feeder load balancing using the multi-terminal soft open point in active distribution networks

    DOE PAGES

    Ji, Haoran; Wang, Chengshan; Li, Peng; ...

    2017-09-20

    The integration of distributed generators (DGs) exacerbates the feeder power flow fluctuation and load unbalanced condition in active distribution networks (ADNs). The unbalanced feeder load causes inefficient use of network assets and network congestion during system operation. The flexible interconnection based on the multi-terminal soft open point (SOP) significantly benefits the operation of ADNs. The multi-terminal SOP, which is a controllable power electronic device installed to replace the normally open point, provides accurate active and reactive power flow control to enable the flexible connection of feeders. An enhanced SOCP-based method for feeder load balancing using the multi-terminal SOP is proposedmore » in this paper. Furthermore, by regulating the operation of the multi-terminal SOP, the proposed method can mitigate the unbalanced condition of feeder load and simultaneously reduce the power losses of ADNs. Then, the original non-convex model is converted into a second-order cone programming (SOCP) model using convex relaxation. In order to tighten the SOCP relaxation and improve the computation efficiency, an enhanced SOCP-based approach is developed to solve the proposed model. Finally, case studies are performed on the modified IEEE 33-node system to verify the effectiveness and efficiency of the proposed method.« less

  19. An enhanced SOCP-based method for feeder load balancing using the multi-terminal soft open point in active distribution networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Haoran; Wang, Chengshan; Li, Peng

    The integration of distributed generators (DGs) exacerbates the feeder power flow fluctuation and load unbalanced condition in active distribution networks (ADNs). The unbalanced feeder load causes inefficient use of network assets and network congestion during system operation. The flexible interconnection based on the multi-terminal soft open point (SOP) significantly benefits the operation of ADNs. The multi-terminal SOP, which is a controllable power electronic device installed to replace the normally open point, provides accurate active and reactive power flow control to enable the flexible connection of feeders. An enhanced SOCP-based method for feeder load balancing using the multi-terminal SOP is proposedmore » in this paper. Furthermore, by regulating the operation of the multi-terminal SOP, the proposed method can mitigate the unbalanced condition of feeder load and simultaneously reduce the power losses of ADNs. Then, the original non-convex model is converted into a second-order cone programming (SOCP) model using convex relaxation. In order to tighten the SOCP relaxation and improve the computation efficiency, an enhanced SOCP-based approach is developed to solve the proposed model. Finally, case studies are performed on the modified IEEE 33-node system to verify the effectiveness and efficiency of the proposed method.« less

  20. A 3 kbar hydrogen-compatible gas loader for Paris-Edinburgh presses

    NASA Astrophysics Data System (ADS)

    Klotz, S.; Philippe, J.; Bull, C. L.; Loveday, J. S.; Nelmes, R. J.

    2013-03-01

    We present a device which allows compressed gases to be loaded into large volume opposed anvils used for high pressure neutron scattering in the multi-10 GPa range. The gases are initially loaded into clamps which can then be inserted into VX-Paris-Edinburgh load frames. The system is compatible with all inert gases as well as hydrogen and permits loading pressures of up to 3 kbar for which most gases have densities close to that of the liquid at ambient pressure. The device should have applications for the study of simple molecular solids as well as for loading gases as pressure-transmitting media.

  1. Comparison of a novel fixation device with standard suturing methods for spinal cord stimulators.

    PubMed

    Bowman, Richard G; Caraway, David; Bentley, Ishmael

    2013-01-01

    Spinal cord stimulation is a well-established treatment for chronic neuropathic pain of the trunk or limbs. Currently, the standard method of fixation is to affix the leads of the neuromodulation device to soft tissue, fascia or ligament, through the use of manually tying general suture. A novel semiautomated device is proposed that may be advantageous to the current standard. Comparison testing in an excised caprine spine and simulated bench top model was performed. Three tests were performed: 1) perpendicular pull from fascia of caprine spine; 2) axial pull from fascia of caprine spine; and 3) axial pull from Mylar film. Six samples of each configuration were tested for each scenario. Standard 2-0 Ethibond was compared with a novel semiautomated device (Anulex fiXate). Upon completion of testing statistical analysis was performed for each scenario. For perpendicular pull in the caprine spine, the failure load for standard suture was 8.95 lbs with a standard deviation of 1.39 whereas for fiXate the load was 15.93 lbs with a standard deviation of 2.09. For axial pull in the caprine spine, the failure load for standard suture was 6.79 lbs with a standard deviation of 1.55 whereas for fiXate the load was 12.31 lbs with a standard deviation of 4.26. For axial pull in Mylar film, the failure load for standard suture was 10.87 lbs with a standard deviation of 1.56 whereas for fiXate the load was 19.54 lbs with a standard deviation of 2.24. These data suggest a novel semiautomated device offers a method of fixation that may be utilized in lieu of standard suturing methods as a means of securing neuromodulation devices. Data suggest the novel semiautomated device in fact may provide a more secure fixation than standard suturing methods. © 2012 International Neuromodulation Society.

  2. Comparative Study of Different Methods for Soot Sensing and Filter Monitoring in Diesel Exhausts.

    PubMed

    Feulner, Markus; Hagen, Gunter; Hottner, Kathrin; Redel, Sabrina; Müller, Andreas; Moos, Ralf

    2017-02-18

    Due to increasingly tighter emission limits for diesel and gasoline engines, especially concerning particulate matter emissions, particulate filters are becoming indispensable devices for exhaust gas after treatment. Thereby, for an efficient engine and filter control strategy and a cost-efficient filter design, reliable technologies to determine the soot load of the filters and to measure particulate matter concentrations in the exhaust gas during vehicle operation are highly needed. In this study, different approaches for soot sensing are compared. Measurements were conducted on a dynamometer diesel engine test bench with a diesel particulate filter (DPF). The DPF was monitored by a relatively new microwave-based approach. Simultaneously, a resistive type soot sensor and a Pegasor soot sensing device as a reference system measured the soot concentration exhaust upstream of the DPF. By changing engine parameters, different engine out soot emission rates were set. It was found that the microwave-based signal may not only indicate directly the filter loading, but by a time derivative, the engine out soot emission rate can be deduced. Furthermore, by integrating the measured particulate mass in the exhaust, the soot load of the filter can be determined. In summary, all systems coincide well within certain boundaries and the filter itself can act as a soot sensor.

  3. Comparative Study of Different Methods for Soot Sensing and Filter Monitoring in Diesel Exhausts

    PubMed Central

    Feulner, Markus; Hagen, Gunter; Hottner, Kathrin; Redel, Sabrina; Müller, Andreas; Moos, Ralf

    2017-01-01

    Due to increasingly tighter emission limits for diesel and gasoline engines, especially concerning particulate matter emissions, particulate filters are becoming indispensable devices for exhaust gas after treatment. Thereby, for an efficient engine and filter control strategy and a cost-efficient filter design, reliable technologies to determine the soot load of the filters and to measure particulate matter concentrations in the exhaust gas during vehicle operation are highly needed. In this study, different approaches for soot sensing are compared. Measurements were conducted on a dynamometer diesel engine test bench with a diesel particulate filter (DPF). The DPF was monitored by a relatively new microwave-based approach. Simultaneously, a resistive type soot sensor and a Pegasor soot sensing device as a reference system measured the soot concentration exhaust upstream of the DPF. By changing engine parameters, different engine out soot emission rates were set. It was found that the microwave-based signal may not only indicate directly the filter loading, but by a time derivative, the engine out soot emission rate can be deduced. Furthermore, by integrating the measured particulate mass in the exhaust, the soot load of the filter can be determined. In summary, all systems coincide well within certain boundaries and the filter itself can act as a soot sensor. PMID:28218700

  4. Simultaneous recordings of force and sliding movement between a myosin-coated glass microneedle and actin cables in vitro.

    PubMed Central

    Chaen, S; Oiwa, K; Shimmen, T; Iwamoto, H; Sugi, H

    1989-01-01

    To elucidate the molecular mechanism of muscle contraction resulting from the ATP-dependent actin-myosin interaction, we constructed an assay system with which both the force and the movement produced by the actin-myosin interaction in vitro can be simultaneously recorded and analyzed. The assay system consisted of the giant internodal cells of an alga, Nitellopsis obtusa, which contain well-organized arrays of actin filaments (actin cables) running along the cell long axis, and a glass microneedle (tip diameter, approximately 7 microns; elastic coefficient, approximately 40 pN/microns), which was coated with skeletal muscle myosin at the tip and extended from a micromanipulator at right angles with the actin cables. When the myosin-coated tip of the microneedle was brought into contact with the exposed surface of the actin cables, it exhibited ATP-dependent movement along the actin cables over a distance of 20-150 microns in 20-200 s (20-23 degrees C) and eventually stopped due to a balance between forces generated by the actin-myosin interaction (800-6000 pN) and by the bent microneedle. Since the load on the force-generating myosin molecules increased with the bending displacement of the microneedle (auxotonic condition), the relation between the load and the sliding velocity of the myosin heads past the actin cables was determined from the time course of the microneedle movement recorded with a video system. The shape of the force-velocity curve thus obtained was convex upwards, similar to that of the force-velocity curve of intact frog muscle fibers obtained under the auxotonic condition. Images PMID:2922395

  5. Visual display and alarm system for wind tunnel static and dynamic loads

    NASA Technical Reports Server (NTRS)

    Hanly, Richard D.; Fogarty, James T.

    1987-01-01

    A wind tunnel balance monitor and alarm system developed at NASA Ames Research Center will produce several beneficial results. The costs of wind tunnel delays because of inadvertent balance damage and the costs of balance repair or replacement can be greatly reduced or eliminated with better real-time information on the balance static and dynamic loading. The wind tunnel itself will have enhanced utility with the elimination of overly cautious limits on test conditions. The microprocessor-based system features automatic scaling and 16 multicolored LED bargraphs to indicate both static and dynamic components of the signals from eight individual channels. Five individually programmable alarm levels are available with relay closures for internal or external visual and audible warning devices and other functions such as automatic activation of external recording devices, model positioning mechanisms, or tunnel shutdown.

  6. Visual display and alarm system for wind tunnel static and dynamic loads

    NASA Technical Reports Server (NTRS)

    Hanly, Richard D.; Fogarty, James T.

    1987-01-01

    A wind tunnel balance monitor and alarm system developed at NASA Ames Research Center will produce several beneficial results. The costs of wind tunnel delays because of inadvertent balance damage and the costs of balance repair or replacement can be greatly reduced or eliminated with better real-time information on the balance static and dynamic loading. The wind tunnel itself will have enhanced utility with the elimination of overly cautious limits on test conditions. The microprocessor-based system features automatic scaling and 16 multicolored LED bargraphs to indicate both static and dynamic components of the signals from eight individual channels. Five individually programmable alarm levels are available with relay closures for internal or external visual and audible warning devices and other functions such as automatic activation of external recording devices, model positioning mechanism, or tunnel shutdown.

  7. Wind Loads on Flat Plate Photovoltaic Array Fields

    NASA Technical Reports Server (NTRS)

    Miller, R.; Zimmerman, D.

    1979-01-01

    The aerodynamic forces resulting from winds acting on flat plate photovoltaic arrays were investigated. Local pressure distributions and total aerodynamic forces on the arrays are shown. Design loads are presented to cover the conditions of array angles relative to the ground from 20 deg to 60 deg, variable array spacings, a ground clearance gap up to 1.2 m (4 ft) and array slant heights of 2.4 m (8 ft) and 4.8 m (16 ft). Several means of alleviating the wind loads on the arrays are detailed. The expected reduction of the steady state wind velocity with the use of fences as a load alleviation device are indicated to be in excess of a factor of three for some conditions. This yields steady state wind load reductions as much as a factor of ten compared to the load incurred if no fence is used to protect the arrays. This steady state wind load reduction is offset by the increase in turbulence due to the fence but still an overall load reduction of 2.5 can be realized. Other load alleviation devices suggested are the installation of air gaps in the arrays, blocking the flow under the arrays and rounding the edges of the array. A wind tunnel test plan to supplement the theoretical study and to evaluate the load alleviation devices is outlined.

  8. Laser-machined piezoelectric cantilevers for mechanical energy harvesting.

    PubMed

    Kim, HyunUk; Bedekar, Vishwas; Islam, Rashed Adnan; Lee, Woo-Ho; Leo, Don; Priya, Shashank

    2008-09-01

    In this study, we report results on a piezoelectric- material-based mechanical energy-harvesting device that was fabricated by combining laser machining with microelectronics packaging technology. It was found that the laser-machining process did not have significant effect on the electrical properties of piezoelectric material. The fabricated device was tested in the low-frequency regime of 50 to 1000 Hz at constant force of 8 g (where g = 9.8 m/s(2)). The device was found to generate continuous power of 1.13 microW at 870 Hz across a 288.5 kOmega load with a power density of 301.3 microW/cm(3).

  9. Method to Eliminate Flux Linkage DC Component in Load Transformer for Static Transfer Switch

    PubMed Central

    2014-01-01

    Many industrial and commercial sensitive loads are subject to the voltage sags and interruptions. The static transfer switch (STS) based on the thyristors is applied to improve the power quality and reliability. However, the transfer will result in severe inrush current in the load transformer, because of the DC component in the magnetic flux generated in the transfer process. The inrush current which is always 2~30 p.u. can cause the disoperation of relay protective devices and bring potential damage to the transformer. The way to eliminate the DC component is to transfer the related phases when the residual flux linkage of the load transformer and the prospective flux linkage of the alternate source are equal. This paper analyzes how the flux linkage of each winding in the load transformer changes in the transfer process. Based on the residual flux linkage when the preferred source is completely disconnected, the method to calculate the proper time point to close each phase of the alternate source is developed. Simulation and laboratory experiments results are presented to show the effectiveness of the transfer method. PMID:25133255

  10. Method to eliminate flux linkage DC component in load transformer for static transfer switch.

    PubMed

    He, Yu; Mao, Chengxiong; Lu, Jiming; Wang, Dan; Tian, Bing

    2014-01-01

    Many industrial and commercial sensitive loads are subject to the voltage sags and interruptions. The static transfer switch (STS) based on the thyristors is applied to improve the power quality and reliability. However, the transfer will result in severe inrush current in the load transformer, because of the DC component in the magnetic flux generated in the transfer process. The inrush current which is always 2 ~ 30 p.u. can cause the disoperation of relay protective devices and bring potential damage to the transformer. The way to eliminate the DC component is to transfer the related phases when the residual flux linkage of the load transformer and the prospective flux linkage of the alternate source are equal. This paper analyzes how the flux linkage of each winding in the load transformer changes in the transfer process. Based on the residual flux linkage when the preferred source is completely disconnected, the method to calculate the proper time point to close each phase of the alternate source is developed. Simulation and laboratory experiments results are presented to show the effectiveness of the transfer method.

  11. 45. Building 102, view of waveguide "coaxial waste load" device ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    45. Building 102, view of waveguide "coaxial waste load" device connected to waveguide combiner. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  12. Doubly fed induction machine

    DOEpatents

    Skeist, S. Merrill; Baker, Richard H.

    2005-10-11

    An electro-mechanical energy conversion system coupled between an energy source and an energy load including an energy converter device having a doubly fed induction machine coupled between the energy source and the energy load to convert the energy from the energy source and to transfer the converted energy to the energy load and an energy transfer multiplexer coupled to the energy converter device to control the flow of power or energy through the doubly fed induction machine.

  13. Design of an Ultra-Efficient GaN High Power Amplifier for Radar Front-Ends Using Active Harmonic Load-Pull

    NASA Technical Reports Server (NTRS)

    Thrivikraman, Tushar; Hoffman, James

    2012-01-01

    This work presents a new measurement technique, mixed-signal active harmonic load-pull (MSALP) developed by Anterverta-mw in partnership with Maury Microwave, that allows for wide-band ultra-high efficiency amplifiers to be designed using GaN technology. An overview of the theory behind active load-pull is presented and why load-pull is important for high-power device characterization. In addition, an example procedure is presented that outlines a methodology for amplifier design using this measurement system. Lastly, measured results of a 10W GaN amplifier are presented. This work aims to highlight the benefit of using this sophisticated measurement systems for to optimize amplifier design for real radar waveforms that in turn will simplify implementation of space-based radar systems

  14. Vibration properties of a rotating piezoelectric energy harvesting device that experiences gyroscopic effects

    NASA Astrophysics Data System (ADS)

    Lu, Haohui; Chai, Tan; Cooley, Christopher G.

    2018-03-01

    This study investigates the vibration of a rotating piezoelectric device that consists of a proof mass that is supported by elastic structures with piezoelectric layers. Vibration of the proof mass causes deformation in the piezoelectric structures and voltages to power the electrical loads. The coupled electromechanical equations of motion are derived using Newtonian mechanics and Kirchhoff's circuit laws. The free vibration behavior is investigated for devices with identical (tuned) and nonidentical (mistuned) piezoelectric support structures and electrical loads. These devices have complex-valued, speed-dependent eigenvalues and eigenvectors as a result of gyroscopic effects caused by their constant rotation. The characteristics of the complex-valued eigensolutions are related to physical behavior of the device's vibration. The free vibration behaviors differ significantly for tuned and mistuned devices. Due to gyroscopic effects, the proof mass in the tuned device vibrates in either forward or backward decaying circular orbits in single-mode free response. This is proven analytically for all tuned devices, regardless of the device's specific parameters or operating speed. For mistuned devices, the proof mass has decaying elliptical forward and backward orbits. The eigenvalues are shown to be sensitive to changes in the electrical load resistances. Closed-form solutions for the eigenvalues are derived for open and close circuits. At high rotation speeds these devices experience critical speeds and instability.

  15. Fatigue Assessment of Nickel-Titanium Peripheral Stents: Comparison of Multi-Axial Fatigue Models

    NASA Astrophysics Data System (ADS)

    Allegretti, Dario; Berti, Francesca; Migliavacca, Francesco; Pennati, Giancarlo; Petrini, Lorenza

    2018-03-01

    Peripheral Nickel-Titanium (NiTi) stents exploit super-elasticity to treat femoropopliteal artery atherosclerosis. The stent is subject to cyclic loads, which may lead to fatigue fracture and treatment failure. The complexity of the loading conditions and device geometry, coupled with the nonlinear material behavior, may induce multi-axial and non-proportional deformation. Finite element analysis can assess the fatigue risk, by comparing the device state of stress with the material fatigue limit. The most suitable fatigue model is not fully understood for NiTi devices, due to its complex thermo-mechanical behavior. This paper assesses the fatigue behavior of NiTi stents through computational models and experimental validation. Four different strain-based models are considered: the von Mises criterion and three critical plane models (Fatemi-Socie, Brown-Miller, and Smith-Watson-Topper models). Two stents, made of the same material with different cell geometries are manufactured, and their fatigue behavior is experimentally characterized. The comparison between experimental and numerical results highlights an overestimation of the failure risk by the von Mises criterion. On the contrary, the selected critical plane models, even if based on different damage mechanisms, give a better fatigue life estimation. Further investigations on crack propagation mechanisms of NiTi stents are required to properly select the most reliable fatigue model.

  16. Fatigue Assessment of Nickel-Titanium Peripheral Stents: Comparison of Multi-Axial Fatigue Models

    NASA Astrophysics Data System (ADS)

    Allegretti, Dario; Berti, Francesca; Migliavacca, Francesco; Pennati, Giancarlo; Petrini, Lorenza

    2018-02-01

    Peripheral Nickel-Titanium (NiTi) stents exploit super-elasticity to treat femoropopliteal artery atherosclerosis. The stent is subject to cyclic loads, which may lead to fatigue fracture and treatment failure. The complexity of the loading conditions and device geometry, coupled with the nonlinear material behavior, may induce multi-axial and non-proportional deformation. Finite element analysis can assess the fatigue risk, by comparing the device state of stress with the material fatigue limit. The most suitable fatigue model is not fully understood for NiTi devices, due to its complex thermo-mechanical behavior. This paper assesses the fatigue behavior of NiTi stents through computational models and experimental validation. Four different strain-based models are considered: the von Mises criterion and three critical plane models (Fatemi-Socie, Brown-Miller, and Smith-Watson-Topper models). Two stents, made of the same material with different cell geometries are manufactured, and their fatigue behavior is experimentally characterized. The comparison between experimental and numerical results highlights an overestimation of the failure risk by the von Mises criterion. On the contrary, the selected critical plane models, even if based on different damage mechanisms, give a better fatigue life estimation. Further investigations on crack propagation mechanisms of NiTi stents are required to properly select the most reliable fatigue model.

  17. Parafunctional loading and occlusal device on stress distribution around implants: A 3D finite element analysis.

    PubMed

    Borges Radaelli, Manuel Tomás; Idogava, Henrique Takashi; Spazzin, Aloisio Oro; Noritomi, Pedro Yoshito; Boscato, Noéli

    2018-04-30

    An occlusal device is frequently recommended for patients with bruxism to protect implant-supported restorations and prevent marginal bone loss. Scientific evidence to support this treatment is lacking. The purpose of this 3-dimensional (3D) finite element study was to evaluate the influence of an acrylic resin occlusal device, implant length, and insertion depth on stress distribution with functional and parafunctional loadings. Computer-aided design software was used to construct 8 models. The models were composed of a mandibular bone section including the second premolar and first and second molars. Insertion depths (bone level and 2 mm subcrestal) were simulated at the first molar. Three natural antagonist maxillary teeth and the placement or not of an occlusal device were simulated. Functional (200-N axial and 10-N oblique) and parafunctional (1000-N axial and 25-N oblique) forces were applied. Finite element analysis (FEA) was used to determine the maximum principal stress for the cortical and trabecular bone and von Mises for implant and prosthetic abutment. Stress concentration was observed at the abutment-implant and the implant-bone interfaces. Occlusal device placement changed the pattern of stress distribution and reduced stress levels from parafunctional loading in all structures, except in the trabecular bone. Implants with subcrestal insertion depths had reduced stress at the implant-abutment interface and cortical bone around the implant abutment, while the stress increased in the bone in contact with the implant. Parafunctional loading increased the stress levels in all structures when compared with functional loading. An occlusal device resulted in the lowest stress levels at the abutment and implant and the most favorable stress distribution between the cortical and trabecular bone. Under parafunctional loading, an occlusal device was more effective in reducing stress distribution for longer implants inserted at bone level. Subcrestally, implant insertion yielded the most favorable biomechanical conditions at the abutment-implant interface and at the coronal surface of the cortical bone, mainly when there was no occlusal device. Copyright © 2018 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  18. Resonant loading of aircraft secondary structure panels for use with thermoelastic stress analysis and digital image correlation

    NASA Astrophysics Data System (ADS)

    Waugh, Rachael C.; Dulieu-Barton, Janice M.; Quinn, S.

    2015-03-01

    Thermoelastic stress analysis (TSA) is an established active thermographic approach which uses the thermoelastic effect to correlate the temperature change that occurs as a material is subjected to elastic cyclic loading to the sum of the principal stresses on the surface of the component. Digital image correlation (DIC) tracks features on the surface of a material to establish a displacement field of a component subjected to load, which can then be used to calculate the strain field. The application of both DIC and TSA on a composite plate representative of aircraft secondary structure subject to resonant frequency loading using a portable loading device, i.e. `remote loading' is described. Laboratory based loading for TSA and DIC is typically imparted using a test machine, however in the current work a vibration loading system is used which is able to excite the component of interest at resonant frequency which enables TSA and DIC to be carried out. The accuracy of the measurements made under remote loading of both of the optical techniques applied is discussed. The data are compared to extract complimentary information from the two techniques. This work forms a step towards a combined strain based non-destructive evaluation procedure able to identify and quantify the effect of defects more fully, particularly when examining component performance in service applications.

  19. Dynamic Loading Assembly for Testing Actuators of Segmented Mirror Telescope

    NASA Astrophysics Data System (ADS)

    Deshmukh, Prasanna Gajanan; Parihar, Padmakar; Balasubramaniam, Karthik A.; Mishra, Deepta Sundar; Mahesh, P. K.

