Sample records for micron-scale spatial resolution

  1. Pushing the limits of spatial resolution with the Kuiper Airborne observatory

    NASA Technical Reports Server (NTRS)

    Lester, Daniel

    1994-01-01

    The study of astronomical objects at high spatial resolution in the far-IR is one of the most serious limitations to our work at these wavelengths, which carry information about the luminosity of dusty and obscured sources. At IR wavelengths shorter than 30 microns, ground based telescopes with large apertures at superb sites achieve diffraction-limited performance close to the seeing limit in the optical. At millimeter wavelengths, ground based interferometers achieve resolution that is close to this. The inaccessibility of the far-IR from the ground makes it difficult, however, to achieve complementary resolution in the far-IR. The 1983 IRAS survey, while extraordinarily sensitive, provides us with a sky map at a spatial resolution that is limited by detector size on a spatial scale that is far larger than that available in other wavelengths on the ground. The survey resolution is of order 4 min in the 100 micron bandpass, and 2 min at 60 microns (IRAS Explanatory Supplement, 1988). Information on a scale of 1' is available on some sources from the CPC. Deconvolution and image resolution using this database is one of the subjects of this workshop.

  2. Co-existence of a few and sub micron inhomogeneities in Al-rich AlGaN/AlN quantum wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwata, Yoshiya; Oto, Takao; Banal, Ryan G.

    2015-03-21

    Inhomogeneity in Al-rich AlGaN/AlN quantum wells is directly observed using our custom-built confocal microscopy photoluminescence (μ-PL) apparatus with a reflective system. The μ-PL system can reach the AlN bandgap in the deep ultra-violet spectral range with a spatial resolution of 1.8 μm. In addition, cathodoluminescence (CL) measurements with a higher spatial resolution of about 100 nm are performed. A comparison of the μ-PL and CL measurements reveals that inhomogeneities, which have different spatial distributions of a few- and sub-micron scales that are superimposed, play key roles in determining the optical properties.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirtley, John R., E-mail: jkirtley@stanford.edu; Rosenberg, Aaron J.; Palmstrom, Johanna C.

    Superconducting QUantum Interference Device (SQUID) microscopy has excellent magnetic field sensitivity, but suffers from modest spatial resolution when compared with other scanning probes. This spatial resolution is determined by both the size of the field sensitive area and the spacing between this area and the sample surface. In this paper we describe scanning SQUID susceptometers that achieve sub-micron spatial resolution while retaining a white noise floor flux sensitivity of ≈2μΦ{sub 0}/Hz{sup 1/2}. This high spatial resolution is accomplished by deep sub-micron feature sizes, well shielded pickup loops fabricated using a planarized process, and a deep etch step that minimizes themore » spacing between the sample surface and the SQUID pickup loop. We describe the design, modeling, fabrication, and testing of these sensors. Although sub-micron spatial resolution has been achieved previously in scanning SQUID sensors, our sensors not only achieve high spatial resolution but also have integrated modulation coils for flux feedback, integrated field coils for susceptibility measurements, and batch processing. They are therefore a generally applicable tool for imaging sample magnetization, currents, and susceptibilities with higher spatial resolution than previous susceptometers.« less

  4. Spatial and spectral resolution necessary for remotely sensed vegetation studies

    NASA Technical Reports Server (NTRS)

    Rock, B. N.

    1982-01-01

    An outline is presented of the required spatial and spectral resolution needed for accurate vegetation discrimination and mapping studies as well as for determination of state of health (i.e., detection of stress symptoms) of actively growing vegetation. Good success was achieved in vegetation discrimination and mapping of a heterogeneous forest cover in the ridge and valley portion of the Appalachians using multispectral data acquired with a spatial resolution of 15 m (IFOV). A sensor system delivering 10 to 15 m spatial resolution is needed for both vegetation mapping and detection of stress symptoms. Based on the vegetation discrimination and mapping exercises conducted at the Lost River site, accurate products (vegetation maps) are produced using broad-band spectral data ranging from the .500 to 2.500 micron portion of the spectrum. In order of decreasing utility for vegetation discrimination, the four most valuable TM simulator VNIR bands are: 6 (1.55 to 1.75 microns), 3 (0.63 to 0.69 microns), 5 (1.00 to 1.30 microns) and 4 (0.76 to 0.90 microns).

  5. Linear mixing model applied to coarse spatial resolution data from multispectral satellite sensors

    NASA Technical Reports Server (NTRS)

    Holben, Brent N.; Shimabukuro, Yosio E.

    1993-01-01

    A linear mixing model was applied to coarse spatial resolution data from the NOAA Advanced Very High Resolution Radiometer. The reflective component of the 3.55-3.95 micron channel was used with the two reflective channels 0.58-0.68 micron and 0.725-1.1 micron to run a constrained least squares model to generate fraction images for an area in the west central region of Brazil. The fraction images were compared with an unsupervised classification derived from Landsat TM data acquired on the same day. The relationship between the fraction images and normalized difference vegetation index images show the potential of the unmixing techniques when using coarse spatial resolution data for global studies.

  6. Characterization of Pixelated Cadmium-Zinc-Telluride Detectors for Astrophysical Applications

    NASA Technical Reports Server (NTRS)

    Gaskin, Jessica; Sharma, Dharma; Ramsey, Brian; Seller, Paul

    2003-01-01

    Comparisons of charge sharing and charge loss measurements between two pixelated Cadmium-Zinc-Telluride (CdZnTe) detectors are discussed. These properties along with the detector geometry help to define the limiting energy resolution and spatial resolution of the detector in question. The first detector consists of a 1-mm-thick piece of CdZnTe sputtered with a 4x4 array of pixels with pixel pitch of 750 microns (inter-pixel gap is 100 microns). Signal readout is via discrete ultra-low-noise preamplifiers, one for each of the 16 pixels. The second detector consists of a 2-mm-thick piece of CdZnTe sputtered with a 16x16 array of pixels with a pixel pitch of 300 microns (inter-pixel gap is 50 microns). This crystal is bonded to a custom-built readout chip (ASIC) providing all front-end electronics to each of the 256 independent pixels. These detectors act as precursors to that which will be used at the focal plane of the High Energy Replicated Optics (HERO) telescope currently being developed at Marshall Space Flight Center. With a telescope focal length of 6 meters, the detector needs to have a spatial resolution of around 200 microns in order to take full advantage of the HERO angular resolution. We discuss to what degree charge sharing will degrade energy resolution but will improve our spatial resolution through position interpolation.

  7. Large area sub-micron chemical imaging of magnesium in sea urchin teeth.

    PubMed

    Masic, Admir; Weaver, James C

    2015-03-01

    The heterogeneous and site-specific incorporation of inorganic ions can profoundly influence the local mechanical properties of damage tolerant biological composites. Using the sea urchin tooth as a research model, we describe a multi-technique approach to spatially map the distribution of magnesium in this complex multiphase system. Through the combined use of 16-bit backscattered scanning electron microscopy, multi-channel energy dispersive spectroscopy elemental mapping, and diffraction-limited confocal Raman spectroscopy, we demonstrate a new set of high throughput, multi-spectral, high resolution methods for the large scale characterization of mineralized biological materials. In addition, instrument hardware and data collection protocols can be modified such that several of these measurements can be performed on irregularly shaped samples with complex surface geometries and without the need for extensive sample preparation. Using these approaches, in conjunction with whole animal micro-computed tomography studies, we have been able to spatially resolve micron and sub-micron structural features across macroscopic length scales on entire urchin tooth cross-sections and correlate these complex morphological features with local variability in elemental composition. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. The design and evaluation of grazing incidence relay optics

    NASA Technical Reports Server (NTRS)

    Davis, John M.; Chase, R. C.; Silk, J. K.; Krieger, A. S.

    1989-01-01

    X-ray astronomy, both solar and celestial, has many needs for high spatial resolution observations which have to be performed with electronic detectors. If the resolution is not to be detector limited, plate scales in excess of 25 microns arc/sec, corresponding to focal lengths greater than 5 m, are required. In situations where the physical size is restricted, the problem can be solved by the use of grazing incidence relay optics. A system was developed which employs externally polished hyperboloid-hyperboloid surfaces to be used in conjunction with a Wolter-Schwarzschild primary. The secondary is located in front of the primary focus and provides a magnification of 4, while the system has a plate scale of 28 microns arc/sec and a length of 1.9 m. The design, tolerance specification, fabrication and performance at visible and X-ray wavelengths of this optical system are described.

  9. Gamma-Ray Focusing Optics for Small Animal Imaging

    NASA Technical Reports Server (NTRS)

    Pivovaroff, M. J.; Barber, W. C.; Craig, W. W.; Hasegawa, B. H.; Ramsey, B. D.; Taylor, C.

    2004-01-01

    There is a well-established need for high-resolution radionuclide imaging techniques that provide non-invasive measurement of physiological function in small animals. We, therefore, have begun developing a small animal radionuclide imaging system using grazing incidence mirrors to focus low-energy gamma-rays emitted by I-125, and other radionuclides. Our initial prototype optic, fabricated from thermally-formed glass, demonstrated a resolution of 1500 microns, consistent with the performance predicted by detailed simulations. More recently, we have begun constructing mirrors using a replication technique that reduces low spatial frequency errors in the mirror surface, greatly improving the resolution. Each technique offers particular advantages: e.g., multilayer coatings are easily deposited on glass, while superior resolution is possible with replicated optics. Scaling the results from our prototype optics, which only have a few nested shells, to system where the lens has a full complement of several tens of nested shells, a sensitivity of approx. 1 cps/micro Ci is possible, with the exact number dependent on system magnification and radionuclide species. (Higher levels of efficiency can be obtained with multi-optic imaging systems.) The gamma-ray lens will achieve a resolution as good as 100 microns, independent of the final sensitivity. The combination of high spatial resolution and modest sensitivity will enable in vivo single photon emission imaging studies in small animals.

  10. Direct observation of electrothermal instability structures on intensely Ohmically heated aluminum with current flowing in a surface skin layer

    NASA Astrophysics Data System (ADS)

    Awe, Thomas

    2017-10-01

    Implosions on the Z Facility assemble high-energy-density plasmas for radiation effects and ICF experiments, but achievable stagnation pressures and temperatures are degraded by the Magneto-Rayleigh-Taylor (MRT) instability. While the beryllium liners (tubes) used in Magnetized Liner Inertial Fusion (MagLIF) experiments are astonishingly smooth (10 to 50 nm RMS roughness), they also contain distributed micron-scale resistive inclusions, and large MRT amplitudes are observed. Early in the implosion, an electrothermal instability (ETI) may provide a perturbation which greatly exceeds the initial surface roughness of the liner. Resistive inhomogeneities drive nonuniform current density and Joule heating, resulting in locally higher temperature, and thus still higher resistivity. Such unstable temperature and pressure growth produce density perturbations which seed MRT. For MagLIF liners, ETI seeding of MRT has been inferred by evaluating late-time MRT, but a direct observation of ETI is not made. ETI is directly observed on the surface of 1.0-mm-diameter solid Al rods pulsed to 1 MA in 100 ns via high resolution gated optical imaging (2 ns temporal and 3 micron spatial resolution). Aluminum 6061 alloy rods, with micron-scale resistive inclusions, consistently first demonstrate overheating from distinct, 10-micron-scale, sub-eV spots, which 5-10 ns later merge into azimuthally stretched elliptical spots and discrete strata (40-100 microns wide by 10 microns tall). Axial plasma filaments form shortly thereafter. Surface plasma can be suppressed for rods coated with dielectric, enabling extended study of the evolution of stratified ETI structures, and experimental inference of ETI growth rates. This fundamentally new and highly 3-dimensional dataset informs ETI physics, including when the ETI seed of MRT may be initiated.

  11. High spatial resolution restoration of IRAS images

    NASA Technical Reports Server (NTRS)

    Grasdalen, Gary L.; Inguva, R.; Dyck, H. Melvin; Canterna, R.; Hackwell, John A.

    1990-01-01

    A general technique to improve the spatial resolution of the IRAS AO data was developed at The Aerospace Corporation using the Maximum Entropy algorithm of Skilling and Gull. The technique has been applied to a variety of fields and several individual AO MACROS. With this general technique, resolutions of 15 arcsec were achieved in 12 and 25 micron images and 30 arcsec in 60 and 100 micron images. Results on galactic plane fields show that both photometric and positional accuracy achieved in the general IRAS survey are also achieved in the reconstructed images.

  12. Cassini atmospheric chemistry mapper. Volume 1. Investigation and technical plan

    NASA Technical Reports Server (NTRS)

    Smith, William Hayden; Baines, Kevin Hays; Drossart, Pierre; Fegley, Bruce; Orton, Glenn; Noll, Keith; Reitsema, Harold; Bjoraker, Gordon L.

    1990-01-01

    The Cassini Atmospheric Chemistry Mapper (ACM) enables a broad range of atmospheric science investigations for Saturn and Titan by providing high spectral and spatial resolution mapping and occultation capabilities at 3 and 5 microns. ACM can directly address the major atmospheric science objectives for Saturn and for Titan, as defined by the Announcement of Opportunity, with pivotal diagnostic measurements not accessible to any other proposed Cassini instrument. ACM determines mixing ratios for atmospheric molecules from spectral line profiles for an important and extensive volume of the atmosphere of Saturn (and Jupiter). Spatial and vertical profiles of disequilibrium species abundances define Saturn's deep atmosphere, its chemistry, and its vertical transport phenomena. ACM spectral maps provide a unique means to interpret atmospheric conditions in the deep (approximately 1000 bar) atmosphere of Saturn. Deep chemistry and vertical transport is inferred from the vertical and horizontal distribution of a series of disequilibrium species. Solar occultations provide a method to bridge the altitude range in Saturn's (and Titan's) atmosphere that is not accessible to radio science, thermal infrared, and UV spectroscopy with temperature measurements to plus or minus 2K from the analysis of molecular line ratios and to attain an high sensitivity for low-abundance chemical species in the very large column densities that may be achieved during occultations for Saturn. For Titan, ACM solar occultations yield very well resolved (1/6 scale height) vertical mixing ratios column abundances for atmospheric molecular constituents. Occultations also provide for detecting abundant species very high in the upper atmosphere, while at greater depths, detecting the isotopes of C and O, constraining the production mechanisms, and/or sources for the above species. ACM measures the vertical and horizontal distribution of aerosols via their opacity at 3 microns and, particularly, at 5 microns. ACM recovers spatially-resolved atmospheric temperatures in Titan's troposphere via 3- and 5-microns spectral transitions. Together, the mixing ratio profiles and the aerosol distributions are utilized to investigate the photochemistry of the stratosphere and consequent formation processes for aerosols. Finally, ring opacities, observed during solar occultations and in reflected sunlight, provide a measurement of the particle size and distribution of ring material. ACM will be the first high spectral resolution mapping spectrometer on an outer planet mission for atmospheric studies while retaining a high resolution spatial mapping capability. ACM, thus, opens an entirely new range of orbital scientific studies of the origin, physio-chemical evolution and structure of the Saturn and Titan atmospheres. ACM provides high angular resolution spectral maps, viewing nadir and near-limb thermal radiation and reflected sunlight; sounds planetary limbs, spatially resolving vertical profiles to several atmospheric scale heights; and measures solar occultations, mapping both atmospheres and rings. ACM's high spectral and spatial resolution mapping capability is achieved with a simplified Fourier Transform spectrometer with a no-moving parts, physically compact design. ACM's simplicity guarantees an inherent stability essential for reliable performance throughout the lengthy Cassini Orbiter mission.

  13. Femtosecond mega-electron-volt electron microdiffraction

    DOE PAGES

    Shen, X.; Li, R. K.; Lundstrom, U.; ...

    2017-09-01

    To understand and control the basic functions of physical, chemical and biological processes from micron to nano-meter scale, an instrument capable of visualizing transient structural changes of inhomogeneous materials with atomic spatial and temporal resolutions, is required. One such technique is femtosecond electron microdiffraction, in which a short electron pulse with femtosecond-scale duration is focused into a micron-scale spot and used to obtain diffraction images to resolve ultrafast structural dynamics over a localized crystalline domain. In this letter, we report the experimental demonstration of time-resolved mega-electron-volt electron microdiffraction which achieves a 5 μm root-mean-square (rms) beam size on the samplemore » and a 110 fs rms temporal resolution. Using pulses of 10k electrons at 4.2 MeV energy with a normalized emittance 3 nm-rad, we obtained high quality diffraction from a single 10 μm paraffin ( C 44 H 90) crystal. The phonon softening mode in optical-pumped polycrystalline Bi was also time-resolved, demonstrating the temporal resolution limits of the instrument. In conclusion, this new characterization capability will open many research opportunities in material and biological sciences.« less

  14. Femtosecond mega-electron-volt electron microdiffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, X.; Li, R. K.; Lundstrom, U.

    To understand and control the basic functions of physical, chemical and biological processes from micron to nano-meter scale, an instrument capable of visualizing transient structural changes of inhomogeneous materials with atomic spatial and temporal resolutions, is required. One such technique is femtosecond electron microdiffraction, in which a short electron pulse with femtosecond-scale duration is focused into a micron-scale spot and used to obtain diffraction images to resolve ultrafast structural dynamics over a localized crystalline domain. In this letter, we report the experimental demonstration of time-resolved mega-electron-volt electron microdiffraction which achieves a 5 μm root-mean-square (rms) beam size on the samplemore » and a 110 fs rms temporal resolution. Using pulses of 10k electrons at 4.2 MeV energy with a normalized emittance 3 nm-rad, we obtained high quality diffraction from a single 10 μm paraffin ( C 44 H 90) crystal. The phonon softening mode in optical-pumped polycrystalline Bi was also time-resolved, demonstrating the temporal resolution limits of the instrument. In conclusion, this new characterization capability will open many research opportunities in material and biological sciences.« less

  15. Three-dimensional high-resolution ultrasonic imaging of the eye

    NASA Astrophysics Data System (ADS)

    Silverman, Ronald H.; Lizzi, Frederick L.; Kalisz, Andrew; Coleman, D. J.

    2000-04-01

    Very high frequency (50 MHz) ultrasound provides spatial resolution on the order of 30 microns axially by 60 microns laterally. Our aim was to reconstruct the three-dimensional anatomy of the eye in the full detail permitted by this fine- scale transducer resolution. We scanned the eyes of human subjects and anesthetized rabbits in a sequence of parallel planes 50 microns apart. Within each scan plane, vectors were also spaced 50 microns apart. Radio-frequency data were digitized at a rate of 250 MHz or higher. A series of spectrum analysis and segmentation algorithms was applied to data acquired in each plane; the outputs of these procedures were used to produce color-coded 3-D representations of the sclera, iris and ciliary processes to enhance 3-D volume rendered presentation. We visualized the radial pattern of individual ciliary processes in humans and rabbits and the geodetic web of supporting connections between the ciliary processes and iris that exist only in the rabbit. By acquiring data such that adjacent vectors and planes are separated by less than the transducer's lateral resolution, we were able to visualize structures, such as the ciliary web, that had not been seen before in-vivo. Our techniques offer the possibility of high- precision imaging and measurement of anterior segment structures. This would be relevant in monitoring of glaucoma, tumors, foreign bodies and other clinical conditions.

  16. Cloud properties inferred from 8-12 micron data

    NASA Technical Reports Server (NTRS)

    Strabala, Kathleen I.; Ackerman, Steven A.; Menzel, W. Paul

    1994-01-01

    A trispectral combination of observations at 8-, 11-, and 12-micron bands is suggested for detecting cloud and cloud properties in the infrared. Atmospheric ice and water vapor absorption peak in opposite halves of the window region so that positive 8-minus-11-micron brightness temperature differences indicate cloud, while near-zero or negative differences indicate clear regions. The absorption coefficient for water increases more between 11 and 12 microns than between 8 and 11 microns, while for ice, the reverse is true. Cloud phases is determined by a scatter diagram of 8-minus-11-micron versus 11-minus-12-micron brightness temperature differences; ice cloud shows a slope greater than 1 and water cloud less than 1. The trispectral brightness temperature method was tested upon high-resolution interferometer data resulting in clear-cloud and cloud-phase delineation. Simulations using differing 8-micron bandwidths revealed no significant degradation of cloud property detection. Thus, the 8-micron bandwidth for future satellites can be selected based on the requirements of other applications, such as surface characterization studies. Application of the technique to current polar-orbiting High-Resolution Infrared Sounder (HIRS)-Advanced Very High Resolution Radiometer (AVHRR) datasets is constrained by the nonuniformity of the cloud scenes sensed within the large HIRS field of view. Analysis of MAS (MODIS Airborne Simulator) high-spatial resolution (500 m) data with all three 8-, 11-, and 12-micron bands revealed sharp delineation of differing cloud and background scenes, from which a simple automated threshold technique was developed. Cloud phase, clear-sky, and qualitative differences in cloud emissivity and cloud height were identified on a case study segment from 24 November 1991, consistent with the scene. More rigorous techniques would allow further cloud parameter clarification. The opportunities for global cloud delineation with the Moderate-Resolution Imaging Spectrometer (MODIS) appear excellent. The spectral selection, the spatial resolution, and the global coverage are all well suited for significant advances.

  17. High-resolution (SIMS) versus bulk sulfur isotope patterns of pyrite in Proterozoic microbialites with diverse mat textures

    NASA Astrophysics Data System (ADS)

    Gomes, M. L.; Fike, D. A.; Bergmann, K.; Knoll, A. H.

    2015-12-01

    Sulfur (S) isotope signatures of sedimentary pyrite preserved in marine rocks provide a rich suite of information about changes in biogeochemical cycling associated with the evolution of microbial metabolisms and oxygenation of Earth surface environments. Conventionally, these S isotope records are based on bulk rock measurements. Yet, in modern microbial mat environments, S isotope compositions of sulfide can vary by up to 40‰ over a spatial range of ~ 1 mm. Similar ranges of S isotope variability have been found in Archean pyrite grains using both Secondary Ion Mass Spectrometry and other micro-analytical techniques. These micron-scale patterns have been linked to changes in rates of microbial sulfate reduction and/or sulfide oxidation, isotopic distillation of the sulfate reservoir due to microbial sulfate reduction, and post-depositional alteration. Fine-scale mapping of S isotope compositions of pyrite can thus be used to differentiate primary environmental signals from post-depositional overprinting - improving our understanding of both. Here, we examine micron-scale S isotope patterns of pyrite in microbialites from the Mesoproterozoic-Neoproterozoic Sukhaya Tunguska Formation and Neoproterozoic Draken Formation in order to explore S isotope variability associated with different mat textures and pyrite grain morphologies. A primary goal is to link modern observations of how sulfide spatial isotope distributions reflect active microbial communities present at given depths in the mats to ancient processes driving fine-sale pyrite variability in microbialites. We find large (up to 60‰) S isotope variability within a spatial range of less than 2.5cm. The micron-scale S isotope measurements converge around the S isotope composition of pyrite extracted from bulk samples of the same microbialites. These micron-scale pyrite S isotope patterns have the potential to reveal important information about ancient biogeochemical cycling in Proterozoic mat environments with implications for interpreting S isotope signatures from the geological record.

  18. Determining composition of micron-scale protein deposits in neurodegenerative disease by spatially targeted optical microproteomics.

    PubMed

    Hadley, Kevin C; Rakhit, Rishi; Guo, Hongbo; Sun, Yulong; Jonkman, James E N; McLaurin, Joanne; Hazrati, Lili-Naz; Emili, Andrew; Chakrabartty, Avijit

    2015-09-29

    Spatially targeted optical microproteomics (STOMP) is a novel proteomics technique for interrogating micron-scale regions of interest (ROIs) in mammalian tissue, with no requirement for genetic manipulation. Methanol or formalin-fixed specimens are stained with fluorescent dyes or antibodies to visualize ROIs, then soaked in solutions containing the photo-tag: 4-benzoylbenzyl-glycyl-hexahistidine. Confocal imaging along with two photon excitation are used to covalently couple photo-tags to all proteins within each ROI, to a resolution of 0.67 µm in the xy-plane and 1.48 µm axially. After tissue solubilization, photo-tagged proteins are isolated and identified by mass spectrometry. As a test case, we examined amyloid plaques in an Alzheimer's disease (AD) mouse model and a post-mortem AD case, confirming known plaque constituents and discovering new ones. STOMP can be applied to various biological samples including cell lines, primary cell cultures, ex vivo specimens, biopsy samples, and fixed post-mortem tissue.

  19. Characterization of a 2-mm thick, 16x16 Cadmium-Zinc-Telluride Pixel Array

    NASA Technical Reports Server (NTRS)

    Gaskin, Jessica; Richardson, Georgia; Mitchell, Shannon; Ramsey, Brian; Seller, Paul; Sharma, Dharma

    2003-01-01

    The detector under study is a 2-mm-thick, 16x16 Cadmium-Zinc-Telluride pixel array with a pixel pitch of 300 microns and inter-pixel gap of 50 microns. This detector is a precursor to that which will be used at the focal plane of the High Energy Replicated Optics (HERO) telescope currently being developed at Marshall Space Flight Center. With a telescope focal length of 6 meters, the detector needs to have a spatial resolution of around 200 microns in order to take full advantage of the HERO angular resolution. We discuss to what degree charge sharing will degrade energy resolution but will improve our spatial resolution through position interpolation. In addition, we discuss electric field modeling for this specific detector geometry and the role this mapping will play in terms of charge sharing and charge loss in the detector.

  20. Nanoscale infrared spectroscopy as a non-destructive probe of extraterrestrial samples.

    PubMed

    Dominguez, Gerardo; Mcleod, A S; Gainsforth, Zack; Kelly, P; Bechtel, Hans A; Keilmann, Fritz; Westphal, Andrew; Thiemens, Mark; Basov, D N

    2014-12-09

    Advances in the spatial resolution of modern analytical techniques have tremendously augmented the scientific insight gained from the analysis of natural samples. Yet, while techniques for the elemental and structural characterization of samples have achieved sub-nanometre spatial resolution, infrared spectral mapping of geochemical samples at vibrational 'fingerprint' wavelengths has remained restricted to spatial scales >10 μm. Nevertheless, infrared spectroscopy remains an invaluable contactless probe of chemical structure, details of which offer clues to the formation history of minerals. Here we report on the successful implementation of infrared near-field imaging, spectroscopy and analysis techniques capable of sub-micron scale mineral identification within natural samples, including a chondrule from the Murchison meteorite and a cometary dust grain (Iris) from NASA's Stardust mission. Complementary to scanning electron microscopy, energy-dispersive X-ray spectroscopy and transmission electron microscopy probes, this work evidences a similarity between chondritic and cometary materials, and inaugurates a new era of infrared nano-spectroscopy applied to small and invaluable extraterrestrial samples.

  1. Infrared Spectroscopy of Pa-beta and [Fe II] Emission in NGC 4151

    NASA Technical Reports Server (NTRS)

    Knop, R. A.; Armus, L.; Larkin, J. E.; Matthews, K.; Shupe, D. L.; Soifer, B. T.

    1996-01-01

    We present spatially resolved 1.24-1.30 micron spectroscopy with a resolution of 240 km/s of the Seyfert 1.5 galaxy NGC 4151. Broad Pa-beta, narrow Pa-beta, and narrow [Fe II] (lambda = 1.2567 micron) emission lines are identified in the spectrum. Additionally, a spatially unresolved narrow component probably due to [S ix] (lambda = 1.25235 micron) is observed on the nucleus. The narrow Pa-beta and [Fe II] lines are observed to be extended over a scale of 5 sec. The spatial variation of the velocity centers of the Pa-beta and [Fe II] lines show remarkable similarity, and additionally show similarities to the velocity structure previously observed in ground based spectroscopy of [O III] emission in NGC 4151. This leads to the conclusion that the [Fe II] emission arises in clouds in the Seyfert narrow line region that are physically correlated with those narrow line clouds responsible for the optical emission. The [Fe II] emission line, however, is significantly wider than the Pa-beta emission line along the full spatial extent of the observed emission. This result suggests that despite the correlation between the bulk kinematics of Pa-beta and [Fe II], there is an additional process, perhaps fast shocks from a wind in the Seyfert nucleus, contributing to the [Fe II] emission.

  2. Constructing a WISE High Resolution Galaxy Atlas

    NASA Technical Reports Server (NTRS)

    Jarrett, T. H.; Masci, F.; Tsai, C. W.; Petty, S.; Cluver, M.; Assef, Roberto J.; Benford, D.; Blain, A.; Bridge, C.; Donoso, E.; hide

    2012-01-01

    After eight months of continuous observations, the Wide-field Infrared Survey Explorer (WISE) mapped the entire sky at 3.4 micron, 4.6 micron, 12 micron, and 22 micron. We have begun a dedicated WISE High Resolution Galaxy Atlas project to fully characterize large, nearby galaxies and produce a legacy image atlas and source catalog. Here we summarize the deconvolution techniques used to significantly improve the spatial resolution of WISE imaging, specifically designed to study the internal anatomy of nearby galaxies. As a case study, we present results for the galaxy NGC 1566, comparing the WISE enhanced-resolution image processing to that of Spitzer, Galaxy Evolution Explorer, and ground-based imaging. This is the first paper in a two-part series; results for a larger sample of nearby galaxies are presented in the second paper.

  3. Ultrafast all-optical imaging technique using low-temperature grown GaAs/AlxGa1 - xAs multiple-quantum-well semiconductor

    NASA Astrophysics Data System (ADS)

    Gao, Guilong; Tian, Jinshou; Wang, Tao; He, Kai; Zhang, Chunmin; Zhang, Jun; Chen, Shaorong; Jia, Hui; Yuan, Fenfang; Liang, Lingliang; Yan, Xin; Li, Shaohui; Wang, Chao; Yin, Fei

    2017-11-01

    We report and experimentally demonstrate an ultrafast all-optical imaging technique capable of single-shot ultrafast recording with a picosecond-scale temporal resolution and a micron-order two-dimensional spatial resolution. A GaAs/AlxGa1 - xAs multiple-quantum-well (MQW) semiconductor with a picosecond response time, grown using molecular beam epitaxy (MBE) at a low temperature (LT), is used for the first time in ultrafast imaging technology. The semiconductor transforms the signal beam information to the probe beam, the birefringent delay crystal time-serializes the input probe beam, and the beam displacer maps different polarization probe beams onto different detector locations, resulting in two frames with an approximately 9 ps temporal separation and approximately 25 lp/mm spatial resolution in the visible range.

  4. Optimisation of a propagation-based x-ray phase-contrast micro-CT system

    NASA Astrophysics Data System (ADS)

    Nesterets, Yakov I.; Gureyev, Timur E.; Dimmock, Matthew R.

    2018-03-01

    Micro-CT scanners find applications in many areas ranging from biomedical research to material sciences. In order to provide spatial resolution on a micron scale, these scanners are usually equipped with micro-focus, low-power x-ray sources and hence require long scanning times to produce high resolution 3D images of the object with acceptable contrast-to-noise. Propagation-based phase-contrast tomography (PB-PCT) has the potential to significantly improve the contrast-to-noise ratio (CNR) or, alternatively, reduce the image acquisition time while preserving the CNR and the spatial resolution. We propose a general approach for the optimisation of the PB-PCT imaging system. When applied to an imaging system with fixed parameters of the source and detector this approach requires optimisation of only two independent geometrical parameters of the imaging system, i.e. the source-to-object distance R 1 and geometrical magnification M, in order to produce the best spatial resolution and CNR. If, in addition to R 1 and M, the system parameter space also includes the source size and the anode potential this approach allows one to find a unique configuration of the imaging system that produces the required spatial resolution and the best CNR.

  5. Micron Scale Mineralogy

    NASA Astrophysics Data System (ADS)

    Caldwell, W. A.; Tamura, N.; Celestre, R. S.; Padmore, H. A.; Patel, J. R.

    2002-12-01

    Although x-ray diffraction has been used for nearly a century as the mineralogist's definitive tool in determining crystalline structures, it has proved impossible to use this technique to spatially resolve the highly heterogeneous nature of many minerals at the mesoscopic level. Due to recent revolutions in the brightness of x-ray sources and in our ability to focus x-rays, we can now carry out conventional monochromatic rotation crystallography as well as Laue diffraction with sub-micron spatial resolution and produce maps of orientation, strain, mineral type, and even chemical speciation over tens of microns in a short amount of time. We have pioneered the development of these techniques at the 3rd generation synchrotron radiation source (Advanced Light Source) in Berkeley, and will describe their application to understanding the structure of a quartz-geode. Our results show the manner in which grain structure and texture change as a function of distance from the cavity wall and are compared with models of crystal growth in such systems. This example highlights the great utility of a synchrotron based x-ray micro-diffraction beamline and the possibilities it opens to the mineralogist.

  6. Multitemporal Three Dimensional Imaging of Volcanic Products on the Macro- and Micro- Scale

    NASA Astrophysics Data System (ADS)

    Carter, A. J.; Ramsey, M. S.; Durant, A. J.; Skilling, I. P.

    2006-12-01

    Satellite data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) can be processed using a nadir- and backward-viewing band at the same wavelength to generate a Digital Elevation Model (DEM) at a maximum spatial resolution of 15 metres. Bezymianny Volcano (Kamchatka Peninsula, Russia) was chosen as a test target for multitemporal DEM generation. DEMs were used to generate a layer stack and calculate coarse topographic changes from 2000 to 2006, the most significant of which was a new crater that formed in spring 2005. The eruption that occurred on 11 January 2005 produced a pyroclastic deposit on the east flank, which was mapped and from which samples were collected in August 2005. A comparison was made between field-based observations of the deposit and micron-scale roughness (analogous to vesicularity) derived from ASTER thermal infrared data following the model described in Ramsey and Fink (1999) on lava domes. In order to investigate applying this technique to the pyroclastic deposits, 18 small samples from Bezymianny were selected for Scanning Electron Microscope (SEM) micron-scale analysis. The SEM image data were processed using software capable of calculating surface roughness and vesicle volume from stereo pairs: a statistical analysis of samples is presented using a high resolution grid of surface profiles. The results allow for a direct comparison to field, laboratory, and satellite-based estimates of micron-scale roughness. Prior to SEM processing, laboratory thermal emission spectra of the microsamples were collected and modelled to estimate vesicularity. Each data set was compared and assessed for coherence within the limitations of each technique. This study outlines the value of initially imaging at the macro-scale to assess major topographic changes over time at the volcano. This is followed by an example of the application of micro-scale SEM imaging and spectral deconvolution, highlighting the advantages of using multiple resolutions to analyse frequently overlapping products at Bezymianny.

  7. 4D nano-tomography of electrochemical energy devices using lab-based X-ray imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heenan, T. M. M.; Finegan, D. P.; Tjaden, B.

    Electrochemical energy devices offer a variety of alternate means for low-carbon, multi-scale energy conversion and storage. Reactions in these devices are supported by electrodes with characteristically complex microstructures. To meet the increasing capacity and lifetime demands across a range of applications, it is essential to understand microstructural evolutions at a cell and electrode level which are thought to be critical aspects influencing material and device lifetime and performance. X-ray computed tomography (CT) has become a highly employed method for non-destructive characterisation of such microstructures with high spatial resolution. However, sub-micron resolutions present significant challenges for sample preparation and handling particularlymore » in 4D studies, (three spatial dimensions plus time). Here, microstructural information is collected from the same region of interest within two electrode materials: a solid oxide fuel cell and the positive electrode from a lithium-ion battery. Using a lab-based X-ray instrument, tomograms with sub-micron resolutions were obtained between thermal cycling. The intricate microstructural evolutions captured within these two materials provide model examples of 4D X-ray nano-CT capabilities in tracking challenging degradation mechanisms. This technique is valuable in the advancement of electrochemical research as well as broader applications for materials characterisation.« less

  8. In Situ Visualization of the Growth and Fluctuations of Nanoparticle Superlattice in Liquids

    NASA Astrophysics Data System (ADS)

    Ou, Zihao; Shen, Bonan; Chen, Qian

    We use liquid phase transmission electron microscopy to image and understand the crystal growth front and interfacial fluctuation of a nanoparticle superlattice. With single particle resolution and hundreds of nanoscale building blocks in view, we are able to identify the interface between ordered lattice and disordered structure and visualize the kinetics of single building block attachment at the lattice growth front. The spatial interfacial fluctuation profiles support the capillary wave theory, from which we derive a surface stiffness value consistent with scaling analysis. Our experiments demonstrate the potential of extending model study on collective systems to nanoscale with single particle resolution and testing fundamental theories of condensed matter at a length scale linking atoms and micron-sized colloids.

  9. CAMECA IMS 1300-HR3: The New Generation Ion Microprobe

    NASA Astrophysics Data System (ADS)

    Peres, P.; Choi, S. Y.; Renaud, L.; Saliot, P.; Larson, D. J.

    2016-12-01

    The success of secondary ion mass spectrometry (SIMS) in Geo- and Cosmo-chemistry relies on its performance in terms of: 1) very high sensitivity (mandatory for high precision measurements or to achieve low detection limits); 2) a broad mass range of elemental and isotopic species, from low mass (H) to high mass (U and above); 3) in-situ analysis of any solid flat polished surface; and 4) high spatial resolution from tens of microns down to sub-micron scale. The IMS 1300-HR3 (High Reproducibility, High spatial Resolution, High mass Resolution) is the latest generation of CAMECA's large geometry magnetic sector SIMS (or ion microprobe), successor to the internationally recognized IMS 1280-HR. The 1300-HR3delivers unmatched analytical performance for a wide range of applications (stable isotopes, geochronology, trace elements, nuclear safeguards and environmental studies…) due to: • High brightness RF-plasma oxygen ion source with enhanced beam density and current stability, dramatically improving spatial resolution, data reproducibility, and throughput • Automated sample loading system with motorized sample height (Z) adjustment, significantly increasing analysis precision, ease-of-use, and productivity • UV-light microscope for enhanced optical image resolution, together with dedicated software for easy sample navigation (developed by University of Wisconsin, USA) • Low noise 1012Ω resistor Faraday cup preamplifier boards for measuring low signal intensities In addition, improvements in electronics and software have been integrated into the new instrument. In order to meet a growing demand from geochronologists, CAMECA also introduces the KLEORA, which is a fully optimized ion microprobe for advanced mineral dating derived from the IMS 1300-HR3. Instrumental developments as well as data obtained for stable isotope and U-Pb dating applications will be presented in detail.

  10. The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII): High Angular Resolution Astronomy at Far-Infrared Wavelengths

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen A.

    2008-01-01

    Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe, and observations with Spitzer, the upcoming Herschel mission. and SOFIA will continue to provide exciting new discoveries. The comparatively low spatial resolution of these missions, however. is insufficient to resolve the physical scales on which mid- to far-infrared emission arises, resulting in source and structure ambiguities that limit our ability to answer key science questions. Interferometry enables high angular resolution at these wavelengths. We have proposed a new high altitude balloon experiment, the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII). High altitude operation makes far-infrared (30- 300micron) observations possible, and BETTII's 8-meter baseline provides unprecedented angular resolution (-0.5 arcsec) in this band. BETTII will use a double- Fourier instrument to simultaneously obtain both spatial and spectral informatioT. he spatially resolved spectroscopy provided by BETTII will address key questions about the nature of disks in young cluster stars and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the groundwork for future space interferometers.

  11. Micron-scale mapping of megagauss magnetic fields using optical polarimetry to probe hot electron transport in petawatt-class laser-solid interactions.

    PubMed

    Chatterjee, Gourab; Singh, Prashant Kumar; Robinson, A P L; Blackman, D; Booth, N; Culfa, O; Dance, R J; Gizzi, L A; Gray, R J; Green, J S; Koester, P; Kumar, G Ravindra; Labate, L; Lad, Amit D; Lancaster, K L; Pasley, J; Woolsey, N C; Rajeev, P P

    2017-08-21

    The transport of hot, relativistic electrons produced by the interaction of an intense petawatt laser pulse with a solid has garnered interest due to its potential application in the development of innovative x-ray sources and ion-acceleration schemes. We report on spatially and temporally resolved measurements of megagauss magnetic fields at the rear of a 50-μm thick plastic target, irradiated by a multi-picosecond petawatt laser pulse at an incident intensity of ~10 20 W/cm 2 . The pump-probe polarimetric measurements with micron-scale spatial resolution reveal the dynamics of the magnetic fields generated by the hot electron distribution at the target rear. An annular magnetic field profile was observed ~5 ps after the interaction, indicating a relatively smooth hot electron distribution at the rear-side of the plastic target. This is contrary to previous time-integrated measurements, which infer that such targets will produce highly structured hot electron transport. We measured large-scale filamentation of the hot electron distribution at the target rear only at later time-scales of ~10 ps, resulting in a commensurate large-scale filamentation of the magnetic field profile. Three-dimensional hybrid simulations corroborate our experimental observations and demonstrate a beam-like hot electron transport at initial time-scales that may be attributed to the local resistivity profile at the target rear.

  12. High-resolution Imaging of Deuterium-Tritium Capsule Implosions on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Bachmann, Benjamin; Rygg, Ryan; Collins, Gilbert; Patel, Pravesh

    2017-10-01

    Highly-resolved 3-D simulations of inertial confinement fusion (ICF) implosions predict a hot spot plasma that exhibits complex micron-scale structure originating from a variety of 3-D perturbations. Experimental diagnosis of these conditions requires high spatial resolution imaging techniques. X-ray penumbral imaging can improve the spatial resolution over pinhole imaging while simultaneously increasing the detected photon yield at x-ray energies where the ablator opacity becomes negligible. Here we report on the first time-integrated x-ray penumbral imaging experiments of ICF capsule implosions at the National Ignition Facility that achieved spatial resolution as high as 4 micrometer. 6 to 30 keV hot spot images from layered DT implosions will be presented from a variety of experimental ICF campaigns, revealing previously unseen detail. It will be discussed how these and future results can be used to improve our physics understanding of inertially confined fusion plasmas by enabling spatially resolved measurements of hot spot properties, such as radiation energy, temperature or derived quantities. This work performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.

  13. Studies of thermal wave phenomena on the Jovian planets

    NASA Technical Reports Server (NTRS)

    Deming, Drake

    1991-01-01

    Ground based and Voyager observations of Jupiter have provided evidence that the tropospheric temperature shows global scale longitudinal variations which are often wavelike in character. Voyager data are reported to exhibit the presence of slowly moving thermal features, wherein the jovian tropospheric temperature patterns are not advected by the equatorial zonal winds, but are not found to rotate at the System III (interior) rate. Ground based data in a broad infrared band (8 to 13 micron) show a wavelike structure whose amplitude and spatial scale are similar to the reported properties of the slowly moving thermal features. This study is directed toward obtaining additional ground based data in infrared spectral bands whose contribution functions are optimized for specific atmospheric regions (tropospheric at 20 micron, and stratospheric at 7.8 micron), in order to confirm the previous results, and to identify the nature and physical significance of wavelike longitudinal temperature fluctuations on the Jovian planets. A 2-D infrared array detector and low resolution cryogenic grating spectrometer is being adapted to obtain maps in approx. 2/cm bandpasses.

  14. Challenges, constraints, and results of lens design for 17 micron-bolometer focal plane arrays in 8-12 micron waveband

    NASA Astrophysics Data System (ADS)

    Schuster, Norbert; Franks, John

    2011-06-01

    In the 8-12 micron waveband Focal Plane Arrays (FPA) are available with a 17 micron pixel pitch in different arrays sizes (e.g. 512 x 480 pixels and 320 x 240 pixels) and with excellent electrical properties. Many applications become possible using this new type of IR-detector which will become the future standard in uncooled technology. Lenses with an f-number faster than f/1.5 minimize the diffraction impact on the spatial resolution and guarantee a high thermal resolution for uncooled cameras. Both effects will be quantified. The distinction between Traditional f-number (TF) and Radiometric f-number (RF) is discussed. Lenses with different focal lengths are required for applications in a variety of markets. They are classified by their Horizontal field of view (HFOV). Respecting the requirements for high volume markets, several two lens solutions will be discussed. A commonly accepted parameter of spatial resolution is the Modulation Transfer Function (MTF)-value at the Nyquist frequency of the detector (here 30cy/mm). This parameter of resolution will be presented versus field of view. Wide Angle and Super Wide Angle lenses are susceptible to low relative illumination in the corner of the detector. Measures to reduce this drop to an acceptable value are presented.

  15. The nature of the dense obscuring material in the nucleus of NGC 1068

    NASA Technical Reports Server (NTRS)

    Tacconi, L. J.; Genzel, R.; Blietz, M.; Cameron, M.; Harris, A. I.; Madden, S.

    1994-01-01

    High spatial and spectral resolution observations of the distribution, physical parameters, and kinematics of the molecular interstellar medium toward the nucleus of the Seyfert 2 galaxy NGC 1068 are reported. The data consist of 2.4 by 3.4 arcseconds resolution interferometry of the 88.6 GHz HCN J = 1 towards 0 line at 17 km/s spectral resolution, single dish observations of several mm/submm isotopic lines of CO and HCN, and 0.85 arcseconds imaging spectroscopy of the 2.12 micron H2 S(1) line at a velocity resolution of 110 km/s. The central few hundred parsecs of NGC 1068 contain a system of dense (N(H2) approximately 10(exp 5) cm(exp -3)), warm (T greater than or equal to 70 K) molecular cloud cores. The low density molecular envelopes have probably been stripped by the nuclear wind and radiation. The molecular gas layer is located in the plane of NGC 1068's large scale disk (inclination approximately 35 deg) and orbits in elliptical streamlines in response to the central stellar bar. The spatial distribution of the 2 micron H2 emission suggests that gas is shocked at the leading edge of the bar, probably resulting in gas influx into the central 100 pc at a rate of a few solar mass per year. In addition to large scale streaming (with a solid body rotation curve), the HCN velocity field requires the presence of random motions of order 100 km/s. We interpret these large random motions as implying the nuclear gas disk to be very thick (scale height/radius approximately 1), probably as the result of the impact of nuclear radiation and wind on orbiting molecular clouds. Geometry and column density of the molecular cloud layer between approximately 30 pc to 300 pc from the nucleus can plausibly account for the nuclear obscuration and anisotropy of the radiation field in the visible and UV.

  16. Micro-computed tomography: Applications for high-resolution skeletal density determinations: An example using annually banded crustose coralline algae

    NASA Astrophysics Data System (ADS)

    Chan, P.; Halfar, J.; Norley, C. J. D.; Pollmann, S. I.; Adey, W.; Holdsworth, D. W.

    2017-09-01

    Warming and acidification of the world's oceans are expected to have widespread consequences for marine biodiversity and ecosystem functioning. However, due to the relatively short record of instrumental observations, one has to rely upon geochemical and physical proxy information stored in biomineralized shells and skeletons of calcareous marine organisms as in situ recorders of past environments. Of particular interest is the response of marine calcifiers to ocean acidification through the examination of structural growth characteristics. Here we demonstrate the application of micro-computed tomography (micro-CT) for three-dimensional visualization and analysis of growth, skeletal density, and calcification in a slow-growing, annually banded crustose coralline alga Clathromorphum nereostratum (increment width ˜380 µm). X-ray images and time series of skeletal density were generated at 20 µm resolution and rebinned to 40, 60, 80, and 100 µm for comparison in a sensitivity analysis. Calcification rates were subsequently calculated as the product of density and growth (linear extension). While both skeletal density and calcification rates do not significantly differ at varying spatial resolutions (the latter being strongly influenced by growth rates), clear visualization of micron-scale growth features and the quantification of structural changes on subannual time scales requires higher scanning resolutions. In the present study, imaging at 20 µm resolution reveals seasonal cycles in density that correspond to summer/winter variations in skeletal structure observed using scanning electron microscopy (SEM). Micro-CT is a fast, nondestructive, and high-resolution technique for structural and morphometric analyses of temporally banded paleoclimate archives, particularly those that exhibit slow or compressed growth or micron-scale structures.

  17. Assessing Mesoscale Material Response via High-Resolution Line-Imaging VISAR

    NASA Astrophysics Data System (ADS)

    Furnish, M. D.; Trott, W. M.; Mason, J.; Podsednik, J.; Reinhart, W. D.; Hall, C.

    2004-07-01

    Of special promise for providing dynamic mesoscale response data is the line-imaging VISAR, an instrument for providing spatially resolved velocity histories in dynamic experiments. We have prepared a line-imaging VISAR system capable of spatial resolution in the 10 - 20 micron range. We are applying this instrument to selected experiments on a compressed gas gun, chosen to provide initial data for several problems of interest, including: (1) pore-collapse in single-crystal copper (70 micron diameter hole; 2 different versions); and (2) response of a welded joint in dissimilar materials (Ta, Nb) to ramp loading relative to that of a compression joint.

  18. An infrared polarimetric study of sunspots

    NASA Astrophysics Data System (ADS)

    Hewagama, Tilak

    A polarimetric study of the extremely Zeeman sensitive 12.32 microns neutral magnesium (Mg I) emission line from sunspots is discussed. A single blocked impurity band (BIB) detector in a cryogenic grating postdisperser was used to limit the McMath Fourier transform spectrometer (FTS) bandpass and obtain high signal/noise spectra at 0.005 cm-1 spectral resolution with 4.5 sec spatial resolution. A polarization analyzer preceded the FTS and consisted of an anti-reflection coated CdS 1/4 waveplate and a thin film Ge linear polarizer. A second 1/4 waveplate was mounted at 45 deg to the linear polarizer to eliminate dependence on the polarization properties of the FTS optics and postdisperser grating. The instrument polarization introduced by the McMath telescope is shown to be negligible for the purpose of 12 microns polarimetry, and theoretical arguments are presented to show that the 12 microns observations are not corrupted by magneto-optical effects. Stokes I,Q,U, and V profiles were generated by subtracting successive interferograms. The time resolution of a set of Stokes parameters was 12 minutes. Within the sunspot the Zeeman triplet was fully resolved. Since the line is optically thin, it was possible to derive vector fields by non-linear least squares fits of the Seares formulae to the observed Stokes profiles. The observations of a visually symmetric sunspot (23-28 Oct. 1989) show that the 12 microns emission is completely polarized. This implies that the sunspot magnetic field at the 12 microns altitude is not filamentary in the sense of containing field-free regions nor is there cancellation of field, over any spatial scale, in the beam area. The sunspot field strength varied from 2050 G in the umbra to 650 G at the outer penumbral edge, and the magnetic structure extended well beyond the photometric edge of the sunspot. Vector magnetograms obtained for the same spot by the Haleakala Stokes polarimeter, operating at 6302.5 A, show an umbral field strength which is larger by 400 G. On this basis the altitude of formation for the Mg I line is estimated to be approximately 600 km above tau approximately 1 for the 6302.5 A line.

  19. Spectroscopic imaging, diffraction, and holography with x-ray photoemission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-02-01

    X-ray probes are capable of determining the spatial structure of an atom in a specific chemical state, over length scales from about a micron all the way down to atomic resolution. Examples of these probes include photoemission microscopy, energy-dependent photoemission diffraction, photoelectron holography, and X-ray absorption microspectroscopy. Although the method of image formation, chemical-state sensitivity, and length scales can be very different, these X-ray techniques share a common goal of combining a capability for structure determination with chemical-state specificity. This workshop will address recent advances in holographic, diffraction, and direct imaging techniques using X-ray photoemission on both theoretical and experimentalmore » fronts. A particular emphasis will be on novel structure determinations with atomic resolution using photoelectrons.« less

  20. Scanning digital lithography providing high speed large area patterning with diffraction limited sub-micron resolution

    NASA Astrophysics Data System (ADS)

    Wen, Sy-Bor; Bhaskar, Arun; Zhang, Hongjie

    2018-07-01

    A scanning digital lithography system using computer controlled digital spatial light modulator, spatial filter, infinity correct optical microscope and high precision translation stage is proposed and examined. Through utilizing the spatial filter to limit orders of diffraction modes for light delivered from the spatial light modulator, we are able to achieve diffraction limited deep submicron spatial resolution with the scanning digital lithography system by using standard one inch level optical components with reasonable prices. Raster scanning of this scanning digital lithography system using a high speed high precision x-y translation stage and piezo mount to real time adjust the focal position of objective lens allows us to achieve large area sub-micron resolved patterning with high speed (compared with e-beam lithography). It is determined in this study that to achieve high quality stitching of lithography patterns with raster scanning, a high-resolution rotation stage will be required to ensure the x and y directions of the projected pattern are in the same x and y translation directions of the nanometer precision x-y translation stage.

  1. The Mapping X-Ray Fluorescence Spectrometer (MAPX)

    NASA Technical Reports Server (NTRS)

    Blake, David; Sarrazin, Philippe; Bristow, Thomas; Downs, Robert; Gailhanou, Marc; Marchis, Franck; Ming, Douglas; Morris, Richard; Sole, Vincente Armando; Thompson, Kathleen; hide

    2016-01-01

    MapX will provide elemental imaging at =100 micron spatial resolution over 2.5 X 2.5 centimeter areas, yielding elemental chemistry at or below the scale length where many relict physical, chemical, and biological features can be imaged and interpreted in ancient rocks. MapX is a full-frame spectroscopic imager positioned on soil or regolith with touch sensors. During an analysis, an X-ray source (tube or radioisotope) bombards the sample surface with X-rays or alpha-particles / gamma rays, resulting in sample X-ray Fluorescence (XRF). Fluoresced X-rays pass through an X-ray lens (X-ray µ-Pore Optic, "MPO") that projects a spatially resolved image of the X-rays onto a CCD. The CCD is operated in single photon counting mode so that the positions and energies of individual photons are retained. In a single analysis, several thousand frames are stored and processed. A MapX experiment provides elemental maps having a spatial resolution of =100 micron and quantitative XRF spectra from Regions of Interest (ROI) 2 centimers = x = 100 micron. ROI are compared with known rock and mineral compositions to extrapolate the data to rock types and putative mineralogies. The MapX geometry is being refined with ray-tracing simulations and with synchrotron experiments at SLAC. Source requirements are being determined through Monte Carlo modeling and experiment using XMIMSIM [1], GEANT4 [2] and PyMca [3] and a dedicated XRF test fixture. A flow-down of requirements for both tube and radioisotope sources is being developed from these experiments. In addition to Mars lander and rover missions, MapX could be used for landed science on other airless bodies (Phobos/Deimos, Comet nucleus, asteroids, the Earth's moon, and the icy satellites of the outer planets, including Europa.

  2. Variations in the 3 micron spectrum across the Orion Bar: polycyclic aromatic hydrocarbons and related molecules

    NASA Technical Reports Server (NTRS)

    Sloan, G. C.; Bregman, J. D.; Geballe, T. R.; Allamandola, L. J.; Woodward, C. E.

    1997-01-01

    Long-slit spectra across the Orion Bar reveal significant differences in the spatial behavior of the components of the 3 microns polycyclic aromatic hydrocarbon (PAH) spectrum. The strong PAH band at 3.29 microns generally decreases exponentially with distance from the ionization front into the molecular cloud (scale height approximately 12"), although excesses appear approximately 10" and 20" behind the ionization front, close to layers of H2 and CO emission, respectively. The 3.40 microns PAH feature separates into two components with very different spatial distributions. The main component (at 3.395 microns), along with the 3.51 microns band and the PAH plateau (3.3-3.6 microns), shows excess emission approximately 10" and approximately 20" behind the ionization front, stronger than the excesses in the 3.29 microns band. The extra component of the 3.40 microns band, which peaks at approximately 3.405 microns, has a spatial distribution very similar to the H2 emission. Aromatic C-H stretches in PAHs most likely produce the 3.29 microns feature. Aliphatic C-H stretches in either attached methyl side-groups or superhydrogenated PAHs, or perhaps both, could produce the complicated spectral and spatial structure at 3.40 microns.

