NASA Astrophysics Data System (ADS)
Nanda, Tarun; Kumar, B. Ravi; Singh, Vishal
2017-11-01
Micromechanical modeling is used to predict material's tensile flow curve behavior based on microstructural characteristics. This research develops a simplified micromechanical modeling approach for predicting flow curve behavior of dual-phase steels. The existing literature reports on two broad approaches for determining tensile flow curve of these steels. The modeling approach developed in this work attempts to overcome specific limitations of the existing two approaches. This approach combines dislocation-based strain-hardening method with rule of mixtures. In the first step of modeling, `dislocation-based strain-hardening method' was employed to predict tensile behavior of individual phases of ferrite and martensite. In the second step, the individual flow curves were combined using `rule of mixtures,' to obtain the composite dual-phase flow behavior. To check accuracy of proposed model, four distinct dual-phase microstructures comprising of different ferrite grain size, martensite fraction, and carbon content in martensite were processed by annealing experiments. The true stress-strain curves for various microstructures were predicted with the newly developed micromechanical model. The results of micromechanical model matched closely with those of actual tensile tests. Thus, this micromechanical modeling approach can be used to predict and optimize the tensile flow behavior of dual-phase steels.
Modeling damage in concrete pavements and bridges.
DOT National Transportation Integrated Search
2010-09-01
This project focused on micromechanical modeling of damage in concrete under general, multi-axial loading. A : continuum-level, three-dimensional constitutive model based on micromechanics was developed. The model : accounts for damage in concrete by...
Ceramic matrix composite behavior -- Computational simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chamis, C.C.; Murthy, P.L.N.; Mital, S.K.
Development of analytical modeling and computational capabilities for the prediction of high temperature ceramic matrix composite behavior has been an ongoing research activity at NASA-Lewis Research Center. These research activities have resulted in the development of micromechanics based methodologies to evaluate different aspects of ceramic matrix composite behavior. The basis of the approach is micromechanics together with a unique fiber substructuring concept. In this new concept the conventional unit cell (the smallest representative volume element of the composite) of micromechanics approach has been modified by substructuring the unit cell into several slices and developing the micromechanics based equations at themore » slice level. Main advantage of this technique is that it can provide a much greater detail in the response of composite behavior as compared to a conventional micromechanics based analysis and still maintains a very high computational efficiency. This methodology has recently been extended to model plain weave ceramic composites. The objective of the present paper is to describe the important features of the modeling and simulation and illustrate with select examples of laminated as well as woven composites.« less
NASA Astrophysics Data System (ADS)
Yang, B. J.; Shin, H.; Lee, H. K.; Kim, H.
2013-12-01
We introduce a multiscale framework based on molecular dynamic (MD) simulation, micromechanics, and finite element method (FEM). A micromechanical model, which considers influences of the interface properties, nanoparticle (NP) size, and microcracks, is developed. Then, we perform MD simulations to characterize the mechanical properties of the nanocomposite system (silica/nylon 6) with varying volume fraction and size of NPs. By comparing the MD with micromechanics results, intrinsic physical properties at interfacial region are derived. Finally, we implement the developed model in the FEM code with the derived interfacial parameters, and predict the mechanical behavior of the nanocomposite at the macroscopic scale.
Micromechanics based phenomenological damage modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muju, S.; Anderson, P.M.; Popelar, C.H.
A model is developed for the study of process zone effects on dominant cracks. The model proposed here is intended to bridge the gap between the micromechanics based and the phenomenological models for the class of problems involving microcracking, transforming inclusions etc. It is based on representation of localized eigenstrains using dislocation dipoles. The eigenstrain (fitting strain) is represented as the strength (Burgers vector) of the dipole which obeys a certain phenomenological constitutive relation.
Micromechanics Analysis Code (MAC) User Guide: Version 1.0
NASA Technical Reports Server (NTRS)
Wilt, T. E.; Arnold, S. M.
1994-01-01
The ability to accurately predict the thermomechanical deformation response of advanced composite materials continues to play an important role in the development of these strategic materials. Analytical models that predict the effective behavior of composites are used not only by engineers performing structural analysis of large-scale composite components but also by material scientists in developing new material systems. For an analytical model to fulfill these two distinct functions it must be based on a micromechanics approach which utilizes physically based deformation and life constitutive models and allows one to generate the average (macro) response of a composite material given the properties of the individual constituents and their geometric arrangement. Here the user guide for the recently developed, computationally efficient and comprehensive micromechanics analysis code, MAC, who's predictive capability rests entirely upon the fully analytical generalized method of cells, GMC, micromechanics model is described. MAC is a versatile form of research software that 'drives' the double or triple ply periodic micromechanics constitutive models based upon GMC. MAC enhances the basic capabilities of GMC by providing a modular framework wherein (1) various thermal, mechanical (stress or strain control), and thermomechanical load histories can be imposed; (2) different integration algorithms may be selected; (3) a variety of constituent constitutive models may be utilized and/or implemented; and (4) a variety of fiber architectures may be easily accessed through their corresponding representative volume elements.
Micromechanics Analysis Code (MAC). User Guide: Version 2.0
NASA Technical Reports Server (NTRS)
Wilt, T. E.; Arnold, S. M.
1996-01-01
The ability to accurately predict the thermomechanical deformation response of advanced composite materials continues to play an important role in the development of these strategic materials. Analytical models that predict the effective behavior of composites are used not only by engineers performing structural analysis of large-scale composite components but also by material scientists in developing new material systems. For an analytical model to fulfill these two distinct functions it must be based on a micromechanics approach which utilizes physically based deformation and life constitutive models and allows one to generate the average (macro) response of a composite material given the properties of the individual constituents and their geometric arrangement. Here the user guide for the recently developed, computationally efficient and comprehensive micromechanics analysis code's (MAC) who's predictive capability rests entirely upon the fully analytical generalized method of cells (GMC), micromechanics model is described. MAC is a versatile form of research software that 'drives' the double or triply periodic micromechanics constitutive models based upon GMC. MAC enhances the basic capabilities of GMC by providing a modular framework wherein (1) various thermal, mechanical (stress or strain control) and thermomechanical load histories can be imposed, (2) different integration algorithms may be selected, (3) a variety of constituent constitutive models may be utilized and/or implemented, and (4) a variety of fiber and laminate architectures may be easily accessed through their corresponding representative volume elements.
Computational Modeling System for Deformation and Failure in Polycrystalline Metals
2009-03-29
FIB/EHSD 3.3 The Voronoi Cell FEM for Micromechanical Modeling 3.4 VCFEM for Microstructural Damage Modeling 3.5 Adaptive Multiscale Simulations...accurate and efficient image-based micromechanical finite element model, for crystal plasticity and damage , incorporating real morphological and...topology with evolving strain localization and damage . (v) Development of multi-scaling algorithms in the time domain for compression and localization in
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.
2001-01-01
A research program is in progress to develop strain rate dependent deformation and failure models for the analysis of polymer matrix composites subject to impact loads. Previously, strain rate dependent inelastic constitutive equations developed to model the polymer matrix were incorporated into a mechanics of materials based micromechanics method. In the current work, the micromechanics method is revised such that the composite unit cell is divided into a number of slices. Micromechanics equations are then developed for each slice, with laminate theory applied to determine the elastic properties, effective stresses and effective inelastic strains for the unit cell. Verification studies are conducted using two representative polymer matrix composites with a nonlinear, strain rate dependent deformation response. The computed results compare well to experimentally obtained values.
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.
2000-01-01
A research program is in progress to develop strain rate dependent deformation and failure models for the analysis of polymer matrix composites subject to impact loads. Previously, strain rate dependent inelastic constitutive equations developed to model the polymer matrix were implemented into a mechanics of materials based micromechanics method. In the current work, the computation of the effective inelastic strain in the micromechanics model was modified to fully incorporate the Poisson effect. The micromechanics equations were also combined with classical laminate theory to enable the analysis of symmetric multilayered laminates subject to in-plane loading. A quasi-incremental trapezoidal integration method was implemented to integrate the constitutive equations within the laminate theory. Verification studies were conducted using an AS4/PEEK composite using a variety of laminate configurations and strain rates. The predicted results compared well with experimentally obtained values.
A micromechanics-based strength prediction methodology for notched metal matrix composites
NASA Technical Reports Server (NTRS)
Bigelow, C. A.
1992-01-01
An analytical micromechanics based strength prediction methodology was developed to predict failure of notched metal matrix composites. The stress-strain behavior and notched strength of two metal matrix composites, boron/aluminum (B/Al) and silicon-carbide/titanium (SCS-6/Ti-15-3), were predicted. The prediction methodology combines analytical techniques ranging from a three dimensional finite element analysis of a notched specimen to a micromechanical model of a single fiber. In the B/Al laminates, a fiber failure criteria based on the axial and shear stress in the fiber accurately predicted laminate failure for a variety of layups and notch-length to specimen-width ratios with both circular holes and sharp notches when matrix plasticity was included in the analysis. For the SCS-6/Ti-15-3 laminates, a fiber failure based on the axial stress in the fiber correlated well with experimental results for static and post fatigue residual strengths when fiber matrix debonding and matrix cracking were included in the analysis. The micromechanics based strength prediction methodology offers a direct approach to strength prediction by modeling behavior and damage on a constituent level, thus, explicitly including matrix nonlinearity, fiber matrix debonding, and matrix cracking.
A micromechanics-based strength prediction methodology for notched metal-matrix composites
NASA Technical Reports Server (NTRS)
Bigelow, C. A.
1993-01-01
An analytical micromechanics-based strength prediction methodology was developed to predict failure of notched metal matrix composites. The stress-strain behavior and notched strength of two metal matrix composites, boron/aluminum (B/Al) and silicon-carbide/titanium (SCS-6/Ti-15-3), were predicted. The prediction methodology combines analytical techniques ranging from a three-dimensional finite element analysis of a notched specimen to a micromechanical model of a single fiber. In the B/Al laminates, a fiber failure criteria based on the axial and shear stress in the fiber accurately predicted laminate failure for a variety of layups and notch-length to specimen-width ratios with both circular holes and sharp notches when matrix plasticity was included in the analysis. For the SCS-6/Ti-15-3 laminates, a fiber failure based on the axial stress in the fiber correlated well with experimental results for static and postfatigue residual strengths when fiber matrix debonding and matrix cracking were included in the analysis. The micromechanics-based strength prediction methodology offers a direct approach to strength prediction by modeling behavior and damage on a constituent level, thus, explicitly including matrix nonlinearity, fiber matrix debonding, and matrix cracking.
Micromechanics Analysis Code With Generalized Method of Cells (MAC/GMC): User Guide. Version 3
NASA Technical Reports Server (NTRS)
Arnold, S. M.; Bednarcyk, B. A.; Wilt, T. E.; Trowbridge, D.
1999-01-01
The ability to accurately predict the thermomechanical deformation response of advanced composite materials continues to play an important role in the development of these strategic materials. Analytical models that predict the effective behavior of composites are used not only by engineers performing structural analysis of large-scale composite components but also by material scientists in developing new material systems. For an analytical model to fulfill these two distinct functions it must be based on a micromechanics approach which utilizes physically based deformation and life constitutive models and allows one to generate the average (macro) response of a composite material given the properties of the individual constituents and their geometric arrangement. Here the user guide for the recently developed, computationally efficient and comprehensive micromechanics analysis code, MAC, who's predictive capability rests entirely upon the fully analytical generalized method of cells, GMC, micromechanics model is described. MAC/ GMC is a versatile form of research software that "drives" the double or triply periodic micromechanics constitutive models based upon GMC. MAC/GMC enhances the basic capabilities of GMC by providing a modular framework wherein 1) various thermal, mechanical (stress or strain control) and thermomechanical load histories can be imposed, 2) different integration algorithms may be selected, 3) a variety of material constitutive models (both deformation and life) may be utilized and/or implemented, and 4) a variety of fiber architectures (both unidirectional, laminate and woven) may be easily accessed through their corresponding representative volume elements contained within the supplied library of RVEs or input directly by the user, and 5) graphical post processing of the macro and/or micro field quantities is made available.
A Micromechanics-Based Damage Model for [+/- Theta/90n]s Composite Laminates
NASA Technical Reports Server (NTRS)
Mayugo, Joan-Andreu; Camanho, Pedro P.; Maimi, Pere; Davila, Carlos G.
2006-01-01
A new damage model based on a micromechanical analysis of cracked [+/- Theta/90n]s laminates subjected to multiaxial loads is proposed. The model predicts the onset and accumulation of transverse matrix cracks in uniformly stressed laminates, the effect of matrix cracks on the stiffness of the laminate, as well as the ultimate failure of the laminate. The model also accounts for the effect of the ply thickness on the ply strength. Predictions relating the elastic properties of several laminates and multiaxial loads are presented.
NASA Technical Reports Server (NTRS)
Herraez, Miguel; Bergan, Andrew C.; Gonzalez, Carlos; Lopes, Claudio S.
2017-01-01
In this work, the fiber kinking phenomenon, which is known as the failure mechanism that takes place when a fiber reinforced polymer is loaded under longitudinal compression, is studied. A computational micromechanics model is employed to interrogate the assumptions of a recently developed mesoscale continuum damage mechanics (CDM) model for fiber kinking based on the deformation gradient decomposition (DGD) and the LaRC04 failure criteria.
Micromechanics Modeling of Composites Subjected to Multiaxial Progressive Damage in the Constituents
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Aboudi, Jacob; Amold, Steven M.
2010-01-01
The high-fidelity generalized method of cells composite micromechanics model is extended to include constituent-scale progressive damage via a proposed damage model. The damage model assumes that all material nonlinearity is due to damage in the form of reduced stiffness, and it uses six scalar damage variables (three for tension and three for compression) to track the damage. Damage strains are introduced that account for interaction among the strain components and that also allow the development of the damage evolution equations based on the constituent material uniaxial stress strain response. Local final-failure criteria are also proposed based on mode-specific strain energy release rates and total dissipated strain energy. The coupled micromechanics-damage model described herein is applied to a unidirectional E-glass/epoxy composite and a proprietary polymer matrix composite. Results illustrate the capability of the coupled model to capture the vastly different character of the monolithic (neat) resin matrix and the composite in response to far-field tension, compression, and shear loading.
Delamination micromechanics analysis
NASA Technical Reports Server (NTRS)
Adams, D. F.; Mahishi, J. M.
1985-01-01
A three-dimensional finite element analysis was developed which includes elastoplastic, orthotropic material response, and fracture initiation and propagation. Energy absorption due to physical failure processes characteristic of the heterogeneous and anisotropic nature of composite materials is modeled. A local energy release rate in the presence of plasticity was defined and used as a criterion to predict the onset and growth of cracks in both micromechanics and macromechanics analyses. This crack growth simulation technique is based upon a virtual crack extension method. A three-dimensional finite element micromechanics model is used to study the effects of broken fibers, cracked matrix and fiber-matrix debond on the fracture toughness of the unidirectional composite. The energy release rates at the onset of unstable crack growth in the micromechanics analyses are used as critical energy release rates in the macromechanics analysis. This integrated micromechanical and macromechanical fracture criterion is shown to be very effective in predicting the onset and growth of cracks in general multilayered composite laminates by applying the criterion to a single-edge notched graphite/epoxy laminate subjected to implane tension normal to the notch.
Micromechanical Modeling of Woven Metal Matrix Composites
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Pindera, Marek-Jerzy
1997-01-01
This report presents the results of an extensive micromechanical modeling effort for woven metal matrix composites. The model is employed to predict the mechanical response of 8-harness (8H) satin weave carbon/copper (C/Cu) composites. Experimental mechanical results for this novel high thermal conductivity material were recently reported by Bednarcyk et al. along with preliminary model results. The micromechanics model developed herein is based on an embedded approach. A micromechanics model for the local (micro-scale) behavior of the woven composite, the original method of cells (Aboudi), is embedded in a global (macro-scale) micromechanics model (the three-dimensional generalized method of cells (GMC-3D) (Aboudi). This approach allows representation of true repeating unit cells for woven metal matrix composites via GMC-3D, and representation of local effects, such as matrix plasticity, yarn porosity, and imperfect fiber-matrix bonding. In addition, the equations of GMC-3D were reformulated to significantly reduce the number of unknown quantities that characterize the deformation fields at the microlevel in order to make possible the analysis of actual microstructures of woven composites. The resulting micromechanical model (WCGMC) provides an intermediate level of geometric representation, versatility, and computational efficiency with respect to previous analytical and numerical models for woven composites, but surpasses all previous modeling work by allowing the mechanical response of a woven metal matrix composite, with an elastoplastic matrix, to be examined for the first time. WCGMC is employed to examine the effects of composite microstructure, porosity, residual stresses, and imperfect fiber-matrix bonding on the predicted mechanical response of 8H satin C/Cu. The previously reported experimental results are summarized, and the model predictions are compared to monotonic and cyclic tensile and shear test data. By considering appropriate levels of porosity, residual stresses, and imperfect fiber-matrix debonding, reasonably good qualitative and quantitative correlation is achieved between model and experiment.
NASA Technical Reports Server (NTRS)
Pahr, D. H.; Arnold, S. M.
2001-01-01
The paper begins with a short overview of the recent work done in the field of discontinuous reinforced composites, focusing on the different parameters which influence the material behavior of discontinuous reinforced composites, as well as the various analysis approaches undertaken. Based on this overview it became evident, that in order to investigate the enumerated effects in an efficient and comprehensive manner, an alternative approach to the computationally intensive finite-element based micromechanics approach is required. Therefore, an investigation is conducted to demonstrate the utility of utilizing the generalized method of cells (GMC), a semi-analytical micromechanics-based approach, to simulate the elastic and elastoplastic material behavior of aligned short fiber composites. The results are compared with (1) simulations using other micromechanical based mean field models and finite element (FE) unit cell models found in the literature given elastic material behavior, as well as (2) finite element unit cell and a new semianalytical elastoplastic shear lag model in the inelastic range. GMC is shown to definitely have a window of applicability when simulating discontinuously reinforced composite material behavior.
NASA Technical Reports Server (NTRS)
Pahr, D. H.; Arnold, S. M.
2001-01-01
The paper begins with a short overview of the recent work done in the field of discontinuous reinforced composites, focusing on the different parameters which influence the material behavior of discontinuous reinforced composites, as well as the various analysis approaches undertaken. Based on this overview it became evident that in order to investigate the enumerated effects in an efficient and comprehensive manner, an alternative approach to the computationally intensive finite-element based micromechanics approach is required. Therefore, an investigation is conducted to demonstrate the utility of utilizing the generalized method of cells (GMC), a semi-analytical micromechanics-based approach, to simulate the elastic and elastoplastic material behavior of aligned short fiber composites. The results are compared with simulations using other micromechanical based mean field models and finite element (FE) unit cell models found in the literature given elastic material behavior, as well as finite element unit cell and a new semianalytical elastoplastic shear lag model in the inelastic range. GMC is shown to definitely have a window of applicability when simulating discontinuously reinforced composite material behavior.
Nonlinear response of unidirectional boron/aluminum
NASA Technical Reports Server (NTRS)
Pindera, M.-J.; Herakovich, C. T.; Becker, W.; Aboudi, J.
1990-01-01
Experimental results obtained for unidirectional boron/aluminum subjected to combined loading using off-axis tension, compression and Iosipescu shear specimens are correlated with a nonlinear micromechanics model. It is illustrated that the nonlinear response in the principal material directions is markedly influenced by the different loading modes and different ratios of the applied stress components. The observed nonlinear response under pure and combined loading is discussed in terms of initial yielding, subsequent hardening, stress-interaction effects and unloading-reloading characteristics. The micromechanics model is based on the concept of a repeating unit cell representative of the composite-at-large and employs the unified theory of Bodner and Partom to model the inelastic response of the matrix. It is shown that the employed micromechanics model is sufficiently general to predict the observed nonlinear response of unidirectional boron/aluminum with good accuracy.
NASA Astrophysics Data System (ADS)
Haberman, Keith
2001-07-01
A micromechanically based constitutive model for the dynamic inelastic behavior of brittle materials, specifically "Dionysus-Pentelicon marble" with distributed microcracking is presented. Dionysus-Pentelicon marble was used in the construction of the Parthenon, in Athens, Greece. The constitutive model is a key component in the ability to simulate this historic explosion and the preceding bombardment form cannon fire that occurred at the Parthenon in 1678. Experiments were performed by Rosakis (1999) that characterized the static and dynamic response of this unique material. A micromechanical constitutive model that was previously successfully used to model the dynamic response of granular brittle materials is presented. The constitutive model was fitted to the experimental data for marble and reproduced the experimentally observed basic uniaxial dynamic behavior quite well. This micromechanical constitutive model was then implemented into the three dimensional nonlinear lagrangain finite element code Dyna3d(1998). Implementing this methodology into the three dimensional nonlinear dynamic finite element code allowed the model to be exercised on several preliminary impact experiments. During future simulations, the model is to be used in conjunction with other numerical techniques to simulate projectile impact and blast loading on the Dionysus-Pentelicon marble and on the structure of the Parthenon.
A two-scale model for dynamic damage evolution
NASA Astrophysics Data System (ADS)
Keita, Oumar; Dascalu, Cristian; François, Bertrand
2014-03-01
This paper presents a new micro-mechanical damage model accounting for inertial effect. The two-scale damage model is fully deduced from small-scale descriptions of dynamic micro-crack propagation under tensile loading (mode I). An appropriate micro-mechanical energy analysis is combined with homogenization based on asymptotic developments in order to obtain the macroscopic evolution law for damage. Numerical simulations are presented in order to illustrate the ability of the model to describe known behaviors like size effects for the structural response, strain-rate sensitivity, brittle-ductile transition and wave dispersion.
NASA Technical Reports Server (NTRS)
Aboudi, Jacob; Pindera, Marek-Jerzy
1992-01-01
A user's guide for the program gmc.f is presented. The program is based on the generalized method of cells model (GMC) which is capable via a micromechanical analysis, of predicting the overall, inelastic behavior of unidirectional, multi-phase composites from the knowledge of the properties of the viscoplastic constituents. In particular, the program is sufficiently general to predict the response of unidirectional composites having variable fiber shapes and arrays.
Comprehensive Micromechanics-Analysis Code - Version 4.0
NASA Technical Reports Server (NTRS)
Arnold, S. M.; Bednarcyk, B. A.
2005-01-01
Version 4.0 of the Micromechanics Analysis Code With Generalized Method of Cells (MAC/GMC) has been developed as an improved means of computational simulation of advanced composite materials. The previous version of MAC/GMC was described in "Comprehensive Micromechanics-Analysis Code" (LEW-16870), NASA Tech Briefs, Vol. 24, No. 6 (June 2000), page 38. To recapitulate: MAC/GMC is a computer program that predicts the elastic and inelastic thermomechanical responses of continuous and discontinuous composite materials with arbitrary internal microstructures and reinforcement shapes. The predictive capability of MAC/GMC rests on a model known as the generalized method of cells (GMC) - a continuum-based model of micromechanics that provides closed-form expressions for the macroscopic response of a composite material in terms of the properties, sizes, shapes, and responses of the individual constituents or phases that make up the material. Enhancements in version 4.0 include a capability for modeling thermomechanically and electromagnetically coupled ("smart") materials; a more-accurate (high-fidelity) version of the GMC; a capability to simulate discontinuous plies within a laminate; additional constitutive models of materials; expanded yield-surface-analysis capabilities; and expanded failure-analysis and life-prediction capabilities on both the microscopic and macroscopic scales.
Liu, Zeliang; Moore, John A.; Liu, Wing Kam
2016-05-03
Inclusions comprised on filler particles and interphase regions commonly form complex morphologies in polymer nanocomposites. Addressing these morphologies as systems of overlapping simple shapes allows for the study of dilute particles, clustered particles, and interacting interphases all in one general modeling framework. To account for the material properties in these overlapping geometries, weighted-mean and additive overlapping conditions are introduced and the corresponding inclusion-wise integral equations are formulated. An extended micromechanics method based on these overlapping conditions for linear elastic and viscoelastic heterogeneous material is then developed. An important feature of the proposed approach is that the effect of both themore » geometric overlapping (clustered particles) and physical overlapping (interacting interphases) on the effective properties can be distinguished. Lastly, we apply the extended micromechanics method to a viscoelastic polymer nanocomposite with interphase regions, and estimate the properties and thickness of the interphase region based on experimental data for carbon-black filled styrene butadiene rubbers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zeliang; Moore, John A.; Liu, Wing Kam
Inclusions comprised on filler particles and interphase regions commonly form complex morphologies in polymer nanocomposites. Addressing these morphologies as systems of overlapping simple shapes allows for the study of dilute particles, clustered particles, and interacting interphases all in one general modeling framework. To account for the material properties in these overlapping geometries, weighted-mean and additive overlapping conditions are introduced and the corresponding inclusion-wise integral equations are formulated. An extended micromechanics method based on these overlapping conditions for linear elastic and viscoelastic heterogeneous material is then developed. An important feature of the proposed approach is that the effect of both themore » geometric overlapping (clustered particles) and physical overlapping (interacting interphases) on the effective properties can be distinguished. Lastly, we apply the extended micromechanics method to a viscoelastic polymer nanocomposite with interphase regions, and estimate the properties and thickness of the interphase region based on experimental data for carbon-black filled styrene butadiene rubbers.« less
Micromechanical models for textile structural composites
NASA Technical Reports Server (NTRS)
Marrey, Ramesh V.; Sankar, Bhavani V.
1995-01-01
The objective is to develop micromechanical models for predicting the stiffness and strength properties of textile composite materials. Two models are presented to predict the homogeneous elastic constants and coefficients of thermal expansion of a textile composite. The first model is based on rigorous finite element analysis of the textile composite unit-cell. Periodic boundary conditions are enforced between opposite faces of the unit-cell to simulate deformations accurately. The second model implements the selective averaging method (SAM), which is based on a judicious combination of stiffness and compliance averaging. For thin textile composites, both models can predict the plate stiffness coefficients and plate thermal coefficients. The finite element procedure is extended to compute the thermal residual microstresses, and to estimate the initial failure envelope for textile composites.
Micromechanics based simulation of ductile fracture in structural steels
NASA Astrophysics Data System (ADS)
Yellavajjala, Ravi Kiran
The broader aim of this research is to develop fundamental understanding of ductile fracture process in structural steels, propose robust computational models to quantify the associated damage, and provide numerical tools to simplify the implementation of these computational models into general finite element framework. Mechanical testing on different geometries of test specimens made of ASTM A992 steels is conducted to experimentally characterize the ductile fracture at different stress states under monotonic and ultra-low cycle fatigue (ULCF) loading. Scanning electron microscopy studies of the fractured surfaces is conducted to decipher the underlying microscopic damage mechanisms that cause fracture in ASTM A992 steels. Detailed micromechanical analyses for monotonic and cyclic loading are conducted to understand the influence of stress triaxiality and Lode parameter on the void growth phase of ductile fracture. Based on monotonic analyses, an uncoupled micromechanical void growth model is proposed to predict ductile fracture. This model is then incorporated in to finite element program as a weakly coupled model to simulate the loss of load carrying capacity in the post microvoid coalescence regime for high triaxialities. Based on the cyclic analyses, an uncoupled micromechanics based cyclic void growth model is developed to predict the ULCF life of ASTM A992 steels subjected to high stress triaxialities. Furthermore, a computational fracture locus for ASTM A992 steels is developed and incorporated in to finite element program as an uncoupled ductile fracture model. This model can be used to predict the ductile fracture initiation under monotonic loading in a wide range of triaxiality and Lode parameters. Finally, a coupled microvoid elongation and dilation based continuum damage model is proposed, implemented, calibrated and validated. This model is capable of simulating the local softening caused by the various phases of ductile fracture process under monotonic loading for a wide range of stress states. Novel differentiation procedures based on complex analyses along with existing finite difference methods and automatic differentiation are extended using perturbation techniques to evaluate tensor derivatives. These tensor differentiation techniques are then used to automate nonlinear constitutive models into implicit finite element framework. Finally, the efficiency of these automation procedures is demonstrated using benchmark problems.
A unique set of micromechanics equations for high temperature metal matrix composites
NASA Technical Reports Server (NTRS)
Hopkins, D. A.; Chamis, C. C.
1985-01-01
A unique set of micromechanic equations is presented for high temperature metal matrix composites. The set includes expressions to predict mechanical properties, thermal properties and constituent microstresses for the unidirectional fiber reinforced ply. The equations are derived based on a mechanics of materials formulation assuming a square array unit cell model of a single fiber, surrounding matrix and an interphase to account for the chemical reaction which commonly occurs between fiber and matrix. A three-dimensional finite element analysis was used to perform a preliminary validation of the equations. Excellent agreement between properties predicted using the micromechanics equations and properties simulated by the finite element analyses are demonstrated. Implementation of the micromechanics equations as part of an integrated computational capability for nonlinear structural analysis of high temperature multilayered fiber composites is illustrated.
NASA Astrophysics Data System (ADS)
Nicolas, A.; Fortin, J.; Guéguen, Y.
2017-10-01
Deformation and failure of rocks are important for a better understanding of many crustal geological phenomena such as faulting and compaction. In carbonate rocks among others, low-temperature deformation can either occur with dilatancy or compaction, having implications for porosity changes, failure and petrophysical properties. Hence, a thorough understanding of all the micromechanisms responsible for deformation is of great interest. In this study, a constitutive model for the low-temperature deformation of low-porosity (<20 per cent) carbonate rocks is derived from the micromechanisms identified in previous studies. The micromechanical model is based on (1) brittle crack propagation, (2) a plasticity law (interpreted in terms of dislocation glide without possibility to climb) for porous media with hardening and (3) crack nucleation due to dislocation pile-ups. The model predicts stress-strain relations and the evolution of damage during deformation. The model adequately predicts brittle behaviour at low confining pressures, which switches to a semi-brittle behaviour characterized by inelastic compaction followed by dilatancy at higher confining pressures. Model predictions are compared to experimental results from previous studies and are found to be in close agreement with experimental results. This suggests that microphysical phenomena responsible for the deformation are sufficiently well captured by the model although twinning, recovery and cataclasis are not considered. The porosity range of applicability and limits of the model are discussed.
NASA Technical Reports Server (NTRS)
Ghosn, Louis J.; Sullivan, Roy M.; Lerch, Bradley A.
2006-01-01
A micromechanics model has been constructed to study the mechanical behavior of spray-on foam insulation (SOFI) for the external tank. The model was constructed using finite elements representing the fundamental repeating unit of the SOFI microstructure. The details of the micromechanics model were based on cell observations and measured average cell dimensions discerned from photomicrographs. The unit cell model is an elongated Kelvin model (fourteen-sided polyhedron with 8 hexagonal and six quadrilateral faces), which will pack to a 100% density. The cell faces and cell edges are modeled using three-dimensional 20-node brick elements. Only one-eighth of the cell is modeled due to symmetry. By exercising the model and correlating the results with the macro-mechanical foam behavior obtained through material characterization testing, the intrinsic stiffness and Poisson s Ratio of the polymeric cell walls and edges are determined as a function of temperature. The model is then exercised to study the unique and complex temperature-dependent mechanical behavior as well as the fracture initiation and propagation at the microscopic unit cell level.
NASA Astrophysics Data System (ADS)
Pierson, Kyle D.; Hochhalter, Jacob D.; Spear, Ashley D.
2018-05-01
Systematic correlation analysis was performed between simulated micromechanical fields in an uncracked polycrystal and the known path of an eventual fatigue-crack surface based on experimental observation. Concurrent multiscale finite-element simulation of cyclic loading was performed using a high-fidelity representation of grain structure obtained from near-field high-energy x-ray diffraction microscopy measurements. An algorithm was developed to parameterize and systematically correlate the three-dimensional (3D) micromechanical fields from simulation with the 3D fatigue-failure surface from experiment. For comparison, correlation coefficients were also computed between the micromechanical fields and hypothetical, alternative surfaces. The correlation of the fields with hypothetical surfaces was found to be consistently weaker than that with the known crack surface, suggesting that the micromechanical fields of the cyclically loaded, uncracked microstructure might provide some degree of predictiveness for microstructurally small fatigue-crack paths, although the extent of such predictiveness remains to be tested. In general, gradients of the field variables exhibit stronger correlations with crack path than the field variables themselves. Results from the data-driven approach implemented here can be leveraged in future model development for prediction of fatigue-failure surfaces (for example, to facilitate univariate feature selection required by convolution-based models).
Micromechanisms of thermomechanical fatigue: A comparison with isothermal fatigue
NASA Technical Reports Server (NTRS)
Bill, R. C.
1986-01-01
Thermomechanical Fatigue (TMF) experiments were conducted on Mar-M 200, B-1900, and PWA-1480 (single crystals) over temperature ranges representative of gas turbine airfoil environments. The results were examined from both a phenomenological basis and a micromechanical basis. Depending on constituents present in the superalloy system, certain micromechanisms dominated the crack initiation process and significantly influenced the TMF lives as well as sensitivity of the material to the type TMF cycle imposed. For instance, high temperature cracking around grain boundary carbides in Mar-M 200 resulted in short in-phase TMF lives compared to either out-of-phase or isothermal lives. In single crystal PWA-1480, the type of coating applied was seen to be the controlling factor in determining sensitivity to the type of TMF cycle imposed. Micromechanisms of deformation were observed over the temperature range of interest to the TMF cycles, and provided some insight as to the differences between TMF damage mechanisms and isothermal damage mechanisms. Finally, the applicability of various life prediction models to TMF results was reviewed. Current life prediction models based on isothermal data must be modified before being generally applied to TMF.
NASA Technical Reports Server (NTRS)
Arnold, Steven M.; Trowbridge, D.
2001-01-01
A critical issue in the micromechanics-based analysis of composite structures becomes the availability of a computationally efficient homogenization technique: one that is 1) Capable of handling the sophisticated, physically based, viscoelastoplastic constitutive and life models for each constituent; 2) Able to generate accurate displacement and stress fields at both the macro and the micro levels; 3) Compatible with the finite element method. The Generalized Method of Cells (GMC) developed by Paley and Aboudi is one such micromechanical model that has been shown to predict accurately the overall macro behavior of various types of composites given the required constituent properties. Specifically, the method provides "closed-form" expressions for the macroscopic composite response in terms of the properties, size, shape, distribution, and response of the individual constituents or phases that make up the material. Furthermore, expressions relating the internal stress and strain fields in the individual constituents in terms of the macroscopically applied stresses and strains are available through strain or stress concentration matrices. These expressions make possible the investigation of failure processes at the microscopic level at each step of an applied load history.
NASA Technical Reports Server (NTRS)
Arnold, Steven M.; Bednarcyk, Brett A.; Hussain, Aquila; Katiyar, Vivek
2010-01-01
A unified framework is presented that enables coupled multiscale analysis of composite structures and associated graphical pre- and postprocessing within the Abaqus/CAE environment. The recently developed, free, Finite Element Analysis--Micromechanics Analysis Code (FEAMAC) software couples NASA's Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC) with Abaqus/Standard and Abaqus/Explicit to perform micromechanics based FEA such that the nonlinear composite material response at each integration point is modeled at each increment by MAC/GMC. The Graphical User Interfaces (FEAMAC-Pre and FEAMAC-Post), developed through collaboration between SIMULIA Erie and the NASA Glenn Research Center, enable users to employ a new FEAMAC module within Abaqus/CAE that provides access to the composite microscale. FEA IAC-Pre is used to define and store constituent material properties, set-up and store composite repeating unit cells, and assign composite materials as sections with all data being stored within the CAE database. Likewise FEAMAC-Post enables multiscale field quantity visualization (contour plots, X-Y plots), with point and click access to the microscale i.e., fiber and matrix fields).
High-Fidelity Micromechanics Model Developed for the Response of Multiphase Materials
NASA Technical Reports Server (NTRS)
Aboudi, Jacob; Pindera, Marek-Jerzy; Arnold, Steven M.
2002-01-01
A new high-fidelity micromechanics model has been developed under funding from the NASA Glenn Research Center for predicting the response of multiphase materials with arbitrary periodic microstructures. The model's analytical framework is based on the homogenization technique, but the method of solution for the local displacement and stress fields borrows concepts previously employed in constructing the higher order theory for functionally graded materials. The resulting closed-form macroscopic and microscopic constitutive equations, valid for both uniaxial and multiaxial loading of periodic materials with elastic and inelastic constitutive phases, can be incorporated into a structural analysis computer code. Consequently, this model now provides an alternative, accurate method.
NASA Astrophysics Data System (ADS)
Hu, Kun; Zhu, Qi-zhi; Chen, Liang; Shao, Jian-fu; Liu, Jian
2018-06-01
As confining pressure increases, crystalline rocks of moderate porosity usually undergo a transition in failure mode from localized brittle fracture to diffused damage and ductile failure. This transition has been widely reported experimentally for several decades; however, satisfactory modeling is still lacking. The present paper aims at modeling the brittle-ductile transition process of rocks under conventional triaxial compression. Based on quantitative analyses of experimental results, it is found that there is a quite satisfactory linearity between the axial inelastic strain at failure and the confining pressure prescribed. A micromechanics-based frictional damage model is then formulated using an associated plastic flow rule and a strain energy release rate-based damage criterion. The analytical solution to the strong plasticity-damage coupling problem is provided and applied to simulate the nonlinear mechanical behaviors of Tennessee marble, Indiana limestone and Jinping marble, each presenting a brittle-ductile transition in stress-strain curves.
Application of micromechanics to the characterization of mortar by ultrasound.
Hernández, M G; Anaya, J J; Izquierdo, M A G; Ullate, L G
2002-05-01
Mechanical properties of concrete and mortar structures can be estimated by ultrasonic non-destructive testing. When the ultrasonic velocity is known, there are standardized methods based on considering the concrete a homogeneous material. Cement composites, however, are heterogeneous and porous, and have a negative effect on the mechanical properties of structures. This work studies the impact of porosity on mechanical properties by considering concrete a multiphase material. A micromechanical model is applied in which the material is considered to consist of two phases: a solid matrix and pores. From this method, a set of expressions is obtained that relates the acoustic velocity and Young's modulus of mortar. Experimental work is based on non-destructive and destructive procedures over mortar samples whose porosity is varied. A comparison is drawn between micromechanical and standard methods, showing positive results for the method here proposed.
Micromechanics and constitutive modeling of connective soft tissues.
Fallah, A; Ahmadian, M T; Firozbakhsh, K; Aghdam, M M
2016-07-01
In this paper, a micromechanical model for connective soft tissues based on the available histological evidences is developed. The proposed model constituents i.e. collagen fibers and ground matrix are considered as hyperelastic materials. The matrix material is assumed to be isotropic Neo-Hookean while the collagen fibers are considered to be transversely isotropic hyperelastic. In order to take into account the effects of tissue structure in lower scales on the macroscopic behavior of tissue, a strain energy density function (SEDF) is developed for collagen fibers based on tissue hierarchical structure. Macroscopic response and properties of tissue are obtained using the numerical homogenization method with the help of ABAQUS software. The periodic boundary conditions and the proposed constitutive models are implemented into ABAQUS using the DISP and the UMAT subroutines, respectively. The existence of the solution and stable material behavior of proposed constitutive model for collagen fibers are investigated based on the poly-convexity condition. Results of the presented micromechanics model for connective tissues are compared and validated with available experimental data. Effects of geometrical and material parameters variation at microscale on macroscopic mechanical behavior of tissues are investigated. The results show that decrease in collagen content of the connective tissues like the tendon due to diseases leads 20% more stretch than healthy tissue under the same load which can results in connective tissue malfunction and hypermobility in joints. Copyright © 2016 Elsevier Ltd. All rights reserved.
Micromechanics and constitutive models for soft active materials with phase evolution
NASA Astrophysics Data System (ADS)
Wang, Binglian
Soft active materials, such as shape memory polymers, liquid crystal elastomers, soft tissues, gels etc., are materials that can deform largely in response to external stimuli. Micromechanics analysis of heterogeneous materials based on finite element method is a typically numerical way to study the thermal-mechanical behaviors of soft active materials with phase evolution. While the constitutive models that can precisely describe the stress and strain fields of materials in the process of phase evolution can not be found in the databases of some commercial finite element analysis (FEA) tools such as ANSYS or Abaqus, even the specific constitutive behavior for each individual phase either the new formed one or the original one has already been well-known. So developing a computationally efficient and general three dimensional (3D) thermal-mechanical constitutive model for soft active materials with phase evolution which can be implemented into FEA is eagerly demanded. This paper first solved this problem theoretically by recording the deformation history of each individual phase in the phase evolution process, and adopted the idea of effectiveness by regarding all the new formed phase as an effective phase with an effective deformation to make this theory computationally efficient. A user material subroutine (UMAT) code based on this theoretical constitutive model has been finished in this work which can be added into the material database in Abaqus or ANSYS and can be easily used for most soft active materials with phase evolution. Model validation also has been done through comparison between micromechanical FEA and experiments on a particular composite material, shape memory elastomeric composite (SMEC) which consisted of an elastomeric matrix and the crystallizable fibre. Results show that the micromechanics and the constitutive models developed in this paper for soft active materials with phase evolution are completely relied on.
Multiscale Modeling of PEEK Using Reactive Molecular Dynamics Modeling and Micromechanics
NASA Technical Reports Server (NTRS)
Pisani, William A.; Radue, Matthew; Chinkanjanarot, Sorayot; Bednarcyk, Brett A.; Pineda, Evan J.; King, Julia A.; Odegard, Gregory M.
2018-01-01
Polyether ether ketone (PEEK) is a high-performance, semi-crystalline thermoplastic that is used in a wide range of engineering applications, including some structural components of aircraft. The design of new PEEK-based materials requires a precise understanding of the multiscale structure and behavior of semi-crystalline PEEK. Molecular Dynamics (MD) modeling can efficiently predict bulk-level properties of single phase polymers, and micromechanics can be used to homogenize those phases based on the overall polymer microstructure. In this study, MD modeling was used to predict the mechanical properties of the amorphous and crystalline phases of PEEK. The hierarchical microstructure of PEEK, which combines the aforementioned phases, was modeled using a multiscale modeling approach facilitated by NASA's MSGMC. The bulk mechanical properties of semi-crystalline PEEK predicted using MD modeling and MSGMC agree well with vendor data, thus validating the multiscale modeling approach.
Versatile Micromechanics Model for Multiscale Analysis of Composite Structures
NASA Astrophysics Data System (ADS)
Kwon, Y. W.; Park, M. S.
2013-08-01
A general-purpose micromechanics model was developed so that the model could be applied to various composite materials such as reinforced by particles, long fibers and short fibers as well as those containing micro voids. Additionally, the model can be used with hierarchical composite materials. The micromechanics model can be used to compute effective material properties like elastic moduli, shear moduli, Poisson's ratios, and coefficients of thermal expansion for the various composite materials. The model can also calculate the strains and stresses at the constituent material level such as fibers, particles, and whiskers from the composite level stresses and strains. The model was implemented into ABAQUS using the UMAT option for multiscale analysis. An extensive set of examples are presented to demonstrate the reliability and accuracy of the developed micromechanics model for different kinds of composite materials. Another set of examples is provided to study the multiscale analysis of composite structures.
Micro-mechanical modelling of cellulose aerogels from molten salt hydrates.
Rege, Ameya; Schestakow, Maria; Karadagli, Ilknur; Ratke, Lorenz; Itskov, Mikhail
2016-09-14
In this paper, a generalised micro-mechanical model capable of capturing the mechanical behaviour of polysaccharidic aerogels, in particular cellulose aerogels, is proposed. To this end, first the mechanical structure and properties of these highly nanoporous cellulose aerogels prepared from aqueous salt hydrate melts (calcium thiocyanate, Ca(SCN)2·6H2O and zinc chloride, ZnCl2·4H2O) are studied. The cellulose content within these aerogels is found to have a direct relation to the microstructural quantities such as the fibril length and diameter. This, along with porosity, appears to influence the resulting mechanical properties. Furthermore, experimental characterisation of cellulose aerogels was done using scanning electron microscopy (SEM), pore-size data analysis, and compression tests. Cellulose aerogels are of a characteristic cellular microstructures and accordingly a network formed by square shaped cells is considered in the micro-mechanical model proposed in this paper. This model is based on the non-linear bending and collapse of such cells of varying pore sizes. The extended Euler-Bernoulli beam theory for large deflections is used to describe the bending in the cell walls. The proposed model is physically motivated and demonstrates a good agreement with our experimental data of both ZnCl2 and Ca(SCN)2 based cellulose aerogels with different cellulose contents.
Finite Element Modeling of Micromachined MEMS Photon Devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Datskos, P.G.; Evans, B.M.; Schonberger, D.
1999-09-20
The technology of microelectronics that has evolved over the past half century is one of great power and sophistication and can now be extended to many applications (MEMS and MOEMS) other than electronics. An interesting application of MEMS quantum devices is the detection of electromagnetic radiation. The operation principle of MEMS quantum devices is based on the photoinduced stress in semiconductors, and the photon detection results from the measurement of the photoinduced bending. These devices can be described as micromechanical photon detectors. In this work, we have developed a technique for simulating electronic stresses using finite element analysis. We havemore » used our technique to model the response of micromechanical photon devices to external stimuli and compared these results with experimental data. Material properties, geometry, and bimaterial design play an important role in the performance of micromechanical photon detectors. We have modeled these effects using finite element analysis and included the effects of bimaterial thickness coating, effective length of the device, width, and thickness.« less
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Arnold, Steven M.
2006-01-01
A framework is presented that enables coupled multiscale analysis of composite structures. The recently developed, free, Finite Element Analysis - Micromechanics Analysis Code (FEAMAC) software couples the Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC) with ABAQUS to perform micromechanics based FEA such that the nonlinear composite material response at each integration point is modeled at each increment by MAC/GMC. As a result, the stochastic nature of fiber breakage in composites can be simulated through incorporation of an appropriate damage and failure model that operates within MAC/GMC on the level of the fiber. Results are presented for the progressive failure analysis of a titanium matrix composite tensile specimen that illustrate the power and utility of the framework and address the techniques needed to model the statistical nature of the problem properly. In particular, it is shown that incorporating fiber strength randomness on multiple scales improves the quality of the simulation by enabling failure at locations other than those associated with structural level stress risers.
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Arnold, Steven M.
2007-01-01
A framework is presented that enables coupled multiscale analysis of composite structures. The recently developed, free, Finite Element Analysis-Micromechanics Analysis Code (FEAMAC) software couples the Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC) with ABAQUS to perform micromechanics based FEA such that the nonlinear composite material response at each integration point is modeled at each increment by MAC/GMC. As a result, the stochastic nature of fiber breakage in composites can be simulated through incorporation of an appropriate damage and failure model that operates within MAC/GMC on the level of the fiber. Results are presented for the progressive failure analysis of a titanium matrix composite tensile specimen that illustrate the power and utility of the framework and address the techniques needed to model the statistical nature of the problem properly. In particular, it is shown that incorporating fiber strength randomness on multiple scales improves the quality of the simulation by enabling failure at locations other than those associated with structural level stress risers.
Finite element modeling of micromachined MEMS photon devices
NASA Astrophysics Data System (ADS)
Evans, Boyd M., III; Schonberger, D. W.; Datskos, Panos G.
1999-09-01
The technology of microelectronics that has evolved over the past half century is one of great power and sophistication and can now be extended to many applications (MEMS and MOEMS) other than electronics. An interesting application of MEMS quantum devices is the detection of electromagnetic radiation. The operation principle of MEMS quantum devices is based on the photoinduced stress in semiconductors, and the photon detection results from the measurement of the photoinduced bending. These devices can be described as micromechanical photon detectors. In this work, we have developed a technique for simulating electronic stresses using finite element analysis. We have used our technique to model the response of micromechanical photon devices to external stimuli and compared these results with experimental data. Material properties, geometry, and bimaterial design play an important role in the performance of micromechanical photon detectors. We have modeled these effects using finite element analysis and included the effects of bimaterial thickness coating, effective length of the device, width, and thickness.
Continuum damage model for ferroelectric materials and its application to multilayer actuators
NASA Astrophysics Data System (ADS)
Gellmann, Roman; Ricoeur, Andreas
2016-05-01
In this paper a micromechanical continuum damage model for ferroelectric materials is presented. As a constitutive law it is implemented into a finite element (FE) code. The model is based on micromechanical considerations of domain switching and its interaction with microcrack growth and coalescence. A FE analysis of a multilayer actuator is performed, showing the initiation of damage zones at the electrode tips during the poling process. Further, the influence of mechanical pre-stressing on damage evolution and actuating properties is investigated. The results provided in this work give useful information on the damage of advanced piezoelectric devices and their optimization.
NASA Technical Reports Server (NTRS)
Wilt, T. E.
1995-01-01
The Generalized Method of Cells (GMC), a micromechanics based constitutive model, is implemented into the finite element code MARC using the user subroutine HYPELA. Comparisons in terms of transverse deformation response, micro stress and strain distributions, and required CPU time are presented for GMC and finite element models of fiber/matrix unit cell. GMC is shown to provide comparable predictions of the composite behavior and requires significantly less CPU time as compared to a finite element analysis of the unit cell. Details as to the organization of the HYPELA code are provided with the actual HYPELA code included in the appendix.
NASA Technical Reports Server (NTRS)
Arenburg, R. T.; Reddy, J. N.
1991-01-01
The micromechanical constitutive theory is used to examine the nonlinear behavior of continuous-fiber-reinforced metal-matrix composite structures. Effective lamina constitutive relations based on the Abouli micromechanics theory are presented. The inelastic matrix behavior is modeled by the unified viscoplasticity theory of Bodner and Partom. The laminate constitutive relations are incorporated into a first-order deformation plate theory. The resulting boundary value problem is solved by utilizing the finite element method. Attention is also given to computational aspects of the numerical solution, including the temporal integration of the inelastic strains and the spatial integration of bending moments. Numerical results the nonlinear response of metal matrix composites subjected to extensional and bending loads are presented.
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.; Roberts, Gary D.; Gilat, Amos
2002-01-01
The results presented here are part of an ongoing research program, to develop strain rate dependent deformation and failure models for the analysis of polymer matrix composites subject to high strain rate impact loads. A micromechanics approach is employed in this work, in which state variable constitutive equations originally developed for metals have been modified to model the deformation of the polymer matrix, and a strength of materials based micromechanics method is used to predict the effective response of the composite. In the analysis of the inelastic deformation of the polymer matrix, the definitions of the effective stress and effective inelastic strain have been modified in order to account for the effect of hydrostatic stresses, which are significant in polymers. Two representative polymers, a toughened epoxy and a brittle epoxy, are characterized through the use of data from tensile and shear tests across a variety of strain rates. Results computed by using the developed constitutive equations correlate well with data generated via experiments. The procedure used to incorporate the constitutive equations within a micromechanics method is presented, and sample calculations of the deformation response of a composite for various fiber orientations and strain rates are discussed.
Micromechanical modeling of rate-dependent behavior of Connective tissues.
Fallah, A; Ahmadian, M T; Firozbakhsh, K; Aghdam, M M
2017-03-07
In this paper, a constitutive and micromechanical model for prediction of rate-dependent behavior of connective tissues (CTs) is presented. Connective tissues are considered as nonlinear viscoelastic material. The rate-dependent behavior of CTs is incorporated into model using the well-known quasi-linear viscoelasticity (QLV) theory. A planar wavy representative volume element (RVE) is considered based on the tissue microstructure histological evidences. The presented model parameters are identified based on the available experiments in the literature. The presented constitutive model introduced to ABAQUS by means of UMAT subroutine. Results show that, monotonic uniaxial test predictions of the presented model at different strain rates for rat tail tendon (RTT) and human patellar tendon (HPT) are in good agreement with experimental data. Results of incremental stress-relaxation test are also presented to investigate both instantaneous and viscoelastic behavior of connective tissues. Copyright © 2017 Elsevier Ltd. All rights reserved.
Realistic micromechanical modeling and simulation of two-phase heterogeneous materials
NASA Astrophysics Data System (ADS)
Sreeranganathan, Arun
This dissertation research focuses on micromechanical modeling and simulations of two-phase heterogeneous materials exhibiting anisotropic and non-uniform microstructures with long-range spatial correlations. Completed work involves development of methodologies for realistic micromechanical analyses of materials using a combination of stereological techniques, two- and three-dimensional digital image processing, and finite element based modeling tools. The methodologies are developed via its applications to two technologically important material systems, namely, discontinuously reinforced aluminum composites containing silicon carbide particles as reinforcement, and boron modified titanium alloys containing in situ formed titanium boride whiskers. Microstructural attributes such as the shape, size, volume fraction, and spatial distribution of the reinforcement phase in these materials were incorporated in the models without any simplifying assumptions. Instrumented indentation was used to determine the constitutive properties of individual microstructural phases. Micromechanical analyses were performed using realistic 2D and 3D models and the results were compared with experimental data. Results indicated that 2D models fail to capture the deformation behavior of these materials and 3D analyses are required for realistic simulations. The effect of clustering of silicon carbide particles and associated porosity on the mechanical response of discontinuously reinforced aluminum composites was investigated using 3D models. Parametric studies were carried out using computer simulated microstructures incorporating realistic microstructural attributes. The intrinsic merit of this research is the development and integration of the required enabling techniques and methodologies for representation, modeling, and simulations of complex geometry of microstructures in two- and three-dimensional space facilitating better understanding of the effects of microstructural geometry on the mechanical behavior of materials.
NASA Technical Reports Server (NTRS)
Murthy, P. L. N.; Chamis, C. C.
1992-01-01
A generic unit cell model which includes a unique fiber substructuring concept is proposed for the development of micromechanics equations for continuous fiber reinforcement ceramic composites. The unit cell consists of three constituents: fiber, matrix, and an interphase. In the present approach, the unit cell is further subdivided into several slices and the equations of micromechanics are derived for each slice. These are subsequently integrated to obtain ply level properties. A stand alone computer code containing the micromechanics model as a module is currently being developed specifically for the analysis of ceramic matrix composites. Towards this development, equivalent ply property results for a SiC/Ti-15-3 composite with 0.5 fiber volume ratio are presented and compared with those obtained from customary micromechanics models to illustrate the concept. Also, comparisons with limited experimental data for the ceramic matrix composite, SiC/RBSN (Reaction Bonded Silicon Nitride) with a 0.3 fiber volume ratio are given to validate the concepts.
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.; Stouffer, Donald C.
1998-01-01
Recently applications have exposed polymer matrix composite materials to very high strain rate loading conditions, requiring an ability to understand and predict the material behavior under these extreme conditions. In this second paper of a two part report, a three-dimensional composite micromechanical model is described which allows for the analysis of the rate dependent, nonlinear deformation response of a polymer matrix composite. Strain rate dependent inelastic constitutive equations utilized to model the deformation response of a polymer are implemented within the micromechanics method. The deformation response of two representative laminated carbon fiber reinforced composite materials with varying fiber orientation has been predicted using the described technique. The predicted results compare favorably to both experimental values and the response predicted by the Generalized Method of Cells, a well-established micromechanics analysis method.
Micromechanics Modeling of Fracture in Nanocrystalline Metals
NASA Technical Reports Server (NTRS)
Glaessgen, E. H.; Piascik, R. S.; Raju, I. S.; Harris, C. E.
2002-01-01
Nanocrystalline metals have very high theoretical strength, but suffer from a lack of ductility and toughness. Therefore, it is critical to understand the mechanisms of deformation and fracture of these materials before their full potential can be achieved. Because classical fracture mechanics is based on the comparison of computed fracture parameters, such as stress intlmsity factors, to their empirically determined critical values, it does not adequately describe the fundamental physics of fracture required to predict the behavior of nanocrystalline metals. Thus, micromechanics-based techniques must be considered to quanti@ the physical processes of deformation and fracture within nanocrystalline metals. This paper discusses hndamental physicsbased modeling strategies that may be useful for the prediction Iof deformation, crack formation and crack growth within nanocrystalline metals.
DOT National Transportation Integrated Search
2001-06-01
Volume 3 documents the development of a micromechanics fracture and healing model for asphalt : concrete. This model can be used to calculate the density and growth of microcracks during repeated direct : tensile controlled-strain loading. The model ...
NASA Technical Reports Server (NTRS)
Aboudi, Jacob
1998-01-01
The micromechanical generalized method of cells model is employed for the prediction of the effective elastic, piezoelectric, dielectric, pyroelectric and thermal-expansion constants of multiphase composites with embedded piezoelectric materials. The predicted effective constants are compared with other micromechanical methods available in the literature and good agreements are obtained.
NASA Astrophysics Data System (ADS)
Jung, Youngjean
This dissertation concerns the constitutive description of superelasticity in NiTi alloys and the finite element analysis of a corresponding material model at large strains. Constitutive laws for shape-memory alloys subject to biaxial loading, which are based on direct experimental observations, are generally not available. A reliable constitutive model for shape-memory alloys is important for various applications because Nitinol is now widely used in biotechnology devices such as endovascular stents, vena cava filters, dental files, archwires and guidewires, etc. As part of a broader project, tension-torsion tests are conducted on thin-walled tubes (thickness/radius ratio of 1:10) of the polycrystalline superelastic Nitinol using various loading/unloading paths under isothermal conditions. This biaxial loading/unloading test was carefully designed to avoid torsional buckling and strain non-uniformities. A micromechanical constitutive model, algorithmic implementation and numerical simulation of polycrystalline superelastic alloys under biaxial loading are developed. The constitutive model is based on the micromechanical structure of Ni-Ti crystals and accounts for the physical observation of solid-solid phase transformations through the minimization of the Helmholtz energy with dissipation. The model is formulated in finite deformations and incorporates the effect of texture which is of profound significance in the mechanical response of polycrystalline Nitinol tubes. The numerical implementation is based on the constrained minimization of a functional corresponding to the Helmholtz energy with dissipation. Special treatment of loading/unloading conditions is also developed to distinguish between forward/reverse transformation state. Simulations are conducted for thin tubes of Nitinol under tension-torsion, as well as for a simplified model of a biomedical stent.
DOT National Transportation Integrated Search
2001-06-01
Volume 3 documents the development of a micromechanics fracture and healing model for asphalt concrete. This model can be used to calculate the density and growth of microcracks during repeated direct tensile controlled-strain loading. The model is b...
Deformation and Fabric in Compacted Clay Soils
NASA Astrophysics Data System (ADS)
Wensrich, C. M.; Pineda, J.; Luzin, V.; Suwal, L.; Kisi, E. H.; Allameh-Haery, H.
2018-05-01
Hydromechanical anisotropy of clay soils in response to deformation or deposition history is related to the micromechanics of platelike clay particles and their orientations. In this article, we examine the relationship between microstructure, deformation, and moisture content in kaolin clay using a technique based on neutron scattering. This technique allows for the direct characterization of microstructure within representative samples using traditional measures such as orientation density and soil fabric tensor. From this information, evidence for a simple relationship between components of the deviatoric strain tensor and the deviatoric fabric tensor emerge. This relationship may provide a physical basis for future anisotropic constitutive models based on the micromechanics of these materials.
Representative Structural Element - A New Paradigm for Multi-Scale Structural Modeling
2016-07-05
developed by NASA Glenn Research Center based on Aboudi’s micromechanics theories [5] that provides a wide range of capabilities for modeling ...to use appropriate models for related problems based on the capability of corresponding approaches. Moreover, the analyses will give a general...interface of heterogeneous materials but also help engineers to use appropriate models for related problems based on the capability of corresponding
Paxman, Rosemary; Stinson, Jake; Dejardin, Anna; McKendry, Rachel A.; Hoogenboom, Bart W.
2012-01-01
Micromechanic resonators provide a small-volume and potentially high-throughput method to determine rheological properties of fluids. Here we explore the accuracy in measuring mass density and viscosity of ethanol-water and glycerol-water model solutions, using a simple and easily implemented model to deduce the hydrodynamic effects on resonating cantilevers of various length-to-width aspect ratios. We next show that these measurements can be extended to determine the alcohol percentage of both model solutions and commercial beverages such as beer, wine and liquor. This demonstrates how micromechanical resonators can be used for quality control of every-day drinks. PMID:22778654
Program Helps Generate Boundary-Element Mathematical Models
NASA Technical Reports Server (NTRS)
Goldberg, R. K.
1995-01-01
Composite Model Generation-Boundary Element Method (COM-GEN-BEM) computer program significantly reduces time and effort needed to construct boundary-element mathematical models of continuous-fiber composite materials at micro-mechanical (constituent) scale. Generates boundary-element models compatible with BEST-CMS boundary-element code for anlaysis of micromechanics of composite material. Written in PATRAN Command Language (PCL).
Micromechanical Fatigue Visco-Damage Model for Short Glass Fiber Reinforced Polyamide-66
NASA Astrophysics Data System (ADS)
Despringre, N.; Chemisky, Y.; Robert, G.; Meraghni, F.
This work presents a micromechanical fatigue damage model developed for short glass fiber reinforced PA66. It has been developed to predict the high cycle fatigue behavior of PA66/GF30. The model is based on an extended Mori-Tanaka method which includes coated inclusions, matrix viscoelasticity and the evolution of micro-scale damage. The developed model accounts for the nonlinear matrix viscoelasticity and the reinforcement orientation. The description of the damage processes is based on the experimental investigation of damage mechanisms previously performed through in-situ SEM tests and X-ray micro-computed tomography observations. Damage chronologies have been proposed involving three different processes: interface debonding/coating, matrix micro-cracking and fiber breakages. Their occurrence strongly depends on the microstructure and the relative humidity. Each damage mechanism is introduced through an evolution law coupled to local stress fields. The developed model is implemented using a UMAT subroutine. Its experimental validation is achieved under stress or strain controlled fatigue tests.
NASA Astrophysics Data System (ADS)
Li, Xiaozhao; Shao, Zhushan
2016-07-01
The growth of subcritical cracks plays an important role in the creep of brittle rock. The stress path has a great influence on creep properties. A micromechanics-based model is presented to study the effect of the stress path on creep properties. The microcrack model of Ashby and Sammis, Charles' Law, and a new micro-macro relation are employed in our model. This new micro-macro relation is proposed by using the correlation between the micromechanical and macroscopic definition of damage. A stress path function is also introduced by the relationship between stress and time. Theoretical expressions of the stress-strain relationship and creep behavior are derived. The effects of confining pressure on the stress-strain relationship are studied. Crack initiation stress and peak stress are achieved under different confining pressures. The applied constant stress that could cause creep behavior is predicted. Creep properties are studied under the step loading of axial stress or the unloading of confining pressure. Rationality of the micromechanics-based model is verified by the experimental results of Jinping marble. Furthermore, the effects of model parameters and the unloading rate of confining pressure on creep behavior are analyzed. The coupling effect of step axial stress and confining pressure on creep failure is also discussed. The results provide implications on the deformation behavior and time-delayed rockburst mechanism caused by microcrack growth on surrounding rocks during deep underground excavations.
NASA Technical Reports Server (NTRS)
Caruso, J. J.
1984-01-01
Finite element substructuring is used to predict unidirectional fiber composite hygral (moisture), thermal, and mechanical properties. COSMIC NASTRAN and MSC/NASTRAN are used to perform the finite element analysis. The results obtained from the finite element model are compared with those obtained from the simplified composite micromechanics equations. A unidirectional composite structure made of boron/HM-epoxy, S-glass/IMHS-epoxy and AS/IMHS-epoxy are studied. The finite element analysis is performed using three dimensional isoparametric brick elements and two distinct models. The first model consists of a single cell (one fiber surrounded by matrix) to form a square. The second model uses the single cell and substructuring to form a nine cell square array. To compare computer time and results with the nine cell superelement model, another nine cell model is constructed using conventional mesh generation techniques. An independent computer program consisting of the simplified micromechanics equation is developed to predict the hygral, thermal, and mechanical properties for this comparison. The results indicate that advanced techniques can be used advantageously for fiber composite micromechanics.
NASA Technical Reports Server (NTRS)
Moncada, Albert M.; Chattopadhyay, Aditi; Bednarcyk, Brett A.; Arnold, Steven M.
2008-01-01
Predicting failure in a composite can be done with ply level mechanisms and/or micro level mechanisms. This paper uses the Generalized Method of Cells and High-Fidelity Generalized Method of Cells micromechanics theories, coupled with classical lamination theory, as implemented within NASA's Micromechanics Analysis Code with Generalized Method of Cells. The code is able to implement different failure theories on the level of both the fiber and the matrix constituents within a laminate. A comparison is made among maximum stress, maximum strain, Tsai-Hill, and Tsai-Wu failure theories. To verify the failure theories the Worldwide Failure Exercise (WWFE) experiments have been used. The WWFE is a comprehensive study that covers a wide range of polymer matrix composite laminates. The numerical results indicate good correlation with the experimental results for most of the composite layups, but also point to the need for more accurate resin damage progression models.
NASA Technical Reports Server (NTRS)
Zhu, Lin-Fa; Kim, Soo; Chattopadhyay, Aditi; Goldberg, Robert K.
2004-01-01
A numerical procedure has been developed to investigate the nonlinear and strain rate dependent deformation response of polymer matrix composite laminated plates under high strain rate impact loadings. A recently developed strength of materials based micromechanics model, incorporating a set of nonlinear, strain rate dependent constitutive equations for the polymer matrix, is extended to account for the transverse shear effects during impact. Four different assumptions of transverse shear deformation are investigated in order to improve the developed strain rate dependent micromechanics model. The validities of these assumptions are investigated using numerical and theoretical approaches. A method to determine through the thickness strain and transverse Poisson's ratio of the composite is developed. The revised micromechanics model is then implemented into a higher order laminated plate theory which is modified to include the effects of inelastic strains. Parametric studies are conducted to investigate the mechanical response of composite plates under high strain rate loadings. Results show the transverse shear stresses cannot be neglected in the impact problem. A significant level of strain rate dependency and material nonlinearity is found in the deformation response of representative composite specimens.
Wireless Actuation of Micromechanical Resonators
NASA Astrophysics Data System (ADS)
Mateen, Farrukh; Maedler, Carsten; Erramilli, Shyamsunder; Mohanty, Pritiraj
Wireless transfer of power is of fundamental and technical interest with applications ranging from remote operation of electronics, biomedical implants, and device actuation where hard-wired power sources are neither desirable nor practical. In particular, biomedical implants in the body or the brain need small footprint power receiving elements for wireless charging, which can be accomplished by micromechanical resonators. In contrast for fundamental experiments, ultra low-power wireless operation of micromechanical resonators in the microwave range makes low-temperature studies of mechanical systems in the quantum regime possible, where heat carried by the electrical wires in standard actuation techniques is detrimental to maintaining the resonator in a quantum state. We demonstrate successful actuation of micron-sized silicon-based piezoelectric resonators with resonance frequencies from 36 MHz to 120 MHz, at power levels of nanowatts and distances of about 3 feet, including polarization, distance and power dependence measurements. Our demonstration of wireless actuation of micromechanical resonators via electric-field coupling down to nanowatt levels enables a multitude of applications based on micromechanical resonators, inaccessible until now.
Modeling of short fiber reinforced injection moulded composite
NASA Astrophysics Data System (ADS)
Kulkarni, A.; Aswini, N.; Dandekar, C. R.; Makhe, S.
2012-09-01
A micromechanics based finite element model (FEM) is developed to facilitate the design of a new production quality fiber reinforced plastic injection molded part. The composite part under study is composed of a polyetheretherketone (PEEK) matrix reinforced with 30% by volume fraction of short carbon fibers. The constitutive material models are obtained by using micromechanics based homogenization theories. The analysis is carried out by successfully coupling two commercial codes, Moldflow and ANSYS. Moldflow software is used to predict the fiber orientation by considering the flow kinetics and molding parameters. Material models are inputted into the commercial software ANSYS as per the predicted fiber orientation and the structural analysis is carried out. Thus in the present approach a coupling between two commercial codes namely Moldflow and ANSYS has been established to enable the analysis of the short fiber reinforced injection moulded composite parts. The load-deflection curve is obtained based on three constitutive material model namely an isotropy, transversely isotropy and orthotropy. Average values of the predicted quantities are compared to experimental results, obtaining a good correlation. In this manner, the coupled Moldflow-ANSYS model successfully predicts the load deflection curve of a composite injection molded part.
Micromechanics and poroelasticity of hydrated cellulose networks.