    Upcoming large telescopes are based on Segmented Mirror Telescope (SMT) technology which uses small hexagonal mirror segments placed side by side to form the large monolithic surface. The segments alignment needs to be maintained against external disturbances like wind, gravity, temperature and structural vibration. This is achieved by using three position actuators per segment working at few-nanometer scale range along with a local closed loop controller. The actuator along with a controller is required to meet very stringent performance requirements, such as track rates up to 300nm/s (90mN/s) with tracking errors less than 5nm, dynamical forces of up to ±40N, ability to reject disturbances introduced by the wind as well as by mechanical vibration generated in the mirror cell, etc. To conduct these performance tests in more realistic manner, we have designed and developed a Dynamic Loading Assembly (DLA) at Indian Institute of Astrophysics (IIA), Bangalore. DLA is a computer controlled force-inducing device, designed in a modular fashion to generate different types of user-defined disturbances in extremely precise and controlled manner. Before realizing the device, using a simple spring-mass-damper-based mathematical model, we ensured that the concept would indeed work. Subsequently, simple concept was converted into a detailed mechanical design and parts were manufactured and assembled. DLA has static and dynamic loading capabilities up to 250N and 18N respectively, with a bandwidth sufficient to generate wind disturbances. In this paper, we present various performance requirements of SMT actuators as well as our effort to develop a dynamic loading device which can be used to test these actuators. Well before using DLA for meaningful testing of the actuator, the DLA itself have gone through various tests and improvements phases. We have successfully demonstrated that DLA can be used to check the extreme performance of two different SMT actuators, which are expected to track the position/force with a few nanometer accuracy.

  20. Separation of density and viscosity influence on liquid-loaded surface acoustic wave devices

    NASA Astrophysics Data System (ADS)

    Herrmann, F.; Hahn, D.; Büttgenbach, S.

    1999-05-01

    Love-mode sensors are reported for separate measurement of liquid density and viscosity. They combine the general merits of Love-mode devices, e.g., ease of sensitivity adjustment and robustness, with a highly effective procedure of separate determination of liquid density and viscosity. A model is proposed to describe the frequency response of the devices to liquid loading. Moreover, design rules are given for further optimization and sensitivity enhancement.

  1. Design optimization of first wall and breeder unit module size for the Indian HCCB blanket module

    NASA Astrophysics Data System (ADS)

    Deepak, SHARMA; Paritosh, CHAUDHURI

    2018-04-01

    The Indian test blanket module (TBM) program in ITER is one of the major steps in the Indian fusion reactor program for carrying out the R&D activities in the critical areas like design of tritium breeding blankets relevant to future Indian fusion devices (ITER relevant and DEMO). The Indian Lead–Lithium Cooled Ceramic Breeder (LLCB) blanket concept is one of the Indian DEMO relevant TBM, to be tested in ITER as a part of the TBM program. Helium-Cooled Ceramic Breeder (HCCB) is an alternative blanket concept that consists of lithium titanate (Li2TiO3) as ceramic breeder (CB) material in the form of packed pebble beds and beryllium as the neutron multiplier. Specifically, attentions are given to the optimization of first wall coolant channel design and size of breeder unit module considering coolant pressure and thermal loads for the proposed Indian HCCB blanket based on ITER relevant TBM and loading conditions. These analyses will help proceeding further in designing blankets for loads relevant to the future fusion device.

  2. Rock-bed thermocline storage: A numerical analysis of granular bed behavior and interaction with storage tank

    NASA Astrophysics Data System (ADS)

    Sassine, Nahia; Donzé, Frédéric-Victor; Bruch, Arnaud; Harthong, Barthélemy

    2017-06-01

    Thermal Energy Storage (TES) systems are central elements of various types of power plants operated using renewable energy sources. Packed bed TES can be considered as a cost-effective solution in concentrated solar power plants (CSP). Such a device is made up of a tank filled with a granular bed through which heat-transfer fluid circulates. However, in such devices, the tank might be subjected to catastrophic failure induced by a mechanical phenomenon known as thermal ratcheting. Thermal stresses are accumulated during cycles of loading and unloading until the failure happens. This paper aims at studying the evolution of tank wall stresses over granular bed thermal cycles, taking into account both thermal and mechanical loads, with a numerical model based on the discrete element method (DEM). Simulations were performed to study two different thermal configurations: (i) the tank is heated homogenously along its height or (ii) with a vertical gradient of temperature. Then, the resulting loading stresses applied on the tank are compared as well the response of the internal granular material.

  3. Complex Mobile Learning That Adapts to Learners' Cognitive Load

    ERIC Educational Resources Information Center

    Deegan, Robin

    2015-01-01

    Mobile learning is cognitively demanding and frequently the ubiquitous nature of mobile computing means that mobile devices are used in cognitively demanding environments. This paper examines the use of mobile devices from a Learning, Usability and Cognitive Load Theory perspective. It suggests scenarios where these fields interact and presents an…

  4. Performance deterioration based on simulated aerodynamic loads test, JT9D jet engine diagnostics program

    NASA Technical Reports Server (NTRS)

    Stromberg, W. J.

    1981-01-01

    An engine was specially prepared with extensive instrumentation to monitor performance, case temperatures, and clearance changes. A special loading device was used to apply known loads on the engine by the use of cables placed around the flight inlet. These loads simulated the estimated aerodynamic pressure distributions that occur on the inlet in various segments of a typical airplane flight. Test results indicate that the engine lost 1.3 percent in take-off thrust specific fuel consumption (TSFC) during the course of the test effort. Permanent clearance changes due to the loads accounted for 1.1 percent; increase in low pressure compressor airfoil roughness and thermal distortion in the high pressure turbine accounted for 0.2 percent. Pretest predicted performance loss due to clearance changes was 0.9 percent in TSFC. Therefore, the agreement between measurement and prediction is considered to be excellent.

  5. Copper Nanowires as Conductive Ink for Low-Cost Draw-On Electronics.

    PubMed

    Jason, Naveen Noah; Shen, Wei; Cheng, Wenlong

    2015-08-05

    This work tackles the complicated problem of clump formation and entanglement of high aspect ratio copper nanowires, due to which a well dispersed solution for use as a true ink for drawable electronics has not been made until now. Through rheology studies even a hard to use material like copper nanowires was tailored to be made into a highly efficient conductive ink with only 2 vol % or 18.28 wt % loading which is far lower than existing nanoparticle based inks. This versatile ink can be applied onto various substrates such as paper, PET, PDMS and latex. By using the ink in a roller ball pen, a bending sensor device was simply drawn on paper, which demonstrated detection of various degrees of convex bending and was highly durable as shown in the 10,000 bending cycling test. A highly sensitive strain sensor which has a maximum gauge factor of 54.38 was also fabricated by simply painting the ink onto latex rubber strip using a paintbrush. Finally a complex conductive pattern depicting the Sydney Opera House was painted on paper to demonstrate the versatility and robustness of the ink. The use of Cu NWs is highly economical in terms of the conductive filler loading in the ink and the cost of copper itself as compared to other metal NPs, CNT, and graphene-based inks. The demonstrated e-ink, devices, and facile device fabrication methods push the field one step closer to truly creating cheap and highly reliable skin like devices "on the fly".

  6. LOADING DEVICE

    DOEpatents

    Ohlinger, L.A.

    1958-10-01

    A device is presented for loading or charging bodies of fissionable material into a reactor. This device consists of a car, mounted on tracks, into which the fissionable materials may be placed at a remote area, transported to the reactor, and inserted without danger to the operating personnel. The car has mounted on it a heavily shielded magazine for holding a number of the radioactive bodies. The magazine is of a U-shaped configuration and is inclined to the horizontal plane, with a cap covering the elevated open end, and a remotely operated plunger at the lower, closed end. After the fissionable bodies are loaded in the magazine and transported to the reactor, the plunger inserts the body at the lower end of the magazine into the reactor, then is withdrawn, thereby allowing gravity to roll the remaining bodies into position for successive loading in a similar manner.

  7. Establishment of stem cell lines from nuclear transferred and parthenogenetically activated mouse oocytes for therapeutic cloning.

    PubMed

    Ju, Jin Young; Park, Chun Young; Gupta, Mukesh Kumar; Uhm, Sang Jun; Paik, Eun Chan; Ryoo, Zae Young; Cho, Youl Hee; Chung, Kil Saeng; Lee, Hoon Taek

    2008-05-01

    To establish embryonic stem cell lines from nuclear transfer of somatic cell nuclei isolated from the same oocyte donor and from parthenogenetic activation. The study also evaluated the effect of the micromanipulation procedure on the outcome of somatic cell nuclear transfer in mice. Randomized, prospective study. Hospital-based assisted reproductive technology laboratory. F(1) (C57BL/6 x 129P3/J) mice. Metaphase II-stage oocytes were either parthenogenetically activated or nuclear transferred with cumulus cell nuclei or parthenogenetically activated after a sham-manipulation procedure. Embryogenesis and embryonic stem cell establishment. The development rate to morula/blastocyst of nuclear transferred oocytes (27.9% +/- 5.9%) was significantly lower than that of the sham-manipulated (84.1% +/- 5.6%) or parthenogenetic (98.6% +/- 1.4%) groups. A sharp decrease in cleavage potential was obvious in the two- to four-cell transition for the nuclear transferred embryos (79.0% +/- 4.6% and 43.3% +/- 5.0%), implying incomplete nuclear reprogramming in arrested oocytes. However, the cleavage, as well as the development rate, of parthenogenetic and sham-manipulated groups did not differ significantly. The embryonic stem cell line establishment rate was higher from parthenogenetically activated oocytes (15.7%) than nuclear transferred (4.3%) or sham-manipulated oocytes (12.5%). Cell colonies from all groups displayed typical morphology of mice embryonic stem cells and could be maintained successfully with undifferentiated morphology after continuous proliferation for more than 120 passages still maintaining normal karyotype. All these cells were positive for mice embryonic stem cell markers such as Oct-4 and SSEA-1 based on immunocytochemistry and reverse transcriptase-polymerase chain reaction. The clonal origin of the ntES cell line and the parthenogenetic embryonic stem cell lines were confirmed by polymerase chain reaction analysis of the polymorphic markers. Blastocyst injection experiments demonstrated that these lines contributed to resulting chimeras and are germ-line competent. We report the establishment of ntES cell lines from somatic cells isolated from same individual. Our data also suggest that embryo micromanipulation procedure during the nuclear transfer procedure influences the developmental ability and embryonic stem cell establishment rate of nuclear transferred embryos.

  8. Accelerated testing for studying pavement design and performance (FY 2001) : evaluation of the performance of permeable and semi-permeable unbound granular bases under Portland Cement Concrete Pavement (PCCP) slabs and alternate load transfer devices for

    DOT National Transportation Integrated Search

    2003-11-01

    The objectives of this research are to determine the effect of unbound drainable base types on the performance of PCCP and the efficiency of fiber-reinforced polymer (FRP) dowels, compared to epoxy coated steel dowels, when retrofitted to re-establis...

  9. Proceedings of the 1981 Army Numerical Analysis and Computers Conference, held U. S. Army Missile Command, Redstone Arsenal, Alabama, 26-27 February 1981

    DTIC Science & Technology

    1981-08-01

    loaded Loading done Time= 1295 msec. SQRT(3) %I + 1 SQRT(3) %I - 1 SQRT(3) %I f 1 (D13) TX = 1---------+-1** x = C-l---+-------, x = - 1, x...thnrl its competitors. As is to be expected, the table makes cJc ;lr the benefits of subincrement ing for nny approximation. For example, usiny the...Acquisition Systems ( DACS ) and a Data Analysis System (DAN), The DACs will be microprocessor-based recording devices with software-control

  10. Resistive Exercise Device

    NASA Technical Reports Server (NTRS)

    Smith, Damon C. (Inventor)

    2005-01-01

    An exercise device 10 is particularly well suited for use in low gravity environments, and includes a frame 12 with plurality of resistance elements 30,82 supported in parallel on the frame. A load transfer member 20 is moveable relative to the frame for transferring the applied force to the free end of each captured resistance element. Load selection template 14 is removably secured both to the load transfer member, and a plurality of capture mechanisms engage the free end of corresponding resistance elements. The force applying mechanism 53 may be a handle, harness or other user interface for applying a force to move the load transfer member.

  11. Liquid level sensing device

    DOEpatents

    Tokarz, Richard D.

    1983-01-01

    A liquid level sensing device comprising a load cell supporting a column or stack of segments freely resting on one another. The density of each element is substantially identical to that of the surrounding liquid. The elements are freely guided within a surrounding tube. As each element is exposed above the liquid level, its weight will be impressed through the column to the load cell, thereby providing a signal at the load cell directly proportional to the liquid level elevation.

  12. A device for characterising the mechanical properties of the plantar soft tissue of the foot.

    PubMed

    Parker, D; Cooper, G; Pearson, S; Crofts, G; Howard, D; Busby, P; Nester, C

    2015-11-01

    The plantar soft tissue is a highly functional viscoelastic structure involved in transferring load to the human body during walking. A Soft Tissue Response Imaging Device was developed to apply a vertical compression to the plantar soft tissue whilst measuring the mechanical response via a combined load cell and ultrasound imaging arrangement. Accuracy of motion compared to input profiles; validation of the response measured for standard materials in compression; variability of force and displacement measures for consecutive compressive cycles; and implementation in vivo with five healthy participants. Static displacement displayed average error of 0.04 mm (range of 15 mm), and static load displayed average error of 0.15 N (range of 250 N). Validation tests showed acceptable agreement compared to a Houndsfield tensometer for both displacement (CMC > 0.99 RMSE > 0.18 mm) and load (CMC > 0.95 RMSE < 4.86 N). Device motion was highly repeatable for bench-top tests (ICC = 0.99) and participant trials (CMC = 1.00). Soft tissue response was found repeatable for intra (CMC > 0.98) and inter trials (CMC > 0.70). The device has been shown to be capable of implementing complex loading patterns similar to gait, and of capturing the compressive response of the plantar soft tissue for a range of loading conditions in vivo. Copyright © 2015. Published by Elsevier Ltd.

  13. Progress in extrapolating divertor heat fluxes towards large fusion devices

    NASA Astrophysics Data System (ADS)

    Sieglin, B.; Faitsch, M.; Eich, T.; Herrmann, A.; Suttrop, W.; Collaborators, JET; the MST1 Team; the ASDEX Upgrade Team

    2017-12-01

    Heat load to the plasma facing components is one of the major challenges for the development and design of large fusion devices such as ITER. Nowadays fusion experiments can operate with heat load mitigation techniques, e.g. sweeping, impurity seeding, but do not generally require it. For large fusion devices however, heat load mitigation will be essential. This paper presents the current progress of the extrapolation of steady state and transient heat loads towards large fusion devices. For transient heat loads, so-called edge localized modes are considered a serious issue for the lifetime of divertor components. In this paper, the ITER operation at half field (2.65 T) and half current (7.5 MA) will be discussed considering the current material limit for the divertor peak energy fluence of 0.5 {MJ}/{{{m}}}2. Recent studies were successful in describing the observed energy fluence in the JET, MAST and ASDEX Upgrade using the pedestal pressure prior to the ELM crash. Extrapolating this towards ITER results in a more benign heat load compared to previous scalings. In the presence of magnetic perturbation, the axisymmetry is broken and a 2D heat flux pattern is induced on the divertor target, leading to local increase of the heat flux which is a concern for ITER. It is shown that for a moderate divertor broadening S/{λ }{{q}}> 0.5 the toroidal peaking of the heat flux disappears.

  14. 30 CFR 57.9317 - Suspended loads.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Loading, Hauling, and Dumping Safety Devices, Provisions, and Procedures for Roadways, Railroads, and Loading and Dumping Sites...

  15. Vaginal Pessary

    MedlinePlus

    ... muscles can weaken over time or from certain events. Learn how to strengthen these muscles and regain…Plasma Viral Load TestingRead Article >>Procedures & DevicesPlasma Viral Load TestingA plasma viral load ...

  16. Ultrasound monitoring of inter-knee distances during gait.

    PubMed

    Lai, Daniel T H; Wrigley, Tim V; Palaniswami, M

    2009-01-01

    Knee osteoarthritis is an extremely common, debilitating disease associated with pain and loss of function. There is considerable interest in monitoring lower limb alignment due to its close association with joint overload leading to disease progression. The effects of gait modifications that can lower joint loading are of particular interest. Here we describe an ultrasound-based system for monitoring an important aspect of dynamic lower limb alignment, the inter-knee distance during walking. Monitoring this gait parameter should facilitate studies in reducing knee loading, a primary risk factor of knee osteoarthritis progression. The portable device is composed of an ultrasound sensor connected to an Intel iMote2 equipped with Bluetooth wireless capability. Static tests and calibration results show that the sensor possesses an effective beam envelope of 120 degrees, with maximum distance errors of 10% at the envelope edges. Dynamic walking trials reveal close correlation of inter-knee distance trends between that measured by an optical system (Optotrak Certus NDI) and the sensor device. The maximum average root mean square error was found to be 1.46 cm. Future work will focus on improving the accuracy of the device.

  17. Effect of magnetic attachment with stress breaker on lateral stress to abutment tooth under overdenture.

    PubMed

    Gonda, T; Ikebe, K; Ono, T; Nokubi, T

    2004-10-01

    Recently, a newly developed magnetic attachment with stress breaker was used in retentive components in overdentures. Excessive lateral stress has a more harmful effect on natural teeth than axial stress, and the magnetic attachment with stress breaker is expected to reduce lateral forces on abutment teeth and protect it teeth from excessive stress. However, the properties of this retainer have not yet been determined experimentally. This study compares the lateral forces on abutment teeth for three retainers under loading on the denture base in a model study. A mandibular simulation model is constructed to measure lateral stress. Three types of retentive devices are attached to the canine root. These devices include the conventional root coping, the conventional magnetic attachment and the new magnetic attachment with stress breaker. For each retentive device, load is generated on the occlusal table of the model overdenture, and the lateral stress on the canine root and the displacement of the overdenture measured. The magnetic attachment with stress breaker does not displace the denture and exhibits lower lateral stress in the canine root than conventional root coping and magnetic attachments.

  18. Hydrogen effects on Ni-Ti fatigue performance by self -heating method

    NASA Astrophysics Data System (ADS)

    Rokbani, M.; Saint-Sulpice, L.; Arbab Chirani, S.; Bouraoui, T.

    2017-10-01

    Ni-Ti superelastic alloys are extensively used in manufacturing biomedical devices because of their high mechanical performance, good fatigue durability and biocompatibility compared to traditional metallic materials. During clinical use, most of these devices are intended to work under cyclic or repetitive loadings and may be in contact with corrosive environments leading to unexpected failures. It is however recognized that the fatigue-environment interaction, especially fatigue-hydrogen absorption, can be the main cause of these failures. The aim of this work is to investigate the fatigue behavior of superelastic Ni-Ti intended for manufacturing medical devices at high number of cycles (HCF) with a particular emphasis to the effect of hydrogen on fatigue properties. Fatigue tests were analyzed using self-heating measurements based on observing thermal effects during cyclic loadings. The results obtained with self-heating approach showed a trend of a decrease in the fatigue life of Ni-Ti alloys after hydrogen absorption and the fatigue limit extrapolated will be compared with the results obtained with the classical S-N curves method.

  19. Efficient Switching Arrangement for (N + 1)/N Redundancy

    NASA Technical Reports Server (NTRS)

    Lux, James; McMaster, Robert

    2007-01-01

    An efficient arrangement of four switches has been conceived for coupling, to four output ports, the output powers of any subset of four devices that are members of a redundant set of five devices. In normal operation, the output power of each of four of the devices would be coupled to one of the four output ports. The remaining device would be kept as a spare: normally, its output power would be coupled to a load, wherein that power would be dissipated. In the event of failure of one of the four normally used devices, that device would be disconnected from its output port and connected to the load, and the spare device would be connected to the output from which the failed device was disconnected. Alternatively or in addition, the outputs of one or more devices could be sent to ports other than the ones originally assigned to them.

  20. Three dimensional design, simulation and optimization of a novel, universal diabetic foot offloading orthosis

    NASA Astrophysics Data System (ADS)

    Sukumar, Chand; Ramachandran, K. I.

    2016-09-01

    Leg amputation is a major consequence of aggregated foot ulceration in diabetic patients. A common sense based treatment approach for diabetic foot ulceration is foot offloading where the patient is required to wear a foot offloading orthosis during the entire treatment course. Removable walker is an excellent foot offloading modality compared to the golden standard solution - total contact cast and felt padding. Commercially available foot offloaders are generally customized with huge cost and less patient compliance. This work suggests an optimized 3D model of a new type light weight removable foot offloading orthosis for diabetic patients. The device has simple adjustable features which make this suitable for wide range of patients with weight of 35 to 74 kg and height of 137 to 180 cm. Foot plate of this orthosis is unisexual, with a size adjustability of (US size) 6 to 10. Materials like Aluminum alloy 6061-T6, Acrylonitrile Butadiene Styrene (ABS) and Polyurethane acted as the key player in reducing weight of the device to 0.804 kg. Static analysis of this device indicated that maximum stress developed in this device under a load of 1000 N is only 37.8 MPa, with a small deflection of 0.150 cm and factor of safety of 3.28, keeping the safety limits, whereas dynamic analysis results assures the load bearing capacity of this device. Thus, the proposed device can be safely used as an orthosis for offloading diabetic ulcerated foot.

  1. The evaluation of off-loading using a new removable oRTHOsis in DIABetic foot (ORTHODIAB) randomized controlled trial: study design and rational.

    PubMed

    Mohammedi, Kamel; Potier, Louis; François, Maud; Dardari, Dured; Feron, Marilyne; Nobecourt-Dupuy, Estelle; Dolz, Manuel; Ducloux, Roxane; Chibani, Abdelkader; Eveno, Dominique-François; Crea Avila, Teresa; Sultan, Ariane; Baillet-Blanco, Laurence; Rigalleau, Vincent; Velho, Gilberto; Tubach, Florence; Roussel, Ronan; Dupré, Jean-Claude; Malgrange, Dominique; Marre, Michel

    2016-01-01

    Off-loading is essential for diabetic foot management, but remains understudied. The evaluation of Off-loading using a new removable oRTHOsis in DIABetic foot (ORTHODIAB) trial aims to evaluate the efficacy of a new removable device "Orthèse Diabète" in the healing of diabetic foot. ORTHODIAB is a French multi-centre randomized, open label trial, with a blinded end points evaluation by an adjudication committee according to the Prospective Randomized Open Blinded End-point. Main endpoints are adjudicated based on the analysis of diabetic foot photographs. Orthèse Diabète is a new removable off-loading orthosis (PROTEOR, France) allowing innovative functions including real-time evaluation of off-loading and estimation of patients' adherence. Diabetic patients with neuropathic plantar ulcer or amputation wounds (toes or transmetatarsal) are assigned to one of 2 parallel-groups: Orthèse Diabète or control group (any removable device) according to a central computer-based randomization. Study visits are scheduled for 6 months (days D7 and D14, and months M1, M2, M3, and M6). The primary endpoint is the proportion of patients whose principal ulcer is healed at M3. Secondary endpoints are: the proportion of patients whose principal ulcer is healed at M1, M2 and M6; the proportion of patients whose initial ulcers are all healed at M1, M2, M3, and M6; principal ulcer area reduction; time-related ulcer-free survival; development of new ulcers; new lower-extremity amputation; infectious complications; off-loading adherence; and patient satisfaction. The study protocol was approved by the French National Agency for Medicines and Health Products Safety, and by the ethics committee of Saint-Louis Hospital (Paris). Comprehensive study information including a Patient Information Sheet has been provided to each patient who must give written informed consent before enrolment. Monitoring, data management, and statistical analyses are providing by UMANIS Life Science (Paris), independently to the sponsor. Since 27/10/2013, 13 centres have agreed to participate in this study, 117 participants were included, and 70 have achieved the study schedules. The study completion is expected for the end of 2016, and the main results will be published in 2017. ORTHODIAB trial evaluates an innovating removable off-loading device, seeking to improve diabetic foot healing (ClinicalTrials.gov identifier: NCT01956162).

  2. Field Testing of Telemetry for Demand Response Control of Small Loads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lanzisera, Steven; Weber, Adam; Liao, Anna

    The electricity system in California, from generation through loads, must be prepared for high renewable penetration and increased electrification of end uses while providing increased resilience and lower operating cost. California has an aggressive renewable portfolio standard that is complemented by world-leading greenhouse gas goals. The goal of this project was to evaluate methods of enabling fast demand response (DR) signaling to small loads for low-cost site enablement. We used OpenADR 2.0 to meet telemetry requirements for providing ancillary services, and we used a variety of low-cost devices coupled with open-source software to enable an end-to-end fast DR. The devices,more » architecture, implementation, and testing of the system is discussed in this report. We demonstrate that the emerging Internet of Things (IoT) and Smart Home movements provide an opportunity for diverse small loads to provide fast, low-cost demand response. We used Internet-connected lights, thermostats, load interruption devices, and water heaters to demonstrate an ecosystem of controllable devices. The system demonstrated is capable of providing fast load shed for between 20 dollars and $300 per kilowatt (kW) of available load. The wide range results from some loads may have very low cost but also very little shed capability (a 10 watt [W] LED light can only shed a maximum of 10 W) while some loads (e.g., water heaters or air conditioners) can shed several kilowatts but have a higher initial cost. These costs, however, compare well with other fast demand response costs, with typically are over $100/kilowatt of shed. We contend these loads are even more attractive than their price suggests because many of them will be installed for energy efficiency or non-energy benefits (e.g., improved lighting quality or controllability), and the ability to use them for fast DR is a secondary benefit. Therefore the cost of enabling them for DR may approach zero if a software-only solution can be deployed to enable fast DR after devices are installed for other reasons. We recommend that the DR research community continue to engage with the IoT community to encourage the use of documented and open development interfaces. A library of device drivers and machine-readable interface specifications would significantly reduce the burden on users or system integrators for deploying systems in large numbers of buildings in California.« less

  3. Investigation in Simulated Vertical Descent of the Characteristics of a Cargo-Dropping Device having Extensible Rotating Blades

    NASA Technical Reports Server (NTRS)

    Stone, Ralph W., Jr.; Hultz, Burton E.