  3. Magnetic field sensing with nitrogen-vacancy color centers in diamond

    NASA Astrophysics Data System (ADS)

    Pham, Linh My

    In recent years, the nitrogen-vacancy (NV) center has emerged as a promising magnetic sensor capable of measuring magnetic fields with high sensitivity and spatial resolution under ambient conditions. This combination of characteristics allows NV magnetometers to probe magnetic structures and systems that were previously inaccessible with alternative magnetic sensing technologies This dissertation presents and discusses a number of the initial efforts to demonstrate and improve NV magnetometry. In particular, a wide-field CCD based NV magnetic field imager capable of micron-scale spatial resolution is demonstrated; and magnetic field alignment, preferential NV orientation, and multipulse dynamical decoupling techniques are explored for enhancing magnetic sensitivity. The further application of dynamical decoupling control sequences as a spectral probe to extract information about the dynamics of the NV spin environment is also discussed; such information may be useful for determining optimal diamond sample parameters for different applications. Finally, several proposed and recently demonstrated applications which take advantage of NV magnetometers' sensitivity and spatial resolution at room temperature are presented, with particular focus on bio-magnetic field imaging.

  4. The Balloon Experimental Twin Telescope for Infrared Interferometry

    NASA Technical Reports Server (NTRS)

    Silverburg, Robert

    2009-01-01

    Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe, and observations with Spitzer, the upcoming Herschel mission, and SOFIA will continue to provide exciting new discoveries. The comparatively low spatial resolution of these missions, however, is insufficient to resolve the physical scales on which mid- to far-infrared emission arises, resulting in source and structure ambiguities that limit our ability to answer key science questions. Interferometry enables high angular resolution at these wavelengths. We have proposed a new high altitude balloon experiment, the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII). High altitude operation makes far-infrared (30- 300micron) observations possible, and BETTII's 8-meter baseline provides unprecedented angular resolution (approx. 0.5 arcsec) in this band. BETTII will use a double-Fourier instrument to simultaneously obtain both spatial and spectral information. The spatially resolved spectroscopy provided by BETTII will address key questions about the nature of disks in young cluster stars and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the groundwork for future space interferometers.

  5. High resolution observations of low contrast phenomena from an Advanced Geosynchronous Platform (AGP)

    NASA Technical Reports Server (NTRS)

    Maxwell, M. S.

    1984-01-01

    Present technology allows radiometric monitoring of the Earth, ocean and atmosphere from a geosynchronous platform with good spatial, spectral and temporal resolution. The proposed system could provide a capability for multispectral remote sensing with a 50 m nadir spatial resolution in the visible bands, 250 m in the 4 micron band and 1 km in the 11 micron thermal infrared band. The diffraction limited telescope has a 1 m aperture, a 10 m focal length (with a shorter focal length in the infrared) and linear and area arrays of detectors. The diffraction limited resolution applies to scenes of any brightness but for a dark low contrast scenes, the good signal to noise ratio of the system contribute to the observation capability. The capabilities of the AGP system are assessed for quantitative observations of ocean scenes. Instrument and ground system configuration are presented and projected sensor capabilities are analyzed.

  6. Quantitative Vectorial Magnetic Imaging of Multi Domain Rock Forming Minerals using Nitrogen-Vacancy Centers in Diamond

    NASA Astrophysics Data System (ADS)

    Shaar, R.; Farchi, E.; Farfurnik, D.; Ebert, Y.; Haim, G.; Bar-Gill, N.

    2017-12-01

    Magnetization in rock samples is crucial for paleomagnetometry research, as it harbors valuable geological information on long term processes, such as tectonic movements and the formation of oceans and continents. Nevertheless, current techniques are limited in their ability to measure high spatial resolution and high-sensitivity quantitative vectorial magnetic signatures from individual minerals and micrometer scale samples. As a result, our understanding of bulk rock magnetization is limited, specifically for the case of multi-domain minerals. In this work we use a newly developed nitrogen-vacancy magnetic microscope, capable of quantitative vectorial magnetic imaging with optical resolution. We demonstrate direct imaging of the vectorial magnetic field of a single, multi-domain dendritic magnetite, as well as the measurement and calculation of the weak magnetic moments of an individual grain on the micron scale. Our results were measured in a standoff distance of 3-10 μm, with 350 nm spatial resolution, magnetic sensitivity of 6 μT/√(Hz) and a field of view of 35 μm. The results presented here show the capabilities and the future potential of NV microscopy in measuring the magnetic signals of individual micrometer scale grains. These outcomes pave the way for future applications in paleomagnetometry, and for the fundamental understanding of magnetization in multi-domain samples.

  7. Optical magnetic imaging of living cells

    PubMed Central

    Le Sage, D.; Arai, K.; Glenn, D. R.; DeVience, S. J.; Pham, L. M.; Rahn-Lee, L.; Lukin, M. D.; Yacoby, A.; Komeili, A.; Walsworth, R. L.

    2013-01-01

    Magnetic imaging is a powerful tool for probing biological and physical systems. However, existing techniques either have poor spatial resolution compared to optical microscopy and are hence not generally applicable to imaging of sub-cellular structure (e.g., magnetic resonance imaging [MRI]1), or entail operating conditions that preclude application to living biological samples while providing sub-micron resolution (e.g., scanning superconducting quantum interference device [SQUID] microscopy2, electron holography3, and magnetic resonance force microscopy [MRFM]4). Here we demonstrate magnetic imaging of living cells (magnetotactic bacteria) under ambient laboratory conditions and with sub-cellular spatial resolution (400 nm), using an optically-detected magnetic field imaging array consisting of a nanoscale layer of nitrogen-vacancy (NV) colour centres implanted at the surface of a diamond chip. With the bacteria placed on the diamond surface, we optically probe the NV quantum spin states and rapidly reconstruct images of the vector components of the magnetic field created by chains of magnetic nanoparticles (magnetosomes) produced in the bacteria, and spatially correlate these magnetic field maps with optical images acquired in the same apparatus. Wide-field sCMOS acquisition allows parallel optical and magnetic imaging of multiple cells in a population with sub-micron resolution and >100 micron field-of-view. Scanning electron microscope (SEM) images of the bacteria confirm that the correlated optical and magnetic images can be used to locate and characterize the magnetosomes in each bacterium. The results provide a new capability for imaging bio-magnetic structures in living cells under ambient conditions with high spatial resolution, and will enable the mapping of a wide range of magnetic signals within cells and cellular networks5, 6. PMID:23619694

  8. Retrievals of Jovian Tropospheric Phosphine from Cassini/CIRS

    NASA Technical Reports Server (NTRS)

    Irwin, P. G. J.; Parrish, P.; Fouchet, T.; Calcutt, S. B.; Taylor, F. W.; Simon-Miller, A. A.; Nixon, C. A.

    2004-01-01

    On December 30th 2000, the Cassini-Huygens spacecraft reached the perijove milestone on its continuing journey to the Saturnian system. During an extended six-month encounter, the Composite Infrared Spectrometer (CIRS) returned spectra of the Jovian atmosphere, rings and satellites from 10-1400 cm(exp -1) (1000-7 microns) at a programmable spectral resolution of 0.5 to 15 cm(exp -1). The improved spectral resolution of CIRS over previous IR instrument-missions to Jupiter, the extended spectral range, and higher signal-to-noise performance provide significant advantages over previous data sets. CIRS global observations of the mid-infrared spectrum of Jupiter at medium resolution (2.5 cm(exp -1)) have been analysed both with a radiance differencing scheme and an optimal estimation retrieval model to retrieve the spatial variation of phosphine and ammonia fractional scale height in the troposphere between 60 deg S and 60 deg N at a spatial resolution of 6 deg. The ammonia fractional scale height appears to be high over the Equatorial Zone (EZ) but low over the North Equatorial Belt (NEB) and South Equatorial Belt (SEB) indicating rapid uplift or strong vertical mixing in the EZ. The abundance of phosphine shows a similar strong latitudinal variation which generally matches that of the ammonia fractional scale height. However while the ammonia fractional scale height distribution is to a first order symmetric in latitude, the phosphine distribution shows a North/South asymmetry at mid latitudes with higher amounts detected at 40 deg N than 40 deg S. In addition the data show that while the ammonia fractional scale height at this spatial resolution appears to be low over the Great Red Spot (GRS), indicating reduced vertical mixing above the approx. 500 mb level, the abundance of phosphine at deeper levels may be enhanced at the northern edge of the GRS indicating upwelling.

  9. New constraints on deformation processes in serpentinite from sub-micron Raman Spectroscopy and TEM

    NASA Astrophysics Data System (ADS)

    Smith, S. A. F.; Tarling, M.; Rooney, J. S.; Gordon, K. C.; Viti, C.

    2017-12-01

    Extensive work has been performed to characterize the mineralogical and mechanical properties of the various serpentine minerals (i.e. antigorite, lizardite, chrysotile, polyhedral and polygonal serpentine). However, correct identification of serpentine minerals is often difficult or impossible using conventional analytical techniques such as optical- and SEM-based microscopy, X-ray diffraction and infrared spectroscopy. Transmission Electron Microscopy (TEM) is the best analytical technique to identify the serpentine minerals, but TEM requires complex sample preparation and typically results in very small analysis areas. Sub-micron confocal Raman spectroscopy mapping of polished thin sections provides a quick and relatively inexpensive way of unambiguously distinguishing the main serpentine minerals within their in-situ microstructural context. The combination of high spatial resolution (with a diffraction-limited system, 366 nm), large-area coverage (up to hundreds of microns in each dimension) and ability to map directly on thin sections allows intricate fault rock textures to be imaged at a sample-scale, which can then form the target of more focused TEM work. The potential of sub-micron Raman Spectroscopy + TEM is illustrated by examining sub-micron-scale mineral intergrowths and deformation textures in scaly serpentinites (e.g. dissolution seams, mineral growth in pressure shadows), serpentinite crack-seal veins and polished fault slip surfaces from a serpentinite-bearing mélange in New Zealand. The microstructural information provided by these techniques has yielded new insights into coseismic dehydration and amorphization processes and the interplay between creep and localised rupture in serpentinite shear zones.

  10. In vivo layer visualization of rat olfactory bulb by a swept source optical coherence tomography and its confirmation through electrocoagulation and anatomy

    PubMed Central

    Watanabe, Hideyuki; Rajagopalan, Uma Maheswari; Nakamichi, Yu; Igarashi, Kei M.; Madjarova, Violeta Dimitrova; Kadono, Hirofumi; Tanifuji, Manabu

    2011-01-01

    Here, we report in vivo 3-D visualization of the layered organization of a rat olfactory bulb (OB) by a swept source optical coherence tomography (SS-OCT). The SS-OCT operates at a wavelength of 1334 nm with respective theoretical depth and lateral resolutions of 6.7 μm and 15.4 μm in air and hence it is possible to get a 3D structural map of OB in vivo at the micron level resolution with millimeter-scale imaging depth. Up until now, with methods such as MRI, confocal microscopy, OB depth structure in vivo had not been clearly visualized as these do not satisfy the criterion of simultaneously providing micron-scale spatial resolution and imaging up to a few millimeter in depth. In order to confirm the OB’s layered organization revealed by SS-OCT, we introduced the technique of electrocoagulation to make landmarks across the layered structure. To our knowledge this is such a first study that combines electrocoagulation and OCT in vivo of rat OB. Our results confirmed the layered organization of OB, and moreover the layers were clearly identified by electrocoagulation landmarks both in the OCT structural and anatomical slice images. We expect such a combined study is beneficial for both OCT and neuroscience fields. PMID:21833364

  11. Application of High-Resolution Thermal Infrared Remote Sensing and GIS to Assess the Urban Heat Island Effect

    NASA Technical Reports Server (NTRS)

    Lo, C. P.; Quattrochi, D. A.; Luvall, J. C.

    1997-01-01

    Day and night airborne thermal infrared image data at 5 m spatial resolution acquired with the 15-channel (0.45 micron - 12.2 micron) Advanced Thermal and Land Applications Sensor (ATLAS) over Alabama, Huntsville on 7 September, 1994 were used to study changes in the thermal signatures of urban land cover types between day and night. Thermal channel number 13 (9.6 micron - 10.2 micron) data with the best noise-equivalent temperature change (NEAT) of 0.25 C after atmospheric corrections and temperature calibration were selected for use in this analysis. This research also examined the relation between land cover irradiance and vegetation amount, using the Normalized Difference Vegetation Index (NDVI), obtained by ratioing the difference and the sum of the red (channel number 3: 0.60-0.63 micron) and reflected infrared (channel number 6: 0.76-0.90 micron) ATLAS data. Based on the mean radiance values, standard deviations, and NDVI extracted from 351 pairs of polygons of day and night channel number 13 images for the city of Huntsville, a spatial model of warming and cooling characteristics of commercial, residential, agricultural, vegetation, and water features was developed using a GIS approach. There is a strong negative correlation between NDVI and irradiance of residential, agricultural, and vacant/transitional land cover types, indicating that the irradiance of a land cover type is greatly influenced by the amount of vegetation present. The predominance of forests, agricultural, and residential uses associated with varying degrees of tree cover showed great contrasts with commercial and services land cover types in the center of the city, and favors the development of urban heat islands. The high-resolution thermal infrared images match the complexity of the urban environment, and are capable of characterizing accurately the urban land cover types for the spatial modeling of the urban heat island effect using a GIS approach.

  12. High speed automated microtomography of nuclear emulsions and recent application

    NASA Astrophysics Data System (ADS)

    Tioukov, V.; Aleksandrov, A.; Consiglio, L.; De Lellis, G.; Vladymyrov, M.

    2015-12-01

    The development of high-speed automatic scanning systems was the key-factor for massive and successful emulsions application for big neutrino experiments like OPERA. The emulsion detector simplicity, the unprecedented sub-micron spatial resolution and the unique ability to provide intrinsically 3-dimensional spatial information make it a perfect device for short-living particles study, where the event topology should be precisely reconstructed in a 10-100 um scale vertex region. Recently the exceptional technological progress in image processing and automation together with intensive R&D done by Italian and Japanese microscopy groups permit to increase the scanning speed to unbelievable few years ago m2/day scale and so greatly extend the range of the possible applications for emulsion-based detectors to other fields like: medical imaging, directional dark matter search, nuclear physics, geological and industrial applications.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yu; Li, Shunbo; Wen, Weijia, E-mail: phwen@ust.hk

    A local area temperature monitor is important for precise control of chemical and biological processes in microfluidics. In this work, we developed a facile method to realize micron spatial resolution of temperature mapping in a microfluidic channel quickly and cost effectively. Based on the temperature dependent fluorescence emission of NaYF{sub 4}:Yb{sup 3+}, Er{sup 3+} upconversion nanoparticles (UCNPs) under near-infrared irradiation, ratio-metric imaging of UCNPs doped polydimethylsiloxane can map detailed temperature distribution in the channel. Unlike some reported strategies that utilize temperature sensitive organic dye (such as Rhodamine) to achieve thermal sensing, our method is highly chemically inert and physically stablemore » without any performance degradation in long term operation. Moreover, this method can be easily scaled up or down, since the spatial and temperature resolution is determined by an optical imaging system. Our method supplied a simple and efficient solution for temperature mapping on a heterogeneous surface where usage of an infrared thermal camera was limited.« less

  14. Recent Developments in Transition-Edge Strip Detectors for Solar X-Rays

    NASA Technical Reports Server (NTRS)

    Rausch, Adam J.; Deiker, Steven W.; Hilton, Gene; Irwin, Kent D.; Martinez-Galarce, Dennis S.; Shing, Lawrence; Stern, Robert A.; Ullom, Joel N.; Vale, Leila R.

    2008-01-01

    LMSAL and NIST are developing position-sensitive x-ray strip detectors based on Transition Edge Sensor (TES) microcalorimeters optimized for solar physics. By combining high spectral (E/ delta E approximately equals 1600) and temporal (single photon delta t approximately equals 10 micro s) resolutions with imaging capabilities, these devices will be able to study high-temperature (>l0 MK) x-ray lines as never before. Diagnostics from these lines should provide significant new insight into the physics of both microflares and the early stages of flares. Previously, the large size of traditional TESs, along with the heat loads associated with wiring large arrays, presented obstacles to using these cryogenic detectors for solar missions. Implementing strip detector technology at small scales, however, addresses both issues: here, a line of substantially smaller effective pixels requires only two TESs, decreasing both the total array size and the wiring requirements for the same spatial resolution. Early results show energy resolutions of delta E(sub fwhm) approximately equals 30 eV and spatial resolutions of approximately 10-15 micron, suggesting the strip-detector concept is viable.

  15. Mapping alpha-Particle X-Ray Fluorescence Spectrometer (Map-X)

    NASA Technical Reports Server (NTRS)

    Blake, D. F.; Sarrazin, P.; Bristow, T.

    2014-01-01

    Many planetary surface processes (like physical and chemical weathering, water activity, diagenesis, low-temperature or impact metamorphism, and biogenic activity) leave traces of their actions as features in the size range 10s to 100s of micron. The Mapping alpha-particle X-ray Spectrometer ("Map-X") is intended to provide chemical imaging at 2 orders of magnitude higher spatial resolution than previously flown instruments, yielding elemental chemistry at or below the scale length where many relict physical, chemical, and biological features can be imaged and interpreted in ancient rocks.

  16. Imaging of mesoscopic-scale organisms using selective-plane optoacoustic tomography.

    PubMed

    Razansky, Daniel; Vinegoni, Claudio; Ntziachristos, Vasilis

    2009-05-07

    Mesoscopic-scale living organisms (i.e. 1 mm to 1 cm sized) remain largely inaccessible by current optical imaging methods due to intensive light scattering in tissues. Therefore, imaging of many important model organisms, such as insects, fishes, worms and similarly sized biological specimens, is currently limited to embryonic or other transparent stages of development. This makes it difficult to relate embryonic cellular and molecular mechanisms to consequences in organ function and animal behavior in more advanced stages and adults. Herein, we have developed a selective-plane illumination optoacoustic tomography technique for in vivo imaging of optically diffusive organisms and tissues. The method is capable of whole-body imaging at depths from the sub-millimeter up to centimeter range with a scalable spatial resolution in the order of magnitude of a few tenths of microns. In contrast to pure optical methods, the spatial resolution here is not determined nor limited by light diffusion; therefore, such performance cannot be achieved by any other optical imaging technology developed so far. The utility of the method is demonstrated on several whole-body models and small-animal extremities.

  17. Early-state damage detection, characterization, and evolution using high-resolution computed tomography

    NASA Astrophysics Data System (ADS)

    Grandin, Robert John

    Safely using materials in high performance applications requires adequately understanding the mechanisms which control the nucleation and evolution of damage. Most of a material's operational life is spent in a state with noncritical damage, and, for example in metals only a small portion of its life falls within the classical Paris Law regime of crack growth. Developing proper structural health and prognosis models requires understanding the behavior of damage in these early stages within the material's life, and this early-stage damage occurs on length scales at which the material may be considered "granular'' in the sense that the discrete regions which comprise the whole are large enough to require special consideration. Material performance depends upon the characteristics of the granules themselves as well as the interfaces between granules. As a result, properly studying early-stage damage in complex, granular materials requires a means to characterize changes in the granules and interfaces. The granular-scale can range from tenths of microns in ceramics, to single microns in fiber-reinforced composites, to tens of millimeters in concrete. The difficulty of direct-study is often overcome by exhaustive testing of macro-scale damage caused by gross material loads and abuse. Such testing, for example optical or electron microscopy, destructive and further, is costly when used to study the evolution of damage within a material and often limits the study to a few snapshots. New developments in high-resolution computed tomography (HRCT) provide the necessary spatial resolution to directly image the granule length-scale of many materials. Successful application of HRCT with fiber-reinforced composites, however, requires extending the HRCT performance beyond current limits. This dissertation will discuss improvements made in the field of CT reconstruction which enable resolutions to be pushed to the point of being able to image the fiber-scale damage structures and the application of this new capability to the study of early-stage damage.

  18. 0.4 Microns Spatial Resolution with 1 GHz (lambda = 30 cm) Evanescent Microwave Probe

    NASA Technical Reports Server (NTRS)

    Tabib-Azar, M.; Su, D.-P.; Pohar, A.; LeClair, S. R.; Ponchak, George E.

    1999-01-01

    In this article we describe evanescent field imaging of material nonuniformities with a record resolution of 0.4 microns at 1 GHz (lambda(sub g)/750000), using a resonant stripline scanning microwave probe. A chemically etched tip is used as a point-like evanescent field emitter and a probe-sample distance modulation is employed to improve the signal-to-noise ratio. Images obtained by evanescent microwave probe, by optical microscope, and by scanning tunneling microscope are presented for comparison. Probe was calibrated to perform quantitative conductivity measurements. The principal factors affecting the ultimate resolution of evanescent microwave probe are also discussed.

  19. High-Spatial-Resolution OH and CH2O PLIF Visualization in a Dual-Mode Scramjet Combustor

    NASA Technical Reports Server (NTRS)

    Geipel, Clayton M.

    2017-01-01

    A high-spatial-resolution planar laser-induced fluorescence (PLIF) imaging system was constructed and used to image a cavity-stabilized, premixed ethylene-air flame. The flame was created within a continuous flow, electrically-heated supersonic combustion facility consisting of a Mach 2 nozzle, an isolator with flush-wall fuel injectors, a combustor with a cavity flameholder of height 9 mm and optical access, and an extender. Tests were conducted at total temperature 1200 K, total pressure 300 kPa, equivalence ratio near 0.4 in the combustor, and Mach number near 0.6 in the combustor. A frequency-doubled Nd:YAG laser pumped a dye laser, which produced light at 283.55 nm. The beam was shaped into a light sheet with full width half-maximum 25 microns, which illuminated a streamwise plane that bisected the cavity. An intensified camera system imaged OH in this plane with a square 6.67 mm field of view and in-plane resolution 39 microns. Images were taken between the backward-facing step and 120 mm downstream of the step. OH structures as small as 110 microns were observed. CH2O was excited using 352.48 nm light; the smallest observed CH2O structures were approximately 200 microns wide. Approximately 15,000 images per species were processed and used to compute composite images.

  20. Scalable Sub-micron Patterning of Organic Materials Toward High Density Soft Electronics.

    PubMed

    Kim, Jaekyun; Kim, Myung-Gil; Kim, Jaehyun; Jo, Sangho; Kang, Jingu; Jo, Jeong-Wan; Lee, Woobin; Hwang, Chahwan; Moon, Juhyuk; Yang, Lin; Kim, Yun-Hi; Noh, Yong-Young; Jaung, Jae Yun; Kim, Yong-Hoon; Park, Sung Kyu

    2015-09-28

    The success of silicon based high density integrated circuits ignited explosive expansion of microelectronics. Although the inorganic semiconductors have shown superior carrier mobilities for conventional high speed switching devices, the emergence of unconventional applications, such as flexible electronics, highly sensitive photosensors, large area sensor array, and tailored optoelectronics, brought intensive research on next generation electronic materials. The rationally designed multifunctional soft electronic materials, organic and carbon-based semiconductors, are demonstrated with low-cost solution process, exceptional mechanical stability, and on-demand optoelectronic properties. Unfortunately, the industrial implementation of the soft electronic materials has been hindered due to lack of scalable fine-patterning methods. In this report, we demonstrated facile general route for high throughput sub-micron patterning of soft materials, using spatially selective deep-ultraviolet irradiation. For organic and carbon-based materials, the highly energetic photons (e.g. deep-ultraviolet rays) enable direct photo-conversion from conducting/semiconducting to insulating state through molecular dissociation and disordering with spatial resolution down to a sub-μm-scale. The successful demonstration of organic semiconductor circuitry promise our result proliferate industrial adoption of soft materials for next generation electronics.

  1. WFC3: Precision Infrared Spectrophotometry with Spatial Scans of HD 189733b and Vega

    NASA Astrophysics Data System (ADS)

    McCullough, Peter R.; Crouzet, N.; Deming, D.; Madhusudhan, N.; Deustua, S. E.; WFC3

    2014-01-01

    The Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST) now routinely provides near-infrared spectroscopy of transiting extrasolar planet atmospheres with better than ~50 ppm precision per 0.05-micron resolution bin per transit, for sufficiently bright host stars. Two improvements of WFC3 (the detector) and HST (the spatial scanning technique) have made transiting planet spectra more sensitive and more repeatable than was feasible with NICMOS. In addition, the data analysis is much simpler with WFC3 than with NICMOS. We present time-series spectra of HD 189733b from 1.1 to 1.7 microns in transit and eclipse with fidelity similar to that of the WFC3 transit spectrum of HD 209458b (Deming et al. 2013). In a separate program, we obtained scanned infrared spectra of the bright star, Vega, thereby extending the dynamic range of WFC3 to ~26 magnitudes! Analysis of these data will affect the absolute spectrophotometric calibration of the WFC3, placing it on an SI traceable scale.

  2. Scalable Sub-micron Patterning of Organic Materials Toward High Density Soft Electronics

    NASA Astrophysics Data System (ADS)

    Kim, Jaekyun; Kim, Myung-Gil; Kim, Jaehyun; Jo, Sangho; Kang, Jingu; Jo, Jeong-Wan; Lee, Woobin; Hwang, Chahwan; Moon, Juhyuk; Yang, Lin; Kim, Yun-Hi; Noh, Yong-Young; Yun Jaung, Jae; Kim, Yong-Hoon; Kyu Park, Sung

    2015-09-01

    The success of silicon based high density integrated circuits ignited explosive expansion of microelectronics. Although the inorganic semiconductors have shown superior carrier mobilities for conventional high speed switching devices, the emergence of unconventional applications, such as flexible electronics, highly sensitive photosensors, large area sensor array, and tailored optoelectronics, brought intensive research on next generation electronic materials. The rationally designed multifunctional soft electronic materials, organic and carbon-based semiconductors, are demonstrated with low-cost solution process, exceptional mechanical stability, and on-demand optoelectronic properties. Unfortunately, the industrial implementation of the soft electronic materials has been hindered due to lack of scalable fine-patterning methods. In this report, we demonstrated facile general route for high throughput sub-micron patterning of soft materials, using spatially selective deep-ultraviolet irradiation. For organic and carbon-based materials, the highly energetic photons (e.g. deep-ultraviolet rays) enable direct photo-conversion from conducting/semiconducting to insulating state through molecular dissociation and disordering with spatial resolution down to a sub-μm-scale. The successful demonstration of organic semiconductor circuitry promise our result proliferate industrial adoption of soft materials for next generation electronics.

  3. Mineral Precipitation in Fractures: Multiscale Imaging and Geochemical Modeling

    NASA Astrophysics Data System (ADS)

    Hajirezaie, S.; Peters, C. A.; Swift, A.; Sheets, J. M.; Cole, D. R.; Crandall, D.; Cheshire, M.; Stack, A. G.; Anovitz, L. M.

    2017-12-01

    For subsurface energy technologies such as geologic carbon sequestration, fractures are potential pathways for fluid migration from target formations. Highly permeable fractures may become sealed by mineral precipitation. In this study, we examined shale specimens with existing cemented fractures as natural analogues, using an array of imaging methods to characterize mineralogy and porosity at several spatial scales. In addition, we used reactive transport modeling to investigate geochemical conditions that can lead to extensive mineral precipitation and to simulate the impacts on fracture hydraulic properties. The naturally-cemented fractured rock specimens were from the Upper Wolfcamp formation in Texas, at 10,000 ft depth. The specimens were scanned using x-ray computed tomography (xCT) at resolution of 13 microns. The xCT images revealed an original fracture aperture of 1.9 mm filled with several distinct mineral phases and vuggy void regions, and the mineral phase volumes and surface areas were quantified and mapped in 3D. Specimens were thin-sectioned and examined at micron- and submicron-scales using petrographic microscopy (PM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and small angle X-ray scattering (SAXS). Collectively these methods revealed crystals of dolomite as large as 900 microns in length overlain with a heterogeneous mixture of carbonate minerals including calcite, dolomite, and Fe-rich dolomite, interspersed at spatial scales as small as 5 microns. In addition, secondary precipitation of SiO2 was found to fill some of the void space. This multiscale imaging was used to inform the reactive transport modeling employed to examine the conditions that can cause the observed mineral precipitation in fractures at a larger scale. Two brines containing solutions that when mixed would lead to precipitation of various carbonate minerals were simulated as injectants into a fracture domain. In particular, the competing effects of transport dynamics and reaction kinetics were investigated in the context of profiles of the precipitated minerals and permeability behavior of the fracture flow path. This study contributes rich knowledge toward mastering the subsurface for energy production and storage and for the management of energy waste streams.

  4. Sub-micron resolution selected area electron channeling patterns.

    PubMed

    Guyon, J; Mansour, H; Gey, N; Crimp, M A; Chalal, S; Maloufi, N

    2015-02-01

    Collection of selected area channeling patterns (SACPs) on a high resolution FEG-SEM is essential to carry out quantitative electron channeling contrast imaging (ECCI) studies, as it facilitates accurate determination of the crystal plane normal with respect to the incident beam direction and thus allows control the electron channeling conditions. Unfortunately commercial SACP modes developed in the past were limited in spatial resolution and are often no longer offered. In this contribution we present a novel approach for collecting high resolution SACPs (HR-SACPs) developed on a Gemini column. This HR-SACP technique combines the first demonstrated sub-micron spatial resolution with high angular accuracy of about 0.1°, at a convenient working distance of 10mm. This innovative approach integrates the use of aperture alignment coils to rock the beam with a digitally calibrated beam shift procedure to ensure the rocking beam is maintained on a point of interest. Moreover a new methodology to accurately measure SACP spatial resolution is proposed. While column considerations limit the rocking angle to 4°, this range is adequate to index the HR-SACP in conjunction with the pattern simulated from the approximate orientation deduced by EBSD. This new technique facilitates Accurate ECCI (A-ECCI) studies from very fine grained and/or highly strained materials. It offers also new insights for developing HR-SACP modes on new generation high-resolution electron columns. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. SEM-microphotogrammetry, a new take on an old method for generating high-resolution 3D models from SEM images.

    PubMed

    Ball, A D; Job, P A; Walker, A E L

    2017-08-01

    The method we present here uses a scanning electron microscope programmed via macros to automatically capture dozens of images at suitable angles to generate accurate, detailed three-dimensional (3D) surface models with micron-scale resolution. We demonstrate that it is possible to use these Scanning Electron Microscope (SEM) images in conjunction with commercially available software originally developed for photogrammetry reconstructions from Digital Single Lens Reflex (DSLR) cameras and to reconstruct 3D models of the specimen. These 3D models can then be exported as polygon meshes and eventually 3D printed. This technique offers the potential to obtain data suitable to reconstruct very tiny features (e.g. diatoms, butterfly scales and mineral fabrics) at nanometre resolution. Ultimately, we foresee this as being a useful tool for better understanding spatial relationships at very high resolution. However, our motivation is also to use it to produce 3D models to be used in public outreach events and exhibitions, especially for the blind or partially sighted. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  6. In-situ chemical imager

    NASA Technical Reports Server (NTRS)

    Kossakovski, D. A.; Bearman, G. H.; Kirschvink, J. L.

    2000-01-01

    A variety of in-situ planetary exploration tasks such as particulate analysis or life detection require a tool with a capability for combined imaging and chemical analysis with sub-micron spatial resolution.

  7. The Mapping X-ray Fluorescence Spectrometer (MapX)

    NASA Astrophysics Data System (ADS)

    Sarrazin, P.; Blake, D. F.; Marchis, F.; Bristow, T.; Thompson, K.

    2017-12-01

    Many planetary surface processes leave traces of their actions as features in the size range 10s to 100s of microns. The Mapping X-ray Fluorescence Spectrometer (MapX) will provide elemental imaging at 100 micron spatial resolution, yielding elemental chemistry at a scale where many relict physical, chemical, or biological features can be imaged and interpreted in ancient rocks on planetary bodies and planetesimals. MapX is an arm-based instrument positioned on a rock or regolith with touch sensors. During an analysis, an X-ray source (tube or radioisotope) bombards the sample with X-rays or alpha-particles / gamma-rays, resulting in sample X-ray Fluorescence (XRF). X-rays emitted in the direction of an X-ray sensitive CCD imager pass through a 1:1 focusing lens (X-ray micro-pore Optic (MPO)) that projects a spatially resolved image of the X-rays onto the CCD. The CCD is operated in single photon counting mode so that the energies and positions of individual X-ray photons are recorded. In a single analysis, several thousand frames are both stored and processed in real-time. Higher level data products include single-element maps with a lateral spatial resolution of 100 microns and quantitative XRF spectra from ground- or instrument- selected Regions of Interest (ROI). XRF spectra from ROI are compared with known rock and mineral compositions to extrapolate the data to rock types and putative mineralogies. When applied to airless bodies and implemented with an appropriate radioisotope source for alpha-particle excitation, MapX will be able to analyze biogenic elements C, N, O, P, S, in addition to the cations of the rock-forming elements >Na, accessible with either X-ray or gamma-ray excitation. The MapX concept has been demonstrated with a series of lab-based prototypes and is currently under refinement and TRL maturation.

  8. Linear mixing model applied to AVHRR LAC data

    NASA Technical Reports Server (NTRS)

    Holben, Brent N.; Shimabukuro, Yosio E.

    1993-01-01

    A linear mixing model was applied to coarse spatial resolution data from the NOAA Advanced Very High Resolution Radiometer. The reflective component of the 3.55 - 3.93 microns channel was extracted and used with the two reflective channels 0.58 - 0.68 microns and 0.725 - 1.1 microns to run a Constraine Least Squares model to generate vegetation, soil, and shade fraction images for an area in the Western region of Brazil. The Landsat Thematic Mapper data covering the Emas National park region was used for estimating the spectral response of the mixture components and for evaluating the mixing model results. The fraction images were compared with an unsupervised classification derived from Landsat TM data acquired on the same day. The relationship between the fraction images and normalized difference vegetation index images show the potential of the unmixing techniques when using coarse resolution data for global studies.

  9. Single-ion microwave near-field quantum sensor

    NASA Astrophysics Data System (ADS)

    Wahnschaffe, M.; Hahn, H.; Zarantonello, G.; Dubielzig, T.; Grondkowski, S.; Bautista-Salvador, A.; Kohnen, M.; Ospelkaus, C.

    2017-01-01

    We develop an intuitive model of 2D microwave near-fields in the unusual regime of centimeter waves localized to tens of microns. Close to an intensity minimum, a simple effective description emerges with five parameters that characterize the strength and spatial orientation of the zero and first order terms of the near-field, as well as the field polarization. Such a field configuration is realized in a microfabricated planar structure with an integrated microwave conductor operating near 1 GHz. We use a single 9 Be+ ion as a high-resolution quantum sensor to measure the field distribution through energy shifts in its hyperfine structure. We find agreement with simulations at the sub-micron and few-degree level. Our findings give a clear and general picture of the basic properties of oscillatory 2D near-fields with applications in quantum information processing, neutral atom trapping and manipulation, chip-scale atomic clocks, and integrated microwave circuits.

  10. Simultaneous sizing and electrophoretic mobility measurement of sub-micron particles using Brownian motion

    PubMed Central

    Palanisami, Akilan; Miller, John H.

    2011-01-01

    The size and surface chemistry of micron scale particles are of fundamental importance in studies of biology and air particulate pollution. However, typical electrophoretic measurements of these and other sub-micron scale particles (300 nm – 1 μm) cannot resolve size information within heterogeneous mixtures unambiguously. Using optical microscopy, we monitor electrophoretic motion together with the Brownian velocity fluctuations—using the latter to measure size by either the Green-Kubo relation or by calibration from known size standards. Particle diameters are resolved to ±12% with 95% confidence. Strikingly, the size resolution improves as particle size decreases due to the increased Brownian motion. The sizing ability of the Brownian assessed electrophoresis method described here complements the electrophoretic mobility resolution of traditional capillary electrophoresis. PMID:20882556

  11. Photothermal imaging scanning microscopy

    DOEpatents

    Chinn, Diane [Pleasanton, CA; Stolz, Christopher J [Lathrop, CA; Wu, Zhouling [Pleasanton, CA; Huber, Robert [Discovery Bay, CA; Weinzapfel, Carolyn [Tracy, CA

    2006-07-11

    Photothermal Imaging Scanning Microscopy produces a rapid, thermal-based, non-destructive characterization apparatus. Also, a photothermal characterization method of surface and subsurface features includes micron and nanoscale spatial resolution of meter-sized optical materials.

  12. Sub-micron Raman Mapping of Ultramafic Fault Rock Textures

    NASA Astrophysics Data System (ADS)

    Tarling, M. S.; Rooney, J. S.; Smith, S. A. F.; Gordon, K. C.

    2016-12-01

    Deciphering the often complex temporal and microstructural relationships between the serpentine group minerals - antigorite, chrysotile, lizardite and polygonal serpentine - is essential for a proper understanding of the serpentinization process in a range of geodynamic settings. Conventional techniques such as optical microscopy, quantitative XRD and SEM-EDS often fail to correctly identify the four varieties of serpentine. Transmission electron microscopy can be used to successfully identify these minerals, but complex sample preparation and very small sample sizes (1-10's microns) means that microstructural context is difficult to maintain. Building on previous work (Petriglieri et al. 2015, J. Raman Spectrosc.) that introduced a methodology for Raman mapping on thin sections, we present the initial results of large-area and high-resolution (at the optical limit) Raman mapping that allows us to unambiguously distinguish and contextualise the serpentine minerals within their microstructural context. Measurements were performed on flat, SYTON-polished petrographic thin sections using a Witec Raman microscope equipped with a piezoelectric nano-positioning x-y stage. With a laser wavelength of 532 nm and a 100x dry objective, spatial resolution approaching 360 nm, as predicted by the Abbe equation, can readily be achieved. Minerals are primarily discerned by examining the Raman peaks in the high wavenumber spectral range of 3600-3710 cm-1, corresponding to OH-stretching vibrations. To illustrate the technique, Raman maps were acquired on several samples from the Livingstone Fault, a major terrane boundary in New Zealand that is localized in a mélange of ultramafic rocks including harzburgite and serpentinite. The maps highlight fine-scale intergrowths of antigorite, lizardite, chrysotile and related minerals (e.g. brucite, magnetite) at a sub-micron level over large areas (10's of microns to mm scale), features that are inaccessible or not visible using other techniques. In addition, the high-resolution mapping of discrete magnetite-bearing serpentinite slip surfaces has revealed the presence of 10-50 μm patches of nano-crystalline forsterite and enstatite, which may be the result of localized, faulting-induced, serpentinite dehydration.

  13. 8- to 13-micron spectrophotometry of Comet IRAS-Araki-Alcock

    NASA Technical Reports Server (NTRS)

    Feierberg, M. A.; Witteborn, F. C.; Johnson, J. R.; Campins, H.

    1984-01-01

    Spectrophotometry between 8.0 and 13.0 microns at 2 percent spectral resolution is presented for areas in and near the nuclear condensation of Comet IRAS-Araki-Alcock (1983d) on May 11 and 12, 1983. All the spectra can be fit very well by blackbody curves, and no 10-micron silicate emissions are seen. The temperature structure of the coma suggests the presence of small (radii less than 5 microns) dust particles within 150 km of the nucleus and larger ones further out. The change in the spatial distribution of the infrared flux between the two nights suggests that an outburst may have occurred sometime on May 11.

  14. Ammonia in Jupiter’s troposphere from high-resolution 5-micron spectroscopy

    NASA Astrophysics Data System (ADS)

    Giles, Rohini; Fletcher, Leigh; Irwin, Patrick; Orton, Glenn S.; Sinclair, James Andrew

    2017-10-01

    Jupiter's tropospheric ammonia (NH3) abundance is studied using spatially-resolved 5-micron observations from CRIRES, a high-resolution spectrometer at the Very Large Telescope in 2012. The high resolving power (R=96,000) allows the line shapes of three NH3 absorption features to be resolved. These three absorption features have different line strengths and probe slightly different pressure levels, and they can therefore be used to constrain the vertical profile of NH3 in the 1-4 bar pressure range. The instrument slit was aligned north-south along Jupiter's central meridian, allowing us to search for latitudinal variability. The CRIRES observations do not provide evidence for belt-zone variability in NH3, as any spectral differences can be accounted for by the large differences in cloud opacity between the cloudy zones and the cloud-free belts. However, we do find evidence for localised small-scale variability in NH3. Specifically, we detect a strong enhancement in NH3 on the southern edge of the North Equatorial Belt (4-6°N). This is consistent with the ‘ammonia plumes’ observed by Fletcher et al. (2016, doi:10.1016/j.icarus.2016.06.008) at the 500-mbar level using 10-micron observations from TEXES/IRTF, as well as with measurements by Juno’s Microwave Radiometer (Li et al. 2017, doi:10.1002/2017GL073159).

  15. Dynamic high-resolution patterning for biomedical, materials, and semiconductor research

    NASA Astrophysics Data System (ADS)

    Garner, Harold R.; Joshi, Amruta; Mitnala, Sandhya N.; Huebschman, Michael L.; Shandy, Surya; Wallek, Brandi; Wong, Season

    2009-02-01

    By combining unique light sources, a Texas Instruments DLP system and a microscope, a submicron dynamic patterning system has been created. This system has a resolution of 0.5 microns, and can illuminate with rapidly changing patterns of visible, UV or pulsed laser light. This system has been used to create digital masks for the production of micron scale electronic test circuits and has been used in biological applications. Specifically we have directed light on a sub-organelle scale to cells to control their morphology and motility with applications to tissue engineering, cell biology, drug discovery and neurology.

  16. The utility of Landsat-D for water-resources studies

    NASA Technical Reports Server (NTRS)

    Salomonson, V. V.

    1980-01-01

    The paper discusses applications of the Landsat-D remote sensing observations to hydrology and management of water resources. It is expected that the Landsat-D thematic mapper will provide spatial resolution of 30 m vs 79 m in the reflected solar radiation bands; additional spectral resolution in the 0.5 to 1.0 micron region and new bands covering regions in the 0.45 to 2.35 micron range will be available. The thematic mapper produces data at an 85 megabit/sec rate; an advanced data processing system will be used for improved monitoring of earth resources.

  17. A Steeper than Linear Disk Mass-Stellar Mass Scaling Relation

    NASA Astrophysics Data System (ADS)

    Pascucci, Ilaria; SLICK, EOS

    2017-01-01

    The disk mass is among the most important input parameter of planet formation models as it determines the number and masses of the planets that can form. I will present an ALMA 887 micron survey of the disk population around objects from 2 to 0.03Msun in the nearby 2 Myr-old Chamaeleon I star-forming region. Assuming isothermal and optically thin emission, we convert the 887 micron flux densities into dust disk masses (Mdust) and show that the Mdust-Mstar scaling relation is steeper than linear. By re-analyzing all millimeter data available for nearby regions in a self-consistent way, we find that the 1-3 Myr-old regions of Taurus, Lupus, and Chamaeleon I share the same Mdust-Mstar relation, while the 10 Myr-old Upper Sco association has an even steeper relation. Theoretical models of grain growth, drift, and fragmentation reproduce this trend and suggest that disks are in the fragmentation-limited regime. In this regime millimeter grains will be located closer in around lower-mass stars, a prediction that can be tested with deeper and higher spatial resolution ALMA observations.

  18. Evaluation of the spatial and temporal measurement requirements of remote sensors for monitoring regional air pollution episodes

    NASA Technical Reports Server (NTRS)

    Burke, H. H. K.; Bowley, C. J.; Barnes, J. C.

    1979-01-01

    The spatial and temporal measurement requirements of satellite sensors for monitoring regional air pollution episodes were evaluated. Use was made of two sets of data from the Sulfate Regional Experiment (SURE), which provided the first ground-based aerosol measurements from a regional-scale station network. The sulfate data were analyzed for two air pollution episode cases. The results of the analysis indicate that the key considerations required for episode mapping from satellite sensors are the following: (1) detection of sulfate levels exceeding 20 micron-g/cu m; (2) capability to view a broad area (of the order of 1500 km swath) because of regional extent of pollution episodes; (3) spatial resolution sufficient to detect variations in sulfate levels of greater than 10 micron-g/cu m over distances of the order of 50 to 75 km; (4) repeat coverage at least on a daily basis; and (5) satellite observations during the mid to late morning local time, when the sulfate levels have begun to increase after the early morning minimum levels, and convective-type cloud cover has not yet increased to the amount reached later in the afternoon. Analysis of the satellite imagery shows that convective clouds can obscure haze patterns. Additional parameters based on spectral analysis include wavelength and bandwidth requirements.

  19. The Extended Range X-Ray Telescope center director's discretionary fund report

    NASA Technical Reports Server (NTRS)

    Hoover, R. B.; Cumings, N. P.; Hildner, E.; Moore, R. L.; Tandberg-Hanssen, E. A.

    1985-01-01

    An Extended Range X-Ray Telescope (ERXRT) of high sensitivity and spatial resolution capable of functioning over a broad region of the X-ray/XUV portion of the spectrum has been designed and analyzed. This system has been configured around the glancing-incidence Wolter Type I X-ray mirror system which was flown on the Skylab Apollo Telescope Mount as ATM Experiment S-056. Enhanced sensitivity over a vastly broader spectral range can be realized by the utilization of a thinned, back-illuminated, buried-channel Charge Coupled Device (CCD) as the X-ray/XUV detector rather than photographic film. However, to maintain the high spatial resolution inherent in the X-ray optics when a CCD of 30 micron pixel size is used, it is necessary to increase the telescope plate scale. This can be accomplished by use of a glancing-incidence X-ray microscope to enlarge and re-focus the primary image onto the focal surface of the CCD.

  20. High-Spatial-Resolution OH PLIF Visualization in a Cavity-Stabilized Ethylene-Air Turbulent Flame

    NASA Technical Reports Server (NTRS)

    Geipel, Clayton M.; Rockwell, Robert D.; Chelliah, Harsha K.; Cutler, Andrew D.; Spelker, Christopher A.; Hashem, Zeid; Danehy, Paul M.

    2017-01-01

    High-spatial-resolution OH planar laser-induced fluorescence was measured for a premixed ethylene-air turbulent flame in an electrically-heated Mach 2 continuous-flow facility (University of Virginia Supersonic Combustion Facility, Configuration E.) The facility comprised a Mach 2 nozzle, an isolator with flush-wall fuel injectors, a combustor with optical access, and an extender. The flame was anchored at a cavity flameholder with a backward-facing step of height 9 mm. The temperature-insensitive Q1(8) transition of OH was excited using laser light of wavelength 283.55 nm. A spatial filter was used to create a laser sheet approximately 25 microns thick based on full-width at half maximum (FWHM). Extension tubes increased the magnification of an intensified camera system, achieving in-plane resolution of 40 microns based on a 50% modulation transfer function (MTF). The facility was tested with total temperature 1200 K, total pressure 300 kPa, local fuel/air equivalence ratios of approximately 0.4, and local Mach number of approximately 0.73 in the combustor. A test case with reduced total temperature and another with reduced equivalence ratio were also tested. PLIF images were acquired along a streamwise plane bisecting the cavity flameholder, from the backward facing step to 120 mm downstream of the step. The smallest observed features in the flow had width of approximately 110 microns. Flame surface density was calculated for OH PLIF images.

  1. Modeling and measurement of tissue elastic moduli using optical coherence elastography

    NASA Astrophysics Data System (ADS)

    Liang, Xing; Oldenburg, Amy L.; Crecea, Vasilica; Kalyanam, Sureshkumar; Insana, Michael F.; Boppart, Stephen A.

    2008-02-01

    Mechanical forces play crucial roles in tissue growth, patterning and development. To understand the role of mechanical stimuli, biomechanical properties are of great importance, as well as our ability to measure biomechanical properties of developing and engineered tissues. To enable these measurements, a novel non-invasive, micron-scale and high-speed Optical Coherence Elastography (OCE) system has been developed utilizing a titanium:sapphire based spectral-domain Optical Coherence Tomography (OCT) system and a mechanical wave driver. This system provides axial resolution of 3 microns, transverse resolution of 13 microns, and an acquisition rate as high as 25,000 lines per second. External lowfrequency vibrations are applied to the samples in the system. Step and sinusoidal steady-state responses are obtained to first characterize the OCE system and then characterize samples. Experimental results of M-mode OCE on silicone phantoms and human breast tissues are obtained, which correspond to biomechanical models developed for this analysis. Quantified results from the OCE system correspond directly with results from an indentation method from a commercial. With micron-scale resolution and a high-speed acquisition rate, our OCE system also has the potential to rapidly measure dynamic 3-D tissue biomechanical properties.

  2. Io’s volcanoes at high spatial, spectral, and temporal resolution from ground-based observations

    NASA Astrophysics Data System (ADS)

    de Kleer, Katherine R.; de Pater, Imke

    2017-10-01

    Io’s dynamic volcanic eruptions provide a laboratory for studying large-scale volcanism on a body vastly different from Earth, and for unraveling the connections between tidal heating and the geological activity it powers. Ground-based near-infrared observatories allow for high-cadence, long-time-baseline observing programs using diverse instrumentation, and yield new information into the nature and variability of this activity. I will summarize results from four years of ground-based observations of Io’s volcanism, including: (1) A multi-year cadence observing campaign using adaptive optics on 8-10 meter telescopes, which places constraints on tidal heating models through sampling the spatial distribution of Io’s volcanic heat flow, and provides estimates of the occurrence rate of Io’s most energetic eruptions; (2) High-spectral-resolution (R~25,000) studies of Io’s volcanic SO gas emission at 1.7 microns, which resolves this rovibronic line into its different branches, and thus contains detailed information on the temperature and thermal state of the gas; and (3) The highest-spatial-resolution map ever produced of the entire Loki Patera, a 20,000 km2 volcanic feature on Io, derived from adaptive-optics observations of an occultation of Io by Europa. The map achieves a spatial resolution of ~10 km and indicates compositional differences across the patera. These datasets both reveal specific characteristics of Io’s individual eruptions, and provide clues into the sub-surface systems connecting Io’s tidally-heated interior to its surface expressions of volcanism.

  3. An orbiting multispectral scanner for overland and oceanographic applications.

    NASA Technical Reports Server (NTRS)

    Peacock, K.; Withrington, R. J.

    1971-01-01

    Description of the major features of a multispectral scanner designed to perform overland and oceanographic surveys from space. The instrument uses an image plane conical scanner and contains independent spectrometers for land and ocean applications. The overland spectrometer has a spatial resolution of 200 ft and has six spectral bands in the atmospheric windows between 0.5 and 2.4 microns. The oceanographic spectrometer has a spatial resolution of 1200 ft and possesses 24 spectral bands equally spaced and in registration over the wavelength range from 0.4 to 0.8 micron. A thermal band of 600-ft resolution is used with a spectral range from 10.5 to 12.6 microns. The swath width of the scan is 100 nautical miles from an altitude of 500 nautical miles. The system has two modes of operation which are selectable by ground command. The six bands of overland data plus the thermal band data can be transmitted, or the 24 bands of oceanographic data plus data from two of the overland bands and the thermal band can be transmitted. The performance is described by the minimum detectable reflectance difference and the effects of sun angle and target reflectivity variations are discussed. The sensitivity is related to the variation of the ocean reflectivity in the presence of chlorophyll and to typical agricultural targets.

  4. Rapid localized deactivation of self-assembled monolayers by propagation-controlled laser-induced plasma and its application to self-patterning of electronics and biosensors

    NASA Astrophysics Data System (ADS)

    Kim, Jongsu; Kwon, Seung-Gab; Back, Seunghyun; Kang, Bongchul

    2018-03-01

    We present a novel laser-induced surface treatment process to rapidly control the spatial wettabilities of various functional solutions with submicron to micron resolutions. Ultrathin hydrophobic self-assembled monolayers (SAMs) that little absorb typical laser lights due to short penetration depth were selectively deactivated by instantaneous interaction with laser-induced metallic plasmas. The spatial region of the deactivated SAM, which corresponds to process resolution, is adjustable by controlling the spatial propagation of the plasma. This method leads to the parallel formation of hydrophilic functional solutions on glass substrates with a minimum resolution on the submicron scale. To show its feasibility in device engineering fields, this method was applied to the cost-effective fabrication of electronics and biosensors. Rapid self-patterning of electronic and biological functional solutions (silver nanoparticle solution and streptavidin protein solution) was successfully realized by selective deactivation of two different SAMs (tridecafluoro-1,1,2,2-tetrahydrooctyltrichlorosilane (FOTS) for electronics and the hetero-hybrid SAM (octadecyltrichlorosilane (OTS)/2-[methoxy(polyethyleneoxy)propyl] trichlorosilane (PEG)) for biosensors). As a result, this method can be exploited for the rapid and low-cost fabrication of various thin film devices such as electronics, biosensors, energy, displays, and photonics.

  5. Measurement of in situ sulfur isotopes by laser ablation multi-collector ICPMS: opening Pandora’s Box

    USGS Publications Warehouse

    Ridley, William I.; Pribil, Michael; Koenig, Alan E.; Slack, John F.

    2015-01-01

    Laser ablation multi-collector ICPMS is a modern tool for in situ measurement of S isotopes. Advantages of the technique are speed of analysis and relatively minor matrix effects combined with spatial resolution sufficient for many applications. The main disadvantage is a more destructive sampling mechanism relative to the ion microprobe technique. Recent advances in instrumentation allow precise measurement with spatial resolutions down to 25 microns. We describe specific examples from economic geology where increased spatial resolution has greatly expanded insights into the sources and evolution of fluids that cause mineralization and illuminated genetic relations between individual deposits in single mineral districts.