Lopez-Sanchez, P; Rincon, Mauricio; Wang, D; Brulhart, S; Stokes, J R; Gidley, M J
2014-06-09
The micromechanics of cellulose hydrogels have been investigated using a new rheological experimental approach, combined with simulation using a poroelastic constitutive model. A series of mechanical compression steps at different strain rates were performed as a function of cellulose hydrogel thickness, combined with small amplitude oscillatory shear after each step to monitor the viscoelasticity of the sample. During compression, bacterial cellulose hydrogels behaved as anisotropic materials with near zero Poisson's ratio. The micromechanics of the hydrogels altered with each compression as water was squeezed out of the structure, and microstructural changes were strain rate-dependent, with increased densification of the cellulose network and increased cellulose fiber aggregation observed for slower compressive strain rates. A transversely isotropic poroelastic model was used to explain the observed micromechanical behavior, showing that the mechanical properties of cellulose networks in aqueous environments are mainly controlled by the rate of water movement within the structure.
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.
1999-01-01
Potential gas turbine applications will expose polymer matrix composites to very high strain rate loading conditions, requiring an ability to understand and predict the material behavior under extreme conditions. Specifically, analytical methods designed for these applications must have the capability of properly capturing the strain rate sensitivities and nonlinearities that are present in the material response. The Ramaswamy-Stouffer constitutive equations, originally developed to analyze the viscoplastic deformation of metals, have been modified to simulate the nonlinear deformation response of ductile, crystalline polymers. The constitutive model is characterized and correlated for two representative ductile polymers. Fiberite 977-2 and PEEK, and the computed results correlate well with experimental values. The polymer constitutive equations are implemented in a mechanics of materials based composite micromechanics model to predict the nonlinear, rate dependent deformation response of a composite ply. Uniform stress and uniform strain assumptions are applied to compute the effective stresses of a composite unit cell from the applied strains. The micromechanics equations are successfully verified for two polymer matrix composites. IM7/977-2 and AS4/PEEK. The ultimate strength of a composite ply is predicted with the Hashin failure criteria that were implemented in the composite micromechanics model. The failure stresses of the two composite material systems are accurately predicted for a variety of fiber orientations and strain rates. The composite deformation model is implemented in LS-DYNA, a commercially available transient dynamic explicit finite element code. The matrix constitutive equations are converted into an incremental form, and the model is implemented into LS-DYNA through the use of a user defined material subroutine. The deformation response of a bulk polymer and a polymer matrix composite are predicted by finite element analyses. The results compare reasonably well to experimental values, with some discrepancies. The discrepancies are at least partially caused by the method used to integrate the rate equations in the polymer constitutive model.
Le Pape, Yann; Field, Kevin G.; Remec, Igor
2014-11-15
The need to understand and characterize the effects of neutron irradiation on concrete has become urgent because of the possible extension of service life of many nuclear power generating stations. Current knowledge is primarily based on a collection of data obtained in test reactors. These results are inherently difficult to interpret because materials and testing conditions are inconsistent. A micromechanical approach based on the Hashin composite sphere model is presented to derive a first-order separation of the effects of radiation on cement paste and aggregate, and, also, on their interaction. Although the scarcity of available data limits the validation ofmore » the model, it appears that, without negating a possible gamma-ray induced effect, the neutron-induced damage and swelling of aggregate plays a predominant role on the overall concrete expansion and the damage of the cement paste. Finally, the radiation-induced volumetric expansion (RIVE) effects can also be aided by temperature elevation and shrinkage in the cement paste.« less
Janssen, Dennis; Mann, Kenneth A; Verdonschot, Nico
2008-11-14
In order to gain insight into the micro-mechanical behavior of the cement-bone interface, the effect of parametric variations of frictional, morphological and material properties on the mechanical response of the cement-bone interface were analyzed using a finite element approach. Finite element models of a cement-bone interface specimen were created from micro-computed tomography data of a physical specimen that was sectioned from an in vitro cemented total hip arthroplasty. In five models the friction coefficient was varied (mu=0.0; 0.3; 0.7; 1.0 and 3.0), while in one model an ideally bonded interface was assumed. In two models cement interface gaps and an optimal cement penetration were simulated. Finally, the effect of bone cement stiffness variations was simulated (2.0 and 2.5 GPa, relative to the default 3.0 GPa). All models were loaded for a cycle of fully reversible tension-compression. From the simulated stress-displacement curves the interface deformation, stiffness and hysteresis were calculated. The results indicate that in the current model the mechanical properties of the cement-bone interface were caused by frictional phenomena at the shape-closed interlock rather than by adhesive properties of the cement. Our findings furthermore show that in our model maximizing cement penetration improved the micromechanical response of the cement-bone interface stiffness, while interface gaps had a detrimental effect. Relative to the frictional and morphological variations, variations in the cement stiffness had only a modest effect on the micro-mechanical behavior of the cement-bone interface. The current study provides information that may help to better understand the load-transfer mechanisms taking place at the cement-bone interface.
Conformational Change of Bacteriorhodopsin Quantitatively Monitored by Microcantilever Sensors
Braun, Thomas; Backmann, Natalija; Vögtli, Manuel; Bietsch, Alexander; Engel, Andreas; Lang, Hans-Peter; Gerber, Christoph; Hegner, Martin
2006-01-01
Bacteriorhodopsin proteoliposomes were used as a model system to explore the applicability of micromechanical cantilever arrays to detect conformational changes in membrane protein patches. The three main results of our study concern: 1), reliable functionalization of micromechanical cantilever arrays with proteoliposomes using ink jet spotting; 2), successful detection of the prosthetic retinal removal (bleaching) from the bacteriorhodopsin protein by measuring the induced nanomechanical surface stress change; and 3), the quantitative response thereof, which depends linearly on the amount of removed retinal. Our results show this technique to be a potential tool to measure membrane protein-based receptor-ligand interactions and conformational changes. PMID:16443650
Long-term strength determination for cooled blades made of monocrystalline superalloys
NASA Astrophysics Data System (ADS)
Getsov, L. B.; Semenov, A. S.; Besschetnov, V. A.; Grishchenko, A. I.; Semenov, S. G.
2017-04-01
For the manufacture of blades for modern gas-turbine installations, monocrystalline alloys are used. Traditional methods for the calculation of stressed-deformed state and safety factors for these alloys developed and verified for polycrystalline materials need to be adjusted. This paper deals with methodological principles for an approach to the solving of the problem concerning a finite-element determination of the long-term static strength for cooled monocrystalline blades employed in gas-turbine installations based on the use of two different models (phenomenological and micromechanical) considering the inelastic deformation of monocrystalline superalloys. An analysis has been performed for the distribution of Schmid factors in the spherical triangle for primary and secondary octahedral and cubic slip systems. Calculations are performed using Larson-Miller's parametric dependences taking into account the crystallographic orientation of the material. A determination procedure for the anisotropy coefficients of long-term strength is described based on data for different orientations. A comparative analysis of the results of finite-element calculations made using phenomenological and micromechanical (crystallographic) creep models for the long-term static strength of cooled monocrystalline blades used in a gas-turbine engine has been performed. It is shown that the location of the most loaded sections of such a blade coincide with the results of calculations according to these models. It has been found that the micromechanical deformation model results in the obtaining of the most conservative estimate for the long-term strength of turbine blades made of monocrystalline alloys. It is shown that the calculations using models for materials with isotropic properties can produce considerable errors in determining the durability of the blades. The possibility is considered for using 1D-, 2D-, and 3D-models for turbine monocrystalline blades in the determination of their durability parameters.
NASA Astrophysics Data System (ADS)
Kantzos, C. A.; Cunningham, R. W.; Tari, V.; Rollett, A. D.
2018-05-01
Characterizing complex surface topologies is necessary to understand stress concentrations created by rough surfaces, particularly those made via laser power-bed additive manufacturing (AM). Synchrotron-based X-ray microtomography (μ XCT) of AM surfaces was shown to provide high resolution detail of surface features and near-surface porosity. Using the CT reconstructions to instantiate a micromechanical model indicated that surface notches and near-surface porosity both act as stress concentrators, while adhered powder carried little to no load. Differences in powder size distribution had no direct effect on the relevant surface features, nor on stress concentrations. Conventional measurements of surface roughness, which are highly influenced by adhered powder, are therefore unlikely to contain the information relevant to damage accumulation and crack initiation.
NASA Astrophysics Data System (ADS)
Kantzos, C. A.; Cunningham, R. W.; Tari, V.; Rollett, A. D.
2017-12-01
Characterizing complex surface topologies is necessary to understand stress concentrations created by rough surfaces, particularly those made via laser power-bed additive manufacturing (AM). Synchrotron-based X-ray microtomography (μ XCT ) of AM surfaces was shown to provide high resolution detail of surface features and near-surface porosity. Using the CT reconstructions to instantiate a micromechanical model indicated that surface notches and near-surface porosity both act as stress concentrators, while adhered powder carried little to no load. Differences in powder size distribution had no direct effect on the relevant surface features, nor on stress concentrations. Conventional measurements of surface roughness, which are highly influenced by adhered powder, are therefore unlikely to contain the information relevant to damage accumulation and crack initiation.
ICAN/PART: Particulate composite analyzer, user's manual and verification studies
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.; Murthy, Pappu L. N.; Mital, Subodh K.
1996-01-01
A methodology for predicting the equivalent properties and constituent microstresses for particulate matrix composites, based on the micromechanics approach, is developed. These equations are integrated into a computer code developed to predict the equivalent properties and microstresses of fiber reinforced polymer matrix composites to form a new computer code, ICAN/PART. Details of the flowchart, input and output for ICAN/PART are described, along with examples of the input and output. Only the differences between ICAN/PART and the original ICAN code are described in detail, and the user is assumed to be familiar with the structure and usage of the original ICAN code. Detailed verification studies, utilizing dim dimensional finite element and boundary element analyses, are conducted in order to verify that the micromechanics methodology accurately models the mechanics of particulate matrix composites. ne equivalent properties computed by ICAN/PART fall within bounds established by the finite element and boundary element results. Furthermore, constituent microstresses computed by ICAN/PART agree in average sense with results computed using the finite element method. The verification studies indicate that the micromechanics programmed into ICAN/PART do indeed accurately model the mechanics of particulate matrix composites.
Microstructural effects on damage evolution in shocked copper polycrystals
Lieberman, Evan J.; Lebensohn, Ricardo A.; Menasche, David B.; ...
2016-07-01
Three-dimensional crystal orientation fields of a copper sample, characterized before and after shock loading using High Energy Diffraction Microscopy, are used for input and validation of direct numerical simulations using a Fast Fourier Transform (FFT)-based micromechanical model. The locations of the voids determined by X-ray tomography in the incipiently-spalled sample, predominantly found near grain boundaries, were traced back and registered to the pre-shocked microstructural image. Using FFT-based simulations with direct input from the initial microstructure, micromechanical fields at the shock peak stress were obtained. Statistical distributions of micromechanical fields restricted to grain boundaries that developed voids after the shock aremore » compared with corresponding distributions for all grain boundaries. Distributions of conventional measures of stress and strain (deviatoric and mean components) do not show correlation with the locations of voids in the post-shocked image. Neither does stress triaxiality, surface traction or grain boundary inclination angle, in a significant way. On the other hand, differences in Taylor factor and accumulated plastic work across grain boundaries do correlate with the occurrence of damage. As a result, damage was observed to take place preferentially at grain boundaries adjacent to grains having very different plastic response.« less
Design and implementation of a micromechanical silicon resonant accelerometer.
Huang, Libin; Yang, Hui; Gao, Yang; Zhao, Liye; Liang, Jinxing
2013-11-19
The micromechanical silicon resonant accelerometer has attracted considerable attention in the research and development of high-precision MEMS accelerometers because of its output of quasi-digital signals, high sensitivity, high resolution, wide dynamic range, anti-interference capacity and good stability. Because of the mismatching thermal expansion coefficients of silicon and glass, the micromechanical silicon resonant accelerometer based on the Silicon on Glass (SOG) technique is deeply affected by the temperature during the fabrication, packaging and use processes. The thermal stress caused by temperature changes directly affects the frequency output of the accelerometer. Based on the working principle of the micromechanical resonant accelerometer, a special accelerometer structure that reduces the temperature influence on the accelerometer is designed. The accelerometer can greatly reduce the thermal stress caused by high temperatures in the process of fabrication and packaging. Currently, the closed-loop drive circuit is devised based on a phase-locked loop. The unloaded resonant frequencies of the prototype of the micromechanical silicon resonant accelerometer are approximately 31.4 kHz and 31.5 kHz. The scale factor is 66.24003 Hz/g. The scale factor stability is 14.886 ppm, the scale factor repeatability is 23 ppm, the bias stability is 23 μg, the bias repeatability is 170 μg, and the bias temperature coefficient is 0.0734 Hz/°C.
NASA Astrophysics Data System (ADS)
Zhou, Xin; Xiao, Dingbang; Wu, Xuezhong; Li, Qingsong; Hou, Zhanqiang; He, Kaixuan; Wu, Yulie
2017-12-01
This paper reports an alternative design strategy to reduce thermoelastic dissipation (TED) for isothermal-mode micromechanical resonators. This involves hanging lumped masses on a frame structure to decouple the resonant frequency and the effective beamwidth of the resonators, which enables the separation of the thermal relaxation rate and frequency of vibration. This approach is validated using silicon-based micromechanical disklike resonators engineered to isolate TED. A threefold improvement in the quality factor and a tenfold improvement in the decay-time constant is demonstrated. This work proposes a solution for isothermal-mode (flexural) micromechanical resonators to effectively mitigate TED. Specifically, this approach is ideal for designing high-performance gyroscope resonators based on microelectromechanical systems (MEMS) technology. It may pave the way for the next generation inertial-grade MEMS gyroscope, which remains a great challenge and is very appealing.
Micromechanical Modeling Study of Mechanical Inhibition of Enzymatic Degradation of Collagen Tissues
Tonge, Theresa K.; Ruberti, Jeffrey W.; Nguyen, Thao D.
2015-01-01
This study investigates how the collagen fiber structure influences the enzymatic degradation of collagen tissues. We developed a micromechanical model of a fibrous collagen tissue undergoing enzymatic degradation based on two central hypotheses. The collagen fibers are crimped in the undeformed configuration. Enzymatic degradation is an energy activated process and the activation energy is increased by the axial strain energy density of the fiber. We determined the intrinsic degradation rate and characteristic energy for mechanical inhibition from fibril-level degradation experiments and applied the parameters to predict the effect of the crimped fiber structure and fiber properties on the degradation of bovine cornea and pericardium tissues under controlled tension. We then applied the model to examine the effect of the tissue stress state on the rate of tissue degradation and the anisotropic fiber structures that developed from enzymatic degradation. PMID:26682825
Misra, Anil; Parthasarathy, Ranganathan; Ye, Qiang; Singh, Viraj; Spencer, Paulette
2013-01-01
During their application to the wet, oral environment, dentin adhesives can experience phase separation and composition change which can compromise the quality of the hybrid layer formed at the dentin-adhesive interface. The chemical composition of polymer phases formed in the hybrid layer can be represented using a ternary water-adhesive phase diagram. In this paper, these polymer phases have been characterized using a suite of mechanical tests and swelling experiments. The experimental results were evaluated using granular micromechanics based model that incorporates poro-mechanical effects and polymer-solvent thermodynamics. The variation of the model parameters and model-predicted polymer properties has been studied as a function of composition along the phase boundary. The resulting structure-property correlations provide insight into interactions occurring at the molecular level in the saturated polymer system. These correlations can be used for modeling the mechanical behavior of hybrid layer, and are expected to aid in the design and improvement of water-compatible dentin adhesive polymers. PMID:24076070
Probabilistic micromechanics for metal matrix composites
NASA Astrophysics Data System (ADS)
Engelstad, S. P.; Reddy, J. N.; Hopkins, Dale A.
A probabilistic micromechanics-based nonlinear analysis procedure is developed to predict and quantify the variability in the properties of high temperature metal matrix composites. Monte Carlo simulation is used to model the probabilistic distributions of the constituent level properties including fiber, matrix, and interphase properties, volume and void ratios, strengths, fiber misalignment, and nonlinear empirical parameters. The procedure predicts the resultant ply properties and quantifies their statistical scatter. Graphite copper and Silicon Carbide Titanlum Aluminide (SCS-6 TI15) unidirectional plies are considered to demonstrate the predictive capabilities. The procedure is believed to have a high potential for use in material characterization and selection to precede and assist in experimental studies of new high temperature metal matrix composites.
2014-06-08
actuation. Journal of Micromechanics and Microengineering , 16(5), 890–899. doi:10.1088/0960-1317/16/5/003 [10] Rhoads, J. F., Shaw, S. W., Turner, K. L...Micromechanics and Microengineering , 22(3), 035004. doi:10.1088/0960-1317/22/3/035004 [13] Cleland, A. N. (2005). Thermomechanical noise limits on...Micromechanics and Microengineering , 21(2), 025027. doi:10.1088/0960- 1317/21/2/025027 [15] D. Rugar & P. Grutter. Mechanical Parametric Amplification and
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Judith Alice; Long, Kevin Nicholas
2018-05-01
Sylgard® 184/Glass Microballoon (GMB) potting material is currently used in many NW systems. Analysts need a macroscale constitutive model that can predict material behavior under complex loading and damage evolution. To address this need, ongoing modeling and experimental efforts have focused on study of damage evolution in these materials. Micromechanical finite element simulations that resolve individual GMB and matrix components promote discovery and better understanding of the material behavior. With these simulations, we can study the role of the GMB volume fraction, time-dependent damage, behavior under confined vs. unconfined compression, and the effects of partial damage. These simulations are challengingmore » and push the boundaries of capability even with the high performance computing tools available at Sandia. We summarize the major challenges and the current state of this modeling effort, as an exemplar of micromechanical modeling needs that can motivate advances in future computing efforts.« less
Yousefsani, Seyed Abdolmajid; Shamloo, Amir; Farahmand, Farzam
2018-04-01
A transverse-plane hyperelastic micromechanical model of brain white matter tissue was developed using the embedded element technique (EET). The model consisted of a histology-informed probabilistic distribution of axonal fibers embedded within an extracellular matrix, both described using the generalized Ogden hyperelastic material model. A correcting method, based on the strain energy density function, was formulated to resolve the stiffness redundancy problem of the EET in large deformation regime. The model was then used to predict the homogenized tissue behavior and the associated localized responses of the axonal fibers under quasi-static, transverse, large deformations. Results indicated that with a sufficiently large representative volume element (RVE) and fine mesh, the statistically randomized microstructure implemented in the RVE exhibits directional independency in transverse plane, and the model predictions for the overall and local tissue responses, characterized by the normalized strain energy density and Cauchy and von Mises stresses, are independent from the modeling parameters. Comparison of the responses of the probabilistic model with that of a simple uniform RVE revealed that only the first one is capable of representing the localized behavior of the tissue constituents. The validity test of the model predictions for the corona radiata against experimental data from the literature indicated a very close agreement. In comparison with the conventional direct meshing method, the model provided almost the same results after correcting the stiffness redundancy, however, with much less computational cost and facilitated geometrical modeling, meshing, and boundary conditions imposing. It was concluded that the EET can be used effectively for detailed probabilistic micromechanical modeling of the white matter in order to provide more accurate predictions for the axonal responses, which are of great importance when simulating the brain trauma or tumor growth. Copyright © 2018 Elsevier Ltd. All rights reserved.
Multiscale Modeling of Graphite/CNT/Epoxy Hybrid Composites
2016-03-09
A - Approved for Public Release 13. SUPPLEMENTARY NOTES 14. ABSTRACT Incorporation of carbon nanotubes (CNTs) into epoxy-based composites for...materials with higher moduli and strength characteristics. 15. SUBJECT TERMS Molecular Dynamics, Carbon Nanotubes , Multi-scale Modeling, Micromechanics...Gregory M. Odegard Michigan Technological University Introduction This project was inspired from the AFOSR-sponsored workshop “ Nanotube
NASA Technical Reports Server (NTRS)
Jenkins, Michael G.; Ghosh, Asish; Salem, Jonathan A.
1990-01-01
Micromechanics fracture models are incorporated into three distinct fracture process zones which contribute to the crack growth resistance of fibrous composites. The frontal process zone includes microcracking, fiber debonding, and some fiber failure. The elastic process zone is related only to the linear elastic creation of new matrix and fiber fracture surfaces. The wake process zone includes fiber bridging, fiber pullout, and fiber breakage. The R-curve predictions of the model compare well with empirical results for a unidirectional, continuous fiber C/C composite. Separating the contributions of each process zone reveals the wake region to contain the dominant crack growth resistance mechanisms. Fractography showed the effects of the micromechanisms on the macroscopic fracture behavior.
NASA Technical Reports Server (NTRS)
Bakuckas, J. G., Jr.; Johnson, W. S.
1994-01-01
In this research, a methodology to predict damage initiation, damage growth, fatigue life, and residual strength in titanium matrix composites (TMC) is outlined. Emphasis was placed on micromechanics-based engineering approaches. Damage initiation was predicted using a local effective strain approach. A finite element analysis verified the prevailing assumptions made in the formulation of this model. Damage growth, namely, fiber-bridged matrix crack growth, was evaluated using a fiber bridging (FB) model which accounts for thermal residual stresses. This model combines continuum fracture mechanics and micromechanics analyses yielding stress-intensity factor solutions for fiber-bridged matrix cracks. It is assumed in the FB model that fibers in the wake of the matrix crack are idealized as a closure pressure, and an unknown constant frictional shear stress is assumed to act along the debond length of the bridging fibers. This frictional shear stress was used as a curve fitting parameter to the available experimental data. Fatigue life and post-fatigue residual strength were predicted based on the axial stress in the first intact 0 degree fiber calculated using the FB model and a three-dimensional finite element analysis.
A dislocation density based micromechanical constitutive model for Sn-Ag-Cu solder alloys
NASA Astrophysics Data System (ADS)
Liu, Lu; Yao, Yao; Zeng, Tao; Keer, Leon M.
2017-10-01
Based on the dislocation density hardening law, a micromechanical model considering the effects of precipitates is developed for Sn-Ag-Cu solder alloys. According to the microstructure of the Sn-3.0Ag-0.5Cu thin films, intermetallic compounds (IMCs) are assumed as sphere particles embedded in the polycrystalline β-Sn matrix. The mechanical behavior of polycrystalline β-Sn matrix is determined by the elastic-plastic self-consistent method. The existence of IMCs not only impedes the motion of dislocations but also increases the overall stiffness. Thus, a dislocation density based hardening law considering non-shearable precipitates is adopted locally for single β-Sn crystal, and the Mori-Tanaka scheme is applied to describe the overall viscoplastic behavior of solder alloys. The proposed model is incorporated into finite element analysis and the corresponding numerical implementation method is presented. The model can describe the mechanical behavior of Sn-3.0Ag-0.5Cu and Sn-1.0Ag-0.5Cu alloys under high strain rates at a wide range of temperatures. Furthermore, the overall Young’s modulus changes due to different contents of IMCs is predicted and compared with experimental data. Results show that the proposed model can describe both elastic and inelastic behavior of solder alloys with reasonable accuracy.
Mechanical Characterization and Micromechanical Modeling of Woven Carbon/Copper Composites
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Pindera, Marek-Jerzy; Ellis, David L.; Miner, Robert V.
1997-01-01
The present investigation examines the in-plane mechanical behavior of a particular woven metal matrix composite (MMC); 8-harness (8H) satin carbon/copper (C/Cu). This is accomplished via mechanical testing as well as micromechanical modeling. While the literature is replete with experimental and modeling efforts for woven and braided polymer matrix composites, little work has been done on woven and braided MMC's. Thus, the development and understanding of woven MMC's is at an early stage. 8H satin C/Cu owes its existence to the high thermal conductivity of copper and low density and thermal expansion of carbon fibers. It is a candidate material for high heat flux applications, such as space power radiator panels. The experimental portion of this investigation consists of monotonic and cyclic tension, compression, and Iosipescu shear tests, as well as combined tension-compression tests. Tests were performed on composite specimens with three copper matrix alloy types: pure Cu, Cu-0.5 weight percent Ti (Cu-Ti), and Cu-0.7 weight percent Cr (Cu-Cr). The small alloying additions are present to promote fiber/matrix interfacial bonding. The analytical modeling effort utilizes an approach in which a local micromechanical model is embedded in a global micromechanical model. This approach differs from previously developed analytical models for woven composites in that a true repeating unit cell is analyzed. However, unlike finite element modeling of woven composites, the geometry is sufficiently idealized to allow efficient geometric discretization and efficient execution.
Design and Implementation of a Micromechanical Silicon Resonant Accelerometer
Huang, Libin; Yang, Hui; Gao, Yang; Zhao, Liye; Liang, Jinxing
2013-01-01
The micromechanical silicon resonant accelerometer has attracted considerable attention in the research and development of high-precision MEMS accelerometers because of its output of quasi-digital signals, high sensitivity, high resolution, wide dynamic range, anti-interference capacity and good stability. Because of the mismatching thermal expansion coefficients of silicon and glass, the micromechanical silicon resonant accelerometer based on the Silicon on Glass (SOG) technique is deeply affected by the temperature during the fabrication, packaging and use processes. The thermal stress caused by temperature changes directly affects the frequency output of the accelerometer. Based on the working principle of the micromechanical resonant accelerometer, a special accelerometer structure that reduces the temperature influence on the accelerometer is designed. The accelerometer can greatly reduce the thermal stress caused by high temperatures in the process of fabrication and packaging. Currently, the closed-loop drive circuit is devised based on a phase-locked loop. The unloaded resonant frequencies of the prototype of the micromechanical silicon resonant accelerometer are approximately 31.4 kHz and 31.5 kHz. The scale factor is 66.24003 Hz/g. The scale factor stability is 14.886 ppm, the scale factor repeatability is 23 ppm, the bias stability is 23 μg, the bias repeatability is 170 μg, and the bias temperature coefficient is 0.0734 Hz/°C. PMID:24256978
NASA Astrophysics Data System (ADS)
Mathieu, Jean-Philippe; Inal, Karim; Berveiller, Sophie; Diard, Olivier
2010-11-01
Local approach to brittle fracture for low-alloyed steels is discussed in this paper. A bibliographical introduction intends to highlight general trends and consensual points of the topic and evokes debatable aspects. French RPV steel 16MND5 (equ. ASTM A508 Cl.3), is then used as a model material to study the influence of temperature on brittle fracture. A micromechanical modelling of brittle fracture at the elementary volume scale already used in previous work is then recalled. It involves a multiscale modelling of microstructural plasticity which has been tuned on experimental inter-phase and inter-granular stresses heterogeneities measurements. Fracture probability of the elementary volume can then be computed using a randomly attributed defect size distribution based on realistic carbides repartition. This defect distribution is then deterministically correlated to stress heterogeneities simulated within the microstructure using a weakest-link hypothesis on the elementary volume, which results in a deterministic stress to fracture. Repeating the process allows to compute Weibull parameters on the elementary volume. This tool is then used to investigate the physical mechanisms that could explain the already experimentally observed temperature dependence of Beremin's parameter for 16MND5 steel. It is showed that, assuming that the hypothesis made in this work about cleavage micro-mechanisms are correct, effective equivalent surface energy (i.e. surface energy plus plastically dissipated energy when blunting the crack tip) for propagating a crack has to be temperature dependent to explain Beremin's parameters temperature evolution.
Fritsch, Andreas; Hellmich, Christian; Dormieux, Luc
2009-09-21
There is an ongoing discussion on how bone strength could be explained from its internal structure and composition. Reviewing recent experimental and molecular dynamics studies, we here propose a new vision on bone material failure: mutual ductile sliding of hydroxyapatite mineral crystals along layered water films is followed by rupture of collagen crosslinks. In order to cast this vision into a mathematical form, a multiscale continuum micromechanics theory for upscaling of elastoplastic properties is developed, based on the concept of concentration and influence tensors for eigenstressed microheterogeneous materials. The model reflects bone's hierarchical organization, in terms of representative volume elements for cortical bone, for extravascular and extracellular bone material, for mineralized fibrils and the extrafibrillar space, and for wet collagen. In order to get access to the stress states at the interfaces between crystals, the extrafibrillar mineral is resolved into an infinite amount of cylindrical material phases oriented in all directions in space. The multiscale micromechanics model is shown to be able to satisfactorily predict the strength characteristics of different bones from different species, on the basis of their mineral/collagen content, their intercrystalline, intermolecular, lacunar, and vascular porosities, and the elastic and strength properties of hydroxyapatite and (molecular) collagen.
Shimamoto, Yuta; Kapoor, Tarun M.
2014-01-01
SUMMARY To explain how micron-sized cellular structures generate and respond to forces we need to characterize their micromechanical properties. Here we provide a protocol to build and use a dual force-calibrated microneedle-based set-up to quantitatively analyze the micromechanics of a metaphase spindle assembled in Xenopus laevis egg extracts. This cell-free extract system allows for controlled biochemical perturbations of spindle components. We describe how the microneedles are prepared and how they can be used to apply and measure forces. A multi-mode imaging system allows tracking of microtubules, chromosomes and needle tips. This set-up can be used to analyze the viscoelastic properties of the spindle on time-scales ranging from minutes to sub-seconds. A typical experiment, along with data analysis, is also detailed. We anticipate that our protocol can be readily extended to analyze the micromechanics of other cellular structures assembled in cell-free extracts. The entire procedure can take 3-4 days. PMID:22538847
NASA Technical Reports Server (NTRS)
Lissenden, Cliff J.; Arnold, Steven M.
1996-01-01
Guidance for the formulation of robust, multiaxial, constitutive models for advanced materials is provided by addressing theoretical and experimental issues using micromechanics. The multiaxial response of metal matrix composites, depicted in terms of macro flow/damage surfaces, is predicted at room and elevated temperatures using an analytical micromechanical model that includes viscoplastic matrix response as well as fiber-matrix debonding. Macro flow/damage surfaces (i.e., debonding envelopes, matrix threshold surfaces, macro 'yield' surfaces, surfaces of constant inelastic strain rate, and surfaces of constant dissipation rate) are determined for silicon carbide/titanium in three stress spaces. Residual stresses are shown to offset the centers of the flow/damage surfaces from the origin and their shape is significantly altered by debonding. The results indicate which type of flow/damage surfaces should be characterized and what loadings applied to provide the most meaningful experimental data for guiding theoretical model development and verification.
Development of Design Analysis Methods for C/SiC Composite Structures
NASA Technical Reports Server (NTRS)
Sullivan, Roy M.; Mital, Subodh K.; Murthy, Pappu L. N.; Palko, Joseph L.; Cueno, Jacques C.; Koenig, John R.
2006-01-01
The stress-strain behavior at room temperature and at 1100 C (2000 F) was measured for two carbon-fiber-reinforced silicon carbide (C/SiC) composite materials: a two-dimensional plain-weave quasi-isotropic laminate and a three-dimensional angle-interlock woven composite. Micromechanics-based material models were developed for predicting the response properties of these two materials. The micromechanics based material models were calibrated by correlating the predicted material property values with the measured values. Four-point beam bending sub-element specimens were fabricated with these two fiber architectures and four-point bending tests were performed at room temperature and at 1100 C. Displacements and strains were measured at various locations along the beam and recorded as a function of load magnitude. The calibrated material models were used in concert with a nonlinear finite element solution to simulate the structural response of these two materials in the four-point beam bending tests. The structural response predicted by the nonlinear analysis method compares favorably with the measured response for both materials and for both test temperatures. Results show that the material models scale up fairly well from coupon to subcomponent level.
Micromechanical performance of interfacial transition zone in fiber-reinforced cement matrix
NASA Astrophysics Data System (ADS)
Zacharda, V.; Němeček, J.; Štemberk, P.
2017-09-01
The paper investigates microstructure, chemical composition and micromechanical behavior of an interfacial transition zone (ITZ) in steel fiber reinforced cement matrix. For this goal, a combination of scanning electron microscopy (SEM), nanoindentation and elastic homogenization theory are used. The investigated sample of cement paste with dispersed reinforcement consists of cement CEM I 42,5R and a steel fiber TriTreg 50 mm. The microscopy revealed smaller portion of clinkers and larger porosity in the ITZ. Nanoindentation delivered decreased elastic modulus in comparison with cement bulk (67%) and the width of ITZ (∼ 40 μm). The measured properties served as input parameters for a simple two-scale model for elastic properties of the composite. Although, no major influence of ITZ properties on the composite elastic behavior was found, the findings about the ITZ reduced properties and its size can serve as input to other microstructural fracture based models.
Micromechanical model of lung parenchyma hyperelasticity
NASA Astrophysics Data System (ADS)
Concha, Felipe; Sarabia-Vallejos, Mauricio; Hurtado, Daniel E.
2018-03-01
Mechanics plays a key role in respiratory physiology, as lung tissue cyclically deforms to bring air in and out the lung, a life-long process necessary for respiration. The study of regional mechanisms of deformation in lung parenchyma has received great attention to date due to its clinical relevance, as local overstretching and stress concentration in lung tissue is currently associated to pathological conditions such as lung injury during mechanical ventilation therapy. This mechanical approach to lung physiology has motivated the development of constitutive models to better understand the relation between stress and deformation in the lung. While material models proposed to date have been key in the development of whole-lung simulations, either they do not directly relate microstructural properties of alveolar tissue with coarse-scale behavior, or they require a high computational effort when based on real alveolar geometries. Furthermore, most models proposed to date have not been thoroughly validated for anisotropic deformation states, which are commonly found in normal lungs in-vivo. In this work, we develop a novel micromechanical model of lung parenchyma hyperelasticity using the framework of finite-deformation homogenization. To this end, we consider a tetrakaidecahedron unit cell with incompressible Neo-Hookean structural elements that account for the alveolar wall tissue responsible for the elastic response, and derive expressions for its effective coarse-scale behavior that directly depend on the alveolar wall elasticity, reference porosity, and two other geometrical coefficients. To validate the proposed model, we simulate the non-linear elastic response of twelve representative volume elements (RVEs) of lung parenchyma with micrometric dimensions, whose geometry is obtained from micrometric computed-tomography reconstructions of murine lungs. We show that the proposed micromechanical model accurately captures the RVEs response not only for isotropic volumetric expansion, but also for three other anisotropic loading conditions for different levels of tissue porosity, while displaying superior computational efficiency and stability in estimating coarse-scale response when compared to direct numerical simulations of RVEs. Further, we find that the most influential microstructural parameters on the response of the micromechanical model are the reference porosity and the alveolar wall elasticity. We also show that the model can reproduce uniaxial experimental tests on lung tissue samples, and estimate the Poisson ratio to be 0.22. We envision that our model will enable predictive and efficient whole-organ simulations useful to study the normal and diseased lung.
A FSI-based structural approach for micromechanical characterization of adipose tissue
NASA Astrophysics Data System (ADS)
Seyfi, Behzad; Sabzalinejad, Masoumeh; Haddad, Seyed M. H.; Fatouraee, Nasser; Samani, Abbas
2017-03-01
This paper presents a novel computational method for micromechanical modeling of adipose tissue. The model can be regarded as the first step for developing an inversion based framework that uses adipose stiffness data obtained from elastography to determine its microstructural alterations. Such information can be used as biomarkers for diseases associated with adipose tissue microstructure alteration (e.g. adipose tissue fibrosis and inflammation in obesity). In contrast to previous studies, the presented model follows a multiphase structure which accounts for both solid and fluid components as well as their mechanical interaction. In the model, the lipid droplets and extracellular matrix were considered as the fluid and solid phase, respectively. As such, the fluid-structure interaction (FSI) problem was solved using finite element method. In order to gain insight into how microstructural characteristics influence the macro scale mechanical properties of the adipose tissue, a compression mechanical test was simulated using the FSI model and its results were fitted to corresponding experimental data. The simulation procedure was performed for adipocytes in healthy conditions while the stiffness of extracellular matrix in normal adipose tissue was found by varying it systematically within an optimization process until the simulation response agreed with experimental data. Results obtained in this study are encouraging and show the capability of the proposed model to capture adipose tissue macroscale mechanical behavior based on its microstructure under health and different pathological conditions.
Micromechanics Fatigue Damage Analysis Modeling for Fabric Reinforced Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Min, J. B.; Xue, D.; Shi, Y.
2013-01-01
A micromechanics analysis modeling method was developed to analyze the damage progression and fatigue failure of fabric reinforced composite structures, especially for the brittle ceramic matrix material composites. A repeating unit cell concept of fabric reinforced composites was used to represent the global composite structure. The thermal and mechanical properties of the repeating unit cell were considered as the same as those of the global composite structure. The three-phase micromechanics, the shear-lag, and the continuum fracture mechanics models were integrated with a statistical model in the repeating unit cell to predict the progressive damages and fatigue life of the composite structures. The global structure failure was defined as the loss of loading capability of the repeating unit cell, which depends on the stiffness reduction due to material slice failures and nonlinear material properties in the repeating unit cell. The present methodology is demonstrated with the analysis results evaluated through the experimental test performed with carbon fiber reinforced silicon carbide matrix plain weave composite specimens.
NASA Astrophysics Data System (ADS)
Jeon, Haemin; Yu, Jaesang; Lee, Hunsu; Kim, G. M.; Kim, Jae Woo; Jung, Yong Chae; Yang, Cheol-Min; Yang, B. J.
2017-09-01
Continuous fiber-reinforced composites are important materials that have the highest commercialized potential in the upcoming future among existing advanced materials. Despite their wide use and value, their theoretical mechanisms have not been fully established due to the complexity of the compositions and their unrevealed failure mechanisms. This study proposes an effective three-dimensional damage modeling of a fibrous composite by combining analytical micromechanics and evolutionary computation. The interface characteristics, debonding damage, and micro-cracks are considered to be the most influential factors on the toughness and failure behaviors of composites, and a constitutive equation considering these factors was explicitly derived in accordance with the micromechanics-based ensemble volume averaged method. The optimal set of various model parameters in the analytical model were found using modified evolutionary computation that considers human-induced error. The effectiveness of the proposed formulation was validated by comparing a series of numerical simulations with experimental data from available studies.
Nonlinear mesomechanics of composites with periodic microstructure
NASA Technical Reports Server (NTRS)
Walker, Kevin P.; Jordan, Eric H.; Freed, Alan D.
1989-01-01
This work is concerned with modeling the mechanical deformation or constitutive behavior of composites comprised of a periodic microstructure under small displacement conditions at elevated temperature. A mesomechanics approach is adopted which relates the microimechanical behavior of the heterogeneous composite with its in-service macroscopic behavior. Two different methods, one based on a Fourier series approach and the other on a Green's function approach, are used in modeling the micromechanical behavior of the composite material. Although the constitutive formulations are based on a micromechanical approach, it should be stressed that the resulting equations are volume averaged to produce overall effective constitutive relations which relate the bulk, volume averaged, stress increment to the bulk, volume averaged, strain increment. As such, they are macromodels which can be used directly in nonlinear finite element programs such as MARC, ANSYS and ABAQUS or in boundary element programs such as BEST3D. In developing the volume averaged or efective macromodels from the micromechanical models, both approaches will require the evaluation of volume integrals containing the spatially varying strain distributions throughout the composite material. By assuming that the strain distributions are spatially constant within each constituent phase-or within a given subvolume within each constituent phase-of the composite material, the volume integrals can be obtained in closed form. This simplified micromodel can then be volume averaged to obtain an effective macromodel suitable for use in the MARC, ANSYS and ABAQUS nonlinear finite element programs via user constitutive subroutines such as HYPELA and CMUSER. This effective macromodel can be used in a nonlinear finite element structural analysis to obtain the strain-temperature history at those points in the structure where thermomechanical cracking and damage are expected to occur, the so called damage critical points of the structure.
A micro-mechanical model to determine changes of collagen fibrils under cyclic loading
NASA Astrophysics Data System (ADS)
Chen, Michelle L.; Susilo, Monica E.; Ruberti, Jeffrey A.; Nguyen, Thao D.
Dynamic mechanical loading induces growth and remodeling in biological tissues. It can alter the degradation rate and intrinsic mechanical properties of collagen through cellular activity. Experiments showed that repeated cyclic loading of a dense collagen fibril substrate increased collagen stiffness and strength, lengthened the substrate, but did not significantly change the fibril areal fraction or fibril anisotropy (Susilo, et al. ``Collagen Network Hardening Following Cyclic Tensile Loading'', Interface Focus, submitted). We developed a model for the collagen fibril substrate (Tonge, et al. ``A micromechanical modeling study of the mechanical stabilization of enzymatic degradation of collagen tissues'', Biophys J, in press.) to probe whether changes in the fibril morphology and mechanical properties can explain the tissue-level properties observed during cyclic loading. The fibrils were modeled as a continuous distribution of wavy elastica, based on experimental measurements of fibril density and collagen anisotropy, and can experience damage after a critical stress threshold. Other mechanical properties in the model were fit to the stress response measured before and after the extended cyclic loading to determine changes in the strength and stiffness of collagen fibrils.
A Novel Multiscale Physics Based Progressive Failure Methodology for Laminated Composite Structures
NASA Technical Reports Server (NTRS)
Pineda, Evan J.; Waas, Anthony M.; Bednarcyk, Brett A.; Collier, Craig S.; Yarrington, Phillip W.
2008-01-01
A variable fidelity, multiscale, physics based finite element procedure for predicting progressive damage and failure of laminated continuous fiber reinforced composites is introduced. At every integration point in a finite element model, progressive damage is accounted for at the lamina-level using thermodynamically based Schapery Theory. Separate failure criteria are applied at either the global-scale or the microscale in two different FEM models. A micromechanics model, the Generalized Method of Cells, is used to evaluate failure criteria at the micro-level. The stress-strain behavior and observed failure mechanisms are compared with experimental results for both models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voothaluru, Rohit; Bedekar, Vikram; Xie, Qingge
This work integrates in-situ neutron diffraction and crystal plasticity finite element modeling to study the kinematic stability of retained austenite in high carbon bearing steels. The presence of a kinematically metastable retained austenite in bearing steels can significantly affect the macro-mechanical and micro-mechanical material response. Mechanical characterization of metastable austenite is a critical component in accurately capturing the micro-mechanical behavior under typical application loads. Traditional mechanical characterization techniques are unable to discretely quantify the micro-mechanical response of the austenite, and as a result, the computational predictions rely heavily on trial and error or qualitative descriptions of the austenite phase. Inmore » order to overcome this, in the present work, we use in-situ neutron diffraction of a uniaxial tension test of an A485 Grade 1 bearing steel specimen. The mechanical response determined from the neutron diffraction analysis was incorporated into a hybrid crystal plasticity finite element model that accounts for the martensite's crystal plasticity and the stress-assisted transformation from austenite to martensite in bearing steels. Here, the modeling response was used to estimate the single crystal elastic constants of the austenite and martensite phases. Finally, the results show that using in-situ neutron diffraction, coupled with a crystal plasticity model, can successfully predict both the micro-mechanical and macro-mechanical responses of bearing steels while accounting for the martensitic transformation of the retained austenite.« less
Voothaluru, Rohit; Bedekar, Vikram; Xie, Qingge; ...
2018-11-21
This work integrates in-situ neutron diffraction and crystal plasticity finite element modeling to study the kinematic stability of retained austenite in high carbon bearing steels. The presence of a kinematically metastable retained austenite in bearing steels can significantly affect the macro-mechanical and micro-mechanical material response. Mechanical characterization of metastable austenite is a critical component in accurately capturing the micro-mechanical behavior under typical application loads. Traditional mechanical characterization techniques are unable to discretely quantify the micro-mechanical response of the austenite, and as a result, the computational predictions rely heavily on trial and error or qualitative descriptions of the austenite phase. Inmore » order to overcome this, in the present work, we use in-situ neutron diffraction of a uniaxial tension test of an A485 Grade 1 bearing steel specimen. The mechanical response determined from the neutron diffraction analysis was incorporated into a hybrid crystal plasticity finite element model that accounts for the martensite's crystal plasticity and the stress-assisted transformation from austenite to martensite in bearing steels. Here, the modeling response was used to estimate the single crystal elastic constants of the austenite and martensite phases. Finally, the results show that using in-situ neutron diffraction, coupled with a crystal plasticity model, can successfully predict both the micro-mechanical and macro-mechanical responses of bearing steels while accounting for the martensitic transformation of the retained austenite.« less
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Pindera, Marek-Jerzy
1994-01-01
Two micromechanical models were developed to investigate the thermal expansion of graphite/copper (Gr/Cu) composites. The models incorporate the effects of temperature-dependent material properties, matrix inelasticity, initial residual stresses due to processing history, and nonuniform fiber distribution. The first model is based on the multiple concentric cylinder geometry, with each cylinder treated as a two-phase composite with a characteristic fiber volume fractions. By altering the fiber volume fraction of the individual cylinders, unidirectional composites with radially nonuniform fiber distributions can be investigated using this model. The second model is based on the inelastic lamination theory. By varying the fiber content in the individual laminae, composites with nonuniform fiber distribution in the thickness direction can be investigated. In both models, the properties of the individual regions (cylinders or laminae) are calculated using the method of cells micromechanical model. Classical incremental plasticity theory is used to model the inelastic response of the copper matrix at the microlevel. The models were used to characterize the effects of nonuniform fiber distribution on the thermal expansion of Gr/Cu. These effects were compared to the effects of matrix plasticity, choice of stress-free temperature, and slight fiber misalignment. It was found that the radially nonuniform fiber distribution has little effect on the thermal expansion of Gr/Cu but could become significant for composites with large fiber-matrix transverse CTE and Young's modulus mismatch. The effect of nonuniform fiber distribution in the through-thickness direction of a laminate was more significant, but only approached that of the stress-free temperature for the most extreme cases that include large amounts of bending. Subsequent comparison with experimental thermal expansion data indicated the need for more accurate characterization of the graphite fiber thermomechanical properties. Correlation with cyclic data revealed the presence of a mechanism not considered in the developed models. The predicted response did, however, exhibit ratcheting behavior that has been observed experimentally in Gr/Cu. Finally, simulation of the actual fiber distribution of particular specimens had little effect on the predicted thermal expansion.
Constitutive Modeling of the Mechanical Properties of Optical Fibers
NASA Technical Reports Server (NTRS)
Moeti, L.; Moghazy, S.; Veazie, D.; Cuddihy, E.
1998-01-01
Micromechanical modeling of the composite mechanical properties of optical fibers was conducted. Good agreement was obtained between the values of Young's modulus obtained by micromechanics modeling and those determined experimentally for a single mode optical fiber where the wave guide and the jacket are physically coupled. The modeling was also attempted on a polarization-maintaining optical fiber (PANDA) where the wave guide and the jacket are physically decoupled, and found not to applicable since the modeling required perfect bonding at the interface. The modeling utilized constituent physical properties such as the Young's modulus, Poisson's ratio, and shear modulus to establish bounds on the macroscopic behavior of the fiber.
NASA Technical Reports Server (NTRS)
Arnold, S. M.; Murthy, P.; Bednarcyk, B. A.; Pineda, E. J.
2015-01-01
A fully coupled deformation and damage approach to modeling the response of composite materials and composite laminates is presented. It is based on the semi--analytical generalized method of cells (GMC) micromechanics model as well as its higher fidelity counterpart, HFGMC, both of which provide closed-form constitutive equations for composite materials as well as the micro scale stress and strain fields in the composite phases. The provided constitutive equations allow GMC and HFGMC to function within a higher scale structural analysis (e.g., finite element analysis or lamination theory) to represent a composite material point, while the availability of the micro fields allow the incorporation of lower scale sub-models to represent local phenomena in the fiber and matrix. Further, GMC's formulation performs averaging when applying certain governing equations such that some degree of microscale field accuracy is surrendered in favor of extreme computational efficiency, rendering the method quite attractive as the centerpiece in a integrated computational material engineering (ICME) structural analysis; whereas HFGMC retains this microscale field accuracy, but at the price of significantly slower computational speed. Herein, the sensitivity of deformation and the fatigue life of graphite/epoxy PMC composites, with both ordered and disordered microstructures, has been investigated using this coupled deformation and damage micromechanics based approach. The local effects of fiber breakage and fatigue damage are included as sub-models that operate on the microscale for the individual composite phases. For analysis of laminates, classical lamination theory is employed as the global or structural scale model, while GMC/HFGMC is embedded to operate on the microscale to simulate the behavior of the composite material within each laminate layer. A key outcome of this study is the statistical influence of microstructure and micromechanics idealization (GMC or HFGMC) on the overall accuracy of unidirectional and laminated composite deformation and fatigue response.
Micromechanics of ice friction
NASA Astrophysics Data System (ADS)
Sammonds, P. R.; Bailey, E.; Lishman, B.; Scourfield, S.
2015-12-01
Frictional mechanics are controlled by the ice micro-structure - surface asperities and flaws - but also the ice fabric and permeability network structure of the contacting blocks. Ice properties are dependent upon the temperature of the bulk ice, on the normal stress and on the sliding velocity and acceleration. This means the shear stress required for sliding is likewise dependent on sliding velocity, acceleration, and temperature. We aim to describe the micro-physics of the contacting surface. We review micro-mechanical models of friction: the elastic and ductile deformation of asperities under normal loads and their shear failure by ductile flow, brittle fracture, or melting and hydrodynamic lubrication. Combinations of these give a total of six rheological models of friction. We present experimental results in ice mechanics and physics from laboratory experiments to understand the mechanical models. We then examine the scaling relations of the slip of ice, to examine how the micro-mechanics of ice friction can be captured simple reduced-parameter models, describing the mechanical state and slip rate of the floes. We aim to capture key elements that they may be incorporated into mid and ocean-basin scale modelling.
Stochastic-Strength-Based Damage Simulation of Ceramic Matrix Composite Laminates
NASA Technical Reports Server (NTRS)
Nemeth, Noel N.; Mital, Subodh K.; Murthy, Pappu L. N.; Bednarcyk, Brett A.; Pineda, Evan J.; Bhatt, Ramakrishna T.; Arnold, Steven M.
2016-01-01
The Finite Element Analysis-Micromechanics Analysis Code/Ceramics Analysis and Reliability Evaluation of Structures (FEAMAC/CARES) program was used to characterize and predict the progressive damage response of silicon-carbide-fiber-reinforced reaction-bonded silicon nitride matrix (SiC/RBSN) composite laminate tensile specimens. Studied were unidirectional laminates [0] (sub 8), [10] (sub 8), [45] (sub 8), and [90] (sub 8); cross-ply laminates [0 (sub 2) divided by 90 (sub 2),]s; angled-ply laminates [plus 45 (sub 2) divided by -45 (sub 2), ]s; doubled-edge-notched [0] (sub 8), laminates; and central-hole laminates. Results correlated well with the experimental data. This work was performed as a validation and benchmarking exercise of the FEAMAC/CARES program. FEAMAC/CARES simulates stochastic-based discrete-event progressive damage of ceramic matrix composite and polymer matrix composite material structures. It couples three software programs: (1) the Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC), (2) the Ceramics Analysis and Reliability Evaluation of Structures Life Prediction Program (CARES/Life), and (3) the Abaqus finite element analysis program. MAC/GMC contributes multiscale modeling capabilities and micromechanics relations to determine stresses and deformations at the microscale of the composite material repeating-unit-cell (RUC). CARES/Life contributes statistical multiaxial failure criteria that can be applied to the individual brittle-material constituents of the RUC, and Abaqus is used to model the overall composite structure. For each FEAMAC/CARES simulation trial, the stochastic nature of brittle material strength results in random, discrete damage events that incrementally progress until ultimate structural failure.
Microfabricated therapeutic actuator mechanisms
Northrup, Milton A.; Ciarlo, Dino R.; Lee, Abraham P.; Krulevitch, Peter A.
1997-01-01
Electromechanical microstructures (microgrippers), either integrated circuit (IC) silicon-based or precision machined, to extend and improve the application of catheter-based interventional therapies for the repair of aneurysms in the brain or other interventional clinical therapies. These micromechanisms can be specifically applied to release platinum coils or other materials into bulging portions of the blood vessels also known as aneurysms. The "micro" size of the release mechanism is necessary since the brain vessels are the smallest in the body. Through a catheter more than one meter long, the micromechanism located at one end of the catheter can be manipulated from the other end thereof. The microgripper (micromechanism) of the invention will also find applications in non-medical areas where a remotely actuated microgripper or similar actuator would be useful or where micro-assembling is needed.
Microfabricated therapeutic actuator mechanisms
Northrup, M.A.; Ciarlo, D.R.; Lee, A.P.; Krulevitch, P.A.
1997-07-08
Electromechanical microstructures (microgrippers), either integrated circuit (IC) silicon-based or precision machined, to extend and improve the application of catheter-based interventional therapies for the repair of aneurysms in the brain or other interventional clinical therapies. These micromechanisms can be specifically applied to release platinum coils or other materials into bulging portions of the blood vessels also known as aneurysms. The ``micro`` size of the release mechanism is necessary since the brain vessels are the smallest in the body. Through a catheter more than one meter long, the micromechanism located at one end of the catheter can be manipulated from the other end thereof. The microgripper (micromechanism) of the invention will also find applications in non-medical areas where a remotely actuated microgripper or similar actuator would be useful or where micro-assembling is needed. 22 figs.
Kozlov, Andrei S; Andor-Ardó, Daniel; Hudspeth, A J
2012-02-21
The ear detects sounds so faint that they produce only atomic-scale displacements in the mechanoelectrical transducer, yet thermal noise causes fluctuations larger by an order of magnitude. Explaining how hearing can operate when the magnitude of the noise greatly exceeds that of the signal requires an understanding both of the transducer's micromechanics and of the associated noise. Using microrheology, we characterize the statistics of this noise; exploiting the fluctuation-dissipation theorem, we determine the associated micromechanics. The statistics reveal unusual Brownian motion in which the mean square displacement increases as a fractional power of time, indicating that the mechanisms governing energy dissipation are related to those of energy storage. This anomalous scaling contradicts the canonical model of mechanoelectrical transduction, but the results can be explained if the micromechanics incorporates viscoelasticity, a salient characteristic of biopolymers. We amend the canonical model and demonstrate several consequences of viscoelasticity for sensory coding.
Kozlov, Andrei S.; Andor-Ardó, Daniel; Hudspeth, A. J.
2012-01-01
The ear detects sounds so faint that they produce only atomic-scale displacements in the mechanoelectrical transducer, yet thermal noise causes fluctuations larger by an order of magnitude. Explaining how hearing can operate when the magnitude of the noise greatly exceeds that of the signal requires an understanding both of the transducer’s micromechanics and of the associated noise. Using microrheology, we characterize the statistics of this noise; exploiting the fluctuation-dissipation theorem, we determine the associated micromechanics. The statistics reveal unusual Brownian motion in which the mean square displacement increases as a fractional power of time, indicating that the mechanisms governing energy dissipation are related to those of energy storage. This anomalous scaling contradicts the canonical model of mechanoelectrical transduction, but the results can be explained if the micromechanics incorporates viscoelasticity, a salient characteristic of biopolymers. We amend the canonical model and demonstrate several consequences of viscoelasticity for sensory coding. PMID:22328158
Development of BEM for ceramic composites
NASA Technical Reports Server (NTRS)
Henry, D. P.; Banerjee, P. K.; Dargush, G. F.
1991-01-01
It is evident that for proper micromechanical analysis of ceramic composites, one needs to use a numerical method that is capable of idealizing the individual fibers or individual bundles of fibers embedded within a three-dimensional ceramic matrix. The analysis must be able to account for high stress or temperature gradients from diffusion of stress or temperature from the fiber to the ceramic matrix and allow for interaction between the fibers through the ceramic matrix. The analysis must be sophisticated enough to deal with the failure of fibers described by a series of increasingly sophisticated constitutive models. Finally, the analysis must deal with micromechanical modeling of the composite under nonlinear thermal and dynamic loading. This report details progress made towards the development of a boundary element code designed for the micromechanical studies of an advanced ceramic composite. Additional effort has been made in generalizing the implementation to allow the program to be applicable to real problems in the aerospace industry.
NASA Technical Reports Server (NTRS)
Aboudi, Jacob
2000-01-01
The micromechanical generalized method of cells model is employed for the prediction of the effective moduli of electro-magneto-thermo-elastic composites. These include the effective elastic, piezoelectric, piezomagnetic, dielectric, magnetic permeability, electromagnetic coupling moduli, as well as the effective thermal expansion coefficients and the associated pyroelectric and pyromagnetic constants. Results are given for fibrous and periodically bilaminated composites.
Dynamic Evolution Of Off-Fault Medium During An Earthquake: A Micromechanics Based Model
NASA Astrophysics Data System (ADS)
Thomas, Marion Y.; Bhat, Harsha S.
2018-05-01
Geophysical observations show a dramatic drop of seismic wave speeds in the shallow off-fault medium following earthquake ruptures. Seismic ruptures generate, or reactivate, damage around faults that alter the constitutive response of the surrounding medium, which in turn modifies the earthquake itself, the seismic radiation, and the near-fault ground motion. We present a micromechanics based constitutive model that accounts for dynamic evolution of elastic moduli at high-strain rates. We consider 2D in-plane models, with a 1D right lateral fault featuring slip-weakening friction law. The two scenarios studied here assume uniform initial off-fault damage and an observationally motivated exponential decay of initial damage with fault normal distance. Both scenarios produce dynamic damage that is consistent with geological observations. A small difference in initial damage actively impacts the final damage pattern. The second numerical experiment, in particular, highlights the complex feedback that exists between the evolving medium and the seismic event. We show that there is a unique off-fault damage pattern associated with supershear transition of an earthquake rupture that could be potentially seen as a geological signature of this transition. These scenarios presented here underline the importance of incorporating the complex structure of fault zone systems in dynamic models of earthquakes.
Dynamic Evolution Of Off-Fault Medium During An Earthquake: A Micromechanics Based Model
NASA Astrophysics Data System (ADS)
Thomas, M. Y.; Bhat, H. S.
2017-12-01
Geophysical observations show a dramatic drop of seismic wave speeds in the shallow off-fault medium following earthquake ruptures. Seismic ruptures generate, or reactivate, damage around faults that alter the constitutive response of the surrounding medium, which in turn modifies the earthquake itself, the seismic radiation, and the near-fault ground motion. We present a micromechanics based constitutive model that accounts for dynamic evolution of elastic moduli at high-strain rates. We consider 2D in-plane models, with a 1D right lateral fault featuring slip-weakening friction law. The two scenarios studied here assume uniform initial off-fault damage and an observationally motivated exponential decay of initial damage with fault normal distance. Both scenarios produce dynamic damage that is consistent with geological observations. A small difference in initial damage actively impacts the final damage pattern. The second numerical experiment, in particular, highlights the complex feedback that exists between the evolving medium and the seismic event. We show that there is a unique off-fault damage pattern associated with supershear transition of an earthquake rupture that could be potentially seen as a geological signature of this transition. These scenarios presented here underline the importance of incorporating the complex structure of fault zone systems in dynamic models of earthquakes.
A micromechanical analogue mixer with dynamic displacement amplification
NASA Astrophysics Data System (ADS)
Erismis, M. A.
2018-06-01
A new micromechanical device is proposed which is capable of modulation, demodulation and filtering operations. The device uses a patented 3-mass coupled micromechanical resonator which dynamically amplifies the displacement within a frequency range of interest. Modulation can be obtained by exciting different masses of the resonator with the data and the carrier signals. Demodulation can be obtained similarly by exciting the actuator with the input and carrier signals at the same time. With the help of dynamic motion amplification, filtering and signal amplification can be achieved simultaneously. A generic design approach is introduced which can be applied from kHz to MHz regime frequencies of interest. A sample mixer design for an silicon on insulator-based process is provided. A SPICE (Simulation Program with Integrated Circuit Emphasis)-based electro-mechanical co-simulation platform is also developed and the proposed mixer is simulated.
Micromechanics Models for Unsaturated, Saturated, and Dry Sands.
1988-01-25
AUTHOR(S) J. K. Jeyapalan , M. Thiyagar, and W. E. Saleira 13a. TYPE OF REPORT 113b TIME COVF ED 14. DATE OF REPORT (Year, Month, Day) 1S. PAGE CQUNT...8 -015 4 I MICROMECHANICS MODELS FOR UNSATURATED, SATURATED, AND DRY SANDS By Jey K. Jeyapalan M. Thiyagaram W., E. Saleira 2304 Engi neering Building...UNSAYURATED SATURATED AND DRY 2 SANDS(U) WISCONSIN UNIV-MADISON J K JEYAPALAN ET AL UN IED25 JAN 88 AFOSR-TR-88-@i54 AFOSR-84-8898 UNCLASSIFIEDI F/G 8/1
Method for preventing micromechanical structures from adhering to another object
Smith, James H.; Ricco, Antonio J.
1998-01-01
A method for preventing micromechanical structures from adhering to another object includes the step of immersing a micromechanical structure and its associated substrate in a chemical species that does not stick to itself. The method can be employed during the manufacture of micromechanical structures to prevent micromechanical parts from sticking or adhering to one another and their associated substrate surface.
NASA Astrophysics Data System (ADS)
Wang, Jingcheng; Luo, Jingrun
2018-04-01
Due to the extremely high particle volume fraction (greater than 85%) and damage feature of polymer bonded explosives (PBXs), conventional micromechanical methods lead to inaccurate estimates on their effective elastic properties. According to their manufacture characteristics, a multistep approach based on micromechanical methods is proposed. PBXs are treated as pseudo poly-crystal materials consisting of equivalent composite particles (explosive crystals with binder coating), rather than two-phase composites composed of explosive particles and binder matrix. Moduli of composite spheres are obtained by generalized self-consistent method first, and the self-consistent method is modified to calculate the effective moduli of PBX. Defects and particle size distribution are considered by Mori-Tanaka method. Results show that when the multistep approach is applied to PBX 9501, estimates are far more accurate than the conventional micromechanical results. The bulk modulus is 5.75% higher, and shear modulus is 5.78% lower than the experimental values. Further analyses discover that while particle volume fraction and the binder's property have significant influences on the effective moduli of PBX, the moduli of particles present minor influences. Investigation of another particle size distribution indicates that the use of more fine particles will enhance the effective moduli of PBX.
NASA Technical Reports Server (NTRS)
Pindera, Marek-Jerzy; Salzar, Robert S.; Williams, Todd O.
1993-01-01
The utility of a recently developed analytical micromechanics model for the response of metal matrix composites under thermal loading is illustrated by comparison with the results generated using the finite-element approach. The model is based on the concentric cylinder assemblage consisting of an arbitrary number of elastic or elastoplastic sublayers with isotropic or orthotropic, temperature-dependent properties. The elastoplastic boundary-value problem of an arbitrarily layered concentric cylinder is solved using the local/global stiffness matrix formulation (originally developed for elastic layered media) and Mendelson's iterative technique of successive elastic solutions. These features of the model facilitate efficient investigation of the effects of various microstructural details, such as functionally graded architectures of interfacial layers, on the evolution of residual stresses during cool down. The available closed-form expressions for the field variables can readily be incorporated into an optimization algorithm in order to efficiently identify optimal configurations of graded interfaces for given applications. Comparison of residual stress distributions after cool down generated using finite-element analysis and the present micromechanics model for four composite systems with substantially different temperature-dependent elastic, plastic, and thermal properties illustrates the efficacy of the developed analytical scheme.
Micromechanical investigation of sand migration in gas hydrate-bearing sediments
NASA Astrophysics Data System (ADS)
Uchida, S.; Klar, A.; Cohen, E.
2017-12-01
Past field gas production tests from hydrate bearing sediments have indicated that sand migration is an important phenomenon that needs to be considered for successful long-term gas production. The authors previously developed the continuum based analytical thermo-hydro-mechanical sand migration model that can be applied to predict wellbore responses during gas production. However, the model parameters involved in the model still needs to be calibrated and studied thoroughly and it still remains a challenge to conduct well-defined laboratory experiments of sand migration, especially in hydrate-bearing sediments. Taking the advantage of capability of micromechanical modelling approach through discrete element method (DEM), this work presents a first step towards quantifying one of the model parameters that governs stresses reduction due to grain detachment. Grains represented by DEM particles are randomly removed from an isotropically loaded DEM specimen and statistical analyses reveal that linear proportionality exists between the normalized volume of detached solids and normalized reduced stresses. The DEM specimen with different porosities (different packing densities) are also considered and statistical analyses show that there is a clear transition between loose sand behavior and dense sand behavior, characterized by the relative density.
Nonlinear Visco-Elastic Response of Composites via Micro-Mechanical Models
NASA Technical Reports Server (NTRS)
Gates, Thomas S.; Sridharan, Srinivasan
2005-01-01
Micro-mechanical models for a study of nonlinear visco-elastic response of composite laminae are developed and their performance compared. A single integral constitutive law proposed by Schapery and subsequently generalized to multi-axial states of stress is utilized in the study for the matrix material. This is used in conjunction with a computationally facile scheme in which hereditary strains are computed using a recursive relation suggested by Henriksen. Composite response is studied using two competing micro-models, viz. a simplified Square Cell Model (SSCM) and a Finite Element based self-consistent Cylindrical Model (FECM). The algorithm is developed assuming that the material response computations are carried out in a module attached to a general purpose finite element program used for composite structural analysis. It is shown that the SSCM as used in investigations of material nonlinearity can involve significant errors in the prediction of transverse Young's modulus and shear modulus. The errors in the elastic strains thus predicted are of the same order of magnitude as the creep strains accruing due to visco-elasticity. The FECM on the other hand does appear to perform better both in the prediction of elastic constants and the study of creep response.
Inelastic response of metal matrix composites under biaxial loading
NASA Technical Reports Server (NTRS)
Lissenden, C. J.; Mirzadeh, F.; Pindera, M.-J.; Herakovich, C. T.
1991-01-01
Theoretical predictions and experimental results were obtained for inelastic response of unidirectional and angle ply composite tubes subjected to axial and torsional loading. The composite material consist of silicon carbide fibers in a titanium alloy matrix. This material is known to be susceptible to fiber matrix interfacial damage. A method to distinguish between matrix yielding and fiber matrix interfacial damage is suggested. Biaxial tests were conducted on the two different layup configurations using an MTS Axial/Torsional load frame with a PC based data acquisition system. The experimentally determined elastic moduli of the SiC/Ti system are compared with those predicted by a micromechanics model. The test results indicate that fiber matrix interfacial damage occurs at relatively low load levels and is a local phenomenon. The micromechanics model used is the method of cells originally proposed by Aboudi. Finite element models using the ABACUS finite element program were used to study end effects and fixture specimen interactions. The results to date have shown good correlation between theory and experiment for response prior to damage initiation.
Time-dependent deformation of titanium metal matrix composites
NASA Technical Reports Server (NTRS)
Bigelow, C. A.; Bahei-El-din, Y. A.; Mirdamadi, M.
1995-01-01
A three-dimensional finite element program called VISCOPAC was developed and used to conduct a micromechanics analysis of titanium metal matrix composites. The VISCOPAC program uses a modified Eisenberg-Yen thermo-viscoplastic constitutive model to predict matrix behavior under thermomechanical fatigue loading. The analysis incorporated temperature-dependent elastic properties in the fiber and temperature-dependent viscoplastic properties in the matrix. The material model was described and the necessary material constants were determined experimentally. Fiber-matrix interfacial behavior was analyzed using a discrete fiber-matrix model. The thermal residual stresses due to the fabrication cycle were predicted with a failed interface, The failed interface resulted in lower thermal residual stresses in the matrix and fiber. Stresses due to a uniform transverse load were calculated at two temperatures, room temperature and an elevated temperature of 650 C. At both temperatures, a large stress concentration was calculated when the interface had failed. The results indicate the importance of accuracy accounting for fiber-matrix interface failure and the need for a micromechanics-based analytical technique to understand and predict the behavior of titanium metal matrix composites.
Elongated Tetrakaidecahedron Micromechanics Model for Space Shuttle External Tank Foams
NASA Technical Reports Server (NTRS)
Sullivan, Roy M.; Ghosn, Louis J.; Lerch, Bradley A.; Baker, Eric H.