    1949-01-01

    The characteristics of a cargo-dropping device having extensible rotating blades as load-carrying surfaces have been studied in simulated vertical descent in the Langley 20-foot free-spinning tunnel. The investigation included tests to determine the variation in vertical sinking speed with load. A study of the blade characteristics and of the test results indicated a method of dynamically balancing the blades to permit proper functioning of the device.

  4. Power electronic interface circuits for batteries and ultracapacitors in electric vehicles and battery storage systems

    DOEpatents

    King, Robert Dean; DeDoncker, Rik Wivina Anna Adelson

    1998-01-01

    A method and apparatus for load leveling of a battery in an electrical power system includes a power regulator coupled to transfer power between a load and a DC link, a battery coupled to the DC link through a first DC-to-DC converter and an auxiliary passive energy storage device coupled to the DC link through a second DC-to-DC converter. The battery is coupled to the passive energy storage device through a unidirectional conducting device whereby the battery can supply power to the DC link through each of the first and second converters when battery voltage exceeds voltage on the passive storage device. When the load comprises a motor capable of operating in a regenerative mode, the converters are adapted for transferring power to the battery and passive storage device. In this form, resistance can be coupled in circuit with the second DC-to-DC converter to dissipate excess regenerative power.

  5. Power electronic interface circuits for batteries and ultracapacitors in electric vehicles and battery storage systems

    DOEpatents

    King, R.D.; DeDoncker, R.W.A.A.

    1998-01-20

    A method and apparatus for load leveling of a battery in an electrical power system includes a power regulator coupled to transfer power between a load and a DC link, a battery coupled to the DC link through a first DC-to-DC converter and an auxiliary passive energy storage device coupled to the DC link through a second DC-to-DC converter. The battery is coupled to the passive energy storage device through a unidirectional conducting device whereby the battery can supply power to the DC link through each of the first and second converters when battery voltage exceeds voltage on the passive storage device. When the load comprises a motor capable of operating in a regenerative mode, the converters are adapted for transferring power to the battery and passive storage device. In this form, resistance can be coupled in circuit with the second DC-to-DC converter to dissipate excess regenerative power. 8 figs.

  6. Inducer Hydrodynamic Load Measurement Devices

    NASA Technical Reports Server (NTRS)

    Skelley, Stephen E.; Zoladz, Thomas F.

    2002-01-01

    Marshall Space Flight Center (MSFC) has demonstrated two measurement devices for sensing and resolving the hydrodynamic loads on fluid machinery. The first - a derivative of the six component wind tunnel balance - senses the forces and moments on the rotating device through a weakened shaft section instrumented with a series of strain gauges. This "rotating balance" was designed to directly measure the steady and unsteady hydrodynamic loads on an inducer, thereby defining both the amplitude and frequency content associated with operating in various cavitation modes. The second device - a high frequency response pressure transducer surface mounted on a rotating component - was merely an extension of existing technology for application in water. MSFC has recently completed experimental evaluations of both the rotating balance and surface-mount transducers in a water test loop. The measurement bandwidth of the rotating balance was severely limited by the relative flexibility of the device itself, resulting in an unexpectedly low structural bending mode and invalidating the higher frequency response data. Despite these limitations, measurements confirmed that the integrated loads on the four-bladed inducer respond to both cavitation intensity and cavitation phenomena. Likewise, the surface-mount pressure transducers were subjected to a range of temperatures and flow conditions in a non-rotating environment to record bias shifts and transfer functions between the transducers and a reference device. The pressure transducer static performance was within manufacturer's specifications and dynamic response accurately followed that of the reference.

  7. Inducer Hydrodynamic Load Measurement Devices

    NASA Technical Reports Server (NTRS)

    Skelley, Stephen E.; Zoladz, Thomas F.; Turner, Jim (Technical Monitor)

    2002-01-01

    Marshall Space Flight Center (MSFC) has demonstrated two measurement devices for sensing and resolving the hydrodynamic loads on fluid machinery. The first - a derivative of the six-component wind tunnel balance - senses the forces and moments on the rotating device through a weakened shaft section instrumented with a series of strain gauges. This rotating balance was designed to directly measure the steady and unsteady hydrodynamic loads on an inducer, thereby defining both the amplitude and frequency content associated with operating in various cavitation modes. The second device - a high frequency response pressure transducer surface mounted on a rotating component - was merely an extension of existing technology for application in water. MSFC has recently completed experimental evaluations of both the rotating balance and surface-mount transducers in a water test loop. The measurement bandwidth of the rotating balance was severely limited by the relative flexibility of the device itself, resulting in an unexpectedly low structural bending mode and invalidating the higher-frequency response data. Despite these limitations, measurements confirmed that the integrated loads on the four-bladed inducer respond to both cavitation intensity and cavitation phenomena. Likewise, the surface-mount pressure transducers were subjected to a range of temperatures and flow conditions in a non-rotating environment to record bias shifts and transfer functions between the transducers and a reference device. The pressure transducer static performance was within manufacturer's specifications and dynamic response accurately followed that of the reference.

  8. An evaluation of HEMT potential for millimeter-wave signal sources using interpolation and harmonic balance techniques

    NASA Technical Reports Server (NTRS)

    Kwon, Youngwoo; Pavlidis, Dimitris; Tutt, Marcel N.

    1991-01-01

    A large-signal analysis method based on an harmonic balance technique and a 2-D cubic spline interpolation function has been developed and applied to the prediction of InP-based HEMT oscillator performance for frequencies extending up to the submillimeter-wave range. The large-signal analysis method uses a limited number of DC and small-signal S-parameter data and allows the accurate characterization of HEMT large-signal behavior. The method has been validated experimentally using load-pull measurement. Oscillation frequency, power performance, and load requirements are discussed, with an operation capability of 300 GHz predicted using state-of-the-art devices (fmax is approximately equal to 450 GHz).

  9. Off-Loading Practices for the Wounded Foot: Concepts and Choices

    PubMed Central

    Mrdjenovich, Donald E.

    2011-01-01

    A wound practitioner’s best-laid plan of care and strategy for healing an ulcerated foot is doomed to fail without a properly conceived approach based on sound off-loading principles. Wound healing that has stalled despite best-practice techniques may require reevaluation of off-loading choices. This is particularly true in the patient with abnormal foot pathologies. Special considerations are certainly required with neuropathic ulcers; however, any wound on a weight-bearing surface of the foot requires proper off-loading. This discussion explores the basic biomechanical and pathomechanical concepts that modify and influence ambulation and gait patterns. Integration of these concepts into the choices for off-loading to deter pathologic influences will alert the reader of precautionary measures and other factors for consideration. The aim of this column is to provide both an adequate working knowledge of the available off-loading devices and the necessary tools and concepts needed to stimulate wise decision protocols for wound management and healing. PMID:24527154

  10. Response profiles of murine spiral ganglion neurons on multi-electrode arrays

    NASA Astrophysics Data System (ADS)

    Hahnewald, Stefan; Tscherter, Anne; Marconi, Emanuele; Streit, Jürg; Widmer, Hans Rudolf; Garnham, Carolyn; Benav, Heval; Mueller, Marcus; Löwenheim, Hubert; Roccio, Marta; Senn, Pascal

    2016-02-01

    Objective. Cochlear implants (CIs) have become the gold standard treatment for deafness. These neuroprosthetic devices feature a linear electrode array, surgically inserted into the cochlea, and function by directly stimulating the auditory neurons located within the spiral ganglion, bypassing lost or not-functioning hair cells. Despite their success, some limitations still remain, including poor frequency resolution and high-energy consumption. In both cases, the anatomical gap between the electrode array and the spiral ganglion neurons (SGNs) is believed to be an important limiting factor. The final goal of the study is to characterize response profiles of SGNs growing in intimate contact with an electrode array, in view of designing novel CI devices and stimulation protocols, featuring a gapless interface with auditory neurons. Approach. We have characterized SGN responses to extracellular stimulation using multi-electrode arrays (MEAs). This setup allows, in our view, to optimize in vitro many of the limiting interface aspects between CIs and SGNs. Main results. Early postnatal mouse SGN explants were analyzed after 6-18 days in culture. Different stimulation protocols were compared with the aim to lower the stimulation threshold and the energy needed to elicit a response. In the best case, a four-fold reduction of the energy was obtained by lengthening the biphasic stimulus from 40 μs to 160 μs. Similarly, quasi monophasic pulses were more effective than biphasic pulses and the insertion of an interphase gap moderately improved efficiency. Finally, the stimulation with an external electrode mounted on a micromanipulator showed that the energy needed to elicit a response could be reduced by a factor of five with decreasing its distance from 40 μm to 0 μm from the auditory neurons. Significance. This study is the first to show electrical activity of SGNs on MEAs. Our findings may help to improve stimulation by and to reduce energy consumption of CIs and thereby contribute to the development of fully implantable devices with better auditory resolution in the future.

  11. The Development of SiC MOSFET-based Switching Power Amplifiers for Fusion Science

    NASA Astrophysics Data System (ADS)

    Prager, James; Ziemba, Timothy; Miller, Kenneth; Picard, Julian

    2015-11-01

    Eagle Harbor Technologies (EHT), Inc. is developing a switching power amplifier (SPA) based on silicon carbide (SiC) metal-oxide-semiconductor field-effect transistor (MOSFET). SiC MOSFETs offer many advantages over IGBTs including lower drive energy requirements, lower conduction and switching losses, and higher switching frequency capabilities. When comparing SiC and traditional silicon-based MOSFETs, SiC MOSFETs provide higher current carrying capability allowing for smaller package weights and sizes and lower operating temperature. EHT has conducted single device testing that directly compares the capabilities of SiC MOSFETs and IGBTs to demonstrate the utility of SiC MOSFETs for fusion science applications. These devices have been built into a SPA that can drive resistive loads and resonant tank loads at 800 V, 4.25 kA at pulse repetition frequencies up to 1 MHz. During the Phase II program, EHT will finalize the design of the SPA. In Year 2, EHT will replace the SPAs used in the HIT-SI lab at the University of Washington to allow for operation over 100 kHz. SPA prototype results will be presented. This work is supported under DOE Grant # DE-SC0011907.

  12. Mobile Learning Application Interfaces: First Steps to a Cognitive Load Aware System

    ERIC Educational Resources Information Center

    Deegan, Robin

    2013-01-01

    Mobile learning is a cognitively demanding application and more frequently the ubiquitous nature of mobile computing means that mobile devices are used in cognitively demanding environments. This paper examines the nature of this use of mobile devices from a Learning, Usability and Cognitive Load Theory perspective. It suggests scenarios where…

  13. Development and calibration of a load sensing cervical distractor capable of withstanding autoclave sterilization.

    PubMed

    Demetropoulos, C K; Truumees, E; Herkowitz, H N; Yang, K H

    2005-05-01

    In surgery of the cervical spine, a Caspar pin distractor is often used to apply a tensile load to the spine in order to open up the disc space. This is often done in order to place a graft or other interbody fusion device in the spine. Ideally a tight interference fit is achieved. If the spine is over distracted, allowing for a large graft, there is an increased risk of subsidence into the endplate. If there is too little distraction, there is an increased risk of graft dislodgement or pseudoarthrosis. Generally, graft height is selected from preoperative measurements and observed distraction without knowing the intraoperative compressive load. This device was designed to give the surgeon an assessment of this applied load. Instrumentation of the device involved the application of strain gauges and the selection of materials that would survive standard autoclave sterilization. The device was calibrated, sterilized and once again calibrated to demonstrate its suitability for surgical use. Results demonstrate excellent linearity in the calibration, and no difference was detected in the pre- and post-sterilization calibrations.

  14. A 5 kA pulsed power supply for inductive and plasma loads in large volume plasma device.

    PubMed

    Srivastava, P K; Singh, S K; Sanyasi, A K; Awasthi, L M; Mattoo, S K

    2016-07-01

    This paper describes 5 kA, 12 ms pulsed power supply for inductive load of Electron Energy Filter (EEF) in large volume plasma device. The power supply is based upon the principle of rapid sourcing of energy from the capacitor bank (2.8 F/200 V) by using a static switch, comprising of ten Insulated Gate Bipolar Transistors (IGBTs). A suitable mechanism is developed to ensure equal sharing of current and uniform power distribution during the operation of these IGBTs. Safe commutation of power to the EEF is ensured by the proper optimization of its components and by the introduction of over voltage protection (>6 kV) using an indigenously designed snubber circuit. Various time sequences relevant to different actions of power supply, viz., pulse width control and repetition rate, are realized through optically isolated computer controlled interface.

  15. A 5 kA pulsed power supply for inductive and plasma loads in large volume plasma device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, P. K., E-mail: pkumar@ipr.res.in; Singh, S. K.; Sanyasi, A. K.

    This paper describes 5 kA, 12 ms pulsed power supply for inductive load of Electron Energy Filter (EEF) in large volume plasma device. The power supply is based upon the principle of rapid sourcing of energy from the capacitor bank (2.8 F/200 V) by using a static switch, comprising of ten Insulated Gate Bipolar Transistors (IGBTs). A suitable mechanism is developed to ensure equal sharing of current and uniform power distribution during the operation of these IGBTs. Safe commutation of power to the EEF is ensured by the proper optimization of its components and by the introduction of over voltagemore » protection (>6 kV) using an indigenously designed snubber circuit. Various time sequences relevant to different actions of power supply, viz., pulse width control and repetition rate, are realized through optically isolated computer controlled interface.« less

  16. A Dimensionally Aligned Signal Projection for Classification of Unintended Radiated Emissions

    DOE PAGES

    Vann, Jason Michael; Karnowski, Thomas P.; Kerekes, Ryan; ...

    2017-04-24

    Characterization of unintended radiated emissions (URE) from electronic devices plays an important role in many research areas from electromagnetic interference to nonintrusive load monitoring to information system security. URE can provide insights for applications ranging from load disaggregation and energy efficiency to condition-based maintenance of equipment-based upon detected fault conditions. URE characterization often requires subject matter expertise to tailor transforms and feature extractors for the specific electrical devices of interest. We present a novel approach, named dimensionally aligned signal projection (DASP), for projecting aligned signal characteristics that are inherent to the physical implementation of many commercial electronic devices. These projectionsmore » minimize the need for an intimate understanding of the underlying physical circuitry and significantly reduce the number of features required for signal classification. We present three possible DASP algorithms that leverage frequency harmonics, modulation alignments, and frequency peak spacings, along with a two-dimensional image manipulation method for statistical feature extraction. To demonstrate the ability of DASP to generate relevant features from URE, we measured the conducted URE from 14 residential electronic devices using a 2 MS/s collection system. Furthermore, a linear discriminant analysis classifier was trained using DASP generated features and was blind tested resulting in a greater than 90% classification accuracy for each of the DASP algorithms and an accuracy of 99.1% when DASP features are used in combination. Furthermore, we show that a rank reduced feature set of the combined DASP algorithms provides a 98.9% classification accuracy with only three features and outperforms a set of spectral features in terms of general classification as well as applicability across a broad number of devices.« less

  17. A Dimensionally Aligned Signal Projection for Classification of Unintended Radiated Emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vann, Jason Michael; Karnowski, Thomas P.; Kerekes, Ryan

    Characterization of unintended radiated emissions (URE) from electronic devices plays an important role in many research areas from electromagnetic interference to nonintrusive load monitoring to information system security. URE can provide insights for applications ranging from load disaggregation and energy efficiency to condition-based maintenance of equipment-based upon detected fault conditions. URE characterization often requires subject matter expertise to tailor transforms and feature extractors for the specific electrical devices of interest. We present a novel approach, named dimensionally aligned signal projection (DASP), for projecting aligned signal characteristics that are inherent to the physical implementation of many commercial electronic devices. These projectionsmore » minimize the need for an intimate understanding of the underlying physical circuitry and significantly reduce the number of features required for signal classification. We present three possible DASP algorithms that leverage frequency harmonics, modulation alignments, and frequency peak spacings, along with a two-dimensional image manipulation method for statistical feature extraction. To demonstrate the ability of DASP to generate relevant features from URE, we measured the conducted URE from 14 residential electronic devices using a 2 MS/s collection system. Furthermore, a linear discriminant analysis classifier was trained using DASP generated features and was blind tested resulting in a greater than 90% classification accuracy for each of the DASP algorithms and an accuracy of 99.1% when DASP features are used in combination. Furthermore, we show that a rank reduced feature set of the combined DASP algorithms provides a 98.9% classification accuracy with only three features and outperforms a set of spectral features in terms of general classification as well as applicability across a broad number of devices.« less

  18. An Energy Absorber for the International Space Station

    NASA Technical Reports Server (NTRS)

    Wilkes, Bob; Laurence, Lora

    2000-01-01

    The energy absorber described herein is similar in size and shape to an automotive shock absorber, requiring a constant, high load to compress over the stroke, and self-resetting with a small load. The differences in these loads over the stroke represent the energy absorbed by the device, which is dissipated as friction. This paper describes the evolution of the energy absorber, presents the results of testing performed, and shows the sensitivity of this device to several key design variables.

  19. Grips for testing of electrical characteristics of a specimen under a mechanical load

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briggs, Timothy; Loyola, Bryan

    Various technologies to facilitate coupled electrical and mechanical measurement of conductive materials are disclosed herein. A gripping device simultaneously holds a specimen in place and causes contact to be made between the specimen and a plurality of electrodes connected to an electrical measuring device. An electrical characteristic of the specimen is then measured while a mechanical load is applied to the specimen, and a relationship between the mechanical load and changes in the electrical characteristic can be identified.

  20. Elastomeric load sharing device

    NASA Technical Reports Server (NTRS)

    Isabelle, Charles J. (Inventor); Kish, Jules G. (Inventor); Stone, Robert A. (Inventor)

    1992-01-01

    An elastomeric load sharing device, interposed in combination between a driven gear and a central drive shaft to facilitate balanced torque distribution in split power transmission systems, includes a cylindrical elastomeric bearing and a plurality of elastomeric bearing pads. The elastomeric bearing and bearing pads comprise one or more layers, each layer including an elastomer having a metal backing strip secured thereto. The elastomeric bearing is configured to have a high radial stiffness and a low torsional stiffness and is operative to radially center the driven gear and to minimize torque transfer through the elastomeric bearing. The bearing pads are configured to have a low radial and torsional stiffness and a high axial stiffness and are operative to compressively transmit torque from the driven gear to the drive shaft. The elastomeric load sharing device has spring rates that compensate for mechanical deviations in the gear train assembly to provide balanced torque distribution between complementary load paths of split power transmission systems.

  1. Internal combustion engine fuel controls. December 1970-December 1989 (Citations from the US Patent data base). Report for December 1970-December 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-01-01

    This bibliography contains citations of selected patents concerning fuel control devices, and methods used to regulate speed and load in internal combustion engines. Techniques utilized to control air-fuel ratios by sensing pressure, temperature, and exhaust composition, and the employment of electronic and feedback devices are discussed. Methods used for engine protection and optimum fuel conservation are considered. (This updated bibliography contains 327 citations, 160 of which are new entries to the previous edition.)

  2. I-SAVE: AN INTERACTIVE REAL-TIME MONITOR AND CONTROLLER TO INFLUENCE ENERGY CONSERVATION BEHAVIOR BY IMPULSE SAVING

    EPA Science Inventory

    Simulation-based model to explore the benefits of monitoring and control to energy saving opportunities in residential homes; an adaptive algorithm to predict the type of electrical loads; a prototype user friendly interface monitoring and control device to save energy; a p...

  3. Neonatal mannequin comparison of the Upright self-inflating bag and snap-fit mask versus standard resuscitators and masks: leak, applied load and tidal volumes.

    PubMed

    Rafferty, Anthony Richard; Johnson, Lucy; Davis, Peter G; Dawson, Jennifer Anne; Thio, Marta; Owen, Louise S

    2017-11-30

    Neonatal mask ventilation is a difficult skill to acquire and maintain. Mask leak is common and can lead to ineffective ventilation. The aim of this study was to determine whether newly available neonatal self-inflating bags and masks could reduce mask leak without additional load being applied to the face. Forty operators delivered 1 min episodes of mask ventilation to a mannequin using the Laerdal Upright Resuscitator, a standard Laerdal infant resuscitator (Laerdal Medical) and a T-Piece Resuscitator (Neopuff), using both the Laerdal snap-fit face mask and the standard Laerdal size 0/1 face mask (equivalent sizes). Participants were asked to use pressure sufficient to achieve 'appropriate' chest rise. Leak, applied load, airway pressure and tidal volume were measured continuously. Participants were unaware that load was being recorded. There was no difference in mask leak between resuscitation devices. Leak was significantly lower when the snap-fit mask was used with all resuscitation devices, compared with the standard mask (14% vs 37% leak, P<0.01). The snap-fit mask was preferred by 83% of participants. The device-mask combinations had no significant effect on applied load. The Laerdal Upright Resuscitator resulted in similar leak to the other resuscitation devices studied, and did not exert additional load to the face and head. The snap-fit mask significantly reduced overall leak with all resuscitation devices and was the mask preferred by participants. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  4. Plugfest 2009: Global Interoperability in Telerobotics and Telemedicine

    PubMed Central

    King, H. Hawkeye; Hannaford, Blake; Kwok, Ka-Wai; Yang, Guang-Zhong; Griffiths, Paul; Okamura, Allison; Farkhatdinov, Ildar; Ryu, Jee-Hwan; Sankaranarayanan, Ganesh; Arikatla, Venkata; Tadano, Kotaro; Kawashima, Kenji; Peer, Angelika; Schauß, Thomas; Buss, Martin; Miller, Levi; Glozman, Daniel; Rosen, Jacob; Low, Thomas

    2014-01-01

    Despite the great diversity of teleoperator designs and applications, their underlying control systems have many similarities. These similarities can be exploited to enable inter-operability between heterogeneous systems. We have developed a network data specification, the Interoperable Telerobotics Protocol, that can be used for Internet based control of a wide range of teleoperators. In this work we test interoperable telerobotics on the global Internet, focusing on the telesurgery application domain. Fourteen globally dispersed telerobotic master and slave systems were connected in thirty trials in one twenty four hour period. Users performed common manipulation tasks to demonstrate effective master-slave operation. With twenty eight (93%) successful, unique connections the results show a high potential for standardizing telerobotic operation. Furthermore, new paradigms for telesurgical operation and training are presented, including a networked surgery trainer and upper-limb exoskeleton control of micro-manipulators. PMID:24748993

  5. Optimal design of a vibration-based energy harvester using magnetostrictive material (MsM)

    NASA Astrophysics Data System (ADS)

    Hu, J.; Xu, F.; Huang, A. Q.; Yuan, F. G.

    2011-01-01

    In this study, an optimal vibration-based energy harvesting system using magnetostrictive material (MsM) was designed and tested to enable the powering of a wireless sensor. In particular, the conversion efficiency, converting from magnetic to electric energy, is approximately modeled from the magnetic field induced by the beam vibration. A number of factors that affect the output power such as the number of MsM layers, coil design and load matching are analyzed and explored in the design optimization. From the measurements, the open-circuit voltage can reach 1.5 V when the MsM cantilever beam operates at the second natural frequency 324 Hz. The AC output power is 970 µW, giving a power density of 279 µW cm - 3. The attempt to use electrical reactive components (either inductors or capacitors) to resonate the system at any frequency has also been analyzed and tested experimentally. The results showed that this approach is not feasible to optimize the power. Since the MsM device has low output voltage characteristics, a full-wave quadrupler has been designed to boost the rectified output voltage. To deliver the maximum output power to the load, a complex conjugate impedance matching between the load and the MsM device is implemented using a discontinuous conduction mode (DCM) buck-boost converter. The DC output power after the voltage quadrupler reaches 705 µW and the corresponding power density is 202 µW cm - 3. The output power delivered to a lithium rechargeable battery is around 630 µW, independent of the load resistance.

