Sample records for micron scale particles

  1. Method of producing carbon coated nano- and micron-scale particles

    DOEpatents

    Perry, W. Lee; Weigle, John C; Phillips, Jonathan

    2013-12-17

    A method of making carbon-coated nano- or micron-scale particles comprising entraining particles in an aerosol gas, providing a carbon-containing gas, providing a plasma gas, mixing the aerosol gas, the carbon-containing gas, and the plasma gas proximate a torch, bombarding the mixed gases with microwaves, and collecting resulting carbon-coated nano- or micron-scale particles.

  2. Pre-Stressing Micron-Scale Aluminum Core-Shell Particles to Improve Reactivity

    PubMed Central

    Levitas, Valery I.; McCollum, Jena; Pantoya, Michelle

    2015-01-01

    The main direction in increasing reactivity of aluminum (Al) particles for energetic applications is reduction in their size down to nanoscale. However, Al nanoparticles are 30–50 times more expensive than micron scale particles and possess safety and environmental issues. Here, we improved reactivity of Al micron scale particles by synthesizing pre-stressed core-shell structures. Al particles were annealed and quenched to induce compressive stresses in the alumina passivation shell surrounding Al core. This thermal treatment was designed based on predictions of the melt-dispersion mechanism (MDM); a theory describing Al particle reaction under high heating rate. For all anneal treatment temperatures, experimental flame propagation rates for Al combined with nanoscale copper oxide (CuO) are in quantitative agreement with the theoretical predictions based on the MDM. The best treatment increases flame rate by 36% and achieves 68% of that for the best Al nanoparticles. PMID:25597747

  3. Simultaneous sizing and electrophoretic mobility measurement of sub-micron particles using Brownian motion

    PubMed Central

    Palanisami, Akilan; Miller, John H.

    2011-01-01

    The size and surface chemistry of micron scale particles are of fundamental importance in studies of biology and air particulate pollution. However, typical electrophoretic measurements of these and other sub-micron scale particles (300 nm – 1 μm) cannot resolve size information within heterogeneous mixtures unambiguously. Using optical microscopy, we monitor electrophoretic motion together with the Brownian velocity fluctuations—using the latter to measure size by either the Green-Kubo relation or by calibration from known size standards. Particle diameters are resolved to ±12% with 95% confidence. Strikingly, the size resolution improves as particle size decreases due to the increased Brownian motion. The sizing ability of the Brownian assessed electrophoresis method described here complements the electrophoretic mobility resolution of traditional capillary electrophoresis. PMID:20882556

  4. Apparatus for producing carbon-coated nanoparticles and carbon nanospheres

    DOEpatents

    Perry, W. Lee; Weigle, John C.; Phillips, Jonathan

    2015-10-20

    An apparatus for producing carbon-coated nano- or micron-scale particles comprising a container for entraining particles in an aerosol gas, providing an inlet for carbon-containing gas, providing an inlet for plasma gas, a proximate torch for mixing the aerosol gas, the carbon-containing gas, and the plasma gas, bombarding the mixed gases with microwaves, and providing a collection device for gathering the resulting carbon-coated nano- or micron-scale particles. Also disclosed is a method and apparatus for making hollow carbon nano- or micro-scale spheres.

  5. Mesostructural investigation of micron-sized glass particles during shear deformation - An experimental approach vs. DEM simulation

    NASA Astrophysics Data System (ADS)

    Torbahn, Lutz; Weuster, Alexander; Handl, Lisa; Schmidt, Volker; Kwade, Arno; Wolf, Dietrich E.

    2017-06-01

    The interdependency of structure and mechanical features of a cohesive powder packing is on current scientific focus and far from being well understood. Although the Discrete Element Method provides a well applicable and widely used tool to model powder behavior, non-trivial contact mechanics of micron-sized particles demand a sophisticated contact model. Here, a direct comparison between experiment and simulation on a particle level offers a proper approach for model validation. However, the simulation of a full scale shear-tester experiment with micron-sized particles, and hence, validating this simulation remains a challenge. We address this task by down scaling the experimental setup: A fully functional micro shear-tester was developed and implemented into an X-ray tomography device in order to visualize the sample on a bulk and particle level within small bulk volumes of the order of a few micro liter under well-defined consolidation. Using spherical micron-sized particles (30 μm), shear tests with a particle number accessible for simulations can be performed. Moreover, particle level analysis allows for a direct comparison of experimental and numerical results, e.g., regarding structural evolution. In this talk, we focus on density inhomogeneity and shear induced heterogeneity during compaction and shear deformation.

  6. Performance evaluation of bimodal thermite composites : nano- vs miron-scale particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, K. M.; Pantoya, M.; Son, S. F.

    2004-01-01

    In recent years many studies of metastable interstitial composites (MIC) have shown vast combustion improvements over traditional thermite materials. The main difference between these two materials is the size of the fuel particles in the mixture. Decreasing the fuel size from the micron to nanometer range significantly increases the combustion wave speed and ignition sensitivity. Little is known, however, about the critical level of nano-sized fuel particles needed to enhance the performance of the traditional thermite. Ignition sensitivity experiments were performed using Al/MoO{sub 3} pellets at a theoretical maximum density of 50% (2 g/cm{sup 3}). The Al fuel particles weremore » prepared as bi-modal size distributions with micron (i.e., 4 and 20 {micro}m diameter) and nano-scale Al particles. The micron-scale Al was replaced in 10% increments by 80 nm Al particles until the fuel was 100% 80 nm Al. These bi-modal distributions allow the unique characteristics of nano-scale materials to be better understood. The pellets were ignited using a 50-W CO{sub 2} laser. High speed imaging diagnostics were used to measure ignition delay times, and micro-thermocouples were used to measure ignition temperatures. Combustion wave speeds were also examined.« less

  7. Internal stresses in pre-stressed micron-scale aluminum core-shell particles and their improved reactivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levitas, Valery I., E-mail: vlevitas@iastate.edu; McCollum, Jena; Pantoya, Michelle L.

    2015-09-07

    Dilatation of aluminum (Al) core for micron-scale particles covered by alumina (Al{sub 2}O{sub 3}) shell was measured utilizing x-ray diffraction with synchrotron radiation for untreated particles and particles after annealing at 573 K and fast quenching at 0.46 K/s. Such a treatment led to the increase in flame rate for Al + CuO composite by 32% and is consistent with theoretical predictions based on the melt-dispersion mechanism of reaction for Al particles. Experimental results confirmed theoretical estimates and proved that the improvement of Al reactivity is due to internal stresses. This opens new ways of controlling particle reactivity through creating and monitoringmore » internal stresses.« less

  8. Solid rocket motor plume particle size measurements using multiple optical techniques in a probe

    NASA Astrophysics Data System (ADS)

    Manser, John R.

    1995-03-01

    An experimental investigation to measure particle size distributions in the plume of sub-scale solid rocket motors was conducted. A phase-Doppler particle analyzer (pDPA) in conjunction with three-wavelength extinction measurements were used in a specially designed particle collection probe in an attempt to determine the entire plume particle size distribution. In addition, a laser ensemble particle sizer was used for comparative data. The PDPA and Malvem distributions agreed in the observed modes near 1 and 4.5 micron diameter (d). Scanning electron microscope (SEM) pictures of collected particles were in good agreement with the measured Malvem Sauter mean diameter (d(sub 32)) of 2.59 micron. Data analysis indicates that less than 3% of the total mass of the particles was contained in particles with diameter d dess than 0.5 micron. Therefore, the PDPA, which can typically measure particles down to a minimum diameter of 0.5 micron with a dynamic range (d(sub max):d(sub min)) of 50:1, can be used by itself to determine the particle size distribution. Multiple wavelength measurements were found to be very sensitive to inaccuracies in the measured transmittances.

  9. Effect of micronization on the physicochemical properties of insoluble dietary fiber from citrus (Citrus junos Sieb. ex Tanaka) pomace.

    PubMed

    Ye, Fayin; Tao, Bingbing; Liu, Jia; Zou, Yan; Zhao, Guohua

    2016-04-01

    The aim of this work was to study the effect of micronization (mechanical and jet grindings) on the physicochemical properties of the insoluble dietary fiber from citrus pomace in comparison with ordinary grinding. The results showed that micronization treatment effectively pulverized the IDF-CP powders to micron scale and significantly increased the soluble dietary fiber content (p < 0.05). Compared with mechanical grinding, jet grinding was more effective in size reduction and resulted in IDF-CP powders with narrower particle size distributions. Micronized IDF-CP powders had smaller particle size, smoother surface, higher fluidity, cation-exchange capacity, and metal cation binding capacity values, but lower water holding capacity, oil holding capacity, and swelling capacity values. These functional properties were significantly dependent on surface area and particle size (D0.5). The present study suggested that micronization treatments could modify functional properties of IDF-CP powders, which promotes their use in food applications. © The Author(s) 2015.

  10. Pulsed DF chain-laser breakdown induced by maritime aerosols

    NASA Astrophysics Data System (ADS)

    Amimoto, S. T.; Whittier, J. S.; Ronkowski, F. G.; Valenzuela, P. R.; Harper, G.

    1982-08-01

    Thresholds for breakdown induced by liquid and solid aerosols in room air have been measured for a 1 microsec-duration pulsed D2-F2 laser of 3.58 -4.78 micron bandwidth. The DF laser beam was directed into an aerosol chamber that simulated maritime atmospheres on the open sea. Both focus and collimated beams were studied. For a focused beam in which the largest encountered aerosol particles were of 1 to 4 micron diameter, pulsed DF breakdown thresholds were measured to lie in the range 0.6 to 1.8 GW/sq cm. Salt-water aerosol breakdown thresholds for micron-size particles were found to be 15 to 30% higher than the corresponding thresholds for fresh-water particles. For a collimated beam that encountered particle diameters as large as 100 microns, breakdown could not be induced using 0.5- microsec (FWHM) pulses at peak intensities of 59 MW/sq cm. Image converter camera measurements of the radial plasma growth rate of 1.3 cm/microsec (at 1.4 GW/sq cm) were consistent with measurements of the cutoff rate of the transmitted laser beam. Pulsed DF breakdown thresholds of 32 MW/sq cm for 30- micron diameter Al2O3 particles were also measured to permit comparison with the earlier pulsed-HF breakdown results of Lencioni, et al.; the solid-particle threshold measurements agree with the Lencioni data if one assumes that the thresholds for microsecond-duration pulses scales is 1/lambda. An approximate theoretical model of the water particle breakdown process is presented that permits the scaling of the present results to other laser pulse durations, aerosol distributions, and transmission path lengths.

  11. Micro/nano-particles and Cells: Manipulation, Transport, and Self-assembly

    DTIC Science & Technology

    2014-10-23

    SECURITY CLASSIFICATION OF: Technologies that control nano- and micron- sized inert as well as biological materials are crucial to realizing engineered...that control nano- and micron- sized inert as well as biological materials are crucial to realizing engineered systems that can assemble, transport, and...nano-scale particles offer several advantages as building blocks of artificial materials . The relative ease of modifying their charge states

  12. Intercontinental Transport of Aerosols: Implication for Regional Air Quality

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Diehl, Thomas; Ginoux, Paul

    2006-01-01

    Aerosol particles, also known as PM2.5 (particle diameter less than 2.5 microns) and PM10 (particle diameter less than 10 microns), is one of the key atmospheric components that determine ambient air quality. Current US air quality standards for PM10 (particles with diameter < 10 microns) and PM2.5 (particles with diameter 2.5 microns) are 50 pg/cu m and 15 pg/cu m, respectively. While local and regional emission sources are the main cause of air pollution problems, aerosols can be transported on a hemispheric or global scale. In this study, we use the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model to quantify contributions of long-range transport vs. local/regional pollution sources and from natural vs. anthropogenic sources to PM concentrations different regions. In particular, we estimate the hemispheric impact of anthropogenic sulfate aerosols and dust from major source areas on other regions in the world. The GOCART model results are compared with satellite remote sensing and ground-based network measurements of aerosol optical depth and concentrations.

  13. Hypervelocity sub 10-micron impacts into aluminium foil: new experimental data and implications for comet 81P/Wild-2's dust fluence

    NASA Astrophysics Data System (ADS)

    Price, Mark C.; Kearsley, Anton T.; Burchell, Mark J.; Horz, Friedrich; Cole, Mike J.

    2009-06-01

    Recent experimental work (Price, M. C. et. al., LPSC XXXX, #1564, 2009) has shown that the lip-to-lip diameter of hypervelocity impact craters at micron-scales (Dp< 10 microns) is a non-linear function of the impactor's diameter (Dp). We present data for monodisperse silica projectiles impacting aluminium-1100 and elemental aluminium at 6.1 kmsec and discuss the implications of this effect for the Stardust fluence calibration for micron-scale particles (which make up the majority of the impactor flux). Hydrocodes have been used to investigate the potential causes of the phenomena and the results are presented.

  14. A transportable Paul-trap for levitation and accurate positioning of micron-scale particles in vacuum for laser-plasma experiments

    NASA Astrophysics Data System (ADS)

    Ostermayr, T. M.; Gebhard, J.; Haffa, D.; Kiefer, D.; Kreuzer, C.; Allinger, K.; Bömer, C.; Braenzel, J.; Schnürer, M.; Cermak, I.; Schreiber, J.; Hilz, P.

    2018-01-01

    We report on a Paul-trap system with large access angles that allows positioning of fully isolated micrometer-scale particles with micrometer precision as targets in high-intensity laser-plasma interactions. This paper summarizes theoretical and experimental concepts of the apparatus as well as supporting measurements that were performed for the trapping process of single particles.

  15. Controlled and tunable polymer particles' production using a single microfluidic device

    NASA Astrophysics Data System (ADS)

    Amoyav, Benzion; Benny, Ofra

    2018-04-01

    Microfluidics technology offers a new platform to control liquids under flow in small volumes. The advantage of using small-scale reactions for droplet generation along with the capacity to control the preparation parameters, making microfluidic chips an attractive technology for optimizing encapsulation formulations. However, one of the drawback in this methodology is the ability to obtain a wide range of droplet sizes, from sub-micron to microns using a single chip design. In fact, typically, droplet chips are used for micron-dimension particles, while nanoparticles' synthesis requires complex chips design (i.e., microreactors and staggered herringbone micromixer). Here, we introduce the development of a highly tunable and controlled encapsulation technique, using two polymer compositions, for generating particles ranging from microns to nano-size using the same simple single microfluidic chip design. Poly(lactic-co-glycolic acid) (PLGA 50:50) or PLGA/polyethylene glycol polymeric particles were prepared with focused-flow chip, yielding monodisperse particle batches. We show that by varying flow rate, solvent, surfactant and polymer composition, we were able to optimize particles' size and decrease polydispersity index, using simple chip designs with no further related adjustments or costs. Utilizing this platform, which offers tight tuning of particle properties, could offer an important tool for formulation development and can potentially pave the way towards a better precision nanomedicine.

  16. The spectroscopy and chemical dynamics of microparticles explored using an ultrasonic trap.

    PubMed

    Mason, N J; Drage, E A; Webb, S M; Dawes, A; McPheat, R; Hayes, G

    2008-01-01

    Microsized particles play an important role in many diverse areas of science and technology, for example, surface reactions of micron-sized particles play a key role in astrochemistry, plasma reactors and atmospheric chemistry. To date much of our knowledge of such surface chemistry is derived from 'traditional' surface science-based research. However, the large surface area and morphology of surface material commonly used in such surface science techniques may not necessarily mimic that on the surface of micron/nano scale particles. Hence, a new generation of experiments in which the spectroscopy (e.g., albedo) and chemical reactivity of micron-sized particles can be studied directly must be developed. One, as yet underexploited, non-invasive technique is the use of ultrasonic levitation. In this article, we describe the operation of an 'ultrasonic trap' to store and study the physical and chemical properties of microparticles.

  17. Characteristics of Cometary Dust Tracks in Stardust Aerogel and Laboratory Calibrations

    NASA Technical Reports Server (NTRS)

    Burchell, M. J.; Fairey, S. A. J.; Wozniakiewicz, P.; Brownlee, D. E.; Hoerz, F.; Kearsley, A. T.; See, T. H.; Tsou, P.; Westphal, A.; Green, S. F.; hide

    2007-01-01

    The cometary tray of the NASA Stardust spacecraft s aerogel collector has been examined to study the dust that was captured during the 2004 fly by of comet 81P/Wild-2. An optical scan of the entire collector surface revealed 256 impact features in the aerogel (width > 100 microns). 20 aerogel blocks (out of a total of 132) were removed from the collector tray for a higher resolution optical scan and 186 tracks were observed (track length > 50 microns and width > 8 microns). The impact features were classified into three types based on their morphology. Laboratory calibrations were conducted which reproduce all three types. This work suggests that the cometary dust consisted of some cohesive, relatively strong particles as well as particles with a more friable or low cohesion matrix containing smaller strong grains. The calibrations also permitted a particle size distribution to be estimated for the cometary dust. We estimate that approximately 1200 particles bigger than 1 micron struck the aerogel. The cumulative size distribution of the captured particles was obtained and compared with observations made by active dust detectors during the encounter. At large sizes (>20 microns) all measures of the dust are compatible, but at micrometer scales and smaller discrepancies exist between the various measurement systems which may reflect structure in the dust flux (streams, clusters etc.) along with some possible instrument effects.

  18. A novel 3D micron-scale DPTV (Defocused Particle Tracking Velocimetry) and its applications in microfluidic devices

    NASA Astrophysics Data System (ADS)

    Roberts, John

    2005-11-01

    The rapid advancements in micro/nano biotechnology demand quantitative tools for characterizing microfluidic flows in lab-on-a-chip applications, validation of computational results for fully 3D flows in complex micro-devices, and efficient observation of cellular dynamics in 3D. We present a novel 3D micron-scale DPTV (defocused particle tracking velocimetry) that is capable of mapping out 3D Lagrangian, as well as 3D Eulerian velocity flow fields at sub-micron resolution and with one camera. The main part of the imaging system is an epi-fluorescent microscope (Olympus IX 51), and the seeding particles are fluorescent particles with diameter range 300nm - 10um. A software package has been developed for identifying (x,y,z,t) coordinates of the particles using the defocused images. Using the imaging system, we successfully mapped the pressure driven flow fields in microfluidic channels. In particular, we measured the Laglangian flow fields in a microfluidic channel with a herring bone pattern at the bottom, the later is used to enhance fluid mixing in lateral directions. The 3D particle tracks revealed the flow structure that has only been seen in numerical computation. This work is supported by the National Science Foundation (CTS - 0514443), the Nanobiotechnology Center at Cornell, and The New York State Center for Life Science Enterprise.

  19. Fast inertial particle manipulation in oscillating flows

    NASA Astrophysics Data System (ADS)

    Thameem, Raqeeb; Rallabandi, Bhargav; Hilgenfeldt, Sascha

    2017-05-01

    It is demonstrated that micron-sized particles suspended in fluid near oscillating interfaces experience strong inertial displacements above and beyond the fluid streaming. Experiments with oscillating bubbles show rectified particle lift over extraordinarily short (millisecond) times. A quantitative model on both the oscillatory and the steady time scales describes the particle displacement relative to the fluid motion. The formalism yields analytical predictions confirming the observed scaling behavior with particle size and experimental control parameters. It applies to a large class of oscillatory flows with applications from particle trapping to size sorting.

  20. Optical Levitation of Micro-Scale Particles in Air

    NASA Technical Reports Server (NTRS)

    Wrbanek, Susan Y.; Weiland, Kenneth E.

    2004-01-01

    Success has been achieved using a radiation pressure gradient to levitate microscale particles in air for as long as four hours. This work is performed as a precursor to the development of a vacuum based optical tweezers interrogation tool for nanotechnology research. It was decided to first proceed with solving the problem of achieving optical levitation of a micro-scale particle in air before trying the same in a vacuum environment. This successful optical levitation in air confirms the work of Ashkin and Dziedzic. Levitation of 10 and 13.8 microns diameter polystyrene spheres was achieved, as well as the levitation of 10 and 100 microns diameter glass spheres. Particles were raised and lowered. A modicum of success was achieved translating particles horizontally. Trapping of multiple particles in one laser beam has been photographed. Also, it has been observed that particles, that may be conglomerates or irregular in shape, can also be trapped by a focused laser beam. Levitated glass beads were photographed using laser light scattered from the beads. The fact that there is evidence of optical traps in air containing irregular and conglomerate particles provides hope that future tool particles need not be perfect spheres.

  1. Super-micron Particles over US Coastal Region: Seasonal Changes from TCAP data

    NASA Astrophysics Data System (ADS)

    Kassianov, E.; Pekour, M. S.; Flynn, C. J.; Berg, L. K.; Fast, J. D.; Zelenyuk, A.; Tomlinson, J. M.; Chand, D.; Barnard, J.; Jefferson, A.

    2016-12-01

    Numerous studies have demonstrated that wind-blown dust and ocean wave breaking are two major sources of atmospheric super-micron particles. However, the fate of generated super-micron particles and their relative contribution to the aerosol microphysical and optical properties is not well understood especially for coastal regions with complex interplay of local and large-scale flow patterns. To estimate this contribution, we take advantage of an integrated dataset collected from ground-based observations during the recent Two-Column Aerosol Project (TCAP; http://campaign.arm.gov/tcap/) over the North Atlantic Ocean and US coastal region (Cape Cod, MA, USA). This region represents a crossroads of flow patterns with pronounced seasonal changes. Conducted from June 2012 through June 2013, TCAP involved one-month summer and winter periods of intensive aircraft observations that included the U.S. Department of Energy (DOE) Gulfstream-159 (G-1) aircraft. Aerosol size spectra, chemical composition and total scattering data were collected with high temporal resolution (<1 min) during the TCAP flights. The twelve-month TCAP dataset integrates ground-based observations from a suite of instruments for measuring cloud, aerosol and radiative properties, including the Multi-Filter Rotating Shadowband Radiometer (MFRSR), a Scanning Mobility Particle Sizer (SMPS), an Aerodynamic Particle Sizer (APS) and a three-wavelength nephelometer. To demonstrate the importance of super-micron particles on the climate-relevant aerosol microphysical and optical properties, we examine data from the ground-based and airborne instruments. In particular, we show that the contribution of super-micron particles to the total scattering can be large (up to 50%) during winter period and this large contribution is mostly associated with sea-salt particles. The expected application of our results to the evaluation and improvement of regional and global climate models will be discussed as well.

  2. The 27-28 October 1986 FIRE IFO cirrus case study: Comparison of satellite and aircraft derived particle size

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A.; Suttles, J. T.; Heymsfield, Andrew J.; Welch, Ronald M.; Spinhirne, James D.; Wu, Man-Li C.; Starr, David; Parker, Lindsay; Arduini, Robert F.

    1990-01-01

    Theoretical calculations predict that cloud reflectance in near infrared windows such as those at 1.6 and 2.2 microns should give lower reflectances than at visible wavelengths. The reason for this difference is that ice and liquid water show significant absorption at those wavelengths, in contrast to the nearly conservative scattering at wavelengths shorter than 1 micron. In addition, because the amount of absorption scales with the path length of radiation through the particle, increasing cloud particle size should lead to decreasing reflectances at 1.6 and 2.2 microns. Measurements at these wavelengths to date, however, have often given unpredicted results. Twomey and Cocks found unexpectedly high absorption (factors of 3 to 5) in optically thick liquid water clouds. Curran and Wu found expectedly low absorption in optically thick high clouds, and postulated the existence of supercooled small water droplets in place of the expected large ice particles. The implications of the FIRE data for optically thin cirrus are examined.

  3. Detection of nanoparticles in carbon arc discharge with laser-induced incandescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yatom, S.; Bak, J.; Khrabryi, A.

    Laser-induced incandescence measurements were conducted in the carbon arc discharge, used for synthesis of carbon nanostructures. The results reveal two spatial regions occupied by dominant populations of carbon particles with different sizes. Close to the axis of the arc, large micron size particles dominate the incandescence signal. In the arc periphery, the dominant population of nanoparticles has diameter of 20 nm. Using a heat transfer model between the gas, arc plasma and the particles, it is shown that such a drastic difference in the particle sizes can be explained by evaporation of the micron-scale particles which move across the arcmore » plasma towards the arc periphery. It is also hypothesized that mass evaporated from the micro particles contributes to the carbon feedstock for the formation of nanostructures. (C) 2017 Elsevier Ltd. All rights reserved.« less

  4. Detection of nanoparticles in carbon arc discharge with laser-induced incandescence

    DOE PAGES

    Yatom, S.; Bak, J.; Khrabryi, A.; ...

    2017-02-20

    Laser-induced incandescence measurements were conducted in the carbon arc discharge, used for synthesis of carbon nanostructures. The results reveal two spatial regions occupied by dominant populations of carbon particles with different sizes. Close to the axis of the arc, large micron size particles dominate the incandescence signal. In the arc periphery, the dominant population of nanoparticles has diameter of 20 nm. Using a heat transfer model between the gas, arc plasma and the particles, it is shown that such a drastic difference in the particle sizes can be explained by evaporation of the micron-scale particles which move across the arcmore » plasma towards the arc periphery. It is also hypothesized that mass evaporated from the micro particles contributes to the carbon feedstock for the formation of nanostructures. (C) 2017 Elsevier Ltd. All rights reserved.« less

  5. Enhanced sub-micron colloidal particle separation with interdigitated microelectrode arrays using mixed AC/DC dielectrophoretic scheme.

    PubMed

    Swaminathan, Vikhram V; Shannon, Mark A; Bashir, Rashid

    2015-04-01

    Dielectrophoretic separation of particles finds a variety of applications in the capture of species such as cells, viruses, proteins, DNA from biological systems, as well as other organic and inorganic contaminants from water. The ability to capture particles is constrained by poor volumetric scaling of separation force with respect to particle diameter, as well as the weak penetration of electric fields in the media. In order to improve the separation of sub-micron colloids, we present a scheme based on multiple interdigitated electrode arrays under mixed AC/DC bias. The use of high frequency longitudinal AC bias breaks the shielding effects through electroosmotic micromixing to enhance electric fields through the electrolyte, while a transverse DC bias between the electrode arrays enables penetration of the separation force to capture particles from the bulk of the microchannel. We determine the favorable biasing conditions for field enhancement with the help of analytical models, and experimentally demonstrate the improved capture from sub-micron colloidal suspensions with the mixed AC/DC electrostatic excitation scheme over conventional AC-DEP methods.

  6. Increased absorption by coarse aerosol particles over the Gangetic–Himalayan region

    DOE PAGES

    Manoharan, Vani Starry; Kotamarthi, R.; Feng, Yan; ...

    2014-02-03

    Each atmospheric aerosol type has distinctive light-absorption characteristics related to its physical/chemical properties. Climate models treat black carbon as the main light-absorbing component of carbonaceous atmospheric aerosols, while absorption by some organic aerosols is also considered, particularly at ultraviolet wavelengths. Most absorbing aerosols are assumed to be < 1 μm in diameter (sub-micron). Here we present results from a recent field study in India, primarily during the post-monsoon season (October–November), suggesting the presence of absorbing aerosols sized 1–10 μm. Absorption due to super-micron-sized particles was nearly 30% greater than that due to smaller particles. Periods of increased absorption by largermore » particles ranged from a week to a month. Radiative forcing calculations under clear-sky conditions show that super-micron particles account for nearly 44% of the total aerosol forcing. The origin of the large aerosols is unknown, but meteorological conditions indicate that they are of local origin. Such economic and habitation conditions exist throughout much of the developing world. Furthermore, large absorbing particles could be an important component of the regional-scale atmospheric energy balance.« less

  7. Method of Manufacturing Micro-Disperse Particles of Sodium Borohydride

    DOEpatents

    Kravitz, Stanley H.; Hecht, Andrew M.; Sylwester. Alan P.; Bell, Nelson S.

    2008-09-23

    A compact solid source of hydrogen gas, where the gas is generated by contacting water with micro-disperse particles of sodium borohydride in the presence of a catalyst, such as cobalt or ruthenium. The micro-disperse particles can have a substantially uniform diameter of 1-10 microns, and preferably about 3-5 microns. Ruthenium or cobalt catalytic nanoparticles can be incorporated in the micro-disperse particles of sodium borohydride, which allows a rapid and complete reaction to occur without the problems associated with caking and scaling of the surface by the reactant product sodium metaborate. A closed loop water management system can be used to recycle wastewater from a PEM fuel cell to supply water for reacting with the micro-disperse particles of sodium borohydride in a compact hydrogen gas generator. Capillary forces can wick water from a water reservoir into a packed bed of micro-disperse fuel particles, eliminating the need for using an active pump.

  8. Measurements of micron-scale meteoroids and orbital debris with the Space Dust (SPADUS) instrument on the upcoming ARGOS P91-1 mission

    NASA Technical Reports Server (NTRS)

    McKibben, R. B.; Simpson, J. A.; Tuzzolino, A. J.

    1997-01-01

    The space dust (SPADUS) experiment, to be launched into a sun-synchronous polar orbit at an altitude of 833 km onboard the USAF ARGOS P91-1 mission, will provide time-resolved measurements of the intensity, size spectrum and geocentric trajectories of dust particles encountered during the nominal three year mission. The experiment uses polyvinylidene fluoride dust sensors with a total detector area of 576 sq cm. The SPADUS will measure particle sizes between 2 and 200 microns, particle velocities between 1 and 10 km/s to better than 4 percent, and the direction of incidence with a mean error of 7 percent. These data will identify the particles as being debris or of natural origin.

  9. Thermal Emission Spectroscopy of 1 Ceres: Evidence for Olivine

    NASA Technical Reports Server (NTRS)

    Witteborn, F. C.; Roush, T. L.; Cohen, M.

    1999-01-01

    Thermal emission spectra of the largest asteroid 1 Ceres obtained from the Kuiper Airborne Observatory display features that may provide information on its surface mineralogy. A plot of the Ceres spectrum (calibrated using alpha Boo as a standard) divided by a standard thermal model (STM) is shown. Also shown is the emissivity spectrum deduced from reflectivity measurements for olivine grains <5 microns in diameter. The general shape of the Ceres and the olivine curves agree in essential details, such as the maxima from 8 to 12 microns, the minimum between 12 and 14 microns, the broad peak near 17.5 micron, and the slope beyond 22 micron. (Use of the 10 to 15-micron grain reflectivities provides a better match to the 12- to 14-micron dip. We used a value of unity for beta, the beaming factor associated with small-scale surface roughness in our STM. Adjustment of beta to a lower value raises the long-wavelength side of the Ceres spectrum, providing an even better match to the olivine curve.) The emissivity behavior roughly matches the emission coefficients which were calculated for olivine particles with a particle radius of 3 microns. Their calculations show not only the negative slope from 23 to 25 pm, but a continued decrease past 30 micron. The Ceres emissivity is thus similar to that of small olivine grains from 8 to 30 micron, but olivine's emissivity is lower from 5 to 8 pm.

  10. A Unified Picture of Pinatubo Aerosol Global-to Micro-Scale Evolution, From Space, Air, and Ground Measurements

    NASA Technical Reports Server (NTRS)

    Russell, Philip B.; Livingston, J. M.; Pueschel, R. F.; Pollack, J. B.; Brooks, S.; Hamill, P.; Hughes, J.; Thomason, L.; Stowe, L.; Deshler, T.; hide

    1995-01-01

    We combine a variety of measurements to develop a composite picture of the post-Pinatubo aerosol and assess the consistency and uncertainties of the measurement and retrieval techniques. Satellite infrared spectroscopy, particle morphology, and evaporation temperature measurements are in accord with theoretical calculations in showing a dominant particle composition of H2SO4-H2O mixture, with H2SO4 weight fraction of 65-80% for most stratospheric temperatures and humidities. Important exceptions are: (1) the presence of volcanic ash at all altitudes initially and in a layer just above the tropopause until at least March 1992, and (2) much smaller H2SO4 weight fractions at the low temperatures attained in high latitude winters and at the tropical tropopause, Laboratory spectroscopy and theoretical calculations yield wavelength- and temperature-dependent refractive indices for the dominant H2SO4-H2O droplets. These in turn permit derivation of particle size spectra from measured optical depth spectra, for comparison to direct measurements by impactors and optical counters. All three techniques paint a generally consistent picture of the evolution of R(sub eff), the effective, or area-weighted, particle radius. In the first month after the eruption, although particle numbers increased by orders of magnitude, R(sub eff) was similar to the preemption value of 0.1 to 0.2 microns, because both small (r less than 0.2 microns) and large (r greater than 0.6 micron particles increased in number. Over the next 3-6 months, R(sub eff) increased to about 0.5 microns reflecting particle growth through condensation and coagulation. In general, R(sub eff) continued to increase for about a year after the eruption. Extinction spectra computed from in situ size distribution measurements are consistent with optical depth measurements, which show spectra with maxima initially at wavelengths of 0.42 microns or less, and thereafter progressively increasing to between 0.78 and 1 micron. Not until 1993 do optical depth spectra begin to show a clear return to the preemption signature of maximizing at the shortest visible wavelengths or in the near UV. This coupled evolution in particle size distribution and optical depth spectra helps explain the relationship between the global maps of 0.5- 1.0- micron optical depth derived from the AVHRR and SAGE satellite measurements.

  11. Ignition dynamics and activation energies of metallic thermites: From nano- to micron-scale particulate composites

    NASA Astrophysics Data System (ADS)

    Hunt, Emily M.; Pantoya, Michelle L.

    2005-08-01

    Ignition behaviors associated with nano- and micron-scale particulate composite thermites were studied experimentally and modeled theoretically. The experimental analysis utilized a CO2 laser ignition apparatus to ignite the front surface of compacted nickel (Ni) and aluminum (Al) pellets at varying heating rates. Ignition delay time and ignition temperature as a function of both Ni and Al particle size were measured using high-speed imaging and microthermocouples. The apparent activation energy was determined from this data using a Kissinger isoconversion method. This study shows that the activation energy is significantly lower for nano- compared with micron-scale particulate media (i.e., as low as 17.4 compared with 162.5kJ /mol, respectively). Two separate Arrhenius-type mathematical models were developed that describe ignition in the nano- and the micron-composite thermites. The micron-composite model is based on a heat balance while the nanocomposite model incorporates the energy of phase transformation in the alumina shell theorized to be an initiating step in the solid-solid diffusion reaction and uniquely appreciable in nanoparticle media. These models were found to describe the ignition of the Ni /Al alloy for a wide range of heating rates.

  12. Sub-micron particle sampler apparatus and method for sampling sub-micron particles

    DOEpatents

    Gay, D.D.; McMillan, W.G.

    1984-04-12

    Apparatus and method steps for collecting sub-micron sized particles include a collection chamber and cryogenic cooling. The cooling is accomplished by coil tubing carrying nitrogen in liquid form, with the liquid nitrogen changing to the gas phase before exiting from the collection chamber in the tubing. Standard filters are used to filter out particles of diameter greater than or equal to 0.3 microns; however, the present invention is used to trap particles of less than 0.3 micron in diameter. A blower draws air to said collection chamber through a filter which filters particles with diameters greater than or equal to 0.3 micron. The air is then cryogenically cooled so that moisture and sub-micron sized particles in the air condense into ice on the coil. The coil is then heated so that the ice melts, and the liquid is then drawn off and passed through a Buchner funnel where the liquid is passed through a Nuclepore membrane. A vacuum draws the liquid through the Nuclepore membrane, with the Nuclepore membrane trapping sub-micron sized particles therein. The Nuclepore membrane is then covered on its top and bottom surfaces with sheets of Mylar and the assembly is then crushed into a pellet. This effectively traps the sub-micron sized particles for later analysis. 6 figures.

  13. Method of generating hydrogen gas from sodium borohydride

    DOEpatents

    Kravitz, Stanley H.; Hecht, Andrew M.; Sylwester, Alan P.; Bell, Nelson S.

    2007-12-11

    A compact solid source of hydrogen gas, where the gas is generated by contacting water with micro-disperse particles of sodium borohydride in the presence of a catalyst, such as cobalt or ruthenium. The micro-disperse particles can have a substantially uniform diameter of 1-10 microns, and preferably about 3-5 microns. Ruthenium or cobalt catalytic nanoparticles can be incorporated in the micro-disperse particles of sodium borohydride, which allows a rapid and complete reaction to occur without the problems associated with caking and scaling of the surface by the reactant product sodium metaborate. A closed loop water management system can be used to recycle wastewater from a PEM fuel cell to supply water for reacting with the micro-disperse particles of sodium borohydride in a compact hydrogen gas generator. Capillary forces can wick water from a water reservoir into a packed bed of micro-disperse fuel particles, eliminating the need for using an active pump.

  14. Compact solid source of hydrogen gas

    DOEpatents

    Kravitz, Stanley H.; Hecht, Andrew M.; Sylwester, Alan P.; Bell, Nelson S.

    2004-06-08

    A compact solid source of hydrogen gas, where the gas is generated by contacting water with micro-disperse particles of sodium borohydride in the presence of a catalyst, such as cobalt or ruthenium. The micro-disperse particles can have a substantially uniform diameter of 1-10 microns, and preferably about 3-5 microns. Ruthenium or cobalt catalytic nanoparticles can be incorporated in the micro-disperse particles of sodium borohydride, which allows a rapid and complete reaction to occur without the problems associated with caking and scaling of the surface by the reactant product sodium metaborate. A closed loop water management system can be used to recycle wastewater from a PEM fuel cell to supply water for reacting with the micro-disperse particles of sodium borohydride in a compact hydrogen gas generator. Capillary forces can wick water from a water reservoir into a packed bed of micro-disperse fuel particles, eliminating the need for using an active pump.

  15. Filtration of micron-sized particles for coal liquids: carbonaceous precoats. [5 refs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodgers, B.R.

    Carbonaceous precoats, such as bituminous coal and char from hydrocarbonization, are shown to be effective, inexpensive substitutes for traditional diatomaceous earth materials, both at laboratory-scale and bench-scale. Model equations are developed for filtration of Solvent Refined Coal-Unfiltered Oil (SRC-UFO).

  16. [Preparation of nano-nacre artificial bone].

    PubMed

    Chen, Jian-ting; Tang, Yong-zhi; Zhang, Jian-gang; Wang, Jian-jun; Xiao, Ying

    2008-12-01

    To assess the improvements in the properties of nano-nacre artificial bone prepared on the basis of nacre/polylactide acid composite artificial bone and its potential for clinical use. The compound of nano-scale nacre powder and poly-D, L-lactide acid (PDLLA) was used to prepare the cylindrical hollow artificial bone, whose properties including raw material powder scale, pore size, porosity and biomechanical characteristics were compared with another artificial bone made of micron-scale nacre powder and PDLLA. Scanning electron microscope showed that the average particle size of the nano-nacre powder was 50.4-/+12.4 nm, and the average pore size of the artificial bone prepared using nano-nacre powder was 215.7-/+77.5 microm, as compared with the particle size of the micron-scale nacre powder of 5.0-/+3.0 microm and the pore size of the resultant artificial bone of 205.1-/+72.0 microm. The porosities of nano-nacre artificial bone and the micron-nacre artificial bone were (65.4-/+2.9)% and (53.4-/+2.2)%, respectively, and the two artificial bones had comparable compressive strength and Young's modulus, but the flexural strength of the nano-nacre artificial bone was lower than that of the micro-nacre artificial bone. The nano-nacre artificial bone allows better biodegradability and possesses appropriate pore size, porosity and biomechanical properties for use as a promising material in bone tissue engineering.

  17. Optical pulling of airborne absorbing particles and smut spores over a meter-scale distance with negative photophoretic force

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Jinda; Hart, Adam G.; Li, Yong-qing, E-mail: liy@ecu.edu

    2015-04-27

    We demonstrate optical pulling of single light-absorbing particles and smut spores in air over a meter-scale distance using a single collimated laser beam based on negative photophoretic force. The micron-sized particles are pulled towards the light source at a constant speed of 1–10 cm/s in the optical pulling pipeline while undergoing transverse rotation at 0.2–10 kHz. The pulled particles can be manipulated and precisely positioned on the entrance window with an accuracy of ∼20 μm, and their chemical compositions can be characterized with micro-Raman spectroscopy.

  18. Sub-micron particle sampler apparatus

    DOEpatents

    Gay, Don D.; McMillan, William G.

    1987-01-01

    Apparatus and method steps for collecting sub-micron sized particles include a collection chamber and cryogenic cooling. The cooling is accomplished by coil tubing carrying nitrogen in liquid form, with the liquid nitrogen changing to the gas phase before exiting from the collection chamber in the tubing. Standard filters are used to filter out particles of diameter greater than or equal to 0.3 microns; however the present invention is used to trap particles of less than 0.3 micron in diameter. A blower draws air to said collection chamber through a filter which filters particles with diameters greater than or equal to 0.3 micron. The air is then cryogenically cooled so that moisture and sub-micron sized particles in the air condense into ice on the coil. The coil is then heated so that the ice melts, and the liquid is then drawn off and passed through a Buchner funnel where the liquid is passed through a Nuclepore membrane. A vacuum draws the liquid through the Nuclepore membrane, with the Nuclepore membrane trapping sub-micron sized particles therein. The Nuclepore membrane is then covered on its top and bottom surfaces with sheets of Mylar.RTM. and the assembly is then crushed into a pellet. This effectively traps the sub-micron sized particles for later analysis.

  19. Method for sampling sub-micron particles

    DOEpatents

    Gay, Don D.; McMillan, William G.

    1985-01-01

    Apparatus and method steps for collecting sub-micron sized particles include a collection chamber and cryogenic cooling. The cooling is accomplished by coil tubing carrying nitrogen in liquid form, with the liquid nitrogen changing to the gas phase before exiting from the collection chamber in the tubing. Standard filters are used to filter out particles of diameter greater than or equal to 0.3 microns; however the present invention is used to trap particles of less than 0.3 micron in diameter. A blower draws air to said collection chamber through a filter which filters particles with diameters greater than or equal to 0.3 micron. The air is then cryogenically cooled so that moisture and sub-micron sized particles in the air condense into ice on the coil. The coil is then heated so that the ice melts, and the liquid is then drawn off and passed through a Buchner funnel where the liquid is passed through a Nuclepore membrane. A vacuum draws the liquid through the Nuclepore membrane, with the Nuclepore membrane trapping sub-micron sized particles therein. The Nuclepore membrane is then covered on its top and bottom surfaces with sheets of Mylar.RTM. and the assembly is then crushed into a pellet. This effectively traps the sub-micron sized particles for later analysis.

  20. A Study of the Effects of Relative Humidity on Small Particle Adhesion to Surfaces

    NASA Technical Reports Server (NTRS)

    Whitfield, W. J.; David, T.

    1971-01-01

    Ambient dust ranging in size from less than one micron up to 140 microns was used as test particles. Relative humidities of 33% to 100% were used to condition test surfaces after loading with the test particles. A 20 psi nitrogen blowoff was used as the removal mechanism to test for particle adhesion. Particles were counted before and after blowoff to determine retention characteristics. Particle adhesion increased drastically as relative humidity increased above 50%. The greatest adhesion changes occurred within the first hour of conditioning time. Data are presented for total particle adhesion, for particles 10 microns and larger, and 50 microns and larger.

  1. Process for selective grinding of coal

    DOEpatents

    Venkatachari, Mukund K.; Benz, August D.; Huettenhain, Horst

    1991-01-01

    A process for preparing coal for use as a fuel. Forming a coal-water slurry having solid coal particles with a particle size not exceeding about 80 microns, transferring the coal-water slurry to a solid bowl centrifuge, and operating same to classify the ground coal-water slurry to provide a centrate containing solid particles with a particle size distribution of from about 5 microns to about 20 microns and a centrifuge cake of solids having a particle size distribution of from about 10 microns to about 80 microns. The classifer cake is reground and mixed with fresh feed to the solid bowl centrifuge for additional classification.

  2. The relation between pre-eruptive bubble size distribution, ash particle morphology, and their internal density: Implications to volcanic ash transport and dispersion models

    NASA Astrophysics Data System (ADS)

    Proussevitch, Alexander

    2014-05-01

    Parameterization of volcanic ash transport and dispersion (VATD) models strongly depends on particle morphology and their internal properties. Shape of ash particles affects terminal fall velocities (TFV) and, mostly, dispersion. Internal density combined with particle size has a very strong impact on TFV and ultimately on the rate of ash cloud thinning and particle sedimentation on the ground. Unlike other parameters, internal particle density cannot be measured directly because of the micron scale sizes of fine ash particles, but we demonstrate that it varies greatly depending on the particle size. Small simple type ash particles (fragments of bubble walls, 5-20 micron size) do not contain whole large magmatic bubbles inside and their internal density is almost the same as that of volcanic glass matrix. On the other side, the larger compound type ash particles (>40 microns for silicic fine ashes) always contain some bubbles or the whole spectra of bubble size distribution (BSD), i.e. bubbles of all sizes, bringing their internal density down as compared to simple ash. So, density of the larger ash particles is a function of the void fraction inside them (magmatic bubbles) which, in turn, is controlled by BSD. Volcanic ash is a product of the fragmentation of magmatic foam formed by pre-eruptive bubble population and characterized by BSD. The latter can now be measured from bubble imprints on ash particle surfaces using stereo-scanning electron microscopy (SSEM) and BubbleMaker software developed at UNH, or using traditional high-resolution X-Ray tomography. In this work we present the mathematical and statistical formulation for this problem connecting internal ash density with particle size and BSD, and demonstrate how the TFV of the ash population is affected by variation of particle density.

  3. Preparation and Characterization of Micronized Artemisinin via a Rapid Expansion of Supercritical Solutions (RESS) Method

    PubMed Central

    Yu, Huimin; Zhao, Xiuhua; Zu, Yuangang; Zhang, Xinjuan; Zu, Baishi; Zhang, Xiaonan

    2012-01-01

    The particle sizes of pharmaceutical substances are important for their bioavailability. Bioavailability can be improved by reducing the particle size of the drug. In this study, artemisinin was micronized by the rapid expansion of supercritical solutions (RESS). The particle size of the unprocessed white needle-like artemisinin particles was 30 to 1200 μm. The optimum micronization conditions are determined as follows: extraction temperature of 62 °C, extraction pressure of 25 MPa, precipitation temperature 45 °C and nozzle diameter of 1000 μm. Under the optimum conditions, micronized artemisinin with a (mean particle size) MPS of 550 nm is obtained. By analysis of variance (ANOVA), extraction temperature and pressure have significant effects on the MPS of the micronized artemisinin. The particle size of micronized artemisinin decreased with increasing extraction temperature and pressure. Moreover, the SEM, LC-MS, FTIR, DSC and XRD allowed the comparison between the crystalline initial state and the micronization particles obtained after the RESS process. The results showed that RESS process has not induced degradation of artemisinin and that processed artemisinin particles have lower crystallinity and melting point. The bulk density of artemisinin was determined before and after RESS process and the obtained results showed that it passes from an initial density of 0.554 to 0.128 g·cm−3 after the processing. The decrease in bulk density of the micronized powder can increase the liquidity of drug particles when they are applied for medicinal preparations. These results suggest micronized powder of artemisinin can be of great potential in drug delivery systems. PMID:22606030

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephen Seong Lee

    Fuel flow to individual burners is complicated and difficult to determine on coal fired boilers, since coal solids were transported in a gas suspension that is governed by the complex physics of two-phase flow. The objectives of the project were the measurements of suspended coal solids-flows in the simulated test conditions. Various extractive methods were performed manually and can give only a snapshot result of fuel distribution. In order to measure particle diameter & velocity, laser based phase-Doppler particle analyzer (PDPA) and particle image velocimetry (PIV) were carefully applied. Statistical methods were used to analyze particle characteristics to see whichmore » factors have significant effect. The transparent duct model was carefully designed and fabricated for the laser-based-instrumentation of solids-flow monitoring (LISM). The experiments were conducted with two different kinds of particles with four different particle diameters. The particle types were organic particles and saw dust particles with the diameter range of 75-150 micron, 150-250 micron, 250-355 micron and 355-425 micron. The densities of the particles were measured to see how the densities affected the test results. Also the experiment was conducted with humid particles and fog particles. To generate humid particles, the humidifier was used. A pipe was connected to the humidifier to lead the particle flow to the intersection of the laser beam. The test results of the particle diameter indicated that, the mean diameter of humid particles was between 6.1703 microns and 6.6947 microns when the humid particle flow was low. When the humid particle flow was high, the mean diameter was between 6.6728 microns and 7.1872 microns. The test results of the particle mean velocity indicated that the mean velocity was between 1.3394 m/sec and 1.4556 m/sec at low humid particle flow. When the humid particle flow was high, the mean velocity was between 1.5694 m/sec and 1.7856 m/sec. The Air Flow Module, TQ AF 17 and shell ondina oil were used to generate fog particles. After the oil was heated inside the fog generator, the blower was used to generate the fog. The fog flew along the pipe to the intersection of the laser beam. The mean diameter of the fog particles was 5.765 microns. Compared with the humid particle diameter, we observed that the mean diameter of the fog particles was smaller than the humid particles. The test results of particle mean velocity was about 3.76 m/sec. Compared with the mean velocity of the humid particles, we can observed the mean velocity of fog particles were greater than humid particles. The experiments were conducted with four different kinds of particles with five different particle diameters. The particle types were organic particles, coal particles, potato particles and wheat particles with the diameter range of 63-75 micron, less than 150 micron, 150-250 micron, 250-355 micron and 355-425 micron. To control the flow rate, the control gate of the particle dispensing hopper was adjusted to 1/16 open rate, 1/8 open rate and 1/4 open rate. The captured image range was 0 cm to 5 cm from the control gate, 5 cm to 10 cm from the control gate and 10 cm to 15 cm from the control gate. Some of these experiments were conducted under both open environment conditions and closed environment conditions. Thus these experiments had a total of five parameters which were type of particles, diameter of particles, flow rate, observation range, and environment conditions. The coal particles (diameter between 63 and 75 microns) tested under the closed environment condition had three factors that were considered as the affecting factors. They were open rate, observation range, and environment conditions. In this experiment, the interaction of open rate and observation range had a significant effect on the lower limit. On the upper limit, the open rate and environment conditions had a significant effect. In addition, the interaction of open rate and environment conditions had a significant effect. The coal particles tested (diameter between 63 and 75 microns) under open environment, two factors were that considered as the affecting factors. They were the open rate and observation ranges. In this experiment, there was no significant effect on the lower limit. On the upper limit, the observation range had a significant effect. In addition, the interaction of open rate and observation range had a significant effect for the source of variation with 95% of confidence based on analysis of variance (ANOVA) results.« less

  5. Inactivation of particle-associated coliforms by chlorine and monochloramine.

    PubMed Central

    Berman, D; Rice, E W; Hoff, J C

    1988-01-01

    Sieves and nylon screens were used to separate primary sewage effluent solids into particle fractions of less than 7- or greater than 7-micron size. The efficiency of separation was determined by using a particle counter. Indigenous coliforms associated with the particle fractions were tested for their resistance to chlorine and monochloramine. Coliforms associated with the less than 7-microns fraction were inactivated more rapidly by 0.5 mg of chlorine per liter at 5 degrees C and pH 7 than coliforms associated with the greater than 7-microns fraction. Homogenization of the greater than 7-microns fraction not only resulted in an increase in the number of less than 7-microns particles, but also increased the rate of inactivation to a rate similar to that of the less than 7-microns fraction. With 1 mg of monochloramine per liter at 5 degrees C and pH 7, particle size had no appreciable effect on the rate of inactivation. At pH 8, however, the less than 7-micron fraction was inactivated more rapidly than the greater than 7-micron fraction. The time required for 99% inactivation of the particle fractions with monochloramine at pH 7 or 8 was 20- to 50-fold greater than the time required for the same amount of inactivation with chlorine at pH 7. The results indicate that coliforms associated with sewage effluent particles are inactivated more rapidly with 0.5 mg of chlorine per liter than with 1.0 mg of monochloramine per liter. However, greater than 7-micron particles can have a protective effect against the disinfecting action of chlorine. PMID:3355136

  6. A new model for Mars atmospheric dust based upon analysis of ultraviolet through infrared observations from Mariner 9, Viking, and Phobos

    NASA Technical Reports Server (NTRS)

    Clancy, R. T.; Lee, S. W.; Gladstone, G. R.; McMillan, W. W.; Rousch, T.

    1995-01-01

    We propose key modifications to the Toon et al. (1977) model of the particle size distribution and composition of Mars atmospheric dust, based on a variety of spacecraft and wavelength observations of the dust. A much broader (r(sub eff)variance-0.8 micron), smaller particle size (r(sub mode)-0.02 microns) distribution coupled with a "palagonite-like" composition is argued to fit the complete ultraviolet-to-30-micron absorption properties of the dust better than the montmorillonite-basalt r(sub eff)variance= 0.4 micron, r(sub mode)= 0.40 micron dust model of Toon et al. Mariner 9 (infrared interferometer spectrometer) IRIS spectra of high atmospheric dust opacities during the 1971 - 1972 Mars global dust storm are analyzed in terms of the Toon et al. dust model, and a Hawaiian palagonite sample with two different size distribution models incorporating smaller dust particle sizes. Viking Infrared Thermal Mapper (IRTM) emission-phase-function (EPF) observations at 9 microns are analyzed to retrieve 9-micron dust opacities coincident with solar band dust opacities obtained from the same EPF sequences. These EPF dust opacities provide an independent measurement of the visible/9-microns extinction opacity ratio (> or equal to 2) for Mars atmospheric dust, which is consistent with a previous measurement by Martin (1986). Model values for the visible/9-microns opacity ratio and the ultraviolet and visible single-scattering albedos are calculated for the palagonite model with the smaller particle size distributions and compared to the same properties for the Toon et al. model of dust. The montmorillonite model of the dust is found to fit the detailed shape of the dust 9-micron absorption well. However, it predicts structured, deep absorptions at 20 microns which are not observed and requires a separate ultraviolet-visible absorbing component to match the observed behavior of the dust in this wavelength region. The modeled palagonite does not match the 8- to 9-micron absorption presented by the dust in the IRIS spectra, probably due to its low SiO2 content (31%). However, it does provide consistent levels of ultraviolet/visible absorption, 9- to 12-micron absorption, and a lack of structured absorption at 20 microns. The ratios of dust extinction opacities at visible, 9 microns, and 30 microns are strongly affected by the dust particle size distribution. The Toon et al. dust size distribution (r(sub mode)= 0.40, r(sub eff)variance= 0.4 microns, r(sub cw mu)= 2.7 microns) predicts the correct ratio of the 9- to 30-micron opacity, but underpredicts the visible/9-micron opacity ratio considerably (1 versus > or equal to 2). A similar particle distribution width with smaller particle sizes (r(sub mode)= 0.17, r(sub eff)variance= 0.4 microns, r(sub cw mu)=1.2 microns) will fit the observed visible/9-micron opacity ratio, but overpredicts the observed 9-micron/30-micron opacity ratio. A smaller and much broader particle size distribution (r(sub mode)= 0.02, r(sub eff)variance= 0.8 microns, r(sub cw mu)= 1.8 microns) can fit both dust opacity ratios. Overall, the nanocrystalline structure of palagonite coupled with a smaller, broader distribution of dust particle sizes provides a more consistent fit than the Toon et al. model of the dust to the IRIS spectra, the observed visible/9-micron dust opacity ratio, the Phobos occultation measurements of dust particle sizes, and the weakness of surface near IR absorptions expected for clay minerals.

  7. [Airborne particles in a multi-wall carbon nanotube production plant: observation of particle emission and personal exposure 1: Measurement in the packing process].

    PubMed

    Takaya, Mitsutoshi; Serita, Fumio; Ono-Ogasawara, Mariko; Shinohara, Yasushi; Saito, Hiroyuki; Koda, Shigeki

    2010-01-01

    In order to assess the exposure risks of multiwall carbon nanotubes (MWCNT) for packing workers, we carried out real-time monitoring in the two types of packing facilities of MWCNT, and exposure measurements for the packing workers. In the real-time monitoring, a scanning mobility particle sizer (SMPS) and an optical particle counter (OPC) were used to measure nanoscale particles and sub-micron/micron scale particles, respectively. A personal sampler with PM 4.0 was used to measure the personal exposures in the packing facilities. One of the packing facilities is manually operated and the other is automated. The concentrations of airborne dust in both facilities were almost the same as each other at 0.24 mg/m(3) (total dust). However, the results of personal exposure measurements were quite different between the two facilities. The exposure concentrations of workers in the manually and automated operations were 2.39/0.39 (total/respirable) mg/m(3) and 0.29/0.08 (total/respirable) mg/m(3), respectively. From the time series study, submicron scale particles were released into the workplace air when the CNT products were put into temporary container bags from a hopper and manually packed into shipping bags. However, the task-related nanoscale particle release was not observed. The manual packing operation is one of the "hot spots" in MWCNT production facilities, and automation brings much improvement to reduce MWCNT exposure.

  8. Silica-protected micron and sub-micron capsules and particles for self-healing at the microscale.

    PubMed

    Jackson, Aaron C; Bartelt, Jonathan A; Marczewski, Kamil; Sottos, Nancy R; Braun, Paul V

    2011-01-03

    A generalized silica coating scheme is used to functionalize and protect sub-micron and micron size dicyclopentadiene monomer-filled capsules and polymer-protected Grubbs' catalyst particles. These capsules and particles are used for self-healing of microscale damage in an epoxy-based polymer. The silica layer both protects the capsules and particles, and limits their aggregation when added to an epoxy matrix, enabling the capsules and particles to be dispersed at high concentrations with little loss of reactivity. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Influence of Shockwave Profile on Ejecta

    NASA Astrophysics Data System (ADS)

    Zellner, Michael B.; Dimonte, Guy; Germann, Timothy C.; Hammerberg, James E.; Rigg, Paulo A.; Stevens, Gerald D.; Turley, William D.; Buttler, William T.

    2009-12-01

    We investigate the relation between shock-pulse shape and the amount of micron-scale fragments ejected upon shock release at the metal/vacuum interface of shocked Sn targets. These micron-scale particles are commonly referred to as ejecta. Two shock-pulse shapes are considered: a supported shock created by impacting a Sn target with a sabot that was accelerated using a powder gun; and an unsupported or Taylor Shockwave, created by detonation of high explosive that was press-fit to the front-side of the Sn target. Ejecta production at the back-side or free-surface of the Sn coupons were characterized through use of piezoelectric pins, Asay foils, optical shadowgraphy, and x-ray attenuation.

  10. Laboratory Studies of the Optical Properties and Condensation Processes of Cosmic Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; West, E.; Sheldon, R.; Witherow, W. K.; Gallagher, D. L.; Adrian, M. L.

    2002-01-01

    A laboratory facility for conducting a variety of experiments on single isolated dust particles of astrophysical interest levitated in an electrodynamics balance has been developed at NASA/Marshall Space Flight Center. The objective of the research is to employ this experimental technique for studies of the physical and optical properties of individual cosmic dust grains of 0.1-100 micron size in controlled pressure/temperatures environments simulating astrophysical conditions. The physical and optical properties of the analogs of interstellar and interplanetary dust grains of known composition and size distribution will be investigated by this facility. In particular, we will carry out three classes of experiments to study the micro-physics of cosmic dust grains. (1) Charge characteristics of micron size single dust grains to determine the photoelectric efficiencies, yields, and equilibrium potentials when exposed to UV radiation. (2) Infrared optical properties of dust particles (extinction coefficients and scattering phase functions) in the 1-30 micron region using infrared diode lasers and measuring the scattered radiation. (3) Condensation experiments to investigate the condensation of volatile gases on colder nucleated particles in dense interstellar clouds and lower planetary atmospheres. The condensation experiments will involve levitated nucleus dust grains of known composition and initial mass (or m/q ratio), cooled to a temperature and pressure (or scaled pressure) simulating the astrophysical conditions, and injection of a volatile gas at a higher temperature from a controlled port. The increase in the mass due to condensation on the particle will be monitored as a function of the dust particle temperature and the partial pressure of the injected volatile gas. The measured data will permit determination of the sticking coefficients of volatile gases and growth rates of dust particles of astrophysical interest. Some preliminary results based on measurements of photoelectric emission and radiation pressure on single isolated 0.2 to 6.6 micron size silica particles exposed to UV radiation at 120-200 nm and green laser light at 532 nm are presented.

  11. Building micro-soccer-balls with evaporating colloidal fakir drops

    NASA Astrophysics Data System (ADS)

    Gelderblom, Hanneke; Marín, Álvaro G.; Susarrey-Arce, Arturo; van Housselt, Arie; Lefferts, Leon; Gardeniers, Han; Lohse, Detlef; Snoeijer, Jacco H.

    2013-11-01

    Drop evaporation can be used to self-assemble particles into three-dimensional microstructures on a scale where direct manipulation is impossible. We present a unique method to create highly-ordered colloidal microstructures in which we can control the amount of particles and their packing fraction. To this end, we evaporate colloidal dispersion drops from a special type of superhydrophobic microstructured surface, on which the drop remains in Cassie-Baxter state during the entire evaporative process. The remainders of the drop consist of a massive spherical cluster of the microspheres, with diameters ranging from a few tens up to several hundreds of microns. We present scaling arguments to show how the final particle packing fraction of these balls depends on the drop evaporation dynamics, particle size, and number of particles in the system.

  12. Penetration of sub-micron particles into dentinal tubules using ultrasonic cavitation.

    PubMed

    Vyas, N; Sammons, R L; Pikramenou, Z; Palin, W M; Dehghani, H; Walmsley, A D

    2017-01-01

    Functionalised silica sub-micron particles are being investigated as a method of delivering antimicrobials and remineralisation agents into dentinal tubules. However, their methods of application are not optimised, resulting in shallow penetration and aggregation. The aim of this study is to investigate the impact of cavitation occurring around ultrasonic scalers for enhancing particle penetration into dentinal tubules. Dentine slices were prepared from premolar teeth. Silica sub-micron particles were prepared in water or acetone. Cavitation from an ultrasonic scaler (Satelec P5 Newtron, Acteon, France) was applied to dentine slices immersed inside the sub-micron particle solutions. Samples were imaged with scanning electron microscopy (SEM) to assess tubule occlusion and particle penetration. Qualitative observations of SEM images showed some tubule occlusion. The particles could penetrate inside the tubules up to 60μm when there was no cavitation and up to ∼180μm when there was cavitation. The cavitation bubbles produced from an ultrasonic scaler may be used to deliver sub-micron particles into dentine. This method has the potential to deliver such particles deeper into the dentinal tubules. Cavitation from a clinical ultrasonic scaler may enhance penetration of sub-micron particles into dentinal tubules. This can aid in the development of novel methods for delivering therapeutic clinical materials for hypersensitivity relief and treatment of dentinal caries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Orbital debris and meteoroid population as estimated from LDEF impact data

    NASA Technical Reports Server (NTRS)

    Zhang, Jingchang; Kessler, Donald J.

    1995-01-01

    Examination of LDEF's various surfaces shows numerous craters and holes due to hypervelocity impacts of meteoroids and man-made orbital debris. In this paper, the crater numbers as reported by Humes have been analyzed in an effort to understand the orbital debris and natural meteoroid environment in LEO. To determine the fraction of man-made to natural impacts, the side to top ratio of impacts and results of the Chemistry of Micrometeoroids Experiment are used. For craters in the 100 micron to 500 micron size range, about 25 percent to 30 percent of the impacts on the forward-facing surfaces and about 10 percent of the impacts on the trailing surfaces were estimated due to man-made orbital debris. A technique has been developed to convert crater numbers to particle fluxes, taking the fact into account that the distributions of impact velocity and incidence angle vary over the different surfaces of LDEF, as well as the ratio of the surface area flux to the cross-sectional area flux. Applying this technique, Humes' data concerning craters with limiting lip diameters of 100 micron, 200 micron and 500 micron have been converted into orbital debris and meteoroid fluxes ranging from about 20 micron to 200 micron particle diameter. The results exhibit good agreement with orbital debris model and meteoroid model. The converted meteoroid flux is slightly larger than Grun's model (by 40 to 70 percent). The converted orbital debris flux is slightly lower than Kessler's model for particle diameter smaller than about 30 micron and slightly larger than the model for particle diameter larger than about 40 micron. Taking also into account the IDE data point at about 0.8 micron particle diameter, it suggests to change the slope log (flux) versus log (diameter) of orbital debris flux in the 1 micron to 100 micron particle diameter range from 2.5 to 1.9.

  14. Effect of long-range repulsive Coulomb interactions on packing structure of adhesive particles.

    PubMed

    Chen, Sheng; Li, Shuiqing; Liu, Wenwei; Makse, Hernán A

    2016-02-14

    The packing of charged micron-sized particles is investigated using discrete element simulations based on adhesive contact dynamic model. The formation process and the final obtained structures of ballistic packings are studied to show the effect of interparticle Coulomb force. It is found that increasing the charge on particles causes a remarkable decrease of the packing volume fraction ϕ and the average coordination number 〈Z〉, indicating a looser and chainlike structure. Force-scaling analysis shows that the long-range Coulomb interaction changes packing structures through its influence on particle inertia before they are bonded into the force networks. Once contact networks are formed, the expansion effect caused by repulsive Coulomb forces are dominated by short-range adhesion. Based on abundant results from simulations, a dimensionless adhesion parameter Ad*, which combines the effects of the particle inertia, the short-range adhesion and the long-range Coulomb interaction, is proposed and successfully scales the packing results for micron-sized particles within the latest derived adhesive loose packing (ALP) regime. The structural properties of our packings follow well the recent theoretical prediction which is described by an ensemble approach based on a coarse-grained volume function, indicating some kind of universality in the low packing density regime of the phase diagram regardless of adhesion or particle charge. Based on the comprehensive consideration of the complicated inter-particle interactions, our findings provide insight into the roles of short-range adhesion and repulsive Coulomb force during packing formation and should be useful for further design of packings.

  15. Limestone weathering rates accelerated by micron-scale grain detachment

    NASA Astrophysics Data System (ADS)

    Emmanuel, S.; Levenson, Y.

    2014-12-01

    The weathering rates of carbonate rocks is often thought to be controlled by chemical dissolution, although some studies have suggested that mechanical erosion could also play an important role. Quantifying the rates of the different processes has proved challenging due to the high degree of variability encountered in both field and lab settings. To determine the rates and mechanisms controlling long-term limestone weathering, we analyse a lidar scan of the Western Wall, a Roman period edifice located in Jerusalem. Weathering rates in fine-grained micritic limestone blocks are up to 2 orders of magnitude higher than the average rates estimated for coarse-grained limestone blocks at the same site. In addition, in experiments that use atomic force microscopy to image dissolving micritic limestone, we show that these higher reaction rates could be due to rapid dissolution along micron-scale grain boundaries, followed by mechanical detachment of tiny particles from the surface. Our analysis indicates that micron-scale grain detachment, rather than pure chemical dissolution, could be the dominant erosional mode for fine-grained rocks in many carbonate terrains.

  16. Extreme limestone weathering rates due to micron-scale grain detachment

    NASA Astrophysics Data System (ADS)

    Emmanuel, Simon; Levenson, Yael

    2014-05-01

    Chemical dissolution is often assumed to control the weathering rates of carbonate rocks, although some studies have indicated that mechanical erosion could also play a significant role. Quantifying the rates of the different processes is challenging due to the high degree of variability encountered in both field and lab settings. To measure the rates and mechanisms controlling long-term limestone weathering, we analyse a lidar scan of the Western Wall, a Roman period edifice located in Jerusalem. Surface retreat rates in fine-grained micritic limestone blocks are found to be as much as 2 orders of magnitude higher than the average rates estimated for coarse-grained limestone blocks at the same site. In addition, in experiments that use atomic force microscopy to image dissolving micritic limestone, we show that these elevated reaction rates could be due to rapid dissolution along micron-scale grain boundaries, followed by mechanical detachment of tiny particles from the surface. Our analysis indicates that micron-scale grain detachment, rather than pure chemical dissolution, could be the dominant erosional mode for fine-grained carbonate rocks.

  17. Pinatubo Aerosol Global-to-Micro-Scale Evolution: A Unified Picture From Space, Air, and Ground Measurements

    NASA Technical Reports Server (NTRS)

    Russell, Philip B.; Livingston, J. M.; Pueschel, R. F.; Pollack, J. B.; Brooks, S.; Hamill, P.; Hughes, J.; Thomason, L.; Stowe, L.; Deshler, T.; hide

    1995-01-01

    We combine a variety of measurements to develop a composite picture of the post-Pinatubo aerosol and assess the consistency and uncertainties of the measurement and retrieval techniques Satellite infrared spectroscopy, particle morphology, and evaporation temperature measurements are in accord with theoretical calculations In showing a dominant particle composition of H2SO4-H2O mature with H2SO4 weight traction of 65-80% for most stratospheric temperatures and humidities. Important exceptions are: (1) the presence of volcanic ash at all attitudes initially and in a layer just above the tropopause until at least March 1992, and (2) much smaller H2SO4 weight fractions at the low temperatures attained In high latitude winters and at the tropical tropopause. Laboratory spectroscopy and theoretical calculations yield wavelength- and temperature-dependent refractive indices for the dominant H2SO4-H2O droplets. These in turn permit derivation of particle size spectra from measured optical depth spectra for comparison to direct measurements by impactors and optical counters, All three techniques paint a generally consistent picture of the evolution of R(sub eff) the effective, or area-weighted, particle radius. In the first month after the eruption, although particle numbers increased by orders of magnitude, R(sub eff) was similar to the pre-eruption value of 0.1 to 0.2 microns because both small (r less than 0.2 microns) and large (r greater than 0.6 microns) particles increased in number. Over the next 3-6 months, R(sub eff) increased to about 0.5 microns, reflecting particle growth through condensation and coagulation. In general, R(sub eff) continued to increase for about a year after the eruption. Extinction spectra computed from in situ size distribution measurements are consistent with optical depth measurements, which show spectra with maxima initially at wavelengths of 0.42 microns or less, and thereafter progressively increasing to between 0.78 and 1 micron. Not until 1993 does optical depth spectra begin to show a clear return to the preeruption signature of maximizing at the shortest visible wavelengths or in the near UV. This coupled evolution in particle size distribution and optical depth spectra helps explain the relationship between the global maps of 0.5- and 1.0-kilometer optical depth derived from the AVHRR and SAGE satellite measurements. It also sets a context for evaluating remaining uncertainties in each of these satellite data products. We also show how the effects of wavelength-dependent refractive index on backscatter spectra can influence particle sizes retrieved from multiwavelength lidar measurements.

  18. Particle Size Effects on Flow Properties of PS304 Plasma Spray Feedstock Powder Blend

    NASA Technical Reports Server (NTRS)

    Stanford, Malcolm K.; DellaCorte, Christopher; Eylon, Daniel

    2002-01-01

    The effects of BaF2-CaF2 particle size and size distribution on PS304 feedstock powder flowability have been investigated. Angular BaF2-CaF2 eutectic powders were produced by comminution and classified by screening to obtain 38 to 45 microns 45 to 106 microns, 63 to 106 microns, 45 to 53 microns, 63 to 75 microns, and 90 to 106 microns particle size distributions. The fluorides were added incrementally from 0 to 10 wt% to the other powder constituents of the PS304 feedstock: nichrome, chromia, and silver powders. The flow rate of the powder blends decreased linearly with increasing concentration of the fluorides. Flow was degraded with decreasing BaF2-CaF2 particle size and with increasing BaF2-CaF2 particle size distribution. A semiempirical relationship is offered to describe the PS304 powder blend flow behavior. The Hausner Ratio confirmed the funnel flow test results, but was slightly less sensitive to differences in BaF2-CaF2 particle size and size distribution. These findings may have applicability to other powders that do not flow easily, such as ceramic powders.

  19. Remote sensing of cloud radiation and microphysical parameters

    NASA Technical Reports Server (NTRS)

    Wu, M.-L. C.; Curran, R. J.

    1983-01-01

    Multispectral cloud radiometer (MCR) data, retrieved from a radiometer installed in a nadir viewing position on a high-altitude aircraft flying at 200 m/s and at an altitude of 60,000 ft above the mean sea level, are analyzed. The data discussed were obtained in the 0.754, 0.7609, 0.7634, 1.626, 2.125, and 11.38-micron channels, and are compared to lidar-derived profiles. Among the cloud parameters under consideration are the cloud scaled optical thickness, cloudtop altitude, scaled volume scattering coefficient, particle thermodynamic phase, mean particle size, and cloudtop temperature.

  20. Production of cromolyn sodium microparticles for aerosol delivery by supercritical assisted atomization.

    PubMed

    Reverchon, Ernesto; Adami, Renata; Caputo, Giuseppe

    2007-12-21

    The purpose of this study was to produce cromolyn sodium (CS) micrometric particles with controlled particle size (PS) and PS distribution (PSD) suitable for aerosol delivery, using a supercritical fluids-based process. CS was micronized using the supercritical assisted atomization (SAA) technique at different solute concentrations in water and different precipitation temperatures. Two techniques were used to measure PS and PSD of produced particles: scanning electron microscopy image analysis and laser scattering analysis. The 2 techniques were compared to provide a complete description of the powder obtained. High-performance liquid chromatography analysis was used to verify the absence of degradation of CS after micronization; differential scanning calorimetry, thermogravimetric analysis (TGA), and X-ray analysis were performed to study the effect of operative conditions on the crystalline structure and on the water content of SAA micronized particles. The CS particles obtained were spherical, with a volumetric percentage of particles with a diameter ranging between 1 and 5 microm of 50% to 66%. The precipitation temperature had no significant effect on PSD, but high drying temperatures led to product degradation. Increasing the concentration of CS in water solution produced an increase in PS of the micronized particles. TGA showed that the micronized CS had a different hydration state than the untreated CS did. The micronized product was stable after 12 months of storage, and no modifications in structure, morphology, or crystallinity were detected. In conclusion, SAA is an efficient technique for micronization of CS, and stable spherical amorphous particles suitable for aerosol delivery can be produced.

  1. A regression analysis of filler particle content to predict composite wear.

    PubMed

    Jaarda, M J; Wang, R F; Lang, B R

    1997-01-01

    It has been hypothesized that composite wear is correlated to filler particle content. There is a paucity of research to substantiate this theory despite numerous projects evaluating the correlation. The purpose of this study was to determine whether a linear relationship existed between composite wear and filler particle content of 12 composites. In vivo wear data had been previously collected for the 12 composites and served as basis for this study. Scanning electron microscopy and backscatter electron imaging were combined with digital imaging analysis to develop "profile maps" of the filler particle composition of the composites. These profile maps included eight parameters: (1) total number of filler particles/28742.6 microns2, (2) percent of area occupied by all of the filler particles, (3) mean filler particle size, (4) percent of area occupied by the matrix, (5) percent of area occupied by filler particles, r (radius) 1.0 < or = micron, (6) percent of area occupied by filler particles, r = 1.0 < or = 4.5 microns, (7) percent of area occupied by filler particles, r = 4.5 < or = 10 microns, and (8) percent of area occupied by filler particles, r > 10 microns. Forward stepwise regression analyses were used with composite wear as the dependent variable and the eight parameters as independent variables. The results revealed a linear relationship between composite wear and the filler particle content. A mathematical formula was developed to predict composite wear.

  2. Airborne particulate matter in spacecraft

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Acceptability limits and sampling and monitoring strategies for airborne particles in spacecraft were considered. Based on instances of eye and respiratory tract irritation reported by Shuttle flight crews, the following acceptability limits for airborne particles were recommended: for flights of 1 week or less duration (1 mg/cu m for particles less than 10 microns in aerodynamic diameter (AD) plus 1 mg/cu m for particles 10 to 100 microns in AD); and for flights greater than 1 week and up to 6 months in duration (0.2 mg/cu m for particles less than 10 microns in AD plus 0.2 mg/cu m for particles 10 to 100 microns in AD. These numerical limits were recommended to aid in spacecraft atmosphere design which should aim at particulate levels that are a low as reasonably achievable. Sampling of spacecraft atmospheres for particles should include size-fractionated samples of 0 to 10, 10 to 100, and greater than 100 micron particles for mass concentration measurement and elementary chemical analysis by nondestructive analysis techniques. Morphological and chemical analyses of single particles should also be made to aid in identifying airborne particulate sources. Air cleaning systems based on inertial collection principles and fine particle collection devices based on electrostatic precipitation and filtration should be considered for incorporation into spacecraft air circulation systems. It was also recommended that research be carried out in space in the areas of health effects and particle characterization.