2009-01-01
The results of microstructural characterization studies and physical and mechanical testing of BX-265 and NCFI24-124 foams are reported. A micromechanics model developed previously by the authors is reviewed, and the resulting equations for the elastic constants, the relative density, and the strength of the foam in the principal material directions are presented. The micromechanics model is also used to derive equations to predict the effect of vacuum on the tensile strength and the strains induced by exposure to vacuum. Using a combination of microstructural dimensions and physical and mechanical measurements as input, the equations for the elastic constants and the relative density are applied and the remaining microstructural dimensions are predicted. The predicted microstructural dimensions are in close agreement with the average measured values for both BX-265 and NCFI24-124. With the microstructural dimensions, the model predicts the ratio of the strengths in the principal material directions for both foams. The model is also used to predict the Poisson s ratios, the vacuum-induced strains, and the effect of vacuum on the tensile strengths. However, the comparison of these predicted values with the measured values is not as favorable.
Method for preventing micromechanical structures from adhering to another object
Smith, J.H.; Ricco, A.J.
1998-06-16
A method for preventing micromechanical structures from adhering to another object includes the step of immersing a micromechanical structure and its associated substrate in a chemical species that does not stick to itself. The method can be employed during the manufacture of micromechanical structures to prevent micromechanical parts from sticking or adhering to one another and their associated substrate surface. 3 figs.
Numerical Modeling of S-Wave Generation by Fracture Damage in Underground Nuclear Explosions
2009-09-30
Element Package, ABAQUS. A user -defined subroutine , VUMAT, was written that incorporates the micro-mechanics based damage constitutive law described...dynamic damage evolution on the elastic and anelastic response. 2) whereas the Ashby/Sammis model was only applicable to the case where the initial cracks ...are all parallel and the same size, we can now include a specified distribution of initial crack sizes with random azimuthal orientation about the
Micromechanism Based Modeling of Structural Life in Metal Matrix Composites
1997-03-23
wWchJndttees-^anätational eigenstrain ; and the embrittlement of material at the metal-ox^ interface, in addition, the influence of various heat...of two factors: the development of a surface layer consisting primarily of stoichiometric Ti02 which induces a dilatational eigenstrain ; and the...as the dilatational eigenstrain in order to capture the life reduction mechanism. As shown in Fig. 5, for the case of monotonic loading, the model
NASA Technical Reports Server (NTRS)
Stouffer, D. C.; Sheh, M. Y.
1988-01-01
A micromechanical model based on crystallographic slip theory was formulated for nickel-base single crystal superalloys. The current equations include both drag stress and back stress state variables to model the local inelastic flow. Specially designed experiments have been conducted to evaluate the effect of back stress in single crystals. The results showed that (1) the back stress is orientation dependent; and (2) the back stress state variable in the inelastic flow equation is necessary for predicting anelastic behavior of the material. The model also demonstrated improved fatigue predictive capability. Model predictions and experimental data are presented for single crystal superalloy Rene N4 at 982 C.
Determination of fiber-matrix interface failure parameters from off-axis tests
NASA Technical Reports Server (NTRS)
Naik, Rajiv A.; Crews, John H., Jr.
1993-01-01
Critical fiber-matrix (FM) interface strength parameters were determined using a micromechanics-based approach together with failure data from off-axis tension (OAT) tests. The ply stresses at failure for a range of off-axis angles were used as input to a micromechanics analysis that was performed using the personal computer-based MICSTRAN code. FM interface stresses at the failure loads were calculated for both the square and the diamond array models. A simple procedure was developed to determine which array had the more severe FM interface stresses and the location of these critical stresses on the interface. For the cases analyzed, critical FM interface stresses were found to occur with the square array model and were located at a point where adjacent fibers were closest together. The critical FM interface stresses were used together with the Tsai-Wu failure theory to determine a failure criterion for the FM interface. This criterion was then used to predict the onset of ply cracking in angle-ply laminates for a range of laminate angles. Predictions for the onset of ply cracking in angle-ply laminates agreed with the test data trends.
Scheiner, S; Pivonka, P; Smith, D W; Dunstan, C R; Hellmich, C
2014-01-01
Denosumab, a fully human monoclonal antibody, has been approved for the treatment of postmenopausal osteoporosis. The therapeutic effect of denosumab rests on its ability to inhibit osteoclast differentiation. Here, we present a computational approach on the basis of coupling a pharmacokinetics model of denosumab with a pharmacodynamics model for quantifying the effect of denosumab on bone remodeling. The pharmacodynamics model comprises an integrated systems biology-continuum micromechanics approach, including a bone cell population model, considering the governing biochemical factors of bone remodeling (including the action of denosumab), and a multiscale micromechanics-based bone mechanics model, for implementing the mechanobiology of bone remodeling in our model. Numerical studies of postmenopausal osteoporosis show that denosumab suppresses osteoclast differentiation, thus strongly curtailing bone resorption. Simulation results also suggest that denosumab may trigger a short-term bone volume gain, which is, however, followed by constant or decreasing bone volume. This evolution is accompanied by a dramatic decrease of the bone turnover rate by more than one order of magnitude. The latter proposes dominant occurrence of secondary mineralization (which is not anymore impeded through cellular activity), leading to higher mineral concentration per bone volume. This explains the overall higher bone mineral density observed in denosumab-related clinical studies. Copyright © 2013 John Wiley & Sons, Ltd. PMID:24039120
NASA Astrophysics Data System (ADS)
Yu, Chao; Kang, Guozheng; Kan, Qianhua
2015-09-01
Based on the experimental observations on the anisotropic cyclic deformation of super-elastic NiTi shape memory alloy single crystals done by Gall and Maier (2002), a crystal plasticity based micromechanical constitutive model is constructed to describe such anisotropic cyclic deformation. To model the internal stress caused by the unmatched inelastic deformation between the austenite and martensite phases on the plastic deformation of austenite phase, 24 induced martensite variants are assumed to be ellipsoidal inclusions with anisotropic elasticity and embedded in the austenite matrix. The homogeneous stress fields in the austenite matrix and each induced martensite variant are obtained by using the Mori-Tanaka homogenization method. Two different inelastic mechanisms, i.e., martensite transformation and transformation-induced plasticity, and their interactions are considered in the proposed model. Following the assumption of instantaneous domain growth (Cherkaoui et al., 1998), the Helmholtz free energy of a representative volume element of a NiTi shape memory single crystal is established and the thermodynamic driving forces of the internal variables are obtained from the dissipative inequalities. The capability of the proposed model to describe the anisotropic cyclic deformation of super-elastic NiTi single crystals is first verified by comparing the predicted results with the experimental ones. It is concluded that the proposed model can capture the main quantitative features observed in the experiments. And then, the proposed model is further used to predict the uniaxial and multiaxial transformation ratchetting of a NiTi single crystal.
Tari, Vahid; Lebensohn, Ricardo A.; Pokharel, Reeju; ...
2018-08-01
Here, a validation is reported for micromechanical simulation using a reimplementation of an elasto-viscoplastic FFT-based (EVPFFT) formulation, i.e., the Micromechanical Analysis of Stress-strain Inhomogeneities with fast Fourier transform (MASSIF) code, against experimental data obtained from synchrotron x-ray diffraction. The experimental data was collected during in-situ deformation of a titanium alloy specimen by High Energy Diffraction Microscopy (HEDM), which provided the average elastic strain tensor and orientation of each grain in a polycrystalline sample. MASSIF was used to calculate the local micromechanical fields in a Ti-7Al polycrystalline sample at different load levels. The initially attempted simulation showed that, although the effectivemore » response was calibrated to reproduce the experiment, MASSIF was not able to reproduce the micromechanical fields at the scale of individual grains. The differences between calculated and measured averages at the grain scale were related to initial residual strains resulting from the prior processing of the material, which had not been incorporated in the original calculation. Accordingly, a new simulation was instantiated using information on the measured residual strains to define a set of eigenstrains, calculated via an Eshelby approximation. This initialization significantly improved the correlation between calculated and simulated fields for all strain and stress components, for measurements performed within the elastic regime. For the measurements at the highest load, which was past plastic yield, the correlations deteriorated because of plastic deformation at the grain level and the lack of an accurate enough constitutive description in this deformation regime.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tari, Vahid; Lebensohn, Ricardo A.; Pokharel, Reeju
Here, a validation is reported for micromechanical simulation using a reimplementation of an elasto-viscoplastic FFT-based (EVPFFT) formulation, i.e., the Micromechanical Analysis of Stress-strain Inhomogeneities with fast Fourier transform (MASSIF) code, against experimental data obtained from synchrotron x-ray diffraction. The experimental data was collected during in-situ deformation of a titanium alloy specimen by High Energy Diffraction Microscopy (HEDM), which provided the average elastic strain tensor and orientation of each grain in a polycrystalline sample. MASSIF was used to calculate the local micromechanical fields in a Ti-7Al polycrystalline sample at different load levels. The initially attempted simulation showed that, although the effectivemore » response was calibrated to reproduce the experiment, MASSIF was not able to reproduce the micromechanical fields at the scale of individual grains. The differences between calculated and measured averages at the grain scale were related to initial residual strains resulting from the prior processing of the material, which had not been incorporated in the original calculation. Accordingly, a new simulation was instantiated using information on the measured residual strains to define a set of eigenstrains, calculated via an Eshelby approximation. This initialization significantly improved the correlation between calculated and simulated fields for all strain and stress components, for measurements performed within the elastic regime. For the measurements at the highest load, which was past plastic yield, the correlations deteriorated because of plastic deformation at the grain level and the lack of an accurate enough constitutive description in this deformation regime.« less
Metal matrix composite micromechanics: In-situ behavior influence on composite properties
NASA Technical Reports Server (NTRS)
Murthy, P. L. N.; Hopkins, D. A.; Chamis, C. C.
1989-01-01
Recent efforts in computational mechanics methods for simulating the nonlinear behavior of metal matrix composites have culminated in the implementation of the Metal Matrix Composite Analyzer (METCAN) computer code. In METCAN material nonlinearity is treated at the constituent (fiber, matrix, and interphase) level where the current material model describes a time-temperature-stress dependency of the constituent properties in a material behavior space. The composite properties are synthesized from the constituent instantaneous properties by virtue of composite micromechanics and macromechanics models. The behavior of metal matrix composites depends on fabrication process variables, in situ fiber and matrix properties, bonding between the fiber and matrix, and/or the properties of an interphase between the fiber and matrix. Specifically, the influence of in situ matrix strength and the interphase degradation on the unidirectional composite stress-strain behavior is examined. These types of studies provide insight into micromechanical behavior that may be helpful in resolving discrepancies between experimentally observed composite behavior and predicted response.
MUTLI-OBJECTIVE OPTIMIZATION OF MICROSTRUCTURE IN WROUGHT MAGNESIUM ALLOYS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radhakrishnan, Balasubramaniam; Gorti, Sarma B; Simunovic, Srdjan
2013-01-01
The microstructural features that govern the mechanical properties of wrought magnesium alloys include grain size, crystallographic texture, and twinning. Several processes based on shear deformation have been developed that promote grain refinement, weakening of the basal texture, as well as the shift of the peak intensity away from the center of the basal pole figure - features that promote room temperature ductility in Mg alloys. At ORNL, we are currently exploring the concept of introducing nano-twins within sub-micron grains as a possible mechanism for simultaneously improving strength and ductility by exploiting a potential dislocation glide along the twin-matrix interface amore » mechanism that was originally proposed for face-centered cubic materials. Specifically, we have developed an integrated modeling and optimization framework in order to identify the combinations of grain size, texture and twin spacing that can maximize strength-ductility combinations. A micromechanical model that relates microstructure to material strength is coupled with a failure model that relates ductility to a critical shear strain and a critical hydrostatic stress. The micro-mechanical model is combined with an optimization tool based on genetic algorithm. A multi-objective optimization technique is used to explore the strength-ductility space in a systematic fashion and identify optimum combinations of the microstructural parameters that will simultaneously maximize the strength-ductility in the alloy.« less
NASA Technical Reports Server (NTRS)
Arnold, S. M.; Saleeb, A. F.; Wilt, T. E.; Trowbridge, D.
2000-01-01
Extensive research efforts have been made over the years on the phenomenological representations of constitutive material behavior in the inelastic analysis and life assessment of structures composed of advanced monolithic and composite (CMC, MMC, and PMC) materials. Recently, emphasis has been placed on concurrently addressing three important and related areas of constitutive and degradation modeling; i.e. (i) mathematical formulation, (ii) algorithmic developments for the updating (integrating) of external (e.g. stress) and internal state variable, as well as (iii) parameter estimation for the characterization of the specific model. This concurrent perspective has resulted in; i) the formulation of a fully-associative viscoelastoplastic model (GVIPS), (ii) development of an efficient implicit integration and it's associative, symmetric, consistent tangent stiffness matrix algorithm for integration of the underlying rate flow/evolutionary equations, and iii) a robust, stand-alone, Constitutive Material Parameter Estimator (COMPARE) for automatically characterizing the various time-dependent, nonlinear, material models. Furthermore, to provide a robust multi-scale framework for the deformation and life analysis of structures composed of composite materials, NASA Glenn has aggressively pursued the development of a sufficiently general, accurate, and efficient micromechanics approach known as the generalized method of cells (GMC). This work has resulted in the development of MAC/GMC, a stand-alone micromechanics analysis tool that can easily and accurately design/analyze multiphase (composite) materials subjected to complex histories. MAC/GMC admits generalized, physically based, deformation and damage models for each constituent and provides "closed-form" expressions for the macroscopic composite response in terms of the properties, size, shape, distribution, and response of the individual constituents or phases that comprise the material. Consequently, MAC/GMC can be incorporated directly into a structural finite element code like ABAQUS for cost-effective, micromechanics based, large-scale component design and analysis. Our primary objective here is to report on these recent works conducted over the past decade, in the context of their incorporation into ABAQUS through the various user subroutines. Representative results will be shown to demonstrate the features of the developed schemes.
Computational Simulation of Continuous Fiber-Reinforced Ceramic Matrix Composites Behavior
NASA Technical Reports Server (NTRS)
Murthy, Pappu L. N.; Chamis, Christos C.; Mital, Subodh K.
1996-01-01
This report describes a methodology which predicts the behavior of ceramic matrix composites and has been incorporated in the computational tool CEMCAN (CEramic Matrix Composite ANalyzer). The approach combines micromechanics with a unique fiber substructuring concept. In this new concept, the conventional unit cell (the smallest representative volume element of the composite) of the micromechanics approach is modified by substructuring it into several slices and developing the micromechanics-based equations at the slice level. The methodology also takes into account nonlinear ceramic matrix composite (CMC) behavior due to temperature and the fracture initiation and progression. Important features of the approach and its effectiveness are described by using selected examples. Comparisons of predictions and limited experimental data are also provided.
Comparison Of Models Of Metal-Matrix Composites
NASA Technical Reports Server (NTRS)
Bigelow, C. A.; Johnson, W. S.; Naik, R. A.
1994-01-01
Report presents comparative review of four mathematical models of micromechanical behaviors of fiber/metal-matrix composite materials. Models differ in various details, all based on properties of fiber and matrix constituent materials, all involve square arrays of fibers continuous and parallel and all assume complete bonding between constituents. Computer programs implementing models used to predict properties and stress-vs.-strain behaviors of unidirectional- and cross-ply laminated composites made of boron fibers in aluminum matrices and silicon carbide fibers in titanium matrices. Stresses in fiber and matrix constituent materials also predicted.
2012-01-19
specific dislocation reactions. Rae et al .[4,5,7] proposed micromechanisms for primary creep caused by SF shearing of c0 precipitates by ah112i...near the [0 0 1] was done by Matan et al .[3] They proposed a phenomenological creep model, which was adopted from Gilman’s dislocation density model...the original loading orientation). MacLachlan et al .[18 21] proposed a series of creep models for anisotropic creep of single-crystal superalloys. Their
Micromechanical apparatus for measurement of forces
Tanner, Danelle Mary; Allen, James Joe
2004-05-25
A new class of micromechanical dynamometers has been disclosed which are particularly suited to fabrication in parallel with other microelectromechanical apparatus. Forces in the microNewton regime and below can be measured with such dynamometers which are based on a high-compliance deflection element (e.g. a ring or annulus) suspended above a substrate for deflection by an applied force, and one or more distance scales for optically measuring the deflection.
Designing added functions in engineered cementitious composites
NASA Astrophysics Data System (ADS)
Yang, En-Hua
In this dissertation, a new and systematic material design approach is developed for ECC with added functions through material microstructures linkage to composite macroscopic behavior. The thesis research embodies theoretical development by building on previous ECC micromechanical models, and experimental investigations into three specific new versions of ECC with added functions aimed at addressing societal demands of our built infrastructure. Specifically, the theoretical study includes three important ECC modeling elements: Steady-state crack propagation analyses and simulation, predictive accuracy of the fiber bridging constitutive model, and development of the rate-dependent strain-hardening criteria. The first element establishes the steady-state cracking criterion as a fundamental requirement for multiple cracking behavior in brittle matrix composites. The second element improves the accuracy of crack-width prediction in ECC. The third element establishes the micromechanics basis for impact-resistant ECC design. Three new ECCs with added functions were developed and experimentally verified in this thesis research through the enhanced theoretical framework. A green ECC incorporating a large volume of industrial waste was demonstrated to possess reduced crack width and drying shrinkage. The self-healing ECC designed with tight crack width was demonstrated to recover transport and mechanical properties after microcrack damage when exposed to wet and dry cycles. The impact-resistant ECC was demonstrated to retain tensile ductility with increased strength under moderately high strain-rate loading. These new versions of ECC with added functions are expected to contribute greatly to enhancing the sustainability, durability, and safety of civil infrastructure built with ECC. This research establishes the effectiveness of micromechanics-based design and material ingredient tailoring for ECC with added new attributes but without losing its basic tensile ductile characteristics.
Yeager, John D.; Luscher, Darby J.; Vogel, Sven C.; ...
2016-02-02
Triaminotrinitrobenzene (TATB) is a highly anisotropic molecular crystal used in several plastic-bonded explosive (PBX) formulations. TATB-based explosives exhibit irreversible volume expansion (“ratchet growth”) when thermally cycled. A theoretical understanding of the relationship between anisotropy of the crystal, crystal orientation distribution (texture) of polycrystalline aggregates, and the intergranular interactions leading to this irreversible growth is necessary to accurately develop physics-based predictive models for TATB-based PBXs under various thermal environments. In this work, TATB lattice parameters were measured using neutron diffraction during thermal cycling of loose powder and a pressed pellet. The measured lattice parameters help clarify conflicting reports in the literaturemore » as these new results are more consistent with one set of previous results than another. The lattice parameters of pressed TATB were also measured as a function of temperature, showing some differences from the powder. This data is used along with anisotropic single-crystal stiffness moduli reported in the literature to model the nominal stresses associated with intergranular constraints during thermal expansion. The texture of both specimens were characterized and the pressed pellet exhibits preferential orientation of (001) poles along the pressing direction, whereas no preferred orientation was found for the loose powder. Lastly, thermal strains for single-crystal TATB computed from lattice parameter data for the powder is input to a self-consistent micromechanical model, which predicts the lattice parameters of the constrained TATB crystals within the pellet. The agreement of these model results with the diffraction data obtained from the pellet is discussed along with future directions of research.« less
An Elongated Tetrakaidecahedron Model for Open-Celled Foams
NASA Technical Reports Server (NTRS)
Sullivan, Roy M.; Ghosn, Louis J.; Lerch, Bradley A.
2007-01-01
A micro-mechanics model for non-isotropic, open-celled foams is developed using an elongated tetrakaidecahedron (Kelvin model) as the repeating unit cell. The micro-mechanics model employs an elongated Kelvin model geometry which is more general than that employed by previous authors. Assuming the cell edges possess axial and bending rigidity, the mechanics of deformation of the elongated tetrakaidecahedron lead to a set of equations for the Young's modulus, Poisson's ratio and strength of the foam in the principal material directions. These equations are written as a function of the cell edge lengths and cross-section properties, the inclination angle and the strength and stiffness of the solid material. The model is applied to predict the strength and stiffness of several polymeric foams. Good agreement is observed between the model results and the experimental measurements.
Disorder-induced stiffness degradation of highly disordered porous materials
NASA Astrophysics Data System (ADS)
Laubie, Hadrien; Monfared, Siavash; Radjaï, Farhang; Pellenq, Roland; Ulm, Franz-Josef
2017-09-01
The effective mechanical behavior of multiphase solid materials is generally modeled by means of homogenization techniques that account for phase volume fractions and elastic moduli without considering the spatial distribution of the different phases. By means of extensive numerical simulations of randomly generated porous materials using the lattice element method, the role of local textural properties on the effective elastic properties of disordered porous materials is investigated and compared with different continuum micromechanics-based models. It is found that the pronounced disorder-induced stiffness degradation originates from stress concentrations around pore clusters in highly disordered porous materials. We identify a single disorder parameter, φsa, which combines a measure of the spatial disorder of pores (the clustering index, sa) with the pore volume fraction (the porosity, φ) to scale the disorder-induced stiffness degradation. Thus, we conclude that the classical continuum micromechanics models with one spherical pore phase, due to their underlying homogeneity assumption fall short of addressing the clustering effect, unless additional texture information is introduced, e.g. in form of the shift of the percolation threshold with disorder, or other functional relations between volume fractions and spatial disorder; as illustrated herein for a differential scheme model representative of a two-phase (solid-pore) composite model material.
The cohesive law of particle/binder interfaces in solid propellants
NASA Astrophysics Data System (ADS)
Tan, H.
2011-10-01
Solid propellants are treated as composites with high volume fraction of particles embedded in the polymeric binder. A micromechanics model is developed to establish the link between the microscopic behavior of particle/binder interfaces and the macroscopic constitutive information. This model is then used to determine the tension/shearing coupled interface cohesive law of a redesigned solid rocket motor propellant, based on the experimental data of the stress-strain and dilatation-strain curves for the material under slow rate uniaxial tension.
Interfacial Micromechanics in Fibrous Composites: Design, Evaluation, and Models
Lei, Zhenkun; Li, Xuan; Qin, Fuyong; Qiu, Wei
2014-01-01
Recent advances of interfacial micromechanics in fiber reinforced composites using micro-Raman spectroscopy are given. The faced mechanical problems for interface design in fibrous composites are elaborated from three optimization ways: material, interface, and computation. Some reasons are depicted that the interfacial evaluation methods are difficult to guarantee the integrity, repeatability, and consistency. Micro-Raman study on the fiber interface failure behavior and the main interface mechanical problems in fibrous composites are summarized, including interfacial stress transfer, strength criterion of interface debonding and failure, fiber bridging, frictional slip, slip transition, and friction reloading. The theoretical models of above interface mechanical problems are given. PMID:24977189
Analysis of Fiber Clustering in Composite Materials Using High-Fidelity Multiscale Micromechanics
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Aboudi, Jacob; Arnold, Steven M.
2015-01-01
A new multiscale micromechanical approach is developed for the prediction of the behavior of fiber reinforced composites in presence of fiber clustering. The developed method is based on a coupled two-scale implementation of the High-Fidelity Generalized Method of Cells theory, wherein both the local and global scales are represented using this micromechanical method. Concentration tensors and effective constitutive equations are established on both scales and linked to establish the required coupling, thus providing the local fields throughout the composite as well as the global properties and effective nonlinear response. Two nondimensional parameters, in conjunction with actual composite micrographs, are used to characterize the clustering of fibers in the composite. Based on the predicted local fields, initial yield and damage envelopes are generated for various clustering parameters for a polymer matrix composite with both carbon and glass fibers. Nonlinear epoxy matrix behavior is also considered, with results in the form of effective nonlinear response curves, with varying fiber clustering and for two sets of nonlinear matrix parameters.
MEMS resonant load cells for micro-mechanical test frames: feasibility study and optimal design
NASA Astrophysics Data System (ADS)
Torrents, A.; Azgin, K.; Godfrey, S. W.; Topalli, E. S.; Akin, T.; Valdevit, L.
2010-12-01
This paper presents the design, optimization and manufacturing of a novel micro-fabricated load cell based on a double-ended tuning fork. The device geometry and operating voltages are optimized for maximum force resolution and range, subject to a number of manufacturing and electromechanical constraints. All optimizations are enabled by analytical modeling (verified by selected finite elements analyses) coupled with an efficient C++ code based on the particle swarm optimization algorithm. This assessment indicates that force resolutions of ~0.5-10 nN are feasible in vacuum (~1-50 mTorr), with force ranges as large as 1 N. Importantly, the optimal design for vacuum operation is independent of the desired range, ensuring versatility. Experimental verifications on a sub-optimal device fabricated using silicon-on-glass technology demonstrate a resolution of ~23 nN at a vacuum level of ~50 mTorr. The device demonstrated in this article will be integrated in a hybrid micro-mechanical test frame for unprecedented combinations of force resolution and range, displacement resolution and range, optical (or SEM) access to the sample, versatility and cost.
Micromechanics of Ultrafine Particle Adhesion—Contact Models
NASA Astrophysics Data System (ADS)
Tomas, Jürgen
2009-06-01
Ultrafine, dry, cohesive and compressible powders (particle diameter d<10 μm) show a wide variety of flow problems that cause insufficient apparatus and system reliability of processing plants. Thus, the understanding of the micromechanics of particle adhesion is essential to assess the product quality and to improve the process performance in particle technology. Comprehensive models are shown that describe the elastic-plastic force-displacement and frictional moment-angle behavior of adhesive contacts of isotropic smooth spheres. By the model stiff particles with soft contacts, a sphere-sphere interaction of van der Waals forces without any contact deformation describes the stiff attractive term. But, the soft micro-contact response generates a flattened contact, i.e. plate-plate interaction, and increasing adhesion. These increasing adhesion forces between particles directly depend on this frozen irreversible deformation. Thus, the adhesion force is found to be load dependent. It contributes to the tangential forces in an elastic-plastic frictional contact with partially sticking and micro-slip within the contact plane. The load dependent rolling resistance and torque of mobilized frictional contact rotation (spin around its principal axis) are also shown. This reasonable combination of particle contact micromechanics and powder continuum mechanics is used to model analytically the macroscopic friction limits of incipient powder consolidation, yield and cohesive steady-state shear flow on physical basis.
Wu, Jiayu; Yuan, Hong; Li, Longyuan; Fan, Kunjie; Qian, Shanguang; Li, Bing
2018-01-21
Owing to its viscoelastic nature, tendon exhibits stress rate-dependent breaking and stiffness function. A Kelvin-Voigt viscoelastic shear lag model is proposed to illustrate the micromechanical behavior of the tendon under dynamic tensile conditions. Theoretical closed-form expressions are derived to predict the deformation and stress transfer between fibrils and interfibrillar matrix while tendon is dynamically stretched. The results from the analytical solutions demonstrate that how the fibril overlap length and fibril volume fraction affect the stress transfer and mechanical properties of tendon. We find that the viscoelastic property of interfibrillar matrix mainly results in collagen fibril failure under fast loading rate or creep rupture of tendon. However, discontinuous fibril model and hierarchical structure of tendon ensure relative sliding under slow loading rate, helping dissipate energy and protecting fibril from damage, which may be a key reason why regularly staggering alignment microstructure is widely selected in nature. According to the growth, injury, healing and healed process of tendon observed by many researchers, the conclusions presented in this paper agrees well with the experimental findings. Additionally, the emphasis of this paper is on micromechanical behavior of tendon, whereas this analytical viscoelastic shear lag model can be equally applicable to other soft or hard tissues, owning the similar microstructure. Copyright © 2017 Elsevier Ltd. All rights reserved.
Optimal Damping Behavior of a Composite Sandwich Beam Reinforced with Coated Fibers
NASA Astrophysics Data System (ADS)
Lurie, S.; Solyaev, Y.; Ustenko, A.
2018-04-01
In the present paper, the effective damping properties of a symmetric foam-core sandwich beam with composite face plates reinforced with coated fibers is studied. A glass fiber-epoxy composite with additional rubber-toughened epoxy coatings on the fibers is considered as the material of the face plates. A micromechanical analysis of the effective properties of the unidirectional lamina is conducted based on the generalized self-consistent method and the viscoelastic correspondence principle. The effective complex moduli of composite face plates with a symmetric angle-ply structure are evaluated based on classical lamination theory. A modified Mead-Markus model is utilized to evaluate the fundamental modal loss factor of a simply supported sandwich beam with a polyurethane core. The viscoelastic frequency-dependent behaviors of the core and face plate materials are both considered. The properties of the face plates are evaluated based on a micromechanical analysis and found to implicitly depend on frequency; thus, an iterative procedure is applied to find the natural frequencies of the lateral vibrations of the beam. The optimal values of the coating thickness, lamination angle and core thickness for the best multi-scale damping behavior of the beam are found.
NASA Astrophysics Data System (ADS)
Yuan, K. Y.; Yuan, W.; Ju, J. W.; Yang, J. M.; Kao, W.; Carlson, L.
2012-04-01
As asphalt pavements age and deteriorate, recurring pothole repair failures and propagating alligator cracks in the asphalt pavements have become a serious issue to our daily life and resulted in high repairing costs for pavement and vehicles. To solve this urgent issue, pothole repair materials with superior durability and long service life are needed. In the present work, revolutionary pothole patching materials with high toughness, high fatigue resistance that are reinforced with nano-molecular resins have been developed to enhance their resistance to traffic loads and service life of repaired potholes. In particular, DCPD resin (dicyclopentadiene, C10H12) with a Rhuthinium-based catalyst is employed to develop controlled properties that are compatible with aggregates and asphalt binders. In this paper, a multi-level numerical micromechanics-based model is developed to predict the mechanical properties of these innovative nanomolecular resin reinforced pothole patching materials. Coarse aggregates in the finite element analysis are modeled as irregular shapes through image processing techniques and randomly-dispersed coated particles. The overall properties of asphalt mastic, which consists of fine aggregates, asphalt binder, cured DCPD and air voids are theoretically estimated by the homogenization technique of micromechanics. Numerical predictions are compared with suitably designed experimental laboratory results.
NASA Technical Reports Server (NTRS)
Pineda, Evan, J.; Bednarcyk, Brett, A.; Arnold, Steven, M.
2012-01-01
A mesh objective crack band model is implemented in the generalized method of cells (GMC) micromechanics model to predict failure of a composite repeating unit cell (RUC). The micromechanics calculations are achieved using the MAC/GMC core engine within the ImMAC suite of micromechanics codes, developed at the NASA Glenn Research Center. The microscale RUC is linked to a macroscale Abaqus/Standard finite element model using the FEAMAC multiscale framework (included in the ImMAC suite). The effects of the relationship between the characteristic length of the finite element and the size of the microscale RUC on the total energy dissipation of the multiscale model are investigated. A simple 2-D composite square subjected to uniaxial tension is used to demonstrate the effects of scaling the dimensions of the RUC such that the length of the sides of the RUC are equal to the characteristic length of the finite element. These results are compared to simulations where the size of the RUC is fixed, independent of the element size. Simulations are carried out for a variety of mesh densities and element shapes, including square and triangular. Results indicate that a consistent size and shape must be used to yield preserve energy dissipation across the scales.
Micromechanical investigation of ductile failure in Al 5083-H116 via 3D unit cell modeling
NASA Astrophysics Data System (ADS)
Bomarito, G. F.; Warner, D. H.
2015-01-01
Ductile failure is governed by the evolution of micro-voids within a material. The micro-voids, which commonly initiate at second phase particles within metal alloys, grow and interact with each other until failure occurs. The evolution of the micro-voids, and therefore ductile failure, depends on many parameters (e.g., stress state, temperature, strain rate, void and particle volume fraction, etc.). In this study, the stress state dependence of the ductile failure of Al 5083-H116 is investigated by means of 3-D Finite Element (FE) periodic cell models. The cell models require only two pieces of information as inputs: (1) the initial particle volume fraction of the alloy and (2) the constitutive behavior of the matrix material. Based on this information, cell models are subjected to a given stress state, defined by the stress triaxiality and the Lode parameter. For each stress state, the cells are loaded in many loading orientations until failure. Material failure is assumed to occur in the weakest orientation, and so the orientation in which failure occurs first is considered as the critical orientation. The result is a description of material failure that is derived from basic principles and requires no fitting parameters. Subsequently, the results of the simulations are used to construct a homogenized material model, which is used in a component-scale FE model. The component-scale FE model is compared to experiments and is shown to over predict ductility. By excluding smaller nucleation events and load path non-proportionality, it is concluded that accuracy could be gained by including more information about the true microstructure in the model; emphasizing that its incorporation into micromechanical models is critical to developing quantitatively accurate physics-based ductile failure models.
Analytical and numerical analysis of frictional damage in quasi brittle materials
NASA Astrophysics Data System (ADS)
Zhu, Q. Z.; Zhao, L. Y.; Shao, J. F.
2016-07-01
Frictional sliding and crack growth are two main dissipation processes in quasi brittle materials. The frictional sliding along closed cracks is the origin of macroscopic plastic deformation while the crack growth induces a material damage. The main difficulty of modeling is to consider the inherent coupling between these two processes. Various models and associated numerical algorithms have been proposed. But there are so far no analytical solutions even for simple loading paths for the validation of such algorithms. In this paper, we first present a micro-mechanical model taking into account the damage-friction coupling for a large class of quasi brittle materials. The model is formulated by combining a linear homogenization procedure with the Mori-Tanaka scheme and the irreversible thermodynamics framework. As an original contribution, a series of analytical solutions of stress-strain relations are developed for various loading paths. Based on the micro-mechanical model, two numerical integration algorithms are exploited. The first one involves a coupled friction/damage correction scheme, which is consistent with the coupling nature of the constitutive model. The second one contains a friction/damage decoupling scheme with two consecutive steps: the friction correction followed by the damage correction. With the analytical solutions as reference results, the two algorithms are assessed through a series of numerical tests. It is found that the decoupling correction scheme is efficient to guarantee a systematic numerical convergence.
Characterizing the lung tissue mechanical properties using a micromechanical model of alveolar sac
NASA Astrophysics Data System (ADS)
Karami, Elham; Seify, Behzad; Moghadas, Hadi; Sabsalinejad, Masoomeh; Lee, Ting-Yim; Samani, Abbas
2017-03-01
According to statistics, lung disease is among the leading causes of death worldwide. As such, many research groups are developing powerful tools for understanding, diagnosis and treatment of various lung diseases. Recently, biomechanical modeling has emerged as an effective tool for better understanding of human physiology, disease diagnosis and computer assisted medical intervention. Mechanical properties of lung tissue are important requirements for methods developed for lung disease diagnosis and medical intervention. As such, the main objective of this study is to develop an effective tool for estimating the mechanical properties of normal and pathological lung parenchyma tissue based on its microstructure. For this purpose, a micromechanical model of the lung tissue was developed using finite element (FE) method, and the model was demonstrated to have application in estimating the mechanical properties of lung alveolar wall. The proposed model was developed by assembling truncated octahedron tissue units resembling the alveoli. A compression test was simulated using finite element method on the created geometry and the hyper-elastic parameters of the alveoli wall were calculated using reported alveolar wall stress-strain data and an inverse optimization framework. Preliminary results indicate that the proposed model can be potentially used to reconstruct microstructural images of lung tissue using macro-scale tissue response for normal and different pathological conditions. Such images can be used for effective diagnosis of lung diseases such as Chronic Obstructive Pulmonary Disease (COPD).
Micromechanics and Piezo Enhancements of HyperSizer
NASA Technical Reports Server (NTRS)
Arnold, Steven M.; Bednarcyk, Brett A.; Yarrington, Phillip; Collier, Craig S.
2006-01-01
The commercial HyperSizer aerospace-composite-material-structure-sizing software has been enhanced by incorporating capabilities for representing coupled thermal, piezoelectric, and piezomagnetic effects on the levels of plies, laminates, and stiffened panels. This enhancement is based on a formulation similar to that of the pre-existing HyperSizer capability for representing thermal effects. As a result of this enhancement, the electric and/or magnetic response of a material or structure to a mechanical or thermal load, or its mechanical response to an applied electric or magnetic field can be predicted. In another major enhancement, a capability for representing micromechanical effects has been added by establishment of a linkage between HyperSizer and Glenn Research Center s Micromechanics Analysis Code With Generalized Method of Cells (MAC/GMC) computer program, which was described in several prior NASA Tech Briefs articles. The linkage enables Hyper- Sizer to localize to the fiber and matrix level rather than only to the ply level, making it possible to predict local failures and to predict properties of plies from those of the component fiber and matrix materials. Advanced graphical user interfaces and database structures have been developed to support the new HyperSizer micromechanics capabilities.
Micromechanical modeling of damage growth in titanium based metal-matrix composites
NASA Technical Reports Server (NTRS)
Sherwood, James A.; Quimby, Howard M.
1994-01-01
The thermomechanical behavior of continuous-fiber reinforced titanium based metal-matrix composites (MMC) is studied using the finite element method. A thermoviscoplastic unified state variable constitutive theory is employed to capture inelastic and strain-rate sensitive behavior in the Timetal-21s matrix. The SCS-6 fibers are modeled as thermoplastic. The effects of residual stresses generated during the consolidation process on the tensile response of the composites are investigated. Unidirectional and cross-ply geometries are considered. Differences between the tensile responses in composites with perfectly bonded and completely debonded fiber/matrix interfaces are discussed. Model simulations for the completely debonded-interface condition are shown to correlate well with experimental results.
NASA Astrophysics Data System (ADS)
Das, Arghya; Tengattini, Alessandro; Nguyen, Giang D.; Viggiani, Gioacchino; Hall, Stephen A.; Einav, Itai
2014-10-01
We study the mechanical failure of cemented granular materials (e.g., sandstones) using a constitutive model based on breakage mechanics for grain crushing and damage mechanics for cement fracture. The theoretical aspects of this model are presented in Part I: Tengattini et al. (2014), A thermomechanical constitutive model for cemented granular materials with quantifiable internal variables, Part I - Theory (Journal of the Mechanics and Physics of Solids, 10.1016/j.jmps.2014.05.021). In this Part II we investigate the constitutive and structural responses of cemented granular materials through analyses of Boundary Value Problems (BVPs). The multiple failure mechanisms captured by the proposed model enable the behavior of cemented granular rocks to be well reproduced for a wide range of confining pressures. Furthermore, through comparison of the model predictions and experimental data, the micromechanical basis of the model provides improved understanding of failure mechanisms of cemented granular materials. In particular, we show that grain crushing is the predominant inelastic deformation mechanism under high pressures while cement failure is the relevant mechanism at low pressures. Over an intermediate pressure regime a mixed mode of failure mechanisms is observed. Furthermore, the micromechanical roots of the model allow the effects on localized deformation modes of various initial microstructures to be studied. The results obtained from both the constitutive responses and BVP solutions indicate that the proposed approach and model provide a promising basis for future theoretical studies on cemented granular materials.
NASA Astrophysics Data System (ADS)
Abedi, S.; Mashhadian, M.; Noshadravan, A.
2015-12-01
Increasing the efficiency and sustainability in operation of hydrocarbon recovery from organic-rich shales requires a fundamental understanding of chemomechanical properties of organic-rich shales. This understanding is manifested in form of physics-bases predictive models capable of capturing highly heterogeneous and multi-scale structure of organic-rich shale materials. In this work we present a framework of experimental characterization, micromechanical modeling, and uncertainty quantification that spans from nanoscale to macroscale. Application of experiments such as coupled grid nano-indentation and energy dispersive x-ray spectroscopy and micromechanical modeling attributing the role of organic maturity to the texture of the material, allow us to identify unique clay mechanical properties among different samples that are independent of maturity of shale formations and total organic content. The results can then be used to inform the physically-based multiscale model for organic rich shales consisting of three levels that spans from the scale of elementary building blocks (e.g. clay minerals in clay-dominated formations) of organic rich shales to the scale of the macroscopic inorganic/organic hard/soft inclusion composite. Although this approach is powerful in capturing the effective properties of organic-rich shale in an average sense, it does not account for the uncertainty in compositional and mechanical model parameters. Thus, we take this model one step forward by systematically incorporating the main sources of uncertainty in modeling multiscale behavior of organic-rich shales. In particular we account for the uncertainty in main model parameters at different scales such as porosity, elastic properties and mineralogy mass percent. To that end, we use Maximum Entropy Principle and random matrix theory to construct probabilistic descriptions of model inputs based on available information. The Monte Carlo simulation is then carried out to propagate the uncertainty and consequently construct probabilistic descriptions of properties at multiple length-scales. The combination of experimental characterization and stochastic multi-scale modeling presented in this work improves the robustness in the prediction of essential subsurface parameters in engineering scale.
Das, Sumanta; Yang, Pu; Singh, Sudhanshu S.; ...
2015-09-02
Microstructural and micromechanical investigation of a fly ash-based geopolymer using: (i) synchrotron x-ray tomography (XRT) to determine the volume fraction and tortuosity of pores that are influential in fluid transport, (ii) mercury intrusion porosimetry (MIP) to capture the volume fraction of smaller pores, (iii) scanning electron microscopy (SEM) combined with multi-label thresholding to identify and characterize the solid phases in the microstructure, and (iv) nanoindentation to determine the component phase elastic properties using statistical deconvolution, is reported in this paper. The phase volume fractions and elastic properties are used in multi-step mean field homogenization (Mori- Tanaka and double inclusion) modelsmore » to determine the homogenized macroscale elastic modulus of the composite. The homogenized elastic moduli are in good agreement with the flexural elastic modulus determined on macroscale paste beams. As a result, the combined use of microstructural and micromechanical characterization tools at multiple scales provides valuable information towards the material design of fly ash geopolymers.« less
A Nonlinear Three-Dimensional Micromechanics Model for Fiber-Reinforced Laminated Composites
1993-11-01
Interfacial Properties Employed for the SCS6/Ti-15-3 Composite ......................... 150 11. Constants Employed for the LLFM Predictions of Quasi...Region m Matrix Property or Mean of the Interfacial Stress Distribution ml, m2, m3 Signifies Matrix Region n Normal to Interface r Signifies Equation...usage of the new class of titanium based com- posites in advanced aerospace structures and engines such as are targeted for the advanced tactical fighter
Compound floating pivot micromechanisms
Garcia, Ernest J.
2001-04-24
A new class of tilting micromechanical mechanisms have been developed. These new mechanisms use compound floating pivot structures to attain far greater tilt angles than are practical using other micromechanical techniques. The new mechanisms are also capable of bi-directional tilt about multiple axes.
Inelastic deformation of metal matrix composites
NASA Technical Reports Server (NTRS)
Lissenden, C. J.; Herakovich, C. T.; Pindera, M-J.
1993-01-01
A theoretical model capable of predicting the thermomechanical response of continuously reinforced metal matrix composite laminates subjected to multiaxial loading was developed. A micromechanical model is used in conjunction with nonlinear lamination theory to determine inelastic laminae response. Matrix viscoplasticity, residual stresses, and damage to the fiber/matrix interfacial zone are explicitly included in the model. The representative cell of the micromechanical model is considered to be in a state of generalized plane strain, enabling a quasi two-dimensional analysis to be performed. Constant strain finite elements are formulated with elastic-viscoplastic constitutive equations. Interfacial debonding is incorporated into the model through interface elements based on the interfacial debonding theory originally presented by Needleman, and modified by Tvergaard. Nonlinear interfacial constitutive equations relate interfacial tractions to displacement discontinuities at the interface. Theoretical predictions are compared with the results of an experimental program conducted on silicon carbide/titanium (SiC/Ti) unidirectional, (O4), and angle-ply, (+34)(sub s), tubular specimens. Multiaxial loading included increments of axial tension, compression, torque, and internal pressure. Loadings were chosen in an effort to distinguish inelastic deformation due to damage from matrix plasticity and separate time-dependent effects from time-independent effects. Results show that fiber/matrix debonding is nonuniform throughout the composite and is a major factor in the effective response. Also, significant creep behavior occurs at relatively low applied stress levels at room temperature.
Modeling creep behavior of fiber composites
NASA Technical Reports Server (NTRS)
Chen, J. L.; Sun, C. T.
1988-01-01
A micromechanical model for the creep behavior of fiber composites is developed based on a typical cell consisting of a fiber and the surrounding matrix. The fiber is assumed to be linearly elastic and the matrix nonlinearly viscous. The creep strain rate in the matrix is assumed to be a function of stress. The nominal stress-strain relations are derived in the form of differential equations which are solved numerically for off-axis specimens under uniaxial loading. A potential function and the associated effective stress and effective creep strain rates are introduced to simplify the orthotropic relations.
Advances in Micromechanics Modeling of Composites Structures for Structural Health Monitoring
NASA Astrophysics Data System (ADS)
Moncada, Albert
Although high performance, light-weight composites are increasingly being used in applications ranging from aircraft, rotorcraft, weapon systems and ground vehicles, the assurance of structural reliability remains a critical issue. In composites, damage is absorbed through various fracture processes, including fiber failure, matrix cracking and delamination. An important element in achieving reliable composite systems is a strong capability of assessing and inspecting physical damage of critical structural components. Installation of a robust Structural Health Monitoring (SHM) system would be very valuable in detecting the onset of composite failure. A number of major issues still require serious attention in connection with the research and development aspects of sensor-integrated reliable SHM systems for composite structures. In particular, the sensitivity of currently available sensor systems does not allow detection of micro level damage; this limits the capability of data driven SHM systems. As a fundamental layer in SHM, modeling can provide in-depth information on material and structural behavior for sensing and detection, as well as data for learning algorithms. This dissertation focuses on the development of a multiscale analysis framework, which is used to detect various forms of damage in complex composite structures. A generalized method of cells based micromechanics analysis, as implemented in NASA's MAC/GMC code, is used for the micro-level analysis. First, a baseline study of MAC/GMC is performed to determine the governing failure theories that best capture the damage progression. The deficiencies associated with various layups and loading conditions are addressed. In most micromechanics analysis, a representative unit cell (RUC) with a common fiber packing arrangement is used. The effect of variation in this arrangement within the RUC has been studied and results indicate this variation influences the macro-scale effective material properties and failure stresses. The developed model has been used to simulate impact damage in a composite beam and an airfoil structure. The model data was verified through active interrogation using piezoelectric sensors. The multiscale model was further extended to develop a coupled damage and wave attenuation model, which was used to study different damage states such as fiber-matrix debonding in composite structures with surface bonded piezoelectric sensors.
Electromagnetic and nuclear radiation detector using micromechanical sensors
Thundat, Thomas G.; Warmack, Robert J.; Wachter, Eric A.
2000-01-01
Electromagnetic and nuclear radiation is detected by micromechanical sensors that can be coated with various interactive materials. As the micromechanical sensors absorb radiation, the sensors bend and/or undergo a shift in resonance characteristics. The bending and resonance changes are detected with high sensitivity by any of several detection methods including optical, capacitive, and piezoresistive methods. Wide bands of the electromagnetic spectrum can be imaged with picoJoule sensitivity, and specific absorptive coatings can be used for selective sensitivity in specific wavelength bands. Microcantilevers coated with optical cross-linking polymers are useful as integrating optical radiation dosimeters. Nuclear radiation dosimetry is possible by fabricating cantilevers from materials that are sensitive to various nuclear particles or radiation. Upon exposure to radiation, the cantilever bends due to stress and its resonance frequency shifts due to changes in elastic properties, based on cantilever shape and properties of the coating.
Apparatus for raising or tilting a micromechanical structure
Allen, James J [Albuquerque, NM
2008-09-09
An active hinge apparatus is disclosed which can be used to raise a micromechanical structure (e.g. a plate or micromirror) on a substrate. The active hinge apparatus utilizes one or more of teeth protruding outward from an axle which also supports the micromechanical structure on one end thereof. A rack is used to engage the teeth and rotate the axle to raise the micromechanical structure and tilt the structure at an angle to the substrate. Motion of the rack is provided by an actuator which can be a mechanically-powered actuator, or alternately an electrostatic comb actuator or a thermal actuator. A latch can be optionally provided in the active hinge apparatus to lock the micromechanical structure in an "erected" position.
Misra, Anil; Spencer, Paulette; Marangos, Orestes; Wang, Yong; Katz, J. Lawrence
2005-01-01
A finite element (FE) model has been developed based upon the recently measured micro-scale morphological, chemical and mechanical properties of dentin–adhesive (d–a) interfaces using confocal Raman microspectroscopy and scanning acoustic microscopy (SAM). The results computed from this FE model indicated that the stress distributions and concentrations are affected by the micro-scale elastic properties of various phases composing the d–a interface. However, these computations were performed assuming isotropic material properties for the d–a interface. The d–a interface components, such as the peritubular and intertubular dentin, the partially demineralized dentin and the so-called ‘hybrid layer’ adhesive-collagen composite, are probably anisotropic. In this paper, the FE model is extended to account for the probable anisotropic properties of these d–a interface phases. A parametric study is performed to study the effect of anisotropy on the micromechanical stress distributions in the hybrid layer and the peritubular dentin phases of the d–a interface. It is found that the anisotropy of the phases affects the region and extent of stress concentration as well as the location of the maximum stress concentrations. Thus, the anisotropy of the phases could effect the probable location of failure initiation, whether in the peritubular region or in the hybrid layer. PMID:16849175
Fibrous tissues growth and remodeling: Evolutionary micro-mechanical theory
NASA Astrophysics Data System (ADS)
Lanir, Yoram
2017-10-01
Living fibrous tissues are composite materials having the unique ability to adapt their size, shape, structure and mechanical properties in response to external loading. This adaptation, termed growth and remodeling (G&R), occurs throughout life and is achieved via cell-induced turnover of tissue constituents where some are degraded and new ones are produced. Realistic mathematical modeling of G&R provides insight into the basic processes, allows for hypotheses testing, and constitutes an essential tool for establishing clinical thresholds of pathological remodeling and for the production of tissue substitutes aimed to achieve target structure and properties. In this study, a general 3D micro-mechanical multi-scale theory of G&R in fibrous tissue was developed which connects between the evolution of the tissue structure and properties, and the underlying mechano-biological turnover events of its constituents. This structural approach circumvents a fundamental obstacle in modeling growth mechanics since the growth motion is not bijective. The model was realized for a flat tissue under two biaxial external loadings using data-based parameter values. The predictions show close similarity to characteristics of remodeled adult tissue including its structure, anisotropic and non-linear mechanical properties, and the onset of in situ pre-strain and pre-stress. The results suggest that these important features of living fibrous tissues evolve as they grow.
Flow/Damage Surfaces for Fiber-Reinforced Metals Having Different Periodic Microstructures
NASA Technical Reports Server (NTRS)
Lissenden, Cliff J.; Arnold, Steven M.; Iyer, Saiganesh K.
1998-01-01
Flow/damage surfaces can be defined in terms of stress, inelastic strain rate, and internal variables using a thermodynamics framework. A macroscale definition relevant to thermodynamics and usable in an experimental program is employed to map out surfaces of constant inelastic power in various stress planes. The inelastic flow of a model silicon carbide/ titanium composite system having rectangular, hexagonal, and square diagonal fiber packing arrays subjected to biaxial stresses is quantified by flow/damage surfaces that are determined numerically from micromechanics, using both finite element analysis and the generalized method of cells. Residual stresses from processing are explicitly included and damage in the form of fiber-matrix debonding under transverse tensile and/or shear loading is represented by a simple interface model. The influence of microstructural architecture is largest whenever fiber-matrix debonding is not an issue; for example in the presence of transverse compressive stresses. Additionally, as the fiber volume fraction increases, so does the effect of microstructural architecture. With regard to the micromechanics analysis, the overall inelastic flow predicted by the generalized method of cells is in excellent agreement with that predicted using a large number of displacement-based finite elements.
Flow/Damage Surfaces for Fiber-Reinforced Metals having Different Periodic Microstructures
NASA Technical Reports Server (NTRS)
Lissenden, Cliff J.; Arnold, Steven M.; Iyer, Saiganesh K.
1998-01-01
Flow/damage surfaces can be defined in terms of stress, inelastic strain rate, and internal variables using a thermodynamics framework. A macroscale definition relevant to thermodynamics and usable in an experimental program is employed to map out surfaces of constant inelastic power in various stress planes. The inelastic flow of a model silicon carbide/ titanium composite system having rectangular, hexagonal, and square diagonal fiber packing, arrays subjected to biaxial stresses is quantified by flow/damage surfaces that are determined numerically from micromechanics. using both finite element analysis and the generalized method of cells. Residual stresses from processing are explicitly included and damage in the form of fiber-matrix debonding under transverse tensile and/or shear loading is represented by a simple interface model. The influence of microstructural architecture is largest whenever fiber-matrix debonding is not an issue, for example in the presence of transverse compressive stresses. Additionally, as the fiber volume fraction increases, so does the effect of microstructural architecture. With regard to the micromechanics analysis, the overall inelastic flow predicted by the generalized method of cells is in excellent agreement with that predicted using a large number of displacement-based finite elements.
NASA Astrophysics Data System (ADS)
Armstrong, D. E. J.; Hardie, C. D.; Gibson, J. S. K. L.; Bushby, A. J.; Edmondson, P. D.; Roberts, S. G.
2015-07-01
This paper demonstrates the ability of advanced micro-mechanical testing methods, based on FIB machined micro-cantilevers, to measure the mechanical properties of ion implanted layers without the influence of underlying unimplanted material. The first section describes a study of iron-12 wt% chromium alloy implanted with iron ions. It is shown that by careful cantilever design and finite element modelling that changes in yield stress after implantation can be measured even with the influence of a strong size effect. The second section describes a study of tungsten implanted with both tungsten ions and tungsten and helium ions using spherical and sharp nanoindentation, and micro-cantilevers. The spherical indentation allows yield properties and work hardening behaviour of the implanted layers to be measured. However the brittle nature of the implanted tungsten is only revealed when using micro-cantilevers. This demonstrates that when applying micro-mechanical methods to ion implanted layers care is needed to understand the nature of size effects, careful modelling of experimental procedure is required and multiple experimental techniques are needed to allow the maximum amount of mechanical behaviour information to be collected.
NASA Astrophysics Data System (ADS)
Troncoso, Omar P.; Gigos, Florian; Torres, Fernando G.
2017-11-01
Arapaima gigas scales are natural laminated composite materials made of individual layers with different degrees of mineralization, accompanied of varying mechanical properties. This natural design provides scales with hardness and flexibility, and can serve as a source of inspiration for the development of new layered composites with a hard surface and flexible base. In this paper, we have carried out cyclic micro-indentation tests on both; the internal and the highly mineralized external surface of air dried and wet scales, in order to assess the variation of their local micromechanical properties with regard to the mineral and water content. The load-penetration (P-h) curves showed that creep takes place throughout the application of a constant force during the micro-indentation tests, confirming the time dependent response of A. gigas scales. A model that accounted for the elastic, plastic and viscous responses of the samples was used to fit the experimental results. The penetration depth during loading and creep, as well as the energy dissipated are dependent on the water content. The used model suggests that the viscous response of the internal layer increases with the water content.
NASA Astrophysics Data System (ADS)
Montero, Marc Villa; Barjasteh, Ehsan; Baid, Harsh K.; Godines, Cody; Abdi, Frank; Nikbin, Kamran
A multi-scale micromechanics approach along with finite element (FE) model predictive tool is developed to analyze low-energy-impact damage footprint and compression-after-impact (CAI) of composite laminates which is also tested and verified with experimental data. Effective fiber and matrix properties were reverse-engineered from lamina properties using an optimization algorithm and used to assess damage at the micro-level during impact and post-impact FE simulations. Progressive failure dynamic analysis (PFDA) was performed for a two step-process simulation. Damage mechanisms at the micro-level were continuously evaluated during the analyses. Contribution of each failure mode was tracked during the simulations and damage and delamination footprint size and shape were predicted to understand when, where and why failure occurred during both impact and CAI events. The composite laminate was manufactured by the vacuum infusion of the aero-grade toughened Benzoxazine system into the fabric preform. Delamination footprint was measured using C-scan data from the impacted panels and compared with the predicated values obtained from proposed multi-scale micromechanics coupled with FE analysis. Furthermore, the residual strength was predicted from the load-displacement curve and compared with the experimental values as well.
Multiscale Analysis of Open-Cell Aluminum Foam for Impact Energy Absorption
NASA Astrophysics Data System (ADS)
Kim, Ji Hoon; Kim, Daeyong; Lee, Myoung-Gyu; Lee, Jong Kook
2016-09-01
The energy-absorbing characteristics of crash members in automotive collision play an important role in controlling the amount of damage to the passenger compartment. Aluminum foams have high strength-to-weight ratio and high deformability, thus good crashworthiness is expected while maintaining or even saving weights when foams are implemented in crash members. In order to investigate the effect of the open-cell aluminum foam fillers on impact performance and weight saving, a multiscale framework for evaluating the crashworthiness of aluminum foam-filled members is used. To circumvent the difficulties of mechanical tests on foams, a micromechanical model of the aluminum foam is constructed using the x-ray micro tomography and virtual tests are conducted for the micromechanical model to characterize the behavior of the foam. In the macroscale, the aluminum foam is represented by the crushable foam constitutive model, which is then incorporated into the impact test simulation of the foam-filled crash member. The multiscale foam-filled crash member model was validated for the high-speed impact test, which confirms that the material model characterized by the micromechanical approach represents the behavior of the open-cell foam under impact loading well. Finally, the crash member design for maximizing the energy absorption is discussed by investigating various designs from the foam-only structure to the hollow tube structure. It was found that the foam structure absorbs more energy than the hollow tube or foam-filled structure with the same weight.
NASA Technical Reports Server (NTRS)
Nemeth, Noel N.; Bednarcyk, Brett A.; Pineda, Evan J.; Walton, Owen J.; Arnold, Steven M.
2016-01-01
Stochastic-based, discrete-event progressive damage simulations of ceramic-matrix composite and polymer matrix composite material structures have been enabled through the development of a unique multiscale modeling tool. This effort involves coupling three independently developed software programs: (1) the Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC), (2) the Ceramics Analysis and Reliability Evaluation of Structures Life Prediction Program (CARES/ Life), and (3) the Abaqus finite element analysis (FEA) program. MAC/GMC contributes multiscale modeling capabilities and micromechanics relations to determine stresses and deformations at the microscale of the composite material repeating unit cell (RUC). CARES/Life contributes statistical multiaxial failure criteria that can be applied to the individual brittle-material constituents of the RUC. Abaqus is used at the global scale to model the overall composite structure. An Abaqus user-defined material (UMAT) interface, referred to here as "FEAMAC/CARES," was developed that enables MAC/GMC and CARES/Life to operate seamlessly with the Abaqus FEA code. For each FEAMAC/CARES simulation trial, the stochastic nature of brittle material strength results in random, discrete damage events, which incrementally progress and lead to ultimate structural failure. This report describes the FEAMAC/CARES methodology and discusses examples that illustrate the performance of the tool. A comprehensive example problem, simulating the progressive damage of laminated ceramic matrix composites under various off-axis loading conditions and including a double notched tensile specimen geometry, is described in a separate report.
Approximate Micromechanics Treatise of Composite Impact
NASA Technical Reports Server (NTRS)
Chamis, Christos C.; Handler, Louis M.
2005-01-01
A formalism is described for micromechanic impact of composites. The formalism consists of numerous equations which describe all aspects of impact from impactor and composite conditions to impact contact, damage progression, and penetration or containment. The formalism is based on through-the-thickness displacement increments simulation which makes it convenient to track local damage in terms of microfailure modes and their respective characteristics. A flow chart is provided to cast the formalism (numerous equations) into a computer code for embedment in composite mechanic codes and/or finite element composite structural analysis.
Micromechanical Characterization of Polysilicon Films through On-Chip Tests
Mirzazadeh, Ramin; Eftekhar Azam, Saeed; Mariani, Stefano
2016-01-01
When the dimensions of polycrystalline structures become comparable to the average grain size, some reliability issues can be reported for the moving parts of inertial microelectromechanical systems (MEMS). Not only the overall behavior of the device turns out to be affected by a large scattering, but also the sensitivity to imperfections gets enhanced. In this work, through on-chip tests, we experimentally investigate the behavior of thin polysilicon samples using standard electrostatic actuation/sensing. The discrepancy between the target and actual responses of each sample has then been exploited to identify: (i) the overall stiffness of the film and, according to standard continuum elasticity, a morphology-based value of its Young’s modulus; (ii) the relevant over-etch induced by the fabrication process. To properly account for the aforementioned stochastic features at the micro-scale, the identification procedure has been based on particle filtering. A simple analytical reduced-order model of the moving structure has been also developed to account for the nonlinearities in the electrical field, up to pull-in. Results are reported for a set of ten film samples of constant slenderness, and the effects of different actuation mechanisms on the identified micromechanical features are thoroughly discussed. PMID:27483268
Micromechanical Characterization of Polysilicon Films through On-Chip Tests.
Mirzazadeh, Ramin; Eftekhar Azam, Saeed; Mariani, Stefano
2016-07-28
When the dimensions of polycrystalline structures become comparable to the average grain size, some reliability issues can be reported for the moving parts of inertial microelectromechanical systems (MEMS). Not only the overall behavior of the device turns out to be affected by a large scattering, but also the sensitivity to imperfections gets enhanced. In this work, through on-chip tests, we experimentally investigate the behavior of thin polysilicon samples using standard electrostatic actuation/sensing. The discrepancy between the target and actual responses of each sample has then been exploited to identify: (i) the overall stiffness of the film and, according to standard continuum elasticity, a morphology-based value of its Young's modulus; (ii) the relevant over-etch induced by the fabrication process. To properly account for the aforementioned stochastic features at the micro-scale, the identification procedure has been based on particle filtering. A simple analytical reduced-order model of the moving structure has been also developed to account for the nonlinearities in the electrical field, up to pull-in. Results are reported for a set of ten film samples of constant slenderness, and the effects of different actuation mechanisms on the identified micromechanical features are thoroughly discussed.
NASA Astrophysics Data System (ADS)
Srivastava, Ankit; Ghassemi-Armaki, Hassan; Sung, Hyokyung; Chen, Peng; Kumar, Sharvan; Bower, Allan F.
2015-05-01
The micromechanics of plastic deformation and phase transformation in a three-phase advanced high strength steel are analyzed both experimentally and by microstructure-based simulations. The steel examined is a three-phase (ferrite, martensite and retained austenite) quenched and partitioned sheet steel with a tensile strength of 980 MPa. The macroscopic flow behavior and the volume fraction of martensite resulting from the austenite-martensite transformation during deformation were measured. In addition, micropillar compression specimens were extracted from the individual ferrite grains and the martensite particles, and using a flat-punch nanoindenter, stress-strain curves were obtained. Finite element simulations idealize the microstructure as a composite that contains ferrite, martensite and retained austenite. All three phases are discretely modeled using appropriate crystal plasticity based constitutive relations. Material parameters for ferrite and martensite are determined by fitting numerical predictions to the micropillar data. The constitutive relation for retained austenite takes into account contributions to the strain rate from the austenite-martensite transformation, as well as slip in both the untransformed austenite and product martensite. Parameters for the retained austenite are then determined by fitting the predicted flow stress and transformed austenite volume fraction in a 3D microstructure to experimental measurements. Simulations are used to probe the role of the retained austenite in controlling the strain hardening behavior as well as internal stress and strain distributions in the microstructure.
Investigation of residual stresses in shape memory alloy (SMA) composites
NASA Astrophysics Data System (ADS)
Berman, Justin Bradley
Shape memory alloy (SMA) composites are a class of smart materials in which SMA actuators are embedded in a host matrix. The shape memory effect allows for stress induced phase transformations and large recoverable strains that make SMA composites promising candidates for structural shape/vibration control, impact absorption, aircraft deicing or in-flight airfoil shape control systems. However, the difference in thermal expansion between the SMA and the host material leads to residual stresses during processing. In addition, the SMA transformation from martensite to austenite, or the reverse, also generate stresses. These stresses acting in combination can lead to SMA/polymer interfacial debonding or microcracking of the host matrix. The present work was undertaken to study the behavior of nitinol shape memory alloys embedded in epoxy and glass/epoxy matrices and to investigate the development of residual stresses during their manufacture and actuation. A three-phase concentric cylinder micromechanics model and an SMA composite thermoelastic beam theory were developed to analyze the micromechanical and structural-level thermal and transformational stresses for nitinol composites induced by nitinol wires embedded in a host matrix. A series of warpage experiments were conducted on nitinol composite beams during heating cycles to provide experimental validation of model predictions and to assess their thermoelastic structural behavior under non-mechanical loading. Micromechanical model results indicate that excessive residual hoop stresses in nitino/graphite/epoxy composites leads to radial cracking around the embedded nitinol wires. Based on modeling results, the most important factor in reducing residual stresses (and thereby preventing radial cracking) is increasing the level of recovery strain for the nitinol wire. The SMA composite beam model agrees well with experimental data captured for the nitinol/epoxy beam series. Warpage experiments on nitinol/glass/epoxy beams showed a large increase in the effective austenitic start temperature (As) of 9.3°C. The elevation of the effective As together with other observations of warpage development indicates that plastic flow may have occurred in nitinol wires when embedded in glass/epoxy. These observations reinforce the need to train nitinol wires at modest recovery levels when embedding in relatively stiff materials.
Micromechanics of Composite Materials Governed by Vector Constitutive Laws
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Aboudi, Jacob; Arnold, Steven M.
2017-01-01
The high-fidelity generalized method of cells micromechanics theory has been extended for the prediction of the effective property tensor and the corresponding local field distributions for composites whose constituents are governed by vector constitutive laws. As shown, the shear analogy, which can predict effective transverse properties, is not valid in the general three-dimensional case. Consequently, a general derivation is presented that is applicable to both continuously and discontinuously reinforced composites with arbitrary vector constitutive laws and periodic microstructures. Results are given for thermal and electric problems, effective properties and local field distributions, ordered and random microstructures, as well as complex geometries including woven composites. Comparisons of the theory's predictions are made to test data, numerical analysis, and classical expressions from the literature. Further, classical methods cannot provide the local field distributions in the composite, and it is demonstrated that, as the percolation threshold is approached, their predictions are increasingly unreliable. XXXX It has been observed that the bonding between the fibers and matrix in composite materials can be imperfect. In the context of thermal conductivity, such imperfect interfaces have been investigated in micromechanical models by Dunn and Taya (1993), Duan and Karihaloo (2007), Nan et al. (1997) and Hashin (2001). The present HFGMC micromechanical method, derived for perfectly bonded composite materials governed by vector constitutive laws, can be easily generalized to include the effects of weak bonding between the constituents. Such generalizations, in the context of the mechanical micromechanics problem, involve introduction of a traction-separation law at the fiber/matrix interface and have been presented by Aboudi (1987), Bednarcyk and Arnold (2002), Bednarcyk et al. (2004) and Aboudi et al. (2013) and will be addressed in the future.
Mechanics of fiber reinforced materials
NASA Astrophysics Data System (ADS)
Sun, Huiyu
This dissertation is dedicated to mechanics of fiber reinforced materials and the woven reinforcement and composed of four parts of research: analytical characterization of the interfaces in laminated composites; micromechanics of braided composites; shear deformation, and Poisson's ratios of woven fabric reinforcements. A new approach to evaluate the mechanical characteristics of interfaces between composite laminae based on a modified laminate theory is proposed. By including an interface as a special lamina termed the "bonding-layer" in the analysis, the mechanical properties of the interfaces are obtained. A numerical illustration is given. For micro-mechanical properties of three-dimensionally braided composite materials, a new method via homogenization theory and incompatible multivariable FEM is developed. Results from the hybrid stress element approach compare more favorably with the experimental data than other existing numerical methods widely used. To evaluate the shearing properties for woven fabrics, a new mechanical model is proposed during the initial slip region. Analytical results show that this model provides better agreement with the experiments for both the initial shear modulus and the slipping angle than the existing models. Finally, another mechanical model for a woven fabric made of extensible yarns is employed to calculate the fabric Poisson's ratios. Theoretical results are compared with the available experimental data. A thorough examination on the influences of various mechanical properties of yarns and structural parameters of fabrics on the Poisson's ratios of a woven fabric is given at the end.