  6. Transfer of monolayer TMD WS2 and Raman study of substrate effects

    PubMed Central

    Mlack, Jerome T.; Masih Das, Paul; Danda, Gopinath; Chou, Yung-Chien; Naylor, Carl H.; Lin, Zhong; López, Néstor Perea; Zhang, Tianyi; Terrones, Mauricio; Johnson, A. T. Charlie; Drndić, Marija

    2017-01-01

    A facile transfer process for transition metal dichalcogenide WS2 flakes is reported and the effect of the underlying substrate on the flake properties is investigated using Raman spectroscopy. The flakes are transferred from their growth substrate using polymethyl methacrylate (PMMA) and a wet etch to allow the user to transfer the flakes to a final substrate using a microscope and micromanipulator combined with semi-transparent Kapton tape. The substrates used range from insulators such as industry standard high-k dielectric HfO2 and “green polymer” parylene-C, to conducting chemical vapor deposition (CVD) grown graphene. Raman spectroscopy is used first to confirm the material quality of the transferred flakes to the substrates and subsequently to analyze and separate the effects arising from material transfer from those arising from interactions with the substrate. We observe changes in the Raman spectra associated with the interactions between the substrates in the flakes. These interactions affect both in-plane and out-of-plane modes in different ways depending on their sources, for example strain or surface charge. These changes vary with final substrate, with the strongest effects being observed for WS2 transferred onto graphene and HfO2, demonstrating the importance of understanding substrate interaction for fabrication of future devices. PMID:28220852

  7. Transoral laser microsurgery for laryngeal cancer: A primer and review of laser dosimetry

    PubMed Central

    Rubinstein, Marc

    2010-01-01

    Transoral laser microsurgery (TLM) is an emerging technique for the management of laryngeal and other head and neck malignancies. It is increasingly being used in place of traditional open surgery because of lower morbidity and improved organ preservation. Since the surgery is performed from the inside working outward as opposed to working from the outside in, there is less damage to the supporting structures that lie external to the tumor. Coupling the laser to a micromanipulator and a microscope allows precise tissue cutting and hemostasis; thereby improving visualization and precise ablation. The basic approach and principles of performing TLM, the devices currently in use, and the associated dosimetry parameters will be discussed. The benefits of using TLM over conventional surgery, common complications and the different settings used depending on the location of the tumor will also be discussed. Although the CO2 laser is the most versatile and the best-suited laser for TLM applications, a variety of lasers and different parameters are used in the treatment of laryngeal cancer. Improved instrumentation has lead to an increased utilization of TLM by head and neck cancer surgeons and has resulted in improved outcomes. Laser energy levels and spot size are adjusted to vary the precision of cutting and amount of hemostasis obtained. PMID:20835840

  8. Use of a microscope stage-mounted Nickel-63 microirradiator for real-time observation of the DNA double-strand break response.

    PubMed

    Cao, Zhen; Kuhne, Wendy W; Steeb, Jennifer; Merkley, Mark A; Zhou, Yunfeng; Janata, Jiri; Dynan, William S

    2010-08-01

    Eukaryotic cells begin to assemble discrete, nucleoplasmic repair foci within seconds after the onset of exposure to ionizing radiation. Real-time imaging of this assembly has the potential to further our understanding of the effects of medical and environmental radiation exposure. Here, we describe a microirradiation system for targeted delivery of ionizing radiation to individual cells without the need for specialized facilities. The system consists of a 25-micron diameter electroplated Nickel-63 electrode, enveloped in a glass capillary and mounted in a micromanipulator. Because of the low energy of the beta radiation and the minute total amount of isotope present on the tip, the device can be safely handled with minimum precautions. We demonstrate the use of this system for tracking assembly of individual repair foci in real time in live U2OS human osteosarcoma cells. Results indicate that there is a subset of foci that appear and disappear rapidly, before a plateau level is reached approximately 30 min post-exposure. This subset of foci would not have been evident without real-time observation. The development of a microirradiation system that is compatible with a standard biomedical laboratory expands the potential for real-time investigation of the biological effects of ionizing radiation.

  9. Constructing experimental devices for half-ton synthesis of gadolinium-loaded liquid scintillator and its performance.

    PubMed

    Park, Young Seo; Jang, Yeong Min; Joo, Kyung Kwang

    2018-04-01

    This paper describes in brief features of various experimental devices constructed for half-ton synthesis of gadolinium(Gd)-loaded liquid scintillator (GdLS) and also includes the performances and detailed chemical and physical results of a 0.5% high-concentration GdLS. Various feasibility studies on useful apparatus used for loading Gd into solvents have been carried out. The transmittance, Gd concentration, density, light yield, and moisture content were measured for quality control. We show that with the help of adequate automated experimental devices and tools, it is possible to perform ton scale synthesis of GdLS at moderate laboratory scale without difficulty. The synthesized GdLS was satisfactory to meet chemical, optical, and physical properties and various safety requirements. These synthesizing devices can be expanded into massive scale next-generation neutrino experiments of several hundred tons.

  10. Experimental determination of micromachined discrete and continuous device spring constants using nanoindentation method

    NASA Astrophysics Data System (ADS)

    Chan, M. L.; Tay, Francis E.; Logeeswaran, V. J.; Zeng, Kaiyang; Shen, Lu; Chau, Fook S.

    2002-04-01

    A rapid and accurate static and quasi-static method for determining the out-of-plane spring constraints of cantilevers and a micromachined vibratory sensor is presented. In the past, much of the effort in nanoindentation application was to investigate the thin-film mechanical properties. In this paper, we have utilized the nanoindentation method to measure directly some micromachined device (e.g. microgyroscope) spring constants. The cantilevers and devices tested were fabricated using the MUMPS process and an SOI process (patent pending). Spring constants are determined using a commercial nanoindentation apparatus UMIS-2000 configured with both Berkovich and spherical indenter tip that can be placed onto the device with high accuracy. Typical load resolution is 20micrometers N to 0.5N and a displacement resolution of 0.05nm. Information was deduced from the penetration depth versus load curves during both loading and unloading.

  11. Constructing experimental devices for half-ton synthesis of gadolinium-loaded liquid scintillator and its performance

    NASA Astrophysics Data System (ADS)

    Park, Young Seo; Jang, Yeong Min; Joo, Kyung Kwang

    2018-04-01

    This paper describes in brief features of various experimental devices constructed for half-ton synthesis of gadolinium(Gd)-loaded liquid scintillator (GdLS) and also includes the performances and detailed chemical and physical results of a 0.5% high-concentration GdLS. Various feasibility studies on useful apparatus used for loading Gd into solvents have been carried out. The transmittance, Gd concentration, density, light yield, and moisture content were measured for quality control. We show that with the help of adequate automated experimental devices and tools, it is possible to perform ton scale synthesis of GdLS at moderate laboratory scale without difficulty. The synthesized GdLS was satisfactory to meet chemical, optical, and physical properties and various safety requirements. These synthesizing devices can be expanded into massive scale next-generation neutrino experiments of several hundred tons.

  12. Ceramic Fiber Structures for Cryogenic Load-Bearing Applications

    NASA Technical Reports Server (NTRS)

    Jaskowiak, Martha H.; Eckel, Andrew J.

    2009-01-01

    This invention is intended for use as a load-bearing device under cryogenic temperatures and/or abrasive conditions (i.e., during missions to the Moon). The innovation consists of small-diameter, ceramic fibers that are woven or braided into devices like ropes, belts, tracks, or cables. The fibers can be formed from a variety of ceramic materials like silicon carbide, carbon, aluminosilicate, or aluminum oxide. The fiber architecture of the weave or braid is determined by both the fiber properties and the mechanical requirements of the application. A variety of weave or braid architectures is possible for this application. Thickness of load-bearing devices can be achieved by using either a 3D woven structure, or a layered, 2D structure. For the prototype device, a belt approximately 0.10 in. (0.25 cm) thick, and 3.0 in. (7.6 cm) wide was formed by layering and stitching a 2D aluminosilicate fiber weave.

  13. Proof Compression and the Mobius PCC Architecture for Embedded Devices

    NASA Technical Reports Server (NTRS)

    Jensen, Thomas

    2009-01-01

    The EU Mobius project has been concerned with the security of Java applications, and of mobile devices such as smart phones that execute such applications. In this talk, I'll give a brief overview of the results obtained on on-device checking of various security-related program properties. I'll then describe in more detail how the concept of certified abstract interpretation and abstraction-carrying code can be applied to polyhedral-based analysis of Java byte code in order to verify properties pertaining to the usage of resources of a down-loaded application. Particular emphasis has been on finding ways of reducing the size of the certificates that accompany a piece of code.

  14. Secure Service Proxy: A CoAP(s) Intermediary for a Securer and Smarter Web of Things

    PubMed Central

    Van den Abeele, Floris; Moerman, Ingrid; Demeester, Piet

    2017-01-01

    As the IoT continues to grow over the coming years, resource-constrained devices and networks will see an increase in traffic as everything is connected in an open Web of Things. The performance- and function-enhancing features are difficult to provide in resource-constrained environments, but will gain importance if the WoT is to be scaled up successfully. For example, scalable open standards-based authentication and authorization will be important to manage access to the limited resources of constrained devices and networks. Additionally, features such as caching and virtualization may help further reduce the load on these constrained systems. This work presents the Secure Service Proxy (SSP): a constrained-network edge proxy with the goal of improving the performance and functionality of constrained RESTful environments. Our evaluations show that the proposed design reaches its goal by reducing the load on constrained devices while implementing a wide range of features as different adapters. Specifically, the results show that the SSP leads to significant savings in processing, network traffic, network delay and packet loss rates for constrained devices. As a result, the SSP helps to guarantee the proper operation of constrained networks as these networks form an ever-expanding Web of Things. PMID:28696393

  15. Secure Service Proxy: A CoAP(s) Intermediary for a Securer and Smarter Web of Things.

    PubMed

    Van den Abeele, Floris; Moerman, Ingrid; Demeester, Piet; Hoebeke, Jeroen

    2017-07-11

    As the IoT continues to grow over the coming years, resource-constrained devices and networks will see an increase in traffic as everything is connected in an open Web of Things. The performance- and function-enhancing features are difficult to provide in resource-constrained environments, but will gain importance if the WoT is to be scaled up successfully. For example, scalable open standards-based authentication and authorization will be important to manage access to the limited resources of constrained devices and networks. Additionally, features such as caching and virtualization may help further reduce the load on these constrained systems. This work presents the Secure Service Proxy (SSP): a constrained-network edge proxy with the goal of improving the performance and functionality of constrained RESTful environments. Our evaluations show that the proposed design reaches its goal by reducing the load on constrained devices while implementing a wide range of features as different adapters. Specifically, the results show that the SSP leads to significant savings in processing, network traffic, network delay and packet loss rates for constrained devices. As a result, the SSP helps to guarantee the proper operation of constrained networks as these networks form an ever-expanding Web of Things.

  16. Wireless power transfer electric vehicle supply equipment installation and validation tool

    DOEpatents

    Jones, Perry T.; Miller, John M.

    2015-05-19

    A transmit pad inspection device includes a magnetic coupling device, which includes an inductive circuit that is configured to magnetically couple to a primary circuit of a charging device in a transmit pad through an alternating current (AC) magnetic field. The inductive circuit functions as a secondary circuit for a set of magnetically coupled coils. The magnetic coupling device further includes a rectification circuit, and includes a controllable load bank or is configured to be connected to an external controllable load back. The transmit pad inspection device is configured to determine the efficiency of power transfer under various coupling conditions. In addition, the transmit pad inspection device can be configured to measure residual magnetic field and the frequency of the input current, and to determine whether the charging device has been installed properly.

  17. Grazing incidence angle based sensing approach integrated with fiber-optic Fourier transform infrared (FO-FTIR) spectroscopy for remote and label-free detection of medical device contaminations.

    PubMed

    Hassan, Moinuddin; Ilev, Ilko

    2014-10-01

    Contamination of medical devices has become a critical and prevalent public health safety concern since medical devices are being increasingly used in clinical practices for diagnostics, therapeutics and medical implants. The development of effective sensing methods for real-time detection of pathogenic contamination is needed to prevent and reduce the spread of infections to patients and the healthcare community. In this study, a hollow-core fiber-optic Fourier transform infrared spectroscopy methodology employing a grazing incidence angle based sensing approach (FO-FTIR-GIA) was developed for detection of various biochemical contaminants on medical device surfaces. We demonstrated the sensitivity of FO-FTIR-GIA sensing approach for non-contact and label-free detection of contaminants such as lipopolysaccharide from various surface materials relevant to medical device. The proposed sensing system can detect at a minimum loading concentration of approximately 0.7 μg/cm(2). The FO-FTIR-GIA has the potential for the detection of unwanted pathogen in real time.

  18. Grazing incidence angle based sensing approach integrated with fiber-optic Fourier transform infrared (FO-FTIR) spectroscopy for remote and label-free detection of medical device contaminations

    NASA Astrophysics Data System (ADS)

    Hassan, Moinuddin; Ilev, Ilko

    2014-10-01

    Contamination of medical devices has become a critical and prevalent public health safety concern since medical devices are being increasingly used in clinical practices for diagnostics, therapeutics and medical implants. The development of effective sensing methods for real-time detection of pathogenic contamination is needed to prevent and reduce the spread of infections to patients and the healthcare community. In this study, a hollow-core fiber-optic Fourier transform infrared spectroscopy methodology employing a grazing incidence angle based sensing approach (FO-FTIR-GIA) was developed for detection of various biochemical contaminants on medical device surfaces. We demonstrated the sensitivity of FO-FTIR-GIA sensing approach for non-contact and label-free detection of contaminants such as lipopolysaccharide from various surface materials relevant to medical device. The proposed sensing system can detect at a minimum loading concentration of approximately 0.7 μg/cm2. The FO-FTIR-GIA has the potential for the detection of unwanted pathogen in real time.

  19. Grazing incidence angle based sensing approach integrated with fiber-optic Fourier transform infrared (FO-FTIR) spectroscopy for remote and label-free detection of medical device contaminations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassan, Moinuddin, E-mail: moinuddin.hassan@fda.hhs.gov; Ilev, Ilko

    2014-10-15

    Contamination of medical devices has become a critical and prevalent public health safety concern since medical devices are being increasingly used in clinical practices for diagnostics, therapeutics and medical implants. The development of effective sensing methods for real-time detection of pathogenic contamination is needed to prevent and reduce the spread of infections to patients and the healthcare community. In this study, a hollow-core fiber-optic Fourier transform infrared spectroscopy methodology employing a grazing incidence angle based sensing approach (FO-FTIR-GIA) was developed for detection of various biochemical contaminants on medical device surfaces. We demonstrated the sensitivity of FO-FTIR-GIA sensing approach for non-contactmore » and label-free detection of contaminants such as lipopolysaccharide from various surface materials relevant to medical device. The proposed sensing system can detect at a minimum loading concentration of approximately 0.7 μg/cm{sup 2}. The FO-FTIR-GIA has the potential for the detection of unwanted pathogen in real time.« less

  20. Working medium circuit for alkali metal thermal-to-electric converters (AMTEC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalandarishvili, A.G.

    1996-12-31

    The possibility is studied to create a sodium circuit in an AMTEC type conversion device. The proposed circuit is based on a heat pipe that includes the evaporation-condensation cycle. Different layouts based on this principle are presented. The proposed circuit is characterized by the following advantages: no need for an electromagnetic pump, low load on the converter, better capability to control temperature drop at the converter.

  1. Electrothermal fracturing of tensile specimens

    NASA Technical Reports Server (NTRS)

    Blinn, H. O.; Hanks, J. G.; Perkins, H. P.

    1970-01-01

    Pulling device consisting of structural tube, connecting rod, spring-loaded nuts, loading rod, heating element, and three bulkheads fractures tensile specimens. Alternate heating and cooling increases tensile loading by increments until fracturing occurs. Load cell or strain gage, applied to pulling rod, determines forces applied.

  2. Self-regulating control of parasitic loads in a fuel cell power system

    NASA Technical Reports Server (NTRS)

    Vasquez, Arturo (Inventor)

    2011-01-01

    A fuel cell power system comprises an internal or self-regulating control of a system or device requiring a parasitic load. The internal or self-regulating control utilizes certain components and an interconnection scheme to produce a desirable, variable voltage potential (i.e., power) to a system or device requiring parasitic load in response to varying operating conditions or requirements of an external load that is connected to a primary fuel cell stack of the system. Other embodiments comprise a method of designing such a self-regulated control scheme and a method of operating such a fuel cell power system.

  3. Portable Load Measurement Device for Use During ARED Exercise on ISS

    NASA Technical Reports Server (NTRS)

    Hanson, A.; Peters, B.; Caldwell, E.; Sinka, J.; Kreutzburg, G.; Ploutz-Snyder, L.

    2014-01-01

    The Advanced Resistive Exercise Device (ARED) (Fig.1) is unique countermeasure hardware available to crewmembers aboard the International Space Station (ISS) used for resistance exercise training to protect against bone and muscle loss during long duration space missions. ARED instrumentation system was designed to measure and record exercise load data, but: - Reliably accurate data has not been available due to a defective force platform. - No ARED data has been recorded since mid-2011 due to failures in the instrumentation power system. ARED load data supports on-going HRP funded research, and is available to extramural researchers through LSDA-Repository. Astronaut Strength, Conditioning, and Rehabilitation specialists (ASCRs) use ARED data to track training progress and advance exercise prescriptions. ARED load data is necessary to fulfill medical requirements. HRP directed task intends to reduce to program risk (HRP IRMA Risk 1735), and evaluate the XSENS ForceShoeTM as a means of obtaining ARED load data during exercise sessions. The XSENS ForceShoes"TM" will fly as a hardware demonstration to ISS in May 2014 (39S). Additional portable load monitoring devices (PLMDs) are under evaluation in the ExPC Lab. PLMDs are favored over platform redesign as they support future exploration needs.

  4. A Delay Vector Variance based Marker for an Output-Only Assessment of Structural Changes in Tension Leg Platforms

    NASA Astrophysics Data System (ADS)

    Jaksic, V.; Wright, C.; Mandic, D. P.; Murphy, J.; Pakrashi, V.

    2015-07-01

    Although aspects of power generation of many offshore renewable devices are well understood, their dynamic responses under high wind and wave conditions are still to be investigated to a great detail. Output only statistical markers are important for these offshore devices, since access to the device is limited and information about the exposure conditions and the true behaviour of the devices are generally partial, limited, and vague or even absent. The markers can summarise and characterise the behaviour of these devices from their dynamic response available as time series data. The behaviour may be linear or nonlinear and consequently a marker that can track the changes in structural situations can be quite important. These markers can then be helpful in assessing the current condition of the structure and can indicate possible intervention, monitoring or assessment. This paper considers a Delay Vector Variance based marker for changes in a tension leg platform tested in an ocean wave basin for structural changes brought about by single column dampers. The approach is based on dynamic outputs of the device alone and is based on the estimation of the nonlinearity of the output signal. The advantages of the selected marker and its response with changing structural properties are discussed. The marker is observed to be important for monitoring the as- deployed structural condition and is sensitive to changes in such conditions. Influence of exposure conditions of wave loading is also discussed in this study based only on experimental data.

  5. Index-based reactive power compensation scheme for voltage regulation

    NASA Astrophysics Data System (ADS)

    Dike, Damian Obioma

    2008-10-01

    Increasing demand for electrical power arising from deregulation and the restrictions posed to the construction of new transmission lines by environment, socioeconomic, and political issues had led to higher grid loading. Consequently, voltage instability has become a major concern, and reactive power support is vital to enhance transmission grid performance. Improved reactive power support to distressed grid is possible through the application of relatively unfamiliar emerging technologies of "Flexible AC Transmission Systems (FACTS)" devices and "Distributed Energy Resources (DERS)." In addition to these infrastructure issues, a lack of situational awareness by system operators can cause major power outages as evidenced by the August 14, 2003 widespread North American blackout. This and many other recent major outages have highlighted the inadequacies of existing power system indexes. In this work, a novel "Index-based reactive compensation scheme" appropriate for both on-line and off-line computation of grid status has been developed. A new voltage stability index (Ls-index) suitable for long transmission lines was developed, simulated, and compared to the existing two-machine modeled L-index. This showed the effect of long distance power wheeling amongst regional transmission organizations. The dissertation further provided models for index modulated voltage source converters (VSC) and index-based load flow analysis of both FACTS and microgrid interconnected power systems using the Newton-Raphson's load flow model incorporated with multi-FACTS devices. The developed package has been made user-friendly through the embodiment of interactive graphical user interface and implemented on the IEEE 14, 30, and 300 bus systems. The results showed reactive compensation has system wide-effect, provided readily accessible system status indicators, ensured seamless DERs interconnection through new islanding modes and enhanced VSC utilization. These outcomes may contribute to optimal utilization of compensation devices and available transfer capability as well as reduce system outages through better regulation of power operating voltages.

  6. Load Variation Influences on Joint Work During Squat Exercise in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    DeWitt, John K.; Fincke, Renita S.; Logan, Rachel L.; Guilliams, Mark E.; Ploutz-Snyder, Lori L.

    2011-01-01

    Resistance exercises that load the axial skeleton, such as the parallel squat, are incorporated as a critical component of a space exercise program designed to maximize the stimuli for bone remodeling and muscle loading. Astronauts on the International Space Station perform regular resistance exercise using the Advanced Resistive Exercise Device (ARED). Squat exercises on Earth entail moving a portion of the body weight plus the added bar load, whereas in microgravity the body weight is 0, so all load must be applied via the bar. Crewmembers exercising in microgravity currently add approx.70% of their body weight to the bar load as compensation for the absence of the body weight. This level of body weight replacement (BWR) was determined by crewmember feedback and personal experience without any quantitative data. The purpose of this evaluation was to utilize computational simulation to determine the appropriate level of BWR in microgravity necessary to replicate lower extremity joint work during squat exercise in normal gravity based on joint work. We hypothesized that joint work would be positively related to BWR load.

  7. Rapid Single-Cell Electroporation for Labeling Organotypic Cultures

    DTIC Science & Technology

    2010-06-01

    carry out SCE on the tissue slice under visual control from the user. When the user wishes to transfect a new compound , the entire micromanipulator...a new compound by a perpendicular long-travel linear stage (H). Each sub-system is discussed below in detail including development and choice of...stage where a cleaning bath is moved in. The tip is inserted into the bath and cleaned/rinsed (E) before sampling a new compound and repeating (A). Af D

  8. Production of cloned mice from somatic cells, ES cells, and frozen bodies.

    PubMed

    Wakayama, Sayaka; Mizutani, Eiji; Wakayama, Teruhiko

    2010-01-01

    Somatic cell nuclear transfer (SCNT) has become a unique and powerful tool for epigenetic reprogramming research and gene manipulation in animals. Although the success rates of somatic cloning have been inefficient and the mechanism of reprogramming is still largely unknown, therefore, the nuclear transfer (NT) method has been thought of as a "black box approach" and inadequate to determine the detail of how genomic reprogramming occurs. However, only the NT approach can reveal dynamic and global modifications in the epigenome without using genetic modification, as well as can create live animals. At present, this is the only technique available for the preservation and propagation of valuable genetic resources from mutant mice that are infertile or too old, or recovered from carcasses, without the use of germ cells. This chapter describes a basic protocol for mouse cloning and embryonic stem (ES) cell establishment from cloned embryo using a piezo-actuated micromanipulator. This technique will greatly help not only in mouse cloning but also in other forms of micromanipulation such as intracytoplasmic sperm injection (ICSI) into oocytes or ES cell injection into blastocysts. In addition, we describe a new, more efficient mouse cloning protocol using histone deacetylase inhibitor (HDACi), which increases the success rates of cloned mice or establish rate of ES cells to fivefold. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  9. Impact of Low Molecular Weight Poly(3-hexylthiophene)s as Additives in Organic Photovoltaic Devices.

    PubMed

    Seibers, Zach D; Le, Thinh P; Lee, Youngmin; Gomez, Enrique D; Kilbey, S Michael

    2018-01-24

    Despite tremendous progress in using additives to enhance the power conversion efficiency of organic photovoltaic devices, significant challenges remain in controlling the microstructure of the active layer, such as at internal donor-acceptor interfaces. Here, we demonstrate that the addition of low molecular weight poly(3-hexylthiophene)s (low-MW P3HT) to the P3HT/fullerene active layer increases device performance up to 36% over an unmodified control device. Low MW P3HT chains ranging in size from 1.6 to 8.0 kg/mol are blended with 77.5 kg/mol P3HT chains and [6,6]-phenyl C 61 butyric acid methyl ester (PCBM) fullerenes while keeping P3HT/PCBM ratio constant. Optimal photovoltaic device performance increases are obtained for each additive when incorporated into the bulk heterojunction blend at loading levels that are dependent upon additive MW. Small-angle X-ray scattering and energy-filtered transmission electron microscopy imaging reveal that domain sizes are approximately invariant at low loading levels of the low-MW P3HT additive, and wide-angle X-ray scattering suggests that P3HT crystallinity is unaffected by these additives. These results suggest that oligomeric P3HTs compatibilize donor-acceptor interfaces at low loading levels but coarsen domain structures at higher loading levels and they are consistent with recent simulations results. Although results are specific to the P3HT/PCBM system, the notion that low molecular weight additives can enhance photovoltaic device performance generally provides a new opportunity for improving device performance and operating lifetimes.