  3. Effect of processing history on the surface interfacial properties of budesonide in carrier-based dry-powder inhalers.

    PubMed

    Shur, Jagdeep; Pitchayajittipong, Chonladda; Rogueda, Philippe; Price, Robert

    2013-08-01

    Influence of air-jet micronization, post-micronization conditioning and storage on the surface properties of budesonide in dry-powder inhaler formulations was investigated. Crystalline budesonide was air jet-micronized and conditioned using organic vapor. Particle engineering was also used to fabricate respirable particles of budesonide. Surface imaging by atomic force microscopy suggested that micronized material possessed process-induced surface disorder, which relaxed upon conditioning with organic vapor. Particle engineered material was devoid of such surface disorder. Surface interfacial properties of all batches were different and correlated to in vitro fine particle delivery. The surface properties and in vitro performance of the conditioned material changed upon storage of the budesonide at 44% relative humidity and 25°C, while the micronized and particle-engineered material remained stable. These data suggest that processing conditions of budesonide affected the surface properties of the material, which was demonstrated to have direct affect on dry-powder inhaler formulation performance.

  4. Size-selective sorting in bubble streaming flows: Particle migration on fast time scales

    NASA Astrophysics Data System (ADS)

    Thameem, Raqeeb; Rallabandi, Bhargav; Hilgenfeldt, Sascha

    2015-11-01

    Steady streaming from ultrasonically driven microbubbles is an increasingly popular technique in microfluidics because such devices are easily manufactured and generate powerful and highly controllable flows. Combining streaming and Poiseuille transport flows allows for passive size-sensitive sorting at particle sizes and selectivities much smaller than the bubble radius. The crucial particle deflection and separation takes place over very small times (milliseconds) and length scales (20-30 microns) and can be rationalized using a simplified geometric mechanism. A quantitative theoretical description is achieved through the application of recent results on three-dimensional streaming flow field contributions. To develop a more fundamental understanding of the particle dynamics, we use high-speed photography of trajectories in polydisperse particle suspensions, recording the particle motion on the time scale of the bubble oscillation. Our data reveal the dependence of particle displacement on driving phase, particle size, oscillatory flow speed, and streaming speed. With this information, the effective repulsive force exerted by the bubble on the particle can be quantified, showing for the first time how fast, selective particle migration is effected in a streaming flow. We acknowledge support by the National Science Foundation under grant number CBET-1236141.

  5. Fine coal cleaning via the micro-mag process

    DOEpatents

    Klima, Mark S.; Maronde, Carl P.; Killmeyer, Richard P.

    1991-01-01

    A method of cleaning particulate coal which is fed with a dense medium slurry as an inlet feed to a cyclone separator. The coal particle size distribution is in the range of from about 37 microns to about 600 microns. The dense medium comprises water and ferromagnetic particles that have a relative density in the range of from about 4.0 to about 7.0. The ferromagnetic particles of the dense medium have particle sizes of less than about 15 microns and at least a majority of the particle sizes are less than about 5 microns. In the cyclone, the particulate coal and dense-medium slurry is separated into a low gravity product stream and a high gravity produce stream wherein the differential in relative density between the two streams is not greater than about 0.2. The low gravity and high gravity streams are treated to recover the ferromagnetic particles therefrom.

  6. Particle Engulfment and Pushing by Solidification Interfaces. Part 1; Ground Experiments

    NASA Technical Reports Server (NTRS)

    Juretzko, Frank R.; Dhindaw, Brij K.; Stefanescu, Doru M.; Sen, subhayu; Curreri, Peter A.

    1998-01-01

    Directional solidification experiments have been carried out to determine the pushing/engulfment transition for two different metal/particle systems. The systems chosen were aluminum/zirconia particles and zinc/zirconia particles. Pure metals (99.999% Al and 99.95% Zn) and spherical particles (500 microns in diameter) were used. The particles were non-reactive with the matrices within the temperature range of interest. The experiments were conducted such as to insure a planar solid/liquid interface during solidification. Particle location before and after processing was evaluated by X-ray transmission microscopy for the Al/ZrO2 samples. All samples were characterized by optical metallography after processing. A clear methodology for the experiment evaluation was developed to unambiguously interpret the occurrence of the pushing/engulfment transition. It was found that the critical velocity for engulfment ranges from 1.9 to 2.4 micron/s for Al/ZrO2 and from 1.9 to 2.9 microns/s for Zn/ZrO2.

  7. Airborne measurements of cloud-forming nuclei and aerosol particles in stabilized ground clouds produced by solid rocket booster firings

    NASA Technical Reports Server (NTRS)

    Hindman, E. E., II; Ala, G. G.; Parungo, F. P.; Willis, P. T.; Bendura, R. J.; Woods, D.

    1978-01-01

    Airborne measurements of cloud volumes, ice nuclei and cloud condensation nuclei, liquid particles, and aerosol particles were obtained from stabilized ground clouds (SGCs) produced by Titan 3 launches at Kennedy Space Center, 20 August and 5 September 1977. The SGCs were bright, white, cumulus clouds early in their life and contained up to 3.5 g/m3 of liquid in micron to millimeter size droplets. The measured cloud volumes were 40 to 60 cu km five hours after launch. The SGCs contained high concentrations of cloud condensation nuclei active at 0.2%, 0.5%, and 1.0% supersaturation for periods of three to five hours. The SGCs also contained high concentrations of submicron particles. Three modes existed in the particle population: a 0.05 to 0.1 micron mode composed of aluminum-containing particles, a 0.2 to 0.8 micron mode, and a 2.0 to 10 micron mode composed of particles that contained primarily aluminum.

  8. Analysis of wear debris from full-scale bearing fatigue tests using the Ferrograph

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Loewenthal, S. H.

    1980-01-01

    The Ferrograph was used to determine the types of quantities of wear particles generated during full-scale bearing fatigue tests. Deep-groove ball bearings made from AISI 52100 steel were used. A MIL-L-23699 tetraester lubricant was used in a recirculating lubrication system containing a 49-micron absolute filter. Test conditions included a maximum Hertz stress of 2.4 GPa, a shaft speed of 15,000 rpm and a lubricant supply temperature of 74 C (165 F). Four fatigue failures were detected by accelerometers in this test set. In general, the Ferrograph was more sensitive (up to 23 h) in detecting spall initiation than either accelerometers or the normal spectrographic oil analysis (SOAP). Four particle types were observed: normal rubbing wear particles, spheres, nonferrous particles, and severe wear (spall) fragments.

  9. Enhancement of dissolution rate of poorly-soluble active ingredients by supercritical fluid processes. Part I: Micronization of neat particles.

    PubMed

    Perrut, M; Jung, J; Leboeuf, F

    2005-01-06

    In this first of two articles, we discuss some issues surrounding the dissolution rate enhancement of poorly-soluble active ingredients micronized into nano-particles using several supercritical fluid particle design processes including rapid expansion of supercritical solutions (RESS), supercritical anti-solvent (SAS) and particles from gas-saturated solutions/suspensions (PGSS). Experimental results confirm that dissolution rates do not only depend on the surface area and particle size of the processed powder, but are greatly affected by other physico-chemical characteristics such as crystal morphology and wettability that may reduce the benefit of micronization.

  10. Global to Microscale Evolution of the Pinatubo Volcanic Aerosol Derived from Diverse Measurements and Analyses

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Livingston, J. M.; Pueschel, R. F.; Bauman, J. J.; Pollack, J. B.; Brooks, S. L.; Hamill, P.; Thomason, L. W.; Stowe, L. L.; Deshler, T.; hide

    2000-01-01

    We assemble data on the Pinatubo aerosol from space, air, and ground measurements, develop a composite picture, and assess the consistency and uncertainties of measurement and retrieval techniques. Satellite infrared spectroscopy, particle morphology, and evaporation temperature measurements agree with theoretical calculations in showing a dominant composition of H2SO4-H20 mixture, with H2SO4 weight fraction of 65-80% for most stratospheric temperatures and humidities. Important exceptions are (1) volcanic ash, present at all heights initially and just above the tropopause until at least March 1992, and (2) much smaller H2SO4 fractions at the low temperatures of high-latitude winters and the tropical tropopause. Laboratory spectroscopy and calculations yield wavelength- and temperature-dependent refractive indices for the H2SO4-H20 droplets. These permit derivation of particle size information from measured optical depth spectra, for comparison to impactor and optical-counter measurements. All three techniques paint a generally consistent picture of the evolution of R(sub eff), the effective radius. In the first month after the eruption, although particle numbers increased greatly, R(sub eff) outside the tropical core was similar to preeruption values of approx. 0.1 to 0.2 microns, because numbers of both small (r < 0.2 microns) and large (r > 0.6 microns) particles increased. In the next 3-6 months, extracore R(sub eff) increased to approx. 0.5 microns, reflecting particle growth through condensation and coagulation. Most data show that R(sub eff) continued to increase for about 1 year after the eruption. R(sub eff) values up to 0.6 - 0.8 microns or more are consistent with 0.38 - 1 micron optical depth spectra in middle to late 1992 and even later. However, in this period, values from in situ measurements are somewhat less. The difference might reflect in situ undersampling of the very few largest particles, insensitivity of optical depth spectra to the smallest particles, or the inability of flat spectra to place an upper limit on particle size. Optical depth spectra extending to wavelengths lambda > 1 micron are required to better constrain R(sub eff), especially for R(sub eff) > 0.4 microns. Extinction spectra computed from in situ size distributions are consistent with optical depth measurements; both show initial spectra with lambda(sub max) <= 0.42 microns, thereafter increasing to 0.78 <= lambda(sub max) <= 1 micron. Not until 1993 do spectra begin to show a clear return to the preeruption signature of lambda(sub max) <= 0.42 microns. The twin signatures of large R(sub eff) (> 0.3 microns) and relatively flat extinction spectra (0.4 - 1 microns) are among the longest-lived indicators of Pinatubo volcanic influence. They persist for years after the peaks in number, mass, surface area, and optical depth at all wavelengths <= 1 microns. This coupled evolution in particle size distribution and optical depth spectra helps explain the relationship between global maps of 0.5- and 1.0-micron optical depth derived from the Advanced Very High Resolution Radiometer (AVHRR) and Stratospheric Aerosol and Gas Experiment (SAGE) satellite sensors. However, there are important differences between the AVHRR and SAGE midvisible optical thickness products. We discuss possible reasons for these differences and how they might be resolved.

  11. Radiation Pressure Measurements on Micron Size Individual Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Craven, P.D.; Spann, J. F.; Tankosic, D.; Witherow, W. K.; LeClair, A.; West, E.; Sheldon, R.; Gallagher, D. L.; Adrian, M. L.

    2003-01-01

    Measurements of electromagnetic radiation pressure have been made on individual silica (SiO2) particles levitated in an electrodynamic balance. These measurements were made by inserting single charged particles of known diameter in the 0.2 micron to 6.82 micron range and irradiating them from above with laser radiation focused to beam-widths of approx. 175-400 micron, at ambient pressures approx. 10(exp -3) to 10(exp -4) torr. The downward displacement of the particle due to the radiation force is balanced by the electrostatic force indicated by the compensating dc potential applied to the balance electrodes, providing a direct measure of the radiation force on the levitated particle. Theoretical calculations of the radiation pressure with a least-squares fit to the measured data yield the radiation pressure efficiencies of the particles, and comparisons with Mie scattering theory calculations provide the imaginary part of the refractive index of silica and the corresponding extinction and scattering efficiencies.

  12. Size of metallic and polyethylene debris particles in failed cemented total hip replacements

    NASA Technical Reports Server (NTRS)

    Lee, J. M.; Salvati, E. A.; Betts, F.; DiCarlo, E. F.; Doty, S. B.; Bullough, P. G.

    1992-01-01

    Reports of differing failure rates of total hip prostheses made of various metals prompted us to measure the size of metallic and polyethylene particulate debris around failed cemented arthroplasties. We used an isolation method, in which metallic debris was extracted from the tissues, and a non-isolation method of routine preparation for light and electron microscopy. Specimens were taken from 30 cases in which the femoral component was of titanium alloy (10), cobalt-chrome alloy (10), or stainless steel (10). The mean size of metallic particles with the isolation method was 0.8 to 1.0 microns by 1.5 to 1.8 microns. The non-isolation method gave a significantly smaller mean size of 0.3 to 0.4 microns by 0.6 to 0.7 microns. For each technique the particle sizes of the three metals were similar. The mean size of polyethylene particles was 2 to 4 microns by 8 to 13 microns. They were larger in tissue retrieved from failed titanium-alloy implants than from cobalt-chrome and stainless-steel implants. Our results suggest that factors other than the size of the metal particles, such as the constituents of the alloy, and the amount and speed of generation of debris, may be more important in the failure of hip replacements.

  13. Observations of condensation nuclei in the 1987 airborne Antarctic ozone experiment

    NASA Technical Reports Server (NTRS)

    Wilson, J. C.; Smith, S. D.; Ferry, G. V.; Loewenstein, M.

    1988-01-01

    The condensation nucleus counter (CNC) flown of the NASA ER-2 in the Airborne Antarctic Ozone Experiment provides a measurement of the number mixing ratio of particles which can be grown by exposure to supersaturated n-butyl alcohol vapor to diameters of a few microns. Such particles are referred to as condensation nuclei (CN). The ER-2 CNC was calibrated with aerosols of known size and concentration and was found to provide an accurate measure of the number concentration of particles larger than about 0.02 micron. Since the number distribution of stratospheric aerosols is usually dominated by particles less than a few tenths of micron in diameter, the upper cutoff of the ER-2 CNC has not been determined experimentally. However, theory suggests that the sampling and counting efficiency should remain near one for particles as large as 1 micron in diameter. Thus, the CN mixing ratio is usually a good measure of the mixing ratio of submicron particles.

  14. Characterization of fine volcanic ash from explosive eruption from Sakurajima volcano, South Japan

    NASA Astrophysics Data System (ADS)

    Nanayama, F.; Furukawa, R.; Ishizuka, Y.; Yamamoto, T.; Geshi, N.; Oishi, M.

    2013-12-01

    Explosive volcanic eruptions can affect infrastructure and ecosystem by their dispersion of the volcanic particle. Characterization of volcanic particle expelled by explosive eruption is crucial for evaluating for quantitative hazard assessment by future volcanic eruption. Especially for fine volcanic ash less than 64 micron in diameter, it can disperse vast area from the source volcano and be easily remobilized by surface wind and precipitation after the deposition. As fine volcanic ash is not preserved well at the earth surface and in strata except for enormously large scale volcanic eruption. In order to quantify quantitative characteristics of fine volcanic ash particle, we sampled volcanic ash directly falling from the eruption cloud from Showa crater, the most active vent of Sakurajima volcano, just before landing on ground. We newly adopted high precision digital microscope and particle grain size analyzer to develop hazard evaluation method of fine volcanic ash particle. Field survey was performed 5 sequential days in January, 2013 to take tamper-proof volcanic ash samples directly obtained from the eruption cloud of the Sakurajima volcano using disposable paper dishes and plastic pails. Samples were taken twice a day with time-stamp in 40 localities from 2.5 km to 43 km distant from the volcano. Japan Meteorological Agency reported 16 explosive eruptions of vulcanian style occurred during our survey and we took 140 samples of volcanic ash. Grain size distribution of volcanic ash was measured by particle grain size analyzer (Mophologi G3S) detecting each grain with parameters of particle diameter (0.3 micron - 1 mm), perimeter, length, area, circularity, convexity, solidity, and intensity. Component of volcanic ash was analyzed by CCD optical microscope (VHX-2000) which can take high resolution optical image with magnifying power of 100-2500. We discriminated each volcanic ash particle by color, texture of surface, and internal structure. Grain size distributions of volcanic ash from Sakurajima volcano have basically characteristics of unimodal and gaussian. Mode of distributions are 150 - 200 micron at 5 km and 70-80 micron at 20 km respectively from the Showa crater. Mode and deviation of the grain size distribution are function of distance from the source. Fine volcanic ash less than 1 micron in diameter is few and exists in every samples. Component of volcanic ash samples are dark-colored dense glass shard (ca. 50%), light-colored dense glass shard (10%), variously colored and vesiculated glass shard (10%), free crystal (20%), lithic fragment (10%), and altered fragment (less than 5%) which are mostly having similar ratio in every location suggesting single source process of the eruption. We also found fine volcanic ash samples less than 10 micron are frequently aggregated. The present study includes the result of "Research and Development of Margin Assessment Methodology of Decay Heat Removal Function against External Hazards" entrusted to Japan Atomic Energy Agency by the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT).

  15. Quality of remote sensing measurements of cloud physical parameters in the cooperative convective precipitation experiment

    NASA Technical Reports Server (NTRS)

    Wu, M.-L.

    1985-01-01

    In order to develop the remote sensing techniques to infer cloud physical parameters, a multispectral cloud radiometer (MCR) was mounted on a NASA high-altitude aircraft in conjunction with the Cooperative Convective Precipitation Experiment in 1981. The MCR has seven spectral channels, of which three are centered near windows associated with water vapor bands in the near infrared, two are centered near the oxygen A band at 0.76 microns, one is centered at the 1.14-micron water vapor band, and one is centered in the thermal infrared. The reflectance and temperature measured on May 31, 1981, are presented together with theoretical calculations. The results indicate that the MCR produces quality measurements. Therefore several cloud parameters can be derived with good accuracy. The parameters are the cloud-scaled optical thickness, cloud top pressure, volume scattering coefficient, particle thermodynamic phase, effective mean particle size, and cloud-top temperature.

  16. Control and formation mechanism of extended nanochannel geometry in colloidal mesoporous silica particles.

    PubMed

    Sokolov, I; Kalaparthi, V; Volkov, D O; Palantavida, S; Mordvinova, N E; Lebedev, O I; Owens, J

    2017-01-04

    A large class of colloidal multi-micron mesoporous silica particles have well-defined cylindrical nanopores, nanochannels which self-assembled in the templated sol-gel process. These particles are of broad interest in photonics, for timed drug release, enzyme stabilization, separation and filtration technologies, catalysis, etc. Although the pore geometry and mechanism of pore formation of such particles has been widely investigated at the nanoscale, their pore geometry and its formation mechanism at a larger (extended) scale is still under debate. The extended geometry of nanochannels is paramount for all aforementioned applications because it defines accessibility of nanochannels, and subsequently, kinetics of interaction of the nanochannel content with the particle surrounding. Here we present both experimental and theoretical investigation of the extended geometry and its formation mechanism in colloidal multi-micron mesoporous silica particles. We demonstrate that disordered (and consequently, well accessible) nanochannels in the initially formed colloidal particles gradually align and form extended self-sealed channels. This knowledge allows to control the percentage of disordered versus self-sealed nanochannels, which defines accessibility of nanochannels in such particles. We further show that the observed aligning the channels is in agreement with theory; it is thermodynamically favored as it decreases the Gibbs free energy of the particles. Besides the practical use of the obtained results, developing a fundamental understanding of the mechanisms of morphogenesis of complex geometry of nanopores will open doors to efficient and controllable synthesis that will, in turn, further fuel the practical utilization of these particles.

  17. Lungs deposition and pharmacokinetic study of submicron budesonide particles in Wistar rats intended for immediate effect in asthma.

    PubMed

    Rauf, Abdul; Bhatnagar, Aseem; Sisodia, S S; Khar, Roop K; Ahmad, Farhan J

    2017-01-01

    The purpose of the present investigation was to study the aerosolization, lungs deposition and pharmacokinetic study of inhalable submicron particles of budesonide in male Wistar rats. Submicron particles were prepared by antisolvent nanoprecipitation method and freeze-dried to obtain free flowing powder. The freeze-drying process yielded dry powder with desirable aerodynamic properties for inhalation therapy. An in-house model inhaler was designed to deliver medicine to lungs, optimized at dose level of 10 mg for 30 sec of fluidization. The in vitro aerosolization study demonstrates that submicron particles dissolve faster with improved aerosolization effect as compared to micronized budesonide. Both submicron and micron particles were compared for in vivo lungs deposition. The results showed that relatively high quantity of submicron particles reaches deep into the lungs as compared to micron particles. Most pronounced effect observed with submicron particles from pharmacokinetic parameters was the enhancement in peak plasma concentration (C max ) by 28.85 %, and increase in area under concentration curve (AUC 0-8h ) by 30.33 % compared to micron sized particles. The results suggested that developed submicronized formulation of budesonide can be used for pulmonary drug delivery for high deposition to deep lungs tissues.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, Kyle T.

    Reactive composites utilizing nanoparticles have been the topic of extensive research in the past two decades. The driver for this is that, as the particle size is decreased, the mixing scale between constituents is greatly reduced, which has long thought to increase the rate of chemical reaction. While a general trend of increased reactivity has been seen for metal / metal oxide, or thermite, reactive materials, some results have demonstrated diminishing returns as the particle size is further decreased. Recent results have shown that nanoparticles, which are typically aggregates of several primary particles, can undergo very rapid coalescence to formmore » micron particles once a critical temperature is reached. Experiments on this topic to date have been performed on very small sample masses, and sometimes under vacuum; conditions which are not representative of the environment during a deflagration. In this feasibility study, a custom burn tube was used to ignite and react 100 mg powdered thermite samples in long acrylic tubes. X-ray imaging at APS Sector 32 was performed to image the particle field as a function of distance and time as the rarefied particle cloud expanded and flowed down the tube. Five different thermite formulations were investigated, Al / CuO, Al / Fe 2O 3, Al / SnO 2, Al / WO 3, and Al / Fe 2O 3, along with Al / CuO formulations with different sizes of Al particles ranging from 80 nm to approximate 10 μm. The results clearly show that the sample powder reacts and unloads into a distribution of larger micron-scale particles (~5-500 μm), which continue to react and propagate as the particle-laden stream flows down the tube. This was the first direct imaging of the particle field during a thermite deflagration, and gives significant insight into the evolution of reactants to products. Analysis of phase is currently being pursued to determine whether this method can be used to extract reaction kinetics.« less

  19. Fabrication of magnetic and fluorescent chitin and dibutyrylchitin sub-micron particles by oil-in-water emulsification.

    PubMed

    Blanco-Fernandez, Barbara; Chakravarty, Shatadru; Nkansah, Michael K; Shapiro, Erik M

    2016-11-01

    Chitin is a carbohydrate polymer with unique pharmacological and immunological properties, however, because of its unwieldy chemistry, the synthesis of discreet sized sub-micron particles has not been well reported. This work describes a facile and flexible method to fabricate biocompatible chitin and dibutyrylchitin sub-micron particles. This technique is based on an oil-in-water emulsification/evaporation method and involves the hydrophobization of chitin by the addition of labile butyryl groups onto chitin, disrupting intermolecular hydrogen bonds and enabling solubility in the organic solvent used as the oil phase during fabrication. The subsequent removal of butyryl groups post-fabrication through alkaline saponification regenerates native chitin while keeping particles morphology intact. Examples of encapsulation of hydrophobic dyes and nanocrystals are demonstrated, specifically using iron oxide nanocrystals and coumarin 6. The prepared particles had diameters between 300-400nm for dibutyrylchitin and 500-600nm for chitin and were highly cytocompatible. Moreover, they were able to encapsulate high amounts of iron oxide nanocrystals and were able to label mammalian cells. We describe a technique to prepare sub-micron particles of highly acetylated chitin (>90%) and dibutyrylchitin and demonstrate their utility as carriers for imaging. Chitin is a polysaccharide capable of stimulating the immune system, a property that depends on the acetamide groups, but its insolubility limits its use. No method for sub-micron particle preparation with highly acetylated chitins have been published. The only approach for the preparation of sub-micron particles uses low acetylation chitins. Dibutyrylchitin, a soluble chitin derivative, was used to prepare particles by oil in water emulsification. Butyryl groups were then removed, forming chitin particles. These particles could be suitable for encapsulation of hydrophobic payloads for drug delivery and cell imaging, as well as, adjuvants for vaccines. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Seed particle response and size characterization in high speed flows

    NASA Technical Reports Server (NTRS)

    Rudoff, Roger C.; Bachalo, William D.

    1991-01-01

    The response of seed particles ranging between 0.7 and 8.7 micron is determined using a phase Doppler particle analyzer which simultaneously measures particle size and velocity. The stagnant seed particles are entrained into a high speed free jet at velocities ranging from 40 to 300 m/s. The size-mean axial velocity correlation and size-rms velocity correlations are used to determine the particle response to the sudden acceleration. It was determined that at the lower speeds, seed particles up to approximately 5 microns are adequate, but as velocities approach 300 m/s only particles on the order of one micron are suitable. The ability to determine size and velocity simultaneously is essential if seeding with polydispersions is used since it allows the rejection of data which will not accurately represent the flow field.

  1. Temporal variability of the chemical composition of surface aerosol in the Moscow region in 1999-2005 from the results of infrared spectroscopy of aerosol samples

    NASA Astrophysics Data System (ADS)

    Shukurova, L. M.; Gruzdev, A. N.

    2010-06-01

    The temporal variability of the chemical composition of surface aerosol with particle diameters of 0.7-2 μm is analyzed. This analysis is based on the results of measurements of infrared transmission spectra of aerosol samples collected with the use of a cascade impactor at the Zvenigorod Scientific Station of the Institute of Atmospheric Physics (IAP) in 1999-2005. Seasonal features of the aerosol chemical composition and its dependence on the particle size are revealed. The interdiurnal variability of the aerosol composition depends on the season, and it manifests itself more strongly in winter and spring. Air-mass changes lead to changes in the relation of sulfates and nitrates in the micron fraction of aerosol. The enrichment of samples in nitrates is especially characteristic of the winter and spring seasons. Compounds containing the NO2 group are often met in the samples of aerosol with particle sizes of 0.7-1.3 μm during the cold time of the year. The estimates of the optical thickness of micron aerosol in the sulfate absorption band are obtained, and optical-thickness variations of some scales are detected. The quantitative characteristics of statistical relations between different chemical components of aerosol inside individual fractions and between chemical components of the micron and submicron fractions are obtained and analyzed.

  2. Shear-banding and superdiffusivity in entangled polymer solutions

    NASA Astrophysics Data System (ADS)

    Shin, Seunghwan; Dorfman, Kevin D.; Cheng, Xiang

    2017-12-01

    Using high-resolution confocal rheometry, we study the shear profiles of well-entangled DNA solutions under large-amplitude oscillatory shear in a rectilinear planar shear cell. With increasing Weissenberg number (Wi), we observe successive transitions from normal Newtonian linear shear profiles to wall-slip dominant shear profiles and, finally, to shear-banding profiles at high Wi. To investigate the microscopic origin of the observed shear banding, we study the dynamics of micron-sized tracers embedded in DNA solutions. Surprisingly, tracer particles in the shear frame exhibit transient superdiffusivity and strong dynamic heterogeneity. The probability distribution functions of particle displacements follow a power-law scaling at large displacements, indicating a Lévy-walk-type motion, reminiscent of tracer dynamics in entangled wormlike micelle solutions and sheared colloidal glasses. We further characterize the length and time scales associated with the abnormal dynamics of tracer particles. We hypothesize that the unusual particle dynamics arise from localized shear-induced chain disentanglement.

  3. TOTAL RESPIRATORY TRACT DEPOSITION OF FINE MICRON-SIZED PARTICLES IN HEALTHY ADULTS: EMPIRICIAL EQUATIONS FOR GENDER AND BREATHING PATTERN

    EPA Science Inventory

    An accurate dose estimation under various inhalation conditions is important for assessing both the potential health effects of pollutant particles and the therapeutic efficacy of medical aerosols. We measured total deposition fraction (TDF) of monodisperse micron-sized particles...

  4. The 27-28 October 1986 FIRE IFO Cirrus case study: Comparison of radiative transfer theory with observations by satellite and aircraft

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A.; Suttles, J. T.; Heymsfield, Andrew J.; Welch, Ronald M.; Spinhirne, James D.; Wu, Man-Li C.; Starr, David OC.; Parker, Lindsay; Arduini, Robert F.

    1989-01-01

    Observations of cirrus and altocumulus clouds during the First International Satellite Cloud Climatology Project Regional Experiment (FIRE) are compared to theoretical models of cloud radiative properties. Three tests are performed. First, LANDSAT radiances are used to compare the relationship between nadir reflectance ot 0.83 micron and beam emittance at 11.5 microns with that predicted for model calculations using spherical and nonspherical phase functions. Good agreement is found between observations and theory when water droplets dominate. Poor agreement is found when ice particles dominate, especially using scattering phase functions for spherical particles. Even when compared to a laboratory measured ice particle phase function, the observations show increased side scattered radiation relative to the theoretical calculations. Second, the anisotropy of conservatively scattered radiation is examined using simultaneous multiple angle views of the cirrus from LANDSAT and ER-2 aircraft radiometers. Observed anisotropy gives good agreement with theoretical calculations using the laboratory measured ice particle phase function and poor agreement with a spherical particle phase function. Third, Landsat radiances at 0.83, 1.65, and 2.21 microns are used to infer particle phase and particle size. For water droplets, good agreement is found with King Air FSSP particle probe measurements in the cloud. For ice particles, the LANDSAT radiance observations predict an effective radius of 60 microns versus aircraft observations of about 200 microns. It is suggested that this descrepancy may be explained by uncertainty in the imaginary index of ice and by inadequate measurements of small ice particles by microphysical probes.

  5. A Dust Grain Photoemission Experiment

    NASA Technical Reports Server (NTRS)

    Venturini, C. C.; Spann, J. F., Jr.; Abbas, M. M.; Comfort, R. H.

    2000-01-01

    A laboratory experiment has been developed at Marshall Space Flight Center to study the interaction of micron-sized particles with plasmas and FUV radiation. The intent is to investigate the conditions under which particles of various compositions and sizes become charged, or discharged, while exposed to an electron beam and/or UV radiation. This experiment uses a unique laboratory where a single charged micron size particle is suspended in a quadrupole trap and then subjected to a controlled environment. Tests are performed using different materials and sizes, ranging from 10 microns to 1 micron, to determine the particle's charge while being subjected to an electron beam and /or UV radiation. The focus of this presentation will be on preliminary results from UV photoemission tests, but past results from electron beam, secondary electron emission tests will also be highlighted. A monochromator is used to spectrally resolve UV in the 120 nm to 300 nm range. This enables photoemission measurements as a function of wavelength. Electron beam tests are conducted using I to 3 micron sized aluminum oxide particles subjected to energies between 100 eV to 3 KeV. It was found that for both positive and negative particles the potential tended toward neutrality over time with possible equilibrium potentials between -0.8 Volts and 0.8 Volts.

  6. Improved Boron for Enhanced Combustion

    DTIC Science & Technology

    1990-06-01

    elements scanned. - 11 - C. Particle Dynamics Ultrafine particles on the order of 0.01 to 0.1 micron diameter are known to exhibit dynamic behavior...very short relaxation times after perturbations [7]. Of the four major regimes of particle dynamic behavior, these ultrafine particles are classified in...modeling. Ultrafine particles up to approximately 0.1 micron in diameter tend to have unequilibrated surface energy [7,8,9,101. This is particularly

  7. Mechanical instability and percolation of deformable particles through porous networks

    NASA Astrophysics Data System (ADS)

    Benet, Eduard; Lostec, Guillaume; Pellegrino, John; Vernerey, Franck

    2018-04-01

    The transport of micron-sized particles such as bacteria, cells, or synthetic lipid vesicles through porous spaces is a process relevant to drug delivery, separation systems, or sensors, to cite a few examples. Often, the motion of these particles depends on their ability to squeeze through small constrictions, making their capacity to deform an important factor for their permeation. However, it is still unclear how the mechanical behavior of these particles affects collective transport through porous networks. To address this issue, we present a method to reconcile the pore-scale mechanics of the particles with the Darcy scale to understand the motion of a deformable particle through a porous network. We first show that particle transport is governed by a mechanical instability occurring at the pore scale, which leads to a binary permeation response on each pore. Then, using the principles of directed bond percolation, we are able to link this microscopic behavior to the probability of permeating through a random porous network. We show that this instability, together with network uniformity, are key to understanding the nonlinear permeation of particles at a given pressure gradient. The results are then summarized by a phase diagram that predicts three distinct permeation regimes based on particle properties and the randomness of the pore network.

  8. Submillimeter studies of main-sequence stars

    NASA Technical Reports Server (NTRS)

    Zuckerman, B.; Becklin, E. E.

    1993-01-01

    JCMT maps of the 800-micron emission from Vega, Fomalhaut, and Beta Pictoris are interpreted to indicate that they are not ringed by large reservoirs of distant orbiting dust particles that are too cold to have been detected by IRAS. A search for 800-micron emission from stars in the Pleiades and Ursa Majoris open clusters is reported. In comparison with the mass of dust particles near T Tauri and Herbig Ae stars, the JCMT data indicate a decline in dust mass during the initial 3 x 10 exp 8 yr that a star spends on the main sequence that is at least as rapid as (time) exp -2. It is estimated that in the Kuiper belt the ratio of total mass carried by small particles to that carried by comets is orders of magnitude smaller than this ratio is 1 AU from the sun. If 800-micron opacities calculated by Pollack et al. (1993) are correct, then the particles with radii less than 100 microns that dominate the FIR fluxes measured by IRAS cannot entirely account for the measured 800-micron fluxes at Vega, Beta Pic, and Fomalhaut; larger particles must be present as well.

  9. Charge, energy and LET spectra of high LET primary and secondary particles in CR-39 plastic nuclear track detectors of the P0006 experiment

    NASA Technical Reports Server (NTRS)

    Csige, I.; Frigo, L. A.; Benton, E. V.; Oda, K.

    1995-01-01

    We have measured the charge, energy and linear energy transfer (LET) spectra of about 800 high LET (LET(sub infinity) H2O greater than 50 keV/micron) particles in CR-39 plastic nuclear track detectors in the P0006 experiment of LDEF. Primary particles with residual range at the reference surface greater than about 2 microns and secondary particles produced in the detector material with total range greater than about 4 microns were measured. We have used a multi-etch technique and an internal calibration to identify and measure the energy of the particles at the reference surface. The LET spectrum was obtained from the charge and energy distribution of the particles.

  10. DNA Origami Patterned Colloids for Programmed Design and Chirality

    NASA Astrophysics Data System (ADS)

    Ben Zion, Matan Yah; He, Xiaojin; Maass, Corinna; Sha, Ruojie; Seeman, Ned; Chaikin, Paul

    Micron size colloidal particles are scientifically important as model systems for equilibrium and active systems in physics, chemistry and biology and for technologies ranging from catalysis to photonics. The past decade has seen development of new particles with directional patches, lock and key reactions and specific recognition that guide assembly of structures such as complex crystalline arrays. What remains lacking is the ability to self-assemble structures of arbitrary shape with specific chirality, placement and orientation of neighbors. Here we demonstrate the adaptation of DNA origami nanotechnology to the micron colloidal scale with designed control of neighbor type, placement and dihedral angle. We use DNA origami belts with programmed flexibility, and functionality to pattern colloidal surfaces and bind particles to specific sites at specific angles and make uniquely right handed or left handed structures. The hybrid DNA origami colloid technology should allow the synthesis of designed functional structural and active materials. This work was supported as part of the Center for Bio-Inspired Energy Science, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award # DE-SC0000989.

  11. Phase-shift, stimuli-responsive drug carriers for targeted delivery

    PubMed Central

    O’Neill, Brian E; Rapoport, Natalya

    2011-01-01

    The intersection of particles and directed energy is a rich source of novel and useful technology that is only recently being realized for medicine. One of the most promising applications is directed drug delivery. This review focuses on phase-shift nanoparticles (that is, particles of submicron size) as well as micron-scale particles whose action depends on an external-energy triggered, first-order phase shift from a liquid to gas state of either the particle itself or of the surrounding medium. These particles have tremendous potential for actively disrupting their environment for altering transport properties and unloading drugs. This review covers in detail ultrasound and laser-activated phase-shift nano- and micro-particles and their use in drug delivery. Phase-shift based drug-delivery mechanisms and competing technologies are discussed. PMID:22059114

  12. Laboratory studies of aerosol electrification and experimental evidence for electrical breakdown at different scales.

    NASA Astrophysics Data System (ADS)

    Alois, Stefano; Merrison, Jonathan; Iversen, Jens Jacob; Sesterhenn, Joern

    2017-04-01

    Contact electrification between different particles size/material can lead to electric field generation high enough to produce electrical breakdown. Experimental studies of solid aerosol contact electrification (Alois et al., 2016) has shown various electrical breakdown phenomena; these range from field emission at the contact site (nm-scale) limiting particle surface charge concentration, to visible electrical discharges (cm-scale) observed both with the use of an electrometer and high-speed camera. In these experiments micron-size particles are injected into a low-pressure chamber, where they are deviated by an applied electric field. A laser Doppler velocimeter allows the simultaneous determination of particle size and charge of single grains. Results have shown an almost constant surface charge concentration, which is likely to be due to charge limitation by field emission at the contact site between particle and injector. In a second measurement technique, the electrically isolated injector tube (i.e. a Faraday cage) is connected to an oscilloscope and synchronised to a high speed camera filming the injection. Here the electrification of a large cloud of particles can be quantified and discharging effects studied. This study advances our understanding on the physical processes leading to electrification and electrical breakdown mechanisms.

  13. Dissolution enhancement of gliclazide using pH change approach in presence of twelve stabilizers with various physico-chemical properties.

    PubMed

    Talari, Roya; Varshosaz, Jaleh; Mostafavi, Seyed Abolfazl; Nokhodchi, Ali

    2009-01-01

    The micronization using milling process to enhance dissolution rate is extremely inefficient due to a high energy input, and disruptions in the crystal lattice which can cause physical or chemical instability. Therefore, the aim of the present study is to use in situ micronization process through pH change method to produce micron-size gliclazide particles for fast dissolution hence better bioavailability. Gliclazide was recrystallized in presence of 12 different stabilizers and the effects of each stabilizer on micromeritic behaviors, morphology of microcrystals, dissolution rate and solid state of recrystallized drug particles were investigated. The results showed that recrystallized samples showed faster dissolution rate than untreated gliclazide particles and the fastest dissolution rate was observed for the samples recrystallized in presence of PEG 1500. Some of the recrystallized drug samples in presence of stabilizers dissolved 100% within the first 5 min showing at least 10 times greater dissolution rate than the dissolution rate of untreated gliclazide powders. Micromeritic studies showed that in situ micronization technique via pH change method is able to produce smaller particle size with a high surface area. The results also showed that the type of stabilizer had significant impact on morphology of recrystallized drug particles. The untreated gliclazide is rod or rectangular shape, whereas the crystals produced in presence of stabilizers, depending on the type of stabilizer, were very fine particles with irregular, cubic, rectangular, granular and spherical/modular shape. The results showed that crystallization of gliclazide in presence of stabilizers reduced the crystallinity of the samples as confirmed by XRPD and DSC results. In situ micronization of gliclazide through pH change method can successfully be used to produce micron-sized drug particles to enhance dissolution rate.

  14. Optical trapping, pulling, and Raman spectroscopy of airborne absorbing particles based on negative photophoretic force

    NASA Astrophysics Data System (ADS)

    Chen, Gui-hua; He, Lin; Wu, Mu-ying; Yang, Guang; Li, Y. Q.

    2017-08-01

    Optical pulling is the attraction of objects back to the light source by the use of optically induced "negative forces". The light-induced photophoretic force is generated by the momentum transfer between the heating particles and surrounding gas molecules and can be several orders of magnitude larger than the radiation force and gravitation force. Here, we demonstrate that micron-sized absorbing particles can be optically pulled and manipulated towards the light source over a long distance in air with a collimated Gaussian laser beam based on a negative photophoretic force. A variety of airborne absorbing particles can be pulled by this optical pipeline to the region where they are optically trapped with another focused laser beam and their chemical compositions are characterized with Raman spectroscopy. We found that micron-sized particles are pulled over a meter-scale distance in air with a pulling speed of 1-10 cm/s in the optical pulling pipeline and its speed can be controlled by changing the laser intensity. When an aerosol particle is optically trapped with a focused Gaussian beam, we measured its rotation motion around the laser propagation direction and measured its Raman spectroscopy for chemical identification by molecular fingerprints. The centripetal acceleration of the trapped particle as high as 20 times the gravitational acceleration was observed. Optical pulling over large distances with lasers in combination with Raman spectroscopy opens up potential applications for the collection and identification of atmospheric particles.

  15. Optical trapping and Raman spectroscopy of solid particles.

    PubMed

    Rkiouak, L; Tang, M J; Camp, J C J; McGregor, J; Watson, I M; Cox, R A; Kalberer, M; Ward, A D; Pope, F D

    2014-06-21

    The heterogeneous interactions of gas molecules on solid particles are crucial in many areas of science, engineering and technology. Such interactions play a critical role in atmospheric chemistry and in heterogeneous catalysis, a key technology in the energy and chemical industries. Investigating heterogeneous interactions upon single levitated particles can provide significant insight into these important processes. Various methodologies exist for levitating micron sized particles including: optical, electrical and acoustic techniques. Prior to this study, the optical levitation of solid micron scale particles has proved difficult to achieve over timescales relevant to the above applications. In this work, a new vertically configured counter propagating dual beam optical trap was optimized to levitate a range of solid particles in air. Silica (SiO2), α-alumina (Al2O3), titania (TiO2) and polystyrene were stably trapped with a high trapping efficiency (Q = 0.42). The longest stable trapping experiment was conducted continuously for 24 hours, and there are no obvious constraints on trapping time beyond this period. Therefore, the methodology described in this paper should be of major benefit to various research communities. The strength of the new technique is demonstrated by the simultaneous levitation and spectroscopic interrogation of silica particles by Raman spectroscopy. In particular, the adsorption of water upon silica was investigated under controlled relative humidity environments. Furthermore, the collision and coagulation behaviour of silica particles with microdroplets of sulphuric acid was followed using both optical imaging and Raman spectroscopy.

  16. Manipulation of Micro Scale Particles in an Optical Trap Using Interferometry

    NASA Technical Reports Server (NTRS)

    Seibel, Robin

    2002-01-01

    This research shows that micro particles can be manipulated via interferometric patterns superimposed on an optical tweezers beam. Interferometry allows the manipulation of intensity distributions, and thus, force distributions on a trapped particle. To demonstrate the feasibility of such manipulation, 458 nm light, from an argon-ion laser, was injected into a Mach Zender interferometer. One mirror in the interferometer was oscillated with a piezoelectric phase modulator. The light from the interferometer was then injected into a microscope to trap a 9.75 micron polystyrene sphere. By varying the phase modulation, the sphere was made to oscillate in a controlled fashion.

  17. Mapping alpha-Particle X-Ray Fluorescence Spectrometer (Map-X)

    NASA Technical Reports Server (NTRS)

    Blake, D. F.; Sarrazin, P.; Bristow, T.

    2014-01-01

    Many planetary surface processes (like physical and chemical weathering, water activity, diagenesis, low-temperature or impact metamorphism, and biogenic activity) leave traces of their actions as features in the size range 10s to 100s of micron. The Mapping alpha-particle X-ray Spectrometer ("Map-X") is intended to provide chemical imaging at 2 orders of magnitude higher spatial resolution than previously flown instruments, yielding elemental chemistry at or below the scale length where many relict physical, chemical, and biological features can be imaged and interpreted in ancient rocks.

  18. Cryo-Scanning Electron Microscopy of Captured Cirrus Ice Particles

    NASA Astrophysics Data System (ADS)

    Magee, N. B.; Boaggio, K.; Bandamede, M.; Bancroft, L.; Hurler, K.

    2016-12-01

    We present the latest collection of high-resolution cryo-scanning electron microscopy images and microanalysis of cirrus ice particles captured by high-altitude balloon (ICE-Ball, see abstracts by K. Boaggio and M. Bandamede). Ice particle images and sublimation-residues are derived from particles captured during approximately 15 balloon flights conducted in Pennsylvania and New Jersey over the past 12 months. Measurements include 3D digital elevation model reconstructions of ice particles, and associated statistical analyses of entire particles and particle sub-facets and surfaces. This 3D analysis reveals that morphologies of most ice particles captured deviate significantly from ideal habits, and display geometric complexity and surface roughness at multiple measureable scales, ranging from 100's nanometers to 100's of microns. The presentation suggests potential a path forward for representing scattering from a realistically complex array of ice particle shapes and surfaces.

  19. Estimating Dermal Transfer of Copper Particles from the ...

    EPA Pesticide Factsheets

    Lumber pressure-treated with micronized copper was examined for the release of copper and copper micro/nanoparticles using a surface wipe method to simulate dermal transfer. In 2003, the wood industry began replacing CCA treated lumber products for residential use with copper based formulations. Micronized copper (nano to micron sized particles) has become the preferred treatment formulation. There is a lack of information on the release of copper, the fate of the particles during dermal contact, and the copper exposure level to children from hand-to-mouth transfer. For the current study, three treated lumber products, two micronized copper and one ionic copper, were purchased from commercial retailers. The boards were left to weather outdoors for approximately 1 year. Over the year time period, hand wipe samples were collected periodically to determine copper transfer from the wood surfaces. The two micronized formulations and the ionic formulation released similar levels of total copper. The amount of copper released was high initially, but decreased to a constant level (~1.5 mg m-2) after the first month of outdoor exposure. Copper particles were identified on the sampling cloths during the first two months of the experiment, after which the levels of copper were insufficient to collect interpretable data. After 1 month, the particles exhibited minimal changes in shape and size. At the end of 2-months, significant deterioration of the particles was

  20. Influence of Poly (Ethylene Glycol) and Oleylamine on the Formation of Nano to Micron Size Spherical SiO2 Particles

    EPA Science Inventory

    We report an eco-friendly synthesis of well–controlled, nano-to-micron-size, spherical SiO2 particles using non-hazardous solvent and a byproducts-producing system. It was found that the morphology and size of spherical SiO2 particles are controlled by adjusting the concentration...

  1. Periodic organosilica hollow nanospheres as anode materials for lithium ion rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Sasidharan, Manickam; Nakashima, Kenichi; Gunawardhana, Nanda; Yokoi, Toshiyuki; Ito, Masanori; Inoue, Masamichi; Yusa, Shin-Ichi; Yoshio, Masaki; Tatsumi, Takashi

    2011-11-01

    Polymeric micelles with core-shell-corona architecture have been found to be the efficient colloidal templates for synthesis of periodic organosilica hollow nanospheres over a broad pH range from acidic to alkaline media. In alkaline medium, poly (styrene-b-[3-(methacryloylamino)propyl] trimethylammonium chloride-b-ethylene oxide) (PS-PMAPTAC-PEO) micelles yield benzene-silica hollow nanospheres with molecular scale periodicity of benzene groups in the shell domain of hollow particles. Whereas, an acidic medium (pH 4) produces diverse hollow particles with benzene, ethylene, and a mixture of ethylene and dipropyldisulfide bridging functionalities using poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) (PS-PVP-PEO) micelles. These hollow particles were thoroughly characterized by powder X-ray diffraction (XRD), dynamic light scattering (DLS), thermogravimetric analysis (TG/DTA), Fourier transformation infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), magic angle spinning-nuclear magnetic resonance (29Si MAS NMR and 13CP-MAS NMR), Raman spectroscopy, and nitrogen adsorption/desorption analyses. The benzene-silica hollow nanospheres with molecular scale periodicity in the shell domain exhibit higher cycling performance of up to 300 cycles in lithium ion rechargeable batteries compared with micron-sized dense benzene-silica particles.Polymeric micelles with core-shell-corona architecture have been found to be the efficient colloidal templates for synthesis of periodic organosilica hollow nanospheres over a broad pH range from acidic to alkaline media. In alkaline medium, poly (styrene-b-[3-(methacryloylamino)propyl] trimethylammonium chloride-b-ethylene oxide) (PS-PMAPTAC-PEO) micelles yield benzene-silica hollow nanospheres with molecular scale periodicity of benzene groups in the shell domain of hollow particles. Whereas, an acidic medium (pH 4) produces diverse hollow particles with benzene, ethylene, and a mixture of ethylene and dipropyldisulfide bridging functionalities using poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) (PS-PVP-PEO) micelles. These hollow particles were thoroughly characterized by powder X-ray diffraction (XRD), dynamic light scattering (DLS), thermogravimetric analysis (TG/DTA), Fourier transformation infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), magic angle spinning-nuclear magnetic resonance (29Si MAS NMR and 13CP-MAS NMR), Raman spectroscopy, and nitrogen adsorption/desorption analyses. The benzene-silica hollow nanospheres with molecular scale periodicity in the shell domain exhibit higher cycling performance of up to 300 cycles in lithium ion rechargeable batteries compared with micron-sized dense benzene-silica particles. Electronic supplementary information (ESI) available: FTIR, Raman spectral data, additional TEM pictures, N2 adsorption and physical characteristics of hollow particles data, and cycling performance of dense silica particles. See DOI: 10.1039/c1nr10804b

  2. Multiscale modeling of interfacial flow in particle-solidification front dynamics

    NASA Astrophysics Data System (ADS)

    Garvin, Justin

    2005-11-01

    Particle-solidification front interactions are important in many applications, such as metal-matrix composite manufacture, frost heaving in soils and cryopreservation. The typical length scale of the particles and the solidification fronts are of the order of microns. However, the force of interaction between the particle and the front typically arises when the gap between them is of the order of tens of nanometers. Thus, a multiscale approach is necessary to analyze particle-front interactions. Solving the Navier-Stokes equations to simulate the dynamics by including the nano-scale gap between the particle and the front would be impossible. Therefore, the microscale dynamics is solved using a level-set based Eulerian technique, while an embedded model is developed for solution in the nano-scale (but continuum) gap region. The embedded model takes the form of a lubrication equation with disjoining pressure acting as a body force and is coupled to the outer solution. A particle is pushed by the front when the disjoining pressure is balanced by the viscous drag. The results obtained show that this balance can only occur when the thermal conductivity ratio of the particle to the melt is less than 1.0. The velocity of the front at which the particle pushing/engulfment transition occurs is predicted. In addition, this novel method allows for an in-depth analysis of the flow physics that cause particle pushing/engulfment.

  3. Heteroatom incorporated coke for electrochemical cell electrode

    DOEpatents

    Lewis, Irwin Charles; Greinke, Ronald Alfred

    1997-01-01

    This invention relates to an electrode for a coke/alkali metal electrochemical cell comprising: (a) calcined coke particles: (i) that contain at least 0.5 weight percent of nitrogen heteroatoms and at least 1.0 weight percent sulfur heteroatoms, and (ii) that have an average particle size from 2 microns to 40 microns with essentially no particles being greater than 50 microns. (b) a binder This invention also relates to a coke/alkali metal electrochemical cell comprising: (a) an electrode as described above, (b) a non-aqueous electrolytic solution comprising an organic aprotic solvent and an electrically conductive salt, and (c) a counterelectrode.

  4. Generation of sub-micron particles and secondary pollutants from building materials by ozone reaction

    NASA Astrophysics Data System (ADS)

    Aoki, Taisuke; Tanabe, Shin-ichi

    This study reports results from two different experiments examining reactions between ozone and common building materials that can lead to the formation of secondary products and particulate-phase materials. Monitored species include sub-micron particles and volatile organic compounds (VOCs). In the first set of experiments, various building materials were placed in a 20 L stainless-steel chamber and exposed to ozone. The materials included expanded polystyrene, a natural rubber adhesive, cedar board, Japanese Cyprus board and silver fir board, as well as d-limonene, which is a known constituent of certain woods and cleaning products. The combination of ozone and either d-limonene, cedar board or cypress board produced sub-micron particles, with most of the increase occurring in the size range of 0.01- 0.5μm diameter. This was not observed for the other materials. In the case of cedar board, the consequence of ozone exposure over an extended time interval was monitored. As the exposure time elapsed, the concentration of sub-micron particles moderately decreased. In the second set of experiments, unwaxed or waxed plastic tiles were placed in the 20 L chamber and exposed to ozone. Sub-micron particles and organic compounds were measured during the course of the experiments. In the case of the waxed tile, the number of 0.01- 1.0μm size particles grew about 50×108particlesm-3; particle growth was significantly less for the un-waxed tile. For both the waxed and un-waxed tiles, the emission rates of heptane, nonane, nonanal, and decanal increased after ozone was added to the supply air. (However, it is not clear if some or all of this production was due to ozone reacting with the sorbent used for sampling or with compounds captured by the sorbent.) This study provides further evidence that ozone-initiated reactions with building materials can be a significant source of both sub-micron particles and secondary organic compounds in indoor environments.

  5. Accurate stratospheric particle size distributions from a flat plate collection surface

    NASA Technical Reports Server (NTRS)

    Zolensky, M. E.; Mackinnon, I. D. R.

    1985-01-01

    Flat plate particle collections have revealed the presence of a remarkable variety of both terrestrial and extraterrestrial material in the stratosphere. It is found that the ratio of terrestrial to extraterrestrial material and the nature of the material collected may vary significantly over short time scales. These fluctuations may be related to massive injections of volcanic ash, emissions from solid fuel rockets, or variations in the micrometeoroid flux. The variations in particle number density can be of great importance to the earth's atmospheric radiation balance, and, therefore, its climate. With the objective to assess the number density of solid particles in the stratosphere, an examination has been conducted of all particles exceeding 1 micron in average diameter for a representative suite of particles obtained from a single flat plate collection surface. Attention is given to solid particle size distributions in the stratosphere, and the origin of important stratospheric particle types.

  6. The evolution of structural and chemical heterogeneity during rapid solidification at gas atomization

    NASA Astrophysics Data System (ADS)

    Golod, V. M.; Sufiiarov, V. Sh

    2017-04-01

    Gas atomization is a high-performance process for manufacturing superfine metal powders. Formation of the powder particles takes place primarily through the fragmentation of alloy melt flow with high-pressure inert gas, which leads to the formation of non-uniform sized micron-scale particles and subsequent their rapid solidification due to heat exchange with gas environment. The article presents results of computer modeling of crystallization process, simulation and experimental studies of the cellular-dendrite structure formation and microsegregation in different size particles. It presents results of adaptation of the approach for local nonequilibrium solidification to conditions of crystallization at gas atomization, detected border values of the particle size at which it is possible a manifestation of diffusionless crystallization.

  7. Investigating the dynamics of Vulcanian explosions using scaled laboratory experiments

    NASA Astrophysics Data System (ADS)

    Clarke, A. B.; Phillips, J. C.; Chojnicki, K. N.

    2005-12-01

    Laboratory experiments were conducted to investigate the dynamics of Vulcanian eruptions. A reservoir containing a mixture of water and methanol plus solid particles was pressurized and suddenly released via a rapid-release valve into a 2 ft by 2 ft by 4 ft plexiglass tank containing fresh water. Water and methanol created a light interstitial fluid to simulate buoyant volcanic gases in erupted mixtures. The duration of the subsequent experiments was not pre-determined, but instead was limited by the potential energy associated with the pressurized fluid, rather than by the volume of available fluid. Suspending liquid density was varied between 960 and 1000 kg m-3 by changing methanol concentrations from 5 to 20%. Particle size (4 & 45 microns) and concentration (1 to 5 vol%) were varied in order to change particle settling characteristics and control bulk mixture density. Variations in reservoir pressure and vent size allowed exploration of the controlling source parameters, buoyancy flux (Bo) and momentum flux (Mo). The velocity-height relationship of each experiment was documented by high-speed video, permitting classification of the laboratory flows, which ranged from long continuously accelerating jets, to starting plumes, to low-energy thermals, to collapsing fountains generating density currents. Field-documented Vulcanian explosions exhibit this same wide range of behavior (Self et al. 1979, Nature 277; Sparks & Wilson 1982, Geophys. J. R. astr. Soc. 69; Druitt et al. 2002, Geol. Soc. London, 21), demonstrating that flows obtained in the laboratory are relevant to natural systems. A generalized framework of results was defined as follows. Increasing Mo/Bo for small particles (4 microns; settling time > experiment duration) pushes the system from low-energy thermals toward high-energy, continuously accelerating jets; increasing Mo/Bo for large particles (>45 microns; settling time < experiment duration) pushes the system from a low collapsing fountain to a high collapsing fountain; and increasing particle size for collapsing fountains decreases runout distance of gravity currents and increases production of current-generated rising plumes.

  8. The Organic Aerosols of Titan's Atmosphere

    NASA Technical Reports Server (NTRS)

    Sotin, Christophe; Lawrence, Kenneth; Beauchamp, Patricia M.; Zimmerman, Wayne

    2012-01-01

    One of Titan's many characteristics is the presence of a haze that veils its surface. This haze is composed of heavy organic particles and determining the chemical composition of these particles is a primary objective for future probes that would conduct in situ analysis. Meanwhile, solar occultations provide constraints on the optical characteristics of the haze layer. This paper describes solar occultation observations obtained by the Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft. These observations strongly constrain the optical characteristics of the haze layer. We detail the different steps involved in the processing of these data and apply them to two occultations that were observed at the South Pole and at the equator in order to investigate the latitudinal dependence of optical properties. The light curves obtained in seven atmospheric windows between 0.933-microns to 5-microns allow us to characterize atmospheric layers from 300 km to the surface. Very good fits of the light curves are obtained using a simple profile of number density of aerosols that is characterized by a scale height. The main difference between the South Pole and the equator is that the value of the scale height increases with altitude at the South Pole whereas it decreases at the equator. The vertically integrated amount of aerosols is similar at the two locations. The curve describing the cross-section versus wavelength is identical at the two locations suggesting that the aerosols have similar characteristics. Finally, we find that the two-way vertical transmission at 5-microns is as large as 80% at both locations.

  9. In Situ Visualization of the Growth and Fluctuations of Nanoparticle Superlattice in Liquids

    NASA Astrophysics Data System (ADS)

    Ou, Zihao; Shen, Bonan; Chen, Qian

    We use liquid phase transmission electron microscopy to image and understand the crystal growth front and interfacial fluctuation of a nanoparticle superlattice. With single particle resolution and hundreds of nanoscale building blocks in view, we are able to identify the interface between ordered lattice and disordered structure and visualize the kinetics of single building block attachment at the lattice growth front. The spatial interfacial fluctuation profiles support the capillary wave theory, from which we derive a surface stiffness value consistent with scaling analysis. Our experiments demonstrate the potential of extending model study on collective systems to nanoscale with single particle resolution and testing fundamental theories of condensed matter at a length scale linking atoms and micron-sized colloids.

  10. Soluto-inertial phenomena: Designing long-range, long-lasting, surface-specific interactions in suspensions

    PubMed Central

    Banerjee, Anirudha; Williams, Ian; Azevedo, Rodrigo Nery; Squires, Todd M.

    2016-01-01

    Equilibrium interactions between particles in aqueous suspensions are limited to distances less than 1 μm. Here, we describe a versatile concept to design and engineer nonequilibrium interactions whose magnitude and direction depends on the surface chemistry of the suspended particles, and whose range may extend over hundreds of microns and last thousands of seconds. The mechanism described here relies on diffusiophoresis, in which suspended particles migrate in response to gradients in solution. Three ingredients are involved: a soluto-inertial “beacon” designed to emit a steady flux of solute over long time scales; suspended particles that migrate in response to the solute flux; and the solute itself, which mediates the interaction. We demonstrate soluto-inertial interactions that extend for nearly half a millimeter and last for tens of minutes, and which are attractive or repulsive, depending on the surface chemistry of the suspended particles. Experiments agree quantitatively with scaling arguments and numerical computations, confirming the basic phenomenon, revealing design strategies, and suggesting a broad set of new possibilities for the manipulation and control of suspended particles. PMID:27410044

  11. High explosive compound

    DOEpatents

    Crawford, Theodore C.

    1976-01-01

    1. A low detonation velocity explosive consisting essentially of a particulate mixture of ortho-boric acid and trinitrotoluene, said mixture containing from about 25 percent to about 65 percent by weight of ortho-boric acid, said ortho-boric acid comprised of from 60 percent to 90 percent of spherical particles having a mean particle size of about 275 microns and 10 percent to 40 percent of spherical particles having a particle size less than about 44 microns.

  12. In-situ detection of micron-sized dust particles in near-Earth space

    NASA Technical Reports Server (NTRS)

    Gruen, E.; Zook, H. A.

    1985-01-01

    In situ detectors for micron sized dust particles based on the measurement of impact ionization have been flown on several space missions (Pioneer 8/9, HEOS-2 and Helios 1/2). Previous measurements of small dust particles in near-Earth space are reviewed. An instrument is proposed for the measurement of micron sized meteoroids and space debris such as solid rocket exhaust particles from on board an Earth orbiting satellite. The instrument will measure the mass, speed, flight direction and electrical charge of individually impacting debris and meteoritic particles. It is a multicoincidence detector of 1000 sq cm sensitive area and measures particle masses in the range from 10 to the -14th power g to 10 to the -8th power g at an impact speed of 10 km/s. The instrument is lightweight (5 kg), consumes little power (4 watts), and requires a data sampling rate of about 100 bits per second.

  13. Evaluation of micron-sized wood and bark particles as filler in thermoplastic composites

    Treesearch

    David P. Harper; Thomas L. Eberhardt

    2010-01-01

    Micron-sized particles, prepared from loblolly pine (Pinus taeda L.) wood and bark, were evaluated for use in wood-plastic composites (WPCs). Particles were also prepared from hard (periderm) and soft (obliterated phloem) components in the bark and compared to whole wood (without bark) filler commonly used by the WPC industry. All bark fillers had...

  14. Tyrosine-derived Polycarbonate-silica Xerogel Nanocomposites for Controlled Drug Delivery

    DTIC Science & Technology

    2013-02-05

    of relatively hydrophobic compounds , while for the hydrophilic bupivacaine logP = 0.30 [52] and PSA = 32.3[51]. The relatively small difference in ... of 5–20 times those of the co-polymers or of composites made with micron scale silica particles. Increasing the fraction of xerogel in the ...ability and viscoelasticity of biodegradable organic polymers with the mechanical strength of biodegradable

  15. Generating Color from Polydisperse, Near Micron-Sized TiO2 Particles.

    PubMed

    Alam, Al-Mahmnur; Baek, Kyungnae; Son, Jieun; Pei, Yi-Rong; Kim, Dong Ha; Choy, Jin-Ho; Hyun, Jerome K

    2017-07-19

    Single particle Mie calculations of near micron-sized TiO 2 particles predict strong light scattering dominating the visible range that would give rise to a white appearance. We demonstrate that a polydisperse collection of these "white" particles can result in the generation of visible colors through ensemble scattering. The weighted averaging of the scattering over the particle size distribution modifies the sharp, multiple, high order scattering modes from individual particles into broad variations in the collective extinction. These extinction variations are apparent as visible colors for particles suspended in organic solvent at low concentration, or for a monolayer of particles supported on a transparent substrate viewed in front of a white light source. We further exploit the color variations on optical sensitivity to the surrounding environment to promote micron-sized TiO 2 particles as stable and robust agents for detecting the optical index of homogeneous media with high contrast sensitivities. Such distribution-modulated scattering properties provide TiO 2 particles an intriguing opportunity to impart color and optical sensitivity to their widespread electronic and chemical platforms such as antibacterial windows, catalysis, photocatalysis, optical sensors, and photovoltaics.

  16. Surface texture of Vesta from optical polarimetry

    NASA Technical Reports Server (NTRS)

    Le Bertre, T.; Zellner, B.

    1980-01-01

    Polarimetric, photometric, and reflective spectroscopic properties of asteroid 4 Vesta are simulated in the laboratory by a preparation of eucrite Bereba consisting of a broad mixture of particle sizes (mainly greater than 50-micron) mixed and partially coated with particles of size 10 microns and less. Coarse grains are necessary for producing the same albedo and a very fine dust coating is necessary for producing the same polarization inversion angle as observed for Vesta. There are less small grains and fine dust in this sample than in lunar soils. Photometrically, if coating a sphere, this sample shows a constant brightness on the sunward half of the observed hemisphere, the brightness being given on the other half by the Minnaert reciprocity principle. With such a photometric behavior, the global geometric albedo and the sub-earth point geometric albedo differ by no more than 5%. The microscopic phase coefficient is 0.021 magnitude per degree for the sample; the larger value, 0.025, observed telescopically for Vesta, indicates that large-scale roughness is present on this asteroid.

  17. Efficiency of a new bioaerosol sampler in sampling Betula pollen for antigen analyses.

    PubMed

    Rantio-Lehtimäki, A; Kauppinen, E; Koivikko, A

    1987-01-01

    A new bioaerosol sampler consisting of Liu-type atmospheric aerosol sampling inlet, coarse particle inertial impactor, two-stage high-efficiency virtual impactor (aerodynamic particle sizes respectively in diameter: greater than or equal to 8 microns, 8-2.5 microns, and 2.5 microns; sampling on filters) and a liquid-cooled condenser was designed, fabricated and field-tested in sampling birch (Betula) pollen grains and smaller particles containing Betula antigens. Both microscopical (pollen counts) and immunochemical (enzyme-linked immunosorbent assay) analyses of each stage were carried out. The new sampler was significantly more efficient than Burkard trap e.g. in sampling particles of Betula pollen size (ca. 25 microns in diameter). This was prominent during pollen peak periods (e.g. May 19th, 1985, in the virtual impactor 9482 and in the Burkard trap 2540 Betula p.g. X m-3 of air). Betula antigens were detected also in filter stages where no intact pollen grains were found; in the condenser unit the antigen concentrations instead were very low.

  18. Heteroatom incorporated coke for electrochemical cell electrode

    DOEpatents

    Lewis, I.C.; Greinke, R.A.

    1997-06-17

    This invention relates to an electrode for a coke/alkali metal electrochemical cell comprising: (a) calcined coke particles: (1) that contain at least 0.5 weight percent of nitrogen heteroatoms and at least 1.0 weight percent sulfur heteroatoms, and (2) that have an average particle size from 2 microns to 40 microns with essentially no particles being greater than 50 microns and (b) a binder. This invention also relates to a coke/alkali metal electrochemical cell comprising: (a) an electrode as described above, (b) a non-aqueous electrolytic solution comprising an organic aprotic solvent and an electrically conductive salt, and (c) a counterelectrode. 5 figs.

  19. Measurement of thermal radiation scattering characteristics of submicron refractory particles.

    NASA Technical Reports Server (NTRS)

    Jacobs, W. R.; Williams, J. R.

    1971-01-01

    The differential scattering parameter has been measured for 0.04-micron tungsten particles in hydrogen and nitrogen at temperatures to 1080 K. The differential scattering parameter has also been measured for 0.1 micron tungsten, three types of carbon particles, and fly ash in nitrogen at temperatures to 1000 K. The 0.04 micron tungsten shows a temperature dependent total scattering parameter varying from around 4000 sq cm per g at room temperature to 7000 sq cm per g at 1088 K. The temperatures over which data were obtained are not high enough to confirm the temperature dependence of the total scattering parameter of tungsten.

  20. Micro-Raman spectroscopy: The analysis of micrometer and submicrometer atmospheric aerosols

    NASA Technical Reports Server (NTRS)

    Klainer, S. M.; Milanovich, F. P.

    1985-01-01

    A nondestructive method of molecular analysis which is required to fully utilize the information contained within a collected particle is discussed. Upper atmosphere reaction mechanisms are assessed when the chemical compounds, the use of micro-Raman spectrometric techniques to perform micron and submicron particle analysis was evaluated. The results are favorable and it is concluded that micron and submicron particles can be analyzed by the micron-Raman approach. Completely automatic analysis should be possible to 0.3 micro m. No problems are anticipated with photo or thermal decomposition. Sample and impurity fluorescence are the key source of background as they cannot be completely eliminated.

  1. Microscopy of Analogs for Martian Dust and Soil

    NASA Technical Reports Server (NTRS)

    Anderson, M. A.; Pike, W. T.; Weitz, C. M.

    1999-01-01

    The upcoming Mars 2001 lander will carry an atomic force microscope (AFM) as part of the Mars Environmental Compatibility Assessment (MECA) payload. By operating in a tapping mode, the AFM is capable of sub-nanometer resolution in three dimensions and can distinguish between substances of different compositions by employing phase-contrast imaging. Phase imaging is an extension of tapping-mode AFM that provides nanometer-scale information about surface composition not revealed in the topography. Phase imaging maps the phase of the cantilever oscillation during the tapping mode scan, hence detecting variations in composition, adhesion, friction, and viscoelasticity. Because phase imaging highlights edges and is not affected by large-scale height differences, it provides for clearer observation of fine features, such as grain edges, which can be obscured by rough topography. To prepare for the Mars 01 mission, we are testing the AFM on a lunar soil and terrestrial basaltic glasses to determine the AFMOs ability to define particle shapes and sizes and grain-surface textures. The test materials include the Apollo 17 soil 79221, which is a mixture of agglutinates, impact and volcanic beads, and mare and highland rock and mineral fragments. The majority of the lunar soil particles are less than 100 microns in size, comparable to the sizes estimated for Martian dust. The terrestrial samples are millimeter size basaltic glasses collected on Black Pointe at Mono Lake, just north of the Long Valley caldera in California. The basaltic glass formed by a phreatomagmatic eruption 13,000 years ago beneath a glacier that covered the Mono Lake region. Because basaltic glass formed by reworking of pyroclastic deposits may represent a likely source for Martian dunes, these basaltic glass samples represent plausible analogs to the types of particles that may be studied in sand dunes by the 01 lander and rover. We have used the AFM to examine several different soil particles at various resolutions. The instrument has demonstrated the ability to identify parallel ridges characteristic of twinning on a 150-micron plagioclase feldspar particle. Extremely small (10-100 nanometer) adhering particles are visible on the surface of the feldspar grain, and appear elongate with smooth surfaces. Phase contrast imaging of the nanometer particles shows several compositions to be present. When the AFM was applied to a 100-micron glass spherule, it was possible to define an extremely smooth surface.E Also visible on the surface of the glass spherule were chains of 100-nanometer- and-smaller impact melt droplets. Additional information is contained in the original extended abstract.

  2. 40 CFR 355.16 - How do I determine the quantity of extremely hazardous substances present for certain forms of...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quantity of extremely hazardous substance present: (a) Solid in powdered form with a particle size less than 100 microns. Multiply the weight percent of solid with a particle size less than 100 microns in a...

  3. 40 CFR 355.16 - How do I determine the quantity of extremely hazardous substances present for certain forms of...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quantity of extremely hazardous substance present: (a) Solid in powdered form with a particle size less than 100 microns. Multiply the weight percent of solid with a particle size less than 100 microns in a...

  4. 40 CFR 355.16 - How do I determine the quantity of extremely hazardous substances present for certain forms of...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quantity of extremely hazardous substance present: (a) Solid in powdered form with a particle size less than 100 microns. Multiply the weight percent of solid with a particle size less than 100 microns in a...

  5. 40 CFR 355.16 - How do I determine the quantity of extremely hazardous substances present for certain forms of...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quantity of extremely hazardous substance present: (a) Solid in powdered form with a particle size less than 100 microns. Multiply the weight percent of solid with a particle size less than 100 microns in a...

  6. 40 CFR 355.16 - How do I determine the quantity of extremely hazardous substances present for certain forms of...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quantity of extremely hazardous substance present: (a) Solid in powdered form with a particle size less than 100 microns. Multiply the weight percent of solid with a particle size less than 100 microns in a...

  7. Multiscale simulations of patchy particle systems combining Molecular Dynamics, Path Sampling and Green's Function Reaction Dynamics

    NASA Astrophysics Data System (ADS)

    Bolhuis, Peter

    Important reaction-diffusion processes, such as biochemical networks in living cells, or self-assembling soft matter, span many orders in length and time scales. In these systems, the reactants' spatial dynamics at mesoscopic length and time scales of microns and seconds is coupled to the reactions between the molecules at microscopic length and time scales of nanometers and milliseconds. This wide range of length and time scales makes these systems notoriously difficult to simulate. While mean-field rate equations cannot describe such processes, the mesoscopic Green's Function Reaction Dynamics (GFRD) method enables efficient simulation at the particle level provided the microscopic dynamics can be integrated out. Yet, many processes exhibit non-trivial microscopic dynamics that can qualitatively change the macroscopic behavior, calling for an atomistic, microscopic description. The recently developed multiscale Molecular Dynamics Green's Function Reaction Dynamics (MD-GFRD) approach combines GFRD for simulating the system at the mesocopic scale where particles are far apart, with microscopic Molecular (or Brownian) Dynamics, for simulating the system at the microscopic scale where reactants are in close proximity. The association and dissociation of particles are treated with rare event path sampling techniques. I will illustrate the efficiency of this method for patchy particle systems. Replacing the microscopic regime with a Markov State Model avoids the microscopic regime completely. The MSM is then pre-computed using advanced path-sampling techniques such as multistate transition interface sampling. I illustrate this approach on patchy particle systems that show multiple modes of binding. MD-GFRD is generic, and can be used to efficiently simulate reaction-diffusion systems at the particle level, including the orientational dynamics, opening up the possibility for large-scale simulations of e.g. protein signaling networks.

  8. Half-heusler alloys with enhanced figure of merit and methods of making

    DOEpatents

    Ren, Zhifeng; Yan, Xiao; Joshi, Giri; Chen, Shuo; Chen, Gang; Poudel, Bed; Caylor, James Christopher

    2015-06-02

    Thermoelectric materials and methods of making thermoelectric materials having a nanometer mean grain size less than 1 micron. The method includes combining and arc melting constituent elements of the thermoelectric material to form a liquid alloy of the thermoelectric material and casting the liquid alloy of the thermoelectric material to form a solid casting of the thermoelectric material. The method also includes ball milling the solid casting of the thermoelectric material into nanometer mean size particles and sintering the nanometer size particles to form the thermoelectric material having nanometer scale mean grain size.

  9. Micron-scale plasma membrane curvature is recognized by the septin cytoskeleton

    PubMed Central

    Bridges, Andrew A.; Jentzsch, Maximilian S.; Oakes, Patrick W.; Occhipinti, Patricia

    2016-01-01

    Cells change shape in response to diverse environmental and developmental conditions, creating topologies with micron-scale features. Although individual proteins can sense nanometer-scale membrane curvature, it is unclear if a cell could also use nanometer-scale components to sense micron-scale contours, such as the cytokinetic furrow and base of neuronal branches. Septins are filament-forming proteins that serve as signaling platforms and are frequently associated with areas of the plasma membrane where there is micron-scale curvature, including the cytokinetic furrow and the base of cell protrusions. We report here that fungal and human septins are able to distinguish between different degrees of micron-scale curvature in cells. By preparing supported lipid bilayers on beads of different curvature, we reconstitute and measure the intrinsic septin curvature preference. We conclude that micron-scale curvature recognition is a fundamental property of the septin cytoskeleton that provides the cell with a mechanism to know its local shape. PMID:27044896

  10. Sub-micron particles in northwest Atlantic shelf water

    NASA Astrophysics Data System (ADS)

    Longhurst, A. R.; Koike, I.; Li, W. K. W.; Rodriguez, J.; Dickie, P.; Kepay, P.; Partensky, F.; Bautista, B.; Ruiz, J.; Wells, M.; Bird, D. F.

    1992-01-01

    The existence of numerous (1.0 × 10 7 ml -1) sub-micron particles has been confirmed in northwest Atlantic shelf water. These particles were counted independently by two different resistive-pulse instruments, and their existence confirmed by our ability to reduce their numbers by ultracentrifugation, serial dilution and surface coagulation in a bubbling column. There are important implications for the dynamics of DOM in seawater if, as seems probable, these particles represent a fraction of "dissolved" organic material in seawater.

  11. Radiation Pressure Measurements on Micron-Size Individual Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Craven, P. D.; Spann, J. F.; Witherow, W. K.; West, E. A.; Gallagher, D. L.; Adrian, M. L.; Fishman, G. J.; Tankosic, D.; LeClair, A.