Micromechanical Modeling of Anisotropic Damage-Induced Permeability Variation in Crystalline Rocks
NASA Astrophysics Data System (ADS)
Chen, Yifeng; Hu, Shaohua; Zhou, Chuangbing; Jing, Lanru
2014-09-01
This paper presents a study on the initiation and progress of anisotropic damage and its impact on the permeability variation of crystalline rocks of low porosity. This work was based on an existing micromechanical model considering the frictional sliding and dilatancy behaviors of microcracks and the recovery of degraded stiffness when the microcracks are closed. By virtue of an analytical ellipsoidal inclusion solution, lower bound estimates were formulated through a rigorous homogenization procedure for the damage-induced effective permeability of the microcracks-matrix system, and their predictive limitations were discussed with superconducting penny-shaped microcracks, in which the greatest lower bounds were obtained for each homogenization scheme. On this basis, an empirical upper bound estimation model was suggested to account for the influences of anisotropic damage growth, connectivity, frictional sliding, dilatancy, and normal stiffness recovery of closed microcracks, as well as tensile stress-induced microcrack opening on the permeability variation, with a small number of material parameters. The developed model was calibrated and validated by a series of existing laboratory triaxial compression tests with permeability measurements on crystalline rocks, and applied for characterizing the excavation-induced damage zone and permeability variation in the surrounding granitic rock of the TSX tunnel at the Atomic Energy of Canada Limited's (AECL) Underground Research Laboratory (URL) in Canada, with an acceptable agreement between the predicted and measured data.
NASA Astrophysics Data System (ADS)
Spearing, S. Mark; Sinclair, Ian
2016-07-01
Recent work, led by the authors, on impact damage resistance, particle toughening and tensile fibre failure is reviewed in order to illustrate the use of high-resolution X-ray tomography to observe and quantify damage mechanisms in carbon fibre composite laminates. Using synchrotron and micro-focus X-ray sources resolutions of less than 1 μm have been routinely achieved. This enables individual broken fibres and the micromechanisms of particle toughening to be observed and quantified. The data for fibre failure, cluster formation and overall tensile strength are compared with model predictions. This allows strategies for future model development to be identified. The overall implications for using such high-resolution 3-D measurements to inform a “data-rich mechanics” approach to materials evaluation and modeling is discussed.
NASA Astrophysics Data System (ADS)
Liang, Q.; Wu, W.; Zhang, D.; Wei, B.; Sun, W.; Wang, Y.; Ge, Y.
2015-10-01
Roughness, which can represent the trade-off between manufacturing cost and performance of mechanical components, is a critical predictor of cracks, corrosion and fatigue damage. In order to measure polished or super-finished surfaces, a novel touch probe based on three-component force sensor for characterizing and quantifying surface roughness is proposed by using silicon micromachining technology. The sensor design is based on a cross-beam structure, which ensures that the system possesses high sensitivity and low coupling. The results show that the proposed sensor possesses high sensitivity, low coupling error, and temperature compensation function. The proposed system can be used to investigate micromechanical structures with nanometer accuracy.
An integrated micromechanical large particle in flow sorter (MILPIS)
NASA Astrophysics Data System (ADS)
Fuad, Nurul M.; Skommer, Joanna; Friedrich, Timo; Kaslin, Jan; Wlodkowic, Donald
2015-06-01
At present, the major hurdle to widespread deployment of zebrafish embryo and larvae in large-scale drug development projects is lack of enabling high-throughput analytical platforms. In order to spearhead drug discovery with the use of zebrafish as a model, platforms need to integrate automated pre-test sorting of organisms (to ensure quality control and standardization) and their in-test positioning (suitable for high-content imaging) with modules for flexible drug delivery. The major obstacle hampering sorting of millimetre sized particles such as zebrafish embryos on chip-based devices is their substantial diameter (above one millimetre), mass (above one milligram), which both lead to rapid gravitational-induced sedimentation and high inertial forces. Manual procedures associated with sorting hundreds of embryos are very monotonous and as such prone to significant analytical errors due to operator's fatigue. In this work, we present an innovative design of a micromechanical large particle in-flow sorter (MILPIS) capable of analysing, sorting and dispensing living zebrafish embryos for drug discovery applications. The system consisted of a microfluidic network, revolving micromechanical receptacle actuated by robotic servomotor and opto-electronic sensing module. The prototypes were fabricated in poly(methyl methacrylate) (PMMA) transparent thermoplastic using infrared laser micromachining. Elements of MILPIS were also fabricated in an optically transparent VisiJet resin using 3D stereolithography (SLA) processes (ProJet 7000HD, 3D Systems). The device operation was based on a rapidly revolving miniaturized mechanical receptacle. The latter function was to hold and position individual fish embryos for (i) interrogation, (ii) sorting decision-making and (iii) physical sorting..The system was designed to separate between fertilized (LIVE) and non-fertilized (DEAD) eggs, based on optical transparency using infrared (IR) emitters and receivers embedded in the system. Digital oscilloscope were used to distinguish the diffraction signals from IR sensors when both LIVE and DEAD embryos were flow through in the chip. Image process analysis were also used as detection module to track DEAD embryos as it flowed in the channel.
Hou, Yue; Wang, Linbing; Wang, Dawei; Guo, Meng; Liu, Pengfei; Yu, Jianxin
2017-02-21
Fundamental understanding of micro-mechanical behaviors in bitumen, including phase separation, micro-friction, micro-abrasion, etc., can help the pavement engineers better understand the bitumen mechanical performances at macroscale. Recent researches show that the microstructure evolution in bitumen will directly affect its surface structure and micro-mechanical performance. In this study, the bitumen microstructure and micro-mechanical behaviors are studied using Atomic Force Microscopy (AFM) experiments, Phase Dynamics Theory and Molecular Dynamics (MD) Simulation. The AFM experiment results show that different phase-structure will occur at the surface of the bitumen samples under certain thermodynamic conditions at microscale. The phenomenon can be explained using the phase dynamics theory, where the effects of stability parameter and temperature on bitumen microstructure and micro-mechanical behavior are studied combined with MD Simulation. Simulation results show that the saturates phase, in contrast to the naphthene aromatics phase, plays a major role in bitumen micro-mechanical behavior. A high stress zone occurs at the interface between the saturates phase and the naphthene aromatics phase, which may form discontinuities that further affect the bitumen frictional performance.
Hou, Yue; Wang, Linbing; Wang, Dawei; Guo, Meng; Liu, Pengfei; Yu, Jianxin
2017-01-01
Fundamental understanding of micro-mechanical behaviors in bitumen, including phase separation, micro-friction, micro-abrasion, etc., can help the pavement engineers better understand the bitumen mechanical performances at macroscale. Recent researches show that the microstructure evolution in bitumen will directly affect its surface structure and micro-mechanical performance. In this study, the bitumen microstructure and micro-mechanical behaviors are studied using Atomic Force Microscopy (AFM) experiments, Phase Dynamics Theory and Molecular Dynamics (MD) Simulation. The AFM experiment results show that different phase-structure will occur at the surface of the bitumen samples under certain thermodynamic conditions at microscale. The phenomenon can be explained using the phase dynamics theory, where the effects of stability parameter and temperature on bitumen microstructure and micro-mechanical behavior are studied combined with MD Simulation. Simulation results show that the saturates phase, in contrast to the naphthene aromatics phase, plays a major role in bitumen micro-mechanical behavior. A high stress zone occurs at the interface between the saturates phase and the naphthene aromatics phase, which may form discontinuities that further affect the bitumen frictional performance. PMID:28772570
NASA Technical Reports Server (NTRS)
Pineda, Evan Jorge; Bednarcyk, Brett A.; Arnold, Steven M.
2014-01-01
Integrated computational materials engineering (ICME) is a useful approach for tailoring the performance of a material. For fiber-reinforced composites, not only do the properties of the constituents of the composite affect the performance, but so does the architecture (or microstructure) of the constituents. The generalized method of cells is demonstrated to be a viable micromechanics tool for determining the effects of the microstructure on the performance of laminates. The micromechanics is used to predict the inputs for a macroscale model for a variety of different fiber volume fractions, and fiber architectures. Using this technique, the material performance can be tailored for specific applications by judicious selection of constituents, volume fraction, and architectural arrangement given a particular manufacturing scenario
Finite element analysis of a micromechanical deformable mirror device
NASA Technical Reports Server (NTRS)
Sheerer, T. J.; Nelson, W. E.; Hornbeck, L. J.
1989-01-01
A monolithic spatial light modulator chip was developed consisting of a large number of micrometer-scale mirror cells which can be rotated through an angle by application of an electrostatic field. The field is generated by electronics integral to the chip. The chip has application in photoreceptor based non-impact printing technologies. Chips containing over 16000 cells were fabricated, and were tested to several billions of cycles. Finite Element Analysis (FEA) of the device was used to model both the electrical and mechanical characteristics.
Turner, Todd J.; Shade, Paul A.; Bernier, Joel V.; ...
2016-11-18
High-Energy Diffraction Microscopy (HEDM) is a 3-d x-ray characterization method that is uniquely suited to measuring the evolving micromechanical state and microstructure of polycrystalline materials during in situ processing. The near-field and far-field configurations provide complementary information; orientation maps computed from the near-field measurements provide grain morphologies, while the high angular resolution of the far-field measurements provide intergranular strain tensors. The ability to measure these data during deformation in situ makes HEDM an ideal tool for validating micro-mechanical deformation models that make their predictions at the scale of individual grains. Crystal Plasticity Finite Element Models (CPFEM) are one such classmore » of micro-mechanical models. While there have been extensive studies validating homogenized CPFEM response at a macroscopic level, a lack of detailed data measured at the level of the microstructure has hindered more stringent model validation efforts. We utilize an HEDM dataset from an alphatitanium alloy (Ti-7Al), collected at the Advanced Photon Source, Argonne National Laboratory, under in situ tensile deformation. The initial microstructure of the central slab of the gage section, measured via near-field HEDM, is used to inform a CPFEM model. The predicted intergranular stresses for 39 internal grains are then directly compared to data from 4 far-field measurements taken between ~4% and ~80% of the macroscopic yield strength. In conclusion, the intergranular stresses from the CPFEM model and far-field HEDM measurements up to incipient yield are shown to be in good agreement, and implications for application of such an integrated computational/experimental approach to phenomena such as fatigue and crack propagation is discussed.« less
A Micromechanical INS/GPS System for Small Satellites
NASA Technical Reports Server (NTRS)
Barbour, N.; Brand, T.; Haley, R.; Socha, M.; Stoll, J.; Ward, P.; Weinberg, M.
1995-01-01
The cost and complexity of large satellite space missions continue to escalate. To reduce costs, more attention is being directed toward small lightweight satellites where future demand is expected to grow dramatically. Specifically, micromechanical inertial systems and microstrip global positioning system (GPS) antennas incorporating flip-chip bonding, application specific integrated circuits (ASIC) and MCM technologies will be required. Traditional microsatellite pointing systems do not employ active control. Many systems allow the satellite to point coarsely using gravity gradient, then attempt to maintain the image on the focal plane with fast-steering mirrors. Draper's approach is to actively control the line of sight pointing by utilizing on-board attitude determination with micromechanical inertial sensors and reaction wheel control actuators. Draper has developed commercial and tactical-grade micromechanical inertial sensors, The small size, low weight, and low cost of these gyroscopes and accelerometers enable systems previously impractical because of size and cost. Evolving micromechanical inertial sensors can be applied to closed-loop, active control of small satellites for micro-radian precision-pointing missions. An inertial reference feedback control loop can be used to determine attitude and line of sight jitter to provide error information to the controller for correction. At low frequencies, the error signal is provided by GPS. At higher frequencies, feedback is provided by the micromechanical gyros. This blending of sensors provides wide-band sensing from dc to operational frequencies. First order simulation has shown that the performance of existing micromechanical gyros, with integrated GPS, is feasible for a pointing mission of 10 micro-radians of jitter stability and approximately 1 milli-radian absolute error, for a satellite with 1 meter antenna separation. Improved performance micromechanical sensors currently under development will be suitable for a range of micro-nano-satellite applications.
Porous siliconformation and etching process for use in silicon micromachining
Guilinger, Terry R.; Kelly, Michael J.; Martin, Jr., Samuel B.; Stevenson, Joel O.; Tsao, Sylvia S.
1991-01-01
A reproducible process for uniformly etching silicon from a series of micromechanical structures used in electrical devices and the like includes providing a micromechanical structure having a silicon layer with defined areas for removal thereon and an electrochemical cell containing an aqueous hydrofluoric acid electrolyte. The micromechanical structure is submerged in the electrochemical cell and the defined areas of the silicon layer thereon are anodically biased by passing a current through the electrochemical cell for a time period sufficient to cause the defined areas of the silicon layer to become porous. The formation of the depth of the porous silicon is regulated by controlling the amount of current passing through the electrochemical cell. The micromechanical structure is then removed from the electrochemical cell and submerged in a hydroxide solution to remove the porous silicon. The process is subsequently repeated for each of the series of micromechanical structures to achieve a reproducibility better than 0.3%.
Constitutive Modeling of Nanotube-Reinforced Polymer Composites
NASA Technical Reports Server (NTRS)
Odegard, G. M.; Gates, T. S.; Wise, K. E.; Park, C.; Siochi, E. J.; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
In this study, a technique is presented for developing constitutive models for polymer composite systems reinforced with single-walled carbon nanotubes (SWNT). Because the polymer molecules are on the same size scale as the nanotubes, the interaction at the polymer/nanotube interface is highly dependent on the local molecular structure and bonding. At these small length scales, the lattice structures of the nanotube and polymer chains cannot be considered continuous, and the bulk mechanical properties can no longer be determined through traditional micromechanical approaches that are formulated by using continuum mechanics. It is proposed herein that the nanotube, the local polymer near the nanotube, and the nanotube/polymer interface can be modeled as an effective continuum fiber using an equivalent-continuum modeling method. The effective fiber serves as a means for incorporating micromechanical analyses for the prediction of bulk mechanical properties of SWNT/polymer composites with various nanotube lengths, concentrations, and orientations. As an example, the proposed approach is used for the constitutive modeling of two SWNT/polyimide composite systems.
Deformation, Failure, and Fatigue Life of SiC/Ti-15-3 Laminates Accurately Predicted by MAC/GMC
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Arnold, Steven M.
2002-01-01
NASA Glenn Research Center's Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC) (ref.1) has been extended to enable fully coupled macro-micro deformation, failure, and fatigue life predictions for advanced metal matrix, ceramic matrix, and polymer matrix composites. Because of the multiaxial nature of the code's underlying micromechanics model, GMC--which allows the incorporation of complex local inelastic constitutive models--MAC/GMC finds its most important application in metal matrix composites, like the SiC/Ti-15-3 composite examined here. Furthermore, since GMC predicts the microscale fields within each constituent of the composite material, submodels for local effects such as fiber breakage, interfacial debonding, and matrix fatigue damage can and have been built into MAC/GMC. The present application of MAC/GMC highlights the combination of these features, which has enabled the accurate modeling of the deformation, failure, and life of titanium matrix composites.
NASA Technical Reports Server (NTRS)
Chu, Y. C.; Hefetz, M.; Rokhlin, S. I.; Baaklini, G. Y.
1992-01-01
Ultrasonic techniques are employed to develop methods for nondestructive evaluation of elastic properties and damage in SiC/RBSN composites. To incorporate imperfect boundary conditions between fibers and matrix into a micromechanical model, a model of fibers having effective anisotropic properties is introduced. By inverting Hashin's (1979) microstructural model for a composite material with microscopic constituents the effective fiber properties were found from ultrasonic measurements. Ultrasonic measurements indicate that damage due to thermal shock is located near the surface, so the surface wave is most appropriate for estimation of the ultimate strength reduction and critical temperature of thermal shock. It is concluded that bonding between laminates of SiC/RBSN composites is severely weakened by thermal oxidation. Generally, nondestructive evaluation of thermal oxidation effects and thermal shock shows good correlation with measurements previously performed by destructive methods.
Micromechanics of cataclastic pore collapse in limestone
NASA Astrophysics Data System (ADS)
Zhu, Wei; Baud, Patrick; Wong, Teng-Fong
2010-04-01
The analysis of compactant failure in carbonate formations hinges upon a fundamental understanding of the mechanics of inelastic compaction. Microstructural observations indicate that pore collapse in a limestone initiates at the larger pores, and microcracking dominates the deformation in the periphery of a collapsed pore. To capture these micromechanical processes, we developed a model treating the limestone as a dual porosity medium, with the total porosity partitioned between macroporosity and microporosity. The representative volume element is made up of a large pore which is surrounded by an effective medium containing the microporosity. Cataclastic yielding of this effective medium obeys the Mohr-Coulomb or Drucker-Prager criterion, with failure parameters dependent on porosity and pore size. An analytic approximation was derived for the unconfined compressive strength associated with failure due to the propagation and coalescence of pore-emanated cracks. For hydrostatic loading, identical theoretical results for the pore collapse pressure were obtained using the Mohr-Coulomb or Drucker-Prager criterion. For nonhydrostatic loading, the stress state at the onset of shear-enhanced compaction was predicted to fall on a linear cap according to the Mohr-Coulomb criterion. In contrast, nonlinear caps in qualitative agreement with laboratory data were predicted using the Drucker-Prager criterion. Our micromechanical model implies that the effective medium is significantly stronger and relatively pressure-insensitive in comparison to the bulk sample.
NASA Astrophysics Data System (ADS)
Sayyidmousavi, Alireza; Bougherara, Habiba; Fawaz, Zouheir
2015-06-01
A micromechanical approach is adopted to study the role of viscoelasticity on the fatigue behavior of polymer matrix composites. In particular, the study examines the interaction of fatigue and creep in angle ply carbon/epoxy at 25 and 114 °C. The matrix phase is modeled as a vicoelastic material using Schapery's single integral constitutive equation. Taking viscoelsticity into account allows the study of creep strain evolution during the fatigue loading. The fatigue failure criterion is expressed in terms of the fatigue failure functions of the constituent materials. The micromechanical model is also used to calculate these fatigue failure functions from the knowledge of the S-N diagrams of the composite material in longitudinal, transverse and shear loadings thus eliminating the need for any further experimentation. Unlike the previous works, the present study can distinguish between the strain evolution due to fatigue and creep. The results can clearly show the contribution made by the effect of viscoelasticity to the total strain evolution during the fatigue life of the specimen. Although the effect of viscoelsticity is found to increase with temperature, its contribution to strain development during fatigue is compromised by the shorter life of the specimen when compared to lower temperatures.
Finite element based micro-mechanics modeling of textile composites
NASA Technical Reports Server (NTRS)
Glaessgen, E. H.; Griffin, O. H., Jr.
1995-01-01
Textile composites have the advantage over laminated composites of a significantly greater damage tolerance and resistance to delamination. Currently, a disadvantage of textile composites is the inability to examine the details of the internal response of these materials under load. Traditional approaches to the study fo textile based composite materials neglect many of the geometric details that affect the performance of the material. The present three dimensional analysis, based on the representative volume element (RVE) of a plain weave, allows prediction of the internal details of displacement, strain, stress, and failure quantities. Through this analysis, the effect of geometric and material parameters on the aforementioned quantities are studied.
Micro-mechanics of ionic electroactive polymer actuators
NASA Astrophysics Data System (ADS)
Punning, Andres; Põldsalu, Inga; Kaasik, Friedrich; Vunder, Veiko; Aabloo, Alvo
2015-04-01
Commonly, modeling of the bending behavior of the ionic electroactive polymer (IEAP) actuators is based on the classical mechanics of cantilever beam. It is acknowledged, that the actuation of the ionic electroactive polymer (IEAP) actuators is symmetric about the centroid - the convex side of the actuator is expanding and the concave side is contracting for exactly the same amount, while the thickness of the actuator remains invariant. Actuating the IEAP actuators and sensors under scanning electron microscope (SEM), in situ, reveals that for some types of them this approach is incorrect. Comparison of the SEM micrographs using the Digital Image Correction (DIC) method results with the precise strain distribution of the IEAP actuators in two directions: in the axial direction, and in the direction of thickness. This information, in turn, points to the physical processes taking place within the electrodes as well as membrane of the trilayer laminate of sub-millimeter thickness. Comparison of the EAP materials, engaged as an actuator as well as a sensor, reveals considerable differences between the micro-mechanics of the two modes.
Microstructure and micromechanical elastic properties of weak layers
NASA Astrophysics Data System (ADS)
Köchle, Berna; Matzl, Margret; Proksch, Martin; Schneebeli, Martin
2014-05-01
Weak layers are the mechanically most important stratigraphic layer for avalanches. Yet, there is little known about their exact geometry and their micromechanical properties. To distinguish weak layers or interfaces is essential to assess stability. However, except by destructive mechanical tests, they cannot be easily identified and characterized in the field. We casted natural weak layers and their adjacent layers in the field during two winter seasons and scanned them non-destructively with X-ray computer tomography with a resolution between 10 - 20 µm. Reconstructed three-dimensional models of centimeter-sized layered samples allow for calculating the change of structural properties. We found that structural transitions cannot always by expressed by geometry like density or grain size. In addition, we calculated the Young's modulus and Poisson's ratio of the individual layers with voxel-based finite element simulations. As any material has its characteristic elastic parameters, they may potentially differentiate individual layers, and therefore different microstructures. Our results show that Young's modulus correlates well with density but do not indicate snow's microstructure, in contrast to Poisson's ratio which tends to be lower for strongly anisotropic forms like cup crystals and facets.
NASA Astrophysics Data System (ADS)
Sokolov, Leonid V.
2010-08-01
There is a need of measuring distributed pressure on the aircraft engine inlet with high precision within a wide operating temperature range in the severe environment to improve the efficiency of aircraft engine control. The basic solutions and principles of designing high-temperature (to 523K) microelectromechanical pressure sensors based on a membrane-type SOI heterostructure with a monolithic integral tensoframe (MEMS-SOIMT) are proposed in accordance with the developed concept, which excludes the use of electric p-n junctions in semiconductor microelectromechanical sensors. The MEMS-SOIMT technology relies on the group processes of microelectronics and micromechanics for high-precision microprofiling of a three-dimension micromechanical structure, which exclude high-temperature silicon doping processes.
NASA Astrophysics Data System (ADS)
Sinko, Robert; Bažant, Zdeněk P.; Keten, Sinan
2018-01-01
The Pickett effect describes the excess non-additive strain developed during drying of a nanoporous solid material under creep. One explanation for its origins, developed using micromechanical models, is the progressive relaxation of internally developed microprestress. However, these models have not explicitly considered the effects of this microprestress on nanoscale energy barriers that govern the relative motion and displacement between nanopore walls during deformation. Here, we evaluate the nanoscale effects of transverse microprestresses on the drying creep behaviour of a nanoscale slit pore using coarse-grained molecular dynamics. We find that the underlying energy barrier depends exponentially on the transverse microprestress, which is attributed to changes in the effective viscosity and degree of nanoconfinement of molecules in the water interlayer. Specifically, as the transverse microprestress is relaxed (i.e. its magnitude decreases), the activation energy barrier is reduced, thereby leading to an acceleration of the creep behaviour and a stronger Pickett effect. Based on our simulation results, we introduce a new microprestress-dependent energy term into our existing Arrhenius model, which describes the relative displacement of pore walls as a function of the underlying activation energy barriers. Our findings further verify the existing micromechanical theories for the origin of the Pickett effect and establish a quantitative relationship between the transverse microprestress and the intensity of the Pickett effect.
Thermodynamics and mechanics of stretch-induced crystallization in rubbers
NASA Astrophysics Data System (ADS)
Guo, Qiang; Zaïri, Fahmi; Guo, Xinglin
2018-05-01
The aim of the present paper is to provide a quantitative prediction of the stretch-induced crystallization in natural rubber, the exclusive reason for its history-dependent thermomechanical features. A constitutive model based on a micromechanism inspired molecular chain approach is formulated within the context of the thermodynamic framework. The molecular configuration of the partially crystallized single chain is analyzed and calculated by means of some statistical mechanical methods. The random thermal oscillation of the crystal orientation, considered as a continuous random variable, is treated by means of a representative angle. The physical expression of the chain free energy is derived according to a two-step strategy by separating crystallization and stretching. This strategy ensures that the stretch-induced part of the thermodynamic crystallization force is null at the initial instant and allows, without any additional constraint, the formulation of a simple linear relationship for the crystallinity evolution law. The model contains very few physically interpretable material constants to simulate the complex mechanism: two chain-scale constants, one crystallinity kinetics constant, three thermodynamic constants related to the newly formed crystallites, and a function controlling the crystal orientation with respect to the chain. The model is used to discuss some important aspects of the micromechanism and the macroresponse under the equilibrium state and the nonequilibrium state involved during stretching and recovery, and continuous relaxation.
Siewert, S; Sämann, M; Schmidt, W; Stiehm, M; Falke, K; Grabow, N; Guthoff, R; Schmitz, K-P
2015-12-01
Glaucoma is the leading cause of irreversible blindness worldwide. In therapeutically refractory cases, alloplastic glaucoma drainage devices (GDD) are being increasingly used to decrease intraocular pressure. Current devices are mainly limited by fibrotic encapsulation and postoperative hypotension. Preliminary studies have described the development of a glaucoma microstent to control aqueous humour drainage from the anterior chamber into the suprachoroidal space. One focus of these studies was on the design of a micro-mechanical valve placed in the anterior chamber to inhibit postoperative hypotension. The present report describes the coupled analysis of fluid-structure interaction (FSI) as basis for future improvements in the design micro-mechanical valves. FSI analysis was carried out with ANSYS 14.5 software. Solid and fluid geometry were combined in a model, and the corresponding material properties of silicone (Silastic Rx-50) and water at room temperature were assigned. The meshing of the solid and fluid domains was carried out in accordance with the results of a convergence study with tetrahedron elements. Structural and fluid mechanical boundary conditions completed the model. The FSI analysis takes into account geometric non-linearity and adaptive remeshing to consider changing geometry. A valve opening pressure of 3.26 mmHg was derived from the FSI analysis and correlates well with the results of preliminary experimental fluid mechanical studies. Flow resistance was calculated from non-linear pressure-flow characteristics as 8.5 × 10(-3) mmHg/µl · min(-1) and 2.7 × 10(-3) mmHg/µl · min(-1), respectively before and after valve opening pressure is exceeded. FSI analysis indicated leakage flow before valve opening, which is due to the simplified model geometry. The presented bidirectional coupled FSI analysis is a powerful tool for the development of new designs of micro-mechanical valves for GDD and may help to minimise the time and cost expended on manufacturing and testing prototypes. Further optimisation of the FSI model is expected to ensure further convergence between the simulation and the results of experimental investigations. Georg Thieme Verlag KG Stuttgart · New York.
Implementation of a Smeared Crack Band Model in a Micromechanics Framework
NASA Technical Reports Server (NTRS)
Pineda, Evan J.; Bednarcyk, Brett A.; Waas, Anthony M.; Arnold, Steven M.
2012-01-01
The smeared crack band theory is implemented within the generalized method of cells and high-fidelity generalized method of cells micromechanics models to capture progressive failure within the constituents of a composite material while retaining objectivity with respect to the size of the discretization elements used in the model. An repeating unit cell containing 13 randomly arranged fibers is modeled and subjected to a combination of transverse tension/compression and transverse shear loading. The implementation is verified against experimental data (where available), and an equivalent finite element model utilizing the same implementation of the crack band theory. To evaluate the performance of the crack band theory within a repeating unit cell that is more amenable to a multiscale implementation, a single fiber is modeled with generalized method of cells and high-fidelity generalized method of cells using a relatively coarse subcell mesh which is subjected to the same loading scenarios as the multiple fiber repeating unit cell. The generalized method of cells and high-fidelity generalized method of cells models are validated against a very refined finite element model.
LS-DYNA Implementation of Polymer Matrix Composite Model Under High Strain Rate Impact
NASA Technical Reports Server (NTRS)
Zheng, Xia-Hua; Goldberg, Robert K.; Binienda, Wieslaw K.; Roberts, Gary D.
2003-01-01
A recently developed constitutive model is implemented into LS-DYNA as a user defined material model (UMAT) to characterize the nonlinear strain rate dependent behavior of polymers. By utilizing this model within a micromechanics technique based on a laminate analogy, an algorithm to analyze the strain rate dependent, nonlinear deformation of a fiber reinforced polymer matrix composite is then developed as a UMAT to simulate the response of these composites under high strain rate impact. The models are designed for shell elements in order to ensure computational efficiency. Experimental and numerical stress-strain curves are compared for two representative polymers and a representative polymer matrix composite, with the analytical model predicting the experimental response reasonably well.
NASA Astrophysics Data System (ADS)
Junker, Philipp; Jaeger, Stefanie; Kastner, Oliver; Eggeler, Gunther; Hackl, Klaus
2015-07-01
In this work, we present simulations of shape memory alloys which serve as first examples demonstrating the predicting character of energy-based material models. We begin with a theoretical approach for the derivation of the caloric parts of the Helmholtz free energy. Afterwards, experimental results for DSC measurements are presented. Then, we recall a micromechanical model based on the principle of the minimum of the dissipation potential for the simulation of polycrystalline shape memory alloys. The previously determined caloric parts of the Helmholtz free energy close the set of model parameters without the need of parameter fitting. All quantities are derived directly from experiments. Finally, we compare finite element results for tension tests to experimental data and show that the model identified by thermal measurements can predict mechanically induced phase transformations and thus rationalize global material behavior without any further assumptions.
Micro-mechanics of hydro-mechanical coupled processes during hydraulic fracturing in sandstone
NASA Astrophysics Data System (ADS)
Caulk, R.; Tomac, I.
2017-12-01
This contribution presents micro-mechanical study of hydraulic fracture initiation and propagation in sandstone. The Discrete Element Method (DEM) Yade software is used as a tool to model fully coupled hydro-mechanical behavior of the saturated sandstone under pressures typical for deep geo-reservoirs. Heterogeneity of sandstone strength tensile and shear parameters are introduced using statistical representation of cathodoluminiscence (CL) sandstone rock images. Weibull distribution of statistical parameter values was determined as a best match of the CL scans of sandstone grains and cement between grains. Results of hydraulic fracturing stimulation from the well bore indicate significant difference between models with the bond strengths informed from CL scans and uniform homogeneous representation of sandstone parameters. Micro-mechanical insight reveals formed hydraulic fracture typical for mode I or tensile cracking in both cases. However, the shear micro-cracks are abundant in the CL informed model while they are absent in the standard model with uniform strength distribution. Most of the mode II cracks, or shear micro-cracks, are not part of the main hydraulic fracture and occur in the near-tip and near-fracture areas. The position and occurrence of the shear micro-cracks is characterized as secondary effect which dissipates the hydraulic fracturing energy. Additionally, the shear micro-crack locations qualitatively resemble acoustic emission cloud of shear cracks frequently observed in hydraulic fracturing, and sometimes interpreted as re-activation of existing fractures. Clearly, our model does not contain pre-existing cracks and has continuous nature prior to fracturing. This observation is novel and interesting and is quantified in the paper. The shear particle contact forces field reveals significant relaxation compared to the model with uniform strength distribution.
An analysis of fiber-matrix interface failure stresses for a range of ply stress states
NASA Technical Reports Server (NTRS)
Crews, J. H.; Naik, R. A.; Lubowinski, S. J.
1993-01-01
A graphite/bismaleimide laminate was prepared without the usual fiber treatment and was tested over a wide range of stress states to measure its ply cracking strength. These tests were conducted using off-axis flexure specimens and produced fiber-matrix interface failure data over a correspondingly wide range of interface stress states. The absence of fiber treatment, weakened the fiber-matrix interfaces and allowed these tests to be conducted at load levels that did not yield the matrix. An elastic micromechanics computer code was used to calculate the fiber-matrix interface stresses at failure. Two different fiber-array models (square and diamond) were used in these calculations to analyze the effects of fiber arrangement as well as stress state on the critical interface stresses at failure. This study showed that both fiber-array models were needed to analyze interface stresses over the range of stress states. A linear equation provided a close fit to these critical stress combinations and, thereby, provided a fiber-matrix interface failure criterion. These results suggest that prediction procedures for laminate ply cracking can be based on micromechanics stress analyses and appropriate fiber-matrix interface failure criteria. However, typical structural laminates may require elastoplastic stress analysis procedures that account for matrix yielding, especially for shear-dominated ply stress states.
Multiscale Static Analysis of Notched and Unnotched Laminates Using the Generalized Method of Cells
NASA Technical Reports Server (NTRS)
Naghipour Ghezeljeh, Paria; Arnold, Steven M.; Pineda, Evan J.; Stier, Bertram; Hansen, Lucas; Bednarcyk, Brett A.; Waas, Anthony M.
2016-01-01
The generalized method of cells (GMC) is demonstrated to be a viable micromechanics tool for predicting the deformation and failure response of laminated composites, with and without notches, subjected to tensile and compressive static loading. Given the axial [0], transverse [90], and shear [+45/-45] response of a carbon/epoxy (IM7/977-3) system, the unnotched and notched behavior of three multidirectional layups (Layup 1: [0,45,90,-45](sub 2S), Layup 2: [0,60,0](sub 3S), and Layup 3: [30,60,90,-30, -60](sub 2S)) are predicted under both tensile and compressive static loading. Matrix nonlinearity is modeled in two ways. The first assumes all nonlinearity is due to anisotropic progressive damage of the matrix only, which is modeled, using the multiaxial mixed-mode continuum damage model (MMCDM) within GMC. The second utilizes matrix plasticity coupled with brittle final failure based on the maximum principle strain criteria to account for matrix nonlinearity and failure within the Finite Element Analysis--Micromechanics Analysis Code (FEAMAC) software multiscale framework. Both MMCDM and plasticity models incorporate brittle strain- and stress-based failure criteria for the fiber. Upon satisfaction of these criteria, the fiber properties are immediately reduced to a nominal value. The constitutive response for each constituent (fiber and matrix) is characterized using a combination of vendor data and the axial, transverse, and shear responses of unnotched laminates. Then, the capability of the multiscale methodology is assessed by performing blind predictions of the mentioned notched and unnotched composite laminates response under tensile and compressive loading. Tabulated data along with the detailed results (i.e., stress-strain curves as well as damage evolution states at various ratios of strain to failure) for all laminates are presented.
NASA Technical Reports Server (NTRS)
Santare, Michael H.; Pipes, R. Byron; Beaussart, A. J.; Coffin, D. W.; Otoole, B. J.; Shuler, S. F.
1993-01-01
Flexible manufacturing methods are needed to reduce the cost of using advanced composites in structural applications. One method that allows for this is the stretch forming of long discontinuous fiber materials with thermoplastic matrices. In order to exploit this flexibility in an economical way, a thorough understanding of the relationship between manufacturing and component performance must be developed. This paper reviews some of the recent work geared toward establishing this understanding. Micromechanics models have been developed to predict the formability of the material during processing. The latest improvement of these models includes the viscoelastic nature of the matrix and comparison with experimental data. A finite element scheme is described which can be used to model the forming process. This model uses equivalent anisotropic viscosities from the micromechanics models and predicts the microstructure in the formed part. In addition, structural models have been built to account for the material property gradients that can result from the manufacturing procedures. Recent developments in this area include the analysis of stress concentrations and a failure model each accounting for the heterogeneous material fields.
NASA Astrophysics Data System (ADS)
Liu, X. P.; Lin Peng, R.; Hofmann, M.; Johansson, S.; Wang, Y. D.
2011-01-01
An in-situ neutron diffraction technique was used to investigate the lattice strain distributions and micromechanical behavior in a friction stir welded (FSW) sheet of AA7475-T761. The neutron diffraction experiments were performed on the spectrometer for material research, STRESS-SPEC, at FRM II (Garching, Germany). The lattice strain profiles around the weld center were measured as a function of the applied strain during the tensile loading and unloading. The anisotropic elastic and plastic properties of the FSW aluminum alloy were simulated by elasto-plastic self-consistent (EPSC) model to predict the anisotropic deformation behaviors involving the grain-to-grain interactions. Material parameters used for describing the constitutive laws of each test position were determined from the measured lattice strain distributions for different diffraction hkl planes as well as the macroscopic stress-strain curve of the FSW aluminum alloy. A good agreement between experimental results and numerical simulations was obtained. The present investigations provided a reliable prediction of the anisotropic micromechanical behavior of the FSW aluminum alloy during tensile deformation.
Micromechanical Behavior and Modelling of Granular Soil
1989-07-01
DiMaggio and Sandier 1971, Baladi and Rohani 1979). The problem of inherent (structural) anisotropy - especially important for 3 anisotropically...Republic of Germany. Baladi ,G.Y. and Rohani, B. (1979), "Elastic-Plastic Model for Saturated Sand," Journal of the Geotechnical Engineering Division, ASCE
Waanders, Daan; Janssen, Dennis; Miller, Mark A.; Mann, Kenneth A.; Verdonschot, Nico
2009-01-01
The goal of this study was to quantify the micromechanics of the cement-bone interface under tensile fatigue loading using finite element analysis (FEA) and to understand the underlying mechanisms that play a role in the fatigue behavior of this interface. Laboratory cement-bone specimens were subjected to a tensile fatigue load, while local displacements and crack growth on the specimen's surface were monitored. FEA models were created from these specimens based upon micro-computed tomography data. To accurately model interfacial gaps at the interface between the bone and cement, a custom-written erosion algorithm was applied to the bone model. A fatigue load was simulated in the FEA models while monitoring the local displacements and crack propagation. The results showed the FEA models were able to capture the general experimental creep damage behavior and creep stages of the interface. Consistent with the experiments, the majority of the deformation took place at the contact interface. Additionally, the FEA models predicted fatigue crack patterns similar to experimental findings. Experimental surface cracks correlated moderately with FEA surface cracks (r2=0.43), but did not correlate with the simulated crack volume fraction (r2=0.06). Although there was no relationship between experimental surface cracks and experimental creep damage displacement (r2=0.07), there was a strong relationship between the FEA crack volume fraction and the FEA creep damage displacement (r2=0.76). This study shows the additional value of FEA of the cement-bone interface relative to experimental studies and can therefore be used to optimize its mechanical properties. PMID:19682690
A 3/D finite element approach for metal matrix composites based on micromechanical models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Svobodnik, A.J.; Boehm, H.J.; Rammerstorfer, F.G.
Based on analytical considerations by Dvorak and Bahel-El-Din, a 3/D finite element material law has been developed for the elastic-plastic analysis of unidirectional fiber-reinforced metal matrix composites. The material law described in this paper has been implemented in the finite element code ABAQUS via the user subroutine UMAT. A constitutive law is described under the assumption that the fibers are linear-elastic and the matrix is of a von Mises-type with a Prager-Ziegler kinematic hardening rule. The uniaxial effective stress-strain relationship of the matrix in the plastic range is approximated by a Ramberg-Osgood law, a linear hardening rule or a nonhardeningmore » rule. Initial yield surface of the matrix material and for the fiber reinforced composite are compared to show the effect of reinforcement. Implementation of this material law in a finite element program is shown. Furthermore, the efficiency of substepping schemes and stress corrections for the numerical integration of the elastic-plastic stress-strain relations for anisotropic materials are investigated. The results of uniaxial monotonic tests of a boron/aluminum composite are compared to some finite element analyses based on micromechanical considerations. Furthermore a complete 3/D analysis of a tensile test specimen made of a silicon-carbide/aluminum MMC and the analysis of an MMC inlet inserted in a homogenous material are shown. 12 refs.« less
Porosity estimation of aged mortar using a micromechanical model.
Hernández, M G; Anaya, J J; Sanchez, T; Segura, I
2006-12-22
Degradation of concrete structures located in high humidity atmospheres or under flowing water is a very important problem. In this study, a method for ultrasonic non-destructive characterization in aged mortar is presented. The proposed method makes a prediction of the behaviour of aged mortar accomplished with a three phase micromechanical model using ultrasonic measurements. Aging mortar was accelerated by immersing the probes in ammonium nitrate solution. Both destructive and non-destructive characterization of mortar was performed. Destructive tests of porosity were performed using a vacuum saturation method and non-destructive characterization was carried out using ultrasonic velocities. Aging experiments show that mortar degradation not only involves a porosity increase, but also microstructural changes in the cement matrix. Experimental results show that the estimated porosity using the proposed non-destructive methodology had a comparable performance to classical destructive techniques.
NASA Astrophysics Data System (ADS)
Tengattini, Alessandro; Das, Arghya; Nguyen, Giang D.; Viggiani, Gioacchino; Hall, Stephen A.; Einav, Itai
2014-10-01
This is the first of two papers introducing a novel thermomechanical continuum constitutive model for cemented granular materials. Here, we establish the theoretical foundations of the model, and highlight its novelties. At the limit of no cement, the model is fully consistent with the original Breakage Mechanics model. An essential ingredient of the model is the use of measurable and micro-mechanics based internal variables, describing the evolution of the dominant inelastic processes. This imposes a link between the macroscopic mechanical behavior and the statistically averaged evolution of the microstructure. As a consequence this model requires only a few physically identifiable parameters, including those of the original breakage model and new ones describing the cement: its volume fraction, its critical damage energy and bulk stiffness, and the cohesion.
An affine microsphere approach to modeling strain-induced crystallization in rubbery polymers
NASA Astrophysics Data System (ADS)
Nateghi, A.; Dal, H.; Keip, M.-A.; Miehe, C.
2018-01-01
Upon stretching a natural rubber sample, polymer chains orient themselves in the direction of the applied load and form crystalline regions. When the sample is retracted, the original amorphous state of the network is restored. Due to crystallization, properties of rubber change considerably. The reinforcing effect of the crystallites stiffens the rubber and increases the crack growth resistance. It is of great importance to understand the mechanism leading to strain-induced crystallization. However, limited theoretical work has been done on the investigation of the associated kinetics. A key characteristic observed in the stress-strain diagram of crystallizing rubber is the hysteresis, which is entirely attributed to strain-induced crystallization. In this work, we propose a micromechanically motivated material model for strain-induced crystallization in rubbers. Our point of departure is constructing a micromechanical model for a single crystallizing polymer chain. Subsequently, a thermodynamically consistent evolution law describing the kinetics of crystallization on the chain level is proposed. This chain model is then incorporated into the affine microsphere model. Finally, the model is numerically implemented and its performance is compared to experimental data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kammoun, S.; Brassart, L.; Doghri, I.
A micromechanical damage modeling approach is presented to predict the overall elasto-plastic behavior and damage evolution in short fiber reinforced composite materials. The practical use of the approach is for injection molded thermoplastic parts reinforced with short glass fibers. The modeling is proceeded as follows. The representative volume element is decomposed into a set of pseudograins, the damage of which affects progressively the overall stiffness and strength up to total failure. Each pseudograin is a two-phase composite with aligned inclusions having same aspect ratio. A two-step mean-field homogenization procedure is adopted. In the first step, the pseudograins are homogenized individuallymore » according to the Mori-Tanaka scheme. The second step consists in a self-consistent homogenization of homogenized pseudograins. An isotropic damage model is applied at the pseudograin level. The model is implemented as a UMAT in the finite element code ABAQUS. Model is shown to reproduce the strength and the anisotropy (Lankford coefficient) during uniaxial tensile tests on samples cut under different directions relative to the injection flow direction.« less
NASA Astrophysics Data System (ADS)
Kammoun, S.; Brassart, L.; Robert, G.; Doghri, I.; Delannay, L.
2011-05-01
A micromechanical damage modeling approach is presented to predict the overall elasto-plastic behavior and damage evolution in short fiber reinforced composite materials. The practical use of the approach is for injection molded thermoplastic parts reinforced with short glass fibers. The modeling is proceeded as follows. The representative volume element is decomposed into a set of pseudograins, the damage of which affects progressively the overall stiffness and strength up to total failure. Each pseudograin is a two-phase composite with aligned inclusions having same aspect ratio. A two-step mean-field homogenization procedure is adopted. In the first step, the pseudograins are homogenized individually according to the Mori-Tanaka scheme. The second step consists in a self-consistent homogenization of homogenized pseudograins. An isotropic damage model is applied at the pseudograin level. The model is implemented as a UMAT in the finite element code ABAQUS. Model is shown to reproduce the strength and the anisotropy (Lankford coefficient) during uniaxial tensile tests on samples cut under different directions relative to the injection flow direction.
Micromechanical model for protein materials: From macromolecules to macroscopic fibers
NASA Astrophysics Data System (ADS)
Puglisi, G.; De Tommasi, D.; Pantano, M. F.; Pugno, N. M.; Saccomandi, G.
2017-10-01
We propose a model for the mechanical behavior of protein materials. Based on a limited number of experimental macromolecular parameters (persistence and contour length) we obtain the macroscopic behavior of keratin fibers (human, cow, and rabbit hair), taking into account the damage and residual stretches effects that are fundamental in many functions of life. We also show the capability of our approach to describe the main dissipation and permanent strain effects observed in the more complex spider silk fibers. The comparison between our results and the data obtained experimentally from cyclic tests demonstrates that our model is robust and is able to reproduce with a remarkable accuracy the experimental behavior of all protein materials we tested.
Mechanics of damping for fiber composite laminates including hygro-thermal effects
NASA Technical Reports Server (NTRS)
Saravanos, D. A.; Chamis, C. C.
1989-01-01
An integrated mechanics theory has been developed for the modeling of composite damping from the micromechanics to the laminate level. Simplified, design oriented equations based on hysteretic damping are presented for on-axis plies, off-axis plies, and laminates including the effect of temperature, moisture, and interply hysteretic damping. The temperature rise within vibrating composite laminates resulting from strain energy dissipation is also modeled, and their coupled hygro-thermo-mechanical response is predicted. The method correlates well with reported damping measurements. Application examples illustrate the effect of various ply, laminate, and hygro-thermal parameters on the overall damping performance of composite laminates.
Mechanics of damping for fiber composite laminates including hygro-thermal effects
NASA Technical Reports Server (NTRS)
Saravanos, D. A.; Chamis, Christos C.
1989-01-01
An integrated mechanics theory was developed for the modeling of composite damping from the micromechanics to the laminate level. Simplified, design oriented equations based on hysteretic damping are presented for on-axis plies, off-axis plies, and laminates including the effect of temperature, moisture, and interply hysteretic damping. The temperature rise within vibrating composite laminates resulting from strain energy dissipation is also modeled, and their coupled hygro-thermo-mechanical response is predicted. The method correlates well with reported damping measurements. Application examples illustrate the effect of various ply, laminate, and hygro-thermal parameters on the overall damping performance of composite laminates.
NASA Astrophysics Data System (ADS)
Van Liedekerke, P.; Ghysels, P.; Tijskens, E.; Samaey, G.; Smeedts, B.; Roose, D.; Ramon, H.
2010-06-01
This paper is concerned with addressing how plant tissue mechanics is related to the micromechanics of cells. To this end, we propose a mesh-free particle method to simulate the mechanics of both individual plant cells (parenchyma) and cell aggregates in response to external stresses. The model considers two important features in the plant cell: (1) the cell protoplasm, the interior liquid phase inducing hydrodynamic phenomena, and (2) the cell wall material, a viscoelastic solid material that contains the protoplasm. In this particle framework, the cell fluid is modeled by smoothed particle hydrodynamics (SPH), a mesh-free method typically used to address problems with gas and fluid dynamics. In the solid phase (cell wall) on the other hand, the particles are connected by pairwise interactions holding them together and preventing the fluid to penetrate the cell wall. The cell wall hydraulic conductivity (permeability) is built in as well through the SPH formulation. Although this model is also meant to be able to deal with dynamic and even violent situations (leading to cell wall rupture or cell-cell debonding), we have concentrated on quasi-static conditions. The results of single-cell compression simulations show that the conclusions found by analytical models and experiments can be reproduced at least qualitatively. Relaxation tests revealed that plant cells have short relaxation times (1 µs-10 µs) compared to mammalian cells. Simulations performed on cell aggregates indicated an influence of the cellular organization to the tissue response, as was also observed in experiments done on tissues with a similar structure.
Datskos, Panagiotis G.; Rajic, Slobodan; Datskou, Irene C.; Egert, Charles M.
2002-01-01
A micromechanical sensor and method for detecting electromagnetic radiation involve producing photoelectrons from a metal surface in contact with a semiconductor. The photoelectrons are extracted into the semiconductor, which causes photo-induced bending. The resulting bending is measured, and a signal corresponding to the measured bending is generated and processed. A plurality of individual micromechanical sensors can be arranged in a two-dimensional matrix for imaging applications.
The role of topology in microstructure-property relations: a 2D DEM based study
NASA Astrophysics Data System (ADS)
Saleme Ruiz, Katerine; Emelianenko, Maria
2018-01-01
We compare Rényi entropy-based mesoscale approaches for characterizing 2D polycrystalline network topology and geometry, based on the grain number of sides and grain areas, respectively. We study the effect of microstructure disorder on mechanical properties such as elastic and damage response by performing simulations of quasi-static uniaxial compression loading tests on an idealized material using grain-level micro-mechanical discrete element model. While not comprehensive enough to make general conclusions, this study allows us to make observations about the sensitivity of mechanical parameters such as Young's modulus, proportional limit, first yield stress, toughness and amount of microstructure damage to different entropy measures.
NASA Astrophysics Data System (ADS)
Ohlckers, Per
2012-07-01
This special section of Journal of Micromechanics and Microengineering is a selection of 13 of the best papers presented at the 22nd Micromechanics and Microsystems Europe Workshop, which was arranged in Toensberg, Norway, 19-22 June, 2011. 110 participants attended the 3 day workshop that had 5 invited keynote speakers and 80 submitted poster presentations. The MME Workshop is organized every year to gather mostly European scientists and people from industry to discuss topics related to research in micromechanics and microsystems in an informal manner. A distinct feature of this specialized workshop is to be an excellent venue for young scientists in the field, such as PhD students, to present their latest work. This workshop series was inaugurated in Enschede, the Netherlands in 1989, followed by: Berlin, Germany (1990), Leuven, Belgium (1992), Neuchatel, Switzerland (1993), Pisa, Italy (1994), Copenhagen, Denmark (1995), Barcelona, Spain (1996) [1], Southampton, UK (1997) [2], Ulvik, Norway (1998) [3], Gif-sur-Yvette, France (1999) [4], Uppsala, Sweden (2000), Cork, Ireland (2001) [5], Sinaia, Romania (2002) [6], Delft, The Netherlands (2003) [7], Leuven, Belgium (2004) [8], Goteborg, Sweden (2005) [9], Southampton, UK (2006) [10], Guimaraes, Portugal (2007) [11], Aachen, Germany (2008) [12], Toulouse, France (2009) [13] and Enschede, the Netherlands (2010) [14]. The workshop series has remained remarkably true to its original concept such as still having micromechanics as a priority topic while, at the same time, adapting to recent research topics such as microsystems integration. It is nice to observe that an earlier fragmented and mostly academic research field now has matured into a very strong industrial field being one of the fastest growing industries in the world, with successful applications on all levels from high end to low end, from space to consumer applications, with the inclusion of microsystems in smartphones such as three-axis accelerometers and three-axis gyroscopes as the most recent 'killer' application. Regardless of application, low cost, high performance and high reliability seem to give us the winning hand leaving competing technology platforms in the dust, for instance in automotive applications. First, I would like to thank the authors of the selected papers for each of their individual excellent contributions. My gratitude also goes to my fellow members in the programme committee (Leon Abelmann, Marin Hill and Martin Hoffmann) for their devotion in the selection of invited speakers and submitted papers, as well as the anonymous JMM reviewers for their careful selection of the final 13 papers included here. Last, but not least, it has been an honour and pleasure for me to collaborate with the editorial staff of Journal of Micromechanics and Microengineering, with the selected best papers presented at MME 2011 included in this special section. This collaboration will continue also for MME 2012, and hopefully also for many future MME workshops. References [1] Morante J R 1997 Preface J. Micromech. Microeng. 7 [2] Evans A G R 1998 Preface J. Micromech. Microeng. 8 [3] Ohlckers P 1999 Introduction J. Micromech. Microeng. 9 [4] Bosseboeuf A 2000 Editorial J. Micromech. Microeng. 10 [5] Hill M 2002 Preface J. Micromech. Microeng. 12 [6] Dascalu D and Muller A 2003 Preface J. Micromech. Microeng. 13 [7] Wolffenbuttel R F 2004 14th Micromechanics Europe Workshop (MME 2003) J. Micromech. Microeng. 14 [8] Puers R 2005 15th European Workshop on Micromechanics (MME 2004) J. Micromech. Microeng. 15 [9] Enoksson P 2006 16th European Workshop on Micromechanics (MME 2005) J. Micromech. Microeng. 16 [10] Morgan H 2007 The 17th European Workshop on Micromechanics (MME 2006) J. Micromech. Microeng. 17 [11] Correia J H 2008 The 18th European Workshop on Micromechanics (MME 2007) J. Micromech. Microeng. 18 060201 [12] Schnakenberg U 2009 The 19th MicroMechanics Europe Workshop (MME 2008) J. Micromech. Microeng. 19 070201 [13] Pons P 2010 Selected papers from the 20th Micromechanics Europe Workshop (MME 2009) (Toulouse, France, 20-22 September, 2009) J. Micromech. Microeng. 20 060201 [14] Abelmann L 2011 Selected papers from the 21th Micromechanics Europe Workshop (MME 2010) (Enschede, the Netherlands, 26-29 September, 2010) J. Micromech. Microeng. 21 070201
Effect of curing mode on the micro-mechanical properties of dual-cured self-adhesive resin cements.
Ilie, Nicoleta; Simon, Alexander
2012-04-01
Light supplying to luting resin cements is impeded in several clinical situations, causing us to question whether materials can properly be cured to achieve adequately (or adequate) mechanical properties. The aim of this study was therefore to analyse the effect of light on the micro-mechanical properties of eight popular dual-cured self-adhesive resin cements by comparing them with two conventional, also dual-cured, resin cements. Four different curing procedures were applied: auto-polymerisation (dark curing) and light curing (LED unit, Freelight 2, 20 s) by applying the unit directly on the samples' surface, at a distance of 5 and 10 mm. Twenty minutes after curing, the samples were stored for 1 week at 37°C in a water-saturated atmosphere. The micro-mechanical properties-Vickers hardness, modulus of elasticity, creep and elastic/plastic deformation-were measured. Data were analysed with multivariate ANOVA followed by Tukey's test and partial eta-squared statistics (p < 0.05). A very strong influence of the material as well as filler volume and weight on the micro-mechanical properties was measured, whereas the influence of the curing procedure and type of cement-conventional or self-adhesive-was generally low. The influence of light on the polymerisation process was material dependent, with four different behaviour patterns to be distinguished. As a material category, significantly higher micro-mechanical properties were measured for the conventional compared to the self-adhesive resin cements, although this difference was low. Within the self-adhesive resin cements group, the variation in micro-mechanical properties was high. The selection of suitable resin cements should be done by considering, besides its adhesive properties, its micro-mechanical properties and curing behaviour also.
Mesoscale Modeling of Dynamic Failure of Ceramic Polycrystals
2011-08-01
Wu, R. Feng, 2005. Micromechanical investigation of heterogeneous microplasticity in ceramics deformed under high confining stresses. Mechanics of...Boyce, 2010. The effect of microstructural representation on simulations of microplastic ratcheting. International Journal of Plasticity 26: 617
Characterization of the tensile and microstructural properties of an aluminum metal matrix composite
NASA Technical Reports Server (NTRS)
Birt, M. J.; Johnson, W. S.
1990-01-01
This study examines a powder metallurgy aluminum alloy in the unreinforced state and with a discontinuous reinforcement of 15 v/o or 30 v/o SiC whisker or 15 v/o SiC particulate. The materials were extruded and then hot-rolled to three plate thicknesses of 6.35, 3.18 and 1.8 mm and were investigated in the as-fabricated and peak aged conditions. The influence of mechanical working on the reinforcement morphology and distribution were examined. A comparison of the mechanical properties was made and the elastic moduli of the reinforced materials were predicted using a micromechanics model. Fractography of tensile specimens revealed that the fracture process was dominated by the presence of microstructural inhomogeneities which were related to both the matrix alloy and to the reinforcement type. An analysis of these microstructural features and a description of the micromechanics model are presented in the paper.
NASA Technical Reports Server (NTRS)
Pineda, Evan J.; Fassin, Marek; Bednarcyk, Brett A.; Reese, Stefanie; Simon, Jaan-Willem
2017-01-01
Three different multiscale models, based on the method of cells (generalized and high fidelity) micromechanics models were developed and used to predict the elastic properties of C/C-SiC composites. In particular, the following multiscale modeling strategies were employed: Concurrent multiscale modeling of all phases using the generalized method of cells, synergistic (two-way coupling in space) multiscale modeling with the generalized method of cells, and hierarchical (one-way coupling in space) multiscale modeling with the high fidelity generalized method of cells. The three models are validated against data from a hierarchical multiscale finite element model in the literature for a repeating unit cell of C/C-SiC. Furthermore, the multiscale models are used in conjunction with classical lamination theory to predict the stiffness of C/C-SiC plates manufactured via a wet filament winding and liquid silicon infiltration process recently developed by the German Aerospace Institute.
Large strain cruciform biaxial testing for FLC detection
NASA Astrophysics Data System (ADS)
Güler, Baran; Efe, Mert
2017-10-01
Selection of proper test method, specimen design and analysis method are key issues for studying formability of sheet metals and detection of their forming limit curves (FLC). Materials with complex microstructures may need an additional micro-mechanical investigation and accurate modelling. Cruciform biaxial test stands as an alternative to standard tests as it achieves frictionless, in-plane, multi-axial stress states with a single sample geometry. In this study, we introduce a small-scale (less than 10 cm) cruciform sample allowing micro-mechanical investigation at stress states ranging from plane strain to equibiaxial. With successful specimen design and surface finish, large forming limit strains are obtained at the test region of the sample. The large forming limit strains obtained by experiments are compared to the values obtained from Marciniak-Kuczynski (M-K) local necking model and Cockroft-Latham damage model. This comparison shows that the experimental limiting strains are beyond the theoretical values, approaching to the fracture strain of the two test materials: Al-6061-T6 aluminum alloy and DC-04 high formability steel.
NASA Astrophysics Data System (ADS)
Pawlik, Marzena; Lu, Yiling
2018-05-01
Computational micromechanics is a useful tool to predict properties of carbon fibre reinforced polymers. In this paper, a representative volume element (RVE) is used to investigate a fuzzy fibre reinforced polymer. The fuzzy fibre results from the introduction of nanofillers in the fibre surface. The composite being studied contains three phases, namely: the T650 carbon fibre, the carbon nanotubes (CNTs) reinforced interphase and the epoxy resin EPIKOTE 862. CNTs are radially grown on the surface of the carbon fibre, and thus resultant interphase composed of nanotubes and matrix is transversely isotropic. Transversely isotropic properties of the interphase are numerically implemented in the ANSYS FEM software using element orientation command. Obtained numerical predictions are compared with the available analytical models. It is found that the CNTs interphase significantly increased the transverse mechanical properties of the fuzzy fibre reinforced polymer. This extent of enhancement changes monotonically with the carbon fibre volume fraction. This RVE model enables to investigate different orientation of CNTs in the fuzzy fibre model.
Micromechanisms with floating pivot
Garcia, Ernest J.
2001-03-06
A new class of tilting micromechanical mechanisms have been developed. These new mechanisms use floating pivot structures to relieve some of the problems encountered in the use of solid flexible pivots.
Predicting bending stiffness of randomly oriented hybrid panels
Laura Moya; William T.Y. Tze; Jerrold E. Winandy
2010-01-01
This study was conducted to develop a simple model to predict the bending modulus of elasticity (MOE) of randomly oriented hybrid panels. The modeling process involved three modules: the behavior of a single layer was computed by applying micromechanics equations, layer properties were adjusted for densification effects, and the entire panel was modeled as a three-...
Computational Simulation of the High Strain Rate Tensile Response of Polymer Matrix Composites
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.
2002-01-01
A research program is underway to develop strain rate dependent deformation and failure models for the analysis of polymer matrix composites subject to high strain rate impact loads. Under these types of loading conditions, the material response can be highly strain rate dependent and nonlinear. State variable constitutive equations based on a viscoplasticity approach have been developed to model the deformation of the polymer matrix. The constitutive equations are then combined with a mechanics of materials based micromechanics model which utilizes fiber substructuring to predict the effective mechanical and thermal response of the composite. To verify the analytical model, tensile stress-strain curves are predicted for a representative composite over strain rates ranging from around 1 x 10(exp -5)/sec to approximately 400/sec. The analytical predictions compare favorably to experimentally obtained values both qualitatively and quantitatively. Effective elastic and thermal constants are predicted for another composite, and compared to finite element results.
NASA Astrophysics Data System (ADS)
Manas, David; Manas, Miroslav; Gajzlerova, Lenka; Ovsik, Martin; Kratky, Petr; Senkerik, Vojtěch; Skrobak, Adam; Danek, Michal; Manas, Martin
2015-09-01
The influence of beta radiation on the changes in the structure and selected properties (mechanical and thermal) was proved. Using low doses of beta radiation for 25% glass fiber filled polypropylene and its influence on the changes of micromechanical properties of surface layer has not been studied in detail so far. The specimens of 25% glass fiber filled PP were made by injection molding technology and irradiated by low doses of beta radiation (0, 15 and 33 kGy). The changes in the microstructure and micromechanical properties of surface layer were evaluated using FTIR, SEM, WAXS and instrumented microhardness test. The results of the measurements showed considerable increase in micromechanical properties (indentation hardness, indentation elastic modulus) when low doses of beta radiation are used.
NASA Technical Reports Server (NTRS)
Wang, John T.; Bomarito, Geoffrey F.
2016-01-01
This study implements a plasticity tool to predict the nonlinear shear behavior of unidirectional composite laminates under multiaxial loadings, with an intent to further develop the tool for use in composite progressive damage analysis. The steps for developing the plasticity tool include establishing a general quadratic yield function, deriving the incremental elasto-plastic stress-strain relations using the yield function with associated flow rule, and integrating the elasto-plastic stress-strain relations with a modified Euler method and a substepping scheme. Micromechanics analyses are performed to obtain normal and shear stress-strain curves that are used in determining the plasticity parameters of the yield function. By analyzing a micromechanics model, a virtual testing approach is used to replace costly experimental tests for obtaining stress-strain responses of composites under various loadings. The predicted elastic moduli and Poisson's ratios are in good agreement with experimental data. The substepping scheme for integrating the elasto-plastic stress-strain relations is suitable for working with displacement-based finite element codes. An illustration problem is solved to show that the plasticity tool can predict the nonlinear shear behavior for a unidirectional laminate subjected to multiaxial loadings.
Micromechanics Analysis Code Post-Processing (MACPOST) User Guide. 1.0
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.; Comiskey, Michele D.; Bednarcyk, Brett A.
1999-01-01
As advanced composite materials have gained wider usage. the need for analytical models and computer codes to predict the thermomechanical deformation response of these materials has increased significantly. Recently, a micromechanics technique called the generalized method of cells (GMC) has been developed, which has the capability to fulfill this -oal. Tc provide a framework for GMC, the Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC) has been developed. As MAC/GMC has been updated, significant improvements have been made to the post-processing capabilities of the code. Through the MACPOST program, which operates directly within the MSC/PATRAN graphical pre- and post-processing package, a direct link between the analysis capabilities of MAC/GMC and the post-processing capabilities of MSC/PATRAN has been established. MACPOST has simplified the production, printing. and exportation of results for unit cells analyzed by MAC/GMC. MACPOST allows different micro-level quantities to be plotted quickly and easily in contour plots. In addition, meaningful data for X-Y plots can be examined. MACPOST thus serves as an important analysis and visualization tool for the macro- and micro-level data generated by MAC/GMC. This report serves as the user's manual for the MACPOST program.
Effect of microstructure on the static and dynamic behavior of recycled asphalt material
DOT National Transportation Integrated Search
2004-02-01
This report describes the third year's research activities of a project dealing with the micromechanical behavior of asphalt materials. The project involved both theoretical/numerical modeling and experimental studies that were applied to investigate...
Effect of microstructure on the static and dynamic behavior of recycled asphalt material
DOT National Transportation Integrated Search
2002-07-01
This report describes the research activities of a project dealing with theoretical/numerical modeling and experimental studies of the micromechanical behavior of recycled asphalt material. The theoretical work employed finite element techniques to d...
Analytical Modeling of the High Strain Rate Deformation of Polymer Matrix Composites
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.; Roberts, Gary D.; Gilat, Amos
2003-01-01
The results presented here are part of an ongoing research program to develop strain rate dependent deformation and failure models for the analysis of polymer matrix composites subject to high strain rate impact loads. State variable constitutive equations originally developed for metals have been modified in order to model the nonlinear, strain rate dependent deformation of polymeric matrix materials. To account for the effects of hydrostatic stresses, which are significant in polymers, the classical 5 plasticity theory definitions of effective stress and effective plastic strain are modified by applying variations of the Drucker-Prager yield criterion. To verify the revised formulation, the shear and tensile deformation of a representative toughened epoxy is analyzed across a wide range of strain rates (from quasi-static to high strain rates) and the results are compared to experimentally obtained values. For the analyzed polymers, both the tensile and shear stress-strain curves computed using the analytical model correlate well with values obtained through experimental tests. The polymer constitutive equations are implemented within a strength of materials based micromechanics method to predict the nonlinear, strain rate dependent deformation of polymer matrix composites. In the micromechanics, the unit cell is divided up into a number of independently analyzed slices, and laminate theory is then applied to obtain the effective deformation of the unit cell. The composite mechanics are verified by analyzing the deformation of a representative polymer matrix composite (composed using the representative polymer analyzed for the correlation of the polymer constitutive equations) for several fiber orientation angles across a variety of strain rates. The computed values compare favorably to experimentally obtained results.