  10. LOADING AND UNLOADING DEVICE

    DOEpatents

    Treshow, M.

    1960-08-16

    A device for loading and unloading fuel rods into and from a reactor tank through an access hole includes parallel links carrying a gripper. These links enable the gripper to go through the access hole and then to be moved laterally from the axis of the access hole to the various locations of the fuel rods in the reactor tank.

  11. 49 CFR 178.345-8 - Accident damage protection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... accidental loss of lading. The device must break at no more than 70 percent of the load that would be... major radius of the tank shell. The device must break at no more than 70 percent of the load that would... requirements of this section and the applicable individual specification to minimize the potential for the loss...

  12. 49 CFR 178.345-8 - Accident damage protection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... accidental loss of lading. The device must break at no more than 70 percent of the load that would be... major radius of the tank shell. The device must break at no more than 70 percent of the load that would... requirements of this section and the applicable individual specification to minimize the potential for the loss...

  13. 49 CFR 178.345-8 - Accident damage protection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... accidental loss of lading. The device must break at no more than 70 percent of the load that would be... major radius of the tank shell. The device must break at no more than 70 percent of the load that would... requirements of this section and the applicable individual specification to minimize the potential for the loss...

  14. 49 CFR 178.345-8 - Accident damage protection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... accidental loss of lading. The device must break at no more than 70 percent of the load that would be... major radius of the tank shell. The device must break at no more than 70 percent of the load that would... requirements of this section and the applicable individual specification to minimize the potential for the loss...

  15. 10 CFR 71.45 - Lifting and tie-down standards for all packages.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... that failure of any lifting device under excessive load would not impair the ability of the package to... its yield strength, a static force applied to the center of gravity of the package having a vertical... package must be designed so that failure of the device under excessive load would not impair the ability...

  16. 10 CFR 71.45 - Lifting and tie-down standards for all packages.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... that failure of any lifting device under excessive load would not impair the ability of the package to... its yield strength, a static force applied to the center of gravity of the package having a vertical... package must be designed so that failure of the device under excessive load would not impair the ability...

  17. 10 CFR 71.45 - Lifting and tie-down standards for all packages.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... that failure of any lifting device under excessive load would not impair the ability of the package to... its yield strength, a static force applied to the center of gravity of the package having a vertical... package must be designed so that failure of the device under excessive load would not impair the ability...

  18. 10 CFR 71.45 - Lifting and tie-down standards for all packages.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... that failure of any lifting device under excessive load would not impair the ability of the package to... its yield strength, a static force applied to the center of gravity of the package having a vertical... package must be designed so that failure of the device under excessive load would not impair the ability...

  19. 10 CFR 71.45 - Lifting and tie-down standards for all packages.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... that failure of any lifting device under excessive load would not impair the ability of the package to... its yield strength, a static force applied to the center of gravity of the package having a vertical... package must be designed so that failure of the device under excessive load would not impair the ability...

  20. Biotribological evaluation of artificial disc arthroplasty devices: influence of loading and kinematic patterns during in vitro wear simulation.

    PubMed

    Grupp, Thomas M; Yue, James J; Garcia, Rolando; Basson, Janet; Schwiesau, Jens; Fritz, Bernhard; Blömer, Wilhelm

    2009-01-01

    Wear simulation is an essential pre-clinical method to predict the mid- and long-term clinical wear behavior of newly introduced devices for total disc arthroplasty. The main requirement of a suitable method for spinal wear simulation has to be the ability to distinguish between design concepts and allow for a direct comparison of predicate devices. The objective of our study was to investigate the influence of loading and kinematic patterns based on two different protocols for spinal wear simulation (ISO/FDIS 18192-1 (2006) and ASTM F2423-05). In vitro wear simulation was performed with six activ L lumbar artificial disc devices (Aesculap Tuttlingen, Germany). The applied kinematic pattern of movement was multidirectional for ISO (elliptic track) and unidirectional with a curvilinear shape for ASTM. Testing was done for 10 million cycles in the ISO loading mode and afterwards with the same specimens for 5 million cycles according to the ASTM protocol with a customized six-station servohydraulic spinal wear simulator (EndoLab Thansau, Germany). Gravimetrical and geometrical wear assessment, a slide track analysis correlated to an optical surface characterization, and an estimation of particle size and morphology were performed. The gravimetric wear rate for the first 10 million cycles was ISO(initial) = 2.7 +/- 0.3 mg/million cycles. During the ASTM test period (10-15 million cycles) a gravimetric wear rate of 0.14 +/- 0.06 mg/million cycles was estimated. The wear rates between the ISO and ASTM driven simulations differ substantially (approximately 20-fold) and statistical analysis demonstrates a significant difference (p < 0.001) between the test groups. The main explanation of divergency between ISO and ASTM driven wear simulations is the multidirectional pattern of movement described in the ISO document resulting in a cross-shear stress on the polyethylene material. Due to previous retrieval observations, it seems to be very unlikely that a lumbar artificial disc is loaded with a linear wear path.Testing according to ASTM F2423-05 with pure unidirectional motion does not reflect the kinematics of TDA patients' daily activities. Based on our findings it seems to be more reliable to predict the clinical wear behavior of an artificial disc replacement using the ISO/FDIS 18192-1 method.

  1. Biotribological evaluation of artificial disc arthroplasty devices: influence of loading and kinematic patterns during in vitro wear simulation

    PubMed Central

    Yue, James J.; Garcia, Rolando; Basson, Janet; Schwiesau, Jens; Fritz, Bernhard; Blömer, Wilhelm

    2008-01-01

    Wear simulation is an essential pre-clinical method to predict the mid- and long-term clinical wear behavior of newly introduced devices for total disc arthroplasty. The main requirement of a suitable method for spinal wear simulation has to be the ability to distinguish between design concepts and allow for a direct comparison of predicate devices. The objective of our study was to investigate the influence of loading and kinematic patterns based on two different protocols for spinal wear simulation (ISO/FDIS 18192-1 (2006) and ASTM F2423-05). In vitro wear simulation was performed with six activ® L lumbar artificial disc devices (Aesculap Tuttlingen, Germany). The applied kinematic pattern of movement was multidirectional for ISO (elliptic track) and unidirectional with a curvilinear shape for ASTM. Testing was done for 10 million cycles in the ISO loading mode and afterwards with the same specimens for 5 million cycles according to the ASTM protocol with a customized six-station servohydraulic spinal wear simulator (EndoLab Thansau, Germany). Gravimetrical and geometrical wear assessment, a slide track analysis correlated to an optical surface characterization, and an estimation of particle size and morphology were performed. The gravimetric wear rate for the first 10 million cycles was ISOinitial = 2.7 ± 0.3 mg/million cycles. During the ASTM test period (10–15 million cycles) a gravimetric wear rate of 0.14 ± 0.06 mg/million cycles was estimated. The wear rates between the ISO and ASTM driven simulations differ substantially (approximately 20-fold) and statistical analysis demonstrates a significant difference (p < 0.001) between the test groups. The main explanation of divergency between ISO and ASTM driven wear simulations is the multidirectional pattern of movement described in the ISO document resulting in a cross-shear stress on the polyethylene material. Due to previous retrieval observations, it seems to be very unlikely that a lumbar artificial disc is loaded with a linear wear path.Testing according to ASTM F2423-05 with pure unidirectional motion does not reflect the kinematics of TDA patients‘ daily activities. Based on our findings it seems to be more reliable to predict the clinical wear behavior of an artificial disc replacement using the ISO/FDIS 18192-1 method. PMID:19050942

  2. Structures and mechanisms - Streamlining for fuel economy

    NASA Technical Reports Server (NTRS)

    Card, M. F.

    1983-01-01

    The design of prospective NASA space station components which inherently possess the means for structural growth without compromising initial system characteristics is considered. In structural design terms, space station growth can be achieved by increasing design safety factors, introducing dynamic isolators to prevent loads from reaching the initial components, or preplanning the refurbishment of the original structure with stronger elements. Design tradeoffs will be based on the definition of on-orbit loads, including docking and maneuvering, whose derived load spectra will allow the estimation of fatigue life. Improvements must be made in structural materials selection in order to reduce contamination, slow degradation, and extend the life of coatings. To minimize on-orbit maintenance, long service life lubrication systems with advanced sealing devices must be developed.

  3. Modeling of Protection in Dynamic Simulation Using Generic Relay Models and Settings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samaan, Nader A.; Dagle, Jeffery E.; Makarov, Yuri V.

    This paper shows how generic protection relay models available in planning tools can be augmented with settings that are based on NERC standards or best engineering practice. Selected generic relay models in Siemens PSS®E have been used in dynamic simulations in the proposed approach. Undervoltage, overvoltage, underfrequency, and overfrequency relays have been modeled for each generating unit. Distance-relay protection was modeled for transmission system protection. Two types of load-shedding schemes were modeled: underfrequency (frequency-responsive non-firm load shedding) and underfrequency and undervoltage firm load shedding. Several case studies are given to show the impact of protection devices on dynamic simulations. Thismore » is useful for simulating cascading outages.« less

  4. Hydrogel nanoparticle based immunoassay

    DOEpatents

    Liotta, Lance A; Luchini, Alessandra; Petricoin, Emanuel F; Espina, Virginia

    2015-04-21

    An immunoassay device incorporating porous polymeric capture nanoparticles within either the sample collection vessel or pre-impregnated into a porous substratum within fluid flow path of the analytical device is presented. This incorporation of capture particles within the immunoassay device improves sensitivity while removing the requirement for pre-processing of samples prior to loading the immunoassay device. A preferred embodiment is coreshell bait containing capture nanoparticles which perform three functions in one step, in solution: a) molecular size sieving, b) target analyte sequestration and concentration, and c) protection from degradation. The polymeric matrix of the capture particles may be made of co-polymeric materials having a structural monomer and an affinity monomer, the affinity monomer having properties that attract the analyte to the capture particle. This device is useful for point of care diagnostic assays for biomedical applications and as field deployable assays for environmental, pathogen and chemical or biological threat identification.

  5. Current Progress of Genetically Engineered Pig Models for Biomedical Research

    PubMed Central

    Gün, Gökhan

    2014-01-01

    Abstract The first transgenic pigs were generated for agricultural purposes about three decades ago. Since then, the micromanipulation techniques of pig oocytes and embryos expanded from pronuclear injection of foreign DNA to somatic cell nuclear transfer, intracytoplasmic sperm injection-mediated gene transfer, lentiviral transduction, and cytoplasmic injection. Mechanistically, the passive transgenesis approach based on random integration of foreign DNA was developed to active genetic engineering techniques based on the transient activity of ectopic enzymes, such as transposases, recombinases, and programmable nucleases. Whole-genome sequencing and annotation of advanced genome maps of the pig complemented these developments. The full implementation of these tools promises to immensely increase the efficiency and, in parallel, to reduce the costs for the generation of genetically engineered pigs. Today, the major application of genetically engineered pigs is found in the field of biomedical disease modeling. It is anticipated that genetically engineered pigs will increasingly be used in biomedical research, since this model shows several similarities to humans with regard to physiology, metabolism, genome organization, pathology, and aging. PMID:25469311

  6. Design of a Minimum Surface-Effect Tendon-Based Microactuator for Micromanipulation

    NASA Technical Reports Server (NTRS)

    Goldfarb, Michael; Lipsey, James H.

    1997-01-01

    A piezoelectric (PZT) stack-based actuator was developed to provide a means of actuation with dynamic characteristics appropriate for small-scale manipulation. In particular, the design incorporates a highly nonlinear, large-ratio transmission that provides approximately two orders of magnitude motion amplification from the PZT stack. In addition to motion amplification, the nonlinear transmission was designed via optimization methods to distort the highly non-uniform properties of a piezoelectric actuator so that the achievable actuation force is nearly constant throughout the actuator workspace. The package also includes sensors that independently measure actuator output force and displacement, so that a manipulator structure need not incorporate sensors nor the associated wires. Specifically, the actuator was designed to output a maximum force of at least one Newton through a stroke of at least one millimeter. For purposes of small-scale precision position and/or force control, the actuator/sensor package was designed to eliminate stick-slip friction and backlash. The overall dimensions of the actuator/sensor package are approximately 40 x 65 x 25 mm.

  7. Distributed Smart Grid Asset Control Strategies for Providing Ancillary Services

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalsi, Karanjit; Zhang, Wei; Lian, Jianming

    2013-10-30

    With large-scale plans to integrate renewable generation driven mainly by state-level renewable portfolio requirements, more resources will be needed to compensate for the uncertainty and variability associated with intermittent generation resources. Distributed assets can be used to mitigate the concerns associated with renewable energy resources and to keep costs down. Under such conditions, performing primary frequency control using only supply-side resources becomes not only prohibitively expensive but also technically difficult. It is therefore important to explore how a sufficient proportion of the loads could assume a routine role in primary frequency control to maintain the stability of the system atmore » an acceptable cost. The main objective of this project is to develop a novel hierarchical distributed framework for frequency based load control. The framework involves two decision layers. The top decision layer determines the optimal gain for aggregated loads for each load bus. The gains are computed using decentralized robust control methods, and will be broadcast to the corresponding participating loads every control period. The second layer consists of a large number of heterogeneous devices, which switch probabilistically during contingencies so that aggregated power change matches the desired amount according to the most recently received gains. The simulation results show great potential to enable systematic design of demand-side primary frequency control with stability guarantees on the overall power system. The proposed design systematically accounts for the interactions between the total load response and bulk power system frequency dynamics. It also guarantees frequency stability under a wide range of time varying operating conditions. The local device-level load response rules fully respect the device constraints (such as temperature setpoint, compressor time delays of HVACs, or arrival and departure of the deferrable loads), which are crucial for implementing real load control programs. The promise of autonomous, Grid Friendly™ response by smart appliances in the form of under-frequency load shedding was demonstrated in the GridWise Olympic Peninsula Demonstration in 2006. Each controller monitored the power grid voltage signal and requested that electrical load be shed by its appliance whenever electric power-grid frequency fell below 59.95 Hz. The controllers and their appliances responded reliably to each shallow under-frequency event, which was an average of one event per day and shed their loads for the durations of these events. Another objective of this project was to perform extensive simulation studies to investigate the impact of a population of Grid Friendly™ Appliances (GFAs) on the bulk power system frequency stability. The GFAs considered in this report are represented as demonstration units with water heaters individually modeled.« less

  8. A Method to Analyze and Optimize the Load Sharing of Split Path Transmissions

    NASA Technical Reports Server (NTRS)

    Krantz, Timothy L.

    1996-01-01

    Split-path transmissions are promising alternatives to the common planetary transmissions for rotorcraft. Heretofore, split-path designs proposed for or used in rotorcraft have featured load-sharing devices that add undesirable weight and complexity to the designs. A method was developed to analyze and optimize the load sharing in split-path transmissions without load-sharing devices. The method uses the clocking angle as a design parameter to optimize for equal load sharing. In addition, the clocking angle tolerance necessary to maintain acceptable load sharing can be calculated. The method evaluates the effects of gear-shaft twisting and bending, tooth bending, Hertzian deformations within bearings, and movement of bearing supports on load sharing. It was used to study the NASA split-path test gearbox and the U.S. Army's Comanche helicopter main rotor gearbox. Acceptable load sharing was found to be achievable and maintainable by using proven manufacturing processes. The analytical results compare favorably to available experimental data.

  9. Development of a biaxial compression device for biological samples: preliminary experimental results for a closed cell foam.

    PubMed

    Little, J P; Tevelen, G; Adam, C J; Evans, J H; Pearcy, M J

    2009-07-01

    Biological tissues are subjected to complex loading states in vivo and in order to define constitutive equations that effectively simulate their mechanical behaviour under these loads, it is necessary to obtain data on the tissue's response to multiaxial loading. Single axis and shear testing of biological tissues is often carried out, but biaxial testing is less common. We sought to design and commission a biaxial compression testing device, capable of obtaining repeatable data for biological samples. The apparatus comprised a sealed stainless steel pressure vessel specifically designed such that a state of hydrostatic compression could be created on the test specimen while simultaneously unloading the sample along one axis with an equilibrating tensile pressure. Thus a state of equibiaxial compression was created perpendicular to the long axis of a rectangular sample. For the purpose of calibration and commissioning of the vessel, rectangular samples of closed cell ethylene vinyl acetate (EVA) foam were tested. Each sample was subjected to repeated loading, and nine separate biaxial experiments were carried out to a maximum pressure of 204 kPa (30 psi), with a relaxation time of two hours between them. Calibration testing demonstrated the force applied to the samples had a maximum error of 0.026 N (0.423% of maximum applied force). Under repeated loading, the foam sample demonstrated lower stiffness during the first load cycle. Following this cycle, an increased stiffness, repeatable response was observed with successive loading. While the experimental protocol was developed for EVA foam, preliminary results on this material suggest that this device may be capable of providing test data for biological tissue samples. The load response of the foam was characteristic of closed cell foams, with consolidation during the early loading cycles, then a repeatable load-displacement response upon repeated loading. The repeatability of the test results demonstrated the ability of the test device to provide reproducible test data and the low experimental error in the force demonstrated the reliability of the test data.

  10. Sustained prevention of biofilm formation on a novel silicone matrix suitable for medical devices.

    PubMed

    Steffensen, Søren Langer; Vestergaard, Merete Hedemark; Groenning, Minna; Alm, Martin; Franzyk, Henrik; Nielsen, Hanne Mørck

    2015-08-01

    Bacterial colonization and biofilm formation on medical devices constitute major challenges in clinical long-term use of e.g. catheters due to the risk of (re)infection of patients, which would result in additional use of antibiotics risking bacterial resistance development. The aim of the present project was to introduce a novel antibacterial approach involving an advanced composite material applicable for medical devices. The polymeric composites investigated consisted of a hydrogel network of cross-linked poly(2-hydroxyethyl methacrylate) (PHEMA) embedded in a poly(dimethylsiloxane) (PDMS) silicone elastomer produced using supercritical carbon dioxide (scCO2). In these materials, the hydrogel may contain an active pharmaceutical ingredient while the silicone elastomer provides the sufficient mechanical stability of the material. In these conceptual studies, the antimicrobial agent ciprofloxacin was loaded into the polymer matrix by a post-polymerization loading procedure. Sustained release of ciprofloxacin was demonstrated, and the release could be controlled by varying the hydrogel content in the range 13-38% (w/w) and by changing the concentration of ciprofloxacin during loading in the range of 1-20mg/mL. Devices containing 25% (w/w) hydrogel and loaded with ciprofloxacin displayed a strong antibacterial effect against Staphylococcus aureus bacterial colonization and subsequent biofilm formation on the device material was inhibited for 29days. In conclusion, the hydrogel/silicone composite represents a promising candidate material for medical devices that prevent bacterial colonization during long-term use. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. A Figure-of-Merit for Designing High-Performance Inductive Power Transmission Links

    PubMed Central

    Kiani, Mehdi; Ghovanloo, Maysam

    2014-01-01

    Power transfer efficiency (PTE) and power delivered to the load (PDL) are two key inductive link design parameters that relate to the power source and driver specs, power loss, transmission range, robustness against misalignment, variations in loading, and interference with other devices. Designers need to strike a delicate balance between these two because designing the link to achieve high PTE will degrade the PDL and vice versa. We are proposing a new figure-of-merit (FoM), which can help designers to find out whether a two-, three-, or four-coil link is appropriate for their particular application and guide them through an iterative design procedure to reach optimal coil geometries based on how they weigh the PTE versus PDL for that application. Three design examples at three different power levels have been presented based on the proposed FoM for implantable microelectronic devices, handheld mobile devices, and electric vehicles. The new FoM suggests that the two-coil links are suitable when the coils are strongly coupled, and a large PDL is needed. Three-coil links are the best when the coils are loosely coupled, the coupling distance varies considerably, and large PDL is necessary. Finally, four-coil links are optimal when the PTE is paramount, the coils are loosely coupled, and their relative distance and alignment are stable. Measurement results support the accuracy of the theoretical design procedure and conclusions. PMID:25382898

  12. A Figure-of-Merit for Designing High-Performance Inductive Power Transmission Links.

    PubMed

    Kiani, Mehdi; Ghovanloo, Maysam

    2012-11-16

    Power transfer efficiency (PTE) and power delivered to the load (PDL) are two key inductive link design parameters that relate to the power source and driver specs, power loss, transmission range, robustness against misalignment, variations in loading, and interference with other devices. Designers need to strike a delicate balance between these two because designing the link to achieve high PTE will degrade the PDL and vice versa. We are proposing a new figure-of-merit (FoM), which can help designers to find out whether a two-, three-, or four-coil link is appropriate for their particular application and guide them through an iterative design procedure to reach optimal coil geometries based on how they weigh the PTE versus PDL for that application. Three design examples at three different power levels have been presented based on the proposed FoM for implantable microelectronic devices, handheld mobile devices, and electric vehicles. The new FoM suggests that the two-coil links are suitable when the coils are strongly coupled, and a large PDL is needed. Three-coil links are the best when the coils are loosely coupled, the coupling distance varies considerably, and large PDL is necessary. Finally, four-coil links are optimal when the PTE is paramount, the coils are loosely coupled, and their relative distance and alignment are stable. Measurement results support the accuracy of the theoretical design procedure and conclusions.

  13. Energy harvesting device based on a metallic glass/PVDF magnetoelectric laminated composite

    NASA Astrophysics Data System (ADS)

    Lasheras, A.; Gutiérrez, J.; Reis, S.; Sousa, D.; Silva, M.; Martins, P.; Lanceros-Mendez, S.; Barandiarán, J. M.; Shishkin, D. A.; Potapov, A. P.

    2015-06-01

    A flexible, low-cost energy-harvesting device based on the magnetoelectric (ME) effect was designed using Fe64Co17Si7B12 as amorphous magnetostrictive ribbons and polyvinylidene fluoride (PVDF) as the piezoelectric element. A 3 cm-long sandwich-type laminated composite was fabricated by gluing the ribbons to the PVDF with an epoxy resin. A voltage multiplier circuit was designed to produce enough voltage to charge a battery. The power output and power density obtained were 6.4 μW and 1.5 mW cm-3, respectively, at optimum load resistance and measured at the magnetomechanical resonance of the laminate. The effect of the length of the ME laminate on power output was also studied: the power output exhibited decays proportionally with the length of the ME laminate. Nevertheless, good performance was obtained for a 0.5 cm-long device working at 337 KHz within the low radio frequency (LRF) range.

  14. Estimation of contraction scour in riverbed using SERF

    USGS Publications Warehouse

    Jiang, J.; Ganju, N.K.; Mehta, A.J.

    2004-01-01

    Contraction scour in a firm-clay estuarine riverbed is estimated at an oil-unloading terminal at the Port of Haldia in India, where a scour hole attained a maximum depth greater than 5 m relative to the original bottom. A linear equation for the erosion flux as a function of the excess bed shear stress was semicalibrated in a rotating-cylinder device called SERF (Simulator of Erosion Rate Function) and coupled to a hydrodynamic code to simulate the hole as a clear-water scour process. SERF, whose essential design is based on previous such devices, additionally included a load cell for in situ and rapid measurement of the eroded sediment mass. Based on SERF's performance and the degree of comparison between measured and simulated hole geometry, it appears that this device holds promise as a simple tool for prediction of scour in firm-clay beds. ?? ASCE.

  15. Comparison of Femoral Head Rotation and Varus Collapse Between a Single Lag Screw and Integrated Dual Screw Intertrochanteric Hip Fracture Fixation Device Using a Cadaveric Hemi-Pelvis Biomechanical Model.