    2003-01-01

    Measurements of electromagnetic radiation pressure have been made on individual silica (SiO2) particles levitated in an electrodynamic balance. These measurements were made by inserting single charged particles of known diameter in the 0.2- to 6.82-micron range and irradiating them from above with laser radiation focused to beam widths of approximately 175- 400 microns at ambient pressures particle due to the radiation force is balanced by the electrostatic force indicated by the compensating dc potential applied to the balance electrodes, providing a direct measure of the radiation force on the levitated particle. Theoretical calculations of the radiation pressure with a least-squares fit to the measured data yield the radiation pressure efficiencies of the particles, and comparisons with Mie scattering theory calculations provide the imaginary part of the refractive index of SiO2 and the corresponding extinction and scattering efficiencies.

  12. Lidar- and balloon-borne particle counter comparisons following recent volcanic eruptions

    NASA Technical Reports Server (NTRS)

    Hofmann, D. J.; Rosen, J. M.; Reiter, R.; Jager, H.

    1983-01-01

    Balloon-borne particle counter measurements at Laramie, Wyoming (41 deg N) are used to calculate the expected lidar backscatter at 0.694 micron wavelength from July 1979 to February 1982, a period which included at least four detectable perturbations of the stratospheric aerosol layer due to volcanic eruptions. These calculations are compared with lidar measurements conducted at Garmisch-Partenkirchen (47.5 deg N) during the same period. While the agreement is generally good using only the main mode in the particle size distribution (radius about 0.07 micron) during approximately the first 6 months following a major volcanic eruption, a measured secondary mode near 1 micron radius, when included, improves the agreement. Calculations of the expected backscatter at 25-30 km reveal that substantial number of particles diffuse into this high altitude region about 7 months after a major eruption, and these particles should be taken into account when normalizing lidar at these altitudes.

  13. Effect of particle size and particle size distribution on physical characteristics, morphology and crystal structure of explosively compacted high-T(sub c) superconductors

    NASA Technical Reports Server (NTRS)

    Kotsis, I.; Enisz, M.; Oravetz, D.; Szalay, A.

    1995-01-01

    A superconductor, of composition Y(Ba,K,Na)2Cu3O(x)/F(y) and a composite of composition Y(Ba,K,Na)2Cu3O(x)/F(y) + Ag, with changing K, Na and F content but a constant silver content (Ag = 10 mass%) was prepared using a single heat treatment. the resulting material was ground in a corundum lined mill, separated to particle size fractions of 0-40 micron, 0-63 micron and 63-900 micron and explosively compacted, using an explosive pressure of 10(exp 4) MPa and a subsequent heat treatment. Best results were obtained with the 63-900 micron fraction of composition Y(Ba(1.95) K(0.01)Cu3O(x)F(0),(05)/Ag: porosity less than 0.01 cu cm/g and current density 2800 A/sq cm at 77K.

  14. Counting Particles Emitted by Stratospheric Aircraft and Measuring Size of Particles Emitted by Stratospheric Aircraft

    NASA Technical Reports Server (NTRS)

    Wilson, James Charles

    1994-01-01

    There were two principal objectives of the cooperative agreement between NASA and the University of Denver. The first goal was to modify the design of the ER-2 condensation nuclei counter (CNC) so that the effective lower detection limit would be improved at high altitudes. This improvement was sought because, in the instrument used prior to 1993, diffusion losses prevented the smallest detectable particles from reaching the detection volume of the instrument during operation at low pressure. Therefore, in spite of the sensor's ability to detect particles as small as 0.008 microns in diameter, many of these particles were lost in transport to the sensing region and were not counted. Most of the particles emitted by aircraft are smaller than 0.1 micron in diameter. At the start date of this work, May 1990, continuous sizing techniques available on the ER-2 were only capable of detecting particles larger than 0.17 micron. Thus, the second objective of this work was to evaluate candidate sizing techniques in an effort to gain additional information concerning the size of particles emitted by aircraft.

  15. Airborne particulate matter and spacecraft internal environments

    NASA Technical Reports Server (NTRS)

    Liu, Benjamin Y. H.; Rubow, Kenneth L.; Mcmurry, Peter H.; Kotz, Thomas J.; Russo, Dane

    1991-01-01

    Instrumentation, consisting of a Shuttle Particle Sampler (SPS) and a Shuttle Particle Monitor (SPM), has been developed to characterize the airborne particulate matter in the Space Shuttle cabin during orbital flight. The SPS size selectively collects particles in four size fractions (0-2.5, 2.5-10, 10-100, and greater than 100 microns) which are analyzed postflight for mass concentration and size distribution, elemental composition, and morphology. The SPM provides a continuous record of particle concentration through photometric light scattering. Measurements were performed onboard Columbia, OV-102, during the flight of STS-32 in January 1990. No significant changes were observed in the particle mass concentration, size distribution, or chemical composition in samples collected during flight-day 2 and flight-day 7. The total mass concentration was 56 microg/cu cm with approximately half of the particles larger than 100 microns. Elemental analysis showed that roughly 70 percent of the particles larger than 2.5 microns were carbonaceous with small amounts of other elements present. The SPM showed no temporal or spatial variation in particle mass concentration during the mission.

  16. New Insights into the Composition and Texture of Lunar Regolith Using Ultrafast Automated Electron-Beam Analysis

    NASA Technical Reports Server (NTRS)

    Rickman, Doug; Wentworth, Susan J.; Schrader, Christian M.; Stoeser, Doug; Botha, Pieter WSK; Butcher, Alan R.; Horsch, Hanna E.; Benedictus, Aukje; Gottlieb, Paul; McKay, David

    2008-01-01

    Sieved grain mounts of Apollo 16 drive tube samples have been examined using QEMSCAN - an innovative electron beam technology. By combining multiple energy-dispersive X-ray detectors, fully automated control, and off-line image processing, to produce digital mineral maps of particles exposed on polished surfaces, the result is an unprecedented quantity of mineralogical and petrographic data, on a particle-by-particle basis. Experimental analysis of four size fractions (500-250 microns, 150-90 microns, 75-45 microns and < 20 microns), prepared from two samples (64002,374 and 64002,262), has produced a robust and uniform dataset which allows for the quantification of mineralogy; texture; particle shape, size and density; and the digital classification of distinct particle types in each measured sample. These preliminary data show that there is a decrease in plagioclase modal content and an opposing increase in glass modal content, with decreasing particle size. These findings, together with data on trace phases (metals, sulphides, phosphates, and oxides), provide not only new insights into the make-up of lunar regolith at the Apollo 16 landing site, but also key physical parameters which can be used to design lunar simulants, and compute Figures of Merit for each material produced.

  17. Constraints on the Longevity of the 2010 Eyjaföll Eruption Cloud From Analog Experiments and Modeling

    NASA Astrophysics Data System (ADS)

    Carazzo, G.; Jellinek, M.

    2010-12-01

    The prolonged disruption of global air travel as a result of the 2010 Eyjafjöll eruption in Iceland underscores the value of discerning the dynamics of volcanic ash-clouds in the atmosphere. Understanding the longevity of these clouds is a particularly long standing problem that bears not only on volcanic hazards to humans but also on the nature and time scale of volcanic forcings on climate change. Since early work on the subject, the common practice to tackle the problem of cloud longevity has been to account for the dynamics of sedimentation by individual particle settling. We use 1D modeling and analog experiments of a turbulent particle-laden umbrella cloud to show that this classical view can be misleading and that the residence times of these ash-clouds in the atmosphere depends strongly on the collective behavior of the solid fraction. Diffusive convection driven by the differential diffusion of constituents altering the cloud density (ash, temperature, sulfur dioxide) may enhance particle scavenging and extend the cloud longevity over time scales orders of magnitude longer than currently expected (i.e., years rather than days for powerful eruptions). Records of this behavior can be found in real-time measurements of stratospheric post-volcanic aerosols following the 1974 Fuego, the 1982 El Chichon, the 1991 Hudson and Pinatubo events, and more recently, from the 14 April 2010 Eyjafjöll eruption. The importance of diffusive convection in volcanic ash-clouds depends strongly on particle size distribution and concentration. For the 2010 Eyjafjöll eruption, we predict that particles larger than 10 microns should settle individually as commonly assumed, but particles smaller than 1 micron should diffuse slowly in layers extending the cloud longevity to several weeks rather than days. These predictions are found to be in good agreement with a number of satellite and ground-based lidar data on ash size and mass estimates performed at different locations across Europe.

  18. Experimental investigation of particle deposition mechanisms in the lung acinus using microfluidic models.

    NASA Astrophysics Data System (ADS)

    Fishler, Rami; Mulligan, Molly; Dubowski, Yael; Sznitman, Josue; Sznitman Lab-department of Biomedical Engineering Team; Dubowski Lab-faculty of Civil; Environmental Engineering Team

    2014-11-01

    In order to experimentally investigate particle deposition mechanisms in the deep alveolated regions of the lungs, we have developed a novel microfluidic device mimicking breathing acinar flow conditions directly at the physiological scale. The model features an anatomically-inspired acinar geometry with five dichotomously branching airway generations lined with periodically expanding and contracting alveoli. Deposition patterns of airborne polystyrene microspheres (spanning 0.1 μm to 2 μm in diameter) inside the airway tree network compare well with CFD simulations and reveal the roles of gravity and Brownian motion on particle deposition sites. Furthermore, measured trajectories of incense particles (0.1-1 μm) inside the breathing device show a critical role for Brownian diffusion in determining the fate of inhaled sub-micron particles by enabling particles to cross from the acinar ducts into alveolar cavities, especially during the short time lag between inhalation and exhalation phases.

  19. Particle size distribution of mainstream tobacco and marijuana smoke. Analysis using the electrical aerosol analyzer.

    PubMed

    Anderson, P J; Wilson, J D; Hiller, F C

    1989-07-01

    Accurate measurement of cigarette smoke particle size distribution is important for estimation of lung deposition. Most prior investigators have reported a mass median diameter (MMD) in the size range of 0.3 to 0.5 micron, with a small geometric standard deviation (GSD), indicating few ultrafine (less than 0.1 micron) particles. A few studies, however, have suggested the presence of ultrafine particles by reporting a smaller count median diameter (CMD). Part of this disparity may be due tot he inefficiency to previous sizing methods in measuring ultrafine size range, to evaluate size distribution of smoke from standard research cigarettes, commercial filter cigarettes, and from marijuana cigarettes with different delta 9-tetrahydrocannabinol contents. Four 35-cm3, 2-s puffs were generated at 60-s intervals, rapidly diluted, and passed through a charge neutralizer and into a 240-L chamber. Size distribution for six cigarettes of each type was measured, CMD and GSD were determined from a computer-generated log probability plot, and MMD was calculated. The size distribution parameters obtained were similar for all cigarettes tested, with an average CMD of 0.1 micron, a MMD of 0.38 micron, and a GSD of 2.0. The MMD found using the EAA is similar to that previously reported, but the CMD is distinctly smaller and the GSD larger, indicating the presence of many more ultrafine particles. These results may explain the disparity of CMD values found in existing data. Ultrafine particles are of toxicologic importance because their respiratory tract deposition is significantly higher than for particles 0.3 to 0.5 micron and because their large surface area facilitates adsorption and delivery of potentially toxic gases to the lung.

  20. Transformation and Release of Micronized Cu used as a Wood Preservative in Treated Wood in Wetland Soil

    EPA Science Inventory

    Micronized Cu (µ-Cu) is used as a wood preservative, replacing toxic Chromated Copper Arsenates. Micronized Cu is Malachite [Cu2CO3(OH)2] that has been milled to micron/submicron particles, many with diameters less than 100 nm, and then mixed with quat or azol biocides. I...

  1. Transformation and Release of Micronized Cu Used as a Wood Preservative in Treated Wood in Wetland Soil.

    EPA Science Inventory

    Micronized Cu (µ-Cu) is used as a wood preservative, replacing toxic Chromated Copper Arsenates. Micronized Cu is Malachite [Cu2CO3(OH)2] that has been milled to micron/submicron particles, many with diameters less than 100 nm, and then mixed with quat or azol biocides. I...

  2. Dynamics of passive and active particles in the cell nucleus.

    PubMed

    Hameed, Feroz M; Rao, Madan; Shivashankar, G V

    2012-01-01

    Inspite of being embedded in a dense meshwork of nuclear chromatin, gene loci and large nuclear components are highly dynamic at 37°C. To understand this apparent unfettered movement in an overdense environment, we study the dynamics of a passive micron size bead in live cell nuclei at two different temperatures (25 and 37°C) with and without external force. In the absence of a force, the beads are caged over large time scales. On application of a threshold uniaxial force (about 10(2) pN), the passive beads appear to hop between cages; this large scale movement is absent upon ATP-depletion, inhibition of chromatin remodeling enzymes and RNAi of lamin B1 proteins. Our results suggest that the nucleus behaves like an active solid with a finite yield stress when probed at a micron scale. Spatial analysis of histone fluorescence anisotropy (a measure of local chromatin compaction, defined as the volume fraction of tightly bound chromatin) shows that the bead movement correlates with regions of low chromatin compaction. This suggests that the physical mechanism of the observed yielding is the active opening of free-volume in the nuclear solid via chromatin remodeling. Enriched transcription sites at 25°C also show caging in the absence of the applied force and directed movement beyond a yield stress, in striking contrast with the large scale movement of transcription loci at 37°C in the absence of a force. This suggests that at physiological temperatures, the loci behave as active particles which remodel the nuclear mesh and reduce the local yield stress.

  3. Turbulent transport of large particles in the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Richter, D. H.; Chamecki, M.

    2017-12-01

    To describe the transport of heavy dust particles in the atmosphere, assumptions must typically be made in order to connect the micro-scale emission processes with the larger-scale atmospheric motions. In the context of numerical models, this can be thought of as the transport process which occurs between the domain bottom and the first vertical grid point. For example, in the limit of small particles (both low inertia and low settling velocity), theory built upon Monin-Obukhov similarity has proven effective in relating mean dust concentration profiles to surface emission fluxes. For increasing particle mass, however, it becomes more difficult to represent dust transport as a simple extension of the transport of a passive scalar due to issues such as the crossing trajectories effect. This study focuses specifically on the problem of large particle transport and dispersion in the turbulent boundary layer by utilizing direct numerical simulations with Lagrangian point-particle tracking to determine under what, if any, conditions the large dust particles (larger than 10 micron in diameter) can be accurately described in a simplified Eulerian framework. In particular, results will be presented detailing the independent contributions of both particle inertia and particle settling velocity relative to the strength of the surrounding turbulent flow, and consequences of overestimating surface fluxes via traditional parameterizations will be demonstrated.

  4. Properties of grains derived from IRAS observations of dust

    NASA Technical Reports Server (NTRS)

    Wesselius, P. R.; Chlewicki, Grzegorz; Laureijs, Rene J.

    1989-01-01

    The authors used the results of Infrared Astronomy Satellite (IRAS) observations of diffuse medium dust to develop a theoretical model of the infrared properties of grains. Recent models based entirely on traditional observations of extinction and polarization include only particles whose equilibrium temperatures do not exceed 20 K in the diffuse interstellar medium. These classical grains, for which the authors have adopted the multipopulation model developed by Hong and Greenberg (1980), can explain only the emission in the IRAS 100 micron band. The measurements at shorter wavelengths (12, 25 and 60 microns) require two new particle populations. Vibrational fluorescence from aromatic molecules provides the most likely explanation for the emission observed at 12 microns, with polycyclic aeromatic hydrocarbons (PAHs) containing about 10 percent of cosmic carbon. A simplified model of the emission process shows that PAH molecules can also explain most of the emission measured by IRAS at 25 microns. The authors identified the warm particles responsible for the excess 60 microns emission with small (a approx. equals 0.01 microns) iron grains. A compilation of the available data on the optical properties of iron indicates that the diffuse medium temperature of small iron particles should be close to 50 K and implies that a large, possibly dominant, fraction of cosmic iron must be locked up in metallic particles in order to match the observed 60 microns intensities. The model matches the infrared fluxes typically observed by IRAS in the diffuse medium and can also reproduce the infrared surface brightness distribution in individual clouds. In particular, the combination of iron and classical cool grains can explain the surprising observations of the 60/100 microns flux ratio in clouds, which is either constant or increases slightly towards higher opacities. The presence of metallic grains has significant implications for the physics of the interstellar medium, including catalytic H2 formation, for which iron grains could be the main site; differences in depletion patterns between iron and other refractory elements (Mg, Si); and superparamagnetic behavior of large grains with embedded iron clusters giving rise to the observed high degree of alignment by the galactic magnetic field.

  5. Aerosol Abundances and Optical Characteristics in the Pacific Basin Free Troposphere

    NASA Technical Reports Server (NTRS)

    Pueschel, R. F.; Livingston, J. M.; Ferry, G. V.; deFelice, T. E.

    1994-01-01

    During NASA's Global Backscatter Experiment (GLOBE) mission flights in November 1989 and May 1990, a DC-8 research aircraft probed the Pacific Basin free troposphere for about 90 flight hours in each month between +72 and -62 degrees latitude, +130 and -120 degrees longitude, and up to 39,000 feet pressure altitudes. Aerosols were sampled continuously in situ by optical particle counters to measure concentration and particle size, and during 48 10-min intervals during each mission by wire impactors for concentration, size, composition, phase and shape analyses. The optical particle counters cover a particle diameter range between 0.3 and 20 microns; wire impactors extend the range down to 0.03 microns. Results of particle number, size, shape, together with the assumption of a refractive index corresponding to (NH4)2SO4 to account for the prevalence of aerosol sulfur, were utilized in a Mie algorithm to calculate aerosol extinction and backscatter for a range of wavelengths (0.385 less than lambda less than 10.64 microns). Computations for 22 randomly selected size distributions yield coefficients of extinction E(0.525) = (2.03 +/- 1.20) x 10(exp -4) km(exp -1) and backscatter beta(0.525) = (6.45 +/- 3.49) x 10(exp -6) km(exp -1) sr(exp -1) in the visible, and E(10.64) = (8.13 +/- 6.47) x 10(exp -6) km(exp -1) and beta(10.64) = (9.98 +/- 10.69) x 10(exp -8) km(exp -1) sr(exp -1) in the infrared, respectively. Large particles (D greater than 0.3 microns) contribute two-thirds to the total extinction in the visible (lambda = 0.525 microns), and almost 100% in the infrared (lambda = 10.64 microns). These results have been used to define an IR optical aerosol climatology of the Pacific Basin free troposphere, from which it follows that the infrared backscatter coefficient at lambda = 9.25 microns wavelength fluctuates between 5.0 x 10(exp -10) and 2.0 x 10(exp -7) km(exp -1) sr(exp -1) with a modal value 2.0 x 10(exp -8) km(exp -1) sr(exp -1).

  6. Sub-micron Cu/SSZ-13: Synthesis and application as selective catalytic reduction (SCR) catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prodinger, Sebastian; Derewinski, Miroslaw A.; Wang, Yilin

    For the first time, sub-micron Cu/SSZ-13, obtained by modifying an existing synthesis procedure, was shown to be an effective and stable catalyst for selective catalytic reduction reactions, such as NO reduction. Characterization of the materials with X-ray diffraction, N2-physisorption and 27Al MAS NMR shows that hydrothermal aging, simulating SCR reaction conditions, is more destructive in respect to dealumination for smaller particles prior to Cu-exchange. However, the catalytic performance and hydrothermal stability for Cu/SSZ-13 is independent of the particle size. In particular, the stability of tetrahedral framework Al is improved in the sub-micron Cu/SSZ-13 catalysts of comparable Cu loading. This indicatesmore » that variations in the Al distribution for different SSZ-13 synthesis procedures have a more critical influence on stabilizing isolated Cu-ions during harsh hydrothermal aging than the particle size. This study is of high interest for applications in vehicular DeNOx technologies where high loadings of active species on wash coats can be achieved by using sub-micron Cu/SSZ-13. The authors would like to thank B. W. Arey and J. J. Ditto for performing electron microscope imaging. The authors gratefully acknowledge the US Department of Energy (DOE), Energy Efficiency and Renewable Energy, Vehicle Technologies Office for the support of this work. S. P and M. A. D also acknowledge support by the Materials Synthesis and Simulation Across Scales (MS3 Initiative) conducted under the Laboratory Directed Research & Development Program at PNNL. The research described in this paper was performed in the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle.« less

  7. A fresh look at crater scaling laws for normal and oblique hypervelocity impacts

    NASA Technical Reports Server (NTRS)

    Watts, A. J.; Atkinson, D. R.; Rieco, S. R.; Brandvold, J. B.; Lapin, S. L.; Coombs, C. R.

    1993-01-01

    With the concomitant increase in the amount of man-made debris and an ever increasing use of space satellites, the issue of accidental collisions with particles becomes more severe. While the natural micrometeoroid population is unavoidable and assumed constant, continued launches increase the debris population at a steady rate. Debris currently includes items ranging in size from microns to meters which originated from spent satellites and rocket cases. To understand and model these environments, impact damage in the form of craters and perforations must be analyzed. Returned spacecraft materials such as those from LDEF and Solar Max have provided such a testbed. From these space-aged samples various impact parameters (i.e., particle size, particle and target material, particle shape, relative impact speed, etc.) may be determined. These types of analyses require the use of generic analytic scaling laws which can adequately describe the impact effects. Currently, most existing analytic scaling laws are little more than curve-fits to limited data and are not based on physics, and thus are not generically applicable over a wide range of impact parameters. During this study, a series of physics-based scaling laws for normal and oblique crater and perforation formation has been generated into two types of materials: aluminum and Teflon.

  8. Effect of Biophysical Properties of Phosphatidylserine Particle on Immune Tolerance Induction Toward Factor VIII in a Hemophilia A Mouse Model.

    PubMed

    Ramakrishnan, Radha; Balu-Iyer, Sathy V

    2016-10-01

    A major complication in the replacement therapy of Factor VIII (FVIII) for Hemophilia A is the development of unwanted immune responses. Previous studies from our laboratory have shown that pretreatment of FVIII in the presence of phosphatidylserine (PS) resulted in hyporesponsiveness to subsequent administration of FVIII alone, due to the ability of PS to convert an immunogen to a tolerogen. We investigated the importance of biophysical properties of PS liposomes on its ability to convert an immunogen to a tolerogen. PS particles were prepared differing in size, protein-lipid topology, lamellarity, and % association to FVIII keeping the composition of the particle same. PS particles were prepared in 2 different sizes with differing biophysical properties: smaller particles in the nanometer range (200 nm) and larger size particles in the micron range (2 μm). Hemophilia A animals treated with both the nanometer and micron size PS particles showed a significant reduction in anti-FVIII antibody titers when compared to animals receiving free FVIII alone. Upon rechallenge with free FVIII animals that received FVIII along with the nanometer size particle continued to show reduced antibody responses. Animals receiving the micron size particle showed a slight increase in titers although they remained significantly lower than the free FVIII treated group. Upon culture with bone marrow derived dendritic cells, the nanometer size particle showed a reduction in CD40 expression and an increase in transforming growth factor-β cytokine production, which was not observed with the micron size particle. These results show that biophysical properties of PS play an important role in tolerance. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  9. Photometric and polarimetric properties of the Bruderheim chondritic meteorite

    NASA Technical Reports Server (NTRS)

    Egan, W. G.; Veverka, J.; Noland, M.; Hilgeman, T.

    1973-01-01

    Photometric and polarimetric laboratory measurements were made as a function of phase angle in the U(0.36 microns), G(0.54 microns) and R(0.67 microns) bands for 0, 30 and 60 deg incident illumination on four particle size ranges of Bruderheim, an L6 olivine-hypersthene chondritic meteorite. The four particle size ranges were: 0.25-4.76 mm coated with less than 74 microns powder, 74-250 microns, and less than 37 microns. In addition, normal reflectance measurements were made in the spectral range from 0.31 to 1.1 microns. Comparison with astronomical data reveals that none of the asteroids in the main belt for which adequate observations exist can be matched with Bruderheim, which is representative of the most common meteoritic material encountered by the Earth. However, it appears from the polarization and photometry data that the surface of the Apollo asteroid Icarus is consistent with an ordinary chondrite composition. This suggests the possibility that this material, although common in Earth-crossing orbits, is rare as a surface constituent in the main asteroid belt.

  10. Thermite combustion enhancement resulting from biomodal luminum distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, K. M.; Pantoya, M.; Son, S. F.

    2004-01-01

    In recent years many studies that incorporated nano-scale or ultrafine aluminum (Al) as part of an energetic formulation and demonstrated significant performance enhancement. Decreasing the fuel particle size from the micron to nanometer range alters the material's chemical and thermal-physical properties. The result is increased particle reactivity that translates to an increase in the combustion wave speed and ignition sensitivity. Little is known, however, about the critical level of nano-sized fuel particles needed to enhance the performance of the energetic composite. Ignition sensitivity and combustion wave speed experiments were performed using a thermite composite of Al and MoO{sub 3} pressedmore » to a theoretical maximum density of 50% (2 g/cm{sup 3}). A bimodal Al particle size distribution was prepared using 4 or 20 {mu}m Al fuel particles that were replaced in 10% increments by 80 nm Al particles until the fuel was 100% 80 nm Al. These bimodal distributions allow the unique characteristics of nano-scale materials to be better understood. The pellets were ignited using a 50W CO{sub 2} laser. High speed imaging diagnostics were used to measure the ignition delay time and combustion wave speed.« less

  11. Supercritical fluid particle design for poorly water-soluble drugs (review).

    PubMed

    Sun, Yongda

    2014-01-01

    Supercritical fluid particle design (SCF PD) offers a number of routes to improve solubility and dissolution rate for enhancing the bioavailability of poorly water-soluble drugs, which can be adopted through an in-depth knowledge of SCF PD processes and the molecular properties of active pharmaceutical ingredients (API) and drug delivery system (DDS). Combining with research experiences in our laboratory, this review focuses on the most recent development of different routes (nano-micron particles, polymorphic particles, composite particles and bio-drug particles) to improve solubility and dissolution rate of poorly water-soluble drugs, covering the fundamental concept of SCF and the principle of SCF PD processes which are typically used to control particle size, shape, morphology and particle form and hence enable notable improvement in the dissolution rate of the poorly water-soluble drugs. The progress of the industrialization of SCF PD processes in pharmaceutical manufacturing environment with scaled-up plant under current good manufacturing process (GMP) specification is also considered in this review.

  12. Dynamic self-organization of confined autophoretic particles

    NASA Astrophysics Data System (ADS)

    Medrano, Anthony; Michelin, Sébastien; Kanso, Eva

    2016-11-01

    We study the behavior of chemically-active Janus particles in microfluidic Hele-Shaw-type confinement. These micron-scale chemical motors, when immersed in a fuel-laden fluid, produce an ionic chemical field which leads to motility and consequently a local fluid flow. In unconfined settings, experimental and computational studies have shown these particles to spontaneously self-organize into crystal structures, and form into asters of two or more particles. Here, we show that geometric confinement alters both the chemical and hydrodynamic signature of the particles in such a way that their far-field effects can be modeled as source dipoles. Each particle moves according to its own self-propelled motion and in response to the chemical and hydrodynamic field created by other particles. Two interaction modes are observed: self-assembly into quasi-static crystals and into dynamically-evolving chains. We discuss the conditions that lead to these modes of interactions and the phase transitions between them for various Janus particle concentrations. The National GEM Consortium.

  13. DISPERSION POLYMERIZATION OF STYRENE IN SUPERCRITICAL CARBON DIOXIDE UTILIZING RANDOM COPOLYMERS INCLUDING FLUORINATED ACRYLATE FOR PREPARING MICRON-SIZE POLYSTYRENE PARTICLES. (R826115)

    EPA Science Inventory

    The dispersion polymerization of styrene in supercritical CO2 utilizing CO2-philic random copolymers was investigated. The resulting high yield of polystyrene particles in the micron-size range was formed using various random copolymers as stabilizers. The p...

  14. Programmable gradational micropatterning of functional materials using maskless lithography controlling absorption.

    PubMed

    Jung, Yushin; Lee, Howon; Park, Tae-Joon; Kim, Sungsik; Kwon, Sunghoon

    2015-10-22

    The demand for patterning functional materials precisely on surfaces of stimuli-responsive devices has increased in many research fields. In situ polymerization technology is one of the most convenient ways to place the functional materials on a desired location with micron-scale accuracy. To fabricate stimuli-responsive surfaces, controlling concentration of the functional material is much as important as micropatterning them. However, patterning and controlling concentration of the functional materials simultaneously requires an additional process, such as preparing multiple co-flow microfluidic structures and numbers of solutions with various concentrations. Despite applying these processes, fabricating heterogeneous patterns in large scale (millimeter scale) is still impossible. In this study, we propose an advanced in situ polymerization technique to pattern the surface in micron scale in a concentration-controlled manner. Because the concentration of the functional materials is manipulated by self-assembly on the surface, a complex pattern could be easily fabricated without any additional procedure. The complex pattern is pre-designed with absorption amount of the functional material, which is pre-determined by the duration of UV exposure. We show that the resolution reaches up to 2.5 μm and demonstrate mm-scale objects, maintaining the same resolution. We also fabricated Multi-bit barcoded micro particles verify the flexibility of our system.

  15. Modeling of a Turbofan Engine with Ice Crystal Ingestion in the NASA Propulsion System Laboratory

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.; Jorgenson, Philip C. E.; Jones, Scott M.; Nili, Samaun

    2017-01-01

    The main focus of this study is to apply a computational tool for the flow analysis of the turbine engine that has been tested with ice crystal ingestion in the Propulsion Systems Laboratory (PSL) at NASA Glenn Research Center. The PSL has been used to test a highly instrumented Honeywell ALF502R-5A (LF11) turbofan engine at simulated altitude operating conditions. Test data analysis with an engine cycle code and a compressor flow code was conducted to determine the values of key icing parameters, that can indicate the risk of ice accretion, which can lead to engine rollback (un-commanded loss of engine thrust). The full engine aerothermodynamic performance was modeled with the Honeywell Customer Deck specifically created for the ALF502R-5A engine. The mean-line compressor flow analysis code, which includes a code that models the state of the ice crystal, was used to model the air flow through the fan-core and low pressure compressor. The results of the compressor flow analyses included calculations of the ice-water flow rate to air flow rate ratio (IWAR), the local static wet bulb temperature, and the particle melt ratio throughout the flow field. It was found that the assumed particle size had a large effect on the particle melt ratio, and on the local wet bulb temperature. In this study the particle size was varied parametrically to produce a non-zero calculated melt ratio in the exit guide vane (EGV) region of the low pressure compressor (LPC) for the data points that experienced a growth of blockage there, and a subsequent engine called rollback (CRB). At data points where the engine experienced a CRB having the lowest wet bulb temperature of 492 degrees Rankine at the EGV trailing edge, the smallest particle size that produced a non-zero melt ratio (between 3 percent - 4 percent) was on the order of 1 micron. This value of melt ratio was utilized as the target for all other subsequent data points analyzed, while the particle size was varied from 1 micron - 9.5 microns to achieve the target melt ratio. For data points that did not experience a CRB which had static wet bulb temperatures in the EGV region below 492 degrees Rankine, a non-zero melt ratio could not be achieved even with a 1 micron ice particle size. The highest value of static wet bulb temperature for data points that experienced engine CRB was 498 degrees Rankine with a particle size of 9.5 microns. Based on this study of the LF11 engine test data, the range of static wet bulb temperature at the EGV exit for engine CRB was in the narrow range of 492 degrees Rankine - 498 degrees Rankine , while the minimum value of IWAR was 0.002. The rate of blockage growth due to ice accretion and boundary layer growth was estimated by scaling from a known blockage growth rate that was determined in a previous study. These results obtained from the LF11 engine analysis formed the basis of a unique “icing wedge.”

  16. Microprobe studies of microtomed particles of white druse salts in shergottite EETA 79001

    NASA Technical Reports Server (NTRS)

    Lindstrom, D. J.

    1991-01-01

    The white druse material in Antarctic shergottite EETA 79001 has attracted much attention as a possible sample fo Martian aqueous deposits. Instrumental Neutron Activation Analysis (INAA) was used to determine trace element analyses of small particles of this material obtained by handpicking of likely grains from broken surfaces of the meteorite. Electron microprobe work was attempted on grain areas as large as 150x120 microns. Backscattered electron images show considerable variations in brightness, and botryoidal structures were observed. Microprobe analyses showed considerable variability both within single particles and between different particles. Microtomed surfaces of small selected particles were shown to be very useful in obtaining information on the texture and composition of rare lithologies like the white druse of EETA 79001. This material is clearly heterogeneous on all distance scales, so a large number of further analyses will be required to characterize it.

  17. Effect of erodent particles on the erosion of metal specimens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Razzaque, M. Mahbubur, E-mail: mmrazzaque@me.buet.ac.bd; Alam, M. Khorshed; Khan, M. Ishak, E-mail: ishak.buet@gmail.com

    2016-07-12

    This paper presents the experimental results of the measurement of erosion rate of carbon steel specimens in sand water slurry system in a slurry pot tester. Sylhet sand has been sieved to get three sizes of erodent particles; namely, less than 250 micron, 250 to 590 micron and 590 to 1190 micron. Experiments are done with three sand concentrations (10%, 15% and 20%). The rate of erosion of the carbon steel specimens is measured as the loss of weight per unit surface area per unit time under the dynamic action of solid particles. The eroded surfaces of the specimens aremore » examined using Scanning Electron Microscopy (SEM) to visualize the impact of the slurry of various conditions. It is seen that irrespective of the particle size the rate of erosion increases with the increase of slurry concentration. This increment of erosion rate at high concentration is high for large particles. High erosion rate is observed in case of large sand particles. In case of small and fine particles erosion rate is small because of low impact energy as well as the wastage of energy to overcome the hindrance of the finer particles before striking on the specimen surface.« less

  18. Effect of erodent particles on the erosion of metal specimens

    NASA Astrophysics Data System (ADS)

    Razzaque, M. Mahbubur; Alam, M. Khorshed; Khan, M. Ishak

    2016-07-01

    This paper presents the experimental results of the measurement of erosion rate of carbon steel specimens in sand water slurry system in a slurry pot tester. Sylhet sand has been sieved to get three sizes of erodent particles; namely, less than 250 micron, 250 to 590 micron and 590 to 1190 micron. Experiments are done with three sand concentrations (10%, 15% and 20%). The rate of erosion of the carbon steel specimens is measured as the loss of weight per unit surface area per unit time under the dynamic action of solid particles. The eroded surfaces of the specimens are examined using Scanning Electron Microscopy (SEM) to visualize the impact of the slurry of various conditions. It is seen that irrespective of the particle size the rate of erosion increases with the increase of slurry concentration. This increment of erosion rate at high concentration is high for large particles. High erosion rate is observed in case of large sand particles. In case of small and fine particles erosion rate is small because of low impact energy as well as the wastage of energy to overcome the hindrance of the finer particles before striking on the specimen surface.

  19. [Particle size determination by radioisotope x-ray absorptiometry with sedimentation method].

    PubMed

    Matsui, Y; Furuta, T; Miyagawa, S

    1976-09-01

    The possibility of radioisotope X-ray absorptiometry to determine the particle size of powder in conjunction with sedimentation was investigated. The experimental accuracy was primarily determined by Cow and X-ray intensity. where Co'=weight concentration of the particle in the suspension w'=(micron/rho)l/(mu/rho)s-rhol/rhos rho; density micron/rho; mass absorption coefficient, suffix l and s indicate dispersion and particle, respectively. The radiosiotopes, Fe-55, Pu-238 and Cd-109 have high w-values over the wide range of the atomic number. However, a source of high micron value such as Fe-55 is not suitable because the optimal X-ray transmission length, Lopt is decided by the expression, micronlLopt approximately 2/(1+C'ow') by using Cd-109 AgKX-ray source, the weight size distribution of particles from the heavy elements such as PbO2 to light elements such as Al2O3 or flyash was determined.

  20. 3 micron spectrophotometry of Comet Halley - Evidence for water ice

    NASA Technical Reports Server (NTRS)

    Bregman, Jesse D.; Tielens, A. G. G. M.; Witteborn, Fred C.; Rank, David M.; Wooden, Diane

    1988-01-01

    Structure has been observed in the 3-3.6 micron preperihelion spectrum of Comet Halley consistent with either an absorption band near 3.1 microns or emission near 3.3 microns. The results suggest that a large fraction of the water molecules lost by the comet are initially ejected in the form of small ice particles rather than in the gas phase.

  1. [Are inhaled dust particles harmful for our lungs?].

    PubMed

    Brändli, O

    1996-12-14

    Particles with diameters ranging from less than 0.02 to more than 100 microns and in concentration up to 120 micrograms/m3 daily average TSP (total suspended particles) are measurable in the air of Swiss cities and responsible for the decrease of visibility on the Swiss Plateau and south of the Alps. The particle size shows a typical distribution: the coarse particles (> 2.5 microns mass median diameter) are mostly of natural origin (plants, pollen, earth particles) and are deposited in the upper airways. The fine particles (PM2.5 < 2.5 microns) are predominantly deposited into the alveolar space. These fine and ultrafine particles (< 0.02 microns) are produced by the burning of fossil fuels or by photochemical reactions. By bypassing the mucociliary and cellular defense mechanisms, fine particles can invade the lung parenchyma and cause an inflammatory response. The additional chemical layering of a carbon core by nitrates, sulfates and other organic materials and metals such as iron cause greater local oxidative and/or carcinogenic damage than in the vaporized state. In comparing worldwide epidemiological studies, there seems to be a cohesive and consistent relationship between increases of particle concentration and the increase of mortality (mostly among patients over 65 with concomitant lung and heart diseases and among smokers) and morbidity (bronchitis, pneumonia, COPD, and, less convincingly, asthma). An increase in daily average PM10 (particles < 10 microns) is correlated with an increase in mortality not related to accidents and suicides of 1.0% for the same and/or the following days. In Switzerland, mean annual concentrations of 14-53 micrograms/m3 TSP or 10-33 micrograms/m3 PM10, well below the national standard (annual mean TSP 70 micrograms/m3) have been measured in rural and urban areas. Even at these concentrations an increase in respiratory symptoms and a decrease in lung function, without evidence for a "safe" threshold, have been observed in the Swiss study of air pollution and lung diseases in adults (SAPALDIA). Although the noxious effects of the particles cannot be clearly separated from the effect of other pollutants (e.g. NOx, SO2, ozone) in complex pollutant mixtures, the emission standards and national standards for ambient air should be revised, in particular by adding a standard for fine particles (e.g. PM10 or PM2.5).

  2. Colour dependence of zodiacal light models

    NASA Technical Reports Server (NTRS)

    Giese, R. H.; Hanner, M. S.; Leinert, C.

    1973-01-01

    Colour models of the zodiacal light in the ecliptic have been calculated for both dielectric and metallic particles in the sub-micron and micron size range. Two colour ratios were computed, a blue ratio and a red ratio. The models with a size distribution proportional to s to the -2.5 power ds (where s is the particle radius) generally show a colour close to the solar colour and almost independent of elongation. Especially in the blue colour ratio there is generally no significant dependence on the lower cutoff size (0.1-1 micron). The main feature of absorbing particles is a reddening at small elongations. The models for size distributions proportional to s to the -4 power ds show larger departures from solar colour and more variation with model parameters. Colour measurements, including red and near infra-red, therefore are useful to distinguish between flat and steep size spectra and to verify the presence of slightly absorbing particles.

  3. Implementing traceability using particle randomness-based textile printed tags

    NASA Astrophysics Data System (ADS)

    Agrawal, T. K.; Koehl, L.; Campagne, C.

    2017-10-01

    This article introduces a random particle-based traceability tag for textiles. The proposed tag not only act as a unique signature for the corresponding textile product but also possess the features such as easy to manufacture and hard to copy. It seeks applications in brand authentication and traceability in textile and clothing (T&C) supply chain. A prototype has been developed by screen printing process, in which micron-scale particles were mixed with the printing paste and printed on cotton fabrics to attain required randomness. To encode the randomness, the image of the developed tag was taken and analyzed using image processing. The randomness of the particles acts as a product key or unique signature which is required to decode the tag. Finally, washing and abrasion resistance tests were conducted to check the durability of the printed tag.

  4. Separating the signal from the noise: Expanding flow cytometry into the sub-micron range.

    EPA Science Inventory

    Cytometry Part A Special Section: Separating the signal from the noise: Expanding flow cytometry into the sub-micron range. The current Cytometry Part A Special Section presents three studies that utilize cytometers to study sub-micron particles. The three studies involve the 1...

  5. On-chip photonic particle sensor

    NASA Astrophysics Data System (ADS)

    Singh, Robin; Ma, Danhao; Agarwal, Anu; Anthony, Brian

    2018-02-01

    We propose an on-chip photonic particle sensor design that can perform particle sizing and counting for various environmental applications. The sensor is based on micro photonic ring resonators that are able to detect the presence of the free space particles through the interaction with their evanescent electric field tail. The sensor can characterize a wide range of the particle size ranging from a few nano meters to micron ( 1 micron). The photonic platform offers high sensitivity, compactness, fast response of the device. Further, FDTD simulations are performed to analyze different particle-light interactions. Such a compact and portable platform, packaged with integrated photonic circuit provides a useful sensing modality in space shuttle and environmental applications.

  6. Performance of laser Doppler velocimeter with polydisperse seed particles in high speed flows

    NASA Technical Reports Server (NTRS)

    Samimy, M.; Bhattacharyya, S.; Abu-Hijleh, B. A./K.

    1988-01-01

    The flowfield behind an oblique shock wave, where the LDV measured velocities are seed particle size dependent, was used to investigate the effects of LDV system parameters on the range of detectable polydisperse seed particles. The parameters included frequency shifting, laser power, scattered signal amplification level, and number of required fringe crossings. The results showed that with polydisperse seed particles ranging from 0.1 to 4.0 microns available in the flow, the average diameter of the detected particles could change from 0.2 to 3.0 microns by changing different LDV system parameters. The effects of this shift in the range of detectable particles on the frequency response of LDV was discussed.

  7. Performance of laser Doppler velocimeter with polydisperse seed particles in high-speed flows

    NASA Technical Reports Server (NTRS)

    Samimy, M.; Abu-Hijleh, B. A. K.

    1989-01-01

    The flowfield behind an oblique shock wave, where the LDV measured velocities are seed-particle-size dependent, was used to investigate the effects of LDV system parameters on the range of detectable polydisperse seed particles. The parameters included frequency shifting, laser power, scattered signal amplification level, and number of required fringe crossings. The results showed that with polydisperse seed particles ranging from 0.1 to 4.0 microns available in the flow, the average diameter of the detected particles could change from 0.2 to 3.0 microns by changing different LDV system parameters. The effects of this shift in the range of detectable particles on the frequency response of LDV are discussed.

  8. Pinatubo and Pre-Pinatubo Optical-Depth Spectra: Mauna Loa Measurements, Comparisons, Inferred Particle Size Distributions, Radiative Effects, and Relationship to Lidar Data

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Livingston, J. M.; Dutton, E. G.; Pueschel, R. F.; Reagan, J. A.; DeFoor, T. E.; Box, M. A.; Pilewskie, P.; Herman, B. M.; Kinne, S. A.; hide

    1993-01-01

    The Ames airborne tracking sunphotometer was operated at the National Oceanic and Atmospheric Administration (NOAA) Mauna Loa Observatory (MLO) in 1991 and 1992 along with the NOAA Climate Monitoring and Diagnostics Laboratory (CMDL) automated tracking sunphotometer and lidar. June 1991 measurements provided calibrations, optical-depth spectra, and intercomparisons under relatively clean conditions; later measurements provided spectra and comparisons for the Pinatubo cloud plus calibration checks. June 1991 results are similar to previous MLO springtime measurements, with midvisible particle optical depth tau(sub p)(lambda = 0.526 microns) at the near-background level of 0.012 +/- 0.006 and no significant wavelength dependence in the measured range (lambda = 0.38 to 1.06 microns). The arrival of the Pinatubo cloud in July 1991 increased midvisible particle optical depth by more than an order of magnitude and changed the spectral shape of tau(sub p)(lambda) to an approximate power law with an exponent of about -1.4. By early September 1991, the spectrum was broadly peaked near 0.5 microns, and by July 1992, it was peaked near 0.8 microns. Our optical-depth spectra include corrections for diffuse light which increase postvolcanic midvisible tau(sub p) values by 1 to 3% (i.e., 0.0015 to 0.0023). NOAA- and Ames Research Center (ARC)-measured spectra are in good agreement. Columnar size distributions inverted from the spectra show that the initial (July 1991) post-Pinatubo cloud was relatively rich in small particles (r less than 0.25 microns), which were progressively depleted in the August-September 1991 and July 1992 periods. Conversely, both of the later periods had more of the optically efficient medium-sized particles (0.25 less than r less than 1 micron) than did the fresh July 1991 cloud. These changes are consistent with particle growth by condensation and coagulation. The effective, or area-weighted, radius increased from 0.22 +/- 0.06 micron in July 1991 to 0.56 +/- 0.12 micron in August-September 1991 and to 0.86 +/- 0.29 micron in July 1992. Corresponding column mass values were 4.8 +/- 0.7, 9.1 +/- 2.7, and 5.5 +/- 2 micro g/sq cm, and corresponding column surface areas were 4.4 +/- 0.5, 2.9 +/- 0.2, and 1.1 +/- 0.1 sq micron/sq cm,. Photometer-inferred column backscatter values agree with those measured by the CMDL lidar on nearby nights. Combining lidar-measured backscatter profiles with photometer-derived backscatter-to-area ratios gives peak particle areas that could cause rapid heterogeneous loss of ozone, given sufficiently low particle acidity and suitable solar zenith angles (achieved at mid- to high latitudes). Top-of-troposphere radiative forcings for the September 1991 and July 1992 optical depths and size distributions over MLO are about -5 and -3 W 1/sq m, respectively (hence comparable in magnitude but opposite in sign to the radiative forcing caused by the increase in manmade greenhouse gases since the industrial revolution). Heating rates in Pinatubo layer over MLO are 0.55 +/- 0.13 and 0.41 +/- 0.14 K/d for September 1991 and July 1992, respectively.

  9. Assembly Modulated by Particle Position and Shape: A New Concept in Self-Assembly.

    PubMed

    Tavacoli, Joe W; Heuvingh, Julien; Du Roure, Olivia

    2017-11-10

    In this communication we outline how the bespoke arrangements and design of micron-sized superparamagnetic shapes provide levers to modulate their assembly under homogeneous magnetic fields. We label this new approach, 'assembly modulated by particle position and shape' (APPS). Specifically, using rectangular lattices of superparamagnetic micron-sized cuboids, we construct distinct microstructures by adjusting lattice pitch and angle of array with respect to a magnetic field. Broadly, we find two modes of assembly: (1) immediate 2D jamming of the cuboids as they rotate to align with the applied field (rotation-induced jamming) and (2) aggregation via translation after their full alignment (dipole-dipole assembly). The boundary between these two assembly pathways is independent on field strength being solely a function of the cuboid's dimensions, lattice pitch, and array angle with respect to field-a relationship which we capture, along with other features of the assembly process, in a 'phase diagram'. In doing so, we set out initial design rules to build custom made assemblies. Moreover, these assemblies can be made flexible thanks to the hinged contacts of their particle building blocks. This flexibility, combined with the superparamagnetic nature of the architectures, renders our assembly method particularly appropriate for the construction of complex actuators at a scale hitherto not possible.

  10. Grooved impactor and inertial trap for sampling inhalable particulate matter

    DOEpatents

    Loo, Billy W.

    1984-01-01

    An inertial trap and grooved impactor for providing a sharp cutoff for particles over 15 microns from entering an inhalable particulate sampler. The impactor head has a tapered surface and is provided with V-shaped grooves. The tapered surface functions for reducing particle blow-off or reentrainment while the grooves prevent particle bounce. Water droplets and any resuspended material over the 15 micron size are collected by the inertial trap and deposited in a reservoir associated with the impactor.

  11. High temperature refractory of MgCr.sub.2 O.sub.4 matrix and unstabilized ZrO.sub.2 particles

    DOEpatents

    Singh, Jitendra P.; James, Jawana J.; Picciolo, John J.

    1987-01-01

    A high chromia refractory composite has been developed with improved thermal shock resistance and containing about 5-30 wt. % of unstabilized ZrO.sub.2 having a temperature-dependent phase change resulting in large expansion mismatch between the ZrO.sub.2 and the chromia matrix which causes microcracks to form during cooling in the high chromia matrix. The particle size preferably is primarily between about 0.6-5 microns and particularly below about 3 microns with an average size in the order of 1.2-1.8 microns.

  12. Enhanced pulmonary absorption of poorly soluble itraconazole by micronized cocrystal dry powder formulations.

    PubMed

    Karashima, Masatoshi; Sano, Noriyasu; Yamamoto, Syunsuke; Arai, Yuta; Yamamoto, Katsuhiko; Amano, Nobuyuki; Ikeda, Yukihiro

    2017-06-01

    Micronized cocrystal powders and amorphous spray-dried formulations were prepared and evaluated in vivo and in vitro as pulmonary absorption enhancement formulations of poorly soluble itraconazole (ITZ). ITZ cocrystals with succinic acid (SA) or l-tartaric acid (TA) with a particle size diameter of <2μm were successfully micronized using the jet-milling system. The cocrystal crystalline morphologies observed using scanning electron microscopy (SEM) suggested particle shapes that differed from those of the crystalline or spray-dried amorphous ITZ. The micronized ITZ cocrystal powders showed better intrinsic dissolution rate (IDR) and pulmonary absorption profile in rats than that of the amorphous spray-dried formulation and crystalline ITZ with comparable particle sizes. Specifically, in rat pharmacokinetic studies following pulmonary administration, micronized ITZ-SA and ITZ-TA cocrystals showed area under the curve from 0 to 8h (AUC 0-8h ) values approximately 24- and 19-fold higher than those of the crystalline ITZ and 2.0- and 1.6-fold higher than the spray-dried ITZ amorphous values, respectively. The amorphous formulation appeared physically instable during the studies due to rapid crystallization of ITZ, which was its disadvantage compared to the crystalline formulations. Therefore, this study demonstrated that micronized cocrystals are promising formulations for enhancing the pulmonary absorption of poorly soluble compounds. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Laser-induced volatilization and ionization of microparticles

    NASA Technical Reports Server (NTRS)

    Sinha, M. P.

    1984-01-01

    A method for the laser vaporization and ionization of individual micron-size particles is presented whereby a particle is ionized by a laser pulse while in flight in the beam. Ionization in the beam offers a real-time analytical capability and eliminates any possible substrate-sample interferences during an analysis. An experimental arrangement using a high-energy Nd-YAG laser is described, and results are presented for ions generated from potassium biphthalate particles (1.96 micron in diameter). The method proposed here is useful for the chemical analysis of aerosol particles by mass spectrometry and for other spectroscopic and chemical kinetic studies.

  14. Dusty gas influences on transport in turbulent erosive propellant flow

    NASA Astrophysics Data System (ADS)

    Buckingham, A. C.

    1980-01-01

    A theoretical-numerical model is introduced which relates the influences of particles on erosive transport in a turbulent reactive boundary layer. Specifically, this discussion concerns additive particles used to suppress wall erosion in gun barrel turbulent propellant combustion. The turbulent-particle interactions are modeled with random particulate motion computations. These produce particulate trajectories, distributions and momenta. The interaction model includes effects of particle size, mass, and rotation as well as two-particle hard sphere collisions. The main purpose of this work is to evaluate the effects of the particles on the energy, mass, and momentum transport in the erosive wall boundary layer region. Neglecting thermal relaxation, the heat transfer rates are found to be substantially reduced when smaller diameter (0.2 micron) particles are introduced as compared to larger diameter particles (5 microns).

  15. Preparation, Characterization, and Enhanced Thermal and Mechanical Properties of Epoxy-Titania Composites

    PubMed Central

    Rubab, Zakya; Siddiqi, Humaira M.; Saeed, Shaukat

    2014-01-01

    This paper presents the synthesis and thermal and mechanical properties of epoxy-titania composites. First, submicron titania particles are prepared via surfactant-free sol-gel method using TiCl4 as precursor. These particles are subsequently used as inorganic fillers (or reinforcement) for thermally cured epoxy polymers. Epoxy-titania composites are prepared via mechanical mixing of titania particles with liquid epoxy resin and subsequently curing the mixture with an aliphatic diamine. The amount of titania particles integrated into epoxy matrix is varied between 2.5 and 10.0 wt.% to investigate the effect of sub-micron titania particles on thermal and mechanical properties of epoxy-titania composites. These composites are characterized by X-ray photoelectron (XPS) spectroscopy, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric (TG), and mechanical analyses. It is found that sub-micron titania particles significantly enhance the glass transition temperature (>6.7%), thermal oxidative stability (>12.0%), tensile strength (>21.8%), and Young's modulus (>16.8%) of epoxy polymers. Epoxy-titania composites with 5.0 wt.% sub-micron titania particles perform best at elevated temperatures as well as under high stress. PMID:24578638

  16. Nanoscale imaging of alteration layers of corroded international simple glass particles using ToF-SIMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jiandong; Neeway, James J.; Zhang, Yanyan

    Glass particles with dimensions typically ranging from tens to hundreds of microns are often used in glass corrosion research in order to accelerate testing. Two-dimensional and three-dimensional nanoscale imaging techniques are badly needed to characterize the alteration layers at the surfaces of these corroded glass particles. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) can provide a lateral resolution as low as ~100 nm, and, compared to other imaging techniques, is sensitive to elements lighter than carbon. In this work, we used ToF-SIMS to characterize the alteration layers of corroded international simple glass (ISG) particles. At most particle surfaces, inhomogeneous or nomore » alteration layers were observed, indicating that the thickness of the alterations layers may be too thin to be observable by ToF-SIMS imaging. Relatively thick (e.g., 1-10 microns) alteration layers were inhomogeneously distributed at a small portion of surfaces. More interestingly, some large-size (tens of microns) glass particles were fully altered. Above observations suggest that weak attachment and the defects on ISG particle surfaces play an important role in ISG glass corrosion.« less

  17. Parameterization of volcanic ash remobilization by wind-tunnel erosion experiments.

    NASA Astrophysics Data System (ADS)

    Del Bello, Elisabetta; Taddeucci, Jacopo; Merrison, Jonathan; Alois, Stefano; Iversen, Jens Jacob; Scarlato, Piergiorgio

    2017-04-01

    The remobilization of volcanic ash from the ground is one of the many problems posing threat to life and infrastructures during and after the course of an explosive volcanic eruption. A proper management of the risks connected to this problem requires a thorough understanding of the factors that influence and promote the dispersal of particles over large distances. Towards this target, we conducted a series of experiments aimed at defining first-order processes controlling the remobilization threshold of ash particles by wind erosion. In the framework of the EU-funded Europlanet project, we joinly used the environmental wind tunnel facility at Aarhus University (DK) and the state-of-the art high-speed imaging equipment of INGV experimental lab (Italy) to capture at unparalleled temporal and spatial resolution the removal dynamics of ash-sized (half-millimetre to micron-sized) particles. A homogenous layer of particles was set at on a plate placed downwind a boundary layer setup. Resuspension processes were filmed at 2000 fps and 50 micron pixel resolution, and the plate weighted pre and post-experiment. Explored variables include: 1) wind speed (from ca. 1 to 7 m/s) and boundary layer structure; 2) particle grain size (from 32-63 to 90-125 micron), and sample sorting); 3) chemical and textural features, using basalt and trachyte samples from Campi Flegrei (Pomici Principali,10 ka) and Eyjafjallajökull (May 2010) eruptions; and 4) temperature and humidity, by conducting experiments either at ambient conditions or with a heated sample. We found that the grain size distribution exerts a strong control on the fundamental dynamics of gas-particle coupling. Particles > 90 micron detach from the particles layer individually, also entering the gas flow individually. Conversely, removal < 63 micron particles occurs in clumps of aggregates. These clumps, once taken in charge by the gas flow, are frequently disaggregated and dispersed rapidly (order of few milliseconds). Our preliminary results shows that, for a given size distribution, the boundary between the two dynamics may shift greatly as a function of ambient humidity.

  18. Forces on particles in microstreaming flows

    NASA Astrophysics Data System (ADS)

    Hilgenfeldt, Sascha; Rallabandi, Bhargav; Thameem, Raqeeb

    2015-11-01

    In various microfluidic applications, vortical steady streaming from ultrasonically driven microbubbles is used in concert with a pressure-driven channel flow to manipulate objects. While a quantitative theory of this boundary-induced streaming is available, little work has been devoted to a fundamental understanding of the forces exerted on microparticles in boundary streaming flows, even though the differential action of such forces is central to applications like size-sensitive sorting. Contrary to other microfluidic sorting devices, the forces in bubble microstreaming act over millisecond times and micron length scales, without the need for accumulated deflections over long distances. Accordingly, we develop a theory of hydrodynamic forces on the fast time scale of bubble oscillation using the lubrication approximation, showing for the first time how particle displacements are rectified near moving boundaries over multiple oscillations in parallel with the generation of the steady streaming flow. The dependence of particle migration on particle size and the flow parameters is compared with experimental data. The theory is applicable to boundary streaming phenomena in general and demonstrates how particles can be sorted very quickly and without compromising device throughput. We acknowledge support by the National Science Foundation under grant number CBET-1236141.

  19. The RBE-LET relationship for rodent intestinal crypt cell survival, testes weight loss, and multicellular spheroid cell survival after heavy-ion irradiation

    NASA Technical Reports Server (NTRS)

    Rodriguez, A.; Alpen, E. L.; Powers-Risius, P.

    1992-01-01

    This report presents data for survival of mouse intestinal crypt cells, mouse testes weight loss as an indicator of survival of spermatogonial stem cells, and survival of rat 9L spheroid cells after irradiation in the plateau region of unmodified particle beams ranging in mass from 4He to 139La. The LET values range from 1.6 to 953 keV/microns. These studies examine the RBE-LET relationship for two normal tissues and for an in vitro tissue model, multicellular spheroids. When the RBE values are plotted as a function of LET, the resulting curve is characterized by a region in which RBE increases with LET, a peak RBE at an LET value of 100 keV/microns, and a region of decreasing RBE at LETs greater than 100 keV/microns. Inactivation cross sections (sigma) for these three biological systems have been calculated from the exponential terminal slope of the dose-response relationship for each ion. For this determination the dose is expressed as particle fluence and the parameter sigma indicates effect per particle. A plot of sigma versus LET shows that the curve for testes weight loss is shifted to the left, indicating greater radiosensitivity at lower LETs than for crypt cell and spheroid cell survival. The curves for cross section versus LET for all three model systems show similar characteristics with a relatively linear portion below 100 keV/microns and a region of lessened slope in the LET range above 100 keV/microns for testes and spheroids. The data indicate that the effectiveness per particle increases as a function of LET and, to a limited extent, Z, at LET values greater than 100 keV/microns. Previously published results for spread Bragg peaks are also summarized, and they suggest that RBE is dependent on both the LET and the Z of the particle.

  20. Comparison of directly compressed vitamin B12 tablets prepared from micronized rotary-spun microfibers and cast films.

    PubMed

    Sebe, István; Bodai, Zsolt; Eke, Zsuzsanna; Kállai-Szabó, Barnabás; Szabó, Péter; Zelkó, Romána

    2015-01-01

    Fiber-based dosage forms are potential alternatives of conventional dosage forms from the point of the improved extent and rate of drug dissolution. Rotary-spun polymer fibers and cast films were prepared and micronized in order to direct compress after homogenization with tabletting excipients. Particle size distribution of powder mixtures of micronized fibers and films homogenized with tabletting excipients were determined by laser scattering particle size distribution analyzer. Powder rheological behavior of the mixtures containing micronized fibers and cast films was also compared. Positron annihilation lifetime spectroscopy was applied for the microstructural characterization of micronized fibers and films. The water-soluble vitamin B12 release from the compressed tablets was determined. It was confirmed that the rotary spinning method resulted in homogeneous supramolecularly ordered powder mixture, which was successfully compressed after homogenization with conventional tabletting excipients. The obtained directly compressed tablets showed uniform drug release of low variations. The results highlight the novel application of micronized rotary-spun fibers as intermediate for further processing reserving the original favorable powder characteristics of fibrous systems.

  1. 49 CFR 173.132 - Class 6, Division 6.1-Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... the particles available for inhalation in the test must have a diameter of 10 microns or less if it is... aerodynamic diameter of that particle-fraction is 10 microns or less. A liquid substance should be tested if a... constituent A, B ... Z in the mixture; T = the oral LD50 values of constituent A, B ... Z; TM = the oral LD50...

  2. 49 CFR 173.132 - Class 6, Division 6.1-Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... the particles available for inhalation in the test must have a diameter of 10 microns or less if it is... aerodynamic diameter of that particle-fraction is 10 microns or less. A liquid substance should be tested if a... constituent A, B ... Z in the mixture; T = the oral LD50 values of constituent A, B ... Z; TM = the oral LD50...

  3. 49 CFR 173.132 - Class 6, Division 6.1-Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... the particles available for inhalation in the test must have a diameter of 10 microns or less if it is... aerodynamic diameter of that particle-fraction is 10 microns or less. A liquid substance should be tested if a... constituent A, B ... Z in the mixture; T = the oral LD50 values of constituent A, B ... Z; TM = the oral LD50...

  4. Electrokinetic and hydrodynamic properties of charged-particles systems. From small electrolyte ions to large colloids

    NASA Astrophysics Data System (ADS)

    Nägele, G.; Heinen, M.; Banchio, A. J.; Contreras-Aburto, C.

    2013-11-01

    Dynamic processes in dispersions of charged spherical particles are of importance both in fundamental science, and in technical and bio-medical applications. There exists a large variety of charged-particles systems, ranging from nanometer-sized electrolyte ions to micron-sized charge-stabilized colloids. We review recent advances in theoretical methods for the calculation of linear transport coefficients in concentrated particulate systems, with the focus on hydrodynamic interactions and electrokinetic effects. Considered transport properties are the dispersion viscosity, self- and collective diffusion coefficients, sedimentation coefficients, and electrophoretic mobilities and conductivities of ionic particle species in an external electric field. Advances by our group are also discussed, including a novel mode-coupling-theory method for conduction-diffusion and viscoelastic properties of strong electrolyte solutions. Furthermore, results are presented for dispersions of solvent-permeable particles, and particles with non-zero hydrodynamic surface slip. The concentration-dependent swelling of ionic microgels is discussed, as well as a far-reaching dynamic scaling behavior relating colloidal long- to short-time dynamics.

  5. Release of Micronized Copper Particles from Pressure ...

    EPA Pesticide Factsheets

    Micronized copper pressure treated lumber (PTL) has recently been introduced to the consumer market as a replacement for ionized copper PTL. The presence of particulate rather than aqueous copper raises concerns about the exposure of humans as well as the environment to the particles. Two common pathways of exposure, leaching during contact with water and transfer during physical contact, were investigated to gage potential human and environmental risk during intended use of the product. Characterization, leaching tests, and wipe tests were conducted on two representative formulations of micronized copper PTL (micronized copper azole or MCA) to quantify the levels of copper present in the treated material and the amount of copper released during use as well as to determine the form (particle or ion) of the copper after it was released. Additionally, an ionized copper pressure treated wood (alkaline copper azole or ACA) was tested for comparison. The characterization showed that copper carbonate is the primary particle form in the MCA treated wood, but other forms are also present, particularly in the MCA-1 formulation, which contained a large amount of organically complexed copper. Microscopy showed that MCA-1 contained particles roughly half the size of MCA-2. The leaching results indicate that mostly (> ~95%) ionic copper is released from the MCA wood and that the particulate copper that was released is attached to cellulose and not free in solution. A sma

  6. Factors affecting the transverse force measurements of an optical trap: I

    NASA Astrophysics Data System (ADS)

    Wood, Tiffany A.; Wright, Amanda; Gleeson, Helen F.; Dickenson, Mark; Mullin, Tom; Murray, Andrew

    2002-03-01

    The transverse force of an optical trap is usually measured by equating the trapping force to the viscous drag force applied to the trapped particle according to Stokes' Law. Under normal conditions, the viscous drag force on a trapped particle is proportional to the fluid velocity of the medium. In this paper we show that an increase of particle concentration within the medium affects force measurements. In order to trap the particle, 1064 nm light from a Nd:YVO4 laser was brought to a focus in a sample slide, of thickness around 380 microns, by using an inverted Zeiss microscope objective, with NA equals 1.3. The slide was filled with distilled water containing 6 micron diameter polystyrene spheres. Measurements were taken at a fluid velocity of 0.75 microns/sec, achieved by moving the sample stage with a piezo-electric transducer whilst a particle was held stationary in the trap. The laser power required to hold a sphere at different trap depths for various concentrations was measured. Significant weakening of the trap was found for concentrations >0.03% solids by weight, becoming weaker for higher trap depths. These results are explained in terms of aberrations, particle-particle interactions and distortion of the beam due to particle-light interactions.

  7. Physical stability of micronized powders produced by spray-freezing into liquid (SFL) to enhance the dissolution of an insoluble drug.

    PubMed

    Rogers, True L; Johnston, Keith P; Williams, Robert O

    2003-01-01

    The objective of this study was to investigate the physical stability of micronized powders produced by the spray-freezing into liquid (SFL) particle engineeringtechnology. Danazol was formulated with polyvinyl alcohol (MW 22,000), poloxamer 407, and polyvinylpyrrolidone K-15 to form a cosolvent solution that was SFL processed. The dried micronized SFL powders were sealed in glass vials with desiccant and exposed to 25 degrees C/60% RH for 3 and 6 mo, 40 degrees C/75% RH for 1, 2, 3, and 6 mo, and conditions where the temperature was cycled between -5 and +40 degrees C (6 cycles/24 hr) with constant 75% RH for 1, 2, 3 and 4 wk. The samples were characterized by using Karl-Fisher titration, differential scanning calorimetry, x-ray diffraction, specific surface area, scanning electron microscopy, and dissolution testing. Micronized SFL powders consisting of porous aggregates with small-particle domains were characterized as having high surface areas and consisted of amorphous danazol embedded within a hydrophilic excipient matrix. Karl-Fischer titration revealed no moisture absorption over the duration of the stability studies. Differential scanning calorimetry studies demonstrated high degrees of molecular interactions between danazol, PVA, poloxamer, and PVP. Scanning electron microscopy studies confirmed these interactions, especially those between danazol and poloxamer. These interactions facilitated API dissolution in the aqueous media. Powder surface area remained constant during storage at the various stability conditions, and danazol recrystallization did not occur during the entirety of the stability studies. Micronized SFL powders containing danazol dissolved rapidly and completely within 5 min in aqueous media. No differences were observed in the enhanced dissolution profiles of danazol after exposure to the storage conditions investigated. Physically stable micronized powders produced by the SFL particle engineering technology were produced for the purpose of enhancing the dissolution of an insoluble drug. The potential of the SFL particle-engineering technology as a micronization technique for enhancing the dissolution of hydrophobic drugs was demonstrated in this study. The robustness of the micronized SFL powders to withstand stressed storage conditions was shown.

  8. Design evaluations for a flight cloud physics holocamera. [holographic/photographic camera for low-g Atmospheric Cloud Physics Laboratory

    NASA Technical Reports Server (NTRS)

    Moore, W. W., Jr.; Kurtz, R. L.; Lemons, J. F.

    1976-01-01

    The paper describes a holographic/photographic camera to be used with the zero-g or low-g Atmospheric Cloud Physics Laboratory. The flight prototype holocamera is intended to record particles from 0.01 to 5 microns for an optimum two-dimensional plane only in the microscopic photography mode, particles on a volume basis in the in-line holography mode from 5 microns up, and all particle sizes possible on a volume basis in the acute sideband holography mode.

  9. Ice Particle Analysis of the Honeywell AL502 Engine Booster

    NASA Technical Reports Server (NTRS)

    Bidwell, Colin S.; Rigby, David L.

    2015-01-01

    A flow and ice particle trajectory analysis was performed for the booster of the Honeywell ALF502 engine. The analysis focused on two closely related conditions one of which produced an icing event and another which did not during testing of the ALF502 engine in the Propulsion Systems Lab (PSL) at NASA Glenn Research Center. The flow analysis was generated using the NASA Glenn GlennHT flow solver and the particle analysis was generated using the NASA Glenn LEWICE3D v3.63 ice accretion software. The inflow conditions for the two conditions were similar with the main differences being that the condition that produced the icing event was 6.8 K colder than the non-icing event case and the inflow ice water content (IWC) for the non-icing event case was 50% less than for the icing event case. The particle analysis, which considered sublimation, evaporation and phase change, was generated for a 5 micron ice particle with a sticky impact model and for a 24 micron median volume diameter (MVD), 7 bin ice particle distribution with a supercooled large droplet (SLD) splash model used to simulate ice particle breakup. The particle analysis did not consider the effect of the runback and re-impingement of water resulting from the heated spinner and anti-icing system. The results from the analysis showed that the amount of impingement for the components were similar for the same particle size and impact model for the icing and non-icing event conditions. This was attributed to the similar aerodynamic conditions in the booster for the two cases. The particle temperature and melt fraction were higher at the same location and particle size for the non-icing event than for the icing event case due to the higher incoming inflow temperature for the non-event case. The 5 micron ice particle case produced higher impact temperatures and higher melt fractions on the components downstream of the fan than the 24 micron MVD case because the average particle size generated by the particle breakup was larger than 5 microns which yielded less warming and melting. The analysis also showed that the melt fraction and wet bulb temperature icing criterion developed during tests in the Research Altitude Test Facility (RATFac) at the National Research Council (NRC) of Canada were useful in predicting icing events in the ALF502 engine. The development of an ice particle impact model which includes the effects of particle breakup, phase change, and surface state is necessary to further improve the prediction of ice particle transport with phase change through turbomachinery.

  10. Synthesis, characterization and electrocatalytic properties of delafossite CuGaO2

    NASA Astrophysics Data System (ADS)

    Ahmed, Jahangeer; Mao, Yuanbing

    2016-10-01

    Delafossite CuGaO2 has been employed as photocatalysts for solar cells, but their electrocatalytic properties have not been extensively studied, especially no comparison among samples made by different synthesis routes. Herein, we first reported the successful synthesis of delafossite CuGaO2 particles with three different morphologies, i.e. nanocrystalline hexagons, sub-micron sized plates and micron-sized particles by a modified hydrothermal method at 190 °C for 60 h [1-3], a sono-chemical method followed by firing at 850 °C for 48 h, and a solid state route at 1150 °C, respectively. Morphology, composition and phase purity of the synthesized samples was confirmed by powder X-ray diffraction and Raman spectroscopic studies, and then their electrocatalytic performance as active and cost effective electrode materials to the oxygen and hydrogen evolution reactions in 0.5 M KOH electrolyte versus Ag/AgCl was investigated and compared under the same conditions for the first time. The nanocrystalline CuGaO2 hexagons show enhanced electrocatalytic activity than the counterpart sub-micron sized plates and micron-sized particles.

  11. Self-powered microthermionic converter

    DOEpatents

    Marshall, Albert C.; King, Donald B.; Zavadil, Kevin R.; Kravitz, Stanley H.; Tigges, Chris P.; Vawter, Gregory A.

    2004-08-10

    A self-powered microthermionic converter having an internal thermal power source integrated into the microthermionic converter. These converters can have high energy-conversion efficiencies over a range of operating temperatures. Microengineering techniques are used to manufacture the converter. The utilization of an internal thermal power source increases potential for mobility and incorporation into small devices. High energy efficiency is obtained by utilization of micron-scale interelectrode gap spacing. Alpha-particle emitting radioisotopes can be used for the internal thermal power source, such as curium and polonium isotopes.

  12. Solid Hydrocarbon Assisted Reduction: A New Process of Generating Micron Scale Metal Particles

    DTIC Science & Technology

    2015-03-01

    Figure 4.  Stainless Steel Mesh and Sample Containment ................................. 14  Figure 5.  Zero Background XRD Sample Holder...from the oven. Later experiments with iron oxide employed T304 stainless steel mesh, basically fashioned into the same shape as that shown for...200X200S0021W48T by TWP Inc. in Berkeley, California. The stainless steel mesh was folded in three segments similar to the Grafoil it replaced. 14 Figure 4

  13. The Stardust: A Successful Encounter with the Remarkable Comet Wild 2

    NASA Technical Reports Server (NTRS)

    Brownlee, D. E.; Anderson, J. D.; Atkins, K.; Bhaskaran, S.; Cheuvront, A. R.; Clark, B. C.; Duxbury, T. C.; Economou, T.; Hanner, M. S.; Hoerz, F.

    2004-01-01

    On January 2, 2004 the Stardust spacecraft completed a close flyby of comet Wild2 (P81). Flying at a relative speed of 6.1 km/s within 237km of the 5 km nucleus, the spacecraft took 72 close-in images, measured the flux of impacting particles and did in-situ compositional analysis of freshly released dust with a time-of-flight mass spectrometer. The primary goal of the mission is to collect >500 particles >15 m diameter and return them to Earth on January 15, 2006. The cometary particles ranging in size from a micron to approx.100 microns were collected in low density silica aerogel. After returning over a hundred 2x4x3 cm aerogel collection cells will be processed at the curatorial facility at the NASA Johnson Space Center and 5 to 100 micron size extracted cometary particles will be distributed to analysts by a system that will be based on the allocation procedures for cosmic dust, Antarctic meteorites and lunar samples.

  14. Transport dynamics calculated under the full Mie scattering theory for micron and submicron lunar ejecta in selenocentric, cislunar, and geocentric space

    NASA Technical Reports Server (NTRS)

    Hyde, T. W.; Alexander, W. M.

    1989-01-01

    In 1967, Lunar Explorer 35 was launched from the earth and placed into a stable orbit around the moon. The data from the dust particle experiment on this spacecraft were essentially continuous over a 5-yr period from the time of insertion in lunar orbit. Analysis of this data has been interpreted to show that micron-sized lunar ejecta leave the moon and traverse through selenocentric and cislunar space and obtain either interplanetary/heliocentric orbits or intercept the earth's magnetosphere and move into geocentric orbits. Extensive studies of the orbital trajectories of lunar particles in this size range have now been conducted that include a calculation of the solar radiation force using the full Mie scattering theory. A significant flux of particles with radii less than 0.1 micron are found to intercept the earth's magnetopause surface. This flux is shown to be strongly dependent upon both the particle's density and its index of refraction.

  15. Data on microscale atmospheric pollution of Bolshoy Kamen town (Primorsky region, Russia)

    NASA Astrophysics Data System (ADS)

    Kholodov, Aleksei; Ugay, Sergey; Drozd, Vladimir; Maiss, Natalia; Golokhvast, Kirill

    2017-10-01

    The paper discusses the study of atmospheric particulate matter of Bolshoy Kamen town by means of laser granulometry of snow water samples. Snow sampling points were selected close to major enterprises, along the main streets and roads of the town and in the residential area. The near-ground layer of atmospheric air of the town contains particulate matter of three main size classes: under 10 microns, 10-50 microns and over 700 microns. It is shown that the atmosphere of this town is lightly polluted with particles under 10 μm (PM10). Only in 5 sampling points out of 11 we found microparticles potentially hazardous to human health in significant quantities - from 16.2% to 34.6%. On the most territory of the town large particles (over 400 μm) dominate reaching 79.2%. We can conclude that judging by the particle size analysis of snow water samples Bolshoy Kamen town can be considered safe in terms of presence of particles under 10 μm (PM10) in the atmosphere.

  16. The 7.5- to 13.5-micron spectrum of Saturn

    NASA Technical Reports Server (NTRS)

    Gillett, F. C.; Forrest, W. J.

    1974-01-01

    A medium-resolution spectrum of Saturn in the 7.5-13.5 micron range is presented. The observed low brightness temperature between 9 and 11 microns of about 100-105 K rules out gaseous NH3 as the dominant absorber in this spectral range. Absorption features due to PH3 may be present around 10 microns and cloud particles could be an important source of opacity in this wavelength range. There are strong indications of a temperature inversion in the upper atmosphere, including high brightness temperature in the 7.7-micron CH4 band, and possible emission from C2H6 around 12 microns.