A Micromechanical RF Channelizer
NASA Astrophysics Data System (ADS)
Akgul, Mehmet
The power consumption of a radio generally goes as the number and strength of the RF signals it must process. In particular, a radio receiver would consume much less power if the signal presented to its electronics contained only the desired signal in a tiny percent bandwidth frequency channel, rather than the typical mix of signals containing unwanted energy outside the desired channel. Unfortunately, a lack of filters capable of selecting single channel bandwidths at RF forces the front-ends of contemporary receivers to accept unwanted signals, and thus, to operate with sub-optimal efficiency. This dissertation focuses on the degree to which capacitive-gap transduced micromechanical resonators can achieve the aforementioned RF channel-selecting filters. It aims to first show theoretically that with appropriate scaling capacitive-gap transducers are strong enough to meet the needed coupling requirements; and second, to fully detail an architecture and design procedure needed to realize said filters. Finally, this dissertation provides an actual experimentally demonstrated RF channel-select filter designed using the developed procedures and confirming theoretical predictions. Specifically, this dissertation introduces four methods that make possible the design and fabrication of RF channel-select filters. The first of these introduces a small-signal equivalent circuit for parallel-plate capacitive-gap transduced micromechanical resonators that employs negative capacitance to model the dependence of resonance frequency on electrical stiffness in a way that facilitates the analysis of micromechanical circuits loaded with arbitrary electrical impedances. The new circuit model not only correctly predicts the dependence of electrical stiffness on the impedances loading the input and output electrodes of parallel-plate capacitive-gap transduced micromechanical device, but does so in a visually intuitive way that identifies current drive as most appropriate for applications that must be stable against environmental perturbations, such as acceleration or power supply variations. Measurements on fabricated devices in fact confirm predictions by the new model of up to 4x improvement in frequency stability against DC-bias voltage variations for contour-mode disk resonators as the resistance loading their ports increases. By enhancing circuit visualization, this circuit model makes more obvious the circuit design procedures and topologies most beneficial for certain mechanical circuits, e.g., filters and oscillators. The second method enables simultaneous low motional resistance ( Rx 70,000) at 61 MHz using an improved ALD-partial electrode-to-resonator gap filling technique that reduces the Q-limiting surface losses of previous renditions by adding an alumina pre-coating before ALD of the gap-filling high-k dielectric. This effort increases the Q over the ˜10,000 of previous renditions by more than 6x towards demonstration of the first VHF micromechanical resonators in any material, piezoelectric or not, to meet the simultaneous high Q (>50,000) and low motional resistance Rx (< 200O) specs highly desired for front-end frequency channelizer requirements in cognitive and software-defined radio architectures. The methods presented in this chapter finally overcome the high impedance bottleneck that has plagued capacitively transduced micro-mechanical resonators over the past decade. The third method introduces a capacitively transduced micromechanical resonator constructed in hot filament CVD boron-doped microcrystalline diamond (MCD) structural material that posts a measured Q of 146,580 at 232.441 kHz, which is 3x higher than the previous high for conductive polydiamond. Moreover, radial-contour mode disk resonators fabricated in the same MCD film and using material mismatched stems exhibit a Q of 71,400 at 299.86 MHz. The material used here further exhibits an acoustic velocity of 18,516 m/s, which is now the highest to date among available surface micromachinable materials. For many potential applications, the hot filament CVD method demonstrated in this work is quite enabling, since it provides a much less expensive method than microwave CVD based alternatives for depositing doped CVD diamond over large wafers (e.g., 8") for batch fabrication. The first three methods described so far focus on a single vibrating disk resonator and improve its electrical equivalent modeling, C x/Co, and Q. Once we craft the resonator that meets the challenging design requirements of RF channel-select filters, the last method presents a design hierarchy that achieves the desired filter response with a specific center frequency, bandwidth, and filter termination resistance. The design procedure culminates in specific values for all mechanical geometry variables necessary for the filter layout, such as disk radii, and beam widths; and process design variables such as resonator material thickness and capacitive actuation gap spacing. Finally, the experimental results introduce a 39nm-gap capacitive transducer, voltage-controlled frequency tuning, and a stress relieving coupled array design that enable a 0.09% bandwidth 223.4 MHz channel-select filter with only 2.7dB of in-band insertion loss and 50dB rejection of out-of-band interferers. This amount of rejection is more than 23dB better than previous capacitive-gap transduced filter designs that did not benefit from sub-50nm gaps. It also comes in tandem with a 20dB shape factor of 2.7 realized by a hierarchical mechanical circuit design utilizing 206 micromechanical circuit elements, all contained in an area footprint of only 600mumx420mum. The key to such low insertion loss for this tiny percent bandwidth is Q's>8,800 supplied by polysilicon disk resonators employing for the first time capacitive transducer gaps small enough to generate coupling strengths of C x/Co ˜0.1%, which is a 6.1x improvement over previous efforts. The filter structure utilizes electrical tuning to correct frequency mismatches due to process variations, where a dc tuning voltage of 12.1 V improves the filter insertion loss by 1.8 dB and yields the desired equiripple passband shape. An electrical equivalent circuit is presented that captures not only the ideal filter response, but also parasitic non-idealities that create electrical feed-through, where simulation of the derived equivalent circuit matches the measured filter spectrum closely both in-band and out-of-band. The combined 2.7dB passband insertion loss and 50dB stopband rejection of the demonstrated 206-element 0.09% bandwidth 223.4-MHz differential micromechanical disk filter represents a landmark for capacitive-gap transduced micromechanical resonator technology. This demonstration proves that the mere introduction of small gaps, on the order of 39 nm, goes a long way towards moving this technology from a research curiosity to practical performance specs commensurate with the needs of actual RF channel-selecting receiver front-ends. It also emphasizes the need for tuning and defensive stress-relieving structural design when percent bandwidths and gaps shrink, all demonstrated by the work herein. Perhaps most encouraging is that the models presented in dissertation used to design the filter and predict its behavior seem to be all be spot on. This means that predictions using these models foretelling 1-GHz filters with sub-200O impedances enabled by 20nm-gaps might soon come true, bringing this technology ever closer to someday realizing the ultra-low power channel-selecting communication front-ends targeted for autonomous set-and-forget sensor networks. Work towards these goals continues.
Nonlinear probabilistic finite element models of laminated composite shells
NASA Technical Reports Server (NTRS)
Engelstad, S. P.; Reddy, J. N.
1993-01-01
A probabilistic finite element analysis procedure for laminated composite shells has been developed. A total Lagrangian finite element formulation, employing a degenerated 3-D laminated composite shell with the full Green-Lagrange strains and first-order shear deformable kinematics, forms the modeling foundation. The first-order second-moment technique for probabilistic finite element analysis of random fields is employed and results are presented in the form of mean and variance of the structural response. The effects of material nonlinearity are included through the use of a rate-independent anisotropic plasticity formulation with the macroscopic point of view. Both ply-level and micromechanics-level random variables can be selected, the latter by means of the Aboudi micromechanics model. A number of sample problems are solved to verify the accuracy of the procedures developed and to quantify the variability of certain material type/structure combinations. Experimental data is compared in many cases, and the Monte Carlo simulation method is used to check the probabilistic results. In general, the procedure is quite effective in modeling the mean and variance response of the linear and nonlinear behavior of laminated composite shells.
Lab on chip microdevices for cellular mechanotransduction in urothelial cells
NASA Astrophysics Data System (ADS)
Maziz, A.; Guan, N.; Svennersten, K.; Hallén-Grufman, K.; Jager, Edwin W. H.
2016-04-01
Cellular mechanotransduction is crucial for physiological function in the lower urinary tract. The bladder is highly dependent on the ability to sense and process mechanical inputs, illustrated by the regulated filling and voiding of the bladder. However, the mechanisms by which the bladder integrates mechanical inputs, such as intravesicular pressure, and controls the smooth muscles, remain unknown. To date no tools exist that satisfactorily mimic in vitro the dynamic micromechanical events initiated e.g. by an emerging inflammatory process or a growing tumour mass in the urinary tract. More specifically, there is a need for tools to study these events on a single cell level or in a small population of cells. We have developed a micromechanical stimulation chip that can apply physiologically relevant mechanical stimuli to single cells to study mechanosensitive cells in the urinary tract. The chips comprise arrays of microactuators based on the electroactive polymer polypyrrole (PPy). PPy offers unique possibilities and is a good candidate to provide such physiological mechanical stimulation, since it is driven at low voltages, is biocompatible, and can be microfabricated. The PPy microactuators can provide mechanical stimulation at different strains and/or strain rates to single cells or clusters of cells, including controls, all integrated on one single chip, without the need to preprepare the cells. This paper reports initial results on the mechano-response of urothelial cells using the micromechanical stimulation chips. We show that urothelial cells are viable on our microdevices and do respond with intracellular Ca2+ increase when subjected to a micro-mechanical stimulation.
NASA Astrophysics Data System (ADS)
Forbes, Ian
2010-05-01
Journal of Micromechanics and Microengineering is well known for publishing excellent work in highly competitive timescales. The journal's coverage has consistently evolved to reflect the current state of the field, and from May 2010 it will revisit its scope once again. The aims of the journal remain unchanged, however: to be the first choice of authors and readers in MEMS and micro-scale research. The new scope continues to focus on highlighting the link between fabrication technologies and their capacity to create novel devices. This link will be considered paramount in the journal, and both prospective authors and readers should let it serve as an inspiration to them. The burgeoning fields of NEMS and nano-scale engineering are more explicitly supported in the new scope. Research which ten years ago would have been considered science fiction has, through the tireless efforts of the community, become reality. The Editorial Board feel it is important to reflect the growing significance of this work in the scope. The new scope, drafted by Editor-in-Chief Professor Mark Allen, and approved by the Editorial Board, is as follows: Journal of Micromechanics and Microengineering covers all aspects of microelectromechanical structures, devices, and systems, as well as micromechanics and micromechatronics. The journal focuses on original work in fabrication and integration technologies, on the micro- and nano-scale. The journal aims to highlight the link between new fabrication technologies and their capacity to create novel devices. Original work in microengineering and nanoengineering is also reported. Such work is defined as applications of these fabrication and integration technologies to structures in which key attributes of the devices or systems depend on specific micro- or nano-scale features. Such applications span the physical, chemical, electrical and biological realms. New fabrication and integration techniques for both silicon and non-silicon materials are reported. Relevant modelling papers in micro- and nanoengineering are reported where supported by experimental data. The journal also covers integration of interface electronics with micro- and nanoengineered systems, as well as vacuum microelectronics, microfabricated electrically passive elements, and other micro- or nanoengineering-enabled electrical devices.
An Extension of Holographic Moiré to Micromechanics
NASA Astrophysics Data System (ADS)
Sciammarella, C. A.; Sciammarella, F. M.
The electronic Holographic Moiré is an ideal tool for micromechanics studies. It does not require a modification of the surface by the introduction of a reference grating. This is of particular advantage when dealing with materials such as solid propellant grains whose chemical nature and surface finish makes the application of a reference grating very difficult. Traditional electronic Holographic Moiré presents some difficult problems when large magnifications are needed and large rigid body motion takes place. This paper presents developments that solves these problems and extends the application of the technique to micromechanics.
Nanocomposites for Machining Tools
Loginov, Pavel; Mishnaevsky, Leon; Levashov, Evgeny
2017-01-01
Machining tools are used in many areas of production. To a considerable extent, the performance characteristics of the tools determine the quality and cost of obtained products. The main materials used for producing machining tools are steel, cemented carbides, ceramics and superhard materials. A promising way to improve the performance characteristics of these materials is to design new nanocomposites based on them. The application of micromechanical modeling during the elaboration of composite materials for machining tools can reduce the financial and time costs for development of new tools, with enhanced performance. This article reviews the main groups of nanocomposites for machining tools and their performance. PMID:29027926
Synchronization of electrically coupled micromechanical oscillators with a frequency ratio of 3:1
NASA Astrophysics Data System (ADS)
Pu, Dong; Wei, Xueyong; Xu, Liu; Jiang, Zhuangde; Huan, Ronghua
2018-01-01
In this Letter, synchronization of micromechanical oscillators with a frequency ratio of 3:1 is reported. Two electrically coupled piezoresistive micromechanical oscillators are built for the study, and their oscillation frequencies are tuned via the Joule heating effect to find out the synchronization region. Experimental results show that the larger coupling strength or bias driving voltage is applied and a wider synchronization region is obtained. Interestingly, however, the oscillator's frequency tunability is dramatically reduced from -809.1 Hz/V to -23.1 Hz/V when synchronization is reached. A nearly 10-fold improvement of frequency stability at 1 s is observed from one of the synchronized oscillators, showing a comparable performance of the other. The stable high order synchronization of micromechanical oscillators is helpful to design high performance resonant sensors with a better frequency resolution and a larger scale factor.
NASA Technical Reports Server (NTRS)
Friedrich, Craig R.; Warrington, Robert O.
1995-01-01
Micromechanical machining processes are those micro fabrication techniques which directly remove work piece material by either a physical cutting tool or an energy process. These processes are direct and therefore they can help reduce the cost and time for prototype development of micro mechanical components and systems. This is especially true for aerospace applications where size and weight are critical, and reliability and the operating environment are an integral part of the design and development process. The micromechanical machining processes are rapidly being recognized as a complementary set of tools to traditional lithographic processes (such as LIGA) for the fabrication of micromechanical components. Worldwide efforts in the U.S., Germany, and Japan are leading to results which sometimes rival lithography at a fraction of the time and cost. Efforts to develop processes and systems specific to aerospace applications are well underway.
Silicon micromechanical sensors model of piezoresistivity
NASA Astrophysics Data System (ADS)
Lysko, Jan M.
2001-08-01
Application of the piezo resistivity model to estimate valence and conduction bands shifts induced by the mechanical stress is presented. Parameters of the silicon pressure and acceleration sensor, which are under development in the ITE, Warsaw, were used. Geometrical and technological data were used in calculations of the silicon energy band structure and longitudinal coefficient of the piezo resistivity.(pi) L.
Development of EOS data for granular material like sand by using micromodels
NASA Astrophysics Data System (ADS)
Larcher, M.; Gebbeken, N.
2012-08-01
Detonations in soil can occur due to several reasons: e.g. land mines or bombs from the Second World War. Soil is also often used as a protective barrier. In all cases the behaviour of soil loaded by shock waves is important. The simulation of shock wave loaded soil using hydro-codes like AUTODYN needs a failure model as well as an equation of state (EOS). The parameters for these models are often not known. The popular material law for sand from Laine and Sandvik [1], e.g., is a first approximation, but it can only be used for dry sand with a certain grain grading. The parameters porosity, grain grading, and humidity have a big influence on the material behaviour of cohesive soils. Micro-mechanic models can be used to develop the material behaviour of granular materials. EOS data can be obtained by numerically loading micro-mechanically modelled grains and measuring the density under a certain pressure in the finite element model. The influence of porosity, grain grading, and humidity can be easily investigated. EOS data are determined in this work for cohesive soils depending on these parameters.
Constitutive Modeling of Nanotube-Reinforced Polymer Composite Systems
NASA Technical Reports Server (NTRS)
Odegard, Gregory M.; Harik, Vasyl M.; Wise, Kristopher E.; Gates, Thomas S.
2004-01-01
In this study, a technique has been proposed for developing constitutive models for polymer composite systems reinforced with single-walled carbon nanotubes (SWNT). Since the polymer molecules are on the same size scale as the nanotubes, the interaction at the polymer/nanotube interface is highly dependent on the local molecular structure and bonding. At these small length scales, the lattice structures of the nanotube and polymer chains cannot be considered continuous, and the bulk mechanical properties of the SWNT/polymer composites can no longer be determined through traditional micromechanical approaches that are formulated using continuum mechanics. It is proposed herein that the nanotube, the local polymer near the nanotube, and the nanotube/polymer interface can be modeled as an effective continuum fiber using an equivalent-continuum modeling method. The effective fiber retains the local molecular structure and bonding information and serves as a means for incorporating micromechanical analyses for the prediction of bulk mechanical properties of SWNT/polymer composites with various nanotube sizes and orientations. As an example, the proposed approach is used for the constitutive modeling of two SWNT/polyethylene composite systems, one with continuous and aligned SWNT and the other with discontinuous and randomly aligned nanotubes.
Constitutive Modeling of Nanotube-Reinforced Polymer Composite Systems
NASA Technical Reports Server (NTRS)
Odegard, Gregory M.; Harik, Vasyl M.; Wise, Kristopher E.; Gates, Thomas S.
2001-01-01
In this study, a technique has been proposed for developing constitutive models for polymer composite systems reinforced with single-walled carbon nanotubes (SWNT). Since the polymer molecules are on the same size scale as the nanotubes, the interaction at the polymer/nanotube interface is highly dependent on the local molecular structure and bonding. At these small length scales, the lattice structures of the nanotube and polymer chains cannot be considered continuous, and the bulk mechanical properties of the SWNT/polymer composites can no longer be determined through traditional micromechanical approaches that are formulated using continuum mechanics. It is proposed herein that the nanotube, the local polymer near the nanotube, and the nanotube/polymer interface can be modeled as an effective continuum fiber using an equivalent-continuum modeling method. The effective fiber retains the local molecular structure and bonding information and serves as a means for incorporating micromechanical analyses for the prediction of bulk mechanical properties of SWNT/polymer composites with various nanotube sizes and orientations. As an example, the proposed approach is used for the constitutive modeling of two SWNT/polyethylene composite systems, one with continuous and aligned SWNT and the other with discontinuous and randomly aligned nanotubes.
Development of a micro-mechanical valve in a novel glaucoma implant.
Siewert, Stefan; Schultze, Christine; Schmidt, Wolfram; Hinze, Ulf; Chichkov, Boris; Wree, Andreas; Sternberg, Katrin; Allemann, Reto; Guthoff, Rudolf; Schmitz, Klaus-Peter
2012-10-01
This paper describes methods for design, manufacturing and characterization of a micro-mechanical valve for a novel glaucoma implant. The implant is designed to drain aqueous humour from the anterior chamber of the eye into the suprachoroidal space in case of an elevated intraocular pressure (IOP). In contrast to any existing glaucoma drainage device (GDD), the valve mechanism is located in the anterior chamber and there, surrounded by aqueous humour, immune to fibrosis induced failure. For the prevention of hypotony the micro-mechanical valve is designed to open if the physiological pressure difference between the anterior chamber and the suprachoroidal space in the range of 0.8 mmHg to 3.7 mmHg is exceeded. In particular the work includes: (i) manufacturing and morphological characterization of polymer tubing, (ii) mechanical material testing as basis for (iii) the design of micro-mechanical valves using finite element analysis (FEA), (iv) manufacturing of microstent prototypes including micro-mechanical valves by femtosecond laser micromachining and (v) the experimental fluid-mechanical characterization of the manufactured microstent prototypes with regard to valve opening pressure. The considered materials polyurethane (PUR) and silicone (SIL) exhibit low elastic modulus and high extensibility. The unique valve design enables a low opening pressure of micro-mechanical valves. An ideal valve design for PUR and SIL with an experimentally determined opening pressure of 2 mmHg and 3.7 mmHg is identified. The presented valve approach is suitable for the inhibition of hypotony as a major limitation of today's GDD and will potentially improve the minimally invasive treatment of glaucoma.
NASA Astrophysics Data System (ADS)
Aman, M.; Sun, Y.; Ilgen, A.; Espinoza, N.
2015-12-01
Injection of large volumes of CO2 into geologic formations can help reduce the atmospheric CO2 concentration and lower the impact of burning fossil fuels. However, the injection of CO2 into the subsurface shifts the chemical equilibrium between the mineral assemblage and the pore fluid. This shift will situationally facilitate dissolution and reprecipitation of mineral phases, in particular intergranular cements, and can potentially affect the long term mechanical stability of the host formation. The study of these coupled chemical-mechanical reservoir rock responses can help identify and control unexpected emergent behavior associated with geological CO2 storage.Experiments show that micro-mechanical methods are useful in capturing a variety of mechanical parameters, including Young's modulus, hardness and fracture toughness. In particular, micro-mechanical measurements are well-suited for examining thin altered layers on the surfaces of rock specimens, as well as capturing variability on the scale of lithofacies. We performed indentation and scratching tests on sandstone and siltstone rocks altered in natural CO2-brine environments, as well as on analogous samples altered under high pressure, temperature, and dissolved CO2 conditions in a controlled laboratory experiment. We performed geochemical modeling to support the experimental observations, in particular to gain the insight into mineral dissolution/precipitation as a result of the rock-water-CO2reactions. The comparison of scratch measurements performed on specimens both unaltered and altered by CO2 over geologic time scales results in statistically different values for fracture toughness and scratch hardness, indicating that long term exposure to CO2 caused mechanical degradation of the reservoir rock. Geochemical modeling indicates that major geochemical change caused by CO2 invasion of Entrada sandstone is dissolution of hematite cement, and its replacement with siderite and dolomite during the alteration process.
NASA Astrophysics Data System (ADS)
Hussain, Sadakat
Soy-based polyurethane foams (PUFs) were reinforced with fibres of different aspect ratios to improve the compressive modulus. Each of the three fibre types reinforced PUF differently. Shorter micro-crystalline cellulose fibres were found embedded inside the cell struts of PUF and reinforced them. The reinforcement was attributed to be stress transfer from the matrix to the fibre by comparing the experimental results to those predicted by micro-mechanical models for short fibre reinforced composites. The reinforced cell struts increased the overall compressive modulus of the foam. Longer glass fibres (470 microns, length) provided the best reinforcement. These fibres were found to be larger than the cell diameters. The micro-mechanical models could not predict the reinforcement provided by the longer glass fibres. The models predicted negligible reinforcement because the very low modulus PUF should not transfer load to the higher modulus fibres. However, using a finite element model, it was determined that the fibres were providing reinforcement through direct fibre interaction with each other. Intermediate length glass fibres (260 microns, length) were found to poorly reinforce the PUF and should be avoided. These fibres were too short to interact with each other and were on average too large to embed and reinforce cell struts. In order to produce natural fibre reinforced PUFs in the future, a novel device was invented. The purpose of the device is to deliver natural fibres at a constant mass flow rate. The device was found to consistently meter individual loose natural fibre tufts at a mass flow rate of 2 grams per second. However, the device is not robust and requires further development to deliver a fine stream of natural fibre that can mix and interact with the curing polymeric components of PUF. A design plan was proposed to address the remaining issues with the device.
NASA Astrophysics Data System (ADS)
Nie, Shihua
The main aim of this dissertation was to characterize the damage mechanism and fatigue behavior of the acrylic particulate composite. This dissertation also investigated how the failure mechanism is influenced by changes in certain parameters including the volume fraction of particle, the interfacial bonding strength, the stiffness and thickness of the interphase, and the CTE mismatch between the particle and the matrix. Monotonic uniaxial tensile and compressive testing under various temperatures and strain rates, isothermal low-cycle mechanical testing and thermal cycling of a plate with a cutout were performed. The influence of the interfacial bonding strength between the particle and the matrix on the failure mechanism of the ATH filled PMMA was investigated using in situ observations under uniaxial loading conditions. For composites with weak interfacial bonding, the debonding is the major damage mode. For composites with strong interfacial bonding, the breakage of the agglomerate of particles is the major damage mode. Experimental studies also demonstrated the significant influence of interfacial bonding strength on the fatigue life of the ATH filled PMMA. The damage was characterized in terms of the elastic modulus degradation, the load-drop parameter, the plastic strain range and the hysteresis dissipation. Identifying the internal state variables that quantify material degradation under thermomechanical loading is an active research field. In this dissertation, the entropy production, which is a measure of the irreversibility of the thermodynamic system, is used as the metric for damage. The close correlation between the damage measured in terms of elastic modulus degradation and that obtained from the finite element simulation results validates the entropy based damage evolution function. A micromechanical model for acrylic particulate composites with imperfect interfacial bonds was proposed. Acrylic particulate composites are treated as three-phase composites consisting of agglomerated particles, bulk matrix and an interfacial transition zone around the agglomerate. The influence of the interfacial bonding and the CTE mismatch between the matrix and the filler on the overall thermomechanical behavior of composites is studied analytically and experimentally. The comparison of analytical simulation with experimental data demonstrated the validity of the proposed micromechanical model for acrylic particulate composites with an imperfect interface. (Abstract shortened by UMI.)
Prediction of high temperature metal matrix composite ply properties
NASA Technical Reports Server (NTRS)
Caruso, J. J.; Chamis, C. C.
1988-01-01
The application of the finite element method (superelement technique) in conjunction with basic concepts from mechanics of materials theory is demonstrated to predict the thermomechanical behavior of high temperature metal matrix composites (HTMMC). The simulated behavior is used as a basis to establish characteristic properties of a unidirectional composite idealized an as equivalent homogeneous material. The ply properties predicted include: thermal properties (thermal conductivities and thermal expansion coefficients) and mechanical properties (moduli and Poisson's ratio). These properties are compared with those predicted by a simplified, analytical composite micromechanics model. The predictive capabilities of the finite element method and the simplified model are illustrated through the simulation of the thermomechanical behavior of a P100-graphite/copper unidirectional composite at room temperature and near matrix melting temperature. The advantage of the finite element analysis approach is its ability to more precisely represent the composite local geometry and hence capture the subtle effects that are dependent on this. The closed form micromechanics model does a good job at representing the average behavior of the constituents to predict composite behavior.
MAC/GMC 4.0 User's Manual: Keywords Manual. Volume 2
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Arnold, Steven M.
2002-01-01
This document is the second volume in the three volume set of User's Manuals for the Micromechanics Analysis Code with Generalized Method of Cells Version 4.0 (MAC/GMC 4.0). Volume 1 is the Theory Manual, this document is the Keywords Manual, and Volume 3 is the Example Problem Manual. MAC/GMC 4.0 is a composite material and laminate analysis software program developed at the NASA Glenn Research Center. It is based on the generalized method of cells (GMC) micromechanics theory, which provides access to the local stress and strain fields in the composite material. This access grants GMC the ability to accommodate arbitrary local models for inelastic material behavior and various types of damage and failure analysis. MAC/GMC 4.0 has been built around GMC to provide the theory with a user-friendly framework, along with a library of local inelastic, damage, and failure models. Further, applications of simulated thermo-mechanical loading, generation of output results, and selection of architectures to represent the composite material have been automated in MAC/GMC 4.0. Finally, classical lamination theory has been implemented within MAC/GMC 4.0 wherein GMC is used to model the composite material response of each ply. Consequently, the full range of GMC composite material capabilities is available for analysis of arbitrary laminate configurations as well. This volume describes the basic information required to use the MAC/GMC 4.0 software, including a 'Getting Started' section, and an in-depth description of each of the 22 keywords used in the input file to control the execution of the code.
Coupled attenuation and multiscale damage model for composite structures
NASA Astrophysics Data System (ADS)
Moncada, Albert M.; Chattopadhyay, Aditi; Bednarcyk, Brett; Arnold, Steven M.
2011-04-01
Composite materials are widely used in many applications for their high strength, low weight, and tailorability for specific applications. However, the development of robust and reliable methodologies to detect micro level damage in composite structures has been challenging. For composite materials, attenuation of ultrasonic waves propagating through the media can be used to determine damage within the material. Currently available numerical solutions for attenuation induce arbitrary damage, such as fiber-matrix debonding or inclusions, to show variations between healthy and damaged states. This paper addresses this issue by integrating a micromechanics analysis to simulate damage in the form of a fiber-matrix crack and an analytical model for calculating the attenuation of the waves when they pass through the damaged region. The hybrid analysis is validated by comparison with experimental stress-strain curves and piezoelectric sensing results for attenuation measurement. The results showed good agreement between the experimental stress-strain curves and the results from the micromechanics analysis. Wave propagation analysis also showed good correlation between simulation and experiment for the tested frequency range.
Frontiers of Theoretical Research on Shape Memory Alloys: A General Overview
NASA Astrophysics Data System (ADS)
Chowdhury, Piyas
2018-03-01
In this concise review, general aspects of modeling shape memory alloys (SMAs) are recounted. Different approaches are discussed under four general categories, namely, (a) macro-phenomenological, (b) micromechanical, (c) molecular dynamics, and (d) first principles models. Macro-phenomenological theories, stemming from empirical formulations depicting continuum elastic, plastic, and phase transformation, are primarily of engineering interest, whereby the performance of SMA-made components is investigated. Micromechanical endeavors are generally geared towards understanding microstructural phenomena within continuum mechanics such as the accommodation of straining due to phase change as well as role of precipitates. By contrast, molecular dynamics, being a more recently emerging computational technique, concerns attributes of discrete lattice structures, and thus captures SMA deformation mechanism by means of empirically reconstructing interatomic bonding forces. Finally, ab initio theories utilize quantum mechanical framework to peek into atomistic foundation of deformation, and can pave the way for studying the role of solid-sate effects. With specific examples, this paper provides concise descriptions of each category along with their relative merits and emphases.
Micromechanics of composites with shape memory alloy fibers in uniform thermal fields
NASA Technical Reports Server (NTRS)
Birman, Victor; Saravanos, Dimitris A.; Hopkins, Dale A.
1995-01-01
Analytical procedures are developed for a composite system consisting of shape memory alloy fibers within an elastic matrix subject to uniform temperature fluctuations. Micromechanics for the calculation of the equivalent properties of the composite are presented by extending the multi-cell model to incorporate shape memory alloy fibers. A three phase concentric cylinder model is developed for the analysis of local stresses which includes the fiber, the matrix, and the surrounding homogenized composite. The solution addresses the complexities induced by the nonlinear dependence of the in-situ martensite fraction of the fibers to the local stresses and temperature, and the local stresses developed from interactions between the fibers and matrix during the martensitic and reverse phase transformations. Results are presented for a nitinol/epoxy composite. The applications illustrate the response of the composite in isothermal longitudinal loading and unloading, and in temperature induced actuation. The local stresses developed in the composite under various stages of the martensitic and reverse phase transformation are also shown.
NASA Technical Reports Server (NTRS)
Arnold, Steven M. (Technical Monitor); Bansal, Yogesh; Pindera, Marek-Jerzy
2004-01-01
The High-Fidelity Generalized Method of Cells is a new micromechanics model for unidirectionally reinforced periodic multiphase materials that was developed to overcome the original model's shortcomings. The high-fidelity version predicts the local stress and strain fields with dramatically greater accuracy relative to the original model through the use of a better displacement field representation. Herein, we test the high-fidelity model's predictive capability in estimating the elastic moduli of periodic composites characterized by repeating unit cells obtained by rotation of an infinite square fiber array through an angle about the fiber axis. Such repeating unit cells may contain a few or many fibers, depending on the rotation angle. In order to analyze such multi-inclusion repeating unit cells efficiently, the high-fidelity micromechanics model's framework is reformulated using the local/global stiffness matrix approach. The excellent agreement with the corresponding results obtained from the standard transformation equations confirms the new model's predictive capability for periodic composites characterized by multi-inclusion repeating unit cells lacking planes of material symmetry. Comparison of the effective moduli and local stress fields with the corresponding results obtained from the original Generalized Method of Cells dramatically highlights the original model's shortcomings for certain classes of unidirectional composites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kroupa, J.L.; Coker, D.; Neu, R.W.
1996-12-31
Several micromechanical models that are currently being used for predicting the thermal and mechanical behavior of a cross-ply, [0/90], titanium matrix composite are evaluated. Six computer programs or methods are compared: (1) VISCOPLY; (2) METCAN; (3) FIDEP, an enhanced concentric cylinder model; (4) LISOL, a modified method of cells approach; (5) an elementary approach where the [90] ply is assumed to have the same properties as the matrix; and (6) a finite element method. Comparisons are made for the thermal residual stresses at room temperature resulting from processing, as well as for stresses and strains in two isothermal and twomore » thermomechanical fatigue test cases. For each case, the laminate response of the models is compared to experimental behavior, while the responses of the constituents are compared among the models. The capability of each model to predict frequency effects, inelastic cyclic strain (hysteresis) behavior, and strain ratchetting with cycling is shown. The basis of formulation for the micromechanical models, the constitutive relationships used for the matrix and fiber, and the modeling technique of the [90] ply are all found to be important factors for determining the accurate behavior of the [0/90] composite.« less
NASA Technical Reports Server (NTRS)
Panontin, Tina L.; Sheppard, Sheri D.
1994-01-01
The use of small laboratory specimens to predict the integrity of large, complex structures relies on the validity of single parameter fracture mechanics. Unfortunately, the constraint loss associated with large scale yielding, whether in a laboratory specimen because of its small size or in a structure because it contains shallow flaws loaded in tension, can cause the breakdown of classical fracture mechanics and the loss of transferability of critical, global fracture parameters. Although the issue of constraint loss can be eliminated by testing actual structural configurations, such an approach can be prohibitively costly. Hence, a methodology that can correct global fracture parameters for constraint effects is desirable. This research uses micromechanical analyses to define the relationship between global, ductile fracture initiation parameters and constraint in two specimen geometries (SECT and SECB with varying a/w ratios) and one structural geometry (circumferentially cracked pipe). Two local fracture criteria corresponding to ductile fracture micromechanisms are evaluated: a constraint-modified, critical strain criterion for void coalescence proposed by Hancock and Cowling and a critical void ratio criterion for void growth based on the Rice and Tracey model. Crack initiation is assumed to occur when the critical value in each case is reached over some critical length. The primary material of interest is A516-70, a high-hardening pressure vessel steel sensitive to constraint; however, a low-hardening structural steel that is less sensitive to constraint is also being studied. Critical values of local fracture parameters are obtained by numerical analysis and experimental testing of circumferentially notched tensile specimens of varying constraint (e.g., notch radius). These parameters are then used in conjunction with large strain, large deformation, two- and three-dimensional finite element analyses of the geometries listed above to predict crack initiation loads and to calculate the associated (critical) global fracture parameters. The loads are verified experimentally, and microscopy is used to measure pre-crack length, crack tip opening displacement (CTOD), and the amount of stable crack growth. Results for A516-70 steel indicate that the constraint-modified, critical strain criterion with a critical length approximately equal to the grain size (0.0025 inch) provides accurate predictions of crack initiation. The critical void growth criterion is shown to considerably underpredict crack initiation loads with the same critical length. The relationship between the critical value of the J-integral for ductile crack initiation and crack depth for SECT and SECB specimens has been determined using the constraint-modified, critical strain criterion, demonstrating that this micromechanical model can be used to correct in-plane constraint effects due to crack depth and bending vs. tension loading. Finally, the relationship developed for the SECT specimens is used to predict the behavior of circumferentially cracked pipe specimens.
Numerical insight into the micromechanics of jet erosion of a cohesive granular material
NASA Astrophysics Data System (ADS)
Cuéllar, Pablo; Benseghier, Zeyd; Luu, Li-Hua; Bonelli, Stéphane; Delenne, Jean-Yves; Radjaï, Farhang; Philippe, Pierre
2017-06-01
Here we investigate the physical mechanisms behind the surface erosion of a cohesive granular soil induced by an impinging jet by means of numerical simulations coupling fluid and grains at the microscale. The 2D numerical model combines the Discrete Element and Lattice Boltzmann methods (DEM-LBM) and accounts for the granular cohesion with a contact model featuring a paraboloidal yield surface. Here we review first the hydrodynamical conditions imposed by the fluid jet on a solid granular packing, turning then the attention to the impact of cohesion on the erosion kinetics. Finally, the use of an additional subcritical debonding damage model based on the work of Silvani and co-workers provides a novel insight into the internal solicitation of the cohesive granular sample by the impinging jet.
NASA Astrophysics Data System (ADS)
Liu, P. F.; Li, X. K.
2018-06-01
The purpose of this paper is to study micromechanical progressive failure properties of carbon fiber/epoxy composites with thermal residual stress by finite element analysis (FEA). Composite microstructures with hexagonal fiber distribution are used for the representative volume element (RVE), where an initial fiber breakage is assumed. Fiber breakage with random fiber strength is predicted using Monte Carlo simulation, progressive matrix damage is predicted by proposing a continuum damage mechanics model and interface failure is simulated using Xu and Needleman's cohesive model. Temperature dependent thermal expansion coefficients for epoxy matrix are used. FEA by developing numerical codes using ANSYS finite element software is divided into two steps: 1. Thermal residual stresses due to mismatch between fiber and matrix are calculated; 2. Longitudinal tensile load is further exerted on the RVE to perform progressive failure analysis of carbon fiber/epoxy composites. Numerical convergence is solved by introducing the viscous damping effect properly. The extended Mori-Tanaka method that considers interface debonding is used to get homogenized mechanical responses of composites. Three main results by FEA are obtained: 1. the real-time matrix cracking, fiber breakage and interface debonding with increasing tensile strain is simulated. 2. the stress concentration coefficients on neighbouring fibers near the initial broken fiber and the axial fiber stress distribution along the broken fiber are predicted, compared with the results using the global and local load-sharing models based on the shear-lag theory. 3. the tensile strength of composite by FEA is compared with those by the shear-lag theory and experiments. Finally, the tensile stress-strain curve of composites by FEA is applied to the progressive failure analysis of composite pressure vessel.
NASA Astrophysics Data System (ADS)
Liu, P. F.; Li, X. K.
2017-09-01
The purpose of this paper is to study micromechanical progressive failure properties of carbon fiber/epoxy composites with thermal residual stress by finite element analysis (FEA). Composite microstructures with hexagonal fiber distribution are used for the representative volume element (RVE), where an initial fiber breakage is assumed. Fiber breakage with random fiber strength is predicted using Monte Carlo simulation, progressive matrix damage is predicted by proposing a continuum damage mechanics model and interface failure is simulated using Xu and Needleman's cohesive model. Temperature dependent thermal expansion coefficients for epoxy matrix are used. FEA by developing numerical codes using ANSYS finite element software is divided into two steps: 1. Thermal residual stresses due to mismatch between fiber and matrix are calculated; 2. Longitudinal tensile load is further exerted on the RVE to perform progressive failure analysis of carbon fiber/epoxy composites. Numerical convergence is solved by introducing the viscous damping effect properly. The extended Mori-Tanaka method that considers interface debonding is used to get homogenized mechanical responses of composites. Three main results by FEA are obtained: 1. the real-time matrix cracking, fiber breakage and interface debonding with increasing tensile strain is simulated. 2. the stress concentration coefficients on neighbouring fibers near the initial broken fiber and the axial fiber stress distribution along the broken fiber are predicted, compared with the results using the global and local load-sharing models based on the shear-lag theory. 3. the tensile strength of composite by FEA is compared with those by the shear-lag theory and experiments. Finally, the tensile stress-strain curve of composites by FEA is applied to the progressive failure analysis of composite pressure vessel.
NASA Astrophysics Data System (ADS)
Paul, Surajit Kumar
2013-07-01
The microstructure of dual-phase (DP) steels typically consists of a soft ferrite matrix with dispersed islands of hard martensite phase. Due to the composite effect of ferrite and martensite, DP steels exhibit a unique combination of strain hardening, strength and ductility. A microstructure-based micromechanical modeling approach is adopted in this work to capture the tensile and cyclic plastic deformation behavior of DP steel. During tensile straining, strain incompatibility between the softer ferrite matrix and the harder martensite phase arises due to a difference in the flow characteristics of these two phases. Microstructural-level inhomogeneity serves as the initial imperfection, triggering strain incompatibility, strain partitioning and finally shear band localization during tensile straining. The local deformation in the ferrite phase is constrained by adjacent martensite islands, which locally results in stress triaxiality development in the ferrite phase. As the martensite distribution varies within the microstructure, the stress triaxiality also varies in a band within the microstructure. Inhomogeneous stress and strain distribution within the softer ferrite phase arises even during small tensile straining because of material inhomogeneity. The magnitude of cyclic plastic deformation within the softer ferrite phase also varies according to the stress distribution in the first-quarter cycle tensile loading. Accumulation of tensile/compressive plastic strain with number of cycles is noted in different locations within the ferrite phase during both symmetric stress and strain controlled cycling. The basic mode of cyclic plastic deformation in an inhomogeneous material is cyclic strain accumulation, i.e. ratcheting. Microstructural inhomogeneity results in cyclic strain accumulation in the aggregate DP material even in symmetric stress cycling.
High energy microelectromechanical oscillator based on the electrostatic microactuator
NASA Astrophysics Data System (ADS)
Baginsky, I.; Kostsov, Edvard; Sobolev, Victor
2008-03-01
Electrostatic high energy micromotor based on the ferroelectric films is studied as applied to microelectromechanical devices operating in vibrational mode. It is shown that the micromotor can be efficiently used in high frequency micromechanical vibrators that are used in high energy MEMS devices, such as micropumps, microvalves, microinjectors, adaptive microoptic devices etc.
Numerical simulation of damage evolution for ductile materials and mechanical properties study
NASA Astrophysics Data System (ADS)
El Amri, A.; Hanafi, I.; Haddou, M. E. Y.; Khamlichi, A.
2015-12-01
This paper presents results of a numerical modelling of ductile fracture and failure of elements made of 5182H111 aluminium alloys subjected to dynamic traction. The analysis was performed using Johnson-Cook model based on ABAQUS software. The modelling difficulty related to prediction of ductile fracture mainly arises because there is a tremendous span of length scales from the structural problem to the micro-mechanics problem governing the material separation process. This study has been used the experimental results to calibrate a simple crack propagation criteria for shell elements of which one has often been used in practical analyses. The performance of the proposed model is in general good and it is believed that the presented results and experimental-numerical calibration procedure can be of use in practical finite-element simulations.
Schwiedrzik, J J; Zysset, P K
2015-01-21
Microindentation in bone is a micromechanical testing technique routinely used to extract material properties related to bone quality. As the analysis of microindentation data is based on assumptions about the contact between sample and surface, the aim of this study was to quantify the topological variability of indentations in bone and examine its relationship with mechanical properties. Indentations were performed in dry human and ovine bone in axial and transverse directions and their topology was measured by atomic force microscopy. Statistical shape modeling of the residual imprint allowed to define a mean shape and to describe the variability in terms of 21 principal components related to imprint depth, surface curvature and roughness. The indentation profile of bone was found to be highly consistent and free of any pile up while differing mostly by depth between species and direction. A few of the topological parameters, in particular depth, showed significant but rather weak and inconsistent correlations to variations in mechanical properties. The mechanical response of bone as well as the residual imprint shape was highly consistent within each category. We could thus verify that bone is rather homogeneous in its micromechanical properties and that indentation results are not strongly influenced by small deviations from an ideally flat surface. Copyright © 2014 Elsevier Ltd. All rights reserved.
Micromechanics Based Failure Analysis of Heterogeneous Materials
NASA Astrophysics Data System (ADS)
Sertse, Hamsasew M.
In recent decades, heterogeneous materials are extensively used in various industries such as aerospace, defense, automotive and others due to their desirable specific properties and excellent capability of accumulating damage. Despite their wide use, there are numerous challenges associated with the application of these materials. One of the main challenges is lack of accurate tools to predict the initiation, progression and final failure of these materials under various thermomechanical loading conditions. Although failure is usually treated at the macro and meso-scale level, the initiation and growth of failure is a complex phenomena across multiple scales. The objective of this work is to enable the mechanics of structure genome (MSG) and its companion code SwiftComp to analyze the initial failure (also called static failure), progressive failure, and fatigue failure of heterogeneous materials using micromechanics approach. The initial failure is evaluated at each numerical integration point using pointwise and nonlocal approach for each constituent of the heterogeneous materials. The effects of imperfect interfaces among constituents of heterogeneous materials are also investigated using a linear traction-displacement model. Moreover, the progressive and fatigue damage analyses are conducted using continuum damage mechanics (CDM) approach. The various failure criteria are also applied at a material point to analyze progressive damage in each constituent. The constitutive equation of a damaged material is formulated based on a consistent irreversible thermodynamics approach. The overall tangent modulus of uncoupled elastoplastic damage for negligible back stress effect is derived. The initiation of plasticity and damage in each constituent is evaluated at each numerical integration point using a nonlocal approach. The accumulated plastic strain and anisotropic damage evolution variables are iteratively solved using an incremental algorithm. The damage analyses are performed for both brittle failure/high cycle fatigue (HCF) for negligible plastic strain and ductile failure/low cycle fatigue (LCF) for large plastic strain. The proposed approach is incorporated in SwiftComp and used to predict the initial failure envelope, stress-strain curve for various loading conditions, and fatigue life of heterogeneous materials. The combined effects of strain hardening and progressive fatigue damage on the effective properties of heterogeneous materials are also studied. The capability of the current approach is validated using several representative examples of heterogeneous materials including binary composites, continuous fiber-reinforced composites, particle-reinforced composites, discontinuous fiber-reinforced composites, and woven composites. The predictions of MSG are also compared with the predictions obtained using various micromechanics approaches such as Generalized Methods of Cells (GMC), Mori-Tanaka (MT), and Double Inclusions (DI) and Representative Volume Element (RVE) Analysis (called as 3-dimensional finite element analysis (3D FEA) in this document). This study demonstrates that a micromechanics based failure analysis has a great potential to rigorously and more accurately analyze initiation and progression of damage in heterogeneous materials. However, this approach requires material properties specific to damage analysis, which are needed to be independently calibrated for each constituent.
Time dependent micromechanics in continuous graphite fiber/epoxy composites with fiber breaks
NASA Astrophysics Data System (ADS)
Zhou, Chao Hui
Time dependent micromechanics in graphite fiber/epoxy composites around fiber breaks was investigated with micro Raman spectroscopy (MRS) and two shear-lag based composite models, a multi-fiber model (VBI) and a single fiber model (SFM), which aim at predicting the strain/stress evolutions in the composite from the matrix creep behavior and fiber strength statistics. This work is motivated by the need to understand the micromechanics and predict the creep-rupture of the composites. Creep of the unfilled epoxy was characterized under different stress levels and at temperatures up to 80°C, with two power law functions, which provided the modeling parameters used as input for the composite models. Both the VBI and the SFM models showed good agreement with the experimental data obtained with MRS, when inelasticity (interfacial debonding and/or matrix yielding) was not significant. The maximum shear stress near a fiber break relaxed at t-alpha/2 (or as (1+ talpha)-1/2) and the load recovery length increased at talpha/2(or (1+ talpha)1/2) following the model predictions. When the inelastic zone became non-negligible, the viscoelastic VBI model lost its competence, while the SFM with inelasticity showed good agreement with the MRS measurements. Instead of using the real fiber spacing, an effective fiber spacing was used in model predictions, taking into account of the radial decay of the interfacial shear stress from the fiber surface. The comparisons between MRS data and the SFM showed that inelastic zone would initiate when the shear strain at the fiber end exceeds a critical value gammac which was determined to be 5% for this composite system at room temperature and possibly a smaller value at elevated temperatures. The stress concentrations in neighboring intact fibers played important roles in the subsequent fiber failure and damage growth. The VBI model predicts a constant stress concentration factor, 1.33, for the 1st nearest intact fiber, which is in good agreement with MRS measurements for most cases except for those with severely debonded interfaces. However, the VBI model usually gives a stress concentration profile narrower than the measured one due to the inelasticity near the fiber break. The low average fiber volume fraction in the model composites caused small relaxation in the stress concentration, which became more obvious at elevated temperatures, especially for large fiber spacing cases. When new break(s) occurred in the original intact neighboring fibers within an effective distance from the original break, the inelastic zones grew at a faster rate due to the strong interactions. Results on the creep-rupture of the bulk composites showed that the failure probability depends on the stress level and the loading time. The time dependent failure probability data could be fitted to a power law function, which suggested a link between the matrix creep, composite short-term strength and the composite creep-rupture.
NASA Astrophysics Data System (ADS)
Kotha, Shiva Prasad
Bone mineral and bone organic are assumed to be a linearly elastic, brittle material. A simple micromechanical model based on the shear lag theory is developed to model the stress transfer between the mineral platelets of bone. The bone mineral platelets carry most of the applied load while the organic primarily serves to transfer load between the overlapped mineral platelets by shear. Experiments were done to elucidate the mechanism of failure in bovine cortical bone and to decrease the mineral content of control bone with in-vitro fluoride ion treatments. It was suggested that the failure at the ultrastructural level is due to the transverse failure of bonds between the collagen microfibrils in the organic matrix. However, the shear stress transfer and the axial load bearing capacity of the organic is not impaired. Hence, it is assumed that the shear strain in the matrix increases while the shear stress remains constant at the shear yield stress once the matrix starts yielding at the ends of the bone mineral. When the shear stress over the length of the mineral platelet reaches the shear yield stress, no more applied stress is carried by the bone mineral platelets while the organic matrix carries the increased axial load. The bone fails when the axial stress in the organic reaches its ultimate stress. The bone mineral is assumed to dissolve due to in-vitro fluoride ion treatments and precipitate calcium fluoride or fluoroapatite like material. The amount of dissolution is estimated based on 19F Nuclear Magnetic Resonance or a decrease in the carbonate content of bone. The dissolution of bone mineral is assumed to increase the porosity in the organic. We assume that the elastic modulus and the ultimate strength of the organic decrease due to the increased porosity. A simple empirical model is used to model the decrease in the elastic modulus. The strength is modeled to decrease based on an increase in the cross-sectional area occupied by the porosity. The precipitate is assumed to contribute to the mechanical properties of bone due to friction generated by the poisson's contraction of the organic as it carries axial loads. The resulting stress-strain curve predicted by the model resembles the stress-strain curves obtained in the experiments.
Micromechanics for particulate reinforced composites
NASA Technical Reports Server (NTRS)
Murthy, Pappu L. N.; Goldberg, Robert K.; Mital, Subodh K.
1996-01-01
A set of micromechanics equations for the analysis of particulate reinforced composites is developed using the mechanics of materials approach. Simplified equations are used to compute homogenized or equivalent thermal and mechanical properties of particulate reinforced composites in terms of the properties of the constituent materials. The microstress equations are also presented here to decompose the applied stresses on the overall composite to the microstresses in the constituent materials. The properties of a 'generic' particulate composite as well as those of a particle reinforced metal matrix composite are predicted and compared with other theories as well as some experimental data. The micromechanics predictions are in excellent agreement with the measured values.
Effect of microstructure on the elasto-viscoplastic deformation of dual phase titanium structures
NASA Astrophysics Data System (ADS)
Ozturk, Tugce; Rollett, Anthony D.
2018-02-01
The present study is devoted to the creation of a process-structure-property database for dual phase titanium alloys, through a synthetic microstructure generation method and a mesh-free fast Fourier transform based micromechanical model that operates on a discretized image of the microstructure. A sensitivity analysis is performed as a precursor to determine the statistically representative volume element size for creating 3D synthetic microstructures based on additively manufactured Ti-6Al-4V characteristics, which are further modified to expand the database for features of interest, e.g., lath thickness. Sets of titanium hardening parameters are extracted from literature, and The relative effect of the chosen microstructural features is quantified through comparisons of average and local field distributions.
NASA Astrophysics Data System (ADS)
Dehghan Banadaki, Arash
Predicting the ultimate performance of asphalt concrete under realistic loading conditions is the main key to developing better-performing materials, designing long-lasting pavements, and performing reliable lifecycle analysis for pavements. The fatigue performance of asphalt concrete depends on the mechanical properties of the constituent materials, namely asphalt binder and aggregate. This dependent link between performance and mechanical properties is extremely complex, and experimental techniques often are used to try to characterize the performance of hot mix asphalt. However, given the seemingly uncountable number of mixture designs and loading conditions, it is simply not economical to try to understand and characterize the material behavior solely by experimentation. It is well known that analytical and computational modeling methods can be combined with experimental techniques to reduce the costs associated with understanding and characterizing the mechanical behavior of the constituent materials. This study aims to develop a multiscale micromechanical lattice-based model to predict cracking in asphalt concrete using component material properties. The proposed algorithm, while capturing different phenomena for different scales, also minimizes the need for laboratory experiments. The developed methodology builds on a previously developed lattice model and the viscoelastic continuum damage model to link the component material properties to the mixture fatigue performance. The resulting lattice model is applied to predict the dynamic modulus mastercurves for different scales. A framework for capturing the so-called structuralization effects is introduced that significantly improves the accuracy of the modulus prediction. Furthermore, air voids are added to the model to help capture this important micromechanical feature that affects the fatigue performance of asphalt concrete as well as the modulus value. The effects of rate dependency are captured by implementing the viscoelastic fracture criterion. In the end, an efficient cyclic loading framework is developed to evaluate the damage accumulation in the material that is caused by long-sustained cyclic loads.
Proceedings of the 13th biennial conference on carbon. Extended abstracts and program
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1977-01-01
Properties of carbon are covered including: mechanical and frictional properties; chemical reactivity and surfaces; aerospace applications; carbonization and graphitization; industrial applications; electrical and thermal properties; biomaterials applications; fibers and composites; nuclear applications; activated carbon and adsorption; advances in carbon characterization; and micromechanics and modeling. (GHT)
Method for forming suspended micromechanical structures
Fleming, James G.
2000-01-01
A micromachining method is disclosed for forming a suspended micromechanical structure from {111} crystalline silicon. The micromachining method is based on the use of anisotropic dry etching to define lateral features of the structure which are etched down into a {111}-silicon substrate to a first etch depth, thereby forming sidewalls of the structure. The sidewalls are then coated with a protection layer, and the substrate is dry etched to a second etch depth to define a spacing of the structure from the substrate. A selective anisotropic wet etchant (e.g. KOH, EDP, TMAH, NaOH or CsOH) is used to laterally undercut the structure between the first and second etch depths, thereby forming a substantially planar lower surface of the structure along a {111} crystal plane that is parallel to an upper surface of the structure. The lateral extent of undercutting by the wet etchant is controlled and effectively terminated by either timing the etching, by the location of angled {111}-silicon planes or by the locations of preformed etch-stops. This present method allows the formation of suspended micromechanical structures having large vertical dimensions and large masses while allowing for detailed lateral features which can be provided by dry etch definition. Additionally, the method of the present invention is compatible with the formation of electronic circuitry on the substrate.
Micromechanical Signal Processors
NASA Astrophysics Data System (ADS)
Nguyen, Clark Tu-Cuong
Completely monolithic high-Q micromechanical signal processors constructed of polycrystalline silicon and integrated with CMOS electronics are described. The signal processors implemented include an oscillator, a bandpass filter, and a mixer + filter--all of which are components commonly required for up- and down-conversion in communication transmitters and receivers, and all of which take full advantage of the high Q of micromechanical resonators. Each signal processor is designed, fabricated, then studied with particular attention to the performance consequences associated with miniaturization of the high-Q element. The fabrication technology which realizes these components merges planar integrated circuit CMOS technologies with those of polysilicon surface micromachining. The technologies are merged in a modular fashion, where the CMOS is processed in the first module, the microstructures in a following separate module, and at no point in the process sequence are steps from each module intermixed. Although the advantages of such modularity include flexibility in accommodating new module technologies, the developed process constrained the CMOS metallization to a high temperature refractory metal (tungsten metallization with TiSi _2 contact barriers) and constrained the micromachining process to long-term temperatures below 835^circC. Rapid-thermal annealing (RTA) was used to relieve residual stress in the mechanical structures. To reduce the complexity involved with developing this merged process, capacitively transduced resonators are utilized. High-Q single resonator and spring-coupled micromechanical resonator filters are also investigated, with particular attention to noise performance, bandwidth control, and termination design. The noise in micromechanical filters is found to be fairly high due to poor electromechanical coupling on the micro-scale with present-day technologies. Solutions to this high series resistance problem are suggested, including smaller electrode-to-resonator gaps to increase the coupling capacitance. Active Q-control techniques are demonstrated which control the bandwidth of micromechanical filters and simulate filter terminations with little passband distortion. Noise analysis shows that these active techniques are relatively quiet when compared with other resistive techniques. Modulation techniques are investigated whereby a single resonator or a filter constructed from several such resonators can provide both a mixing and a filtering function, or a filtering and amplitude modulation function. These techniques center around the placement of a carrier signal on the micromechanical resonator. Finally, micro oven stabilization is investigated in an attempt to null the temperature coefficient of a polysilicon micromechanical resonator. Here, surface micromachining procedures are utilized to fabricate a polysilicon resonator on a microplatform--two levels of suspension--equipped with heater and temperature sensing resistors, which are then imbedded in a feedback loop to control the platform (and resonator) temperature. (Abstract shortened by UMI.).
A review of numerical techniques approaching microstructures of crystalline rocks
NASA Astrophysics Data System (ADS)
Zhang, Yahui; Wong, Louis Ngai Yuen
2018-06-01
The macro-mechanical behavior of crystalline rocks including strength, deformability and failure pattern are dominantly influenced by their grain-scale structures. Numerical technique is commonly used to assist understanding the complicated mechanisms from a microscopic perspective. Each numerical method has its respective strengths and limitations. This review paper elucidates how numerical techniques take geometrical aspects of the grain into consideration. Four categories of numerical methods are examined: particle-based methods, block-based methods, grain-based methods, and node-based methods. Focusing on the grain-scale characters, specific relevant issues including increasing complexity of micro-structure, deformation and breakage of model elements, fracturing and fragmentation process are described in more detail. Therefore, the intrinsic capabilities and limitations of different numerical approaches in terms of accounting for the micro-mechanics of crystalline rocks and their phenomenal mechanical behavior are explicitly presented.
Constitutive Modeling of Nanotube-Reinforced Polymer Composites
NASA Technical Reports Server (NTRS)
Odegard, G. M.; Gates, T. S.; Wise, K. E.
2002-01-01
In this study, a technique is presented for developing constitutive models for polymer composite systems reinforced with single-walled carbon nanotubes (SWNT). Because the polymer molecules are on the same size scale as the nanotubes, the interaction at the polymer/nanotube interface is highly dependent on the local molecular structure and bonding. At these small length scales, the lattice structures of the nanotube and polymer chains cannot be considered continuous, and the bulk mechanical properties can no longer be determined through traditional micromechanical approaches that are formulated by using continuum mechanics. It is proposed herein that the nanotube, the local polymer near the nanotube, and the nanotube/polymer interface can be modeled as an effective continuum fiber using an equivalent-continuum modeling method. The effective fiber serves as a means for incorporating micromechanical analyses for the prediction of bulk mechanical properties of SWNT/polymer composites with various nanotube shapes, sizes, concentrations, and orientations. As an example, the proposed approach is used for the constitutive modeling of two SWNT/LaRC-SI (with a PmPV interface) composite systems, one with aligned SWNTs and the other with three-dimensionally randomly oriented SWNTs. The Young's modulus and shear modulus have been calculated for the two systems for various nanotube lengths and volume fractions.
Micromechanics-Based Damage Analysis of Fracture in Ti5553 Alloy with Application to Bolted Sectors
NASA Astrophysics Data System (ADS)
Bettaieb, Mohamed Ben; Van Hoof, Thibaut; Minnebo, Hans; Pardoen, Thomas; Dufour, Philippe; Jacques, Pascal J.; Habraken, Anne Marie
2015-03-01
A physics-based, uncoupled damage model is calibrated using cylindrical notched round tensile specimens made of Ti5553 and Ti-6Al-4V alloys. The fracture strain of Ti5553 is lower than for Ti-6Al-4V in the full range of stress triaxiality. This lower ductility originates from a higher volume fraction of damage sites. By proper heat treatment, the fracture strain of Ti5553 increases by almost a factor of two, as a result of a larger damage nucleation stress. This result proves the potential for further optimization of the damage resistance of the Ti5553 alloy. The damage model is combined with an elastoviscoplastic law in order to predict failure in a wide range of loading conditions. In particular, a specific application involving bolted sectors is addressed in order to determine the potential of replacing the Ti-6Al-4V by the Ti5553 alloy.
Synthesis and toughness properties of resins and composites
NASA Technical Reports Server (NTRS)
Johnston, N. J.
1984-01-01
Tensile and shear moduli of four ACEE (Aircraft Energy Efficiency Program) resins are presented along with ACEE composite material modulus predictions based on micromechanics. Compressive strength and fracture toughness of the resins and composites were discussed. In addition, several resin synthesis techniques are reviewed.
Vibration measurement by atomic force microscopy with laser readout
NASA Astrophysics Data System (ADS)
Snitka, Valentinas J.; Mizariene, Vida; Kalinauskas, Margiris; Lucinskas, Paulius
1998-06-01
Micromachined cantilever beams are widely used for different microengineering and nanotechnology actuators and sensors applications. The micromechanical cantilever tip-based data storage devices with reading real data at the rates exceeding 1Mbit/s have been demonstrated. The vibrational noise spectrum of a cantilever limits the data storage resolution. Therefore the possibility to measure the microvibrations and acoustic fields in different micromachined devices are of great interest. We describe a method to study a micromechanical cantilever and surface vibrations based on laser beam deflection measurements. The influence of piezoelectric plate vibrations and the tip- surface contact condition on the cantilever vibrations were investigated in the frequency range of 1-200 kHz. The experiments were performed using the measurement results. The V-shaped cantilevers exited by the normal vibrations due to the non-linearity at the tip-surface contact vibrates with a complex motion and has a lateral vibration mode coupled with normal vibration mode. The possibility to use laser deflection technique for the vibration measurements in micromachined structures with nano resolution is shown.
Sánchez-Palencia, Diana M; D'Amore, Antonio; González-Mancera, Andrés; Wagner, William R; Briceño, Juan C
2014-08-22
In small intestinal submucosa scaffolds for functional tissue engineering, the impact of scaffold fabrication parameters on success rate may be related to the mechanotransductory properties of the final microstructural organization of collagen fibers. We hypothesized that two fabrication parameters, 1) preservation (P) or removal (R) of a dense collagen layer present in SIS and 2) SIS in a final dehydrated (D) or hydrated (H) state, have an effect on scaffold void area, microstructural anisotropy (fiber alignment) and mechanical anisotropy (global mechanical compliance). We further integrated our experimental measurements in a constitutive model to explore final effects on the micromechanical environment inside the scaffold volume. Our results indicated that PH scaffolds might exhibit recurrent and large force fluctuations between layers (up to 195 pN), while fluctuations in RH scaffolds might be larger (up to 256 pN) but not as recurrent. In contrast, both PD and RD groups were estimated to produce scarcer and smaller fluctuations (not larger than 50 pN). We concluded that the hydration parameter strongly affects the micromechanics of SIS and that an adequate choice of fabrication parameters, assisted by the herein developed method, might leverage the use of SIS for functional tissue engineering applications, where forces at the cellular level are of concern in the guidance of new tissue formation. Copyright © 2014 Elsevier Ltd. All rights reserved.
MAC/GMC 4.0 User's Manual: Example Problem Manual. Volume 3
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Arnold, Steven M.
2002-01-01
This document is the third volume in the three volume set of User's Manuals for the Micromechanics Analysis Code with Generalized Method of Cells Version 4.0 (MAC/GMC 4.0). Volume 1 is the Theory Manual, Volume 2 is the Keywords Manual, and this document is the Example Problems Manual. MAC/GMC 4.0 is a composite material and laminate analysis software program developed at the NASA Glenn Research Center. It is based on the generalized method of cells (GMC) micromechanics theory, which provides access to the local stress and strain fields in the composite material. This access grants GMC the ability to accommodate arbitrary local models for inelastic material behavior and various types of damage and failure analysis. MAC/GMC 4.0 has been built around GMC to provide the theory with a user-friendly framework, along with a library of local inelastic, damage, and failure models. Further, application of simulated thermo-mechanical loading, generation of output results, and selection of architectures to represent the composite material, have been automated in MAC/GMC 4.0. Finally, classical lamination theory has been implemented within MAC/GMC 4.0 wherein GMC is used to model the composite material response of each ply. Consequently, the full range of GMC composite material capabilities is available for analysis of arbitrary laminate configurations as well. This volume provides in-depth descriptions of 43 example problems, which were specially designed to highlight many of the most important capabilities of the code. The actual input files associated with each example problem are distributed with the MAC/GMC 4.0 software; thus providing the user with a convenient starting point for their own specialized problems of interest.
Fabrication of micromechanical and microoptical systems by two-photon polymerization
NASA Astrophysics Data System (ADS)
Reinhardt, Carsten; Ovsianikov, A.; Passinger, Sven; Chichkov, Boris N.
2007-01-01
The recently developed two-photon polymerisation technique is used for the fabrication of two- and three-dimensional structures in photosensitive inorganic-organic hybrid material (ORMOCER), in SU8 , and in positive tone resist with resolutions down to 100nm. In this contribution we present applications of this powerful technology for the realization of micromechanical systems and microoptical components. We will demonstrate results on the fabrication of complex movable three-dimensional micromechanical systems and microfluidic components which cannot be realized by other technologies. This approach of structuring photosensitive materials also provides unique possibilities for the fabrication of different microoptical components such as arbitrary shaped microlenses, microprisms, and 3D-photonic crystals with high optical quality.
A calibration method for the higher modes of a micro-mechanical cantilever
NASA Astrophysics Data System (ADS)
Shatil, N. R.; Homer, M. E.; Picco, L.; Martin, P. G.; Payton, O. D.
2017-05-01
Micro-mechanical cantilevers are increasingly being used as a characterisation tool in both material and biological sciences. New non-destructive applications are being developed that rely on the information encoded within the cantilever's higher oscillatory modes, such as atomic force microscopy techniques that measure the non-topographic properties of a sample. However, these methods require the spring constants of the cantilever at higher modes to be known in order to quantify their results. Here, we show how to calibrate the micro-mechanical cantilever and find the effective spring constant of any mode. The method is uncomplicated to implement, using only the properties of the cantilever and the fundamental mode that are straightforward to measure.
An energy-consistent fracture model for ferroelectrics
NASA Astrophysics Data System (ADS)
Miao, Hongchen; Li, Faxin
2017-02-01
The fracture behavior of ferroelectrics has been intensively studied in recent decades, though currently a widely accepted fracture mechanism is still lacking. In this work, enlightened by previous experimental observations that crack propagation in ferroelectrics is always accompanied by domain switching, we propose a micromechanical model in which both crack propagation and domain switching are controlled by energy-based criteria. Both electric energy and mechanical energy can induce domain switching, while only mechanical energy can drive crack propagation. Furthermore, constrained domain switching is considered in this model, leading to the gradient domain switching zone near the crack tip. Analysis results show that stress-induced ferroelastic switching always has a toughening effect as the mechanical energy release rate serves as the driving force for both fracture and domain switching. In comparison, the electric-field-induced switching may have either a toughening or detoughening effect. The proposed model can qualitatively agree with the existing experimental results.
Mechanical model of giant photoexpansion in a chalcogenide glass and the role of photofluidity
NASA Astrophysics Data System (ADS)
Buisson, Manuel; Gueguen, Yann; Laniel, Romain; Cantoni, Christopher; Houizot, Patrick; Bureau, Bruno; Sangleboeuf, Jean-Christophe; Lucas, Pierre
2017-07-01
An analytical model is developed to describe the phenomenon of giant photoexpansion in chalcogenide glasses. The proposed micro-mechanical model is based on the description of photoexpansion as a new type of eigenstrain, i.e. a deformation analogous to thermal expansion induced without external forces. In this framework, it is the viscoelastic flow induced by photofluidity which enable the conversion of the self-equilibrated stress into giant photoexpansion. This simple approach yields good fits to experimental data and demonstrates, for the first time, that the photoinduced viscous flow actually enhances the giant photoexpansion or the giant photocontraction as it has been suggested in the literature. Moreover, it highlights that the shear relaxation time due to photofluidity controls the expansion kinetic. This model is the first step towards describing giant photoexpansion from the point of view of mechanics and it provides the framework for investigating this phenomenon via numerical simulations.
Ryniewicz, Anna M; Bojko, Łukasz; Ryniewicz, Wojciech I
2016-01-01
The aim of the present paper was a question of structural identification and evaluation of strength parameters of Titanium (Ticp - grade 2) and its alloy (Ti6Al4V) which are used to serve as a base for those permanent prosthetic supplements which are later manufactured employing CAD/CAM systems. Microstructural tests of Ticp and Ti6Al4V were conducted using an optical microscope as well as a scanning microscope. Hardness was measured with the Vickers method. Micromechanical properties of samples: microhardness and Young's modulus value, were measured with the Oliver and Pharr method. Based on studies using optical microscopy it was observed that the Ticp from the milling technology had a single phase, granular microstructure. The Ti64 alloy had a two-phase, fine-grained microstructure with an acicular-lamellar character. The results of scanning tests show that titanium Ticp had a single phase structure. On its grain there was visible acicular martensite. The structure of the two phase Ti64 alloy consists of a β matrix as well as released α phase deposits in the shape of extended needles. Micromechanical tests demonstrated that the alloy of Ti64 in both methods showed twice as high the microhardness as Ticp. In studies of Young's modulus of Ti64 alloy DMLS technology have lower value than titanium milling technology. According to the results obtained, the following conclusion has been drawn: when strength aspect is discussed, the DMLS method is a preferred one in manufacturing load structures in dentistry and may be an alternate way for the CAD/CAM system used in decrement processing.
NASA Technical Reports Server (NTRS)
Gotsis, Pascal K.; Chamis, Christos C.
1992-01-01
The nonlinear behavior of a high-temperature metal-matrix composite (HT-MMC) was simulated by using the metal matrix composite analyzer (METCAN) computer code. The simulation started with the fabrication process, proceeded to thermomechanical cyclic loading, and ended with the application of a monotonic load. Classical laminate theory and composite micromechanics and macromechanics are used in METCAN, along with a multifactor interaction model for the constituents behavior. The simulation of the stress-strain behavior from the macromechanical and the micromechanical points of view, as well as the initiation and final failure of the constituents and the plies in the composite, were examined in detail. It was shown that, when the fibers and the matrix were perfectly bonded, the fracture started in the matrix and then propagated with increasing load to the fibers. After the fibers fractured, the composite lost its capacity to carry additional load and fractured.
NASA Technical Reports Server (NTRS)
Bowles, David E.
1990-01-01
Space simulated thermally induced deformations and stresses in continuous fiber reinforced composites were investigated with a micromechanics analysis. The investigation focused on two primary areas. First, available explicit expressions for predicting the effective coefficients of thermal expansion (CTEs) for a composite were compared with each other, and with a finite element (FE) analysis, developed specifically for this study. Analytical comparisons were made for a wide range of fiber/matrix systems, and predicted values were compared with experimental data. The second area of investigation focused on the determination of thermally induced stress fields in the individual constituents. Stresses predicted from the FE analysis were compared to those predicted from a closed-form solution to the composite cylinder (CC) model, for two carbon fiber/epoxy composites. A global-local formulation, combining laminated plate theory and FE analysis, was used to determine the stresses in multidirectional laminates. Thermally induced damage initiation predictions were also made.
NASA Technical Reports Server (NTRS)
Gotsis, Pascal K.