  6. Microstructural Modeling of Brittle Materials for Enhanced Performance and Reliability.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teague, Melissa Christine; Teague, Melissa Christine; Rodgers, Theron

    Brittle failure is often influenced by difficult to measure and variable microstructure-scale stresses. Recent advances in photoluminescence spectroscopy (PLS), including improved confocal laser measurement and rapid spectroscopic data collection have established the potential to map stresses with microscale spatial resolution (%3C2 microns). Advanced PLS was successfully used to investigate both residual and externally applied stresses in polycrystalline alumina at the microstructure scale. The measured average stresses matched those estimated from beam theory to within one standard deviation, validating the technique. Modeling the residual stresses within the microstructure produced general agreement in comparison with the experimentally measured results. Microstructure scale modelingmore » is primed to take advantage of advanced PLS to enable its refinement and validation, eventually enabling microstructure modeling to become a predictive tool for brittle materials.« less

  7. Scalable Sub-micron Patterning of Organic Materials Toward High Density Soft Electronics

    PubMed Central

    Kim, Jaekyun; Kim, Myung-Gil; Kim, Jaehyun; Jo, Sangho; Kang, Jingu; Jo, Jeong-Wan; Lee, Woobin; Hwang, Chahwan; Moon, Juhyuk; Yang, Lin; Kim, Yun-Hi; Noh, Yong-Young; Yun Jaung, Jae; Kim, Yong-Hoon; Kyu Park, Sung

    2015-01-01

    The success of silicon based high density integrated circuits ignited explosive expansion of microelectronics. Although the inorganic semiconductors have shown superior carrier mobilities for conventional high speed switching devices, the emergence of unconventional applications, such as flexible electronics, highly sensitive photosensors, large area sensor array, and tailored optoelectronics, brought intensive research on next generation electronic materials. The rationally designed multifunctional soft electronic materials, organic and carbon-based semiconductors, are demonstrated with low-cost solution process, exceptional mechanical stability, and on-demand optoelectronic properties. Unfortunately, the industrial implementation of the soft electronic materials has been hindered due to lack of scalable fine-patterning methods. In this report, we demonstrated facile general route for high throughput sub-micron patterning of soft materials, using spatially selective deep-ultraviolet irradiation. For organic and carbon-based materials, the highly energetic photons (e.g. deep-ultraviolet rays) enable direct photo-conversion from conducting/semiconducting to insulating state through molecular dissociation and disordering with spatial resolution down to a sub-μm-scale. The successful demonstration of organic semiconductor circuitry promise our result proliferate industrial adoption of soft materials for next generation electronics. PMID:26411932

  8. Scalable sub-micron patterning of organic materials toward high density soft electronics

    DOE PAGES

    Kim, Jaekyun; Kim, Myung -Gil; Kim, Jaehyun; ...

    2015-09-28

    The success of silicon based high density integrated circuits ignited explosive expansion of microelectronics. Although the inorganic semiconductors have shown superior carrier mobilities for conventional high speed switching devices, the emergence of unconventional applications, such as flexible electronics, highly sensitive photosensors, large area sensor array, and tailored optoelectronics, brought intensive research on next generation electronic materials. The rationally designed multifunctional soft electronic materials, organic and carbon-based semiconductors, are demonstrated with low-cost solution process, exceptional mechanical stability, and on-demand optoelectronic properties. Unfortunately, the industrial implementation of the soft electronic materials has been hindered due to lack of scalable fine-patterning methods. Inmore » this report, we demonstrated facile general route for high throughput sub-micron patterning of soft materials, using spatially selective deep-ultraviolet irradiation. For organic and carbon-based materials, the highly energetic photons (e.g. deep-ultraviolet rays) enable direct photo-conversion from conducting/semiconducting to insulating state through molecular dissociation and disordering with spatial resolution down to a sub-μm-scale. As a result, the successful demonstration of organic semiconductor circuitry promise our result proliferate industrial adoption of soft materials for next generation electronics.« less

  9. Tracking capabilities of SPADs for laser ranging

    NASA Technical Reports Server (NTRS)

    Zappa, F.; Ripamonti, Giancarlo; Lacaita, A.; Cova, Sergio; Samori, C.

    1993-01-01

    The spatial sensitivity of Single-Photon Avalanche Diodes (SPADs) can be exploited in laser ranging measurements to finely tune the laser spot in the center of the detector sensitive area. We report the performance of a SPAD with l00 micron diameter. It features a time resolution better than 80 ps rms when operated 4V above V(b) at minus 30 C, and a spatial sensitivity better than 20 microns to radial displacements of the laser spot. New SPAD structures with auxiliary delay detectors are proposed. These improved devices could allow a two dimensional sensitivity, that could be employed for the design of pointing servos.

  10. Characterization of Secondary Mineral Grain Coatings and their Role as Diffusion-controlled Sinks and Sources for Metal Contaminants

    NASA Astrophysics Data System (ADS)

    Davis, J. A.; Guo, H.; Lai, B.; Kemner, K. M.; Ercius, P.; Fox, P. M.; Singer, D. M.; Minor, A.; Waychunas, G.

    2012-12-01

    Many important geochemical reactions occur at the mineral-water interface, including sorption and desorption reactions of contaminants. Fundamental knowledge of the kinetics of these processes is based primarily on experimental observations of reactions at faces of single crystals or macroscopic data from pure mineral powder suspensions. Sorption reactions at crystal faces are generally very fast, on the order of microseconds or less, with reaction times often limited only by film diffusion at the mineral-water interface. In well-stirred suspensions of aquifer sediments, however, sorptive equilibrium can take many hours or days to achieve steady-state concentrations. We have examined the potential reasons for sorption rate limitation using uranium(VI) sorption by sediments from a sandy aquifer in Savannah River, South Carolina (USA). U(VI) sorption by sand-sized grains from the aquifer is dominated by reaction with secondary mineral coatings on quartz and feldspar grains. The coatings studied were on the order of 15 microns in thickness (i.e., from quartz grain to aqueous solution) and composed primarily of clay minerals and hematite of varying particle size. Microfocused-XRF imaging of elemental concentrations (e.g., U, Fe) of polished cross-sections of the grain/coating contact showed strong spatial correlations of U and Fe within the coatings, regardless of the length of reaction time (30 minutes to 4 weeks). The spatial resolution of the μ-XRF technique is of the order of 2 microns in horizontal directions, but the uncertainty of the observed spatial gradients is high due to grain curvature away from the polished surface and fluorescence contributed from the entire 30 micron thickness of a typical grain/epoxy thin section. TEM characterization of focused-ion-beam (FIB), vertically-extracted samples of the grain-coating contact shows that complex pore networks exist within the coatings of variable dimensions and unknown connectivity. Using scanning TEM (STEM) tomography, it can be seen that there are large numbers of pore throat sizes less than 10 nm within the coatings. We hypothesize that diffusion through these pores, which likely have electrically charged surfaces, controls the observed macroscopic rates of U(VI) sorption in batch experiments with sand grains. Evidence to support this hypothesis was observed by studying U and Fe fluorescence spatial variation within FIB samples (1 micron thick) at 200 nm spatial resolution. With this greater spatial resolution, it is possible to see U concentration variations within the coatings that are dependent on the time of sorption reaction, and illustrates how the coating environment constitutes a diffusion constraint to achieve adsorptive equilibrium between an aqueous phase and the mineral surfaces. Including this diffusion constraint within conceptual models for reactive contaminant transport may be significant at the field scale, because secondary mineral coatings are potentially both sinks and sources of contaminants depending on the history of a contaminated site. This is important in resolving long-term transport predictions at DOE sites, such as Hanford and Savannah River, where equilibrium versus kinetic reactive transport models are being evaluated.

  11. Airborne spectrophotometry of Comet Halley from 5 to 9 microns

    NASA Technical Reports Server (NTRS)

    Campins, H.; Bregman, J. D.; Witteborn, F. C.; Wooden, D. H.; Rank, D. M.; Cohen, M.; Allamandola, Louis J.; Tielens, Alexander G. G. M.

    1986-01-01

    Spectrophotometry from 5 to 9 microns (resolution = 0.02) of comet Halley was obtained from the Kuiper Airborne Observatory on 1985 Dec. 12.1 and 1986 April 8.6 and 10.5 UT. Two spectral features are apparent in all the observations, one from 5.24 to 5.6 microns, and the silicate emission feature which has an onset between 7 and 8 microns. There is no evidence for the 7.5 microns feature observed by the Vega 1 spacecraft; the large difference between the areal coverage viewed from the spacecraft and the airplane may explain the discrepancy. Color temperatures significantly higher than a blackbody indicate that small particles are abundant in the coma. Significant spatial and temporal variations in the spectrum show trends similar to those observed from the ground.

  12. Biogeography of a human oral microbiome at the micron scale

    PubMed Central

    Mark Welch, Jessica L.; Rossetti, Blair J.; Rieken, Christopher W.; Dewhirst, Floyd E.; Borisy, Gary G.

    2016-01-01

    The spatial organization of complex natural microbiomes is critical to understanding the interactions of the individual taxa that comprise a community. Although the revolution in DNA sequencing has provided an abundance of genomic-level information, the biogeography of microbiomes is almost entirely uncharted at the micron scale. Using spectral imaging fluorescence in situ hybridization as guided by metagenomic sequence analysis, we have discovered a distinctive, multigenus consortium in the microbiome of supragingival dental plaque. The consortium consists of a radially arranged, nine-taxon structure organized around cells of filamentous corynebacteria. The consortium ranges in size from a few tens to a few hundreds of microns in radius and is spatially differentiated. Within the structure, individual taxa are localized at the micron scale in ways suggestive of their functional niche in the consortium. For example, anaerobic taxa tend to be in the interior, whereas facultative or obligate aerobes tend to be at the periphery of the consortium. Consumers and producers of certain metabolites, such as lactate, tend to be near each other. Based on our observations and the literature, we propose a model for plaque microbiome development and maintenance consistent with known metabolic, adherence, and environmental considerations. The consortium illustrates how complex structural organization can emerge from the micron-scale interactions of its constituent organisms. The understanding that plaque community organization is an emergent phenomenon offers a perspective that is general in nature and applicable to other microbiomes. PMID:26811460

  13. Evaluation and Comparison of High-Resolution (HR) and High-Light (HL) Phosphors in the Micro-Angiographic Fluoroscope (MAF) using Generalized Linear Systems Analyses (GMTF, GDQE) that include the Effect of Scatter, Magnification and Detector Characteristics.

    PubMed

    Gupta, Sandesh K; Jain, Amit; Bednarek, Daniel R; Rudin, Stephen

    2011-01-01

    In this study, we evaluated the imaging characteristics of the high-resolution, high-sensitivity micro-angiographic fluoroscope (MAF) with 35-micron pixel-pitch when used with different commercially-available 300 micron thick phosphors: the high resolution (HR) and high light (HL) from Hamamatsu. The purpose of this evaluation was to see if the HL phosphor with its higher screen efficiency could be replaced with the HR phosphor to achieve improved resolution without an increase in noise resulting from the HR's decreased light-photon yield. We designated the detectors MAF-HR and MAF-HL and compared them with a standard flat panel detector (FPD) (194 micron pixel pitch and 600 micron thick CsI(Tl)). For this comparison, we used the generalized linear-system metrics of GMTF, GNNPS and GDQE which are more realistic measures of total system performance since they include the effect of scattered radiation, focal spot distribution, and geometric un-sharpness. Magnifications (1.05-1.15) and scatter fractions (0.28 and 0.33) characteristic of a standard head phantom were used. The MAF-HR performed significantly better than the MAF-HL at high spatial frequencies. The ratio of GMTF and GDQE of the MAF-HR compared to the MAF-HL at 3(6) cycles/mm was 1.45(2.42) and 1.23(2.89), respectively. Despite significant degradation by inclusion of scatter and object magnification, both MAF-HR and MAF-HL provide superior performance over the FPD at higher spatial frequencies with similar performance up to the FPD's Nyquist frequency of 2.5 cycles/mm. Both substantially higher resolution and improved GDQE can be achieved with the MAF using the HR phosphor instead of the HL phosphor.

  14. Mapping atomic motions with ultrabright electrons: towards fundamental limits in space-time resolution.

    PubMed

    Manz, Stephanie; Casandruc, Albert; Zhang, Dongfang; Zhong, Yinpeng; Loch, Rolf A; Marx, Alexander; Hasegawa, Taisuke; Liu, Lai Chung; Bayesteh, Shima; Delsim-Hashemi, Hossein; Hoffmann, Matthias; Felber, Matthias; Hachmann, Max; Mayet, Frank; Hirscht, Julian; Keskin, Sercan; Hada, Masaki; Epp, Sascha W; Flöttmann, Klaus; Miller, R J Dwayne

    2015-01-01

    The long held objective of directly observing atomic motions during the defining moments of chemistry has been achieved based on ultrabright electron sources that have given rise to a new field of atomically resolved structural dynamics. This class of experiments requires not only simultaneous sub-atomic spatial resolution with temporal resolution on the 100 femtosecond time scale but also has brightness requirements approaching single shot atomic resolution conditions. The brightness condition is in recognition that chemistry leads generally to irreversible changes in structure during the experimental conditions and that the nanoscale thin samples needed for electron structural probes pose upper limits to the available sample or "film" for atomic movies. Even in the case of reversible systems, the degree of excitation and thermal effects require the brightest sources possible for a given space-time resolution to observe the structural changes above background. Further progress in the field, particularly to the study of biological systems and solution reaction chemistry, requires increased brightness and spatial coherence, as well as an ability to tune the electron scattering cross-section to meet sample constraints. The electron bunch density or intensity depends directly on the magnitude of the extraction field for photoemitted electron sources and electron energy distribution in the transverse and longitudinal planes of electron propagation. This work examines the fundamental limits to optimizing these parameters based on relativistic electron sources using re-bunching cavity concepts that are now capable of achieving 10 femtosecond time scale resolution to capture the fastest nuclear motions. This analysis is given for both diffraction and real space imaging of structural dynamics in which there are several orders of magnitude higher space-time resolution with diffraction methods. The first experimental results from the Relativistic Electron Gun for Atomic Exploration (REGAE) are given that show the significantly reduced multiple electron scattering problem in this regime, which opens up micron scale systems, notably solution phase chemistry, to atomically resolved structural dynamics.

  15. Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution

    PubMed Central

    Bishara, Waheb; Su, Ting-Wei; Coskun, Ahmet F.; Ozcan, Aydogan

    2010-01-01

    We demonstrate lensfree holographic microscopy on a chip to achieve ~0.6 µm spatial resolution corresponding to a numerical aperture of ~0.5 over a large field-of-view of ~24 mm2. By using partially coherent illumination from a large aperture (~50 µm), we acquire lower resolution lensfree in-line holograms of the objects with unit fringe magnification. For each lensfree hologram, the pixel size at the sensor chip limits the spatial resolution of the reconstructed image. To circumvent this limitation, we implement a sub-pixel shifting based super-resolution algorithm to effectively recover much higher resolution digital holograms of the objects, permitting sub-micron spatial resolution to be achieved across the entire sensor chip active area, which is also equivalent to the imaging field-of-view (24 mm2) due to unit magnification. We demonstrate the success of this pixel super-resolution approach by imaging patterned transparent substrates, blood smear samples, as well as Caenoharbditis Elegans. PMID:20588977

  16. Water Ice Clouds in the Martian Atmosphere: A View from MGS TES

    NASA Technical Reports Server (NTRS)

    Hale, A. S.; Tamppari, L. K.; Christensen, P. R.; Smith, M. D.; Bass, Deborah; Qu, Zheng; Pearl, J. C.

    2005-01-01

    We use the method of Tamppari et al. to map water ice clouds in the Martian atmosphere. This technique was originally developed to analyze the broadband Viking IRTM channels and we have now applied it to the TES data. To do this, the TES spectra are convolved to the IRTM bandshapes and spatial resolutions, enabling use of the same processing techniques as were used in Tamppari et al.. This retrieval technique relies on using the temperature difference recorded in the 20 micron and 11 micron IRTM bands (or IRTM convolved TES bands) to map cold water ice clouds above the warmer Martian surface. Careful removal of surface contributions to the observed radiance is therefore necessary, and we have used both older Viking-derived basemaps of the surface emissivity and albedo, and new MGS derived basemaps in order the explore any possible differences on cloud retrieval due to differences in surface contribution removal. These results will be presented in our poster. Our previous work has concentrated primarily on comparing MGS TES to Viking data; that work saw that large-scale cloud features, such as the aphelion cloud belt, are quite repeatable from year to year, though small scale behavior shows some variation. Comparison of Viking and MGS era cloud maps will be presented in our poster. In the current stage of our study, we have concentrated our efforts on close analysis of water ice cloud behavior in the northern summer of the three MGS mapping years on relatively small spatial scales, and present our results below. Additional information is included in the original extended abstract.

  17. Estimation of Length-Scales in Soils by MRI

    NASA Technical Reports Server (NTRS)

    Daidzic, N. E.; Altobelli, S.; Alexander, J. I. D.

    2004-01-01

    Soil can be best described as an unconsolidated granular media that forms porous structure. The present macroscopic theory of water transport in porous media rests upon the continuum hypothesis that the physical properties of porous media can be associated with continuous, twice-differentiable field variables whose spatial domain is a set of centroids of Representative Elementary Volume (REV) elements. MRI is an ideal technique to estimate various length-scales in porous media. A 0.267 T permanent magnet at NASA GRC was used for this study. A 2D or 3D spatially-resolved porosity distribution were obtained from the NMR signal strength from each voxel and the spin-lattice relaxation time. A classical spin-warp imaging with Multiple Spin Echos (MSE) was used to evaluate proton density in each voxel. Initial resolution of 256 x 256 was subsequently reduced by averaging neighboring voxels and the porosity convergence was observed. A number of engineered "space candidate" soils such as Isolite(trademark), Zeoponics(trademark), Turface(trademark), and Profile(trademark) were used. Glass beads in the size range between 50 microns to 2 mm were used as well. Initial results with saturated porous samples have shown a good estimate of the average porosity consistent with the gravimetric porosity measurement results. For Profile(trademark) samples with particle sizes ranging between 0.25 to 1 mm and characteristic interparticle pore size of 100 microns the characteristic Darcy scale was estimated to be about delta(sub REV) = 10 mm. Glass beads porosity show clear convergence toward a definite REV which stays constant throughout homogeneous sample. Additional information is included in the original extended abstract.

  18. The micron- to kilometer-scale Moon: linking samples to orbital observations, Apollo to LRO

    NASA Astrophysics Data System (ADS)

    Crites, S.; Lucey, P. G.; Taylor, J.; Martel, L.; Sun, L.; Honniball, C.; Lemelin, M.

    2017-12-01

    The Apollo missions have shaped the field of lunar science and our understanding of the Moon, from global-scale revelations like the magma ocean hypothesis, to providing ground truth for compositional remote sensing and absolute ages to anchor cratering chronologies. While lunar meteorite samples can provide a global- to regional-level view of the Moon, samples returned from known locations are needed to directly link orbital-scale observations with laboratory measurements-a link that can be brought to full fruition with today's extremely high spatial resolution observations from Lunar Reconnaissance Orbiter and other recent missions. Korotev et al. (2005) described a scenario of the Moon without Apollo to speculate about our understanding of the Moon if our data were confined to lunar meteorites and remote sensing. I will review some of the major points discussed by Korotev et al. (2005), and focus on some of the ways in which spectroscopic remote sensing in particular has benefited from the Apollo samples. For example, could the causes and effects of lunar-style space weathering have been unraveled without the Apollo samples? What would be the limitations on remote sensing compositional measurements that rely on Apollo samples for calibration and validation? And what new opportunities to bring together orbital and sample analyses now exist, in light of today's high spatial and spectral resolution remote sensing datasets?

  19. A variable resolution x-ray detector for computed tomography: I. Theoretical basis and experimental verification.

    PubMed

    DiBianca, F A; Gupta, V; Zeman, H D

    2000-08-01

    A computed tomography imaging technique called variable resolution x-ray (VRX) detection provides detector resolution ranging from that of clinical body scanning to that of microscopy (1 cy/mm to 100 cy/mm). The VRX detection technique is based on a new principle denoted as "projective compression" that allows the detector resolution element to scale proportionally to the image field size. Two classes of VRX detector geometry are considered. Theoretical aspects related to x-ray physics and data sampling are presented. Measured resolution parameters (line-spread function and modulation-transfer function) are presented and discussed. A VRX image that resolves a pair of 50 micron tungsten hairs spaced 30 microns apart is shown.

  20. Quadrant anode image sensor

    NASA Technical Reports Server (NTRS)

    Lampton, M.; Malina, R. F.

    1976-01-01

    A position-sensitive event-counting electronic readout system for microchannel plates (MCPs) is described that offers the advantages of high spatial resolution and fast time resolution. The technique relies upon a four-quadrant electron-collecting anode located behind the output face of the microchannel plate, so that the electron cloud from each detected event is partly intercepted by each of the four quadrants. The relative amounts of charge collected by each quadrant depend on event position, permitting each event to be localized with two ratio circuits. A prototype quadrant anode system for ion, electron, and extreme ultraviolet imaging is described. The spatial resolution achieved, about 10 microns, allows individual MCP channels to be distinguished.

  1. Multi-session complex averaging for high resolution high SNR 3T MR visualization of ex vivo hippocampus and insula

    NASA Astrophysics Data System (ADS)

    Stamm, Aymeric; Singh, Jolene M.; Scherrer, Benoit; Afacan, Onur; Warfield, Simon K.

    2015-03-01

    The hippocampus and the insula are responsible for episodic memory formation and retrieval. Hence, visualization of the cytoarchitecture of such structures is of primary importance to understand the underpinnings of conscious experience. Magnetic Resonance Imaging (MRI) offers an opportunity to non-invasively image these crucial structures. However, current clinical MR imaging operates at the millimeter scale while these anatomical landmarks are organized into sub-millimeter structures. For instance, the hippocampus contains several layers, including the CA3-dentate network responsible for encoding events and experiences. To investigate whether memory loss is a result of injury or degradation of CA3/dentate, spatial resolution must exceed one hundred micron, isotropic, voxel size. Going from one millimeter voxels to one hundred micron voxels results in a 1000× signal loss, making the measured signal close to or even way below the precision of the receiving coils. Consequently, the signal magnitude that forms the structural images will be biased and noisy, which results in inaccurate contrast and less than optimal signal-to-noise ratio (SNR). In this paper, we propose a strategy to perform high spatial resolution MR imaging of the hippocampus and insula with 3T scanners that enables accurate contrast (no systematic bias) and arbitrarily high SNR. This requires the collection of additional repeated measurements of the same image and a proper averaging of the k-space data in the complex domain. This comes at the cost of additional scan time, but long single-session scan times are not practical for obvious reasons. Hence, we also develop an approach to combine k-space data from multiple sessions, which enables the total scan time to be split into arbitrarily short sessions, where the patient is allowed to move and rest in-between. For validation, we hereby illustrate our multi-session complex averaging strategy by providing high spatial resolution 3T MR visualization of the hippocampus and insula using an ex-vivo specimen, so that the number of sessions and the duration of each session are not limited by physiological motion or poor subject compliance.

  2. Observing Cool Dust Around Active Galactic Nuclei Using the Sofia Telescope

    NASA Astrophysics Data System (ADS)

    Fuller, Lindsay

    2017-02-01

    Dust surrounding the supermassive black holes (SMBH) in active galactic nuclei (AGN) intercepts high-energy radiation caused by material rapidly encircling the black hole. The dust re-radiates at low-energy mid-infrared (MIR) wavelengths, which are highly attenuated by water vapor in the Earth's atmosphere. For ground-based telescopes, the atmosphere is completely opaque from 30 microns to the submillimeter regime, making ground-based observations at wavelengths longer than 30 microns impossible. Space-based telescopes can be costly, and are oftentimes very small (< 1 m). As an alternative, NASA built the Stratospheric Observatory For Infrared Astronomy (SOFIA) aircraft, a 2.5-m telescope carried on board a Boeing 747 airframe. In this dissertation, new photometric observations of 15 AGN are analyzed. They were obtained during Observing Cycles 2 and 4 on the SOFIA telescope using the 31.5 and 37.1 micron filters on the Faint Object infraRed CAmera for the SOFIA Telescope (FORCAST). NGC 1068 was observed in the 19.7, 31.5, and 37.1 micron filters using FORCAST, as well as the 53 micron filter on the HAWC+ instrument. Observed differences in AGN properties are largely explained by a unified model in which dust fills a toroidal region surrounding the SMBH, blocking direct view of the center in some lines of sight. Observations show that this dust lies in the central 1 - 10 pc from the black hole. Subarcsecond-resolution photometric and spectroscopic data between 1 - 20 microns have been used to compute the nuclear spectral energy distributions (SEDs) of the torus for most objects in this sample. Although these previous studies have effectively described torus model parameters, the lack of high spatial resolution observations at longer wavelengths leaves the SED largely unconstrained. Without 31.5 micron data, the model tends to overestimate the SED output and wavelength of peak emission, which is tentatively found between 30 - 40 microns. Including the 31.5 micron nuclear flux in the SED 1) reduces the number of clumpy torus models compatible with the data, and 2) modifies the model output for the outer radial extent of the torus. These observations of the central 0.1 - 1 kpc ( 3 - 4 arseconds) of the AGN sample are the highest resolution images available in the 30 - 40 micron wavelength range. However, for AGN at distances on the order of tens of Mpc, SOFIA cannot resolve the parsec-scale torus structure, and contamination from diffuse IR emission and star formation (SF) can contaminate nuclear observations. This dissertation focuses on isolating torus emission from diffuse extended emission in order to 1) add 30 - 40 micron photometric data to the IR SED of the torus and its model parameters, and 2) identify the origin of diffuse extended emission. Extended emission within the FWHM of SOFIA that is not associated with SF ostensibly originates in the narrow line region.

  3. High-speed, random-access fluorescence microscopy: I. High-resolution optical recording with voltage-sensitive dyes and ion indicators.

    PubMed

    Bullen, A; Patel, S S; Saggau, P

    1997-07-01

    The design and implementation of a high-speed, random-access, laser-scanning fluorescence microscope configured to record fast physiological signals from small neuronal structures with high spatiotemporal resolution is presented. The laser-scanning capability of this nonimaging microscope is provided by two orthogonal acousto-optic deflectors under computer control. Each scanning point can be randomly accessed and has a positioning time of 3-5 microseconds. Sampling time is also computer-controlled and can be varied to maximize the signal-to-noise ratio. Acquisition rates up to 200k samples/s at 16-bit digitizing resolution are possible. The spatial resolution of this instrument is determined by the minimal spot size at the level of the preparation (i.e., 2-7 microns). Scanning points are selected interactively from a reference image collected with differential interference contrast optics and a video camera. Frame rates up to 5 kHz are easily attainable. Intrinsic variations in laser light intensity and scanning spot brightness are overcome by an on-line signal-processing scheme. Representative records obtained with this instrument by using voltage-sensitive dyes and calcium indicators demonstrate the ability to make fast, high-fidelity measurements of membrane potential and intracellular calcium at high spatial resolution (2 microns) without any temporal averaging.

  4. Structured illumination 3D microscopy using adaptive lenses and multimode fibers

    NASA Astrophysics Data System (ADS)

    Czarske, Jürgen; Philipp, Katrin; Koukourakis, Nektarios

    2017-06-01

    Microscopic techniques with high spatial and temporal resolution are required for in vivo studying biological cells and tissues. Adaptive lenses exhibit strong potential for fast motion-free axial scanning. However, they also lead to a degradation of the achievable resolution because of aberrations. This hurdle can be overcome by digital optical technologies. We present a novel High-and-Low-frequency (HiLo) 3D-microscope using structured illumination and an adaptive lens. Uniform illumination is used to obtain optical sectioning for the high-frequency (Hi) components of the image, and nonuniform illumination is needed to obtain optical sectioning for the low-frequency (Lo) components of the image. Nonuniform illumination is provided by a multimode fiber. It ensures robustness against optical aberrations of the adaptive lens. The depth-of-field of our microscope can be adjusted a-posteriori by computational optics. It enables to create flexible scans, which compensate for irregular axial measurement positions. The adaptive HiLo 3D-microscope provides an axial scanning range of 1 mm with an axial resolution of about 4 microns and sub-micron lateral resolution over the full scanning range. In result, volumetric measurements with high temporal and spatial resolution are provided. Demonstration measurements of zebrafish embryos with reporter gene-driven fluorescence in the thyroid gland are presented.

  5. High-speed, random-access fluorescence microscopy: I. High-resolution optical recording with voltage-sensitive dyes and ion indicators.

    PubMed Central

    Bullen, A; Patel, S S; Saggau, P

    1997-01-01

    The design and implementation of a high-speed, random-access, laser-scanning fluorescence microscope configured to record fast physiological signals from small neuronal structures with high spatiotemporal resolution is presented. The laser-scanning capability of this nonimaging microscope is provided by two orthogonal acousto-optic deflectors under computer control. Each scanning point can be randomly accessed and has a positioning time of 3-5 microseconds. Sampling time is also computer-controlled and can be varied to maximize the signal-to-noise ratio. Acquisition rates up to 200k samples/s at 16-bit digitizing resolution are possible. The spatial resolution of this instrument is determined by the minimal spot size at the level of the preparation (i.e., 2-7 microns). Scanning points are selected interactively from a reference image collected with differential interference contrast optics and a video camera. Frame rates up to 5 kHz are easily attainable. Intrinsic variations in laser light intensity and scanning spot brightness are overcome by an on-line signal-processing scheme. Representative records obtained with this instrument by using voltage-sensitive dyes and calcium indicators demonstrate the ability to make fast, high-fidelity measurements of membrane potential and intracellular calcium at high spatial resolution (2 microns) without any temporal averaging. Images FIGURE 6 PMID:9199810

  6. Observational evidence of crystalline iron oxides on Mars

    NASA Technical Reports Server (NTRS)

    Bell, James F., III; Mccord, Thomas B.; Owensby, Pamela D.

    1990-01-01

    A series of new spectral observations of Mars was obtained at Mauna Kea Observatory in the 0.4-1.0-micron wavelength range during the extremely favorable 1988 opposition, which yielded new spectral reflectance and relative reflectance data for a number of distinct spots on the Martian surface at 500-600 km spatial resolution. The new spectra revealed absorptions at 0.62-0.72 micron and at 0.81-0.94 micron, both seen clearly for the first time. These absorption features are interpreted as Fe(3+) electronic transition bands that indicate the presence of crystalline ferric oxide or hydroxide minerals on the Martian surface.

  7. Submillimeter heterodyne detection of interstellar carbon monoxide at 434 micrometers

    NASA Technical Reports Server (NTRS)

    Fetterman, H. R.; Clifton, B. J.; Peck, D. D.; Tannenwald, P. E.; Koepf, G. A.; Goldsmith, P. F.; Erickson, N. R.; Buhl, D.; Mcavoy, N.

    1981-01-01

    Laser heterodyne observations of submillimeter emissions from carbon monoxide in the Orion molecular cloud are reported. High frequency and spatial resolution observations were made at the NASA Infrared Telescope Facility on Mauna Kea by the use of an optically pumped laser local oscillator and quasi-optical Schottky diode mixer for heterodyne detection of the J = 6 - 5 rotational transition of CO at 434 microns. Spectral analysis of the 434-micron emission indicates that the emitting gas is optically thin and is at a temperature above 180 K. Results thus demonstrate the potential contributions of ground-based high-resolution submillimeter astronomy to the study of active regions in interstellar molecular clouds.

  8. Large Deployable Reflector Science and Technology Workshop. Volume 2: Scientific Rationale and Technology Requirements

    NASA Technical Reports Server (NTRS)

    Hollenbach, D. (Editor)

    1983-01-01

    The scientific rationale for the large deployable reflector (LDR) and the overall technological requirements are discussed. The main scientific objectives include studies of the origins of planets, stars and galaxies, and of the ultimate fate of the universe. The envisioned studies require a telescope with a diameter of at least 20 m, diffraction-limited to wavelengths as short as 30-50 micron. In addition, light-bucket operation with 1 arcsec spatial resolution in the 2-4 microns wavelength region would be useful in studies of high-redshifted galaxies. Such a telescope would provide a large increase in spectroscopic sensitivity and spatial resolving power compared with existing or planned infrared telescopes.

  9. Magneto-optical imaging of thin magnetic films using spins in diamond

    NASA Astrophysics Data System (ADS)

    Simpson, David A.; Tetienne, Jean-Philippe; McCoey, Julia M.; Ganesan, Kumaravelu; Hall, Liam T.; Petrou, Steven; Scholten, Robert E.; Hollenberg, Lloyd C. L.

    2016-03-01

    Imaging the fields of magnetic materials provides crucial insight into the physical and chemical processes surrounding magnetism, and has been a key ingredient in the spectacular development of magnetic data storage. Existing approaches using the magneto-optic Kerr effect, x-ray and electron microscopy have limitations that constrain further development, and there is increasing demand for imaging and characterisation of magnetic phenomena in real time with high spatial resolution. Here we show how the magneto-optical response of an array of negatively-charged nitrogen-vacancy spins in diamond can be used to image and map the sub-micron stray magnetic field patterns from thin ferromagnetic films. Using optically detected magnetic resonance, we demonstrate wide-field magnetic imaging over 100 × 100 μm2 with sub-micron spatial resolution at video frame rates, under ambient conditions. We demonstrate an all-optical spin relaxation contrast imaging approach which can image magnetic structures in the absence of an applied microwave field. Straightforward extensions promise imaging with sub-μT sensitivity and sub-optical spatial and millisecond temporal resolution. This work establishes practical diamond-based wide-field microscopy for rapid high-sensitivity characterisation and imaging of magnetic samples, with the capability for investigating magnetic phenomena such as domain wall and skyrmion dynamics and the spin Hall effect in metals.

  10. High-resolution digital dosimetric system for spatial characterization of radiation fields using a thermoluminescent CaF2:Dy crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atari, N.A.; Svensson, G.K.

    1986-05-01

    A high-resolution digital dosimetric system has been developed for the spatial characterization of radiation fields. The system comprises the following: 0.5-mm-thick, 25-mm-diam CaF2:Dy thermoluminescent crystal; intensified charge coupled device video camera; video cassette recorder; and a computerized image processing subsystem. The optically flat single crystal is used as a radiation imaging device and the subsequent thermally stimulated phosphorescence is viewed by the intensified camera for further processing and analysis. Parameters governing the performance characteristics of the system were measured. A spatial resolution limit of 31 +/- 2 microns (1 sigma) corresponding to 16 +/- 1 line pairs/mm measured at themore » 4% level of the modulation transfer function has been achieved. The full width at half maximum of the line spread function measured independently by the slit method or derived from the edge response function was found to be 69 +/- 4 microns (1 sigma). The high resolving power, speed of readout, good precision, wide dynamic range, and the large image storage capacity make the system suitable for the digital mapping of the relative distribution of absorbed doses for various small radiation fields and the edges of larger fields.« less

  11. Development of High Resolution Mirrors and Cd-Zn-Te Detectors for Hard X-ray Astronomy

    NASA Technical Reports Server (NTRS)

    Ramsey, Brian D.; Speegle, Chet O.; Gaskin, Jessica; Sharma, Dharma; Engelhaupt, Darell; Six, N. Frank (Technical Monitor)

    2002-01-01

    We describe the fabrication and implementation of a high-resolution conical, grazing- incidence, hard X-ray (20-70 keV) telescope. When flown aboard stratospheric balloons, these mirrors are used to image cosmic sources such as supernovae, neutron stars, and quasars. The fabrication process involves generating super-polished mandrels, mirror shell electroforming, and mirror testing. The cylindrical mandrels consist of two conical segments; each segment is approximately 305 mm long. These mandrels are first, precision ground to within approx. 1.0 micron straightness along each conical segment and then lapped and polished to less than 0.5 micron straightness. Each mandrel segment is the super-polished to an average surface roughness of approx. 3.25 angstrom rms. By mirror shell replication, this combination of good figure and low surface roughness has enabled us to achieve 15 arcsec, confirmed by X-ray measurements in the Marshall Space Flight Center 102 meter test facility. To image the focused X-rays requires a focal plane detector with appropriate spatial resolution. For 15 arcsec optics of 6 meter focal length, this resolution must be around 200 microns. In addition, the detector must have a high efficiency, relatively high energy resolution, and low background. We are currently developing Cadmium-Zinc-Telluride fine-pixel detectors for this purpose. The detectors under study consist of a 16x16 pixel array with a pixel pitch of 300 microns and are 1 mm and 2 mm thick. At 60 keV, the measured energy resolution is around 2%.

  12. Full-sky, High-resolution Maps of Interstellar Dust

    NASA Astrophysics Data System (ADS)

    Meisner, Aaron Michael

    We present full-sky, high-resolution maps of interstellar dust based on data from the Wide-field Infrared Survey Explorer (WISE) and Planck missions. We describe our custom processing of the entire WISE 12 micron All-Sky imaging data set, and present the resulting 15 arcsecond resolution, full-sky map of diffuse Galactic dust emission, free of compact sources and other contaminating artifacts. Our derived 12 micron dust map offers angular resolution far superior to that of all other existing full-sky, infrared dust emission maps, revealing a wealth of small-scale filamentary structure. We also apply the Finkbeiner et al. (1999) two-component thermal dust emission model to the Planck HFI maps. We derive full-sky 6.1 arcminute resolution maps of dust optical depth and temperature by fitting this two-component model to Planck 217-857 GHz along with DIRBE/IRAS 100 micron data. In doing so, we obtain the first ever full-sky 100-3000 GHz Planck-based thermal dust emission model, as well as a dust temperature correction with ~10 times enhanced angular resolution relative to DIRBE-based temperature maps. Analyzing the joint Planck/DIRBE dust spectrum, we show that two-component models provide a better fit to the 100-3000 GHz emission than do single-MBB models, though by a lesser margin than found by Finkbeiner et al. (1999) based on FIRAS and DIRBE. We find that, in diffuse sky regions, our two-component 100-217 GHz predictions are on average accurate to within 2.2%, while extrapolating the Planck Collaboration (2013) single-MBB model systematically underpredicts emission by 18.8% at 100 GHz, 12.6% at 143 GHz and 7.9% at 217 GHz. We calibrate our two-component optical depth to reddening, and compare with reddening estimates based on stellar spectra. We find the dominant systematic problems in our temperature/reddening maps to be zodiacal light on large angular scales and the cosmic infrared background anisotropy on small angular scales. Future work will focus on combining our WISE 12 micron dust map and Planck dust model to create a next-generation, full-sky dust extinction map with angular resolution several times better than Schlegel et al. (1998).

  13. Comparison of grain to grain orientation and stiffness mapping by spatially resolved acoustic spectroscopy and EBSD.

    PubMed

    Mark, A F; Li, W; Sharples, S; Withers, P J

    2017-07-01

    Our aim was to establish the capability of spatially resolved acoustic spectroscopy (SRAS) to map grain orientations and the anisotropy in stiffness at the sub-mm to micron scale by comparing the method with electron backscatter diffraction (EBSD) undertaken within a scanning electron microscope. In the former the grain orientations are deduced by measuring the spatial variation in elastic modulus; conversely, in EBSD the elastic anisotropy is deduced from direct measurements of the crystal orientations. The two test-cases comprise mapping the fusion zones for large TIG and MMA welds in thick power plant austenitic and ferritic steels, respectively; these are technologically important because, among other things, elastic anisotropy can cause ultrasonic weld inspection methods to become inaccurate because it causes bending in the paths of sound waves. The spatial resolution of SRAS is not as good as that for EBSD (∼100 μm vs. ∼a few nm), nor is the angular resolution (∼1.5° vs. ∼0.5°). However the method can be applied to much larger areas (currently on the order of 300 mm square), is much faster (∼5 times), is cheaper and easier to perform, and it could be undertaken on the manufacturing floor. Given these advantages, particularly to industrial users, and the on-going improvements to the method, SRAS has the potential to become a standard method for orientation mapping, particularly in cases where the elastic anisotropy is important over macroscopic/component length scales. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  14. Systematic study and comparison of photonic nanojets produced by dielectric microparticles in 2D- and 3D-spatial configurations

    NASA Astrophysics Data System (ADS)

    Geints, Yu E.; Zemlyanov, A. A.; Minin, O. V.; Minin, I. V.

    2018-06-01

    We present the systematic study of key characteristics (field intensity enhancement, spatial extents) of the 2D- and 3D-photonic nanojets (PNJs) produced by geometrically-regular micron-sized dielectric particles illuminated by a plane laser wave. By means of the finite-difference time-domain calculations, we highlight the differences and similarities between PNJs in these two spatial configurations for curved- (sphere, circular cylinder) and rectangle-shaped scatterers (cube, square bar). Our findings can be useful, for example, for the design of particle-based high-resolution imaging because the spatial resolution by such systems might be further controlled by the optimization of refractive index contrast and geometrical shape of the particle-lens.

  15. Airborne spectrophotometry of Eta Carinae from 4.5 to 7.5 microns and a model for source morphology

    NASA Technical Reports Server (NTRS)

    Russell, Ray W.; Lynch, David K.; Hackwell, John A.; Rudy, Richard J.; Rossano, George S.; Castelaz, M. W.

    1987-01-01

    Spectrophotometric observations of Eta Car between 4.5 and 7.5 microns show a featureless thermal-like spectrum with no fine-structure lines or broad emission or absorption features. The color temperature of the spectrum is approximately 375 K. High spatial resolution maps at 3.5, 4.8, and 10 microns obtained from the ground are used to discuss the dust distribution and temperature structure, and to present a model for general source morphology. The upper limit to the brightness of the forbidden Ar II fine-structure emission line at 6.98 microns is less than 7 x 10 to the -16th W/sq cm, which still allows for a significant overabundance of argon and is consistent with the evolved nature of the source.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kippen, Karen Elizabeth; Bourke, Mark Andrew M.

    Our challenge derives from the fact that in metals or explosives grains, interfaces and defects control engineering performance in ways that are neither amenable to continuum codes (which fail to rigorously describe the heterogeneities derived from microstructure) nor computationally tractable to first principles atomistic calculations. This is a region called the mesoscale, which stands at the frontier of our desire to translate fundamental science insights into confidence in aging system performance over the range of extreme conditions relevant in a nuclear weapon. For dynamic problems, the phenomena of interest can require extremely good temporal resolutions. A shock wave traveling atmore » 1000 m/s (or 1 mm/μs) passes through a grain with a diameter of 1 micron in a nanosecond (10-9 sec). Thus, to observe the mesoscale phenomena—such as dislocations or phase transformations—as the shock passes, temporal resolution better than picoseconds (10-12 sec) may be needed. As we anticipate the science challenges over the next decade, experimental insights on material performance at the micron spatial scale with picosecond temporal resolution—at the mesoscale— are a clear challenge. This is a challenge fit for Los Alamos in partnership with our sister labs and academia. Mesoscale Connections will draw attention to our progress as we tackle the mesoscale challenge. We hope you like it and encourage suggestions of content you are interested in.« less

  17. Laser jetting of femto-liter metal droplets for high resolution 3D printed structures

    NASA Astrophysics Data System (ADS)

    Zenou, M.; Sa'Ar, A.; Kotler, Z.

    2015-11-01

    Laser induced forward transfer (LIFT) is employed in a special, high accuracy jetting regime, by adequately matching the sub-nanosecond pulse duration to the metal donor layer thickness. Under such conditions, an effective solid nozzle is formed, providing stability and directionality to the femto-liter droplets which are printed from a large gap in excess of 400 μm. We illustrate the wide applicability of this method by printing several 3D metal objects. First, very high aspect ratio (A/R > 20), micron scale, copper pillars in various configuration, upright and arbitrarily bent, then a micron scale 3D object composed of gold and copper. Such a digital printing method could serve the generation of complex, multi-material, micron-scale, 3D materials and novel structures.

  18. Use of an Annular Silicon Drift Detector (SDD) Versus a Conventional SDD Makes Phase Mapping a Practical Solution for Rare Earth Mineral Characterization.

    PubMed

    Teng, Chaoyi; Demers, Hendrix; Brodusch, Nicolas; Waters, Kristian; Gauvin, Raynald

    2018-06-04

    A number of techniques for the characterization of rare earth minerals (REM) have been developed and are widely applied in the mining industry. However, most of them are limited to a global analysis due to their low spatial resolution. In this work, phase map analyses were performed on REM with an annular silicon drift detector (aSDD) attached to a field emission scanning electron microscope. The optimal conditions for the aSDD were explored, and the high-resolution phase maps generated at a low accelerating voltage identify phases at the micron scale. In comparisons between an annular and a conventional SDD, the aSDD performed at optimized conditions, making the phase map a practical solution for choosing an appropriate grinding size, judging the efficiency of different separation processes, and optimizing a REM beneficiation flowsheet.

  19. High speed automated microtomography of nuclear emulsions and recent application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tioukov, V.; Aleksandrov, A.; Consiglio, L.

    2015-12-31

    The development of high-speed automatic scanning systems was the key-factor for massive and successful emulsions application for big neutrino experiments like OPERA. The emulsion detector simplicity, the unprecedented sub-micron spatial resolution and the unique ability to provide intrinsically 3-dimensional spatial information make it a perfect device for short-living particles study, where the event topology should be precisely reconstructed in a 10-100 um scale vertex region. Recently the exceptional technological progress in image processing and automation together with intensive R&D done by Italian and Japanese microscopy groups permit to increase the scanning speed to unbelievable few years ago m{sup 2}/day scalemore » and so greatly extend the range of the possible applications for emulsion-based detectors to other fields like: medical imaging, directional dark matter search, nuclear physics, geological and industrial applications.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumpkin, A. H.; Macrander, A. T.

    Using the 1-BM-C beamline at the Advanced Photon Source (APS), we have performed the initial indirect x - ray imaging point-spread-function (PSF) test of a unique 88-mm diameter YAG:Ce single crystal of only 100 - micron thickness. The crystal was bonded to a fiber optic plat e (FOP) for mechanical support and to allow the option for FO coupling to a large format camera. This configuration resolution was compared to that of self - supported 25-mm diameter crystals, with and without an Al reflective coating. An upstream monochromator was used to select 17-keV x-rays from the broadband APS bending magnetmore » source of synchrotron radiation. The upstream , adjustable Mo collimators were then used to provide a series of x-ray source transverse sizes from 200 microns down to about 15-20 microns (FWHM) at the crystal surface. The emitted scintillator radiation was in this case lens coupled to the ANDOR Neo sCMOS camera, and the indirect x-ray images were processed offline by a MATLAB - based image processing program. Based on single Gaussian peak fits to the x-ray image projected profiles, we observed a 10.5 micron PSF. This sample thus exhibited superior spatial resolution to standard P43 polycrystalline phosphors of the same thickness which would have about a 100-micron PSF. Lastly, this single crystal resolution combined with the 88-mm diameter makes it a candidate to support future x-ray diffraction or wafer topography experiments.« less

  1. Fires and Smoke Observed from the Earth Observing System MODIS Instrument: Products, Validation, and Operational Use

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Ichoku, C.; Giglio, L.; Korontzi, S.; Chu, D. A.; Hao, W. M.; Justice, C. O.; Lau, William K. M. (Technical Monitor)

    2001-01-01

    The MODIS sensor, launched on NASA's Terra satellite at the end of 1999, was designed with 36 spectral channels for a wide array of land, ocean, and atmospheric investigations. MODIS has a unique ability to observe fires, smoke, and burn scars globally. Its main fire detection channels saturate at high brightness temperatures: 500 K at 4 microns and 400 K at 11 microns, which can only be attained in rare circumstances at the I kin fire detection spatial resolution. Thus, unlike other polar orbiting satellite sensors with similar thermal and spatial resolutions, but much lower saturation temperatures (e.g. AVHRR and ATSR), MODIS can distinguish between low intensity ground surface fires and high intensity crown forest fires. Smoke column concentration over land is for the first time being derived from the MOMS solar channels, extending from 0.41 microns to 2.1 microns. The smoke product has been provisionally validated both globally and regionally over southern Africa and central and south America. Burn scars are observed from MODIS even in the presence of smoke, using the 1.2 to 2.1 micron channels. MODIS burned area information is used to estimate pyrogenic emissions. A wide range of these fire and related products and validation are demonstrated for the wild fires that occurred in northwestern United States in the summer of 2000. The MODIS rapid response system and direct broadcast capability is being developed to enable users to obtain and generate data in near real time. It is expected that health and land management organizations will use these systems for monitoring the occurrence of fires and the dispersion of smoke within two to six hours after data acquisition.

  2. Space-Based Remote Imaging Spectroscopy of the Aliso Canyon CH4 Superemitter

    NASA Technical Reports Server (NTRS)

    Thompson, D. R.; Thorpe, A. K.; Frankenberg, C.; Green, R. O.; Duren, R.; Guanter, L.; Hollstein, A.; Middleton, E.; Ong, L.; Ungar, S.

    2016-01-01

    The Aliso Canyon gas storage facility near Porter Ranch, California, produced a large accidental CH4 release from October 2015 to February 2016. The Hyperion imaging spectrometer on board the EO-1 satellite successfully detected this event, achieving the first orbital attribution of CH4 to a single anthropogenic superemitter. Hyperion measured shortwave infrared signatures of CH4 near 2.3 microns at 0.01 micron spectral resolution and 30 meter spatial resolution. It detected the plume on three overpasses, mapping its magnitude and morphology. These orbital observations were consistent with measurements by airborne instruments. We evaluate Hyperion instrument performance, draw implications for future orbital instruments, and extrapolate the potential for a global survey of CH4 superemitters.

  3. Science Questions for the Post-SIRTF and Herschel Era

    NASA Technical Reports Server (NTRS)

    Werner, Michael

    2004-01-01

    The contents include the following: 1. SIRTF. Long wavelength surveys planned for SIRTF. Galaxy Discovery Rates for Future Missions. Impact of SIRTF s Improved Resolution at 160um: Resolving the Background. 2. Polarimetry. Submillimeter Polarimetry - The State of Play. Magnetic Vectors Across the Orion Molecular Cloud Core. Neutral and Ionized Molecular Spectral Lines. Variation of Polarization With Wavelength. The Polarization Spectrum. Submillimeter Polarimetry - Looking Ahead. 3.Confusion. Confusion at 500, 600 micron. 4. Extragalactic Science. Do Massive Black Holes and Galaxy Bulges form Together? 5. Galactic Science. Can We See the First Generations of Stars and Metal Formation? The Birth of Planets and the Origins of Life. Spatial Resolution at 100 microns. Far-ir/Sub-mm Transitions of Linear Carbon Clusters. Predicted Spectra of Glycine.

  4. Dust around Mira variables: An analysis of IRAS LRS spectra

    NASA Technical Reports Server (NTRS)

    Slijkhuis, S.

    1989-01-01

    The spatial extent and spectral appearance of the thin dust shell around Mira variables is determined largely by the dust absorptivity, Q(sub abs)(lambda), and the dust condensation temperature T(sub cond). Both Q(sub abs)(lambda) and T(sub cond) are extracted from IRAS low-resolution spectra (LRS) spectra. In order to do this, the assumption that the ratio of total power in the 10 micron feature to that in the 20 micron feature should be equal to that measured in other amorphous silicates (e.g., synthesized amorphous Mg2SiO4). It was found that T(sub cond) decreases with decreasing strength of the 10 micron feature, from T(sub cond) = 1000 K to 500 K (estimated error 20 percent). A value for the near-infrared dust absorptivity could not be determined. Although this parameter strongly affects the condensation radius, it hardly affects the shape of the LRS spectrum (as long as the optically thin approximation is valid), because it scales the spatial distribution of the dust. Information on the magnitude of the near-infrared dust absorptivity may be deduced from the unique carbon star BM Gem. This star has a LRS spectrum with silicate features indication an inner dust shell temperature of at least 1000 K. However, on the basis of observations in the 1920s-30s one may infer an inner dust shell radius of at least 6x10(exp 12)m. To have this high temperature at such a large distance, the near-infrared absorptivity of the dust must be high.

  5. Spatial downscaling of soil prediction models based on weighted generalized additive models in smallholder farm settings.

    PubMed

    Xu, Yiming; Smith, Scot E; Grunwald, Sabine; Abd-Elrahman, Amr; Wani, Suhas P; Nair, Vimala D

    2017-09-11

    Digital soil mapping (DSM) is gaining momentum as a technique to help smallholder farmers secure soil security and food security in developing regions. However, communications of the digital soil mapping information between diverse audiences become problematic due to the inconsistent scale of DSM information. Spatial downscaling can make use of accessible soil information at relatively coarse spatial resolution to provide valuable soil information at relatively fine spatial resolution. The objective of this research was to disaggregate the coarse spatial resolution soil exchangeable potassium (K ex ) and soil total nitrogen (TN) base map into fine spatial resolution soil downscaled map using weighted generalized additive models (GAMs) in two smallholder villages in South India. By incorporating fine spatial resolution spectral indices in the downscaling process, the soil downscaled maps not only conserve the spatial information of coarse spatial resolution soil maps but also depict the spatial details of soil properties at fine spatial resolution. The results of this study demonstrated difference between the fine spatial resolution downscaled maps and fine spatial resolution base maps is smaller than the difference between coarse spatial resolution base maps and fine spatial resolution base maps. The appropriate and economical strategy to promote the DSM technique in smallholder farms is to develop the relatively coarse spatial resolution soil prediction maps or utilize available coarse spatial resolution soil maps at the regional scale and to disaggregate these maps to the fine spatial resolution downscaled soil maps at farm scale.

  6. Scale Dependence of Cirrus Horizontal Heterogeneity Effects on TOA Measurements. Part I; MODIS Brightness Temperatures in the Thermal Infrared

    NASA Technical Reports Server (NTRS)

    Fauchez, Thomas; Platnick, Steven; Meyer, Kerry; Cornet, Celine; Szczap, Frederic; Varnai, Tamas

    2017-01-01

    This paper presents a study on the impact of cirrus cloud heterogeneities on MODIS simulated thermal infrared (TIR) brightness temperatures (BTs) at the top of the atmosphere (TOA) as a function of spatial resolution from 50 meters to 10 kilometers. A realistic 3-D (three-dimensional) cirrus field is generated by the 3DCLOUD model (average optical thickness of 1.4, cloudtop and base altitudes at 10 and 12 kilometers, respectively, consisting of aggregate column crystals of D (sub eff) equals 20 microns), and 3-D thermal infrared radiative transfer (RT) is simulated with the 3DMCPOL (3-D Monte Carlo Polarized) code. According to previous studies, differences between 3-D BT computed from a heterogenous pixel and 1-D (one-dimensional) RT computed from a homogeneous pixel are considered dependent at nadir on two effects: (i) the optical thickness horizontal heterogeneity leading to the plane-parallel homogeneous bias (PPHB); and the (ii) horizontal radiative transport (HRT) leading to the independent pixel approximation error (IPAE). A single but realistic cirrus case is simulated and, as expected, the PPHB mainly impacts the low-spatial resolution results (above approximately 250 meters), with averaged values of up to 5-7 K (thousand), while the IPAE mainly impacts the high-spatial resolution results (below approximately 250 meters) with average values of up to 1-2 K (thousand). A sensitivity study has been performed in order to extend these results to various cirrus optical thicknesses and heterogeneities by sampling the cirrus in several ranges of parameters. For four optical thickness classes and four optical heterogeneity classes, we have found that, for nadir observations, the spatial resolution at which the combination of PPHB and HRT effects is the smallest, falls between 100 and 250 meters. These spatial resolutions thus appear to be the best choice to retrieve cirrus optical properties with the smallest cloud heterogeneity-related total bias in the thermal infrared. For off-nadir observations, the average total effect is increased and the minimum is shifted to coarser spatial resolutions.