    PubMed

    Santoni, Brandon G; Nayak, Aniruddh N; Cooper, Seth A; Smithson, Ian R; Cox, Jacob L; Marberry, Scott T; Sanders, Roy W

    2016-04-01

    This study compared the stabilizing effect of 2 intertrochanteric (IT) fracture fixation devices in a cadaveric hemi-pelvis biomechanical model. Eleven pairs of cadaveric osteopenic female hemi-pelves with intact hip joint and capsular ligaments were used. An unstable IT fracture (OTA 31-A2) was created in each specimen and stabilized with a single lag screw device (Gamma 3) or an integrated dual screw (IDS) device (InterTAN). The hemi-pelves were inverted, coupled to a biaxial apparatus and subjected to 13.5 k cycles of loading (3 months) using controlled, oscillating pelvic rotation (0-90 degrees) plus cyclic axial femoral loading at a 2:1 body weight (BW) ratio. Femoral head rotation and varus collapse were monitored optoelectonically. For specimens surviving 3 months of loading, additional loading was performed in 0.25 × BW/250 cycle increments to a maximum of 4 × BW or failure. Femoral head rotation with IDS fixation was significantly less than the single lag screw construct after 3 months of simulated loading (P = 0.016). Maximum femoral head rotation at the end of 4 × BW loading was 7× less for the IDS construct (P = 0.006). Varus collapse was significantly less with the IDS construct over the entire loading cycle (P = 0.021). In this worst-case model of an osteopenic, unstable, IT fracture, the IDS construct, likely owing to its larger surface area, noncylindrical profile, and fracture compression, provided significantly greater stability and resistance to femoral head rotation and varus collapse.

  16. Non-Intrusive Load Monitoring Approaches for Disaggregated Energy Sensing: A Survey

    PubMed Central

    Zoha, Ahmed; Gluhak, Alexander; Imran, Muhammad Ali; Rajasegarar, Sutharshan

    2012-01-01

    Appliance Load Monitoring (ALM) is essential for energy management solutions, allowing them to obtain appliance-specific energy consumption statistics that can further be used to devise load scheduling strategies for optimal energy utilization. Fine-grained energy monitoring can be achieved by deploying smart power outlets on every device of interest; however it incurs extra hardware cost and installation complexity. Non-Intrusive Load Monitoring (NILM) is an attractive method for energy disaggregation, as it can discern devices from the aggregated data acquired from a single point of measurement. This paper provides a comprehensive overview of NILM system and its associated methods and techniques used for disaggregated energy sensing. We review the state-of-the art load signatures and disaggregation algorithms used for appliance recognition and highlight challenges and future research directions. PMID:23223081

  17. On-chip optical transduction scheme for graphene nano-electro-mechanical systems in silicon-photonic platform.

    PubMed

    Dash, Aneesh; Selvaraja, S K; Naik, A K

    2018-02-15

    We present a scheme for on-chip optical transduction of strain and displacement of graphene-based nano-electro-mechanical systems (NEMS). A detailed numerical study on the feasibility of three silicon-photonic integrated circuit configurations is presented: the Mach-Zehnder interferometer (MZI), the micro-ring resonator, and the ring-loaded MZI. An index sensing based technique using an MZI loaded with a ring resonator with a moderate Q-factor of 2400 can yield a sensitivity of 28  fm/Hz and 6.5×10 -6 %/Hz for displacement and strain, respectively. Though any phase-sensitive integrated-photonic device could be used for optical transduction, here we show that optimal sensitivity is achievable by combining resonance with phase sensitivity.

  18. On-chip optical transduction scheme for graphene nano-electro-mechanical systems in silicon-photonic platform

    NASA Astrophysics Data System (ADS)

    Dash, Aneesh; Selvaraja, S. K.; Naik, A. K.

    2018-02-01

    We present a scheme for on-chip optical transduction of strain and displacement of Graphene-based Nano-Electro-Mechanical Systems (NEMS). A detailed numerical study on the feasibility of three silicon-photonic integrated circuit configurations is presented: Mach-Zehnder Interferometer(MZI), micro-ring resonator and ring-loaded MZI. An index-sensing based technique using a Mach-Zehnder Interferometer loaded with a ring resonator with a moderate Q-factor of 2400 can yield a sensitivity of 28 fm/sqrt(Hz), and 6.5E-6 %/sqrt(Hz) for displacement and strain respectively. Though any phase sensitive integrated photonic device could be used for optical transduction, here we show that optimal sensitivity is achievable by combining resonance with phase sensitivity.

  19. 40 CFR Table 6 to Subpart Eeee of... - Initial Compliance With Emission Limits

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... approval, TOC) emissions by at least 95 weight-percent, or as an option for nonflare combustion devices to an exhaust concentration of ≤20 ppmv Total organic HAP (or, upon approval, TOC) emissions, based on..., or new affected source Reduce total organic HAP (or, upon approval, TOC) emissions from the loading...

  20. Initial Evaluation of the Dermoskeleton Concept: Application of Biomechatronics and Artificial Intelligence to Address the Soldiers Overload Challenge

    DTIC Science & Technology

    2011-05-01

    leg prosthesis for above-the-knee amputees currently commercialized by Ossur hf and developed by Victhom Human Bionics Inc., a medical device...did not feel they worked as hard when wearing the K-SRDTM version POC during the loaded conditions. However, based on our heart rate measured, there

  1. 49 CFR 178.345-8 - Accident damage protection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... accidental loss of lading. The device must break at no more than 70 percent of the load that would be... major radius of the tank shell. The device must break at no more than 70 percent of the load that would... for the loss of lading due to an accident. (1) Any dome, sump, or washout cover plate projecting from...

  2. High-performance flexible energy storage and harvesting system for wearable electronics

    NASA Astrophysics Data System (ADS)

    Ostfeld, Aminy E.; Gaikwad, Abhinav M.; Khan, Yasser; Arias, Ana C.

    2016-05-01

    This paper reports on the design and operation of a flexible power source integrating a lithium ion battery and amorphous silicon solar module, optimized to supply power to a wearable health monitoring device. The battery consists of printed anode and cathode layers based on graphite and lithium cobalt oxide, respectively, on thin flexible current collectors. It displays energy density of 6.98 mWh/cm2 and demonstrates capacity retention of 90% at 3C discharge rate and ~99% under 100 charge/discharge cycles and 600 cycles of mechanical flexing. A solar module with appropriate voltage and dimensions is used to charge the battery under both full sun and indoor illumination conditions, and the addition of the solar module is shown to extend the battery lifetime between charging cycles while powering a load. Furthermore, we show that by selecting the appropriate load duty cycle, the average load current can be matched to the solar module current and the battery can be maintained at a constant state of charge. Finally, the battery is used to power a pulse oximeter, demonstrating its effectiveness as a power source for wearable medical devices.

  3. High-performance flexible energy storage and harvesting system for wearable electronics.

    PubMed

    Ostfeld, Aminy E; Gaikwad, Abhinav M; Khan, Yasser; Arias, Ana C

    2016-05-17

    This paper reports on the design and operation of a flexible power source integrating a lithium ion battery and amorphous silicon solar module, optimized to supply power to a wearable health monitoring device. The battery consists of printed anode and cathode layers based on graphite and lithium cobalt oxide, respectively, on thin flexible current collectors. It displays energy density of 6.98 mWh/cm(2) and demonstrates capacity retention of 90% at 3C discharge rate and ~99% under 100 charge/discharge cycles and 600 cycles of mechanical flexing. A solar module with appropriate voltage and dimensions is used to charge the battery under both full sun and indoor illumination conditions, and the addition of the solar module is shown to extend the battery lifetime between charging cycles while powering a load. Furthermore, we show that by selecting the appropriate load duty cycle, the average load current can be matched to the solar module current and the battery can be maintained at a constant state of charge. Finally, the battery is used to power a pulse oximeter, demonstrating its effectiveness as a power source for wearable medical devices.

  4. Angular-velocity control approach for stance-control orthoses.

    PubMed

    Lemaire, Edward D; Goudreau, Louis; Yakimovich, Terris; Kofman, Jonathan

    2009-10-01

    Currently, stance-control knee orthoses require external control mechanisms to control knee flexion during stance and allow free knee motion during the swing phase of gait. A new angular-velocity control approach that uses a rotary-hydraulic device to resist knee flexion when the knee angular velocity passes a preset threshold is presented. This angular-velocity approach for orthotic stance control is based on the premise that knee-flexion angular velocity during a knee-collapse event, such as a stumble or fall, is greater than that during walking. The new hydraulic knee-flexion control device does not require an external control mechanism to switch from free motion to stance control mode. Functional test results demonstrated that the hydraulic angular-velocity activated knee joint provided free knee motion during walking, engaged upon knee collapse, and supported body weight while the end-user recovered to a safe body position. The joint was tested to 51.6 Nm in single loading tests and passed 200,000 repeated loading cycles with a peak load of 88 Nm per cycle. The hydraulic, angular velocity activation approach has potential to improve safety and security for people with lower extremity weakness or when recovering from joint trauma.

  5. High-performance flexible energy storage and harvesting system for wearable electronics

    PubMed Central

    Ostfeld, Aminy E.; Gaikwad, Abhinav M.; Khan, Yasser; Arias, Ana C.

    2016-01-01

    This paper reports on the design and operation of a flexible power source integrating a lithium ion battery and amorphous silicon solar module, optimized to supply power to a wearable health monitoring device. The battery consists of printed anode and cathode layers based on graphite and lithium cobalt oxide, respectively, on thin flexible current collectors. It displays energy density of 6.98 mWh/cm2 and demonstrates capacity retention of 90% at 3C discharge rate and ~99% under 100 charge/discharge cycles and 600 cycles of mechanical flexing. A solar module with appropriate voltage and dimensions is used to charge the battery under both full sun and indoor illumination conditions, and the addition of the solar module is shown to extend the battery lifetime between charging cycles while powering a load. Furthermore, we show that by selecting the appropriate load duty cycle, the average load current can be matched to the solar module current and the battery can be maintained at a constant state of charge. Finally, the battery is used to power a pulse oximeter, demonstrating its effectiveness as a power source for wearable medical devices. PMID:27184194

  6. Miniaturized power limiter metasurface based on Fano-type resonance and Babinet principle.

    PubMed

    Loo, Y L; Wang, H G; Zhang, H; Ong, C K

    2016-09-05

    In this work, we present a miniaturize power limiter, a device with size smaller than that required by the working frequency, made of coupled self-complementary electric inductive-capacitive (CELC) resonator and original electric inductive-capacitive (ELC) structure. We also make use of Babinet principle to ensure both CELC and ELC are resonating at the same frequency. The CELC structure is loaded with a Schottky diode to achieve the effect of a nonlinear power limiter. The constructive interference of CELC and ELC structure produces a new Fano-type resonance peak at a lower frequency. The Fano peak is sharp and able to concentrate electric field at a region between the inner and outer metallic patch of the metastructure, hence enhancing the nonlinear properties of the loaded diode. The Fano peak enhances the maximum isolation of the power limiter due to the local field enhancement at where the diode is loaded. Numerical simulation and experiment are conducted in the S-band frequency to verify the power limiting effect of the device designed and to discuss the formation of Fano peak. The power limiter designed has a maximum isolation of 8.4 dB and a 3-dB isolation bandwidth of 6%.

  7. Development of combined low-emissions burner devices for low-power boilers

    NASA Astrophysics Data System (ADS)

    Roslyakov, P. V.; Proskurin, Yu. V.; Khokhlov, D. A.

    2017-08-01

    Low-power water boilers are widely used for autonomous heat supply in various industries. Firetube and water-tube boilers of domestic and foreign manufacturers are widely represented on the Russian market. However, even Russian boilers are supplied with licensed foreign burner devices, which reduce their competitiveness and complicate operating conditions. A task of developing efficient domestic low-emissions burner devices for low-power boilers is quite acute. A characteristic property of ignition and fuel combustion in such boilers is their flowing in constrained conditions due to small dimensions of combustion chambers and flame tubes. These processes differ significantly from those in open combustion chambers of high-duty power boilers, and they have not been sufficiently studied yet. The goals of this paper are studying the processes of ignition and combustion of gaseous and liquid fuels, heat and mass transfer and NO x emissions in constrained conditions, and the development of a modern combined low-emissions 2.2 MW burner device that provides efficient fuel combustion. A burner device computer model is developed and numerical studies of its operation on different types of fuel in a working load range from 40 to 100% of the nominal are carried out. The main features of ignition and combustion of gaseous and liquid fuels in constrained conditions of the flame tube at nominal and decreased loads are determined, which differ fundamentally from the similar processes in steam boiler furnaces. The influence of the burner devices design and operating conditions on the fuel underburning and NO x formation is determined. Based on the results of the design studies, a design of the new combined low-emissions burner device is proposed, which has several advantages over the prototype.

  8. Zero-Gravity Locomotion Simulators: New Ground-Based Analogs for Microgravity Exercise Simulation

    NASA Technical Reports Server (NTRS)

    Perusek, Gail P.; DeWitt, John K.; Cavanagh, Peter R.; Grodsinsky, Carlos M.; Gilkey, Kelly M.

    2007-01-01

    Maintaining health and fitness in crewmembers during space missions is essential for preserving performance for mission-critical tasks. NASA's Exercise Countermeasures Project (ECP) provides space exploration exercise hardware and monitoring requirements that lead to devices that are reliable, meet medical, vehicle, and habitat constraints, and use minimal vehicle and crew resources. ECP will also develop and validate efficient exercise prescriptions that minimize daily time needed for completion of exercise yet maximize performance for mission activities. In meeting these mission goals, NASA Glenn Research Center (Cleveland, OH, USA), in collaboration with the Cleveland Clinic (Cleveland, Ohio, USA), has developed a suite of zero-gravity locomotion simulators and associated technologies to address the need for ground-based test analog capability for simulating in-flight (microgravity) and surface (partial-gravity) exercise to advance the health and safety of astronaut crews and the next generation of space explorers. Various research areas can be explored. These include improving crew comfort during exercise, and understanding joint kinematics and muscle activation pattern differences relative to external loading mechanisms. In addition, exercise protocol and hardware optimization can be investigated, along with characterizing system dynamic response and the physiological demand associated with advanced exercise device concepts and performance of critical mission tasks for Exploration class missions. Three zero-gravity locomotion simulators are currently in use and the research focus for each will be presented. All of the devices are based on a supine subject suspension system, which simulates a reduced gravity environment by completely or partially offloading the weight of the exercising test subject s body. A platform for mounting treadmill is positioned perpendicularly to the test subject. The Cleveland Clinic Zero-g Locomotion Simulator (ZLS) utilizes a pneumatic subject load device to apply a near constant gravity-replacement load to the test subject during exercise, and is currently used in conjunction with the General Clinical Research Center for evaluating exercise protocols using a bedrest analog. The enhanced ZLS (eZLS) at NASA Glenn Research Center features an offloaded treadmill that floats on a thin film of air and interfaces to a force reaction frame via variably-compliant isolators, or vibration isolation system. The isolators can be configured to simulate compliant interfaces to the vehicle, which affects mechanical loading to crewmembers during exercise, and has been used to validate system dynamic models for new countermeasures equipment designs, such as the second International Space Station treadmill slated for use in 2010. In the eZLS, the test subject and exercise device can be pitched at the appropriate angle for partial gravity simulations, such as lunar gravity (1/6th earth gravity). On both the eZLS and the NASA-Johnson Space Center standalone ZLS installed at the University of Texas Medical Branch in Galveston, Texas, USA, the subject's body weight relative to the treadmill is controlled via a linear motor subject load device (LM-SLD). The LM-SLD employs a force-feedback closed-loop control system to provide a relatively constant force to the test subject during locomotion, and is set and verified for subject safety prior to each session. Locomotion data were collected during parabolic flight and on the eZLS. The purpose was to determine the similarities and differences between locomotion in actual and simulated microgravity. Subjects attained greater amounts of hip flexion during walking and running during parabolic flight. During running, subjects had greater hip range of motion. Trunk motion was significantly less on the eZLS than during parabolic flight. Peak impact forces, loading rate, and impulse were greater on the eZLS than during parabolic while walking with a low external load (EL) and rning with a high EL. Activation timing differences existed between locations in all muscles except for the rectus femoris. The tibialis anterior and gluteus maximus were active for longer durations on the eZLS than in parabolic flight during walking. Ground reaction forces were greater with the LM-SLD than with bungees during eZLS locomotion. While the eZLS serves as a ground-based analog, researchers should be aware that subtle, but measurable, differences in kinematics and leg musculature activities exist between the environments. Aside from space applications, zero-gravity locomotion simulators may help medical researchers in the future with development of rehabilitative or therapeutic protocols for injured or ill patients. Zero-gravity locomotion simulators may be used as a ground-based test bed to support future missions for space exploration, and eventually may be used to simulate planetary locomotion in partial gravity environments, including the Moon and Mars. Figure: Zero-gravity Locomotion Simulator at the Cleveland Clinic, Cleveland, Ohio, USA

  9. Simulating ideal assistive devices to reduce the metabolic cost of walking with heavy loads.

    PubMed

    Dembia, Christopher L; Silder, Amy; Uchida, Thomas K; Hicks, Jennifer L; Delp, Scott L

    2017-01-01

    Wearable robotic devices can restore and enhance mobility. There is growing interest in designing devices that reduce the metabolic cost of walking; however, designers lack guidelines for which joints to assist and when to provide the assistance. To help address this problem, we used musculoskeletal simulation to predict how hypothetical devices affect muscle activity and metabolic cost when walking with heavy loads. We explored 7 massless devices, each providing unrestricted torque at one degree of freedom in one direction (hip abduction, hip flexion, hip extension, knee flexion, knee extension, ankle plantarflexion, or ankle dorsiflexion). We used the Computed Muscle Control algorithm in OpenSim to find device torque profiles that minimized the sum of squared muscle activations while tracking measured kinematics of loaded walking without assistance. We then examined the metabolic savings provided by each device, the corresponding device torque profiles, and the resulting changes in muscle activity. We found that the hip flexion, knee flexion, and hip abduction devices provided greater metabolic savings than the ankle plantarflexion device. The hip abduction device had the greatest ratio of metabolic savings to peak instantaneous positive device power, suggesting that frontal-plane hip assistance may be an efficient way to reduce metabolic cost. Overall, the device torque profiles generally differed from the corresponding net joint moment generated by muscles without assistance, and occasionally exceeded the net joint moment to reduce muscle activity at other degrees of freedom. Many devices affected the activity of muscles elsewhere in the limb; for example, the hip flexion device affected muscles that span the ankle joint. Our results may help experimentalists decide which joint motions to target when building devices and can provide intuition for how devices may interact with the musculoskeletal system. The simulations are freely available online, allowing others to reproduce and extend our work.

  10. Simulating ideal assistive devices to reduce the metabolic cost of walking with heavy loads

    PubMed Central

    Silder, Amy; Uchida, Thomas K.; Hicks, Jennifer L.; Delp, Scott L.

    2017-01-01

    Wearable robotic devices can restore and enhance mobility. There is growing interest in designing devices that reduce the metabolic cost of walking; however, designers lack guidelines for which joints to assist and when to provide the assistance. To help address this problem, we used musculoskeletal simulation to predict how hypothetical devices affect muscle activity and metabolic cost when walking with heavy loads. We explored 7 massless devices, each providing unrestricted torque at one degree of freedom in one direction (hip abduction, hip flexion, hip extension, knee flexion, knee extension, ankle plantarflexion, or ankle dorsiflexion). We used the Computed Muscle Control algorithm in OpenSim to find device torque profiles that minimized the sum of squared muscle activations while tracking measured kinematics of loaded walking without assistance. We then examined the metabolic savings provided by each device, the corresponding device torque profiles, and the resulting changes in muscle activity. We found that the hip flexion, knee flexion, and hip abduction devices provided greater metabolic savings than the ankle plantarflexion device. The hip abduction device had the greatest ratio of metabolic savings to peak instantaneous positive device power, suggesting that frontal-plane hip assistance may be an efficient way to reduce metabolic cost. Overall, the device torque profiles generally differed from the corresponding net joint moment generated by muscles without assistance, and occasionally exceeded the net joint moment to reduce muscle activity at other degrees of freedom. Many devices affected the activity of muscles elsewhere in the limb; for example, the hip flexion device affected muscles that span the ankle joint. Our results may help experimentalists decide which joint motions to target when building devices and can provide intuition for how devices may interact with the musculoskeletal system. The simulations are freely available online, allowing others to reproduce and extend our work. PMID:28700630

  11. Evaluation of a low-temperature steam and formaldehyde sterilizer.

    PubMed

    Kanemitsu, K; Kunishima, H; Imasaka, T; Ishikawa, S; Harigae, H; Yamato, S; Hirayama, Y; Kaku, M

    2003-09-01

    We evaluated a low-temperature steam and formaldehyde (LTSF) sterilizer based on the draft European Standard prEN 14180. Microbiological tests were conducted on small and full loads using process challenge devices in five programs (P1-P5). With small loads all tests showed no growth of Bacillus stearothermophilus (ATCC7953) spores. However, positive cultures were observed with full-load tests using P5 (sterilization temperature, 50 degrees C). Our data indicated that the load influenced the efficacy of the LTSF sterilizer. Desorption tests were conducted to determine residual formaldehyde in indicator strips. The mean concentrations of formaldehyde in P1-P5 were 31.9, 56.3, 54.9, 82.2 and 180.6 microg, respectively, which are below the limits allowed by the draft Standard. Our results indicate that the LTSF sterilizer is useful for sterilization because of its excellent efficacy, short handling time, and safety.

  12. Optical components damage parameters database system

    NASA Astrophysics Data System (ADS)

    Tao, Yizheng; Li, Xinglan; Jin, Yuquan; Xie, Dongmei; Tang, Dingyong

    2012-10-01

    Optical component is the key to large-scale laser device developed by one of its load capacity is directly related to the device output capacity indicators, load capacity depends on many factors. Through the optical components will damage parameters database load capacity factors of various digital, information technology, for the load capacity of optical components to provide a scientific basis for data support; use of business processes and model-driven approach, the establishment of component damage parameter information model and database systems, system application results that meet the injury test optical components business processes and data management requirements of damage parameters, component parameters of flexible, configurable system is simple, easy to use, improve the efficiency of the optical component damage test.

  13. Analysis of PMN-PT and PZT circular diaphragm energy harvesters for use in implantable medical devices

    NASA Astrophysics Data System (ADS)

    Mo, Changki; Radziemski, Leon J.; Clark, William W.

    2007-04-01

    This paper presents current work on a project to demonstrate the feasibility of harvesting energy for medical devices from internal biomechanical forces using piezoelectric transducer technology based on PMN-PT. The energy harvesting device in this study is a partially covered, simply-supported PMN-PT unimorph circular plate to capture biomechanical energy and to provide power to implanted medical devices. Power harvesting performance for the piezoelectric energy harvesting diaphragm structure is examined analytically. The analysis includes comprehensive modeling and parametric study to provide a design primer for a specific application. An expression for the total power output from the devices for applied pressure is shown, and then used to determine optimal design parameters. It is shown that the device's deflections and stresses under load are the limiting factors in the design. While the primary material choice for energy harvesting today is PZT, an advanced material, PMN-PT, which exhibits improved potential over current materials, is used.

  14. Microfluidic PDMS on paper (POP) devices.

    PubMed

    Shangguan, Jin-Wen; Liu, Yu; Pan, Jian-Bin; Xu, Bi-Yi; Xu, Jing-Juan; Chen, Hong-Yuan

    2016-12-20

    In this paper, we propose a generalized concept of microfluidic polydimethylsiloxane (PDMS) on paper (POP) devices, which combines well the merits of paper chips and PDMS chips. First, we optimized the conditions for accurate PDMS spatial patterning on paper, based on screen printing and a high temperature enabled superfast curing technique, which enables PDMS patterning to an accuracy of tens of microns in less than ten seconds. This, in turn, makes it available for seamless, reversible and reliable integration of the resulting paper layer with other PDMS channel structures. The integrated POP devices allow for both porous paper and smooth channels to be spatially defined on the devices, greatly extending the flexibility for designers to be able to construct powerful functional structures. To demonstrate the versatility of this design, a prototype POP device for the colorimetric analysis of liver function markers, serum protein, alkaline phosphatase (ALP) and aspartate aminotransferase (AST), was constructed. On this POP device, quantitative sample loading, mixing and multiplex analysis have all been realized.

  15. A novel electroluminescent PPV copolymer and silsesquioxane nanocomposite film for the preparation of efficient PLED devices.

    PubMed

    Venegoni, Ivan; Carniato, Fabio; Olivero, Francesco; Bisio, Chiara; Pira, Nello Li; Lambertini, Vito Guido; Marchese, Leonardo

    2012-11-02

    Polymer light-emitting diodes (PLEDs) have attracted growing interest in recent years for their potential use in displays and lighting fields. Nevertheless, PLED devices have some disadvantages in terms of low optoelectronic efficiency, high cost, short lifetimes and low thermal stability, which limit their final applications. Huge efforts have been made recently to improve the performances of these devices. The addition of inorganic or hybrid organic-inorganic nanoparticles to the light-emitting polymers, for example, allows their thermal stability and electroluminescent efficiency to be increased. Following this approach, novel PLED devices based on composite films of PPV-derivative copolymer (commercial name Super Yellow, SY) and octaisobutil POSS, were developed in this study. The device containing Super Yellow loaded with 1 wt% of POSS showed higher efficiency (ca. +30%) and improved lifetime in comparison to PLED prepared with the pure electroluminescent polymer. The PLED devices developed in this study are suitable candidates for automotive dashboards and, in general, for lighting applications.