1991-01-01
The nonlinear behavior of a high-temperature metal-matrix composite (HT-MMC) was simulated by using the metal matrix composite analyzer (METCAN) computer code. The simulation started with the fabrication process, proceeded to thermomechanical cyclic loading, and ended with the application of a monotonic load. Classical laminate theory and composite micromechanics and macromechanics are used in METCAN, along with a multifactor interaction model for the constituents behavior. The simulation of the stress-strain behavior from the macromechanical and the micromechanical points of view, as well as the initiation and final failure of the constituents and the plies in the composite, were examined in detail. It was shown that, when the fibers and the matrix were perfectly bonded, the fracture started in the matrix and then propagated with increasing load to the fibers. After the fibers fractured, the composite lost its capacity to carry additional load and fractured.
2014-09-01
Micromechanics and Microengineering . 2005;15:176–184. 10. Mohite SS, Kesari H, Sonti VR, Pratap R. Analytical solutions for the stiffness and damping...coefficients of squeeze films in MEMS devices with perforated back plates. Journal of Micromechanics and Microengineering . 2005;15:2083–2092. 11. Younis MI
Micromechanics and effective elastoplastic behavior of two-phase metal matrix composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ju, J.W.; Chen, T.M.
A micromechanical framework is presented to predict effective (overall) elasto-(visco-)plastic behavior of two-phase particle-reinforced metal matrix composites (PRMMC). In particular, the inclusion phase (particle) is assumed to be elastic and the matrix material is elasto-(visco-)plastic. Emanating from Ju and Chen's (1994a,b) work on effective elastic properties of composites containing many randomly dispersed inhomogeneities, effective elastoplastic deformations and responses of PRMMC are estimated by means of the effective yield criterion'' derived micromechanically by considering effects due to elastic particles embedded in the elastoplastic matrix. The matrix material is elastic or plastic, depending on local stress and deformation, and obeys general plasticmore » flow rule and hardening law. Arbitrary (general) loadings and unloadings are permitted in the framework through the elastic predictor-plastic corrector two-step operator splitting methodology. The proposed combined micromechanical and computational approach allows one to estimate overall elastoplastic responses of PRMMCs by accounting for the microstructural information (such as the spatial distribution and micro-geometry of particles), elastic properties of constituent phases, and the plastic behavior of the matrix-only materials.« less
PREFACE: 14th Micromechanics Europe Workshop (MME'03)
NASA Astrophysics Data System (ADS)
Wolffenbuttel, R. F.
2004-09-01
This special issue of the Journal of Micromechanics and Microengineering is devoted to the 14th Micromechanics Europe Workshop (MME'03), which was held at Delft University of Technology, The Netherlands on 2-4 November 2003. Papers have been selected from this workshop for presentation in this special issue. After a careful review by the MME'03 programme committee, 53 submissions were selected for poster presentation at the workshop in addition to 6 invited presentations. These covered the many aspects of our exciting field: technology, simulation, system design, fabrication and characterization in a wide range of applications. These contributions confirm a trend from technology-driven towards application-driven technological research. This trend has become possible because of the availability of mature fabrication technologies for micromechanical structures and is reflected by the presentations of some of the invited speakers. There were invited lectures about applications in the medical field, automotive and copiers, which provide evidence of the relevance of our work in society. Nevertheless, development of technologies rightfully remains a core activity of this workshop. This applies to both the introduction of new technologies, as was reflected by invited presentations on new trends in RIE and nanotechnology, and the addressing of manufacturing issues using available techniques, which will be demonstrated to be crucial in automotive applications. Out of these 59 papers 21 have been selected for presentation in this special issue. Since the scope of the workshop is somewhat wider than that of the journal, selection was based not only on the quality of the work, but also on suitability for presentation in the journal. Moreover, at the workshop, student presentation of research at an early stage was strongly encouraged, whereas publication of work in this journal requires a more advanced level. I would like to express my appreciation for the outstanding efforts made by all involved in the workshop: the steering committee for its support, the programme committee for the review and the local organization for all the detailed planning required to make it both an interesting and enjoyable meeting. Last, but not least, I would like to thank the authors for preparing significant and exciting papers that reflect the progress made in the field of micromechanics and the 80 or so attendees for their enthusiastic participation.
Micromechanical models to guide the development of synthetic ‘brick and mortar’ composites
NASA Astrophysics Data System (ADS)
Begley, Matthew R.; Philips, Noah R.; Compton, Brett G.; Wilbrink, David V.; Ritchie, Robert O.; Utz, Marcel
2012-08-01
This paper describes a micromechanical analysis of the uniaxial response of composites comprising elastic platelets (bricks) bonded together with thin elastic perfectly plastic layers (mortar). The model yields closed-form results for the spatial variation of displacements in the bricks as a function of constituent properties, which can be used to calculate the effective properties of the composite, including elastic modulus, strength and work-to-failure. Regime maps are presented which indicate critical stresses for failure of the bricks and mortar as a function of constituent properties and brick architecture. The solution illustrates trade-offs between elastic modulus, strength and dissipated work that are a result of transitions between various failure mechanisms associated with brick rupture and rupture of the interfaces. Detailed scaling relationships are presented with the goal of providing material developers with a straightforward means to identify synthesis targets that balance competing mechanical behaviors and optimize material response. Ashby maps are presented to compare potential brick and mortar composites with existing materials, and identify future directions for material development.
Finite element modeling predictions of region-specific cell-matrix mechanics in the meniscus.
Upton, Maureen L; Guilak, Farshid; Laursen, Tod A; Setton, Lori A
2006-06-01
The knee meniscus exhibits significant spatial variations in biochemical composition and cell morphology that reflect distinct phenotypes of cells located in the radial inner and outer regions. Associated with these cell phenotypes is a spatially heterogeneous microstructure and mechanical environment with the innermost regions experiencing higher fluid pressures and lower tensile strains than the outer regions. It is presently unknown, however, how meniscus tissue mechanics correlate with the local micromechanical environment of cells. In this study, theoretical models were developed to study mechanics of inner and outer meniscus cells with varying geometries. The results for an applied biaxial strain predict significant regional differences in the cellular mechanical environment with evidence of tensile strains along the collagen fiber direction of approximately 0.07 for the rounded inner cells, as compared to levels of 0.02-0.04 for the elongated outer meniscus cells. The results demonstrate an important mechanical role of extracellular matrix anisotropy and cell morphology in regulating the region-specific micromechanics of meniscus cells, that may further play a role in modulating cellular responses to mechanical stimuli.
Quantification of micro-CT images of textile reinforcements
NASA Astrophysics Data System (ADS)
Straumit, Ilya; Lomov, Stepan V.; Wevers, Martine
2017-10-01
VoxTex software (KU Leuven) employs 3D image processing, which use the local directionality information, retrieved using analysis of local structure tensor. The processing results in a voxel 3D array, with each voxel carrying information on (1) material type (matrix; yarn/ply, with identification of the yarn/ply in the reinforcement architecture; void) and (2) fibre direction for fibrous yarns/plies. The knowledge of the material phase volume and known characterisation of the textile structure allows assigning to the voxels (3) fibre volume fraction. This basic voxel model can be further used for different type of the material analysis: Internal geometry and characterisation of defects; permeability; micromechanics; mesoFE voxel models. Apart from the voxel based analysis, approaches to reconstruction of the yarn paths are presented.
Bonilla, Mauricio R; Lopez-Sanchez, P; Gidley, M J; Stokes, J R
2016-01-01
The mechanical properties of hydrated biomaterials are non-recoverable upon unconfined compression if adhesion occurs between the structural components in the material upon fluid loss and apparent plastic behaviour. We explore these micromechanical phenomena by introducing an aggregation force and a critical yield pressure into the constitutive biphasic formulation for transversely isotropic tissues. The underlying hypothesis is that continual fluid pressure build-up during compression temporarily supresses aggregation. Once compression stops and the pressure falls below some critical value, internal aggregation occurs over a time scale comparable to the poroelastic time. We demonstrate this model by predicting the mechanical response of bacterial nanocellulose hydrogel composites, which are promising biomaterials and a structural mimetic for the plant cell wall. Cross-linking of cellulose by xyloglucan creates an extensional resistance and substantially increases the compressive modulus under large compression and densification. In comparison, incorporating non-crosslinking arabinoxylan into the hydrogel has little effect on its mechanics at the strain rates investigated. These results assist in elucidating the mechanical role of these polysaccharides in the complex plant cell wall structure. They also suggest xyloglucan is a suitable candidate to tailor the stiffness of nanocellulose hydrogels in biomaterial design, which includes modulating cell-adhesion in tissue engineering applications. The model and overall approach may be utilised to characterise and design a myriad of biomaterials and mammalian tissues, particularly those with a fibrillar structure. The mechanical properties of hydrated biomaterials can be non-recoverable upon compression due to increased adhesion occurring between the structural components in the material. Cellulose-hemicellulose composite hydrogels constitute a classical example of this phenomenon, since fibres can freely re-orient and adhere upon fluid loss to produce significant variations in the mechanical response to compression. Here, we model their micromechanics by introducing an aggregation force and a critical yield pressure into the constitutive formulation for transversely isotropic biphasic materials. The resulting model is easy to implement for routine characterization of this type of hydrated biomaterials through unconfined compression testing and produces physically meaningful and reproducible mechanical parameters. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
1991-05-22
plasticity, including those of DiMaggio and Sandier (1971), Baladi and Rohani (1979), Lade (1977), Prevost (1978, 1985), Dafalias and Herrmann (1982). In...distribution can be achieved only if the behavior at the contact is fully understood and rigorously modelled. 18 REFERENCES Baladi , G.Y. and Rohani, B. (1979
Optimization of Rei-mullite Physical Properties
NASA Technical Reports Server (NTRS)
Tanzilli, R. A.; Musikant, S.; Bolinger, P. N.; Brazel, J. P.
1973-01-01
Micromechanical and thermal modeling studies prove that ceramic fiber mullite materials is the only system capable of shuttle thermal protection to 1644 K. Hafnia pigmentated mullite surface coatings meet both orbital and reentry thermal radiative requirements for reuse without refurbishment. Thermal and mechanical models show growths potentials associated with the mullite system for a factor of 2 improvement in mechanical properties, and a factor of 2 to 3 reduction in thermal conductivity.
Micromechanical combined stress analysis: MICSTRAN, a user manual
NASA Technical Reports Server (NTRS)
Naik, R. A.
1992-01-01
Composite materials are currently being used in aerospace and other applications. The ability to tailor the composite properties by the appropriate selection of its constituents, the fiber and matrix, is a major advantage of composite materials. The Micromechanical Combined Stress Analysis (MICSTRAN) code provides the materials engineer with a user-friendly personal computer (PC) based tool to calculate overall composite properties given the constituent fiber and matrix properties. To assess the ability of the composite to carry structural loads, the materials engineer also needs to calculate the internal stresses in the composite material. MICSTRAN is a simple tool to calculate such internal stresses with a composite ply under combined thermomechanical loading. It assumes that the fibers have a circular cross-section and are arranged either in a repeating square or diamond array pattern within a ply. It uses a classical elasticity solution technique that has been demonstrated to calculate accurate stress results. Input to the program consists of transversely isotropic fiber properties and isotropic matrix properties such as moduli, Poisson's ratios, coefficients of thermal expansion, and volume fraction. Output consists of overall thermoelastic constants and stresses. Stresses can be computed under the combined action of thermal, transverse, longitudinal, transverse shear, and longitudinal shear loadings. Stress output can be requested along the fiber-matrix interface, the model boundaries, circular arcs, or at user-specified points located anywhere in the model. The MICSTRAN program is Windows compatible and takes advantage of the Microsoft Windows graphical user interface which facilitates multitasking and extends memory access far beyond the limits imposed by the DOS operating system.
NASA Technical Reports Server (NTRS)
Murthy, Pappu L. N.; Phoenix, S. Leigh; Grimes-Ledesma, Lorie
2010-01-01
Stress rupture failure of Carbon Composite Overwrapped Pressure Vessels (COPVs) is of serious concern to Science Mission and Constellation programs since there are a number of COPVs on board space vehicles with stored gases under high pressure for long durations of time. It has become customary to establish the reliability of these vessels using the so called classic models. The classical models are based on Weibull statistics fitted to observed stress rupture data. These stochastic models cannot account for any additional damage due to the complex pressure-time histories characteristic of COPVs being supplied for NASA missions. In particular, it is suspected that the effects of proof test could significantly reduce the stress rupture lifetime of COPVs. The focus of this paper is to present an analytical appraisal of a model that incorporates damage due to proof test. The model examined in the current paper is based on physical mechanisms such as micromechanics based load sharing concepts coupled with creep rupture and Weibull statistics. For example, the classic model cannot accommodate for damage due to proof testing which every flight vessel undergoes. The paper compares current model to the classic model with a number of examples. In addition, several applications of the model to current ISS and Constellation program issues are also examined.
Estimation of Effective Directional Strength of Single Walled Wavy CNT Reinforced Nanocomposite
NASA Astrophysics Data System (ADS)
Bhowmik, Krishnendu; Kumar, Pranav; Khutia, Niloy; Chowdhury, Amit Roy
2018-03-01
In this present work, single walled wavy carbon nanotube reinforced into composite has been studied to predict the effective directional strength of the nanocomposite. The effect of waviness on the overall Young’s modulus of the composite has been analysed using three dimensional finite element model. Waviness pattern of carbon nanotube is considered as periodic cosine function. Both long (continuous) and short (discontinuous) carbon nanotubes are being idealized as solid annular tube. Short carbon nanotube is modelled with hemispherical cap at its both ends. Representative Volume Element models have been developed with different waviness, height fractions, volume fractions and modulus ratios of carbon nanotubes. Consequently a micromechanics based analytical model has been formulated to derive the effective reinforcing modulus of wavy carbon nanotubes. In these models wavy single walled wavy carbon nanotubes are considered to be aligned along the longitudinal axis of the Representative Volume Element model. Results obtained from finite element analyses are compared with analytical model and they are found in good agreement.
NASA Astrophysics Data System (ADS)
Wirtz, Denis
2014-03-01
Two-dimensional (2D) in vitro culture systems have for a number of years provided a controlled and versatile environment for mechanistic studies of cell adhesion, polarization, and migration, three interrelated cell functions critical to cancer metastasis. However, the organization and functions of focal adhesion proteins, protrusion machinery, and microtubule-based polarization in cells embedded in physiologically more relevant 3D extracellular matrices is qualitatively different from their organization and functions on conventional 2D planar substrates. This talk will describe the implications of the dependence of focal adhesion protein-based cell migration on micro-environmental dimensionality (1D vs. 2D vs.. 3D), how cell micromechanics plays a critical role in promoting local cell invasion, and associated validation in mouse models. We will discuss the implications of this work in cancer metastasis.
Probabilistic composite micromechanics
NASA Technical Reports Server (NTRS)
Stock, T. A.; Bellini, P. X.; Murthy, P. L. N.; Chamis, C. C.
1988-01-01
Probabilistic composite micromechanics methods are developed that simulate expected uncertainties in unidirectional fiber composite properties. These methods are in the form of computational procedures using Monte Carlo simulation. A graphite/epoxy unidirectional composite (ply) is studied to demonstrate fiber composite material properties at the micro level. Regression results are presented to show the relative correlation between predicted and response variables in the study.
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.; Blinzler, Brina J.; Binienda, Wieslaw K.
2010-01-01
A macro level finite element-based model has been developed to simulate the mechanical and impact response of triaxially-braided polymer matrix composites. In the analytical model, the triaxial braid architecture is simulated by using four parallel shell elements, each of which is modeled as a laminated composite. For the current analytical approach, each shell element is considered to be a smeared homogeneous material. The commercial transient dynamic finite element code LS-DYNA is used to conduct the simulations, and a continuum damage mechanics model internal to LS-DYNA is used as the material constitutive model. The constitutive model requires stiffness and strength properties of an equivalent unidirectional composite. Simplified micromechanics methods are used to determine the equivalent stiffness properties, and results from coupon level tests on the braided composite are utilized to back out the required strength properties. Simulations of quasi-static coupon tests of several representative braided composites are conducted to demonstrate the correlation of the model. Impact simulations of a represented braided composites are conducted to demonstrate the capability of the model to predict the penetration velocity and damage patterns obtained experimentally.
NASA Astrophysics Data System (ADS)
El-Etriby, Ahmed E.; Abdel-Meguid, Mohamed E.; Hatem, Tarek M.; Bahei-El-Din, Yehia A.
2014-03-01
Ambient vibrations are major source of wasted energy, exploiting properly such vibration can be converted to valuable energy and harvested to power up devices, i.e. electronic devices. Accordingly, energy harvesting using smart structures with active piezoelectric ceramics has gained wide interest over the past few years as a method for converting such wasted energy. This paper provides numerical and experimental analysis of piezoelectric fiber based composites for energy harvesting applications proposing a multi-scale modeling approach coupled with experimental verification. The multi-scale approach suggested to predict the behavior of piezoelectric fiber-based composites use micromechanical model based on Transformation Field Analysis (TFA) to calculate the overall material properties of electrically active composite structure. Capitalizing on the calculated properties, single-phase analysis of a homogeneous structure is conducted using finite element method. The experimental work approach involves running dynamic tests on piezoelectric fiber-based composites to simulate mechanical vibrations experienced by a subway train floor tiles. Experimental results agree well with the numerical results both for static and dynamic tests.
NASA Technical Reports Server (NTRS)
Patterson, James D.
1997-01-01
The MEMS (Micro-Electro-Mechanical-Systems) technology is quickly evolving as a viable means to combine micro-mechanical and micro-optical elements on the same chip. One MEMS technology that has recently gained attention by the research community is the micro-mechanical Fabry-Perot optical filter. A MEMS based Fabry-Perot consists of a vertically integrated structure composed of two mirrors separated by an air gap. Wavelength tuning is achieved by applying a bias between the two mirrors resulting in an attractive electrostatic force which pulls the mirrors closer. In this work, we present a new micro-mechanical Fabry-Perot structure which is simple to fabricate and is integratable with low cost silicon photodetectors and transistors. The structure consists of a movable gold coated oxide cantilever for the top mirror and a stationary Au/Ni plated silicon bottom mirror. The fabrication process is single mask level, self aligned, and requires only one grown or deposited layer. Undercutting of the oxide cantilever is carried out by a combination of RIE and anisotropic KOH etching of the (111) silicon substrate. Metallization of the mirrors is provided by thermal evaporation and electroplating. The optical and electrical characteristics of the fabricated devices were studied and show promissing results. A wavelength shift of 120nm with 53V applied bias was demonstrated by one device geometry using 6.27 micrometer air gap. The finesse of the structure was 2.4. Modulation bandwidths ranging from 91KHz to greater than 920KHz were also observed. Theoretical calculations show that if mirror reflectivity, smoothness, and parallelism are improved, a finesse of 30 is attainable. The predictions also suggest that a reduction of the air gap to 1 micrometer results in an increased wavelength tuning range of 175 nm with a CMOS compatible 4.75V.
Improved resonance characteristics of GaAs beam resonators by epitaxially induced strain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamaguchi, H.; Onomitsu, K.; Kato, K.
2008-06-23
Micromechanical-beam resonators were fabricated using a strained GaAs film grown on relaxed In{sub 0.1}Ga{sub 0.9}As/In{sub 0.1}Al{sub 0.9}As buffer layers. The natural frequency of the fundamental mode was increased 2.5-4 times by applying tensile strain, showing good agreement with the model calculation assuming strain of 0.35% along the beam. In addition, the Q factor of 19 000 was obtained for the best sample, which is one order of magnitude higher than that for the unstrained resonator. This technique can be widely applied for improving the performance of resonator-based micro-/nanoelectromechanical devices.
Cross-Linked Nanotube Materials with Variable Stiffness Tethers
NASA Technical Reports Server (NTRS)
Frankland, Sarah-Jane V.; Odegard, Gregory M.; Herzog, Matthew N.; Gates, Thomas S.; Fay, Catherine C.
2004-01-01
The constitutive properties of a cross-linked single-walled carbon nanotube material are predicted with a multi-scale model. The material is modeled as a transversely isotropic solid using concepts from equivalent-continuum modeling. The elastic constants are determined using molecular dynamics simulation. Some parameters of the molecular force field are determined specifically for the cross-linker from ab initio calculations. A demonstration of how the cross-linked nanotubes may affect the properties of a nanotube/polyimide composite is included using a micromechanical analysis.
Micromechanical torsional digital-to-analog converter for open-loop angular positioning applications
NASA Astrophysics Data System (ADS)
Zhou, Guangya; Tay, Francis E. H.; Chau, Fook Siong; Zhao, Yi; Logeeswaran, VJ
2004-05-01
This paper reports a novel micromechanical torsional digital-to-analog converter (MTDAC), operated in open-loop with digitally controlled precise multi-level tilt angles. The MTDAC mechanism presented is analogous to that of an electrical binary-weighted-input digital-to-analog converter (DAC). It consists of a rigid tunable platform, an array of torsional microactuators, each operating in a two-state (on/off) mode, and a set of connection beams with binary-weighted torsional stiffnesses that connect the actuators to the platform. The feasibility of the proposed MTDAC mechanism was verified numerically by finite element simulations and experimentally with a commercial optical phase-shifting interferometric system. A prototype 2-bit MTDAC was implemented using the poly-MUMPS process achieving a full-scale output tilt angle of 1.92° with a rotation step of 0.64°. This mechanism can be configured for many promising applications, particularly in beam steering-based OXC switches.
Jammed Clusters and Non-locality in Dense Granular Flows
NASA Astrophysics Data System (ADS)
Kharel, Prashidha; Rognon, Pierre
We investigate the micro-mechanisms underpinning dense granular flow behaviour from a series of DEM simulations of pure shear flows of dry grains. We observe the development of transient clusters of jammed particles within the flow. Typical size of such clusters is found to scale with the inertial number with a power law that is similar to the scaling of shear-rate profile relaxation lengths observed previously. Based on the simple argument that transient clusters of size l exist in the dense flow regime, the formulation of steady state condition for non-homogeneous shear flow results in a general non-local relation, which is similar in form to the non-local relation conjectured for soft glassy flows. These findings suggest the formation of jammed clusters to be the key micro-mechanism underpinning non-local behaviour in dense granular flows. Particles and Grains Laboratory, School of Civil Engineering, The University of Sydney, Sydney, NSW 2006, Australia.
Study of High Temperature Failure Mechanisms in Ceramics
1988-06-01
The major experimental 4 techniques employed in the program are the use of small- angle neutron scattering to characterize cavity nucleation and growth...creep crackgrowth. Of particular interest are the development of a stochastic model of grainboundary sliding and a micromechanical model that relates...Accession For NTIS GF.A&I DTIC T,’ IDi st ribut Ion’ ;i Avillii~diii l l= (~~ I. RESEARCH OBJECTIVES I. Utilize small- angle neutron scattering to
Light-Actuated Micromechanical Relays for Zero-Power Infrared Detection
2017-03-01
Light-Actuated Micromechanical Relays for Zero-Power Infrared Detection Zhenyun Qian, Sungho Kang, Vageeswar Rajaram, Cristian Cassella, Nicol E...near-zero power infrared (IR) detection . Differently from any existing switching element, the proposed LMR relies on a plasmonically-enhanced...chip enabling the monolithic fabrication of multiple LMRs connected together to form a logic topology suitable for the detection of specific
Single crystal micromechanical resonator and fabrication methods thereof
Olsson, Roy H.; Friedmann, Thomas A.; Homeijer, Sara Jensen; Wiwi, Michael; Hattar, Khalid Mikhiel; Clark, Blythe; Bauer, Todd; Van Deusen, Stuart B.
2016-12-20
The present invention relates to a single crystal micromechanical resonator. In particular, the resonator includes a lithium niobate or lithium tantalate suspended plate. Also provided are improved microfabrication methods of making resonators, which does not rely on complicated wafer bonding, layer fracturing, and mechanical polishing steps. Rather, the methods allow the resonator and its components to be formed from a single crystal.
High-performance coatings for micromechanical mirrors.
Gatto, Alexandre; Yang, Minghong; Kaiser, Norbert; Heber, Jörg; Schmidt, Jan Uwe; Sandner, Thilo; Schenk, Harald; Lakner, Hubert
2006-03-01
High-performance coatings for micromechanical mirrors were developed. The high-reflective metal systems can be integrated into the technology of MOEMS, such as spatial light modulators and microscanning mirrors from the near-infrared down to the vacuum-ultraviolet spectral regions. The reported metal designs permit high optical performances to be merged with suitable mechanical properties and fitting complementary metal-oxide semiconductor compatibility.
NASA Astrophysics Data System (ADS)
Andreeva, A. V.; Luchinin, V. V.; Kuzmina, K. A.; Klyavinek, A. S.; Karelov, A. E.
2015-12-01
A vibroacoustic fiber optic system that consists of micromechanical components designated for use in medicine and biology is reviewed. A theoretical analysis of a fiber optic microphone is done and its optimal construction parameters are determined. The possibility of using the developed system with magnetic resonance tomography to noninvasively measure man's arterial pressure is specified.
A probabilistic approach to composite micromechanics
NASA Technical Reports Server (NTRS)
Stock, T. A.; Bellini, P. X.; Murthy, P. L. N.; Chamis, C. C.
1988-01-01
Probabilistic composite micromechanics methods are developed that simulate expected uncertainties in unidirectional fiber composite properties. These methods are in the form of computational procedures using Monte Carlo simulation. A graphite/epoxy unidirectional composite (ply) is studied to demonstrate fiber composite material properties at the micro level. Regression results are presented to show the relative correlation between predicted and response variables in the study.
Micromechanics in the Gerbil Hemicochlea
NASA Astrophysics Data System (ADS)
Richter, C.-P.; Dallos, P.
2003-02-01
Micromechanical events in the cochlea represent the combined motions of all elements that convey vibrations from the basilar membrane (BM) to the stereocilia bundles of the inner hair cells, the sensory receptors of the mammalian cochlea. Because of the difficulty of visualizing the organ of Corti (OC), experimental data on micromechanics are extremely limited. Available results represent motions viewed either from one focal plane or from the surface of a cochlear preparation. The present experiments examine cochlear micromechanics at audio frequencies by using the hemicochlea that permits the viewing of all structures in a cochlear cross-section. Stroboscopic illumination and video-flow techniques have been used to quantify the motion of selected elements. The movements at different locations revealed a tuned response across frequencies with the best frequency increasing from more basal to more apical locations. Furthermore, the vibrations showed rotational components, such as rotations around a pivot point: the inner pillar foot. Inner and outer pillar cells, inner and outer hair cells, Deiters' cells and parts of the BM move together and form a so-called "rotating wedge". The movements of Hensen's cells represent a mode of vibration different from that of the rest of the OC.
Duffing revisited: phase-shift control and internal resonance in self-sustained oscillators
NASA Astrophysics Data System (ADS)
Arroyo, Sebastián I.; Zanette, Damián H.
2016-01-01
We address two aspects of the dynamics of the forced Duffing oscillator which are relevant to the technology of micromechanical devices and, at the same time, have intrinsic significance to the field of nonlinear oscillating systems. First, we study the stability of periodic motion when the phase shift between the external force and the oscillation is controlled - contrary to the standard case, where the control parameter is the frequency of the force. Phase-shift control is the operational configuration under which self-sustained oscillators - and, in particular, micromechanical oscillators - provide a frequency reference useful for time keeping. We show that, contrary to the standard forced Duffing oscillator, under phase-shift control oscillations are stable over the whole resonance curve, and provide analytical approximate expressions for the time dependence of the oscillation amplitude and frequency during transients. Second, we analyze a model for the internal resonance between the main Duffing oscillation mode and a higher-harmonic mode of a vibrating solid bar clamped at its two ends. We focus on the stabilization of the oscillation frequency when the resonance takes place, and present preliminary experimental results that illustrate the phenomenon. This synchronization process has been proposed to counteract the undesirable frequency-amplitude interdependence in nonlinear time-keeping micromechanical devices. Supplementary material in the form of one pdf file and one gif file available from the Journal web page at http://dx.doi.org/10.1140/epjb/e2015-60517-3
Experimental Characterization and Micromechanical Modeling of Woven Carbon/Copper Composites
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Pauly, Christopher C.; Pindera, Marek-Jerzy
1997-01-01
The results of an extensive experimental characterization and a preliminary analytical modeling effort for the elastoplastic mechanical behavior of 8-harness satin weave carbon/copper (C/Cu) composites are presented. Previous experimental and modeling investigations of woven composites are discussed, as is the evolution of, and motivation for, the continuing research on C/Cu composites. Experimental results of monotonic and cyclic tension, compression, and Iosipescu shear tests, and combined tension-compression tests, are presented. With regard to the test results, emphasis is placed on the effect of strain gauge size and placement, the effect of alloying the copper matrix to improve fiber-matrix bonding, yield surface characterization, and failure mechanisms. The analytical methodology used in this investigation consists of an extension of the three-dimensional generalized method of cells (GMC-3D) micromechanics model, developed by Aboudi (1994), to include inhomogeneity and plasticity effects on the subcell level. The extension of the model allows prediction of the elastoplastic mechanical response of woven composites, as represented by a true repeating unit cell for the woven composite. The model is used to examine the effects of refining the representative geometry of the composite, altering the composite overall fiber volume fraction, changing the size and placement of the strain gauge with respect to the composite's reinforcement weave, and including porosity within the infiltrated fiber yarns on the in-plane elastoplastic tensile, compressive, and shear response of 8-harness satin C/Cu. The model predictions are also compared with the appropriate monotonic experimental results.
Development of micromachine tool prototypes for microfactories
NASA Astrophysics Data System (ADS)
Kussul, E.; Baidyk, T.; Ruiz-Huerta, L.; Caballero-Ruiz, A.; Velasco, G.; Kasatkina, L.
2002-11-01
At present, many areas of industry have strong tendencies towards miniaturization of products. Mechanical components of these products as a rule are manufactured using conventional large-scale equipment or micromechanical equipment based on microelectronic technology (MEMS). The first method has some drawbacks because conventional large-scale equipment consumes much energy, space and material. The second method seems to be more advanced but has some limitations, for example, two-dimensional (2D) or 2.5-dimensional shapes of components and materials compatible with silicon technology. In this paper, we consider an alternative technology of micromechanical device production. This technology is based on micromachine tools (MMT) and microassembly devices, which can be produced as sequential generations of microequipment. The first generation can be produced by conventional large-scale equipment. The machine tools of this generation can have overall sizes of 100-200 mm. Using microequipment of this generation, second generation microequipment having smaller overall sizes can be produced. This process can be repeated to produce generations of micromachine tools having overall sizes of some millimetres. In this paper we describe the efforts and some results of first generation microequipment prototyping. A micromachining centre having an overall size of 130 × 160 × 85 mm3 was produced and characterized. This centre has allowed us to manufacture micromechanical details having sizes from 50 µm to 5 mm. These details have complex three-dimensional shapes (for example, screw, gear, graduated shaft, conic details, etc), and are made from different materials, such as brass, steel, different plastics etc. We have started to investigate and to make prototypes of the assembly microdevices controlled by a computer vision system. In this paper we also describe an example of the applications (microfilters) for the proposed technology.
Rotary ultrasonic machining of CFRP: a mechanistic predictive model for cutting force.
Cong, W L; Pei, Z J; Sun, X; Zhang, C L
2014-02-01
Cutting force is one of the most important output variables in rotary ultrasonic machining (RUM) of carbon fiber reinforced plastic (CFRP) composites. Many experimental investigations on cutting force in RUM of CFRP have been reported. However, in the literature, there are no cutting force models for RUM of CFRP. This paper develops a mechanistic predictive model for cutting force in RUM of CFRP. The material removal mechanism of CFRP in RUM has been analyzed first. The model is based on the assumption that brittle fracture is the dominant mode of material removal. CFRP micromechanical analysis has been conducted to represent CFRP as an equivalent homogeneous material to obtain the mechanical properties of CFRP from its components. Based on this model, relationships between input variables (including ultrasonic vibration amplitude, tool rotation speed, feedrate, abrasive size, and abrasive concentration) and cutting force can be predicted. The relationships between input variables and important intermediate variables (indentation depth, effective contact time, and maximum impact force of single abrasive grain) have been investigated to explain predicted trends of cutting force. Experiments are conducted to verify the model, and experimental results agree well with predicted trends from this model. Copyright © 2013 Elsevier B.V. All rights reserved.
Design of a fully compliant bistable micromechanism for switching devices
NASA Astrophysics Data System (ADS)
Chang, Hsin-An; Tsay, Jinni; Sung, Cheng-Kuo
2001-11-01
This paper proposes a design of a bistable micromechanism for the application of switching devices. The topology of a fully compliant four-bar mechanism is adopted herein. The central mass of the mechanism is employed as a carriage to carry switching components, such as mirror, electrical contact, etc. The equations that predict the existence of bistable states, the extreme positions of the motion range and the maximum stress states of members were derived. MUMPs provided by Cronos Integrated Microsystems fabricated the proposed micromechanisms for the purpose of verifying the theoretical predictions. Finally, an experimental rig was established. The bistable mechanisms were switched either by the probe or actuators to push the central mass. The experimental results demonstrated that the motions observed approximately met the predicted values.
Frequency stability improvement for piezoresistive micromechanical oscillators via synchronization
NASA Astrophysics Data System (ADS)
Pu, Dong; Huan, Ronghua; Wei, Xueyong
2017-03-01
Synchronization phenomenon first discovered in Huygens' clock shows that the rhythms of oscillating objects can be adjusted via an interaction. Here we show that the frequency stability of a piezoresistive micromechanical oscillator can be enhanced via synchronization. The micromechanical clamped-clamped beam oscillator is built up using the electrostatic driving and piezoresistive sensing technique and the synchronization phenomenon is observed after coupling it to an external oscillator. An enhancement of frequency stability is obtained in the synchronization state. The influences of the synchronizing perturbation intensity and frequency detuning applied on the oscillator are studied experimentally. A theoretical analysis of phase noise leads to an analytical formula for predicting Allan deviation of the frequency output of the piezoresistive oscillator, which successfully explains the experimental observations and the mechanism of frequency stability enhancement via synchronization.
Micromechanical and Electrical Properties of Monolithic Aluminum Nitride at High Temperatures
NASA Technical Reports Server (NTRS)
Goldsby, Jon C.
2000-01-01
Micromechanical spectroscopy of aluminum nitride reveals it to possess extremely low background internal friction at less than 1x10(exp-4) logarithmic decrement (log dec) from 20 to 1200 T. Two mechanical loss peaks were observed, the first at 350 C approximating a single Debye peak with a peak height of 60x10(exp-4) log dec. The second peak was seen at 950 'C with a peak height of 20x 10' log dec and extended from 200 to over 1200 C. These micromechanical observations manifested themselves in the electrical behavior of these materials. Electrical conduction processes were predominately intrinsic. Both mechanical and electrical relaxations appear to be thermally activated processes, with activation energies of 0.78 and 1.32 eV respectively.
Micromechanical and Electrical Properties of Monolithic Aluminum Nitride at High Temperatures
NASA Technical Reports Server (NTRS)
Goldsby, Jon C.
2001-01-01
Micromechanical spectroscopy of aluminum nitride reveals it to possess extremely low background internal friction at less than 1 x 10 (exp -4) logarithmic decrement (log dec.) from 20 to 1200 C. Two mechanical loss peaks were observed, the first at 350 C approximating a single Debye peak with a peak height of 60 x 10 (exp -4) log dec. The second peak was seen at 950 C with a peak height of 20 x 10 (exp -4) log dec. and extended from 200 to over 1200 C. These micromechanical observations manifested themselves in the electrical behavior of these materials. Electrical conduction processes were predominately intrinsic. Both mechanical and electrical relaxations appear to be thermally activated processes, with activation energies of 0.78 and 1.32 eV respectively.
NASA Astrophysics Data System (ADS)
Kochmann, Julian; Wulfinghoff, Stephan; Ehle, Lisa; Mayer, Joachim; Svendsen, Bob; Reese, Stefanie
2018-06-01
Recently, two-scale FE-FFT-based methods (e.g., Spahn et al. in Comput Methods Appl Mech Eng 268:871-883, 2014; Kochmann et al. in Comput Methods Appl Mech Eng 305:89-110, 2016) have been proposed to predict the microscopic and overall mechanical behavior of heterogeneous materials. The purpose of this work is the extension to elasto-viscoplastic polycrystals, efficient and robust Fourier solvers and the prediction of micromechanical fields during macroscopic deformation processes. Assuming scale separation, the macroscopic problem is solved using the finite element method. The solution of the microscopic problem, which is embedded as a periodic unit cell (UC) in each macroscopic integration point, is found by employing fast Fourier transforms, fixed-point and Newton-Krylov methods. The overall material behavior is defined by the mean UC response. In order to ensure spatially converged micromechanical fields as well as feasible overall CPU times, an efficient but simple solution strategy for two-scale simulations is proposed. As an example, the constitutive behavior of 42CrMo4 steel is predicted during macroscopic three-point bending tests.
NASA Astrophysics Data System (ADS)
Kochmann, Julian; Wulfinghoff, Stephan; Ehle, Lisa; Mayer, Joachim; Svendsen, Bob; Reese, Stefanie
2017-09-01
Recently, two-scale FE-FFT-based methods (e.g., Spahn et al. in Comput Methods Appl Mech Eng 268:871-883, 2014; Kochmann et al. in Comput Methods Appl Mech Eng 305:89-110, 2016) have been proposed to predict the microscopic and overall mechanical behavior of heterogeneous materials. The purpose of this work is the extension to elasto-viscoplastic polycrystals, efficient and robust Fourier solvers and the prediction of micromechanical fields during macroscopic deformation processes. Assuming scale separation, the macroscopic problem is solved using the finite element method. The solution of the microscopic problem, which is embedded as a periodic unit cell (UC) in each macroscopic integration point, is found by employing fast Fourier transforms, fixed-point and Newton-Krylov methods. The overall material behavior is defined by the mean UC response. In order to ensure spatially converged micromechanical fields as well as feasible overall CPU times, an efficient but simple solution strategy for two-scale simulations is proposed. As an example, the constitutive behavior of 42CrMo4 steel is predicted during macroscopic three-point bending tests.
Composite blade structural analyzer (COBSTRAN) user's manual
NASA Technical Reports Server (NTRS)
Aiello, Robert A.
1989-01-01
The installation and use of a computer code, COBSTRAN (COmposite Blade STRuctrual ANalyzer), developed for the design and analysis of composite turbofan and turboprop blades and also for composite wind turbine blades was described. This code combines composite mechanics and laminate theory with an internal data base of fiber and matrix properties. Inputs to the code are constituent fiber and matrix material properties, factors reflecting the fabrication process, composite geometry and blade geometry. COBSTRAN performs the micromechanics, macromechanics and laminate analyses of these fiber composites. COBSTRAN generates a NASTRAN model with equivalent anisotropic homogeneous material properties. Stress output from NASTRAN is used to calculate individual ply stresses, strains, interply stresses, thru-the-thickness stresses and failure margins. Curved panel structures may be modeled providing the curvature of a cross-section is defined by a single value function. COBSTRAN is written in FORTRAN 77.
Multiscale Analysis of Delamination of Carbon Fiber-Epoxy Laminates with Carbon Nanotubes
NASA Technical Reports Server (NTRS)
Riddick, Jaret C.; Frankland, SJV; Gates, TS
2006-01-01
A multi-scale analysis is presented to parametrically describe the Mode I delamination of a carbon fiber/epoxy laminate. In the midplane of the laminate, carbon nanotubes are included for the purposes of selectively enhancing the fracture toughness of the laminate. To analyze carbon fiber epoxy carbon nanotube laminate, the multi-scale methodology presented here links a series of parameterizations taken at various length scales ranging from the atomistic through the micromechanical to the structural level. At the atomistic scale molecular dynamics simulations are performed in conjunction with an equivalent continuum approach to develop constitutive properties for representative volume elements of the molecular structure of components of the laminate. The molecular-level constitutive results are then used in the Mori-Tanaka micromechanics to develop bulk properties for the epoxy-carbon nanotube matrix system. In order to demonstrate a possible application of this multi-scale methodology, a double cantilever beam specimen is modeled. An existing analysis is employed which uses discrete springs to model the fiber bridging affect during delamination propagation. In the absence of empirical data or a damage mechanics model describing the effect of CNTs on fracture toughness, several tractions laws are postulated, linking CNT volume fraction to fiber bridging in a DCB specimen. Results from this demonstration are presented in terms of DCB specimen load-displacement responses.
Consideration of wear rates at high velocity
NASA Astrophysics Data System (ADS)
Hale, Chad S.
The development of the research presented here is one in which high velocity relative sliding motion between two bodies in contact has been considered. Overall, the wear environment is truly three-dimensional. The attempt to characterize three-dimensional wear was not economically feasible because it must be analyzed at the micro-mechanical level to get results. Thus, an engineering approximation was carried out. This approximation was based on a metallographic study identifying the need to include viscoplasticity constitutive material models, coefficient of friction, relationships between the normal load and velocity, and the need to understand wave propagation. A sled test run at the Holloman High Speed Test Track (HHSTT) was considered for the determination of high velocity wear rates. In order to adequately characterize high velocity wear, it was necessary to formulate a numerical model that contained all of the physical events present. The experimental results of a VascoMax 300 maraging steel slipper sliding on an AISI 1080 steel rail during a January 2008 sled test mission were analyzed. During this rocket sled test, the slipper traveled 5,816 meters in 8.14 seconds and reached a maximum velocity of 1,530 m/s. This type of environment was never considered previously in terms of wear evaluation. Each of the features of the metallography were obtained through micro-mechanical experimental techniques. The byproduct of this analysis is that it is now possible to formulate a model that contains viscoplasticity, asperity collisions, temperature and frictional features. Based on the observations of the metallographic analysis, these necessary features have been included in the numerical model, which makes use of a time-dynamic program which follows the movement of a slipper during its experimental test run. The resulting velocity and pressure functions of time have been implemented in the explicit finite element code, ABAQUS. Two-dimensional, plane strain models were used to determine the state of stress within the slipper and the pressure distribution along the bottom. Local submodel collisions between the slipper and a 6 mum radius hemispherical asperity were analyzed to determine mechanical and melt wear rates. A simplified damage criterion of maximum Mises stress was used to determine the damaged volume during the slipper and asperity collision. Overall, the model predicts a total wear volume that is approximately 36% of the total wear measured during the metallographic analysis.
Phenomenological Studies in Micromechanics
1988-09-30
DTIO OELECTE NOV 0 9 1 i FINAL REPORT OFFICEF NAVAL RSEARCH Contract No. N00014-86-K-0255 PHENOMENOLOGICAL STUDIES IN MICROMECHANICS 0. Post, and R...9 Improvement of Experimental Techniques.................. 10 *Summary of Research Progress ........................... 11 LIST OF...15 Q 9%. INI C RA&I P ’-zC TAB3 -:o * A,1 EXECUTIVE SIJOARY State of the art experimental techniques have been applied to
Tuning method for microresonators and microresonators made thereby
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henry, Michael David; Olsson, Roy H.; Greth, Karl Douglas
2015-12-01
A micromechanical resonator is disclosed. The resonator includes a resonant micromechanical element. A film of annealable material can be deposited on a facial surface of the element. The resonance of the element can be tuned by annealing the deposited film. Also disclosed are methods of applying a film on a resonator and annealing the film, thereby tuning one or more resonant properties of the resonator.
Demonstrating Optothermal Actuators for an Autonomous Mems Microrobot
2004-03-01
of Toggled Microthermal Actuators,” Journal of Micromechanics and Microengineering, Vol. 14, pp 49-56, 2004. [10] S. Baglio, S. Castorina, L...127-132, 2000. [8] Y. Lai, J. McDonald, M. Kujath and T. Hubbard, “Force, Deflection and Power Measurements of Toggled Microthermal Actuators...Hubbard, "Force, Deflection and Power Measurements of Toggled Microthermal Actuators", Journal of Micromechanics and Microengineering, Vol. 14, pp 49
NASA Astrophysics Data System (ADS)
Schnakenberg, Uwe
2009-07-01
This special issue of Journal of Micromechanics and Microengineering is devoted to the 19th MicroMechanics Europe Workshop (MME 08), which took place at the RWTH Aachen University, Aachen, Germany, from 28-30 September, 2008. The workshop is a well recognized and established European event in the field of micro system technology using thin-film technologies for creating micro components, micro sensors, micro actuators, and micro systems. The first MME Workshop was held 1989 in Enschede (The Netherlands) and continued 1990 in Berlin (Germany), 1992 in Leuven (Belgium), and then was held annually in Neuchâtel (Switzerland), Pisa (Italy), Copenhagen (Denmark), Barcelona (Spain), Southampton (UK), Ulvik in Hardanger (Norway), Gif-sur-Yvette (France), Uppsala (Sweden), Cork (Ireland), Sinaia (Romania), Delft (The Netherlands), Leuven (Belgium), Göteborg (Sweden), Southampton (UK), and in Guimarães (Portugal). The two day workshop was attended by 180 delegates from 26 countries all over Europe and from Armenia, Austria, Bulgaria, Canada, China, Cuba, Iran, Japan, Korea, Malaysia, Taiwan, Turkey, and the United States of America. A total of 97 papers were accepted for presentation and there were a further five keynote presentations. I am proud to present 22 high-quality papers from MME 2008 selected for their novelty and relevance to Journal of Micromechanics and Microengineering. All the papers went through the regular reviewing procedure of IOP Publishing. I am eternally grateful to all the referees for their excellent work. I would also like to extend my thanks to the members of the Programme Committee of MME 2008, Dr Reinoud Wolffenbuttel, Professor José Higino Correia, and Dr Patrick Pons for pre-selection of the papers as well as to Professor Robert Puers for advice on the final selection of papers. My thanks also go to Dr Ian Forbes of IOP Publishing for managing the entire process and to the editorial staff of Journal of Micromechanics and Microengineering. I trust that this special issue will provide new trends of the emerging field of micro system technology and I hope you enjoy reading it.
NASA Astrophysics Data System (ADS)
Gaiseanu, Florin; Esteve, Jaume; Cane, Carles; Perez-Rodriguez, Alejandro; Morante, Juan R.; Serre, Christoph
1999-08-01
Our researches were devoted to the micromechanical elements fabricated by the surface micromachining technology, in order to reduce or to eliminate the internal stress or the stress gradients. We used an analysis based on secondary ion mass spectroscopy and the spreading resistance profiling determinations, correlated with cross-section electron transmission spectroscopy. The stress induced in the polysilicon layers by the technological processes depends on: (i) the conditions of the low pressure chemical vapor deposition process; (ii) the phosphorus doping technique; (iii) the subsequent multi-step annealing processes. In our experiments the LP-CVD conditions were maintained the same, but the condition specified previously as items (ii) was varied by using two different doping techniques: thermal- chemical doping consisting in prediffusion from a POCl3 source in an open furnace tube; ionic implantation with an energy E equals 65KeV and a dose N equals 4.5 X 1015 cm-2. The implantation process was followed by an annealing at 900 degrees C in an oxygen ambient for 30 minutes. The thermal budget was varied after the doping in order to reduce the stress gradient in the polysilicon layers. The results of our analysis allow us to show that: (1) the doping gradients are correlated with the slower phosphorus grains forme by an excess of the oxygen atoms; a concurrent process induced by the silicon self-interstitial injection during the diffusion and oxidation, determines the enhancement of the grain growth and therefore the enhancement of the electrical activation especially near the internal polysilicon interface; (2) the post-doping annealing conditions could be varied in a convenient manner, so that the doping induced stress gradients into the polysilicon layers to be reduced or completely eliminated for suitable micromechanical induced stress gradients into the polysilicon layers to be reduced or completely eliminated for suitable micromechanical applications. The results were used for the process optimization of micromechanical elements. The internal stress was determined by using anew, pull-in voltage method, allowing the comparison of the theory with the experimental data. It was deduced a new form of the equations set useful to extract the mechanical parameters like the internal stress and the Young's module. It was also deduced a simplified approximate formula useful to apply the least square fitting method for the extraction of the mechanical parameters. The results confirms the conclusions of the doping and the structural analysis.
Modeling of Micromechanisms of Fatigue and Fracture in Hybrid Materials
1990-06-15
titanium aluminides . Unclassified SECURITY CLASSIFICATION OF THIS PAGE Report No. UCB/R/90/A1065 Final Report to U.S. Air Force Office of Scientific...PARTICULATE-REINFORCED Ti-6AI-4V COMPOSITES ............... 52 5. TITANIUM ALUMINIDE INTERMETALLICS ............................................ 59 6...preliminary examination of the microstructure of titanium aluminides . V 1. INTRODUCTION In recent years, the need for lighter materials with high
Properties of aircraft tire materials
NASA Technical Reports Server (NTRS)
Dodge, Richard N.; Clark, Samuel K.
1988-01-01
A summary is presented of measured elastomeric composite response suitable for linear structural and thermoelastic analysis in aircraft tires. Both real and loss properties are presented for a variety of operating conditions including the effects of temperature and frequency. Suitable micro-mechanics models are used for predictions of these properties for other material combinations and the applicability of laminate theory is discussed relative to measured values.
Ionic Liquids for Advanced Materials
2008-12-01
optical clarity to completely opacity with increased amounts of ionic liquid . This transition was not previously observed in Nafion ® membranes swollen...1 IONIC LIQUIDS FOR ADVANCED MATERIALS Timothy E. Long, Sean M. Ramirez, Randy Heflin, Harry W. Gibson, Louis A. Madsen, Donald J. Leo, Nakhiah...is to develop a micromechanical model for the electrochemomechanical transduction mechanisms in newly synthesized ionic liquid polymers in order to
Öztürk, Elif; Bolay, Sükran; Hickel, Reinhard; Ilie, Nicoleta
2014-10-01
The aim of this study was to evaluate the micromechanical properties of different adhesive bonding agents when polymerized through ceramics. Sixty sound extracted human third molars were selected and the crowns were sectioned perpendicular to the long axis in order to obtain dentin slices to be bonded with one of the following adhesives: Syntac/Heliobond (Ivoclar-Vivadent) or Adper-Scotchbond-1XT (3M-ESPE). The adhesives were cured by using a LED-unit (Bluephase®, Ivoclar Vivadent) with three different curing times (10 s, 20 s and 30 s) under two ceramics (IPS-e.max-Press, Ivoclar-Vivadent; IPS-Empress®CAD, Ivoclar-Vivadent) of different thicknesses (0 mm, 0.75 mm, 2 mm). Thirty groups were included, each containing 60 measurements. Micromechanical properties (Hardness, HV; indentation modulus, E; and creep, Cr) of the adhesives were measured with an automatic microhardness indenter (Fisherscope H100C, Germany). Data were statistically analyzed by using one-way ANOVA and Tukey's post-hoc test, as well as a multivariate analysis to test the influence of the study parameters (SPSS 18.0). Significant differences were observed between the micromechanical properties of the adhesives (p < 0.05). The ceramic type showed the highest effect on HV (Partial-eta squared (η(2)) = 0.109) of the tested adhesives, while E (η(2) = 0.275) and Cr (η(2) = 0.194) were stronger influenced by the adhesive type. Ceramic thickness showed no effect on the E and Cr of the adhesives. The adhesive bonding agents used in this study performed well by curing through different thicknesses of ceramics. The micromechanical properties of the adhesives were determined by the adhesive type and were less influenced by ceramic type and curing time.
Micro-mechanical model for the tension-stabilized enzymatic degradation of collagen tissues
NASA Astrophysics Data System (ADS)
Nguyen, Thao; Ruberti, Jeffery
We present a study of how the collagen fiber structure influences the enzymatic degradation of collagen tissues. Experiments of collagen fibrils and tissues show that mechanical tension can slow and halt enzymatic degradation. Tissue-level experiments also show that degradation rate is minimum at a stretch level coincident with the onset of strain-stiffening in the stress response. To understand these phenomena, we developed a micro-mechanical model of a fibrous collagen tissue undergoing enzymatic degradation. Collagen fibers are described as sinusoidal elastica beams, and the tissue is described as a distribution of fibers. We assumed that the degradation reaction is inhibited by the axial strain energy of the crimped collagen fibers. The degradation rate law was calibrated to experiments on isolated single fibrils from bovine sclera. The fiber crimp and properties were fit to uniaxial tension tests of tissue strips. The fibril-level kinetic and tissue-level structural parameters were used to predict tissue-level degradation-induced creep rate under a constant applied force. We showed that we could accurately predict the degradation-induce creep rate of the pericardium and cornea once we accounted for differences in the fiber crimp structure and properties.
Micro-mechanical properties of different sites on woodpecker's skull.
Ni, Yikun; Wang, Lizhen; Liu, Xiaoyu; Zhang, Hongquan; Lin, Chia-Ying; Fan, Yubo
2017-11-01
The uneven distributed microstructure featured with plate-like spongy bone in woodpecker's skull has been found to further help reduce the impact during woodpecker's pecking behavior. Therefore, this work was to investigate the micro-mechanical properties and composition on different sites of Great Spotted woodpecker's (GSW) skull. Different sites were selected on forehead, tempus and occiput, which were also compared with those of Eurasian Hoopoe (EH) and Lark birds (LB). Micro structural parameters assessed from micro computed tomography (μCT) occurred significantly difference between GSW, EH and LB. The micro finite element (micro-FE) models were developed and the simulation was performed as a compression process. The maximal stresses of GSW's micro-FE models were all lower than those of EH and LB respectively and few concentrated stresses were noticed on GSW's trabecular bone. Fourier transform infrared mapping suggesting a greater organic content in the occiput of GSW's cranial bone compared with others. The nano-hardness of the GSW's occiput was decreasing from forehead to occiput. The mechanical properties, site-dependent hardness distribution and special material composition of GSW's skull bone are newly found in this study. These factors may lead to a new design of bulk material mimicking these characteristics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Zhou; H. Huang; M. Deo
Log and seismic data indicate that most shale formations have strong heterogeneity. Conventional analytical and semi-analytical fracture models are not enough to simulate the complex fracture propagation in these highly heterogeneous formation. Without considering the intrinsic heterogeneity, predicted morphology of hydraulic fracture may be biased and misleading in optimizing the completion strategy. In this paper, a fully coupling fluid flow and geomechanics hydraulic fracture simulator based on dual-lattice Discrete Element Method (DEM) is used to predict the hydraulic fracture propagation in heterogeneous reservoir. The heterogeneity of rock is simulated by assigning different material force constant and critical strain to differentmore » particles and is adjusted by conditioning to the measured data and observed geological features. Based on proposed model, the effects of heterogeneity at different scale on micromechanical behavior and induced macroscopic fractures are examined. From the numerical results, the microcrack will be more inclined to form at the grain weaker interface. The conventional simulator with homogeneous assumption is not applicable for highly heterogeneous shale formation.« less
Mondoñedo, Jarred R; Suki, Béla
2017-02-01
Lung volume reduction surgery (LVRS) and bronchoscopic lung volume reduction (bLVR) are palliative treatments aimed at reducing hyperinflation in advanced emphysema. Previous work has evaluated functional improvements and survival advantage for these techniques, although their effects on the micromechanical environment in the lung have yet to be determined. Here, we introduce a computational model to simulate a force-based destruction of elastic networks representing emphysema progression, which we use to track the response to lung volume reduction via LVRS and bLVR. We find that (1) LVRS efficacy can be predicted based on pre-surgical network structure; (2) macroscopic functional improvements following bLVR are related to microscopic changes in mechanical force heterogeneity; and (3) both techniques improve aspects of survival and quality of life influenced by lung compliance, albeit while accelerating disease progression. Our model predictions yield unique insights into the microscopic origins underlying emphysema progression before and after lung volume reduction.
Mondoñedo, Jarred R.
2017-01-01
Lung volume reduction surgery (LVRS) and bronchoscopic lung volume reduction (bLVR) are palliative treatments aimed at reducing hyperinflation in advanced emphysema. Previous work has evaluated functional improvements and survival advantage for these techniques, although their effects on the micromechanical environment in the lung have yet to be determined. Here, we introduce a computational model to simulate a force-based destruction of elastic networks representing emphysema progression, which we use to track the response to lung volume reduction via LVRS and bLVR. We find that (1) LVRS efficacy can be predicted based on pre-surgical network structure; (2) macroscopic functional improvements following bLVR are related to microscopic changes in mechanical force heterogeneity; and (3) both techniques improve aspects of survival and quality of life influenced by lung compliance, albeit while accelerating disease progression. Our model predictions yield unique insights into the microscopic origins underlying emphysema progression before and after lung volume reduction. PMID:28182686
LDRD Project 52523 final report :Atomic layer deposition of highly conformal tribological coatings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jungk, John Michael; Dugger, Michael Thomas; George, Steve M.
2005-10-01
Friction and wear are major concerns in the performance and reliability of micromechanical (MEMS) devices. While a variety of lubricant and wear resistant coatings are known which we might consider for application to MEMS devices, the severe geometric constraints of many micromechanical systems (high aspect ratios, shadowed surfaces) make most deposition methods for friction and wear-resistance coatings impossible. In this program we have produced and evaluate highly conformal, tribological coatings, deposited by atomic layer deposition (ALD), for use on surface micromachined (SMM) and LIGA structures. ALD is a chemical vapor deposition process using sequential exposure of reagents and self-limiting surfacemore » chemistry, saturating at a maximum of one monolayer per exposure cycle. The self-limiting chemistry results in conformal coating of high aspect ratio structures, with monolayer precision. ALD of a wide variety of materials is possible, but there have been no studies of structural, mechanical, and tribological properties of these films. We have developed processes for depositing thin (<100 nm) conformal coatings of selected hard and lubricious films (Al2O3, ZnO, WS2, W, and W/Al{sub 2}O{sub 3} nanolaminates), and measured their chemical, physical, mechanical and tribological properties. A significant challenge in this program was to develop instrumentation and quantitative test procedures, which did not exist, for friction, wear, film/substrate adhesion, elastic properties, stress, etc., of extremely thin films and nanolaminates. New scanning probe and nanoindentation techniques have been employed along with detailed mechanics-based models to evaluate these properties at small loads characteristic of microsystem operation. We emphasize deposition processes and fundamental properties of ALD materials, however we have also evaluated applications and film performance for model SMM and LIGA devices.« less
NASA Astrophysics Data System (ADS)
Lizcano-Hernández, Edgar G.; Nicolás-López, Rubén; Valdiviezo-Mijangos, Oscar C.; Meléndez-Martínez, Jaime
2018-04-01
The brittleness indices (BI) of gas-shales are computed by using their effective mechanical properties obtained from micromechanical self-consistent modeling with the purpose of assisting in the identification of the more-brittle regions in shale-gas reservoirs, i.e., the so-called ‘pay zone’. The obtained BI are plotted in lambda-rho versus mu-rho λ ρ -μ ρ and Young’s modulus versus Poisson’s ratio E-ν ternary diagrams along with the estimated elastic properties from log data of three productive shale-gas wells where the pay zone is already known. A quantitative comparison between the obtained BI and the well log data allows for the delimitation of regions where BI values could indicate the best reservoir target in regions with the highest shale-gas exploitation potential. Therefore, a range of values for elastic properties and brittleness indexes that can be used as a data source to support the well placement procedure is obtained.
NASA Technical Reports Server (NTRS)
Lee, Jong-Won; Allen, David H.
1993-01-01
The uniaxial response of a continuous fiber elastic-perfectly plastic composite is modeled herein as a two-element composite cylinder. An axisymmetric analytical micromechanics solution is obtained for the rate-independent elastic-plastic response of the two-element composite cylinder subjected to tensile loading in the fiber direction for the case wherein the core fiber is assumed to be a transversely isotropic elastic-plastic material obeying the Tsai-Hill yield criterion, with yielding simulating fiber failure. The matrix is assumed to be an isotropic elastic-plastic material obeying the Tresca yield criterion. It is found that there are three different circumstances that depend on the fiber and matrix properties: fiber yield, followed by matrix yielding; complete matrix yield, followed by fiber yielding; and partial matrix yield, followed by fiber yielding, followed by complete matrix yield. The order in which these phenomena occur is shown to have a pronounced effect on the predicted uniaxial effective composite response.
NASA Astrophysics Data System (ADS)
Heap, Michael J.; Violay, Marie; Wadsworth, Fabian B.; Vasseur, Jérémie
2017-04-01
Explosive silicic volcanism is driven by gas overpressure in systems that are inefficient at outgassing. The zone at the margin of a volcanic conduit-thought to play an important role in the outgassing of magma and therefore pore pressure changes and explosivity-is the boundary through which heat is exchanged from the hot magma to the colder country rock. Using a simple heat transfer model, we first show that the isotherm for the glass transition temperature (whereat the glass within the groundmass transitions from a glass to an undercooled liquid) moves into the country rock when the magma within the conduit can stay hot, or into the conduit when the magma is quasi-stagnant and cools (on the centimetric scale over days to months). We then explore the influence of a migrating viscous boundary on compactive deformation micromechanisms in the conduit margin zone using high-pressure (effective pressure of 40 MPa), high-temperature (up to 800 °C) triaxial deformation experiments on porous andesite. Our experiments show that the micromechanism facilitating compaction in andesite is localised cataclastic pore collapse at all temperatures below the glass transition of the amorphous groundmass glass Tg (i.e., rock). In this regime, porosity is only reduced within the bands of crushed pores; the porosity outside the bands remains unchanged. Further, the strength of andesite is a positive function of temperature below the threshold Tg due to thermal expansion driven microcrack closure. The micromechanism driving compaction above Tg (i.e., magma) is the distributed viscous flow of the melt phase. In this regime, porosity loss is distributed and is accommodated by the widespread flattening and closure of pores. We find that viscous flow is much more efficient at reducing porosity than cataclastic pore collapse, and that it requires stresses much lower than those required to form bands of crushed pores. Our study therefore highlights that temperature excursions can result in a change in deformation micromechanism that drastically alters the mechanical and hydraulic properties of the material within the conduit margin zone, with possible implications for pore pressure augmentation and explosive behaviour.
Constitutive modeling of fiber-reinforced cement composites
NASA Astrophysics Data System (ADS)
Boulfiza, Mohamed
The role of fibers in the enhancement of the inherently low tensile stress and strain capacities of fiber reinforced cementitious composites (FRC) has been addressed through both the phenomenological, using concepts of continuum damage mechanics, and micro-mechanical approaches leading to the development of a closing pressure that could be used in a cohesive crack analysis. The observed enhancements in the matrix behavior is assumed to be related to the ability of the material to transfer stress across cracks. In the micromechanics approach, this is modeled by the introduction of a nonlinear closing pressure at the crack lips. Due to the different nature of cracking in the pre-peak and post peak regimes, two different micro-mechanical models of the cohesive pressure have been proposed, one for the strain hardening stage and another for the strain softening regime. This cohesive pressure is subsequently incorporated into a finite element code so that a nonlinear fracture analysis can be carried out. On top of the fact that a direct fracture analysis has been performed to predict the response of some FRC structural elements, a numerical procedure for the homogenization of FRC materials has been proposed. In this latter approach, a link is established between the cracking taking place at the meso-scale and its mechanical characteristics as represented by the Young's modulus. A parametric study has been carried out to investigate the effect of crack patterning and fiber volume fractions on the overall Young's modulus and the thermodynamic force associated with the tensorial damage variable. After showing the usefulness and power of phenomenological continuum damage mechanics (PCDM) in the prediction of ERC materials' response to a stimuli (loading), a combined PCDM-NLFMsp1 approach is proposed to model (predict, forecast) the complete response of the composite up to failure. Based on experimental observations, this approach assumes that damage mechanics which predicts a diffused damage is more appropriate in the pre-peak regime whereas, NLFM is more suitable in the post-peak stage where the opening and propagation of a major crack will control the response of the material and not a deformation in a continuum sense as opposed to the pre-cracking zone. Tensile and compressive tests have been carried out for the sole purpose of calibrating the constitutive models proposed and/or developed in this thesis for FRC materials. The suitability of the models in predicting the response of different structural members has been performed by comparing the models' forecasts with experimental results carried out by the author, as well as experimental results from the literature. The different models proposed in this thesis have the possibility to account for the presence of fibers in the matrix, and give fairly good results for both high fiber volume fractions (vsb{f}≥2%) and low fiber volume fractions (vsb{f}<2%). Use of interface elements in a finite element code has been shown to be a powerful tool in analyzing the behavior of concrete substrate-FRC repair materials by the introduction of a zero thickness layer of interface elements to account for the interface properties which usually control the effectiveness of the repair material. ftnsp1NLFM: Non Linear Fracture Mechanics.
Fracture Micromechanics of Intermetallic and Ceramic Matrix Continuous Fiber Composites
1991-05-01
mechanical properties of titanium matrix composites, but much less information has been published. Only data in the published literature is referenced in...1984, pp. 1931-1940. 18. C.J. Yang, S.M. Jeng and J.-M. Yang " Interfacial properties measurements for SiC fiber-reinforced titanium alloy composites...Analyses of these parameters allowed a determination of interfacial shear strength. Fracture mechanics was used to correlate the micromechanical
Optical anisotropy in micromechanically rolled carbon nanotube forest
NASA Astrophysics Data System (ADS)
Razib, Mohd Asyraf bin Mohd; Rana, Masud; Saleh, Tanveer; Fan, Harrison; Koch, Andrew; Nojeh, Alireza; Takahata, Kenichi; Muthalif, Asan Gani Bin Abdul
2017-09-01
The bulk appearance of arrays of vertically aligned carbon nanotubes (VACNT arrays or CNT forests) is dark as they absorb most of the incident light. In this paper, two postprocessing techniques have been described where the CNT forest can be patterned by selective bending of the tips of the nanotubes using a rigid cylindrical tool. A tungsten tool was used to bend the vertical structure of CNTs with predefined parameters in two different ways as stated above: bending using the bottom surface of the tool (micromechanical bending (M2B)) and rolling using the side of the tool (micromechanical rolling (M2R)). The processed zone was investigated using a Field Emission Scanning Electron Microscope (FESEM) and optical setup to reveal the surface morphology and optical characteristics of the patterned CNTs on the substrate. Interestingly, the polarized optical reflection from the micromechanical rolled (M2R) sample was found to be significantly influenced by the rotation of the sample. It was observed that, if the polarization of the light is parallel to the alignment of the CNTs, the reflectance is at least 2 x higher than for the perpendicular direction. Furthermore, the reflectance varied almost linearly with good repeatability ( 10%) as the processed CNT forest sample was rotated from 0° to 90°. [Figure not available: see fulltext.
Micromechanics of soil responses in cyclic simple shear tests
NASA Astrophysics Data System (ADS)
Cui, Liang; Bhattacharya, Subhamoy; Nikitas, George
2017-06-01
Offshore wind turbine (OWT) foundations are subjected to a combination of cyclic and dynamic loading arising from wind, wave, rotor and blade shadowing. Under cyclic loading, most soils change their characteristics including stiffness, which may cause the system natural frequency to approach the loading frequency and lead to unplanned resonance and system damage or even collapse. To investigate such changes and the underlying micromechanics, a series of cyclic simple shear tests were performed on the RedHill 110 sand with different shear strain amplitudes, vertical stresses and initial relative densities of soil. The test results showed that: (a) Vertical accumulated strain is proportional to the shear strain amplitude but inversely proportional to relative density of soil; (b) Shear modulus increases rapidly in the initial loading cycles and then the rate of increase diminishes and the shear modulus remains below an asymptote; (c) Shear modulus increases with increasing vertical stress and relative density, but decreasing with increasing strain amplitude. Coupled DEM simulations were performed using PFC2D to analyse the micromechanics underlying the cyclic behaviour of soils. Micromechanical parameters (e.g. fabric tensor, coordination number) were examined to explore the reasons for the various cyclic responses to different shear strain amplitudes or vertical stresses. Both coordination number and magnitude of fabric anisotropy contribute to the increasing shear modulus.
Modeling and Characterization of a Graphite Nanoplatelet/Epoxy Composite
NASA Technical Reports Server (NTRS)
Odegard, Gregory M.; Chasiotis, I.; Chen, Q.; Gates, T. S.
2004-01-01
A micromechanical modeling procedure is developed to predict the viscoelastic properties of a graphite nanoplatelet/epoxy composite as a function of volume fraction and nanoplatelet diameter. The predicted storage and loss moduli from the model are compared to measured values from the same material using Dynamical Mechanical Analysis, nanoindentation, and tensile tests. In most cases, the model and experiments indicate that for increasing volume fractions of nanoplatelets, both the storage and loss moduli increase. Also, in most cases, the model and experiments indicate that as the nanoplatelet diameter is increased, the storage and loss moduli decrease and increase, respectively.