  17. Room temperature deformation mechanisms of alumina particles observed from in situ micro-compression and atomistic simulations.

    DOE PAGES

    Sarobol, Pylin; Chandross, Michael E.; Carroll, Jay D.; ...

    2015-09-22

    Aerosol deposition (AD) is a solid-state deposition technology that has been developed to fabricate ceramic coatings nominally at room temperature. Sub-micron ceramic particles accelerated by pressurized gas impact, deform, and consolidate on substrates under vacuum. Ceramic particle consolidation in AD coatings is highly dependent on particle deformation and bonding; these behaviors are not well understood. In this work, atomistic simulations and in situ micro-compressions in the scanning electron microscope, and the transmission electron microscope (TEM) were utilized to investigate fundamental mechanisms responsible for plastic deformation/fracture of particles under applied compression. Results showed that highly defective micron-sized alumina particles, initially containingmore » numerous dislocations or a grain boundary, exhibited no observable shape change before fracture/fragmentation. Simulations and experimental results indicated that particles containing a grain boundary only accommodate low strain energy per unit volume before crack nucleation and propagation. In contrast, nearly defect-free, sub-micron, single crystal alumina particles exhibited plastic deformation and fracture without fragmentation. Dislocation nucleation/motion, significant plastic deformation, and shape change were observed. Simulation and TEM in situ micro-compression results indicated that nearly defect-free particles accommodate high strain energy per unit volume associated with dislocation plasticity before fracture. As a result, the identified deformation mechanisms provide insight into feedstock design for AD.« less

  18. Application of dense gas techniques for the production of fine particles.

    PubMed

    Foster, Neil R; Dehghani, Fariba; Charoenchaitrakoo, Kiang M; Warwick, Barry

    2003-01-01

    The feasibility of using dense gas techniques such as rapid expansion of supercritical solutions (RESS) and aerosol solvent extraction system (ASES) for micronization of pharmaceutical compounds is demonstrated. The chiral nonsteroidal anti-inflammatory racemic ibuprofen is soluble in carbon dioxide at 35 degrees C and pressures above 90 bar. The particle size decreased to less than 2 microm while the degree of crystallinity was slightly decreased when processed by RESS. The dissolution rate of the ibuprofen (a poorly water-soluble compound) was significantly enhanced after processing by RESS. The nonsteroidal anti-inflammatory drug Cu2(indomethacin)4L2(Cu-Indo); (L = dimethylformamide [DMF]), which possessed very low solubility in supercritical CO2, was successfully micronized by ASES at 25 degrees C and 68.9 bar using DMF as the solvent and CO2 as the antisolvent. The concentration of solute dramatically influenced the precipitate characteristics. The particles obtained from the ASES process were changed from bipyramidal to spherical, with particle size less than 5 microm, as the concentration increased from 5 to 100 mg/g. A further increase in solute concentration to 200 mg/g resulted in large porous spheres, between 20 and 50 micron, when processing Cu-Indo by the ASES method. The dissolution rate of the micronized Cu-Indo was significantly higher than the commercial product.

  19. Characterization of soil and postlaunch pad debris from Cape Canaveral launch complex and analysis of soil interaction with aqueous HCl

    NASA Technical Reports Server (NTRS)

    Pellett, G. L.; Spangler, L. W.; Storey, R. W.; Bendura, R. J.

    1982-01-01

    Soil samples were fractionated and analyzed in order to assess the physical and chemical interactions of entrained soil with solid-rocket exhaust clouds. The sandy soil consisted primarily of quartz (silica) particles, 30 to 500 microns in diameter, and also contained seashell fragments. Differential and cumulative soil-mass size distributions are presented along with mineralogy, elemental compositions, and solution pH histories. About 90 percent of the soil mass consisted of particles 165 microns in diameter. Characteristic reaction times in aqueous HC1 slurries varied from a few minutes to several days, and capacities for reaction under acidic conditions varied from 10 to 40 g HCl/kg soil, depending on particle size. Airborne lifetimes of particles 165 microns are conservatively 30 min, and this major grouping is predicted to represent a small short-term chemical sink for up to 5% of the total HC1. The smaller and more minor fractions, below a 165 micron diameter, may act as giant cloud condensation nuclei over much longer airborne lifetimes. Finally, the demonstrated time dependency of neutralization is a complicating factor; it can influence the ability to deduce in-cloud HCl scavenging with reaction and can affect the accuracy of measured chemical compositions of near-field wet deposition.

  20. The chloride induced localised corrosion of aluminium and beryllium: A study by electron and X-ray spectroscopies

    NASA Astrophysics Data System (ADS)

    Mallinson, Christopher F.

    Beryllium is an important metal in the nuclear industry for which there are no suitable replacements. It undergoes localised corrosion at the site of heterogeneities in the metal surface. Corrosion pits are associated with a range of second phase particles. To investigate the role of these particles in corrosion, a safe experimental protocol was established using an aluminium alloy as a corrosion material analogue. The 7075-T6 alloy had not previously been investigated using the experimental methodology used in this thesis. This work led to the development of the experimental methodology and safe working practices for handling beryllium. The range and composition of the second phase particles present in S-65 beryllium billet were identified using a combination of SEM, AES, EDX and WDX. Following the identification of a range of particles with various compositions, including the AlFeBe4 precipitate which has been previously associated with corrosion, the location of the particles were marked to enable their repeated study. Attention was focused on the microchemistry in the vicinity of second phase particles, as a function of immersion time in pH 7, 0.1 M NaCl solution. The corrosion process associated with different particles was followed by repeatedly relocating the particles to perform analysis by means of SEM, AES and EDX. The use of traditional chlorinated vapour degreasing solvents on beryllium was investigated and compared to two modern commercially available cleaning solutions designed as drop-in replacements. This work expanded the range of solvents suitable for cleaning beryllium and validated the conclusions from previous thermodynamic modelling. Additionally, a new experimental methodology has been developed which enables the acquisition of chemical state information from the surface of micron scale features. This was applied to sub-micron copper and iron particles, as well as a copper intermetallic.

  1. Preservation of three-dimensional spatial structure in the gut microbiome.

    PubMed

    Hasegawa, Yuko; Mark Welch, Jessica L; Rossetti, Blair J; Borisy, Gary G

    2017-01-01

    Preservation of three-dimensional structure in the gut is necessary in order to analyze the spatial organization of the gut microbiota and gut luminal contents. In this study, we evaluated preparation methods for mouse gut with the goal of preserving micron-scale spatial structure while performing fluorescence imaging assays. Our evaluation of embedding methods showed that commonly used media such as Tissue-Tek Optimal Cutting Temperature (OCT) compound, paraffin, and polyester waxes resulted in redistribution of luminal contents. By contrast, a hydrophilic methacrylate resin, Technovit H8100, preserved three-dimensional organization. Our mouse intestinal preparation protocol optimized using the Technovit H8100 embedding method was compatible with microbial fluorescence in situ hybridization (FISH) and other labeling techniques, including immunostaining and staining with both wheat germ agglutinin (WGA) and 4', 6-diamidino-2-phenylindole (DAPI). Mucus could be visualized whether the sample was fixed with paraformaldehyde (PFA) or with Carnoy's fixative. The protocol optimized in this study enabled simultaneous visualization of micron-scale spatial patterns formed by microbial cells in the mouse intestines along with biogeographical landmarks such as host-derived mucus and food particles.

  2. Digital PIV Measurements of Acoustic Particle Displacements in a Normal Incidence Impedance Tube

    NASA Technical Reports Server (NTRS)

    Humphreys, William M., Jr.; Bartram, Scott M.; Parrott, Tony L.; Jones, Michael G.

    1998-01-01

    Acoustic particle displacements and velocities inside a normal incidence impedance tube have been successfully measured for a variety of pure tone sound fields using Digital Particle Image Velocimetry (DPIV). The DPIV system utilized two 600-mj Nd:YAG lasers to generate a double-pulsed light sheet synchronized with the sound field and used to illuminate a portion of the oscillatory flow inside the tube. A high resolution (1320 x 1035 pixel), 8-bit camera was used to capture double-exposed images of 2.7-micron hollow silicon dioxide tracer particles inside the tube. Classical spatial autocorrelation analysis techniques were used to ascertain the acoustic particle displacements and associated velocities for various sound field intensities and frequencies. The results show that particle displacements spanning a range of 1-60 microns can be measured for incident sound pressure levels of 100-130 dB and for frequencies spanning 500-1000 Hz. The ability to resolve 1 micron particle displacements at sound pressure levels in the 100 dB range allows the use of DPIV systems for measurement of sound fields at much lower sound pressure levels than had been previously possible. Representative impedance tube data as well as an uncertainty analysis for the measurements are presented.

  3. Natural 13C abundance: a tool to trace the incorporation of dung-derived carbon into soil particle-size fractions.

    PubMed

    Amelung, W; Bol, R; Friedrich, C

    1999-01-01

    During the decay of 13C enriched dung patches, the; delta 13C signal of surface soil (1-5 cm) increased with a temporary maximum after 42 d. To understand the underlying processes, we investigated the incorporation of dung-derived C into soil particle-size fractions. Dung, collected from beef steers fed on maize (delta 13C = -15.36/1000) or ryegrass (delta 13C = -25.67/1000), was applied in circular patches to a C3 pasture at North Wyke, UK. Triplicates were sampled from surface soil (1-5 cm) at 14, 28, 42, and 70 d after application, pooled, separated into fine (< 0.2 micron) and coarse clay (0.2-2 microns), silt plus fine sand (2-250 microns), and coarse sand (250-2000 microns), and analyzed for total C, N, and delta 13C. As particle-size diameter decreased, the C/N ratios decreased and delta 13C values increased at all plots due to increasing microbial alteration of soil organic matter. After dung application, ca. 60% of dung-derived C in soil was recovered in the 0.2-250 microns fractions during the whole experiment. The proportion of dung-derived C in the fine clay peaked 42 d after dung application, coinciding with the delta 13C maximum in the bulk soil and the maximum leaching rate measured in lysimeters at this time in another study at the same sites. The percentage of dung-derived C as particulate C in the coarse sand fraction increased until the end of the experiment. We conclude that incorporation of C into soil from decomposing dung patches involved both temporary sorption of leached dung C to < 0.2 micron fractions and continuous accumulation of particulate C (> 250 microns).

  4. Intestinal absorption of PLAGA microspheres in the rat.

    PubMed Central

    Damgé, C; Aprahamian, M; Marchais, H; Benoit, J P; Pinget, M

    1996-01-01

    Rhodamine B-labelled poly (DL-lactide-co-glycolide) (PLAGA) microspheres of 2 different sizes, 1-5 microns and 5-10 microns, were administered as a single dose (1.44 x 10(9) and 1.83 x 10(8) particles, respectively) into the ileal lumen of adult rats. The content of rhodamine in the mesenteric vein and ileal lumen was analysed periodically from 10 min to 48 h as well as the distribution of microspheres in the intestinal mucosa and various other tissues. The concentration of rhodamine decreased progressively in the intestinal lumen and was negligible after 24 h. The number of microspheres in the mesenteric vein increased rapidly and reached a maximum after 4 h whatever the size of the particles. It then decreased progressively, but more rapidly with microspheres > 5 microns than with microspheres < 5 microns. The absorption efficiency was low for the former batch (about 0.11% of the administered dose) and higher for the latter (about 12.7%). The intraileal administration of free rhodamine B was followed by intense labelling of the epithelial cells and basement membranes in mesenteric lymph nodes, spleen, kidney and liver. PLAGA microspheres mainly crossed the intestinal mucosa at the site of Peyer's patches where microspheres of < 5 microns appeared after 3 h. Microspheres > 5 microns were retained in the ileal lumen. A few small microspheres were occasionally observed in the epithelial cells. Only the smallest particles were recovered in the liver, lymph nodes and spleen while basement membranes were always labelled. It is concluded that PLAGA microspheres could be useful for the oral delivery of antigens if their size is between 1 and 5 microns. Images Fig. 1 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:8982822

  5. Intestinal absorption of PLAGA microspheres in the rat.

    PubMed

    Damgé, C; Aprahamian, M; Marchais, H; Benoit, J P; Pinget, M

    1996-12-01

    Rhodamine B-labelled poly (DL-lactide-co-glycolide) (PLAGA) microspheres of 2 different sizes, 1-5 microns and 5-10 microns, were administered as a single dose (1.44 x 10(9) and 1.83 x 10(8) particles, respectively) into the ileal lumen of adult rats. The content of rhodamine in the mesenteric vein and ileal lumen was analysed periodically from 10 min to 48 h as well as the distribution of microspheres in the intestinal mucosa and various other tissues. The concentration of rhodamine decreased progressively in the intestinal lumen and was negligible after 24 h. The number of microspheres in the mesenteric vein increased rapidly and reached a maximum after 4 h whatever the size of the particles. It then decreased progressively, but more rapidly with microspheres > 5 microns than with microspheres < 5 microns. The absorption efficiency was low for the former batch (about 0.11% of the administered dose) and higher for the latter (about 12.7%). The intraileal administration of free rhodamine B was followed by intense labelling of the epithelial cells and basement membranes in mesenteric lymph nodes, spleen, kidney and liver. PLAGA microspheres mainly crossed the intestinal mucosa at the site of Peyer's patches where microspheres of < 5 microns appeared after 3 h. Microspheres > 5 microns were retained in the ileal lumen. A few small microspheres were occasionally observed in the epithelial cells. Only the smallest particles were recovered in the liver, lymph nodes and spleen while basement membranes were always labelled. It is concluded that PLAGA microspheres could be useful for the oral delivery of antigens if their size is between 1 and 5 microns.

  6. The effects of particle size on the optical properties and surface roughness of a glass-balloon-filled black paint

    NASA Technical Reports Server (NTRS)

    Heslin, T.; Heaney, J.; Harper, M.

    1974-01-01

    The effects of particle size on the optical properties and surface roughness of a glass-balloon-filled, carbon-pigmented paint were studied in order to develop a diffuse-reflecting, low-total-reflectance, low-outgassing black paint. Particle sizes ranged between 20 microns and 74 microns. Surface roughness was found to increase with increasing particle size. Relative total reflectance at near-normal incidence (MgO standard) of the filled paints was less than for the unfilled paint between 230 nm and 1800 nm. Total absolute reflectance at 546 nm decreased with increasing particle size at grazing angles of incidence. Near-normal, total emittance was greater for the filled paints than for the unfilled paint. Specularity decreased with increasing particle size over the range studied.

  7. A Lagrangian parcel based mixing plane method for calculating water based mixed phase particle flows in turbo-machinery

    NASA Astrophysics Data System (ADS)

    Bidwell, Colin S.

    2015-05-01

    A method for calculating particle transport through turbo-machinery using the mixing plane analogy was developed and used to analyze the energy efficient engine . This method allows the prediction of temperature and phase change of water based particles along their path and the impingement efficiency and particle impact property data on various components in the engine. This methodology was incorporated into the LEWICE3D V3.5 software. The method was used to predict particle transport in the low pressure compressor of the . The was developed by NASA and GE in the early 1980s as a technology demonstrator and is representative of a modern high bypass turbofan engine. The flow field was calculated using the NASA Glenn ADPAC turbo-machinery flow solver. Computations were performed for a Mach 0.8 cruise condition at 11,887 m assuming a standard warm day for ice particle sizes of 5, 20 and 100 microns and a free stream particle concentration of . The impingement efficiency results showed that as particle size increased average impingement efficiencies and scoop factors increased for the various components. The particle analysis also showed that the amount of mass entering the inner core decreased with increased particle size because the larger particles were less able to negotiate the turn into the inner core due to particle inertia. The particle phase change analysis results showed that the larger particles warmed less as they were transported through the low pressure compressor. Only the smallest 5 micron particles were warmed enough to produce melting with a maximum average melting fraction of 0.18. The results also showed an appreciable amount of particle sublimation and evaporation for the 5 micron particles entering the engine core (22.6 %).

  8. Radiative Properties of Cirrus Clouds in the Infrared (8-13 microns) Spectral Region

    NASA Technical Reports Server (NTRS)

    Yang, Ping; Gao, Bo-Cai; Baum, Bryan A.; Hu, Yong X.; Wiscombe, Warren J.; Tsay, Si-Chee; Winker, Dave M.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Atmospheric radiation in the infrared (IR) 8-13 microns spectral region contains a wealth of information that is very useful for the retrieval of ice cloud properties from aircraft or space-borne measurements. To provide the scattering and absorption properties of nonspherical ice crystals that are fundamental to the IR retrieval implementation, we use the finite-difference time domain (FDTD) method to solve for the extinction efficiency, single-scattering albedo, and the asymmetry parameter of the phase function for ice crystals smaller than 40 microns. For particles larger than this size, the improved geometric optics method (IGOM) can be employed to calculate the asymmetry parameter with an acceptable accuracy, provided that we properly account for the inhomogeneity of the refracted wave due to strong absorption inside the ice particle. A combination of the results computed from the two methods provides the asymmetry parameter for the entire practical range of particle sizes between 1 micron and 10000 microns over wavelengths ranging from 8 microns to 13 microns. For the extinction and absorption efficiency calculations, several methods including the IGOM, Mie solution for equivalent spheres (MSFES), and the anomalous diffraction theory (ADT) can lead to a substantial discontinuity in comparison with the FDTD solutions for particle sizes on the order of 40 microns. To overcome this difficulty, we have developed a novel approach called the stretched scattering potential method (SSPM). For the IR 8-13 microns spectral region, we show that SSPM is a more accurate approximation than ADT, MSFES, and IGOM. The SSPM solution can be further refined numerically. Through a combination of the FDTD and SSPM, we have computed the extinction and absorption efficiency for hexagonal ice crystals with sizes ranging from 1 to 10000 microns at 12 wavelengths between 8 and 13 microns Calculations of the cirrus bulk scattering and absorption properties are performed for 30 size distributions obtained from various field campaigns for midlatitude and tropical cirrus cloud systems. Parameterization of these bulk scattering properties is carried out by using second-order polynomial functions for the extinction efficiency and the single-scattering albedo and the power law expression for the asymmetry parameter. We note that the volume-normalized extinction coefficient can be separated into two parts: one is inversely proportional to effective size and is independent of wavelength, and the other is the wavelength-dependent effective extinction efficiency. Unlike conventional parameterization efforts, the present parameterization scheme is more accurate because only the latter part of the volume-normalized extinction coefficient is approximated in terms of an analytical expression. After averaging over size distribution, the single-scattering albedo is shown to decrease with an increase in effective size for wavelengths shorter than 10.0 microns whereas the opposite behavior is observed for longer wavelengths. The variation of the asymmetry parameter as a function of effective size is substantial when the effective size is smaller than 50 microns. For effective sizes larger than 100 microns, the asymmetry parameter approaches its asymptotic value. The results derived in this study can be useful to remote sensing applications involving IR window bands under cirrus cloud conditions.

  9. Ice Particle Transport Analysis With Phase Change for the E(sup 3) Turbofan Engine Using LEWICE3D Version 3.2

    NASA Technical Reports Server (NTRS)

    Bidwell, Colin, S.

    2012-01-01

    Ice Particle trajectory calculations with phase change were made for the Energy Efficient Engine (E(sup 3)) using the LEWICE3D Version 3.2 software. The particle trajectory computations were performed using the new Glenn Ice Particle Phase Change Model which has been incorporated into the LEWICE3D Version 3.2 software. The E(sup 3) was developed by NASA and GE in the early 1980 s as a technology demonstrator and is representative of a modern high bypass turbofan engine. The E(sup 3) flow field was calculated using the NASA Glenn ADPAC turbomachinery flow solver. Computations were performed for the low pressure compressor of the E(sup 3) for a Mach 0.8 cruise condition at 11,887 m assuming a standard warm day for ice particle sizes of 5, 20, and 100 microns and a free stream particle concentration of 0.3 g/cu m. The impingement efficiency results showed that as particle size increased average impingement efficiencies and scoop factors increased for the various components. The particle analysis also showed that the amount of mass entering the inner core decreased with increased particle size because the larger particles were less able to negotiate the turn into the inner core due to particle inertia. The particle phase change analysis results showed that the larger particles warmed less as they were transported through the low pressure compressor. Only the smallest 5 micron particles were warmed enough to produce melting and the amount of melting was relatively small with a maximum average melting fraction of 0.836. The results also showed an appreciable amount of particle sublimation and evaporation for the 5 micron particles entering the engine core (22 percent).

  10. Laboratory Studies of the Optical Properties and Condensation Processes of Cosmic Dust Particles

    NASA Technical Reports Server (NTRS)

    Abbas, Mian M.; Craven, Paul D.; Spann, James F.; Tankosic, Dragana; Six, N. Frank (Technical Monitor)

    2002-01-01

    A laboratory facility for levitating single isolated dust particles in an electrodynamics balance has been developing at NASA/Marshall Space Flight Center for conducting a variety of experimental, of astrophysical interest. The objective of this research is to employ this innovative experimental technique for studies of the physical and optical properties of the analogs of cosmic grains of 0.2-10 micron size in a chamber with controlled pressure/temperatures simulating astrophysical environments. In particular, we will carry out three classes of experiments to investigate the microphysics of the analogs of interstellar and interplanetary dust grains. (1) Charge characteristics of micron size single dust grains to determine the photoelectric efficiencies, yields, and equilibrium potentials when exposed to UV radiation. These measurements will provide the much-needed photoelectric emission data relating to individual particles as opposed to that for the bulk materials available so far. (2) Infrared optical properties of dust particles obtained by irradiating the particles with radiation from tunable infrared diode lasers and measuring the scattered radiation. Specifically, the complex refractive indices, the extinction coefficients, the scattering phase functions, and the polarization properties of single dust grains of interest in interstellar environments, in the 1-25 micron spectral region will be determined. (3) Condensation experiments to investigate the deposition of volatile gases on colder nucleated particles in dense interstellar clouds and lower planetary atmospheres. The increase in the mass or m/q ratio due to condensation on the particle will be monitored as a function of the dust particle temperature and the partial pressure of the injected volatile gas. The measured data wild permit determination of the sticking efficiencies of volatile gases of astrophysical interest. Preliminary results based on photoelectric emission experiments on 0.2-6.6 micron size silica particles exposed to UV radiation in the 120-200 nm spectral region will be presented.

  11. Insights into Lithium-ion battery degradation and safety mechanisms from mesoscale simulations using experimentally reconstructed mesostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, Scott A.; Mendoza, Hector; Brunini, Victor E.

    Battery performance, while observed at the macroscale, is primarily governed by the bicontinuous mesoscale network of the active particles and a polymeric conductive binder in its electrodes. Manufacturing processes affect this mesostructure, and therefore battery performance, in ways that are not always clear outside of empirical relationships. Directly studying the role of the mesostructure is difficult due to the small particle sizes (a few microns) and large mesoscale structures. Mesoscale simulation, however, is an emerging technique that allows the investigation into how particle-scale phenomena affect electrode behavior. In this manuscript, we discuss our computational approach for modeling electrochemical, mechanical, andmore » thermal phenomena of lithium-ion batteries at the mesoscale. Here, we review our recent and ongoing simulation investigations and discuss a path forward for additional simulation insights.« less

  12. Insights into Lithium-ion battery degradation and safety mechanisms from mesoscale simulations using experimentally reconstructed mesostructures

    DOE PAGES

    Roberts, Scott A.; Mendoza, Hector; Brunini, Victor E.; ...

    2016-10-20

    Battery performance, while observed at the macroscale, is primarily governed by the bicontinuous mesoscale network of the active particles and a polymeric conductive binder in its electrodes. Manufacturing processes affect this mesostructure, and therefore battery performance, in ways that are not always clear outside of empirical relationships. Directly studying the role of the mesostructure is difficult due to the small particle sizes (a few microns) and large mesoscale structures. Mesoscale simulation, however, is an emerging technique that allows the investigation into how particle-scale phenomena affect electrode behavior. In this manuscript, we discuss our computational approach for modeling electrochemical, mechanical, andmore » thermal phenomena of lithium-ion batteries at the mesoscale. Here, we review our recent and ongoing simulation investigations and discuss a path forward for additional simulation insights.« less

  13. Formation of Non-symmetric Fractals During the First Stage of Pre-planetesimal Dust Growth

    NASA Astrophysics Data System (ADS)

    Kempf, S.; Blum, J.; Wurm, G.

    It is a generally accepted view that the genesis of a planetary system coincide s with the formation of sun-like young stellar objects surrounded by gaseous disc s. The building blocks of the planetesimals are micron-sized solid particles (the so-called dust) embedded in the gas of the disc. The relevant process for formi ng larger aggregates is the growth due to collisional sticking. For particles to c ollide and stick, a relative velocity component between the grains must be present. In the onset of dust growth, Brownian motion dominates other relative-velocity sources . However, numerically determined time scales of the pure Brownian dust growth are much too large for explaining the formation of planets within the lifetime of a proto-planetary di sc. In order to verify the validity of the theoretical models, the Cosmic Dust Aggr egation Experiment CODAG was developed. It allows to observe the growth of micron-sized dust analogs under astrophysical realistic conditions. Surprisingly, the experi ments showed that at least in the onset of the dust growth needle-like fractal aggreg ates rather than symmetric fractals are formed. Here we discuss the implication of this experimental finding for the pre-planetesimal growth models.

  14. Interaction of micron and nano-sized particles with cells of the dura mater.

    PubMed

    Papageorgiou, Iraklis; Marsh, Rainy; Tipper, Joanne L; Hall, Richard M; Fisher, John; Ingham, Eileen

    2014-10-01

    Intervertebral total disc replacements (TDR) are used in the treatment of degenerative spinal disc disease. There are, however, concerns that they may be subject to long-term failure due to wear. The adverse effects of TDR wear have the potential to manifest in the dura mater and surrounding tissues. The aim of this study was to investigate the physiological structure of the dura mater, isolate the resident dural epithelial and stromal cells and analyse the capacity of these cells to internalise model polymer particles. The porcine dura mater was a collagen-rich structure encompassing regularly arranged fibroblastic cells within an outermost epithelial cell layer. The isolated dural epithelial cells had endothelial cell characteristics (positive for von Willebrand factor, CD31, E-cadherin and desmoplakin) and barrier functionality whereas the fibroblastic cells were positive for collagen I and III, tenascin and actin. The capacity of the dural cells to take up model particles was dependent on particle size. Nanometer sized particles readily penetrated both types of cells. However, dural fibroblasts engulfed micron-sized particles at a much higher rate than dural epithelial cells. The study suggested that dural epithelial cells may offer some barrier to the penetration of micron-sized particles but not nanometer sized particles. © 2014 The Authors. Journal of Biomedical Materials Research Part B: Applied Biomaterials Published by Wiley Periodicals, Inc.

  15. Structure of a black chrome solar selective surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lampert, C.M.

    1978-07-01

    The structure of ''CHROM-ONYX'' type of black chrome/metal selective absorber was studied to gain a better understanding of its influence upon the mechanism of wavelength selectivity. Spectral reflectance measurements were performed on seven samples. The best selectivity was found by these measurements to be 0.7 micron of black chrome on nickel and 1.0 micron of black chrome on copper. Both scanning and transmission electron microscopy were employed to study microstructure and chemical composition. As a result of the combined studies, some effects of black chrome thickness and the metallic substrate were determined. It was found that black chrome consisted ofmore » a very fine metallic distribution of particles of chromium, possibly suspended within a matrix of an oxide of chromium. This combination was, in turn, agglomerated into larger particles within the 0.05 to 0.3 micron size range. These larger particles formed a network which constituted the surface coating.« less

  16. Standoff detection of explosives: a challenging approach for optical technologies

    NASA Astrophysics Data System (ADS)

    Désilets, S.; Hô, N.; Mathieu, P.; Simard, J. R.; Puckrin, E.; Thériault, J. M.; Lavoie, H.; Théberge, F.; Babin, F.; Gay, D.; Forest, R.; Maheux, J.; Roy, G.; Châteauneuf, M.

    2011-06-01

    Standoff detection of explosives residues on surfaces at few meters was made using optical technologies based on Raman scattering, Laser-Induced Breakdown Spectroscopy (LIBS) and passive standoff FTIR radiometry. By comparison, detection and analysis of nanogram samples of different explosives was made with a microscope system where Raman scattering from a micron-size single point illuminated crystal of explosive was observed. Results from standoff detection experiments using a telescope were compared to experiments using a microscope to find out important parameters leading to the detection. While detection and spectral identification of the micron-size explosive particles was possible with a microscope, standoff detection of these particles was very challenging due to undesired light reflected and produced by the background surface or light coming from other contaminants. Results illustrated the challenging approach of detecting at a standoff distance the presence of low amount of micron or submicron explosive particles.

  17. Micron-size metal-binding hydrogel particles improve germination and radicle elongation of Australian metallophyte grasses in mine waste rock and tailings.

    PubMed

    Guterres, J; Rossato, L; Pudmenzky, A; Doley, D; Whittaker, M; Schmidt, S

    2013-03-15

    Metal contamination of landscapes as a result of mining and other industrial activities is a pervasive problem worldwide. Metal contaminated soils often lack effective vegetation cover and are prone to contaminant leaching and dispersion through erosion, leading to contamination of the environment. Metal-binding hydrogel particle amendments could ameliorate mine wastes prior to planting and enhance seedling emergence. In this study, micron-size thiol functional cross-linked acrylamide polymer hydrogel particles (X3) were synthesised and tested in laboratory-scale experiments on phytotoxic mine wastes to determine their capacity to: (i) increase substrate water holding capacity (WHC); (ii) reduce metal availability to plants to below the phytotoxicity threshold; and (iii) enhance germination characteristics and early radicle development of two Australian metallophyte grasses under limiting and non-limiting water conditions. Addition of X3 to mine wastes significantly increased their WHC and lowered toxic soluble metal concentrations in mine waste leachates. Germination percentages and radicle elongation of both grasses in wastes were significantly increased. Highest germination percentages and greater radicle development recorded in X3 amended wastes under water limited conditions suggests that X3 was able to ameliorate metal toxicity to radicles, and provide moisture, which improved the imbibition and consequent germination of the seeds. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Particle flow within a transonic compressor rotor passage with application to laser-Doppler velocimetry

    NASA Technical Reports Server (NTRS)

    Maxwell, B. R.

    1975-01-01

    A theoretical analysis was conducted of the dynamic behavior of micron size particles moving in the three-dimensional flow field of a rotating transonic axial-flow air compressor rotor. The particle velocity lag and angular deviation relative to the gas were determined as functions of particle diameter, mass density and radial position. Particle size and density were varied over ranges selected to correspond to typical laser-Doppler velocimeter (LDV) flow field mapping applications. It was found that the particles move essentially on gas stream surfaces and that particle tracking is relatively insensitive to the rotor radial coordinate. Velocity lag and angular deviation increased whenever particle size or mass density increased, and particle tracking was more sensitive to a change in particle diameter than to a corresponding change in mass density. Results indicated that velocity and angular deviations generally less than 1 percent and 1 degree could be achieved with 1 gm/cc tracer particles with diameters of 1 micron or less.

  19. Periodic organosilica hollow nanospheres as anode materials for lithium ion rechargeable batteries.

    PubMed

    Sasidharan, Manickam; Nakashima, Kenichi; Gunawardhana, Nanda; Yokoi, Toshiyuki; Ito, Masanori; Inoue, Masamichi; Yusa, Shin-ichi; Yoshio, Masaki; Tatsumi, Takashi

    2011-11-01

    Polymeric micelles with core-shell-corona architecture have been found to be the efficient colloidal templates for synthesis of periodic organosilica hollow nanospheres over a broad pH range from acidic to alkaline media. In alkaline medium, poly (styrene-b-[3-(methacryloylamino)propyl] trimethylammonium chloride-b-ethylene oxide) (PS-PMAPTAC-PEO) micelles yield benzene-silica hollow nanospheres with molecular scale periodicity of benzene groups in the shell domain of hollow particles. Whereas, an acidic medium (pH 4) produces diverse hollow particles with benzene, ethylene, and a mixture of ethylene and dipropyldisulfide bridging functionalities using poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) (PS-PVP-PEO) micelles. These hollow particles were thoroughly characterized by powder X-ray diffraction (XRD), dynamic light scattering (DLS), thermogravimetric analysis (TG/DTA), Fourier transformation infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), magic angle spinning-nuclear magnetic resonance ((29)Si MAS NMR and (13)CP-MAS NMR), Raman spectroscopy, and nitrogen adsorption/desorption analyses. The benzene-silica hollow nanospheres with molecular scale periodicity in the shell domain exhibit higher cycling performance of up to 300 cycles in lithium ion rechargeable batteries compared with micron-sized dense benzene-silica particles.

  20. Biocompatibility of designed MicNo-ZnO particles: Cytotoxicity, genotoxicity and phototoxicity in human skin keratinocyte cells.

    PubMed

    Genç, Hatice; Barutca, Banu; Koparal, A Tansu; Özöğüt, Uğurcan; Şahin, Yücel; Suvacı, Ender

    2018-03-01

    Recently, designed platelet shaped micron particles that are composed of nano primary particles, called MicNo (=Micron+naNo) particles, have been developed to exploit the benefits of nano size, while removing the adverse effects of nanoparticles. It has been shown that MicNo-ZnO particles exhibit both micron and nanosized particle characteristics. Although physical and chemical properties of MicNo-ZnO particles have been studied, their biocompatibility has not yet been evaluated. Accordingly, the research objective of this study was to evaluate in vitro cytotoxicity, genotoxicity and phototoxicity behaviors of designed MicNo-ZnO particles over human epidermal keratinocyte (HaCaT) cells. MicNo-ZnO particles exhibit much less cytotoxicity with IC 50 concentrations between 40 and 50μg/ml, genotoxicity above 40μg/ml and lower photo genotoxicity under UVA on HaCaT than the ZnO nanoparticles. Although their chemistries are the same, the source of this difference in toxicity values may be attributed to size differences between the particles that are probably due to their ability to penetrate into the cells. In the present study, the expansive and detailed in vitro toxicity tests show that the biocompatibility of MicNo-ZnO particles is much better than that of the ZnO nanoparticles. Consequently, MicNo-ZnO particles can be considered an important active ingredient alternative for sunscreen applications due to their safer characteristics with respect to ZnO nanoparticles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Mixing of nanosize particles by magnetically assisted impaction techniques

    NASA Astrophysics Data System (ADS)

    Scicolone, James V.

    Nanoparticles and nanocomposites offer unique properties that arise from their small size, large surface area, and the interactions of phases at their interfaces, and are attractive for their potential to improve performance of drugs, biomaterials, catalysts and other high-value-added materials. However, a major problem in utilizing nanoparticles is that they often lose their high surface area due to grain growth. Creating nanostructured composites where two or more nanosized constituents are intimately mixed can prevent this loss in surface area, but in order to obtain homogeneous mixing, de-agglomeration of the individual nanoparticle constituents is necessary. Due to high surface area, nano-particles form very large, fractal agglomerates. The structure of these agglomerates can have a large agglomerate composed of sub-agglomerates (SA), which itself consists of primary agglomerates (PA), that contain chain or net like nano-particle structures; typically sub-micron size. Thus the final agglomerate has a hierarchical, fractal structure, and depending upon the forces applied, it could break down to a certain size scale. The agglomerates can be fairly porous and fragile or they could be quite dense, based on primary particle size and its surface energy. Thus depending upon the agglomerate strength at different length scales, one could achieve deagglomeration and subsequent mixing at varying length scale. A better understanding of this can have a major impact on the field of nano-structured materials; thus the long term objective of this project is to gain fundamental understanding of deagglomeration and mixing of nano-agglomerates. Dry mixing is in general not effective in achieving desired mixing at nanoscale, whereas wet mixing suffers from different disadvantages like nanomaterial of interest should be insoluble, has to wet the liquid, and involves additional steps of filtration and drying. This research examines the use of environmentally friendly a novel approach based on use of small magnetic particles as mixing media is introduced that achieves a high-degree of mixing at scales of about a micron. The method is tested for binary mixture of alumina/silica and silica/titania. Various parameters such as processing time, size of the magnets, and magnetic particle to powder mixed ratio are considered. Experiments are carried out in batch containers in liquid and dry mediums, as well as a fluidized bed set-up. Homogeneity of Mixing (HoM), defined as the compliment of the Intensity of Segregation, was evaluated at the micron scale through field-emission scanning electron microscopy (FESEM) and the energy dispersive x-ray spectroscopy (EDS). Secondary electron images, along with elemental mappings, were used to visualize the change in agglomerate sizes. Compositional percent data of each element were obtained through an EDS spatial distribution point analysis and used to obtain quantitative analysis on the homogeneity of the mixture. The effect of magnet impaction on mixing quality was examined on the HoM of binary mixtures. The research shows that HoM improved with magnetically assisted impaction mixing techniques indicating that the HoM depends on the product of processing time with the number of magnets. In a fluidized bed set-up, MAIM not only improved dispersion, but it was also found that the magnetic particles served to break down the larger agglomerates, to reduce the minimum fluidization velocity, to delay the onset of bubbling, and to convert the fluidization behavior of ABF powder to APF. Thus MAIM techniques may be used to achieve mixing of nanopowders at a desired HoM through adjusting the number of magnets and processing time; and its inherent advantages are its simplicity, an environmentally benign operation, and reduced cost as compared with wet mixing techniques.

  2. Large-scale self-assembly of uniform submicron silver sulfide material driven by precise pressure control

    NASA Astrophysics Data System (ADS)

    Qi, Juanjuan; Chen, Ke; Zhang, Shuhao; Yang, Yun; Guo, Lin; Yang, Shihe

    2017-03-01

    The controllable self-assembly of nanosized building blocks into larger specific structures can provide an efficient method of synthesizing novel materials with excellent properties. The self-assembly of nanocrystals by assisted means is becoming an extremely active area of research, because it provides a method of producing large-scale advanced functional materials with potential applications in the areas of energy, electronics, optics, and biologics. In this study, we applied an efficient strategy, namely, the use of ‘pressure control’ to the assembly of silver sulfide (Ag2S) nanospheres with a diameter of approximately 33 nm into large-scale, uniform Ag2S sub-microspheres with a size of about 0.33 μm. More importantly, this strategy realizes the online control of the overall reaction system, including the pressure, reaction time, and temperature, and could also be used to easily fabricate other functional materials on an industrial scale. Moreover, the thermodynamics and kinetics parameters for the thermal decomposition of silver diethyldithiocarbamate (Ag(DDTC)) are also investigated to explore the formation mechanism of the Ag2S nanosized building blocks which can be assembled into uniform sub-micron scale architecture. As a method of producing sub-micron Ag2S particles by means of the pressure-controlled self-assembly of nanoparticles, we foresee this strategy being an efficient and universally applicable option for constructing other new building blocks and assembling novel and large functional micromaterials on an industrial scale.

  3. Mechanisms for fatigue and wear of polysilicon structural thinfilms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alsem, Daniel Henricus

    2006-01-01

    Fatigue and wear in micron-scale polysilicon structural films can severely impact the reliability of microelectromechanical systems (MEMS). Despite studies on fatigue and wear behavior of these films, there is still an on-going debate regarding the precise physical mechanisms for these two important failure modes. Although macro-scale silicon does not fatigue, this phenomenon is observed in micron-scale silicon. It is shown that for polysilicon devices fabricated in the MUMPs foundry and SUMMiT process stress-lifetime data exhibits similar trends in ambient air, shorter lifetimes in higher relative humidity environments and no fatigue failure at all in high vacuum. Transmission electron microscopy ofmore » the surface oxides of the samples show an approximate four-fold thickening of the oxide at stress concentrations after fatigue failure, but no thickening after fracture in air or after fatigue cycling in vacuo. It is found that such oxide thickening and fatigue failure (in air) occurs in devices with initial oxide thicknesses of ~4-20 nm. Such results are interpreted and explained by a reaction layer fatigue mechanism; specifically, moisture-assisted subcritical cracking within a cyclic stress-assisted thickened oxide layer occurs until the crack reaches a critical size to cause catastrophic failure. Polysilicon specimens from the SUMMiT process are used to study wear mechanisms in micron-scale silicon in ambient air. Worn parts are examined by analytical scanning and transmission electron microscopy, while temperature changes are monitored using infrared microscopy. These results are compared with the development of values of static coefficients of friction (COF) with number of wear cycles. Observations show amorphous debris particles (~50-100 nm) created by fracture through the silicon grains (~500 nm), which subsequently oxidize, agglomerate into clusters and create plowing tracks. A nano-crystalline layer (~20-200 nm) forms at worn regions. No dislocations or extreme temperature increases are found, ruling out plasticity and temperature-assisted mechanisms. The COF reaches a steady-state value of ~0.20±0.05 after a short time at an initial value of ~0.11±0.01. Plowing tracks are found before the steady-state value of the COF is reached, suggesting only a short adhesive wear regime. This suggests a predominantly abrasive wear mechanism, controlled by fracture, which commences by the first particles created by adhesive wear.« less

  4. Mechanisms for fatigue and wear of polysilicon structural thin films

    NASA Astrophysics Data System (ADS)

    Alsem, Daniel Henricus

    Fatigue and wear in micron-scale polysilicon structural films can severely impact the reliability of microelectromechanical systems (MEMS). Despite studies on fatigue and wear behavior of these films, there is still an on-going debate regarding the precise physical mechanisms for these two important failure modes. Although macro-scale silicon does not fatigue, this phenomenon is observed in micron-scale silicon. It is shown that for polysilicon devices fabricated in the MUMPs foundry and SUMMiT(TM) process stress-lifetime data exhibits similar trends in ambient air, shorter lifetimes in higher relative humidity environments and no fatigue failure at all in high vacuum. Transmission electron microscopy of the surface oxides of the samples show an approximate four-fold thickening of the oxide at stress concentrations after fatigue failure, but no thickening after fracture in air or after fatigue cycling in vacuo . It is found that such oxide thickening and fatigue failure (in air) occurs in devices with initial oxide thicknesses of ˜4-20 nm. Such results are interpreted and explained by a reaction-layer fatigue mechanism; specifically, moisture-assisted subcritical cracking within a cyclic stress-assisted thickened oxide layer occurs until the crack reaches a critical size to cause catastrophic failure. Polysilicon specimens from the SUMMiT(TM) process are used to study wear mechanisms in micron-scale silicon in ambient air. Worn parts are examined by analytical scanning and transmission electron microscopy, while temperature changes are monitored using infrared microscopy. These results are compared with the development of values of static coefficients of friction (COF) with number of wear cycles. Observations show amorphous debris particles (˜50-100 nm) created by fracture through the silicon grains (˜500 nm), which subsequently oxidize, agglomerate into clusters and create plowing tracks. A nano-crystalline layer (˜20-200 nm) forms at worn regions. No dislocations or extreme temperature increases are found, ruling out plasticity and temperature-assisted mechanisms. The COF reaches a steady-state value of ˜0.20+/-0.05 after a short time at an initial value of ˜0.11+/-0.01. Plowing tracks are found before the steady-state value of the COF is reached, suggesting only a short adhesive wear regime. This suggests a predominantly abrasive wear mechanism, controlled by fracture, which commences by the first particles created by adhesive wear.

  5. Polishing compound for plastic surfaces

    DOEpatents

    Stowell, Michael S.

    1995-01-01

    A polishing compound for plastic surfaces. The compound contains by weight approximately 4 to 17 parts at least one petroleum distillate lubricant, 1 to 6 parts mineral spirits, 2.5 to 15 parts abrasive particles, and 2.5 to 10 parts water. The abrasive is tripoli or a similar material that contains fine particles silica. Preferably, most of the abrasive particles are less than approximately 10 microns, more preferably less than approximately 5 microns in size. The compound is used on PLEXIGLAS.TM., LEXAN.TM., LUCITE.TM., polyvinyl chloride (PVC) and similar plastic materials whenever a smooth, clear polished surface is desired.

  6. Polishing compound for plastic surfaces

    DOEpatents

    Stowell, M.S.

    1995-08-22

    A polishing compound for plastic surfaces is disclosed. The compound contains by weight approximately 4 to 17 parts at least one petroleum distillate lubricant, 1 to 6 parts mineral spirits, 2.5 to 15 parts abrasive particles, and 2.5 to 10 parts water. The abrasive is tripoli or a similar material that contains fine particles silica. Preferably, most of the abrasive particles are less than approximately 10 microns, more preferably less than approximately 5 microns in size. The compound is used on PLEXIGLAS{trademark}, LEXAN{trademark}, LUCITE{trademark}, polyvinyl chloride (PVC) and similar plastic materials whenever a smooth, clear polished surface is desired. 5 figs.

  7. A comprehensive simulation framework for imaging single particles and biomolecules at the European X-ray Free-Electron Laser

    NASA Astrophysics Data System (ADS)

    Yoon, Chun Hong; Yurkov, Mikhail V.; Schneidmiller, Evgeny A.; Samoylova, Liubov; Buzmakov, Alexey; Jurek, Zoltan; Ziaja, Beata; Santra, Robin; Loh, N. Duane; Tschentscher, Thomas; Mancuso, Adrian P.

    2016-04-01

    The advent of newer, brighter, and more coherent X-ray sources, such as X-ray Free-Electron Lasers (XFELs), represents a tremendous growth in the potential to apply coherent X-rays to determine the structure of materials from the micron-scale down to the Angstrom-scale. There is a significant need for a multi-physics simulation framework to perform source-to-detector simulations for a single particle imaging experiment, including (i) the multidimensional simulation of the X-ray source; (ii) simulation of the wave-optics propagation of the coherent XFEL beams; (iii) atomistic modelling of photon-material interactions; (iv) simulation of the time-dependent diffraction process, including incoherent scattering; (v) assembling noisy and incomplete diffraction intensities into a three-dimensional data set using the Expansion-Maximisation-Compression (EMC) algorithm and (vi) phase retrieval to obtain structural information. We demonstrate the framework by simulating a single-particle experiment for a nitrogenase iron protein using parameters of the SPB/SFX instrument of the European XFEL. This exercise demonstrably yields interpretable consequences for structure determination that are crucial yet currently unavailable for experiment design.

  8. Assessing mechanical deconstruction of softwood cell wall for cellulosic biofuels production

    NASA Astrophysics Data System (ADS)

    Jiang, Jinxue

    Mechanical deconstruction offers a promising strategy to overcome biomass recalcitrance for facilitating enzymatic hydrolysis of pretreated substrates with zero chemicals input and presence of inhibitors. The goal of this dissertation research is to gain a more fundamental understanding on the impact of mechanical pretreatment on generating digestible micronized-wood and how the physicochemical characteristics influence the subsequent enzymatic hydrolysis of micronized wood. The initial moisture content of feedstock was found to be the key factor affecting the development of physical features and enzymatic hydrolysis of micronized wood. Lower moisture content resulted in much rounder particles with lower crystallinity, while higher moisture content resulted in the milled particles with larger aspect ratio and crystallinity. The enzymatic hydrolysis of micronized wood was improved as collectively increasing surface area (i.e., reducing particle size and aspect ratio) and decreasing crystallinity during mechanical milling pretreatment. Energy efficiency analysis demonstrated that low-moisture content feedstock with multi-step milling process would contribute to cost-effectiveness of mechanical pretreatment for achieving more than 70% of total sugars conversion. In the early stage of mechanical pretreatment, the types of cell fractures were distinguished by the initial moisture contents of wood, leading to interwall fracture at the middle lamella region for low moisture content samples and intrawall fracture at the inner cell wall for high moisture content samples. The changes in cell wall fractures also resulted in difference in the distribution of surface chemical composition and energy required for milling process. In an effort to exploit the underlying mechanism associated with the reduced recalcitrance in micronized wood, we reported the increased enzymatic sugar yield and correspondingly structural and accessible properties of micronized feedstock. Electronic microscopy analysis detailed the structural alternation of cell wall during mechanical process, including cell fracture and delamination, ultrastructure disintegration, and cell wall fragments amorphization, as coincident with the particle size reduction. It was confirmed with Simons' staining that longer milling time resulted in increased substrate accessibility and porosity. The changes in cellulose molecular structure with respect to degree of polymerization (DP) and crystallinity index (CrI) also benefited to decreasing recalcitrance and facilitating enzymatic hydrolysis of micronized wood.

  9. Intracavity optical trapping with Ytterbium doped fiber ring laser

    NASA Astrophysics Data System (ADS)

    Sayed, Rania; Kalantarifard, Fatemeh; Elahi, Parviz; Ilday, F. Omer; Volpe, Giovanni; Maragò, Onofrio M.

    2013-09-01

    We propose a novel approach for trapping micron-sized particles and living cells based on optical feedback. This approach can be implemented at low numerical aperture (NA=0.5, 20X) and long working distance. In this configuration, an optical tweezers is constructed inside a ring cavity fiber laser and the optical feedback in the ring cavity is controlled by the light scattered from a trapped particle. In particular, once the particle is trapped, the laser operation, optical feedback and intracavity power are affected by the particle motion. We demonstrate that using this configuration is possible to stably hold micron-sized particles and single living cells in the focal spot of the laser beam. The calibration of the optical forces is achieved by tracking the Brownian motion of a trapped particle or cell and analysing its position distribution.

  10. Is the 21-micron Feature Observed in Some Post-AGB Stars Caused by the Interaction Between Ti Atoms and Fullerenes?

    NASA Technical Reports Server (NTRS)

    Kimura, Yuki; Nuth, Joseph A. III; Ferguson, Frank T.

    2005-01-01

    Recent measurements of fullerenes and Ti atoms recorded in our laboratory have demonstrated the presence of an infrared feature near 21 pm. The feature observed has nearly the same shape and position as is observed for one of the most enigmatic features in post-asymptotic giant blanch (AGB) stars. In our experimental system large cage carbon particles, such as large fullerenes, were produced from CO gas by the Boudouard reaction. Large-cage carbon particles intermixed with Ti atoms were produced by the evaporation of a Ti metal wrapped carbon electrode in CO gas. The infrared spectra of large fullerenes interacting with Ti atoms show a characteristic feature at 20.3 micron that closely corresponds to the 20.1 micron feature observed in post-AGB stars. Both the lab- oratory and stellar spectra also show a small but significant peak at 19.0 micron, which is attributed to fullerenes. Here, we propose that the interaction between fullerenes and Ti atoms may be a plausible explanation for the 21-micron feature seen in some post-AGB stars.

  11. The effect of particle size on the dehydration/rehydration behaviour of lactose.

    PubMed

    Crisp, J L; Dann, S E; Edgar, M; Blatchford, C G

    2010-05-31

    Ethanolic suspensions of spray dried and micronized alpha lactose monohydrate (L(alpha)xH(2)O) with average particle size between 3 and 200 microm, have been prepared and their dehydration behaviour was investigated by (13)C CP-MASNMR spectroscopy. Sub-micron lactose suspension prepared by a novel high pressure homogenisation method has been compared with the standard ethanolic suspensions of (L(alpha).H(2)O prepared by reflux or static room temperature methods. In all cases, suspensions were shown to contain the stable anhydrous form of lactose ((L(alpha)(S)). Several approaches were employed to remove ethanol from these suspensions and the resulting dry lactose powders were then analysed by FT-IR, PXRD and SEM to evaluate the effect of drying procedure on type and distribution of lactose polymorphs and particle size. For samples with mean particle size greater than 1 microm, the stable anhydrous polymorphic form of lactose was retained on removal of the ethanol, although differences in the morphology and particle size of the crystals were apparent depending on method of suspension formation. Sub-micron (L(alpha)(S), while stable in dry conditions, has been shown to be less stable to atmospheric water vapour than (L(alpha)(S) with particle size between 3 and 200 microm. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  12. Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. II - Marine stratocumulus observations

    NASA Technical Reports Server (NTRS)

    Nakajima, Teruyuki; King, Michael D.; Spinhirne, James D.; Radke, Lawrence F.

    1991-01-01

    A multispectral scanning radiometer has been used to obtain measurements of the reflection function of marine stratocumulus clouds at 0.75 micron and at 1.65 and 2.16 microns. These observations were obtained from the NASA ER-2 aircraft as part of the FIRE, conducted off the coast of southern California during July 1987. Multispectral images of the reflection function were used to derive the optical thickness and the effective particle radius of stratiform cloud layers on four days. In addition to the radiation measurements, in situ microphysical measurements were obtained from an aircraft. In this paper, the remote sensing results are compared with in situ observations, which show a good spatial correlation for both optical thickness and effective radius. These comparisons further show systematic differences between remote sensing and in situ values, with a tendency for remote sensing to overestimate the effective radius by about 2-3 microns, independent of particle radius. The optical thickness, in contrast, is somewhat overestimated for small optical thicknesses and underestimated for large optical thicknesses. An introduction of enhanced gaseous absorption at a wavelength of 2.16 microns successfully explains some of these observed discrepancies.

  13. Bifunctional air electrodes containing elemental iron powder charging additive

    DOEpatents

    Liu, Chia-tsun; Demczyk, Brian G.; Gongaware, Paul R.

    1982-01-01

    A bifunctional air electrode for use in electrochemical energy cells is made, comprising a hydrophilic layer and a hydrophobic layer, where the hydrophilic layer essentially comprises a hydrophilic composite which includes: (i) carbon; (ii) elemental iron particles having a particle size of between about 25 microns and about 700 microns diameter; (iii) an oxygen evolution material; (iv) a nonwetting agent; and (v) a catalyst, where at least one current collector is formed into said composite.

  14. Ultrasonic manipulation of particles and cells. Ultrasonic separation of cells.

    PubMed

    Coakley, W T; Whitworth, G; Grundy, M A; Gould, R K; Allman, R

    1994-04-01

    Cells or particles suspended in a sonic standing wave field experience forces which concentrate them at positions separated by half a wavelength. The aims of the study were: (1) To optimise conditions and test theoretical predictions for ultrasonic concentration and separation of particles or cells. (2) To investigate the scale-up of experimental systems. (3) To establish the maximum acoustic pressure to which a suspension might be exposed without inducing order-disrupting cavitation. (4) To compare the efficiencies of techniques for harvesting concentrated particles. The primary outcomes were: (1) To design of an acoustic pressure distribution within cylindrical containers which led to uniformly repeating sound pressure patterns throughout the containers in the standing wave mode, concentrated suspended eukaryotic cells or latex beads in clumps on the axis of wide containers, and provided uniform response of all particle clumps to acoustic harvesting regimes. Theory for the behaviour (e.g. movement to different preferred sites) of particles as a function of specific gravity and compressibility in containers of different lateral dimensions was extended and was confirmed experimentally. Convective streaming in the container was identified as a variable requiring control in the manipulation of particles of 1 micron or smaller size. (2) Consideration of scale-up from the model 10 ml volume led to the conclusion that flow systems in intermediate volume containers have more promise than scaled up batch systems. (3) The maximum acoustic pressures applicable to a suspension without inducing order-disrupting cavitation or excessive conductive streaming at 1 MHz and 3 MHz induce a force equivalent to a centrifugal field of about 10(3) g. (4) The most efficient technique for harvesting concentrated particles was the introduction of a frequency increment between two transducers to form a slowly sweeping pseudo-standing wave. The attractive inter-droplet ultrasonic standing wave force was employed to enhance the rate of aqueous biphasic cell separation and harvesting. The results help clarify the particle size, concentration, density and compressibility for which standing wave separation techniques can contribute either on a process engineering scale or on the scale of the manipulation of small particles for industrial and medical diagnostic procedures.

  15. Multiscale modeling of particle in suspension with smoothed dissipative particle dynamics

    NASA Astrophysics Data System (ADS)

    Bian, Xin; Litvinov, Sergey; Qian, Rui; Ellero, Marco; Adams, Nikolaus A.

    2012-01-01

    We apply smoothed dissipative particle dynamics (SDPD) [Español and Revenga, Phys. Rev. E 67, 026705 (2003)] to model solid particles in suspension. SDPD is a thermodynamically consistent version of smoothed particle hydrodynamics (SPH) and can be interpreted as a multiscale particle framework linking the macroscopic SPH to the mesoscopic dissipative particle dynamics (DPD) method. Rigid structures of arbitrary shape embedded in the fluid are modeled by frozen particles on which artificial velocities are assigned in order to satisfy exactly the no-slip boundary condition on the solid-liquid interface. The dynamics of the rigid structures is decoupled from the solvent by solving extra equations for the rigid body translational/angular velocities derived from the total drag/torque exerted by the surrounding liquid. The correct scaling of the SDPD thermal fluctuations with the fluid-particle size allows us to describe the behavior of the particle suspension on spatial scales ranging continuously from the diffusion-dominated regime typical of sub-micron-sized objects towards the non-Brownian regime characterizing macro-continuum flow conditions. Extensive tests of the method are performed for the case of two/three dimensional bulk particle-system both in Brownian/ non-Brownian environment showing numerical convergence and excellent agreement with analytical theories. Finally, to illustrate the ability of the model to couple with external boundary geometries, the effect of confinement on the diffusional properties of a single sphere within a micro-channel is considered, and the dependence of the diffusion coefficient on the wall-separation distance is evaluated and compared with available analytical results.

  16. Acoustic Resonator Optimisation for Airborne Particle Manipulation

    NASA Astrophysics Data System (ADS)

    Devendran, Citsabehsan; Billson, Duncan R.; Hutchins, David A.; Alan, Tuncay; Neild, Adrian

    Advances in micro-electromechanical systems (MEMS) technology and biomedical research necessitate micro-machined manipulators to capture, handle and position delicate micron-sized particles. To this end, a parallel plate acoustic resonator system has been investigated for the purposes of manipulation and entrapment of micron sized particles in air. Numerical and finite element modelling was performed to optimise the design of the layered acoustic resonator. To obtain an optimised resonator design, careful considerations of the effect of thickness and material properties are required. Furthermore, the effect of acoustic attenuation which is dependent on frequency is also considered within this study, leading to an optimum operational frequency range. Finally, experimental results demonstrated good particle levitation and capture of various particle properties and sizes ranging to as small as 14.8 μm.

  17. Interaction measurement of particles bound to a lipid membrane

    NASA Astrophysics Data System (ADS)

    Sarfati, Raphael; Dufresne, Eric

    2015-03-01

    The local shape and dynamics of the plasma membrane play important roles in many cellular processes. Local membrane deformations are often mediated by the adsorption of proteins (notably from the BAR family), and their subsequent self-assembly. The emerging hypothesis is that self-assembly arises from long-range interactions of individual proteins through the membrane's deformation field. We study these interactions in a model system of micron-sized colloidal particles adsorbed onto a lipid bilayer. We use fluorescent microscopy, optical tweezers and particle tracking to measure dissipative and conservative forces as a function of the separation between the particles. We find that particles are driven together with forces of order 100 fN and remain bound in a potential well with a stiffness of order 100 fN/micron.

  18. Densities of 5-15 micron interplanetary dust particles

    NASA Technical Reports Server (NTRS)

    Love, S. G.; Joswiak, D. J.; Brownlee, D. E.

    1993-01-01

    We have measured the densities of about 100 5-15 micron stratospheric IDPs. Great care was taken to minimize selection bias in the sample population. Masses were determined using an absolute x-ray analysis technique with a transmission electron microscope, and volumes were found using scanning electron microscope imagery. Unmelted chondritic particles have densities between 0.5 and 6.0 g/cc. Roughly half of the particles have densities below 2 g/cc, indicating appreciable porosity, but porosities greater than about 70 percent are rare. IDPs with densities above 3.5 g/cc usually contain large sulfide grains. We find no evidence of bimodality in the unmelted particle density distribution. Chondritic spherules (melted particles) have densities near 3.5 g/cc, consistent with previous results for deep sea spherules.

  19. Physical properties of organic particulate UV-absorbers used in sunscreens. I. Determination of particle size with fiber-optic quasi-elastic light scattering (FOQELS), disc centrifugation, and laser diffractometry.

    PubMed

    Herzog, Bernd; Katzenstein, Armin; Quass, Katja; Stehlin, Albert; Luther, Helmut

    2004-03-01

    In this study microparticles consisting of a benzotriazole derivative, which are used as absorbers for UV radiation in cosmetic sunscreens, were investigated. The particles were micronized in presence of a dispersing agent by means of a ball milling process. According to the energy input different particle sizes were produced in the range of 0.16 to 4 microm. The particle sizes obtained after different stages of the micronization process were measured using fiber-optic quasi-elastic light scattering (FOQELS), disc centrifugation, and laser diffractometry. All methods showed satisfactory agreement over the whole range of sizes. With the FOQELS technique the particle size distribution could be resolved to sizes well below 0.1 microm.

  20. Numerical Simulations of Martian Fog Formation in the Low Latitudes

    NASA Astrophysics Data System (ADS)

    Inada, A.

    2002-09-01

    The formation of Martian surface fog is simulated by a one-dimensional model including the micro-physical processes of heterogeneous nucleation, condensation, and sublimation. The model includes diurnal cycle of water vapor in the 1 km surface layer which is spatially resolved. The results show that the column density of water ice in fog strongly depends on the water vapor density near the surface. If the mixing ratio of water vapor is 300 ppm near the surface, the simulations show that a thin fog layer appears with a maximum column density of 0.145 precipitable microns. If the mixing ratio is 600 ppm, the value measured by the Mars Pathfinder, the column density of water ice reaches 0.75 precipitable microns. It is also found that if the boundary layer is strongly turbulent the total amount of ice formed is small, since the ice particles are transported to the unsaturated higher atmospheric layers and sublimate there. Fog particles, which are large enough to precipitate to the lower atmosphere play a significant role in determining the altitude distribution of water vapor. It is noteworthy that the size distribution of all of the aerosols has two peaks once fog appears. This is because nucleation on large dust particles is so much faster than on the small ones, that the small dust particles are hardly coated by ice. The simulations assume an initial dust distribution with effective radius of 1.6 microns. Once fog forms this peak remains and is populated with particles with little water ice. A secondary peak is formed at about 10 microns corresponding to particles which are mostly water ice. This research was carried out under the partial support of JSPS Postdoctoral Fellowships for Research Abroad.

  1. Kinetics of successive seeding of monodisperse polystyrene latexes. I - Initiation via potassium persulfate. II - Azo initiators with and without inhibitors

    NASA Technical Reports Server (NTRS)

    Sudol, E. D.; El-Aasser, M. S.; Vanderhoff, J. W.

    1986-01-01

    The polymerization kinetics of monodisperse polystyrene latexes with diameters of 1 micron are studied. The monodisperse latexes were prepared by the successive seeding method using 1 mM K2S2O8 with an 8 percent emulsifier surface coverage and 0.5 mM K2S2O8 with a 4 percent emulsifier surface coverage, and the kinetics were measured in a piston/cylinder dialometer. The data reveal that the polymerization rate decreases with increasing particle size; and the surface charge decreases with increasing particle size. The effects of initiators (AIBN and AMBN) and inhibitors (NH24SCN, NaNO2, and hydroquinone) on the product monodispersity and polymerization kinetics of latexes with diameters greater than 1 micron are investigated in a second experiment. It is observed that hydroquinone combined with AMBN are most effective in reducing nucleation without causing flocculation. It is noted that the kinetic transition from emulsion to bulk is complete for a particle size exceeding 1 micron in which the polymerization rate is independent of the particle size.

  2. Spread of pathogens through rain drop impact

    NASA Astrophysics Data System (ADS)

    Kim, Seungho; Gruszewski, Hope; Gidley, Todd; Schmale, David G., III; Jung, Sunghwan

    2017-11-01

    Rain drop impact can disperse micron-sized pathogenic particles over long distances. In this study, we aim to elucidate mechanisms for disease dispersal when a rain drop impacts a particle-laden solid surface. Three different dispersal types were observed depending on whether the dispersed glass particles were dry or wet. For a dry particle dispersal, the movement of contact line made the particles initially jump off the surface with relatively high velocity. Then, air vortex was formed due to the air current entrained along with the falling drop, and advected the particles with relatively low velocity. For a wet particle dispersal, the contact line of a spreading liquid became unstable due to the presence of the particles on the substrate. This caused splashing at the contact line and ejected liquid droplets carrying the particles. Finally, we released a drop onto wheat plants infected with the rust fungus, Puccinia triticina, and found that nearly all of the satellite droplets from a single drop contained at least one rust spore. Also, we visualized such novel dispersal dynamics with a high-speed camera and characterized their features by scaling models. This research was partially supported by National Science Foundation Grant CBET-1604424.

  3. Nonuniform flow in soft glasses of colloidal rods

    NASA Astrophysics Data System (ADS)

    Dhont, J. K. G.; Kang, K.; Kriegs, H.; Danko, O.; Marakis, J.; Vlassopoulos, D.

    2017-04-01

    Despite our reasonably advanced understanding of the dynamics and flow of glasses made of spherical colloids, the role of shape, i.e., the respective behavior of glasses formed by rodlike, particles is virtually unexplored. Recently, long, thin and highly charged rods (fd-virus particles) were found to vitrify in aqueous suspensions at low ionic strength [Phys. Rev. Lett. 110, 015901 (2013), 10.1103/PhysRevLett.110.015901]. The glass transition of these long-ranged repulsive rods occurs at a concentration far above the isotropic-nematic coexistence region and is characterized by the unique arrest of both the dynamics of domains that constitute the chiral-nematic orientational texture, as well as individual rods inside the domains. Hence, two relevant length scales exist: the domain size of a few hundreds of microns, and the rod-cage size of a few microns, inside the domains. We show that the unique dual dynamic arrest and the existing of two widely separated length scales imparts an unprecedented, highly heterogeneous flow behavior with three distinct signatures. Beyond a weak stress plateau at very small shear rates that characterizes the glass, the kinetic arrest of the domain dynamics gives rise to internal fracture, as a result of domain-domain interactions, as well as wall partial slip. It is shown that, on increasing the shear rate, the fractured plug flow changes to a shear-banded flow profile due to the stress response of the kinetically arrested aligned rods within the domains. Shear-gradient banding occurs due to the strong thinning of the uniform chiral-nematic phase within the domains, i.e., complying with the classic shear-banding scenario, giving rise to a stress plateau in the flow curve. Finally, a linear (uniform) velocity profile is found at the highest shear rates. Vorticity banding is also observed at intermediate and high shear rates. These results point to the crucial role of particle shape in tailoring the flow properties of dense colloidal suspensions. Moreover, they strongly support the argument that the origin of shear banding in soft-particle glasses with long-ranged repulsive interactions is fundamentally different from that of hard-particle glasses with short-ranged repulsive interactions.

  4. Advances in cleavage fracture modelling in steels: Micromechanical, numerical and multiscale aspects

    NASA Astrophysics Data System (ADS)

    Pineau, André; Tanguy, Benoît

    2010-04-01

    Brittle cleavage fracture remains one of the major concerns for structural integrity assessment. The main characteristics of this mode of failure in relation to the stress field ahead of a crack, tip are described in the introduction. The emphasis is laid on the physical origins of scatter and the size effect observed in ferritic steels. It is shown that cleavage fracture is controlled by physical events occurring at different scales: initiation at (sub)micrometric particles, propagation across grain boundaries (10-50 microns) and final fracture at centimetric scale. The two first scales are detailed in this paper. The statistical origin of cleavage is described quantitatively from both microstructural defects and stress-strain heterogeneities due to crystalline plasticity at the grain scale. Existing models are applied to the prediction of the variation of Charpy fracture toughness with temperature.

  5. Determination of mammalian cell counts, cell size and cell health using the Moxi Z mini automated cell counter.

    PubMed

    Dittami, Gregory M; Sethi, Manju; Rabbitt, Richard D; Ayliffe, H Edward

    2012-06-21

    Particle and cell counting is used for a variety of applications including routine cell culture, hematological analysis, and industrial controls(1-5). A critical breakthrough in cell/particle counting technologies was the development of the Coulter technique by Wallace Coulter over 50 years ago. The technique involves the application of an electric field across a micron-sized aperture and hydrodynamically focusing single particles through the aperture. The resulting occlusion of the aperture by the particles yields a measurable change in electric impedance that can be directly and precisely correlated to cell size/volume. The recognition of the approach as the benchmark in cell/particle counting stems from the extraordinary precision and accuracy of its particle sizing and counts, particularly as compared to manual and imaging based technologies (accuracies on the order of 98% for Coulter counters versus 75-80% for manual and vision-based systems). This can be attributed to the fact that, unlike imaging-based approaches to cell counting, the Coulter Technique makes a true three-dimensional (3-D) measurement of cells/particles which dramatically reduces count interference from debris and clustering by calculating precise volumetric information about the cells/particles. Overall this provides a means for enumerating and sizing cells in a more accurate, less tedious, less time-consuming, and less subjective means than other counting techniques(6). Despite the prominence of the Coulter technique in cell counting, its widespread use in routine biological studies has been prohibitive due to the cost and size of traditional instruments. Although a less expensive Coulter-based instrument has been produced, it has limitations as compared to its more expensive counterparts in the correction for "coincidence events" in which two or more cells pass through the aperture and are measured simultaneously. Another limitation with existing Coulter technologies is the lack of metrics on the overall health of cell samples. Consequently, additional techniques must often be used in conjunction with Coulter counting to assess cell viability. This extends experimental setup time and cost since the traditional methods of viability assessment require cell staining and/or use of expensive and cumbersome equipment such as a flow cytometer. The Moxi Z mini automated cell counter, described here, is an ultra-small benchtop instrument that combines the accuracy of the Coulter Principle with a thin-film sensor technology to enable precise sizing and counting of particles ranging from 3-25 microns, depending on the cell counting cassette used. The M type cassette can be used to count particles from with average diameters of 4 - 25 microns (dynamic range 2 - 34 microns), and the Type S cassette can be used to count particles with and average diameter of 3 - 20 microns (dynamic range 2 - 26 microns). Since the system uses a volumetric measurement method, the 4-25 microns corresponds to a cell volume range of 34 - 8,180 fL and the 3 - 20 microns corresponds to a cell volume range of 14 - 4200 fL, which is relevant when non-spherical particles are being measured. To perform mammalian cell counts using the Moxi Z, the cells to be counted are first diluted with ORFLO or similar diluent. A cell counting cassette is inserted into the instrument, and the sample is loaded into the port of the cassette. Thousands of cells are pulled, single-file through a "Cell Sensing Zone" (CSZ) in the thin-film membrane over 8-15 seconds. Following the run, the instrument uses proprietary curve-fitting in conjunction with a proprietary software algorithm to provide coincidence event correction along with an assessment of overall culture health by determining the ratio of the number of cells in the population of interest to the total number of particles. The total particle counts include shrunken and broken down dead cells, as well as other debris and contaminants. The results are presented in histogram format with an automatic curve fit, with gates that can be adjusted manually as needed. Ultimately, the Moxi Z enables counting with a precision and accuracy comparable to a Coulter Z2, the current gold standard, while providing additional culture health information. Furthermore it achieves these results in less time, with a smaller footprint, with significantly easier operation and maintenance, and at a fraction of the cost of comparable technologies.

  6. Production of BCG alginate-PLL microcapsules by emulsification/internal gelation.

    PubMed

    Esquisabel, A; Hernández, R M; Igartua, M; Gascón, A R; Calvo, B; Pedraz, J L

    1997-01-01

    A biocompatible emulsification method for microencapsulation of live cells and enzymes within a calcium alginate matrix applied to Bacillus Calmette-Guérin (BCG) has been developed. Small-diameter alginate beads (microcapsules) were formed via internal gelation of an alginate solution emulsified within vegetable oil. Five different oils (sesame, sweet almond, perhydrosqualene, camomile and jojoba) were used. The rheological analysis of the oils showed a Newtonian behaviour, with viscosities = 30.0, 37.7, 51.2, 59.3 and 67.1 mPa.s for perhydrosqualene, jojoba, camomile, sesame and sweet almond oil respectively. The particle size of the microcapsules obtained ranged from 30.3 microns for the microcapsules prepared with sweet almond oil to 57.0 microns for those made with perhydrosqualene. The mean particle diameter obtained was found to be dependent on the viscosity of the oil employed, according to the equation: phi (micron) = 76.6-0.628 eta (mPa.s) (r2 = 0.943). The encapsulated BCG was identified by the Difco TB stain set K, followed by observation under optical microscopy. Freeze-drying of the microcapsules was carried out to ensure their stability during storage. Two batches of microcapsules (those prepared with sesame and jojoba oil) and four types of cryoprotectors (glucose, trehalose, mannitol and sorbitol), at three concentration levels (5, 10 and 20% w/v) were studied. The parameters evaluated were particle size, physical appearance, reconstitution of lyophilizates and microscopical evaluation. For both batches of microcapsules the best results were obtained with trehalose 5%, showing particle sizes of 42.1 microns in the case of the microcapsules prepared with sesame oil, and of 45.3 microns for those prepared with jojoba.

  7. Cometary dust at the smallest scale - latest results of the MIDAS Atomic Force Microscope onboard Rosetta

    NASA Astrophysics Data System (ADS)

    Bentley, Mark; Torkar, Klaus; Jeszenszky, Harald; Romstedt, Jens; Schmied, Roland; Mannel, Thurid

    2015-04-01

    The MIDAS instrument onboard the Rosetta orbit is a unique combination of a dust collection and handling system and a high resolution Atomic Force Microscope (AFM). By building three-dimensional images of the dust particle topography, MIDAS addresses a range of fundamental questions in Solar System and cometary science. The first few months of dust collection and scanning revealed a deficit of smaller (micron and below) particles but eventually several 10 µm-class grains were discovered. In fact these were unexpectedly large and close to the limit of what is observable with MIDAS. As a result the sharp tip used by the AFM struck the particles from the side, causing particle breakage and distortion. Analyses so far suggest that the collected particles are fluffy aggregates of smaller sub-units, although determination of the size of these sub-units and high resolution re-imaging remains to be done. The latest findings will be presented here, including a description of the particles collected and the implications of these observations for cometary science and the Rosetta mission at comet 67P.

  8. Numerical study of hydrophobic micron particle's impaction on liquid surface

    NASA Astrophysics Data System (ADS)

    Ji, Bingqiang; Song, Qiang; Yao, Qiang

    2017-07-01

    In this study, a simulation method is established for the impaction of micron particles on liquid surfaces, by which the processes of two impaction modes (submergence and oscillation) are studied. The submergence is found to go through three stages, each of which shows different characteristics of particle velocity and gas-liquid interface variance. The dominant forces of the early and late times of the submergence mode are hydrodynamic force and surface tension, respectively, the accumulated work of which is in the same order. The lost particle kinetic energy is converted to the surface energy of the interfaces, the internal energy and the kinetic energy of fluids. The primary part of the oscillation is the first cycle, and the characteristics of its sinking process are similar to that of the submergence. In the reverting stage, the particle rising velocity increases first and then decreases, and the cavity retracts until the gas-liquid interface flattens. The dominant forces of the early and late times of the reverting stage are surface tension and hydrodynamic force, respectively. The positive accumulated work of surface tension on the particle is considerably limited due to the large contact angle hysteresis at the early times of the reverting stage. The negative accumulated work of the hydrodynamic force on the particle at the late times causes a fast decrease in particle kinetic energy, which leads to particle floating on the gas-liquid interface. The results are helpful in understanding the mechanism of micron particle impaction and developing the prediction method of attachment efficiency.