  16. 40 CFR 86.1308-84 - Dynamometer and engine equipment specifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... technique involves the calibration of a master load cell (i.e., dynamometer case load cell). This... hydraulically actuated precalibrated master load cell. This calibration is then transferred to the flywheel torque measuring device. The technique involves the following steps: (i) A master load cell shall be...

  17. 30 CFR 57.6307 - Drill stem loading.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drill stem loading. 57.6307 Section 57.6307... Transportation-Surface and Underground § 57.6307 Drill stem loading. Explosive material shall not be loaded into blastholes with drill stem equipment or other devices that could be extracted while containing explosive...

  18. 30 CFR 57.6307 - Drill stem loading.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drill stem loading. 57.6307 Section 57.6307... Transportation-Surface and Underground § 57.6307 Drill stem loading. Explosive material shall not be loaded into blastholes with drill stem equipment or other devices that could be extracted while containing explosive...

  19. 30 CFR 57.6307 - Drill stem loading.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drill stem loading. 57.6307 Section 57.6307... Transportation-Surface and Underground § 57.6307 Drill stem loading. Explosive material shall not be loaded into blastholes with drill stem equipment or other devices that could be extracted while containing explosive...

  20. 30 CFR 57.6307 - Drill stem loading.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drill stem loading. 57.6307 Section 57.6307... Transportation-Surface and Underground § 57.6307 Drill stem loading. Explosive material shall not be loaded into blastholes with drill stem equipment or other devices that could be extracted while containing explosive...

  1. 30 CFR 57.6307 - Drill stem loading.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drill stem loading. 57.6307 Section 57.6307... Transportation-Surface and Underground § 57.6307 Drill stem loading. Explosive material shall not be loaded into blastholes with drill stem equipment or other devices that could be extracted while containing explosive...

  2. Impact evaluation of conducted UWB transients on loads in power-line networks

    NASA Astrophysics Data System (ADS)

    Li, Bing; Månsson, Daniel

    2017-09-01

    Nowadays, faced with the ever-increasing dependence on diverse electronic devices and systems, the proliferation of potential electromagnetic interference (EMI) becomes a critical threat for reliable operation. A typical issue is the electronics working reliably in power-line networks when exposed to electromagnetic environment. In this paper, we consider a conducted ultra-wideband (UWB) disturbance, as an example of intentional electromagnetic interference (IEMI) source, and perform the impact evaluation at the loads in a network. With the aid of fast Fourier transform (FFT), the UWB transient is characterized in the frequency domain. Based on a modified Baum-Liu-Tesche (BLT) method, the EMI received at the loads, with complex impedance, is computed. Through inverse FFT (IFFT), we obtain time-domain responses of the loads. To evaluate the impact on loads, we employ five common, but important quantifiers, i.e., time-domain peak, total signal energy, peak signal power, peak time rate of change and peak time integral of the pulse. Moreover, to perform a comprehensive analysis, we also investigate the effects of the attributes (capacitive, resistive, or inductive) of other loads connected to the network, the rise time and pulse width of the UWB transient, and the lengths of power lines. It is seen that, for the loads distributed in a network, the impact evaluation of IEMI should be based on the characteristics of the IEMI source, and the network features, such as load impedances, layout, and characteristics of cables.

  3. Evaluating the bending response of two osseointegrated transfemoral implant systems using 3D digital image correlation.

    PubMed

    Thompson, Melanie L; Backman, David; Branemark, Rickard; Mechefske, Chris K

    2011-05-01

    Osseointegrated transfemoral implants have been introduced as a prosthetic solution for above knee amputees. They have shown great promise, providing an alternative for individuals who could not be accommodated by conventional, socket-based prostheses; however, the occurrence of device failures is of concern. In an effort to improve the strength and longevity of the device, a new design has been proposed. This study investigates the mechanical behavior of the new taper-based assembly in comparison to the current hex-based connection for osseointegrated transfemoral implant systems. This was done to better understand the behavior of components under loading, in order to optimize the assembly specifications and improve the useful life of the system. Digital image correlation was used to measure surface strains on two assemblies during static loading in bending. This provided a means to measure deformation over the entire sample and identify critical locations as the assembly was subjected to a series of loading conditions. It provided a means to determine the effects of tightening specifications and connection geometry on the material response and mechanical behavior of the assemblies. Both osseoinegrated assemblies exhibited improved strength and mechanical performance when tightened to a level beyond the current specified tightening torque of 12 N m. This was shown by decreased strain concentration values and improved distribution of tensile strain. Increased tightening torque provides an improved connection between components regardless of design, leading to increased torque retention, decreased peak tensile strain values, and a more gradual, primarily compressive distribution of strains throughout the assembly.

  4. Modeling Piezoelectric Stack Actuators for Control of Micromanipulation

    NASA Technical Reports Server (NTRS)

    Goldfarb, Michael; Celanovic, Nikola

    1997-01-01

    A nonlinear lumped-parameter model of a piezoelectric stack actuator has been developed to describe actuator behavior for purposes of control system analysis and design, and, in particular, for microrobotic applications requiring accurate position and/or force control. In formulating this model, the authors propose a generalized Maxwell resistive capacitor as a lumped-parameter causal representation of rate-independent hysteresis. Model formulation is validated by comparing results of numerical simulations to experimental data. Validation is followed by a discussion of model implications for purposes of actuator control.

  5. Development of a Free-Electron Laser Center and Research in Medicine, Biology and Materials Science,

    DTIC Science & Technology

    1992-05-14

    Elastin Production in Tissue Culture", Debra A.Gonzalez MD, David L. Zealear, PhD., J.M. Davidson, PhD., Robert H. Ossoff, MD, DMD , August 1990...Otolaryngoloty-Head and Neck Surgery. K. "CO2 Laser Micromanipulator Parallax Error Resolved, Jay Werkhaven,MD, Jerri Tribble, and Robert H. Ossoff, MD, DMD ...of the Upper Aerodigestive Tract, Robert H. Ossoff, MD, DMD , Al Aly, MD, Nick Houchin, AAS, and Debra Gonzalez, MD, Vanderbilt University, Nashville

  6. Fastener load tests and retention systems tests for cryogenic wind-tunnel models

    NASA Technical Reports Server (NTRS)

    Wallace, J. W.

    1984-01-01

    A-286 stainless steel screws were tested to determine the tensile load capability and failure mode of various screw sizes and types at both cryogenic and room temperature. Additionally, five fastener retention systems were tested by using A-286 screws with specimens made from the primary metallic alloys that are currently used for cryogenic models. The locking system effectiveness was examined by simple no-load cycling to cryogenic temperatures (-275 F) as well as by dynamic and static loading at cryogenic temperatures. In general, most systems were found to be effective retention devices. There are some differences between the various devices with respect to ease of application, cleanup, and reuse. Results of tests at -275 F imply that the cold temperatures act to improve screw retention. The improved retention is probably the result of differential thermal contraction and/or increased friction (thread-binding effects). The data provided are useful in selecting screw sizes, types, and locking devices for model systems to be tested in cryogenic wind tunnels.

  7. Innovations and pitfalls in the use of wearable devices in the prevention and rehabilitation of running related injuries.

    PubMed

    Willy, Richard W

    2018-01-01

    Running-related injuries are common and are associated with a high rate of reoccurrence. Biomechanics and errors in applied training loads are often cited as causes of running-related injuries. Clinicians and runners are beginning to utilize wearable technologies to quantify biomechanics and training loads with the hope of reducing the incidence of running-related injuries. Wearable devices can objectively assess biomechanics and training loads in runners, yet guidelines for their use by clinicians and runners are not currently available. This article outlines several applications for the use of wearable devices in the prevention and rehabilitation of running-related injuries. Applications for monitoring of training loads, running biomechanics, running epidemiology, return to running programs and gait retraining are discussed. Best-practices for choosing and use of wearables are described to provide guidelines for clinicians and runners. Finally, future applications are outlined for this rapidly developing field. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Conformable large-area position-sensitive photodetectors based on luminescence-collecting silicone waveguides

    NASA Astrophysics Data System (ADS)

    Bartu, Petr; Koeppe, Robert; Arnold, Nikita; Neulinger, Anton; Fallon, Lisa; Bauer, Siegfried

    2010-06-01

    Position sensitive detection schemes based on the lateral photoeffect rely on inorganic semiconductors. Such position sensitive devices (PSDs) are reliable and robust, but preparation with large active areas is expensive and use on curved substrates is impossible. Here we present a novel route for the fabrication of conformable PSDs which allows easy preparation on large areas, and use on curved surfaces. Our device is based on stretchable silicone waveguides with embedded fluorescent dyes, used in conjunction with small silicon photodiodes. Impinging laser light (e.g., from a laser pointer) is absorbed by the dye in the PSD and re-emitted as fluorescence light at a larger wavelength. Due to the isotropic emission from the fluorescent dye molecules, most of the re-emitted light is coupled into the planar silicone waveguide and directed to the edges of the device. Here the light signals are detected via embedded small silicon photodiodes arranged in a regular pattern. Using a mathematical algorithm derived by extensive using of models from global positioning system (GPS) systems and human activity monitoring, the position of light spots is easily calculated. Additionally, the device shows high durability against mechanical stress, when clamped in an uniaxial stretcher and mechanically loaded up to 15% strain. The ease of fabrication, conformability, and durability of the device suggests its use as interface devices and as sensor skin for future robots.

  9. Root elongation against a constant force: experiment with a computerized feedback-controlled device

    NASA Technical Reports Server (NTRS)

    Kuzeja, P. S.; Lintilhac, P. M.; Wei, C.

    2001-01-01

    Axial force was applied to the root tip of corn (Zea mays L. cv. Merit) seedlings using a computerized, feedback-controlled mechanical device. The system's feedback capability allowed continuous control of a constant tip load, and the attached displacement transducer provided the time course of root elongation. Loads up to 7.5 g decreased the root elongation rate by 0.13 mm h-1 g-1, but loads 7.5 to 17.5 g decreased the growth rate by only 0.04 mm h-1 g-1. Loads higher than 18 g stopped root elongation completely. Measurement of the cross-sectional areas of the root tips indicated that the 18 g load had applied about 0.98 MPa of axial pressure to the root, thereby exceeding the root's ability to respond with increased turgor pressure. Recorded time-lapse images of loaded roots showed that radial thickening (swelling) occurred behind the root cap, whose cross-sectional area increased with tip load.

  10. A transmission imaging spectrograph and microfabricated channel system for DNA analysis.

    PubMed

    Simpson, J W; Ruiz-Martinez, M C; Mulhern, G T; Berka, J; Latimer, D R; Ball, J A; Rothberg, J M; Went, G T

    2000-01-01

    In this paper we present the development of a DNA analysis system using a microfabricated channel device and a novel transmission imaging spectrograph which can be efficiently incorporated into a high throughput genomics facility for both sizing and sequencing of DNA fragments. The device contains 48 channels etched on a glass substrate. The channels are sealed with a flat glass plate which also provides a series of apertures for sample loading and contact with buffer reservoirs. Samples can be easily loaded in volumes up to 640 nL without band broadening because of an efficient electrokinetic stacking at the electrophoresis channel entrance. The system uses a dual laser excitation source and a highly sensitive charge-coupled device (CCD) detector allowing for simultaneous detection of many fluorescent dyes. The sieving matrices for the separation of single-stranded DNA fragments are polymerized in situ in denaturing buffer systems. Examples of separation of single-stranded DNA fragments up to 500 bases in length are shown, including accurate sizing of GeneCalling fragments, and sequencing samples prepared with a reduced amount of dye terminators. An increase in sample throughput has been achieved by color multiplexing.

  11. Development of an experimental setup for testing the properties of γ/γ' superalloys

    NASA Astrophysics Data System (ADS)

    Christophe, Siret; Bernard, Viguier; Claude, Salabura Jean; Eric, Andrieu; Sandrine, Lesterlin

    2010-07-01

    Certification tests on turboshaft engines for helicopters can expose components as high pressure turbine blades to very high temperature during short time periods. To simulate these complex temperature and mechanical stress loadings and to study dimensional and microstructural stability under severe testing conditions, an experimental set-up has been recently developed. In this paper, we first present this new device and describe its performances. Then, the device is used to study the effect of heating procedure on creep results at 1200°C and rafting during primary creep on the single crystal nickel-based superalloy MC2.

  12. Role and Determinants of Adherence to Off-loading in Diabetic Foot Ulcer Healing: A Prospective Investigation.

    PubMed

    Crews, Ryan T; Shen, Biing-Jiun; Campbell, Laura; Lamont, Peter J; Boulton, Andrew J M; Peyrot, Mark; Kirsner, Robert S; Vileikyte, Loretta

    2016-08-01

    Studies indicate that off-loading adherence is low in patients with diabetic foot ulcers (DFUs), which may subsequently delay healing. However, there is little empirical evidence for this relationship or the factors that influence adherence. This prospective, multicenter, international study of 79 (46 from the U.K. and 33 the U.S.) persons with type 2 diabetes and plantar DFUs assessed the association between off-loading adherence and DFU healing over a 6-week period. Additionally, potential demographic, disease, and psychological determinants of adherence were examined. DFUs were off-loaded with a removable device (77% a removable cast walker). Off-loading adherence was assessed objectively by activity monitors. Patient-reported measures included Hospital Anxiety and Depression Scale (HADS), Neuropathy and Foot Ulcer Quality of Life (NeuroQoL) instrument, and Revised Illness Perception Questionnaire (IPQ-R). Off-loading adherence was monitored for 35 ± 10 days, and devices were used during 59 ± 22% of subjects' activity. In multivariate analyses, smaller baseline DFU size, U.K. study site, and better off-loading adherence predicted smaller DFU size at 6 weeks (P < 0.05). Better off-loading adherence was, in turn, predicted by larger and more severe baseline DFUs, more severe neuropathy, and NeuroQoL foot pain (P < 0.05). In contrast, greater NeuroQoL postural instability predicted worse off-loading adherence (P < 0.001). HADS and IPQ-R measures were not significantly associated with off-loading adherence. Off-loading adherence is associated with the amount of DFU healing that occurs, while postural instability is a powerful predictor of nonadherence. Clinicians should take this neuropathic symptom into consideration when selecting an off-loading device, as off-loading-induced postural instability may further contribute to nonadherence. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  13. Fault tolerant high-performance PACS network design and implementation

    NASA Astrophysics Data System (ADS)

    Chimiak, William J.; Boehme, Johannes M.

    1998-07-01

    The Wake Forest University School of Medicine and the Wake Forest University/Baptist Medical Center (WFUBMC) are implementing a second generation PACS. The first generation PACS provided helpful information about the functional and temporal requirements of the system. It highlighted the importance of image retrieval speed, system availability, RIS/HIS integration, the ability to rapidly view images on any PACS workstation, network bandwidth, equipment redundancy, and the ability for the system to evolve using standards-based components. This paper deals with the network design and implementation of the PACS. The physical layout of the hospital areas served by the PACS, the choice of network equipment and installation issues encountered are addressed. Efforts to optimize fault tolerance are discussed. The PACS network is a gigabit, mixed-media network based on LAN emulation over ATM (LANE) with a rapid migration from LANE to Multiple Protocols Over ATM (MPOA) planned. Two fault-tolerant backbone ATM switches serve to distribute network accesses with two load-balancing 622 megabit per second (Mbps) OC-12 interconnections. The switch was sized to be upgradable to provide a 2.54 Gbps OC-48 interconnection with an OC-12 interconnection as a load-balancing backup. Modalities connect with legacy network interface cards to a switched-ethernet device. This device has two 155 Mbps OC-3 load-balancing uplinks to each of the backbone ATM switches of the PACS. This provides a fault-tolerant logical connection to the modality servers which pass verified DICOM images to the PACS servers and proper PACS diagnostic workstations. Where fiber pulls were prohibitively expensive, edge ATM switches were installed with an OC-12 uplink to a backbone ATM switches. The PACS and data base servers are fault-tolerant, hot-swappable Sun Enterprise Servers with an OC-12 connection to a backbone ATM switch and a fast-ethernet connection to a back-up network. The workstations come with 10/100 BASET autosense cards. A redundant switched-ethernet network will be installed to provide yet another degree of network fault-tolerance. The switched-ethernet devices are connected to each of the backbone ATM switches with two-load-balancing OC-3 connections to provide fault-tolerant connectivity in the event of a primary network failure.

  14. Speaking and cognitive distractions during EEG-based brain control of a virtual neuroprosthesis-arm.

    PubMed

    Foldes, Stephen T; Taylor, Dawn M

    2013-12-21

    Brain-computer interface (BCI) systems have been developed to provide paralyzed individuals the ability to command the movements of an assistive device using only their brain activity. BCI systems are typically tested in a controlled laboratory environment were the user is focused solely on the brain-control task. However, for practical use in everyday life people must be able to use their brain-controlled device while mentally engaged with the cognitive responsibilities of daily activities and while compensating for any inherent dynamics of the device itself. BCIs that use electroencephalography (EEG) for movement control are often assumed to require significant mental effort, thus preventing users from thinking about anything else while using their BCI. This study tested the impact of cognitive load as well as speaking on the ability to use an EEG-based BCI. Six participants controlled the two-dimensional (2D) movements of a simulated neuroprosthesis-arm under three different levels of cognitive distraction. The two higher cognitive load conditions also required simultaneously speaking during BCI use. On average, movement performance declined during higher levels of cognitive distraction, but only by a limited amount. Movement completion time increased by 7.2%, the percentage of targets successfully acquired declined by 11%, and path efficiency declined by 8.6%. Only the decline in percentage of targets acquired and path efficiency were statistically significant (p < 0.05). People who have relatively good movement control of an EEG-based BCI may be able to speak and perform other cognitively engaging activities with only a minor drop in BCI-control performance.

  15. Development of haptic based piezoresistive artificial fingertip: Toward efficient tactile sensing systems for humanoids.

    PubMed

    TermehYousefi, Amin; Azhari, Saman; Khajeh, Amin; Hamidon, Mohd Nizar; Tanaka, Hirofumi

    2017-08-01

    Haptic sensors are essential devices that facilitate human-like sensing systems such as implantable medical devices and humanoid robots. The availability of conducting thin films with haptic properties could lead to the development of tactile sensing systems that stretch reversibly, sense pressure (not just touch), and integrate with collapsible. In this study, a nanocomposite based hemispherical artificial fingertip fabricated to enhance the tactile sensing systems of humanoid robots. To validate the hypothesis, proposed method was used in the robot-like finger system to classify the ripe and unripe tomato by recording the metabolic growth of the tomato as a function of resistivity change during a controlled indention force. Prior to fabrication, a finite element modeling (FEM) was investigated for tomato to obtain the stress distribution and failure point of tomato by applying different external loads. Then, the extracted computational analysis information was utilized to design and fabricate nanocomposite based artificial fingertip to examine the maturity analysis of tomato. The obtained results demonstrate that the fabricated conformable and scalable artificial fingertip shows different electrical property for ripe and unripe tomato. The artificial fingertip is compatible with the development of brain-like systems for artificial skin by obtaining periodic response during an applied load. Copyright © 2017. Published by Elsevier B.V.

  16. A valid and reliable method to measure jump-specific training and competition load in elite volleyball players.

    PubMed

    Skazalski, C; Whiteley, R; Hansen, C; Bahr, R

    2018-05-01

    Use of a commercially available wearable device to monitor jump load with elite volleyball players has become common practice. The purpose of this study was to evaluate the validity and reliability of this device, the Vert, to count jumps and measure jump height with professional volleyball players. Jump count accuracy was determined by comparing jumps recorded by the device to jumps observed through systematic video analysis of three practice sessions and two league matches performed by a men's professional volleyball team. Jumps performed by 14 players were each coded for time and jump type and individually matched to device recorded jumps. Jump height validity of the device was examined against reference standards as participants performed countermovement jumps on a force plate and volleyball-specific jumps with a Vertec. The Vert device accurately counted 99.3% of the 3637 jumps performed during practice and match play. The device showed excellent jump height interdevice reliability for two devices placed in the same pouch during volleyball jumps (r = .99, 95% CI 0.98-0.99). The device had a minimum detectable change (MDC) of 9.7 cm and overestimated jump height by an average of 5.5 cm (95% CI 4.5-6.5) across all volleyball jumps. The Vert device demonstrates excellent accuracy counting volleyball-specific jumps during training and competition. While the device is not recommended to measure maximal jumping ability when precision is needed, it provides an acceptable measure of on-court jump height that can be used to monitor athlete jump load. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. High-power broadband plasma maser with magnetic self-insulation

    NASA Astrophysics Data System (ADS)

    Litvin, Vitaliy O.; Loza, Oleg T.

    2018-01-01

    Presented in this paper are the results of a particle-in-cell modelling of a novel high-power microwave (HPM) source which combines the properties of two devices. The first prototype is a magnetically insulated transmission line oscillator (MILO), an HPM self-oscillator which does not need an external magnetic field and irradiates a narrow spectrum depending on its iris-loaded slow-wave structure. The second prototype is a plasma maser, a Cherenkov HPM amplifier driven by a high-current relativistic electron beam propagating in a strong external magnetic field in plasma which acts as a slow-wave structure. The radiation frequency of plasma masers mainly depends on an easily variable plasma concentration; hence, their spectrum may overlap a few octaves. The plasma-based HPM device described in this paper operates without an external magnetic field: it looks like an MILO in which the iris-loaded slow-wave structure is substituted by a hollow plasma tube. The small pulse duration of ˜1.5 ns prevents a feedback rise in the 20-cm long generation section so that the device operates as a noise amplifier. Unlike conventional ultra wideband generators, the spectrum depends not only on the pulse duration but mainly on plasma, so the operation frequency of the device ranges within 12 GHz. For irradiated frequencies above 2 GHz, the total pulse energy efficiency of 7% is demonstrated at the HPM power level ˜1 GW.

  18. Understanding long-term silver release from surface modified porous titanium implants.

    PubMed

    Shivaram, Anish; Bose, Susmita; Bandyopadhyay, Amit

    2017-08-01

    Prevention of orthopedic device related infection (ODRI) using antibiotics has met with limited amount of success and is still a big concern during post-surgery. As an alternative, use of silver as an antibiotic treatment to prevent surgical infections is being used due to the well-established antimicrobial properties of silver. However, in most cases silver is used in particulate form with wound dressings or with short-term devices such as catheters but not with load-bearing implants. We hypothesize that strongly adherent silver to load-bearing implants can offer longer term solution to infection in vivo. Keeping that in mind, the focus of this study was to understand the long term release study of silver ions for a period of minimum 6months from silver coated surface modified porous titanium implants. Implants were fabricated using a LENS™ system, a powder based additive manufacturing technique, with at least 25% volume porosity, with and without TiO 2 nanotubes in phosphate buffer saline (pH 7.4) to see if the total release of silver ions is within the toxic limit for human cells. Considering the fact that infection sites may reduce the local pH, silver release was also studied in acetate buffer (pH 5.0) for a period of 4weeks. Along with that, the osseointegrative properties as well as cytotoxicity of porous titanium implants were assessed in vivo for a period of 12weeks using a rat distal femur model. In vivo results indicate that porous titanium implants with silver coating show comparable, if not better, biocompatibility and bonding at the bone-implant interface negating any concerns related to toxicity related to silver to normal cells. The current research is based on our recently patented technology, however focused on understanding longer-term silver release to mitigate infection related problems in load-bearing implants that can even arise several months after the surgery. Prevention of orthopedic device related infection using antibiotics has met with limited success and is still a big concern during post-surgery. Use of silver as an antibiotic treatment to prevent surgical infections is being explored due to the well-established antimicrobial properties of silver. However, in most cases silver is used in particulate form with wound dressings or with short-term devices such as catheters but not with load-bearing implants. We hypothesize that strongly adherent silver to load-bearing implants can offer longer-term solution towards infection in vivo. Keeping that in mind, the focus of this study was to understand the long-term release of silver ions, for a period of minimum 6months, from silver coated surface modified porous titanium implants. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. Crashworthiness Design of the Shear Bolts for Light Collision Safety Devices

    NASA Astrophysics Data System (ADS)

    Kim, Jin Sung; Huh, Hoon; Kwon, Tae Soo

    This paper introduces the jig set for the crash test and the crash test results of shear bolts which are designed to fail at train crash conditions. The tension and shear bolts are attached to Light Collision Safety Devices(LCSD) as a mechanical fuse when tension and shear bolts reach their failure load designed. The kinetic energy due to the crash is absorbed by the secondary energy absorbing device after LCSD are detached from the main body by the fracture of shear bolts. A single shear bolt was designed to fail at the load of 250 kN. The jig set designed to convert a compressive loading to a shear loading was installed to the high speed crash tester for dynamic shear tests. Two strain gauges were attached at the parallel section of the jig set to measure the load responses acting on the shear bolts. Crash tests were performed with a carrier whose mass was 250 kg and the initial speed of the carrier was 9 m/sec. From the quasi-static and dynamic experiments as well as the numerical analysis, the capacity of the shear bolts were accurately predicted for the crashworthiness design.