NASA Astrophysics Data System (ADS)
Paradis, Alexandre
The principal objective of the present thesis is to elaborate a computational model describing the mechanical properties of NiTi under different loading conditions. Secondary objectives are to build an experimental database of NiTi under stress, strain and temperature in order to validate the versatility of the new model proposed herewith. The simulation model used presently at Laboratoire sur les Alliage a Memoire et les Systemes Intelligents (LAMSI) of ETS is showing good behaviour in quasi-static loading. However, dynamic loading with the same model do not allows one to include degradation. The goal of the present thesis is to build a model capable of describing such degradation in a relatively accurate manner. Some experimental testing and results will be presented. In particular, new results on the behaviour of NiTi being paused during cycling are presented in chapter 2. A model is developed in chapter 3 based on Likhachev's micromechanical model. Good agreement is found with experimental data. Finally, an adaptation of the model is presented in chapter 4, allowing it to be eventually implemented into a finite-element commercial software.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calcaterra, J.R.; Johnson, W.S.; Neu, R.W.
1997-12-31
Several methodologies have been developed to predict the lives of titanium matrix composites (TMCs) subjected to thermomechanical fatigue (TMF). This paper reviews and compares five life prediction models developed at NASA-LaRC. Wright Laboratories, based on a dingle parameter, the fiber stress in the load-carrying, or 0{degree}, direction. The two other models, both developed at Wright Labs. are multi-parameter models. These can account for long-term damage, which is beyond the scope of the single-parameter models, but this benefit is offset by the additional complexity of the methodologies. Each of the methodologies was used to model data generated at NASA-LeRC. Wright Labs.more » and Georgia Tech for the SCS-6/Timetal 21-S material system. VISCOPLY, a micromechanical stress analysis code, was used to determine the constituent stress state for each test and was used for each model to maintain consistency. The predictive capabilities of the models are compared, and the ability of each model to accurately predict the responses of tests dominated by differing damage mechanisms is addressed.« less
Yielding in colloidal gels due to nonlinear microstructure bending mechanics.
Furst, Eric M; Pantina, John P
2007-05-01
We report measurements of the nonlinear micromechanics of strongly flocculated model colloidal aggregates. Linear aggregates directly assembled using laser tweezers are subjected to bending loads until a critical bending moment is reached, which is identified by a stictionlike rearrangement of a single colloidal bond. This nanoscale phenomenon provides a quantitative basis for understanding the macroscopic shear yield stresses of strongly flocculated polystyrene latex gels, based on the maximum bending moment exceeding the critical moment of the constituent colloidal bonds of the gel microstructure. These mechanics are consistent with the local bending moment overcoming the static friction force between neighboring adhesive particles. This results in a direct relationship between the rheology of these gels and the boundary friction between Brownian particles.
Thermo-mechanical response predictions for metal matrix composite laminates
NASA Technical Reports Server (NTRS)
Aboudi, J.; Hidde, J. S.; Herakovich, C. T.
1991-01-01
An analytical micromechanical model is employed for prediction of the stress-strain response of metal matrix composite laminates subjected to thermomechanical loading. The predicted behavior of laminates is based upon knowledge of the thermomechanical response of the transversely isotropic, elastic fibers and the elastic-viscoplastic, work-hardening matrix. The method is applied to study the behavior of silicon carbide/titanium metal matrix composite laminates. The response of laminates is compared with that of unidirectional lamina. The results demonstrate the effect of cooling from a stress-free temperature and the mismatch of thermal and mechanical properties of the constituent phases on the laminate's subsequent mechanical response. Typical results are presented for a variety of laminates subjected to monotonic tension, monotonic shear and cyclic tensile/compressive loadings.
Micromechanics of Sea Urchin spines.
Tsafnat, Naomi; Fitz Gerald, John D; Le, Hai N; Stachurski, Zbigniew H
2012-01-01
The endoskeletal structure of the Sea Urchin, Centrostephanus rodgersii, has numerous long spines whose known functions include locomotion, sensing, and protection against predators. These spines have a remarkable internal microstructure and are made of single-crystal calcite. A finite-element model of the spine's unique porous structure, based on micro-computed tomography (microCT) and incorporating anisotropic material properties, was developed to study its response to mechanical loading. Simulations show that high stress concentrations occur at certain points in the spine's architecture; brittle cracking would likely initiate in these regions. These analyses demonstrate that the organization of single-crystal calcite in the unique, intricate morphology of the sea urchin spine results in a strong, stiff and lightweight structure that enhances its strength despite the brittleness of its constituent material.
Progressive Failure And Life Prediction of Ceramic and Textile Composites
NASA Technical Reports Server (NTRS)
Xue, David Y.; Shi, Yucheng; Katikala, Madhu; Johnston, William M., Jr.; Card, Michael F.
1998-01-01
An engineering approach to predict the fatigue life and progressive failure of multilayered composite and textile laminates is presented. Analytical models which account for matrix cracking, statistical fiber failures and nonlinear stress-strain behavior have been developed for both composites and textiles. The analysis method is based on a combined micromechanics, fracture mechanics and failure statistics analysis. Experimentally derived empirical coefficients are used to account for the interface of fiber and matrix, fiber strength, and fiber-matrix stiffness reductions. Similar approaches were applied to textiles using Repeating Unit Cells. In composite fatigue analysis, Walker's equation is applied for matrix fatigue cracking and Heywood's formulation is used for fiber strength fatigue degradation. The analysis has been compared with experiment with good agreement. Comparisons were made with Graphite-Epoxy, C/SiC and Nicalon/CAS composite materials. For textile materials, comparisons were made with triaxial braided and plain weave materials under biaxial or uniaxial tension. Fatigue predictions were compared with test data obtained from plain weave C/SiC materials tested at AS&M. Computer codes were developed to perform the analysis. Composite Progressive Failure Analysis for Laminates is contained in the code CPFail. Micromechanics Analysis for Textile Composites is contained in the code MicroTex. Both codes were adapted to run as subroutines for the finite element code ABAQUS and CPFail-ABAQUS and MicroTex-ABAQUS. Graphic user interface (GUI) was developed to connect CPFail and MicroTex with ABAQUS.
Inelastic response of metal matrix composites under biaxial loading
NASA Technical Reports Server (NTRS)
Mirzadeh, F.; Pindera, Marek-Jerzy; Herakovich, Carl T.
1990-01-01
Elements of the analytical/experimental program to characterize the response of silicon carbide titanium (SCS-6/Ti-15-3) composite tubes under biaxial loading are outlined. The analytical program comprises prediction of initial yielding and subsequent inelastic response of unidirectional and angle-ply silicon carbide titanium tubes using a combined micromechanics approach and laminate analysis. The micromechanics approach is based on the method of cells model and has the capability of generating the effective thermomechanical response of metal matrix composites in the linear and inelastic region in the presence of temperature and time-dependent properties of the individual constituents and imperfect bonding on the initial yield surfaces and inelastic response of (0) and (+ or - 45)sub s SCS-6/Ti-15-3 laminates loaded by different combinations of stresses. The generated analytical predictions will be compared with the experimental results. The experimental program comprises generation of initial yield surfaces, subsequent stress-strain curves and determination of failure loads of the SCS-6/Ti-15-3 tubes under selected loading conditions. The results of the analytical investigation are employed to define the actual loading paths for the experimental program. A brief overview of the experimental methodology is given. This includes the test capabilities of the Composite Mechanics Laboratory at the University of Virginia, the SCS-6/Ti-15-3 composite tubes secured from McDonnell Douglas Corporation, a text fixture specifically developed for combined axial-torsional loading, and the MTS combined axial-torsion loader that will be employed in the actual testing.
Towards a universal master curve in magnetorheology
NASA Astrophysics Data System (ADS)
Ruiz-López, José Antonio; Hidalgo-Alvarez, Roque; de Vicente, Juan
2017-05-01
We demonstrate that inverse ferrofluids behave as model magnetorheological fluids. A universal master curve is proposed, using a reduced Mason number, under the frame of a structural viscosity model where the magnetic field strength dependence is solely contained in the Mason number and the particle concentration is solely contained in the critical Mason number (i.e. the yield stress). A linear dependence of the critical Mason number with the particle concentration is observed that is in good agreement with a mean (average) magnetization approximation, particle level dynamic simulations and micromechanical models available in the literature.
Life prediction and constitutive models for engine hot section anisotropic materials
NASA Technical Reports Server (NTRS)
Swanson, G. A.; Linask, I.; Nissley, D. M.; Norris, P. P.; Meyer, T. G.; Walker, K. P.
1987-01-01
The results are presented of a program designed to develop life prediction and constitutive models for two coated single crystal alloys used in gas turbine airfoils. The two alloys are PWA 1480 and Alloy 185. The two oxidation resistant coatings are PWA 273, an aluminide coating, and PWA 286, an overlay NiCoCrAlY coating. To obtain constitutive and fatigue data, tests were conducted on uncoated and coated specimens loaded in the CH76 100 CH110 , CH76 110 CH110 , CH76 111 CH110 and CH76 123 CH110 crystallographic directions. Two constitutive models are being developed and evaluated for the single crystal materials: a micromechanic model based on crystallographic slip systems, and a macroscopic model which employs anisotropic tensors to model inelastic deformation anisotropy. Based on tests conducted on the overlay coating material, constitutive models for coatings also appear feasible and two initial models were selected. A life prediction approach was proposed for coated single crystal materials, including crack initiation either in the coating or in the substrate. The coating initiated failures dominated in the tests at load levels typical of gas turbine operation. Coating life was related to coating stress/strain history which was determined from specimen data using the constitutive models.
Multi-scale modelling of elastic moduli of trabecular bone
Hamed, Elham; Jasiuk, Iwona; Yoo, Andrew; Lee, YikHan; Liszka, Tadeusz
2012-01-01
We model trabecular bone as a nanocomposite material with hierarchical structure and predict its elastic properties at different structural scales. The analysis involves a bottom-up multi-scale approach, starting with nanoscale (mineralized collagen fibril) and moving up the scales to sub-microscale (single lamella), microscale (single trabecula) and mesoscale (trabecular bone) levels. Continuum micromechanics methods, composite materials laminate theory and finite-element methods are used in the analysis. Good agreement is found between theoretical and experimental results. PMID:22279160
Local-global analysis of crack growth in continuously reinfoced ceramic matrix composites
NASA Technical Reports Server (NTRS)
Ballarini, Roberto; Ahmed, Shamim
1989-01-01
This paper describes the development of a mathematical model for predicting the strength and micromechanical failure characteristics of continuously reinforced ceramic matrix composites. The local-global analysis models the vicinity of a propagating crack tip as a local heterogeneous region (LHR) consisting of spring-like representation of the matrix, fibers and interfaces. Parametric studies are conducted to investigate the effects of LHR size, component properties, and interface conditions on the strength and sequence of the failure processes in the unidirectional composite system.
Hydrogen sensors based on catalytic metals
NASA Astrophysics Data System (ADS)
Beklemyshev, V. I.; Berezine, V.; Bykov, Victor A.; Kiselev, L.; Makhonin, I.; Pevgov, V.; Pustovoy, V.; Semynov, A.; Sencov, Y.; Shkuropat, I.; Shokin, A.
1999-11-01
On the base of microelectronical and micromechanical technology were designed and developed converters of hydrogen concentration to electrical signals. The devices of controlling concentration of hydrogen in the air were developed. These devices were applied for ensuring fire and explosion security of complex technological teste of missile oxygen-hydrogen engine, developed for cryogenic accelerations block. The sensor block of such device was installed directly on the armor-plate, to which was attached tested engine.
Characterization and modeling of electrostatically actuated polysilicon micromechanical devices
NASA Astrophysics Data System (ADS)
Chan, Edward Keat Leem
Sensors, actuators, transducers, microsystems and MEMS (MicroElertroMechanical Systems) are some of the terms describing technologies that interface information processing systems with the physical world. Electrostatically actuated micromechanical devices are important building blocks in many of these technologies. Arrays of these devices are used in video projection displays, fluid pumping systems, optical communications systems, tunable lasers and microwave circuits. Well-calibrated simulation tools are essential for propelling ideas from the drawing board into production. This work characterizes a fabrication process---the widely-used polysilicon MUMPs process---to facilitate the design of electrostatically actuated micromechanical devices. The operating principles of a representative device---a capacitive microwave switch---are characterized using a wide range of electrical and optical measurements of test structures along with detailed electromechanical simulations. Consistency in the extraction of material properties from measurements of both pull-in voltage and buckling amplitude is demonstrated. Gold is identified as an area-dependent source of nonuniformity in polysilicon thicknesses and stress. Effects of stress gradients, substrate curvature, and film coverage are examined quantitatively. Using well-characterized beams as in-situ surface probes, capacitance-voltage and surface profile measurements reveal that compressible surface residue modifies the effective electrical gap when the movable electrode contacts an underlying silicon nitride layer. A compressible contact surface model used in simulations improves the fit to measurements. In addition, the electric field across the nitride causes charge to build up in the nitride, increasing the measured capacitance over time. The rate of charging corresponds to charge injection through direct tunneling. A novel actuator that can travel stably beyond one-third of the initial gap (a trademark limitation of conventional actuators) is demonstrated. A "folded capacitor" design, requiring only minimal modifications to the layout of conventional devices, reduces the parasitic capacitances and modes of deformation that limit performance. This device, useful for optical applications, can travel almost twice the conventional range before succumbing to a tilting instability.
Multi-Scale Computational Modeling of Two-Phased Metal Using GMC Method
NASA Technical Reports Server (NTRS)
Moghaddam, Masoud Ghorbani; Achuthan, A.; Bednacyk, B. A.; Arnold, S. M.; Pineda, E. J.
2014-01-01
A multi-scale computational model for determining plastic behavior in two-phased CMSX-4 Ni-based superalloys is developed on a finite element analysis (FEA) framework employing crystal plasticity constitutive model that can capture the microstructural scale stress field. The generalized method of cells (GMC) micromechanics model is used for homogenizing the local field quantities. At first, GMC as stand-alone is validated by analyzing a repeating unit cell (RUC) as a two-phased sample with 72.9% volume fraction of gamma'-precipitate in the gamma-matrix phase and comparing the results with those predicted by finite element analysis (FEA) models incorporating the same crystal plasticity constitutive model. The global stress-strain behavior and the local field quantity distributions predicted by GMC demonstrated good agreement with FEA. High computational saving, at the expense of some accuracy in the components of local tensor field quantities, was obtained with GMC. Finally, the capability of the developed multi-scale model linking FEA and GMC to solve real life sized structures is demonstrated by analyzing an engine disc component and determining the microstructural scale details of the field quantities.
NASA Technical Reports Server (NTRS)
Lee, Jong-Won; Harris, Charles E.
1990-01-01
A mathematical model based on the Euler-Bermoulli beam theory is proposed for predicting the effective Young's moduli of piecewise isotropic composite laminates with local ply curvatures in the main load-carrying layers. Strains in corrugated layers, in-phase layers, and out-of-phase layers are predicted for various geometries and material configurations by assuming matrix layers as elastic foundations of different spring constants. The effective Young's moduli measured from corrugated aluminum specimens and aluminum/epoxy specimens with in-phase and out-of-phase wavy patterns coincide very well with the model predictions. Moire fringe analysis of an in-phase specimen and an out-of-phase specimen are also presented, confirming the main assumption of the model related to the elastic constraint due to the matrix layers. The present model is also compared with the experimental results and other models, including the microbuckling models, published in the literature. The results of the present study show that even a very small-scale local ply curvature produces a noticeable effect on the mechanical constitutive behavior of a laminated composite.
Micromechanical thermogravimetry
NASA Astrophysics Data System (ADS)
Berger, R.; Lang, H. P.; Gerber, Ch.; Gimzewski, J. K.; Fabian, J. H.; Scandella, L.; Meyer, E.; Güntherodt, H.-J.
1998-09-01
We demonstrate a new method for thermal analysis of nanogram quantities of material using a micromechanical thermogravimetric technique. The cantilever-type device uses an integrated piezoresistor to sense bending and simultaneously to ramp the temperature and control temperature cycles. It has a mass resolution in the picogram range. A quantitative analysis of the dehydration of copper-sulfate-pentahydrate (CuSO 4·5H 2O) is presented. The technique outperforms current thermogravimetric approaches by five orders of magnitude.
Holzrichter, J.F.; Siekhaus, W.J.
1997-04-15
A scanning probe microscope, such as an atomic force microscope (AFM) or a scanning tunneling microscope (STM), is operated in a stationary mode on a site where an activity of interest occurs to measure and identify characteristic time-varying micromotions caused by biological, chemical, mechanical, electrical, optical, or physical processes. The tip and cantilever assembly of an AFM is used as a micromechanical detector of characteristic micromotions transmitted either directly by a site of interest or indirectly through the surrounding medium. Alternatively, the exponential dependence of the tunneling current on the size of the gap in the STM is used to detect micromechanical movement. The stationary mode of operation can be used to observe dynamic biological processes in real time and in a natural environment, such as polymerase processing of DNA for determining the sequence of a DNA molecule. 6 figs.
The microstructure and micromechanics of the tendon-bone insertion
NASA Astrophysics Data System (ADS)
Rossetti, L.; Kuntz, L. A.; Kunold, E.; Schock, J.; Müller, K. W.; Grabmayr, H.; Stolberg-Stolberg, J.; Pfeiffer, F.; Sieber, S. A.; Burgkart, R.; Bausch, A. R.
2017-06-01
The exceptional mechanical properties of the load-bearing connection of tendon to bone rely on an intricate interplay of its biomolecular composition, microstructure and micromechanics. Here we identify that the Achilles tendon-bone insertion is characterized by an interface region of ~500 μm with a distinct fibre organization and biomolecular composition. Within this region, we identify a heterogeneous mechanical response by micromechanical testing coupled with multiscale confocal microscopy. This leads to localized strains that can be larger than the remotely applied strain. The subset of fibres that sustain the majority of loading in the interface area changes with the angle of force application. Proteomic analysis detects enrichment of 22 proteins in the interfacial region that are predominantly involved in cartilage and skeletal development as well as proteoglycan metabolism. The presented mechanisms mark a guideline for further biomimetic strategies to rationally design hard-soft interfaces.
Holzrichter, John F.; Siekhaus, Wigbert J.
1997-01-01
A scanning probe microscope, such as an atomic force microscope (AFM) or a scanning tunneling microscope (STM), is operated in a stationary mode on a site where an activity of interest occurs to measure and identify characteristic time-varying micromotions caused by biological, chemical, mechanical, electrical, optical, or physical processes. The tip and cantilever assembly of an AFM is used as a micromechanical detector of characteristic micromotions transmitted either directly by a site of interest or indirectly through the surrounding medium. Alternatively, the exponential dependence of the tunneling current on the size of the gap in the STM is used to detect micromechanical movement. The stationary mode of operation can be used to observe dynamic biological processes in real time and in a natural environment, such as polymerase processing of DNA for determining the sequence of a DNA molecule.
Micromechanical Waveguide Mounts for Hot Electron Bolometer Terahertz Mixers
NASA Astrophysics Data System (ADS)
Brandt, Michael; Jacobs, Karl; Honingh, C. E.; Stodolka, Jörg
The superior beam matching of waveguide horn antennas to a telescope suggests using waveguide mounts even at THz-frequencies. In contrast to the more common quasi-optical (substrate lens) designs, the exceedingly small dimensions of the waveguide require novel micro-mechanical fabrication technologies. We will present a novel fabrication scheme for 1.9 THz waveguide mixers for SOFIA. Hot Electron Bolometer devices (HEB) are fabricated on 2 μm thick Si3N4 membrane strips. The strips are robust enough to be mounted on a separately fabricated Si support frame using an adapted flip-chip technology. Mounted onto the frame, the devices can be easily positioned and glued into a copper waveguide mount. Further developments regarding micro-mechanical processes to fabricate this copper waveguide mount and the receiving horn antenna will be presented, as well as the KOSMA Micro Assembly Station and its capabilities to handle mixer substrates.
Constantino, Paul J; Borrero-Lopez, Oscar; Pajares, Antonia; Lawn, Brian R
2016-01-01
The deformation and wear events that underlie microwear and macrowear signals commonly used for dietary reconstruction in fossil animals can be replicated and quantified by controlled laboratory tests on extracted tooth specimens in conjunction with fundamental micromechanics analysis. Key variables governing wear relations include angularity, stiffness (modulus), and size of the contacting particle, along with material properties of enamel. Both axial and sliding contacts can result in the removal of tooth enamel. The degree of removal, characterized by a "wear coefficient," varies strongly with particle content at the occlusal interface. Conditions leading to a transition from mild to severe wear are discussed. Measurements of wear traces can provide information about contact force and particle shape. The potential utility of the micromechanics methodology as an adjunct for investigating tooth durability and reconstructing diet is explored. © 2015 WILEY Periodicals, Inc.
Micromechanical Resonator Driven by Radiation Pressure Force.
Boales, Joseph A; Mateen, Farrukh; Mohanty, Pritiraj
2017-11-22
Radiation pressure exerted by light on any surface is the pressure generated by the momentum of impinging photons. The associated force - fundamentally, a quantum mechanical aspect of light - is usually too small to be useful, except in large-scale problems in astronomy and astrodynamics. In atomic and molecular optics, radiation pressure can be used to trap or cool atoms and ions. Use of radiation pressure on larger objects such as micromechanical resonators has been so far limited to its coupling to an acoustic mode, sideband cooling, or levitation of microscopic objects. In this Letter, we demonstrate direct actuation of a radio-frequency micromechanical plate-type resonator by the radiation pressure force generated by a standard laser diode at room temperature. Using two independent methods, the magnitude of the resonator's response to forcing by radiation pressure is found to be proportional to the intensity of the incident light.
Reducing support loss in micromechanical ring resonators using phononic band-gap structures
NASA Astrophysics Data System (ADS)
Hsu, Feng-Chia; Hsu, Jin-Chen; Huang, Tsun-Che; Wang, Chin-Hung; Chang, Pin
2011-09-01
In micromechanical resonators, energy loss via supports into the substrates may lead to a low quality factor. To eliminate the support loss, in this paper a phononic band-gap structure is employed. We demonstrate a design of phononic-crystal (PC) strips used to support extensional wine-glass mode ring resonators to increase the quality factor. The PC strips are introduced to stop elastic-wave propagation by the band-gap and deaf-band effects. Analyses of resonant characteristics of the ring resonators and the dispersion relations, eigenmodes, and transmission properties of the PC strips are presented. With the proposed resonator architecture, the finite-element simulations show that the leaky power is effectively reduced and the stored energy inside the resonators is enhanced simultaneously as the operating frequencies of the resonators are within the band gap or deaf bands. Realization of a high quality factor micromechanical ring resonator with minimized support loss is expected.
Mechanical and Electrical Characterization of Entangled Networks of Carbon Nanofibers
Mousavi, Arash K.; Atwater, Mark A.; Mousavi, Behnam K.; Jalalpour, Mohammad; Taha, Mahmoud Reda; Leseman, Zayd C.
2014-01-01
Entangled networks of carbon nanofibers are characterized both mechanically and electrically. Results for both tensile and compressive loadings of the entangled networks are presented for various densities. Mechanically, the nanofiber ensembles follow the micromechanical model originally proposed by van Wyk nearly 70 years ago. Interpretations are given on the mechanisms occurring during loading and unloading of the carbon nanofiber components. PMID:28788709
Fundamental analysis of the failure of polymer-based fiber reinforced composites
NASA Technical Reports Server (NTRS)
Kanninen, M. F.; Rybicki, E. F.; Griffith, W. I.; Broek, D.
1975-01-01
A mathematical model predicting the strength of unidirectional fiber reinforced composites containing known flaws and with linear elastic-brittle material behavior was developed. The approach was to imbed a local heterogeneous region surrounding the crack tip into an anisotropic elastic continuum. This (1) permits an explicit analysis of the micromechanical processes involved in the fracture, and (2) remains simple enough to be useful in practical computations. Computations for arbitrary flaw size and orientation under arbitrary applied loads were performed. The mechanical properties were those of graphite epoxy. With the rupture properties arbitrarily varied to test the capabilities of the model to reflect real fracture modes, it was shown that fiber breakage, matrix crazing, crack bridging, matrix-fiber debonding, and axial splitting can all occur during a period of (gradually) increasing load prior to catastrophic failure. The calculations also reveal the sequential nature of the stable crack growth process proceding fracture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lebensohn, Ricardo A; Montagnat, Maurine; Mansuy, Philippe
2008-01-01
A full-field formulation based on Fast Fourier Transforms (FFT) has been adapted and used to predict the micromechanical fields that develop in columnar Ih ice polycrystals deforming in compression by dislocation creep. The predicted intragranular mechanical fields are in qualitative good agreement with experimental observations, in particular those involving the formation of shear and kink bands. These localization bands are associated with the large internal stresses that develop during creep in such anisotropic material, and their location, intensity, morphology and extension are found to depend strongly on the crystallographic orientation of the grains and on their interaction with neighbor crystals.more » The predictions of the model are also discussed in relation with the deformation of columnar sea and lake ice, and with the mechanical behavior of granular ice of glaciers and polar ice sheets, as well.« less
NASA Tech Briefs, January 2001. Volume 25, No. 1
NASA Technical Reports Server (NTRS)
2001-01-01
The topics include: 1) A "Model" of Interactive Engineering; 2) Feature Section: Communications Technology; 3) lnReview; 4) Application Briefs; 5) Submillimeter-Wave Image Sensor; 6) Ultrasonic/Sonic Drill/Corers With Integrated Sensors; 7) Normally Closed, Piezoelectrically Actuated Microvalve; 8) Magnetostrictively Actuated Valves for Cryosurgical Probes; 9) Remote Sensing of Electric Fields in Clouds; 10) Wireless-Communication Headset Subsystem To Enhance Signaling; 11) Power Amplifier With 9 to 13 dB of Gain From 65 to 146 GHz; 12) Humidity Interlock for Protecting a Cooled Laser Crystal; 13) A Lightweight Ambulatory Physiological Monitoring System; 14) Improvements in a Lightning-Measuring Instrument; 15) Broad-Band, Noninvasive Radio-Frequency Current Probe; 16) Web-Based Technology Distributes Lean Models; 17) Software Guides Aeroelastic-Systems Design; and 18) Postprocessing Software for Micromechanics Analysis Code. A Photonics West 2001 Preview Tech Brief supplement to this January 2001 issue is also included.
Orue, Ander; Eceiza, Arantxa; Peña-Rodriguez, Cristina; Arbelaiz, Aitor
2016-01-01
The main aim of this work was to study the effect of sisal fiber surface treatments on water uptake behavior of composites based on untreated and treated fibers. For this purpose, sisal fibers were treated with different chemical treatments. All surface treatments delayed the water absorption of fibers only for a short time of period. No significant differences were observed in water uptake profiles of composites based on fibers with different surface treatments. After water uptake period, tensile strength and Young modulus values of sisal fiber/poly(lactic acid) (PLA) composites were decreased. On the other hand, composites based on NaOH + silane treated fibers showed the lowest diffusion coefficient values, suggesting that this treatment seemed to be the most effective treatment to reduce water diffusion rate into the composites. Finally, Young modulus values of composites, before water uptake period, were predicted using different micromechanical models and were compared with experimental data. PMID:28773524
Micromechanics of Spray-On Foam Insulation
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Aboudi, Jacob; Arnold, Steven M.; Sullivan, Roy M.
2007-01-01
Understanding the thermo-mechanical response of the Space Shuttle External Tank spray-on foam insulation (SOFI) material is critical, to NASA's Return to Flight effort. This closed-cell rigid polymeric foam is used to insulate the metallic Space Shuttle External Tank, which is at cryogenic temperatures immediately prior to and during lift off. The shedding of the SOFI during ascent led to the loss of the Columbia, and eliminating/minimizing foam lass from the tank has become a priority for NASA as it seeks to resume scheduled space shuttle missions. Determining the nature of the SOFI material behavior in response to both thermal and mechanical loading plays an important role as any structural modeling of the shedding phenomenon k predicated on knowledge of the constitutive behavior of the foam. In this paper, the SOFI material has been analyzed using the High-Fidelity Generalized Method of Cells (HFGMC) micromechanics model, which has recently been extended to admit a triply-periodic 3-D repeating unit cell (RUC). Additional theoretical extensions that mere made in order to enable modeling of the closed-cell-foam material include the ability to represent internal boundaries within the RUC (to simulated internal pores) and the ability to impose an internal pressure within the simulated pores. This latter extension is crucial as two sources contribute to significant internal pressure changes within the SOFI pores. First, gas trapped in the pores during the spray process will expand or contract due to temperature changes. Second, the pore pressure will increase due to outgassing of water and other species present in the foam skeleton polymer material. With HFGMC's new pore pressure modeling capabilities, a nonlinear pressure change within the simulated pore can be imposed that accounts for both of these sources, in addition to stmdar&-thermal and mechanical loading; The triply-periodic HFGMC micromechanics model described above was implemented within NASA GRC's MAC/GMC software package, giving the model access to a range of nonlinear constitutive models for the polymeric foam skeleton material. A repeating unit cell architecture was constructed that, while relatively simple, still accounts for the geometric anisotropy of the porous foam microstructure and its thin walls and thicker edges. With the lack of reliable polymeric foam skeleton materia1 properties, many simulations were executed aimed at backing out these material properties. Then, using these properties, predictions of the thermo-mechanical behavior of the foam, including calculated internal applied pressure profiles, were performed and compared with appropriate experimental data.
Predicting Properties of Unidirectional-Nanofiber Composites
NASA Technical Reports Server (NTRS)
Chamis, Christos C.; Handler, Louis M.; Manderscheid, Jane
2008-01-01
A theory for predicting mechanical, thermal, electrical, and other properties of unidirectional-nanofiber/matrix composite materials is based on the prior theory of micromechanics of composite materials. In the development of the present theory, the prior theory of micromechanics was extended, through progressive substructuring, to the level of detail of a nanoscale slice of a nanofiber. All the governing equations were then formulated at this level. The substructuring and the equations have been programmed in the ICAN/JAVA computer code, which was reported in "ICAN/JAVA: Integrated Composite Analyzer Recoded in Java" (LEW-17247), NASA Tech Briefs, Vol. 26, No. 12 (December 2002), page 36. In a demonstration, the theory as embodied in the computer code was applied to a graphite-nanofiber/epoxy laminate and used to predict 25 properties. Most of the properties were found to be distributed along the through-the-thickness direction. Matrix-dependent properties were found to have bimodal through-the-thickness distributions with discontinuous changes from mode to mode.
On the behavior of isolated and embedded carbon nano-tubes in a polymeric matrix
NASA Astrophysics Data System (ADS)
Rahimian-Koloor, Seyed Mostafa; Moshrefzadeh-Sani, Hadi; Mehrdad Shokrieh, Mahmood; Majid Hashemianzadeh, Seyed
2018-02-01
In the classical micro-mechanical method, the moduli of the reinforcement and the matrix are used to predict the stiffness of composites. However, using the classical micro-mechanical method to predict the stiffness of CNT/epoxy nanocomposites leads to overestimated results. One of the main reasons for this overestimation is using the stiffness of the isolated CNT and ignoring the CNT nanoscale effect by the method. In the present study the non-equilibrium molecular dynamics simulation was used to consider the influence of CNT length on the stiffness of the nanocomposites through the isothermal-isobaric ensemble. The results indicated that, due to the nanoscale effects, the reinforcing efficiency of the embedded CNT is not constant and decreases with decreasing its length. Based on the results, a relationship was derived, which predicts the effective stiffness of an embedded CNT in terms of its length. It was shown that using this relationship leads to predict more accurate elastic modulus of nanocomposite, which was validated by some experimental counterparts.
Li, Longbiao
2016-01-01
In this paper, the fatigue life of fiber-reinforced ceramic-matrix composites (CMCs) with different fiber preforms, i.e., unidirectional, cross-ply, 2D (two dimensional), 2.5D and 3D CMCs at room and elevated temperatures in air and oxidative environments, has been predicted using the micromechanics approach. An effective coefficient of the fiber volume fraction along the loading direction (ECFL) was introduced to describe the fiber architecture of preforms. The statistical matrix multicracking model and fracture mechanics interface debonding criterion were used to determine the matrix crack spacing and interface debonded length. Under cyclic fatigue loading, the fiber broken fraction was determined by combining the interface wear model and fiber statistical failure model at room temperature, and interface/fiber oxidation model, interface wear model and fiber statistical failure model at elevated temperatures, based on the assumption that the fiber strength is subjected to two-parameter Weibull distribution and the load carried by broken and intact fibers satisfies the Global Load Sharing (GLS) criterion. When the broken fiber fraction approaches the critical value, the composites fatigue fracture. PMID:28773332
Silicone-based elastic composites able to generate energy on micromechanical impulse
NASA Astrophysics Data System (ADS)
Racles, Carmen; Ignat, Mircea; Bele, Adrian; Dascalu, Mihaela; Lipcinski, Daniel; Cazacu, Maria
2016-08-01
Elastic composites were prepared based on a polydimethylsiloxane-α,ω-diol (M w = 139 000 g mol-1), different α,ω-bis(trimethylsiloxy)poly(methylcyanopropyl-methylhexyl-methylhydro)siloxanes as the polar group component and TEOS as a cross-linking agent and silica generator. The resulting materials consisted of polar-nonpolar interconnected networks as matrices which had 7.4 or 9.5 wt% in situ generated silica and contained up to 2.74 wt% CN groups. The films formed were tested for electromechanical response to a micromechanical impulse. It was found that their performance was proportional to their electromechanical sensitivity (β = ɛ‧/Y, where ɛ‧ is the dielectric permittivity and Y is Young’s modulus); thus it can be adjusted by their composition, via tailoring the dielectric and mechanical properties. The generated voltage peak-to-peak measured was between 3.75 and 12.3 V mm-1. The best result for the tested materials (i.e. harvested energy of 460 nJ or energy density of 4.6 μJ cm-3, as a response to a micro-impulse of 0.017 kg m s-1) was obtained for a film having ɛ‧ = 3.6 and Y = 0.19 MPa.
Remote quantum entanglement between two micromechanical oscillators.
Riedinger, Ralf; Wallucks, Andreas; Marinković, Igor; Löschnauer, Clemens; Aspelmeyer, Markus; Hong, Sungkun; Gröblacher, Simon
2018-04-01
Entanglement, an essential feature of quantum theory that allows for inseparable quantum correlations to be shared between distant parties, is a crucial resource for quantum networks 1 . Of particular importance is the ability to distribute entanglement between remote objects that can also serve as quantum memories. This has been previously realized using systems such as warm 2,3 and cold atomic vapours 4,5 , individual atoms 6 and ions 7,8 , and defects in solid-state systems 9-11 . Practical communication applications require a combination of several advantageous features, such as a particular operating wavelength, high bandwidth and long memory lifetimes. Here we introduce a purely micromachined solid-state platform in the form of chip-based optomechanical resonators made of nanostructured silicon beams. We create and demonstrate entanglement between two micromechanical oscillators across two chips that are separated by 20 centimetres . The entangled quantum state is distributed by an optical field at a designed wavelength near 1,550 nanometres. Therefore, our system can be directly incorporated in a realistic fibre-optic quantum network operating in the conventional optical telecommunication band. Our results are an important step towards the development of large-area quantum networks based on silicon photonics.
NASA Astrophysics Data System (ADS)
Khoa Nguyen, Trieu; Lee, Dong-Weon; Lee, Bong-Kee
2017-06-01
In this study, a numerical investigation of microcantilever sensors for detecting the contractile behavior of cardiomyocytes (CMs) was performed. Recently, a novel surface-patterned perforated SU-8 microcantilever sensor has been developed for the preliminary screening of cardiac toxicity. From the contractile motion of the CMs cultured on the microcantilever surface, a macroscopic bending of the microcantilever was obtained, which is considered to reflect a physiological change. As a continuation of the previous research, a novel numerical method based on a surface traction model was proposed and verified to further understand the bending behavior of the microcantilevers. Effects of various factors, including surface traction magnitude, focal area of CMs, and stiffness of microcantilever, on the bending displacement were investigated. From static and transient analyses, the focal area was found to be the most crucial factor. In addition, the current result can provide a design guideline for various micromechanical devices based on the same principle.
A Micromechanics-Based Method for Multiscale Fatigue Prediction
NASA Astrophysics Data System (ADS)
Moore, John Allan
An estimated 80% of all structural failures are due to mechanical fatigue, often resulting in catastrophic, dangerous and costly failure events. However, an accurate model to predict fatigue remains an elusive goal. One of the major challenges is that fatigue is intrinsically a multiscale process, which is dependent on a structure's geometric design as well as its material's microscale morphology. The following work begins with a microscale study of fatigue nucleation around non- metallic inclusions. Based on this analysis, a novel multiscale method for fatigue predictions is developed. This method simulates macroscale geometries explicitly while concurrently calculating the simplified response of microscale inclusions. Thus, providing adequate detail on multiple scales for accurate fatigue life predictions. The methods herein provide insight into the multiscale nature of fatigue, while also developing a tool to aid in geometric design and material optimization for fatigue critical devices such as biomedical stents and artificial heart valves.
Eshraghi, Shaun; Das, Suman
2012-01-01
Bioresorbable scaffolds with mechanical properties suitable for bone tissue engineering were fabricated from polycaprolactone (PCL) and hydroxyapatite (HA) by selective laser sintering (SLS) and modeled by finite element analysis (FEA). Both solid gage parts and scaffolds having 1-D, 2-D and 3-D orthogonal, periodic porous architectures were made with 0, 10, 20 and 30% HA by volume. PCL:HA scaffolds manufactured by SLS had nearly full density (99%) in the designed solid regions and had excellent geometric and dimensional control. Through optimization of the SLS process, the compressive moduli for our solid gage parts and scaffolds are the highest reported in the literature for additive manufacturing. The compressive moduli of solid gage parts were 299.3, 311.2, 415.5 and 498.3 MPa for PCL:HA loading at 100:0, 90:10, 80:20 and 70:30 respectively. The compressive effective stiffness tended to increase as the loading of HA was increased and the designed porosity was lowered. In the case of the most 3-D porous scaffold, the compressive modulus more than doubled from 14.9 MPa to 36.2 MPa when changing the material from 100:0 to 70:30 PCL:HA. A micromechanical finite element analysis (FEA) model was developed to investigate the reinforcement effect of HA loading on the compressive modulus of the bulk material. Using a first-principles based approach, the random distribution of HA particles in a solidified PCL matrix was modeled for any loading of HA to predict the bulk mechanical properties of the composites. The bulk mechanical properties were also used for FEA of the scaffold geometries. Results of the FEA were found to be in good agreement with experimental mechanical testing. The development of patient and site-specific composite tissue engineering constructs with tailored properties can be seen as a direct extension of this work on computational design, a priori modeling of mechanical properties and direct digital manufacturing. PMID:22522129
Eshraghi, Shaun; Das, Suman
2012-08-01
Bioresorbable scaffolds with mechanical properties suitable for bone tissue engineering were fabricated from polycaprolactone (PCL) and hydroxyapatite (HA) by selective laser sintering (SLS) and modeled by finite-element analysis (FEA). Both solid gage parts and scaffolds having 1-D, 2-D and 3-D orthogonal, periodic porous architectures were made with 0, 10, 20 and 30 vol.% HA. PCL:HA scaffolds manufactured by SLS had nearly full density (99%) in the designed solid regions and had excellent geometric and dimensional control. Through optimization of the SLS process, the compressive moduli for our solid gage parts and scaffolds are the highest reported in the literature for additive manufacturing. The compressive moduli of solid gage parts were 299.3, 311.2, 415.5 and 498.3 MPa for PCL:HA loading at 100:0, 90:10, 80:20 and 70:30, respectively. The compressive effective stiffness tended to increase as the loading of HA was increased and the designed porosity was lowered. In the case of the most 3-D porous scaffold, the compressive modulus more than doubled from 14.9 to 36.2 MPa when changing the material from 100:0 to 70:30 PCL:HA. A micromechanical FEA model was developed to investigate the reinforcement effect of HA loading on the compressive modulus of the bulk material. Using a first-principles based approach, the random distribution of HA particles in a solidified PCL matrix was modeled for any HA loading to predict the bulk mechanical properties of the composites. The bulk mechanical properties were also used for FEA of the scaffold geometries. The results of the FEA were found to be in good agreement with experimental mechanical testing. The development of patient- and site-specific composite tissue-engineering constructs with tailored properties can be seen as a direct extension of this work on computational design, a priori modeling of mechanical properties and direct digital manufacturing. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Pindera, Marek-Jerzy; Salzar, Robert S.
1996-01-01
A user's guide for the computer program OPTCOMP2 is presented in this report. This program provides a capability to optimize the fabrication or service-induced residual stresses in unidirectional metal matrix composites subjected to combined thermomechanical axisymmetric loading by altering the processing history, as well as through the microstructural design of interfacial fiber coatings. The user specifies the initial architecture of the composite and the load history, with the constituent materials being elastic, plastic, viscoplastic, or as defined by the 'user-defined' constitutive model, in addition to the objective function and constraints, through a user-friendly data input interface. The optimization procedure is based on an efficient solution methodology for the inelastic response of a fiber/interface layer(s)/matrix concentric cylinder model where the interface layers can be either homogeneous or heterogeneous. The response of heterogeneous layers is modeled using Aboudi's three-dimensional method of cells micromechanics model. The commercial optimization package DOT is used for the nonlinear optimization problem. The solution methodology for the arbitrarily layered cylinder is based on the local-global stiffness matrix formulation and Mendelson's iterative technique of successive elastic solutions developed for elastoplastic boundary-value problems. The optimization algorithm employed in DOT is based on the method of feasible directions.
Discrete Analysis of Damage and Shear Banding in Argillaceous Rocks
NASA Astrophysics Data System (ADS)
Dinç, Özge; Scholtès, Luc
2018-05-01
A discrete approach is proposed to study damage and failure processes taking place in argillaceous rocks which present a transversely isotropic behavior. More precisely, a dedicated discrete element method is utilized to provide a micromechanical description of the mechanisms involved. The purpose of the study is twofold: (1) presenting a three-dimensional discrete element model able to simulate the anisotropic macro-mechanical behavior of the Callovo-Oxfordian claystone as a particular case of argillaceous rocks; (2) studying how progressive failure develops in such material. Material anisotropy is explicitly taken into account in the numerical model through the introduction of weakness planes distributed at the interparticle scale following predefined orientation and intensity. Simulations of compression tests under plane-strain and triaxial conditions are performed to clarify the development of damage and the appearance of shear bands through micromechanical analyses. The overall mechanical behavior and shear banding patterns predicted by the numerical model are in good agreement with respect to experimental observations. Both tensile and shear microcracks emerging from the modeling also present characteristics compatible with microstructural observations. The numerical results confirm that the global failure of argillaceous rocks is well correlated with the mechanisms taking place at the local scale. Specifically, strain localization is shown to directly result from shear microcracking developing with a preferential orientation distribution related to the orientation of the shear band. In addition, localization events presenting characteristics similar to shear bands are observed from the early stages of the loading and might thus be considered as precursors of strain localization.
Misra, Anil; Parthasarathy, Ranganathan; Singh, Viraj; Spencer, Paulette
2013-01-01
The authors have derived macroscale poromechanics parameters for chemically active saturated fibrous media by combining microstructure-based homogenization with Hill's volume averaging. The stress-strain relationship of the dry fibrous media is first obtained by considering the fiber behavior. The constitutive relationships applicable to saturated media are then derived in the poromechanics framework using Hill's Lemmas. The advantage of this approach is that the resultant continuum model assumes a form suited to study porous materials, while retaining the effect of discrete fiber deformation. As a result, the model is able to predict the influence of microscale phenomena such as fiber buckling on the overall behavior, and in particular, on the poromechanics constants. The significance of the approach is demonstrated using the effect of drainage and fiber nonlinearity on monotonic compressive stress-strain behavior. The model predictions conform to the experimental observations for articular cartilage. The method can potentially be extended to other porous materials such as bone, clays, foams, and concrete.
Modelling three-dimensional cochlear micromechanics within the guinea pig organ of Corti
NASA Astrophysics Data System (ADS)
Ni, Guangjian; Elliott, Stephen J.
2018-05-01
The active amplification process in the mammalian cochlea depends on a complex interaction between cells within the organ of Corti. A three-dimensional (3D) model was developed using the finite element method based on anatomy for the apical end in the guinea pig cochlea, which is comprised of 3D discrete hair cells, 3D continuous membranes and fluid. The basilar membrane, tectorial membrane and the reticular lamina are modelled with orthotropic materials. The Y-shape structures formed by the outer hair cell (OHC), the Deiters' cell and Deiters' cell phalangeal process are also included to account for the structural longitudinal coupling. The motion within the organ of Corti was first simulated in response to a pressure difference loading on the basilar membrane, in order to calculate the passive vibration pattern. Then, the outer hair cells somatic electromotility was implemented by applying a voltage across the OHC walls to investigate its contribution to membranes motion.
Multiscale Modeling of Dewetting Damage in Highly Filled Particulate Composites
NASA Astrophysics Data System (ADS)
Geubelle, P. H.; Inglis, H. M.; Kramer, J. D.; Patel, J. J.; Kumar, N. C.; Tan, H.
2008-02-01
Particle debonding or dewetting constitutes one of the key damage processes in highly filled particulate composites such as solid propellant and other energetic materials. To analyze this failure process, we have developed a multiscale finite element framework that combines, at the microscale, a nonlinear description of the binder response with a cohesive model of the damage process taking place in a representative periodic unit cell (PUC). To relate micro-scale damage to the macroscopic constitutive response of the material, we employ the mathematical theory of homogenization (MTH). After a description of the numerical scheme, we present the results of the damage response of a highly filled particulate composite subjected to a uniaxial macroscopic strain, and show the direct correlation between the complex damage processes taking place in the PUC and the nonlinear macroscopic constitutive response. We also present a detailed study of the PUC size and a comparison between the finite element MTH-based study and a micromechanics model of the dewetting process.
EDITORIAL: The 18th European Workshop on Micromechanics (MME 07)
NASA Astrophysics Data System (ADS)
Correia, J. H.
2008-06-01
This special issue of Journal of Micromechanics and Microengineering is devoted to the 18th European Workshop on Micromechanics (MME 07), which took place at the University of Minho, Guimarães, Portugal from 16-18 September 2007. Since the first workshop at the University of Twente in 1989 the field of micromechanics has grown substantially and new fields have been added: optics, RF, biomedical, chemistry, and in recent years the emergence of nanotechnology. This year an extensive programme was scheduled with contributions from new materials research to new manufacturing techniques. In addition, the invited speakers presented a review of the state-of-the-art in several main trends in current research, with the focus on micro/nanosystems in the ICT Work Programme in EC FP7. As ever, the two day workshop was attended by delegates from all over Europe, the USA, Brazil, Egypt, Japan and Canada. A total of 96 papers were accepted for presentation and there were a further five keynote presentations. The workshop provides a forum for young researchers to learn about new experimental methods and to enhance their knowledge of the field. This special issue presents a selection of 17 of the best papers from the workshop. The papers highlight fluidic and optical devices, energy scavenging microsystems, neural probe arrays and microtechnology fabrication techniques. All the papers went through the regular reviewing procedure of IOP Publishing, and I am grateful to all the referees for their excellent work. I would also like to extend my thanks to Professor Robert Puers for advice on the final selection of papers and to Ian Forbes of IOP Publishing for managing the entire process. My thanks also go to the editorial staff of Journal of Micromechanics and Microengineering. I believe that this special issue will provide a good overview of the topics presented at the workshop and I hope you enjoy reading it.
Rosenberger, Matthew R; Chen, Sihan; Prater, Craig B; King, William P
2017-01-27
This paper reports the design, fabrication, and characterization of micromechanical devices that can present an engineered contact stiffness to an atomic force microscope (AFM) cantilever tip. These devices allow the contact stiffness between the AFM tip and a substrate to be easily and accurately measured, and can be used to calibrate the cantilever for subsequent mechanical property measurements. The contact stiffness devices are rigid copper disks of diameters 2-18 μm integrated onto a soft silicone substrate. Analytical modeling and finite element simulations predict the elastic response of the devices. Measurements of tip-sample interactions during quasi-static force measurements compare well with modeling simulation, confirming the expected elastic response of the devices, which are shown to have contact stiffness 32-156 N m -1 . To demonstrate one application, we use the disk sample to calibrate three resonant modes of a U-shaped AFM cantilever actuated via Lorentz force, at approximately 220, 450, and 1200 kHz. We then use the calibrated cantilever to determine the contact stiffness and elastic modulus of three polymer samples at these modes. The overall approach allows cantilever calibration without prior knowledge of the cantilever geometry or its resonance modes, and could be broadly applied to both static and dynamic measurements that require AFM calibration against a known contact stiffness.
NASA Astrophysics Data System (ADS)
Rosenberger, Matthew R.; Chen, Sihan; Prater, Craig B.; King, William P.
2017-01-01
This paper reports the design, fabrication, and characterization of micromechanical devices that can present an engineered contact stiffness to an atomic force microscope (AFM) cantilever tip. These devices allow the contact stiffness between the AFM tip and a substrate to be easily and accurately measured, and can be used to calibrate the cantilever for subsequent mechanical property measurements. The contact stiffness devices are rigid copper disks of diameters 2-18 μm integrated onto a soft silicone substrate. Analytical modeling and finite element simulations predict the elastic response of the devices. Measurements of tip-sample interactions during quasi-static force measurements compare well with modeling simulation, confirming the expected elastic response of the devices, which are shown to have contact stiffness 32-156 N m-1. To demonstrate one application, we use the disk sample to calibrate three resonant modes of a U-shaped AFM cantilever actuated via Lorentz force, at approximately 220, 450, and 1200 kHz. We then use the calibrated cantilever to determine the contact stiffness and elastic modulus of three polymer samples at these modes. The overall approach allows cantilever calibration without prior knowledge of the cantilever geometry or its resonance modes, and could be broadly applied to both static and dynamic measurements that require AFM calibration against a known contact stiffness.
Micro-Mechanical Viscoelastic Properties of Crosslinked Hydrogels Using the Nano-Epsilon Dot Method.
Mattei, Giorgio; Cacopardo, Ludovica; Ahluwalia, Arti
2017-08-02
Engineering materials that recapitulate pathophysiological mechanical properties of native tissues in vitro is of interest for the development of biomimetic organ models. To date, the majority of studies have focused on designing hydrogels for cell cultures which mimic native tissue stiffness or quasi-static elastic moduli through a variety of crosslinking strategies, while their viscoelastic (time-dependent) behavior has been largely ignored. To provide a more complete description of the biomechanical environment felt by cells, we focused on characterizing the micro-mechanical viscoelastic properties of crosslinked hydrogels at typical cell length scales. In particular, gelatin hydrogels crosslinked with different glutaraldehyde (GTA) concentrations were analyzed via nano-indentation tests using the nano-epsilon dot method. The experimental data were fitted to a Maxwell Standard Linear Solid model, showing that increasing GTA concentration results in increased instantaneous and equilibrium elastic moduli and in a higher characteristic relaxation time. Therefore, not only do gelatin hydrogels become stiffer with increasing crosslinker concentration (as reported in the literature), but there is also a concomitant change in their viscoelastic behavior towards a more elastic one. As the degree of crosslinking alters both the elastic and viscous behavior of hydrogels, caution should be taken when attributing cell response merely to substrate stiffness, as the two effects cannot be decoupled.
NASA Astrophysics Data System (ADS)
Sugano, Koji; Matsumoto, Ryu; Tsutsui, Ryota; Kishihara, Hiroyuki; Matsuzuka, Naoki; Yamashita, Ichiro; Uraoka, Yukiharu; Isono, Yoshitada
2016-07-01
This study focuses on the development of a multi-walled carbon nanotube (MWCNT) forest integrated micromechanical resonator working as a rarefied gas analyzer for nitrogen (N2) and hydrogen (H2) gases in a medium vacuum atmosphere. The resonant response is detected in the form of changes in the resonant frequency or damping effects, depending on the rarefied gas species. The carbon nanotube (CNT) forest on the resonator enhances the effective specific surface area of the resonator, such that the variation of the resonant frequency and the damping effect based on the gas species increase significantly. We developed the fabrication process for the proposed resonator, which consists of standard micro-electro-mechanical systems (MEMS) processes and high-density CNT synthesis on the resonator mass. The high-density CNT synthesis was realized using multistep alternate coating of two types of ferritin proteins that act as catalytic iron particles. Two devices with different CNT densities were fabricated and characterized to evaluate the effect of the surface area of the CNT forest on the resonant response as a function of gas pressures ranging from 0.011 to 1 Pa for N2 and H2. Considering the damping effect, we found that the device with higher density was able to distinguish N2 and H2 clearly, whereas the device with lower density showed no difference between N2 and H2. We confirmed that a larger surface area showed a higher damping effect. These results were explained based on the kinetic theory of gases. In the case of resonant frequency, the relative resonant frequency shift increased with gas pressure and surface area because of the adsorption of gas molecules on the resonator surfaces. Higher density CNT forest adsorbed more gas molecules on the surfaces. The developed CNT forest integrated micromechanical resonator could successfully detect N2 and H2 gases and distinguish between them under pressures of 1 Pa.
NASA Astrophysics Data System (ADS)
Hudspeth, A. J.
2015-12-01
The following summarizes the key points addressed during a tutorial session on the Micromechanics of Hearing that took place at the 12th International Workshop on the Mechanics of Hearing held at Cape Sounio, Greece, in June 2014. The tutorial was intended to present an overview of basic ideas and to address topics of current interest relevant to the Workshop. The session was recorded, and the audio file and accompanying visual content of the presentation can be found in the Mechanics of Hearing Digital Library (www.mechanicsofhearing.org).
NASA Astrophysics Data System (ADS)
Karavitaki, K. Domenica; Guinan, John J.; Mountain, David C.
2018-05-01
Electrically-evoked outer-hair-cell-driven micromechanical motions within the organ of Corti were visualized and quantified using a video stroboscopy system. The resulting radial motions exhibited phase transitions along the radial direction, characteristic of a system that can exhibit multiple modes of vibration. We argue that the interaction of these modes would shape the input to the inner hair cell hair bundles and resulting auditory-nerve response patterns.
Chan, H B; Stambaugh, C
2007-08-10
We explore fluctuation-induced switching in parametrically driven micromechanical torsional oscillators. The oscillators possess one, two, or three stable attractors depending on the modulation frequency. Noise induces transitions between the coexisting attractors. Near the bifurcation points, the activation barriers are found to have a power law dependence on frequency detuning with critical exponents that are in agreement with predicted universal scaling relationships. At large detuning, we observe a crossover to a different power law dependence with an exponent that is device specific.
Micromechanical analysis of thermo-inelastic multiphase short-fiber composites
NASA Technical Reports Server (NTRS)
Aboudi, Jacob
1994-01-01
A micromechanical formulation is presented for the prediction of the overall thermo-inelastic behavior of multiphase composites which consist of short fibers. The analysis is an extension of the generalized method of cells that was previously derived for inelastic composites with continuous fibers, and the reliability of which was critically examined in several situations. The resulting three dimensional formulation is extremely general, wherein the analysis of thermo-inelastic composites with continuous fibers as well as particulate and porous inelastic materials are merely special cases.
Local stresses in metal matrix composites subjected to thermal and mechanical loading
NASA Technical Reports Server (NTRS)
Highsmith, Alton L.; Shin, Donghee; Naik, Rajiv A.
1990-01-01
An elasticity solution has been used to analyze matrix stresses near the fiber/matrix interface in continuous fiber-reinforced metal-matrix composites, modeling the micromechanics in question in terms of a cylindrical fiber and cylindrical matrix sheath which is embedded in an orthotropic medium representing the composite. The model's predictions for lamina thermal and mechanical properties are applied to a laminate analysis determining ply-level stresses due to thermomechanical loading. A comparison is made between these results, which assume cylindrical symmetry, and the predictions yielded by a FEM model in which the fibers are arranged in a square array.
NASA Technical Reports Server (NTRS)
Ricks, Trenton M.; Lacy, Thomas E., Jr.; Bednarcyk, Brett A.; Arnold, Steven M.; Hutchins, John W.
2014-01-01
A multiscale modeling methodology was developed for continuous fiber composites that incorporates a statistical distribution of fiber strengths into coupled multiscale micromechanics/finite element (FE) analyses. A modified two-parameter Weibull cumulative distribution function, which accounts for the effect of fiber length on the probability of failure, was used to characterize the statistical distribution of fiber strengths. A parametric study using the NASA Micromechanics Analysis Code with the Generalized Method of Cells (MAC/GMC) was performed to assess the effect of variable fiber strengths on local composite failure within a repeating unit cell (RUC) and subsequent global failure. The NASA code FEAMAC and the ABAQUS finite element solver were used to analyze the progressive failure of a unidirectional SCS-6/TIMETAL 21S metal matrix composite tensile dogbone specimen at 650 degC. Multiscale progressive failure analyses were performed to quantify the effect of spatially varying fiber strengths on the RUC-averaged and global stress-strain responses and failure. The ultimate composite strengths and distribution of failure locations (predominately within the gage section) reasonably matched the experimentally observed failure behavior. The predicted composite failure behavior suggests that use of macroscale models that exploit global geometric symmetries are inappropriate for cases where the actual distribution of local fiber strengths displays no such symmetries. This issue has not received much attention in the literature. Moreover, the model discretization at a specific length scale can have a profound effect on the computational costs associated with multiscale simulations.models that yield accurate yet tractable results.
Micromechanics of Sea Urchin Spines
Tsafnat, Naomi; Fitz Gerald, John D.; Le, Hai N.; Stachurski, Zbigniew H.
2012-01-01
The endoskeletal structure of the Sea Urchin, Centrostephanus rodgersii, has numerous long spines whose known functions include locomotion, sensing, and protection against predators. These spines have a remarkable internal microstructure and are made of single-crystal calcite. A finite-element model of the spine’s unique porous structure, based on micro-computed tomography (microCT) and incorporating anisotropic material properties, was developed to study its response to mechanical loading. Simulations show that high stress concentrations occur at certain points in the spine’s architecture; brittle cracking would likely initiate in these regions. These analyses demonstrate that the organization of single-crystal calcite in the unique, intricate morphology of the sea urchin spine results in a strong, stiff and lightweight structure that enhances its strength despite the brittleness of its constituent material. PMID:22984468
NASA Astrophysics Data System (ADS)
Rabahallah, M.; Bouvier, S.; Balan, T.; Bacroix, B.; Teodosiu, C.
2007-04-01
In this work, an implicit, backward Euler time integration scheme is developed for an anisotropic, elastic-plastic model based on strain-rate potentials. The constitutive algorithm includes a sub-stepping procedure to deal with the strong nonlinearity of the plastic potentials when applied to FCC materials. The algorithm is implemented in the static implicit version of the Abaqus finite element code. Several recent plastic potentials have been implemented in this framework. The most accurate potentials require the identification of about twenty material parameters. Both mechanical tests and micromechanical simulations have been used for their identification, for a number of BCC and FCC materials. The impact of the identification procedure on the prediction of ears in cup drawing is investigated.
Estimation of the Friction Coefficient of a Nanostructured Composite Coating
NASA Astrophysics Data System (ADS)
Shil'ko, S. V.; Chernous, D. A.; Ryabchenko, T. V.; Hat'ko, V. V.
2017-11-01
The frictional-mechanical properties of a thin polymer-ceramic coating obtained by gas-phase impregnation of nanoporous anodic alumina with a fluoropolymer (octafluorocyclobutane) have been investigated. The coefficient of sliding friction of the coating is predicted based on an analysis of contact deformation within the framework of the Winkler elastic foundation hypothesis and a three-phase micromechanical model. It is shown that an acceptable prediction accuracy can be obtained considering the uniaxial strain state of the coating. It was found that, on impregnation by the method of plasmachemical treatment, the relative depth of penetration of the polymer increased almost in proportion to the processing time. The rate and maximum possible depth of penetration of the polymer into nanoscale pores grew with increasing porosity of the alumina substrate.
Failure analysis of woven and braided fabric reinforced composites
NASA Technical Reports Server (NTRS)
Naik, Rajiv A.
1994-01-01
A general purpose micromechanics analysis that discretely models the yarn architecture within the textile repeating unit cell was developed to predict overall, three dimensional, thermal and mechanical properties, damage initiation and progression, and strength. This analytical technique was implemented in a user-friendly, personal computer-based, menu-driven code called Textile Composite Analysis for Design (TEXCAD). TEXCAD was used to analyze plain weave and 2x2, 2-D triaxial braided composites. The calculated tension, compression, and shear strengths correlated well with available test data for both woven and braided composites. Parametric studies were performed on both woven and braided architectures to investigate the effects of parameters such as yarn size, yarn spacing, yarn crimp, braid angle, and overall fiber volume fraction on the strength properties of the textile composite.
Modeling of Melt-Infiltrated SiC/SiC Composite Properties
NASA Technical Reports Server (NTRS)
Mital, Subodh K.; Bednarcyk, Brett A.; Arnold, Steven M.; Lang, Jerry
2009-01-01
The elastic properties of a two-dimensional five-harness melt-infiltrated silicon carbide fiber reinforced silicon carbide matrix (MI SiC/SiC) ceramic matrix composite (CMC) were predicted using several methods. Methods used in this analysis are multiscale laminate analysis, micromechanics-based woven composite analysis, a hybrid woven composite analysis, and two- and three-dimensional finite element analyses. The elastic properties predicted are in good agreement with each other as well as with the available measured data. However, the various methods differ from each other in three key areas: (1) the fidelity provided, (2) the efforts required for input data preparation, and (3) the computational resources required. Results also indicate that efficient methods are also able to provide a reasonable estimate of local stress fields.
Dynamic stability of unidirectional fiber-reinforced viscoelastic composite plates
NASA Technical Reports Server (NTRS)
Chandiramani, N. K.; Librescu, L.
1989-01-01
This paper deals with a dynamic stability analysis of unidirectional fiber-reinforced composite viscoelastic plates subjected to compressive edge loads. The integrodifferential equations governing the stability problem are obtained by using, in conjunction with a Boltzmann hereditary constitutive law for a three-dimensional viscoelastic medium, a higher-order shear deformation theory of orthotropic plates. Such a theory incorporates transverse shear deformation, transverse normal stress, and rotatory inertia effects. The solution of the stability problem as considered within this paper concerns the determination of the critical in-plane edge loads yielding the asymptotic instability. Numerical applications, based on material properties derived within the framework of Aboudi's micromechanical model, are presented and pertinent conclusions concerning the nature of the loss of stability and the influence of various parameters are outlined.
Cakmak, Ercan; Kirka, Michael M.; Watkins, Thomas R.; ...
2016-02-23
Theta-shaped specimens were additively manufactured out of Inconel 718 powders using an electron beam melting technique, as a model complex load bearing structure. We employed two different build strategies; producing two sets of specimens. Microstructural and micro-mechanical characterizations were performed using electron back-scatter, synchrotron x-ray and in-situ neutron diffraction techniques. In particular, the cross-members of the specimens were the focus of the synchrotron x-ray and in-situ neutron diffraction measurements. The build strategies employed resulted in the formation of distinct microstructures and crystallographic textures, signifying the importance of build-parameter manipulation for microstructural optimization. Large strain anisotropy of the different lattice planesmore » was observed during in-situ loading. Texture was concluded to have a distinct effect upon both the axial and transverse strain responses of the cross-members. In particular, the (200), (220) and (420) transverse lattice strains all showed unexpected overlapping trends in both builds. This was related to the strong {200} textures along the build/loading direction, providing agreement between the experimental and calculated results.« less
MAC/GMC Code Enhanced for Coupled Electromagnetothermoelastic Analysis of Smart Composites
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Arnold, Steven M.; Aboudi, Jacob
2002-01-01
Intelligent materials are those that exhibit coupling between their electromagnetic response and their thermomechanical response. This coupling allows smart materials to react mechanically (e.g., an induced displacement) to applied electrical or magnetic fields (for instance). These materials find many important applications in sensors, actuators, and transducers. Recently interest has arisen in the development of smart composites that are formed via the combination of two or more phases, one or more of which is a smart material. To design with and utilize smart composites, designers need theories that predict the coupled smart behavior of these materials from the electromagnetothermoelastic properties of the individual phases. The micromechanics model known as the generalized method of cells (GMC) has recently been extended to provide this important capability. This coupled electromagnetothermoelastic theory has recently been incorporated within NASA Glenn Research Center's Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC). This software package is user friendly and has many additional features that render it useful as a design and analysis tool for composite materials in general, and with its new capabilities, for smart composites as well.
Multiscale Modeling of Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Mital, Subodh K.; Pineda, Evan J.; Arnold, Steven M.
2015-01-01
Results of multiscale modeling simulations of the nonlinear response of SiC/SiC ceramic matrix composites are reported, wherein the microstructure of the ceramic matrix is captured. This micro scale architecture, which contains free Si material as well as the SiC ceramic, is responsible for residual stresses that play an important role in the subsequent thermo-mechanical behavior of the SiC/SiC composite. Using the novel Multiscale Generalized Method of Cells recursive micromechanics theory, the microstructure of the matrix, as well as the microstructure of the composite (fiber and matrix) can be captured.
DOE Office of Scientific and Technical Information (OSTI.GOV)
HOLM,ELIZABETH A.; BATTAILE,CORBETT C.; BUCHHEIT,THOMAS E.
2000-04-01
Computational materials simulations have traditionally focused on individual phenomena: grain growth, crack propagation, plastic flow, etc. However, real materials behavior results from a complex interplay between phenomena. In this project, the authors explored methods for coupling mesoscale simulations of microstructural evolution and micromechanical response. In one case, massively parallel (MP) simulations for grain evolution and microcracking in alumina stronglink materials were dynamically coupled. In the other, codes for domain coarsening and plastic deformation in CuSi braze alloys were iteratively linked. this program provided the first comparison of two promising ways to integrate mesoscale computer codes. Coupled microstructural/micromechanical codes were appliedmore » to experimentally observed microstructures for the first time. In addition to the coupled codes, this project developed a suite of new computational capabilities (PARGRAIN, GLAD, OOF, MPM, polycrystal plasticity, front tracking). The problem of plasticity length scale in continuum calculations was recognized and a solution strategy was developed. The simulations were experimentally validated on stockpile materials.« less
On the stability and compressive nonlinearity of a physiologically based model of the cochlea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nankali, Amir; Grosh, Karl; Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
Hearing relies on a series of coupled electrical, acoustical (fluidic) and mechanical interactions inside the cochlea that enable sound processing. A positive feedback mechanism within the cochlea, called the cochlear amplifier, provides amplitude and frequency selectivity in the mammalian auditory system. The cochlear amplifier and stability are studied using a nonlinear, micromechanical model of the Organ of Corti (OoC) coupled to the electrical potentials in the cochlear ducts. It is observed that the mechano-electrical transduction (MET) sensitivity and somatic motility of the outer hair cell (OHC), control the cochlear stability. Increasing MET sensitivity beyond a critical value, while electromechanical couplingmore » coefficient is within a specific range, causes instability. We show that instability in this model is generated through a supercritical Hopf bifurcation. A reduced order model of the system is approximated and it is shown that the tectorial membrane (TM) transverse mode effect on the dynamics is significant while the radial mode can be simplified from the equations. The cochlear amplifier in this model exhibits good agreement with the experimental data. A comprehensive 3-dimensional model based on the cross sectional model is simulated and the results are compared. It is indicated that the global model qualitatively inherits some characteristics of the local model, but the longitudinal coupling along the cochlea shifts the stability boundary (i.e., Hopf bifurcation point) and enhances stability.« less
Accessing Colony Boundary Strengthening of Fully Lamellar TiAl Alloys via Micromechanical Modeling
Bargmann, Swantje
2017-01-01
In this article, we present a strategy to decouple the relative influences of colony, domain and lamella boundary strengthening in fully lamellar titanium aluminide alloys, using a physics-based crystal plasticity modeling strategy. While lamella and domain boundary strengthening can be isolated in experiments using polysynthetically twinned crystals or mircomechanical testing, colony boundary strengthening can only be investigated in specimens in which all three strengthening mechanisms act simultaneously. Thus, isolating the colony boundary strengthening Hall–Petch coefficient KC experimentally requires a sufficient number of specimens with different colony sizes λC but constant lamella thickness λL and domain size λD, difficult to produce even with sophisticated alloying techniques. The here presented crystal plasticity model enables identification of the colony boundary strengthening coefficient KC as a function of lamella thickness λL. The constitutive description is based on the model of a polysynthetically twinned crystal which is adopted to a representative volume element of a fully lamellar microstructure. In order to capture the micro yield and subsequent micro hardening in weakly oriented colonies prior to macroscopic yield, the hardening relations of the adopted model are revised and calibrated against experiments with polysynthetically twinned crystals for plastic strains up to 15%. PMID:28771218
Accessing Colony Boundary Strengthening of Fully Lamellar TiAl Alloys via Micromechanical Modeling.