  9. Scaling of the Propulsive Capability of Aluminized Gelled Nitromethane

    NASA Astrophysics Data System (ADS)

    Loiseau, Jason; Higgins, Andrew; Frost, David; Zhang, Fan

    2017-06-01

    It is well accepted that small mass fractions (<20%) of micron-scale aluminum particles added to a high explosive can react quickly and with sufficient exothermicity to improve metal-acceleration ability (AA) relative to an equal volume of only the base explosive. In order for the aluminum to increase AA, exothermicity must more than offset losses in gas-production and from heating and accelerating the solid particle in the flow. Furthermore, particles must react promptly to deliver this energy prior to loss in driving pressure with product expansion or acoustic decoupling from the driven material. For these reasons many aluminized formulations exhibit slight or no increase in AA ability. Furthermore, AA ability is typically studied using the cylinder test, which specifies a fixed, heavy copper wall. In the present study the authors have used symmetric sandwiches of flyer plates of varying thicknesses to examine how charge scaling and plate acceleration timescales influence the enhancement in AA for different mass fractions and sizes of aluminum particles. Nitromethane gelled with 4% Poly(methyl methacrylate) by mass was used as the base explosive. 3M K1 microballoons were added at a mass fraction of 0.5% to sensitize the mixture. Mass fraction of aluminum was varied between 10% and 40% and particle size was varied from 2 μm to 100 μm. For small mass fractions of alumimum, an enhancement in AA was observed for all particle sizes and flyer configurations and indicated an onset of reaction very close to the sonic plane of the detonation wave.

  10. Non-random distribution of DNA double-strand breaks induced by particle irradiation

    NASA Technical Reports Server (NTRS)

    Lobrich, M.; Cooper, P. K.; Rydberg, B.; Chatterjee, A. (Principal Investigator)

    1996-01-01

    Induction of DNA double-strand breaks (dsbs) in mammalian cells is dependent on the spatial distribution of energy deposition from the ionizing radiation. For high LET particle radiations the primary ionization sites occur in a correlated manner along the track of the particles, while for X-rays these sites are much more randomly distributed throughout the volume of the cell. It can therefore be expected that the distribution of dsbs linearly along the DNA molecule also varies with the type of radiation and the ionization density. Using pulsed-field gel and conventional gel techniques, we measured the size distribution of DNA molecules from irradiated human fibroblasts in the total range of 0.1 kbp-10 Mbp for X-rays and high LET particles (N ions, 97 keV/microns and Fe ions, 150 keV/microns). On a mega base pair scale we applied conventional pulsed-field gel electrophoresis techniques such as measurement of the fraction of DNA released from the well (FAR) and measurement of breakage within a specific NotI restriction fragment (hybridization assay). The induction rate for widely spaced breaks was found to decrease with LET. However, when the entire distribution of radiation-induced fragments was analysed, we detected an excess of fragments with sizes below about 200 kbp for the particles compared with X-irradiation. X-rays are thus more effective than high LET radiations in producing large DNA fragments but less effective in the production of smaller fragments. We determined the total induction rate of dsbs for the three radiations based on a quantitative analysis of all the measured radiation-induced fragments and found that the high LET particles were more efficient than X-rays at inducing dsbs, indicating an increasing total efficiency with LET. Conventional assays that are based only on the measurement of large fragments are therefore misleading when determining total dsb induction rates of high LET particles. The possible biological significance of this non-randomness for dsb induction is discussed.

  11. Understanding the Transformation, Speciation, and Hazard Potential of Copper Particles in a Model Septic Tank System using Zebrafish to Monitor the Effluent

    PubMed Central

    Lin, Sijie; Taylor, Alicia A.; Zhaoxia, Ji; Chang, Chong Hyun; Kinsinger, Nichola M.; Ueng, William; Walker, Sharon L.; Nel, André E.

    2015-01-01

    Although copper-containing nanoparticles are used in commercial products such as fungicides and bactericides, we presently do not understand the environmental impact on other organisms that may be inadvertently exposed. In this study, we used the zebrafish embryo as a screening tool to study the potential impact of two nano Cu-based materials, CuPRO and Kocide, in comparison to nano-sized and micron-sized Cu and CuO particles in their pristine form (0 – 10 ppm) as well as following their transformation in an experimental wastewater treatment system. This was accomplished by construction of a modeled domestic septic tank system from which effluents could be retrieved at different stages following particle introduction (10 ppm). The Cu speciation in the effluent was identified as non-dissolvable inorganic Cu(H2PO2)2 and non-diffusible organic Cu by X-ray diffraction, inductively coupled plasma mass spectrometry (ICP-MS), diffusive gradients in thin-films (DGT), and Visual MINTEQ software. While the nanoscale materials, including the commercial particles, were clearly more potent (showing 50% hatching interference above 0.5 ppm) than the micron-scale particulates with no effect on hatching up to 10 ppm, the Cu released from the particles in the septic tank underwent transformation into non-bioavailable species that failed to interfere with the function of the zebrafish embryo hatching enzyme. Moreover, we demonstrate that the addition of humic acid, as an organic carbon component, could lead to a dose-dependent decrease in Cu toxicity in our high content zebrafish embryo screening assay. Thus, the use of zebrafish embryo screening, in combination with the effluents obtained from a modeled exposure environment, enables a bioassay approach to follow the change in the speciation, and hazard potential of Cu particles instead of difficult-to-perform direct particle tracking. PMID:25625504

  12. Understanding the transformation, speciation, and hazard potential of copper particles in a model septic tank system using zebrafish to monitor the effluent.

    PubMed

    Lin, Sijie; Taylor, Alicia A; Ji, Zhaoxia; Chang, Chong Hyun; Kinsinger, Nichola M; Ueng, William; Walker, Sharon L; Nel, André E

    2015-02-24

    Although copper-containing nanoparticles are used in commercial products such as fungicides and bactericides, we presently do not understand the environmental impact on other organisms that may be inadvertently exposed. In this study, we used the zebrafish embryo as a screening tool to study the potential impact of two nano Cu-based materials, CuPRO and Kocide, in comparison to nanosized and micron-sized Cu and CuO particles in their pristine form (0-10 ppm) as well as following their transformation in an experimental wastewater treatment system. This was accomplished by construction of a modeled domestic septic tank system from which effluents could be retrieved at different stages following particle introduction (10 ppm). The Cu speciation in the effluent was identified as nondissolvable inorganic Cu(H2PO2)2 and nondiffusible organic Cu by X-ray diffraction, inductively coupled plasma mass spectrometry (ICP-MS), diffusive gradients in thin-films (DGT), and Visual MINTEQ software. While the nanoscale materials, including the commercial particles, were clearly more potent (showing 50% hatching interference above 0.5 ppm) than the micron-scale particulates with no effect on hatching up to 10 ppm, the Cu released from the particles in the septic tank underwent transformation into nonbioavailable species that failed to interfere with the function of the zebrafish embryo hatching enzyme. Moreover, we demonstrate that the addition of humic acid, as an organic carbon component, could lead to a dose-dependent decrease in Cu toxicity in our high content zebrafish embryo screening assay. Thus, the use of zebrafish embryo screening, in combination with the effluents obtained from a modeled exposure environment, enables a bioassay approach to follow the change in the speciation and hazard potential of Cu particles instead of difficult-to-perform direct particle tracking.

  13. The mechanisms of fine particle generation and electrification during Mount St. Helens volcanic eruption

    NASA Technical Reports Server (NTRS)

    Cheng, R. J.

    1982-01-01

    Microscopical investigation of volcanic ash collected from ground stations during Mount St. Helens eruptions reveal a distinctive bimodel size distribution with high concentrations of particle ranges at (1) 200-100 microns and (2) 20-0.1 microns. Close examination of individual particles shows that most larger ones are solidified magma particles of porous pumice with numerous gas bubbles in the interior and the smaller ones are all glassy fragments without any detectable gas bubbles. Elemental analysis demonstrates that the fine fragments all have a composition similar to that of the larger pumice particles. Laboratory experiments suggest that the formation of the fine fragments is by bursting of glassy bubbles from a partially solidified surface of a crystallizing molten magma particle. The production of gas bubbles is due to the release of absorbed gases in molten magma particles when solubility decreases during phase transition. Diffusion cloud chamber experiments strongly indicate that sub-micron volcanic fragments are highly hygroscopic and extremely active as cloud condensation nuclei. Ice crystals also are evidently formed on those fragments in a supercooled (-20 C) cloud chamber. It has been reported that charge generation from ocean volcanic eruptions is due to contact of molten lava with sea water. This seems to be insufficient to explain the observed rapid and intense lightning activities over Mount St. Helens eruptions. Therefore, a hypothesis is presented here that highly electrically charged fine solid fragments are ejected by bursting of gas bubbles from the surface of a crystallizing molten magma particles.

  14. Interaction of micron and nano-sized particles with cells of the dura mater

    PubMed Central

    Papageorgiou, Iraklis; Marsh, Rainy; Tipper, Joanne L; Hall, Richard M; Fisher, John; Ingham, Eileen

    2014-01-01

    Intervertebral total disc replacements (TDR) are used in the treatment of degenerative spinal disc disease. There are, however, concerns that they may be subject to long-term failure due to wear. The adverse effects of TDR wear have the potential to manifest in the dura mater and surrounding tissues. The aim of this study was to investigate the physiological structure of the dura mater, isolate the resident dural epithelial and stromal cells and analyse the capacity of these cells to internalise model polymer particles. The porcine dura mater was a collagen-rich structure encompassing regularly arranged fibroblastic cells within an outermost epithelial cell layer. The isolated dural epithelial cells had endothelial cell characteristics (positive for von Willebrand factor, CD31, E-cadherin and desmoplakin) and barrier functionality whereas the fibroblastic cells were positive for collagen I and III, tenascin and actin. The capacity of the dural cells to take up model particles was dependent on particle size. Nanometer sized particles readily penetrated both types of cells. However, dural fibroblasts engulfed micron-sized particles at a much higher rate than dural epithelial cells. The study suggested that dural epithelial cells may offer some barrier to the penetration of micron-sized particles but not nanometer sized particles. © 2014 The Authors. Journal of Biomedical Materials Research Part B: Applied Biomaterials Published by Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 102B: 1496–1505, 2014. PMID:24604838

  15. Bench-level characterization of a CMOS standard-cell D-latch using alpha-particle sensitive test circuits

    NASA Technical Reports Server (NTRS)

    Blaes, B. R.; Soli, G. A.; Buehler, M. G.

    1991-01-01

    A methodology is described for predicting the SEU susceptibility of a standard-cell D-latch using an alpha-particle sensitive SRAM, SPICE critical charge simulation results, and alpha-particle interaction physics. Measurements were made on a 1.6-micron n-well CMOS 4-kb test SRAM irradiated with an Am-241 alpha-particle source. A collection depth of 6.09 micron was determined using these results and TRIM computer code. Using this collection depth and SPICE derived critical charge results on the latch design, an LET threshold of 34 MeV sq cm/mg was predicted. Heavy ion tests were then performed on the latch and an LET threshold of 41 MeV sq cm/mg was determined.

  16. Dielectrophoretic separation of micron and submicron particles: a review.

    PubMed

    Dash, Swagatika; Mohanty, Swati

    2014-09-01

    This paper provides an overview on separation of micron and submicron sized biological (cells, yeast, virus, bacteria, etc.) and nonbiological particles (latex, polystyrene, CNTs, metals, etc.) by dielectrophoresis (DEP), which finds wide applications in the field of medical and environmental science. Mathematical models to predict the electric field, flow profile, and concentration profiles of the particles under the influence of DEP force have also been covered in this review. In addition, advancements made primarily in the last decade, in the area of electrode design (shape and arrangement), new materials for electrode (carbon, silicon, polymers), and geometry of the microdevice, for efficient DEP separation of particles have been highlighted. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Rover Tracks

    NASA Image and Video Library

    1997-07-07

    Tracks made by the Sojourner rover are visible in this image, taken by one of the cameras aboard Sojourner on Sol 3. The tracks represent the rover maneuvering towards the rock dubbed "Barnacle Bill." The rover, having exited the lander via the rear ramp, first traveled towards the right portion of the image, and then moved forward towards the left where Barnacle Bill sits. The fact that the rover was making defined tracks indicates that the soil is made up of particles on a micron scale. http://photojournal.jpl.nasa.gov/catalog/PIA00633

  18. Self-assembled three-dimensional chiral colloidal architecture

    NASA Astrophysics Data System (ADS)

    Ben Zion, Matan Yah; He, Xiaojin; Maass, Corinna C.; Sha, Ruojie; Seeman, Nadrian C.; Chaikin, Paul M.

    2017-11-01

    Although stereochemistry has been a central focus of the molecular sciences since Pasteur, its province has previously been restricted to the nanometric scale. We have programmed the self-assembly of micron-sized colloidal clusters with structural information stemming from a nanometric arrangement. This was done by combining DNA nanotechnology with colloidal science. Using the functional flexibility of DNA origami in conjunction with the structural rigidity of colloidal particles, we demonstrate the parallel self-assembly of three-dimensional microconstructs, evincing highly specific geometry that includes control over position, dihedral angles, and cluster chirality.

  19. Cometary and interstellar dust grains - Analysis by ion microprobe mass spectrometry and other techniques

    NASA Technical Reports Server (NTRS)

    Zinner, Ernst

    1991-01-01

    A survey of microanalytical measurements on interplanetary dust particles (IDPs) and interstellar dust grains from primitive meteorites is presented. Ion-microprobe mass spectrometry with its capability to determine isotopic compositions of many elements on a micron spatial scale has played a special role. Examples are measurements of H, N, and O isotopes and refractory trace elements in IDPs; C, N, Mg, and Si isotopes in interstellar SiC grains; and C and N isotopes and H, N, Al, and Si concentrations in interstellar graphite grains.

  20. Physical Principles of Development of the State Standard of Biological Cell Polarizability

    NASA Astrophysics Data System (ADS)

    Shuvalov, G. V.; Generalov, K. V.; Generalov, V. M.; Kruchinina, M. V.; Koptev, E. S.; Minin, O. V.; Minin, I. V.

    2018-03-01

    A new state standard of biological cell polarizability based on micron-size latex particles has been developed. As a standard material, it is suggested to use polystyrene. Values of the polarizability calculated for erythrocytes and values of the polarizability of micron-size spherical latex particles measured with measuring-computing complexes agree within the limits of satisfactory relative error. The Standard allows one the unit of polarizability measurements [m3] to be assigned to cells and erythrocytes for the needs of medicine.

  1. Continuous micron-scaled rope engineering using a rotating multi-nozzle electrospinning emitter

    NASA Astrophysics Data System (ADS)

    Zhang, Chunchen; Gao, Chengcheng; Chang, Ming-Wei; Ahmad, Zeeshan; Li, Jing-Song

    2016-10-01

    Electrospinning (ES) enables simple production of fibers for broad applications (e.g., biomedical engineering, energy storage, and electronics). However, resulting structures are predominantly random; displaying significant disordered fiber entanglement, which inevitably gives rise to structural variations and reproducibility on the micron scale. Surface and structural features on this scale are critical for biomaterials, tissue engineering, and pharmaceutical sciences. In this letter, a modified ES technique using a rotating multi-nozzle emitter is developed and utilized to fabricate continuous micron-scaled polycaprolactone (PCL) ropes, providing control on fiber intercalation (twist) and structural order. Micron-scaled ropes comprising 312 twists per millimeter are generated, and rope diameter and pitch length are regulated using polymer concentration and process parameters. Electric field simulations confirm vector and distribution mechanisms, which influence fiber orientation and deposition during the process. The modified fabrication system provides much needed control on reproducibility and fiber entanglement which is crucial for electrospun biomedical materials.

  2. Release of Micronized Copper Particles from Pressure Treated Wood Products.

    EPA Science Inventory

    Micronized copper pressure treated lumber (PTL) has recently been introduced to the consumer market as a replacement for ionized copper PTL. The presence of particulate rather than aqueous copper raises concerns about possible human or environmental exposure. Two common pathways ...

  3. Voltage-Induced Nonlinear Conduction Properties of Epoxy Resin/Micron-Silver Particles Composites

    NASA Astrophysics Data System (ADS)

    Qu, Zhaoming; Lu, Pin; Yuan, Yang; Wang, Qingguo

    2018-01-01

    The nonlinear conduction properties of epoxy resin (ER)/micron-silver particles (MP) composites were investigated. Under sufficient high intensity applied constant voltage, the obvious nonlinear conduction properties of the samples with volume fraction 25% were found. With increments in the voltage, the conductive switching effect was observed. The nonlinear conduction mechanism of the ER/MP composites under high applied voltages could be attributed to the electrical current conducted via discrete paths of conductive particles induced by the electric field. The test results show that the ER/MP composites with nonlinear conduction properties are of great potential application in electromagnetic protection of electron devices and systems.

  4. Synthesis, Characterization, Topographical Modification, and Surface Properties of Copoly(Imide Siloxane)s

    NASA Technical Reports Server (NTRS)

    Wohl, Christopher J.; Atkins, Brad M.; Belcher, Marcus A.; Connell, John W.

    2012-01-01

    Novel copoly(imide siloxane)s were synthesized from commercially available aminopropyl terminated siloxane oligomers, aromatic dianhydrides, and diamines. This synthetic approach produced copolymers with well-defined siloxane blocks linked with imide units in a random fashion. The copoly(amide acid)s were characterized by solution viscosity and subsequently used to cast thin films followed by thermal imidization in an inert atmosphere. Thin films were characterized using contact angle goniometry, attenuated total reflection Fourier transform infrared spectroscopy, confocal and optical microscopy, and tensile testing. Adhesion of micronsized particles was determined quantitatively using a sonication device. The polydimethylsiloxane (PDMS) moieties lowered the copolymer surface energy due to migration of siloxane moieties to the film s surface, resulting in a notable reduction in particle adhesion. A further reduction in particle adhesion was achieved by introducing topographical features on a scale of several to tens of microns by a laser ablation technique.

  5. Onsite aerosol measurements for various engineered nanomaterials at industrial manufacturing plants

    NASA Astrophysics Data System (ADS)

    Ogura, I.; Sakurai, H.; Gamo, M.

    2011-07-01

    Evaluation of the health impact of and control over exposure to airborne engineered nanomaterials (ENMs) requires information, inter alia, the magnitude of environmental release during various industrial processes, as well as the size distribution and morphology of the airborne ENM particles. In this study, we performed onsite aerosol measurements for various ENMs at industrial manufacturing plants. The industrial processes investigated were the collection of SiC from synthesis reactors, synthesis and bagging of LiFePO4, and bagging of ZnO. Real-time aerosol monitoring using condensation particle counters, optical particle counters, and an electrical low-pressure impactor revealed frequent increases in the number concentrations of submicron- and micron-sized aerosol particles, but few increases in the number concentrations of nanoparticles. In the SEM observations, a large number of submicron- and micron-sized agglomerated ENM particles were observed.

  6. Microstructure of a black chrome solar selective absorber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lampert, C.M.

    1978-08-01

    The structure of Harshaw Chemicals' CHROM-ONYX type of black chrome/metal selective absorber was studied to gain a better understanding of its influence upon the mechanism of wavelength selectivity. Spectral reflectance measurements were performed on seven samples. In this study, the best selectivity was found by these measurements to be 1.0 micron of black chrome on copper and 0.7 micron of black chrome on nickel. Both transmission and scanning electron microscopy were employed to study microstructure and chemical composition. As a result of the combined studies, some effects of black chrome thickness and the metallic substrate were determined. It was foundmore » that black chrome consisted of a very fine metallic distribution of particles of chromium, possibly suspended within a matrix of an oxide of chromium. This combination was, in turn, agglomerated into larger particles within the 0.05--0.3 micron size range. These larger particles formed a network which constituted the surface coating.« less

  7. Effects of processing, particle size and moisturizing of sorghum-based feeds on pellet quality and broiler production.

    PubMed

    da Silva, Patrícia Garcia; Oliveira, Luana Martins Schaly; de Oliveira, Nayanne Rodrigues; de Moura Júnior, Fábio Ataides; Silva, Maura Regina Sousa; Cordeiro, Deibity Alves; Minafra, Cibele Silva; Dos Santos, Fabiana Ramos

    2018-01-01

    This study aimed to assess the effect of pelleted and expanded sorghum-based feeds prepared with different moisture levels and particle size of ingredients on metabolizable energy, ileal digestibility of amino acids and broiler performance. The experiment was performed with 720 male broiler chicks of the Cobb strain, with treatments of six replications, with 15 birds each; they were arranged in a completely randomized design and 2×2×2 factorial scheme (pelleted or expanded feed processing, 0.8% or 1.6% moisture addition in the mixer, and particle size of 650 or 850 microns). Higher pellet quality (pellets, % and pellet durability index [PDI]) was obtained in expanded diets and inclusion of 1.6% moisture. The particle size of 850 microns increased the PDI of final diet. All studied treatments had no significant effect on weight gain and broiler carcass and cut yields. Lower feed conversion occurred for birds fed pelleted feed at 42 d. The highest apparent metabolizable energy (AME) and apparent metabolizable energy corrected to zero nitrogen balance (AMEn) values of feed in the initial rearing phase (10 to 13 days) were observed in birds fed pelleted feed or for feed prepared with 1.6% moisture. The highest ileal digestibility coefficients of amino acids were obtained with the consumption of pelleted feed prepared with a particle size of 650 microns and 1.6% moisture. Pelleted feed prepared with a milling particle size of 650 microns and 1.6% moisture provided increased ileal digestibility of amino acids and AMEn in the starter period. However, the expanded feed improved pellet quality and feed conversion of broilers at 42 days of age. We conclude that factors such as moisture, particle size and processing affect the pellet quality, and therefore should be considered when attempting to optimize broiler performance.

  8. Effects of processing, particle size and moisturizing of sorghum-based feeds on pellet quality and broiler production

    PubMed Central

    2018-01-01

    Objective This study aimed to assess the effect of pelleted and expanded sorghum-based feeds prepared with different moisture levels and particle size of ingredients on metabolizable energy, ileal digestibility of amino acids and broiler performance. Methods The experiment was performed with 720 male broiler chicks of the Cobb strain, with treatments of six replications, with 15 birds each; they were arranged in a completely randomized design and 2×2×2 factorial scheme (pelleted or expanded feed processing, 0.8% or 1.6% moisture addition in the mixer, and particle size of 650 or 850 microns). Results Higher pellet quality (pellets, % and pellet durability index [PDI]) was obtained in expanded diets and inclusion of 1.6% moisture. The particle size of 850 microns increased the PDI of final diet. All studied treatments had no significant effect on weight gain and broiler carcass and cut yields. Lower feed conversion occurred for birds fed pelleted feed at 42 d. The highest apparent metabolizable energy (AME) and apparent metabolizable energy corrected to zero nitrogen balance (AMEn) values of feed in the initial rearing phase (10 to 13 days) were observed in birds fed pelleted feed or for feed prepared with 1.6% moisture. The highest ileal digestibility coefficients of amino acids were obtained with the consumption of pelleted feed prepared with a particle size of 650 microns and 1.6% moisture. Conclusion Pelleted feed prepared with a milling particle size of 650 microns and 1.6% moisture provided increased ileal digestibility of amino acids and AMEn in the starter period. However, the expanded feed improved pellet quality and feed conversion of broilers at 42 days of age. We conclude that factors such as moisture, particle size and processing affect the pellet quality, and therefore should be considered when attempting to optimize broiler performance. PMID:28920405

  9. Evaluation of micron size carbon fibers released from burning graphite composites

    NASA Technical Reports Server (NTRS)

    Sussholz, B.

    1980-01-01

    Quantitative estimates were developed of micron carbon fibers released during the burning of graphite composites. Evidence was found of fibrillated particles which were the predominant source of the micron fiber data obtained from large pool fire tests. The fibrillation phenomena were attributed to fiber oxidation effects caused by the fire environment. Analysis of propane burn test records indicated that wind sources can cause considerable carbon fiber oxidation. Criteria estimates were determined for the number of micron carbon fibers released during an aircraft accident. An extreme case analysis indicated that the upper limit of the micron carbon fiber concentration level was only about half the permissible asbestos ceiling concentration level.

  10. Ozone reaction with clothing and its initiated particle generation in an environmental chamber

    NASA Astrophysics Data System (ADS)

    Rai, Aakash C.; Guo, Bing; Lin, Chao-Hsin; Zhang, Jianshun; Pei, Jingjing; Chen, Qingyan

    2013-10-01

    Ozone-initiated chemistry in indoor air can produce sub-micron particles, which are potentially harmful for human health. Occupants in indoor spaces constitute potential sites for particle generation through ozone reactions with human skin and clothing. This investigation conducted chamber experiments to examine particle generation from ozone reactions with clothing (a T-shirt) under different indoor conditions. We studied the effect of various factors such as ozone concentration, relative humidity, soiling levels of T-shirt with human skin oils, and air change rate on particle generation. The results showed that ozone reactions with the T-shirt generated sub-micron particles, which were enhanced by the soiling of the T-shirt with human skin oils. In these reactions, a burst of ultrafine particles was observed about one hour after ozone injection, and then the particles grew to larger sizes. The particle generation from the ozone reactions with the soiled T-shirt was significantly affected by the different factors studied and these reactions were identified as another potential source for indoor ultrafine particles.

  11. Particle sizes and composition of Mars atmospheric dust based upon Viking and Mariner 9 observations

    NASA Technical Reports Server (NTRS)

    Clancy, R. T.; Lee, S. W.; Gladstone, G. R.

    1993-01-01

    Mars atmospheric dust can play an important role in the thermal structure of the Mars atmosphere during periods of high dust loading. However, the radiative properties of Mars atmospheric dust remain uncertain due to uncertain definitions of the dust composition and size distribution. The analysis by Toon et al., of Mariner 9 IRIS spectra during the 1971-1972 global dust storm indicated a reasonable match between the modeled 9-micron absorption of montmorillinite and the observed 9-micron absorption. Toon et al. also determined that an effective (cross-section weighted) mean radius of 2.5 microns (R(sub mode) = 0.4 microns) provided a consistent fit of montmorillinite to the IRIS dust spectra at 9 microns. Pollack et al. analyzed Viking lander observations of atmospheric extinction and scattering at visible-near IR wavelengths (0.5-1.0 microns), and obtained consistency with the Toon et al. dust size distribution when the effects of nonspherical particle shapes were included. An additional, minor (1 percent) component of visible-ultraviolet absorbing material was required to model the derived visible (0.86) and ultraviolet (0.4-0.6) single-scattering albedos of the dust, since montmorillinite does not absorb sufficiently in this wavelength region. A combined analysis of the Viking IRTM and Mariner 9 observations was conducted to reassess the model of Mars atmospheric ultraviolet-to-infrared measurements of dust absorption and scattering. The optical constants for palagonite are incorporated in a doubling-adding radiative transfer model of the Mars atmosphere to simulate Mariner 9 IRIS spectra as well as the Viking IRTM IR band observations. Visible and ultraviolet single-scattering albedos based on the Hansen and Travis Mie scattering code were also derived. A tentative conclusion is that smaller dust particles (R(sub mode) = 0.15 microns, cross-section weighted mean R = 1.2 microns) composed of palagonite provide a much improved fit to the Mariner 9 IRIS spectra; agreement with the observed ratio of visible-to-infrared extinction opacities; and ultraviolet and visible single-scattering albedos comparable to their observed values.

  12. Optical Spectroscopy of Stardust Samples

    NASA Technical Reports Server (NTRS)

    Keller, Lindsay P.

    2006-01-01

    The Stardust spacecraft collected dust samples of the Kuiper belt comet 81P Wild-2 in aerogel and returned them to Earth January 15, 2006. Preliminary examination (PE) of the collected dust includes teams focused on mineralogy, chemical composition, isotopic measurements, organic analysis, cratering and spectroscopic properties. The main PE science goals are to provide an initial characterization of the returned samples with an emphasis on the capture process and its effects on the samples, a comparison of Stardust samples to other meteoritic materials, and the abundance of presolar materials in the Stardust samples. The science objectives of the Spectroscopy team are to obtain spectroscopic data on Stardust particles through infrared (IR), UV/Vis and Raman measurements of particles in aerogel, extracted particles, keystones, and microtome thin sections. These data will be used to answer fundamental science questions about the nature of the samples, but will also serve as preliminary mineralogical data to guide follow-on measurements that will be performed in the other preliminary examination teams. The IR characteristics of Stardust particles are measured to determine: 1) the nature of the indigenous 3.4 micron organic feature, is it detected and can it be differentiated/deconvolved from the contaminated aerogel? How does it compare to features observed in interplanetary dust particles (IDPs) and to astronomical measurements of comets and interstellar dust? 2) the shape and fine structure within the 10 micron silicate feature. Overlap with the strong Si-O stretching vibration from the aerogel complicates this analysis, but we hope to determine if the feature is dominated by amorphous silicates such as those observed in IDPs and comets and whether or not crystalline silicates (e.g. olivine, pyroxene, clays) are present, 3) the presence of secondary (alteration) phases. Deep Impact results suggest that IR observations of Stardust particles should be evaluated for the presence of hydrated materials (water bands at 3 and 6 microns) and carbonates (6.8 microns and other resonances) and 4) the detection of crystalline features in the far-IR (20-100 microns) region where crystalline silicates and other minerals have strong bands that can be used both for phase analysis and phase chemistry. It has been demonstrated that these far-IR measurements can be obtained in situ on particles in aerogel keystones.

  13. Mars 2001 Mission: Addressing Scientific Questions Regarding the Characteristics and Origin of Local Bedrock and Soil

    NASA Technical Reports Server (NTRS)

    Saunders, R. S.; Arvidson, R. E.; Weitz, C. M.; Marshall, J.; Squyres, S. W.; Christensen, P. R.; Meloy, T.; Smith, P.

    1999-01-01

    The Mars Surveyor Program 2001 Mission will carry instruments on the orbiter, lander and rover that will support synergistic observations and experiments to address important scientific questions regarding the local bedrock and soils. The martian surface is covered in varying degrees by fine materials less than a few mms in size. Viking and Pathfinder images of the surface indicate that soils at those sites are composed of fine particles. Wheel tracks from the Sojourner rover suggest that soil deposits are composed of particles <40 mm. Viking images show that dunes are common in many areas on Mars and new MOC images indicate that dunes occur nearly everywhere. Dunes on Mars are thought to be composed of 250-500 microns particles based upon Viking IRTM data and Mars wind tunnel experiments. If martian dunes are composed of sand particles > 100 microns and soils are dominated by <10 micron particles, then where are the intermediate grain sizes? Have they been wom away through prolonged transport over the eons? Were they never generated to begin with? Or are they simply less easy to identify because do they not form distinctive geomorphic features such as dunes or uniform mantles that tend to assume superposition in the soil structure?

  14. Role of nano and micron-sized inclusions on the oxygen controlled preform optimized infiltration growth processed YBCO superconductors

    NASA Astrophysics Data System (ADS)

    Pavan Kumar Naik, S.; Bai, V. Seshu

    2017-02-01

    In the present work, with the aim of improving the local flux pinning at the unit cell level in the YBa2Cu3O7-δ (YBCO) bulk superconductors, 20 wt% of nanoscale Sm2O3 and micron sized (Nd, Sm, Gd)2BaCuO5 secondary phase particles were added to YBCO and processed in oxygen controlled preform optimized infiltration growth process. Nano Dispersive Sol Casting method is employed to homogeneously distribute the nano Sm2O3 particles of 30-50 nm without any agglomeration in the precursor powder. Microstructural investigations on doped samples show the chemical fluctuations as annuli cores in the 211 phase particles. The introduction of mixed rare earth elements at Y-site resulted in compositional fluctuations in the superconducting matrix. The associated lattice mismatch defects have provided flux pinning up to large magnetic fields. Magnetic field dependence of current density (Jc(H)) at different temperatures revealed that the dominant pinning mechanism is caused by spatial variations of critical temperatures, due to the spatial fluctuations in the matrix composition. As the number of rare earth elements increased in the YBCO, the peak field position in the scaling of the normalized pinning force density (Fp/Fp max) significantly gets shifted towards the higher fields. The curves of Jc(H) and Fp/Fp max at different temperatures clearly indicate the LRE substitution for LRE' or Ba-sites for δTc pinning.

  15. Single step, phase controlled, large scale synthesis of ferrimagnetic iron oxide polymorph nanoparticles by thermal plasma route and their rheological properties

    NASA Astrophysics Data System (ADS)

    Raut, Suyog A.; Mutadak, Pallavi R.; Kumar, Shiv; Kanhe, Nilesh S.; Huprikar, Sameer; Pol, Harshawardhan V.; Phase, Deodatta M.; Bhoraskar, Sudha V.; Mathe, Vikas L.

    2018-03-01

    In this paper we report single step large scale synthesis of highly crystalline iron oxide nanoparticles viz. magnetite (Fe3O4) and maghemite (γ-Fe2O3) via gas phase condensation process, where micron sized iron metal powder was used as a precursor. Selective phases of iron oxide were obtained by variation of gas flow rate of oxygen and hence partial pressure of oxygen inside the plasma reactor. Most of the particles were found to possesses average crystallite size of about 20-30 nm. The DC magnetization curves recorded indicate almost super-paramagnetic nature of the iron oxide magnetic nanoparticles. Further, iron oxide nanoparticles were analyzed using Raman spectroscopy, X-ray photoelectron spectroscopy and Mossbauer spectroscopy. In order to explore the feasibility of these nanoparticles for magnetic damper application, rheological studies have been carried out and compared with commercially available Carbonyl Iron (CI) particles. The nanoparticles obtained by thermal plasma route show improved dispersion which is useful for rheological applications.

  16. Simultaneous micronization and purification of bioactive fraction by supercritical antisolvent technology

    PubMed Central

    Hiendrawan, Stevanus; Veriansyah, Bambang; Widjojokusumo, Edward; Tjandrawinata, Raymond R.

    2017-01-01

    Simultaneous micronization and purification of DLBS3233 bioactive fraction, a combination of two Indonesian herbals Lagerstroemia speciosa and Cinnamomum burmannii has been successfully performed via supercritical anti-solvent (SAS) technology. The objective of the present study was to investigate the effectiveness of SAS technology to micronize and reduce coumarin content of DLBS3233. The effects of four SAS process parameters, i.e. pressure, temperature, concentration and solution flow rate on particle formation were investigated. In SAS process, DLBS3233 was dissolved in dimethylformamide (DMF) as the liquid solvent. The solution was then pumped through a nozzle into a chamber simultaneously with supercritical carbon dioxide (SC-CO2) which acts as the anti-solvent, resulting in DLBS3233 precipitation. Physicochemical properties of unprocessed DLBS3233 and SAS-processed DLBS3233 particles were analyzed using scanning electron microscopy (SEM) and high pressure liquid chromatography (HPLC). Total polyphenol content (TPC) was also analyzed. Particles with mean particle size ranging from 0.107±0.028 μm to 0.298±0.138 μm were obtained by varying the process parameters. SAS-processed DLBS3233 particles showed no coumarin content in all experiments studied in this work. Results of TPC analysis revealed no significant change in SAS-processed DLBS3233 particles compared to unprocessed DLBS3233. Nano-sized DLBS3233 particles with no coumarin content have been successfully produced using SAS process. This study demonstrates the ability of SAS for processing herbal medicine in single step process. PMID:28516056

  17. Simultaneous micronization and purification of bioactive fraction by supercritical antisolvent technology.

    PubMed

    Hiendrawan, Stevanus; Veriansyah, Bambang; Widjojokusumo, Edward; Tjandrawinata, Raymond R

    2017-01-01

    Simultaneous micronization and purification of DLBS3233 bioactive fraction, a combination of two Indonesian herbals Lagerstroemia speciosa and Cinnamomum burmannii has been successfully performed via supercritical anti-solvent (SAS) technology. The objective of the present study was to investigate the effectiveness of SAS technology to micronize and reduce coumarin content of DLBS3233. The effects of four SAS process parameters, i.e. pressure, temperature, concentration and solution flow rate on particle formation were investigated. In SAS process, DLBS3233 was dissolved in dimethylformamide (DMF) as the liquid solvent. The solution was then pumped through a nozzle into a chamber simultaneously with supercritical carbon dioxide (SC-CO2) which acts as the anti-solvent, resulting in DLBS3233 precipitation. Physicochemical properties of unprocessed DLBS3233 and SAS-processed DLBS3233 particles were analyzed using scanning electron microscopy (SEM) and high pressure liquid chromatography (HPLC). Total polyphenol content (TPC) was also analyzed. Particles with mean particle size ranging from 0.107±0.028 μ m to 0.298±0.138 μ m were obtained by varying the process parameters. SAS-processed DLBS3233 particles showed no coumarin content in all experiments studied in this work. Results of TPC analysis revealed no significant change in SAS-processed DLBS3233 particles compared to unprocessed DLBS3233. Nano-sized DLBS3233 particles with no coumarin content have been successfully produced using SAS process. This study demonstrates the ability of SAS for processing herbal medicine in single step process.

  18. Simulating the Dynamics of Particles Interacting with Solidification Fronts (Preprint - Briefing Charts)

    DTIC Science & Technology

    2007-07-01

    A π =Π )( lslpsp γγγγ +−=Δ A = Hamaker constant ~ Δγ Δγ > 0 repulsive Δγ < 0 attractive VSparticle solid liquid d Previous work on thermal effects of...Solidification velocity = 500 microns/sec, Rp = 1 micron, Hamaker = -8E-19 J, kp/kl = 1.0 (planar), no premelting Vs Vt Vp Velocity vs. t and d vs. t plots...premelting Solidification velocity = 500 microns/sec, Rp = 1 micron, Hamaker = -8E-19 J, kp/kl = 1.0 (planar), premelting kp/kl ≥ 1.0 ALWAYS ENGULFS

  19. Electromechanical characterization of individual micron-sized metal coated polymer particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bazilchuk, Molly; Kristiansen, Helge; Conpart AS, Skjetten 2013

    Micron-sized polymer particles with nanoscale metal coatings are essential in conductive adhesives for electronics assembly. The particles function in a compressed state in the adhesives. The link between mechanical properties and electrical conductivity is thus of the utmost importance in the formation of good electrical contact. A custom flat punch set-up based on nanoindentation has been developed to simultaneously deform and electrically probe individual particles. The set-up has a sufficiently low internal resistance to allow the measurement of sub-Ohm contact resistances. Additionally, the set-up can capture mechanical failure of the particles. Combining this data yields a fundamental understanding of contactmore » behavior. We demonstrate that this method can clearly distinguish between particles of different sizes, with different thicknesses of metal coating, and different metallization schemes. The technique provides good repeatability and physical insight into the behavior of these particles that can guide adhesive design and the optimization of bonding processes.« less

  20. Release of Micronized Copper Particles from Pressure Treated Wood Products

    EPA Science Inventory

    Micronized copper pressure treated lumber (PTL) has recently been introduced to the consumer market as a replacement for ionized copper PTL. The presence of particulate rather than aqueous copper raises concerns about the exposure of humans as well as the environment to the parti...

  1. Electrostatic removal of airborne particulates employing fiber beds

    DOEpatents

    Postma, Arlin Keith; Winegardner, W. Kevin

    1977-01-01

    A method and apparatus for collecting aerosol particles. The particles are subjected to an electrostatic charge prior to collection in an electrically resistive fiber bed. The method is applicable to particles in a broad size range, including the difficult-to-remove particles having diameters between 0.01 and 2 microns.

  2. A Novel Hybrid Ultramicrotomy/FIB-SEM Technique: Preparation of Serial Electron-Transparent Thin Sections of a Hayabusa Grain

    NASA Technical Reports Server (NTRS)

    Berger, Eve L.; Keller, Lindsay P.

    2014-01-01

    The Japanese space agency's (JAXA) Hayabusa mission returned the first particulate samples (typically <100micron) from the surface of an asteroid (25143 Itokawa). These precious samples provide important insights into early Solar System processes, but their sizes pose tremendous challenges to coordinated analysis using a variety of nano- and micro-beam techniques. The ability to glean maximal information from individual particles has become increasingly important and depends critically on sample preparation. We developed a hybrid technique combining traditional ultramicrotomy with focused ion beam (FIB) techniques, allowing for more thorough in situ investigations of grain surfaces and interiors. Using this method, we increase the number of FIB-prepared sections that can be recovered from a particle with dimensions on the order of tens of microns. These sections can be subsequently analyzed using a variety of analytical techniques. Particle RA-QD02-0211 is a approx. 40×40×20 micron particle from Itokawa containing olivine and Fe sulfides. It was embedded in low viscosity epoxy and partly sectioned to a depth of approx 10 micron; sections are placed on Cu grids with thin amorphous films for transmission electron microscope (TEM) analyses. With the sample surface partly exposed, the epoxy bullet is trimmed to a height of approx. 5mm to accommodate the allowable dimensions for FIB work (FEI Quanta 600 3D dual beam FIB-SEM). Using a diamond trim knife, the epoxy surrounding the grain is removed on 3 sides (to within a few microns of the grain); the depth of material removed extends well below the bottom of the particle. The sample is attached to an SEM pin mount, the epoxy coated with conductive paint, and the entire assembly coated with approx. 40nm of carbon to eliminate sample charging during FIB work. A protective carbon cap is placed according to the plan for the 15 FIB sections. The central 'spine' of the cap runs perpendicular to the front of the sample, and the 'ribs' protruding from either side run parallel. Each rib indicates the location of a planned FIB section, and the spine contains the final two planned sections. We use a cap with a 4 micron-wide spine and 2micron-wide ribs that have ?3.5 micron of space between them (narrower cuts result in too much re-deposition of material inside the trenches). Using a 30kV, 3nA ion-beam we expose the front surface of the grain and commence milling trenches between sections. Rather than using the typical C-cut to prepare the sample for lift-out, an L-cut is used instead, leaving the sample connected by an interior tab. tab. Sections are lifted out, attached to TEM grids and thinned to electron transparency. TEM analyses show that our hybrid technique preserves both interior and edge features, including surface modifications from exposure to the space environment, such as damaged rims that form in response to solar wind implantation effects and adhering grains. In addition, the FIB sections provide larger areas that are free of fractures and chatter effects in comparison to the microtome thin sections, thus enabling more accurate measurements of solar flare particle track densities that are used to determine the surface exposure age of the particles.

  3. Relationship between Particle Size Distribution of Low-Rank Pulverized Coal and Power Plant Performance

    DOE PAGES

    Ganguli, Rajive; Bandopadhyay, Sukumar

    2012-01-01

    Tmore » he impact of particle size distribution (PSD) of pulverized, low rank high volatile content Alaska coal on combustion related power plant performance was studied in a series of field scale tests. Performance was gauged through efficiency (ratio of megawatt generated to energy consumed as coal), emissions (SO 2 , NO x , CO), and carbon content of ash (fly ash and bottom ash). he study revealed that the tested coal could be burned at a grind as coarse as 50% passing 76 microns, with no deleterious impact on power generation and emissions. he PSD’s tested in this study were in the range of 41 to 81 percent passing 76 microns. here was negligible correlation between PSD and the followings factors: efficiency, SO 2 , NO x , and CO. Additionally, two tests where stack mercury (Hg) data was collected, did not demonstrate any real difference in Hg emissions with PSD. he results from the field tests positively impacts pulverized coal power plants that burn low rank high volatile content coals (such as Powder River Basin coal). hese plants can potentially reduce in-plant load by grinding the coal less (without impacting plant performance on emissions and efficiency) and thereby, increasing their marketability.« less

  4. Kinetic study of phytotoxicity induced by foliar lead uptake for vegetables exposed to fine particles and implications for sustainable urban agriculture.

    PubMed

    Xiong, TianTian; Austruy, Annabelle; Pierart, Antoine; Shahid, Muhammad; Schreck, Eva; Mombo, Stéphane; Dumat, Camille

    2016-08-01

    At the global scale, foliar metal transfer occurs for consumed vegetables cultivated in numerous urban or industrial areas with a polluted atmosphere. However, the kinetics of metal uptake, translocation and involved phytotoxicity was never jointly studied with vegetables exposed to micronic and sub-micronic particles (PM). Different leafy vegetables (lettuces and cabbages) cultivated in RHIZOtest® devices were, therefore, exposed in a greenhouse for 5, 10 and 15days to various PbO PM doses. The kinetics of transfer and phytotoxicity was assessed in relation to lead concentration and exposure duration. A significant Pb accumulation in leaves (up to 7392mg/kg dry weight (DW) in lettuce) with translocation to roots was observed. Lead foliar exposure resulted in significant phytotoxicity, lipid composition change, a decrease of plant shoot growth (up to 68.2% in lettuce) and net photosynthesis (up to 58% in lettuce). The phytotoxicity results indicated plant adaptation to Pb and a higher sensitivity of lettuce in comparison with cabbage. Air quality needs, therefore, to be considered for the health and quality of vegetables grown in polluted areas, such as certain megacities (in China, Pakistan, Europe, etc.) and furthermore, to assess the health risks associated with their consumption. Copyright © 2016. Published by Elsevier B.V.

  5. Interaction Heterogeneity can Favorably Impact Colloidal Crystal Nucleation

    NASA Astrophysics Data System (ADS)

    Jenkins, Ian C.; Crocker, John C.; Sinno, Talid

    2017-10-01

    Colloidal particles with short-ranged attractions, e.g., micron-scale spheres functionalized with single-stranded DNA oligomers, are susceptible to becoming trapped in disordered configurations even when a crystalline arrangement is the ground state. Moreover, for reasons that are not well understood, seemingly minor variations in the particle formulation can lead to dramatic changes in the crystallization outcome. We demonstrate, using a combination of equilibrium and nonequilibrium computer simulations, that interaction heterogeneity—variations in the energetic interactions among different particle pairs in the population—may favorably impact crystal nucleation. Specifically, interaction heterogeneity is found to lower the free energy barrier to nucleation via the formation of clusters comprised preferentially of strong-binding particle pairs. Moreover, gelation is inhibited by "spreading out over time" the nucleation process, resulting in a reduced density of stable nuclei, allowing each to grow unhindered and larger. Our results suggest a simple and robust approach for enhancing colloidal crystallization near the "sticky sphere" limit, and support the notion that differing extents of interaction heterogeneity arising from various particle functionalization protocols may contribute to the otherwise unexplained variations in crystallization outcomes reported in the literature.

  6. Atomistic Structure of Mineral Nano-aggregates from Simulated Compaction and Dewatering.

    PubMed

    Ho, Tuan Anh; Greathouse, Jeffery A; Wang, Yifeng; Criscenti, Louise J

    2017-11-10

    The porosity of clay aggregates is an important property governing chemical reactions and fluid flow in low-permeability geologic formations and clay-based engineered barrier systems. Pore spaces in clays include interlayer and interparticle pores. Under compaction and dewatering, the size and geometry of such pore spaces may vary significantly (sub-nanometer to microns) depending on ambient physical and chemical conditions. Here we report a molecular dynamics simulation method to construct a complex and realistic clay-like nanoparticle aggregate with interparticle pores and grain boundaries. The model structure is then used to investigate the effect of dewatering and water content on micro-porosity of the aggregates. The results suggest that slow dewatering would create more compact aggregates compared to fast dewatering. Furthermore, the amount of water present in the aggregates strongly affects the particle-particle interactions and hence the aggregate structure. Detailed analyses of particle-particle and water-particle interactions provide a molecular-scale view of porosity and texture development of the aggregates. The simulation method developed here may also aid in modeling the synthesis of nanostructured materials through self-assembly of nanoparticles.

  7. Atomistic Structure of Mineral Nano-aggregates from Simulated Compaction and Dewatering

    DOE PAGES

    Ho, Tuan Anh; Greathouse, Jeffery A.; Wang, Yifeng; ...

    2017-11-10

    The porosity of clay aggregates is an important property governing chemical reactions and fluid flow in low-permeability geologic formations and clay-based engineered barrier systems. Pore spaces in clays include interlayer and interparticle pores. Under compaction and dewatering, the size and geometry of such pore spaces may vary significantly (sub-nanometer to microns) depending on ambient physical and chemical conditions. Here we report a molecular dynamics simulation method to construct a complex and realistic clay-like nanoparticle aggregate with interparticle pores and grain boundaries. The model structure is then used to investigate the effect of dewatering and water content on micro-porosity of themore » aggregates. The results suggest that slow dewatering would create more compact aggregates compared to fast dewatering. Furthermore, the amount of water present in the aggregates strongly affects the particle-particle interactions and hence the aggregate structure. Detailed analyses of particle-particle and water-particle interactions provide a molecular-scale view of porosity and texture development of the aggregates. The simulation method developed here may also aid in modeling the synthesis of nanostructured materials through self-assembly of nanoparticles.« less

  8. Stress relaxation in pre-stressed aluminum core–shell particles: X-ray diffraction study, modeling, and improved reactivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levitas, Valery I.; McCollum, Jena; Pantoya, Michelle L.

    Stress relaxation in aluminum micron-scale particles covered by alumina shell after pre-stressing by thermal treatment and storage was measured using X-ray diffraction with synchrotron radiation. Pre-stressing was produced by annealing Al particles at 573K followed by fast cooling. While averaged dilatational strain in Al core was negligible for untreated particles, it was measured at 4.40×10 -5 and 2.85×10 -5 after 2 and 48 days of storage. Consistently, such a treatment leads to increase in flame propagation speed for Al+CuO mixture by 37% and 25%, respectively. Analytical model for creep in alumna shell and stress relaxation in Al core-alumina shellmore » structure is developed and activation energy and pre-exponential multiplier are estimated. The effect of storage temperature and annealing temperature on the kinetics of stress relaxation was evaluated theoretically. These results provide estimates for optimizing Al reactivity with the holding time at annealing temperature and allowable time for storage of Al particles for various environmental temperatures.« less

  9. Stress relaxation in pre-stressed aluminum core–shell particles: X-ray diffraction study, modeling, and improved reactivity

    DOE PAGES

    Levitas, Valery I.; McCollum, Jena; Pantoya, Michelle L.; ...

    2016-05-30

    Stress relaxation in aluminum micron-scale particles covered by alumina shell after pre-stressing by thermal treatment and storage was measured using X-ray diffraction with synchrotron radiation. Pre-stressing was produced by annealing Al particles at 573K followed by fast cooling. While averaged dilatational strain in Al core was negligible for untreated particles, it was measured at 4.40×10 -5 and 2.85×10 -5 after 2 and 48 days of storage. Consistently, such a treatment leads to increase in flame propagation speed for Al+CuO mixture by 37% and 25%, respectively. Analytical model for creep in alumna shell and stress relaxation in Al core-alumina shellmore » structure is developed and activation energy and pre-exponential multiplier are estimated. The effect of storage temperature and annealing temperature on the kinetics of stress relaxation was evaluated theoretically. These results provide estimates for optimizing Al reactivity with the holding time at annealing temperature and allowable time for storage of Al particles for various environmental temperatures.« less

  10. Phoretic self-propulsion: a mesoscopic description of reaction dynamics that powers motion.

    PubMed

    de Buyl, Pierre; Kapral, Raymond

    2013-02-21

    The fabrication of synthetic self-propelled particles and the experimental investigations of their dynamics have stimulated interest in self-generated phoretic effects that propel nano- and micron-scale objects. Theoretical modeling of these phenomena is often based on a continuum description of the solvent for different phoretic propulsion mechanisms, including, self-electrophoresis, self-diffusiophoresis and self-thermophoresis. The work in this paper considers various types of catalytic chemical reaction at the motor surface and in the bulk fluid that come into play in mesoscopic descriptions of the dynamics. The formulation is illustrated by developing the mesoscopic reaction dynamics for exothermic and dissociation reactions that are used to power motor motion. The results of simulations of the self-propelled dynamics of composite Janus particles by these mechanisms are presented.

  11. Experimental observation of self excited co-rotating multiple vortices in a dusty plasma with inhomogeneous plasma background

    NASA Astrophysics Data System (ADS)

    Choudhary, Mangilal; Mukherjee, S.; Bandyopadhyay, P.

    2017-03-01

    We report an experimental observation of multiple co-rotating vortices in an extended dust column in the background of an inhomogeneous diffused plasma. An inductively coupled rf discharge is initiated in the background of argon gas in the source region. This plasma was later found to diffuse into the main experimental chamber. A secondary DC glow discharge plasma is produced to introduce dust particles into the plasma volume. These micron-sized poly-disperse dust particles get charged in the background of the DC plasma and are transported by the ambipolar electric field of the diffused plasma. These transported particles are found to be confined in an electrostatic potential well, where the resultant electric field due to the diffused plasma (ambipolar E-field) and glass wall charging (sheath E-field) holds the micron-sized particles against the gravity. Multiple co-rotating (anti-clockwise) dust vortices are observed in the dust cloud for a particular discharge condition. The transition from multiple vortices to a single dust vortex is observed when input rf power is lowered. The occurrence of these vortices is explained on the basis of the charge gradient of dust particles, which is orthogonal to the ion drag force. The charge gradient is a consequence of the plasma inhomogeneity along the dust cloud length. The detailed nature and the reason for multiple vortices are still under investigation through further experiments; however, preliminary qualitative understanding is discussed based on the characteristic scale length of the dust vortex. There is a characteristic size of the vortex in the dusty plasma; therefore, multiple vortices could possibly be formed in an extended dusty plasma with inhomogeneous plasma background. The experimental results on the vortex motion of particles are compared with a theoretical model and are found to be in close agreement.

  12. Thermal emission spectra of Mars (5.4-10.5 microns) - Evidence for sulfates, carbonates, and hydrates

    NASA Technical Reports Server (NTRS)

    Pollack, James B.; Roush, Ted; Witteborn, Fred; Bregman, Jesse; Wooden, Diane; Stoker, Carol; Toon, Owen B.

    1990-01-01

    Spectra of the Martian thermal emission in the 5.4-10.5 micron region are reported. Emission features at 7.8 and 9.7 microns are attributed to surface silicates, and an emission feature at 6.1 micron is attributed to a molecular water component of the surface material. An absorption band at 8.7 micron and a possible one at 9.8 microns is attributed to sulfate or bisulfate anions probably located at a distorted crystalline site, and an absorption band at 6.7 microns is attributed to carbonate or bicarbonate anions located in a distorted crystalline site. Spectral simulations indicate that the sulfate- and carbonate-bearing minerals are contained in the same particles of airborne dust as the dominant silicate minerals, that the dust optical depth is about 0.6 at a reference wavelength of 0.3 micron over the area of the observed spots, and that sulfates and carbonates constitute 10-15 percent and 1-3 percent by volume of the airborne dust, respectively.

  13. Ablation of silicate particles in high-speed continuum and transition flow with application to the collection of interplanetary dust particles

    NASA Technical Reports Server (NTRS)

    Rulison, Aaron J.; Flagan, Richard C.; Ahrens, Thomas J.; Miller, Wayne F.

    1991-01-01

    The ablative deceleration of spheres in the continuum and slip regimes is studied using spherical 7.1-micron-diam soda-lime glass particles launched from vacuum at about 4500 m/sec speed through a 13-micron-thick plastic film into a capture chamber containing Xe at 0.1 or 0.2 atm pressure and 295 K temperature. The results of SEM examinations of the collected ablated particles showed that the ratio of the ablated-particle radius (Rf) to the initial radius (R0) increased with gas pressure (from Rf/R0 about 0.67 at 0.1 atm, to about 0.88 at 0.2 atm). A model was developed to describe the ablation and deceleration of spheres in high-speed continuum and slip flow. The pressure dependence predicted by the model agreed with experimental results.

  14. Dust grain resonant capture: A statistical study

    NASA Technical Reports Server (NTRS)

    Marzari, F.; Vanzani, V.; Weidenschilling, S. J.

    1993-01-01

    A statistical approach, based on a large number of simultaneous numerical integrations, is adopted to study the capture in external mean motion resonances with the Earth of micron size dust grains perturbed by solar radiation and wind forces. We explore the dependence of the resonant capture phenomenon on the initial eccentricity e(sub 0) and perihelion argument w(sub 0) of the dust particle orbit. The intensity of both the resonant and dissipative (Poynting-Robertson and wind drag) perturbations strongly depends on the eccentricity of the particle while the perihelion argument determines, for low inclination, the mutual geometrical configuration of the particle's orbit with respect to the Earth's orbit. We present results for three j:j+1 commensurabilities (2:3, 4:5 and 6:7) and also for particle sizes s = 15, 30 microns. This study extends our previous work on the long term orbital evolution of single dust particles trapped into resonances with the Earth.

  15. Assessing the Release of Copper from Nanocopper-treated and Conventional Copper-treated Lumber into Marine Waters I: Concentrations and Rates

    EPA Science Inventory

    Little is known about the release of metal engineered nanomaterials (ENMs) from consumer goods, including lumber treated with micronized copper. Micronized copper is a recent form of antifouling wood preservative containing nanosized copper particles for use in pressure‐tre...

  16. A comprehensive simulation framework for imaging single particles and biomolecules at the European X-ray Free-Electron Laser

    PubMed Central

    Yoon, Chun Hong; Yurkov, Mikhail V.; Schneidmiller, Evgeny A.; Samoylova, Liubov; Buzmakov, Alexey; Jurek, Zoltan; Ziaja, Beata; Santra, Robin; Loh, N. Duane; Tschentscher, Thomas; Mancuso, Adrian P.

    2016-01-01

    The advent of newer, brighter, and more coherent X-ray sources, such as X-ray Free-Electron Lasers (XFELs), represents a tremendous growth in the potential to apply coherent X-rays to determine the structure of materials from the micron-scale down to the Angstrom-scale. There is a significant need for a multi-physics simulation framework to perform source-to-detector simulations for a single particle imaging experiment, including (i) the multidimensional simulation of the X-ray source; (ii) simulation of the wave-optics propagation of the coherent XFEL beams; (iii) atomistic modelling of photon-material interactions; (iv) simulation of the time-dependent diffraction process, including incoherent scattering; (v) assembling noisy and incomplete diffraction intensities into a three-dimensional data set using the Expansion-Maximisation-Compression (EMC) algorithm and (vi) phase retrieval to obtain structural information. We demonstrate the framework by simulating a single-particle experiment for a nitrogenase iron protein using parameters of the SPB/SFX instrument of the European XFEL. This exercise demonstrably yields interpretable consequences for structure determination that are crucial yet currently unavailable for experiment design. PMID:27109208

  17. A comprehensive simulation framework for imaging single particles and biomolecules at the European X-ray Free-Electron Laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Chun Hong; Yurkov, Mikhail V.; Schneidmiller, Evgeny A.

    The advent of newer, brighter, and more coherent X-ray sources, such as X-ray Free-Electron Lasers (XFELs), represents a tremendous growth in the potential to apply coherent X-rays to determine the structure of materials from the micron-scale down to the Angstrom-scale. There is a significant need for a multi-physics simulation framework to perform source-to-detector simulations for a single particle imaging experiment, including (i) the multidimensional simulation of the X-ray source; (ii) simulation of the wave-optics propagation of the coherent XFEL beams; (iii) atomistic modelling of photon-material interactions; (iv) simulation of the time-dependent diffraction process, including incoherent scattering; (v) assembling noisy andmore » incomplete diffraction intensities into a three-dimensional data set using the Expansion-Maximisation-Compression (EMC) algorithm and (vi) phase retrieval to obtain structural information. Furthermore, we demonstrate the framework by simulating a single-particle experiment for a nitrogenase iron protein using parameters of the SPB/SFX instrument of the European XFEL. This exercise demonstrably yields interpretable consequences for structure determination that are crucial yet currently unavailable for experiment design.« less

  18. A comprehensive simulation framework for imaging single particles and biomolecules at the European X-ray Free-Electron Laser

    DOE PAGES

    Yoon, Chun Hong; Yurkov, Mikhail V.; Schneidmiller, Evgeny A.; ...

    2016-04-25

    The advent of newer, brighter, and more coherent X-ray sources, such as X-ray Free-Electron Lasers (XFELs), represents a tremendous growth in the potential to apply coherent X-rays to determine the structure of materials from the micron-scale down to the Angstrom-scale. There is a significant need for a multi-physics simulation framework to perform source-to-detector simulations for a single particle imaging experiment, including (i) the multidimensional simulation of the X-ray source; (ii) simulation of the wave-optics propagation of the coherent XFEL beams; (iii) atomistic modelling of photon-material interactions; (iv) simulation of the time-dependent diffraction process, including incoherent scattering; (v) assembling noisy andmore » incomplete diffraction intensities into a three-dimensional data set using the Expansion-Maximisation-Compression (EMC) algorithm and (vi) phase retrieval to obtain structural information. Furthermore, we demonstrate the framework by simulating a single-particle experiment for a nitrogenase iron protein using parameters of the SPB/SFX instrument of the European XFEL. This exercise demonstrably yields interpretable consequences for structure determination that are crucial yet currently unavailable for experiment design.« less

  19. Model Calculations of Solar Spectral Irradiance in the 3.7 Micron Band for Earth Remote Sensing Applications

    NASA Technical Reports Server (NTRS)

    Platnick, Steven; Fontenla, Juan M.

    2006-01-01

    Since the launch of the first Advanced Very High Resolution Radiometer (AVHRR) instrument aboard TIROS-N, measurements in the 3.7 micron atmospheric window have been exploited for use in cloud detection and screening, cloud thermodynamic phase and surface snow/ice discrimination, and quantitative cloud particle size retrievals. The utility of the band has led to the incorporation of similar channels on a number of existing satellite imagers and future operational imagers. Daytime observations in the band include both reflected solar and thermal emission energy. Since 3.7 micron channels are calibrated to a radiance scale (via onboard blackbodies), knowledge of the top-of-atmosphere solar irradiance in the spectral region is required to infer reflectance. Despite the ubiquity of 3.7 micron channels, absolute solar spectral irradiance data comes from either a single measurement campaign (Thekaekara et al. 1969) or synthetic spectra. In this study, we compare historical 3.7 micron band spectral irradiance data sets with the recent semi-empirical solar model of the quiet-Sun by Fontenla et al. (2006). The model has expected uncertainties of about 2 % in the 3.7 pm spectral region. We find that channel-averaged spectral irradiances using the observations reported by Thekaekara et al. are 3.2-4.1% greater than those derived from the Fontenla et al. model for MODIS and AVHRR instrument bandpasses; the Kurucz spectrum (1995) as included in the MODTRAN4 distribution, gives channel-averaged irradiances 1.2-1.5 % smaller than the Fontenla model. For the MODIS instrument, these solar irradiance uncertainties result in cloud microphysical retrievals uncertainties comparable with other fundamental reflectance error sources.

  20. Airborne and groundbased spectrophotometry of comet P/Halley from 5-13 micrometers

    NASA Technical Reports Server (NTRS)

    Bregman, J. D.; Witteborn, F. C.; Allamandola, L. J.; Campins, H.; Wooden, D. H.; Rank, D. M.; Cohen, M.; Tielens, A. G. G. M.

    1987-01-01

    Spectrophotometry of comet Halley from 5-13 microns was obtained from the Kuiper Airborne Observatory and from the Lick Observatory Nickel Telescope, revealing a strong broad emission band at 10 microns and a weak feature at 6.8 microns. The 10-micron band is identified with silicate materials, and the primary component of the silicate emission is suggested to be due to olivine. The 6.8 micron feature may be due either to carbonates or the C-H deformation mode in organic molecules. The data indicate that small particles are abundant in the coma and that the dust contains at least two physically separate components. Significant spatial and temporal variations are also noted in the spectrum.

  1. Ejection of Metal Particles into Superfluid 4He by Laser Ablation.

    PubMed

    Buelna, Xavier; Freund, Adam; Gonzalez, Daniel; Popov, Evgeny; Eloranta, Jussi

    2016-10-05

    The dynamics following laser ablation of a metal target immersed in superfluid $^4$He is studied by time-resolved shadowgraph photography. The delayed ejection of hot micrometer-sized particles from the target surface into the liquid was indirectly observed by monitoring the formation and growth of gaseous bubbles around the particles. The experimentally determined particle average velocity distribution appears similar as previously measured in vacuum but exhibits a sharp cutoff at the speed of sound of the liquid. The propagation of the subsonic particles terminates in slightly elongated non-spherical gas bubbles residing near the target whereas faster particles reveal an unusual hydrodynamic response of the liquid. Based on the previously established semi-empirical model developed for macroscopic objects, the ejected transonic particles exhibit supercavitating flow to reduce their hydrodynamic drag. Supersonic particles appear to follow a completely different propagation mechanism as they leave discrete and semi-continuous bubble trails in the liquid. The relatively low number density of the observed non-spherical gas bubbles indicates that only large micron-sized particles are visualized in the experiments. Although the unique properties of superfluid helium allow a detailed characterization of these processes, the developed technique can be used to study the hydrodynamic response of any liquid to fast propagating objects on the micrometer-scale.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    LAGASSE,ROBERT R.; THOMPSON,KYLE R.

    The goal of this work is to develop techniques for measuring gradients in particle concentration within filled polymers, such as encapsulant. A high concentration of filler particles is added to such materials to tailor physical properties such as thermal expansion coefficient. Sedimentation and flow-induced migration of particles can produce concentration gradients that are most severe near material boundaries. Therefore, techniques for measuring local particle concentration should be accurate near boundaries. Particle gradients in an alumina-filled epoxy resin are measured with a spatial resolution of 0.2 mm using an x-ray beam attenuation technique, but an artifact related to the finite diametermore » of the beam reduces accuracy near the specimen's edge. Local particle concentration near an edge can be measured more reliably using microscopy coupled with image analysis. This is illustrated by measuring concentration profiles of glass particles having 40 {micro}m median diameter using images acquired by a confocal laser fluorescence microscope. The mean of the measured profiles of volume fraction agrees to better than 3% with the expected value, and the shape of the profiles agrees qualitatively with simple theory for sedimentation of monodisperse particles. Extending this microscopy technique to smaller, micron-scale filler particles used in encapsulant for microelectronic devices is illustrated by measuring the local concentration of an epoxy resin containing 0.41 volume fraction of silica.« less

  3. Preparation of nano-hydroxyapatite particles with different morphology and their response to highly malignant melanoma cells in vitro

    NASA Astrophysics Data System (ADS)

    Li, Bo; Guo, Bo; Fan, Hongsong; Zhang, Xingdong

    2008-11-01

    To investigate the effects of nano-hydroxyapatite (HA) particles with different morphology on highly malignant melanoma cells, three kinds of HA particles with different morphology were synthesized and co-cultured with highly malignant melanoma cells using phosphate-buffered saline (PBS) as control. A precipitation method with or without citric acid addition as surfactant was used to produce rod-like hydroxyapatite (HA) particles with nano- and micron size, respectively, and a novel oil-in-water emulsion method was employed to prepare ellipse-like nano-HA particles. Particle morphology and size distribution of the as prepared HA powders were characterized by transmission electron microscope (TEM) and dynamic light scattering technique. The nano- and micron HA particles with different morphology were co-cultured with highly malignant melanoma cells. Immunofluorescence analysis and MTT assay were employed to evaluate morphological change of nucleolus and proliferation of tumour cells, respectively. To compare the effects of HA particles on cell response, the PBS without HA particles was used as control. The experiment results indicated that particle nanoscale effect rather than particle morphology of HA was more effective for the inhibition on highly malignant melanoma cells proliferation.

  4. Atomistic Simulation of Initiation in Hexanitrostilbene

    NASA Astrophysics Data System (ADS)

    Shan, Tzu-Ray; Wixom, Ryan; Yarrington, Cole; Thompson, Aidan

    2015-06-01

    We report on the effect of cylindrical voids on hot spot formation, growth and chemical reaction initiation in hexanitrostilbene (HNS) crystals subjected to shock. Large-scale, reactive molecular dynamics simulations are performed using the reactive force field (ReaxFF) as implemented in the LAMMPS software. The ReaxFF force field description for HNS has been validated previously by comparing the isothermal equation of state to available diamond anvil cell (DAC) measurements and density function theory (DFT) calculations and by comparing the primary dissociation pathway to ab initio calculations. Micron-scale molecular dynamics simulations of a supported shockwave propagating through the HNS crystal along the [010] orientation are performed with an impact velocity (or particle velocity) of 1.25 km/s, resulting in shockwave propagation at 4.0 km/s in the bulk material and a bulk shock pressure of ~ 11GPa. The effect of cylindrical void sizes varying from 0.02 to 0.1 μm on hot spot formation and growth rate has been studied. Interaction between multiple voids in the HNS crystal and its effect on hot spot formation will also be addressed. Results from the micron-scale atomistic simulations are compared with hydrodynamics simulations. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  5. MapX An In Situ, Full-frame X-Ray Spectroscopic Imager for Planetary Science and Astrobiology

    NASA Technical Reports Server (NTRS)

    Blake, David; Sarrazin, Philippe; Thompson, Kathleen; Bristow, Thomas

    2017-01-01

    Microbial life exploits micron-scale disequilibria at boundaries where valence, chemical potential, pH, Eh, etc. vary on a length scale commensurate with the organisms - 10's to 100's of microns. The detection of accumulations of the biogenic elements C,N,O,P,S at appropriate concentrations on or in a mineral/ice substrate would constitute permissive evidence of extant life, but context is also required. Does the putative biosignature exist under habitable conditions? Under what conditions of P, T, and chemical potential was the host mineralogy formed? MapX is an in situ robotic spacecraft instrument that images the biogenic elements C, N, O, P, S, as well as the cations of the rock-forming minerals (Na, Mg, Al, Si, K, Ca, Ti, Cr, Mn, Fe) and important anions such as Cl, Fl. MapX provides element maps with less than or equal to100 microns resolution over a 2.5 cm X 2.5 cm area, as well as quantitative XRF spectra from ground- or instrument-selected Regions of Interest (ROI). XRF spectra are converted to mineralogies using ground- or instrument-based algorithms. Either X-ray tube or radioisotope sources such as 244Cm (Alpha-particle and gamma- ray fluorescence) can be used. Fluoresced sample Xrays are imaged onto an X-ray sensitive CCD through an X-ray MicroPore Optic (MPO). The MapX design as well as baseline performance requirements for a MapX instrument intended for life detection / identification of habitable environments will be presented.

  6. DNA tagged microparticles

    DOEpatents

    Farquar, George R.; Leif, Roald N.; Wheeler, Elizabeth

    2016-03-22

    In one embodiment, a product includes a plurality of particles, each particle including: a carrier that includes a non-toxic material; and at least one DNA barcode coupled to the carrier, where the particles each have a diameter in a range from about 1 nanometer to about 100 microns.

  7. Selection of quasi-monodisperse super-micron aerosol particles

    NASA Astrophysics Data System (ADS)

    Rösch, Michael; Pfeifer, Sascha; Wiedensohler, Alfred; Stratmann, Frank

    2014-05-01

    Size-segregated quasi monodisperse particles are essential for e.g. fundamental research concerning cloud microphysical processes. Commonly a DMA (Differential Mobility Analyzer) is used to produce quasi-monodisperse submicron particles. Thereto first, polydisperse aerosol particles are bipolarly charged by a neutralizer, and then selected according to their electrical mobility with the DMA [Knutson et al. 1975]. Selecting a certain electrical mobility with a DMA results in a particle size distribution, which contains singly charged particles as well as undesired multiply charged larger particles. Often these larger particles need to either be removed from the generated aerosol or their signals have to be corrected for in the data inversion and interpretation process. This problem becomes even more serious when considering super-micron particles. Here we will present two different techniques for generating quasi-monodisperse super-micron aerosol particles with no or only an insignificant number of larger sized particles being present. First, we use a combination of a cyclone with adjustable aerodynamic cut-off diameter and our custom-built Maxi-DMA [Raddatz et al. 2013]. The cyclone removes particles larger than the desired ones prior to mobility selection with the DMA. This results in a reduction of the number of multiply charged particles of up to 99.8%. Second, we utilize a new combination of cyclone and PCVI (Pumped Counterflow Virtual Impactor), which is based on purely inertial separation and avoids particle charging. The PCVI instrument was previously described by Boulter et al. (2006) and Kulkarni et al. (2011). With our two setups we are able to produce quasi-monodisperse aerosol particles in the diameter range from 0.5 to 4.4 µm without a significant number of larger undesired particles being present. Acknowledgements: This work was done within the framework of the DFG funded Ice Nucleation research UnIT (INUIT, FOR 1525) under WE 4722/1-1. References: Knutson, E. O. and Whitby, K. T.: Aerosol classification by electric mobility: apparatus, theory, and applications. Aerosol Science, 6:443--451, 1975 Raddatz, M., Wiedensohler, A., Wex, H., and Stratmann, F.: Size selection of sub- and super-micron clay mineral kaolinite particles using a custom-built Maxi-DMA. Nucleation and Atmospheric Aerosols, Vol. 1527, AIP Conference Proceedings, pages 457-460. AMER INST PHYSICS, 2013 Boulter, J. E., Cziczo, D. J., Middlebrook, A. M., Thomson, D. S., and Murphy, D. M.: Design and performance of a Pumped Counterflow Virtual Impactor. Aerosol Science and Technology, 40(11): 969-976, 2006 Kulkarni, G., Pekour, M., Afchine, A., Murphy, D. M., and Cziczo, D. J.: Comparison of experimental and numerical studies of the performance characteristics of a pumped counterflow virtual impactor. Aerosol Science and Technology, 45:382-392, 2011

  8. Ultra-high aspect ratio titania nanoflakes for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Lee, Yang-Yao; El-Shall, Hassan

    2017-12-01

    Micron sized titania flakes with thickness about 40 nm were used in the titania pastes to assemble dye-sensitized solar cells (DSSCs). Using the same deposition method, better particle dispersion of titania flakes resulted in well bonded and integral films comparing to cracking of Degussa P25 nanoparticle films during the evaporation and sintering processes. There are two features of titania flakes which leads to improved conversion efficiency of DSSC: (1) Higher and stronger adsorption of N-719 dyes due to high specific surface area (2) Stronger light scattering of visible light spectrum because of micron scale wide in two dimensions of the flakes. The thickness of the conducting TiO2 was critical to the IV characteristics of DSSC such as the short-circuit current density (Isc) and open-circuit voltage (Voc). Under the same thickness basis, calcined titania flakes provided 5 times higher efficiency than the photoelectrodes consisted of Degussa P25 nanoparticles (7.4% vs. 1.2%).

  9. Sub-micron filter

    DOEpatents

    Tepper, Frederick [Sanford, FL; Kaledin, Leonid [Port Orange, FL

    2009-10-13

    Aluminum hydroxide fibers approximately 2 nanometers in diameter and with surface areas ranging from 200 to 650 m.sup.2/g have been found to be highly electropositive. When dispersed in water they are able to attach to and retain electronegative particles. When combined into a composite filter with other fibers or particles they can filter bacteria and nano size particulates such as viruses and colloidal particles at high flux through the filter. Such filters can be used for purification and sterilization of water, biological, medical and pharmaceutical fluids, and as a collector/concentrator for detection and assay of microbes and viruses. The alumina fibers are also capable of filtering sub-micron inorganic and metallic particles to produce ultra pure water. The fibers are suitable as a substrate for growth of cells. Macromolecules such as proteins may be separated from each other based on their electronegative charges.

  10. 8- to 13-micron spectrophotometry of Comet IRAS-Araki-Alcock

    NASA Technical Reports Server (NTRS)

    Feierberg, M. A.; Witteborn, F. C.; Johnson, J. R.; Campins, H.

    1984-01-01

    Spectrophotometry between 8.0 and 13.0 microns at 2 percent spectral resolution is presented for areas in and near the nuclear condensation of Comet IRAS-Araki-Alcock (1983d) on May 11 and 12, 1983. All the spectra can be fit very well by blackbody curves, and no 10-micron silicate emissions are seen. The temperature structure of the coma suggests the presence of small (radii less than 5 microns) dust particles within 150 km of the nucleus and larger ones further out. The change in the spatial distribution of the infrared flux between the two nights suggests that an outburst may have occurred sometime on May 11.

  11. Superconducting transition detectors for low-energy gamma-ray astrophysics

    NASA Astrophysics Data System (ADS)

    Kurfess, J. D.; Johnson, W. N.; Fritz, G. G.; Strickman, M. S.; Kinzer, R. L.; Jung, G.; Drukier, A. K.; Chmielowski, M.

    1990-08-01

    A program to investigate superconducting devices such as STDs for use in high-resolution Compton telescopes and coded-aperture detectors is presented. For higher energy applications, techniques are investigated with potential for scaling to large detectors, while also providing excellent energy and positional resolution. STDs are discussed, utilizing a uniform array of spherical granules tens of microns in diameter. The typical temperature-magnetic field phase for a low-temperature superconductor, the signal produced by the superconducting-normal transition in the 32-m diameter Sn granule, and the temperature history of an STD granule following heating by an ionizing particle are illustrated.