  7. Io: Near-Infrared Absorptions Not Attributable to SO2

    NASA Astrophysics Data System (ADS)

    Shirley, J. H.; Clark, R. N.; Soderblom, L. A.; Carlson, R. W.; Kamp, L. W.; Galileo NIMS Team

    2001-11-01

    The Near-Infrared Mapping Spectrometer (NIMS) onboard the Galileo spacecraft imaged the leading side of Jupiter's satellite Io at full spectral resolution and with triple Nyquist spatial sampling during the fifteenth orbital encounter (E15). New despiking and "dejittering" algorithms have been applied to this high S/N observation (15INHRSPEC01A). Spectral absorption features not attributable to SO2 are found between 3.0-3.4 microns and near 4.65 microns. The patterns of the spatial distributions of both absorbers differ from that of the omnipresent SO2. The broad 3.0-3.4 micron absorption is most pronounced in polar regions. Preliminary work suggests that the 4.65 micron feature may be associated with an unidentified sulfate mineral, while the 3.0-3.4 micron feature may result from the presence of more than one absorbing material. Hydrogen-bearing species are likely candidates. For example, H2O ice provides a good match for the absorption near 3.2 microns, but the absorption is shifted to wavelengths longer than that in pure H2O ice. If only one absorber is present, then hydrogen bonding of small numbers of H2O molecules could perhaps account for the shift. The absorption is weak; if H20 related, optical path lengths of a fraction of a micron are indicated. Portions of this research were carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  8. Spatial, temporal and geographic considerations of the problem of rock varnish diagenesis

    NASA Astrophysics Data System (ADS)

    Dorn, Ronald I.; Krinsley, David

    2011-07-01

    The rock varnish literature hosts an abundance of prima facie contradictory empirical data. Past and perhaps future empirical contradictions, however, can be resolved by theoretical considerations of different spatial and temporal scales of varnish diagenesis, as well as the geomorphic position of different types of varnishes. For example, twentieth-century contamination by lead and other heavy metals has led to claims of accumulation rates in the last century far more rapid than prior published empirical studies. A consideration of spatial scales resolves this contradiction; nanoscale processes allow migration of lead into varnish deposited well before the twentieth century time of heavy metal pollution. Evidence of nanometer-scale disequilibrium in three samples led to claims that varnish cannot be used in paleoclimatic research; these data rest in contrast to replicable patterns in varnish deposition observed by Dr. Tanzhuo Liu and others in over ten thousand micro-sedimentary basins. This contraction can be resolved by understanding that the types of varnishes studied differ and that processes differ substantially between the nanoscale and the micron scale. A lack of evidence of Mn-oxidizers in genetic analyses contrasts with culturing studies and in situ evidence of Mn-enhancement by bacteria. This contradiction has a likely resolution in vastly different temporal scales; DNA material analyzed may be no older than 200 years, but in situ fossilized remains of bacteria may be preserved for thousands of years recording palaeoecological conditions favoring growth of Mn-enhancing bacteria.

  9. High-angular-resolution stellar imaging with occultations from the Cassini spacecraft - III. Mira

    NASA Astrophysics Data System (ADS)

    Stewart, Paul N.; Tuthill, Peter G.; Nicholson, Philip D.; Hedman, Matthew M.

    2016-04-01

    We present an analysis of spectral and spatial data of Mira obtained by the Cassini spacecraft, which not only observed the star's spectra over a broad range of near-infrared wavelengths, but was also able to obtain high-resolution spatial information by watching the star pass behind Saturn's rings. The observed spectral range of 1-5 microns reveals the stellar atmosphere in the crucial water-bands which are unavailable to terrestrial observers, and the simultaneous spatial sampling allows the origin of spectral features to be located in the stellar environment. Models are fitted to the data, revealing the spectral and spatial structure of molecular layers surrounding the star. High-resolution imagery is recovered revealing the layered and asymmetric nature of the stellar atmosphere. The observational data set is also used to confront the state-of-the-art cool opacity-sampling dynamic extended atmosphere models of Mira variables through a detailed spectral and spatial comparison, revealing in general a good agreement with some specific departures corresponding to particular spectral features.

  10. Passive athermalization of doublets in 8-13 micron waveband

    NASA Astrophysics Data System (ADS)

    Schuster, Norbert

    2014-10-01

    Passive athermalization of lenses has become a key-technology for automotive and other outdoor applications using modern uncooled 25, 17 and 12 micron pixel pitch bolometer arrays. Typical pixel counts for thermal imaging are 384x288 (qVGA), 640x480 (VGA), and 1024x768 (XGA). Two lens arrangements (called Doublets) represent a cost effective way to satisfy resolution requirements of these detectors with F-numbers 1.4 or faster. Thermal drift of index of refraction and the geometrical changes (in lenses and housing) versus temperature defocus the initial image plane from the detector plane. The passive athermalization restricts this drop of spatial resolution in a wide temperature range (typically -40°C…+80°C) to an acceptable value without any additional external refocus. In particular, lenses with long focal lengths and high apertures claim athermalization. A careful choice of lens and housing materials and a sophistical dimensioning lead to three different principles of passivation: The Passive Mechanical Athermalization (PMA) shifts the complete lens cell, the Passive Optical and Mechanical Athermalization (POMA) shifts only one lens inside the housing, the Passive Optical Athermalization (POA) works without any mechanism. All three principles will be demonstrated for a typical narrow-field lens (HFOV about 12°) with high aperture (aperture based F-number 1.3) for the actual uncooled reference detector (17micron VGA). Six design examples using different combinations of lens materials show the impact on spatial lens resolution, on overall length, and on weight. First order relations are discussed. They give some hints for optimization solutions. Pros and cons of different passive athermalization principles are evaluated in regards of housing design, availability of materials and costing. Examples with a convergent GASIR®1-lens in front distinguish by best resolution, short overall length, and lowest weight.

  11. The critical need for moderate to high resolution thermal infrared data for volcanic hazard mitigation and process monitoring from the micron to the kilometer scale

    NASA Astrophysics Data System (ADS)

    Ramsey, M. S.

    2006-12-01

    The use of satellite thermal infrared (TIR) data to rapidly detect and monitor transient thermal events such as volcanic eruptions commonly relies on datasets with coarse spatial resolution (1.0 - 8.0 km) and high temporal resolution (minutes to hours). However, the growing need to extract physical parameters at meter to sub- meter scales requires data with improved spectral and spatial resolution. Current orbital systems such as the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and the Landsat Enhanced Thematic Mapper plus (ETM+) can provide TIR data ideal for this type of scientific analysis, assessment of hazard risks, and to perform smaller scale monitoring; but at the expense of rapid repeat observations. A potential solution to this apparent conflict is to combine the spatial and temporal scales of TIR data in order to provide the benefits of rapid detection together with the potential of detailed science return. Such a fusion is now in place using ASTER data collected in the north Pacific region to monitor the Aleutian and Kamchatka arcs. However, this approach of cross-instrument/cross-satellite monitoring is in jeopardy with the lack of planned moderate resolution TIR instruments following ETM+ and ASTER. This data collection program is also being expanded globally, and was used in 2006 to assist in the response and monitoring of the volcanic crisis at Merapi Volcano in Indonesia. Merapi Volcano is one of the most active volcanoes in the country and lies in central Java north of the densely-populated city of Yogyakarta. Pyroclastic flows and lahars are common following the growth and collapse of the summit lava dome. These flows can be fatal and were the major hazard concern during a period of renewed activity beginning in April 2006. Lava at the surface was confirmed on 25 April and ASTER was tasked with an urgent request observation, subsequently collecting data on 26 April (daytime) and 28 April (nighttime). The TIR revealed thermally-elevated pixels (max = 25.9 C) clustered near the summit with a lesser anomaly (max = 15.5 C) approximately 650 m to the southwest and down slope from the summit. Such small-scale and low-grade thermal features confirmed the increased activity state of the volcano and were only made possible with the moderate spatial, spectral, and radiometric resolution of ASTER. ASTER continued to collect data for the next 12 weeks tracking the progress of large scale pyroclastic flows, the growth of the lava dome, and the path of ash-rich plumes. Data from these observations were reported world-wide and used for evacuation and hazard planning purposes. With the pending demise of such TIR data from orbit, research is also focused on the use of handheld TIR instruments such as the forward-looking infrared radiometer (FLIR) camera. These instruments provide the highest spatial resolution in-situ TIR data and have been used to observe numerous volcanic phenomena and quantitatively model others (e.g., the rise of the magma body preceding the eruption of Mt. St. Helens Volcano; the changes on the lava dome at Bezymianny Volcano; the behavior of basalt crusts during pahoehoe flow inflation). Studies such as these confirm the utility and importance of future moderate to high resolution TIR data in order to understand volcanic processes and their accompanying hazards.

  12. Optical design and simulation of a new coherence beamline at NSLS-II

    NASA Astrophysics Data System (ADS)

    Williams, Garth J.; Chubar, Oleg; Berman, Lonny; Chu, Yong S.; Robinson, Ian K.

    2017-08-01

    We will discuss the optical design for a proposed beamline at NSLS-II, a late-third generation storage ring source, designed to exploit the spatial coherence of the X-rays to extract high-resolution spatial information from ordered and disordered materials through Coherent Diffractive Imaging, executed in the Bragg- and forward-scattering geometries. This technique offers a powerful tool to image sub-10 nm spatial features and, within ordered materials, sub-Angstrom mapping of deformation fields. Driven by the opportunity to apply CDI to a wide range of samples, with sizes ranging from sub-micron to tens-of-microns, two optical designs have been proposed and simulated under a wide variety of optical configurations using the software package Synchrotron Radiation Workshop. The designs, their goals, and the results of the simulation, including NSLS-II ring and undulator source parameters, of the beamline performance as a function of its variable optical components is described.

  13. Carbon-Nanotube-Based Electrodes for Biomedical Applications

    NASA Technical Reports Server (NTRS)

    Li, Jun; Meyyappan, M.

    2008-01-01

    A nanotube array based on vertically aligned nanotubes or carbon nanofibers has been invented for use in localized electrical stimulation and recording of electrical responses in selected regions of an animal body, especially including the brain. There are numerous established, emerging, and potential applications for localized electrical stimulation and/or recording, including treatment of Parkinson s disease, Tourette s syndrome, and chronic pain, and research on electrochemical effects involved in neurotransmission. Carbon-nanotube-based electrodes offer potential advantages over metal macroelectrodes (having diameters of the order of a millimeter) and microelectrodes (having various diameters ranging down to tens of microns) heretofore used in such applications. These advantages include the following: a) Stimuli and responses could be localized at finer scales of spatial and temporal resolution, which is at subcellular level, with fewer disturbances to, and less interference from, adjacent regions. b) There would be less risk of hemorrhage on implantation because nano-electrode-based probe tips could be configured to be less traumatic. c) Being more biocompatible than are metal electrodes, carbon-nanotube-based electrodes and arrays would be more suitable for long-term or permanent implantation. d) Unlike macro- and microelectrodes, a nano-electrode could penetrate a cell membrane with minimal disruption. Thus, for example, a nanoelectrode could be used to generate an action potential inside a neuron or in proximity of an active neuron zone. Such stimulation may be much more effective than is extra- or intracellular stimulation via a macro- or microelectrode. e) The large surface area of an array at a micron-scale footprint of non-insulated nanoelectrodes coated with a suitable electrochemically active material containing redox ingredients would make it possible to obtain a pseudocapacitance large enough to dissipate a relatively large amount of electric charge, so that a large stimulation current could be applied at a micron-scale region without exhausting the redox ingredients. f) Carbon nanotube array is more compatible with the three-dimensional network of tissues. Particularly, a better electrical-neural interface can be formed. g) A carbon nanotube array inlaid in insulating materials with only the ends exposed is an extremely sensitive electro-analysis tool that can measure the local neurotransmitter signal at extremely high sensitivity and temporal resolution.

  14. Rapid variation in the circumstellar 10 micron emission of Alpha Orionis

    NASA Technical Reports Server (NTRS)

    Bloemhof, E. E.; Danchi, W. C.; Townes, C. H.

    1985-01-01

    The spatial distribution of 10 micron continuum flux around the supergiant star Alpha Orionis was measured on two occasions separated by an interval of 1 yr. A significant change in the infrared radiation pattern on the subarcsecond scale was observed. This change cannot be explained plausibly by macroscopic motion but may be due to a change in the physical properties of the circumstellar dust.

  15. Jupiter before Juno: State of the atmosphere at cloud level in 2016 from PlanetCam observations in the 0.4-1.7 microns wavelength range and amateur observations in the visible

    NASA Astrophysics Data System (ADS)

    Hueso, Ricardo; Sanchez-Lavega, Agustin; Perez-Hoyos, Santiago; Rojas, Jose Felix; Iñurrigarro, Peio; Mendikoa, Iñigo; Go, Christopher; PVOL-IOPW Team

    2016-10-01

    The arrival of Juno to Jupiter provides a unique opportunity to link findings of the inner structure of the planet with astronomical observations of its meteorology at cloud level. Long time base observations of Jupiter's atmosphere before and during the Juno mission are critical in providing context to Junocam observations and may benefit the interpretation of the MWR data on the lower atmosphere structure as well as Juno data on the depth of the zonal winds. We have performed a long campaign of observations in the visible with the PlanetCam lucky imaging instrument in the 2.2m telescope at Calar Alto Observatory in Spain with observations obtained in December 2015 and in March, May, June and July 2016. In observations under good atmospheric seeing, the instrument allows to obtain images with a spatial resolution of 0.05'' in the visible and 0.1'' from 1.0 to 1.7 microns. The later is an interesting range of wavelengths for observing Jupiter because of the existence of several strong and weak methane absorption bands not generally used in high-resolution ground-based observations of the planet. A combination of images using narrow filters centered in methane absorption bands and their adjacent continuum allows studying the vertical structure of the clouds at horizontal spatial scales of 350-1000 km over the planet depending on the atmospheric seeing and filter used. The best images can be further processed showing features at spatial resolutions of about 150 km. We have also monitored the state of the atmosphere with images obtained by amateur astronomers contributing to the Planetary Virtual Observatory Laboratory database (http://pvol.ehu.eus). Based on both datasets we present zonal winds from -70 to +75 deg with an accuracy of 10 m/s in the low latitudes and 25 m/s in subpolar latitudes. Relative altitude maps of features observed in bands J, H and others with different methane absorption will be presented.

  16. Fiber-optic dosimeters for radiation therapy

    NASA Astrophysics Data System (ADS)

    Li, Enbang; Archer, James

    2017-10-01

    According to the figures provided by the World Health Organization, cancer is a leading cause of death worldwide, accounting for 8.8 million deaths in 2015. Radiation therapy, which uses x-rays to destroy or injure cancer cells, has become one of the most important modalities to treat the primary cancer or advanced cancer. The newly developed microbeam radiation therapy (MRT), which uses highly collimated, quasi-parallel arrays of x-ray microbeams (typically 50 μm wide and separated by 400 μm) produced by synchrotron sources, represents a new paradigm in radiotherapy and has shown great promise in pre-clinical studies on different animal models. Measurements of the absorbed dose distribution of microbeams are vitally important for clinical acceptance of MRT and for developing quality assurance systems for MRT, hence are a challenging and important task for radiation dosimetry. On the other hand, during the traditional LINAC based radiotherapy and breast cancer brachytherapy, skin dose measurements and treatment planning also require a high spatial resolution, tissue equivalent, on-line dosimeter that is both economical and highly reliable. Such a dosimeter currently does not exist and remains a challenge in the development of radiation dosimetry. High resolution, water equivalent, optical and passive x-ray dosimeters have been developed and constructed by using plastic scintillators and optical fibers. The dosimeters have peak edge-on spatial resolutions ranging from 50 to 500 microns in one dimension, with a 10 micron resolution dosimeter under development. The developed fiber-optic dosimeters have been test with both LINAC and synchrotron x-ray beams. This work demonstrates that water-equivalent and high spatial resolution radiation detection can be achieved with scintillators and optical fiber systems. Among other advantages, the developed fiber-optic probes are also passive, energy independent, and radiation hard.

  17. Combined optical coherence tomography and optical coherence elastography for glomerulonephritis classification

    NASA Astrophysics Data System (ADS)

    Liu, Chih-Hao; Du, Yong; Singh, Manmohan; Wu, Chen; Han, Zhaolong; Li, Jiasong; Mohammadzai, Qais; Raghunathan, Raksha; Hsu, Thomas; Noorani, Shezaan; Chang, Anthony; Mohan, Chandra; Larin, Kirill V.

    2016-03-01

    Acute Glomerulonephritis caused by anti-glomerular basement membrane disease has a high mortality due to delayed diagnosis. Thus, an accurate and early diagnosis is critical for preserving renal function. Currently, blood, urine, and tissue-based diagnoses can be time consuming, while ultrasound and CT imaging have relatively low spatial resolution. Optical coherence tomography (OCT) is a noninvasive imaging technique that provides superior spatial resolution (micron scale) as compared to ultrasound and CT. Pathological changes in tissue properties can be detected based on the optical metrics analyzed from the OCT signal, such as optical attenuation and speckle variance. Moreover, OCT does not rely on ionizing radiation as with CT imaging. In addition to structural changes, the elasticity of the kidney can significantly change due to nephritis. In this work, we utilized OCT to detect the difference in tissue properties between healthy and nephritic murine kidneys. Although OCT imaging could identify the diseased tissue, classification accuracy using only optical metrics was clinically inadequate. By combining optical metrics with elasticity, the classification accuracy improved from 76% to 95%. These results show that OCT combined with OCE can be potentially useful for nephritis detection.

  18. Ultra High Resolution Imaging of Enceladus Tiger Stripe Thermal Emission with Cassini CIRS

    NASA Astrophysics Data System (ADS)

    Spencer, John R.; Gorius, Nicolas; Howett, Carly; Verbiscer, Anne J.; Cassini CIRS Team

    2017-10-01

    In October 2015, Cassini flew within 48 km of Enceladus’ south pole. The spacecraft attitude was fixed during the flyby, but the roll angle of the spacecraft was chosen so that the remote sensing instrument fields of view passed over Damascus, Baghdad, and Cairo Sulci. The Composite Infrared Spectrometer (CIRS) instrument obtained a single interferometer scan during the flyby, using a special mode, enabled by a flight software update, which bypassed numerical filters to improve the fidelity of the interferograms. This generated a total of 11 interferograms, at 5 contiguous spatial locations for each of the 7 - 9 micron (FP4) and 9 - 17 micron (FP3) focal planes, and a single larger field of view for the 17 - 500 micron focal plane (FP1). Strong spikes were seen in the interferograms when crossing each of the sulci, due to the rapid passage of warm material through the field of view. For FP3 and FP4, the temporal variations of the signals from the 5 contiguous detectors can be used to generated 5-pixel-wide images of the thermal emission, which show excellent agreement between the two focal planes. FP3 and FP4 spatial resolution, limited along track by the 5 msec time sampling of the interferogram, and across track by the CIRS field of view, is a remarkable 40 x 40 meters. At this resolution, the tiger stripe thermal emission shows a large amount of structure, including both continuous emission along the fractures, discrete hot spots less than 100 meters across, and extended emission with complex structure.

  19. GPI-anchored protein organization and dynamics at the cell surface

    PubMed Central

    Saha, Suvrajit; Anilkumar, Anupama Ambika; Mayor, Satyajit

    2016-01-01

    The surface of eukaryotic cells is a multi-component fluid bilayer in which glycosylphosphatidylinositol (GPI)-anchored proteins are an abundant constituent. In this review, we discuss the complex nature of the organization and dynamics of GPI-anchored proteins at multiple spatial and temporal scales. Different biophysical techniques have been utilized for understanding this organization, including fluorescence correlation spectroscopy, fluorescence recovery after photobleaching, single particle tracking, and a number of super resolution methods. Major insights into the organization and dynamics have also come from exploring the short-range interactions of GPI-anchored proteins by fluorescence (or Förster) resonance energy transfer microscopy. Based on the nanometer to micron scale organization, at the microsecond to the second time scale dynamics, a picture of the membrane bilayer emerges where the lipid bilayer appears inextricably intertwined with the underlying dynamic cytoskeleton. These observations have prompted a revision of the current models of plasma membrane organization, and suggest an active actin-membrane composite. PMID:26394904

  20. GPI-anchored protein organization and dynamics at the cell surface.

    PubMed

    Saha, Suvrajit; Anilkumar, Anupama Ambika; Mayor, Satyajit

    2016-02-01

    The surface of eukaryotic cells is a multi-component fluid bilayer in which glycosylphosphatidylinositol (GPI)-anchored proteins are an abundant constituent. In this review, we discuss the complex nature of the organization and dynamics of GPI-anchored proteins at multiple spatial and temporal scales. Different biophysical techniques have been utilized for understanding this organization, including fluorescence correlation spectroscopy, fluorescence recovery after photobleaching, single particle tracking, and a number of super resolution methods. Major insights into the organization and dynamics have also come from exploring the short-range interactions of GPI-anchored proteins by fluorescence (or Förster) resonance energy transfer microscopy. Based on the nanometer to micron scale organization, at the microsecond to the second time scale dynamics, a picture of the membrane bilayer emerges where the lipid bilayer appears inextricably intertwined with the underlying dynamic cytoskeleton. These observations have prompted a revision of the current models of plasma membrane organization, and suggest an active actin-membrane composite. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.

  1. Lunar Observer Laser Altimeter observations for lunar base site selection

    NASA Technical Reports Server (NTRS)

    Garvin, James B.; Bufton, Jack L.

    1992-01-01

    One of the critical datasets for optimal selection of future lunar landing sites is local- to regional-scale topography. Lunar base site selection will require such data for both engineering and scientific operations purposes. The Lunar Geoscience Orbiter or Lunar Observer is the ideal precursory science mission from which to obtain this required information. We suggest that a simple laser altimeter instrument could be employed to measure local-scale slopes, heights, and depths of lunar surface features important to lunar base planning and design. For this reason, we have designed and are currently constructing a breadboard of a Lunar Observer Laser Altimeter (LOLA) instrument capable of acquiring contiguous-footprint topographic profiles with both 30-m and 300-m along-track resolution. This instrument meets all the severe weight, power, size, and data rate limitations imposed by Observer-class spacecraft. In addition, LOLA would be capable of measuring the within-footprint vertical roughness of the lunar surface, and the 1.06-micron relative surface reflectivity at normal incidence. We have used airborne laser altimeter data for a few representative lunar analog landforms to simulate and analyze LOLA performance in a 100-km lunar orbit. We demonstrate that this system in its highest resolution mode (30-m diameter footprints) would quantify the topography of all but the very smallest lunar landforms. At its global mapping resolution (300-m diameter footprints), LOLA would establish the topographic context for lunar landing site selection by providing the basis for constructing a 1-2 km spatial resolution global, geodetic topographic grid that would contain a high density of observations (e.g., approximately 1000 observations per each 1 deg by 1 deg cell at the lunar equator). The high spatial and vertical resolution measurements made with a LOLA-class instrument on a precursory Lunar Observer would be highly synergistic with high-resolution imaging datasets, and will allow for direct quantification of critical slopes, heights, and depths of features visible in images of potential lunar base sites.

  2. SPIDER: Next Generation Chip Scale Imaging Sensor

    NASA Astrophysics Data System (ADS)

    Duncan, Alan; Kendrick, Rick; Thurman, Sam; Wuchenich, Danielle; Scott, Ryan P.; Yoo, S. J. B.; Su, Tiehui; Yu, Runxiang; Ogden, Chad; Proiett, Roberto

    The LM Advanced Technology Center and UC Davis are developing an Electro-Optical (EO) imaging sensor called SPIDER (Segmented Planar Imaging Detector for Electro-optical Reconnaissance) that provides a 10x to 100x size, weight, and power (SWaP) reduction alternative to the traditional bulky optical telescope and focal plane detector array. The substantial reductions in SWaP would reduce cost and/or provide higher resolution by enabling a larger aperture imager in a constrained volume. The SPIDER concept consists of thousands of direct detection white-light interferometers densely packed onto Photonic Integrated Circuits (PICs) to measure the amplitude and phase of the visibility function at spatial frequencies that span the full synthetic aperture. In other words, SPIDER would sample the object being imaged in the Fourier domain (i.e., spatial frequency domain), and then digitally reconstruct an image. The conventional approach for imaging interferometers requires complex mechanical delay lines to form the interference fringes. This results in designs that are not traceable to more than a few simultaneous spatial frequency measurements. SPIDER seeks to achieve this traceability by employing micron-=scale optical waveguides and nanophotonic structures fabricated on a PIC with micron-scale packing density to form the necessary interferometers. Prior LM IRAD and DARPA/NASA CRAD-funded SPIDER risk reduction experiments, design trades, and simulations have matured the SPIDER imager concept to a TRL 3 level. Current funding under the DARPA SPIDER Zoom program is maturing the underlying PIC technology for SPIDER to the TRL 4 level. This is done by developing and fabricating a second-generation PIC that is fully traceable to the multiple layers and low-power phase modulators required for higher-dimension waveguide arrays that are needed for higher field-of-view sensors. Our project also seeks to extend the SPIDER concept to add a zoom capability that would provide simultaneous low-resolution, large field-of-view and steerable high-resolution, narrow field-of-view imaging modes. A proof of concept demo is being designed to validate this capability. Finally, data collected by this project would be used to benchmark and increase the fidelity of our SPIDER image simulations and enhance our ability to predict the performance of existing and future SPIDER sensor design variations. These designs and their associated performance characteristics could then be evaluated as candidates for future mission opportunities to identify specific transition paths. This paper provides an overview of performance data on the first-generation PIC for SPIDER developed under DARPA SeeMe program funding. We provide a design description of the SPICER Zoom imaging sensor and the second-generation PIC (high- and low-resolution versions) currently under development on the DARPA SPIDER Zoom effort. Results of performance simulations and design trades are presented. Unique low-cost payload applications for future SSA missions are also discussed.

  3. Isotopic imaging via nuclear resonance fluorescence with laser-based Thomson radiation

    DOEpatents

    Barty, Christopher P. J. [Hayward, CA; Hartemann, Frederic V [San Ramon, CA; McNabb, Dennis P [Alameda, CA; Pruet, Jason A [Brentwood, CA

    2009-07-21

    The present invention utilizes novel laser-based, high-brightness, high-spatial-resolution, pencil-beam sources of spectrally pure hard x-ray and gamma-ray radiation to induce resonant scattering in specific nuclei, i.e., nuclear resonance fluorescence. By monitoring such fluorescence as a function of beam position, it is possible to image in either two dimensions or three dimensions, the position and concentration of individual isotopes in a specific material configuration. Such methods of the present invention material identification, spatial resolution of material location and ability to locate and identify materials shielded by other materials, such as, for example, behind a lead wall. The foundation of the present invention is the generation of quasimonochromatic high-energy x-ray (100's of keV) and gamma-ray (greater than about 1 MeV) radiation via the collision of intense laser pulses from relativistic electrons. Such a process as utilized herein, i.e., Thomson scattering or inverse-Compton scattering, produces beams having diameters from about 1 micron to about 100 microns of high-energy photons with a bandwidth of .DELTA.E/E of approximately 10E.sup.-3.

  4. Dual-slit confocal light sheet microscopy for in vivo whole-brain imaging of zebrafish

    PubMed Central

    Yang, Zhe; Mei, Li; Xia, Fei; Luo, Qingming; Fu, Ling; Gong, Hui

    2015-01-01

    In vivo functional imaging at single-neuron resolution is an important approach to visualize biological processes in neuroscience. Light sheet microscopy (LSM) is a cutting edge in vivo imaging technique that provides micron-scale spatial resolution at high frame rate. Due to the scattering and absorption of tissue, however, conventional LSM is inadequate to resolve cells because of the attenuated signal to noise ratio (SNR). Using dual-beam illumination and confocal dual-slit detection, here a dual-slit confocal LSM is demonstrated to obtain the SNR enhanced images with frame rate twice as high as line confocal LSM method. Through theoretical calculations and experiments, the correlation between the slit’s width and SNR was determined to optimize the image quality. In vivo whole brain structural imaging stacks and the functional imaging sequences of single slice were obtained for analysis of calcium activities at single-cell resolution. A two-fold increase in imaging speed of conventional confocal LSM makes it possible to capture the sequence of the neurons’ activities and help reveal the potential functional connections in the whole zebrafish’s brain. PMID:26137381

  5. Preservation of three-dimensional spatial structure in the gut microbiome.

    PubMed

    Hasegawa, Yuko; Mark Welch, Jessica L; Rossetti, Blair J; Borisy, Gary G

    2017-01-01

    Preservation of three-dimensional structure in the gut is necessary in order to analyze the spatial organization of the gut microbiota and gut luminal contents. In this study, we evaluated preparation methods for mouse gut with the goal of preserving micron-scale spatial structure while performing fluorescence imaging assays. Our evaluation of embedding methods showed that commonly used media such as Tissue-Tek Optimal Cutting Temperature (OCT) compound, paraffin, and polyester waxes resulted in redistribution of luminal contents. By contrast, a hydrophilic methacrylate resin, Technovit H8100, preserved three-dimensional organization. Our mouse intestinal preparation protocol optimized using the Technovit H8100 embedding method was compatible with microbial fluorescence in situ hybridization (FISH) and other labeling techniques, including immunostaining and staining with both wheat germ agglutinin (WGA) and 4', 6-diamidino-2-phenylindole (DAPI). Mucus could be visualized whether the sample was fixed with paraformaldehyde (PFA) or with Carnoy's fixative. The protocol optimized in this study enabled simultaneous visualization of micron-scale spatial patterns formed by microbial cells in the mouse intestines along with biogeographical landmarks such as host-derived mucus and food particles.

  6. Soufrière Hills Plagioclase: Postcards From the Edge.

    NASA Astrophysics Data System (ADS)

    Genareau, K.; Clarke, A.; Hervig, R.

    2005-12-01

    Secondary Ion Mass Spectrometry (SIMS) can provide sub-micron depth resolution for analyzing products of volcanic eruptions. SIMS was used to examine the outer rims of plagioclase phenocrysts derived from both explosive and effusive eruptions of the Soufrière Hills Volcano (SHV), Montserrat. Phenocrysts were separated from the host igneous rock by crushing with a mortar and pestle and then cleaned with a Branson Sonifier. A 12.5 kV O2+ primary ion beam was used to examine the variation in ten elements (Ca, Na, Si, Al, Ti, Zr, K, Fe, Sr, Li) through a crystal depth of 5-9 microns. Plagioclase crystals separated from explosively produced pumice clasts show increasing anorthite (An) content with depth into the crystal surface, starting at ~10% An at the surface and reaching a constant composition of ~45% An at 2-4 microns depth. According to experimentally determined estimates of plagioclase growth rates for the SHV magma (Couch et al. 2003; J. Petrology 44, 1477-1502), the 2-4 microns depth over which An changes corresponds to 1-7 hours of growth. Sr also shows a general increase with depth into the crystal. K shows a rapid decrease in abundance with depth. Fe shows more complex patterns that may indicate late-stage crystallization of magnetite. Plagioclase derived from exogenous dome samples also have surface compositions of ~10% An increasing with depth to ~30% An, but rather than plateau, the values begin to decrease again at 2-5 microns depth. This fluctuating abundance of An may reveal the presence of micron-scale decompression-induced growth zones that have not been previously documented due to limitations in the spatial resolution of conventional analytical techniques. Explosive and effusive samples exhibit conflicting Li trends. The explosively derived plagioclase have elevated surface Li concentrations while the dome derived plagioclase have low surface Li concentrations. These differing trends may provide evidence of closed system vs. open system degassing as a function of eruptive style. Geochemical analyses of igneous phenocrysts using the SIMS depth-profiling technique can be used to constrain the style of magma decompression and eruption. Additional analyses are currently being performed on an expanded suite of samples in order to confirm these results and to relate crystal-edge chemistry to other parameters such as quench pressure and degree of magma degassing.

  7. What more have we learned from thermal infrared remote sensing of active volcanoes other than they are hot? (Invited)

    NASA Astrophysics Data System (ADS)

    Ramsey, M.

    2009-12-01

    Thermal infrared (TIR) remote sensing has been used for decades to detect changes in the heat output of active and reawakening volcanoes. The data from these thermally anomalous pixels are commonly used either as a monitoring tool or to calculate parameters such as effusion rate and eruptive style. First and second generation TIR data have been limited in the number of spectral channels and/or the spatial resolution. Two spectral channels with only one km spatial resolution has been the norm and therefore the number of science applications is limited to very large or very hot events. The one TIR channel of the Landsat ETM+ instrument improved the spatial resolution to 60 m, but it was not until the launch of ASTER in late 1999 that orbital TIR spectral resolution increased to five channels at 90 m per pixel. For the first time, the ability existed to capture multispectral emitted radiance from volcanic surfaces, which has allowed the extraction of emissivity as well as temperature. Over the past decade ASTER TIR emissivity data have been examined for a variety of volcanic processes including lava flow emplacement at Kilauea and Kluichevskoi, silicic lava dome composition at Sheveluch, Bezymianny and Mt. St. Helens, low temperature fumaroles emissions at Cerro Negro, and textural changes on the pyroclastic flow deposits at Merapi, Sheveluch and Bezymianny. Thermal-temporal changes at the 90 m scale are still an important monitoring tool for active volcanoes using ASTER TIR data. However, the ability to extract physical parameters such as micron-scale roughness and bulk mineralogy has added tremendously to the science derived from the TIR region. This new information has also presented complications such as the effects of sub-pixel thermal heterogeneities and amorphous glass on the emissivity spectra. If better understood, these complications can provide new insights into the physical state of the volcanic surfaces. Therefore, new data processing algorithms, laboratory, and field-based TIR instrumentation have been developed to more accurately model and correct these data. This presentation will summarize the results from nearly a decade of ASTER TIR remote sensing of active volcanoes around the globe. It will also document the first results of a micro furnace designed to capture emission of molten surfaces in real time as well as a field TIR camera modified to extract emissivity of surfaces at the cm pixel scale. The integration of laboratory, field, and orbital TIR remote sensing of active volcanoes provide a more complete picture of processes operating a variety of spatial, temporal and physical scales.

  8. Study of satellite retrieved aerosol optical depth spatial resolution effect on particulate matter concentration prediction

    NASA Astrophysics Data System (ADS)

    Strandgren, J.; Mei, L.; Vountas, M.; Burrows, J. P.; Lyapustin, A.; Wang, Y.

    2014-10-01

    The Aerosol Optical Depth (AOD) spatial resolution effect is investigated for the linear correlation between satellite retrieved AOD and ground level particulate matter concentrations (PM2.5). The Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm was developed for the Moderate Resolution Imaging Spectroradiometer (MODIS) for obtaining AOD with a high spatial resolution of 1 km and provides a good dataset for the study of the AOD spatial resolution effect on the particulate matter concentration prediction. 946 Environmental Protection Agency (EPA) ground monitoring stations across the contiguous US have been used to investigate the linear correlation between AOD and PM2.5 using AOD at different spatial resolutions (1, 3 and 10 km) and for different spatial scales (urban scale, meso-scale and continental scale). The main conclusions are: (1) for both urban, meso- and continental scale the correlation between PM2.5 and AOD increased significantly with increasing spatial resolution of the AOD, (2) the correlation between AOD and PM2.5 decreased significantly as the scale of study region increased for the eastern part of the US while vice versa for the western part of the US, (3) the correlation between PM2.5 and AOD is much more stable and better over the eastern part of the US compared to western part due to the surface characteristics and atmospheric conditions like the fine mode fraction.

  9. Demonstration of the Wide-Field Imaging Interferometer Testbed Using a Calibrated Hyperspectral Image Projector

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew R.; Leisawitz, David; Maher, Steve; Rinehart, Stephen

    2012-01-01

    The Wide-field Imaging Interferometer testbed (WIIT) at NASA's Goddard Space Flight Center uses a dual-Michelson interferometric technique. The WIIT combines stellar interferometry with Fourier-transform interferometry to produce high-resolution spatial-spectral data over a large field-of-view. This combined technique could be employed on future NASA missions such as the Space Infrared Interferometric Telescope (SPIRIT) and the Sub-millimeter Probe of the Evolution of Cosmic Structure (SPECS). While both SPIRIT and SPECS would operate at far-infrared wavelengths, the WIIT demonstrates the dual-interferometry technique at visible wavelengths. The WIIT will produce hyperspectral image data, so a true hyperspectral object is necessary. A calibrated hyperspectral image projector (CHIP) has been constructed to provide such an object. The CHIP uses Digital Light Processing (DLP) technology to produce customized, spectrally-diverse scenes. CHIP scenes will have approximately 1.6-micron spatial resolution and the capability of . producing arbitrary spectra in the band between 380 nm and 1.6 microns, with approximately 5-nm spectral resolution. Each pixel in the scene can take on a unique spectrum. Spectral calibration is achieved with an onboard fiber-coupled spectrometer. In this paper we describe the operation of the CHIP. Results from the WIIT observations of CHIP scenes will also be presented.

  10. Effects of vegetation heterogeneity and surface topography on spatial scaling of net primary productivity

    NASA Astrophysics Data System (ADS)

    Chen, J. M.; Chen, X.; Ju, W.

    2013-03-01

    Due to the heterogeneous nature of the land surface, spatial scaling is an inevitable issue in the development of land models coupled with low-resolution Earth system models (ESMs) for predicting land-atmosphere interactions and carbon-climate feedbacks. In this study, a simple spatial scaling algorithm is developed to correct errors in net primary productivity (NPP) estimates made at a coarse spatial resolution based on sub-pixel information of vegetation heterogeneity and surface topography. An eco-hydrological model BEPS-TerrainLab, which considers both vegetation and topographical effects on the vertical and lateral water flows and the carbon cycle, is used to simulate NPP at 30 m and 1 km resolutions for a 5700 km2 watershed with an elevation range from 518 m to 3767 m in the Qinling Mountain, Shaanxi Province, China. Assuming that the NPP simulated at 30 m resolution represents the reality and that at 1 km resolution is subject to errors due to sub-pixel heterogeneity, a spatial scaling index (SSI) is developed to correct the coarse resolution NPP values pixel by pixel. The agreement between the NPP values at these two resolutions is improved considerably from R2 = 0.782 to R2 = 0.884 after the correction. The mean bias error (MBE) in NPP modeled at the 1 km resolution is reduced from 14.8 g C m-2 yr-1 to 4.8 g C m-2 yr-1 in comparison with NPP modeled at 30 m resolution, where the mean NPP is 668 g C m-2 yr-1. The range of spatial variations of NPP at 30 m resolution is larger than that at 1 km resolution. Land cover fraction is the most important vegetation factor to be considered in NPP spatial scaling, and slope is the most important topographical factor for NPP spatial scaling especially in mountainous areas, because of its influence on the lateral water redistribution, affecting water table, soil moisture and plant growth. Other factors including leaf area index (LAI), elevation and aspect have small and additive effects on improving the spatial scaling between these two resolutions.

  11. Effects of vegetation heterogeneity and surface topography on spatial scaling of net primary productivity

    NASA Astrophysics Data System (ADS)

    Chen, J. M.; Chen, X.; Ju, W.

    2013-07-01

    Due to the heterogeneous nature of the land surface, spatial scaling is an inevitable issue in the development of land models coupled with low-resolution Earth system models (ESMs) for predicting land-atmosphere interactions and carbon-climate feedbacks. In this study, a simple spatial scaling algorithm is developed to correct errors in net primary productivity (NPP) estimates made at a coarse spatial resolution based on sub-pixel information of vegetation heterogeneity and surface topography. An eco-hydrological model BEPS-TerrainLab, which considers both vegetation and topographical effects on the vertical and lateral water flows and the carbon cycle, is used to simulate NPP at 30 m and 1 km resolutions for a 5700 km2 watershed with an elevation range from 518 m to 3767 m in the Qinling Mountain, Shanxi Province, China. Assuming that the NPP simulated at 30 m resolution represents the reality and that at 1 km resolution is subject to errors due to sub-pixel heterogeneity, a spatial scaling index (SSI) is developed to correct the coarse resolution NPP values pixel by pixel. The agreement between the NPP values at these two resolutions is improved considerably from R2 = 0.782 to R2 = 0.884 after the correction. The mean bias error (MBE) in NPP modelled at the 1 km resolution is reduced from 14.8 g C m-2 yr-1 to 4.8 g C m-2 yr-1 in comparison with NPP modelled at 30 m resolution, where the mean NPP is 668 g C m-2 yr-1. The range of spatial variations of NPP at 30 m resolution is larger than that at 1 km resolution. Land cover fraction is the most important vegetation factor to be considered in NPP spatial scaling, and slope is the most important topographical factor for NPP spatial scaling especially in mountainous areas, because of its influence on the lateral water redistribution, affecting water table, soil moisture and plant growth. Other factors including leaf area index (LAI) and elevation have small and additive effects on improving the spatial scaling between these two resolutions.

  12. Sub-microanalysis of solid samples with near-field enhanced atomic emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Xiaohua; Liang, Zhisen; Meng, Yifan; Wang, Tongtong; Hang, Wei; Huang, Benli

    2018-03-01

    A novel approach, which we have chosen to name it as near-field enhanced atomic emission spectroscopy (NFE-AES), was proposed by introducing a scanning tunnelling microscope (STM) system into a laser-induced breakdown spectrometry (LIBS). The near-field enhancement of a laser-illuminated tip was utilized to improve the lateral resolution tremendously. Using the hybrid arrangement, pure metal tablets were analyzed to verify the performance of NFE-AES both in atmosphere and in vacuum. Due to localized surface plasmon resonance (LSPR), the incident electromagnetic field is enhanced and confined at the apex of tip, resulting in sub-micron scale ablation and elemental emission signal. We discovered that the signal-to-noise ratio (SNR) and the spectral resolution obtained in vacuum condition are better than those acquired in atmospheric condition. The quantitative capability of NFE-AES was demonstrated by analyzing Al and Pb in Cu matrix, respectively. Submicron-sized ablation craters were achieved by performing NFE-AES on a Si wafer with an Al film, and the spectroscopic information from a crater of 650 nm diameter was successfully obtained. Due to its advantage of high lateral resolution, NFE-AES imaging of micro-patterned Al lines on an integrated circuit of a SIM card was demonstrated with a sub-micron lateral resolution. These results reveal the potential of the NFE-AES technique in sub-microanalysis of solids, opening an opportunity to map chemical composition at sub-micron scale.

  13. Ohio State Infrared Imager/Spectrograph (OSIRIS) | SOAR

    Science.gov Websites

    opperate at wavelengths from 0.9 to 2.4 microns. Internal optics allow for two plate scales and a variety of spectroscopic resolutions. Internal mechanisms control the selected filter, focal plane mask

  14. Submicron scale tissue multifractal anisotropy in polarized laser light scattering

    NASA Astrophysics Data System (ADS)

    Das, Nandan Kumar; Dey, Rajib; Chakraborty, Semanti; Panigrahi, Prasanta K.; Meglinski, Igor; Ghosh, Nirmalya

    2018-03-01

    The spatial fluctuations of the refractive index within biological tissues exhibit multifractal anisotropy, leaving its signature as a spectral linear diattenuation of scattered polarized light. The multifractal anisotropy has been quantitatively assessed by the processing of relevant Mueller matrix elements in the Fourier domain, utilizing the Born approximation and subsequent multifractal analysis. The differential scaling exponent and width of the singularity spectrum appear to be highly sensitive to the structural multifractal anisotropy at the micron/sub-micron length scales. An immediate practical use of these multifractal anisotropy parameters was explored for non-invasive screening of cervical precancerous alterations ex vivo, with the indication of a strong potential for clinical diagnostic purposes.

  15. Design survey of X-ray/XUV projection lithography systems

    NASA Astrophysics Data System (ADS)

    Shealy, David L.; Viswanathan, V. K.

    1991-02-01

    Several configurations of two- to four-multilayer mirror systems that have been proposed for use in soft-X-ray projection lithography are examined. The performance capabilities of spherical and aspherical two-mirror projection systems are compared, and a two-spherical-mirror four-reflection system that can resolve 0.1-micron features over a 10 x 10 mm field is described. It is emphasized that three-mirror systems show promise of high resolution in telescope applications, but have not been fully analyzed for projection lithography applications. It has been shown that a four-mirror aspheric system can be designed to meet the resolution requirements, but a trade-off must be made between reducing distortion below 10 microns over the field of view and increasing the modulation transfer function greater than 50 percent at spatial frequency of 5000 cycles/mm.

  16. Herschel Extreme Lensing Line Observations: Dynamics of Two Strongly Lensed Star-Forming Galaxies near Redshift z=2*

    NASA Technical Reports Server (NTRS)

    Rhoads, James E.; Rigby, Jane Rebecca; Malhotra, Sangeeta; Allam, Sahar; Carilli, Chris; Combes, Francoise; Finkelstein, Keely; Finkelstein, Steven; Frye, Brenda; Gerin, Maryvonne; hide

    2014-01-01

    We report on two regularly rotating galaxies at redshift z approx. = 2, using high-resolution spectra of the bright [C microns] 158 micrometers emission line from the HIFI instrument on the Herschel Space Observatory. Both SDSS090122.37+181432.3 ("S0901") and SDSSJ120602.09+514229.5 ("the Clone") are strongly lensed and show the double-horned line profile that is typical of rotating gas disks. Using a parametric disk model to fit the emission line profiles, we find that S0901 has a rotation speed of v sin(i) approx. = 120 +/- 7 kms(sup -1) and a gas velocity dispersion of (standard deviation)g < 23 km s(sup -1) (1(standard deviation)). The best-fitting model for the Clone is a rotationally supported disk having v sin(i) approx. = 79 +/- 11 km s(sup -1) and (standard deviation)g 4 kms(sup -1) (1(standard deviation)). However, the Clone is also consistent with a family of dispersion-dominated models having (standard deviation)g = 92 +/- 20 km s(sup -1). Our results showcase the potential of the [C microns] line as a kinematic probe of high-redshift galaxy dynamics: [C microns] is bright, accessible to heterodyne receivers with exquisite velocity resolution, and traces dense star-forming interstellar gas. Future [C microns] line observations with ALMA would offer the further advantage of spatial resolution, allowing a clearer separation between rotation and velocity dispersion.

  17. Low-latitude variability of ice cloud properties and cloud thermodynamic phase observed by the Atmospheric Infrared Sounder (AIRS)

    NASA Astrophysics Data System (ADS)

    Kahn, B. H.; Yue, Q.; Davis, S. M.; Fetzer, E. J.; Schreier, M. M.; Tian, B.; Wong, S.

    2016-12-01

    We will quantify the time and space dependence of ice cloud effective radius (CER), optical thickness (COT), cloud top temperature (CTT), effective cloud fraction (ECF), and cloud thermodynamic phase (ice, liquid, or unknown) with the Version 6 Atmospheric Infrared Sounder (AIRS) satellite observational data set from September 2002 until present. We show that cloud frequency, CTT, COT, and ECF have substantially different responses to ENSO variations. Large-scale changes in ice CER are also observed with a several micron tropics-wide increase during the 2015-2016 El Niño and similar decreases during the La Niña phase. We show that the ice CER variations reflect fundamental changes in the spatial distributions and relative frequencies of different ice cloud types. Lastly, the high spatial and temporal resolution variability of the cloud fields are explored and we show that these data capture a multitude of convectively coupled tropical waves such as Kelvin, westward and eastward intertio-gravity, equatorial Rossby, and mixed Rossby-gravity waves.

  18. New features in Saturn's atmosphere revealed by high-resolution thermal infrared images

    NASA Technical Reports Server (NTRS)

    Gezari, D. Y.; Mumma, M. J.; Espenak, F.; Deming, D.; Bjoraker, G.; Woods, L.; Folz, W.

    1989-01-01

    Observations of the stratospheric IR emission structure on Saturn are presented. The high-spatial-resolution global images show a variety of new features, including a narrow equatorial belt of enhanced emission at 7.8 micron, a prominent symmetrical north polar hotspot at all three wavelengths, and a midlatitude structure which is asymmetrically brightened at the east limb. The results confirm the polar brightening and reversal in position predicted by recent models for seasonal thermal variations of Saturn's stratosphere.

  19. Scientific requirements for a Moderate-Resolution Imaging Spectrometer (MODIS) for EOS

    NASA Technical Reports Server (NTRS)

    Barnes, W. L.

    1985-01-01

    The MODIS is an instrument planned for the sun-synchronous polar orbiting segment of the Space Station system. The radiometer is required to have 1 km resolution in terrestrial remote sensing applications. The monitoring program is targeted to last 10 yr in order to provide a sufficient database for discerning trends as opposed to natural variations. The study areas of interest include tropical deforestation, regrowth and areal distributions, acid rain effects on northern forests, desertification rates and locations, snow cover/albedo relationships and total biomass. MODIS will have 192 channels with 30 m spatial resolution and cover seven bands in the 3.5-12 microns interval for land viewing. Ocean studies will be carried out in 17 bands from 0.4-1.0 micron, and atmospheric scans will be performed over the land and ocean intervals at narrowband wavelengths (1.2 nm). Si detector arrays will be used and will be accompanied by an expected 600:1 SNR and produce data at a rate of 1.4-9.1 Mb/sec.

  20. Using Synchrotron Radiation Microtomography to Investigate Multi-scale Three-dimensional Microelectronic Packages.

    PubMed

    Carlton, Holly D; Elmer, John W; Li, Yan; Pacheco, Mario; Goyal, Deepak; Parkinson, Dilworth Y; MacDowell, Alastair A

    2016-04-13

    Synchrotron radiation micro-tomography (SRµT) is a non-destructive three-dimensional (3D) imaging technique that offers high flux for fast data acquisition times with high spatial resolution. In the electronics industry there is serious interest in performing failure analysis on 3D microelectronic packages, many which contain multiple levels of high-density interconnections. Often in tomography there is a trade-off between image resolution and the volume of a sample that can be imaged. This inverse relationship limits the usefulness of conventional computed tomography (CT) systems since a microelectronic package is often large in cross sectional area 100-3,600 mm(2), but has important features on the micron scale. The micro-tomography beamline at the Advanced Light Source (ALS), in Berkeley, CA USA, has a setup which is adaptable and can be tailored to a sample's properties, i.e., density, thickness, etc., with a maximum allowable cross-section of 36 x 36 mm. This setup also has the option of being either monochromatic in the energy range ~7-43 keV or operating with maximum flux in white light mode using a polychromatic beam. Presented here are details of the experimental steps taken to image an entire 16 x 16 mm system within a package, in order to obtain 3D images of the system with a spatial resolution of 8.7 µm all within a scan time of less than 3 min. Also shown are results from packages scanned in different orientations and a sectioned package for higher resolution imaging. In contrast a conventional CT system would take hours to record data with potentially poorer resolution. Indeed, the ratio of field-of-view to throughput time is much higher when using the synchrotron radiation tomography setup. The description below of the experimental setup can be implemented and adapted for use with many other multi-materials.

  1. Three-dimensional rotational micro-angiography

    NASA Astrophysics Data System (ADS)

    Patel, Vikas

    Computed tomography (CT) is state-of-the-art for 3D imaging in which images are acquired about the patient and are used to reconstruct the data. But the commercial CT systems suffer from low spatial resolution (0.5-2 lp/mm). Micro-CT (microCT) systems have high resolution 3D reconstruction (>10 lp/mm), but are currently limited to small objects, e.g., small animals. To achieve artifact free reconstructions, geometric calibration of the rotating-object cone-beam microCT (CBmicroCT) system is performed using new techniques that use only the projection images of the object, i.e., no calibration objects are required. Translations (up to 0.2 mm) occurring during the acquisition in the horizontal direction are detected, quantified, and corrected based on sinogram analysis. The parameters describing the physical axis of rotation determined using our image-based method (aligning anti-posed images) agree well (within 0.1 mm and 0.3 degrees) with those determined using other techniques that use calibration objects. Geometric calibrations of the rotational angiography (RA) systems (clinical cone-beam CT systems with fluoroscopic capabilities provided by flat-panel detectors (FPD)) are performed using a simple single projection technique (SPT), which aligns a known 3D model of a calibration phantom with the projection data. The calibration parameters obtained by the SPT are found to be reproducible (angles within 0.2° and x- and y-translations less than 2 mm) for over 7 months. The spatial resolution of the RA systems is found to be virtually unaffected by such small geometric variations. Finally, using our understanding of the geometric calibrations, we have developed methods to combine relatively low-resolution RA acquisitions (2-3 lp/mm) with high resolution microCT acquisitions (using a high-resolution micro-angiographic fluoroscope (MAF) attached to the RA gantry) to produce the first-ever 3D rotational micro-angiography (3D-RmicroA) system on a clinical gantry. Images of a rabbit with a coronary stent placed in an artery were obtained and reconstructed. To eliminate artifacts due to image truncation, lower-dose (compared to the MAF acquisition) full-FOV (FFOV) FPD RA sequences are also obtained. To ensure high-quality high-resolution reconstruction, the high-resolution images from the MAF are aligned spatially with the lower-dose FPD images (average correlation coefficient before and after alignment: 0.65 and 0.97 respectively), and the pixel values in the FPD image data are scaled (using linear regression) to match those of the MAF. Greater details without any visible truncation artifacts are seen in 3D RmicroA (MAF-FPD) images than in those of the FPD alone. The FWHM of line profiles of stent struts (100 micron diameter) are approximately 192 +/- 21 and 313 +/- 38 microns for the 3D RmicroA and FPD data, respectively. Thus, with the RmicroA system, we have essentially developed a high resolution CBmicroCT system for clinical use.

  2. X-ray imaging with sub-micron resolution using large-area photon counting detectors Timepix

    NASA Astrophysics Data System (ADS)

    Dudak, J.; Karch, J.; Holcova, K.; Zemlicka, J.

    2017-12-01

    As X-ray micro-CT became a popular tool for scientific purposes a number of commercially available CT systems have emerged on the market. Micro-CT systems have, therefore, become widely accessible and the number of research laboratories using them constantly increases. However, even when CT scans with spatial resolution of several micrometers can be performed routinely, data acquisition with sub-micron precision remains a complicated task. Issues come mostly from prolongation of the scan time inevitably connected with the use of nano-focus X-ray sources. Long exposure time increases the noise level in the CT projections. Furthermore, considering the sub-micron resolution even effects like source-spot drift, rotation stage wobble or thermal expansion become significant and can negatively affect the data. The use of dark-current free photon counting detectors as X-ray cameras for such applications can limit the issue of increased image noise in the data, however the mechanical stability of the whole system still remains a problem and has to be considered. In this work we evaluate the performance of a micro-CT system equipped with nano-focus X-ray tube and a large area photon counting detector Timepix for scans with effective pixel size bellow one micrometer.

  3. Whole mouse cryo-imaging

    NASA Astrophysics Data System (ADS)

    Wilson, David; Roy, Debashish; Steyer, Grant; Gargesha, Madhusudhana; Stone, Meredith; McKinley, Eliot

    2008-03-01

    The Case cryo-imaging system is a section and image system which allows one to acquire micron-scale, information rich, whole mouse color bright field and molecular fluorescence images of an entire mouse. Cryo-imaging is used in a variety of applications, including mouse and embryo anatomical phenotyping, drug delivery, imaging agents, metastastic cancer, stem cells, and very high resolution vascular imaging, among many. Cryo-imaging fills the gap between whole animal in vivo imaging and histology, allowing one to image a mouse along the continuum from the mouse -> organ -> tissue structure -> cell -> sub-cellular domains. In this overview, we describe the technology and a variety of exciting applications. Enhancements to the system now enable tiled acquisition of high resolution images to cover an entire mouse. High resolution fluorescence imaging, aided by a novel subtraction processing algorithm to remove sub-surface fluorescence, makes it possible to detect fluorescently-labeled single cells. Multi-modality experiments in Magnetic Resonance Imaging and Cryo-imaging of a whole mouse demonstrate superior resolution of cryo-images and efficiency of registration techniques. The 3D results demonstrate the novel true-color volume visualization tools we have developed and the inherent advantage of cryo-imaging in providing unlimited depth of field and spatial resolution. The recent results continue to demonstrate the value cryo-imaging provides in the field of small animal imaging research.