Schnabel, Jan Eike; Bargmann, Swantje
2017-08-03
In this article, we present a strategy to decouple the relative influences of colony, domain and lamella boundary strengthening in fully lamellar titanium aluminide alloys, using a physics-based crystal plasticity modeling strategy. While lamella and domain boundary strengthening can be isolated in experiments using polysynthetically twinned crystals or mircomechanical testing, colony boundary strengthening can only be investigated in specimens in which all three strengthening mechanisms act simultaneously. Thus, isolating the colony boundary strengthening Hall-Petch coefficient K C experimentally requires a sufficient number of specimens with different colony sizes λ C but constant lamella thickness λ L and domain size λ D , difficult to produce even with sophisticated alloying techniques. The here presented crystal plasticity model enables identification of the colony boundary strengthening coefficient K C as a function of lamella thickness λ L . The constitutive description is based on the model of a polysynthetically twinned crystal which is adopted to a representative volume element of a fully lamellar microstructure. In order to capture the micro yield and subsequent micro hardening in weakly oriented colonies prior to macroscopic yield, the hardening relations of the adopted model are revised and calibrated against experiments with polysynthetically twinned crystals for plastic strains up to 15%.
NASA Astrophysics Data System (ADS)
Zhang, Ping
Microelectromechanical systems (MEMS) have a wide range of applications. In the field of wireless and microwave technology, considerable attention has been given to the development and integration of MEMS-based RF (radio frequency) components. An RF MEMS switch requires low insertion loss, high isolation, and low actuation voltage - electrical aspects that have been extensively studied. The mechanical requirements of the switch, such as low sensitivity to built-in stress and high reliability, greatly depend on the micromechanical properties of the switch materials, and have not been thoroughly explored. RF MEMS switches are typically in the form of a free-standing thin film structure. Large stress gradients and across-wafer stress variations developed during fabrication severely degrade their electrical performance. A micromachined stress measurement sensor has been developed that can potentially be employed for in-situ monitoring of stress evolution and stress variation. The sensors were micromachined using five masks on two wafer levels, each measuring 5x3x1 mm. They function by means of an electron tunneling mechanism, where a 2x2 mm silicon nitride membrane elastically deflects under an applied deflection voltage via an external feedback circuitry. For the current design, the sensors are capable of measuring tensile stresses up to the GPa range under deflection voltages of 50--100 V. Sensor functionality was studied by finite element modeling and a theoretical analysis of square membrane deflection. While the mechanical properties of thin films on substrates have been extensively studied, studies of free-standing thin films have been limited due to the practical difficulties in sample handling and testing. Free-standing Al and Al-Ti thin films specimens have been successfully fabricated and microtensile and stress relaxation tests have been performed using a custom-designed micromechanical testing apparatus. A dedicated TEM (transmission electron microscopy) sample preparation technique allows the investigation of the microstructures of these thin films both before and after mechanical testing to correlate the microstructural findings with the mechanical behavior. Major studies include grain boundary strengthening in pure Al, plastic deformation in pure Al by inhomogeneous deformation and localized grain thinning, solid solution and precipitate strengthening in Al-Ti alloys, and stress relaxation of Al and Al-Ti.
NASA Technical Reports Server (NTRS)
Choi, Sukjoo; Sankar, Bhavani; Ebaugh, Newton C.
2005-01-01
A micromechanics method is developed to investigate microcrack propagation in a liquid hydrogen composite tank at cryogenic temperature. The unit cell is modeled using square and hexagonal shapes depends on fiber and matrix layout from microscopic images of composite laminates. Periodic boundary conditions are applied to the unit cell. The temperature dependent properties are taken into account in the analysis. The laminate properties estimated by the micromechanics method are compared with empirical solutions using constituent properties. The micro stresses in the fiber and matrix phases based on boundary conditions in laminate level are calculated to predict the formation of microcracks in the matrix. The method is applied to an actual liquid hydrogen storage system. The analysis predicts micro stresses in the matrix phase are large enough to cause microcracks in the composite. Stress singularity of a transverse crack normal to a ply-interface is investigated to predict the fracture behavior at cryogenic conditions using analytical and finite element analysis. When a transverse crack touches a ply-interface of a composite layer with same fiber orientation, the stress singularity is equal to 1/2. When the transverse crack propagates to a stiffer layer normal to the ply-direction, the singularity becomes less than 1/2 and vice versa. Finite element analysis is performed to predict the fracture toughness of a laminated beam subjected to fracture loads measured by four-point bending tests at room and cryogenic temperatures. As results, the fracture load at cryogenic temperature is significantly lower than that at room temperature. However, when thermal stresses are taken into consideration, for both cases of room and cryogenic temperatures, the difference of the fracture toughness becomes insignificant. The result indicates fracture toughness is a characteristic property, which is independent to temperature changes. The experimental analysis is performed to investigate the effect of cryogenic cycling on permeability for various composite material systems. Textile composites have lower permeability than laminated composites even with increasing number of cryogenic cycle. Nano-particles dispersed in laminated composites do not show improvement on permeability. The optical inspection is performed to investigate the microcrack propagation and void content in laminated composites and compared the microscopic results before and after cryogenic cycling.
NASA Astrophysics Data System (ADS)
Gigan, Olivier; Chen, Hua; Robert, Olivier; Renard, Stephane; Marty, Frederic
2002-11-01
This paper is dedicated to the fabrication and technological aspect of a silicon microresonator sensor. The entire project includes the fabrication processes, the system modelling/simulation, and the electronic interface. The mechanical model of such resonator is presented including description of frequency stability and Hysterises behaviour of the electrostatically driven resonator. Numeric model and FEM simulations are used to simulate the system dynamic behaviour. The complete fabrication process is based on standard microelectronics technology with specific MEMS technological steps. The key steps are described: micromachining on SOI by Deep Reactive Ion Etching (DRIE), specific release processes to prevent sticking (resist and HF-vapour release process) and collective vacuum encapsulation by Silicon Direct Bonding (SDB). The complete process has been validated and prototypes have been fabricated. The ASIC was designed to interface the sensor and to control the vibration amplitude. This electronic was simulated and designed to work up to 200°C and implemented in a standard 0.6μ CMOS technology. Characterizations of sensor prototypes are done both mechanically and electrostatically. These measurements showed good agreements with theory and FEM simulations.
Coupling Active Hair Bundle Mechanics, Fast Adaptation, and Somatic Motility in a Cochlear Model
Meaud, Julien; Grosh, Karl
2011-01-01
One of the central questions in the biophysics of the mammalian cochlea is determining the contributions of the two active processes, prestin-based somatic motility and hair bundle (HB) motility, to cochlear amplification. HB force generation is linked to fast adaptation of the transduction current via a calcium-dependent process and somatic force generation is driven by the depolarization caused by the transduction current. In this article, we construct a global mechanical-electrical-acoustical mathematical model of the cochlea based on a three-dimensional fluid representation. The global cochlear model is coupled to linearizations of nonlinear somatic motility and HB activity as well as to the micromechanics of the passive structural and electrical elements of the cochlea. We find that the active HB force alone is not sufficient to power high frequency cochlear amplification. However, somatic motility can overcome resistor-capacitor filtering by the basolateral membrane and deliver sufficient mechanical energy for amplification at basal locations. The results suggest a new theory for high frequency active cochlear mechanics, in which fast adaptation controls the transduction channel sensitivity and thereby the magnitude of the energy delivered by somatic motility. PMID:21641302
Coupling active hair bundle mechanics, fast adaptation, and somatic motility in a cochlear model.
Meaud, Julien; Grosh, Karl
2011-06-08
One of the central questions in the biophysics of the mammalian cochlea is determining the contributions of the two active processes, prestin-based somatic motility and hair bundle (HB) motility, to cochlear amplification. HB force generation is linked to fast adaptation of the transduction current via a calcium-dependent process and somatic force generation is driven by the depolarization caused by the transduction current. In this article, we construct a global mechanical-electrical-acoustical mathematical model of the cochlea based on a three-dimensional fluid representation. The global cochlear model is coupled to linearizations of nonlinear somatic motility and HB activity as well as to the micromechanics of the passive structural and electrical elements of the cochlea. We find that the active HB force alone is not sufficient to power high frequency cochlear amplification. However, somatic motility can overcome resistor-capacitor filtering by the basolateral membrane and deliver sufficient mechanical energy for amplification at basal locations. The results suggest a new theory for high frequency active cochlear mechanics, in which fast adaptation controls the transduction channel sensitivity and thereby the magnitude of the energy delivered by somatic motility. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Development of an external ceramic insulation for the space shuttle orbiter
NASA Technical Reports Server (NTRS)
Tanzilli, R. A. (Editor)
1972-01-01
The development and evaluation of a family of reusable external insulation systems for use on the space shuttle orbiter is discussed. The material development and evaluation activities are described. Additional information is provided on the development of an analytical micromechanical model of the reusable insulation and the development of techniques for reducing the heat transfer. Design data on reusable insulation systems and test techniques used for design data generation are included.
Micro-mechanical properties of the tendon-to-bone attachment.
Deymier, Alix C; An, Yiran; Boyle, John J; Schwartz, Andrea G; Birman, Victor; Genin, Guy M; Thomopoulos, Stavros; Barber, Asa H
2017-07-01
The tendon-to-bone attachment (enthesis) is a complex hierarchical tissue that connects stiff bone to compliant tendon. The attachment site at the micrometer scale exhibits gradients in mineral content and collagen orientation, which likely act to minimize stress concentrations. The physiological micromechanics of the attachment thus define resultant performance, but difficulties in sample preparation and mechanical testing at this scale have restricted understanding of structure-mechanical function. Here, microscale beams from entheses of wild type mice and mice with mineral defects were prepared using cryo-focused ion beam milling and pulled to failure using a modified atomic force microscopy system. Micromechanical behavior of tendon-to-bone structures, including elastic modulus, strength, resilience, and toughness, were obtained. Results demonstrated considerably higher mechanical performance at the micrometer length scale compared to the millimeter tissue length scale, describing enthesis material properties without the influence of higher order structural effects such as defects. Micromechanical investigation revealed a decrease in strength in entheses with mineral defects. To further examine structure-mechanical function relationships, local deformation behavior along the tendon-to-bone attachment was determined using local image correlation. A high compliance zone near the mineralized gradient of the attachment was clearly identified and highlighted the lack of correlation between mineral distribution and strain on the low-mineral end of the attachment. This compliant region is proposed to act as an energy absorbing component, limiting catastrophic failure within the tendon-to-bone attachment through higher local deformation. This understanding of tendon-to-bone micromechanics demonstrates the critical role of micrometer scale features in the mechanics of the tissue. The tendon-to-bone attachment (enthesis) is a complex hierarchical tissue with features at a numerous scales that dissipate stress concentrations between compliant tendon and stiff bone. At the micrometer scale, the enthesis exhibits gradients in collagen and mineral composition and organization. However, the physiological mechanics of the enthesis at this scale remained unknown due to difficulty in preparing and testing micrometer scale samples. This study is the first to measure the tensile mechanical properties of the enthesis at the micrometer scale. Results demonstrated considerably enhanced mechanical performance at the micrometer length scale compared to the millimeter tissue length scale and identified a high-compliance zone near the mineralized gradient of the attachment. This understanding of tendon-to-bone micromechanics demonstrates the critical role of micrometer scale features in the mechanics of the tissue. Copyright © 2017. Published by Elsevier Ltd.
Calibration of micromechanical parameters for DEM simulations by using the particle filter
NASA Astrophysics Data System (ADS)
Cheng, Hongyang; Shuku, Takayuki; Thoeni, Klaus; Yamamoto, Haruyuki
2017-06-01
The calibration of DEM models is typically accomplished by trail and error. However, the procedure lacks of objectivity and has several uncertainties. To deal with these issues, the particle filter is employed as a novel approach to calibrate DEM models of granular soils. The posterior probability distribution of the microparameters that give numerical results in good agreement with the experimental response of a Toyoura sand specimen is approximated by independent model trajectories, referred as `particles', based on Monte Carlo sampling. The soil specimen is modeled by polydisperse packings with different numbers of spherical grains. Prepared in `stress-free' states, the packings are subjected to triaxial quasistatic loading. Given the experimental data, the posterior probability distribution is incrementally updated, until convergence is reached. The resulting `particles' with higher weights are identified as the calibration results. The evolutions of the weighted averages and posterior probability distribution of the micro-parameters are plotted to show the advantage of using a particle filter, i.e., multiple solutions are identified for each parameter with known probabilities of reproducing the experimental response.
Salguero, Laura; Saadat, Fatemeh; Sevostianov, Igor
2014-10-17
The paper analyzes the connection between microstructure of the osteonal cortical bone and its overall elastic properties. The existing models either neglect anisotropy of the dense tissue or simplify cortical bone microstructure (accounting for Haversian canals only). These simplifications (related mostly to insufficient mathematical apparatus) complicate quantitative analysis of the effect of microstructural changes - produced by age, microgravity, or some diseases - on the overall mechanical performance of cortical bone. The present analysis fills this gap; it accounts for anisotropy of the dense tissue and uses realistic model of the porous microstructure. The approach is based on recent results of Sevostianov et al. (2005) and Saadat et al. (2012) on inhomogeneities in a transversely-isotropic material. Bone's microstructure is modeled according to books of Martin and Burr (1989), Currey (2002), and Fung (1993) and includes four main families of pores. The calculated elastic constants for porous cortical bone are in agreement with available experimental data. The influence of each of the pore types on the overall moduli is examined. Copyright © 2014 Elsevier Ltd. All rights reserved.
Microelectromechanical systems for experimental physics and optical telecommunications
NASA Astrophysics Data System (ADS)
Aksyuk, Vladimir Anatolyevich
1999-12-01
Micro-Electro-Mechanical Systems (MEMS) are an emerging technology, which, when applied to the field of physical sensors, offers not only an obvious advantage of being small and cheap, but more importantly, provides some unique experimental opportunities. These are based on the way physical properties scale with decreasing size. This thesis discusses these basic principles and corresponding advantages and limitations of MEMS technology and presents several experiments in which micromachines are used to do physical measurements that could not be done before. Three types of micromechanical magnetometers are demonstrated. When compared to the state of the art traditional techniques they show greater sensitivity, faster response and can be applied over a wider range of experimental conditions. The high-Q micromechanical torsional oscillator magnetometer is used to observe mesoscopic vortex physics, including single flux lines penetrating into a type-II superconductor just above the first critical field. The Faraday balance ``Trampoline'' magnetometer combines high sensitivity, high bandwidth and can be operated in a wide temperature range. It is used in both high pulsed magnetic fields to record deHaas-vanAlphen oscillations and in DC magnetic fields for magnetization measurements at temperatures down to 100mK. The high sensitivity DC torque magnetometer offers yet higher sensitivity and can be used for a variety of magnetization measurements. Several other MEMS devices for physics and telecommunications applications are presented, including a micromachined near field scanning optical microscope, MEMS fiberoptic switches and large-area large-angle scanners. They provide examples of complex functionality that can be achieved with micromechanics by combining sensors with inherently low-power electrostatic actuators. The optically powered optical power limiter demonstrates the possibility of operating MEMS with optical rather than electrical power.
METal matrix composite ANalyzer (METCAN): Theoretical manual
NASA Technical Reports Server (NTRS)
Murthy, P. L. N.; Chamis, C. C.
1993-01-01
This manuscript is intended to be a companion volume to the 'METCAN User's Manual' and the 'METAN Demonstration Manual.' The primary purpose of the manual is to give details pertaining to micromechanics and macromechanics equations of high temperature metal matrix composites that are programmed in the METCAN computer code. The subroutines which contain the programmed equations are also mentioned in order to facilitate any future changes or modifications that the user may intend to incorporate in the code. Assumptions and derivations leading to the micromechanics equations are briefly mentioned.
Micromechanics of composite laminate compression failures
NASA Technical Reports Server (NTRS)
Guynn, E. Gail; Bradley, Walter L.
1988-01-01
The purpose of this annual progress report is to summarize the work effort and results accomplished from July 1987 through July 1988 on NASA Research Grant NAG1-659 entitled Micromechanics of Composite Laminate Compressive Failure. The report contains: (1) the objective of the proposed research, (2) the summary of accomplishments, (3) a more extensive review of compression literature, (4) the planned material (and corresponding properties) received to date, (5) the results for three possible specimen geometries, experimental procedures planned, and current status of the experiments, and (6) the work planned for the next contract year.
Cryogenic transimpedance amplifier for micromechanical capacitive sensors.
Antonio, D; Pastoriza, H; Julián, P; Mandolesi, P
2008-08-01
We developed a cryogenic transimpedance amplifier that works at a broad range of temperatures, from room temperature down to 4 K. The device was realized with a standard complementary metal oxide semiconductor 1.5 mum process. Measurements of current-voltage characteristics, open-loop gain, input referred noise current, and power consumption are presented as a function of temperature. The transimpedance amplifier has been successfully applied to sense the motion of a polysilicon micromechanical oscillator at low temperatures. The whole device is intended to serve as a magnetometer for microscopic superconducting samples.
Detection of electromagnetic radiation using micromechanical multiple quantum wells structures
Datskos, Panagiotis G [Knoxville, TN; Rajic, Slobodan [Knoxville, TN; Datskou, Irene [Knoxville, TN
2007-07-17
An apparatus and method for detecting electromagnetic radiation employs a deflectable micromechanical apparatus incorporating multiple quantum wells structures. When photons strike the quantum-well structure, physical stresses are created within the sensor, similar to a "bimetallic effect." The stresses cause the sensor to bend. The extent of deflection of the sensor can be measured through any of a variety of conventional means to provide a measurement of the photons striking the sensor. A large number of such sensors can be arranged in a two-dimensional array to provide imaging capability.
Micromechanical models for the stiffness and strength of UHMWPE macrofibrils
NASA Astrophysics Data System (ADS)
Dong, Hai; Wang, Zheliang; O'Connor, Thomas C.; Azoug, Aurelie; Robbins, Mark O.; Nguyen, Thao D.
2018-07-01
Ultrahigh molecular weight polyethylene (UHMWPE) fibers have a complex hierarchical structure that at the micron-scale is composed of oriented chain crystals, lamellar crystals, and amorphous domains organized into macrofibrils. We developed a computational micromechanical modeling study of the effects of the morphological structure and constituent material properties on the deformation mechanisms, stiffness and strength of the UHMWPE macrofibrils. Specifically, we developed four representative volume elements, which differed in the arrangement and orientation of the lamellar crystals, to describe the various macrofibrillar microstructures observed in recent experiments. The stiffness and strength of the crystals were determined from molecular dynamic simulations of a pure PE crystal. A finite deformation crystal plasticity model was used to describe the crystals and an isotropic viscoplastic model was used for the amorphous phase. The results show that yielding in UHMWPE macrofibrils under axial tension is dominated by the slip in the oriented crystals, while yielding under transverse compression and shear is dominated by slips in both the oriented and lamellar crystals. The results also show that the axial modulus and strength are mainly determined by the volume fraction of the oriented crystals and are insensitive to the arrangements of the lamellar crystals when the modulus of the amorphous phase is significantly smaller than that of the crystals. In contrast, the arrangement and size of the lamellar crystals have a significant effect on the stiffness and strength under transverse compression and shear. These findings can provide a guide for new materials and processing design to improve the properties of UHMWPE fibers by controlling the macrofibrillar morphologies.
Second Generation Integrated Composite Analyzer (ICAN) Computer Code
NASA Technical Reports Server (NTRS)
Murthy, Pappu L. N.; Ginty, Carol A.; Sanfeliz, Jose G.
1993-01-01
This manual updates the original 1986 NASA TP-2515, Integrated Composite Analyzer (ICAN) Users and Programmers Manual. The various enhancements and newly added features are described to enable the user to prepare the appropriate input data to run this updated version of the ICAN code. For reference, the micromechanics equations are provided in an appendix and should be compared to those in the original manual for modifications. A complete output for a sample case is also provided in a separate appendix. The input to the code includes constituent material properties, factors reflecting the fabrication process, and laminate configuration. The code performs micromechanics, macromechanics, and laminate analyses, including the hygrothermal response of polymer-matrix-based fiber composites. The output includes the various ply and composite properties, the composite structural response, and the composite stress analysis results with details on failure. The code is written in FORTRAN 77 and can be used efficiently as a self-contained package (or as a module) in complex structural analysis programs. The input-output format has changed considerably from the original version of ICAN and is described extensively through the use of a sample problem.
On the influence of microscale inertia on dynamic ductile crack extension
NASA Astrophysics Data System (ADS)
Jacques, N.; Mercier, S.; Molinari, A.
2012-08-01
The present paper is devoted to the modelling of damage by micro-voiding in ductile solids under dynamic loading conditions. Using a dynamic homogenization procedure, a constitutive damage model accounting for inertial effects due to void growth (microscale inertia or micro-inertia) has been developed. The role played by microscale inertia in dynamic ductile crack growth is investigated with the use of the proposed micromechanical modelling. It is found that micro-inertia has a significant influence on the fracture behaviour. Micro-inertia limits the velocity at which cracks propagate. It also contributes to increase the apparent dynamic toughness of the material.
Modeling of non-uniform spatial arrangement of fibers in a ceramic matrix composite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, S.; Tewari, A.; Gokhale, A.M.
In the unidirectional fiber reinforced composites, the spatial agreement of fibers is often non-uniform. These non-uniformities are linked to the processing conditions, and they affect the properties of the composite. In this contribution, a recently developed digital image analysis technique is used to quantify the non-uniform spatial arrangement of Nicalon fibers in a ceramic matrix composite (CMC). These quantitative data are utilized to develop a six parameter computer simulated microstructure model that is statistically equivalent to the non-uniform microstructure of the CMC. The simulated microstructure can be utilized as a RVE for the micro-mechanical modeling studies.
EDITORIAL: 15th European Workshop on Micromechanics (MME)
NASA Astrophysics Data System (ADS)
Puers, Bob
2005-07-01
This special issue of Journal of Micromechanics and Microengineering is entirely devoted to the fifteenth European Workshop on Micromechanics (MME), which was held in Leuven, at the Faculty Club, 5-7 September 2004. In this issue you will find a selection of papers presented at this workshop. The MME Workshop is organized every year to gather mostly European scientists and people from industry to discuss topics related to micromachining and microengineering in an informal manner. The first workshop was held at Twente University, the Netherlands, in 1989. The success of that event inaugurated a series of workshops traveling all over Europe. Looking back on the fifteen years of micromachining it is evident that the field has become more mature. More application driven research is now replacing the basic pure technology driven research we once got so excited about. Yet, half of the contributions still cover problems related to fabrication, production and reliability. Traditionally, the workshop aims to bring together young scientists in the field, with emphasis on discussions and communications in a friendly and informal atmosphere. The goal is to stimulate and to improve knowledge in the field, as well as to promote friendships between researchers. This edition of the workshop was no different. More than 70 papers were contributed, and it was decided to widen the scope with contributions also covering non-silicon technologies. This trend had already been informally introduced some years ago. After the third edition, it was decided to open up a selection of the contributed papers to a broader public by publishing them in a special issue of Journal of Micromechanics and Microengineering, and this has continued to the present day. Since the purpose of the workshop clearly is to stimulate younger scientists to enter the field, even immature research is presented there. The selection in this issue, however, aims to bring to you the more advanced level research work. Even so, without doubt, such a selection was not an easy task to perform. A careful choice was made by the Programme Committee of the MME Workshop at first, followed by the regular reviewing procedure at the heart of IOP Publishing. I am proud to be able to present to you this collection of 23 papers. We decided also to include papers dealing with non-lithography based manufacturing techniques in this special issue, in an attempt to widen the scope. With this special issue we hope to give you a good overview of the topics dealt with in this workshop. It goes without saying that all the above was not possible without the individual contributions of all the authors. I owe them much gratitude. Gathered here are contributions of an excellent scientific quality, reflecting a clear up-to-date image of what is going on in Europe in this field. I also wish to extend my thanks to the editorial staff of Journal of Micromechanics and Microengineering. Collaboration with them turns work into pleasure. I wish you a pleasant reading.
Micromechanics of sea ice gouge in shear zones
NASA Astrophysics Data System (ADS)
Sammonds, Peter; Scourfield, Sally; Lishman, Ben
2015-04-01
The deformation of sea ice is a key control on the Arctic Ocean dynamics. Shear displacement on all scales is an important deformation process in the sea cover. Shear deformation is a dominant mechanism from the scale of basin-scale shear lineaments, through floe-floe interaction and block sliding in ice ridges through to the micro-scale mechanics. Shear deformation will not only depend on the speed of movement of ice surfaces but also the degree that the surfaces have bonded during thermal consolidation and compaction. Recent observations made during fieldwork in the Barents Sea show that shear produces a gouge similar to a fault gouge in a shear zone in the crust. A range of sizes of gouge are exhibited. The consolidation of these fragments has a profound influence on the shear strength and the rate of the processes involved. We review experimental results in sea ice mechanics from mid-scale experiments, conducted in the Hamburg model ship ice tank, simulating sea ice floe motion and interaction and compare these with laboratory experiments on ice friction done in direct shear, and upscale to field measurement of sea ice friction and gouge deformation made during experiments off Svalbard. We find that consolidation, fragmentation and bridging play important roles in the overall dynamics and fit the model of Sammis and Ben-Zion, developed for understanding the micro-mechanics of rock fault gouge, to the sea ice problem.
NASA Technical Reports Server (NTRS)
Wilt, Thomas E.; Arnold, Steven M.; Saleeb, Atef F.
1997-01-01
A fatigue damage computational algorithm utilizing a multiaxial, isothermal, continuum-based fatigue damage model for unidirectional metal-matrix composites has been implemented into the commercial finite element code MARC using MARC user subroutines. Damage is introduced into the finite element solution through the concept of effective stress that fully couples the fatigue damage calculations with the finite element deformation solution. Two applications using the fatigue damage algorithm are presented. First, an axisymmetric stress analysis of a circumferentially reinforced ring, wherein both the matrix cladding and the composite core were assumed to behave elastic-perfectly plastic. Second, a micromechanics analysis of a fiber/matrix unit cell using both the finite element method and the generalized method of cells (GMC). Results are presented in the form of S-N curves and damage distribution plots.
Damage development in titanium metal matrix composites subjected to cyclic loading
NASA Technical Reports Server (NTRS)
Johnson, W. S.
1992-01-01
Several layups of SCS-6/Ti-15-3 composites were investigated. Fatigue tests were conducted and analyzed for both notched and unnotched specimens at room temperature and elevated temperatures. Thermo-mechanical fatigue results were analyzed. Test results indicated that the stress in the 0 degree fibers is the controlling factor in fatigue life. The static and fatigue strength of these materials is shown to be strongly dependent on the level of residual stresses and the fiber/matrix interfacial strength. Fatigue tests of notched specimens showed that cracks can initiate and grow many fiber spacings in the matrix materials without breaking fibers. Fiber bridging models were applied to characterize the crack growth behavior. The matrix cracks are shown to significantly reduce the residual strength of notched composites. The notch strength of these composites was accurately predicted using a micromechanics based methodology.
Damage development in titanium metal-matrix composites subjected to cyclic loading
NASA Technical Reports Server (NTRS)
Johnson, W. S.
1993-01-01
Several layups of SCS-6/Ti-15-3 composites were investigated. Fatigue tests were conducted and analyzed for both notched and unnotched specimens at room temperature and elevated temperatures. Thermo-mechanical fatigue results were analyzed. Test results indicated that the stress in the 0 degree fibers is the controlling factor in fatigue life. The static and fatigue strength of these materials is shown to be strongly dependent on the level of residual stresses and the fiber/matrix interfacial strength. Fatigue tests of notched specimens showed that cracks can initiate and grow many fiber spacings in the matrix materials without breaking fibers. Fiber bridging models were applied to characterize the crack growth behavior. The matrix cracks are shown to significantly reduce the residual strength of notched composites. The notch strength of these composites was accurately predicted using a micromechanics based methodology.
Development of BEM for ceramic composites
NASA Technical Reports Server (NTRS)
Henry, D. P.; Banerjee, P. K.; Dargush, G. F.
1990-01-01
Details on the progress made during the first three years of a five-year program towards the development of a boundary element code are presented. This code was designed for the micromechanical studies of advance ceramic composites. Additional effort was made in generalizing the implementation to allow the program to be applicable to real problems in the aerospace industry. The ceramic composite formulations developed were implemented in the three-dimensional boundary element computer code BEST3D. BEST3D was adopted as the base for the ceramic composite program, so that many of the enhanced features of this general purpose boundary element code could by utilized. Some of these facilities include sophisticated numerical integration, the capability of local definition of boundary conditions, and the use of quadratic shape functions for modeling geometry and field variables on the boundary. The multi-region implementation permits a body to be modeled in substructural parts; thus dramatically reducing the cost of the analysis. Furthermore, it allows a body consisting of regions of different ceramic matrices and inserts to be studied.
Simulation of springback and microstructural analysis of dual phase steels
NASA Astrophysics Data System (ADS)
Kalyan, T. Sri.; Wei, Xing; Mendiguren, Joseba; Rolfe, Bernard
2013-12-01
With increasing demand for weight reduction and better crashworthiness abilities in car development, advanced high strength Dual Phase (DP) steels have been progressively used when making automotive parts. The higher strength steels exhibit higher springback and lower dimensional accuracy after stamping. This has necessitated the use of simulation of each stamped component prior to production to estimate the part's dimensional accuracy. Understanding the micro-mechanical behaviour of AHSS sheet may provide more accuracy to stamping simulations. This work can be divided basically into two parts: first modelling a standard channel forming process; second modelling the micro-structure of the process. The standard top hat channel forming process, benchmark NUMISHEET'93, is used for investigating springback effect of WISCO Dual Phase steels. The second part of this work includes the finite element analysis of microstructures to understand the behaviour of the multi-phase steel at a more fundamental level. The outcomes of this work will help in the dimensional control of steels during manufacturing stage based on the material's microstructure.
NASA Technical Reports Server (NTRS)
Pindera, Marek-Jerzy; Freed, Alan D.; Arnold, Steven M.
1992-01-01
Examined here is the effect of fiber and interfacial layer morphologies on thermal fields in metal matrix composites (MMCs). A micromechanics model based on an arbitrarily layered concentric cylinder configuration is used to calculate thermal stress fields in MMCs subjected to spatially uniform temperature changes. The fiber is modelled as a layered material with isotropic or orthotropic elastic layers, whereas the surrounding matrix, including interfacial layers, is treated as a strain-hardening, elastoplastic, von Mises solid with temperature-dependent parameters. The solution to the boundary-value problem of an arbitrarily layered concentric cylinder under the prescribed thermal loading is obtained using the local/global stiffness matrix formulation originally developed for stress analysis of multilayered elastic media. Examples are provided that illustrate how the morphology of the SCS6 silicon carbide fiber and the use of multiple compliant layers at the fiber/matrix interface affect the evolution of residual stresses in SiC/Ti composites during fabrication cool-down.
The Effect of General Statistical Fiber Misalignment on Predicted Damage Initiation in Composites
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Aboudi, Jacob; Arnold, Steven M.
2014-01-01
A micromechanical method is employed for the prediction of unidirectional composites in which the fiber orientation can possess various statistical misalignment distributions. The method relies on the probability-weighted averaging of the appropriate concentration tensor, which is established by the micromechanical procedure. This approach provides access to the local field quantities throughout the constituents, from which initiation of damage in the composite can be predicted. In contrast, a typical macromechanical procedure can determine the effective composite elastic properties in the presence of statistical fiber misalignment, but cannot provide the local fields. Fully random fiber distribution is presented as a special case using the proposed micromechanical method. Results are given that illustrate the effects of various amounts of fiber misalignment in terms of the standard deviations of in-plane and out-of-plane misalignment angles, where normal distributions have been employed. Damage initiation envelopes, local fields, effective moduli, and strengths are predicted for polymer and ceramic matrix composites with given normal distributions of misalignment angles, as well as fully random fiber orientation.
Modeling of the fracture behavior of spot welds using advanced micro-mechanical damage models
NASA Astrophysics Data System (ADS)
Sommer, Silke
2010-06-01
This paper presents the modeling of deformation and fracture behavior of resistance spot welded joints in DP600 steel sheets. Spot welding is still the most commonly used joining technique in automotive engineering. In overloading situations like crash joints are often the weakest link in a structure. For those reasons, crash simulations need reliable and applicable tools to predict the load bearing capacity of spot welded components. Two series of component tests with different spot weld diameters have shown that the diameter of the weld nugget is the main influencing factor affecting fracture mode (interfacial or pull-out fracture), load bearing capacity and energy absorption. In order to find a correlation between nugget diameter, load bearing capacity and fracture mode, the spot welds are simulated with detailed finite element models containing base metal, heat affected zone and weld metal in lap-shear loading conditions. The change in fracture mode from interfacial to pull-out or peel-out fracture with growing nugget diameter under lap-shear loading was successfully modeled using the Gologanu-Leblond model in combination with the fracture criteria of Thomason and Embury. A small nugget diameter is identified to be the main cause for interfacial fracture. In good agreement with experimental observations, the calculated pull-out fracture initiates in the base metal at the boundary to the heat affected zone.
NASA Astrophysics Data System (ADS)
Michel, Jean-Claude; Suquet, Pierre
2016-05-01
In 2003 the authors proposed a model-reduction technique, called the Nonuniform Transformation Field Analysis (NTFA), based on a decomposition of the local fields of internal variables on a reduced basis of modes, to analyze the effective response of composite materials. The present study extends and improves on this approach in different directions. It is first shown that when the constitutive relations of the constituents derive from two potentials, this structure is passed to the NTFA model. Another structure-preserving model, the hybrid NTFA model of Fritzen and Leuschner, is analyzed and found to differ (slightly) from the primal NTFA model (it does not exhibit the same variational upper bound character). To avoid the "on-line" computation of local fields required by the hybrid model, new reduced evolution equations for the reduced variables are proposed, based on an expansion to second order (TSO) of the potential of the hybrid model. The coarse dynamics can then be entirely expressed in terms of quantities which can be pre-computed once for all. Roughly speaking, these pre-computed quantities depend only on the average and fluctuations per phase of the modes and of the associated stress fields. The accuracy of the new NTFA-TSO model is assessed by comparison with full-field simulations. The acceleration provided by the new coarse dynamics over the full-field computations (and over the hybrid model) is then spectacular, larger by three orders of magnitude than the acceleration due to the sole reduction of unknowns.
Probabilistic Simulation for Nanocomposite Characterization
NASA Technical Reports Server (NTRS)
Chamis, Christos C.; Coroneos, Rula M.
2007-01-01
A unique probabilistic theory is described to predict the properties of nanocomposites. The simulation is based on composite micromechanics with progressive substructuring down to a nanoscale slice of a nanofiber where all the governing equations are formulated. These equations have been programmed in a computer code. That computer code is used to simulate uniaxial strengths properties of a mononanofiber laminate. The results are presented graphically and discussed with respect to their practical significance. These results show smooth distributions.
Qu, Feini; Li, Qing; Wang, Xiao; Cao, Xuan; Zgonis, Miltiadis H; Esterhai, John L; Shenoy, Vivek B; Han, Lin; Mauck, Robert L
2018-02-19
Few regenerative approaches exist for the treatment of injuries to adult dense connective tissues. Compared to fetal tissues, adult connective tissues are hypocellular and show limited healing after injury. We hypothesized that robust repair can occur in fetal tissues with an immature extracellular matrix (ECM) that is conducive to cell migration, and that this process fails in adults due to the biophysical barriers imposed by the mature ECM. Using the knee meniscus as a platform, we evaluated the evolving micromechanics and microstructure of fetal and adult tissues, and interrogated the interstitial migratory capacity of adult meniscal cells through fetal and adult tissue microenvironments with or without partial enzymatic digestion. To integrate our findings, a computational model was implemented to determine how changing biophysical parameters impact cell migration through these dense networks. Our results show that the micromechanics and microstructure of the adult meniscus ECM sterically hinder cell mobility, and that modulation of these ECM attributes via an exogenous matrix-degrading enzyme permits migration through this otherwise impenetrable network. By addressing the inherent limitations to repair imposed by the mature ECM, these studies may define new clinical strategies to promote repair of damaged dense connective tissues in adults.
Measurement of grain wall contact forces in a granular bed using frequency-scanning interferometry
NASA Astrophysics Data System (ADS)
Osman, M. S.; Huntley, J. M.; Wildman, R. D.
2005-07-01
Micro-mechanical theories have recently been developed to model the propagation of force through a granular material based on single grain interactions. We describe here an experimental technique, developed to validate such theories, that is able to measure the individual contact forces between the grains and the wall of the containing vessel, thereby avoiding the spatial averaging effect of conventional pressure transducers. The method involves measuring interferometrically the deflection of an interface within a triple-layer elastic substrate consisting of epoxy, silicone rubber, and glass. A thin coating of gold between the epoxy and rubber acts as a reflective film, with the reference wave provided by the glass/air interface. Phase shifting is carried out by means of a tunable laser. Phase difference maps are calculated using a 15-frame phase-shifting formula based on a Hanning window. The resulting displacement resolution of order 1 nm allows the wall stiffness to be increased by some two orders of magnitude compared to previously described methods in the literature.
Local relative density modulates failure and strength in vertically aligned carbon nanotubes.
Pathak, Siddhartha; Mohan, Nisha; Decolvenaere, Elizabeth; Needleman, Alan; Bedewy, Mostafa; Hart, A John; Greer, Julia R
2013-10-22
Micromechanical experiments, image analysis, and theoretical modeling revealed that local failure events and compressive stresses of vertically aligned carbon nanotubes (VACNTs) were uniquely linked to relative density gradients. Edge detection analysis of systematically obtained scanning electron micrographs was used to quantify a microstructural figure-of-merit related to relative local density along VACNT heights. Sequential bottom-to-top buckling and hardening in stress-strain response were observed in samples with smaller relative density at the bottom. When density gradient was insubstantial or reversed, bottom regions always buckled last, and a flat stress plateau was obtained. These findings were consistent with predictions of a 2D material model based on a viscoplastic solid with plastic non-normality and a hardening-softening-hardening plastic flow relation. The hardening slope in compression generated by the model was directly related to the stiffness gradient along the sample height, and hence to the local relative density. These results demonstrate that a microstructural figure-of-merit, the effective relative density, can be used to quantify and predict the mechanical response.
Xu, Yingjie; Gao, Tian
2016-01-01
Carbon fiber-reinforced multi-layered pyrocarbon–silicon carbide matrix (C/C–SiC) composites are widely used in aerospace structures. The complicated spatial architecture and material heterogeneity of C/C–SiC composites constitute the challenge for tailoring their properties. Thus, discovering the intrinsic relations between the properties and the microstructures and sequentially optimizing the microstructures to obtain composites with the best performances becomes the key for practical applications. The objective of this work is to optimize the thermal-elastic properties of unidirectional C/C–SiC composites by controlling the multi-layered matrix thicknesses. A hybrid approach based on micromechanical modeling and back propagation (BP) neural network is proposed to predict the thermal-elastic properties of composites. Then, a particle swarm optimization (PSO) algorithm is interfaced with this hybrid model to achieve the optimal design for minimizing the coefficient of thermal expansion (CTE) of composites with the constraint of elastic modulus. Numerical examples demonstrate the effectiveness of the proposed hybrid model and optimization method. PMID:28773343
Fundamental analysis of the failure of polymer-based fiber reinforced composites
NASA Technical Reports Server (NTRS)
Kanninen, M. F.; Rybicki, E. F.; Griffith, W. I.; Broek, D.
1976-01-01
A mathematical model is described which will permit predictions of the strength of fiber reinforced composites containing known flaws to be made from the basic properties of their constituents. The approach was to embed a local heterogeneous region (LHR) surrounding the crack tip into an anisotropic elastic continuum. The model should (1) permit an explicit analysis of the micromechanical processes involved in the fracture process, and (2) remain simple enough to be useful in practical computations. Computations for arbitrary flaw size and orientation under arbitrary applied load combinations were performed from unidirectional composites with linear elastic-brittle constituent behavior. The mechanical properties were nominally those of graphite epoxy. With the rupture properties arbitrarily varied to test the capability of the model to reflect real fracture modes in fiber composites, it was shown that fiber breakage, matrix crazing, crack bridging, matrix-fiber debonding, and axial splitting can all occur during a period of (gradually) increasing load prior to catastrophic fracture. The computations reveal qualitatively the sequential nature of the stable crack process that precedes fracture.
NASA Technical Reports Server (NTRS)
Nemeth, Noel
2013-01-01
Models that predict the failure probability of monolithic glass and ceramic components under multiaxial loading have been developed by authors such as Batdorf, Evans, and Matsuo. These "unit-sphere" failure models assume that the strength-controlling flaws are randomly oriented, noninteracting planar microcracks of specified geometry but of variable size. This report develops a formulation to describe the probability density distribution of the orientation of critical strength-controlling flaws that results from an applied load. This distribution is a function of the multiaxial stress state, the shear sensitivity of the flaws, the Weibull modulus, and the strength anisotropy. Examples are provided showing the predicted response on the unit sphere for various stress states for isotropic and transversely isotropic (anisotropic) materials--including the most probable orientation of critical flaws for offset uniaxial loads with strength anisotropy. The author anticipates that this information could be used to determine anisotropic stiffness degradation or anisotropic damage evolution for individual brittle (or quasi-brittle) composite material constituents within finite element or micromechanics-based software
Transverse ductility of metal matrix composites
NASA Technical Reports Server (NTRS)
Gunawardena, S. R.; Jansson, S.; Leckie, F. A.
1991-01-01
The role of the fiber matrix interface bond on the transverse ductility of continuous fiber reinforced composites has been investigated. Two specific systems have been considered: an Aluminum alloy matrix reinforced by Alumina fibers, characterized by a strong interface and a Titanium alloy reinforced by coated Silicon Carbide fibers, characterized by a weak interface. A micro-mechanical study indicates that the bond condition has a significant effect on the state of stress in the matrix which in turn dictates the available matrix ductility. The micro-mechanical predictions are in good agreement with the experimental results for the two systems.
Micromechanical Switches on GaAs for Microwave Applications
NASA Technical Reports Server (NTRS)
Randall, John N.; Goldsmith, Chuck; Denniston, David; Lin, Tsen-Hwang
1995-01-01
In this presentation, we describe the fabrication of micro-electro-mechanical system (MEMS) devices, in particular, of low-frequency multi-element electrical switches using SiO2 cantilevers. The switches discussed are related to micromechanical membrane structures used to perform switching of optical signals on silicon substrates. These switches use a thin metal membrane which is actuated by an electrostatic potential, causing the switch to make or break contact. The advantages include: superior isolation, high power handling capabilities, high radiation hardening, very low power operations, and the ability to integrate onto GaAs monolithic microwave integrated circuit (MMIC) chips.
NASA Astrophysics Data System (ADS)
Pons, Patrick
2010-06-01
This special section of the Journal of Micromechanics and Microengineering is devoted to the 20th European Workshop on Micromechanics (MME 2009), which was held in Toulouse, France, 20-22 September 2009. The MME workshop series started in 1989 in Twente and was the first European event created in the field of micro machining technology for developing micro components, micro sensors, micro actuators, and micro systems. Over the last two decades the MEMS community has grown considerably, and the MME workshops have sustained this progress through annual meetings all around Europe: Twente (The Netherlands, 1989), Berlin (Germany, 1990), Leuven (Belgium, 1992), Neuchatel (Switzerland, 1993), Pisa (Italy, 1994), Copenhagen (Denmark, 1995), Barcelona (Spain, 1996), Southampton (United Kingdom, 1997), Ulvik (Norway, 1998), Gif-sur-Yvette (France, 1999), Uppsala (Sweden, 2000), Cork (Ireland, 2001), Sinaia (Romania, 2002), Delft (The Netherlands, 2003), Leuven (Belgium, 2004), Goteborg (Sweden, 2005), Southampton (United Kingdom, 2006), Guimaraes (Portugal, 2007) and Aachen (Germany, 2008). For twenty years, MME conferences have provided an excellent opportunity to bring together many, predominantly European, scientists and engineers to present and discuss the latest developments in this field. For the 20th anniversary of the MicroMechanics Europe Workshop, 115 papers from 23 countries were submitted. Selected contributions were presented during four poster sessions, including short oral presentations. A very interesting feature of the MME workshops is their ability to promote young researchers. Six invited speakers from research centres and industry also gave an overview on advanced technological, characterization and simulation tools. The two day workshop was attended by 185 delegates from 22 countries all over Europe, and from Japan, Taiwan, USA and Mexico. On behalf of the MME 2009 Program Committee, I would like to express my sincere gratitude to all authors of submitted papers. Their high levels of quality and considerable quantity serve as the foundation of this workshop's success. I'm also grateful to all the Program Committee members (Professor Miko Elwenspoek, Dr Martin Hill and Dr Uwe Schnakenberg) who gave their valuable time to review these numerous papers. I am proud to present 20 high-quality papers from MME 2009, selected through the regular review procedure of IOP Publishing, for their novelty and relevance to Journal of Micromechanics and Microengineering. These papers give a good overview of the topics presented during the workshop (microtechnology, characterization, sensors and actuators). I would also like to express my gratitude to Professor Robert Puers for advising on paper selection and to Dr Ian Forbes for coordinating this special section with the IOP Publishing office. I hope you enjoy reading this selection of papers.
Flury, Simon; Diebold, Elisabeth; Peutzfeldt, Anne; Lussi, Adrian
2017-06-01
Because of the different composition of resin-ceramic computer-aided design and computer-aided manufacturing (CAD-CAM) materials, their polishability and their micromechanical properties vary. Moreover, depending on the composition of the materials, their surface roughness and micromechanical properties are likely to change with time. The purpose of this in vitro study was to investigate the effect of artificial toothbrushing and water storage on the surface roughness (Ra and Rz) and the micromechanical properties, surface hardness (Vickers [VHN]) and indentation modulus (E IT ), of 5 different tooth-colored CAD-CAM materials when polished with 2 different polishing systems. Specimens (n=40 per material) were cut from a composite resin (Paradigm MZ100; 3M ESPE), a feldspathic ceramic (Vitablocs Mark II; Vita Zahnfabrik), a resin nanoceramic (Lava Ultimate; 3M ESPE), a hybrid dental ceramic (Vita Enamic; Vita Zahnfabrik), and a nanocomposite resin (Ambarino High-Class; Creamed). All specimens were roughened in a standardized manner and polished either with Sof-Lex XT discs or the Vita Polishing Set Clinical. Surface roughness, VHN, and E IT were measured after polishing and after storage for 6 months (tap water, 37°C) with periodic, artificial toothbrushing. The surface roughness, VHN, and E IT results were analyzed with a nonparametric ANOVA followed by Kruskal-Wallis and exact Wilcoxon rank sum tests (α=.05). Irrespective of polishing system and of artificial toothbrushing and storage, Lava Ultimate generally showed the lowest surface roughness and Vitablocs Mark II the highest. As regards micromechanical properties, the following ranking of the CAD-CAM materials was found (from highest VHN/E IT to lowest VHN/E IT ): Vitablocs Mark II > Vita Enamic > Paradigm MZ100 > Lava Ultimate > Ambarino High-Class. Irrespective of material and of artificial toothbrushing and storage, polishing with Sof-Lex XT discs resulted in lower surface roughness than the Vita Polishing Set Clinical (P≤.016). However, the polishing system generally had no influence on the micromechanical properties (P>.05). The effect of artificial toothbrushing and storage on surface roughness depended on the material and the polishing system: Ambarino High-Class was most sensitive to storage, Lava Ultimate and Vita Enamic were least sensitive. Artificial toothbrushing and storage generally resulted in a decrease in VHN and E IT for Paradigm MZ100, Lava Ultimate, and Ambarino High-Class but not for Vita Enamic and Vitablocs Mark II. Tooth-colored CAD-CAM materials with lower VHN and E IT generally showed better polishability. However, these materials were more prone to degradation by artificial toothbrushing and water storage than materials with higher VHN and E IT . Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Understanding thermally activated plastic deformation behavior of Zircaloy-4
NASA Astrophysics Data System (ADS)
Kumar, N.; Alomari, A.; Murty, K. L.
2018-06-01
Understanding micromechanics of plastic deformation of existing materials is essential for improving their properties further and/or developing advanced materials for much more severe load bearing applications. The objective of the present work was to understand micromechanics of plastic deformation of Zircaloy-4, a zirconium-based alloy used as fuel cladding and channel (in BWRs) material in nuclear reactors. The Zircaloy-4 in recrystallized (at 973 K for 4 h) condition was subjected to uniaxial tensile testing at a constant cross-head velocity at temperatures in the range 293 K-1073 K and repeated stress relaxation tests at 293 K, 573 K, and 773 K. The minimum in the total elongation was indicative of dynamic strain aging phenomenon in this alloy in the intermediate temperature regime. The yield stress of the alloy was separated into effective and athermal components and the transition from thermally activated dislocation glide to athermal regime took place at around 673 K with the athermal stress estimated to be 115 MPa. The activation volume was found to be in the range of 40 b3 to 160 b3. The activation volume values and the data analyses using the solid-solution models in literature indicated dislocation-solute interaction to be a potential deformation mechanism in thermally activated regime. The activation energy calculated at 573 K was very close to that found for diffusivity of oxygen in α-Zr that was suggestive of dislocations-oxygen interaction during plastic deformation. This type of information may be helpful in alloy design in selecting different elements to control the deformation behavior of the material and impart desired mechanical properties in those materials for specific applications.
NASA Astrophysics Data System (ADS)
Roellig, Mike; Meier, Karsten; Metasch, Rene
2010-11-01
The recent development of 3D-integrated electronic packages is characterized by the need to increase the diversity of functions and to miniaturize. Currently many 3D-integration concepts are being developed and all of them demand new materials, new designs and new processing technologies. The combination of simulation and experimental investigation becomes increasingly accepted since simulations help to shorten the R&D cycle time and reduce costs. Numerical calculations like the Finite-Element-Method are strong tools to calculate stress conditions in electronic packages resulting from thermal strains due to the manufacturing process and environmental loads. It is essential for the application of numerical calculations that the material data is accurate and describes sufficiently the physical behaviour. The developed machine allows the measurement of time and temperature dependent micromechanical properties of solder joints. Solder joints, which are used to mechanically and electrically connect different packages, are physically measured as they leave the process. This allows accounting for process influences, which may change material properties. Additionally, joint sizes and metallurgical interactions between solder and under bump metallization can be respected by this particular measurement. The measurement allows the determination of material properties within a temperature range of 20° C-200° C. Further, the time dependent creep deformation can be measured within a strain-rate range of 10-31/s-10-81/s. Solder alloys based on Sn-Ag/Sn-Ag-Cu with additionally impurities and joint sizes down to O/ 200 μm were investigated. To finish the material characterization process the material model coefficient were extracted by FEM-Simulation to increase the accuracy of data.
Wang, Shenglong; Hu, Sijia; Brown, Erika P; Nakatsuka, Matthew A; Zhao, Jiafei; Yang, Mingjun; Song, Yongchen; Koh, Carolyn A
2017-05-24
In order to investigate the mechanism of gas hydrate deposition and agglomeration in gas dominated flowlines, a high-pressure micromechanical force (MMF) apparatus was applied to directly measure CH 4 /C 2 H 6 hydrate adhesion/cohesion forces under low temperature and high pressure conditions. A CH 4 /C 2 H 6 gas mixture was used as the hydrate former. Adhesion forces between hydrate particles and carbon steel (CS) surfaces were measured, and the effects of corrosion on adhesion forces were analyzed. The influences of NaCl concentration on the cohesion force between CH 4 /C 2 H 6 hydrate particles were also studied for gas-dominated systems. It was observed that there was no measurable adhesion force for pristine (no corrosion) and corroded surfaces, when there was no condensed water or water droplet on these surfaces. With water on the surface (the estimated water amount was around 1.7 μg mm -2 ), a hydrate film growth process was observed during the measurement. CS samples were soaked in NaCl solution to obtain different extents of corrosion on surfaces, and adhesion measurements were performed on both pristine and corroded samples. The adhesion force was found to increase with increasing soak times in 5 wt% NaCl (resulting in more visual corrosion) by up to 500%. For the effect of salinity on cohesion forces, it was found that the presence of NaCl decreased the cohesion force between hydrate particles, and a possible explanation of this phenomenon was given based on the capillary liquid bridge model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmauder, S.; Haake, S.; Mueller, W.H.
Computer modeling of materials and especially modeling the mechanical behavior of composites became increasingly popular in the past few years. Among them are examples of micromechanical modeling of real structures as well as idealized model structures of linear elastic and elasto-plastic material response. In this paper, Erdogan`s Integral Equation Method (IEM) is chosen as an example for a powerful method providing principle insight into elastic fracture mechanical situations. IEM or, alternatively, complex function techniques sometimes even allow for deriving analytical solutions such as in the case of a circumferential crack along a fiber/matrix interface. The analytical formulae of this interfacemore » crack will be analyzed numerically and typical results will be presented graphically.« less
Modeling the Tensile Behavior of Cross-Ply C/SiC Ceramic-Matrix Composites
NASA Astrophysics Data System (ADS)
Li, L. B.; Song, Y. D.; Sun, Y. C.
2015-07-01
The tensile behavior of cross-ply C/SiC ceramic-matrix composites (CMCs) at room temperature has been investigated. Under tensile loading, the damage evolution process was observed with an optical microscope. A micromechanical approach was developed to predict the tensile stress-strain curve, which considers the damage mechanisms of transverse multicracking, matrix multicracking, fiber/matrix interface debonding, and fiber fracture. The shear-lag model was used to describe the microstress field of the damaged composite. By combining the shear-lag model with different damage models, the tensile stress-strain curve of cross-ply CMCs corresponding to each damage stage was modeled. The predicted tensile stress-strain curves of cross-ply C/SiC composites agreed with experimental data.
Control of serpentinisation rate by reaction-induced cracking
NASA Astrophysics Data System (ADS)
Malvoisin, Benjamin; Brantut, Nicolas; Kaczmarek, Mary-Alix
2017-10-01
Serpentinisation of mantle rocks requires the generation and maintenance of transport pathways for water. The solid volume increase during serpentinisation can lead to stress build-up and trigger cracking, which ease fluid penetration into the rock. The quantitative effect of this reaction-induced cracking mechanism on reactive surface generation is poorly constrained, thus hampering our ability to predict serpentinisation rate in geological environments. Here we use a combined approach with numerical modelling and observations in natural samples to provide estimates of serpentinisation rate at mid-ocean ridges. We develop a micromechanical model to quantify the propagation of serpentinisation-induced cracks in olivine. The maximum crystallisation pressure deduced from thermodynamic calculations reaches several hundreds of megapascals but does not necessary lead to crack propagation if the olivine grain is subjected to high compressive stresses. The micromechanical model is then coupled to a simple geometrical model to predict reactive surface area formation during grain splitting, and thus bulk reaction rate. Our model reproduces quantitatively experimental kinetic data and the typical mesh texture formed during serpentinisation. We also compare the model results with olivine grain size distribution data obtained on natural serpentinised peridotites from the Marum ophiolite and the Papuan ultramafic belt (Papua New Guinea). The natural serpentinised peridotites show an increase of the number of olivine grains for a decrease of the mean grain size by one order of magnitude as reaction progresses from 5 to 40%. These results are in agreement with our model predictions, suggesting that reaction-induced cracking controls the serpentinisation rate. We use our model to estimate that, at mid-ocean ridges, serpentinisation occurs up to 12 km depth and reaction-induced cracking reduces the characteristic time of serpentinisation by one order of magnitude, down to values comprised between 10 and 1000 yr. The increase of effective pressure with depth also prevents cracking, which positions the peak in serpentinisation rate at shallower depths, 4 km above previous predictions.
1995-12-01
Certification. Oliver Wight Publications, Inc. Essex Junction. 1993. Ishikawa , Kaoru . (Translation by David J. Lu) What is Total Quality Control? The Japanese...approximation to the eight-harness satin weave (8H SW) is made, following the mosaic model ( Ishikawa and Chou, 1983) which treats woven composites as cross...K. W. and Bailey, J. E. (1978) Journal of Material Science, Vol. 13, pp. 195. Ishikawa , T. and Chou, T. W. (1983) One-dimensional micromechanical
1991-05-22
infinite number of possi’le crystal orientations is assumed, this infinitely sided polyhedron becomes a curved yield surface. Plastic strain in the...families, each surface of yield polyhedron mentioned above expands and shifts differently. These slip directions are all more or less parallel to the...result, only the monotonic portion of test D29 was corrected for membrane compliance and used as part of the monotonic proportional test database
Nonlinear Micromorphic Continuum Mechanics and Finite Strain Elastoplasticity
2010-11-01
phenomenology at the micro and macroscales. More micromechanical analysis and experimental data are necessary to determine the microplasticity ...129) ᾱ∇χ L̄ = H̄∇χZ̄χ ,L̄ (130) where ˙̄γ∇χ is the microplastic gradient multiplier. 40 Remark 3. The main advantage to defining constitutively the...for macro and microplasticity (F̄ χ and Ḡχ with similar functional form as F̄ and Ḡ), but this is only for the example model presented here. It is
2006-10-30
acknowledges funding from the ‘‘ Programa Torres Quevedo’’ of the Spanish Ministerio de Educación y Ciencia. References [1] Nix WD. Metall Mater Trans A...University of Madrid E. T. S. de Ingenieros de Caminos Madrid 28040 Spain 8. PERFORMING ORGANIZATION REPORT NUMBER N/A 10. SPONSOR...Rodney * Génie Physique et Mécanique des Matériaux (UMR CNRS 5010), Institut National Polytechnique de Grenoble, 101 rue de la Physique, 38402
2006-10-30
acknowledges funding from the ‘‘ Programa Torres Quevedo’’ of the Spanish Ministerio de Educación y Ciencia. References [1] Nix WD. Metall Mater Trans A...University of Madrid E. T. S. de Ingenieros de Caminos Madrid 28040 Spain 8. PERFORMING ORGANIZATION REPORT NUMBER N/A 10. SPONSOR...Rodney * Génie Physique et Mécanique des Matériaux (UMR CNRS 5010), Institut National Polytechnique de Grenoble, 101 rue de la Physique, 38402
1998-09-01
1 .AND. ICOUNT .GT. ISTRAIN )GOTO 55 Add additional terms in equations for interface nodes If radial loading is applied, add term BMAT (NTOT-1) = SR...term in bmat Using Bmat , and the L-U decomposition of Amat determine XSOL, the vector of radial and hoop stresses CALL LUBKSB(AMAT,NRA,LDA,IPVT... BMAT ,XSOL) Compute stresses from the XSOL solution vector Use Boundary conditions S(1,NTOT2) = SR S(2,1) = S(1,1) Compute total axial
Probabilistic Mesomechanical Fatigue Model
NASA Technical Reports Server (NTRS)
Tryon, Robert G.
1997-01-01
A probabilistic mesomechanical fatigue life model is proposed to link the microstructural material heterogeneities to the statistical scatter in the macrostructural response. The macrostructure is modeled as an ensemble of microelements. Cracks nucleation within the microelements and grow from the microelements to final fracture. Variations of the microelement properties are defined using statistical parameters. A micromechanical slip band decohesion model is used to determine the crack nucleation life and size. A crack tip opening displacement model is used to determine the small crack growth life and size. Paris law is used to determine the long crack growth life. The models are combined in a Monte Carlo simulation to determine the statistical distribution of total fatigue life for the macrostructure. The modeled response is compared to trends in experimental observations from the literature.
A Model for Fiber Length Attrition in Injection-Molded Long-Fiber Composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
TuckerIII, Charles L.; Phelps, Jay H; El-Rahman, Ahmed Abd
2013-01-01
Long-fiber thermoplastic (LFT) composites consist of an engineering thermoplastic matrix with glass or carbon reinforcing fibers that are initially 10 to 13 mm long. When an LFT is injection molded, flow during mold filling orients the fibers and degrades the fiber length. Fiber orientation models for injection molding are well developed, and special orientation models for LFTs have been developed. Here we present a detailed quantitative model for fiber length attrition in a flowing fiber suspension. The model tracks a discrete fiber length distribution (FLD) at each spatial node. Key equations are a conservation equation for total fiber length, andmore » a breakage rate equation. The breakage rate is based on buckling of fibers due to hydrodynamic forces, when the fibers are in unfavorable orientations. The FLD model is combined with a mold filling simulation to predict spatial and temporal variations in fiber length distribution in a mold cavity during filling. The predictions compare well to experiments on a glassfiber/ PP LFT molding. Fiber length distributions predicted by the model are easily incorporated into micromechanics models to predict the stress-strain behavior of molded LFT materials. Author to whom correspondence should be addressed; electronic mail: ctucker@illinois.edu 1« less
Viscous anisotropy of textured olivine aggregates: 2. Micromechanical model
NASA Astrophysics Data System (ADS)
Hansen, Lars N.; Conrad, Clinton P.; Boneh, Yuval; Skemer, Philip; Warren, Jessica M.; Kohlstedt, David L.
2016-10-01
The significant viscous anisotropy that results from crystallographic alignment (texture) of olivine grains in deformed upper mantle rocks strongly influences a large variety of geodynamic processes. Our ability to explore the effects of anisotropic viscosity in simulations of these processes requires a mechanical model that can predict the magnitude of anisotropy and its evolution. Unfortunately, existing models of olivine textural evolution and viscous anisotropy are calibrated for relatively small deformations and simple strain paths, making them less general than desired for many large-scale geodynamic scenarios. Here we develop a new set of micromechanical models to describe the mechanical behavior and textural evolution of olivine through a large range of strains and complex strain histories. For the mechanical behavior, we explore two extreme scenarios, one in which each grain experiences the same stress tensor (Sachs model) and one in which each grain undergoes a strain rate as close as possible to the macroscopic strain rate (pseudo-Taylor model). For the textural evolution, we develop a new model in which the director method is used to control the rate of grain rotation and the available slip systems in olivine are used to control the axis of rotation. Only recently has enough laboratory data on the deformation of olivine become available to calibrate these models. We use these new data to conduct inversions for the best parameters to characterize both the mechanical and textural evolution models. These inversions demonstrate that the calibrated pseudo-Taylor model best reproduces the mechanical observations. Additionally, the pseudo-Taylor textural evolution model can reasonably reproduce the observed texture strength, shape, and orientation after large and complex deformations. A quantitative comparison between our calibrated models and previously published models reveals that our new models excel in predicting the magnitude of viscous anisotropy and the details of the textural evolution. In addition, we demonstrate that the mechanical and textural evolution models can be coupled and used to reproduce mechanical evolution during large-strain torsion tests. This set of models therefore provides a new geodynamic tool for incorporating viscous anisotropy into large-scale numerical simulations.
Finite element modeling of frictionally restrained composite interfaces
NASA Technical Reports Server (NTRS)
Ballarini, Roberto; Ahmed, Shamim
1989-01-01
The use of special interface finite elements to model frictional restraint in composite interfaces is described. These elements simulate Coulomb friction at the interface, and are incorporated into a standard finite element analysis of a two-dimensional isolated fiber pullout test. Various interfacial characteristics, such as the distribution of stresses at the interface, the extent of slip and delamination, load diffusion from fiber to matrix, and the amount of fiber extraction or depression are studied for different friction coefficients. The results are compared to those obtained analytically using a singular integral equation approach, and those obtained by assuming a constant interface shear strength. The usefulness of these elements in micromechanical modeling of fiber-reinforced composite materials is highlighted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Thao D.; Grazier, John Mark; Boyce, Brad Lee
Biological tissues are uniquely structured materials with technologically appealing properties. Soft tissues such as skin, are constructed from a composite of strong fibrils and fluid-like matrix components. This was the first coordinated experimental/modeling project at Sandia or in the open literature to consider the mechanics of micromechanically-based anisotropy and viscoelasticity of soft biological tissues. We have exploited and applied Sandia's expertise in experimentation and mechanics modeling to better elucidate the behavior of collagen fibril-reinforced soft tissues. The purpose of this project was to provide a detailed understanding of the deformation of ocular tissues, specifically the highly structured skin-like tissue inmore » the cornea. This discovery improved our knowledge of soft/complex materials testing and modeling. It also provided insight into the way that cornea tissue is bio-engineered such that under physiologically-relevant conditions it has a unique set of properties which enhance functionality. These results also provide insight into how non-physiologic loading conditions, such as corrective surgeries, may push the cornea outside of its natural design window, resulting in unexpected non-linear responses. Furthermore, this project created a clearer understanding of the mechanics of soft tissues that could lead to bio-inspired materials, such as highly supple and impact resistant body armor, and improve our design of human-machine interfaces, such as micro-electrical-mechanical (MEMS) based prosthetics.« less
Studies on Effective Elastic Properties of CNT/Nano-Clay Reinforced Polymer Hybrid Composite
NASA Astrophysics Data System (ADS)
Thakur, Arvind Kumar; Kumar, Puneet; Srinivas, J.
2016-02-01
This paper presents a computational approach to predict elastic propertiesof hybrid nanocomposite material prepared by adding nano-clayplatelets to conventional CNT-reinforced epoxy system. In comparison to polymers alone/single-fiber reinforced polymers, if an additional fiber is added to the composite structure, it was found a drastic improvement in resultant properties. In this regard, effective elastic moduli of a hybrid nano composite are determined by using finite element (FE) model with square representative volume element (RVE). Continuum mechanics based homogenization of the nano-filler reinforced composite is considered for evaluating the volumetric average of the stresses and the strains under different periodic boundary conditions.A three phase Halpin-Tsai approach is selected to obtain the analytical result based on micromechanical modeling. The effect of the volume fractions of CNTs and nano-clay platelets on the mechanical behavior is studied. Two different RVEs of nano-clay platelets were used to investigate the influence of nano-filler geometry on composite properties. The combination of high aspect ratio of CNTs and larger surface area of clay platelets contribute to the stiffening effect of the hybrid samples. Results of analysis are validated with Halpin-Tsai empirical formulae.
Dejaco, Alexander; Komlev, Vladimir S; Jaroszewicz, Jakub; Swieszkowski, Wojciech; Hellmich, Christian
2012-04-05
Hundred micrometers-sized porous hydroxyapatite globules have proved as a successful tissue engineering strategy for bone defects in vivo, as was shown in studies on human mandibles. These granules need to provide enough porous space for bone ingrowth, while maintaining sufficient mechanical competence (stiffness and strength) in this highly load-bearing organ. This double challenge motivates us to scrutinize more deeply the micro- and nanomechanical characteristics of such globules, as to identify possible optimization routes. Therefore, we imaged such a (pre-cracked) granule in a microCT scanner, transformed the attenuation coefficients into voxel-specific nanoporosities, from which we determined, via polycrystal micromechanics, voxel-specific (heterogeneous) elastic properties. The importance of the latter and of the presence of one to several hundred micrometers-sized cracks for realistically estimating the load-carrying behavior of the globule under a typical two-point compressive loading (as in a "splitting" test) is shown through results of large-scale Finite Element analyses, in comparison to analytical results for a sphere loaded at its poles: Use of homogeneous instead of heterogeneous elastic properties would overestimate the structure's stiffness by 5% (when employing a micromechanics-based process as to attain homogeneous properties)-the cracks, in comparison, weaken the structure by one to two orders of magnitudes. Copyright © 2012 Elsevier Ltd. All rights reserved.