  12. On biofouling of microplastic particles of different shapes - some mathematics

    NASA Astrophysics Data System (ADS)

    Bagaeva, Margarita; Chubarenko, Irina

    2016-04-01

    Transport of microplastic particles in marine environment is difficult to quantify because their physical properties may vary with time. We made an attempt to analyse the behaviour of slightly buoyant particles (e.g., polyethylene, polypropylene), most critical process for which is their fouling: it leads to an increase in the mean particle density and its sinking. Fouling covers the surface of a relatively light particle by a denser growing film; thus, the rate of increase in the total mass is directly proportional to the surface area, and the faster the fouling process is - the sooner the mean particle density reaches the water density; the particle begins sinking, leaves the surface layer with stronger currents and can no longer be transported too far. A simplified model of biofouling in marine environment of a slightly buoyant microplastics (ρp < ρw) is applied to particles of different shapes - spheres, films and fibres. It is supposed that the thickness of biofouling cover (of density ρb > ρw) increases with time at constant rate, and thus it can be considered as time. Geometrical considerations link surface area of particles of different shapes with time rate of increase in its mass due to fouling up to the water density. Geometrical calculations demonstrate that, for the same mass of plastic material, many small particles have larger surface area than one single large particle, and this way - macroplastics will stay longer at the water surface than microplastics. For spherical particles, the time of fouling up to the water density is directly proportional to the radius of a sphere: τsink ˜ R0/ 3n, where n = R0/ R, i.e., if the particle of radius R0reaches the water density in time τsink, the particle of radius R0/3 requires only τsink/9. Spherical shape has (for the given mass m0) the minimum surface area among all other possible shapes in 3-d space. The calculations performed for the same mass m0 have shown that the ratio of surface areas of a sphere (diameter 5 mm), a film (thickness of 15-30 microns) and a fibre (diameter of 30-100 microns) is about 1 / (50- 100) / (30-110) and thus, fibres appear to have the largest surface area for the given mass, immediately followed by films. Correspondingly, time of fouling up to sinking is of the same order of magnitude for films and fibres, and almost two orders of magnitude larger for spherical particles (of the same mass m0). More generally speaking, time of fouling is linearly dependent on the characteristic length scale of a particle (radius of sphere, thickness of the film, or radius of a fibre): the smaller the scale of the particle is - the faster it is fouled up to the water density. The conclusions are important for proper physical setting of the problem of microplastics transport in marine environment and for developing of physically-based parameterisations of microplastics particles properties in numerical models. The investigations are supported by Russian Science Foundation, project number 15-17-10020.

  13. A pilot study to characterize fine particles in the environment of an automotive machining facility.

    PubMed

    Sioutas, C

    1999-04-01

    The main goal of this study was to characterize fine particles (e.g., smaller than about 3 microns) in an automotive machining environment. The Toledo Machining Plant of Chrysler Corporation was selected for this purpose. The effect of local mechanical processes as aerosol sources was a major part of this investigation. To determine the size-dependent mass concentration of particles in the plant, the Micro-Orifice Uniform Deposit Impactor (MOUDI Model 100, MSP Corp., Minneapolis, Minnesota) was used. The MOUDI was placed at central locations in departments with sources inside the plant, so that the obtained information on the size distribution realistically represents the aerosol to which plant workers are exposed. Sampling was conducted over a 4-day period, and during three periods per day, each matching the work shifts. A special effort was made to place the MOUDI at a central location of a department with relatively homogeneous particle sources. The selected sampling sites included welding, grinding, steel machining, and heat treating processes. The average 24-hour mass concentrations of particles smaller than 3.2 microns in aerodynamic diameter were 167.8, 103.9, 201.7, and 112.7 micrograms/m3 for welding, grinding, mild steel, and heat treating processes, respectively. Finally, the mass median diameters of welding, heat treatment, machining, and grinding operations were approximately 0.5, 0.5, 0.6, and 0.8 micron, respectively.

  14. A model to estimate the size of nanoparticle agglomerates in gas-solid fluidized beds

    NASA Astrophysics Data System (ADS)

    de Martín, Lilian; van Ommen, J. Ruud

    2013-11-01

    The estimation of nanoparticle agglomerates' size in fluidized beds remains an open challenge, mainly due to the difficulty of characterizing the inter-agglomerate van der Waals force. The current approach is to describe micron-sized nanoparticle agglomerates as micron-sized particles with 0.1-0.2-μm asperities. This simplification does not capture the influence of the particle size on the van der Waals attraction between agglomerates. In this paper, we propose a new description where the agglomerates are micron-sized particles with nanoparticles on the surface, acting as asperities. As opposed to previous models, here the van der Waals force between agglomerates decreases with an increase in the particle size. We have also included an additional force due to the hydrogen bond formation between the surfaces of hydrophilic and dry nanoparticles. The average size of the fluidized agglomerates has been estimated equating the attractive force obtained from this method to the weight of the individual agglomerates. The results have been compared to 54 experimental values, most of them collected from the literature. Our model approximates without a systematic error the size of most of the nanopowders, both in conventional and centrifugal fluidized beds, outperforming current models. Although simple, the model is able to capture the influence of the nanoparticle size, particle density, and Hamaker coefficient on the inter-agglomerate forces.

  15. Response of mouse epidermal cells to single doses of heavy-particles

    NASA Technical Reports Server (NTRS)

    Leith, J. T.; Schilling, W. A.; Welch, G. P.

    1972-01-01

    The survival of mouse epidermal cells to heavy-particles has been studied In Vivo by the Withers clone technique. Experiments with accelerated helium, lithium and carbon ions were performed. The survival curve for the helium ion irradiations used a modified Bragg curve method with a maximum tissue penetration of 465 microns, and indicated that the dose needed to reduce the original cell number to 1 surviving cell/square centimeters was 1525 rads with a D sub o of 95 rads. The LET at the basal cell layer was 28.6 keV per micron. Preliminary experiments with lithium and carbon used treatment doses of 1250 rads with LET's at the surface of the skin of 56 and 193 keV per micron respectively. Penetration depths in skin were 350 and 530 microns for the carbon and lithium ions whose Bragg curves were unmodified. Results indicate a maximum RBE for skin of about 2 using the skin cloning technique. An attempt has been made to relate the epidermal cell survival curve to mortality of the whole animal for helium ions.

  16. Size and modal analyses of fines and ultrafines from some Apollo 17 samples

    NASA Technical Reports Server (NTRS)

    Greene, G. M.; King, D. T., Jr.; Banholzer, G. S., Jr.; King, E. A.

    1975-01-01

    Scanning electron and optical microscopy techniques have been used to determine the grain-size frequency distributions and morphology-based modal analyses of fine and ultrafine fractions of some Apollo 17 regolith samples. There are significant and large differences between the grain-size frequency distributions of the less than 10-micron size fraction of Apollo 17 samples, but there are no clear relations to the local geologic setting from which individual samples have been collected. This may be due to effective lateral mixing of regolith particles in this size range by micrometeoroid impacts. None of the properties of the frequency distributions support the idea of selective transport of any fine grain-size fraction, as has been proposed by other workers. All of the particle types found in the coarser size fractions also occur in the less than 10-micron particles. In the size range from 105 to 10 microns there is a strong tendency for the percentage of regularly shaped glass to increase as the graphic mean grain size of the less than 1-mm size fraction decreases, both probably being controlled by exposure age.

  17. EXPLORING THE ROLE OF SUB-MICRON-SIZED DUST GRAINS IN THE ATMOSPHERES OF RED L0–L6 DWARFS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiranaka, Kay; Cruz, Kelle L.; Baldassare, Vivienne F.

    We examine the hypothesis that the red near-infrared colors of some L dwarfs could be explained by a “dust haze” of small particles in their upper atmospheres. This dust haze would exist in conjunction with the clouds found in dwarfs with more typical colors. We developed a model that uses Mie theory and the Hansen particle size distributions to reproduce the extinction due to the proposed dust haze. We apply our method to 23 young L dwarfs and 23 red field L dwarfs. We constrain the properties of the dust haze including particle size distribution and column density using Markovmore » Chain Monte Carlo methods. We find that sub-micron-range silicate grains reproduce the observed reddening. Current brown dwarf atmosphere models include large-grain (1–100 μ m) dust clouds but not sub-micron dust grains. Our results provide a strong proof of concept and motivate a combination of large and small dust grains in brown dwarf atmosphere models.« less

  18. Dimethylsulfide/cloud condensation nuclei/climate system - Relevant size-resolved measurements of the chemical and physical properties of atmospheric aerosol particles

    NASA Technical Reports Server (NTRS)

    Quinn, P. K.; Covert, D. S.; Bates, T. S.; Kapustin, V. N.; Ramsey-Bell, D. C.; Mcinnes, L. M.

    1993-01-01

    The mass and number relationships occurring within the atmospheric dimethylsulfide/cloud condensation nuclei (CCN)/climate system, using simultaneous measurements of particulate phase mass size distributions of nss SO4(2-), methanesulfonic acid (MSA), and NH4(+); number size distributions of particles having diameters between 0.02 and 9.6 microns; CCN concentrations at a supersaturation of 0.3 percent; relative humidity; and temperature, obtained for the northeastern Pacific Ocean in April and May 1991. Based on these measurements, particulate nss SO4(2-), MSA, and NH4(+) mass appeared to be correlated with both particle effective surface area and number in the accumulation mode size range (0.16 to 0.5 micron). No correlations were found in the size range below 0.16 micron. A correlation was also found between nss SO4(2-) mass and the CCN number concentration, such that a doubling of the SO4(2-) mass corresponded to a 40 percent increase in the CCN number concentration. However, no correlation was found between MSA mass and CCN concentration.

  19. High-throughput nanoparticle sizing using lensfree holographic microscopy and liquid nanolenses (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    McLeod, Euan

    2016-03-01

    The sizing of individual nanoparticles and the recovery of the distributions of sizes from populations of nanoparticles provide valuable information in virology, exosome analysis, air and water quality monitoring, and nanomaterials synthesis. Conventional approaches for nanoparticle sizing include those based on costly or low-throughput laboratory-scale equipment such as transmission electron microscopy or nanoparticle tracking analysis, as well as those approaches that only provide population-averaged quantities, such as dynamic light scattering. Some of these limitations can be overcome using a new family of alternative approaches based on quantitative phase imaging that combines lensfree holographic on-chip microscopy with self-assembled liquid nanolenses. In these approaches, the particles of interest are deposited onto a glass coverslip and the sample is coated with either pure liquid polyethylene glycol (PEG) or aqueous solutions of PEG. Due to surface tension, the PEG self-assembles into nano-scale lenses around the particles of interest. These nanolenses enhance the scattering signatures of the embedded particles such that individual nanoparticles as small as 40 nm are clearly visible in phase images reconstructed from captured holograms. The magnitude of the phase quantitatively corresponds to particle size with an accuracy of +/-11 nm. This family of approaches can individually size more than 10^5 particles in parallel, can handle a large dynamic range of particle sizes (40 nm - 100s of microns), and can accurately size multi-modal distributions of particles. Furthermore, the entire approach has been implemented in a compact and cost-effective device suitable for use in the field or in low-resource settings.

  20. Differential Effects of Monovalent Cations and Anions on Key Nanoparticle Attributes

    EPA Science Inventory

    Understanding the key particle attributes such as particle size, size distribution and surface charge of both the nano- and micron-sized particles is the first step in drug formulation as such attributes are known to directly influence several characteristics of drugs including d...

  1. Kinect the dots: 3D control of optical tweezers

    NASA Astrophysics Data System (ADS)

    Shaw, Lucy; Preece, Daryl; Rubinsztein-Dunlop, Halina

    2013-07-01

    Holographically generated optical traps confine micron- and sub-micron sized particles close to the center of focused light beams. They also provide a way of trapping multiple particles and moving them in three dimensions. However, in many systems the user interface is not always advantageous or intuitive especially for collaborative work and when depth information is required. We discuss and evaluate a set of multi-beam optical tweezers that utilize off the shelf gaming technology to facilitate user interaction. We use the Microsoft Kinect sensor bar as a way of getting the user input required to generate arbitrary optical force fields and control optically trapped particles. We demonstrate that the system can also be used for dynamic light control.

  2. Airborne spectrophotometry of Comet Halley from 5 to 9 microns

    NASA Technical Reports Server (NTRS)

    Campins, H.; Bregman, J. D.; Witteborn, F. C.; Wooden, D. H.; Rank, D. M.; Cohen, M.; Allamandola, Louis J.; Tielens, Alexander G. G. M.

    1986-01-01

    Spectrophotometry from 5 to 9 microns (resolution = 0.02) of comet Halley was obtained from the Kuiper Airborne Observatory on 1985 Dec. 12.1 and 1986 April 8.6 and 10.5 UT. Two spectral features are apparent in all the observations, one from 5.24 to 5.6 microns, and the silicate emission feature which has an onset between 7 and 8 microns. There is no evidence for the 7.5 microns feature observed by the Vega 1 spacecraft; the large difference between the areal coverage viewed from the spacecraft and the airplane may explain the discrepancy. Color temperatures significantly higher than a blackbody indicate that small particles are abundant in the coma. Significant spatial and temporal variations in the spectrum show trends similar to those observed from the ground.

  3. Apparatus for continuous, fast, and precise measurements of position and velocity of a small spherical particle

    NASA Technical Reports Server (NTRS)

    Venkataraman, T. S.; Eidson, W. W.; Cohen, L. D.; Farina, J. D.; Acquista, C.

    1983-01-01

    The position and velocity of optically levitated glass spheres (radii 10-20 microns) movng in a gas are measured accurately, rapidly, and continuously using a high-speed rotating polygon mirror. The experimental technique developed here has repeatable position accuracies better than 20 microns. Each measurement takes less than 1 microsec and can be repeated every 100 microsec. The position of the levitated glass spheres can be manipulated accurately by modulating the laser power with an acoustic optic modulator. The technique provides a fast and accurate method to study general particle dynamics in a fluid.

  4. Calibration of the active radiation detector for Spacelab-One

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The flight models of the active radiation detector (ARD) for the ENV-01 environmental monitor were calibrated using gamma radiation. Measured sensitivities of the ion chambers were 6.1 + or - 0.3 micron rad per count for ARD S/N1, and 10.4 + or - 0.5 micron rad per count for ARD S/N2. Both were linear over the measured range 0.10 to 500 m/rad hour. The particle counters (proportional counters) were set to respond to approximately 85% of minimum ionizing particles of unit charge passing through them. These counters were also calibrated in the gamma field.

  5. Polishing compound for plastic surfaces

    DOEpatents

    Stowell, M.S.

    1993-01-01

    A polishing compound for plastic surfaces is disclosed. The compound contains by weight approximately 4 to 17 parts at least one petroleum distillate lubricant, 1 to 6 parts mineral spirits, 2.5 to 15 parts abrasive particles, and 2.5 to 10 parts water. The abrasive is tripoli or a similar material that contains colloidal silica. Preferably, most of the abrasive particles are less than approximately 10 microns, more preferably less than approximately 5 microns in size. The compound is used on PLEXIGLAS{sup TM}, LEXAN{sup TM}, LUCITE{sup TM}, polyvinyl chloride (PVC) and similar plastic materials whenever a smooth, clear polished surface is desired.

  6. Quantification of hydrophobic interaction affinity of colloids

    NASA Astrophysics Data System (ADS)

    Saini, G.; Nasholm, N.; Wood, B. D.

    2009-12-01

    Colloids play an important role in a wide variety of disciplines, including water and wastewater treatment, subsurface transport of metals and organic contaminants, migration of fines in oil reservoirs, biocolloid (virus and bacteria) transport in subsurface, and are integral to laboratory transport studies. Although the role of hydrophobicity in adhesion and transport of colloids, particularly bacteria, is well known; there is scarcity of literature regarding hydrophobicity measurement of non-bacterial colloids and other micron-sized particles. Here we detail an experimental approach based on differential partitioning of colloids between two liquid phases (hydrocarbon and buffer) as a measure of the hydrophobic interaction affinity of colloids. This assay, known as Microbial adhesion to hydrocarbons or MATH, is frequently used in microbiology and bacteriology for quantifying the hydrophobicity of microbes. Monodispersed colloids and particles, with sizes ranging from 1 micron to 33 micron, were used for the experiments. A range of hydrophobicity values were observed for different particles. The hydrophobicity results are also verified against water contact angle measurements of these particles. This liquid-liquid partitioning assay is quick, easy-to-perform and requires minimal instrumentation. Estimation of the hydrophobic interaction affinity of colloids would lead to a better understanding of their adhesion to different surfaces and subsequent transport in porous media.

  7. Synthesis and Reaction Chemistry of Nanosize Monosodium Titanate

    PubMed Central

    Elvington, Mark C.; Taylor-Pashow, Kathryn M. L.; Tosten, Michael H.; Hobbs, David T.

    2016-01-01

    This paper describes the synthesis and peroxide-modification of nanosize monosodium titanate (nMST), along with an ion-exchange reaction to load the material with Au(III) ions. The synthesis method was derived from a sol-gel process used to produce micron-sized monosodium titanate (MST), with several key modifications, including altering reagent concentrations, omitting a particle seed step, and introducing a non-ionic surfactant to facilitate control of particle formation and growth. The resultant nMST material exhibits spherical-shaped particle morphology with a monodisperse distribution of particle diameters in the range from 100 to 150 nm. The nMST material was found to have a Brunauer-Emmett-Teller (BET) surface area of 285 m2g-1, which is more than an order of magnitude higher than the micron-sized MST. The isoelectric point of the nMST measured 3.34 pH units, which is a pH unit lower than that measured for the micron-size MST. The nMST material was found to serve as an effective ion exchanger under weakly acidic conditions for the preparation of an Au(III)-exchange nanotitanate. In addition, the formation of the corresponding peroxotitanate was demonstrated by reaction of the nMST with hydrogen peroxide. PMID:26967828

  8. Impact of Defects in Powder Feedstock Materials on Microstructure of 304L and 316L Stainless Steel Produced by Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Morrow, Benjamin M.; Lienert, Thomas J.; Knapp, Cameron M.; Sutton, Jacob O.; Brand, Michael J.; Pacheco, Robin M.; Livescu, Veronica; Carpenter, John S.; Gray, George T.

    2018-05-01

    Recent work in both 304L and 316L stainless steel produced by additive manufacturing (AM) has shown that in addition to the unique, characteristic microstructures formed during the process, a fine dispersion of sub-micron particles, with a chemistry different from either the powder feedstock or the expected final material, are evident in the final microstructure. Such fine-scale features can only be resolved using transmission electron microscopy (TEM) or similar techniques. The present work uses electron microscopy to study both the initial powder feedstock and microstructures in final AM parts. Special attention is paid to the chemistry and origin of these nanoscale particles in several different metal alloys, and their impact on the final build. Comparisons to traditional, wrought material will be made.

  9. Generating Bulk-Scale Ordered Optical Materials Using Shear-Assembly in Viscoelastic Media.

    PubMed

    Finlayson, Chris E; Baumberg, Jeremy J

    2017-06-22

    We review recent advances in the generation of photonics materials over large areas and volumes, using the paradigm of shear-induced ordering of composite polymer nanoparticles. The hard-core/soft-shell design of these particles produces quasi-solid "gum-like" media, with a viscoelastic ensemble response to applied shear, in marked contrast to the behavior seen in colloidal and granular systems. Applying an oscillatory shearing method to sub-micron spherical nanoparticles gives elastomeric photonic crystals (or "polymer opals") with intense tunable structural color. The further engineering of this shear-ordering using a controllable "roll-to-roll" process known as Bending Induced Oscillatory Shear (BIOS), together with the interchangeable nature of the base composite particles, opens potentially transformative possibilities for mass manufacture of nano-ordered materials, including advances in optical materials, photonics, and metamaterials/plasmonics.

  10. Generating Bulk-Scale Ordered Optical Materials Using Shear-Assembly in Viscoelastic Media

    PubMed Central

    Finlayson, Chris E.; Baumberg, Jeremy J.

    2017-01-01

    We review recent advances in the generation of photonics materials over large areas and volumes, using the paradigm of shear-induced ordering of composite polymer nanoparticles. The hard-core/soft-shell design of these particles produces quasi-solid “gum-like” media, with a viscoelastic ensemble response to applied shear, in marked contrast to the behavior seen in colloidal and granular systems. Applying an oscillatory shearing method to sub-micron spherical nanoparticles gives elastomeric photonic crystals (or “polymer opals”) with intense tunable structural color. The further engineering of this shear-ordering using a controllable “roll-to-roll” process known as Bending Induced Oscillatory Shear (BIOS), together with the interchangeable nature of the base composite particles, opens potentially transformative possibilities for mass manufacture of nano-ordered materials, including advances in optical materials, photonics, and metamaterials/plasmonics. PMID:28773044

  11. The Lunar Regolith

    NASA Technical Reports Server (NTRS)

    Noble, Sarah

    2009-01-01

    A thick layer of regolith, fragmental and unconsolidated rock material, covers the entire lunar surface. This layer is the result of the continuous impact of meteoroids large and small and the steady bombardment of charged particles from the sun and stars. The regolith is generally about 4-5 m thick in mare regions and 10-15 m in highland areas (McKay et al., 1991) and contains all sizes of material from large boulders to sub-micron dust particles. Below the regolith is a region of large blocks of material, large-scale ejecta and brecciated bedrock, often referred to as the "megaregolith". Lunar soil is a term often used interchangeably with regolith, however, soil is defined as the subcentimeter fraction of the regolith (in practice though, soil generally refers to the submillimeter fraction of the regolith). Lunar dust has been defined in many ways by different researchers, but generally refers to only the very finest fractions of the soil, less than approx.10 or 20 microns. Lunar soil can be a misleading term, as lunar "soil" bears little in common with terrestrial soils. Lunar soil contains no organic matter and is not formed through biologic or chemical means as terrestrial soils are, but strictly through mechanical comminution from meteoroids and interaction with the solar wind and other energetic particles. Lunar soils are also not exposed to the wind and water that shapes the Earth. As a consequence, in contrast to terrestrial soils, lunar soils are not sorted in any way, by size, shape, or chemistry. Finally, without wind and water to wear down the edges, lunar soil grains tend to be sharp with fresh fractured surfaces.

  12. Large Format Transition Edge Sensor Microcalorimeter Arrays

    NASA Technical Reports Server (NTRS)

    Chervenak, J. A.; Adams, J. A.; Bandler, S. b.; Busch, S. E.; Eckart, M. E.; Ewin, A. E.; Finkbeiner, F. M.; Kilbourne, C. A.; Kelley, R. L.; Porst, J. P.; hide

    2012-01-01

    We have produced a variety of superconducting transition edge sensor array designs for microcalorimetric detection of x-rays. Designs include kilopixel scale arrays of relatively small sensors (approximately 75 micron pitch) atop a thick metal heat sinking layer as well as arrays of membrane-isolated devices on 250 micron and up to 600 micron pitch. We discuss fabrication and performance of microstripline wiring at the small scales achieved to date. We also address fabrication issues with reduction of absorber contact area in small devices.

  13. [Experimental ultrasound angioplasty: in vitro resolution of thrombi].

    PubMed

    Stähr, P; Erbel, R; Weber, W; Fischer, H; Meyer, J

    1995-05-01

    A new ultrasonic angioplasty ablation catheter connected to a 19.5 kHz. 25 W transducer was tested in vitro for its ability to disrupt 12-h. 24-h, and 5-day-old whole blood thrombi (n = 45.697 mg +/- 223 mg) and fibrin thrombi (n = 45.338 mg +/- 133 mg), as well as 5-day-old cadaver thrombi (n = 8.270 mg +/- 71 mg) within 10 min. Five of each age were used as control thrombi in which the catheter was moved back and forth without ultrasound emission. The size of ablated thrombus particles was measured by a laser device. The power output at the end of the catheter was assessed calorimetrically. The loss of weight of whole blood thrombi was between 429 (74%) and 524 mg (91%) (p < 0.01, whole blood thrombi vs. control thrombi) and between 302 (85%) and 314 mg (95%) (p < 0.05) for fibrin thrombi, respectively. Thrombus age did not prove to be a highly significant influencing factor. The disruption rate for whole blood thrombi was 0.75 to 1.05 mg/s and for fibrin thrombi 0.69 to 0.7 mg/s. It was only 0.09 mg/s for the cadaver thrombi. 93% of all particles ablated from whole blood thrombus ranged between 0-5 micron, less than 0.2% between 30-150 microns. For fibrin thrombi 69% of all particles were < 10 microns (25% between 10-20 microns). Only 0.02% ranged between 300-600 microns, which was similar for cadaver thrombi. The mean measured power output at the catheter tip was 5.9 W compared to the power output of 25 W at the ultrasound generator.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. A preliminary report on the study of the impact sites and particles of the solar maximum satellite thermal blanket

    NASA Technical Reports Server (NTRS)

    Zook, H. A.

    1985-01-01

    A preliminary study of the work on examination of the impact pits in, or penetrations through, the thermal blankets of the Solar Maximum Satellite is presented. The three largest pieces of the thermal blanket were optically scanned with a total surface area of about one half square meter. Over 1500 impact sites of all sizes, including 432 impacts larger than 40 microns in diameter, have been documented. Craters larger in diameter than about 100 microns found on the 75 micron thick Kapton first sheet of the main electronics box blanket are actually holes and constitute perforations through the blanket. A summary of the impact pit population that were found is given. The chemical study of these craters is only in the initial stages, with only about 250 chemical spectra of particles observed in or around impact pits or in the debris pattern being recorded.

  15. Pulmonary Deposition of Aerosols in Microgravity

    NASA Technical Reports Server (NTRS)

    Prisk, G. Kim

    1997-01-01

    The intrapulmonary deposition of airborne particles (aerosol) in the size range of 0.5 to 5 microns is primarily due to gravitational sedimentation. In the microgravity (muG) environment, sedimentation is no longer active, and thus there should be marked changes in the amount and site of the deposition of these aerosol. We propose to study the total intrapulmonary deposition of aerosol spanning the range 0.5 to 5 microns in the KC-135 at both muG and at 1.8-G. This will be followed by using boli of 1.0 micron aerosol, inhaled at different points in a breath to study aerosol dispersion and deposition as a function of inspired depth. The results of these studies will have application in better understanding of pulmonary diseases related to inhaled particles (pneumoconioses), in studying drugs delivered by inhalation, and in understanding the consequence of long-term exposure to respirable aerosols in long-duration space flight.

  16. Interference effects in laser-induced plasma emission from surface-bound metal micro-particles

    DOE PAGES

    Feigenbaum, Eyal; Malik, Omer; Rubenchik, Alexander M.; ...

    2017-04-19

    Here, the light-matter interaction of an optical beam and metal micro-particulates at the vicinity of an optical substrate surface is critical to the many fields of applied optics. Examples of impacted fields are laser-induced damage in high power laser systems, sub-wavelength laser machining of transmissive materials, and laser-target interaction in directed energy applications. We present a full-wave-based model that predicts the laser-induced plasma pressure exerted on a substrate surface as a result of light absorption in surface-bound micron-scale metal particles. The model predictions agree with experimental observation of laser-induced shallow pits, formed by plasma emission and etching from surface-bound metalmore » micro-particulates. It provides an explanation for the prototypical side lobes observed along the pit profile, as well as for the dependence of the pit shape on the incident laser and particle parameters. Furthermore, the model highlights the significance of the interference of the incident light in the open cavity geometry formed between the micro-particle and the substrate in the resulting pit shape.« less

  17. Methylcellulose-Directed Synthesis of Nanocrystalline Zeolite NaA with High CO₂ Uptake.

    PubMed

    Shakarova, Dilshod; Ojuva, Arto; Bergström, Lennart; Akhtar, Farid

    2014-07-28

    Zeolite NaA nanocrystals with a narrow particle size distribution were prepared by template-free hydrothermal synthesis in thermo-reversible methylcellulose gels. The effects of the amount of methylcellulose, crystallization time and hydrothermal treatment temperature on the crystallinity and particle size distribution of the zeolite NaA nanocrystals were investigated. We found that the thermogelation of methylcellulose in the alkaline Na₂O-SiO₂-Al₂O₃-H₂O system played an important role in controlling the particle size. The synthesized zeolite nanocrystals are highly crystalline, as demonstrated by X-ray diffraction (XRD), and scanning electron microscopy (SEM) shows that the nanocrystals can also display a well-defined facetted morphology. Gas adsorption studies on the synthesized nanocrystalline zeolite NaA showed that nanocrystals with a size of 100 nm displayed a high CO₂ uptake capacity (4.9 mmol/g at 293 K at 100 kPa) and a relatively rapid uptake rate compared to commercially available, micron-sized particles. Low-cost nanosized zeolite adsorbents with a high and rapid uptake are important for large scale gas separation processes, e.g., carbon capture from flue gas.

  18. Interference effects in laser-induced plasma emission from surface-bound metal micro-particles.

    PubMed

    Feigenbaum, Eyal; Malik, Omer; Rubenchik, Alexander M; Matthews, Manyalibo J

    2017-05-01

    The light-matter interaction of an optical beam and metal micro-particulates at the vicinity of an optical substrate surface is critical to the many fields of applied optics. Examples of impacted fields are laser-induced damage in high power laser systems, sub-wavelength laser machining of transmissive materials, and laser-target interaction in directed energy applications. We present a full-wave-based model that predicts the laser-induced plasma pressure exerted on a substrate surface as a result of light absorption in surface-bound micron-scale metal particles. The model predictions agree with experimental observation of laser-induced shallow pits, formed by plasma emission and etching from surface-bound metal micro-particulates. It provides an explanation for the prototypical side lobes observed along the pit profile, as well as for the dependence of the pit shape on the incident laser and particle parameters. Furthermore, the model highlights the significance of the interference of the incident light in the open cavity geometry formed between the micro-particle and the substrate in the resulting pit shape.

  19. Concentration of Micro and Nanoparticles in Sessile Droplets Using Asymmetric Surface Wave Irradiation

    NASA Astrophysics Data System (ADS)

    Friend, James; Yeo, Leslie; Li, Haiyan

    2007-11-01

    A rapid particle concentration method in sessile droplets and confined fluid chambers has been developed using asymmetric surface wave propagation on a substrate upon which the droplet is placed. Nanometre-order vibration induced along the substrate at frequencies from 8 to 125 MHz generate a combination of forces upon suspended particles and the fluid droplet itself via diffraction to provide localized agglomeration of nanoparticles into microstructures, followed by rapid collection of the microstructures to a single point at the centre of the droplet in about 2 to 30 seconds. This is far faster than other currently available particle concentration mechanisms due to the large convective velocities achieved using the device. The ability to control the collection via surface wave power and the effect of scale on the collection time and scheme of agglomeration are explained via a physical model, verified using fluorescent polystyrene particles from 20 nm to 45 microns in diameter. The usefulness of the method for bioparticles is illustrated through rapid concentration of yeast and mouse mesenchymal stem cells which remain viable and functional after concentration.

  20. Chiral twist drives raft formation and organization in membranes composed of rod-like particles

    PubMed Central

    Lubensky, Tom C.

    2017-01-01

    Lipid rafts are hypothesized to facilitate protein interaction, tension regulation, and trafficking in biological membranes, but the mechanisms responsible for their formation and maintenance are not clear. Insights into many other condensed matter phenomena have come from colloidal systems, whose micron-scale particles mimic basic properties of atoms and molecules but permit dynamic visualization with single-particle resolution. Recently, experiments showed that bidisperse mixtures of filamentous viruses can self-assemble into colloidal monolayers with thermodynamically stable rafts exhibiting chiral structure and repulsive interactions. We quantitatively explain these observations by modeling the membrane particles as chiral liquid crystals. Chiral twist promotes the formation of finite-sized rafts and mediates a repulsion that distributes them evenly throughout the membrane. Although this system is composed of filamentous viruses whose aggregation is entropically driven by dextran depletants instead of phospholipids and cholesterol with prominent electrostatic interactions, colloidal and biological membranes share many of the same physical symmetries. Chiral twist can contribute to the behavior of both systems and may account for certain stereospecific effects observed in molecular membranes. PMID:27999184

  1. Direct Visualization of the Hydration Layer on Alumina Nanoparticles with the Fluid Cell STEM in situ

    PubMed Central

    Firlar, Emre; Çınar, Simge; Kashyap, Sanjay; Akinc, Mufit; Prozorov, Tanya

    2015-01-01

    Rheological behavior of aqueous suspensions containing nanometer-sized powders is of relevance to many branches of industry. Unusually high viscosities observed for suspensions of nanoparticles compared to those of micron size powders cannot be explained by current viscosity models. Formation of so-called hydration layer on alumina nanoparticles in water was hypothesized, but never observed experimentally. We report here on the direct visualization of aqueous suspensions of alumina with the fluid cell in situ. We observe the hydration layer formed over the particle aggregates and show that such hydrated aggregates constitute new particle assemblies and affect the flow behavior of the suspensions. We discuss how these hydrated nanoclusters alter the effective solid content and the viscosity of nanostructured suspensions. Our findings elucidate the source of high viscosity observed for nanoparticle suspensions and are of direct relevance to many industrial sectors including materials, food, cosmetics, pharmaceutical among others employing colloidal slurries with nanometer-scale particles. PMID:25996055

  2. Satellite Remote Sensing: Aerosol Measurements

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.

    2013-01-01

    Aerosols are solid or liquid particles suspended in the air, and those observed by satellite remote sensing are typically between about 0.05 and 10 microns in size. (Note that in traditional aerosol science, the term "aerosol" refers to both the particles and the medium in which they reside, whereas for remote sensing, the term commonly refers to the particles only. In this article, we adopt the remote-sensing definition.) They originate from a great diversity of sources, such as wildfires, volcanoes, soils and desert sands, breaking waves, natural biological activity, agricultural burning, cement production, and fossil fuel combustion. They typically remain in the atmosphere from several days to a week or more, and some travel great distances before returning to Earth's surface via gravitational settling or washout by precipitation. Many aerosol sources exhibit strong seasonal variability, and most experience inter-annual fluctuations. As such, the frequent, global coverage that space-based aerosol remote-sensing instruments can provide is making increasingly important contributions to regional and larger-scale aerosol studies.

  3. Influence of hot spot features on the initiation characteristics of heterogeneous nitromethane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dattelbaum, Dana M; Sheffield, Stephen A; Stahl, David B

    2010-01-01

    To gain insights into the critical hot spot features influencing energetic materials initiation characteristics, well-defined micron-scale particles have been intentionally introduced into the homogeneous explosive nitromethane (NM). Two types of potential hot spot origins have been examined - shock impedance mismatches using solid silica beads, and porosity using hollow microballoons - as well as their sizes and inter-particle separations. Here, we present the results of several series of gas gun-driven plate impact experiments on NM/particle mixtures with well-controlled shock inputs. Detailed insights into the nature of the reactive flow during the build-up to detonation have been obtained from the responsemore » of in-situ electromagnetic gauges, and the data have been used to establish Pop-plots (run-distance-to-detonation vs. shock input pressure) for the mixtures. Comparisons of sensitization effects and energy release characteristics relative to the initial shock front between the solid and hollow beads are presented.« less

  4. Direct Visualization of the Hydration Layer on Alumina Nanoparticles with the Fluid Cell STEM in situ.

    PubMed

    Firlar, Emre; Çınar, Simge; Kashyap, Sanjay; Akinc, Mufit; Prozorov, Tanya

    2015-05-21

    Rheological behavior of aqueous suspensions containing nanometer-sized powders is of relevance to many branches of industry. Unusually high viscosities observed for suspensions of nanoparticles compared to those of micron size powders cannot be explained by current viscosity models. Formation of so-called hydration layer on alumina nanoparticles in water was hypothesized, but never observed experimentally. We report here on the direct visualization of aqueous suspensions of alumina with the fluid cell in situ. We observe the hydration layer formed over the particle aggregates and show that such hydrated aggregates constitute new particle assemblies and affect the flow behavior of the suspensions. We discuss how these hydrated nanoclusters alter the effective solid content and the viscosity of nanostructured suspensions. Our findings elucidate the source of high viscosity observed for nanoparticle suspensions and are of direct relevance to many industrial sectors including materials, food, cosmetics, pharmaceutical among others employing colloidal slurries with nanometer-scale particles.

  5. Direct visualization of the hydration layer on alumina nanoparticles with the fluid cell STEM in situ

    DOE PAGES

    Firlar, Emre; Çınar, Simge; Kashyap, Sanjay; ...

    2015-05-21

    Rheological behavior of aqueous suspensions containing nanometer-sized powders is of relevance to many branches of industry. Unusually high viscosities observed for suspensions of nanoparticles compared to those of micron size powders cannot be explained by current viscosity models. Formation of so-called hydration layer on alumina nanoparticles in water was hypothesized, but never observed experimentally. We report here on the direct visualization of aqueous suspensions of alumina with the fluid cell in situ. We observe the hydration layer formed over the particle aggregates and show that such hydrated aggregates constitute new particle assemblies and affect the flow behavior of the suspensions.more » We discuss how these hydrated nanoclusters alter the effective solid content and the viscosity of nanostructured suspensions. As a result, our findings elucidate the source of high viscosity observed for nanoparticle suspensions and are of direct relevance to many industrial sectors including materials, food, cosmetics, pharmaceutical among others employing colloidal slurries with nanometer-scale particles.« less

  6. Too Big for the Sieve

    NASA Image and Video Library

    2012-10-11

    In this image, the scoop on NASA Curiosity rover shows the larger soil particles that were too big to filter through a sample-processing sieve that is porous only to particles less than 0.006 inches 150 microns across.

  7. Aerosol Chemical Speciation Monitor (ACSM) Instrument Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, Thomas B.

    The Aerodyne Aerosol Chemical Speciation Monitor (ACSM) measures particle mass loading and chemical composition in real time for non-refractory sub-micron aerosol particles. The ACSM is designed for long-term unattended deployment and routine monitoring applications.

  8. Hypervelocity Impact Testing of IM7/977-3 with Micro-Sized Particles

    NASA Technical Reports Server (NTRS)

    Smith, J. G.; Jegley, D. C.; Siochi, E. J.; Wells, B. K.

    2010-01-01

    Ground-based hypervelocity imapct testing was conducted on IM7/977-3 quasi-isotropic flat panels at normal incidence using micron-sized particles (i.e. less than or equal to 100 microns) of soda lime glass and olivine. Testing was performed at room temperature (RT) and 175 C with results from the 175 C test compared to those obtained at RT. Between 10 and 30 particles with velocities ranging from 5 to 13 km/s impacted each panel surface for each test temperature. Panels were ultrasonically scanned prior to and after impact testing to assess internal damage. Post-impact analysis included microscopic examination of the surface, determination of particle speed and location, and photomicroscopy for microcrack assessment. Internal damage was observed by ultrasonic inspection on panels impacted at 175 C, whereas damage for the RT impacted panels was confined to surface divets/craters as determined by microscopic analysis.

  9. Coagulation of grains in static and collapsing protostellar clouds

    NASA Technical Reports Server (NTRS)

    Weidenschilling, S. J.; Ruzmaikina, T. V.

    1993-01-01

    The wavelength dependence of extinction in the diffuse interstellar medium implies that it is produced by particles of dominant size of approximately 10(exp -5) cm. There is some indication that in the cores of dense molecular clouds, sub-micron grains can coagulate to form larger particles; this process is probably driven by turbulence. The most primitive meteorites (carbonaceous chondrites) are composed of particles with a bimodal size distribution with peaks near 1 micron (matrix) and 1 mm (chondrules). Models for chondrule formation that involve processing of presolar material by chemical reactions or through an accretion shock during infall assume that aggregates of the requisite mass could form before or during collapse. The effectiveness of coagulation during collapse has been disputed; it appears to depend on specific assumptions. The first results of detailed numerical modeling of spatial and temporal variations of particle sizes in presolar clouds, both static and collapsing, is reported in this article.

  10. Simulating STARDUST: Reproducing Impacts of Interstellar Dust in the Laboratory

    NASA Astrophysics Data System (ADS)

    Postberg, F.; Srama, R.; Hillier, J. K.; Sestak, S.; Green, S. F.; Trieloff, M.; Grün, E.

    2008-09-01

    Our experiments are carried out to support the analysis of interstellar dust grains, ISDGs, brought to earth by the STARDUST mission. Since the very first investigations, it has turned out that the major problem of STARDUST particle analysis is the modification (partly even the destruction) during capture when particles impact the spacecraft collectors with a velocity of up to 20 km/s. While it is possible to identify, extract, and analyse cometary grains larger than a few microns in aerogel and on metal collector plates, the STARDUST team is not yet ready for the identification, extraction, and analysis of sub-micron sized ISDGs with impact speeds of up to 20 km/s. Reconstructing the original particle properties requires a simulation of this impact capture process. Moreover, due to the lack of laboratory studies of high speed impacts of micron scale dust into interstellar STARDUST flight spares, the selection of criteria for the identification of track candidates is entirely subjective. Simulation of such impact processes is attempted with funds of the FRONTIER program within the framework of the Heidelberg University initiative of excellence. The dust accelerator at the MPI Kernphysik is a facility unique in the world to perform such experiments. A critical point is the production of cometary and interstellar dust analogue material and its acceleration to very high speeds of 20 km/s, which has never before been performed in laboratory experiments. Up to now only conductive material was successfully accelerated by the 2 MV Van de Graaf generator of the dust accelerator facility. Typical projectile materials are Iron, Aluminium, Carbon, Copper, Silver, and the conducting hydrocarbon Latex. Ongoing research now enables the acceleration of any kind of rocky planetary and interstellar dust analogues (Hillier et al. 2008, in prep.). The first batch of dust samples produced with the new method consists of micron and submicron SiO2 grains. Those were successfully accelerated and provided impacts with speeds of over 20 km/s. Impact signals as well as high resolution impact ionisation mass spectra - which reflect the grain's composition - were evaluated. Thus, the tests allow studying of dynamic properties as well as a compositional analysis of the grains. The next step - the production and testing of meteoritic dust material - is already in progress. On basis of our successful experiments, we will comprehensively analyse and compare (in cooperation with the STARDUST team) both the initial starting material and the impact modified material, either captured by aerogel or metal foils, as well as the particle-target interaction along capture tracks. These experiments will be performed on a variety of possible starting materials, with varying major, minor and trace elements. The investigations will allow to reconstruct the initial particle mass, speed, chemical and mineralogical composition of particles before capture, with important implications for the nature of interstellar matter and early solar system processes. Furthermore, the impact spectra we obtain from our in-situ dust analyser with the same projectiles will be included in a data base for comparison with spectra obtained by the dust analyser CIDA onboard the STARDUST spacecraft.

  11. Physical-mathematical model of condensation process of the sub-micron dust capture in sprayer scrubber

    NASA Astrophysics Data System (ADS)

    Shilyaev, M. I.; Khromova, E. M.; Grigoriev, A. V.; Tumashova, A. V.

    2011-09-01

    A physical-mathematical model of the heat and mass exchange process and condensation capture of sub-micron dust particles on the droplets of dispersed liquid in a sprayer scrubber is proposed and analysed. A satisfactory agreement of computed results and experimental data on soot capturing from the cracking gases is obtained.

  12. The enrichment of the ISM: Evolved stars and meteorites

    NASA Technical Reports Server (NTRS)

    Jura, M.

    1995-01-01

    Small inclusions (diameters ranging from 0.001 microns to 10 microns) of isotopically anomalous material within meteorites were almost certainly produced in mass-losing stars. These solid particles preserved their individual identities as they passed through the interstellar medium and the pre-solar nebular. The relationship between studies of meteorites and mass-losing red giants is explored.

  13. Particle-In-Cell Simulations of a Thermionic Converter

    NASA Astrophysics Data System (ADS)

    Clark, S. E.

    2017-12-01

    Simulations of thermionic converters are presented where cesium is used as a work function reducing agent in a nano-fabricated triode configuration. The cathode and anode are spaced on the order of 100 μm, and the grid structure has features on the micron scale near the anode. The hot side is operated near 1600 K, the cold side near 600 K, and the converter has the potential to convert heat to DC electrical current upwards of 20% efficiency. Affordable and robust thermionic converters have the potential to displace century old mechanical engines and turbines as a primary means of electrical power generation in the near future. High efficiency converters that operate at a small scale could be used to generate power locally and alleviate the need for large scale power transmission systems. Electron and negative cesium ion back emission from the anode are considered, as well as device longevity and fabrication feasibility.

  14. Particle-In-Cell Simulations of a Thermionic Converter

    NASA Astrophysics Data System (ADS)

    Clark, Stephen

    2017-10-01

    Simulations of thermionic converters are presented where cesium is used as a work function reducing agent in a nano-fabricated triode configuration. The cathode and anode are spaced on the order of 100 μm, and the grid structure has features on the micron scale near the anode. The hot side is operated near 1600 K, the cold side near 600 K, and the converter has the potential to convert heat to DC electrical current upwards of 20% efficiency. Affordable and robust thermionic converters have the potential to displace century old mechanical engines and turbines as a primary means of electrical power generation in the near future. High efficiency converters that operate at a small scale could be used to generate power locally and alleviate the need for large scale power transmission systems. Electron and negative cesium ion back emission from the anode are considered, as well as device longevity and fabrication feasibility.

  15. West Antarctica as a Natural Laboratory for Single- and Mixed-Phase Cloud Microphysics

    NASA Astrophysics Data System (ADS)

    Wilson, A.; Scott, R. C.; Lubin, D.

    2016-12-01

    As part of the ARM West Antarctic Radiation Experiment (AWARE), a micropulse lidar (MPL) and a shortwave spectroradiometer were deployed to the West Antarctic Ice Sheet (WAIS) Divide Ice Camp during December 2015 and January 2016. Contrasting meteorological conditions gave rise to several distinct episodes of mixed-phase clouds, liquid water clouds, and entirely glaciated clouds. These phases were readily distinguished in the polarization signature from the MPL. The spectroradiometer measured downwelling hemispheric irradiance in the wavelength interval 0.35-2.2 microns, with 3-nanometer resolution at visible and 10-nanometer resolution at near-infrared wavelengths. Under overcast sky conditions, this measured irradiance is sensitive to total cloud optical depth for wavelengths shorter than 1.1 microns, and is sensitive at both cloud phase and effective particle size in the 1.6-micron window. For single-phase clouds, the spectral irradiance in the 1.6-micron window shows marked contrasts between liquid and ice water. For mixed phase clouds, this spectral dependence of the 1.6-micron irradiance is consistent with the prevailing phase, but in all cases the irradiance is small than that under a liquid water cloud having the same total optical depth. Radiative transfer retrievals of effective particle size from the 1.6-micron irradiance data reveal liquid water effective radii typically 2 microns smaller than found in the spring and summertime high Arctic. Most of the clouds sampled here were within 2 km of the surface, and there are comprehensive ancillary data including sondes four times daily, additional microwave radiometer data, and broadband radiometry. This AWARE data set from WAIS Divide provides a unique opportunity for testing and improving cloud microphysical parameterizations in extreme cold and pristine conditions.

  16. Carotenoids microencapsulation by spray drying method and supercritical micronization.

    PubMed

    Janiszewska-Turak, Emilia

    2017-09-01

    Carotenoids are used as natural food colourants in the food industry. As unstable natural pigments they need protection. This protection can involve the microencapsulation process. There are numerous techniques that can be used for carotenoid protection, but two of them -spray drying and supercritical micronization - are currently the most commonly used. The objective of this paper is to describe these two techniques for carotenoid microencapsulation. In this review information from articles from the last five years was taken into consideration. Pigments described in the review are all carotenoids. Short summary of carotenoids sources was presented. For the spray drying technique, a review of carrier material and process conditions was made. Moreover, a short description of some of the most suitable processes involving supercritical fluids for carotenoids (astaxanthin, β-carotene, lutein and lycopene) encapsulation was given. These include the Supercritical Antisolvent process (SAS), Particles from Gas-Saturated Solutions (PGSS), Supercritical Fluid Extraction From an Emulsion (SFEE) and Solution Enhanced Dispersion by Supercritical fluids (SEDS). In most cases the studies, independently of the described method, were conducted on the laboratory scale. In some a scale-up was also tested. In the review a critical assessment of the used methods was made. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Cooling and manipulation of nanoparticles in high vacuum

    NASA Astrophysics Data System (ADS)

    Millen, J.; Kuhn, S.; Patolsky, F.; Kosloff, A.; Arndt, M.

    2016-09-01

    Optomechanical systems, where the mechanical motion of objects is measured and controlled using light, have a huge range of applications, from the metre-scale mirrors of LIGO which detect gravitational waves, to micron scale superconducting systems that can transduce quantum signals. A fascinating addition to this field are free or levitated optomechanical systems, where the oscillator is not physically tethered. We study a variety of nanoparticles which are launched through vacuum (10-8 mbar) and interact with an optical cavity. The centre of mass motion of a nanoparticle can be cooled by the optical cavity field. It is predicted that the quantum ground state of motion can be reached, leaving the particle free to evolve after release from the light field, thus preparing nanoscale matter for quantum interference experiments.

  18. Particle field diagnose using angular multiplexing volume holography

    NASA Astrophysics Data System (ADS)

    Zhao, Yu; Li, Zeren; Luo, Zhenxiong; Jun, Li; Zhong, Jie; Ye, Yan; Li, Shengfu; Zhu, Jianhua

    2017-08-01

    The problem of particle field diagnosing using holography can be met in many areas. But single frame hologram can only catch one moment of the fast event, which can't reveal the change process of an unrepeatable fast event. For events in different time-scale, different solution should be used. We did this work to record a laser induced particle field in the time-scale of tens of micron seconds. A laser of pulse sequence mode is applied to provide 10 pulses, the energy and time interval of whom is 150mJ and 1μs. Four pockels cells are employed to pick up the last four pulses for holographic recording, the other pulses are controlled to pre-expose the photopolymer based recording material, which can enhance photosensitivity of the photopolymer during the moment of holographic recording. The angular multiplexing technique and volume holography is accepted to avoid shifting the photopolymer between each shot. Another Q-switch YAG laser (pulse energy 100mJ, pulse width 10ns) is applied to produce the fast event. As a result, we successfully caught the motion process of the laser induced particle field. The time interval of each frame is 1μs, the angular range of the four references is 14°, and the diffraction efficiency of each hologram is less than 2%. After a basic analysis, this optical system could catch more holograms through a compact design.

  19. MULPEX: a compact multi-layered polymer foil collector for micrometeoroids and orbital debris.

    NASA Astrophysics Data System (ADS)

    Kearsley, A. T.; Graham, G. A.; Burchell, M. J.; Taylor, E. A.; Drolshagen, G.; Chater, R. J.; McPhail, D.

    Detailed studies of preserved hypervelocity impact residues on spacecraft multi-layer insulation foils have yielded important information about the flux of small particles from different sources in low-Earth orbit (LEO). We have extended our earlier research on impacts occurring in LEO to design and testing of a compact capture device. MULPEX (MUlti-Layer Polymer EXperiment) is simple, cheap to build, lightweight, of no power demand, easy to deploy, and optimised for the efficient collection of impact residue for analysis on return to Earth. The capture medium is a stack of very thin (8 micron and 40 micron) polyimide foils, supported on poly-tetrafluoroethylene sheet frames, surrounded by a protective aluminium casing. The uppermost foil has a very thin metallic coating for thermal protection and resistance to atomic oxygen and ultra-violet exposure. The casing provides a simple detachable interface for deployment on the spacecraft, facing into the desired direction for particle collection. On return to the laboratory, the stacked foils are separated for examination in a variable pressure scanning electron microscope, without need for surface coating. Analysis of impact residue is performed using energy dispersive X-ray spectrometers. Our laboratory experiments, utilising buck-shot firings of analogues to micrometeoroids (35-38 micron olivine) and space debris (4 micron alumina and 1mm stainless steel) in a light gas gun, have shown that impact residue is abundant within the foil layers, and preserves a record of the impacting particle, whether of micrometer or millimetre dimensions. Penetrations of the top foil are easily recognised, and act as a proxy for dimensions of the penetrating particle. Impact may cause disruption and melting, but some residue retains sufficient crystallographic structure to show clear Raman lines, diagnostic of the original mineral.

  20. Non-absorbable mesoporous silica for the development of protein sequestration therapies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia-Bennett, Alfonso E., E-mail: alf.garcia@mq.edu.au; Ballell, Lluis, E-mail: lluis.p.ballell@gsk.com

    While our understanding of the molecular events leading to disease onset and progression have increased exponentially, our capacity to therapeutically intervene in these events with new chemical diversity has clearly fallen short of that pace. In the quest to readdress this situation, the drug discovery sector is slowly but increasingly exploring sources of alternative chemical matter, such as the ones provided by material science and nanotechnology. While new functional nano-sized materials hold great promise for the future, our lack of understanding of the long term safety implications associated with systemic exposure as well as the unclear regulatory path ahead hampermore » their present impact in drug development. Paradoxically, the exploitation of novel, functionally active micron-sized, synthetic, non-absorbable chemical matter, for the treatment or prevention of a number of epidemiologically significant conditions remains clearly underexplored. A combination of pre-existing evidence and future potential indicates that micron-sized mesoporous silica materials could be an untapped source of new drug candidates. These are free from both the dreaded high attrition associated with small molecule drug discovery and the uncertainties of nano-size technologies. This, together with the coming of age of synthetic methodologies to control particle size and shape; pore size and geometry; surface chemistry, bioconjugation and formulation, open up exciting possibilities to exploit this novel chemistry-biology therapeutic interface. - Highlights: • The development of functionally active micron-sized particles in medicine is underexplored. • Mesoporous materials offer the advantage of nanostructured particles in the micron size. • Non-absorbable drugs based on such particles for enzyme inhibition are being developed. • Several conditions can be targeted such as obesity, sepsis or celiac disease.« less

  1. Micrometeoroid and Lunar Secondary Ejecta Flux Measurements: Comparison of Three Acoustic Systems

    NASA Technical Reports Server (NTRS)

    Corsaro, R. D.; Giovane, F.; Liou, Jer-Chyi; Burtchell, M.; Pisacane, V.; Lagakos, N.; Williams, E.; Stansbery, E.

    2010-01-01

    This report examines the inherent capability of three large-area acoustic sensor systems and their applicability for micrometeoroids (MM) and lunar secondary ejecta (SE) detection and characterization for future lunar exploration activities. Discussion is limited to instruments that can be fabricated and deployed with low resource requirements. Previously deployed impact detection probes typically have instrumented capture areas less than 0.2 square meters. Since the particle flux decreases rapidly with increased particle size, such small-area sensors rarely encounter particles in the size range above 50 microns, and even their sampling the population above 10 microns is typically limited. Characterizing the sparse dust population in the size range above 50 microns requires a very large-area capture instrument. However it is also important that such an instrument simultaneously measures the population of the smaller particles, so as to provide a complete instantaneous snapshot of the population. For lunar or planetary surface studies, the system constraints are significant. The instrument must be as large as possible to sample the population of the largest MM. This is needed to reliably assess the particle impact risks and to develop cost-effective shielding designs for habitats, astronauts, and critical instrument. The instrument should also have very high sensitivity to measure the flux of small and slow SE particles. is the SE environment is currently poorly characterized, and possess a contamination risk to machinery and personnel involved in exploration. Deployment also requires that the instrument add very little additional mass to the spacecraft. Three acoustic systems are being explored for this application.

  2. Tiny Particles, So Far Away

    NASA Image and Video Library

    2005-01-10

    NASA's Spitzer Space Telescope recently captured these images of the star Vega, located 25 light years away in the constellation Lyra. Spitzer was able to detect the heat radiation from the cloud of dust around the star and found that the debris disc is much larger than previously thought. This side by side comparison, taken by Spitzer's multiband imaging photometer, shows the warm infrared glows from dust particles orbiting the star at wavelengths of 24 microns (figure 2 in blue) and 70 microns (figure 3 in red). Both images show a very large, circular and smooth debris disc. The disc radius extends to at least 815 astronomical units. (One astronomical unit is the distance from Earth to the Sun, which is 150-million kilometers or 93-million miles). Scientists compared the surface brightness of the disc in the infrared wavelengths to determine the temperature distribution of the disc and then infer the corresponding particle size in the disc. Most of the particles in the disc are only a few microns in size, or 100 times smaller than a grain of Earth sand. These fine dust particles originate from collisions of embryonic planets near the star at a radius of approximately 90 astronomical units, and are then blown away by Vega's intense radiation. The mass and short lifetime of these small particles indicate that the disc detected by Spitzer is the aftermath of a large and relatively recent collision, involving bodies perhaps as big as the planet Pluto. The images are 3 arcminutes on each side. North is oriented upward and east is to the left. http://photojournal.jpl.nasa.gov/catalog/PIA07218

  3. Rotating belt sieves for primary treatment, chemically enhanced primary treatment and secondary solids separation.

    PubMed

    Rusten, B; Rathnaweera, S S; Rismyhr, E; Sahu, A K; Ntiako, J

    2017-06-01

    Fine mesh rotating belt sieves (RBS) offer a very compact solution for removal of particles from wastewater. This paper shows examples from pilot-scale testing of primary treatment, chemically enhanced primary treatment (CEPT) and secondary solids separation of biofilm solids from moving bed biofilm reactors (MBBRs). Primary treatment using a 350 microns belt showed more than 40% removal of total suspended solids (TSS) and 30% removal of chemical oxygen demand (COD) at sieve rates as high as 160 m³/m²-h. Maximum sieve rate tested was 288 m³/m²-h and maximum particle load was 80 kg TSS/m²-h. When the filter mat on the belt increased from 10 to 55 g TSS/m², the removal efficiency for TSS increased from about 35 to 60%. CEPT is a simple and effective way of increasing the removal efficiency of RBS. Adding about 1 mg/L of cationic polymer and about 2 min of flocculation time, the removal of TSS typically increased from 40-50% without polymer to 60-70% with polymer. Using coagulation and flocculation ahead of the RBS, separation of biofilm solids was successful. Removal efficiencies of 90% TSS, 83% total P and 84% total COD were achieved with a 90 microns belt at a sieve rate of 41 m³/m²-h.

  4. Experimental study of the maximum resolution and packing density achievable in sintered and non-sintered binder-jet 3D printed steel microchannels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, Amy M; Mehdizadeh Momen, Ayyoub; Benedict, Michael

    2015-01-01

    Developing high resolution 3D printed metallic microchannels is a challenge especially when there is an essential need for high packing density of the primary material. While high packing density could be achieved by heating the structure to the sintering temperature, some heat sensitive applications require other strategies to improve the packing density of primary materials. In this study the goal is to develop high green or pack densities microchannels on the scale of 2-300 microns which have a robust mechanical structure. Binder-jet 3D printing is an additive manufacturing process in which droplets of binder are deposited via inkjet into amore » bed of powder. By repeatedly spreading thin layers of powder and depositing binder into the appropriate 2D profiles, complex 3D objects can be created one layer at time. Microchannels with features on the order of 500 microns were fabricated via binder jetting of steel powder and then sintered and/or infiltrated with a secondary material. The average particle size of the steel powder was varied along with the droplet volume of the inkjet-deposited binder. The resolution of the process, packing density of the primary material, the subsequent features sizes of the microchannels, and the overall microchannel quality were characterized as a function of particle size distribution, droplet sizes and heat treatment temperatures.« less

  5. PREPARATION OF SPHERICAL URANIUM DIOXIDE PARTICLES

    DOEpatents

    Levey, R.P. Jr.; Smith, A.E.

    1963-04-30

    This patent relates to the preparation of high-density, spherical UO/sub 2/ particles 80 to 150 microns in diameter. Sinterable UO/sub 2/ powder is wetted with 3 to 5 weight per cent water and tumbled for at least 48 hours. The resulting spherical particles are then sintered. The sintered particles are useful in dispersion-type fuel elements for nuclear reactors. (AEC)

  6. Galileo Probe Measurements of Thermal and Solar Radiation Fluxes in the Jovian Atmosphere

    NASA Technical Reports Server (NTRS)

    Sromovsky, L. A.; Collard, A. D.; Fry, P. M.; Orton, G. S.; Lemmon, M. T.; Tomasko, M. G.; Freedman, R. S.

    1998-01-01

    The Galileo probe net flux radiometer (NFR) measured radiation fluxes in Jupiter's atmosphere from about 0.44 to 14 bars, using five spectral channels to separate solar and thermal components. Onboard calibration results confirm that the NFR responded to radiation approximately as expected. NFR channels also responded to a superimposed thermal perturbation, which can be approximately removed using blind channel measurements and physical constraints. Evidence for the expected NH3 cloud was seen in the spectral character of spin-induced modulations of the direct solar beam signals. These results are consistent with an overlying cloud of small NH3 ice particles (0.5-0.75 microns in radius) of optical depth 1.5-2 at 0.5 microns. Such a cloud would have so little effect on thermal fluxes that NFR thermal channels provide no additional constraints on its properties. However, evidence for heating near 0.45 bar in the NFR thermal channels would seem to require either an additional opacity source beyond this small-particle cloud, implying a heterogeneous-cloud structure to avoid conflicts with solar modulation results, or a change in temperature lapse rate just above the probe measurements. The large thermal flux levels imply water vapor mixing ratios that are only 6% of solar at 10 bars, but possibly increasing with depth, and significantly subsaturated ammonia at pressures less than 3 bars. If deep NH3 mixing ratios at the probe entry site are 3-4 times ground-based inferences, as suggested by probe radio signal attenuation, then only half as much water is needed to match NFR observations. No evidence of a water cloud was seen near the 5-bar level. The 5 microns thermal channel detected the presumed NH4SH cloud base near 1.35 bars. Effects of this cloud were also seen in the solar channel upflux measurements but not in the solar net fluxes, implying that the cloud is a conservative scatterer of sunlight. The minor thermal signature of this cloud is compatible with particle radii near 3 microns, but it cannot rule out smaller particles. Deeper than about 3 bars, solar channels indicate unexpectedly large absorption of sunlight at wavelengths longer than 0.6 microns, which might be due to unaccounted-for absorption by NH3 between 0.65 and 1.5 microns.

  7. Advantages and challenges of the spray-drying technology for the production of pure drug particles and drug-loaded polymeric carriers.

    PubMed

    Sosnik, Alejandro; Seremeta, Katia P

    2015-09-01

    Spray-drying is a rapid, continuous, cost-effective, reproducible and scalable process for the production of dry powders from a fluid material by atomization through an atomizer into a hot drying gas medium, usually air. Often spray-drying is considered only a dehydration process, though it also can be used for the encapsulation of hydrophilic and hydrophobic active compounds within different carriers without substantial thermal degradation, even of heat-sensitive substances due to fast drying (seconds or milliseconds) and relatively short exposure time to heat. The solid particles obtained present relatively narrow size distribution at the submicron-to-micron scale. Generally, the yield% of spray-drying at laboratory scale with conventional spray-dryers is not optimal (20-70%) due to the loss of product in the walls of the drying chamber and the low capacity of the cyclone to separate fine particles (<2 μm). Aiming to overcome this crucial drawback in early development stages, new devices that enable the production of submicron particles with high yield, even for small sample amounts, have been introduced into the market. This review describes the most outstanding advantages and challenges of the spray-drying method for the production of pure drug particles and drug-loaded polymeric particles and discusses the potential of this technique and the more advanced equipment to pave the way toward reproducible and scalable processes that are critical to the bench-to-bedside translation of innovative pharmaceutical products. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Particulate-matter content of 11 cephalosporin injections: conformance with USP limits.

    PubMed

    Parkins, D A; Taylor, A J

    1987-05-01

    The particulate-matter content of 11 dry-powder cephalosporin injections was determined using a modified version of the official United States Pharmacopeial Convention (USP) method for particulate matter in small-volume injections (SVIs). Ten vials of each cephalosporin product were each constituted with 10 mL of Water for Injections BP that had been filtered through a 0.22-micron membrane. The pooled contents of the 10 vials for each product were allowed to stand under reduced pressure to ensure removal of gas bubbles. Particulate-matter content was determined using a HIAC/Royco particle counter on six 10-mL samples obtained from the pooled solutions for each product. All solution preparation and particle counting was performed in a horizontal-laminar-airflow hood. Modifications of the USP method used in this study included the use of six rather than two samples from each pooled solution, the addition of diluent to the injections through the rubber closure with a needle instead of into the open container, and changes in the degassing method. Particle counts for all products examined were lower than USP limits for SVIs. All but two products contained less than 15% of USP limits for particles greater than or equal to 10 microns in effective diameter and particles greater than or equal to 25 microns in effective diameter. The standard USP method for degassing (standing for two minutes) was inadequate. Application of reduced pressure for up to 10 minutes was necessary for thorough degassing of products.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Broadening the photoresponsive activity of anatase titanium dioxide particles via decoration with partial gold shells.

    PubMed

    Khantamat, Orawan; Li, Chien-Hung; Liu, Si-Ping; Liu, Tingting; Lee, Han Ju; Zenasni, Oussama; Lee, Tai-Chou; Cai, Chengzhi; Lee, T Randall

    2018-03-01

    Titanium dioxide (TiO 2 ) has gained increasing interest in materials research due to its outstanding properties and promising applications in a wide range of fields. From this perspective, we report the synthesis of custom-designed anatase TiO 2 submicrometer particles coated with partial Au shells (ATiO 2 -AuShl). The synthetic strategy used herein yields uniformly shaped monodisperse particles. Amorphous TiO 2 core particles were synthesized using template-free oxidation and hydrolysis of titanium nitride (TiN); subsequent hydrothermal treatment generated anatase TiO 2 (ATiO 2 ) particles. Coating ATiO 2 particles with partial Au shells was accomplished using a simple seeded-growth method. Evaluation of the optical properties of these ATiO 2 -AuShl particles showed that these submicrometer composites exhibited an intense absorption peak for TiO 2 in the UV region (∼326 nm) and a broad extinction band in the visible range (∼650 nm) arising from the incomplete Au shell. These ATiO 2 -AuShl composite particles provide a unique and effective means for broadening the optical response of TiO 2 -based nano- and micron-scale materials. The simplicity of our synthetic method should broaden the application of ATiO 2 -AuShl particles in various visible light-driven technologies. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jiandong; Neeway, James J.; Zhang, Yanyan

    Glass particles with dimensions typically ranging from tens to hundreds of microns are often used in glass corrosion research in order to accelerate testing. Two-dimensional and three-dimensional nanoscale imaging techniques are badly needed to characterize the alteration layers at the surfaces of these corroded glass particles. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) can provide a lateral resolution as low as ~100 nm, and, compared to other imaging techniques, is sensitive to elements lighter than carbon. Here, we used ToF-SIMS to characterize the alteration layers of corroded international simple glass (ISG) particles. At most particle surfaces, we observed inhomogeneous or nomore » alteration layers, indicating that the thickness of the alterations layers may be too thin to be observable by ToF-SIMS imaging. Relatively thick (e.g., 1–10 µm) alteration layers were inhomogeneously distributed at a small portion of surfaces.Interestingly, some large-size (tens of microns) glass particles were fully altered. Above observations suggest that weak attachment and the defects on ISG particle surfaces play an important role in ISG glass corrosion.« less

  11. Performance Test of Laser Velocimeter System for the Langley 16-foot Transonic Tunnel

    NASA Technical Reports Server (NTRS)

    Meyers, J. F.; Hunter, W. W., Jr.; Reubush, D. E.; Nichols, C. E., Jr.; Hepner, T. E.; Lee, J. W.

    1985-01-01

    An investigation in the Langley 16-Foot Transonic Tunnel has been conducted in which a laser velocimeter was used to measure free-stream velocities from Mach 0.1 to 1.0 and the flow velocities along the stagnating streamline of a hemisphere-cylinder model at Mach 0.8 and 1.0. The flow velocity was also measured at Mach 1.0 along the line 0.533 model diameters below the model. These tests determined the performance characteristics of the dedicated two-component laser velocimeter at flow velocities up to Mach 1.0 and the effects of the wind tunnel environment on the particle-generating system and on the resulting size of the generated particles. To determine these characteristics, the measured particle velocities along the stagnating streamline at the two Mach numbers were compared with the theoretically predicted gas and particle velocities calculated using a transonic potential flow method. Through this comparison the mean detectable particle size (2.1 micron) along with the standard deviation of the detectable particles (0.76 micron) was determined; thus the performance characteristics of the laser velocimeter were established.

  12. Martian Dust Devils: Laboratory Simulations of Particle Threshold

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald; Balme, Matthew R.; Iverson, James D.; Metzger, Stephen; Mickelson, Robert; Phoreman, Jim; White, Bruce

    2003-01-01

    An apparatus has been fabricated to simulate terrestrial and Martian dust devils. Comparisons of surface pressure profiles through the vortex core generated in the apparatus with both those in natural dust devils on Earth and those inferred for Mars are similar and are consistent with theoretical Rankine vortex models. Experiments to determine particle threshold under Earth ambient atmospheric pressures show that sand (particles > 60 micron in diameter) threshold is analogous to normal boundary-layer shear, in which the rotating winds of the vortex generate surface shear and hence lift. Lower-pressure experiments down to approx. 65 mbar follow this trend for sand-sized particles. However, smaller particles (i.e., dust) and all particles at very low pressures (w 10-60 mbar) appear to be subjected to an additional lift function interpreted to result from the strong decrease in atmospheric pressure centered beneath the vortex core. Initial results suggest that the wind speeds required for the entrainment of grains approx. 2 microns in diameter (i.e., Martian dust sizes) are about half those required for entrainment by boundary layer winds on both Earth and Mars.

  13. Pulsed Electrodeposition of Ni with Uniform Co-Deposition of Micron Sized Diamond Particles on Copper Substrate

    NASA Astrophysics Data System (ADS)

    Kumar, Prashant; Mahato, Neelima

    Nanocrystalline nickel was deposited on annealed copper substrate of unit surface area (1 cm2) via pulsed electrodeposition technique using potentiostat (model 263A, Princeton Applied Research, USA) from Watts bath containing nickel sulfate, nickel chloride ,boric acid and sodium citrate. Diamond particles of three different dimensions, viz., 1, 3, and 6 micron were added separately (5 g/L) to the watts bath and co-deposited along with nanocrystalline nickel. The temperature was kept constant at 55 °C. The solution was ultrasonicated for 45-60 minutes prior to deposition to disperse the diamond particles uniformly in the bath. Depositions were carried out at different current densities, viz., 50, 100,150 and 200 mA/ cm2 for different durations, i.e.7, 14 and 21 minutes and best results are optimized for 200mA/cm2 so it is used for all process here .Scanning electron micrographs (SEM) show uniform deposition of microstructure of micron diamond on the surface of copper embedded in the nickel matrix. Elemental mapping confirmed uniform deposition of nickel and diamond with almost no cracks or pits. Mechanical properties of the sample such as, Vicker's hardness increased abruptly after the electrodeposition. Improved microstructural and mechanical properties were found in the case of electrodeposited surfaces containing followed by 3 and 6 micron diamond. The properties were also found better than those processed via stirring the solution during deposition.

  14. A Preliminary Study of Ice-Accretion Scaling for SLD Conditions

    NASA Technical Reports Server (NTRS)

    Anderson, David N.

    2003-01-01

    Proposed changes to aircraft icing certification rules are being considered by European, Canadian, and American regulatory agencies to include operation in super-cooled large droplet conditions (SLD). This paper reports results of an experimental study in the NASA Glenn Icing Research Tunnel (IRT) to evaluate how well scaling methods developed for Appendix C conditions might apply to SLD conditions. Until now, scaling studies have been confined to the FAA FAR-25 Appendix C envelope of atmospheric cloud conditions. Tests were made in which it was attempted to scale to a droplet MVD of 50 microns from clouds having droplet MVDs of 175, 120, 100, and 70 microns. Scaling was based on the Ruff method with scale velocities found either by maintaining constant Weber number or by using the average of the velocities obtained by maintaining constant Weber number and constant Reynolds number. Models were unswept NACA 0012 wing sections. The reference model had a chord of 91.4 cm. Scale models had chords of 91.4, 80.0, and 53.3 cm. Tests were conducted with reference airspeeds of 100 and 150 kt (52 and 77 m/s) and with freezing fractions of 1.0, 0.6, and 0.3. It was demonstrated that the scaled 50-micron cloud simulated well the non-dimensional ice shapes accreted in clouds with MVD's of 120 microns or less.

  15. Magnetic and clast fabrics as measurements of grain-scale processes within the Death Valley shallow crustal detachment faults

    NASA Astrophysics Data System (ADS)

    Hayman, Nicholas W.; Housen, B. A.; Cladouhos, T. T.; Livi, K.

    2004-05-01

    The rock product of shallow-crustal faulting includes fine-grained breccia and clay-rich gouge. Many gouges and breccias have a fabric produced by distributed deformation. The orientation of fabric elements provides constraints on the kinematics of fault slip and is the structural record of intrafault strain not accommodated by planar and penetrative surfaces. However, it can be difficult to quantify the deformational fabric of fault rocks, especially the preferred orientations of fine-grained minerals, or to uniquely determine the relationship between fabric geometry and finite strain. Here, we present the results of a fabric study of gouge and breccia sampled from low-angle normal (detachment) faults in the Black Mountains, Death Valley, CA. We measured a preferred orientation of the long axes of the clasts inherited from the crystalline footwall of the fault and compared the shape preferred orientation to the anisotropy of magnetic susceptibility of the fault rocks. The two measurements of fabric exhibit systematic similarities and differences in orientation and anisotropy that are compatible with the large-scale kinematics of fault slip. The dominant carriers of the magnetic susceptibility are micron- and sub-micron scale iron oxides and clay minerals. Therefore even the finest grains in the fault rock were sensitive to the distributed deformation and the micro-mechanics of particle interaction must have departed from those assumed by the passive-marker kinematic model that best explains the fabric.

  16. Electrically conductive material

    DOEpatents

    Singh, Jitendra P.; Bosak, Andrea L.; McPheeters, Charles C.; Dees, Dennis W.

    1993-01-01

    An electrically conductive material for use in solid oxide fuel cells, electrochemical sensors for combustion exhaust, and various other applications possesses increased fracture toughness over available materials, while affording the same electrical conductivity. One embodiment of the sintered electrically conductive material consists essentially of cubic ZrO.sub.2 as a matrix and 6-19 wt. % monoclinic ZrO.sub.2 formed from particles having an average size equal to or greater than about 0.23 microns. Another embodiment of the electrically conductive material consists essentially at cubic ZrO.sub.2 as a matrix and 10-30 wt. % partially stabilized zirconia (PSZ) formed from particles having an average size of approximately 3 microns.

  17. Combined infrared and analytical electron microscope studies of interplanetary dust particles

    NASA Technical Reports Server (NTRS)

    Bradley, J. P.; Humecki, H. J.; Germani, M. S.

    1992-01-01

    Ultramicrotomed thin sections (less than 100 nm thick) of eight chondritic interplanetary dust particles (IDPs) were studied by analytical electron microscopy and IR microspectroscopy with the objective of identifying IDPs or their specific components with IR spectral transmission characteristics at 10 microns similar to those of comets. Two IDPs are identified whose silicate emission characteristics between 8 and 12 microns are similar to those of comets Halley and Bradfield. Implanted solar flare tracks and sputtered rims resulting from solar wind damage suggest that the minerology and petrography of these IDPs have not been significantly perturbed since ejection from their parent bodies.

  18. Laboratory simulation of infrared astrophysical features. [Terrestrial silicate, meteoritic and lunar soil 10-micron spectral comparisons with comets Bennet and Kohoutek

    NASA Technical Reports Server (NTRS)

    Rose, L. A.

    1979-01-01

    Laboratory infrared emission and absorption spectra have been taken of terrestrial silicates, meteorites, and lunar soils in the form of micrometer and submicrometer grains. The emission spectra were taken in a way that imitates telescopic observations. The purpose was to see which materials best simulate the 10-micron astrophysical feature. The emission spectra of dunite, fayalite, and Allende give a good fit to the 10-micron broadband emission feature of comets Bennett and Kohoutek. A study of the effect of grain size on the presence of the 10-micron emission feature of dunite shows that for particles larger than 37 microns no feature is seen. The emission spectrum of the Murray meteorite, a Type 2 carbonaceous chrondrite, is quite similar to the intermediate-resolution spectrum of comet Kohoutek in the 10-micron region. Hydrous silicates or amorphous magnesium silicates in combination with high-temperature condensates, such as olivine or anorthite, would yield spectra that match the intermediate-resolution spectrum of comet Kohoutek in the 10-micron region. Glassy olivine and glassy anorthite in approximately equal proportions would also give a spectrum that is a good fit to the cometary 10-micron feature.