  4. FIFI: The MPE Garching/UC Berkeley Far-Infrared Imaging Fabry-Perot Interferometer

    NASA Technical Reports Server (NTRS)

    Geis, Norbert; Genzel, Reinhard; Haggerty, M.; Herrmann, F.; Jackson, J.; Madden, Suzanne C.; Nikola, T.; Poglitsch, Albrecht; Rumitz, M.; Stacey, G. J.

    1995-01-01

    We describe the performance characteristics of the MPE Garching/UC Berkeley Far-Infrared Imaging Fabry-Perot Interferometer (FIFI) for the Kuiper Airborne Observatory (KAO). The spectrometer features two or three cryogenic tunable Fabry-Perot filters in series giving spectral resolution R of up to 10(exp 5) in the range of 40 microns less than lambda less than 200 microns, and an imaging 5x5 array of photoconductive detectors with variable focal plane plate scale. The instrument works at background limited sensitivity of up to 2 x 10(exp -19) W cm(exp -2) Hz(exp -1/2) per pixel per resolution element at R = 10(exp 5) on the KAO.

  5. A simple approach to spectrally resolved fluorescence and bright field microscopy over select regions of interest

    NASA Astrophysics Data System (ADS)

    Dahlberg, Peter D.; Boughter, Christopher T.; Faruk, Nabil F.; Hong, Lu; Koh, Young Hoon; Reyer, Matthew A.; Shaiber, Alon; Sherani, Aiman; Zhang, Jiacheng; Jureller, Justin E.; Hammond, Adam T.

    2016-11-01

    A standard wide field inverted microscope was converted to a spatially selective spectrally resolved microscope through the addition of a polarizing beam splitter, a pair of polarizers, an amplitude-mode liquid crystal-spatial light modulator, and a USB spectrometer. The instrument is capable of simultaneously imaging and acquiring spectra over user defined regions of interest. The microscope can also be operated in a bright-field mode to acquire absorption spectra of micron scale objects. The utility of the instrument is demonstrated on three different samples. First, the instrument is used to resolve three differently labeled fluorescent beads in vitro. Second, the instrument is used to recover time dependent bleaching dynamics that have distinct spectral changes in the cyanobacteria, Synechococcus leopoliensis UTEX 625. Lastly, the technique is used to acquire the absorption spectra of CH3NH3PbBr3 perovskites and measure differences between nanocrystal films and micron scale crystals.

  6. A simple approach to spectrally resolved fluorescence and bright field microscopy over select regions of interest.

    PubMed

    Dahlberg, Peter D; Boughter, Christopher T; Faruk, Nabil F; Hong, Lu; Koh, Young Hoon; Reyer, Matthew A; Shaiber, Alon; Sherani, Aiman; Zhang, Jiacheng; Jureller, Justin E; Hammond, Adam T

    2016-11-01

    A standard wide field inverted microscope was converted to a spatially selective spectrally resolved microscope through the addition of a polarizing beam splitter, a pair of polarizers, an amplitude-mode liquid crystal-spatial light modulator, and a USB spectrometer. The instrument is capable of simultaneously imaging and acquiring spectra over user defined regions of interest. The microscope can also be operated in a bright-field mode to acquire absorption spectra of micron scale objects. The utility of the instrument is demonstrated on three different samples. First, the instrument is used to resolve three differently labeled fluorescent beads in vitro. Second, the instrument is used to recover time dependent bleaching dynamics that have distinct spectral changes in the cyanobacteria, Synechococcus leopoliensis UTEX 625. Lastly, the technique is used to acquire the absorption spectra of CH 3 NH 3 PbBr 3 perovskites and measure differences between nanocrystal films and micron scale crystals.

  7. High-spatial resolution and high-spectral resolution detector for use in the measurement of solar flare hard X-rays

    NASA Technical Reports Server (NTRS)

    Desai, U. D.; Orwig, Larry E.

    1988-01-01

    In the areas of high spatial resolution, the evaluation of a hard X-ray detector with 65 micron spatial resolution for operation in the energy range from 30 to 400 keV is proposed. The basic detector is a thick large-area scintillator faceplate, composed of a matrix of high-density scintillating glass fibers, attached to a proximity type image intensifier tube with a resistive-anode digital readout system. Such a detector, combined with a coded-aperture mask, would be ideal for use as a modest-sized hard X-ray imaging instrument up to X-ray energies as high as several hundred keV. As an integral part of this study it was also proposed that several techniques be critically evaluated for X-ray image coding which could be used with this detector. In the area of high spectral resolution, it is proposed to evaluate two different types of detectors for use as X-ray spectrometers for solar flares: planar silicon detectors and high-purity germanium detectors (HPGe). Instruments utilizing these high-spatial-resolution detectors for hard X-ray imaging measurements from 30 to 400 keV and high-spectral-resolution detectors for measurements over a similar energy range would be ideally suited for making crucial solar flare observations during the upcoming maximum in the solar cycle.

  8. Improvements in Virtual Sensors: Using Spatial Information to Estimate Remote Sensing Spectra

    NASA Technical Reports Server (NTRS)

    Oza, Nikunj C.; Srivastava, Ashok N.; Stroeve, Julienne

    2005-01-01

    Various instruments are used to create images of the Earth and other objects in the universe in a diverse set of wavelength bands with the aim of understanding natural phenomena. Sometimes these instruments are built in a phased approach, with additional measurement capabilities added in later phases. In other cases, technology may mature to the point that the instrument offers new measurement capabilities that were not planned in the original design of the instrument. In still other cases, high resolution spectral measurements may be too costly to perform on a large sample and therefore lower resolution spectral instruments are used to take the majority of measurements. Many applied science questions that are relevant to the earth science remote sensing community require analysis of enormous amounts of data that were generated by instruments with disparate measurement capabilities. In past work [1], we addressed this problem using Virtual Sensors: a method that uses models trained on spectrally rich (high spectral resolution) data to "fill in" unmeasured spectral channels in spectrally poor (low spectral resolution) data. We demonstrated this method by using models trained on the high spectral resolution Terra MODIS instrument to estimate what the equivalent of the MODIS 1.6 micron channel would be for the NOAA AVHRR2 instrument. The scientific motivation for the simulation of the 1.6 micron channel is to improve the ability of the AVHRR2 sensor to detect clouds over snow and ice. This work contains preliminary experiments demonstrating that the use of spatial information can improve our ability to estimate these spectra.

  9. X-ray imaging of fibers

    NASA Astrophysics Data System (ADS)

    Moosman, B.; Song, Y.; Weathers, L.; Wessel, F.

    1996-11-01

    A pulsed x-ray backlighter was developed to image exploding wires and cryogenic fibers. The x-ray pulse width is between 10-20 ns, with an output of 100-150 mJ, mostly in the Al k-shell (1.486 keV). The backlighter is located 50 cm from the 20-50 micron diameter target (typically, a copper wire). A 15 micron Al filter eliminates UV emission from the backlighter and target. It is placed 3 cm from the target with SB-5 film directly behind it. From the optical density of the film, target absorption and density can be calculated. The spatial resolution of this system is better than 40 microns. The wire is exploded using a 10 kA, 1 microsecond pulser. Analysis with simultaneous Moire imaging will also be presented. Supported by Los Alamos National Laboratories

  10. Method and apparatus for optical Doppler tomographic imaging of fluid flow velocity in highly scattering media

    DOEpatents

    Nelson, John Stuart; Milner, Thomas Edward; Chen, Zhongping

    1999-01-01

    Optical Doppler tomography permits imaging of fluid flow velocity in highly scattering media. The tomography system combines Doppler velocimetry with high spatial resolution of partially coherent optical interferometry to measure fluid flow velocity at discrete spatial locations. Noninvasive in vivo imaging of blood flow dynamics and tissue structures with high spatial resolutions of the order of 2 to 10 microns is achieved in biological systems. The backscattered interference signals derived from the interferometer may be analyzed either through power spectrum determination to obtain the position and velocity of each particle in the fluid flow sample at each pixel, or the interference spectral density may be analyzed at each frequency in the spectrum to obtain the positions and velocities of the particles in a cross-section to which the interference spectral density corresponds. The realized resolutions of optical Doppler tomography allows noninvasive in vivo imaging of both blood microcirculation and tissue structure surrounding the vessel which has significance for biomedical research and clinical applications.

  11. Impacts of spatial resolution and representation of flow connectivity on large-scale simulation of floods

    NASA Astrophysics Data System (ADS)

    Mateo, Cherry May R.; Yamazaki, Dai; Kim, Hyungjun; Champathong, Adisorn; Vaze, Jai; Oki, Taikan

    2017-10-01

    Global-scale river models (GRMs) are core tools for providing consistent estimates of global flood hazard, especially in data-scarce regions. Due to former limitations in computational power and input datasets, most GRMs have been developed to use simplified representations of flow physics and run at coarse spatial resolutions. With increasing computational power and improved datasets, the application of GRMs to finer resolutions is becoming a reality. To support development in this direction, the suitability of GRMs for application to finer resolutions needs to be assessed. This study investigates the impacts of spatial resolution and flow connectivity representation on the predictive capability of a GRM, CaMa-Flood, in simulating the 2011 extreme flood in Thailand. Analyses show that when single downstream connectivity (SDC) is assumed, simulation results deteriorate with finer spatial resolution; Nash-Sutcliffe efficiency coefficients decreased by more than 50 % between simulation results at 10 km resolution and 1 km resolution. When multiple downstream connectivity (MDC) is represented, simulation results slightly improve with finer spatial resolution. The SDC simulations result in excessive backflows on very flat floodplains due to the restrictive flow directions at finer resolutions. MDC channels attenuated these effects by maintaining flow connectivity and flow capacity between floodplains in varying spatial resolutions. While a regional-scale flood was chosen as a test case, these findings should be universal and may have significant impacts on large- to global-scale simulations, especially in regions where mega deltas exist.These results demonstrate that a GRM can be used for higher resolution simulations of large-scale floods, provided that MDC in rivers and floodplains is adequately represented in the model structure.

  12. Lens-free computational imaging of capillary morphogenesis within three-dimensional substrates

    NASA Astrophysics Data System (ADS)

    Weidling, John; Isikman, Serhan O.; Greenbaum, Alon; Ozcan, Aydogan; Botvinick, Elliot

    2012-12-01

    Endothelial cells cultured in three-dimensional (3-D) extracellular matrices spontaneously form microvessels in response to soluble and matrix-bound factors. Such cultures are common for the study of angiogenesis and may find widespread use in drug discovery. Vascular networks are imaged over weeks to measure the distribution of vessel morphogenic parameters. Measurements require micron-scale spatial resolution, which for light microscopy comes at the cost of limited field-of-view (FOV) and shallow depth-of-focus (DOF). Small FOVs and DOFs necessitate lateral and axial mechanical scanning, thus limiting imaging throughput. We present a lens-free holographic on-chip microscopy technique to rapidly image microvessels within a Petri dish over a large volume without any mechanical scanning. This on-chip method uses partially coherent illumination and a CMOS sensor to record in-line holographic images of the sample. For digital reconstruction of the measured holograms, we implement a multiheight phase recovery method to obtain phase images of capillary morphogenesis over a large FOV (24 mm2) with ˜1.5 μm spatial resolution. On average, measured capillary length in our method was within approximately 2% of lengths measured using a 10× microscope objective. These results suggest lens-free on-chip imaging is a useful toolset for high-throughput monitoring and quantitative analysis of microvascular 3-D networks.

  13. Spatially Resolved, In Situ Carbon Isotope Analysis of Archean Organic Matter

    NASA Technical Reports Server (NTRS)

    Williford, Kenneth H.; Ushikubo, Takayuki; Lepot, Kevin; Hallmann, Christian; Spicuzza, Michael J.; Eigenbrode, Jennifer L.; Summons, Roger E.; Valley, John W.

    2011-01-01

    Spatiotemporal variability in the carbon isotope composition of sedimentary organic matter (OM) preserves information about the evolution of the biosphere and of the exogenic carbon cycle as a whole. Primary compositions, and imprints of the post-depositional processes that obscure them, exist at the scale of individual sedimentary grains (mm to micron). Secondary ion mass spectrometry (SIMS) (1) enables analysis at these scales and in petrographic context, (2) permits morphological and compositional characterization of the analyte and associated minerals prior to isotopic analysis, and (3) reveals patterns of variability homogenized by bulk techniques. Here we present new methods for in situ organic carbon isotope analysis with sub-permil precision and spatial resolution to 1 micron using SIMS, as well as new data acquired from a suite of Archean rocks. Three analytical protocols were developed for the CAMECA ims1280 at WiscSIMS to analyze domains of varying size and carbon concentration. Average reproducibility (at 2SD) using a 6 micron spot size with two Faraday cup detectors was 0.4 %, and 0.8 % for analyses using 1 micron and 3 micron spot sizes with a Faraday cup (for C-12) and an electron multiplier (for C-13). Eight coals, two ambers, a shungite, and a graphite were evaluated for micron-scale isotopic heterogeneity, and LCNN anthracite (delta C-13 = -23.56 +/- 0.1 %, 2SD) was chosen as the working standard. Correlation between instrumental bias and H/C was observed and calibrated for each analytical session using organic materials with H/C between 0.1 and 1.5 (atomic), allowing a correction based upon a C-13H/C-13 measurement included in every analysis. Matrix effects of variable C/SiO2 were evaluated by measuring mm to sub-micron graphite domains in quartzite from Bogala mine, Sri Lanka. Apparent instrumental bias and C-12 count rate are correlated in this case, but this may be related to a crystal orientation effect in graphite. Analyses of amorphous Archean OM suggest that instrumental bias is consistent for 12C count rates as low as 10% relative to anthracite. Samples from the ABDP-9 (n=3; Mount McRae Shale, approximately 2.5 Ga), RHDH2a (n=2; Carrawine Dolomite and Jeerinah Fm, approximately 2.6 Ga), WRL1 (n=3; Wittenoom Fm, Marra Mamba Iron Formation, and Jeerinah Fm, approximately 2.6 Ga), and SV1 (n=1; Tumbiana Fm, approximately 2.7 Ga) drill cores, each previously analyzed for bulk organic carbon isotope composition, yielded 100 new, in situ data from Neoarchean sedimentary OM. In these samples, delta C-13 varies between -53.1 and -28.3 % and offsets between in situ and bulk compositions range from -8.3 to 18.8%. In some cases, isotopic composition and mode of occurrence (e.g. morphology and mineral associations) are statistically correlated, enabling the identification of distinct reservoirs of OM. Our results support previous evidence for gradients of oxidation with depth in Neoarchean environments driven by photosynthesis and methane metabolism. The relevance of these findings to questions of bio- and syngenicity as well as the alteration history of previously reported Archean OM will be discussed.

  14. Sensitivity of landscape metrics to changing scale of remote sensing data in spatial pattern analysis: effect, criticality and scaling.

    NASA Astrophysics Data System (ADS)

    Xu, C.; Zhao, S.; Zhao, B.

    2017-12-01

    Spatial heterogeneity is scale-dependent, that is, the quantification and representation of spatial pattern vary with the resolution and extent. Overwhelming practices focused on scale effect of landscape metrics, and predicable scaling relationships found among some of them are thought to be the most effective and precise way to quantify multi-scale characteristics. However, previous studies tended to consider a narrow range of scales, and few focused on the critical threshold of scaling function. Here we examine the scalograms of 38 widely-used landscape-level metrics in a more integral spectrum of grain size among 96 landscapes with various extent (i.e. from 25km2 up towards to 221 km2), which sampled randomly from NLCD product. Our goal is to explore the existence of scaling domain and whether the response of metrics to changing resolution would be influenced by spatial extent. Results clearly show the existence of scaling domain for 13 of them (Type II), while the behaviors of other 13 (Type I) exhibit simple scaling functions and the rest (Type III) demonstrate various forms like no obvious change or fluctuation across the integral spectrum of grain size. In addition, an invariant power law scaling relationship was found between critical resolution and spatial extent for metrics falling into Type II, as the critical resolution is proportional to Eρ (ρ is a constant, and E is the extent). All the scaling exponents (ρ) are positive, suggesting that the critical resolutions for these characteristics of landscape structure can be relaxed as the spatial extent expands. This agrees well with empirical perception that coarser grain size might be allowed for spatial data with larger extent. Furthermore, the parameters of scaling functions for metrics falling into Type I and Type II vary with spatial extent, and power law or logarithmic relationships could be identified between them for some metrics. Our finding support the existence of self-organized criticality for a hierarchically-structured landscape. Although the underlying mechanism driving the scaling relationship remains unclear, it could provide guidance toward general principles in spatial pattern analysis and on selecting the proper resolution to avoid the misrepresentation of spatial pattern and profound biases in further ecological progress research.

  15. Scaling effects on spring phenology detections from MODIS data at multiple spatial resolutions over the contiguous United States

    NASA Astrophysics Data System (ADS)

    Peng, Dailiang; Zhang, Xiaoyang; Zhang, Bing; Liu, Liangyun; Liu, Xinjie; Huete, Alfredo R.; Huang, Wenjiang; Wang, Siyuan; Luo, Shezhou; Zhang, Xiao; Zhang, Helin

    2017-10-01

    Land surface phenology (LSP) has been widely retrieved from satellite data at multiple spatial resolutions, but the spatial scaling effects on LSP detection are poorly understood. In this study, we collected enhanced vegetation index (EVI, 250 m) from collection 6 MOD13Q1 product over the contiguous United States (CONUS) in 2007 and 2008, and generated a set of multiple spatial resolution EVI data by resampling 250 m to 2 × 250 m and 3 × 250 m, 4 × 250 m, …, 35 × 250 m. These EVI time series were then used to detect the start of spring season (SOS) at various spatial resolutions. Further the SOS variation across scales was examined at each coarse resolution grid (35 × 250 m ≈ 8 km, refer to as reference grid) and ecoregion. Finally, the SOS scaling effects were associated with landscape fragment, proportion of primary land cover type, and spatial variability of seasonal greenness variation within each reference grid. The results revealed the influences of satellite spatial resolutions on SOS retrievals and the related impact factors. Specifically, SOS significantly varied lineally or logarithmically across scales although the relationship could be either positive or negative. The overall SOS values averaged from spatial resolutions between 250 m and 35 × 250 m at large ecosystem regions were generally similar with a difference less than 5 days, while the SOS values within the reference grid could differ greatly in some local areas. Moreover, the standard deviation of SOS across scales in the reference grid was less than 5 days in more than 70% of area over the CONUS, which was smaller in northeastern than in southern and western regions. The SOS scaling effect was significantly associated with heterogeneity of vegetation properties characterized using land landscape fragment, proportion of primary land cover type, and spatial variability of seasonal greenness variation, but the latter was the most important impact factor.

  16. An ultrasonic noncontact method to monitor the doneness of bakery products

    NASA Astrophysics Data System (ADS)

    Chimenti, D. E.; Faeth, L.

    2000-05-01

    The paper describes a method using ultrasonics and fluid dynamics to assess the state of "doneness" of bakery products, such as bread loaves, online and in situ. The problem in the baking industry is that bread doneness determined by time and temperature can be inaccurate, leaving some product underbaked. We describe a noncontact method using air-pulse excitation and air-coupled ultrasonic motion sensing to infer the state of doneness of the baking loaf while still in the oven and on a moving belt. The ultrasonic sensor operates at 100 kHz using a toneburst excitation and pitch-catch transducer geometry. The problem is one of detecting small (50 micron) movements in the loaf, whose position may vary up to several mm. Further, the loaf movements caused by the air-pulse excitation are rapid (20 to 50 msec). We present a signal-processing system, incorporating a boxcar integrator, that functions as a pulsed, time-domain acoustic interferometer. This instrument is capable of both the high time and spatial resolution essential for the successful operation of the instrument. We estimate a spatial resolution of 30 micron and a temporal resolution of 5 msec, using 100 kHz acoustic waves. The results of numerous in-oven measurements on one-pound bread loaves during the bake cycle will be presented to illustrate the performance of the instrument.

  17. 4 Vesta in Color: High Resolution Mapping from Dawn Framing Camera Images

    NASA Technical Reports Server (NTRS)

    Reddy, V.; LeCorre, L.; Nathues, A.; Sierks, H.; Christensen, U.; Hoffmann, M.; Schroeder, S. E.; Vincent, J. B.; McSween, H. Y.; Denevi, B. W.; hide

    2011-01-01

    Rotational surface variations on asteroid 4 Vesta have been known from ground-based and HST observations, and they have been interpreted as evidence of compositional diversity. NASA s Dawn mission entered orbit around Vesta on July 16, 2011 for a year-long global characterization. The framing cameras (FC) onboard the Dawn spacecraft will image the asteroid in one clear (broad) and seven narrow band filters covering the wavelength range between 0.4-1.0 microns. We present color mapping results from the Dawn FC observations of Vesta obtained during Survey orbit (approx.3000 km) and High-Altitude Mapping Orbit (HAMO) (approx.950 km). Our aim is to create global color maps of Vesta using multi spectral FC images to identify the spatial extent of compositional units and link them with other available data sets to extract the basic mineralogy. While the VIR spectrometer onboard Dawn has higher spectral resolution (864 channels) allowing precise mineralogical assessment of Vesta s surface, the FC has three times higher spatial resolution in any given orbital phase. In an effort to extract maximum information from FC data we have developed algorithms using laboratory spectra of pyroxenes and HED meteorites to derive parameters associated with the 1-micron absorption band wing. These parameters will help map the global distribution of compositionally related units on Vesta s surface. Interpretation of these units will involve the integration of FC and VIR data.

  18. Normal-incidence soft X-ray telescopes

    NASA Technical Reports Server (NTRS)

    Spiller, Eberhard; Mccorkle, R. A.; Wilczynski, J. S.; Golub, Leon; Nystrom, G.; Takacs, P. Z.; Welch, C.

    1991-01-01

    Photos obtained during 5 min of observation time from the flight of a 25-cm-diameter normal-incidence soft-X-ray (63.5 A) telescope on September 11, 1989, are analyzed, and the data are compared to the results expected from tests of the mirror surfaces. These tests cover a range of spatial periods from 25 cm to 1 A. The photos demonstrate a resolution close to the photon shot-noise limit and a reduction in the scattering of the multilayer mirror compared to a single surface for scattering angles above 1 arcmin, corrresponding to surface irregularities with spatial periods below 10 microns. These results are used to predict the possible performance of future telescopes. Sounding rocket observations might be able to reach a resolution around 0.1 arcsec.

  19. Telescopic multi-resolution augmented reality

    NASA Astrophysics Data System (ADS)

    Jenkins, Jeffrey; Frenchi, Christopher; Szu, Harold

    2014-05-01

    To ensure a self-consistent scaling approximation, the underlying microscopic fluctuation components can naturally influence macroscopic means, which may give rise to emergent observable phenomena. In this paper, we describe a consistent macroscopic (cm-scale), mesoscopic (micron-scale), and microscopic (nano-scale) approach to introduce Telescopic Multi-Resolution (TMR) into current Augmented Reality (AR) visualization technology. We propose to couple TMR-AR by introducing an energy-matter interaction engine framework that is based on known Physics, Biology, Chemistry principles. An immediate payoff of TMR-AR is a self-consistent approximation of the interaction between microscopic observables and their direct effect on the macroscopic system that is driven by real-world measurements. Such an interdisciplinary approach enables us to achieve more than multiple scale, telescopic visualization of real and virtual information but also conducting thought experiments through AR. As a result of the consistency, this framework allows us to explore a large dimensionality parameter space of measured and unmeasured regions. Towards this direction, we explore how to build learnable libraries of biological, physical, and chemical mechanisms. Fusing analytical sensors with TMR-AR libraries provides a robust framework to optimize testing and evaluation through data-driven or virtual synthetic simulations. Visualizing mechanisms of interactions requires identification of observable image features that can indicate the presence of information in multiple spatial and temporal scales of analog data. The AR methodology was originally developed to enhance pilot-training as well as `make believe' entertainment industries in a user-friendly digital environment We believe TMR-AR can someday help us conduct thought experiments scientifically, to be pedagogically visualized in a zoom-in-and-out, consistent, multi-scale approximations.

  20. Development of a flight qualified 100 x 100 mm MCP UV detector using advanced cross strip anodes and associated ASIC electronics

    NASA Astrophysics Data System (ADS)

    Vallerga, John; McPhate, Jason; Tremsin, Anton; Siegmund, Oswald; Raffanti, Rick; Cumming, Harley; Seljak, Andrej; Virta, Vihtori; Varner, Gary

    2016-07-01

    Photon counting microchannel plate (MCP) imagers have been the detector of choice for most UV astronomical missions over the last three decades (e.g. EUVE, FUSE, COS on Hubble etc.) and been mentioned for instruments on future large telescopes in space such as LUVOIR14. Using cross strip anodes, improvements in the MCP laboratory readout technology have resulted in better spatial resolution (x10), temporal resolution (x 1000) and output event rate (x100), all the while operating at lower gain (x10) resulting in lower high voltage requirements and longer MCP lifetimes. A crossed strip anode MCP readout starts with a set of orthogonal conducting strips (e.g. 80 x 80), typically spaced at a 635 micron pitch onto which charge clouds from MCP amplified events land. Each strip has its own charge sensitive amplifier that is sampled continuously by a dedicated analog to digital converter (ADC). All of the ADC digital output lines are fed into a field programmable gate array (FGPA) which can detect charge events landing on the strips, measure the peak amplitudes of those charge events and calculate their spatial centroid along with their time of arrival (X,Y,T) and pass this information to a downstream computer. Laboratory versions of these electronics have demonstrated < 20 microns FWHM spatial resolution, count rates on the order of 2 MHz, and temporal resolution of 1ns. In 2012 our group at U.C. Berkeley, along with our partners at the U. Hawaii, received a NASA Strategic Astrophysics Technology (SAT) grant to raise the TRL of a cross strip detector from 4 to 6 by replacing most of the 19" rack mounted, high powered electronics with application specific integrated circuits (ASICs) which will lower the power, mass, and volume requirements of the detector electronics. We were also tasked to design and fabricate a "standard" 50mm square active area MCP detector incorporating these electronics that can be environmentally qualified for flight (temperature, vacuum, vibration). ASICs designed for this program have been successfully fabricated and are undergoing extensive testing. We will present the latest progress on these ASIC designs and their performance. We will also show our preliminary work on scaling these designs (detector and electronics) to a flight qualified 100 x 100 mm cross strip detector, which has recently been funded through a follow on SAT grant.

  1. Effects of instrument characteristics on cloud properties retrieved from satellite imagery data

    NASA Technical Reports Server (NTRS)

    Baldwin, D. G.; Coakley, J. A., Jr.; Zhang, M. S.

    1986-01-01

    The relationships between sensor resolution and derived cloud properties in satellite remote sensing were studied by comparisons of cloud characteristics determined by spatial coherence analysis of AVHRR and GOES data. The latter data were simulated from 11 microns AVHRR data and were assigned a resolution (8 sq km) half that of the AVHRR. Day and nighttime passes were considered for single-layer maritime cloud systems. Sample radiance vs local standard deviation plots of 1024 points are provided for the same area from AVHRR and GOES-East sensors, demonstrating a qualitative agreement.

  2. Spatial Modeling and Uncertainty Assessment of Fine Scale Surface Processes Based on Coarse Terrain Elevation Data

    NASA Astrophysics Data System (ADS)

    Rasera, L. G.; Mariethoz, G.; Lane, S. N.

    2017-12-01

    Frequent acquisition of high-resolution digital elevation models (HR-DEMs) over large areas is expensive and difficult. Satellite-derived low-resolution digital elevation models (LR-DEMs) provide extensive coverage of Earth's surface but at coarser spatial and temporal resolutions. Although useful for large scale problems, LR-DEMs are not suitable for modeling hydrologic and geomorphic processes at scales smaller than their spatial resolution. In this work, we present a multiple-point geostatistical approach for downscaling a target LR-DEM based on available high-resolution training data and recurrent high-resolution remote sensing images. The method aims at generating several equiprobable HR-DEMs conditioned to a given target LR-DEM by borrowing small scale topographic patterns from an analogue containing data at both coarse and fine scales. An application of the methodology is demonstrated by using an ensemble of simulated HR-DEMs as input to a flow-routing algorithm. The proposed framework enables a probabilistic assessment of the spatial structures generated by natural phenomena operating at scales finer than the available terrain elevation measurements. A case study in the Swiss Alps is provided to illustrate the methodology.

  3. Laser Speckle Imaging of Cerebral Blood Flow

    NASA Astrophysics Data System (ADS)

    Luo, Qingming; Jiang, Chao; Li, Pengcheng; Cheng, Haiying; Wang, Zhen; Wang, Zheng; Tuchin, Valery V.

    Monitoring the spatio-temporal characteristics of cerebral blood flow (CBF) is crucial for studying the normal and pathophysiologic conditions of brain metabolism. By illuminating the cortex with laser light and imaging the resulting speckle pattern, relative CBF images with tens of microns spatial and millisecond temporal resolution can be obtained. In this chapter, a laser speckle imaging (LSI) method for monitoring dynamic, high-resolution CBF is introduced. To improve the spatial resolution of current LSI, a modified LSI method is proposed. To accelerate the speed of data processing, three LSI data processing frameworks based on graphics processing unit (GPU), digital signal processor (DSP), and field-programmable gate array (FPGA) are also presented. Applications for detecting the changes in local CBF induced by sensory stimulation and thermal stimulation, the influence of a chemical agent on CBF, and the influence of acute hyperglycemia following cortical spreading depression on CBF are given.

  4. A two-dimensional intensified photodiode array for imaging spectroscopy

    NASA Technical Reports Server (NTRS)

    Tennyson, P. D.; Dymond, K.; Moos, H. W.; Feldman, P. D.; Mackey, E. F.

    1986-01-01

    The Johns Hopkins University is currently developing an instrument to fly aboard NASA's Space Shuttle as a Spartan payload in the late 1980s. This Spartan free flyer will obtain spatially resolved spectra of faint extended emission line objects in the wavelength range 750-1150 A at about 2-A resolution. The use of two-dimensional photon counting detectors will give simultaneous coverage of the 400 A spectral range and the 9 arc-minute spatial resolution along the spectrometer slit. The progress towards the flight detector is reported here with preliminary results from a laboratory breadboard detector, and a comparison with the one-dimensional detector developed for the Hopkins Ultraviolet Telescope. A hardware digital centroiding algorithm has been successfully implemented. The system is ultimately capable of 15-micron resolution in two dimensions at the image plane and can handle continuous counting rates of up to 8000 counts/s.

  5. Development of a 2K x 2K GaAs QWIP Focal Plane Array

    NASA Technical Reports Server (NTRS)

    Jhabvala, M.; Choi, K.; Jhabvala, C.; Kelly, D.; Hess, L.; Ewin, A.; La, A.; Wacynski, A.; Sun, J.; Adachi, T.; hide

    2013-01-01

    We are developing the next generation of GaAs Quantum Well Infrared Photodetector (QWIP) focal plane arrays (FPAs) in preparation for future NASA space-borne Earth observing missions. It is anticipated that these missions will require both wider ground spatial coverage as well as higher ground imaging resolution. In order to demonstrate our capability in meeting these future goals we have taken a two-tiered approach in the next stage of advanced QWIP focal plane array development. We will describe our progress in the development of a 512 x 3,200 (512 x 3K) array format for this next generation thermal imaging array for the NASA Landsat project. However, there currently is no existing readout integrated circuit (ROIC) for this format array.so to demonstrate the ability to scale-up an existing ROIC we developed a 1,920 x 2,048 (2K x 2K) array and it hybridized to a Raytheon SB419 CTIA readout integrated circuit that was scaled up from their existing 512 x 640 SB339 ROIC. Two versions of the 512 x 3K QWIP array were fabricated to accommodate a future design scale-up of both the Indigo 9803 ROIC based on a 25 micron pixel dimension and a scale up of the Indigo 9705 ROIC based on a 30 micron pixel dimension. Neither readout for the 512 x 3K has yet to be developed but we have fabricated both versions of the array. We describe the design, development and test results of this effort as well as the specific applications these FPAs are intended to address.

  6. Real time quantitative imaging for semiconductor crystal growth, control and characterization

    NASA Technical Reports Server (NTRS)

    Wargo, Michael J.

    1991-01-01

    A quantitative real time image processing system has been developed which can be software-reconfigured for semiconductor processing and characterization tasks. In thermal imager mode, 2D temperature distributions of semiconductor melt surfaces (900-1600 C) can be obtained with temperature and spatial resolutions better than 0.5 C and 0.5 mm, respectively, as demonstrated by analysis of melt surface thermal distributions. Temporal and spatial image processing techniques and multitasking computational capabilities convert such thermal imaging into a multimode sensor for crystal growth control. A second configuration of the image processing engine in conjunction with bright and dark field transmission optics is used to nonintrusively determine the microdistribution of free charge carriers and submicron sized crystalline defects in semiconductors. The IR absorption characteristics of wafers are determined with 10-micron spatial resolution and, after calibration, are converted into charge carrier density.

  7. Five Micron High Resolution MALDI Mass Spectrometry Imaging with Simple, Interchangeable, Multi-Resolution Optical System

    DOE PAGES

    Feenstra, Adam D.; Dueñas, Maria Emilia; Lee, Young Jin

    2017-01-03

    High-spatial resolution mass spectrometry imaging (MSI) is crucial for the mapping of chemical distributions at the cellular and subcellular level. Here in this work, we improved our previous laser optical system for matrix-assisted laser desorption ionization (MALDI)-MSI, from ~9 μm practical laser spot size to a practical laser spot size of ~4 μm, thereby allowing for 5 μm resolution imaging without oversampling. This is accomplished through a combination of spatial filtering, beam expansion, and reduction of the final focal length. Most importantly, the new laser optics system allows for simple modification of the spot size solely through the interchanging ofmore » the beam expander component. Using 10×, 5×, and no beam expander, we could routinely change between ~4, ~7, and ~45 μm laser spot size, in less than 5 min. We applied this multi-resolution MALDI-MSI system to a single maize root tissue section with three different spatial resolutions of 5, 10, and 50 μm and compared the differences in imaging quality and signal sensitivity. Lastly, we also demonstrated the difference in depth of focus between the optical systems with 10× and 5× beam expanders.« less

  8. Five Micron High Resolution MALDI Mass Spectrometry Imaging with Simple, Interchangeable, Multi-Resolution Optical System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feenstra, Adam D.; Dueñas, Maria Emilia; Lee, Young Jin

    High-spatial resolution mass spectrometry imaging (MSI) is crucial for the mapping of chemical distributions at the cellular and subcellular level. Here in this work, we improved our previous laser optical system for matrix-assisted laser desorption ionization (MALDI)-MSI, from ~9 μm practical laser spot size to a practical laser spot size of ~4 μm, thereby allowing for 5 μm resolution imaging without oversampling. This is accomplished through a combination of spatial filtering, beam expansion, and reduction of the final focal length. Most importantly, the new laser optics system allows for simple modification of the spot size solely through the interchanging ofmore » the beam expander component. Using 10×, 5×, and no beam expander, we could routinely change between ~4, ~7, and ~45 μm laser spot size, in less than 5 min. We applied this multi-resolution MALDI-MSI system to a single maize root tissue section with three different spatial resolutions of 5, 10, and 50 μm and compared the differences in imaging quality and signal sensitivity. Lastly, we also demonstrated the difference in depth of focus between the optical systems with 10× and 5× beam expanders.« less

  9. A high-resolution imaging technique using a whole-body, research photon counting detector CT system

    NASA Astrophysics Data System (ADS)

    Leng, S.; Yu, Z.; Halaweish, A.; Kappler, S.; Hahn, K.; Henning, A.; Li, Z.; Lane, J.; Levin, D. L.; Jorgensen, S.; Ritman, E.; McCollough, C.

    2016-03-01

    A high-resolution (HR) data collection mode has been introduced to a whole-body, research photon-counting-detector CT system installed in our laboratory. In this mode, 64 rows of 0.45 mm x 0.45 mm detector pixels were used, which corresponded to a pixel size of 0.25 mm x 0.25 mm at the iso-center. Spatial resolution of this HR mode was quantified by measuring the MTF from a scan of a 50 micron wire phantom. An anthropomorphic lung phantom, cadaveric swine lung, temporal bone and heart specimens were scanned using the HR mode, and image quality was subjectively assessed by two experienced radiologists. High spatial resolution of the HR mode was evidenced by the MTF measurement, with 15 lp/cm and 20 lp/cm at 10% and 2% modulation. Images from anthropomorphic phantom and cadaveric specimens showed clear delineation of small structures, such as lung vessels, lung nodules, temporal bone structures, and coronary arteries. Temporal bone images showed critical anatomy (i.e. stapes superstructure) that was clearly visible in the PCD system. These results demonstrated the potential application of this imaging mode in lung, temporal bone, and vascular imaging. Other clinical applications that require high spatial resolution, such as musculoskeletal imaging, may also benefit from this high resolution mode.

  10. Synchrotron-based X-ray fluorescence microscopy enables multiscale spatial visualization of ions involved in fungal lignocellulose deconstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirker, Grant; Zelinka, Sam; Gleber, Sophie -Charlotte

    Ions play an important role in the growth and development of filamentous fungi, particularly in the fungal decay process of lignocellulose materials. The role of ions in wood degradation, and more broadly fungal metabolism, have implications for diverse research disciplines ranging from plant pathology and forest ecology, to wood protection. Despite the importance of ions in both enzymatic and non-enzymatic fungal decay mechanisms, the spatial distribution of ions in wood and fungal hyphae during decay is not known. Here we employ synchrotron based X-ray fluorescence microscopy (XFM) to map physiologically relevant ions, such as K, Ca, Mn, Fe, and Zn,more » in wood being decayed by the model brown rot fungus Serpula lacrymans. Two-dimensional XFM maps were obtained to study the ion spatial distributions from mm to submicron length scales in wood and hyphae. Three-dimensional ion volume reconstructions with submicron spatial resolution were also acquired of wood cell walls and fungal hyphae, and an estimation of oxalate concentration at the microscale was made. Results show that the fungus actively transports some ions, such as Fe, into the wood and controls the distribution of ions at both the bulk wood and cellular length scales. Within the fungal hyphae, ion volume reconstructions show inhomogeneous ion distributions at the micron length scale and this localization may be indicative of both physiological status and requirements or in some cases, potentially sites associated with the initiation of metal-catalyzed wood degradation. Finally, these measurements illustrate how synchrotron based XFM is uniquely qualified for probing the role of ions in the growth and metabolic processes of filamentous fungi.« less

  11. Synchrotron-based X-ray fluorescence microscopy enables multiscale spatial visualization of ions involved in fungal lignocellulose deconstruction

    DOE PAGES

    Kirker, Grant; Zelinka, Sam; Gleber, Sophie -Charlotte; ...

    2017-01-31

    Ions play an important role in the growth and development of filamentous fungi, particularly in the fungal decay process of lignocellulose materials. The role of ions in wood degradation, and more broadly fungal metabolism, have implications for diverse research disciplines ranging from plant pathology and forest ecology, to wood protection. Despite the importance of ions in both enzymatic and non-enzymatic fungal decay mechanisms, the spatial distribution of ions in wood and fungal hyphae during decay is not known. Here we employ synchrotron based X-ray fluorescence microscopy (XFM) to map physiologically relevant ions, such as K, Ca, Mn, Fe, and Zn,more » in wood being decayed by the model brown rot fungus Serpula lacrymans. Two-dimensional XFM maps were obtained to study the ion spatial distributions from mm to submicron length scales in wood and hyphae. Three-dimensional ion volume reconstructions with submicron spatial resolution were also acquired of wood cell walls and fungal hyphae, and an estimation of oxalate concentration at the microscale was made. Results show that the fungus actively transports some ions, such as Fe, into the wood and controls the distribution of ions at both the bulk wood and cellular length scales. Within the fungal hyphae, ion volume reconstructions show inhomogeneous ion distributions at the micron length scale and this localization may be indicative of both physiological status and requirements or in some cases, potentially sites associated with the initiation of metal-catalyzed wood degradation. Finally, these measurements illustrate how synchrotron based XFM is uniquely qualified for probing the role of ions in the growth and metabolic processes of filamentous fungi.« less

  12. Long-Wavelength Infrared Views of Messier 81

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The magnificent and dusty spiral arms of the nearby galaxy Messier 81 are highlighted in these NASA Spitzer Space Telescope images. Located in the northern constellation of Ursa Major (which also includes the Big Dipper), this galaxy is easily visible through binoculars or a small telescope. M81 is located at a distance of 12 million light-years.

    The three-panel mosaic is a series of images obtained with the multiband imaging photometer for Spitzer. Thermal infrared emission at 24 microns (top), 70 microns (center) and 160 microns (bottom) is shown in the images. Note that the effective spatial resolution degrades as ones moves to longer wavelengths.

    At these wavelengths, Spitzer sees the dust, rather than the stars, within the disc of silicates and carbonaceous grains. It is well-mixed with gas, which is best seen at radio wavelengths, to form the essential ingredients for future star formation.

  13. Statistical scaling of pore-scale Lagrangian velocities in natural porous media.

    PubMed

    Siena, M; Guadagnini, A; Riva, M; Bijeljic, B; Pereira Nunes, J P; Blunt, M J

    2014-08-01

    We investigate the scaling behavior of sample statistics of pore-scale Lagrangian velocities in two different rock samples, Bentheimer sandstone and Estaillades limestone. The samples are imaged using x-ray computer tomography with micron-scale resolution. The scaling analysis relies on the study of the way qth-order sample structure functions (statistical moments of order q of absolute increments) of Lagrangian velocities depend on separation distances, or lags, traveled along the mean flow direction. In the sandstone block, sample structure functions of all orders exhibit a power-law scaling within a clearly identifiable intermediate range of lags. Sample structure functions associated with the limestone block display two diverse power-law regimes, which we infer to be related to two overlapping spatially correlated structures. In both rocks and for all orders q, we observe linear relationships between logarithmic structure functions of successive orders at all lags (a phenomenon that is typically known as extended power scaling, or extended self-similarity). The scaling behavior of Lagrangian velocities is compared with the one exhibited by porosity and specific surface area, which constitute two key pore-scale geometric observables. The statistical scaling of the local velocity field reflects the behavior of these geometric observables, with the occurrence of power-law-scaling regimes within the same range of lags for sample structure functions of Lagrangian velocity, porosity, and specific surface area.

  14. Organic pi-stacking Semiconducting Material: Design, Synthesis and the Analysis of Structure and Properties

    NASA Astrophysics Data System (ADS)

    Wilkinson, Taylor Marie

    Oil shales are naturally occurring heterogeneous composites with micro-scale, micro-structural variations. They may be found throughout the world, with large deposits located in the United States; shales are composed of organic matter known as kerogen, clays, calcite, quartz, and other minerals. Typically their microstructure consists of a composite network where the organic matter is housed in open and closed pores between different mineral phases that range in size from sub-micron to several microns. Currently, it is unknown how the micro-scale heterogeneity of the shale will impact hydraulic fracture, which is the key extraction technique used for these materials. In this thesis, high-resolution topographic and modulus maps were collected from oil shales with the use of new nanoindentation techniques in order to characterize the micro-scale, micro-structural variations that are typical for these materials. Dynamic modulus mapping allows for substantially higher spatial resolution of properties across grains and intragranular regions of kerogen than has previously been produced with standard quasistatic indentation methods. For accurate scanning, surface variations were minimized to maintain uniform contact of the tip and appropriate quasi-static and dynamic forces were used to maintain displacement amplitudes that avoid plastic deformation of the sample. Sample preparation to minimize surface roughness was completed with the use of focused ion beam milling, however, some variation was still noted. Due to the large changes in modulus values between the constituents of the shale, there were variations in the recorded displacement amplitude values as well. In order to distinguish biased data due to surface topography or a lack of displacement amplitude, filtering techniques were developed, optimization and implemented. Variations in surface topography, which resulted in the indenter tip not being able to accurately resolve surface features, and inadequate displacement amplitude values that prohibit differentiation between material changes and the noise floor of the machine, were removed. These filters resulted in a more valid interpretation of the micro-scale, micro-structural features and arrangement, as well as the mechanical properties, that are common to oil shales.

  15. Massive Young Stellar Objects in the Galactic Center. 1; Spectroscopic Identification from Spitzer/IRS Observations

    NASA Technical Reports Server (NTRS)

    An, Deokkeun; Ramirez, Solange V.; Sellgren, Kris; Arendt, Richard G.; Boogert, A. C. Adwin; Robitaille, Thomas P.; Schultheis, Mathias; Cotera, Angela S.; Smith, Howard A.; Stolovy, Susan R.

    2011-01-01

    We present results from our spectroscopic study, using the Infrared Spectrograph (IRS) onboard the Spitzer Space Telescope, designed to identify massive young stellar objects (YSOs) in the Galactic Center (GC). Our sample of 107 YSO candidates was selected based on IRAC colors from the high spatial resolution, high sensitivity Spitzer/IRAC images in the Central Molecular Zone (CMZ), which spans the central approximately 300 pc region of the Milky Way Galaxy. We obtained IRS spectra over 5 micron to 35 micron using both high- and low-resolution IRS modules. We spectroscopically identify massive YSOs by the presence of a 15.4 micron shoulder on the absorption profile of 15 micron CO2 ice, suggestive of CO2 ice mixed with CH30H ice on grains. This 15.4 micron shoulder is clearly observed in 16 sources and possibly observed in an additional 19 sources. We show that 9 massive YSOs also reveal molecular gas-phase absorption from C02, C2H2, and/or HCN, which traces warm and dense gas in YSOs. Our results provide the first spectroscopic census of the massive YSO population in the GC. We fit YSO models to the observed spectral energy distributions and find YSO masses of 8 - 23 solar Mass, which generally agree with the masses derived from observed radio continuum emission. We find that about 50% of photometrically identified YSOs are confirmed with our spectroscopic study. This implies a preliminary star formation rate of approximately 0.07 solar mass/yr at the GC.

  16. Charge Loss and Charge Sharing Measurements for Two Different Pixelated Cadmium-Zinc-Telluride Detectors

    NASA Technical Reports Server (NTRS)

    Gaskin, Jessica; Sharma, Dharma; Ramsey, Brian; Seller, Paul

    2003-01-01

    As part of ongoing research at Marshall Space Flight Center, Cadmium-Zinc- Telluride (CdZnTe) pixilated detectors are being developed for use at the focal plane of the High Energy Replicated Optics (HERO) telescope. HERO requires a 64x64 pixel array with a spatial resolution of around 200 microns (with a 6m focal length) and high energy resolution (< 2% at 60keV). We are currently testing smaller arrays as a necessary first step towards this goal. In this presentation, we compare charge sharing and charge loss measurements between two devices that differ both electronically and geometrically. The first device consists of a 1-mm-thick piece of CdZnTe that is sputtered with a 4x4 array of pixels with pixel pitch of 750 microns (inter-pixel gap is 100 microns). The signal is read out using discrete ultra-low-noise preamplifiers, one for each of the 16 pixels. The second detector consists of a 2-mm-thick piece of CdZnTe that is sputtered with a 16x16 array of pixels with a pixel pitch of 300 microns (inter-pixel gap is 50 microns). Instead of using discrete preamplifiers, the crystal is bonded to an ASIC that provides all of the front-end electronics to each of the 256 pixels. what degree the bias voltage (i.e. the electric field) and hence the drift and diffusion coefficients affect our measurements. Further, we compare the measured results with simulated results and discuss to

  17. Resolution power in digital in-line holography

    NASA Astrophysics Data System (ADS)

    Garcia-Sucerquia, J.; Xu, W.; Jericho, S. K.; Jericho, M. H.; Klages, P.; Kreuzer, H. J.

    2006-01-01

    Digital in-line holographic microscopy (DIHM) can achieve wavelength resolution both laterally and in depth with the simple optical setup consisting of a laser illuminating a wavelength-sized pinhole and a CCD camera for recording the hologram. The reconstruction is done numerically on the basis of the Kirchhoff-Helmholtz transform which yields a three-dimensional image of the objects throughout the sample volume. Resolution in DIHM depends on several controllable factors or parameters: (1) pinhole size controlling spatial coherence, (2) numerical aperture given by the size and positioning of the recording CCD chip, (3) pixel density and dynamic range controlling fringe resolution and noise level in the hologram and (4) wavelength. We present a detailed study of the individual and combined effects of these factors by doing an analytical analysis coupled with numerical simulations of holograms and their reconstruction. The result of this analysis is a set of criteria, also in the form of graphs, which can be used for the optimum design of the DIHM setup. We will also present a series of experimental results that test and confirm our theoretical analysis. The ultimate resolution to date is the imaging of the motion of submicron spheres and bacteria, a few microns apart, with speeds of hundreds of microns per second.

  18. A Study on the Effects of Spatial Scale on Snow Process in Hyper-Resolution Hydrological Modelling over Mountainous Areas

    NASA Astrophysics Data System (ADS)

    Garousi Nejad, I.; He, S.; Tang, Q.; Ogden, F. L.; Steinke, R. C.; Frazier, N.; Tarboton, D. G.; Ohara, N.; Lin, H.

    2017-12-01

    Spatial scale is one of the main considerations in hydrological modeling of snowmelt in mountainous areas. The size of model elements controls the degree to which variability can be explicitly represented versus what needs to be parameterized using effective properties such as averages or other subgrid variability parameterizations that may degrade the quality of model simulations. For snowmelt modeling terrain parameters such as slope, aspect, vegetation and elevation play an important role in the timing and quantity of snowmelt that serves as an input to hydrologic runoff generation processes. In general, higher resolution enhances the accuracy of the simulation since fine meshes represent and preserve the spatial variability of atmospheric and surface characteristics better than coarse resolution. However, this increases computational cost and there may be a scale beyond which the model response does not improve due to diminishing sensitivity to variability and irreducible uncertainty associated with the spatial interpolation of inputs. This paper examines the influence of spatial resolution on the snowmelt process using simulations of and data from the Animas River watershed, an alpine mountainous area in Colorado, USA, using an unstructured distributed physically based hydrological model developed for a parallel computing environment, ADHydro. Five spatial resolutions (30 m, 100 m, 250 m, 500 m, and 1 km) were used to investigate the variations in hydrologic response. This study demonstrated the importance of choosing the appropriate spatial scale in the implementation of ADHydro to obtain a balance between representing spatial variability and the computational cost. According to the results, variation in the input variables and parameters due to using different spatial resolution resulted in changes in the obtained hydrological variables, especially snowmelt, both at the basin-scale and distributed across the model mesh.

  19. OT1_tvelusam_2: HIFI studies of the small-scale structures in the Galactic diffuse clouds with [CII] and [CI

    NASA Astrophysics Data System (ADS)

    Velusamy, T.

    2010-07-01

    The 1.9 THz [CII] observations provide a powerful probe of warm diffuse clouds, because they can observe them in emission and are useful as a tracer of their molecular H2 not directly traced by CO or other means. HIFI observations of [CII] provide a high resolution of 12 arcsec, better than that for single dish CO (> 30 arcsec) maps, and much better than HI (>30 arcsec). Thus with HIFI we have an opportunity probe the small scale structures in diffuse clouds in the inner Galaxy at distances > 3 kpc. To study the structure of diffuse ISM gas at small scales we propose HIFI maps of 1.9 THz (158 micron) [CII] line emission in a selection of 16 lines of sight (LOSs) towards the inner Galaxy, which are also being observed as part of the GOT C+ survey of [CII] in the Galactic plane. GOT C+ provides mainly single point spectra without any spatial data. Maps of [CII] will constrain better the cloud properties and models when combining [CII] and HI data. The proposed OTF X map will be along the longitude and latitude centered on 18 selected GOT C+ LOS over a length of 3 arcmin in each direction, which is adequate enough to provide sufficient spatial information on the small scale structures at larger distances (>3 kpc) and to characterize the CII filling factor in the larger beams of the ancillary (HI, CO, and CI data). The [CI] 609 & 370micron and the 12CO(7-6) (which lies within the CI band) are excellent diagnostics of the physical conditions of transition clouds and PDRs. We will use the ratio of the [CI] lines to constrain the kinetic temperature and volume density of the CII/CI/CO transition zones in molecular clouds using radiative transfer codes. We also propose OTF X maps in both the [CI] lines for all CII target LOSs. We anticipate fully resolved structural data in [CII] on at least 300 velocity resolved clouds along with their [CI] emissions. We request a total of 33.2 hrs of HIFI observing time.

  20. Effects of spatial resolution and landscape structure on land cover characterization

    NASA Astrophysics Data System (ADS)

    Yang, Wenli

    This dissertation addressed problems in scaling, problems that are among the main challenges in remote sensing. The principal objective of the research was to investigate the effects of changing spatial scale on the representation of land cover. A second objective was to determine the relationship between such effects, characteristics of landscape structure and scaling procedures. Four research issues related to spatial scaling were examined. They included: (1) the upscaling of Normalized Difference Vegetation Index (NDVI); (2) the effects of spatial scale on indices of landscape structure; (3) the representation of land cover databases at different spatial scales; and (4) the relationships between landscape indices and land cover area estimations. The overall bias resulting from non-linearity of NDVI in relation to spatial resolution is generally insignificant as compared to other factors such as influences of aerosols and water vapor. The bias is, however, related to land surface characteristics. Significant errors may be introduced in heterogeneous areas where different land cover types exhibit strong spectral contrast. Spatially upscaled SPOT and TM NDVIs have information content comparable with the AVHRR-derived NDVI. Indices of landscape structure and spatial resolution are generally related, but the exact forms of the relationships are subject to changes in other factors including the basic patch unit constituting a landscape and the proportional area of foreground land cover under consideration. The extent of agreement between spatially aggregated coarse resolution land cover datasets and full resolution datasets changes with the properties of the original datasets, including the pixel size and class definition. There are close relationships between landscape structure and class areas estimated from spatially aggregated land cover databases. The relationships, however, do not permit extension from one area to another. Inversion calibration across different geographic/ecological areas is, therefore, not feasible. Different rules govern the land cover area changes across resolutions when different upscaling methods are used. Special attention should be given to comparison between land cover maps derived using different methods.

  1. JIRAM-Juno: Overview of Preliminary Results in the Study of Jupiter "Infrared-Bright" Areas

    NASA Astrophysics Data System (ADS)

    Grassi, Davide; Adriani, Alberto; Bolton, Scott J.