  20. Simulation of drive of mechanisms, working in specific conditions

    NASA Astrophysics Data System (ADS)

    Ivanovskaya, A. V.; Rybak, A. T.

    2018-05-01

    This paper presents a method for determining the dynamic loads on the lifting actuator device other than the conventional methods, for example, ship windlass. For such devices, the operation of their drives is typical under special conditions: different environments, the influence of hydrometeorological factors, a high level of vibration, variability of loading, etc. Hoisting devices working in such conditions are not considered in the standard; however, relevant studies concern permissible parameters of the drive devices of this kind. As an example, the article studied the work deck lifting devices - windlass. To construct a model, the windlass is represented by a rod of the variable cross-section. As a result, a mathematical model of the longitudinal oscillations of such rod is obtained. Analytic dependencies have also been obtained to determine the natural frequencies of the lowest forms of oscillations, which are necessary and are the basis for evaluating the parameters of operation of this type of the device.

  1. Analysis of Thermal Power Generation Capacity for a Skutterudite-Based Thermoelectric Functional Structure

    NASA Astrophysics Data System (ADS)

    Sun, Yajing; Chen, Gang; Bai, Guanghui; Yang, Xuqiu; Li, Peng; Zhai, Pengcheng

    2017-05-01

    Due to military or other requirements for hypersonic aircraft, the energy supply devices with the advantages of small size and light weight are urgently needed. Compared with the traditional energy supply method, the skutterudite-based thermoelectric (TE) functional structure is expected to generate electrical energy with a smaller structural space in the hypersonic aircraft. This paper mainly focuses on the responded thermal and electrical characteristics of the skutterudite-based TE functional structure (TEFS) under strong heat flux loads. We conduct TE simulations on the transient model of the TEFS with consideration of the heat flux loads and thermal radiation in the hot end and the cooling effect of the phase change material (PCM) in the cold end. We investigate several influential factors on the power generation capacity, such as the phase transition temperature of the PCM, the heat flux loads, the thickness of the TE materials and the thermal conductivity of the frame materials. The results show that better power generation capacity can be achieved with thicker TE materials, lower phase transition temperature and suitable thermal conductivity of the frame materials.

  2. Chapter 18: Variable Frequency Drive Evaluation Protocol. The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romberger, Jeff

    An adjustable-speed drive (ASD) includes all devices that vary the speed of a rotating load, including those that vary the motor speed and linkage devices that allow constant motor speed while varying the load speed. The Variable Frequency Drive Evaluation Protocol presented here addresses evaluation issues for variable-frequency drives (VFDs) installed on commercial and industrial motor-driven centrifugal fans and pumps for which torque varies with speed. Constant torque load applications, such as those for positive displacement pumps, are not covered by this protocol.

  3. Apparatuses and methods of determining if a person operating equipment is experiencing an elevated cognitive load

    DOEpatents

    Watkins, Michael L.; Keller, Paul Edwin; Amaya, Ivan A.

    2015-06-16

    A method of, and apparatus for, determining if a person operating equipment is experiencing an elevated cognitive load, wherein the person's use of a device at a first time is monitored so as to set a baseline signature. Then, at a later time, the person's use of the device is monitored to determine the person's performance at the second time, as represented by a performance signature. This performance signature can then be compared against the baseline signature to predict whether the person is experiencing an elevated cognitive load.

  4. A new device to study isoload eccentric exercise.

    PubMed

    Guilhem, Gaël; Cornu, Christophe; Nordez, Antoine; Guével, Arnaud

    2010-12-01

    This study was designed to develop a new device allowing mechanical analysis of eccentric exercise against a constant load, with a view in mind to compare isoload (IL) and isokinetic (IK) eccentric exercises. A plate-loaded resistance training device was integrated to an IK dynamometer, to perform the acquisition of mechanical parameters (i.e., external torque, angular velocity). To determine the muscular torque produced by the subject, load torque was experimentally measured (TLexp) at 11 different loads from 30° to 90° angle (0° = lever arm in horizontal position). TLexp was modeled to take friction effect and torque variations into account. Validity of modeled load torque (TLmod) was tested by determining the root mean square (RMS) error, bias, and 2SD between the descending part of TLexp (from 30° to 90°) and TLmod. Validity of TLexp was tested by a linear regression and a Passing-Bablok regression. A pilot analysis on 10 subjects was performed to determine the contribution of the torque because of the moment of inertia to the amount of external work (W). Results showed the validity of TLmod (bias = 0%; RMS error = 0.51%) and TLexp SEM = 4.1 N·m; Intraclass correlation coefficient (ICC) = 1.00; slope = 0.99; y-intercept = -0.13). External work calculation showed a satisfactory reproducibility (SEM = 38.3 J; ICC = 0.98) and moment of inertia contribution to W showed a low value (3.2 ± 2.0%). Results allow us to validate the new device developed in this study. Such a device could be used in future work to study IL eccentric exercise and to compare the effect of IL and IK eccentric exercises in standardized conditions.

  5. In Vivo Evaluation of Immediately Loaded Stainless Steel and Titanium Orthodontic Screws in a Growing Bone

    PubMed Central

    Gritsch, Kerstin; Laroche, Norbert; Bonnet, Jeanne-Marie; Exbrayat, Patrick; Morgon, Laurent; Rabilloud, Muriel; Grosgogeat, Brigitte

    2013-01-01

    The present work intends to evaluate the use of immediate loaded orthodontic screws in a growing model, and to study the specific bone response. Thirty-two screws (half of stainless steel and half of titanium) were inserted in the alveolar bone of 8 growing pigs. The devices were immediately loaded with a 100 g orthodontic force. Two loading periods were assessed: 4 and 12 weeks. Both systems of screws were clinically assessed. Histological observations and histomorphometric analysis evaluated the percent of “bone-to-implant contact” and static and dynamic bone parameters in the vicinity of the devices (test zone) and in a bone area located 1.5 cm posterior to the devices (control zone). Both systems exhibit similar responses for the survival rate; 87.5% and 81.3% for stainless steel and titanium respectively (p = 0.64; 4-week period), and 62.5% and 50.0% for stainless steel and titanium respectively (p = 0.09; 12-week period). No significant differences between the devices were found regarding the percent of “bone-to-implant contact” (p = 0.1) or the static and dynamic bone parameters. However, the 5% threshold of “bone-to-implant contact” was obtained after 4 weeks with the stainless steel devices, leading to increased survival rate values. Bone in the vicinity of the miniscrew implants showed evidence of a significant increase in bone trabecular thickness when compared to bone in the control zone (p = 0.05). In our study, it is likely that increased trabecular thickness is a way for low density bone to respond to the stress induced by loading. PMID:24124540

  6. Effect of variable body mass on plantar foot pressure and off-loading device efficacy.

    PubMed

    Pirozzi, Kelly; McGuire, James; Meyr, Andrew J

    2014-01-01

    An increasing body of evidence has implicated obesity as having a negative effect on the development, treatment, and outcome of lower extremity pathologic entities, including diabetic foot disease. The objective of the present study was to increase the body of knowledge with respect to the effects of obesity on foot function. Specifically, we attempted to (1) describe the relationship between an increasing body mass index (BMI) on plantar foot pressures during gait, and (2) evaluate the efficacy of commonly prescribed off-loading devices with an increasing BMI. A repeated measures design was used to compare the peak plantar foot pressures under multiple test conditions, with the volunteers acting as their own controls. The primary outcome measure was the mean peak plantar pressure in the heel, midfoot, forefoot, and first metatarsal, and the 2 variables were modification of patient weight (from "normal" BMI to "overweight," "obese," and "morbidly obese") and footwear (from an athletic sneaker to a surgical shoe, controlled ankle motion walker, and total contact cast). Statistically significant increases in the peak plantar pressures were observed with increasing volunteer BMI weight class, regardless of the off-loading device used. The present investigation has provided unique and specific data with respect to the changes that occur in the peak plantar pressures with variable BMIs across different anatomic levels and with commonly used off-loading devices. From our results, we have concluded that although the plantar pressures increase with increasing weight, it appears that at least some reduction in pressure can be achieved with an off-loading device, most effectively with the total contact cast, regardless of the patient's BMI. Copyright © 2014 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  7. A biomechanical study of artificial cervical discs using computer simulation.

    PubMed

    Ahn, Hyung Soo; DiAngelo, Denis J

    2008-04-15

    A virtual simulation model of the subaxial cervical spine was used to study the biomechanical effects of various disc prosthesis designs. To study the biomechanics of different design features of cervical disc arthroplasty devices. Disc arthroplasty is an alternative approach to cervical fusion surgery for restoring and maintaining motion at a diseased spinal segment. Different types of cervical disc arthroplasty devices exist and vary based on their placement and degrees of motion offered. A virtual dynamic model of the subaxial cervical spine was used to study 3 different prosthetic disc designs (PDD): (1) PDD-I: The center of rotation of a spherical joint located at the mid C5-C6 disc, (2) PDD-II: The center of rotation of a spherical joint located 6.5 mm below the mid C5-C6 disc, and (3) PDD-III: The center of rotation of a spherical joint in a plane located at the C5-C6 disc level. A constrained spherical joint placed at the disc level (PDD-I) significantly increased facet loads during extension. Lowering the rotational axis of the spherical joint towards the subjacent body (PDD-II) caused a marginal increase in facet loading during flexion, extension, and lateral bending. Lastly, unconstraining the spherical joint to move freely in a plane (PDD-III) minimized facet load build up during all loading modes. The simulation model showed the impact simple design changes may have on cervical disc dynamics. The predicted facet loads calculated from computer model have to be validated in the experimental study.

  8. Comparison of oral fluid collection methods for the molecular detection of hepatitis B virus.

    PubMed

    Portilho, M M; Mendonça, Acf; Marques, V A; Nabuco, L C; Villela-Nogueira, C A; Ivantes, Cap; Lewis-Ximenez, L L; Lampe, E; Villar, L M

    2017-11-01

    This study aims to compare the efficiency of four oral fluid collection methods (Salivette, FTA Card, spitting and DNA-Sal) to detect HBV DNA by qualitative PCR. Seventy-four individuals (32 HBV reactive and 42 with no HBV markers) donated serum and oral fluid. In-house qualitative PCR to detect HBV was used for both samples and commercial quantitative PCR for serum. HBV DNA was detected in all serum samples from HBV-infected individuals, and it was not detected in control group. HBV DNA from HBV group was detected in 17 samples collected with Salivette device, 16 samples collected by FTA Card device, 16 samples collected from spitting and 13 samples collected by DNA-Sal device. Samples that corresponded to a higher viral load in their paired serum sample could be detected using all oral fluid collection methods, but Salivette collection device yielded the largest numbers of positive samples and had a wide range of viral load that was detected. It was possible to detect HBV DNA using all devices tested, but higher number of positive samples was observed when samples were collected using Salivette device, which shows high concordance to viral load observed in the paired serum samples. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. All rights reserved.

  9. Impact of Reflow on the Output Characteristics of Piezoelectric Microelectromechanical System Devices

    NASA Astrophysics Data System (ADS)

    Nogami, Hirofumi; Kobayashi, Takeshi; Okada, Hironao; Masuda, Takashi; Maeda, Ryutaro; Itoh, Toshihiro

    2012-09-01

    An animal health monitoring system and a wireless sensor node aimed at preventing the spread of animal-transmitted diseases and improving pastoral efficiency which are especially suitable for chickens, were developed. The sensor node uses a piezoelectric microelectromechanical system (MEMS) device and an event-driven system that is activated by the movements of a chicken. The piezoelectric MEMS device has two functions: a) it measures the activity of a chicken and b) switches the micro-control unit (MCU) of the wireless sensor node from the sleep mode. The piezoelectric MEMS device is required to produce high output voltages when the chicken moves. However, after the piezoelectric MEMS device was reflowed to the wireless sensor node, the output voltages of the piezoelectric MEMS device decreased. The main reason for this might be the loss of residual polarization, which is affected by the thermal load during the reflow process. After the reflow process, we were not able to apply a voltage to the piezoelectric MEMS device; thus, the piezoelectric output voltage was not increased by repoling the piezoelectric MEMS device. To address the thermal load of the reflow process, we established a thermal poling treatment, which achieves a higher temperature than the reflow process. We found that on increasing the thermal poling temperature, the piezoelectric output voltages did not decreased low significantly. Thus, we considered that a thermal poling temperature higher than that of the reflow process prevents the piezoelectric output voltage reduction caused by the thermal load.

  10. 3D scanning and 3D printing as innovative technologies for fabricating personalized topical drug delivery systems.

    PubMed

    Goyanes, Alvaro; Det-Amornrat, Usanee; Wang, Jie; Basit, Abdul W; Gaisford, Simon

    2016-07-28

    Acne is a multifactorial inflammatory skin disease with high prevalence. In this work, the potential of 3D printing to produce flexible personalised-shape anti-acne drug (salicylic acid) loaded devices was demonstrated by two different 3D printing (3DP) technologies: Fused Deposition Modelling (FDM) and stereolithography (SLA). 3D scanning technology was used to obtain a 3D model of a nose adapted to the morphology of an individual. In FDM 3DP, commercially produced Flex EcoPLA™ (FPLA) and polycaprolactone (PCL) filaments were loaded with salicylic acid by hot melt extrusion (HME) (theoretical drug loading - 2% w/w) and used as feedstock material for 3D printing. Drug loading in the FPLA-salicylic acid and PCL-salicylic acid 3D printed patches was 0.4% w/w and 1.2% w/w respectively, indicating significant thermal degradation of drug during HME and 3D printing. Diffusion testing in Franz cells using a synthetic membrane revealed that the drug loaded printed samples released <187μg/cm(2) within 3h. FPLA-salicylic acid filament was successfully printed as a nose-shape mask by FDM 3DP, but the PCL-salicylic acid filament was not. In the SLA printing process, the drug was dissolved in different mixtures of poly(ethylene glycol) diacrylate (PEGDA) and poly(ethylene glycol) (PEG) that were solidified by the action of a laser beam. SLA printing led to 3D printed devices (nose-shape) with higher resolution and higher drug loading (1.9% w/w) than FDM, with no drug degradation. The results of drug diffusion tests revealed that drug diffusion was faster than with the FDM devices, 229 and 291μg/cm(2) within 3h for the two formulations evaluated. In this study, SLA printing was the more appropriate 3D printing technology to manufacture anti-acne devices with salicylic acid. The combination of 3D scanning and 3D printing has the potential to offer solutions to produce personalised drug loaded devices, adapted in shape and size to individual patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Automatic generation and analysis of solar cell IV curves

    DOEpatents

    Kraft, Steven M.; Jones, Jason C.

    2014-06-03

    A photovoltaic system includes multiple strings of solar panels and a device presenting a DC load to the strings of solar panels. Output currents of the strings of solar panels may be sensed and provided to a computer that generates current-voltage (IV) curves of the strings of solar panels. Output voltages of the string of solar panels may be sensed at the string or at the device presenting the DC load. The DC load may be varied. Output currents of the strings of solar panels responsive to the variation of the DC load are sensed to generate IV curves of the strings of solar panels. IV curves may be compared and analyzed to evaluate performance of and detect problems with a string of solar panels.

  12. Tunable drug loading and release from polypeptide multilayer nanofilms

    PubMed Central

    Jiang, Bingbing; Li, Bingyun

    2009-01-01

    Polypeptide multilayer nanofilms were prepared using electrostatic layer-by-layer self-assembly nanotechnology. Small charged drug molecules (eg, cefazolin, gentamicin, and methylene blue) were loaded in polypeptide multilayer nanofilms. Their loading and release were found to be pH-dependent and could also be controlled by changing the number of film layers and drug incubation time, and applying heat-treatment after film formation. Antibioticloaded polypeptide multilayer nanofilms showed controllable antibacterial properties against Staphylococcus aureus. The developed biodegradable polypeptide multilayer nanofilms are capable of loading both positively- and negatively-charged drug molecules and promise to serve as drug delivery systems on biomedical devices for preventing biomedical device-associated infection, which is a significant clinical complication for both civilian and military patients. PMID:19421369

  13. Kinematic and fatigue biomechanics of an interpositional facet arthroplasty device.

    PubMed

    Dahl, Michael C; Freeman, Andrew L

    2016-04-01

    Although approximately 30% of chronic lumbar pain can be attributed to the facets, limited surgical options exist for patients. Interpositional facet arthroplasty (IFA) is a novel treatment for lumbar facetogenic pain designed to provide patients who gain insufficient relief from medical interventional treatment options with long-term relief, filling a void in the facet pain treatment continuum. This study aimed to quantify the effect of IFA on segmental range of motion (ROM) compared with the intact state, and to observe device position and condition after 10,000 cycles of worst-case loading. In situ biomechanical analysis of the lumbar spine following implantation of a novel IFA device was carried out. Twelve cadaveric functional spinal units (L2-L3 and L5-S1) were tested in 7.5 Nm flexion-extension, lateral bending, and torsion while intact and following device implantation. Additionally, specimens underwent 10,000 cycles of worst-case complex loading and were testing in ROM again. Load-displacement and fluoroscopic data were analyzed to determine ROM and to evaluate device position during cyclic testing. Devices and facets were evaluated post testing. Institutional support for implant evaluation was received by Zyga Technology. Range of motion post implantation decreased versus intact, and then was restored post cyclic-testing. Of the tested devices, 6.5% displayed slight movement (0.5-2 mm), all from tight L2-L3 facet joints with misplaced devices or insufficient cartilage. No damage was observed on the devices, and wear patterns were primarily linear. The results from this in situ cadaveric biomechanics and cyclic fatigue study demonstrate that a low-profile, conformable IFA device can maintain position and facet functionality post implantation and through 10,000 complex loading cycles. In vivo conditions were not accounted for in this model, which may affect implant behavior not predictable via a biomechanical study. However, these data along with published 1-year clinical results suggest that IFA may be a valid treatment option in patients with chronic lumbar zygapophysial pain who have exhausted medical interventional options. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Accounting for Every Kilowatt

    DTIC Science & Technology

    2014-10-01

    accountability of individual load con- sumption, forewarning of maintenance problems, and aware- ness of human activity based on electrical activity...accountability and maintenance examples were identified from our desks at MIT. Tech support can be anywhere and do the same. Human Activity DepNILM...provides awareness of human activity within a net- work. Each device has an electrical fingerprint, and specific de- vices imply associated human actions

  15. Cognitive Load Study Using Increasingly Immersive Levels of Map-based Information Portrayal on the End User Device

    DTIC Science & Technology

    2012-09-01

    2.3.4 operating system on a Samsung Galaxy S II. All four types of digital mapping capabilities were integrated with this software. The display size...Leader’s course 0 Senior Leader’s course 0 Ranger 12 Combat Life Saver 0 Master Gunner 5 Other: armorer, landscaping 9. Using the scale below

  16. Effects of Spell Checkers on English as a Second Language Students' Incidental Spelling Learning: A Cognitive Load Perspective

    ERIC Educational Resources Information Center

    Lin, Po-Han; Liu, Tzu-Chien; Paas, Fred

    2017-01-01

    Computer-based spell checkers help to correct misspells instantly. Almost all the word processing devices are now equipped with a spell-check function that either automatically corrects errors or provides a list of intended words. However, it is not clear on how the reliance on this convenient technological solution affects spelling learning.…

  17. Natural roller bearing fault detection by angular measurement of true instantaneous angular speed

    NASA Astrophysics Data System (ADS)

    Renaudin, L.; Bonnardot, F.; Musy, O.; Doray, J. B.; Rémond, D.

    2010-10-01

    The challenge in many production activities involving large mechanical devices like power transmissions consists in reducing the machine downtime, in managing repairs and in improving operating time. Most online monitoring systems are based on conventional vibration measurement devices for gear transmissions or bearings in mechanical components. In this paper, we propose an alternative way of bearing condition monitoring based on the instantaneous angular speed measurement. By the help of a large experimental investigation on two different applications, we prove that localized faults like pitting in bearing generate small angular speed fluctuations which are measurable with optical or magnetic encoders. We also emphasize the benefits of measuring instantaneous angular speed with the pulse timing method through an implicit angular sampling which ensures insensitivity to speed fluctuation. A wide range of operating conditions have been tested for the two applications with varying speed, load, external excitations, gear ratio, etc. The tests performed on an automotive gearbox or on actual operating vehicle wheels also establish the robustness of the proposed methodology. By the means of a conventional Fourier transform, angular frequency channels kinematically related to the fault periodicity show significant magnitude differences related to the damage severity. Sideband effects are evidently seen when the fault is located on rotating parts of the bearing due to load modulation. Additionally, slip effects are also suspected to be at the origin of enlargement of spectrum peaks in the case of double row bearings loaded in a pure radial direction.

  18. Biomechanical regulation of in vitro cardiogenesis for tissue-engineered heart repair.

    PubMed

    Zimmermann, Wolfram-Hubertus

    2013-01-01

    The heart is a continuously pumping organ with an average lifespan of eight decades. It develops from the onset of embryonic cardiogenesis under biomechanical load, performs optimally within a defined range of hemodynamic load, and fails if acutely or chronically overloaded. Unloading of the heart leads to defective cardiogenesis in utero, but can also lead to a desired therapeutic outcome (for example, in patients with heart failure under left ventricular assist device therapy). In light of the well-documented relevance of mechanical loading for cardiac physiology and pathology, it is plausible that tissue engineers have integrated mechanical stimulation regimens into protocols for heart muscle construction. To achieve optimal results, physiological principles of beat-to-beat myocardial loading and unloading should be simulated. In addition, heart muscle engineering, in particular if based on pluripotent stem cell-derived cardiomyocytes, may benefit from staggered tonic loading protocols to simulate viscoelastic properties of the prenatal and postnatal myocardial stroma. This review will provide an overview of heart muscle mechanics, summarize observations on the role of mechanical loading for heart development and postnatal performance, and discuss how physiological loading regimens can be exploited to advance myocardial tissue engineering towards a therapeutic application.

  19. Biomechanical regulation of in vitro cardiogenesis for tissue-engineered heart repair

    PubMed Central

    2013-01-01

    The heart is a continuously pumping organ with an average lifespan of eight decades. It develops from the onset of embryonic cardiogenesis under biomechanical load, performs optimally within a defined range of hemodynamic load, and fails if acutely or chronically overloaded. Unloading of the heart leads to defective cardiogenesis in utero, but can also lead to a desired therapeutic outcome (for example, in patients with heart failure under left ventricular assist device therapy). In light of the well-documented relevance of mechanical loading for cardiac physiology and pathology, it is plausible that tissue engineers have integrated mechanical stimulation regimens into protocols for heart muscle construction. To achieve optimal results, physiological principles of beat-to-beat myocardial loading and unloading should be simulated. In addition, heart muscle engineering, in particular if based on pluripotent stem cell-derived cardiomyocytes, may benefit from staggered tonic loading protocols to simulate viscoelastic properties of the prenatal and postnatal myocardial stroma. This review will provide an overview of heart muscle mechanics, summarize observations on the role of mechanical loading for heart development and postnatal performance, and discuss how physiological loading regimens can be exploited to advance myocardial tissue engineering towards a therapeutic application. PMID:24229468

  20. Apparatus for and method of testing an electrical ground fault circuit interrupt device

    DOEpatents

    Andrews, L.B.

    1998-08-18

    An apparatus for testing a ground fault circuit interrupt device includes a processor, an input device connected to the processor for receiving input from an operator, a storage media connected to the processor for storing test data, an output device connected to the processor for outputting information corresponding to the test data to the operator, and a calibrated variable load circuit connected between the processor and the ground fault circuit interrupt device. The ground fault circuit interrupt device is configured to trip a corresponding circuit breaker. The processor is configured to receive signals from the calibrated variable load circuit and to process the signals to determine a trip threshold current and/or a trip time. A method of testing the ground fault circuit interrupt device includes a first step of providing an identification for the ground fault circuit interrupt device. Test data is then recorded in accordance with the identification. By comparing test data from an initial test with test data from a subsequent test, a trend of performance for the ground fault circuit interrupt device is determined. 17 figs.

Top