  19. A multi-topographical-instrument analysis: the breast implant texture measurement

    NASA Astrophysics Data System (ADS)

    Garabédian, Charles; Delille, Rémi; Deltombe, Raphaël; Anselme, Karine; Atlan, Michael; Bigerelle, Maxence

    2017-06-01

    Capsular contracture is a major complication after implant-based breast augmentation. To address this tissue reaction, most manufacturers texture the outer breast implant surfaces with calibrated salt grains. However, the analysis of these surfaces on sub-micron scales has been under-studied. This scale range is of interest to understand the future of silicone particles potentially released from the implant surface and the aetiology of newly reported complications, such as Anaplastic Large Cell Lymphoma. The surface measurements were accomplished by tomography and by two optical devices based on interferometry and on focus variation. The robustness of the measurements was investigated from the tissue scale to the cellular scale. The macroscopic pore-based structure of the textured implant surfaces is consistently measured by the three instruments. However, the multi-scale analyses start to be discrepant in a scale range between 50 µm and 500 µm characteristic of a finer secondary roughness regardless of the pore shape. The focus variation and the micro-tomography would fail to capture this roughness regime because of a focus-related optical artefact and of step-shaped artefact respectively.

  20. Saturn's satellites - Near-infrared spectrophotometry (0.65-2.5 microns) of the leading and trailing sides and compositional implications

    NASA Technical Reports Server (NTRS)

    Steele, A.; Clark, R. N.; Brown, R. H.; Owensby, P. D.

    1984-01-01

    Water ice absorptions at 2.0, 1.5, and 1.25 microns are noted in near-IR spectra of Tethys, Dione, Rhea, Iapetus, and Hyperion, and the weak 1.04-micron ice absorption, which is detected for Rhea and Dione, is studied to establish band depth upper limits. The leading-trailing side 1.04-micron ice band depth differences on Saturn's satellites are similar to those for the Galilean satellites, indicating possible surface modification by magnetospheric charged particle bombardment. Limits are obtained for the amounts of particulates, trapped gases, and ammonium hydroxide on the surface. With the exception of the dark side of Iapetus, the surfaces of all of Saturn's satellites are nearly pure ice water.

  1. Evidence for Natural Variability in Marine Stratocumulus Cloud Properties Due to Cloud-Aerosol

    NASA Technical Reports Server (NTRS)

    Albrecht, Bruce; Sharon, Tarah; Jonsson, Haf; Minnis, Patrick; Minnis, Patrick; Ayers, J. Kirk; Khaiyer, Mandana M.

    2004-01-01

    In this study, aircraft observations from the Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter are used to characterize the variability in drizzle, cloud, and aerosol properties associated with cloud rifts and the surrounding solid clouds observed off the coast of California. A flight made on 16 July 1999 provided measurements directly across an interface between solid and rift cloud conditions. Aircraft instrumentation allowed for measurements of aerosol, cloud droplet, and drizzle spectra. CCN concentrations were measured in addition to standard thermodynamic variables and the winds. A Forward Scatter Spectrometer Probe (FSSP) measured size distribution of cloud-sized droplets. A Cloud Imaging Probe (CIP) was used to measure distributions of drizzle-sized droplets. Aerosol distributions were obtained from a Cloud Aerosol Scatterprobe (CAS). The CAS probe measured aerosols, cloud droplets and drizzle-sized drops; for this study. The CAS probe was used to measure aerosols in the size range of 0.5 micron - 1 micron. Smaller aerosols were characterized using an Ultrafine Condensation Particle Counter (CPC) sensor. The CPC was used to measure particles with diameters greater than 0.003 micron. By subtracting different count concentrations measured with the CPC, this probe was capable of identifying ultrafine particles those falling in the size range of 3 nanometers - 7 nanometers that are believed to be associated with new particle production.

  2. Tailoring sub-micron PLGA particle release profiles via centrifugal fractioning

    PubMed Central

    Dutta, Dipankar; Salifu, Mariama; Sirianni, Rachael W.; Stabenfeldt, Sarah E.

    2016-01-01

    Poly(D,L-lactic-co-glycolic) acid (PLGA)-based submicron particles are uniquely posed to overcome limitations of conventional drug delivery systems. However, tailoring cargo/payload release profiles from PLGA micro/nanoparticles typically requires optimization of the multi-parameter formulation, where small changes may cause drastic shifts in the resulting release profiles. In this study, we aimed to establish whether refining the average diameter of submicron particle populations after formulation alters protein release profiles. PLGA particles were first produced via double emulsion-solvent evaporation method to encapsulate bovine serum albumin. Particles were then subjected to centrifugal fractioning protocols varying in both spin time and force to determine encapsulation efficiency and release profile of differently sized populations that originated from a single batch. We found the average particle diameter was related to marked alterations in encapsulation efficiencies (range: 36.4–49.4%), burst release (range: 15.8–49.1%), and time for total cargo release (range: 38–78 days). Our data corroborate previous reports relating PLGA particle size with such release characteristics, however, this is the first study, to our knowledge, to directly compare particle population size while holding all formulation parameters constant. In summary, centrifugal fractioning to selectively control the population distribution of sub-micron PLGA particles represents a feasible tool to tailor release characteristics. PMID:26517011

  3. Nanoscale imaging of alteration layers of corroded international simple glass particles using ToF-SIMS

    DOE PAGES

    Zhang, Jiandong; Neeway, James J.; Zhang, Yanyan; ...

    2017-02-24

    Glass particles with dimensions typically ranging from tens to hundreds of microns are often used in glass corrosion research in order to accelerate testing. Two-dimensional and three-dimensional nanoscale imaging techniques are badly needed to characterize the alteration layers at the surfaces of these corroded glass particles. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) can provide a lateral resolution as low as ~100 nm, and, compared to other imaging techniques, is sensitive to elements lighter than carbon. Here, we used ToF-SIMS to characterize the alteration layers of corroded international simple glass (ISG) particles. At most particle surfaces, we observed inhomogeneous or nomore » alteration layers, indicating that the thickness of the alterations layers may be too thin to be observable by ToF-SIMS imaging. Relatively thick (e.g., 1–10 µm) alteration layers were inhomogeneously distributed at a small portion of surfaces.Interestingly, some large-size (tens of microns) glass particles were fully altered. Above observations suggest that weak attachment and the defects on ISG particle surfaces play an important role in ISG glass corrosion.« less

  4. WE-AB-BRB-05: Toward a 2D Water-Equivalent Dosimetry Panel Using KCl:Eu2+

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazur, T; Wang, Y; Li, H

    Purpose: KCl:Eu2+ storage phosphor shows promise for radiation therapy dosimetry. The purpose of this work is to investigate several important aspects of this material for potential commercial use. Methods: KCl:Eu2+ chips were fabricated and a conformal coating using Parylene was applied. Material’s dose response in a 6 MV beam was investigated using Monte-Carlo simulations. We attempted to micronize the materials using a spiral jet mill. As we did not have a water-free glovebox, we used commercially available non-hygroscopic BaFBr0.85I0.15:Eu2+ computed radiography material to test if a homogeneous panel can be made using micron-sized phosphors. Results: Dosimeters remained intact and showedmore » no change in PSL intensity after eight hrs of submersion in water. We then optically bleached the samples for reuse, irradiated and immersed for another 24 hrs. We observed marginal worsening of the PSL signal for both the soaked and un-soaked chips. By contrast, we were unable to measure PSL intensity of the un-coated pellets due to these pellets dissolving within minutes of being immersed in water. MC data indicate that the micron-sized KCl:Eu2+ is predicted to have a nearly water-equivalent response. KCl:Eu2+ particles with a median size of 3 microns can be produced using a jet mill, which could be reduced further if necessary. While the particles tend to agglomerate over time when stored in a desiccator, they still possess favorable d50’s and d99’s even after 100 minutes, providing an adequate time window for making a panel via tape casting. A panel cast using optimized methods exhibits nearly perfect particle arrangement. Conclusions: Data shown here support ongoing efforts in fabricating a reusable, high resolution dosimetry panel in a water-free glovebox using micron-sized KCl:Eu2+ particles separated by water-equivalent polymers. The conformal coating thereafter will provide good humidity resistance. HL is the founder of DoseImaging, LLC that is exclusively dedicated to commercializing this technology.« less

  5. On-the-fly cross flow laser guided separation of aerosol particles

    NASA Astrophysics Data System (ADS)

    Lall, A. A.; Terray, A.; Hart, S. J.

    2010-08-01

    Laser separation of particles is achieved using forces resulting from the momentum exchange between particles and photons constituting the laser radiation. Particles can experience different optical forces depending on their size and/or optical properties, such as refractive index. Thus, particles can move at different speeds in the presence of an optical force, leading to spatial separations. Several studies for aqueous suspension of particles have been reported in the past. In this paper, we present extensive analysis for optical forces on non-absorbing aerosol particles. We used a loosely focused Gaussian 1064 nm laser to simultaneously hold and deflect particles entrained in flow perpendicular to their direction of travel. The gradient force is used to hold the particles against the viscous drag for a short period of time. The scattering force simultaneously pushes the particles during this period. Theoretical calculations are used to simulate particle trajectories and to determine the net deflection: a measure of the ability to separate. We invented a novel method for aerosol generation and delivery to the flow cell. Particle motion was imaged using a high speed camera working at 3000+ frames per second with a viewing area up to a few millimeters. An 8W near-infrared 1064 nm laser was used to provide the optical force to the particles. Theoretical predictions were corroborated with measurements using polystyrene latex particles of 20 micron diameter. We measured particle deflections up to about 1500 microns. Such large deflections represent a new milestone for optical chromatography in the gas phase.

  6. Improved high temperature refractory. [MgCr/sub 2/O/sub 4/ composite with ZrO/sub 2/

    DOEpatents

    Singh, J.P.; James, J.; Picciolo, J.J.

    1985-12-10

    A high chromia refractory composite has been developed with improved thermal shock resistance and containing about 5 to 30 wt % of unstabilized ZrO/sub 2/ having a temperature-dependent phase change resulting in large expansion mismatch between the ZrO/sub 2/ and the chromia matrix which causes microcracks to form during cooling in the high chromia matrix. The particle size preferably is primarily between about 0.6 to 5 microns and particularly below about 3 microns with an average size in the order of 1.2 to 1.8 microns.

  7. Atmospheric aerosol backscatter measurements using a tunable coherent CO2 lidar

    NASA Technical Reports Server (NTRS)

    Menzies, R. T.; Kavaya, M. J.; Flamant, P. H.; Haner, D. A.

    1984-01-01

    Measurements of atmospheric aerosol backscatter coefficients, using a coherent CO2 lidar at 9.25- and 10.6-micron wavelengths, are described. Vertical profiles of the volume backscatter coefficient beta have been measured to a 10-km altitude over the Pasadena, CA, region. These measurements indicate a wide range of variability in beta both in and above the local boundary layer. Certain profiles also indicate a significant enhancement in beta at the 9.25-micron wavelength compared with beta at the 10.6-micron wavelength, which possibly indicates a major contribution to the volume backscatter from ammonium sulfate aerosol particles.

  8. Portable sample preparation and analysis system for micron and sub-micron particle characterization using light scattering and absorption spectroscopy

    DOEpatents

    Stark, Peter C [Los Alamos, NM; Zurek, Eduardo [Barranquilla, CO; Wheat, Jeffrey V [Fort Walton Beach, FL; Dunbar, John M [Santa Fe, NM; Olivares, Jose A [Los Alamos, NM; Garcia-Rubio, Luis H [Temple Terrace, FL; Ward, Michael D [Los Alamos, NM

    2011-07-26

    There is provided a method and device for remote sampling, preparation and optical interrogation of a sample using light scattering and light absorption methods. The portable device is a filtration-based device that removes interfering background particle material from the sample matrix by segregating or filtering the chosen analyte from the sample solution or matrix while allowing the interfering background particles to be pumped out of the device. The segregated analyte is then suspended in a diluent for analysis. The device is capable of calculating an initial concentration of the analyte, as well as diluting the analyte such that reliable optical measurements can be made. Suitable analytes include cells, microorganisms, bioparticles, pathogens and diseases. Sample matrixes include biological fluids such as blood and urine, as well as environmental samples including waste water.

  9. Fe nanoparticles produced by electric explosion of wire for new generation of magneto-rheological fluids

    NASA Astrophysics Data System (ADS)

    Berasategi, Joanes; Gomez, Ainara; Mounir Bou-Ali, M.; Gutiérrez, Jon; Barandiarán, Jose Manuel; Beketov, Igor V.; Safronov, Aleksander P.; Kurlyandskaya, Galina V.

    2018-04-01

    Iron magnetic nanoparticles were produced by the technique of the electric explosion of a wire (EEW). The major crystalline phase (95 ± 1%) was α-Fe with lattice parameter a = 0.2863(3) nm. The size of the coherent diffraction domains of this phase was 77 ± 3 nm. The EEW MNPs presented a large saturation magnetization value, reaching about 87% of the saturation magnetization of the bulk iron. EEW NMPs demonstrated an improved magnetic performance when used in magnetorheological (MR) fluids with respect to the commercial carbonyl iron particles (CIPs) micron-sized particles studied for comparison. The MR fluids composed with the EEW nanoparticles showed larger yield stress values than those with CIP micron-sized particles, so proving that the EEW MNPs have a high potential for MR fluids applications.

  10. Infrared Micro-Spectroscopy of Organic and Hydrous Components in Some Antarctic Micrometeorites

    NASA Technical Reports Server (NTRS)

    Suzuki, A.; Kebukawa, Y.; Nakashima, S.; Keller, L. P.; Zolensky, M. E.; Nakamura, T.

    2005-01-01

    Micrometeorites extracted from Antarctic ice are a major source of extraterrestrial materials available for study in the laboratory. Materials in this size range are important because the peak in the mass flux distribution of extraterrestrial particles accreted by the Earth occurs for particles approximately 200 microns in diameter with a mass accretion rate estimated at approximately 40 x 10(exp 6) kilograms per year. It has been suggested that micrometeorites may have contributed much pre-biotic organic matter to the early Earth, but the types and abundances of organic material in micrometeorites are poorly known. We have conducted infrared (IR) micro-spectrocopy of small micrometeorites (about 100 microns in size) in order to characterize organic matter that is present in the particles. The obtained results were compared with IR signatures of representative carbonaceous chondrites.

  11. Influence of stabilizers on the physicochemical characteristics of inhaled insulin powders produced by supercritical antisolvent process.

    PubMed

    Kim, Yong Ho; Sioutas, Constantinos; Shing, Katherine S

    2009-01-01

    To examine the effect of stabilizers on aerosol physicochemical characteristics of inhaled insulin particles produced using a supercritical fluid technology. Insulin with stabilizers such as mannitol and trehalose was micronized by aerosol solvent extraction system (ASES). The supercritically-micronized insulin particles were characterized for size, shape, aerosol behavior, crystallinity and secondary structure. Experimental results indicated that when insulin was incorporated with the most commonly used stabilizer mannitol (insulin/mannitol: 15/85 wt.%, designated IM), the particles formed were irregular and needle-shaped and had a tendency to agglomerate. With the incorporation of a second stabilizer trehalose (insulin/mannitol/trehalose: 15/70/15 wt.%, designated IMT), the particles were relatively uniform, more spherical, less cohesive, and less agglomerated in an air flow, when compared to IM particles. The mass median aerodynamic diameter of the IMT particles was 2.32 mum which is suitable for use in inhalation therapy. In vitro deposition test using micro-orifice uniform deposit impactor showed 69 +/- 7 wt.% of the IMT particles was deposited in stage 3, 4, 5 and 6 while 41 +/- 15 wt.% of the IM particles was deposited in the same stages. In terms of insulin stability, secondary structures of insulin particles were not adversely affected by the ASES processing studied here. When properly formulated (as in IMT particles), ASES process can produce particles with appropriate size and size distribution suitable for pulmonary insulin delivery.

  12. The occultation of 28 Sgr by Titan

    NASA Technical Reports Server (NTRS)

    Hubbard, W. B.; Sicardy, Bruno; Miles, R.; Hollis, A. J.; Forrest, R. W.; Nicolson, I. K. M.; Appleby, G.; Beisker, W.; Bittner, C.; Bode, H.-J.

    1993-01-01

    We present a comprehensive analysis of data obtained during the 1989 July 3 occultation of 28 Sgr by Titan. The data set includes 23 lightcurves from 15 separate stations, spanning wavelengths from 0.36 to 0.89 micron. A detailed model of the structure of Titan's atmosphere in the altitude range 250 to 450 km is developed, giving the distribution of temperature, pressure, haze optical depth, and zonal wind velocity as a function of altitude and latitude. Haze layers detected in Titan's stratosphere are about one scale height higher than inferred from Voyager data, and show a wavelength dependence indicative of particle sizes on the order of 0.1 micron. A marked north-south dichotomy in haze density is observed with a transition to lower density south of about -20 deg latitude. Zonal wind speeds are inferred from global distortions from spherical symmetry and are of the order of 100 m/s with significant increase toward higher latitudes. Titan's high atmosphere shows substantial axial symmetry; the position angle of the symmetry axis is equal to the position angle of Saturn's spin axis to within about 1 deg.

  13. High speed automated microtomography of nuclear emulsions and recent application

    NASA Astrophysics Data System (ADS)

    Tioukov, V.; Aleksandrov, A.; Consiglio, L.; De Lellis, G.; Vladymyrov, M.

    2015-12-01

    The development of high-speed automatic scanning systems was the key-factor for massive and successful emulsions application for big neutrino experiments like OPERA. The emulsion detector simplicity, the unprecedented sub-micron spatial resolution and the unique ability to provide intrinsically 3-dimensional spatial information make it a perfect device for short-living particles study, where the event topology should be precisely reconstructed in a 10-100 um scale vertex region. Recently the exceptional technological progress in image processing and automation together with intensive R&D done by Italian and Japanese microscopy groups permit to increase the scanning speed to unbelievable few years ago m2/day scale and so greatly extend the range of the possible applications for emulsion-based detectors to other fields like: medical imaging, directional dark matter search, nuclear physics, geological and industrial applications.

  14. EVALUATION OF FABRIC MEMBRANES FOR USE IN SALTSTONE DRAIN WATER SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pickenheim, B.; Miller, D.; Burket, P.

    2012-03-08

    Saltstone Disposal Unit 2 contains a sheet drain fabric intended to separate solids from drain water to be returned to the Salt Feed Tank. A similar system installed in Vault 4 appears to be ineffective in keeping solids out of the drain water return lines. Waste Solidification Engineering is considering installation of an additional fabric membrane to supplement the existing sheet drain in SDU 2. Amerdrain 200 is the product currently installed in SDU 2. This product is no longer available, so Sitedrain 94 was used as the replacement product in this testing. Fabrics with apparent opening sizes of 10,more » 25, 50 and 100 microns were evaluated. These fabrics were evaluated under three separate test conditions, a water flow test, a solids retention test and a grout pour test. A flow test with water showed that installation of an additional filter layer will predictably reduce the theoretical flux through the sheet drain. The manufacturer reports the flux for Sitedrain 94 as 150 gpm/ft{sup 2} by ASTM D-4491. This compares reasonably well with the 117 gpm/ft{sup 2} obtained in this testing. A combination of the 10 micron fabric with Sitedrain 94 could be expected to decrease flux by about 10 times as compared to Sitedrain 94 alone. The different media were used to filter a slag and fly ash mixture from water. Slag historically has the smallest nominal particle size of the premix components. Cement was omitted from the test because of its reactivity with water would prohibit accurately particle size measurements of the filtered samples. All four media sizes were able to remove greater than 95% of particles larger than 100 microns from the slurry. The smaller opening sizes were increasingly effective in removing more particles. The 10 micron filter captured 15% of the total amount of solids used in the test. This result implies that some insoluble particles may still be able to enter the drain water collection system, although the overall solids rejection is significantly improved over the current design. Test boxes were filled with grout to evaluate the performance of the sheet drain and fabrics in a simulated vault environment. All of the tests produced a similar amount of drain water, between 8-11% of the amount of water in the mix, which is expected with the targeted formulation. All of the collected drain waters contained some amount of solids, although the 10 micron filter did not appear to allow any premix materials to pass through. The solids collected from this box are believed to consist of calcium carbonate based on one ICP-AES measurement. Any of the four candidate fabrics would be an improvement over the sheet drain alone relative to solids removal. The 10 micron fabric is the only candidate that stopped all premix material from passing. The 10 micron fabric will also cause the largest decrease in flux. This decrease in flux was not enough to inhibit the total amount of drain water removed, but may lead to increased time to remove standing water prior to subsequent pours in the facility. The acceptability of reduced liquid flux through the 10 micron fabric will depend on the amount of excess water to be removed, the time available for water removal and the total area of fabric installed at the disposal cell.« less

  15. Low-cost wind tunnel for aerosol inhalation studies.

    PubMed

    Chung, I P; Dunn-Rankin, D; Phalen, R F; Oldham, M J

    1992-04-01

    A low-cost wind tunnel for aerosol studies has been designed, constructed, and evaluated for aerosol uniformity with 2- and 0.46-micron particles. A commercial nebulizer was used to produce the suspended test particles, and a custom-made, four-hole injector was used to introduce the aerosol into the wind tunnel. A commercially available optical particle counter measured the particle concentration. Performance tests of the velocity profile and particle concentration distribution at two flow rates showed that the system performs well for small particles.

  16. High velocity collisions between large dust aggregates at the limit for growing planetesimals

    NASA Astrophysics Data System (ADS)

    Wurm, G.; Teiser, J.; Paraskov, G.

    2007-08-01

    Planetesimals are km-size bodies supposed to be formed in protoplanetary disks as planetary precursors [1]. The most widely considered mechanism for their formation is based on mutual collisions of smaller bodies, a process which starts with the aggregation of (sub)-micron size dust particles. In the absence of events that lithify the growing dust aggregates, only the surface forces between dust particles provide adhesion and internal strength of the objects. It has been assumed that this might be a disadvantage as dust aggregates are readily destroyed by rather weak collisions. In fact, experimental research on dust aggregation showed that for collisions in the m/s range (sub)-mm size dust aggregates impacting a larger body do show a transition from sticking to rebound and/or fragmentation in collisions and no growth occurs at the large velocities [2, 3]. This seemed to be incompatible with typical collision velocities of small dust aggregates with m-size bodies which are expected to be on the order 50 m/s in protoplanetary disks [4]. We recently found that the experimental results cannot be scaled from m/s to tens of m/s collisions. In contrast to the assumptions and somewhat counterintuitive, it is the fragility of dust aggregates that allows growth at higher collision velocities. In impact experiments Wurm et al. [5] showed that between 13 m/s and 25 m/s a larger compact (target) body consisting of micron-size SiO2 dust particles accreted 50 % of the mass of a 1 cm dust projectile consisting of the same dust. For slower impacts the projectile only rebounded or fragmented slightly.

  17. Examination of returned solar-max surfaces for impacting orbital debris and meteoroids

    NASA Astrophysics Data System (ADS)

    Kessler, D. J.; Zook, H. A.; Potter, A. E.; McKay, D. S.; Clanton, U. S.; Warren, J. L.; Watts, L. A.; Schultz, R. A.; Schramm, L. S.; Wentworth, S. J.

    1985-11-01

    Previous theoretical studies predicted that in certain regions of earth orbit, the man-made earth orbiting debris environment will soon exceed the interplanetary meteoroid environment for sizes smaller than 1 cm. The surfaces returned from the repaired Solar Max Mission (SMM) by STS 41-C on April 12, 1984, offered an excellent opportunity to examine both the debris and meteoroid environments. To date, approximately 0.7 sq. met. of the thermal insulation and 0.05 sq. met of the aluminum louvers have been mapped by optical microscope for crater diameters larger than 40 microns. Craters larger in diameter than about 100 microns found on the initial 75 micron thick Kapton first sheet on the MEB (Main Electronics Box) blanket are actually holes and constitute perforations through that blanket. The following populations have been found to date in impact sites on these blankets: (1) meteoritic material; (2) thermal paint particles; (3) aluminum droplets; and (4) waste particles.

  18. Trace element abundance determinations by Synchrotron X Ray Fluorescence (SXRF) on returned comet nucleus mineral grains

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.; Sutton, S. R.

    1989-01-01

    Trace element analyses were performed on bulk cosmic dust particles by Proton Induced X Ray Emission (PIXE) and Synchrotron X Ray Fluorescence (SXRF). When present at or near chondritic abundances the trace elements K, Ti, Cr, Mn, Cu, Zn, Ga, Ge, Se, and Br are presently detectable by SXRF in particles of 20 micron diameter. Improvements to the SXRF analysis facility at the National Synchrotron Light Source presently underway should increase the range of detectable elements and permit the analysis of smaller samples. In addition the Advanced Photon Source will be commissioned at Argonne National Laboratory in 1995. This 7 to 8 GeV positron storage ring, specifically designed for high-energy undulator and wiggler insertion devices, will be an ideal source for an x ray microprobe with one micron spatial resolution and better than 100 ppb elemental sensitivity for most elements. Thus trace element analysis of individual micron-sized grains should be possible by the time of the comet nucleus sample return mission.

  19. Examination of returned solar-max surfaces for impacting orbital debris and meteoroids

    NASA Technical Reports Server (NTRS)

    Kessler, D. J.; Zook, H. A.; Potter, A. E.; Mckay, D. S.; Clanton, U. S.; Warren, J. L.; Watts, L. A.; Schultz, R. A.; Schramm, L. S.; Wentworth, S. J.

    1985-01-01

    Previous theoretical studies predicted that in certain regions of earth orbit, the man-made earth orbiting debris environment will soon exceed the interplanetary meteoroid environment for sizes smaller than 1 cm. The surfaces returned from the repaired Solar Max Mission (SMM) by STS 41-C on April 12, 1984, offered an excellent opportunity to examine both the debris and meteoroid environments. To date, approximately 0.7 sq. met. of the thermal insulation and 0.05 sq. met of the aluminum louvers have been mapped by optical microscope for crater diameters larger than 40 microns. Craters larger in diameter than about 100 microns found on the initial 75 micron thick Kapton first sheet on the MEB (Main Electronics Box) blanket are actually holes and constitute perforations through that blanket. The following populations have been found to date in impact sites on these blankets: (1) meteoritic material; (2) thermal paint particles; (3) aluminum droplets; and (4) waste particles.

  20. Magnetic properties of Magneto-Rheological fluids with uniformly dispersed Fe nanoparticles

    NASA Astrophysics Data System (ADS)

    Poddar, P.; Wilson, J. L.; Srikanth, H.; Wereley, N. M.; Radhakrishnan, R.

    2003-03-01

    A systematic study of the magnetic properties of MR fluids containing micron-size and nano-size iron particles is presented. Nano-particles with a size range of 15-20 nm were prepared using microwave plasma technique. The MR-fluids were prepared with hydraulic oil as the carrier liquid and lecithin as an effective surfactant medium that promotes uniform particle dispersion. Static and dynamic magnetic measurements clearly indicate that the replacement of the micron-size particles by nano-particles results in a much better suspension. The magnetization in the nanoparticulate MR fluid is dominated by superparamagnetic particle response. In addition, collective behavior due to strong dipolar interactions associated with chaining of the particles in the field direction was also observed. A sharp drop in susceptibility at 250K was noted and this is ascribed to the carrier fluid freezing transition. We also present optical micrographs of showing chain formation and rheological performance as measured by field-dependent yield stress experiments. Sharper magnetic response to applied fields and lower field requirement for saturation make nano-particles attractive candidates for improved MR-fluid based sensors, actuators and microfluidics for clinical diagnostics. HS acknowledges support from NSF through grants ECS-0140047 and ECS-0102622. NMW and RR acknowledge support from NSF grant DMI-0110447.

  1. Inward electrostatic precipitation of interplanetary particles

    NASA Technical Reports Server (NTRS)

    Rulison, Aaron J.; Flagan, Richard C.; Ahrens, Thomas J.

    1993-01-01

    An inward precipitator collects particles initially dispersed in a gas throughout either a cylindrical or spherical chamber onto a small central planchet. The instrument is effective for particle diameters greater than about 1 micron. One use is the collection of interplanetary dust particles (IDPs) which are stopped in a noble gas (xenon) by drag and ablation after perforating the wall of a thin-walled spacecraft-mounted chamber. First, the particles are positively charged for several seconds by the corona production of positive xenon ions from inward facing needles placed on the chamber wall. Then an electric field causes the particles to migrate toward the center of the instrument and onto the planchet. The collection time (on the order of hours for a 1 m radius spherical chamber) is greatly reduced by the use of optimally located screens which reapportion the electric field. Some of the electric field lines terminate on the wires of the screens so a fraction of the total number of particles in the chamber is lost. The operation of the instrument is demonstrated by experiments which show the migration of carbon soot particles with radius of approximately 1 micron in a 5 cm diameter cylindrical chamber with a single field enhancing screen toward a 3.2 mm central collection rod.

  2. Reflectance of micron-sized dust particles retrieved with the Umov law

    NASA Astrophysics Data System (ADS)

    Zubko, Evgenij; Videen, Gorden; Zubko, Nataliya; Shkuratov, Yuriy

    2017-03-01

    The maximum positive polarization Pmax that initially unpolarized light acquires when scattered from a particulate surface inversely correlates with its geometric albedo A. In the literature, this phenomenon is known as the Umov law. We investigate the Umov law in application to single-scattering submicron and micron-sized agglomerated debris particles, model particles that have highly irregular morphology. We find that if the complex refractive index m is constrained to Re(m)=1.4-1.7 and Im(m)=0-0.15, model particles of a given size distribution have a linear inverse correlation between log(Pmax) and log(A). This correlation resembles what is measured in particulate surfaces, suggesting a similar mechanism governing the Umov law in both systems. We parameterize the dependence of log(A) on log(Pmax) of single-scattering particles and analyze the airborne polarimetric measurements of atmospheric aerosols reported by Dolgos & Martins in [1]. We conclude that Pmax ≈ 50% measured by Dolgos & Martins corresponds to very dark aerosols having geometric albedo A=0.019 ± 0.005.

  3. A continuous sampler with background suppression for monitoring alpha-emitting aerosol particles.

    PubMed

    McFarland, A R; Rodgers, J C; Ortiz, C A; Moore, M E

    1992-05-01

    A continuous air monitor has been developed that includes provisions for improving the detection of alpha-emitting aerosol particles in the presence of radon/thoron progeny that are unattached to ambient aerosol particles. Wind tunnel tests show that 80% of 10-microns aerodynamic equivalent diameter particles penetrate the flow system from the ambient air to the collection filter when the flow rate is 57 L min-1 (2 cfm) and the wind speed is 1 m s-1. Uniformity of aerosol collection on the filter, as characterized by the coefficient of variation of the areal density deposits, is less than 15% for 10-microns aerodynamic-equivalent-diameter aerosol particles. Tests with unattached radon daughters in a flow-through chamber showed that approximately 99% of the 218Po was removed by an inlet screen that is designed to collect radon daughters that are in the size range of molecular clusters. The inlet screen offers the opportunity to improve the signal-to-noise ratio of energy spectra in the regions of interest (subranges of the energy spectrum) of transuranic elements and thereby enhance the performance of background compensation algorithms.

  4. Experiments on Dust Grain Charging

    NASA Technical Reports Server (NTRS)

    Abbas, M. N.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; West, E. A.

    2004-01-01

    Dust particles in various astrophysical environments are charged by a variety of mechanisms generally involving collisional processes with other charged particles and photoelectric emission with UV radiation from nearby sources. The sign and the magnitude of the particle charge are determined by the competition between the charging processes by UV radiation and collisions with charged particles. Knowledge of the particle charges and equilibrium potentials is important for understanding of a number of physical processes. The charge of a dust grain is thus a fundamental parameter that influences the physics of dusty plasmas, processes in the interplanetary medium and interstellar medium, interstellar dust clouds, planetary rings, cometary and outer atmospheres of planets etc. In this paper we present some results of experiments on charging of dust grains carried out on a laboratory facility capable levitating micron size dust grains in an electrodynamic balance in simulated space environments. The charging/discharging experiments were carried out by exposing the dust grains to energetic electron beams and UV radiation. Photoelectric efficiencies and yields of micron size dust grains of SiO2, and lunar simulates obtained from NASA-JSC will be presented.

  5. The dynamic surface tension of atmospheric aerosol surfactants reveals new aspects of cloud activation.

    PubMed

    Nozière, Barbara; Baduel, Christine; Jaffrezo, Jean-Luc

    2014-02-25

    The activation of aerosol particles into cloud droplets in the Earth's atmosphere is both a key process for the climate budget and a main source of uncertainty. Its investigation is facing major experimental challenges, as no technique can measure the main driving parameters, the Raoult's term and surface tension, σ, for sub-micron atmospheric particles. In addition, the surfactant fraction of atmospheric aerosols could not be isolated until recently. Here we present the first dynamic investigation of the total surfactant fraction of atmospheric aerosols, evidencing adsorption barriers that limit their gradient (partitioning) in particles and should enhance their cloud-forming efficiency compared with current models. The results also show that the equilibration time of surfactants in sub-micron atmospheric particles should be beyond the detection of most on-line instruments. Such instrumental and theoretical shortcomings would be consistent with atmospheric and laboratory observations and could have limited the understanding of cloud activation until now.

  6. Radical polymerization of capillary bridges between micron-sized particles in liquid bulk phase as a low temperature route to produce porous solid materials.

    PubMed

    Hauf, Katharina; Riazi, Kamran; Willenbacher, Norbert; Koos, Erin

    2017-10-01

    We present a generic and versatile low temperature route to produce macro-porous bodies with porosity and pore size distribution that are adjustable in a wide range. Capillary suspensions, where the minor fluid is a monomer, are used as pre-cursors. The monomer is preferentially located between the particles, creating capillary bridges, resulting in a strong, percolating network. Thermally induced polymerization of these bridges at temperatures below 100 °C for less than 5 hours and subsequent removal of the bulk fluid yields macroscopic, self-supporting solid bodies with high porosity. This process is demonstrated using methylmethacrylate and hydroxyethylmethacrlyate with glass particles as a model system. The produced PMMA had a molecular weight of about 500.000 g/mol and dispersity about three. Application specific porous bodies, including PMMA particles connected by PMMA bridges, micron-sized capsules containing phase change material with high inner surface, and porous graphite membranes with high electrical conductivity, are also shown.

  7. Radical polymerization of capillary bridges between micron-sized particles in liquid bulk phase as a low temperature route to produce porous solid materials

    PubMed Central

    Hauf, Katharina; Riazi, Kamran; Willenbacher, Norbert; Koos, Erin

    2018-01-01

    We present a generic and versatile low temperature route to produce macro-porous bodies with porosity and pore size distribution that are adjustable in a wide range. Capillary suspensions, where the minor fluid is a monomer, are used as pre-cursors. The monomer is preferentially located between the particles, creating capillary bridges, resulting in a strong, percolating network. Thermally induced polymerization of these bridges at temperatures below 100 °C for less than 5 hours and subsequent removal of the bulk fluid yields macroscopic, self-supporting solid bodies with high porosity. This process is demonstrated using methylmethacrylate and hydroxyethylmethacrlyate with glass particles as a model system. The produced PMMA had a molecular weight of about 500.000 g/mol and dispersity about three. Application specific porous bodies, including PMMA particles connected by PMMA bridges, micron-sized capsules containing phase change material with high inner surface, and porous graphite membranes with high electrical conductivity, are also shown. PMID:29503494

  8. Effect of the eruption of El Chichon stratospheric aerosol size and composition

    NASA Technical Reports Server (NTRS)

    Oberbeck, V. R.; Danielsen, E. F.; Snetsinger, K. G.; Ferry, G. V.; Fong, W.; Hayes, D. M.

    1983-01-01

    Dominant effects of the El Chichon eruption on stratospheric aerosols at 19.8 to 20.7 km are: (1) vapor depositional growth of the small-aerosol (background) mode; (2) development of a large-particle mode by sedimentation from the highest altitudes in the cloud; (3) a change in the large-particle mode from sulfate-coated silicates to sulfate aerosols, some with silicate cores; (4) a 100-fold increase in sulfate mass in the large particle mode. Terminal velocities of large silicate particles, maximum r = 2.3 micron, sampled 1 month after eruption, and calibrated with the aid of lidar data, indicate initial injection to 26 to 27 km. Smaller velocities of sulfate aerosols, median r = 0.5 micron, are compatible with major growth in 2 to 3 months at 27 to 28 km. Aerosol settling accounts for the descent of the main lidar return to 26.5 km in August and to 20 to 21 km in December.

  9. Multinode acoustic focusing for parallel flow cytometry

    PubMed Central

    Piyasena, Menake E.; Suthanthiraraj, Pearlson P. Austin; Applegate, Robert W.; Goumas, Andrew M.; Woods, Travis A.; López, Gabriel P.; Graves, Steven W.

    2012-01-01

    Flow cytometry can simultaneously measure and analyze multiple properties of single cells or particles with high sensitivity and precision. Yet, conventional flow cytometers have fundamental limitations with regards to analyzing particles larger than about 70 microns, analyzing at flow rates greater than a few hundred microliters per minute, and providing analysis rates greater than 50,000 per second. To overcome these limits, we have developed multi-node acoustic focusing flow cells that can position particles (as small as a red blood cell and as large as 107 microns in diameter) into as many as 37 parallel flow streams. We demonstrate the potential of such flow cells for the development of high throughput, parallel flow cytometers by precision focusing of flow cytometry alignment microspheres, red blood cells, and the analysis of CD4+ cellular immunophenotyping assay. This approach will have significant impact towards the creation of high throughput flow cytometers for rare cell detection applications (e.g. circulating tumor cells), applications requiring large particle analysis, and high volume flow cytometry. PMID:22239072

  10. Complex Plasmas under free fall conditions aboard the International Space Station

    NASA Astrophysics Data System (ADS)

    Konopka, Uwe; Thomas, Edward, Jr.; Funk, Dylan; Doyle, Brandon; Williams, Jeremiah; Knapek, Christina; Thomas, Hubertus

    2017-10-01

    Complex Plasmas are dynamically dominated by massive, highly negatively charged, micron-sized particles. They are usually strongly coupled and as a result can show fluid-like behavior or undergo phase transitions to form crystalline structures. The dynamical time scale of these systems is easily accessible in experiments because of the relatively high mass/inertia of the particles. However, the high mass also leads to sedimentation effects and as a result prevents the conduction of large scale, fully three dimensional experiments that are necessary to utilize complex plasmas as model systems in the transition to continuous media. To reduce sedimentation influences it becomes necessary to perform experiments in a free-fall (``microgravity'') environment, such as the ISS based experiment facility ``Plasma-Kristall-4'' (``PK-4''). In our paper we will present our recently started research activities to investigate the basic properties of complex plasmas by utilizing the PK-4 experiment facility aboard the ISS. We further give an overview of developments towards the next generation experiment facility ``Ekoplasma'' (formerly named ``PlasmaLab'') and discuss potential additional small-scale space-based experiment scenarios. This work was supported by the JPL/NASA (JPL-RSA 1571699), the US Dept. of Energy (DE-SC0016330) and the NSF (PHY-1613087).

  11. Trajectory Studies of Large HNO3-Containing PSC Particles in the Arctic: Evidence for the Role of NAT

    NASA Technical Reports Server (NTRS)

    McKinney, K. A.; Wennberg, P. O.; Dhaniyala, S.; Fahey, D. W.; Northway, M. J.; Kuenzi, K. F.; Kleinboehl, A.; Sinnhuber, M.; Kuellmann, H.; Bremer, H.; hide

    2004-01-01

    Large (5 to >20 micron diameter) nitric-acid-containing polar stratospheric cloud (PSC) particles were observed in the Arctic stratosphere during the winter of 1999-2000. We use a particle growth and sedimentation model to investigate the environment in which these particles grew and the likely phase of the largest particles. Particle trajectory calculations show that, while simulated nitric acid dihydrate (NAD) particle sizes are significantly smaller than the observed maximum particle sizes, nitric acid trihydrate (NAT) particle trajectories are consistent with the largest observed particle sizes.

  12. PRODUCTION OF THORIA WARE

    DOEpatents

    Murray, P.; Denton, I.; Wilkinson, D.

    1957-10-01

    The production of thoria ware of very low porosity by the slip casting of pure thoria is described. It comprises dry milling calcined thoria to obtain particles ranging up to 11 microns in size and having 60% of particles less than 2 microns, forming an aqueous slip of the milled thoric casting the slip and firing the dry cast at a sintering temperature of from 1600 to 1825 d C. The preferred composition of the slip is 1600 grams of thoria in each liter of slip. The preferred pH of the slip is 1. When thoria of 99.9% purity is used the slip is suitable for casting for as long as six weeks after preparation.

  13. Light generated bubble for microparticle propulsion.

    PubMed

    Frenkel, Ido; Niv, Avi

    2017-06-06

    Light activated motion of micron-sized particles with effective forces in the range of micro-Newtons is hereby proposed and demonstrated. Our investigation shows that this exceptional amount of force results from accumulation of light-generated heat by a micron-sized particle that translates into motion due to a phase transition in the nearby water. High-speed imagery indicates the role of bubble expansion and later collapse in this event. Comparing observations with known models reveals a dynamic behavior controlled by polytropic trapped vapor and the inertia of the surrounding liquid. The potential of the proposed approach is demonstrated by realization of disordered optical media with binary light-activated switching from opacity to high transparency.

  14. Electrically conductive material

    DOEpatents

    Singh, J.P.; Bosak, A.L.; McPheeters, C.C.; Dees, D.W.

    1993-09-07

    An electrically conductive material is described for use in solid oxide fuel cells, electrochemical sensors for combustion exhaust, and various other applications possesses increased fracture toughness over available materials, while affording the same electrical conductivity. One embodiment of the sintered electrically conductive material consists essentially of cubic ZrO[sub 2] as a matrix and 6-19 wt. % monoclinic ZrO[sub 2] formed from particles having an average size equal to or greater than about 0.23 microns. Another embodiment of the electrically conductive material consists essentially at cubic ZrO[sub 2] as a matrix and 10-30 wt. % partially stabilized zirconia (PSZ) formed from particles having an average size of approximately 3 microns. 8 figures.

  15. The plumes of IO: A detection of solid sulfur dioxide particles

    NASA Technical Reports Server (NTRS)

    Howell, R. R.; Cruikshank, D. P.; Geballe, T. T.

    1984-01-01

    Spectra of Io obtained during eclipse show a narrow deep absorption feature at 4.871 microns, the wavelength of the Nu sub 1 + Nu sub 3 band of solid SO2. The 4 micron radiation comes from volcanic hot spots at a temperature too high for the existence of solid SO2. It is concluded that the spectral feature results from SO2 particles suspended in plumes above the hot spots. The derived abundance of approximately 0.0003 gm/sq cm may imply an SO2 solid-to-gas ratio of roughly one for the Loki plume, which would in turn suggest that it is driven by the SO2 rather than by sulfur.

  16. Atmospheric effects on the remote determination of thermal inertia on Mars

    NASA Technical Reports Server (NTRS)

    Haberle, Robert M.; Jakosky, Bruce M.

    1991-01-01

    Measurements of the IR brightness temperature at the Martian surface at many different times of day are presently compared with temperatures predicted by thermal models which allow sunlight to reach the surface unattenuated, in order to determine the thermal inertia of the uppermost 1-10 cm of the Martian surface. The consequences of the assumptions made are assessed in view of results from a different thermal model which invokes radiation-transfer through a dusty CO2 atmosphere, as well as sensible heat-exchange with the surface. Smaller thermal inertias imply smaller particle sizes; the results obtained suggest that low thermal-inertia regions consist of 5-micron, rather than 50-micron, particle sizes.

  17. Liquid-liquid phase separation in aerosol particles: Imaging at the Nanometer Scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Brien, Rachel; Wang, Bingbing; Kelly, Stephen T.

    2015-04-21

    Atmospheric aerosols can undergo phase transitions including liquid-liquid phase separation (LLPS) while responding to changes in the ambient relative humidity (RH). Here, we report results of chemical imaging experiments using environmental scanning electron microscopy (ESEM) and scanning transmission x-ray microscopy (STXM) to investigate the LLPS of micron sized particles undergoing a full hydration-dehydration cycle. Internally mixed particles composed of ammonium sulfate (AS) and either: limonene secondary organic carbon (LSOC), a, 4-dihydroxy-3-methoxybenzeneaceticacid (HMMA), or polyethylene glycol (PEG-400) were studied. Events of LLPS with apparent core-shell particle morphology were observed for all samples with both techniques. Chemical imaging with STXM showed thatmore » both LSOC/AS and HMMA/AS particles were never homogeneously mixed for all measured RH’s above the deliquescence point and that the majority of the organic component was located in the shell. The shell composition was estimated as 65:35 organic: inorganic in LSOC/AS and as 50:50 organic: inorganic for HMMA/AS. PEG-400/AS particles showed fully homogeneous mixtures at high RH and phase separated below 89-92% RH with an estimated 50:50% organic to inorganic mix in the shell. These two chemical imaging techniques are well suited for in-situ analysis of the hygroscopic behavior, phase separation, and surface composition of collected ambient aerosol particles.« less

  18. Filtration effects on ball bearing life and condition in a contaminated lubricant

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.; Moyer, D. W.

    1978-01-01

    Ball bearings were fatigue tested with a noncontaminated lubricant and with a contaminated lubricant under four levels of filtration. The test filters had absolute particle removal ratings of 3, 30, 49, and 105 microns. Aircraft turbine engine contaminants were injected into the filter's supply line at a constant rate of 125 milligrams per bearing hour. Bearing life and running track condition generally improved with finer filtration. The experimental lives of 3 and 30 micron filter bearings were statistically equivalent, approaching those obtained with the noncontaminated lubricant bearings. Compared to these bearings, the lives of the 49 micron bearings were statistically lower. The 105 micron bearings experienced gross wear. The degree of surface distress, weight loss, and probable failure mode were dependent on filtration level, with finer filtration being clearly beneficial.

  19. Composition and spectral characteristics of ambient aerosol at Mauna Loa Observatory

    NASA Technical Reports Server (NTRS)

    Johnson, Stanley A.; Kumar, Romesh

    1991-01-01

    The spectral and the chemical characteristics of ambient aerosol at Mauna Loa Observatory (Hawaii) were determined in aerosol particles continuously sampled during an 8-day period in August 1986. During this period, the chemical species in the ambient aerosol varied considerably. During the major fraction of the sampling period, the aerosol was acidic due to predominance of (NH4)3H(SO4)2, NH4HSO4, or H2SO4. Aerosol samples showed much higher absorbance at 9.1 microns than at 10.6 microns. Moreover, changes in chemical composition from the neutral (NH4)2SO4 aerosol to more acidic sulphate forms were accompanied by substantial changes in the samples' absorbance at 9.1 microns (with lesser changes in the 10.6-micron absorptions).

  20. High Shear Homogenization of Lignin to Nanolignin and Thermal Stability of Nanolignin-Polyvinyl Alcohol Blends

    Treesearch

    Sandeep S. Nair; Sudhir Sharma; Yunqiao Pu; Qining Sun; Shaobo Pan; J.Y. Zhu; Yulin Deng; Art J. Ragauskas

    2014-01-01

    A new method to prepare nanolignin using a simple high shear homogenizer is presented. The kraft lignin particles with a broad distribution ranging from large micron- to nano-sized particles were completely homogenized to nanolignin particles with sizes less than 100 nm after 4 h of mechanical shearing. The 13C nuclear magnetic resonance (NMR)...

  1. Effects of Heat Treatment on the Magnetic Properties of Polymer-Bound Iron Particle Cores

    NASA Technical Reports Server (NTRS)

    Namkung, M.; Wincheski, B.; Bryant, R. G.

    1998-01-01

    Spherical iron particles of three different size distributions, 6-10 microns in diameter, 100 mesh and 30-80 mesh, were mixed with 2.0 wt. % of soluble imide and compression molded at 300 C under 131 MPa. Post fabrication heat treatments were performed at 960 C for 6 hours resulting in a significant enhancement of the permeability in low field region for all the specimens except for the one made of 30-80 mesh particles. The rate of core loss of these specimens at a magnetic induction of 5 kG measured up to 1 kHz shows a noticeable increase after heat treatment which, along with the permeability enhancement, can be explained by the coalescence of particles forming a network of conductivity paths in the specimens. The scanning electron micrographs taken for the 6-10 micron particle specimens show no evidence of heat treatment-induced grain growth. The untreated specimens show a very weak f(sup 2) dependence of the core loss which clearly indicates a negligible contribution from the eddy current loss. In particular, an almost perfect linearity was found in the frequency dependence of the core loss of the untreated specimen made of 100 mesh iron particles.

  2. Observations and Parameterizations of Particle Size Distributions in Deep Tropical Cirrus and Stratiform Precipitation Clouds: Results from In-Situ Observations in TRMM Field Campaigns

    NASA Technical Reports Server (NTRS)

    Heymsfield, Andrew J.; Bansemer, Aaron; Field, Paul R.; Durden, Stephen L.; Stith, Jeffrey L.; Dye, James E.; Hall, William; Grainger, Cedric A.

    2002-01-01

    In this study, we report on the evolution of particle size distributions (PSDs) and habits as measured during slow, Lagrangian-type spiral descents through deep subtropical and tropical cloud layers in Florida, Brazil, and Kwajalein, Marshall Islands, most of which were precipitating. The objective of the flight patterns was to learn more about how the PSDs evolved in the vertical and to obtain information of the vertical structure of microphysical properties. New instrumentation yielding better information on the concentrations of particles in the size (D) range between 0.2 and 2 cm, as well as improved particle imagery, produced more comprehensive observations for tropical stratiform precipitation regions and anvils than have been available previously. Collocated radar observations provided additional information on the vertical structure of the cloud layers sampled. Most of the spirals began at cloud top, with temperatures (T) as low as -50 C, and ended at cloud base or below the melting layer (ML). The PSDs broadened from cloud top towards cloud base, with the largest particles increasing in size from several millimeters at cloud top to one centimeter or larger towards cloud base. Some continued growth was noted in the upper part of the ML. Concentrations of particles less than 1 mm in size decreased with decreasing height. The result was a consistent change in the PSDs in the vertical. Similarly, systematic changes in the size dependence of the particle cross-sectional area was noted with decreasing height. Aggregation-as ascertained from both the changes in the PSDs and evolution of particle habits as observed in high detail with the cloud particle imager (CPI) probe-was responsible for these trends. The PSDs were generally well-represented by gamma distributions of the form N = N0 gamma D microns e- lambda gamma D that were fitted to the PSDs over 1-km horizontal intervals throughout the spirals. The intercept (N0 gamma), slope (lambda gamma), and dispersion (microns) values were derived for each PSD. Exponential curves (N = N0e- lambdaD; micron = 0) were also fitted to the distributions. The lambda gamma values for given spirals varied systematically with temperature as did the values of lambda (exponential), and the data generally conformed to values found in previous studies involving exponential fits to size distributions in mid-latitude frontal and cirrus layers. Considerable variability often noted in the PSD properties during the loops of individual spirals was manifested primarily in large changes in N0 gamma and N0, but micron, lambda gamma and lambda remained fairly stable. Temperature is not found to be the sole factor controlling lambda gamma or lambda but is a primary one. Direct relationships were found between lambda gamma and N0 gamma or lambda gamma and micron for the gamma distributions and lambda and N0 for the exponential. The latter relationship was not found as distinctly in earlier studies; observed PSDs in this study had better fidelity with less scatter. The micron values changed monotonically with T over the range of temperatures and were directly related to N0 gamma or lambda gamma, thereby reducing the number of variables in the PSD functional equation to two. In the upper part of the ML, N0 and lambda continued to decrease, and in the lower part these values began to increase as the largest particles melted. We developed general expressions relating various bulk microphysical, radar, and radiative transfer-related variables to N0 gamma and lambda gamma, useful for both tropical and mid-latitude clouds. These relationships facilitate the specification of a number of bulk properties in cloud and climate models. The results presented in this paper apply best to temperatures between 0 and -40 C, for which the measured radar reflectivities fall in the range of 0 to 25 dBZe.

  3. The Mapping X-ray Fluorescence Spectrometer (MapX)

    NASA Astrophysics Data System (ADS)

    Sarrazin, P.; Blake, D. F.; Marchis, F.; Bristow, T.; Thompson, K.

    2017-12-01

    Many planetary surface processes leave traces of their actions as features in the size range 10s to 100s of microns. The Mapping X-ray Fluorescence Spectrometer (MapX) will provide elemental imaging at 100 micron spatial resolution, yielding elemental chemistry at a scale where many relict physical, chemical, or biological features can be imaged and interpreted in ancient rocks on planetary bodies and planetesimals. MapX is an arm-based instrument positioned on a rock or regolith with touch sensors. During an analysis, an X-ray source (tube or radioisotope) bombards the sample with X-rays or alpha-particles / gamma-rays, resulting in sample X-ray Fluorescence (XRF). X-rays emitted in the direction of an X-ray sensitive CCD imager pass through a 1:1 focusing lens (X-ray micro-pore Optic (MPO)) that projects a spatially resolved image of the X-rays onto the CCD. The CCD is operated in single photon counting mode so that the energies and positions of individual X-ray photons are recorded. In a single analysis, several thousand frames are both stored and processed in real-time. Higher level data products include single-element maps with a lateral spatial resolution of 100 microns and quantitative XRF spectra from ground- or instrument- selected Regions of Interest (ROI). XRF spectra from ROI are compared with known rock and mineral compositions to extrapolate the data to rock types and putative mineralogies. When applied to airless bodies and implemented with an appropriate radioisotope source for alpha-particle excitation, MapX will be able to analyze biogenic elements C, N, O, P, S, in addition to the cations of the rock-forming elements >Na, accessible with either X-ray or gamma-ray excitation. The MapX concept has been demonstrated with a series of lab-based prototypes and is currently under refinement and TRL maturation.

  4. Reduced Noise UV Enhancement of Etch Rates for Nuclear Tracks in CR-39

    NASA Astrophysics Data System (ADS)

    Sheets, Rebecca; Clarkson, David; Ume, Rubab; Regan, Sean; Sangster, Craig; Padalino, Stephen; McLean, James

    2016-10-01

    The use of CR-39 plastic as a Solid State Nuclear Track Detector is an effective technique for obtaining data in high-energy particle experiments including inertial confinement fusion. To reveal particle tracks after irradiation, CR-39 is chemically etched in NaOH at 80°C for 6 hours, producing micron-scale signal pits at the nuclear track sites. Using CR-39 irradiated with 5.4 MeV alpha particles and 1.0 MeV protons, we show that exposing the CR-39 to high intensity UV light before etching, with wavelengths between 240 nm and 350 nm, speeds the etch process. Elevated temperatures during UV exposure amplifies this effect, with etch rates up to 50% greater than unprocessed conditions. CR-39 pieces exposed to UV light and heat can also exhibit heightened levels of etch-induced noise (surface features not caused by nuclear particles). By illuminating the CR-39 from the side opposite to the tracks, a similar level of etch enhancement was obtained with little to no noise. The effective wavelength range is reduced, due to strong attenuation of shorter wavelengths. Funded in part by a LLE contract through the DOE.

  5. Characterization of fine abrasive particles for optical fabrication

    NASA Astrophysics Data System (ADS)

    Funkenbusch, Paul D.; Zhou, Y. Y.; Takahashi, Toshio; Quesnel, David J.; Lambropoulos, John C.

    1995-08-01

    Material removal during fine grinding operations is accomplished primarily by the action of individual abrasive particles on the glass surface. The mechanical properties of the abrasive are therefore important. Unfortunately it is difficult to directly measure the mechanical response of abrasives once they reach the scale of approximately 10 microns. As a result mechanical properties of fine abrasives are sometimes characterized in terms of an empirical `friability', based on the response of the abrasive to crushing by a metal ball in a vial. In this paper we report on modeling/experiments designed to more precisely quantify the mechanical properties of fine abrasives and ultimately to relate them to the conditions experienced by bound particles during grinding. Experiments have been performed on various types and sizes of diamond abrasives. The response of the particles is a strong function of the loading conditions and can be tracked by changing the testing parameters. Diamond size is also found to play a critical role, with finer diamonds less susceptible to fracture. A micromechanical model from the literature is employed estimate the forces likely to be seen during testing. We are also developing dynamic models to better predict the forces experienced during `friability' testing as a function of the testing parameters.

  6. Respiratory deposition of inhaled micron particles in subjects with mild asthma

    EPA Science Inventory

    Rational: Particulate matter (PM) in the ambient air can cause adverse health effects to some people including an aggravation of asthma. Although compromised lung conditions in disease are likely to be the primary cause of the effects, enhanced respiratory dose of particles may a...

  7. ROADSIDE AMMONIA MEASUREMENTS USING OPTICAL REMOTE SENSING INSTRUMENTS

    EPA Science Inventory

    Fine particles less than 2.5 microns in diameter have been identified as a causal agent of excess mortality and other undesirable health impacts. A large part of these airborne particles, generally more than one-half, are formed in the atmosphere by reactions of ammonia with acid...

  8. Venus Clouds: A dirty hydrochloric acid model

    NASA Technical Reports Server (NTRS)

    Hapke, B.

    1971-01-01

    The spectral and polarization data for Venus are consistent with micron-sized, aerosol cloud particles of hydrochloric acid containing soluble and insoluble iron compounds, whose source could be volcanic or crustal dust. The ultraviolet features could arise from variations in the Fe-HCl concentration in the cloud particles.

  9. Size distribution and scattering phase function of aerosol particles retrieved from sky brightness measurements

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Gitelson, A.; Karnieli, A.; Ganor, E. (Editor); Fraser, R. S.; Nakajima, T.; Mattoo, S.; Holben, B. N.

    1994-01-01

    Ground-based measurements of the solar transmission and sky radiance in a horizontal plane through the Sun are taken in several geographical regions and aerosol types: dust in a desert transition zone in Israel, sulfate particles in Eastern and Western Europe, tropical aerosol in Brazil, and mixed continental/maritime aerosol in California. Stratospheric aerosol was introduced after the eruption of Mount Pinatubo in June 1991. Therefore measurements taken before the eruption are used to analyze the properties of tropospheric aerosol; measurements from 1992 are also used to detect the particle size and concentration of stratospheric aerosol. The measurements are used to retrieve the size distribution and the scattering phase function at large scattering angles of the undisturbed aerosol particles. The retrieved properties represent an average on the entire atmospheric column. A comparison between the retrieved phase function for a scattering angle of 120 deg, with phase function predicted from the retrieved size distribution, is used to test the assumption of particle homogeneity and sphericity in radiative transfer models (Mie theory). The effect was found to be small (20% +/- 15%). For the stratospheric aerosol (sulfates), as expected, the phase function was very well predicted using the Mie theory. A model with a power law distribution, based on the spectral dependence of the optical thickness, alpha, cannot estimate accurately the phase function (up to 50% error for lambda = 0.87 microns). Before the Pinatubo eruption the ratio between the volumes of sulfate and coarse particles was very well correlated with alpha. The Pinatubo stratospheric aerosol destroyed this correlation. The aerosol optical properties are compared with analysis of the size, shape, and composition of the individual particles by electron microscopy of in situ samples. The measured volume size distribution before the injection of stratospheric aerosol consistently show two modes, sulfate particles with r(sub m) less than 0.2 microns and coarse paritcles with r(sub m) greater than 0.7 microns. The 'window' in the tropospheric aerosol in this radius range was used to observe a stable stratospheric aerosol in 1992, with r(sub m) approximately 0.5 microns. A combination of such optical thickness and sky measurements can be used to assess the direct forcing and the climatic impact of aerosol. Systematic inversion for the key aerosol types (sulfates, smoke, dust, and maritime aerosol) of the size distribution and phase function can give the relationship between the aerosol physical and optical properties that can be used to compute the radiative forcing. This forcing can be validated in dedicated field experiments.

  10. Cloud Atlas: Rotational Modulations in the L/T Transition Brown Dwarf Companion HN Peg B

    NASA Technical Reports Server (NTRS)

    Zhou, Yifan; Apai, Daniel; Metchev, Stanimir; Lew, Ben W. P.; Schneider, Glenn; Marley, Mark S.; Karalidi, Theodora; Manjavacas, Elena; Bedin, Luigi R.; Cowan, Nicolas B.; hide

    2018-01-01

    Time-resolved observations of brown dwarfs' rotational modulations provide powerful insights into the properties of condensate clouds in ultra-cool atmospheres. Multi-wavelength light curves reveal cloud vertical structures, condensate particle sizes, and cloud morphology, which directly constrain condensate cloud and atmospheric circulation models. We report results from Hubble Space Telescope/Wide Field Camera 3 (WFC3) near-infrared G141 taken in six consecutive orbits observations of HNPeg B, an L/T transition brown dwarf companion to a G0V type star. The best-fit sine wave to the 1.1 to 1.7 micron broadband light curve has the amplitude of and period of hour. The modulation amplitude has no detectable wavelength dependence except in the 1.4 micron water absorption band, indicating that the characteristic condensate particle sizes are large (greater than 1 micron). We detect significantly (4.4 sigma) lower modulation amplitude in the 1.4 micron water absorption band, and find that HN Peg B's spectral modulation resembles those of early T type brown dwarfs. We also describe a new empirical interpolation method to remove spectral contamination from the bright host star. This method may be applied in other high-contrast time-resolved observations with WFC3.

  11. Light scattering by low-density agglomerates of micron-sized grains with the PROGRA2 experiment

    NASA Astrophysics Data System (ADS)

    Hadamcik, E.; Renard, J.-B.; Lasue, J.; Levasseur-Regourd, A. C.; Blum, J.; Schraepler, R.

    2007-07-01

    This work was carried out with the PROGRA2 experiment, specifically developed to measure the angular dependence of the polarization of light scattered by dust particles. The samples are small agglomerates of micron-sized grains and huge, low number density agglomerates of the same grains. The constituent grains (spherical or irregularly shaped) are made of different non-absorbing and absorbing materials. The small agglomerates, in a size range of a few microns, are lifted by an air draught. The huge centimeter-sized agglomerates, produced by random ballistic deposition of the grains, are deposited on a flat surface. The phase curves obtained for monodisperse, micron-sized spheres in agglomerates are obviously not comparable to the ‘smooth’ phase curves obtained by remote observations of cometary dust or asteroidal regoliths but they are used for comparison with numerical calculations to a better understanding of the light scattering processes. The phase curves obtained for irregular grains in agglomerates are similar to those obtained by remote observations, with a negative branch at phase angles smaller than 20° and a maximum polarization decreasing with increasing albedo. These results, coupled with remote observations in the solar system, should provide a better understanding of the physical properties of solid particles and their variation in cometary comae and asteroidal regoliths.

  12. Effect of surface coating with magnesium stearate via mechanical dry powder coating approach on the aerosol performance of micronized drug powders from dry powder inhalers.

    PubMed

    Zhou, Qi Tony; Qu, Li; Gengenbach, Thomas; Larson, Ian; Stewart, Peter J; Morton, David A V

    2013-03-01

    The objective of this study was to investigate the effect of particle surface coating with magnesium stearate on the aerosolization of dry powder inhaler formulations. Micronized salbutamol sulphate as a model drug was dry coated with magnesium stearate using a mechanofusion technique. The coating quality was characterized by X-ray photoelectron spectroscopy. Powder bulk and flow properties were assessed by bulk densities and shear cell measurements. The aerosol performance was studied by laser diffraction and supported by a twin-stage impinger. High degrees of coating coverage were achieved after mechanofusion, as measured by X-ray photoelectron spectroscopy. Concomitant significant increases occurred in powder bulk densities and in aerosol performance after coating. The apparent optimum performance corresponded with using 2% w/w magnesium stearate. In contrast, traditional blending resulted in no significant changes in either bulk or aerosolization behaviour compared to the untreated sample. It is believed that conventional low-shear blending provides insufficient energy levels to expose host micronized particle surfaces from agglomerates and to distribute guest coating material effectively for coating. A simple ultra-high-shear mechanical dry powder coating step was shown as highly effective in producing ultra-thin coatings on micronized powders and to substantially improve the powder aerosolization efficiency.

  13. The 27-28 October 1986 FIRE Cirrus case study - Retrieval of cloud particle sizes and optical depths from comparative analyses of aircraft and satellite-based infrared measurements

    NASA Technical Reports Server (NTRS)

    Hammer, Philip D.; Valero, Francisco P. J.; Kinne, Stefan

    1991-01-01

    Infrared radiance measurements were acquired from a narrow-field nadir-viewing radiometer based on the NASA ER-2 aircraft during a coincident Landsat 5 overpass on October 28, 1986 as part of the FIRE Cirrus IFO in the vicinity of Lake Michigan. The spectral bandpasses are 9.90-10.87 microns for the ER-2-based radiometer and 10.40-12.50 microns for the Landsat thematic mapper band. After adjusting for spatial and temporal differences, a comparative study using data from these two instruments is undertaken in order to retrieve cirrus cloud ice-crystal sizes and optical depths. Retrieval is achieved by analysis of measurement correlations between the two spectral bands and comparison to multistream radiative transfer model calculations. The results indicate that the equivalent sphere radii of the cirrus ice crystals were typically less than 30 microns. Such particles were too small to be measured by the available in situ instrumentation. Cloud optical depths at a reference wavelength of 11.4 microns ranged from 0.3 to 2.0 for this case study. Supplemental results in support of this study are described using radiation measurements from the King Air aircraft, which was also in near coincidence with the Landsat overpass.

  14. Resistive switching characteristics of polymer non-volatile memory devices in a scalable via-hole structure.

    PubMed

    Kim, Tae-Wook; Choi, Hyejung; Oh, Seung-Hwan; Jo, Minseok; Wang, Gunuk; Cho, Byungjin; Kim, Dong-Yu; Hwang, Hyunsang; Lee, Takhee

    2009-01-14

    The resistive switching characteristics of polyfluorene-derivative polymer material in a sub-micron scale via-hole device structure were investigated. The scalable via-hole sub-microstructure was fabricated using an e-beam lithographic technique. The polymer non-volatile memory devices varied in size from 40 x 40 microm(2) to 200 x 200 nm(2). From the scaling of junction size, the memory mechanism can be attributed to the space-charge-limited current with filamentary conduction. Sub-micron scale polymer memory devices showed excellent resistive switching behaviours such as a large ON/OFF ratio (I(ON)/I(OFF) approximately 10(4)), excellent device-to-device switching uniformity, good sweep endurance, and good retention times (more than 10,000 s). The successful operation of sub-micron scale memory devices of our polyfluorene-derivative polymer shows promise to fabricate high-density polymer memory devices.

  15. Final Technical Report for Grant DE-FG02-04ER54795

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merlino, Robert L

    This is the final technical report for DOE Grant #DE-FG02-04ER54795-Experimental Investigations of Fundamental Processes in Dusty Plasmas. A plasma is an ionized gas, and a dusty plasmas is a plasma that contains, in addition to electrons and ions, micron-sized dust particles. The dust particles acquire and electric charge in the plasma by collecting electrons and ions. The electrons move more rapidly than the ions, so the dust charge is negative. A 1 micron dust particle in a typical low temperature plasma has a charge corresponding to approximately 2000 electrons. Dusty plasmas are naturally found in astrophysical plasmas, planetary rings, technologicalmore » plasmas, and magnetic fusion plasmas. The goal of this project was to study in the laboratory, the basic physical processes that occur in dusty plasmas. This report provides a summary of the major scientific products and activities of this award.« less

  16. Stratosphere aerosol and cloud measurements at McMurdo Station Antarctica during the spring of 1987

    NASA Technical Reports Server (NTRS)

    Hofmann, D. J.; Rosen, J. M.; Harder, J. W.

    1988-01-01

    Measurements of stratospheric aerosols with balloonborne optical particle counters on 6 occasions at McMurdo Station (78 deg S) in the spring of 1986 indicated subsidence of the stratospheric sulfate layer during the time that the ozone hole was forming (Hofmann et al., 1988). Since dynamic models of ozone depletion involving upwelling in the spring polar vortex would suggest the opposite, we repeated the measurements with an increased frequency (about one sounding per week) in 1987. During 3 of the aerosol soundings in 1986, temperatures in the 15 to 20 km range were low enough (less than 80 C) for HNO3 to co-condense with water according to several theories of polar stratospheric cloud formation. However, particles were not observed with the characteristic size suggested by theory (approx. 0.5 microns). For this reason, it was proposed that polar stratospheric clouds may predominantly consist of large (approx. 5 to 50 microns) ice crystals at very low (approx. 10 sup 4- 10 sup 3 cm cubed) concentrations (Rosen et al., 1988). The particle counter employed would be relatively insensitive to these low concentrations. With the increased frequency of soundings in 1987, and adding additional size discrimination in the 1 to 2 micron region, this hypothesis could be verified if suitably low temperatures were encountered.

  17. Virtual Impactor for Sub-micron Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Bolshakov, A. A.; Strawa, A. W.; Hallar, A. G.

    2005-12-01

    The objective of a virtual impactor is to separate out the larger particles in a flow from the smaller particles in such a way that both sizes of particles are available for sampling. A jet of particle-laden air is accelerated toward a collection probe so that a small gap exists between the acceleration nozzle and the probe. A vacuum is applied to deflect a major portion of the airstream away form the collection probe. Particles larger than a certain size have sufficient momentum so that they cross the deflected streamlines and enter the collection probe, whereas smaller particles follow the deflected streamlines. The result is that the collection probe will contain a higher concentration of larger particles than is in the initial airstream. Typically, virtual impactors are high-flow devices used to separate out particles greater than several microns in diameter. We have developed a special virtual impactor to concentrate aerosol particles of diameters between 0.5 to 1 micron for the purpose of calibrating the optical cavity ring-down instrument [1]. No similar virtual impactors are commercially available. In our design, we have exploited considerations described earlier [2-4]. Performance of our virtual impactor was evaluated in an experimental set-up using TSI 3076 nebulizer and TSI 3936 scanning mobility particle size spectrometer. Under experimental conditions optimized for the best performance of the virtual impactor, we were able to concentrate the 700-nm polystyrene particles no less than 15-fold. However, under experimental conditions optimized for calibrating our cavity ring-down instrument, a concentration factor attainable was from 4 to 5. During calibration experiments, maximum realized particle number densities were 190, 300 and 1600 cm-3 for the 900-nm, 700-nm and 500-nm spheres, respectively. This paper discusses the design of the impactor and laboratory studies verifying its performance. References: 1. A.W. Strawa, R. Castaneda, T. Owano, D.S. Baer, B.A. Paldus, J. Atm. Ocean. Technol., 20, 454-465 (2003). 2. V.A. Marple, K.L. Rubow, B.A. Olson, Aerosol Sci. Technol., 22, 140-150 (1995). 3. B.T. Chen, H.C. Yeh, Y.S. Cheng, J. Aerosol Sci., 16, 343-354 (1985). 4. V.A. Marple, C.M. Chien, Environ. Sci. Technol., 14, 976-985 (1980).

  18. Effect of filtration on rolling-element-bearing life in contaminated lubricant environment

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.; Moyer, D. W.; Sherlock, J. J.

    1978-01-01

    Fatigue tests were conducted on groups of 65 millimeter-bore ball bearings under four levels of filtration with and without a contaminated MIL-L-23699 lubricant. The baseline series used noncontaminated oil with 49 micron absolute filtration. In the remaining tests contaminants of the composition found in aircraft engine filters were injected into the filter's supply line at a constant rate of 125 milligrams per bearing-hour. The test filters had absolute particle removal ratings of 3, 30, 49, and 105 microns (0.45, 10, 30, and 70 microns nominal), respectively. Bearings were tested at 15,000 rpm under 4580 newtons radial load. Bearing life and running tract condition generally improved with finer filtration. The 3 and 30 micron filter bearings in a contaminated lubricant had statistically equivalent lives, approaching those from the baseline tests. The experimental lives of 49 micron bearings were approximately half the baseline bearing's lives. Bearings tested with the 105 micron filter experienced wear failures. The degree of surface distress, weight loss, and probable failure mode were found to be dependent on filtration level, with finer filtration being clearly beneficial.

  19. Correlative imaging reveals physiochemical heterogeneity of microcalcifications in human breast carcinomas.

    PubMed

    Kunitake, Jennie A M R; Choi, Siyoung; Nguyen, Kayla X; Lee, Meredith M; He, Frank; Sudilovsky, Daniel; Morris, Patrick G; Jochelson, Maxine S; Hudis, Clifford A; Muller, David A; Fratzl, Peter; Fischbach, Claudia; Masic, Admir; Estroff, Lara A

    2018-04-01

    Microcalcifications (MCs) are routinely used to detect breast cancer in mammography. Little is known, however, about their materials properties and associated organic matrix, or their correlation to breast cancer prognosis. We combine histopathology, Raman microscopy, and electron microscopy to image MCs within snap-frozen human breast tissue and generate micron-scale resolution correlative maps of crystalline phase, trace metals, particle morphology, and organic matrix chemical signatures within high grade ductal carcinoma in situ (DCIS) and invasive cancer. We reveal the heterogeneity of mineral-matrix pairings, including punctate apatitic particles (<2 µm) with associated trace elements (e.g., F, Na, and unexpectedly Al) distributed within the necrotic cores of DCIS, and both apatite and spheroidal whitlockite particles in invasive cancer within a matrix containing spectroscopic signatures of collagen, non-collagen proteins, cholesterol, carotenoids, and DNA. Among the three DCIS samples, we identify key similarities in MC morphology and distribution, supporting a dystrophic mineralization pathway. This multimodal methodology lays the groundwork for establishing MC heterogeneity in the context of breast cancer biology, and could dramatically improve current prognostic models. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Preparation and characterization of uniform nanosized cephradine by combination of reactive precipitation and liquid anti-solvent precipitation under high gravity environment.

    PubMed

    Zhong, Jie; Shen, Zhigang; Yang, Yan; Chen, Jianfeng

    2005-09-14

    In this work, a novel direct method, which was combined with reactive precipitation and liquid anti-solvent precipitation under high gravity environment, had been developed to prepare nanosized cephradine with narrow particle size distribution. Compared with commercial crude cephradine, the prepared cephradine showed a significant decrease in particle size, a significant increase in the specific surface area and shorter dissolving time when used for injection. The characteristic particle size was between 200-400 nm. The specific surface area increased from 2.95 to 10.87 m2/g after micronization. When the amount of L-arginin decreased from 0.25 to 0.18 g, the mixture of nanosized cephradine and L-arginine could still dissolve in 1 min. The X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) analysis indicated that the physical characteristics and molecular states remained unchanged after the recrystallization process. This method had potential application in industrial fields because of its low cost, efficient processing and the ease of scaling-up.

  1. Single particle tracking reveals spatial and dynamic organization of the Escherichia coli biofilm matrix

    NASA Astrophysics Data System (ADS)

    Birjiniuk, Alona; Billings, Nicole; Nance, Elizabeth; Hanes, Justin; Ribbeck, Katharina; Doyle, Patrick S.

    2014-08-01

    Biofilms are communities of surface-adherent bacteria surrounded by secreted polymers known as the extracellular polymeric substance. Biofilms are harmful in many industries, and thus it is of great interest to understand their mechanical properties and structure to determine ways to destabilize them. By performing single particle tracking with beads of varying surface functionalization it was found that charge interactions play a key role in mediating mobility within biofilms. With a combination of single particle tracking and microrheological concepts, it was found that Escherichia coli biofilms display height dependent charge density that evolves over time. Statistical analyses of bead trajectories and confocal microscopy showed inter-connecting micron scale channels that penetrate throughout the biofilm, which may be important for nutrient transfer through the system. This methodology provides significant insight into a particular biofilm system and can be applied to many others to provide comparisons of biofilm structure. The elucidation of structure provides evidence for the permeability of biofilms to microscale objects, and the ability of a biofilm to mature and change properties over time.