    2017-04-01

    The JIRAM instrument on board the Juno spacecraft includes a spectrometer channel that operates in the range 2-5 microns with a spectral resolution of about 15 nm. Data from this channel are particularly valuable in the study of bright IR regions, where the upper cloud decks are relatively thin and the thermal radiation emitted at pressures down to 3-5 bars can be measured by infrared remote-sensing instruments. Previous studies using NIMS-Galileo [1] and VIMS-Cassini [2] data, as well as a specific assessment for the JIRAM instrument [3], have demonstrated the possibility of constraining the water, ammonia and phosphine content using moderate-resolution spectra spanning the methane transparency window at 5 microns. While considerable efforts have been devoted to the study of brightest features - the so-called "Hot-Spots", located between the Equatorial zone and the North equatorial Belt - other prominent bright areas over the disk of Jupiter remain largely uninvestigated. This talk reviews preliminary results of the JIRAM observations acquired around the first Juno "perijove" (closest approach of Jupiter) after orbit insertion. In general terms, the retrieved contents of the gaseous species mentioned above agree with the global latitudinal trends presented in [3] and [4]. Nonetheless, in several instances, the spatial capabilities of JIRAM allow one to detect specific spatial trends, likely to be associated to dynamic regimes at regional scale. This work was supported by the Italian Space Agency through ASI-INAF contract I/010/10/0 and 2014-050-R.0. JIL acknowledges support from NASA through the Juno Project. GSO acknowledges support from NASA through funds that were distributed to the Jet Propulsion Laboratory, California Institute of Technology. [1] Irwin et al., 1998, doi:10.1029/98JE00948 [2] Giles et al., 2015, doi:10.1016/j.icarus.2015.05.030 [3] Grassi et al., 2010, doi:10.1016/j.pss.2010.05.003 [4] Giles et al., 2016, arXiv:1610.09073

  2. Programmable gradational micropatterning of functional materials using maskless lithography controlling absorption.

    PubMed

    Jung, Yushin; Lee, Howon; Park, Tae-Joon; Kim, Sungsik; Kwon, Sunghoon

    2015-10-22

    The demand for patterning functional materials precisely on surfaces of stimuli-responsive devices has increased in many research fields. In situ polymerization technology is one of the most convenient ways to place the functional materials on a desired location with micron-scale accuracy. To fabricate stimuli-responsive surfaces, controlling concentration of the functional material is much as important as micropatterning them. However, patterning and controlling concentration of the functional materials simultaneously requires an additional process, such as preparing multiple co-flow microfluidic structures and numbers of solutions with various concentrations. Despite applying these processes, fabricating heterogeneous patterns in large scale (millimeter scale) is still impossible. In this study, we propose an advanced in situ polymerization technique to pattern the surface in micron scale in a concentration-controlled manner. Because the concentration of the functional materials is manipulated by self-assembly on the surface, a complex pattern could be easily fabricated without any additional procedure. The complex pattern is pre-designed with absorption amount of the functional material, which is pre-determined by the duration of UV exposure. We show that the resolution reaches up to 2.5 μm and demonstrate mm-scale objects, maintaining the same resolution. We also fabricated Multi-bit barcoded micro particles verify the flexibility of our system.

  3. Horizontal Residual Mean Circulation: Evaluation of Spatial Correlations in Coarse Resolution Ocean Models

    NASA Astrophysics Data System (ADS)

    Li, Y.; McDougall, T. J.

    2016-02-01

    Coarse resolution ocean models lack knowledge of spatial correlations between variables on scales smaller than the grid scale. Some researchers have shown that these spatial correlations play a role in the poleward heat flux. In order to evaluate the poleward transport induced by the spatial correlations at a fixed horizontal position, an equation is obtained to calculate the approximate transport from velocity gradients. The equation involves two terms that can be added to the quasi-Stokes streamfunction (based on temporal correlations) to incorporate the contribution of spatial correlations. Moreover, these new terms do not need to be parameterized and is ready to be evaluated by using model data directly. In this study, data from a high resolution ocean model have been used to estimate the accuracy of this HRM approach for improving the horizontal property fluxes in coarse-resolution ocean models. A coarse grid is formed by sub-sampling and box-car averaging the fine grid scale. The transport calculated on the coarse grid is then compared to the transport on original high resolution grid scale accumulated over a corresponding number of grid boxes. The preliminary results have shown that the estimate on coarse resolution grids roughly match the corresponding transports on high resolution grids.

  4. Scaling properties of Arctic sea ice deformation in high-resolution viscous-plastic sea ice models and satellite observations

    NASA Astrophysics Data System (ADS)

    Hutter, Nils; Losch, Martin; Menemenlis, Dimitris

    2017-04-01

    Sea ice models with the traditional viscous-plastic (VP) rheology and very high grid resolution can resolve leads and deformation rates that are localised along Linear Kinematic Features (LKF). In a 1-km pan-Arctic sea ice-ocean simulation, the small scale sea-ice deformations in the Central Arctic are evaluated with a scaling analysis in relation to satellite observations of the Envisat Geophysical Processor System (EGPS). A new coupled scaling analysis for data on Eulerian grids determines the spatial and the temporal scaling as well as the coupling between temporal and spatial scales. The spatial scaling of the modelled sea ice deformation implies multi-fractality. The spatial scaling is also coupled to temporal scales and varies realistically by region and season. The agreement of the spatial scaling and its coupling to temporal scales with satellite observations and models with the modern elasto-brittle rheology challenges previous results with VP models at coarse resolution where no such scaling was found. The temporal scaling analysis, however, shows that the VP model does not fully resolve the intermittency of sea ice deformation that is observed in satellite data.

  5. A simple approach to spectrally resolved fluorescence and bright field microscopy over select regions of interest

    PubMed Central

    Dahlberg, Peter D.; Boughter, Christopher T.; Faruk, Nabil F.; Hong, Lu; Koh, Young Hoon; Reyer, Matthew A.; Sherani, Aiman; Hammond, Adam T.

    2016-01-01

    A standard wide field inverted microscope was converted to a spatially selective spectrally resolved microscope through the addition of a polarizing beam splitter, a pair of polarizers, an amplitude-mode liquid crystal-spatial light modulator, and a USB spectrometer. The instrument is capable of simultaneously imaging and acquiring spectra over user defined regions of interest. The microscope can also be operated in a bright-field mode to acquire absorption spectra of micron scale objects. The utility of the instrument is demonstrated on three different samples. First, the instrument is used to resolve three differently labeled fluorescent beads in vitro. Second, the instrument is used to recover time dependent bleaching dynamics that have distinct spectral changes in the cyanobacteria, Synechococcus leopoliensis UTEX 625. Lastly, the technique is used to acquire the absorption spectra of CH3NH3PbBr3 perovskites and measure differences between nanocrystal films and micron scale crystals. PMID:27910631

  6. Computational Challenges in the Analysis of Petrophysics Using Microtomography and Upscaling

    NASA Astrophysics Data System (ADS)

    Liu, J.; Pereira, G.; Freij-Ayoub, R.; Regenauer-Lieb, K.

    2014-12-01

    Microtomography provides detailed 3D internal structures of rocks in micro- to tens of nano-meter resolution and is quickly turning into a new technology for studying petrophysical properties of materials. An important step is the upscaling of these properties as micron or sub-micron resolution can only be done on the sample-scale of millimeters or even less than a millimeter. We present here a recently developed computational workflow for the analysis of microstructures including the upscaling of material properties. Computations of properties are first performed using conventional material science simulations at micro to nano-scale. The subsequent upscaling of these properties is done by a novel renormalization procedure based on percolation theory. We have tested the workflow using different rock samples, biological and food science materials. We have also applied the technique on high-resolution time-lapse synchrotron CT scans. In this contribution we focus on the computational challenges that arise from the big data problem of analyzing petrophysical properties and its subsequent upscaling. We discuss the following challenges: 1) Characterization of microtomography for extremely large data sets - our current capability. 2) Computational fluid dynamics simulations at pore-scale for permeability estimation - methods, computing cost and accuracy. 3) Solid mechanical computations at pore-scale for estimating elasto-plastic properties - computational stability, cost, and efficiency. 4) Extracting critical exponents from derivative models for scaling laws - models, finite element meshing, and accuracy. Significant progress in each of these challenges is necessary to transform microtomography from the current research problem into a robust computational big data tool for multi-scale scientific and engineering problems.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jaekyun; Kim, Myung -Gil; Kim, Jaehyun

    The success of silicon based high density integrated circuits ignited explosive expansion of microelectronics. Although the inorganic semiconductors have shown superior carrier mobilities for conventional high speed switching devices, the emergence of unconventional applications, such as flexible electronics, highly sensitive photosensors, large area sensor array, and tailored optoelectronics, brought intensive research on next generation electronic materials. The rationally designed multifunctional soft electronic materials, organic and carbon-based semiconductors, are demonstrated with low-cost solution process, exceptional mechanical stability, and on-demand optoelectronic properties. Unfortunately, the industrial implementation of the soft electronic materials has been hindered due to lack of scalable fine-patterning methods. Inmore » this report, we demonstrated facile general route for high throughput sub-micron patterning of soft materials, using spatially selective deep-ultraviolet irradiation. For organic and carbon-based materials, the highly energetic photons (e.g. deep-ultraviolet rays) enable direct photo-conversion from conducting/semiconducting to insulating state through molecular dissociation and disordering with spatial resolution down to a sub-μm-scale. As a result, the successful demonstration of organic semiconductor circuitry promise our result proliferate industrial adoption of soft materials for next generation electronics.« less

  8. Photonic nanojet super-resolution in immersed ordered assembly of dielectric microspheres

    NASA Astrophysics Data System (ADS)

    Geints, Y. E.; Zemlyanov, A. A.

    2017-10-01

    Specific spatially-localized optical field structure, which is often referred to as a photonic nanojet (PNJ), is formed in the near-field scattering area of non-absorbing dielectric micron-sized particle exposed to an optical radiation. By virtue of the finite-difference time-domain technique we numerically simulate the two-dimensional array of PNJs created by an ordered single-layer microassembly of glass microspheres immersed in a transparent polymer matrix. The behavior of the main PNJ parameters (length, diameter, and intensity) is analyzed subject to the immersion depth of the microparticles and cooperative interference effects of the neighboring microspheres. We show that depending on microassembly configuration, the PNJ quality can be significantly improved; in particular, the PNJ spatial resolution better than λ/5 can be achieved.

  9. Active chiral control of GHz acoustic whispering-gallery modes

    NASA Astrophysics Data System (ADS)

    Mezil, Sylvain; Fujita, Kentaro; Otsuka, Paul H.; Tomoda, Motonobu; Clark, Matt; Wright, Oliver B.; Matsuda, Osamu

    2017-10-01

    We selectively generate chiral surface-acoustic whispering-gallery modes in the gigahertz range on a microscopic disk by means of an ultrafast time-domain technique incorporating a spatial light modulator. Active chiral control is achieved by making use of an optical pump spatial profile in the form of a semicircular arc, positioned on the sample to break the symmetry of clockwise- and counterclockwise-propagating modes. Spatiotemporal Fourier transforms of the interferometrically monitored two-dimensional acoustic fields measured to micron resolution allow individual chiral modes and their azimuthal mode order, both positive and negative, to be distinguished. In particular, for modes with 15-fold rotational symmetry, we demonstrate ultrafast chiral control of surface acoustic waves in a micro-acoustic system with picosecond temporal resolution. Applications include nondestructive testing and surface acoustic wave devices.

  10. Pore-scale dynamics of salt transport in drying porous media

    NASA Astrophysics Data System (ADS)

    Shokri, N.

    2013-12-01

    Understanding the physics of water evaporation from saline porous media is important in many hydrological processes such as land-atmosphere interactions, water management, vegetation, soil salinity, and mineral-fluid interactions. We applied synchrotron x-ray micro-tomography to investigate the pore-scale dynamics of dissolved salt distribution in a three dimensional drying saline porous media using a cylindrical plastic column (15 mm in height and 8 mm in diameter) packed with sand particles saturated with CaI2 solution (5% concentration by mass) with a spatial and temporal resolution of 12 microns and 30 min, respectively. Every time the drying sand column was set to be imaged, two different images were recorded using distinct synchrotron X-rays energies immediately above (33.2690 keV) and below (33.0690 keV) the K-edge value of Iodine (33.1694 keV). Taking the difference between pixel gray values enabled us to delineate the spatial and temporal distribution of CaI2 concentration at pore scale. The experiment was continued for 12 hours. Results indicate that during early stages of evaporation, air preferentially invades large pores at the surface while finer pores remain saturated and connected to the wet zone at bottom via capillary-induced liquid flow. Consequently, the salt concentration increases preferentially in finer pores where evaporation occurs. The Peclet number (describing the competition between convection and diffusion) was greater than one in our experiment resulting in higher salt concentrations closer to the evaporation surface indicating a convection-driven process. The obtained salt profiles were used to evaluate the numerical solution of the convection-diffusion equation (CDE). Results show that the macro-scale CDE could capture the overall trend of the measured salt profiles but fail to produce the exact slope of the profiles. Our results shed new insight on the physics of salt transport and its complex dynamics in drying porous media and establish synchrotron x-ray micro-tomography as an effective tool to investigate the dynamics of dissolved salt transport in porous media with high spatial and temporal resolutions.

  11. Scaling field data to calibrate and validate moderate spatial resolution remote sensing models

    USGS Publications Warehouse

    Baccini, A.; Friedl, M.A.; Woodcock, C.E.; Zhu, Z.

    2007-01-01

    Validation and calibration are essential components of nearly all remote sensing-based studies. In both cases, ground measurements are collected and then related to the remote sensing observations or model results. In many situations, and particularly in studies that use moderate resolution remote sensing, a mismatch exists between the sensor's field of view and the scale at which in situ measurements are collected. The use of in situ measurements for model calibration and validation, therefore, requires a robust and defensible method to spatially aggregate ground measurements to the scale at which the remotely sensed data are acquired. This paper examines this challenge and specifically considers two different approaches for aggregating field measurements to match the spatial resolution of moderate spatial resolution remote sensing data: (a) landscape stratification; and (b) averaging of fine spatial resolution maps. The results show that an empirically estimated stratification based on a regression tree method provides a statistically defensible and operational basis for performing this type of procedure. 

  12. Size effects under homogeneous deformation of single crystals: A discrete dislocation analysis

    NASA Astrophysics Data System (ADS)

    Guruprasad, P. J.; Benzerga, A. A.

    Mechanism-based discrete dislocation plasticity is used to investigate the effect of size on micron scale crystal plasticity under conditions of macroscopically homogeneous deformation. Long-range interactions among dislocations are naturally incorporated through elasticity. Constitutive rules are used which account for key short-range dislocation interactions. These include junction formation and dynamic source and obstacle creation. Two-dimensional calculations are carried out which can handle high dislocation densities and large strains up to 0.1. The focus is laid on the effect of dimensional constraints on plastic flow and hardening processes. Specimen dimensions ranging from hundreds of nanometers to tens of microns are considered. Our findings show a strong size-dependence of flow strength and work-hardening rate at the micron scale. Taylor-like hardening is shown to be insufficient as a rationale for the flow stress scaling with specimen dimensions. The predicted size effect is associated with the emergence, at sufficient resolution, of a signed dislocation density. Heuristic correlations between macroscopic flow stress and macroscopic measures of dislocation density are sought. Most accurate among those is a correlation based on two state variables: the total dislocation density and an effective, scale-dependent measure of signed density.

  13. A model of the 8-25 micron point source infrared sky

    NASA Technical Reports Server (NTRS)

    Wainscoat, Richard J.; Cohen, Martin; Volk, Kevin; Walker, Helen J.; Schwartz, Deborah E.

    1992-01-01

    We present a detailed model for the IR point-source sky that comprises geometrically and physically realistic representations of the Galactic disk, bulge, stellar halo, spiral arms (including the 'local arm'), molecular ring, and the extragalactic sky. We represent each of the distinct Galactic components by up to 87 types of Galactic source, each fully characterized by scale heights, space densities, and absolute magnitudes at BVJHK, 12, and 25 microns. The model is guided by a parallel Monte Carlo simulation of the Galaxy at 12 microns. The content of our Galactic source table constitutes a good match to the 12 micron luminosity function in the simulation, as well as to the luminosity functions at V and K. We are able to produce differential and cumulative IR source counts for any bandpass lying fully within the IRAS Low-Resolution Spectrometer's range (7.7-22.7 microns as well as for the IRAS 12 and 25 micron bands. These source counts match the IRAS observations well. The model can be used to predict the character of the point source sky expected for observations from IR space experiments.

  14. Proportional drift tubes for large area muon detectors

    NASA Technical Reports Server (NTRS)

    Cho, C.; Higashi, S.; Hiraoka, N.; Maruyama, A.; Okusawa, T.; Sato, T.; Suwada, T.; Takahashi, T.; Umeda, H.

    1985-01-01

    A proportional drift chamber which consists of eight rectangular drift tubes with cross section of 10 cm x 5 cm, a sense wire of 100 micron phi gold-plated tungsten wire and the length of 6 m, was tested using cosmic ray muons. Spatial resolution (rms) is between 0.5 and 1 mm over drift space of 50 mm, depending on incident angle and distance from sense wire.

  15. Four-dimensional ultrafast electron microscopy of phase transitions

    PubMed Central

    Grinolds, Michael S.; Lobastov, Vladimir A.; Weissenrieder, Jonas; Zewail, Ahmed H.

    2006-01-01

    Reported here is direct imaging (and diffraction) by using 4D ultrafast electron microscopy (UEM) with combined spatial and temporal resolutions. In the first phase of UEM, it was possible to obtain snapshot images by using timed, single-electron packets; each packet is free of space–charge effects. Here, we demonstrate the ability to obtain sequences of snapshots (“movies”) with atomic-scale spatial resolution and ultrashort temporal resolution. Specifically, it is shown that ultrafast metal–insulator phase transitions can be studied with these achieved spatial and temporal resolutions. The diffraction (atomic scale) and images (nanometer scale) we obtained manifest the structural phase transition with its characteristic hysteresis, and the time scale involved (100 fs) is now studied by directly monitoring coordinates of the atoms themselves. PMID:17130445

  16. Aerodyne Research mobile infrared methane monitor

    NASA Technical Reports Server (NTRS)

    Mcmanus, J. B.; Kebabian, P. L.; Kolb, C. E.

    1991-01-01

    An improved real-time methane monitor based on infrared absorption of the 3.39 micron line of a HeNe laser is described. Real time in situ measurement of methane has important applications in stratospheric and tropospheric chemistry, especially when high accuracy measurements can be made rapidly, providing fine spatial-scale information. The methane instrument provides 5 ppb resolution in a 1 sec averaging time. A key feature in this instrument is the use of magnetic (Zeeman) broadening to achieve continuous tunability with constant output power over a range of 0.017/cm. The instruments optical absorption path length is 47 m through sampled air held at 50 torr in a multipass cell of the Herriott (off-axis resonator) type. A microprocessor controls laser frequency and amplitude and collects data with minimal operator attention. The instrument recently has been used to measure methane emissions from a variety of natural and artificial terrestrial sources.

  17. Image restoration and superresolution as probes of small scale far-IR structure in star forming regions

    NASA Technical Reports Server (NTRS)

    Lester, D. F.; Harvey, P. M.; Joy, M.; Ellis, H. B., Jr.

    1986-01-01

    Far-infrared continuum studies from the Kuiper Airborne Observatory are described that are designed to fully exploit the small-scale spatial information that this facility can provide. This work gives the clearest picture to data on the structure of galactic and extragalactic star forming regions in the far infrared. Work is presently being done with slit scans taken simultaneously at 50 and 100 microns, yielding one-dimensional data. Scans of sources in different directions have been used to get certain information on two dimensional structure. Planned work with linear arrays will allow us to generalize our techniques to two dimensional image restoration. For faint sources, spatial information at the diffraction limit of the telescope is obtained, while for brighter sources, nonlinear deconvolution techniques have allowed us to improve over the diffraction limit by as much as a factor of four. Information on the details of the color temperature distribution is derived as well. This is made possible by the accuracy with which the instrumental point-source profile (PSP) is determined at both wavelengths. While these two PSPs are different, data at different wavelengths can be compared by proper spatial filtering. Considerable effort has been devoted to implementing deconvolution algorithms. Nonlinear deconvolution methods offer the potential of superresolution -- that is, inference of power at spatial frequencies that exceed D lambda. This potential is made possible by the implicit assumption by the algorithm of positivity of the deconvolved data, a universally justifiable constraint for photon processes. We have tested two nonlinear deconvolution algorithms on our data; the Richardson-Lucy (R-L) method and the Maximum Entropy Method (MEM). The limits of image deconvolution techniques for achieving spatial resolution are addressed.

  18. Low-level water vapor fields from the VISSR atmospheric sounder (VAS) split window channels at 11 and 12 microns. [visible infrared spin scan radiometer

    NASA Technical Reports Server (NTRS)

    Chesters, D.; Uccellini, L.; Robinson, W.

    1982-01-01

    A series of high-resolution water vapor fields were derived from the 11 and 12 micron channels of the VISSR Atmospheric Sounder (VAS) on GOES-5. The low-level tropospheric moisture content was separated from the surface and atmospheric radiances by using the differential adsorption across the 'split window' along with the average air temperature from imbedded radiosondes. Fields of precipitable water are presented in a time sequence of five false color images taken over the United States at 3-hour intervals. Vivid subsynoptic and mesoscale patterns evolve at 15 km horizontal resolution over the 12-hour observing period. Convective cloud formations develop from several areas of enhanced low-level water vapor, especially where the vertical water vapor gradient relatively strong. Independent verification at radiosonde sites indicates fairly good absolute accuracy, and the spatial and temporal continuity of the water vapor features indicates very good relative accuracy. Residual errors are dominated by radiometer noise and unresolved clouds.

  19. Observation of radiation damage induced by single-ion hits at the heavy ion microbeam system

    NASA Astrophysics Data System (ADS)

    Kamiya, Tomihiro; Sakai, Takuro; Hirao, Toshio; Oikawa, Masakazu

    2001-07-01

    A single-ion hit system combined with the JAERI heavy ion microbeam system can be applied to observe individual phenomena induced by interactions between high-energy ions and a semiconductor device using a technique to measure the pulse height of transient current (TC) signals. The reduction of the TC pulse height for a Si PIN photodiode was measured under irradiation of 15 MeV Ni ions onto various micron-sized areas in the diode. The data containing damage effect by these irradiations were analyzed with least-square fitting using a Weibull distribution function. Changes of the scale and the shape parameters as functions of the width of irradiation areas brought us an assumption that a charge collection in a diode has a micron level lateral extent larger than a spatial resolution of the microbeam at 1 μm. Numerical simulations for these measurements were made with a simplified two-dimensional model based on this assumption using a Monte Carlo method. Calculated data reproducing the pulse-height reductions by single-ion irradiations were analyzed using the same function as that for the measurement. The result of this analysis, which shows the same tendency in change of parameters as that by measurements, seems to support our assumption.

  20. Chemical Mapping of Proterozoic Organic Matter at Sub-Micron Spatial Resolution

    NASA Technical Reports Server (NTRS)

    Oehler, Dorothy Z.; Robert, Francois; Mostefaoui, Smail; Meibom, Anders; Selo, Madeleine; McKay, David S.

    2006-01-01

    We have used a NanoSIMS ion microprobe to map sub-micron-scale distributions of carbon, nitrogen, sulfur, silicon, and oxygen in organic microfossils and laminae from the approximately 0.85 Ga Bitter Springs Formation of Australia. The data provide clues about the original chemistry of the microfossils, the silicification process, and biosignatures of specific microorganisms and microbial communities. Chemical maps of fossil unicells and filaments reveal distinct wall-and sheath-like structures enriched in C, N and S, consistent with their accepted biological origin. Surprisingly, organic laminae, previously considered to be amorphous, also exhibit filamentous and apparently compressed spheroidal structures defined by strong enrichments in C, N and S. By analogy to data from the well-preserved microfossils, these structures are interpreted as being of biological origin, most likely representing densely packed remnants of microbial mats. Because the preponderance of organic matter in Precambrian sediments is similarly "amorphous," our findings open a large body of generally neglected material to in situ structural, chemical, and isotopic study. Our results also offer new criteria for assessing biogenicity of problematic kerogenous materials and thus can be applied to assessments of poorly preserved or fragmentary organic residues in early Archean sediments and any that might occur in meteorites or other extraterrestrial samples.

  1. 2D Micro-XAS mapping in Diamond Anvil Cell: Application for Post-Spinel Transition

    NASA Astrophysics Data System (ADS)

    Leonid, D.; Narygina, O.; Kantor, I.; Pascarelli, S.; Aquilanti, G.; Munoz, M.

    2007-12-01

    Energy Dispersive X-ray Absorption Spectroscopy (EDXAS) is a now a well-established method which has been applied to a broad range of applications. The advantages of an energy dispersive spectrometer, that features no movement of optics during acquisition leading to an enhanced stability of energy scale, spot size and position, combined with a micron sized spot and the option of fluorescence detection, has made it possible to address 2- dimensional mapping with micron resolution on heterogeneous samples, providing full XAS information on each pixel. It is worth noting that due to the absence of mechanical scanning of the monochromator, the spatial resolution is not affected by the energy scan and remains fixed to the dimensions of the probe. In addition, the energy scale is preserved. Moreover, the dwell time per pixel is short enough to make it practically possible to acquire 100 x 100 pixel images in a few hours. We tested 2D mapping in transmission mode to perform "in-situ" investigations in the diamond anvil cell. Maps of redox and speciation at extreme conditions of pressure and temperature yield information on possible phase transitions and/or chemical reactions that occur at P and T conditions in the Earth interiors. As test sample, we chose a major component of Earth's transition zone, ringwoodite [γ-(Mg,Fe)2SiO4]. Sample synthesized in large-volume press at 19 GPa and 1700 C from natural olivine (Mg0.88,Fe0.12)2SiO4 was polished, loaded into the DAC, compressed to desire pressure, and laser-heated. We aquired Fe K-edge XANES maps at different pressures, up to ~ 40 GPa, before and after laser heating, covering for each map an area of 200 x 200 m2 at 5 m resolution. We found that laser heating does not result in re-distribution of iron between heated and non-heated areas. Within precision of measurements there are no detectable changes in iron oxidation state upon decomposition of ringwoodite in to silicate perovskite and magnesowüstite. We also observe that iron preferably partitioning in to magnesowüstite.

  2. Tethys – A Python Package for Spatial and Temporal Downscaling of Global Water Withdrawals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xinya; Vernon, Chris R.; Hejazi, Mohamad I.

    Downscaling of water withdrawals from regional/national to local scale is a fundamental step and also a common problem when integrating large scale economic and integrated assessment models with high-resolution detailed sectoral models. Tethys, an open-access software written in Python, is developed with statistical downscaling algorithms, to spatially and temporally downscale water withdrawal data to a finer scale. The spatial resolution will be downscaled from region/basin scale to grid (0.5 geographic degree) scale and the temporal resolution will be downscaled from year to month. Tethys is used to produce monthly global gridded water withdrawal products based on estimates from the Globalmore » Change Assessment Model (GCAM).« less

  3. Tethys – A Python Package for Spatial and Temporal Downscaling of Global Water Withdrawals

    DOE PAGES

    Li, Xinya; Vernon, Chris R.; Hejazi, Mohamad I.; ...

    2018-02-09

    Downscaling of water withdrawals from regional/national to local scale is a fundamental step and also a common problem when integrating large scale economic and integrated assessment models with high-resolution detailed sectoral models. Tethys, an open-access software written in Python, is developed with statistical downscaling algorithms, to spatially and temporally downscale water withdrawal data to a finer scale. The spatial resolution will be downscaled from region/basin scale to grid (0.5 geographic degree) scale and the temporal resolution will be downscaled from year to month. Tethys is used to produce monthly global gridded water withdrawal products based on estimates from the Globalmore » Change Assessment Model (GCAM).« less

  4. IRAS low resolution spectra of 26 symbiotic stars

    NASA Technical Reports Server (NTRS)

    Stencel, Robert E.; Brugel, Edward W.; Goodwill, Michael E.

    1990-01-01

    Data related to the spectral scans for 26 symbiotic stars are described which were extracted from the IRAS low resolution database. Data from the 8-15- and 15-23-micron bands are merged in a program that scales the longer wavelength and produces a weighted average of the spectral scans for each source. The survey shows that active dust producers can probably be isolated and some theories related to the presence of dust emission features are discussed in terms of source variability for measurements made with low resolution spectra.

  5. Distribution of the 3.1 micron feature in Cepheus A

    NASA Technical Reports Server (NTRS)

    Hodapp, Klaus-Werner; Eiroa, Carlos

    1989-01-01

    Near-IR absorption features produced by core-mantle dust grains are observed in many protostellar objects. The high spatial resolution observations (less or equal to 3 in.) could be helpful to monitor the expected changes of the features. Cep A/IRS 6 is a suitable candidate to carry out such a kind of study. It is located in an active star formation region and consists of a young object associated with an extended reflection nebula. The ice feature was observed in four positions of Cep A/IRS 6 with a 2.7 in. aperture. The observations were carried out at the IRTF using the cooled grating array spectrometer CGAS. The 2.4 to 3.8 micron spectra of two positions are presented.

  6. Spatial Structure of Above-Ground Biomass Limits Accuracy of Carbon Mapping in Rainforest but Large Scale Forest Inventories Can Help to Overcome.

    PubMed

    Guitet, Stéphane; Hérault, Bruno; Molto, Quentin; Brunaux, Olivier; Couteron, Pierre

    2015-01-01

    Precise mapping of above-ground biomass (AGB) is a major challenge for the success of REDD+ processes in tropical rainforest. The usual mapping methods are based on two hypotheses: a large and long-ranged spatial autocorrelation and a strong environment influence at the regional scale. However, there are no studies of the spatial structure of AGB at the landscapes scale to support these assumptions. We studied spatial variation in AGB at various scales using two large forest inventories conducted in French Guiana. The dataset comprised 2507 plots (0.4 to 0.5 ha) of undisturbed rainforest distributed over the whole region. After checking the uncertainties of estimates obtained from these data, we used half of the dataset to develop explicit predictive models including spatial and environmental effects and tested the accuracy of the resulting maps according to their resolution using the rest of the data. Forest inventories provided accurate AGB estimates at the plot scale, for a mean of 325 Mg.ha-1. They revealed high local variability combined with a weak autocorrelation up to distances of no more than10 km. Environmental variables accounted for a minor part of spatial variation. Accuracy of the best model including spatial effects was 90 Mg.ha-1 at plot scale but coarse graining up to 2-km resolution allowed mapping AGB with accuracy lower than 50 Mg.ha-1. Whatever the resolution, no agreement was found with available pan-tropical reference maps at all resolutions. We concluded that the combined weak autocorrelation and weak environmental effect limit AGB maps accuracy in rainforest, and that a trade-off has to be found between spatial resolution and effective accuracy until adequate "wall-to-wall" remote sensing signals provide reliable AGB predictions. Waiting for this, using large forest inventories with low sampling rate (<0.5%) may be an efficient way to increase the global coverage of AGB maps with acceptable accuracy at kilometric resolution.

  7. Carbon and Sulfur Isotopic Signatures of Ancient Life and Environment at the Microbial Scale: Neoarchean Shales and Carbonates

    NASA Technical Reports Server (NTRS)

    Williford, K. H.; Ushikubo, T.; Lepot, K.; Kitajima, K.; Hallmann, C.; Spicuzza, M. J.; Kozdon, R.; Eigenbrode, J. L.; Summons, R. E.; Valley, J. W.

    2015-01-01

    An approach to coordinated, spatially resolved, in situ carbon isotope analysis of organic matter and carbonate minerals, and sulfur three- and four-isotope analysis of pyrite with an unprecedented combination of spatial resolution, precision, and accuracy is described. Organic matter and pyrite from eleven rock samples of Neoarchean drill core express nearly the entire range of delta(sup 13)C, delta(sup 34)S, Delta(sup 33)S, and Delta(sup 36)S known from the geologic record, commonly in correlation with morphology, mineralogy, and elemental composition. A new analytical approach (including a set of organic calibration standards) to account for a strong correlation between H/C and instrumental bias in SIMS delta(sup 13)C measurement of organic matter is identified. Small (2-3 microns) organic domains in carbonate matrices are analyzed with sub-permil accuracy and precision. Separate 20- to 50-micron domains of kerogen in a single approx. 0.5 cu cm sample of the approx. 2.7 Ga Tumbiana Formation have delta(sup 13)C = -52.3 +/- 0.1per mille and -34.4 +/- 0.1per mille, likely preserving distinct signatures of methanotrophy and photoautotrophy. Pyrobitumen in the approx. 2.6 Ga Jeerinah Formation and the approx. 2.5 Ga Mount McRae Shale is systematically 13C-enriched relative to co-occurring kerogen, and associations with uraniferous mineral grains suggest radiolytic alteration. A large range in sulfur isotopic compositions (including higher Delta(sup 33)S and more extreme spatial gradients in Delta(sup 33)S and Delta(sup 36)S than any previously reported) are observed in correlation with morphology and associated mineralogy. Changing systematics of delta(sup 34)S, Delta(sup 33)S, and Delta(sup 36)S, previously investigated at the millimeter to centimeter scale using bulk analysis, are shown to occur at the micrometer scale of individual pyrite grains. These results support the emerging view that the dampened signature of mass-independent sulfur isotope fractionation (S-MIF) associated with the Mesoarchean continued into the early Neoarchean, and that the connections between methane and sulfur metabolism affected the production and preservation of S-MIF during the first half of the planet's history.

  8. The Link Between UV Extinction and Infrared Cirrus

    NASA Technical Reports Server (NTRS)

    Hackwell, John A.; Hecht, James; Canterna, Ronald

    1997-01-01

    Low resolution spectra from the International Ultraviolet Explorer satellite were used to derive ultraviolet extinction curves for stars in four clusters away from the galactic plane. The extinction in three of the clusters is very similar to the general interstellar curve defined by Seaton. Stars in the fourth region, near the Rho Ophiuci dark cloud, have extinction curves that are characterized by a small "linear" term component. The star BD +36 deg 781 is unique amongst the 20 stars observed in that it shows evidence for extinction by diamond grains near 1700 angstroms. We used data from the final release of the IRAS Sky Survey Atlas (ISSA) to determine the 60 micron to 100 micron intensity ratio for the infrared cirrus. The ISSA data, which have been corrected for zodiacal light, gave intensity ratios that are more robust and self-consistent than for other data sets that we used. When the infrared and ultraviolet data are combined, we see a general trend for low values of the ultraviolet "linear term" (al) to correlate with high values of 60 micron/100 micron ratio. This implies that, in regions where the average dust temperature is hotter (high 60 micron/100 micron ratio), there is a relative absence of the small silicate grains that are responsible for the ultraviolet linear term. However, the new data do not bear out our earlier contention that the 60 micron and 100 micron emissions are poorly correlated spatially in regions where the 60 micron/100 micron ratio is low. Only NGC 1647 shows this result. It may be that the different dust types are particularly poorly mixed in this area.

  9. Interferometer for measuring the dynamic surface topography of a human tear film

    NASA Astrophysics Data System (ADS)

    Primeau, Brian C.; Greivenkamp, John E.

    2012-03-01

    The anterior refracting surface of the eye is the thin tear film that forms on the surface of the cornea. Following a blink, the tear film quickly smoothes and starts to become irregular after 10 seconds. This irregularity can affect comfort and vision quality. An in vivo method of characterizing dynamic tear films has been designed based upon a near-infrared phase-shifting interferometer. This interferometer continuously measures light reflected from the tear film, allowing sub-micron analysis of the dynamic surface topography. Movies showing the tear film behavior can be generated along with quantitative metrics describing changes in the tear film surface. This tear film measurement allows analysis beyond capabilities of typical fluorescein visual inspection or corneal topography and provides better sensitivity and resolution than shearing interferometry methods. The interferometer design is capable of identifying features in the tear film much less than a micron in height with a spatial resolution of about ten microns over a 6 mm diameter. This paper presents the design of the tear film interferometer along with the considerations that must be taken when designing an interferometer for on-eye diagnostics. Discussions include eye movement, design of null optics for a range of ocular geometries, and laser emission limits for on-eye interferometry.

  10. Spectral characteristics of background error covariance and multiscale data assimilation

    DOE PAGES

    Li, Zhijin; Cheng, Xiaoping; Gustafson, Jr., William I.; ...

    2016-05-17

    The steady increase of the spatial resolutions of numerical atmospheric and oceanic circulation models has occurred over the past decades. Horizontal grid spacing down to the order of 1 km is now often used to resolve cloud systems in the atmosphere and sub-mesoscale circulation systems in the ocean. These fine resolution models encompass a wide range of temporal and spatial scales, across which dynamical and statistical properties vary. In particular, dynamic flow systems at small scales can be spatially localized and temporarily intermittent. Difficulties of current data assimilation algorithms for such fine resolution models are numerically and theoretically examined. Ourmore » analysis shows that the background error correlation length scale is larger than 75 km for streamfunctions and is larger than 25 km for water vapor mixing ratios, even for a 2-km resolution model. A theoretical analysis suggests that such correlation length scales prevent the currently used data assimilation schemes from constraining spatial scales smaller than 150 km for streamfunctions and 50 km for water vapor mixing ratios. Moreover, our results highlight the need to fundamentally modify currently used data assimilation algorithms for assimilating high-resolution observations into the aforementioned fine resolution models. Lastly, within the framework of four-dimensional variational data assimilation, a multiscale methodology based on scale decomposition is suggested and challenges are discussed.« less

  11. Definition and preliminary design of the Laser Atmospheric Wind Sounder (LAWS) phase 1. Volume 2

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The steps and engineering trades and analyses used in establishing the initial requirements and in developing a concept and configuration for the laser atmospheric wind sounder (LAWS) instrument. A summary of the performance anticipated from the baseline configuration, and a bibliography are presented. LAWS, which is a facility instrument of the Earth observing system (EOS), is the culmination of over 20 years of effort in the field of laser Doppler wind sensing and will be the first instrument to fly in space capable of providing global-scale tropospheric wind profiles at high spatial resolutions. Global-scale wind profiles are necessary for: (1) more accurate diagnosis of large-scale circulation and climate dynamics; (2) improved numerical weather prediction; (3) improved understanding of mesoscale systems; and (4) improved understanding of global biogeochemical and hydrologic cycles. The objective of phase 1 was to define and perform a preliminary design for the LAWS instrument. The definition phase consisted of identifying realistic concepts for LAWS and analyzing them in sufficient detail to be able to choose the most promising one for the LAWS instrument. Systems and subsystems configurations were then developed for the chosen concept. The concept and subsequent configuration were to be compatible with two prospective platforms: the Japanese polar orbiting platform (JPOP) and as an attached payload on the Space Station Freedom. After a thorough and objective concept selection process, a heterodyne detection Doppler lidar using a CO2 laser transmitter operating a 9.1 micron over a 2.1 micron solid state system was chosen. A configuration for LAWS that meets the performance requirements was designed at the conclusion of phase 1.

  12. Definition and Preliminary Design of the Laser Atmospheric Wind Sounder (LAWS) Phase 1. Volume 1: Executive Summary

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The laser atmospheric wind sounder (LAWS) is a facility instrument of the Earth Observing System (EOS) and is the culmination of over 20 years of effort in the field of laser Doppler wind sensing. LAWS will by the first instrument to fly in space with the capability of providing global-scale tropospheric wind profiles at high spatial resolutions. Global-scale wind profiles are necessary for: (1) more accurate diagnostics of large-scale circulation and climate dynamics; (2) improved numerical weather prediction; (3) improved understanding of mesoscale systems; (4) improved understanding of global biogeochemical and hydrologic cycles. The objective of phase 1 of the LAWS study was to evaluate competing concepts and develop a baseline configuration for the LAWS instrument. The first phase of the study consisted of identifying realistic concepts for LAWS and analyzing them in sufficient detail to be able to choose the most promising one for the LAWS application. System configurations were then developed for the chosen concept. The concept and subsequent configuration were to be compatible with two prospective platforms: the Japanese polar orbiting platform (JPOP) and the Space Station Freedom (as an attached payload). After an objective and comprehensive concept selection process, a heterodyne detection Doppler lidar using a CO2 laser transmitter operating at 9.1 microns over a 2.1 micron system with a solid state laser was chosen. The CO2 lidar concept was then analyzed in detail to arrive at a configuration for the instrument and its major subsystems. A configuration for LAWS was arrived at which meets the performance requirements, and this design is presented.

  13. High Contrast Imaging with NICMOS - I: Teaching an Old Dog New Tricks with Coronagraphic Polarimetry

    NASA Astrophysics Data System (ADS)

    Schneider, G.; Hines, D. C.

    2007-06-01

    HST's Near Infrared Camera and Multi-Object Spectrometer (NICMOS), with its highly stable point spread function, very high imaging Strehl ratio (panchromatically > 98% over its entire 0.8 - 2.4 micron wavelength regime) and coronagraphic imaging capability, celebrated its tenth anniversary in space earlier this year. These combined instrumental attributes uniquely contribute to its capability as a high-contrast imager as demonstrated by its continuing production of new examples of spatially resolved scattered-light imagery of both optically thick and thin circumstellar disks and sub-stellar companions to young stars and brown dwarfs well into the (several) Jovian mass range. We review these capabilities, illustrating with observationally based results, including examples obtained since HST's entry into two gyro guiding mode in mid 2005. The advent of a recently introduced, and now commissioned and calibrated, coronagraphic polarimetry mode has enabled very-high contrast 2 micron imaging polarimetry with 0.2 spatial resolution. Such imagery provides important constraints in the interpretation of disk-scattered starlight in assessing circumstellar disk geometries and the physical properties of their constituent grains. We demonstrate this new capability with observational results from two currently-executing HST programs obtaining 2 micron coronagraphic polarimetric images of circumstellar T-Tauri and debris disks.

  14. Scaling effect of fraction of vegetation cover retrieved by algorithms based on linear mixture model

    NASA Astrophysics Data System (ADS)

    Obata, Kenta; Miura, Munenori; Yoshioka, Hiroki

    2010-08-01

    Differences in spatial resolution among sensors have been a source of error among satellite data products, known as a scaling effect. This study investigates the mechanism of the scaling effect on fraction of vegetation cover retrieved by a linear mixture model which employs NDVI as one of the constraints. The scaling effect is induced by the differences in texture, and the differences between the true endmember spectra and the endmember spectra assumed during retrievals. A mechanism of the scaling effect was analyzed by focusing on the monotonic behavior of spatially averaged FVC as a function of spatial resolution. The number of endmember is limited into two to proceed the investigation analytically. Although the spatially-averaged NDVI varies monotonically along with spatial resolution, the corresponding FVC values does not always vary monotonically. The conditions under which the averaged FVC varies monotonically for a certain sequence of spatial resolutions, were derived analytically. The increasing and decreasing trend of monotonic behavior can be predicted from the true and assumed endmember spectra of vegetation and non-vegetation classes regardless the distributions of the vegetation class within a fixed area. The results imply that the scaling effect on FVC is more complicated than that on NDVI, since, unlike NDVI, FVC becomes non-monotonic under a certain condition determined by the true and assumed endmember spectra.

  15. Representation of vegetation by continental data sets derived from NOAA-AVHRR data

    NASA Technical Reports Server (NTRS)

    Justice, C. O.; Townshend, J. R. G.; Kalb, V. L.

    1991-01-01

    Images of the normalized difference vegetation index (NDVI) are examined with specific attention given to the effect of spatial scales on the understanding of surface phenomena. A scale variance analysis is conducted on NDVI annual and seasonal images of Africa taken from 1987 NOAA-AVHRR data at spatial scales ranging from 8-512 km. The scales at which spatial variation takes place are determined and the relative magnitude of the variations are considered. Substantial differences are demonstrated, notably an increase in spatial variation with coarsening spatial resolution. Different responses in scale variance as a function of spatial resolution are noted in an analysis of maximum value composites for February and September; the difference is most marked in areas with very seasonal vegetation. The spatial variation at different scales is attributed to different factors, and methods involving the averaging of areas of transition and surface heterogeneity can oversimplify surface conditions. The spatial characteristics and the temporal variability of areas should be considered to accurately apply satellite data to global models.

  16. Quantifying dynamic rheology, phase interactions and strain localisation in deforming three phase magmas using high-speed x-ray tomography

    NASA Astrophysics Data System (ADS)

    Dobson, Katherine; Pistone, Mattia; Fife, Julie; Cordonnier, Benoit; Blundy, Jon; Dingwell, Don; Lee, Peter

    2015-04-01

    The crystal and bubble cargoes of magmas are critical to controlling magma mobility and rheology. These cargos vary in both time and space and the local, and bulk, rheological behaviour are correspondingly heterogeneous. Tracking how these heterogeneous cargoes evolve, and how crystals and bubbles interact with each other in deforming systems is a critical challenge in volcanology, as these processes control both the chemical and physical evolution of the magma, including phenomena such as melt-crystal segregation, strain localisation, and fragmentation. The only methodology available to track these processes in real time, and at the scale of individual melt-crystal-bubble interactions is high speed x-ray tomography. This non-destructive imaging technique allows the rapid acquisition of sequential 3D images that capture the physical, and to some degree chemical, microstructure of the sample during a deformation cycle. We utilise in situ tomographic methods developed in materials science to perfume magmatic deformation experiments on synthesized three phase systems at magmatic temperatures. Through a novel combination of a high temperature laser heating system [1] in situ micro-precision deformation apparatus [2] and the temporal and spatial resolution available at the TOMCAT beam line at the Swiss Light Source synchrotron facility we performed in situ observations of the microstructural evolution of a synthesized anhydrous borosilicate melt seeded with a variable concentration of non-reactive rutile crystals and air bubbles (30-70 volume %). The experiments were conducted at 800-1000C, under constant deformation rates of 0.25-5.00 microns/second. Each 3D image has 2D and 3D spatial resolution of approximately 3 microns per pixel, and each 3D image took ~3 seconds to acquire. Here we present this innovative high speed, high temperature, syn-deformation tomographic data , and show how it can be used to trace the location and local distribution of each crystal and bubble within a small volume cylindrical experimental charge (3mm diameter, 5mm length) undergoing shear along a single vertical plane. By qualitative and quantitative analysis of the sequential images collected over 5-15 minute deformation cycles we track the local bubble, crystal and melt concentrations on a range of spatial scales. From this we calculate a spatially heterogeneous and dynamic local viscosity [3] and assess our results against recently developed 3-phase rheological models [4]. We will present how this real time 4D information can be used to quantify the dynamics of magma motion, discuss the implications of spatially and temporally variable rheological behaviours, and show how this novel technique can be integrated with other volcanology methods to improve our understanding of volcanic and magmatic processes. [1] Fife et al. 2012. J. Synchrotron Rad. 19, 352-358 [2] Kareh et al. 2014 Nature Comm. 5 4464. [3] Giordano, et al. 2008 EPSL 271 123-134. [4] Truby et al. 2015 P.Roy.Soc.A. 2015471 20140557

  17. High Spatial Resolution Mid-IR Imaging of V838 Monocerotis: Evidence of New Circumstellar Dust Creation

    NASA Technical Reports Server (NTRS)

    Wisniewski, John P.; Clampin, Mark; Bjorkman, Karen S.; Barry, Richard K.

    2008-01-01

    We report high spatial resolution 11.2 and 18.1 mm imaging of V838 Monocerotis obtained with Gemini Observatory's Michelle instrument in 2007 March. Strong emission is observed from the unresolved stellar core of V838 Mon in our Gemini imagery and is confirmed by Spitzer MIPS 24 micron imaging obtained in 2007 April. The 2007 flux density of the unresolved mid-infrared emission component is approx.2 times brighter than that observed in 2004. No clear change in the net amount of 24 mm extended emission is observed between the 2004 and 2007 epoch Spitzer imagery. We interpret these data as evidence that V838 Mon has experienced a new circumstellar dust creation event. We suggest that this newly created dust has condensed from the expanding ejecta produced from V838 Mon's 2002 outburst events and is most likely clumpy. We speculate that one (or more) of these clumps might have passed through the line of sight in late 2006, producing the brief multiwavelength photometric event reported by H. Bond in 2006 and U. Munari et al. in 2007b. We detect no evidence of extended emission above a level of approx.1 mJy at 11.2 microns and approx.7 mJy at 18.1 microns over radial distances of 1860-93,000 AU (0.3" - 15.0") from the central source. Using the simple assumption that ejecta material expands at a constant velocity of 300-500 km/s, this gap of thermal emission suggests that no significant prior circumstellar dust production events have occurred within the past approx.900-1500 yr.

  18. X-Ray Microanalysis and Electron Energy Loss Spectrometry in the Analytical Electron Microscope: Review and Future Directions

    NASA Technical Reports Server (NTRS)

    Goldstein, J. I.; Williams, D. B.

    1992-01-01

    This paper reviews and discusses future directions in analytical electron microscopy for microchemical analysis using X-ray and Electron Energy Loss Spectroscopy (EELS). The technique of X-ray microanalysis, using the ratio method and k(sub AB) factors, is outlined. The X-ray absorption correction is the major barrier to the objective of obtaining I% accuracy and precision in analysis. Spatial resolution and Minimum Detectability Limits (MDL) are considered with present limitations of spatial resolution in the 2 to 3 microns range and of MDL in the 0.1 to 0.2 wt. % range when a Field Emission Gun (FEG) system is used. Future directions of X-ray analysis include improvement in X-ray spatial resolution to the I to 2 microns range and MDL as low as 0.01 wt. %. With these improvements the detection of single atoms in the analysis volume will be possible. Other future improvements include the use of clean room techniques for thin specimen preparation, quantification available at the I% accuracy and precision level with light element analysis quantification available at better than the 10% accuracy and precision level, the incorporation of a compact wavelength dispersive spectrometer to improve X-ray spectral resolution, light element analysis and MDL, and instrument improvements including source stability, on-line probe current measurements, stage stability, and computerized stage control. The paper reviews the EELS technique, recognizing that it has been slow to develop and still remains firmly in research laboratories rather than in applications laboratories. Consideration of microanalysis with core-loss edges is given along with a discussion of the limitations such as specimen thickness. Spatial resolution and MDL are considered, recognizing that single atom detection is already possible. Plasmon loss analysis is discussed as well as fine structure analysis. New techniques for energy-loss imaging are also summarized. Future directions in the EELS technique will be the development of new spectrometers and improvements in thin specimen preparation. The microanalysis technique needs to be simplified and software developed so that the EELS technique approaches the relative simplicity of the X-ray technique. Finally, one can expect major improvements in EELS imaging as data storage and processing improvements occur.

  19. Dual-Telescope Multi-Channel Thermal-Infrared Radiometer for Outer Planet Fly-By Missions

    NASA Technical Reports Server (NTRS)

    Aslam, Shahid; Amato, Michael; Bowles, Neil; Calcutt, Simon; Hewagama, Tilak; Howard, Joseph; Howett, Carly; Hsieh, Wen-Ting; Hurford, Terry; Hurley, Jane; hide

    2016-01-01

    The design of a versatile dual-telescope thermal-infrared radiometer spanning the spectral wavelength range 8-200 microns, in five spectral pass bands, for outer planet fly-by missions is described. The dual- telescope design switches between a narrow-field-of-view and a wide-field-of-view to provide optimal spatial resolution images within a range of spacecraft encounters to the target. The switchable dual-field- of-view system uses an optical configuration based on the axial rotation of a source-select mirror along the optical axis. The optical design, spectral performance, radiometric accuracy, and retrieval estimates of the instrument are discussed. This is followed by an assessment of the surface coverage performance at various spatial resolutions by using the planned NASA Europa Mission 13-F7 fly-by trajectories as a case study.

  20. Influence of Scale Effect and Model Performance in Downscaling ASTER Land Surface Temperatures to a Very High Spatial Resolution in an Agricultural Area

    NASA Astrophysics Data System (ADS)

    Zhou, J.; Li, G.; Liu, S.; Zhan, W.; Zhang, X.

    2015-12-01

    At present land surface temperatures (LSTs) can be generated from thermal infrared remote sensing with spatial resolutions from ~100 m to tens of kilometers. However, LSTs with high spatial resolution, e.g. tens of meters, are still lack. The purpose of LST downscaling is to generate LSTs with finer spatial resolutions than their native spatial resolutions. The statistical linear or nonlinear regression models are most frequently used for LST downscaling. The basic assumption of these models is the scale-invariant relationships between LST and its descriptors, which is questioned but rare researches have been reported. In addition, few researches can be found for downscaling satellite LST or TIR data to a high spatial resolution, i.e. better than 100 m or even finer. The lack of LST with high spatial resolution cannot satisfy the requirements of applications such as evapotranspiration mapping at the field scale. By selecting a dynamically developing agricultural oasis as the study area, the aim of this study is to downscale the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) LSTs to 15 m, to satisfy the requirement of evapotranspiration mapping at the field scale. Twelve ASTER images from May to September in 2012, covering the entire growth stage of maize, were selected. Four statistical models were evaluated, including one global model, one piecewise model, and two local models. The influence from scale effect in downscaling LST was quantified. The downscaled LSTs are evaluated from accuracy and image quality. Results demonstrate that the influence from scale effect varies according to models and the maize growth stage. Significant influence about -4 K to 6 K existed at the early stage and weaker influence existed in the middle stage. When compared with the ground measured LSTs, the downscaled LSTs resulted from the global and local models yielded higher accuracies and better image qualities than the local models. In addition to the vegetation indices, the surface albedo is an important descriptor for downscaling LST through explaining its spatial variation induced by soil moisture.

  1. Demeter-W

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2017-09-27

    Demeter-W, an open-access software written in Python, consists of extensible module packages. It is developed with statistical downscaling algorithms, to spatially and temporally downscale water demand data into finer scale. The spatial resolution will be downscaled from region/basin scale to grid (0.5 geographic degree) scale and the temporal resolution will be downscaled from year to month. For better understanding of the driving forces and patterns for global water withdrawal, the researchers is able to utilize Demeter-W to reconstruct the data sets to examine the issues related to water withdrawals at fine spatial and temporal scales.

  2. Magnetic switching, relaxation, and domain structure of a Co/Si(111) film

    NASA Astrophysics Data System (ADS)

    Baird, M. J.; Bland, J. A. C.; Gu, E.; Ives, A. J. R.; Schumann, F. O.; Hughes, H. P.

    1993-11-01

    We have used scanning magneto-optic Kerr effect (MOKE) microscopy to investigate the magnetic relaxation of a polycrystalline hcp 125 Å Co/Si(111) film with planar uniaxial anisotropy, on time scales between 10 and 2400 s and with a spatial resolution of 15 μm. In a static magnetic field slightly less than the coercive field and applied along the easy axis direction, domains develop and the magnetization reversal proceeds via displacements of 180° domain walls. Microscopic images of this metastable state allow the 180° domains to be identified by calibration of the MOKE signal with respect to that for the saturated magnetization states. The 180° reversed domains are observed to grow in the direction of the field in the form of narrow fingers, extending via short Barkhausen jumps, randomly spaced in time over the entire time-scale range investigated, with typical distances between pinning sites of the order of microns. This reversal behavior is qualitatively similar to that reported for Au/Co perpendicular anisotropy films a few monolayers thick.