  2. PDADMAC flocculation of Chinese hamster ovary cells: enabling a centrifuge-less harvest process for monoclonal antibodies.

    PubMed

    McNerney, Thomas; Thomas, Anne; Senczuk, Anna; Petty, Krista; Zhao, Xiaoyang; Piper, Rob; Carvalho, Juliane; Hammond, Matthew; Sawant, Satin; Bussiere, Jeanine

    2015-01-01

    High titer (>10 g/L) monoclonal antibody (mAb) cell culture processes are typically achieved by maintaining high viable cell densities over longer culture durations. A corresponding increase in the solids and sub-micron cellular debris particle levels are also observed. This higher burden of solids (≥15%) and sub-micron particles typically exceeds the capabilities of a continuous centrifuge to effectively remove the solids without a substantial loss of product and/or the capacity of the harvest filtration train (depth filter followed by membrane filter) used to clarify the centrate. We discuss here the use of a novel and simple two-polymer flocculation method used to harvest mAb from high cell mass cell culture processes. The addition of the polycationic polymer, poly diallyldimethylammonium chloride (PDADMAC) to the cell culture broth flocculates negatively-charged cells and cellular debris via an ionic interaction mechanism. Incorporation of a non-ionic polymer such as polyethylene glycol (PEG) into the PDADMAC flocculation results in larger flocculated particles with faster settling rate compared to PDADMAC-only flocculation. PDADMAC also flocculates the negatively-charged sub-micron particles to produce a feed stream with a significantly higher harvest filter train throughput compared to a typical centrifuged harvest feed stream. Cell culture process variability such as lactate production, cellular debris and cellular densities were investigated to determine the effect on flocculation. Since PDADMAC is cytotoxic, purification process clearance and toxicity assessment were performed.

  3. PDADMAC flocculation of Chinese hamster ovary cells: Enabling a centrifuge-less harvest process for monoclonal antibodies

    PubMed Central

    McNerney, Thomas; Thomas, Anne; Senczuk, Anna; Petty, Krista; Zhao, Xiaoyang; Piper, Rob; Carvalho, Juliane; Hammond, Matthew; Sawant, Satin; Bussiere, Jeanine

    2015-01-01

    High titer (>10 g/L) monoclonal antibody (mAb) cell culture processes are typically achieved by maintaining high viable cell densities over longer culture durations. A corresponding increase in the solids and sub-micron cellular debris particle levels are also observed. This higher burden of solids (≥15%) and sub-micron particles typically exceeds the capabilities of a continuous centrifuge to effectively remove the solids without a substantial loss of product and/or the capacity of the harvest filtration train (depth filter followed by membrane filter) used to clarify the centrate. We discuss here the use of a novel and simple two-polymer flocculation method used to harvest mAb from high cell mass cell culture processes. The addition of the polycationic polymer, poly diallyldimethylammonium chloride (PDADMAC) to the cell culture broth flocculates negatively-charged cells and cellular debris via an ionic interaction mechanism. Incorporation of a non-ionic polymer such as polyethylene glycol (PEG) into the PDADMAC flocculation results in larger flocculated particles with faster settling rate compared to PDADMAC-only flocculation. PDADMAC also flocculates the negatively-charged sub-micron particles to produce a feed stream with a significantly higher harvest filter train throughput compared to a typical centrifuged harvest feed stream. Cell culture process variability such as lactate production, cellular debris and cellular densities were investigated to determine the effect on flocculation. Since PDADMAC is cytotoxic, purification process clearance and toxicity assessment were performed. PMID:25706650

  4. Preliminary Results of a Microgravity Investigation to Measure Net Charge on Granular Materials

    NASA Technical Reports Server (NTRS)

    Green, Robert D.; Myers, Jerry G.; Hansen, Bonnie L.

    2003-01-01

    Accurate characterization of the electrostatic charge on granular materials has typically been limited to materials with diameters on the order of 10 microns and below due to high settling velocities of larger particles. High settling velocities limit both the time and the acceptable uncertainty with which a measurement can be made. A prototype device has been developed at NASA Glenn Research Center (GRC) to measure coulombic charge on individual particles of granular materials that are 50 to 500 microns in diameter. This device, a novel extension of Millikan's classic oil drop experiment, utilizes the NASA GRC 2.2 second drop tower to extend the range of electrostatic charge measurements to accommodate moderate size granular materials. A dielectric material with a nominal grain diameter between 1.06 and 250 microns was tribocharged using a dry gas jet, suspended in a 5x10x10 cm enclosure during a 2.2 second period of microgravity and exposed to a known electric field. The response was recorded on video and post processed to allow tracking of individual particles. By determining the particle trajectory and velocity, estimates of the coulombic charge were made. Over 30 drops were performed using this technique and the analysis showed that first order approximations of coulombic charge could successfully be obtained, with the mean charge of 3.4E-14 coulombs measured for F-75 Ottawa quartz sand. Additionally, the measured charge showed a near-Gaussian distribution, with a standard deviation of 2.14E -14 coulombs.

  5. Mutation induction by charged particles of defined linear energy transfer.

    PubMed

    Hei, T K; Chen, D J; Brenner, D J; Hall, E J

    1988-07-01

    The mutagenic potential of charged particles of defined linear energy transfer (LET) was assessed using the hypoxanthine-guanine phosphoribosyl transferase locus (HGPRT) in primary human fibroblasts. Exponentially growing cultures of early passaged fibroblasts were grown as monolayers on thin mylar sheets and were irradiated with accelerated protons, deuterons or helium-3 ions. The mutation rates were compared with those generated by 137Cs gamma-rays. LET values for charged particles accelerated at the Radiological Research Accelerator Facility, using the track segment mode, ranged from 10 to 150 keV/micron. After irradiation, cells were trypsinized, subcultured and assayed for both cytotoxicity and 6-thioguanine resistance. For gamma-rays, and for the charged particles of lower LET, the dose-response curves for cell survival were characterized by a marked initial shoulder, but approximated to an exponential function of dose for higher LETs. Mutation frequencies, likewise, showed a direct correlation to LET over the dose range examined. Relative biological effectiveness (RBE) for mutagenesis, based on the initial slopes of the dose-response curves, ranged from 1.30 for 10 keV/micron protons to 9.40 for 150 keV/micron helium-3 ions. Results of the present studies indicate that high-LET radiations, apart from being efficient inducers of cell lethality, are even more efficient in mutation induction as compared to low-LET ionizing radiation. These data are consistent with results previously obtained with both rodent and human fibroblast cell lines.

  6. A Proposed In Vitro Method to Assess Effects of Inhaled Particles on Lung Surfactant Function.

    PubMed

    Sørli, Jorid B; Da Silva, Emilie; Bäckman, Per; Levin, Marcus; Thomsen, Birthe L; Koponen, Ismo K; Larsen, Søren T

    2016-03-01

    The lung surfactant (LS) lining is a thin liquid film covering the air-liquid interface of the respiratory tract. LS reduces surface tension, enabling lung surface expansion and contraction with minimal work during respiration. Disruption of surface tension is believed to play a key role in severe lung conditions. Inhalation of aerosols that interfere with the LS may induce a toxic response and, as a part of the safety assessment of chemicals and inhaled medicines, it may be relevant to study their impact on LS function. Here, we present a novel in vitro method, based on the constrained drop surfactometer, to study LS functionality after aerosol exposure. The applicability of the method was investigated using three inhaled asthma medicines, micronized lactose, a pharmaceutical excipient used in inhaled medication, and micronized albumin, a known inhibitor of surfactant function. The surfactometer was modified to allow particles mixed in air to flow through the chamber holding the surfactant drop. The deposited dose was measured with a custom-built quartz crystal microbalance. The alterations allowed the study of continuously increasing quantified doses of particles, allowing determination of the dose of particles that affects the LS function. The tested pharmaceuticals did not inhibit the function of a model LS even at extreme doses--neither did lactose. Micronized albumin, however, impaired surfactant function. The method can discriminate between safe inhaled aerosols--as exemplified by the approved inhaled medicines and the pharmaceutical excipient lactose--and albumin known to impair lung functionality by inhibiting LS function.

  7. Manipulation of small particles at solid liquid interface: light driven diffusioosmosis.

    PubMed

    Feldmann, David; Maduar, Salim R; Santer, Mark; Lomadze, Nino; Vinogradova, Olga I; Santer, Svetlana

    2016-11-03

    The strong adhesion of sub-micron sized particles to surfaces is a nuisance, both for removing contaminating colloids from surfaces and for conscious manipulation of particles to create and test novel micro/nano-scale assemblies. The obvious idea of using detergents to ease these processes suffers from a lack of control: the action of any conventional surface-modifying agent is immediate and global. With photosensitive azobenzene containing surfactants we overcome these limitations. Such photo-soaps contain optical switches (azobenzene molecules), which upon illumination with light of appropriate wavelength undergo reversible trans-cis photo-isomerization resulting in a subsequent change of the physico-chemical molecular properties. In this work we show that when a spatial gradient in the composition of trans- and cis- isomers is created near a solid-liquid interface, a substantial hydrodynamic flow can be initiated, the spatial extent of which can be set, e.g., by the shape of a laser spot. We propose the concept of light induced diffusioosmosis driving the flow, which can remove, gather or pattern a particle assembly at a solid-liquid interface. In other words, in addition to providing a soap we implement selectivity: particles are mobilized and moved at the time of illumination, and only across the illuminated area.

  8. Manipulation of small particles at solid liquid interface: light driven diffusioosmosis

    NASA Astrophysics Data System (ADS)

    Feldmann, David; Maduar, Salim R.; Santer, Mark; Lomadze, Nino; Vinogradova, Olga I.; Santer, Svetlana

    2016-11-01

    The strong adhesion of sub-micron sized particles to surfaces is a nuisance, both for removing contaminating colloids from surfaces and for conscious manipulation of particles to create and test novel micro/nano-scale assemblies. The obvious idea of using detergents to ease these processes suffers from a lack of control: the action of any conventional surface-modifying agent is immediate and global. With photosensitive azobenzene containing surfactants we overcome these limitations. Such photo-soaps contain optical switches (azobenzene molecules), which upon illumination with light of appropriate wavelength undergo reversible trans-cis photo-isomerization resulting in a subsequent change of the physico-chemical molecular properties. In this work we show that when a spatial gradient in the composition of trans- and cis- isomers is created near a solid-liquid interface, a substantial hydrodynamic flow can be initiated, the spatial extent of which can be set, e.g., by the shape of a laser spot. We propose the concept of light induced diffusioosmosis driving the flow, which can remove, gather or pattern a particle assembly at a solid-liquid interface. In other words, in addition to providing a soap we implement selectivity: particles are mobilized and moved at the time of illumination, and only across the illuminated area.

  9. Self-Assembly of Hierarchical DNA Nanotube Architectures with Well-Defined Geometries.

    PubMed

    Jorgenson, Tyler D; Mohammed, Abdul M; Agrawal, Deepak K; Schulman, Rebecca

    2017-02-28

    An essential motif for the assembly of biological materials such as actin at the scale of hundreds of nanometers and beyond is a network of one-dimensional fibers with well-defined geometry. Here, we demonstrate the programmed organization of DNA filaments into micron-scale architectures where component filaments are oriented at preprogrammed angles. We assemble L-, T-, and Y-shaped DNA origami junctions that nucleate two or three micron length DNA nanotubes at high yields. The angles between the nanotubes mirror the angles between the templates on the junctions, demonstrating that nanoscale structures can control precisely how micron-scale architectures form. The ability to precisely program filament orientation could allow the assembly of complex filament architectures in two and three dimensions, including circuit structures, bundles, and extended materials.

  10. Laser jetting of femto-liter metal droplets for high resolution 3D printed structures

    NASA Astrophysics Data System (ADS)

    Zenou, M.; Sa'Ar, A.; Kotler, Z.

    2015-11-01

    Laser induced forward transfer (LIFT) is employed in a special, high accuracy jetting regime, by adequately matching the sub-nanosecond pulse duration to the metal donor layer thickness. Under such conditions, an effective solid nozzle is formed, providing stability and directionality to the femto-liter droplets which are printed from a large gap in excess of 400 μm. We illustrate the wide applicability of this method by printing several 3D metal objects. First, very high aspect ratio (A/R > 20), micron scale, copper pillars in various configuration, upright and arbitrarily bent, then a micron scale 3D object composed of gold and copper. Such a digital printing method could serve the generation of complex, multi-material, micron-scale, 3D materials and novel structures.

  11. Resistance to Rolling in the Adhesive Contact of Two Elastic Spheres

    NASA Technical Reports Server (NTRS)

    Dominik, C.; Tielens, A. G. G. M.

    1995-01-01

    For the stability of agglomerates of micron sized particles it is of considerable importance to study the effects of tangential forces on the contact of two particles. If the particles can slide or roll easily over each other, fractal structures of these agglomerates will not be stable. We use the description of contact forces by Johnson, Kendall and Roberts, along with arguments based on the atomic structure of the surfaces in contact, in order to calculate the resistance to rolling in such a contact. It is shown that the contact reacts elastically to torque forces up to a critical bending angle. Beyond that, irreversible rolling occurs. In the elastic regime, the moment opposing the attempt to roll is proportional to the bending angle and to the pull-off force P(sub c). Young's modulus of the involved materials has hardly any influence on the results. We show that agglomerates of sub-micron sized particles will in general be quite rigid and even long chains of particles cannot be bent easily. For very small particles, the contact will rather break than allow for rolling. We further discuss dynamic properties such as the possibility of vibrations in this degree of freedom and the typical amount of rolling during a collision of two particles.

  12. Effect of milling on particle shape and surface energy heterogeneity of needle-shaped crystals.

    PubMed

    Ho, Raimundo; Naderi, Majid; Heng, Jerry Y Y; Williams, Daryl R; Thielmann, Frank; Bouza, Peter; Keith, Adam R; Thiele, Greg; Burnett, Daniel J

    2012-10-01

    Milling and micronization of particles are routinely employed in the pharmaceutical industry to obtain small particles with desired particle size characteristics. The aim of this study is to demonstrate that particle shape is an important factor affecting the fracture mechanism in milling. Needle-shaped crystals of the β polymorph of D-mannitol were prepared from recrystallization in water. A portion of the recrystallized materials was ball-milled. Unmilled and milled sieved fractions of recrystallized D-mannitol were analyzed by dynamic image analysis (DIA) and inverse gas chromatography (IGC) at finite concentration to explain the breakage/fracture behavior. In the process of ball-milling, D-mannitol preferentially fractured along their shortest axis, exposing (011) plane with increased hydrophilicity and increased bounding rectangular aspect ratio. This is in contrary to attachment energy modeling which predicts a fracture mechanism across the (010) plane with increased hydrophobicity, and small change in particle shape. Crystal size, and more importantly, crystal shape and facet-specific mechanical properties, can dictate the fracture/cleavage behavior of organic crystalline materials. Thorough understanding of the crystal slip systems, combining attachment energy prediction with particle shape and surface characterization using DIA and IGC, are important in understanding fracture behavior of organic crystalline solids in milling and micronization.

  13. DETERMINATION OF THE STRONG ACIDITY OF ATMOSPHERIC FINE PARTICLES (<2.5 UM) USING ANNULAR DENUDER TECHNOLOGY

    EPA Science Inventory

    This report is a standardized methodology description for the determination of strong acidity of fine particles (less than 2.5 microns) in ambient air using annular denuder technology. his methodology description includes two parts: art A - Standard Method and Part B - Enhanced M...

  14. VARIATION OF LUNG DEPOSITION OF MICRON SIZE PARTICLES WITH LUNG VOLUME AND BREATHING PATTERN

    EPA Science Inventory

    Lung volume and breathing pattern are the source of inter-and intra-subject variability of lung deposition of inhaled particles. Controlling these factors may help optimize delivery of aerosol medicine to the target site within the lung. In the present study we measured total lu...

  15. ANNULAR IMPACTOR SAMPLING DEVICE

    DOEpatents

    Tait, G.W.C.

    1959-03-31

    A high-rate air sampler capable of sampling alphaemitting particles as small as 0.5 microns is described. The device is a cylindrical shaped cup that fits in front of a suction tube and which has sticky grease coating along its base. Suction forces contaminated air against the periodically monitored particle absorbing grease.

  16. Pro-Inflammatory and Pro-Fibrogenic Effects of Ionic and Particulate Arsenide and Indium-Containing Semiconductor Materials in the Murine Lung

    PubMed Central

    Jiang, Wen; Wang, Xiang; Osborne, Olivia J.; Du, Yingjie; Chang, Chong Hyun; Liao, Yu-Pei; Sun, Bingbing; Jiang, Jinhong; Ji, Zhaoxia; Li, Ruibin; liu, Xiangsheng; Lu, Jianqin; Lin, Sijie; Meng, Huan; Xia, Tian; Nel, André E.

    2017-01-01

    We have recently shown that the toxicological potential of GaAs and InAs particulates in cells is size- and dissolution-dependent, tending to be more pronounced for nano- vs. micron-sized particles. Whether the size-dependent dissolution and shedding of ionic III-V materials also apply to pulmonary exposure is unclear. While has been demonstrated that micron-sized III-V particles, such as GaAs and InAs, are capable of inducing hazardous pulmonary effects in an occupational setting, as well as in animal studies, the effect of sub-micron particles (e.g., the removal of asperities during processing of semiconductor wafers) is unclear. We used cytokine profiling to compare the pro-inflammatory effects of micron- and nanoscale GaAs and InAs particulates in cells as well as the murine lung 40 h and 21 days after oropharyngeal aspiration. Use of cytokine array technology in macrophage and epithelial cell cultures demonstrated a proportionally higher increase in the levels of extracellular matrix metalloproteinase inducer (EMMPRIN), macrophage migration inhibitory factor (MIF), and interleukin 1β (IL-1β) by nano-sized (n) GaAs and n-InAs as well as As(III). n-GaAs and n-InAs also triggered higher neutrophil counts in the bronchoalveolar lavage fluid (BALF) of mice than micronscale particles 40 h post-aspiration, along with increased production of EMMPRIN and MIF. In contrast, in animals sacrificed 21 days after exposure, only n-InAs induced fibrotic lung changes as determined by increased lung collagen as well as increased levels of TGF-β1 and PDGF-AA in the BALF. A similar trend was seen for EMMPRIN and matrix metallopeptidase (MMP-9) levels in the BALF. Nano- and micron-GaAs had negligible sub-acute effects. Importantly, the difference between the 40 h and 21 days data appears to be biopersistence of n-InAs, as demonstrated by ICP-OES analysis of lung tissue. Interestingly, an ionic form of In, InCl3, also showed pro-fibrogenic effects due to the formation of insoluble In(OH)3 nanostructures. All considered, these data indicate that while nanoscale particles exhibit increased pro-inflammatory effects in the lung, most effects are transient, except for n-InAs and insoluble InCl3 species that are biopersistent and trigger pro-fibrotic effects. These results are of potential importance for the understanding the occupational health effects of III-V particulates. PMID:28177603

  17. Self-assembled three-dimensional chiral colloidal architecture.

    PubMed

    Ben Zion, Matan Yah; He, Xiaojin; Maass, Corinna C; Sha, Ruojie; Seeman, Nadrian C; Chaikin, Paul M

    2017-11-03

    Although stereochemistry has been a central focus of the molecular sciences since Pasteur, its province has previously been restricted to the nanometric scale. We have programmed the self-assembly of micron-sized colloidal clusters with structural information stemming from a nanometric arrangement. This was done by combining DNA nanotechnology with colloidal science. Using the functional flexibility of DNA origami in conjunction with the structural rigidity of colloidal particles, we demonstrate the parallel self-assembly of three-dimensional microconstructs, evincing highly specific geometry that includes control over position, dihedral angles, and cluster chirality. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  18. Biogeography of a human oral microbiome at the micron scale

    PubMed Central

    Mark Welch, Jessica L.; Rossetti, Blair J.; Rieken, Christopher W.; Dewhirst, Floyd E.; Borisy, Gary G.

    2016-01-01

    The spatial organization of complex natural microbiomes is critical to understanding the interactions of the individual taxa that comprise a community. Although the revolution in DNA sequencing has provided an abundance of genomic-level information, the biogeography of microbiomes is almost entirely uncharted at the micron scale. Using spectral imaging fluorescence in situ hybridization as guided by metagenomic sequence analysis, we have discovered a distinctive, multigenus consortium in the microbiome of supragingival dental plaque. The consortium consists of a radially arranged, nine-taxon structure organized around cells of filamentous corynebacteria. The consortium ranges in size from a few tens to a few hundreds of microns in radius and is spatially differentiated. Within the structure, individual taxa are localized at the micron scale in ways suggestive of their functional niche in the consortium. For example, anaerobic taxa tend to be in the interior, whereas facultative or obligate aerobes tend to be at the periphery of the consortium. Consumers and producers of certain metabolites, such as lactate, tend to be near each other. Based on our observations and the literature, we propose a model for plaque microbiome development and maintenance consistent with known metabolic, adherence, and environmental considerations. The consortium illustrates how complex structural organization can emerge from the micron-scale interactions of its constituent organisms. The understanding that plaque community organization is an emergent phenomenon offers a perspective that is general in nature and applicable to other microbiomes. PMID:26811460

  19. Ultra-high-speed 3D astigmatic particle tracking velocimetry: application to particle-laden supersonic impinging jets

    NASA Astrophysics Data System (ADS)

    Buchmann, N. A.; Cierpka, C.; Kähler, C. J.; Soria, J.

    2014-11-01

    The paper demonstrates ultra-high-speed three-component, three-dimensional (3C3D) velocity measurements of micron-sized particles suspended in a supersonic impinging jet flow. Understanding the dynamics of individual particles in such flows is important for the design of particle impactors for drug delivery or cold gas dynamic spray processing. The underexpanded jet flow is produced via a converging nozzle, and micron-sized particles ( d p = 110 μm) are introduced into the gas flow. The supersonic jet impinges onto a flat surface, and the particle impact velocity and particle impact angle are studied for a range of flow conditions and impingement distances. The imaging system consists of an ultra-high-speed digital camera (Shimadzu HPV-1) capable of recording rates of up to 1 Mfps. Astigmatism particle tracking velocimetry (APTV) is used to measure the 3D particle position (Cierpka et al., Meas Sci Technol 21(045401):13, 2010) by coding the particle depth location in the 2D images by adding a cylindrical lens to the high-speed imaging system. Based on the reconstructed 3D particle positions, the particle trajectories are obtained via a higher-order tracking scheme that takes advantage of the high temporal resolution to increase robustness and accuracy of the measurement. It is shown that the particle velocity and impingement angle are affected by the gas flow in a manner depending on the nozzle pressure ratio and stand-off distance where higher pressure ratios and stand-off distances lead to higher impact velocities and larger impact angles.

  20. Performance of Large Format Transition Edge Sensor Microcalorimeter Arrays

    NASA Technical Reports Server (NTRS)

    Chervenak, J. A.; Adams, J. A.; Bandler, S. B.; Busch, S. E.; Eckart, M. E.; Ewin, A. E.; Finkbeiner, F. M.; Kilbourne, C. A.; Kelley, R. L.; Porst, J. P.; hide

    2012-01-01

    We have produced a variety of superconducting transition edge sensor array designs for microcalorimetric detection of x-rays. Arrays are characterized with a time division SQUID multiplexer such that greater than 10 devices from an array can be measured in the same cooldown. Designs include kilo pixel scale arrays of relatively small sensors (-75 micron pitch) atop a thick metal heatsinking layer as well as arrays of membrane-isolated devices on 250 micron and up to 600 micron pitch. We discuss fabrication and performance of microstripline wiring at the small scales achieved to date. We also address fabrication issues with reduction of absorber contact area in small devices.

  1. Estimation of Length-Scales in Soils by MRI

    NASA Technical Reports Server (NTRS)

    Daidzic, N. E.; Altobelli, S.; Alexander, J. I. D.

    2004-01-01

    Soil can be best described as an unconsolidated granular media that forms porous structure. The present macroscopic theory of water transport in porous media rests upon the continuum hypothesis that the physical properties of porous media can be associated with continuous, twice-differentiable field variables whose spatial domain is a set of centroids of Representative Elementary Volume (REV) elements. MRI is an ideal technique to estimate various length-scales in porous media. A 0.267 T permanent magnet at NASA GRC was used for this study. A 2D or 3D spatially-resolved porosity distribution were obtained from the NMR signal strength from each voxel and the spin-lattice relaxation time. A classical spin-warp imaging with Multiple Spin Echos (MSE) was used to evaluate proton density in each voxel. Initial resolution of 256 x 256 was subsequently reduced by averaging neighboring voxels and the porosity convergence was observed. A number of engineered "space candidate" soils such as Isolite(trademark), Zeoponics(trademark), Turface(trademark), and Profile(trademark) were used. Glass beads in the size range between 50 microns to 2 mm were used as well. Initial results with saturated porous samples have shown a good estimate of the average porosity consistent with the gravimetric porosity measurement results. For Profile(trademark) samples with particle sizes ranging between 0.25 to 1 mm and characteristic interparticle pore size of 100 microns the characteristic Darcy scale was estimated to be about delta(sub REV) = 10 mm. Glass beads porosity show clear convergence toward a definite REV which stays constant throughout homogeneous sample. Additional information is included in the original extended abstract.

  2. GPI-anchored protein organization and dynamics at the cell surface

    PubMed Central

    Saha, Suvrajit; Anilkumar, Anupama Ambika; Mayor, Satyajit

    2016-01-01

    The surface of eukaryotic cells is a multi-component fluid bilayer in which glycosylphosphatidylinositol (GPI)-anchored proteins are an abundant constituent. In this review, we discuss the complex nature of the organization and dynamics of GPI-anchored proteins at multiple spatial and temporal scales. Different biophysical techniques have been utilized for understanding this organization, including fluorescence correlation spectroscopy, fluorescence recovery after photobleaching, single particle tracking, and a number of super resolution methods. Major insights into the organization and dynamics have also come from exploring the short-range interactions of GPI-anchored proteins by fluorescence (or Förster) resonance energy transfer microscopy. Based on the nanometer to micron scale organization, at the microsecond to the second time scale dynamics, a picture of the membrane bilayer emerges where the lipid bilayer appears inextricably intertwined with the underlying dynamic cytoskeleton. These observations have prompted a revision of the current models of plasma membrane organization, and suggest an active actin-membrane composite. PMID:26394904

  3. GPI-anchored protein organization and dynamics at the cell surface.

    PubMed

    Saha, Suvrajit; Anilkumar, Anupama Ambika; Mayor, Satyajit

    2016-02-01

    The surface of eukaryotic cells is a multi-component fluid bilayer in which glycosylphosphatidylinositol (GPI)-anchored proteins are an abundant constituent. In this review, we discuss the complex nature of the organization and dynamics of GPI-anchored proteins at multiple spatial and temporal scales. Different biophysical techniques have been utilized for understanding this organization, including fluorescence correlation spectroscopy, fluorescence recovery after photobleaching, single particle tracking, and a number of super resolution methods. Major insights into the organization and dynamics have also come from exploring the short-range interactions of GPI-anchored proteins by fluorescence (or Förster) resonance energy transfer microscopy. Based on the nanometer to micron scale organization, at the microsecond to the second time scale dynamics, a picture of the membrane bilayer emerges where the lipid bilayer appears inextricably intertwined with the underlying dynamic cytoskeleton. These observations have prompted a revision of the current models of plasma membrane organization, and suggest an active actin-membrane composite. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.

  4. Selective radiative cooling with MgO and/or LiF layers

    DOEpatents

    Berdahl, P.H.

    1984-09-14

    A selective radiation cooling material which is absorptive only in the 8 to 13 microns wavelength range is accomplished by placing ceramic magnesium oxide and/or polycrystalline lithium fluoride on an infrared-reflective substrate. The reflecting substrate may be a metallic coating, foil or sheet, such as aluminum, which reflects all atmospheric radiation from 0.3 to 8 microns, the magnesium oxide and lithium fluoride being nonabsorptive at those wavelengths. <10% of submicron voids in the material is permissible in which case the MgO and/or LiF layer is diffusely scattering, but still nonabsorbing, in the wavelength range of 0.3 to 8 microns. At wavelengths from 8 to 13 microns, the magnesium oxide and lithium fluoride radiate power through the ''window'' in the atmosphere, and thus remove heat from the reflecting sheet of material and the attached object to be cooled. At wavelengths longer than 13 microns, the magnesium oxide and lithium fluoride reflects the atmospheric radiation back into the atmosphere. This high reflectance is only obtained if the surface is sufficiently smooth: roughness on a scale of 1 micron is permissible but roughness on a scale of 10 microns is not. An infrared-transmitting cover or shield is mounted in spaced relationship to the material to reduce convective heat transfer. If this is utilized in direct sunlight, the infrared transmitting cover or shield should be opaque in the solar spectrum of 0.3 to 3 microns.

  5. METHOD FOR PREPARATION OF UO$sub 2$ PARTICLES

    DOEpatents

    Johnson, J.R.; Taylor, A.J.

    1959-09-22

    A method is described for the preparation of highdensity UO/sub 2/ particles within the size range of 40 to 100 microns. In accordance with the invention UO/sub 2/ particles are autoclaved with an aqueous solution of uranyl ions. The resulting crystals are reduced to UO/sub 2/ and the UO/sub 2/ is heated to at least 1000 deg C to effect densification. The resulting UO/sub 2/ particles are screened, and oversize particles are crushed and screened to recover the particles within the desired size range.

  6. Burning Velocity Measurements in Aluminum-Air Suspensions using Bunsen Type Dust Flames

    NASA Technical Reports Server (NTRS)

    Lee, John; Goroshin, Samuel; Kolbe, Massimiliano

    2001-01-01

    Laminar burning velocity (sometimes also referred in literature as fundamental or normal flame propagation speed) is probably the most important combustion characteristic of the premixed combustible mixture. The majority of experimental data on burning velocities in gaseous mixtures was obtained with the help of the Bunsen conical flame. The Bunsen cone method was found to be sufficiently accurate for gaseous mixtures with burning velocities higher than 10-15 cm/s at normal pressure. Hans Cassel was the first to demonstrate that suspensions of micron-size solid fuel particles in a gaseous oxidizer can also form self-sustained Bunsen flames. He was able to stabilize Bunsen flames in a number of suspensions of different nonvolatile solid fuels (aluminum, carbon, and boron). Using the Bunsen cone method he estimated burning velocities in the premixed aluminum-air mixtures (particle size less than 10 microns) to be in the range of 30-40 cm/s. Cassel also found, that the burning velocity in dust clouds is a function of the burner diameter. In our recent work, we have used the Bunsen cone method to investigate dependence of burning velocity on dust concentration in fuel-rich aluminum dust clouds. Burning velocities in stoichiometric and fuel-rich aluminum dust suspensions with average particle sizes of about 5 microns were found to be in the range of 20-25 cm/s and largely independent on dust concentration. These results raise the question to what degree burning velocities derived from Bunsen flame specifically and other dust flame configurations in general, are indeed fundamental characteristics of the mixture and to what degree are they apparatus dependent. Dust flames in comparison to gas combustion, are thicker, may be influenced by radiation heat transfer in the flame front, respond differently to heat losses, and are fundamentally influenced by the particular flow configuration due to the particles inertia. Since characteristic spatial scales of dust flames are larger, one can expect that they will also be more sensitive than homogeneous combustion to a particular experimental geometric configuration of the flame and the flow. With such sensitivity the introduction of the very concept of the fundamental flame speed may be problematic for dust combustion. With this in mind, the objective of the present work is to further investigate Bunsen dust flames and evaluate to what degree burning velocities derived from Bunsen cone depend on experimental conditions (i.e. flow rate and nozzle diameter).

  7. Transverse Space-Charge Field-Induced Plasma Dynamics for Ultraintense Electron-Beam Characterization

    NASA Astrophysics Data System (ADS)

    Tarkeshian, R.; Vay, J. L.; Lehe, R.; Schroeder, C. B.; Esarey, E. H.; Feurer, T.; Leemans, W. P.

    2018-04-01

    Similarly to laser or x-ray beams, the interaction of sufficiently intense particle beams with neutral gases will result in the creation of plasma. In contrast to photon-based ionization, the strong unipolar field of a particle beam can generate a plasma where the electron population receives a large initial momentum kick and escapes, leaving behind unshielded ions. Measuring the properties of the ensuing Coulomb exploding ions—such as their kinetic energy distribution, yield, and spatial distribution—can provide information about the peak electric fields that are achieved in the electron beams. Particle-in-cell simulations and analytical models are presented for high-brightness electron beams of a few femtoseconds or even hundreds of attoseconds, and transverse beam sizes on the micron scale, as generated by today's free electron lasers. Different density regimes for the utilization as a potential diagnostics are explored, and the fundamental differences in plasma dynamical behavior for e-beam or photon-based ionization are highlighted. By measuring the dynamics of field-induced ions for different gas and beam densities, a lower bound on the beam charge density can be obtained in a single shot and in a noninvasive way. The exponential dependency of the ionization yield on the beam properties can provide unprecedented spatial and temporal resolution, at the submicrometer and subfemtosecond scales, respectively, offering a practical and powerful approach to characterizing beams from accelerators at the frontiers of performance.

  8. Roles of additives and surface control in slurry atomization. Final project report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, S.C.

    1992-12-31

    This project studies the rheology and airblast atomization of micronized coal slurries. Its major objectives are (1) to promote further understanding of the mechanisms and the roles of additives in airblast atomization of coal water slurry (CWS), and (2) to investigate the impacts of coal particle surface properties and interparticle forces on CWS rheology. We have found that the flow behavior index (n) of a suspension (or slurry) is determined by the relative importance of the interparticle van der Waals attraction and the interparticle electrostatic repulsion. The interparticle attraction, measured by the Hamaker constant scaled to the thermal energy atmore » 25{degrees}C (A/kT), causes particle aggregation, which breaks down at high shear rates, and thus leads to slurry pseudoplastic behavior (n< 1). At a constant particle volume fraction and surface charge density (qualitatively measured by the zeta potential in deionized water), n decreases linearly as A/kT increases. The relative viscosity of the pseudoplastic suspension with respect to that of the suspending liquid is found to be independent of particle density and correlate well with the particle Peclet number which equals the particle diffusional relaxation time multiplied by shear rate. Specifically, the relative viscosities of the pseudoplastic glycerol/water coal slurry and the ethylene glycol/glycerol sand slurry, at same volume fractions as well as similar particle size distributions and liquid viscosities, as functions of the particle Peclet number fall along the same line.« less

  9. Roles of additives and surface control in slurry atomization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, S.C.

    1992-01-01

    This project studies the rheology and airblast atomization of micronized coal slurries. Its major objectives are (1) to promote further understanding of the mechanisms and the roles of additives in airblast atomization of coal water slurry (CWS), and (2) to investigate the impacts of coal particle surface properties and interparticle forces on CWS rheology. We have found that the flow behavior index (n) of a suspension (or slurry) is determined by the relative importance of the interparticle van der Waals attraction and the interparticle electrostatic repulsion. The interparticle attraction, measured by the Hamaker constant scaled to the thermal energy atmore » 25[degrees]C (A/kT), causes particle aggregation, which breaks down at high shear rates, and thus leads to slurry pseudoplastic behavior (n< 1). At a constant particle volume fraction and surface charge density (qualitatively measured by the zeta potential in deionized water), n decreases linearly as A/kT increases. The relative viscosity of the pseudoplastic suspension with respect to that of the suspending liquid is found to be independent of particle density and correlate well with the particle Peclet number which equals the particle diffusional relaxation time multiplied by shear rate. Specifically, the relative viscosities of the pseudoplastic glycerol/water coal slurry and the ethylene glycol/glycerol sand slurry, at same volume fractions as well as similar particle size distributions and liquid viscosities, as functions of the particle Peclet number fall along the same line.« less

  10. Filtration effects on ball bearing life and condition in a contaminated lubricant

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.; Moyer, D. W.

    1978-01-01

    Ball bearings were fatigue tested with a noncontaminated MIL-L-23699 lubricant and with a contaminated MIL-L-23699 lubricant under four levels of filtration. The test filters had absolute particle removal ratings of 3, 30, 49, and 105 microns. Aircraft turbine engine contaminants were injected into the filter's supply line at a constant rate of 125 milligrams per bearing hour. Bearing life and running track condition generally improved with finer filtration. The experimental lives of 3- and 30-micron filter bearings were statistically equivalent, approaching those obtained with the noncontaminated lubricant bearings. Compared to these bearings, the lives of the 49-micron bearings were statistically lower. The 105-micron bearings experienced gross wear. The degree of surface distress, weight loss, and probable failure mode were dependent on filtration level, with finer filtration being clearly beneficial.

  11. A novel process route for the production of spherical SLS polymer powders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, Jochen; Sachs, Marius; Blümel, Christina

    2015-05-22

    Currently, rapid prototyping gradually is transferred to additive manufacturing opening new applications. Especially selective laser sintering (SLS) is promising. One drawback is the limited choice of polymer materials available as optimized powders. Powders produced by cryogenic grinding show poor powder flowability resulting in poor device quality. Within this account we present a novel process route for the production of spherical polymer micron-sized particles of good flowability. The feasibility of the process chain is demonstrated for polystyrene e. In a first step polymer microparticles are produced by a wet grinding method. By this approach the mean particle size and the particlemore » size distribution can be tuned between a few microns and several 10 microns. The applicability of this method will be discussed for different polymers and the dependencies of product particle size distribution on stressing conditions and process temperature will be outlined. The comminution products consist of microparticles of irregular shape and poor powder flowability. An improvement of flowability of the ground particles is achieved by changing their shape: they are rounded using a heated downer reactor. The influence of temperature profile and residence time on the product properties will be addressed applying a viscous-flow sintering model. To further improve the flowability of the cohesive spherical polymer particles nanoparticles are adhered onto the microparticles’ surface. The improvement of flowability is remarkable: rounded and dry-coated powders exhibit a strongly reduced tensile strength as compared to the comminution product. The improved polymer powders obtained by the process route proposed open new possibilities in SLS processing including the usage of much smaller polymer beads.« less

  12. Nitride Fuel Development Using Cryo-process Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Brien, Brandi M; Windes, William E

    A new cryo-process technique has been developed for the fabrication of advanced fuel for nuclear systems. The process uses a new cryo-processing technique whereby small, porous microspheres (<2000 µm) are formed from sub-micron oxide powder. A simple aqueous particle slurry of oxide powder is pumped through a microsphere generator consisting of a vibrating needle with controlled amplitude and frequency. As the water-based droplets are formed and pass through the microsphere generator they are frozen in a bath of liquid nitrogen and promptly vacuum freeze-dried to remove the water. The resulting porous microspheres consist of half micron sized oxide particles heldmore » together by electrostatic forces and mechanical interlocking of the particles. Oxide powder microspheres ranging from 750 µm to 2000 µm are then converted into a nitride form using a high temperature fluidized particle bed. Carbon black can be added to the oxide powder before microsphere formation to augment the carbothermic reaction during conversion to a nitride. Also, the addition of ethyl alcohol to the aqueous slurry reduces the surface tension energy of the droplets resulting in even smaller droplets forming in the microsphere generator. Initial results from this new process indicate a lower impurity contamination in the final nitrides due to the single feed stream of particles, material handling and conversion are greatly simplified, a minimum of waste and personnel exposure are anticipated, and finally the conversion kinetics may be greatly increased because of the small oxide powder size (sub-micron) forming the porous microsphere. Thus far the fabrication process has been successful in demonstrating all of these improvements with surrogate ZrO2 powder. Further tests will be conducted in the future using the technique on UO2 powders.« less

  13. Development of an infrared polarimeter

    NASA Technical Reports Server (NTRS)

    Coffeen, D. L.

    1972-01-01

    AEROPOL infrared polarimeter was built for measurements microns between 1.1 and 3.5 microns, with a 1.5 degree field of view, using a wire grid polarization analyzer. A PbS detector is cooled by condensed Freon-13. The instrument operates under minicomputer control, giving a polarization least squares solution each 2.5 seconds. AEROPOL was flown on the NASA CV-990 aircraft, in a remote-sensing study of terrestrial cloud particle sizes and shapes.

  14. Electrical Evolution of a Dust Plume from a Low Energy Lunar Impact: A Model Analog to LCROSS

    NASA Technical Reports Server (NTRS)

    Farrell, W. M.; Stubbs, T. J.; Jackson, T. L.; Colaprete, A.; Heldmann, J. L.; Schultz, P. H.; Killen, R. M.; Delory, G. T.; Halekas, J. S.; Marshall, J. R.; hide

    2011-01-01

    A Monte Carlo test particle model was developed that simulates the charge evolution of micron and sub-micron sized dust grains ejected upon low-energy impact of a moderate-size object onto a lunar polar crater floor. Our analog is the LCROSS impact into Cabeus crater. Our primary objective is to model grain discharging as the plume propagates upwards from shadowed crater into sunlight.

  15. Crater Formation on Electrodes during Charge Transfer with Aqueous Droplets or Solid Particles

    NASA Astrophysics Data System (ADS)

    Elton, Eric S.; Rosenberg, Ethan R.; Ristenpart, William D.

    2017-11-01

    We report that metallic electrodes are physically pitted during charge transfer events with water droplets or other conductive objects moving in strong electric fields (>1 kV/cm). Post situ microscopic inspection of the electrode shows that an individual charge transfer event yields a crater approximately 1 to 3 microns wide, often with features similar to splash coronae. We interpret the crater formation in terms of localized melting of the electrode via resistive heating concurrent with dielectric breakdown through the surrounding insulating fluid. A scaling analysis indicates that the crater diameter scales as the inverse cube root of the melting point temperature Tm of the metal, in accord with measurements on several metals (660°C <=Tm <= 3414°C). The process of crater formation provides a possible explanation for the longstanding difficulty in quantitatively corroborating Maxwell's prediction for the amount of charge acquired by spheres contacting a planar electrode.

  16. On improving the fracture toughness of a NiAl-based alloy by mechanical alloying

    NASA Technical Reports Server (NTRS)

    Kostrubanic, J.; Koss, D. A.; Locci, I. E.; Nathal, M.

    1991-01-01

    Mechanical alloying (MA) has been used to process the NiAl-based alloy Ni-35Al-20Fe, such that a fine-grain (about 2 microns) microstructure is obtained through the addition of 2 vol pct Y2O3 particles. When compared to a conventionally processed, coarse-grained (about 28 microns) Ni-35-20 alloy without the Y2O3 particles, the MA alloy exhibits two to three times higher fracture toughness values, despite a 50-percent increase in yield strength. Room-temperature K(O) values as high as 34 MPa sq rt m are observed, accompanied by a yield strength in excess of 1100 MPa. Fractography confirms a change in fracture characteristics of the fine-grained MA alloy.

  17. Galileo Probe Measurements of Thermal and Solar Radiation Fluxes in the Jovian Atmosphere

    NASA Technical Reports Server (NTRS)

    Sromovsky, L. A.; Collard, A. D.; Fry, P. M.; Orton, G. S.; Lemmon, M. T.; Tomasko, M. G.; Freedman, R. S.

    1998-01-01

    The Galileo probe net flux radiometer (NFR) measured radiation fluxes in Jupiter's atmosphere from about 0.44 to 14 bars, using five spectral channels to separate solar and thermal components. Onboard calibration results confirm that the NFR responded to radiation approximately as expected. NFR channels also responded to a superimposed thermal perturbation, which can be approximately removed using blind channel measurements and physical constraints. Evidence for the expected NH3 cloud was seen in the spectral character of spin-induced modulations of the direct solar beam signals. These results are consistent with an overlying cloud of small NH3 ice particles (0.5-0.75 microns in radius) of optical depth 1.5-2 at 0.5 microns. Such a cloud would have so little effect on thermal fluxes that NFR thermal channels provide no additional constraints on its properties. However, evidence for heating near 0.45 bar in the NFR thermal channels would seem to require either an additional opacity source beyond this small-particle cloud, implying a heterogeneous cloud structure to avoid conflicts with solar modulation results, or a change in temperature lapse rate just above the probe measurements. The large thermal flux levels imply water vapor mixing ratios that are only 6% of solar at 10 bars, but possibly increasing with depth, and significantly subsaturated ammonia at pressures less than 3 bars. If deep NH3 mixing ratios at the probe entry site are 3-4 times ground-based inferences, as suggested by probe radio signal attenuation, then only half as much water is needed to match NFR observations. No evidence of a water cloud was seen near the 5-bar level. The 5-microns thermal channel detected the presumed NH4SH cloud base near 1.35 bars. Effects of this cloud were also seen in the solar channel upflux measurements but not in the solar net fluxes, implying that the cloud is a conservative scatterer of sunlight. The minor thermal signature of this cloud is compatible with particle radii near 3 gm, but it cannot rule out smaller particles. Deeper than about 3 bars, solar channels indicate unexpectedly large absorption of sunlight at wavelengths longer than 0.6 microns, which might be due to unaccounted-for absorption by NH3 between 0.65 and 1.5 microns.

  18. Saturn's Icy satellites: The Role of Sub-Micron Ice Particles and Nano-sized Contaminants (Invited)

    NASA Astrophysics Data System (ADS)

    Clark, R. N.; Cruikshank, D. P.; Dalle Ore, C. M.; Jaumann, R.; Brown, R. H.; Stephan, K.; Buratti, B. J.; Filacchione, G.; Baines, K. H.; Nicholson, P.

    2010-12-01

    The Visual and Infrared Mapping Spectrometer (VIMS) has obtained spatially resolved imaging spectroscopy data on numerous satellites of Saturn. The spectral trends on individual satellites and as compositional gradients within the Saturn system show systematic trends that indicate variable ice grain sizes and contaminants. Compositional mapping shows that the satellite surfaces are composed largely of H2O ice, with small amounts of CO2, trace organics, bound water or OH-bearing minerals, and possible signatures of ammonia, H2O or OH-bearing minerals, and dark, fine-grained materials. The E-ring coats the inner satellites with sub-micron ice particles. The Cassini Rev 49 Iapetus fly-by on September 10, 2007, provided imaging spectroscopy data on both the dark material and the transition zone between the dark material and the visually bright ice on the trailing side. The dark material has very low albedo with a linear increase in reflectance with wavelength, a 3-micron water absorption, and a CO2 absorption. The only reflectance models that can explain the trends include highly absorbing sub-micron materials that create Rayleigh absorption. Radiative transfer models that include diffraction from Rayleigh scattering and Rayleigh absorption are necessary to match observed data. The dark material is well matched by a high component of fine-grained metallic iron plus a small component of nano-phase hematite. Spatially resolved Iapetus data show mixing of dark material with ice and the mixtures display a blue scattering peak and a UV absorption. The blue scattering peak and UV-Visible absorption is observed in spectra of all satellites at some locations where dark material is mixed with the ice. Rayleigh scattering and Rayleigh absorption have also been observed in spectral properties of the Earth's moon. Rayleigh absorption requires high absorption coefficient nano-sized particles, which is also consistent with metallic iron. The UV absorber appears to have increased strength on satellite surfaces close to Saturn, with a corresponding decrease in metallic iron signature. Possible explanations are that the iron is oxidized closer to Saturn by oxygen in the extended atmosphere of Saturn's rings, or coverage by sub-micron E-ring ice particles, or a combination of both.

  19. Implementation of design of experiments approach for the micronization of a drug with a high brittle-ductile transition particle diameter.

    PubMed

    Yazdi, Ashkan K; Smyth, Hugh D C

    2017-03-01

    To optimize air-jet milling conditions of ibuprofen (IBU) using design of experiment (DoE) method, and to test the generalizability of the optimized conditions for the processing of another non-steroidal anti-inflammatory drug (NSAID). Bulk IBU was micronized using an Aljet mill according to a circumscribed central composite (CCC) design with grinding and pushing nozzle pressures (GrindP, PushP) varying from 20 to 110 psi. Output variables included yield and particle diameters at the 50th and 90th percentile (D 50 , D 90 ). Following data analysis, the optimized conditions were identified and tested to produce IBU particles with a minimum size and an acceptable yield. Finally, indomethacin (IND) was milled using the optimized conditions as well as the control. CCC design included eight successful runs for milling IBU from the ten total runs due to powder "blowback" from the feed hopper. DoE analysis allowed the optimization of the GrindP and PushP at 75 and 65 psi. In subsequent validation experiments using the optimized conditions, the experimental D 50 and D 90 values (1.9 and 3.6 μm) corresponded closely with the DoE modeling predicted values. Additionally, the optimized conditions were superior over the control conditions for the micronization of IND where smaller D 50 and D 90 values (1.2 and 2.7 μm vs. 1.8 and 4.4 μm) were produced. The optimization of a single-step air-jet milling of IBU using the DoE approach elucidated the optimal milling conditions, which were used to micronize IND using the optimized milling conditions.

  20. Synthesis, characterization and electrocatalytic properties of delafossite CuGaO{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, Jahangeer; Department of Chemistry, College of Science, King Saud University, Riyadh 11451; Mao, Yuanbing, E-mail: yuanbing.mao@utrgv.edu

    2016-10-15

    Delafossite CuGaO{sub 2} has been employed as photocatalysts for solar cells, but their electrocatalytic properties have not been extensively studied, especially no comparison among samples made by different synthesis routes. Herein, we first reported the successful synthesis of delafossite CuGaO{sub 2} particles with three different morphologies, i.e. nanocrystalline hexagons, sub-micron sized plates and micron–sized particles by a modified hydrothermal method at 190 °C for 60 h [1–3], a sono-chemical method followed by firing at 850 °C for 48 h, and a solid state route at 1150 °C, respectively. Morphology, composition and phase purity of the synthesized samples was confirmed bymore » powder X-ray diffraction and Raman spectroscopic studies, and then their electrocatalytic performance as active and cost effective electrode materials to the oxygen and hydrogen evolution reactions in 0.5 M KOH electrolyte versus Ag/AgCl was investigated and compared under the same conditions for the first time. The nanocrystalline CuGaO{sub 2} hexagons show enhanced electrocatalytic activity than the counterpart sub-micron sized plates and micron-sized particles. - Graphical abstract: Representative delafossite CuGaO2 samples with sub-micron sized plate and nanocrystalline hexagon morphologies accompanying with chronoamperometric voltammograms for oxygen evolution reaction and hydrogen evolution reaction in 0.5 M KOH electrolyte after purged with N{sub 2} gas. - Highlights: • Delafossite CuGaO{sub 2} with three morphologies has been synthesized. • Phase purity of the synthesized samples was confirmed. • Comparison on their electrocatalytic properties was made for the first time. • Their use as electrodes for oxygen and hydrogen evolution reactions was evaluated. • Nanocrystalline CuGaO{sub 2} hexagons show highest electrocatalytic activity.« less

  1. Reexamination of data from the asteroid/meteoroid detector

    NASA Technical Reports Server (NTRS)

    Soberman, Robert K.; Dubin, Maurice

    1990-01-01

    A reexamination of the results of the Pioneer 10 and 11 Asteroid Meteoroid Detector, or Sisyphus, was carried out in the light of a recently derived theory characterizing interplanetary matter and the Zodiacal Light (ZL). Sisyphus measured individual meteoroids from reflected sunlight and ZL between meteoroid events. The results were questioned because meteoroid orbits could not be calculated as intended and the ZL as computed from individual meteoroids did not agree with values determined from the ZL mode and from the other ZL sensor on the spacecraft. It is first shown that, independent of any explanation, the measurements are, with high probability, valid and strongly correlated with the ZL. The model which explains the strange behavior of the Sisyphus instrument also resolves the enigma why the three dust experiments on the Pioneer 10 and 11 spacecraft produced extreme disparate results for the distribution and orbits of meteoric particles and the ZL. The theory based primarily on these measurements requires a population in the inner solar system of cold meteoroid material composed mainly of volatile molecules. These meteoroids in orbits of high eccentricity are called cosmoids. They are impulsively disrupted from solar heating, resulting in order of magnitude increases in optical cross section. The dispersed particles, predominantly micron sized, scatter most of the ZL and supply the polarization. The sublimation time in sunlight for micron sized particles of volatile composition opposes the gravitational flux increase expected in approaching the sun. The other two Pioneer 10/11 dust experiments were: the Imaging Photopolarimeter for the ZL, and the Meteoroid Detection Experiment that measured penetration of 25 micron (Pioneer 10) and 50 micron (Pioneer 11) thick walls of pressurized gas cells.

  2. Effects of copper particles on a model septic system's function and microbial community.

    PubMed

    Taylor, Alicia A; Walker, Sharon L

    2016-03-15

    There is concern surrounding the addition of nanoparticles into consumer products due to toxicity potential and the increased risk of human and environmental exposures to these particles. Copper nanoparticles are found in many common consumer goods; therefore, the disposal and subsequent interactions between potentially toxic Cu-based nanoparticles and microbial communities may have detrimental impacts on wastewater treatment processes. This study investigates the effects of three copper particles (micron- and nano-scale Cu particles, and a nano-scale Cu(OH)2-based fungicide) on the function and operation of a model septic tank. Septic system analyses included water quality evaluations and microbial community characterizations to detect changes in and relationships between the septic tank function and microbial community phenotype/genotype. As would be expected for optimal wastewater treatment, biological oxygen demand (BOD5) was reduced by at least 63% during nano-scale Cu exposure, indicating normal function. pH was reduced to below the optimum anaerobic fermentation range during the micro Cu exposure, suggesting incomplete degradation of organic waste may have occurred. The copper fungicide, Cu(OH)2, caused a 57% increase in total organic carbon (TOC), which is well above the typical range for septic systems and also corresponded to increased BOD5 during the majority of the Cu(OH)2 exposure. The changes in TOC and BOD5 demonstrate that the system was improperly treating waste. Overall, results imply individual exposures to the three Cu particles caused distinct disruptions in septic tank function. However, it was observed that the system was able to recover to typical operating conditions after three weeks post-exposure. These results imply that during periods of Cu introduction, there are likely pulses of improper removal of total organic carbon and significant changes in pH not in the optimal range for the system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Micron-scale lens array having diffracting structures

    DOEpatents

    Goldberg, Kenneth A

    2013-10-29

    A novel micron-scale lens, a microlens, is engineered to concentrate light efficiently onto an area of interest, such as a small, light-sensitive detector element in an integrated electronic device. Existing microlens designs imitate the form of large-scale lenses and are less effective at small sizes. The microlenses described herein have been designed to accommodate diffraction effects, which dominate the behavior of light at small length scales. Thus a new class of light-concentrating optical elements with much higher relative performance has been created. Furthermore, the new designs are much easier to fabricate than previous designs.

  4. Application of Dusty Plasmas for Space

    NASA Astrophysics Data System (ADS)

    Bhavasar, Hemang; Ahuja, Smariti

    In space, dust particles alone are affected by gravity and radiation pressure when near stars and planets. When the dust particles are immersed in plasma, the dust is usually charged either by photo ionization, due to incident UV radiation, secondary electron emission, due to collisions with energetic ions and electrons, or absorption of charged particles, due to collisions with thermal ions and electrons. A 1 micron radius dust particle in a plasma with an electron temperature of a few eV, will have a charge corresponding to a few thousand electron volts, with a resulting charge to mass ratio, Q/m ¡1. They will also be affected by electric and magnetic fields. Since the electrons are magnetized in these regions, electron E B or diamagnetic cross-field drifts may drive instabilities. Dust grains (micron to sub-micron sized solid particles) in plasma and/or radiative environments can be electrically charged by processes such as plasma current collection or photoemission. The effect of charged dust on known electrojet instabil-ities and low frequency dust acoustic and dust drift instabilities. As the plasma affects the dust particles, the dust particles can affect the plasma environment. In Dust Plasma, Plasma is Combination of ions and electrons. Dusty plasmas (also known as complex plasmas) are ordinary plasmas with embedded solid particles consisting of electrons, ions, and neutrals. The particles can be made of either dielectric or conducting materials, and can have any shape. The typical size range is anywhere from 100 nm up to say 100 m. Most often, these small objects or dust particles are electrically charged. Dusty plasmas are ubiquitous in the universe as proto-planetary and solar nebulae, molecular clouds, supernova explosions, interplanetary medium, circumsolar rings, and steroids. Closer to earth, there are the noctilucent clouds, clouds of tiny (charged) ice particles that form in the summer polar mesosphere at an altitude of about 85 km. In processing plasmas, dust particles are actually grown in the discharge from the reactive gases used to form the plasmas. Perhaps the most intriguing aspect of dusty plasmas is that the particles can be directly imaged and their dynamic behavior recorded as digital images. This is accomplished by laser light scattering from the particles. Since the particle mass is relatively high, their dynamical timescales are much longer than that of the ions or electrons. Dusty plasmas has a broad range of applications including interplanetary space dust, comets, planetary rings, dusty surfaces in space, and aerosols in the atmosphere.

  5. Impacts of detrital nano- and micro-scale particles (dNP) on contaminant dynamics in a coal mine AMD treatment system.

    PubMed

    Lefticariu, Liliana; Sutton, Stephen R; Bender, Kelly S; Lefticariu, Mihai; Pentrak, Martin; Stucki, Joseph W

    2017-01-01

    Pollutants in acid mine drainage (AMD) are usually sequestered in neoformed nano- and micro-scale particles (nNP) through precipitation, co-precipitation, and sorption. Subsequent biogeochemical processes may control nNP stability and thus long-term contaminant immobilization. Mineralogical, chemical, and microbiological data collected from sediments accumulated over a six-year period in a coal-mine AMD treatment system were used to identify the pathways of contaminant dynamics. We present evidence that detrital nano- and micron-scale particles (dNP), composed mostly of clay minerals originating from the partial weathering of coal-mine waste, mediated biogeochemical processes that catalyzed AMD contaminant (1) immobilization by facilitating heterogeneous nucleation and growth of nNP in oxic zones, and (2) remobilization by promoting phase transformation and reductive dissolution of nNP in anoxic zones. We found that dNP were relatively stable under acidic conditions and estimated a dNP content of ~0.1g/L in the influent AMD. In the AMD sediments, the initial nNP precipitates were schwertmannite and poorly crystalline goethite, which transformed to well-crystallized goethite, the primary nNP repository. Subsequent reductive dissolution of nNP resulted in the remobilization of up to 98% of S and 95% of Fe accompanied by the formation of a compact dNP layer. Effective treatment of pollutants could be enhanced by better understanding the complex, dynamic role dNP play in mediating biogeochemical processes and contaminant dynamics at coal-mine impacted sites. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Release of copper-amended particles from micronized copper-pressure-treated wood during mechanical abrasion.

    PubMed

    Civardi, Chiara; Schlagenhauf, Lukas; Kaiser, Jean-Pierre; Hirsch, Cordula; Mucchino, Claudio; Wichser, Adrian; Wick, Peter; Schwarze, Francis W M R

    2016-11-28

    We investigated the particles released due to abrasion of wood surfaces pressure-treated with micronized copper azole (MCA) wood preservative and we gathered preliminary data on its in vitro cytotoxicity for lung cells. The data were compared with particles released after abrasion of untreated, water (0% MCA)-pressure-treated, chromated copper (CC)-pressure-treated wood, and varnished wood. Size, morphology, and composition of the released particles were analyzed. Our results indicate that the abrasion of MCA-pressure-treated wood does not cause an additional release of nanoparticles from the unreacted copper (Cu) carbonate nanoparticles from of the MCA formulation. However, a small amount of released Cu was detected in the nanosized fraction of wood dust, which could penetrate the deep lungs. The acute cytotoxicity studies were performed on a human lung epithelial cell line and human macrophages derived from a monocytic cell line. These cell types are likely to encounter the released wood particles after inhalation. Our findings indicate that under the experimental conditions chosen, MCA does not pose a specific additional nano-risk, i.e. there is no additional release of nanoparticles and no specific nano-toxicity for lung epithelial cells and macrophages.

  7. Physical Properties of the Icy Soil at the Phoenix Landing Site

    NASA Astrophysics Data System (ADS)

    Keller, H.; Markiewicz, W. J.; Hviid, S. F.; Goetz, W.; Mellon, M. T.; El Maarry, M.; Madsen, M. B.; Smith, P.; Pike, W.; Zent, A.; Hecht, M. H.; Ming, D.; Staufer, U.

    2008-12-01

    The geomorphological setting of the subpolar terrain at the landing site is characterized by polygonal structures. These structures are generated by long term and periodic cycles of contraction and expansion of the subsurface icy soil. The physical properties of the covering soil layer effectively control the details of this process that has its counterpart on earth in (sub) polar regions including the Siberian tundra and in Antartica. One of the prime science goals of the Phoenix mission is to investigate the physical properties of the icy soil, how these processes are influenced by water vapour diffusion in the regolith and exchange of the water vapour with the atmosphere. It is important to understand these processes on diurnal, seasonal, and climatic time scales. Phoenix landed in the middle of one of the polygons. Its retro rockets cleared the ice table of the polygon underneath the jet assemblies from ca. 5 to 10 cm of loose cloddy regolith. Soil was piled up in the centre. The fact that the soil looked still cloddy similar to that in undisturbed areas suggests strong cohesiveness of the matrix material. The clumps were not destroyed by the blast. Excavated regolith material imaged in the scoop was made up of agglomerates of grains smaller than the best resolution of the Robotic Arm Camera (20 micron). Higher resolution images (4 micron) of the microscope corroborate that the soil is predominantly composed of agglomerates of very small particles with a mean size comparable to those observed in the Martian atmosphere. The Atomic Force Microscope reveals micron sized particles and smaller, partly of plate-like shape, indicating clay like particles. The matrix material of the soil is of reddish colour probably due to iron oxideadmixture. Only about 10% by volume of the soil are most often rounded grains between 40 to 100 micrometers of diameter. Some are glassy resembling micro tektites, and most of these are magnetic. The cohesiveness of the clumps and clods of matrix material is most likely caused by interfacial water, but electrostatic and van der Waals forces could also play a part. The soil also sticks readily to the scoop. Once desiccated in the scoop clumps fall apart further indicating that water was a major agent responsible for the cohesiveness of the soil.

  8. Age-related changes in the plasticity and toughness of human cortical bone at multiple length-scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zimmermann, Elizabeth A.; Schaible, Eric; Bale, Hrishikesh

    2011-08-10

    The structure of human cortical bone evolves over multiple length-scales from its basic constituents of collagen and hydroxyapatite at the nanoscale to osteonal structures at nearmillimeter dimensions, which all provide the basis for its mechanical properties. To resist fracture, bone’s toughness is derived intrinsically through plasticity (e.g., fibrillar sliding) at structural-scales typically below a micron and extrinsically (i.e., during crack growth) through mechanisms (e.g., crack deflection/bridging) generated at larger structural-scales. Biological factors such as aging lead to a markedly increased fracture risk, which is often associated with an age-related loss in bone mass (bone quantity). However, we find that age-relatedmore » structural changes can significantly degrade the fracture resistance (bone quality) over multiple lengthscales. Using in situ small-/wide-angle x-ray scattering/diffraction to characterize sub-micron structural changes and synchrotron x-ray computed tomography and in situ fracture-toughness measurements in the scanning electron microscope to characterize effects at micron-scales, we show how these age-related structural changes at differing size-scales degrade both the intrinsic and extrinsic toughness of bone. Specifically, we attribute the loss in toughness to increased non-enzymatic collagen cross-linking which suppresses plasticity at nanoscale dimensions and to an increased osteonal density which limits the potency of crack-bridging mechanisms at micron-scales. The link between these processes is that the increased stiffness of the cross-linked collagen requires energy to be absorbed by “plastic” deformation at higher structural levels, which occurs by the process of microcracking.« less

  9. UNIVERSAL RELATIONSHIP OF TOTAL LUNG DEPOSITION OF PARTICLES IN NORMAL ADULTS WITH PARTICLE SIZE AND BREATHING PATTERN

    EPA Science Inventory

    Particulate matter in the air is known for causing adverse health effects and yet estimating lung deposition dose is difficult because exposure conditions vary widely. We measured total deposition fraction (TDF) of monodisperse aerosols in the size range of 0.04 - 5 micron in dia...

  10. Modeling Remineralization of Desalinated Water by Micronized Calcite Dissolution.

    PubMed

    Hasson, David; Fine, Larissa; Sagiv, Abraham; Semiat, Raphael; Shemer, Hilla

    2017-11-07

    A widely used process for remineralization of desalinated water consists of dissolution of calcite particles by flow of acidified desalinated water through a bed packed with millimeter-size calcite particles. An alternative process consists of calcite dissolution by slurry flow of micron-size calcite particles with acidified desalinated water. The objective of this investigation is to provide theoretical models enabling design of remineralization by calcite slurry dissolution with carbonic and sulfuric acids. Extensive experimental results are presented displaying the effects of acid concentration, slurry feed concentration, and dissolution contact time. The experimental data are shown to be in agreement within less than 10% with theoretical predictions based on the simplifying assumption that the slurry consists of uniform particles represented by the surface mean diameter of the powder. Agreement between theory and experiment is improved by 1-8% by taking into account the powder size distribution. Apart from the practical value of this work in providing a hitherto lacking design tool for a novel technology. The paper has the merit of being among the very few publications providing experimental confirmation to the theory describing reaction kinetics in a segregated flow system.

  11. Roles of additives and surface control in slurry atomization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, S.C.

    1990-01-01

    This report focuses on the effects of interparticle forces on the rheology and airblast atomization of micronized coal water slurry (CWS). We found that the CWS flow behavior index is determined by the relative importance of the interparticle van der Waals attraction and the interparticle electrostatic repulsion. The former intensifies as the Hamaker constant increases and the interparticle distance reduces while the latter increases as the particle surface charge density increases. The interparticle attraction causes particle aggregation, which breaks down at high shear rates, and thus leads to slurry pseudoplastic behavior. In contrast, the interparticle repulsion prevents particle aggregation andmore » thus leads to Newtonian behavior. Both atomized at low atomizing air pressures (less than 270 kPa) using twin-fluid jet atomizers of various distributor designs. We found that the atomized drop sizes of micronized coal water slurries substantially decrease as the atomizing air pressure exceeds a threshold value. The effects of coal volume fraction, coal particle surface charge, liquid composition and liquid viscosity on slurry atomization can be accounted for by their effects on slurry rheology. 26 refs.« less

  12. Nano-indentation creep properties of the S2 cell wall lamina and compound corner middle lamella [abstract

    Treesearch

    Joseph E. Jakes; Charles R. Frihart; James F. Beecher; Donald S. Stone

    2010-01-01

    Bulk wood properties are derived from an ensemble of processes taking place at the micron-scale, and at this level the properties differ dramatically in going from cell wall layers to the middle lamella. To better understand the properties of these micron-scaled regions of wood, we have developed a unique set of nano-indentation tools that allow us to measure local...

  13. A laboratory comparison of evacuation devices on aerosol reduction.

    PubMed

    Jacks, Mary E

    2002-01-01

    Aerosols are defined as airborne particles that range in size from 0.5 to 10 microns (micron). They are produced during ultrasonic instrumentation, but they can be reduced. Irrigant solutions, which produce the therapeutic effects of lavage, also combine with blood, saliva, and bacteria to produce potentially harmful airborne particulates. The American Dental Association (ADA) and the Centers for Disease Control and Prevention (CDC) recommend utilization of high volume evacuation, rubber dam, and patient positioning for aerosol control. But for the non-assisted dental hygienist, these recommendations are difficult to implement. This study was designed to compare the concentration of airborne particulates from ultrasonic scaling, utilizing three different methods of evacuation. In a laboratory setting, ultrasonic airborne particulates were generated utilizing a 25,000 cps magnetostrictive ultrasonic scaling instrument. Three evacuation devises were compared for effectiveness: a standard saliva ejector intraorally positioned; and two extraorally positioned, hands-free high-volume evacuation (HFHVE) techniques. One of these devices had a standard attachment, and, the other had a funnel-shaped attachment. Measurement of airborne particles was performed with a DataRAM Real-Time Aerosol Monitor. This study (N = 21) found a significant reduction in the number of airborne particulates with either form of extraoral HFHVE attachment in place. Standard attachments and funnel-shaped attachments to HFHVE resulted in reduction of particulates by 90.8% and 89.7%, respectively, when compared to the intraorally positioned standard saliva ejector. Utilizing either form of HFHVE during ultrasonic instrumentation significantly reduced the number of aerosolized particulates that reached the breathing space of the client and clinician. This lends support for the ADA and CDC recommendation that HVE be used during aerosol producing procedures. Currently, no preventive measure is 100% effective; therefore, clinicians are encouraged to use additional methods to minimize the number of airborne particulates produced during intraoral instrumentation.

  14. Asymmetrical Deterministic Lateral Displacement Gaps for Dual Functions of Enhanced Separation and Throughput of Red Blood Cells

    PubMed Central

    Zeming, Kerwin Kwek; Salafi, Thoriq; Chen, Chia-Hung; Zhang, Yong

    2016-01-01

    Deterministic lateral displacement (DLD) method for particle separation in microfluidic devices has been extensively used for particle separation in recent years due to its high resolution and robust separation. DLD has shown versatility for a wide spectrum of applications for sorting of micro particles such as parasites, blood cells to bacteria and DNA. DLD model is designed for spherical particles and efficient separation of blood cells is challenging due to non-uniform shape and size. Moreover, separation in sub-micron regime requires the gap size of DLD systems to be reduced which exponentially increases the device resistance, resulting in greatly reduced throughput. This paper shows how simple application of asymmetrical DLD gap-size by changing the ratio of lateral-gap (GL) to downstream-gap (GD) enables efficient separation of RBCs without greatly restricting throughput. This method reduces the need for challenging fabrication of DLD pillars and provides new insight to the current DLD model. The separation shows an increase in DLD critical diameter resolution (separate smaller particles) and increase selectivity for non-spherical RBCs. The RBCs separate better as compared to standard DLD model with symmetrical gap sizes. This method can be applied to separate non-spherical bacteria or sub-micron particles to enhance throughput and DLD resolution. PMID:26961061

  15. Asymmetrical Deterministic Lateral Displacement Gaps for Dual Functions of Enhanced Separation and Throughput of Red Blood Cells.

    PubMed

    Zeming, Kerwin Kwek; Salafi, Thoriq; Chen, Chia-Hung; Zhang, Yong

    2016-03-10

    Deterministic lateral displacement (DLD) method for particle separation in microfluidic devices has been extensively used for particle separation in recent years due to its high resolution and robust separation. DLD has shown versatility for a wide spectrum of applications for sorting of micro particles such as parasites, blood cells to bacteria and DNA. DLD model is designed for spherical particles and efficient separation of blood cells is challenging due to non-uniform shape and size. Moreover, separation in sub-micron regime requires the gap size of DLD systems to be reduced which exponentially increases the device resistance, resulting in greatly reduced throughput. This paper shows how simple application of asymmetrical DLD gap-size by changing the ratio of lateral-gap (GL) to downstream-gap (GD) enables efficient separation of RBCs without greatly restricting throughput. This method reduces the need for challenging fabrication of DLD pillars and provides new insight to the current DLD model. The separation shows an increase in DLD critical diameter resolution (separate smaller particles) and increase selectivity for non-spherical RBCs. The RBCs separate better as compared to standard DLD model with symmetrical gap sizes. This method can be applied to separate non-spherical bacteria or sub-micron particles to enhance throughput and DLD resolution.

  16. Micro-Scale Regenerative Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Moran, Matthew E.; Stelter, Stephan; Stelter, Manfred

    2004-01-01

    A micro-scale regenerative heat exchanger has been designed, optimized and fabricated for use in a micro-Stirling device. Novel design and fabrication techniques enabled the minimization of axial heat conduction losses and pressure drop, while maximizing thermal regenerative performance. The fabricated prototype is comprised of ten separate assembled layers of alternating metal-dielectric composite. Each layer is offset to minimize conduction losses and maximize heat transfer by boundary layer disruption. A grating pattern of 100 micron square non-contiguous flow passages were formed with a nominal 20 micron wall thickness, and an overall assembled ten-layer thickness of 900 microns. Application of the micro heat exchanger is envisioned in the areas of micro-refrigerators/coolers, micropower devices, and micro-fluidic devices.

  17. Variations in the 3 micron spectrum across the Orion Bar: polycyclic aromatic hydrocarbons and related molecules

    NASA Technical Reports Server (NTRS)

    Sloan, G. C.; Bregman, J. D.; Geballe, T. R.; Allamandola, L. J.; Woodward, C. E.

    1997-01-01

    Long-slit spectra across the Orion Bar reveal significant differences in the spatial behavior of the components of the 3 microns polycyclic aromatic hydrocarbon (PAH) spectrum. The strong PAH band at 3.29 microns generally decreases exponentially with distance from the ionization front into the molecular cloud (scale height approximately 12"), although excesses appear approximately 10" and 20" behind the ionization front, close to layers of H2 and CO emission, respectively. The 3.40 microns PAH feature separates into two components with very different spatial distributions. The main component (at 3.395 microns), along with the 3.51 microns band and the PAH plateau (3.3-3.6 microns), shows excess emission approximately 10" and approximately 20" behind the ionization front, stronger than the excesses in the 3.29 microns band. The extra component of the 3.40 microns band, which peaks at approximately 3.405 microns, has a spatial distribution very similar to the H2 emission. Aromatic C-H stretches in PAHs most likely produce the 3.29 microns feature. Aliphatic C-H stretches in either attached methyl side-groups or superhydrogenated PAHs, or perhaps both, could produce the complicated spectral and spatial structure at 3.40 microns.

  18. Self-generated clouds of micron-sized particles as a promising way of a Solar Probe shielding from intense thermal radiation of the Sun

    NASA Astrophysics Data System (ADS)

    Dombrovsky, Leonid A.; Reviznikov, Dmitry L.; Kryukov, Alexei P.; Levashov, Vladimir Yu

    2017-10-01

    An effect of shielding of an intense solar radiation towards a solar probe with the use of micron-sized SiC particles generated during ablation of a composite thermal protection material is estimated on a basis of numerical solution to a combined radiative and heat transfer problem. The radiative properties of particles are calculated using the Mie theory, and the spectral two-flux model is employed in radiative transfer calculations for non-uniform particle clouds. A computational model for generation and evolution of the cloud is based on a conjugated heat transfer problem taking into account heating and thermal destruction of the matrix of thermal protection material and sublimation of SiC particles in the generated cloud. The effect of light pressure, which is especially important for small particles, is also taken into account. The computational data for mass loss due to the particle cloud sublimation showed the low value about 1 kg/m2 per hour at the distance between the vehicle and the Sun surface of about four radii of the Sun. This indicates that embedding of silicon carbide or other particles into a thermal protection layer and the resulting generation of a particle cloud can be considered as a promising way to improve the possibilities of space missions due to a significant decrease in the vehicle working distance from the solar photosphere.

  19. Low loss fusion splicing of micron scale silica fibers.

    PubMed

    Pal, Parama; Knox, Wayne H

    2008-07-21

    Tapered micron-sized optical fibers may be important in the future for development of microscale integrated photonic devices. Complex photonic circuits require many devices and a robust technique for interconnection. We demonstrate splicing of four micron diameter step-index air-clad silica microfibers using a CO2 laser. We obtain splice losses lower than 0.3%. Compared with evanescent coupling of microfibers, our splices are more mechanically stable and efficient.

  20. Optical sample-position sensing for electrostatic levitation

    NASA Technical Reports Server (NTRS)

    Sridharan, G.; Chung, S.; Elleman, D.; Whim, W. K.

    1989-01-01

    A comparative study is conducted for optical position-sensing techniques applicable to micro-G conditions sample-levitation systems. CCD sensors are compared with one- and two-dimensional position detectors used in electrostatic particle levitation. In principle, the CCD camera method can be improved from current resolution levels of 200 microns through the incorporation of a higher-pixel device and more complex digital signal processor interface. Nevertheless, the one-dimensional position detectors exhibited superior, better-than-one-micron resolution.

Top