  3. Unique Spectroscopy and Imaging of Mars with the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Villanueva, Geronimo L.; Altieri, Francesca; Clancy, R. Todd; Encrenaz, Therese; Fouchet, Thierry; Hartogh, Paul; Lellouch, Emmanuel; Lopez-Valverde, Miguel A.; Mumma, Michael J.; Novak, Robert E.; hide

    2016-01-01

    In this paper, we summarize the main capabilities of the James Webb Space Telescope (JWST) for performing observations of Mars. The distinctive vantage point of JWST at the Sun-Earth Lagrange point (L2) will allow sampling the full observable disk, permitting the study of short-term phenomena, diurnal processes (across the east-west axis), and latitudinal processes between the hemispheres (including seasonal effects) with excellent spatial resolutions (0.''07 at 2 micron). Spectroscopic observations will be achievable in the 0.7-5 micron spectral region with NIRSpec at a maximum resolving power of 2700 and with 8000 in the 1-1.25 micron range. Imaging will be attainable with the Near-Infrared Camera at 4.3 micrometers and with two narrow filters near 2 micron, while the nightside will be accessible with several filters in 0.5 to 2 micron. Such a powerful suite of instruments will be a major asset for the exploration and characterization of Mars. Some science cases include the mapping of the water D/H ratio, investigations of the Martian mesosphere via the characterization of the non-local thermodynamic equilibrium CO2 emission at 4.3 micron, studies of chemical transport via observations of the O2 nightglow at 1.27 micron, high-cadence mapping of the variability dust and water-ice clouds, and sensitive searches for trace species and hydrated features on the Martian surface. In-flight characterization of the instruments may allow for additional science opportunities.

  4. Thermal analysis of wildfires and effects on global ecosystem cycling

    NASA Technical Reports Server (NTRS)

    Ambrosia, Vincent G.; Brass, James A.

    1988-01-01

    Biomass combustion plays an important role in the earth's biogeochemical cycling. The monitoring of wildfires and their associated variables at global scales is feasible and can lead to predictions of the influence of combustion on biogeochemical cycling and tropospheric chemistry. Remote sensing data collected during the 1985 California wildfire season indicate that the information content of key thermal and infrared/thermal wave band channels centered at 11.5 microns, 3.8 microns, and 2.25 microns are invaluable for discriminating and calculating fire related variables. These variables include fire intensity, rate-of-spread, soil cooling recovery behind the fire front, and plume structure. Coinciding Advanced Very High Resolution Radiometer (AVHRR) data provided information regarding temperature estimations and the movement of the smoke plume from one wildfire into the Los Angeles basin.

  5. Airborne spectrophotometry of P/Halley from 20 to 65 microns

    NASA Technical Reports Server (NTRS)

    Glaccum, W.; Moseley, S. H.; Campins, H.; Loewenstein, R. F.

    1986-01-01

    Simultaneous 20 to 65 microns spectrometry and 100 microns photometry of P/Halley obtained on board the Kuiper Airborne Observatory (KAO) in 1985 Dec. and 1986 April are discussed. Spectra with resolution 30 to 50 were obtained with the NASA/Goddard 24 channel grating spectrometer. Measurements were made on the nucleus as well as 5 points along and perpendicular to the Sun-tail direction. The observations reveal the absence of any strong spectral features. The color temperature of the dust varies over time scales as short as 2 days, but is higher than that expected for a rapidly rotating blackbody at the same distance from the Sun. The color temperature does not vary within 1 arcmin of the nucleus, but the coma is brighter on the sunward side than on the antisunward side.

  6. Rapid fabrication of micro-nanometric tapered fiber lens and characterization by a novel scanning optical microscope with submicron resolution.

    PubMed

    Zheng, Shouguo; Zeng, Xinhua; Luo, Wei; Jradi, Safi; Plain, Jérôme; Li, Miao; Renaud-Goud, Philippe; Deturche, Régis; Wang, Zengfu; Kou, Jieting; Bachelot, Renaud; Royer, Pascal

    2013-01-14

    In numerous applications of optical scanning microscopy, a reference tapered fiber lens with high symmetry at sub-wavelength scale remains a challenge. Here, we demonstrate the ability to manufacture it with a wide range of geometry control, either for the length from several hundred nanometers to several hundred microns, or for the curvature radius from several tens of nanometers to several microns on the endface of a single mode fiber. On this basis, a scanning optical microscope has been developed, which allows for fast characterization of various sub-wavelength tapered fiber lenses. Focal position and depth of microlenses with different geometries have been determined to be ranged from several hundreds of nanometers to several microns. FDTD calculations are consistent with experimental results.

  7. Dynamics and stellar population of the Galactic Center (French Title: Étude de la cinématique et de la population stellaire du Centre Galactique)

    NASA Astrophysics Data System (ADS)

    Paumard, Thibaut

    2003-09-01

    The central parsec of the Galaxy has been observed using BEAR spectroimagery at high spectral resolution (up to 21 km/s) and medium spatial resolution (0.5"), in Bracket gamma (2.16 microns) and He I (2.06 microns), and high resolution imaging. These data were used to study the young, massive stars of the central parsec, and the structure and dynamics of ionized gas in Sgr A West. The stellar population has been separated into two groups: the IRS 16 complex of 6 LBVs, and at least 20 Wolf-Rayets. The IRS 13E complex has been identified as a cluster of at least 6 massive stars. All this is consistent with the young stars being born in a massive cluster a few tens of parsecs from the Galactic Centre. Providing a deep insight into the morphology of Sgr A West, our data allowed us to derive a kinematic model for the Northern Arm. Our results are in agreement with the idea that the Minispiral is made of ionisation fronts of wider neutral clouds, gravitationally stretched, coming from the CND.

  8. Variations in optical coherence tomography resolution and uniformity: a multi-system performance comparison

    PubMed Central

    Fouad, Anthony; Pfefer, T. Joshua; Chen, Chao-Wei; Gong, Wei; Agrawal, Anant; Tomlins, Peter H.; Woolliams, Peter D.; Drezek, Rebekah A.; Chen, Yu

    2014-01-01

    Point spread function (PSF) phantoms based on unstructured distributions of sub-resolution particles in a transparent matrix have been demonstrated as a useful tool for evaluating resolution and its spatial variation across image volumes in optical coherence tomography (OCT) systems. Measurements based on PSF phantoms have the potential to become a standard test method for consistent, objective and quantitative inter-comparison of OCT system performance. Towards this end, we have evaluated three PSF phantoms and investigated their ability to compare the performance of four OCT systems. The phantoms are based on 260-nm-diameter gold nanoshells, 400-nm-diameter iron oxide particles and 1.5-micron-diameter silica particles. The OCT systems included spectral-domain and swept source systems in free-beam geometries as well as a time-domain system in both free-beam and fiberoptic probe geometries. Results indicated that iron oxide particles and gold nanoshells were most effective for measuring spatial variations in the magnitude and shape of PSFs across the image volume. The intensity of individual particles was also used to evaluate spatial variations in signal intensity uniformity. Significant system-to-system differences in resolution and signal intensity and their spatial variation were readily quantified. The phantoms proved useful for identification and characterization of irregularities such as astigmatism. Our multi-system results provide evidence of the practical utility of PSF-phantom-based test methods for quantitative inter-comparison of OCT system resolution and signal uniformity. PMID:25071949

  9. A Sensitive Method for Examining Whole Cell Biochemical Composition in Single Cells of Filamentous Fungi using Synchrotron FTIR Spectromicroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konstantin,J.; Gough, K.; Julian, R.

    2008-01-01

    Cell function is related to cell composition. The asexual state of filamentous fungi (molds and mildews) has two main life cycle stages: vegetative hyphae for substrate colonization and nutrient acquisition, and asexual spores for survival and dispersal. Hyphal composition changes over a few tens of microns during growth and maturation; spores are different from hyphae. Most biochemical analyses are restricted to studying a few components at high spatial resolution (e.g. histochemistry) or many compounds at low spatial resolution (e.g. GC-MS). Synchrotron FTIR spectromicroscopy can be used to study fungal cell biology by fingerprinting varieties of carbohydrates, proteins, and lipids atmore » about 6 microm spatial resolution. FTIR can distinguish fungal species and changes during hyphal growth, and reveals that even fungi grown under optimal vs mildly stressed conditions exhibit dramatic biochemical changes without obvious morphological effects. Here we compare hypha and spore composition of two fungi, Neurospora and Rhizopus. There are clear biochemical changes when Neurospora hyphae commit to spore development, during spore maturation and following germination, many of which are consistent with results from molecular genetics, but have not been shown before at high spatial resolution. Rhizopus spores develop within a fluid-containing sporangium that becomes dry at maturity. Rhizopus spores had similar protein content and significantly more carbohydrate than the sporangial fluid, both of which are novel findings.« less

  10. Development of a spatio-temporal disaggregation method (DisNDVI) for generating a time series of fine resolution NDVI images

    NASA Astrophysics Data System (ADS)

    Bindhu, V. M.; Narasimhan, B.

    2015-03-01

    Normalized Difference Vegetation Index (NDVI), a key parameter in understanding the vegetation dynamics, has high spatial and temporal variability. However, continuous monitoring of NDVI is not feasible at fine spatial resolution (<60 m) owing to the long revisit time needed by the satellites to acquire the fine spatial resolution data. Further, the study attains significance in the case of humid tropical regions of the earth, where the prevailing atmospheric conditions restrict availability of fine resolution cloud free images at a high temporal frequency. As an alternative to the lack of high resolution images, the current study demonstrates a novel disaggregation method (DisNDVI) which integrates the spatial information from a single fine resolution image and temporal information in terms of crop phenology from time series of coarse resolution images to generate estimates of NDVI at fine spatial and temporal resolution. The phenological variation of the pixels captured at the coarser scale provides the basis for relating the temporal variability of the pixel with the NDVI available at fine resolution. The proposed methodology was tested over a 30 km × 25 km spatially heterogeneous study area located in the south of Tamil Nadu, India. The robustness of the algorithm was assessed by an independent comparison of the disaggregated NDVI and observed NDVI obtained from concurrent Landsat ETM+ imagery. The results showed good spatial agreement across the study area dominated with agriculture and forest pixels, with a root mean square error of 0.05. The validation done at the coarser scale showed that disaggregated NDVI spatially averaged to 240 m compared well with concurrent MODIS NDVI at 240 m (R2 > 0.8). The validation results demonstrate the effectiveness of DisNDVI in improving the spatial and temporal resolution of NDVI images for utility in fine scale hydrological applications such as crop growth monitoring and estimation of evapotranspiration.

  11. A space-time multiscale modelling of Earth's gravity field variations

    NASA Astrophysics Data System (ADS)

    Wang, Shuo; Panet, Isabelle; Ramillien, Guillaume; Guilloux, Frédéric

    2017-04-01

    The mass distribution within the Earth varies over a wide range of spatial and temporal scales, generating variations in the Earth's gravity field in space and time. These variations are monitored by satellites as the GRACE mission, with a 400 km spatial resolution and 10 days to 1 month temporal resolution. They are expressed in the form of gravity field models, often with a fixed spatial or temporal resolution. The analysis of these models allows us to study the mass transfers within the Earth system. Here, we have developed space-time multi-scale models of the gravity field, in order to optimize the estimation of gravity signals resulting from local processes at different spatial and temporal scales, and to adapt the time resolution of the model to its spatial resolution according to the satellites sampling. For that, we first build a 4D wavelet family combining spatial Poisson wavelets with temporal Haar wavelets. Then, we set-up a regularized inversion of inter-satellites gravity potential differences in a bayesian framework, to estimate the model parameters. To build the prior, we develop a spectral analysis, localized in time and space, of geophysical models of mass transport and associated gravity variations. Finally, we test our approach to the reconstruction of space-time variations of the gravity field due to hydrology. We first consider a global distribution of observations along the orbit, from a simplified synthetic hydrology signal comprising only annual variations at large spatial scales. Then, we consider a regional distribution of observations in Africa, and a larger number of spatial and temporal scales. We test the influence of an imperfect prior and discuss our results.

  12. Investigation of carbonates in the Sutter's Mill meteorite grains with hyperspectral infrared imaging micro-spectroscopy

    NASA Astrophysics Data System (ADS)

    Yesiltas, Mehmet

    2018-04-01

    Synchrotron-based high spatial resolution hyperspectral infrared imaging technique provides thousands of infrared spectra with high resolution, thus allowing us to acquire detailed spatial maps of chemical molecular structures for many grains in short times. Utilizing this technique, thousands of infrared spectra were analyzed at once instead of inspecting each spectrum separately. Sutter's Mill meteorite is a unique carbonaceous type meteorite with highly heterogeneous chemical composition. Multiple grains from the Sutter's Mill meteorite have been studied using this technique and the presence of both hydrous and anhydrous silicate minerals have been observed. It is observed that the carbonate mineralogy varies from simple to more complex carbonates even within a few microns in the meteorite grains. These variations, the type and distribution of calcite-like vs. dolomite-like carbonates are presented by means of hyperspectral FTIR imaging spectroscopy with high resolution. Various scenarios for the formation of different carbonate compositions in the Sutter's Mill parent body are discussed.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, B.W.; et al.

    The Large Area Picosecond PhotoDetector (LAPPD) Collaboration was formed in 2009 to develop large-area photodetectors capable of time resolutions measured in pico-seconds, with accompanying sub-millimeter spatial resolution. During the next three and one-half years the Collaboration developed the LAPPD design of 20 x 20 cm modules with gains greater thanmore » $10^7$ and non-uniformity less than $$15\\%$$, time resolution less than 50 psec for single photons and spatial resolution of 700~microns in both lateral dimensions. We describe the R\\&D performed to develop large-area micro-channel plate glass substrates, resistive and secondary-emitting coatings, large-area bialkali photocathodes, and RF-capable hermetic packaging. In addition, the Collaboration developed the necessary electronics for large systems capable of precise timing, built up from a custom low-power 15-GigaSample/sec waveform sampling 6-channel integrated circuit and supported by a two-level modular data acquisition system based on Field-Programmable Gate Arrays for local control, data-sparcification, and triggering. We discuss the formation, organization, and technical successes and short-comings of the Collaboration. The Collaboration ended in December 2012 with a transition from R\\&D to commercialization.« less

  14. Development and characterization of a handheld hyperspectral Raman imaging probe system for molecular characterization of tissue on mesoscopic scales.

    PubMed

    St-Arnaud, Karl; Aubertin, Kelly; Strupler, Mathias; Madore, Wendy-Julie; Grosset, Andrée-Anne; Petrecca, Kevin; Trudel, Dominique; Leblond, Frédéric

    2018-01-01

    Raman spectroscopy is a promising cancer detection technique for surgical guidance applications. It can provide quantitative information relating to global tissue properties associated with structural, metabolic, immunological, and genetic biochemical phenomena in terms of molecular species including amino acids, lipids, proteins, and nucleic acid (DNA). To date in vivo Raman spectroscopy systems mostly included probes and biopsy needles typically limited to single-point tissue interrogation over a scale between 100 and 500 microns. The development of wider field handheld systems could improve tumor localization for a range of open surgery applications including brain, ovarian, and skin cancers. Here we present a novel Raman spectroscopy implementation using a coherent imaging bundle of fibers to create a probe capable of reconstructing molecular images over mesoscopic fields of view. Detection is performed using linear scanning with a rotation mirror and an imaging spectrometer. Different slits widths were tested at the entrance of the spectrometer to optimize spatial and spectral resolution while preserving sufficient signal-to-noise ratios to detect the principal Raman tissue features. The nonbiological samples, calcite and polytetrafluoroethylene (PTFE), were used to characterize the performance of the system. The new wide-field probe was tested on ex vivo samples of calf brain and swine tissue. Raman spectral content of both tissue types were validated with data from the literature and compared with data acquired with a single-point Raman spectroscopy probe. The single-point probe was used as the gold standard against which the new instrument was benchmarked as it has already been thoroughly validated for biological tissue characterization. We have developed and characterized a practical noncontact handheld Raman imager providing tissue information at a spatial resolution of 115 microns over a field of view >14 mm 2 and a spectral resolution of 6 cm -1 over the whole fingerprint region. Typical integration time to acquire an entire Raman image over swine tissue was set to approximately 100 s. Spectra acquired with both probes (single-point and wide-field) showed good agreement, with a Pearson correlation factor >0.85 over different tissue categories. Protein and lipid content of imaged tissue were manifested into the measured spectra which correlated well with previous findings in the literature. An example of quantitative molecular map is presented for swine tissue and calf brain based on the ratio of protein-to-lipid content showing clear delineations between white and gray matter as well as between adipose and muscle tissue. We presented the development of a Raman imaging probe with a field of view of a few millimeters and a spatial resolution consistent with standard surgical imaging methods using an imaging bundle. Spectra acquired with the newly developed system on swine tissue and calf brain correlated well with an establish single-point probe and observed spectral features agreed with previous finding in the literature. The imaging probe has demonstrated its ability to reconstruct molecular images of soft tissues. The approach presented here has a lot of potential for the development of surgical Raman imaging probe to guide the surgeon during cancer surgery. © 2017 American Association of Physicists in Medicine.

  15. Novel deformable mirror design for possible wavefront correction in CO2 laser fusion system

    NASA Astrophysics Data System (ADS)

    Gunn, S. V.; Heinz, T. A.; Henderson, W. D.; Massie, N. A.; Viswanathan, V. K.

    1980-11-01

    Analysis at Los Alamos and elsewhere has resulted in the conclusion that deformable mirrors can substantially improve the optical performance of laser fusion systems, as the errors are mostly static or quasi-static with mainly low spatial frequencies across the aperture resulting in low order Seidel aberrations in the beam. A novel deformable mirror assembly (Fig. 1) has been fabricated with 19 actuators capable of surface deflection of ±20 microns. The mirror surface deflections are produced by a unique differential ball screw that acts as both a force and position actuator. The screw is driven by a stepper motor giving a surface positioning resolution of 0.025 micron. No holding voltage potential is required, and a piezoceramic element in series with each ball screw provides a ±1 micron amplitude high-frequency surface dither to aid the correction process. Mirror performance in terms of individual actuator influence function, cross-coupling, figure attainment, long-term surface stability as well as optical performance characteristics will be discussed.

  16. The distribution of water frost on Charon

    NASA Technical Reports Server (NTRS)

    Buie, Marc W.; Shriver, Scott K.

    1994-01-01

    We present high-spatial-resolution imaging observations of the Pluto-Charon system taken with ProtoCAM on the Infrared Telescope Facility (IRTF). Our dataset consists of measurements from eight nights at widely separated rotational longitudes and covering five wavelengths -- standard J, H, and K, plus two special narrow band filters at 1.5 and 1.75 microns. The relative flux contributions of Pluto and Charon were extracted, when possible, by fitting a two-source Gaussian image model to the observed images. At K, we find the Charon-Pluto magnitude difference to be on average 1.8 mag, somewhat less than the value of 2.2 mag found by Bosh et al. (1992). The average differential magnitude at 1.5 and 1.75 microns is 2.0 and 1.6, respectively. The larger magnitude difference at 1.5 microns is due to a water-frost absorption band on the surface of Charon. Our observations are consistent with a surface of Charon dominated by water frost at all longitudes.

  17. Trace element abundance determinations by Synchrotron X Ray Fluorescence (SXRF) on returned comet nucleus mineral grains

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.; Sutton, S. R.

    1989-01-01

    Trace element analyses were performed on bulk cosmic dust particles by Proton Induced X Ray Emission (PIXE) and Synchrotron X Ray Fluorescence (SXRF). When present at or near chondritic abundances the trace elements K, Ti, Cr, Mn, Cu, Zn, Ga, Ge, Se, and Br are presently detectable by SXRF in particles of 20 micron diameter. Improvements to the SXRF analysis facility at the National Synchrotron Light Source presently underway should increase the range of detectable elements and permit the analysis of smaller samples. In addition the Advanced Photon Source will be commissioned at Argonne National Laboratory in 1995. This 7 to 8 GeV positron storage ring, specifically designed for high-energy undulator and wiggler insertion devices, will be an ideal source for an x ray microprobe with one micron spatial resolution and better than 100 ppb elemental sensitivity for most elements. Thus trace element analysis of individual micron-sized grains should be possible by the time of the comet nucleus sample return mission.

  18. High resolution multiplexed functional imaging in live embryos (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Xu, Dongli; Zhou, Weibin; Peng, Leilei

    2017-02-01

    Fourier multiplexed fluorescence lifetime imaging (FmFLIM) scanning laser optical tomography (FmFLIM-SLOT) combines FmFLIM and Scanning laser optical tomography (SLOT) to perform multiplexed 3D FLIM imaging of live embryos. The system had demonstrate multiplexed functional imaging of zebrafish embryos genetically express Foster Resonant Energy Transfer (FRET) sensors. However, previous system has a 20 micron resolution because the focused Gaussian beam diverges quickly from the focused plane, makes it difficult to achieve high resolution imaging over a long projection depth. Here, we present a high-resolution FmFLIM-SLOT system with achromatic Bessel beam, which achieves 3 micron resolution in 3D deep tissue imaging. In Bessel-FmFLIM-SLOT, multiple laser excitation lines are firstly intensity modulated by a Michelson interferometer with a spinning polygon mirror optical delay line, which enables Fourier multiplexed multi-channel lifetime measurements. Then, a spatial light modulator and a prism are used to transform the modulated Gaussian laser beam to an achromatic Bessel beam. The achromatic Bessel beam scans across the whole specimen with equal angular intervals as sample rotated. After tomography reconstruction and the frequency domain lifetime analysis method, both the 3D intensity and lifetime image of multiple excitation-emission can be obtained. Using Bessel-FmFLIM-SLOT system, we performed cellular-resolution FLIM tomography imaging of live zebrafish embryo. Genetically expressed FRET sensors in these embryo will allow non-invasive observation of multiple biochemical processes in vivo.

  19. Imaging Optical Frequencies with 100  μHz Precision and 1.1  μm Resolution.

    PubMed

    Marti, G Edward; Hutson, Ross B; Goban, Akihisa; Campbell, Sara L; Poli, Nicola; Ye, Jun

    2018-03-09

    We implement imaging spectroscopy of the optical clock transition of lattice-trapped degenerate fermionic Sr in the Mott-insulating regime, combining micron spatial resolution with submillihertz spectral precision. We use these tools to demonstrate atomic coherence for up to 15 s on the clock transition and reach a record frequency precision of 2.5×10^{-19}. We perform the most rapid evaluation of trapping light shifts and record a 150 mHz linewidth, the narrowest Rabi line shape observed on a coherent optical transition. The important emerging capability of combining high-resolution imaging and spectroscopy will improve the clock precision, and provide a path towards measuring many-body interactions and testing fundamental physics.

  20. High resolution, monochromatic x-ray topography capability at CHESS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finkelstein, K. D., E-mail: kdf1@cornell.edu; Pauling, A.; Brown, Z.

    2016-07-27

    CHESS has a monochromatic x-ray topography capability serving continually expanding user interest. The setup consists of a beam expanding monochromator, 6-circle diffactometer, and CHESS designed CMOS camera with real time sample-alignment capability. This provides rocking curve mapping with angle resolution as small as 2 µradians, spatial resolution to 3 microns, and field of view up to 7mm. Thus far the capability has been applied for: improving CVD-diamond growth, evaluating perfection of ultra-thin diamond membranes, correlating performance of diamond-based electronics with crystal defect structure, and defect analysis of single crystal silicon carbide. This paper describes our topography system, explains its capabilities,more » and presents experimental results from several applications.« less

  1. Spatially modulated magnetic structure of EuS due to the tetragonal domain structure of SrTiO3

    NASA Astrophysics Data System (ADS)

    Rosenberg, Aaron J.; Katmis, Ferhat; Kirtley, John R.; Gedik, Nuh; Moodera, Jagadeesh S.; Moler, Kathryn A.

    2017-12-01

    The combination of ferromagnets with topological superconductors or insulators allows for new phases of matter that support excitations such as chiral edge modes and Majorana fermions. EuS, a wide-bandgap ferromagnetic insulator with a Curie temperature around 16 K, and SrTiO3 (STO), an important substrate for engineering heterostructures, may support these phases. We present scanning superconducting quantum interference device measurements of EuS grown epitaxially on STO that reveal micron-scale variations in ferromagnetism and paramagnetism. These variations are oriented along the STO crystal axes and only change their configuration upon thermal cycling above the STO cubic-to-tetragonal structural transition temperature at 105 K, indicating that the observed magnetic features are due to coupling between EuS and the STO tetragonal structure. We speculate that the STO tetragonal distortions may strain the EuS, altering the magnetic anisotropy on a micron scale. This result demonstrates that local variation in the induced magnetic order from EuS grown on STO needs to be considered when engineering new phases of matter that require spatially homogeneous exchange.

  2. An Evanescent Microwave Probe for Super-Resolution Nondestructive Imaging of Metals, Semiconductors, Dielectrics, Composites and Biological Specimens

    NASA Technical Reports Server (NTRS)

    Pathak, P. S.; Tabib-Azar, M.; Ponchak, G.

    1998-01-01

    Using evanescent microwaves with decay lengths determined by a combination of microwave wavelength (lambda) and waveguide termination geometry, we have imaged and mapped material non-uniformities and defects with a resolving capability of lambda/3800=79 microns at 1 GHz. In our method a microstrip quarter wavelength resonator was used to generate evanescent microwaves. We imaged materials with a wide range of conductivities. Carbon composites, dielectrics (Duroid, polymers), semiconductors (3C-SiC, polysilicon, natural diamond), metals (tungsten alloys, copper, zinc, steel), high-temperature superconductors, and botanical samples were scanned for defects, residual stresses, integrity of brazed junctions, subsurface features, areas of different film thickness and moisture content. The evanescent microwave probe is a versatile tool and it can be used to perform very fast, large scale mapping of a wide range of materials. This method of characterization compares favorably with ultrasound testing, which has a resolution of about 0.1 mm and suffers from high absorption in composite materials and poor transmission across boundaries. Eddy current methods which can have a resolution on the order of 50 microns are restricted to evaluating conducting materials. Evanescent microwave imaging, with careful choice of operating frequency and probe geometry, can have a resolution of up to 1 micron. In this method we can scan hot and moving objects, sample preparation is not required, testing is non-destructive, non-invasive and non-contact, and can be done in air, in liquid or in vacuum.

  3. Use of UAS remote sensing data to estimate crop ET at high spatial resolution

    USDA-ARS?s Scientific Manuscript database

    Estimation of the spatial distribution of evapotranspiration (ET) based on remotely sensed imagery has become useful for managing water in irrigated agricultural at various spatial scales. However, data acquired by conventional satellites (Landsat, ASTER, etc.) lack the spatial resolution to capture...

  4. OpenMP parallelization of a gridded SWAT (SWATG)

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Hou, Jinliang; Cao, Yongpan; Gu, Juan; Huang, Chunlin

    2017-12-01

    Large-scale, long-term and high spatial resolution simulation is a common issue in environmental modeling. A Gridded Hydrologic Response Unit (HRU)-based Soil and Water Assessment Tool (SWATG) that integrates grid modeling scheme with different spatial representations also presents such problems. The time-consuming problem affects applications of very high resolution large-scale watershed modeling. The OpenMP (Open Multi-Processing) parallel application interface is integrated with SWATG (called SWATGP) to accelerate grid modeling based on the HRU level. Such parallel implementation takes better advantage of the computational power of a shared memory computer system. We conducted two experiments at multiple temporal and spatial scales of hydrological modeling using SWATG and SWATGP on a high-end server. At 500-m resolution, SWATGP was found to be up to nine times faster than SWATG in modeling over a roughly 2000 km2 watershed with 1 CPU and a 15 thread configuration. The study results demonstrate that parallel models save considerable time relative to traditional sequential simulation runs. Parallel computations of environmental models are beneficial for model applications, especially at large spatial and temporal scales and at high resolutions. The proposed SWATGP model is thus a promising tool for large-scale and high-resolution water resources research and management in addition to offering data fusion and model coupling ability.

  5. Multi-Decadal Pathfinder Data Sets of Global Land Biophysical Variables from AVHRR and MODIS and their Use in GCM Studies of Biogeophysics and Biogeochemistry

    NASA Technical Reports Server (NTRS)

    Myneni, Ranga

    2003-01-01

    The problem of how the scale, or spatial resolution, of reflectance data impacts retrievals of vegetation leaf area index (LAI) and fraction absorbed photosynthetically active radiation (PAR) has been investigated. We define the goal of scaling as the process by which it is established that LAI and FPAR values derived from coarse resolution sensor data equal the arithmetic average of values derived independently from fine resolution sensor data. The increasing probability of land cover mixtures with decreasing resolution is defined as heterogeneity, which is a key concept in scaling studies. The effect of pixel heterogeneity on spectral reflectances and LAI/FPAR retrievals is investigated with 1 km Advanced Very High Resolution Radiometer (AVHRR) data aggregated to different coarse spatial resolutions. It is shown that LAI retrieval errors at coarse resolution are inversely related to the proportion of the dominant land cover in such pixel. Further, large errors in LAI retrievals are incurred when forests are minority biomes in non-forest pixels compared to when forest biomes are mixed with one another, and vice-versa. A physically based technique for scaling with explicit spatial resolution dependent radiative transfer formulation is developed. The successful application of this theory to scaling LAI retrievals from AVHRR data of different resolutions is demonstrated

  6. Transverse Space-Charge Field-Induced Plasma Dynamics for Ultraintense Electron-Beam Characterization

    NASA Astrophysics Data System (ADS)

    Tarkeshian, R.; Vay, J. L.; Lehe, R.; Schroeder, C. B.; Esarey, E. H.; Feurer, T.; Leemans, W. P.

    2018-04-01

    Similarly to laser or x-ray beams, the interaction of sufficiently intense particle beams with neutral gases will result in the creation of plasma. In contrast to photon-based ionization, the strong unipolar field of a particle beam can generate a plasma where the electron population receives a large initial momentum kick and escapes, leaving behind unshielded ions. Measuring the properties of the ensuing Coulomb exploding ions—such as their kinetic energy distribution, yield, and spatial distribution—can provide information about the peak electric fields that are achieved in the electron beams. Particle-in-cell simulations and analytical models are presented for high-brightness electron beams of a few femtoseconds or even hundreds of attoseconds, and transverse beam sizes on the micron scale, as generated by today's free electron lasers. Different density regimes for the utilization as a potential diagnostics are explored, and the fundamental differences in plasma dynamical behavior for e-beam or photon-based ionization are highlighted. By measuring the dynamics of field-induced ions for different gas and beam densities, a lower bound on the beam charge density can be obtained in a single shot and in a noninvasive way. The exponential dependency of the ionization yield on the beam properties can provide unprecedented spatial and temporal resolution, at the submicrometer and subfemtosecond scales, respectively, offering a practical and powerful approach to characterizing beams from accelerators at the frontiers of performance.

  7. Charge Sharing and Charge Loss in a Cadmium-Zinc-Telluride Fine-Pixel Detector Array

    NASA Technical Reports Server (NTRS)

    Gaskin, J. A.; Sharma, D. P.; Ramsey, B. D.; Six, N. Frank (Technical Monitor)

    2002-01-01

    Because of its high atomic number, room temperature operation, low noise, and high spatial resolution a Cadmium-Zinc-Telluride (CZT) multi-pixel detector is ideal for hard x-ray astrophysical observation. As part of on-going research at MSFC (Marshall Space Flight Center) to develop multi-pixel CdZnTe detectors for this purpose, we have measured charge sharing and charge loss for a 4x4 (750micron pitch), lmm thick pixel array and modeled these results using a Monte-Carlo simulation. This model was then used to predict the amount of charge sharing for a much finer pixel array (with a 300micron pitch). Future work will enable us to compare the simulated results for the finer array to measured values.

  8. Acousto-optic infrared spectral imager for Pluto fast flyby

    NASA Technical Reports Server (NTRS)

    Glenar, D. A.; Hillman, J. J.

    1993-01-01

    Acousto-optic tunable filters (AOTF's) enable the design of compact, two-dimensional imaging spectrometers with high spectral and spatial resolution and with no moving parts. Tellurium dioxide AOTF's operate from about 400 nm to nearly 5 microns, and a single device will tune continuously over one octave by changing the RF acoustic frequency applied to the device. An infrared (1.2-2.5 micron) Acousto-Optic Imaging Spectrometer (AImS) was designed that closely conforms to the surface composition mapping objectives of the Pluto Fast Flyby. It features a 75-cm focal length telescope, infrared AOTF, and 256 x 256 NICMOS-3 focal plane array for acquiring narrowband images with a spectral resolving power (lambda/delta(lambda)) exceeding 250. We summarize the instrument design features and its expected performance at the Pluto-Charon encounter.

  9. Modeling of the 10-micron natural laser emission from the mesospheres of Mars and Venus

    NASA Technical Reports Server (NTRS)

    Deming, D.; Mumma, M. J.

    1983-01-01

    The NLTE radiative transfer problem is solved to obtain the 00 deg 1 vibrational state population. This model successfully reproduces the existing center-to-limb observations, although higher spatial resolution observations are needed for a definitive test. The model also predicts total fluxes which are close to the observed values. The strength of the emission is predicted to be closely related to the instantaneous near-IR solar heating rate.

  10. FY16 NRL DoD High Performance Computing Modernization Program

    DTIC Science & Technology

    2017-09-15

    explored both wind and wave forcing in the numerical wave tank. The model uses high spatial and temporal resolution and a multi-phase formulation to...Results: The ADVED_NS code was used to predict the effect of the standoff distance between micron- diameter wires and flow frequency on the total...contours for a flow over 3D wire mesh. Figure 2 shows verifications comparing computed and theoretical drag forces for the flow over two cylinders in an

  11. Low Dimensional Modeling of Zero-Net Mass-Flux Actuators

    DTIC Science & Technology

    2004-07-01

    centerline deflection of the diaphragm is measured using a laser displacement sensor (Micro-Epsilon Model ILD2000-10). Both signals are acquired phase...the flowfield emanating from the ZNMF orifice are acquired using Laser Doppler Anemometry (LDA), the details of which are listed in Table 1. The...synthetic jet actuator is mounted to a three-axis traverse with sub-micron spatial resolution. The 488 and 514.5 nm lines of an argon-ion laser are

  12. Spatial Structure of Above-Ground Biomass Limits Accuracy of Carbon Mapping in Rainforest but Large Scale Forest Inventories Can Help to Overcome

    PubMed Central

    Guitet, Stéphane; Hérault, Bruno; Molto, Quentin; Brunaux, Olivier; Couteron, Pierre

    2015-01-01

    Precise mapping of above-ground biomass (AGB) is a major challenge for the success of REDD+ processes in tropical rainforest. The usual mapping methods are based on two hypotheses: a large and long-ranged spatial autocorrelation and a strong environment influence at the regional scale. However, there are no studies of the spatial structure of AGB at the landscapes scale to support these assumptions. We studied spatial variation in AGB at various scales using two large forest inventories conducted in French Guiana. The dataset comprised 2507 plots (0.4 to 0.5 ha) of undisturbed rainforest distributed over the whole region. After checking the uncertainties of estimates obtained from these data, we used half of the dataset to develop explicit predictive models including spatial and environmental effects and tested the accuracy of the resulting maps according to their resolution using the rest of the data. Forest inventories provided accurate AGB estimates at the plot scale, for a mean of 325 Mg.ha-1. They revealed high local variability combined with a weak autocorrelation up to distances of no more than10 km. Environmental variables accounted for a minor part of spatial variation. Accuracy of the best model including spatial effects was 90 Mg.ha-1 at plot scale but coarse graining up to 2-km resolution allowed mapping AGB with accuracy lower than 50 Mg.ha-1. Whatever the resolution, no agreement was found with available pan-tropical reference maps at all resolutions. We concluded that the combined weak autocorrelation and weak environmental effect limit AGB maps accuracy in rainforest, and that a trade-off has to be found between spatial resolution and effective accuracy until adequate “wall-to-wall” remote sensing signals provide reliable AGB predictions. Waiting for this, using large forest inventories with low sampling rate (<0.5%) may be an efficient way to increase the global coverage of AGB maps with acceptable accuracy at kilometric resolution. PMID:26402522

  13. Effects of finite hot-wire spatial resolution on turbulence statistics and velocity spectra in a round turbulent free jet

    NASA Astrophysics Data System (ADS)

    Sadeghi, Hamed; Lavoie, Philippe; Pollard, Andrew

    2018-03-01

    The effect of finite hot-wire spatial resolution on turbulence statistics and velocity spectra in a round turbulent free jet is investigated. To quantify spatial resolution effects, measurements were taken using a nano-scale thermal anemometry probe (NSTAP) and compared to results from conventional hot-wires with sensing lengths of l=0.5 and 1 mm. The NSTAP has a sensing length significantly smaller than the Kolmogorov length scale η for the present experimental conditions, whereas the sensing lengths for the conventional probes are larger than η. The spatial resolution is found to have a significant impact on the dissipation both on and off the jet centreline with the NSTAP results exceeding those obtained from the conventional probes. The resolution effects along the jet centreline are adequately predicted using a Wyngaard-type spectral technique (Wyngaard in J Sci Instr 1(2):1105-1108,1968), but additional attenuation on the measured turbulence quantities are observed off the centreline. The magnitude of this attenuation is a function of both the ratio of wire length to Kolmogorov length scale and the magnitude of the shear. The effect of spatial resolution is noted to have an impact on the power-law decay parameters for the turbulent kinetic energy that is computed. The effect of spatial filtering on the streamwise dissipation energy spectra is also considered. Empirical functions are proposed to estimate the effect of finite resolution, which take into account the mean shear.

  14. Superresolved digital in-line holographic microscopy for high-resolution lensless biological imaging

    NASA Astrophysics Data System (ADS)

    Micó, Vicente; Zalevsky, Zeev

    2010-07-01

    Digital in-line holographic microscopy (DIHM) is a modern approach capable of achieving micron-range lateral and depth resolutions in three-dimensional imaging. DIHM in combination with numerical imaging reconstruction uses an extremely simplified setup while retaining the advantages provided by holography with enhanced capabilities derived from algorithmic digital processing. We introduce superresolved DIHM incoming from time and angular multiplexing of the sample spatial frequency information and yielding in the generation of a synthetic aperture (SA). The SA expands the cutoff frequency of the imaging system, allowing submicron resolutions in both transversal and axial directions. The proposed approach can be applied when imaging essentially transparent (low-concentration dilutions) and static (slow dynamics) samples. Validation of the method for both a synthetic object (U.S. Air Force resolution test) to quantify the resolution improvement and a biological specimen (sperm cells biosample) are reported showing the generation of high synthetic numerical aperture values working without lenses.

  15. Reduced-Scale Transition-Edge Sensor Detectors for Solar and X-Ray Astrophysics

    NASA Technical Reports Server (NTRS)

    Datesman, Aaron M.; Adams, Joseph S.; Bandler, Simon R.; Betancourt-Martinez, Gabriele L.; Chang, Meng-Ping; Chervenak, James A.; Eckart, Megan E.; Ewin, Audrey E.; Finkbeiner, Fred M.; Ha, Jong Yoon; hide

    2017-01-01

    We have developed large-format, close-packed X-ray microcalorimeter arrays fabricated on solid substrates, designed to achieve high energy resolution with count rates up to a few hundred counts per second per pixel for X-ray photon energies upto 8 keV. Our most recent arrays feature 31-micron absorbers on a 35-micron pitch, reducing the size of pixels by about a factor of two. This change will enable an instrument with significantly higher angular resolution. In order to wire out large format arrays with an increased density of smaller pixels, we have reduced the lateral size of both the microstrip wiring and the Mo/Au transition-edge sensors (TES). We report on the key physical properties of these small TESs and the fine Nb leads attached, including the critical currents and weak-link properties associated with the longitudinal proximity effect.

  16. A sub-cm micromachined electron microscope

    NASA Technical Reports Server (NTRS)

    Feinerman, A. D.; Crewe, D. A.; Perng, D. C.; Shoaf, S. E.; Crewe, A. V.

    1993-01-01

    A new approach for fabricating macroscopic (approximately 10x10x10 mm(exp 3)) structures with micron accuracy has been developed. This approach combines the precision of semiconductor processing and fiber optic technologies. A (100) silicon wafer is anisotropically etched to create four orthogonal v-grooves and an aperture on each 10x12 mm die. Precision 308 micron optical fibers are sandwiched between the die to align the v-grooves. The fiber is then anodically bonded to the die above and below it. This procedure is repeated to create thick structures and a stack of 5 or 6 die will be used to create a miniature scanning electron microscope (MSEM). Two die in the structure will have a segmented electrode to deflect the beam and correct for astigmatism. The entire structure is UHV compatible. The performance of an SEM improves as its length is reduced and a sub-cm 2 keV MSEM with a field emission source should have approximately 1 nm resolution. A low voltage high resolution MSEM would be useful for the examination of biological specimens and semiconductors with a minimum of damage. The first MSEM will be tested with existing 6 micron thermionic sources. In the future a micromachined field emission source will be used. The stacking technology presented in this paper can produce an array of MSEMs 1 to 30 mm in length with a 1 mm or larger period. A key question being addressed by this research is the optimum size for a low voltage MSEM which will be determined by the required spatial resolution, field of view, and working distance.

  17. Excitation Mechanisms of Near-Infrared Emission Lines in LINER Galaxies

    NASA Astrophysics Data System (ADS)

    Boehle, Anna

    2017-01-01

    I will present high spatial resolution, integral field spectroscopic observations of the nearby LINER (low ionization nuclear emission line region) galaxy NGC 404. LINERs are found at the centers of ~1/3 of galaxies within 40 Mpc, but their physical nature is not well understood. Although NGC 404 is thought to host a intermediate mass black hole at its center, it is unclear whether accretion onto the black hole or another mechanism such as shock excitation drives its LINER emission. We use the OSIRIS near-infrared integral field spectrograph at Keck Observatory behind laser guide star adaptive optics to map the strength and kinematics of [FeII], H2, and hydrogen recombination lines in the nucleus of NGC 404. These observations have a spatial pixel sampling of 0.5 pc and span the central 30 pc of the galaxy. We find that the ionized and molecular gas show differences in their morphology and kinematics on parsec scales. In particular, there are regions with line ratios of [FeII]/Pa-β that are much higher than previously seen in spatially integrated spectra, significantly restricting the possible excitation mechanisms of the near-infrared emission lines in this source. We are also applying these analysis techniques to 10 additional nearby LINERs, a part of a larger sample of 14 sources, to understand what drives the emission lines in these active galaxies. As a part of this program, I worked on the upgrade of the detector in the OSIRIS spectrograph, which has allowed observations for this survey obtained since January 2016 to be taken with increased instrument sensitivity of a factor of ~2 at J-band wavelengths (1.2 - 1.4 microns) and ~1.6 at H- and K-band wavelengths (1.5 - 2.4 microns). I will present results from the LINER survey, the OSIRIS detector upgrade, and also touch on related work using stellar orbits around the Milky Way supermassive black hole Sgr A* to constrain the mass and distance to our own Galactic Center.

  18. Chemical speciation of polyurethane polymers by soft-x-ray spectromicroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rightor, E.G.; Hitchcock, A.P.; Urquhart, S.G.

    1997-04-01

    Polyurethane polymers are a versatile class of materials which have numerous applications in modern life, from automotive body panels, to insulation, to household furnishings. Phase segregation helps to determine the physical properties of several types of polyurethanes. Polymer scientists believe that understanding the connections between formulation chemistry, the chemical nature of the segregated phases, and the physical properties of the resulting polymer, would greatly advance development of improved polyurethane materials. However, the sub-micron size of segregated features precludes their chemical analysis by existing methods, leaving only indirect means of characterizing these features. For the past several years the authors havemore » been developing near edge X-ray absorption spectromicroscopy to study the chemical nature of individual segregated phases. Part of this work has involved studies of molecular analogues and model polymers, in conjunction with quantum calculations, in order to identify the characteristic near edge spectral transitions of important chemical groups. This spectroscopic base is allowing the authors to study phase segregation in polyurethanes by taking advantage of several unique capabilities of scanning transmission x-ray microscopy (STXM) - high spatial resolution ({approximately} 0.1 {mu}m), high spectral resolution ({approximately}0.1 eV at the C 1s edge), and the ability to record images and spectra with relatively low radiation damage. The beamline 7.0 STXM at ALS is being used to study microtomed sections or cast films of polyurethanes. Based on the pioneering work of Ade, Kirz and collaborators at the NSLS X-1A STXM, it is clear that scanning X-ray transmission microscopy using soft X-rays can provide information about the chemical origin of phase segregation in radiation-sensitive materials on a sub-micron scale. This information is difficult or impossible to obtain by other means.« less

  19. Siderophile Element Profile Measurements in Iron Meteorites Using Laser Ablation ICP-MS

    NASA Technical Reports Server (NTRS)

    Watson, H. C.; Watson, E. B.; McDonough, W. F.

    2005-01-01

    Understanding the behaviour of siderophile elements during cooling of iron meteorites can lead to insight into the general thermal histories of the meteorites as well as their respective parent bodies. Traditionally trace element analyses in meteorites have been done using techniques that only measure the average concentration in each phase. With these methods, all of the spatial information with respect to the distribution of an element within one phase is lost. Measuring concentration profiles of trace elements in meteorites is now possible, with the advent of high-resolution analytical techniques such as laser ablation, inductively coupled plasma mass spectrometry (LA-ICP-MS) with spatial resolution <20 microns. [e.g. 1,2] and secondary ion mass spectrometry [3]. These profiles can give more insight into both the partitioning and diffusive behavior of siderophile elements in metal systems relevant to iron meteorites, as well as parent body cooling rates.

  20. Coalescence driven self-organization of growing nanodroplets around a microcap

    NASA Astrophysics Data System (ADS)

    Dyett, Brendan; Hao, Hao; Lohse, Detlef; Zhang, Xuehua

    The coalescence between growing droplets is important for the surface coverage and spatial arrangements of droplets on surfaces. In this work, total internal reflection fluorescence (TIRF) microscopy is utilized to in-situ investigate the formation of nanodroplets around the rim of a polymer microcap, with sub-micron spatial and millisecond temporal resolution. We observe that the coalescence among droplets occurs frequently during their growth by solvent exchange. Our experimental results show that the position of the droplet from two merged droplets is related to the size of the parent droplets. The position of the coalesced droplet and the ratio of parent droplet sizes obey a scaling law, reflecting a coalescence preference based on the size inequality. As a result of droplet coalescence, the angles between the centroids of two neighbouring droplets increase with time, obeying a nearly symmetrical arrangement of droplets at various time intervals. The evolution of the position and number from coalescence of growing droplets is modelled. The mechanism for coalescence driven self-organization of growing droplets is general, applicable to microcaps of different sizes and droplets of different liquids. The understanding from this work may be valuable for positioning nanodroplets by nucleation and growth without using templates.

  1. Coalescence driven self-organization of growing nanodroplets around a microcap.

    PubMed

    Dyett, Brendan; Hao, Hao; Lohse, Detlef; Zhang, Xuehua

    2018-04-04

    The coalescence between growing droplets is important for the surface coverage and spatial arrangements of droplets on surfaces. In this work, total internal reflection fluorescence (TIRF) microscopy is utilized to in situ investigate the formation of nanodroplets around the rim of a polymer microcap, with sub-micron spatial and millisecond temporal resolution. We observe that the coalescence among droplets occurs frequently during their growth by solvent exchange. Our experimental results show that the position of the droplet from two merged droplets is related to the size of the parent droplets. The position of the coalesced droplet and the ratio of parent droplet sizes obey a scaling law, reflecting a coalescence preference based on the size inequality. As a result of droplet coalescence, the angles between the centroids of two neighbouring droplets increase with time, obeying a nearly symmetrical arrangement of droplets at various time intervals. The evolution of the position and number from coalescence of growing droplets is modelled. The mechanism for coalescence driven self-organization of growing droplets is general, applicable to microcaps of different sizes and droplets of different liquids. The understanding from this work may be valuable for positioning nanodroplets by nucleation and growth without using templates.

  2. Unique Spectral Features Search In The 20 - 35 Micron Range of Mgs Tes Data

    NASA Astrophysics Data System (ADS)

    Altieri, F.; Bellucci, G.

    TES is the Thermal Emission Spectrometer aboard the NASA mission Mars Global Surveyor (MGS) orbiting around Mars since September 1997. It is collecting 6 - 50 micron thermal emission spectra and one of its principal purposes is to determine and map the Mars surface composition. Spectral features directly ascribable to sur- face minerals have been identified in the 20 - 35 micron spectral range: deposits of crystalline gray hematite have been localized in three regions, Sinus Meridiani, Aram Chaos and Valles Marineris [1, 2], and outcrops of olivines have been individuated in Nili Fossae [3]. The crystalline gray hematite areas have been interpreted to be formed by aqueous mineralization, indicating that liquid water was stable near the Mars sur- face for a long period of time in some limited regions. On the other hand there is no evidence in TES data for large scale occurrences (< 10 km) of moderate-grained (> 50 micron) carbonates exposed at the surface at a detection limit of 10 % [2]. Mars thermal emission spectra show, in general, significant variance between 20 and 35 mi- cron. This variance is not directly attributable to surface mineralogical components for the difficulty of discriminating the contribute of atmospheric components: CO2 and water vapour gas, dust and water ice aerosols. Moreover, the dust layer deposited on the soil has a spectral masking effect, obscuring superficial signature related to smaller mineral deposit and making difficult their identification. In this study we report some examples of single TES spectra with typical hematite and olivine bands and spectra with other unique features in the 20 - 35 micron range likely related to superficial components. For some of them we have analysed how the spectral features change in two different Mars seasons. These single TES pixels could be best investigated by instruments with an higher spatial resolution, as THEMIS and OMEGA. References: [1] Christensen P. R., et al., JGR, 105, 9623-9642, 2000. [2] Christensen P. R., et al., JGR,106, 23823-23871, 2001. [3] Hoefen T. M. and Clark R. N., LPS XXXII, 2049, 2001.

  3. Mesoscale Science with High Energy X-ray Diffraction Microscopy at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Suter, Robert

    2014-03-01

    Spatially resolved diffraction of monochromatic high energy (> 50 keV) x-rays is used to map microstructural quantities inside of bulk polycrystalline materials. The non-destructive nature of High Energy Diffraction Microscopy (HEDM) measurements allows tracking of responses as samples undergo thermo-mechanical or other treatments. Volumes of the order of a cubic millimeter are probed with micron scale spatial resolution. Data sets allow direct comparisons to computational models of responses that frequently involve long-ranged, multi-grain interactions; such direct comparisons have only become possible with the development of HEDM and other high energy x-ray methods. Near-field measurements map the crystallographic orientation field within and between grains using a computational reconstruction method that simulates the experimental geometry and matches orientations in micron sized volume elements to experimental data containing projected grain images in large numbers of Bragg peaks. Far-field measurements yield elastic strain tensors through indexing schemes that sort observed diffraction peaks into sets associated with individual crystals and detect small radial motions in large numbers of such peaks. Combined measurements, facilitated by a new end station hutch at Advanced Photon Source beamline 1-ID, are mutually beneficial and result in accelerated data reduction. Further, absorption tomography yields density contrast that locates secondary phases, void clusters, and cracks, and tracks sample shape during deformation. A collaboration led by the Air Force Research Laboratory and including the Advanced Photon Source, Lawrence Livermore National Laboratory, Carnegie Mellon University, Petra-III, and Cornell University and CHESS is developing software and hardware for combined measurements. Examples of these capabilities include tracking of grain boundary migrations during thermal annealing, tensile deformation of zirconium, and combined measurements of nickel superalloys and a titanium alloy under tensile forces. Work supported by NSF grant DMR-1105173

  4. Multi-scale approaches for high-speed imaging and analysis of large neural populations

    PubMed Central

    Ahrens, Misha B.; Yuste, Rafael; Peterka, Darcy S.; Paninski, Liam

    2017-01-01

    Progress in modern neuroscience critically depends on our ability to observe the activity of large neuronal populations with cellular spatial and high temporal resolution. However, two bottlenecks constrain efforts towards fast imaging of large populations. First, the resulting large video data is challenging to analyze. Second, there is an explicit tradeoff between imaging speed, signal-to-noise, and field of view: with current recording technology we cannot image very large neuronal populations with simultaneously high spatial and temporal resolution. Here we describe multi-scale approaches for alleviating both of these bottlenecks. First, we show that spatial and temporal decimation techniques based on simple local averaging provide order-of-magnitude speedups in spatiotemporally demixing calcium video data into estimates of single-cell neural activity. Second, once the shapes of individual neurons have been identified at fine scale (e.g., after an initial phase of conventional imaging with standard temporal and spatial resolution), we find that the spatial/temporal resolution tradeoff shifts dramatically: after demixing we can accurately recover denoised fluorescence traces and deconvolved neural activity of each individual neuron from coarse scale data that has been spatially decimated by an order of magnitude. This offers a cheap method for compressing this large video data, and also implies that it is possible to either speed up imaging significantly, or to “zoom out” by a corresponding factor to image order-of-magnitude larger neuronal populations with minimal loss in accuracy or temporal resolution. PMID:28771570

  5. X-ray Tomography and Chemical Imaging within Butterfly Wing Scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Jianhua; Lee Yaochang; Tang, M.-T.

    2007-01-19

    The rainbow like color of butterfly wings is associated with the internal and surface structures of the wing scales. While the photonic structure of the scales is believed to diffract specific lights at different angle, there is no adequate probe directly answering the 3-D structures with sufficient spatial resolution. The NSRRC nano-transmission x-ray microscope (nTXM) with tens nanometers spatial resolution is able to image biological specimens without artifacts usually introduced in sophisticated sample staining processes. With the intrinsic deep penetration of x-rays, the nTXM is capable of nondestructively investigating the internal structures of fragile and soft samples. In this study,more » we imaged the structure of butterfly wing scales in 3-D view with 60 nm spatial resolution. In addition, synchrotron-radiation-based Fourier transform Infrared (FT-IR) microspectroscopy was employed to analyze the chemical components with spatial information of the butterfly wing scales. Based on the infrared spectral images, we suggest that the major components of scale structure were rich in protein and polysaccharide.« less

  6. Submicron-resolution photoacoustic microscopy of endogenous light-absorbing biomolecules

    NASA Astrophysics Data System (ADS)

    Zhang, Chi

    Photoacoustic imaging in biomedicine has the unique advantage of probing endogenous light absorbers at various length scales with a 100% relative sensitivity. Among the several modalities of photoacoustic imaging, optical-resolution photoacoustic microscopy (OR-PAM) can achieve high spatial resolution, on the order of optical wavelength, at <1 mm depth in biological tissue (the optical ballistic regime). OR-PAM has been applied successfully to structural and functional imaging of blood vasculature and red blood cells in vivo. Any molecules which absorb sufficient light at certain wavelengths can potentially be imaged by PAM. Compared with pure optical imaging, which typically targets fluorescent markers, label-free PAM avoids the major concerns that the fluorescent labeling probes may disturb the function of biomolecules and may have an insufficient density. This dissertation aims to advance label-free OR-PAM to the subcellular scale. The first part of this dissertation describes the technological advancement of PAM yielding high spatial resolution in 3D. The lateral resolution was improved by using optical objectives with high numerical apertures for optical focusing. The axial resolution was improved by using broadband ultrasonic transducers for ultrasound detection. We achieved 220 nm lateral resolution in transmission mode, 0.43 microm lateral resolution in reflection mode, 7.6 microm axial resolution in normal tissue, and 5.8 microm axial resolution with silicone oil immersion/injection. The achieved lateral resolution and axial resolution were the finest reported at the time. With high-resolution in 3D, PAM was demonstrated to resolve cellular and subcellular structures in vivo, such as red blood cells and melanosomes in melanoma cells. Compared with previous PAM systems, our high-resolution PAM could resolve capillaries in mouse ears more clearly. As an example application, we demonstrated intracellular temperature imaging, assisted by fluorescence signal detection, with sub-degree temperature resolution and sub-micron lateral resolution. The second part of this dissertation describes the exploration of endogenous light-absorbing biomolecules for PAM. We demonstrated cytochromes and myoglobin as new absorption contrasts for PAM and identified the corresponding optimal wavelengths for imaging. Fixed fibroblasts on slides and mouse ear sections were imaged by PAM at 422 nm and 250 nm wavelengths to reveal cytoplasms and nuclei, respectively, as confirmed by standard hematoxylin and eosin (H&E) histology. By imaging a blood-perfused mouse heart at 532 nm down to 150 microm in depth, we derived the myocardial sheet thickness and the cleavage height from an undehydrated heart for the first time. The findings promote PAM at new wavelengths and open up new possibilities for characterizing biological tissue. Of particular interest, dual-wavelength PAM around 250 nm and 420 nm wavelengths is analogous to H&E histology. The last part of this dissertation describes the development of sectioning photoacoustic microscopy (SPAM), based on the advancement in spatial resolution and new contrasts for PAM, with applications in brain histology. Label-free SPAM, assisted by a microtome, acquires serial distortion-free images of a specimen on the surface. By exciting cell nuclei at 266 nm wavelength with high resolution, SPAM could pinpoint cell nuclei sensitively and specifically in the mouse brain section, as confirmed by H&E histology. SPAM was demonstrated to generate high-resolution 3D images, highlighting cell nuclei, of formalin-fixed paraffin-embedded mouse brains without tissue staining or clearing. SPAM can potentially serve as a high-throughput and minimal-artifact substitute for histology, probe many other biomolecules and cells, and become a universal tool for animal or human whole-organ microscopy, with diverse applications in life sciences.

  7. Effect of spatial averaging on multifractal properties of meteorological time series

    NASA Astrophysics Data System (ADS)

    Hoffmann, Holger; Baranowski, Piotr; Krzyszczak, Jaromir; Zubik, Monika

    2016-04-01

    Introduction The process-based models for large-scale simulations require input of agro-meteorological quantities that are often in the form of time series of coarse spatial resolution. Therefore, the knowledge about their scaling properties is fundamental for transferring locally measured fluctuations to larger scales and vice-versa. However, the scaling analysis of these quantities is complicated due to the presence of localized trends and non-stationarities. Here we assess how spatially aggregating meteorological data to coarser resolutions affects the data's temporal scaling properties. While it is known that spatial aggregation may affect spatial data properties (Hoffmann et al., 2015), it is unknown how it affects temporal data properties. Therefore, the objective of this study was to characterize the aggregation effect (AE) with regard to both temporal and spatial input data properties considering scaling properties (i.e. statistical self-similarity) of the chosen agro-meteorological time series through multifractal detrended fluctuation analysis (MFDFA). Materials and Methods Time series coming from years 1982-2011 were spatially averaged from 1 to 10, 25, 50 and 100 km resolution to assess the impact of spatial aggregation. Daily minimum, mean and maximum air temperature (2 m), precipitation, global radiation, wind speed and relative humidity (Zhao et al., 2015) were used. To reveal the multifractal structure of the time series, we used the procedure described in Baranowski et al. (2015). The diversity of the studied multifractals was evaluated by the parameters of time series spectra. In order to analyse differences in multifractal properties to 1 km resolution grids, data of coarser resolutions was disaggregated to 1 km. Results and Conclusions Analysing the spatial averaging on multifractal properties we observed that spatial patterns of the multifractal spectrum (MS) of all meteorological variables differed from 1 km grids and MS-parameters were biased by -29.1 % (precipitation; width of MS) up to >4 % (min. Temperature, Radiation; asymmetry of MS). Also, the spatial variability of MS parameters was strongly affected at the highest aggregation (100 km). Obtained results confirm that spatial data aggregation may strongly affect temporal scaling properties. This should be taken into account when upscaling for large-scale studies. Acknowledgements The study was conducted within FACCE MACSUR. Please see Baranowski et al. (2015) for details on funding. References Baranowski, P., Krzyszczak, J., Sławiński, C. et al. (2015). Climate Research 65, 39-52. Hoffman, H., G. Zhao, L.G.J. Van Bussel et al. (2015). Climate Research 65, 53-69. Zhao, G., Siebert, S., Rezaei E. et al. (2015). Agricultural and Forest Meteorology 200, 156-171.

  8. Depth profiling and imaging capabilities of an ultrashort pulse laser ablation time of flight mass spectrometer

    PubMed Central

    Cui, Yang; Moore, Jerry F.; Milasinovic, Slobodan; Liu, Yaoming; Gordon, Robert J.; Hanley, Luke

    2012-01-01

    An ultrafast laser ablation time-of-flight mass spectrometer (AToF-MS) and associated data acquisition software that permits imaging at micron-scale resolution and sub-micron-scale depth profiling are described. The ion funnel-based source of this instrument can be operated at pressures ranging from 10−8 to ∼0.3 mbar. Mass spectra may be collected and stored at a rate of 1 kHz by the data acquisition system, allowing the instrument to be coupled with standard commercial Ti:sapphire lasers. The capabilities of the AToF-MS instrument are demonstrated on metal foils and semiconductor wafers using a Ti:sapphire laser emitting 800 nm, ∼75 fs pulses at 1 kHz. Results show that elemental quantification and depth profiling are feasible with this instrument. PMID:23020378

  9. Global spectroscopic survey of cloud thermodynamic phase at high spatial resolution, 2005-2015

    NASA Astrophysics Data System (ADS)

    Thompson, David R.; Kahn, Brian H.; Green, Robert O.; Chien, Steve A.; Middleton, Elizabeth M.; Tran, Daniel Q.

    2018-02-01

    The distribution of ice, liquid, and mixed phase clouds is important for Earth's planetary radiation budget, impacting cloud optical properties, evolution, and solar reflectivity. Most remote orbital thermodynamic phase measurements observe kilometer scales and are insensitive to mixed phases. This under-constrains important processes with outsize radiative forcing impact, such as spatial partitioning in mixed phase clouds. To date, the fine spatial structure of cloud phase has not been measured at global scales. Imaging spectroscopy of reflected solar energy from 1.4 to 1.8 µm can address this gap: it directly measures ice and water absorption, a robust indicator of cloud top thermodynamic phase, with spatial resolution of tens to hundreds of meters. We report the first such global high spatial resolution survey based on data from 2005 to 2015 acquired by the Hyperion imaging spectrometer onboard NASA's Earth Observer 1 (EO-1) spacecraft. Seasonal and latitudinal distributions corroborate observations by the Atmospheric Infrared Sounder (AIRS). For extratropical cloud systems, just 25 % of variance observed at GCM grid scales of 100 km was related to irreducible measurement error, while 75 % was explained by spatial correlations possible at finer resolutions.

  10. Performance measurements of hybrid PIN diode arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jernigan, J.G.; Arens, J.F.; Kramer, G.

    We report on the successful effort to develop hybrid PIN diode arrays and to demonstrate their potential as components of vertex detectors. Hybrid pixel arrays have been fabricated by the Hughes Aircraft Co. by bump bonding readout chips developed by Hughes to an array of PIN diodes manufactured by Micron Semiconductor Inc. These hybrid pixel arrays were constructed in two configurations. One array format having 10 {times} 64 pixels, each 120 {mu}m square, and the other format having 256 {times} 256 pixels, each 30 {mu}m square. In both cases, the thickness of the PIN diode layer is 300 {mu}m. Measurementsmore » of detector performance show that excellent position resolution can be achieved by interpolation. By determining the centroid of the charge cloud which spreads charge into a number of neighboring pixels, a spatial resolution of a few microns has been attained. The noise has been measured to be about 300 electrons (rms) at room temperature, as expected from KTC and dark current considerations, yielding a signal-to-noise ratio of about 100 for minimum ionizing particles. 4 refs., 13 figs.« less

  11. Comparison of MODIS and SWAT evapotranspiration over a complex terrain at different spatial scales

    NASA Astrophysics Data System (ADS)

    Abiodun, Olanrewaju O.; Guan, Huade; Post, Vincent E. A.; Batelaan, Okke

    2018-05-01

    In most hydrological systems, evapotranspiration (ET) and precipitation are the largest components of the water balance, which are difficult to estimate, particularly over complex terrain. In recent decades, the advent of remotely sensed data based ET algorithms and distributed hydrological models has provided improved spatially upscaled ET estimates. However, information on the performance of these methods at various spatial scales is limited. This study compares the ET from the MODIS remotely sensed ET dataset (MOD16) with the ET estimates from a SWAT hydrological model on graduated spatial scales for the complex terrain of the Sixth Creek Catchment of the Western Mount Lofty Ranges, South Australia. ET from both models was further compared with the coarser-resolution AWRA-L model at catchment scale. The SWAT model analyses are performed on daily timescales with a 6-year calibration period (2000-2005) and 7-year validation period (2007-2013). Differences in ET estimation between the SWAT and MOD16 methods of up to 31, 19, 15, 11 and 9 % were observed at respectively 1, 4, 9, 16 and 25 km2 spatial resolutions. Based on the results of the study, a spatial scale of confidence of 4 km2 for catchment-scale evapotranspiration is suggested in complex terrain. Land cover differences, HRU parameterisation in AWRA-L and catchment-scale averaging of input climate data in the SWAT semi-distributed model were identified as the principal sources of weaker correlations at higher spatial resolution.

  12. Spatial variability of the Black Sea surface temperature from high resolution modeling and satellite measurements

    NASA Astrophysics Data System (ADS)

    Mizyuk, Artem; Senderov, Maxim; Korotaev, Gennady

    2016-04-01

    Large number of numerical ocean models were implemented for the Black Sea basin during last two decades. They reproduce rather similar structure of synoptical variability of the circulation. Since 00-s numerical studies of the mesoscale structure are carried out using high performance computing (HPC). With the growing capacity of computing resources it is now possible to reconstruct the Black Sea currents with spatial resolution of several hundreds meters. However, how realistic these results can be? In the proposed study an attempt is made to understand which spatial scales are reproduced by ocean model in the Black Sea. Simulations are made using parallel version of NEMO (Nucleus for European Modelling of the Ocean). A two regional configurations with spatial resolutions 5 km and 2.5 km are described. Comparison of the SST from simulations with two spatial resolutions shows rather qualitative difference of the spatial structures. Results of high resolution simulation are compared also with satellite observations and observation-based products from Copernicus using spatial correlation and spectral analysis. Spatial scales of correlations functions for simulated and observed SST are rather close and differs much from satellite SST reanalysis. Evolution of spectral density for modelled SST and reanalysis showed agreed time periods of small scales intensification. Using of the spectral analysis for satellite measurements is complicated due to gaps. The research leading to this results has received funding from Russian Science Foundation (project № 15-17-20020)

  13. Implications of sensor design for coral reef detection: Upscaling ground hyperspectral imagery in spatial and spectral scales

    NASA Astrophysics Data System (ADS)

    Caras, Tamir; Hedley, John; Karnieli, Arnon

    2017-12-01

    Remote sensing offers a potential tool for large scale environmental surveying and monitoring. However, remote observations of coral reefs are difficult especially due to the spatial and spectral complexity of the target compared to sensor specifications as well as the environmental implications of the water medium above. The development of sensors is driven by technological advances and the desired products. Currently, spaceborne systems are technologically limited to a choice between high spectral resolution and high spatial resolution, but not both. The current study explores the dilemma of whether future sensor design for marine monitoring should prioritise on improving their spatial or spectral resolution. To address this question, a spatially and spectrally resampled ground-level hyperspectral image was used to test two classification elements: (1) how the tradeoff between spatial and spectral resolutions affects classification; and (2) how a noise reduction by majority filter might improve classification accuracy. The studied reef, in the Gulf of Aqaba (Eilat), Israel, is heterogeneous and complex so the local substrate patches are generally finer than currently available imagery. Therefore, the tested spatial resolution was broadly divided into four scale categories from five millimeters to one meter. Spectral resolution resampling aimed to mimic currently available and forthcoming spaceborne sensors such as (1) Environmental Mapping and Analysis Program (EnMAP) that is characterized by 25 bands of 6.5 nm width; (2) VENμS with 12 narrow bands; and (3) the WorldView series with broadband multispectral resolution. Results suggest that spatial resolution should generally be prioritized for coral reef classification because the finer spatial scale tested (pixel size < 0.1 m) may compensate for some low spectral resolution drawbacks. In this regard, it is shown that the post-classification majority filtering substantially improves the accuracy of all pixel sizes up to the point where the kernel size reaches the average unit size (pixel < 0.25 m). However, careful investigation as to the effect of band distribution and choice could improve the sensor suitability for the marine environment task. This in mind, while the focus in this study was on the technologically limited spaceborne design, aerial sensors may presently provide an opportunity to implement the suggested setup.

  14. Spatial studies of planetary nebulae with IRAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawkins, G.W.; Zuckerman, B.

    1991-06-01

    The infrared sizes at the four IRAS wavelengths of 57 planetaries, most with 20-60 arcsec optical size, are derived from spatial deconvolution of one-dimensional survey mode scans. Survey observations from multiple detectors and hours confirmed (HCON) observations are combined to increase the sampling to a rate that is sufficient for successful deconvolution. The Richardson-Lucy deconvolution algorithm is used to obtain an increase in resolution of a factor of about 2 or 3 from the normal IRAS detector sizes of 45, 45, 90, and 180 arcsec at wavelengths 12, 25, 60, and 100 microns. Most of the planetaries deconvolve at 12more » and 25 microns to sizes equal to or smaller than the optical size. Some of the planetaries with optical rings 60 arcsec or more in diameter show double-peaked IRAS profiles. Many, such as NGC 6720 and NGC 6543 show all infrared sizes equal to the optical size, while others indicate increasing infrared size with wavelength. Deconvolved IRAS profiles are presented for the 57 planetaries at nearly all wavelengths where IRAS flux densities are 1-2 Jy or higher. 60 refs.« less

  15. Air Pollution Measurements by Citizen Scientists and NASA Satellites: Data Integration and Analysis

    NASA Astrophysics Data System (ADS)

    Gupta, P.; Maibach, J.; Levy, R. C.; Doraiswamy, P.; Pikelnaya, O.; Feenstra, B.; Polidori, A.

    2017-12-01

    PM2.5, or fine particulate matter, is a category of air pollutant consisting of solid particles with effective aerodynamic diameter of less than 2.5 microns. These particles are hazardous to human health, as their small size allows them to penetrate deep into the lungs. Since the late 1990's, the US Environmental Protection Agency has been monitoring PM2.5 using a network of ground-level sensors. Due to cost and space restrictions, the EPA monitoring network remains spatially sparse. That is, while the network spans the extent of the US, the distance between sensors is large enough that significant spatial variation in PM concentration can go undetected. To increase the spatial resolution of monitoring, previous studies have used satellite data to estimate ground-level PM concentrations. From imagery, one can create a measure of haziness due to aerosols, called aerosol optical depth (AOD), which then can be used to estimate PM concentrations using statistical and physical modeling. Additionally, previous research has identified a number of meteorological variables, such as relative humidity and mixing height, which aide in estimating PM concentrations from AOD. Although the high spatial resolution of satellite data is valuable alone for forecasting air quality, higher resolution ground-level data is needed to effectively study the relationship between PM2.5 concentrations and AOD. To this end, we discuss a citizen-science PM monitoring network deployed in California. Using low-cost PM sensors, this network achieves higher spatial resolution. We additionally discuss a software pipeline for integrating resulting PM measurements with satellite data, as well as initial data analysis.

  16. Global Aerosol Remote Sensing from MODIS

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles; Kaufman, Yoram J.; Remer, Lorraine A.; Chu, D. Allen; Mattoo, Shana; Tanre, Didier; Levy, Robert; Li, Rong-Rong; Martins, Jose V.; Lau, William K. M. (Technical Monitor)

    2002-01-01

    The physical characteristics, composition, abundance, spatial distribution and dynamics of global aerosols are still very poorly known, and new data from satellite sensors have long been awaited to improve current understanding and to give a boost to the effort in future climate predictions. The derivation of aerosol parameters from the MODerate resolution Imaging Spectro-radiometer (MODIS) sensors aboard the Earth Observing System (EOS) Terra and Aqua polar-orbiting satellites ushers in a new era in aerosol remote sensing from space. Terra and Aqua were launched on December 18, 1999 and May 4, 2002 respectively, with daytime equator crossing times of approximately 10:30 am and 1:30 pm respectively. Several aerosol parameters are retrieved at 10-km spatial resolution (level 2) from MODIS daytime data. The MODIS aerosol algorithm employs different approaches to retrieve parameters over land and ocean surfaces, because of the inherent differences in the solar spectral radiance interaction with these surfaces. The parameters retrieved include: aerosol optical thickness (AOT) at 0.47, 0.55 and 0.66 micron wavelengths over land, and at 0.47, 0.55, 0.66, 0.87, 1.2, 1.6, and 2.1 micron over ocean; Angstrom exponent over land and ocean; and effective radii, and the proportion of AOT contributed by the small mode aerosols over ocean. To ensure the quality of these parameters, a substantial part of the Terra-MODIS aerosol products were validated globally and regionally, based on cross correlation with corresponding parameters derived from ground-based measurements from AERONET (AErosol RObotic NETwork) sun photometers. Similar validation efforts are planned for the Aqua-MODIS aerosol products. The MODIS level 2 aerosol products are operationally aggregated to generate global daily, eight-day (weekly), and monthly products at one-degree spatial resolution (level 3). MODIS aerosol data are used for the detailed study of local, regional, and global aerosol concentration, distribution, and temporal dynamics, as well as for radiative forcing calculations. We show several examples of these results and comparisons with model output.

  17. Generation of High Resolution Land Surface Parameters in the Community Land Model

    NASA Astrophysics Data System (ADS)

    Ke, Y.; Coleman, A. M.; Wigmosta, M. S.; Leung, L.; Huang, M.; Li, H.

    2010-12-01

    The Community Land Model (CLM) is the land surface model used for the Community Atmosphere Model (CAM) and the Community Climate System Model (CCSM). It examines the physical, chemical, and biological processes across a variety of spatial and temporal scales. Currently, efforts are being made to improve the spatial resolution of the CLM, in part, to represent finer scale hydrologic characteristics. Current land surface parameters of CLM4.0, in particular plant functional types (PFT) and leaf area index (LAI), are generated from MODIS and calculated at a 0.05 degree resolution. These MODIS-derived land surface parameters have also been aggregated to coarser resolutions (e.g., 0.5, 1.0 degrees). To evaluate the response of CLM across various spatial scales, higher spatial resolution land surface parameters need to be generated. In this study we examine the use of Landsat TM/ETM+ imagery and data fusion techniques for generating land surface parameters at a 1km resolution within the Pacific Northwest United States. . Land cover types and PFTs are classified based on Landsat multi-season spectral information, DEM, National Land Cover Database (NLCD) and the USDA-NASS Crop Data Layer (CDL). For each PFT, relationships between MOD15A2 high quality LAI values, Landsat-based vegetation indices, climate variables, terrain, and laser-altimeter derived vegetation height are used to generate monthly LAI values at a 30m resolution. The high-resolution PFT and LAI data are aggregated to create a 1km model grid resolution. An evaluation and comparison of CLM land surface response at both fine and moderate scale is presented.

  18. Error Estimation in an Optimal Interpolation Scheme for High Spatial and Temporal Resolution SST Analyses

    NASA Technical Reports Server (NTRS)

    Rigney, Matt; Jedlovec, Gary; LaFontaine, Frank; Shafer, Jaclyn

    2010-01-01

    Heat and moisture exchange between ocean surface and atmosphere plays an integral role in short-term, regional NWP. Current SST products lack both spatial and temporal resolution to accurately capture small-scale features that affect heat and moisture flux. NASA satellite is used to produce high spatial and temporal resolution SST analysis using an OI technique.

  19. Estimating Gross Primary Production in Cropland with High Spatial and Temporal Scale Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Lin, S.; Li, J.; Liu, Q.

    2018-04-01

    Satellite remote sensing data provide spatially continuous and temporally repetitive observations of land surfaces, and they have become increasingly important for monitoring large region of vegetation photosynthetic dynamic. But remote sensing data have their limitation on spatial and temporal scale, for example, higher spatial resolution data as Landsat data have 30-m spatial resolution but 16 days revisit period, while high temporal scale data such as geostationary data have 30-minute imaging period, which has lower spatial resolution (> 1 km). The objective of this study is to investigate whether combining high spatial and temporal resolution remote sensing data can improve the gross primary production (GPP) estimation accuracy in cropland. For this analysis we used three years (from 2010 to 2012) Landsat based NDVI data, MOD13 vegetation index product and Geostationary Operational Environmental Satellite (GOES) geostationary data as input parameters to estimate GPP in a small region cropland of Nebraska, US. Then we validated the remote sensing based GPP with the in-situ measurement carbon flux data. Results showed that: 1) the overall correlation between GOES visible band and in-situ measurement photosynthesis active radiation (PAR) is about 50 % (R2 = 0.52) and the European Center for Medium-Range Weather Forecasts ERA-Interim reanalysis data can explain 64 % of PAR variance (R2 = 0.64); 2) estimating GPP with Landsat 30-m spatial resolution data and ERA daily meteorology data has the highest accuracy(R2 = 0.85, RMSE < 3 gC/m2/day), which has better performance than using MODIS 1-km NDVI/EVI product import; 3) using daily meteorology data as input for GPP estimation in high spatial resolution data would have higher relevance than 8-day and 16-day input. Generally speaking, using the high spatial resolution and high frequency satellite based remote sensing data can improve GPP estimation accuracy in cropland.

  20. Super-resolution optical microscopy for studying membrane structure and dynamics.

    PubMed

    Sezgin, Erdinc

    2017-07-12

    Investigation of cell membrane structure and dynamics requires high spatial and temporal resolution. The spatial resolution of conventional light microscopy is limited due to the diffraction of light. However, recent developments in microscopy enabled us to access the nano-scale regime spatially, thus to elucidate the nanoscopic structures in the cellular membranes. In this review, we will explain the resolution limit, address the working principles of the most commonly used super-resolution microscopy techniques and summarise their recent applications in the biomembrane field.

  1. [An effective method for improving the imaging spatial resolution of terahertz time domain spectroscopy system].

    PubMed

    Zhang, Zeng-yan; Ji, Te; Zhu, Zhi-yong; Zhao, Hong-wei; Chen, Min; Xiao, Ti-qiao; Guo, Zhi

    2015-01-01

    Terahertz radiation is an electromagnetic radiation in the range between millimeter waves and far infrared. Due to its low energy and non-ionizing characters, THz pulse imaging emerges as a novel tool in many fields, such as material, chemical, biological medicine, and food safety. Limited spatial resolution is a significant restricting factor of terahertz imaging technology. Near field imaging method was proposed to improve the spatial resolution of terahertz system. Submillimeter scale's spauial resolution can be achieved if the income source size is smaller than the wawelength of the incoming source and the source is very close to the sample. But many changes were needed to the traditional terahertz time domain spectroscopy system, and it's very complex to analyze sample's physical parameters through the terahertz signal. A method of inserting a pinhole upstream to the sample was first proposed in this article to improve the spatial resolution of traditional terahertz time domain spectroscopy system. The measured spatial resolution of terahertz time domain spectroscopy system by knife edge method can achieve spatial resolution curves. The moving stage distance between 10 % and 90 Yo of the maximum signals respectively was defined as the, spatial resolution of the system. Imaging spatial resolution of traditional terahertz time domain spectroscopy system was improved dramatically after inserted a pinhole with diameter 0. 5 mm, 2 mm upstream to the sample. Experimental results show that the spatial resolution has been improved from 1. 276 mm to 0. 774 mm, with the increment about 39 %. Though this simple method, the spatial resolution of traditional terahertz time domain spectroscopy system was increased from millimeter scale to submillimeter scale. A pinhole with diameter 1 mm on a polyethylene plate was taken as sample, to terahertz imaging study. The traditional terahertz time domain spectroscopy system and pinhole inserted terahertz time domain spectroscopy system were applied in the imaging experiment respectively. The relative THz-power loss imaging of samples were use in this article. This method generally delivers the best signal to noise ratio in loss images, dispersion effects are cancelled. Terahertz imaging results show that the sample's boundary was more distinct after inserting the pinhole in front of, sample. The results also conform that inserting pinhole in front of sample can improve the imaging spatial resolution effectively. The theoretical analyses of the method which improve the spatial resolution by inserting a pinhole in front of sample were given in this article. The analyses also indicate that the smaller the pinhole size, the longer spatial coherence length of the system, the better spatial resolution of the system. At the same time the terahertz signal will be reduced accordingly. All the experimental results and theoretical analyses indicate that the method of inserting a pinhole in front of sample can improve the spatial resolution of traditional terahertz time domain spectroscopy system effectively, and it will further expand the application of terahertz imaging technology.

  2. A multicore compound glass optical fiber for neutron imaging

    NASA Astrophysics Data System (ADS)

    Moore, Michael; Zhang, Xiaodong; Feng, Xian; Brambilla, Gilberto; Hayward, Jason

    2017-04-01

    Optical fibers have been successfully utilized for point sensors targeting physical quantities (stress, strain, rotation, acceleration), chemical compounds (humidity, oil, nitrates, alcohols, DNA) or radiation fields (X-rays, β particles, γ-rays). Similarly, bundles of fibers have been extremely successful in imaging visible wavelengths for medical endoscopy and industrial boroscopy. This work presents the progress in the fabrication and experimental evaluation of multicore fiber as neutron scattering instrumentation designed to detect and image neutrons with micron level spatial resolution.

  3. FY16 NRL DoD High Performance Computing Modernization Program Annual Reports

    DTIC Science & Technology

    2017-09-15

    explored both wind and wave forcing in the numerical wave tank. The model uses high spatial and temporal resolution and a multi-phase formulation to...Results: The ADVED_NS code was used to predict the effect of the standoff distance between micron- diameter wires and flow frequency on the total...contours for a flow over 3D wire mesh. Figure 2 shows verifications comparing computed and theoretical drag forces for the flow over two cylinders in an

  4. Preliminary design and development of a reflectance spectrometer instrument

    NASA Technical Reports Server (NTRS)

    Mccord, T. B.

    1979-01-01

    An improved design for the reflectance spectrometer is described to be used on various terrestrial body missions. These improvements were made on the original Lunar Polar Orbiter design. These include a larger entrance mirror, rectangular aperture, multiple optical beams, spatial resolution, and a bandwidth extension to 5 microns. In addition, detailed electronic designs were produced for a charge amplifier and an amplifier/demodulator/integrator. Design of a microprocessor driven test system was begun. Laboratory tests were performed on a tuning fork chopper.

  5. Quantitative analysis of the effects of vertical magnetic fields on microsegregation in Te-doped LEC GaAs

    NASA Technical Reports Server (NTRS)

    Carlson, D. J.; Witt, A. F.

    1992-01-01

    Using near-IR transmission microscopy with computational absorption analysis, the effects of axial magnetic fields on micro- and macrosegregation during LP-LEC growth of GaAs were quantitatively investigated with a spatial resolution approaching 2 microns. Segregation inhomogeneities exceeding one order of magnitude are found to be related to fluid dynamics of the melt. The applicability of the BPS theory as well as the nonapplicability of the Cochran analysis are established.

  6. Adaptive optics high-resolution IR spectroscopy with silicon grisms and immersion gratings

    NASA Astrophysics Data System (ADS)

    Ge, Jian; McDavitt, Daniel L.; Chakraborty, Abhijit; Bernecker, John L.; Miller, Shane

    2003-02-01

    The breakthrough of silicon immersion grating technology at Penn State has the ability to revolutionize high-resolution infrared spectroscopy when it is coupled with adaptive optics at large ground-based telescopes. Fabrication of high quality silicon grism and immersion gratings up to 2 inches in dimension, less than 1% integrated scattered light, and diffraction-limited performance becomes a routine process thanks to newly developed techniques. Silicon immersion gratings with etched dimensions of ~ 4 inches are being developed at Penn State. These immersion gratings will be able to provide a diffraction-limited spectral resolution of R = 300,000 at 2.2 micron, or 130,000 at 4.6 micron. Prototype silicon grisms have been successfully used in initial scientific observations at the Lick 3m telescope with adaptive optics. Complete K band spectra of a total of 6 T Tauri and Ae/Be stars and their close companions at a spectral resolution of R ~ 3000 were obtained. This resolving power was achieved by using a silicon echelle grism with a 5 mm pupil diameter in an IR camera. These results represent the first scientific observations conducted by the high-resolution silicon grisms, and demonstrate the extremely high dispersing power of silicon-based gratings. New discoveries from this high spatial and spectral resolution IR spectroscopy will be reported. The future of silicon-based grating applications in ground-based AO IR instruments is promising. Silicon immersion gratings will make very high-resolution spectroscopy (R > 100,000) feasible with compact instruments for implementation on large telescopes. Silicon grisms will offer an efficient way to implement low-cost medium to high resolution IR spectroscopy (R ~ 1000-50000) through the conversion of existing cameras into spectrometers by locating a grism in the instrument's pupil location.

  7. Cross strip anode readouts for microchannel plate detectors: developing flight qualified prototypes

    NASA Astrophysics Data System (ADS)

    Vallerga, John; Cooney, M.; Raffanti, R.; Varner, G.; Siegmund, O.; McPhate, J. B.; Tremsin, A.

    2014-01-01

    Photon counting microchannel plate (MCP) imagers have been the detector of choice for most UV astronomical missions over the last two decades (eg. EUVE, FUSE, COS on Hubble etc.). Over this duration, improvements in the MCP laboratory readout technology have resulted in better spatial resolution (x10), temporal resolution (x 1000) and output event rate (x100), all the while operating at lower gain (x 10) resulting in lower high voltage requirements and longer MCP lifetimes. One such technology is the parallel cross strip (PXS) readout. The PXS anode is a set of orthogonal conducting strips (80 x 80), typically spaced at a 635 micron pitch onto which charge clouds from MCP amplified events land. Each strip has its own charge sensitive amplifier that is sampled continuously by a dedicated analog to digital (ADC) converter at 50MHz. All of the 160 ADC digital output lines are fed into a field programmable gate array (FGPA) which can detect charge events landing on the strips, measure the peak amplitudes of those charge events and calculate their spatial centroid along with their time of arrival (X,Y,T). Laboratory versions of these electronics have demonstrated < 20 microns FWHM spatial resolution, count rates on the order of 2 MHz, and temporal resolution of ~ 1ns. In 2012 the our group at U.C. Berkeley, along with our partners at the U. Hawaii, received a Strategic Astrophysics Technology grant to raise the TRL of the PXS detector from 4 to 6 by replacing most of the 19" rack mounted, high powered electronics with application specific integrated circuits (ASICs) which will lower the power, mass and volume requirements of the PXS detector. We were also tasked to design and fabricate a "standard" 50mm square active area MCP detector incorporating these electronics that can be environmentally qualified for flight (temperature, vacuum, vibration). This detector design could then be modified for individual flight opportunities with a higher level of confidence than starting from scratch. We will present the latest progress on the ASIC designs, fabrication and performance and show imaging results from the 50mm XS detector using our current laboratory PXS electronics.

  8. Process scales in catchment science: a new synthesis

    EPA Science Inventory

    Concerns surrounding data resolution, choice of spatial and temporal scales in research design, and problems with extrapolation of processes across spatial and temporal scales differ greatly between scientific process-elucidation research and scenario exploration for watershed ma...

  9. Spatial resolution requirements for urban land cover mapping from space

    NASA Technical Reports Server (NTRS)

    Todd, William J.; Wrigley, Robert C.

    1986-01-01

    Very low resolution (VLR) satellite data (Advanced Very High Resolution Radiometer, DMSP Operational Linescan System), low resolution (LR) data (Landsat MSS), medium resolution (MR) data (Landsat TM), and high resolution (HR) satellite data (Spot HRV, Large Format Camera) were evaluated and compared for interpretability at differing spatial resolutions. VLR data (500 m - 1.0 km) is useful for Level 1 (urban/rural distinction) mapping at 1:1,000,000 scale. Feature tone/color is utilized to distinguish generalized urban land cover using LR data (80 m) for 1:250,000 scale mapping. Advancing to MR data (30 m) and 1:100,000 scale mapping, confidence in land cover mapping is greatly increased, owing to the element of texture/pattern which is now evident in the imagery. Shape and shadow contribute to detailed Level II/III urban land use mapping possible if the interpreter can use HR (10-15 m) satellite data; mapping scales can be 1:25,000 - 1:50,000.

  10. NS001MS - Landsat-D thematic mapper band aircraft scanner

    NASA Technical Reports Server (NTRS)

    Richard, R. R.; Merkel, R. F.; Meeks, G. R.

    1978-01-01

    The thematic mapper is a multispectral scanner which will be launched aboard Landsat-D in the early 1980s. Compared with previous Landsat scanners, this instrument will have an improved spatial resolution (30 m) and new spectral bands. Designated NS001MS, the scanner is designed to duplicate the thematic mapper spectral bands plus two additional bands (1.0 to 1.3 microns and 2.08 to 2.35 microns) in an aircraft scanner for evaluation and investigation prior to design and launch of the final thematic mapper. Applicable specifications used in defining the thematic mapper were retained in the NS001MS design, primarily with respect to spectral bandwidths, noise equivalent reflectance, and noise equivalent difference temperature. The technical design and operational characteristics of the multispectral scanner (with thematic mapper bands) are discussed.

  11. Using High Spatial Resolution Satellite Imagery to Map Forest Burn Severity Across Spatial Scales in a Pine Barrens Ecosystem

    NASA Technical Reports Server (NTRS)

    Meng, Ran; Wu, Jin; Schwager, Kathy L.; Zhao, Feng; Dennison, Philip E.; Cook, Bruce D.; Brewster, Kristen; Green, Timothy M.; Serbin, Shawn P.

    2017-01-01

    As a primary disturbance agent, fire significantly influences local processes and services of forest ecosystems. Although a variety of remote sensing based approaches have been developed and applied to Landsat mission imagery to infer burn severity at 30 m spatial resolution, forest burn severity have still been seldom assessed at fine spatial scales (less than or equal to 5 m) from very-high-resolution (VHR) data. We assessed a 432 ha forest fire that occurred in April 2012 on Long Island, New York, within the Pine Barrens region, a unique but imperiled fire-dependent ecosystem in the northeastern United States. The mapping of forest burn severity was explored here at fine spatial scales, for the first time using remotely sensed spectral indices and a set of Multiple Endmember Spectral Mixture Analysis (MESMA) fraction images from bi-temporal - pre- and post-fire event - WorldView-2 (WV-2) imagery at 2 m spatial resolution. We first evaluated our approach using 1 m by 1 m validation points at the sub-crown scale per severity class (i.e. unburned, low, moderate, and high severity) from the post-fire 0.10 m color aerial ortho-photos; then, we validated the burn severity mapping of geo-referenced dominant tree crowns (crown scale) and 15 m by 15 m fixed-area plots (inter-crown scale) with the post-fire 0.10 m aerial ortho-photos and measured crown information of twenty forest inventory plots. Our approach can accurately assess forest burn severity at the sub-crown (overall accuracy is 84% with a Kappa value of 0.77), crown (overall accuracy is 82% with a Kappa value of 0.76), and inter-crown scales (89% of the variation in estimated burn severity ratings (i.e. Geo-Composite Burn Index (CBI)). This work highlights that forest burn severity mapping from VHR data can capture heterogeneous fire patterns at fine spatial scales over the large spatial extents. This is important since most ecological processes associated with fire effects vary at the less than 30 m scale and VHR approaches could significantly advance our ability to characterize fire effects on forest ecosystems.

  12. Using high spatial resolution satellite imagery to map forest burn severity across spatial scales in a Pine Barrens ecosystem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Ran; Wu, Jin; Schwager, Kathy L.

    As a primary disturbance agent, fire significantly influences local processes and services of forest ecosystems. Although a variety of remote sensing based approaches have been developed and applied to Landsat mission imagery to infer burn severity at 30 m spatial resolution, forest burn severity have still been seldom assessed at fine spatial scales (≤ 5 m) from very-high-resolution (VHR) data. Here we assessed a 432 ha forest fire that occurred in April 2012 on Long Island, New York, within the Pine Barrens region, a unique but imperiled fire-dependent ecosystem in the northeastern United States. The mapping of forest burn severitymore » was explored here at fine spatial scales, for the first time using remotely sensed spectral indices and a set of Multiple Endmember Spectral Mixture Analysis (MESMA) fraction images from bi-temporal — pre- and post-fire event — WorldView-2 (WV-2) imagery at 2 m spatial resolution. We first evaluated our approach using 1 m by 1 m validation points at the sub-crown scale per severity class (i.e. unburned, low, moderate, and high severity) from the post-fire 0.10 m color aerial ortho-photos; then, we validated the burn severity mapping of geo-referenced dominant tree crowns (crown scale) and 15 m by 15 m fixed-area plots (inter-crown scale) with the post-fire 0.10 m aerial ortho-photos and measured crown information of twenty forest inventory plots. Our approach can accurately assess forest burn severity at the sub-crown (overall accuracy is 84% with a Kappa value of 0.77), crown (overall accuracy is 82% with a Kappa value of 0.76), and inter-crown scales (89% of the variation in estimated burn severity ratings (i.e. Geo-Composite Burn Index (CBI)). Lastly, this work highlights that forest burn severity mapping from VHR data can capture heterogeneous fire patterns at fine spatial scales over the large spatial extents. This is important since most ecological processes associated with fire effects vary at the < 30 m scale and VHR approaches could significantly advance our ability to characterize fire effects on forest ecosystems.« less

  13. Using high spatial resolution satellite imagery to map forest burn severity across spatial scales in a Pine Barrens ecosystem

    DOE PAGES

    Meng, Ran; Wu, Jin; Schwager, Kathy L.; ...

    2017-01-21

    As a primary disturbance agent, fire significantly influences local processes and services of forest ecosystems. Although a variety of remote sensing based approaches have been developed and applied to Landsat mission imagery to infer burn severity at 30 m spatial resolution, forest burn severity have still been seldom assessed at fine spatial scales (≤ 5 m) from very-high-resolution (VHR) data. Here we assessed a 432 ha forest fire that occurred in April 2012 on Long Island, New York, within the Pine Barrens region, a unique but imperiled fire-dependent ecosystem in the northeastern United States. The mapping of forest burn severitymore » was explored here at fine spatial scales, for the first time using remotely sensed spectral indices and a set of Multiple Endmember Spectral Mixture Analysis (MESMA) fraction images from bi-temporal — pre- and post-fire event — WorldView-2 (WV-2) imagery at 2 m spatial resolution. We first evaluated our approach using 1 m by 1 m validation points at the sub-crown scale per severity class (i.e. unburned, low, moderate, and high severity) from the post-fire 0.10 m color aerial ortho-photos; then, we validated the burn severity mapping of geo-referenced dominant tree crowns (crown scale) and 15 m by 15 m fixed-area plots (inter-crown scale) with the post-fire 0.10 m aerial ortho-photos and measured crown information of twenty forest inventory plots. Our approach can accurately assess forest burn severity at the sub-crown (overall accuracy is 84% with a Kappa value of 0.77), crown (overall accuracy is 82% with a Kappa value of 0.76), and inter-crown scales (89% of the variation in estimated burn severity ratings (i.e. Geo-Composite Burn Index (CBI)). Lastly, this work highlights that forest burn severity mapping from VHR data can capture heterogeneous fire patterns at fine spatial scales over the large spatial extents. This is important since most ecological processes associated with fire effects vary at the < 30 m scale and VHR approaches could significantly advance our ability to characterize fire effects on forest ecosystems.« less

  14. Spatial and radiometric characterization of multi-spectrum satellite images through multi-fractal analysis

    NASA Astrophysics Data System (ADS)

    Alonso, Carmelo; Tarquis, Ana M.; Zúñiga, Ignacio; Benito, Rosa M.

    2017-03-01

    Several studies have shown that vegetation indexes can be used to estimate root zone soil moisture. Earth surface images, obtained by high-resolution satellites, presently give a lot of information on these indexes, based on the data of several wavelengths. Because of the potential capacity for systematic observations at various scales, remote sensing technology extends the possible data archives from the present time to several decades back. Because of this advantage, enormous efforts have been made by researchers and application specialists to delineate vegetation indexes from local scale to global scale by applying remote sensing imagery. In this work, four band images have been considered, which are involved in these vegetation indexes, and were taken by satellites Ikonos-2 and Landsat-7 of the same geographic location, to study the effect of both spatial (pixel size) and radiometric (number of bits coding the image) resolution on these wavelength bands as well as two vegetation indexes: the Normalized Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI). In order to do so, a multi-fractal analysis of these multi-spectral images was applied in each of these bands and the two indexes derived. The results showed that spatial resolution has a similar scaling effect in the four bands, but radiometric resolution has a larger influence in blue and green bands than in red and near-infrared bands. The NDVI showed a higher sensitivity to the radiometric resolution than EVI. Both were equally affected by the spatial resolution. From both factors, the spatial resolution has a major impact in the multi-fractal spectrum for all the bands and the vegetation indexes. This information should be taken in to account when vegetation indexes based on different satellite sensors are obtained.

  15. Temporal and spatial scaling impacts on extreme precipitation

    NASA Astrophysics Data System (ADS)

    Eggert, B.; Berg, P.; Haerter, J. O.; Jacob, D.; Moseley, C.

    2015-01-01

    Both in the current climate and in the light of climate change, understanding of the causes and risk of precipitation extremes is essential for protection of human life and adequate design of infrastructure. Precipitation extreme events depend qualitatively on the temporal and spatial scales at which they are measured, in part due to the distinct types of rain formation processes that dominate extremes at different scales. To capture these differences, we first filter large datasets of high-resolution radar measurements over Germany (5 min temporally and 1 km spatially) using synoptic cloud observations, to distinguish convective and stratiform rain events. In a second step, for each precipitation type, the observed data are aggregated over a sequence of time intervals and spatial areas. The resulting matrix allows a detailed investigation of the resolutions at which convective or stratiform events are expected to contribute most to the extremes. We analyze where the statistics of the two types differ and discuss at which resolutions transitions occur between dominance of either of the two precipitation types. We characterize the scales at which the convective or stratiform events will dominate the statistics. For both types, we further develop a mapping between pairs of spatially and temporally aggregated statistics. The resulting curve is relevant when deciding on data resolutions where statistical information in space and time is balanced. Our study may hence also serve as a practical guide for modelers, and for planning the space-time layout of measurement campaigns. We also describe a mapping between different pairs of resolutions, possibly relevant when working with mismatched model and observational resolutions, such as in statistical bias correction.

  16. Time Resolved Near Field Optical Microscopy

    NASA Astrophysics Data System (ADS)

    Stark, J. B.

    1996-03-01

    We use broadband pulses to image the carrier dynamics of semiconductor microstructures on a 150 nm spatial scale, with a time resolution of 60 femtoseconds. Etched disks of GaAs/AlGaAs multiple quantum well material, 10 microns in diameter, are excited with a 30 fs pump from a Ti:Sapphire laser, and probed using a near-field optical microscope. The nonlinear transmission of the microdisks is measured using a double-modulation technique, sensitive to transmission changes of 0.0005 within a 150 nm diameter spot on the sample. This spot is scanned to produce an image of the sample. The nonlinear response is produced by the occupation of phase space by the excited distribution. Images of this evolving distribution are collected at time intervals following excitation, measuring the relaxation of carriers at each point in the microdisk. The resulting data can be viewed as a movie of the carrier dynamics of nonequilibrium distributions in excited semiconductor structures. Work done in collaboration with U. Mohideen and R. E. Slusher.

  17. Large-scale microfluidics providing high-resolution and high-throughput screening of Caenorhabditis elegans poly-glutamine aggregation model

    NASA Astrophysics Data System (ADS)

    Mondal, Sudip; Hegarty, Evan; Martin, Chris; Gökçe, Sertan Kutal; Ghorashian, Navid; Ben-Yakar, Adela

    2016-10-01

    Next generation drug screening could benefit greatly from in vivo studies, using small animal models such as Caenorhabditis elegans for hit identification and lead optimization. Current in vivo assays can operate either at low throughput with high resolution or with low resolution at high throughput. To enable both high-throughput and high-resolution imaging of C. elegans, we developed an automated microfluidic platform. This platform can image 15 z-stacks of ~4,000 C. elegans from 96 different populations using a large-scale chip with a micron resolution in 16 min. Using this platform, we screened ~100,000 animals of the poly-glutamine aggregation model on 25 chips. We tested the efficacy of ~1,000 FDA-approved drugs in improving the aggregation phenotype of the model and identified four confirmed hits. This robust platform now enables high-content screening of various C. elegans disease models at the speed and cost of in vitro cell-based assays.

  18. Unveiling Uranus' Clouds: New Observations From Gemini-North NIFS And NIRI

    NASA Astrophysics Data System (ADS)

    Irwin, Patrick G. J.; Teanby, N. A.; Davis, G. R.; Fletcher, L. N.; Orton, G.; Tice, D.

    2010-10-01

    Observations of Uranus were made in September 2009 with the Gemini-North telescope in Hawaii, using both the NIFS and NIRI instruments. Adaptive optics were used to achieve a spatial resolution of approximately 0.1 arcsec. NIRI images were recorded with three spectral filters to constrain the overall appearance of the planet: J, H-continuum and CH4(long), and long slit spectra (1.49 to 1.79 microns) were obtained with the slit aligned on Uranus’ central meridian. In addition, the NIFS instrument was used to acquire spectra from other points on the planet, stepping the NIFS 3 x 3 arcsec field of view across Uranus’ disc. These observations were combined to yield complete images of Uranus at 2040 wavelengths between 1.476 and 1.803 microns with a spectral resolution of 5000. The observed spectra along Uranus central meridian were analyzed with the NEMESIS retrieval tool and used to infer the vertical/latitudinal variation in cloud optical depth. We find that the 2009 Gemini data perfectly complement our observations/conclusions from UKIRT/UIST observations made in 2006-2008 and show that the north polar zone at 45N has continued to steadily brighten while that at 45S has continued to fade. The improved spatial resolution of the Gemini observations compared with the non-AO UKIRT/UIST data remove many of the earlier ambiguities inherent in the previous analysis. Overall, Uranus appeared to be less convectively active in 2009 than in the previous 3 years, which suggests that now the equinox (which occurred in 2007) is over the atmosphere is settling back into the quiescent state seen by Voyager 2 in 1986. However, one discrete cloud was captured in the NIFS observations and was estimated to lie at a pressure level of 300-400 mbar.

  19. A large-scale extinction map of the Galactic Anticentre from 2MASS

    NASA Astrophysics Data System (ADS)

    Froebrich, D.; Murphy, G. C.; Smith, M. D.; Walsh, J.; Del Burgo, C.

    2007-07-01

    We present a 127 × 63-deg2 extinction map of the Anticentre of the Galaxy, based on < J - H > and < H - K > colour excess maps from the Two-Micron All-Sky Survey. This 8001-deg2 map with a resolution of 4 arcmin is provided as online material. The colour excess ratio < J - H >/< H - K > is used to determine the power-law index of the reddening law (β) for individual regions contained in the area (e.g. Orion, Perseus, Taurus, Auriga, Monoceros, Camelopardalis, Cassiopeia). On average we find a dominant value of β = 1.8 +/- 0.2 for the individual clouds, in agreement with the canonical value for the interstellar medium. We also show that there is an internal scatter of β values in these regions, and that in some areas more than one dominant β values are present. This indicates large-scale variations in the dust properties. The analysis of the AV values within individual regions shows a change in the slope of the column density distribution with distance. This can be attributed either to a change in the governing physical processes in molecular clouds on spatial scales of about 1pc or to an AV dilution with distance in our map.

  20. Recent advances in small-scale mechanical property measurement by nanoindentation

    DOE PAGES

    Pharr, George Mathews

    2015-08-25

    Since its initial development in the early 1980’s [1], nanoindentation has matured into one of the premier testing techniques for measuring mechanical properties at the micrometer and sub-micrometer scales and has emerged as a critical tool that has helped to shape the nanotechnology revolution. At the heart of the technique are testing systems with simple but precise force actuators and displacement measuring devices that record the force–displacement record as a diamond indenter, usually the form of a pyramid or a sphere, is pressed into and withdrawn from a small region in the surface of a material of interest. The nano-scalemore » force–displacement data, which can be obtained with a spatial resolution as small as a few nanometers, contains a wealth of information about the local mechanical properties [2], [3] and [4]. This enables the mechanical characterization of very thin films, like those used in the semiconductor, magnetic storage, and hard coatings industries, as well as very small precipitates, particles and second phases, many of which may not exist in bulk form and cannot be characterized by traditional mechanical testing methods. Here, computer automation of nanoindentation testing systems now routinely provides for complete two-dimensional mapping of properties over regions stretching from sub-micron to millimeters in scale.« less

  1. Microscopic resolution broadband dielectric spectroscopy

    NASA Astrophysics Data System (ADS)

    Mukherjee, S.; Watson, P.; Prance, R. J.

    2011-08-01

    Results are presented for a non-contact measurement system capable of micron level spatial resolution. It utilises the novel electric potential sensor (EPS) technology, invented at Sussex, to image the electric field above a simple composite dielectric material. EP sensors may be regarded as analogous to a magnetometer and require no adjustments or offsets during either setup or use. The sample consists of a standard glass/epoxy FR4 circuit board, with linear defects machined into the surface by a PCB milling machine. The sample is excited with an a.c. signal over a range of frequencies from 10 kHz to 10 MHz, from the reverse side, by placing it on a conducting sheet connected to the source. The single sensor is raster scanned over the surface at a constant working distance, consistent with the spatial resolution, in order to build up an image of the electric field, with respect to the reference potential. The results demonstrate that both the surface defects and the internal dielectric variations within the composite may be imaged in this way, with good contrast being observed between the glass mat and the epoxy resin.

  2. New technology and techniques for x-ray mirror calibration at PANTER

    NASA Astrophysics Data System (ADS)

    Freyberg, Michael J.; Budau, Bernd; Burkert, Wolfgang; Friedrich, Peter; Hartner, Gisela; Misaki, Kazutami; Mühlegger, Martin

    2008-07-01

    The PANTER X-ray Test Facility has been utilized successfully for developing and calibrating X-ray astronomical instrumentation for observatories such as ROSAT, Chandra, XMM-Newton, Swift, etc. Future missions like eROSITA, SIMBOL-X, or XEUS require improved spatial resolution and broader energy band pass, both for optics and for cameras. Calibration campaigns at PANTER have made use of flight spare instrumentation for space applications; here we report on a new dedicated CCD camera for on-ground calibration, called TRoPIC. As the CCD is similar to ones used for eROSITA (pn-type, back-illuminated, 75 μm pixel size, frame store mode, 450 μm micron wafer thickness, etc.) it can serve as prototype for eROSITA camera development. New techniques enable and enhance the analysis of measurements of eROSITA shells or silicon pore optics. Specifically, we show how sub-pixel resolution can be utilized to improve spatial resolution and subsequently the characterization of of mirror shell quality and of point spread function parameters in particular, also relevant for position reconstruction of astronomical sources in orbit.

  3. Constraints on Circumstellar Dust Grain Sizes from High Spatial Resolution Observations in the Thermal Infrared

    NASA Technical Reports Server (NTRS)

    Bloemhof, E. E.; Danen, R. M.; Gwinn, C. R.

    1996-01-01

    We describe how high spatial resolution imaging of circumstellar dust at a wavelength of about 10 micron, combined with knowledge of the source spectral energy distribution, can yield useful information about the sizes of the individual dust grains responsible for the infrared emission. Much can be learned even when only upper limits to source size are available. In parallel with high-resolution single-telescope imaging that may resolve the more extended mid-infrared sources, we plan to apply these less direct techniques to interpretation of future observations from two-element optical interferometers, where quite general arguments may be made despite only crude imaging capability. Results to date indicate a tendency for circumstellar grain sizes to be rather large compared to the Mathis-Rumpl-Nordsieck size distribution traditionally thought to characterize dust in the general interstellar medium. This may mean that processing of grains after their initial formation and ejection from circumstellar atmospheres adjusts their size distribution to the ISM curve; further mid-infrared observations of grains in various environments would help to confirm this conjecture.

  4. Potential High Resolution Dosimeters For MRT

    NASA Astrophysics Data System (ADS)

    Bräuer-Krisch, E.; Rosenfeld, A.; Lerch, M.; Petasecca, M.; Akselrod, M.; Sykora, J.; Bartz, J.; Ptaszkiewicz, M.; Olko, P.; Berg, A.; Wieland, M.; Doran, S.; Brochard, T.; Kamlowski, A.; Cellere, G.; Paccagnella, A.; Siegbahn, E. A.; Prezado, Y.; Martinez-Rovira, I.; Bravin, A.; Dusseau, L.; Berkvens, P.

    2010-07-01

    Microbeam Radiation Therapy (MRT) uses highly collimated, quasi-parallel arrays of X-ray microbeams of 50-600 keV, produced by 2nd and 3rd generation synchrotron sources, such as the National Synchrotron Light Source (NSLS) in the U.S., and the European Synchrotron Radiation Facility (ESRF) in France, respectively. High dose rates are necessary to deliver therapeutic doses in microscopic volumes, to avoid spreading of the microbeams by cardiosynchronous movement of the tissues. A small beam divergence and a filtered white beam spectrum in the energy range between 30 and 250 keV results in the advantage of steep dose gradients with a sharper penumbra than that produced in conventional radiotherapy. MRT research over the past 20 years has allowed a vast number of results from preclinical trials on different animal models, including mice, rats, piglets and rabbits. Microbeams in the range between 10 and 100 micron width show an unprecedented sparing of normal radiosensitive tissues as well as preferential damage to malignant tumor tissues. Typically, MRT uses arrays of narrow (˜25-100 micron-wide) microplanar beams separated by wider (100-400 microns centre-to-centre, c-t-c) microplanar spaces. We note that thicker microbeams of 0.1-0.68 mm used by investigators at the NSLS are still called microbeams, although some invesigators in the community prefer to call them minibeams. This report, however, limits it discussion to 25-100 μm microbeams. Peak entrance doses of several hundreds of Gy are surprisingly well tolerated by normal tissues. High resolution dosimetry has been developed over the last two decades, but typical dose ranges are adapted to dose delivery in conventional Radiation Therapy (RT). Spatial resolution in the sub-millimetric range has been achieved, which is currently required for quality assurance measurements in Gamma-knife RT. Most typical commercially available detectors are not suitable for MRT applications at a dose rate of 16000 Gy/s, micron resolution and a dose range over several orders of magnitude. This paper will give an overview of all dosimeters tested in the past at the ESRF with their advantages and drawbacks. These detectors comprise: Ionization chambers, Alanine Dosimeters, MOSFET detectors, Gafchromic® films, Radiochromic polymers, TLDs, Polymer gels, Fluorescent Nuclear Track Detectors (Al2O3:C, Mg single crystal detectors), OSL detectors and Floating Gate-based dosimetry system. The aim of such a comparison shall help with a decision on which of these approaches is most suitable for high resolution dose measurements in MRT. The principle of these detectors will be presented including a comparison for some dosimeters exposed with the same irradiation geometry, namely a 1×1 cm5 field size with microbeam exposures at the surface, 0.1 cm and 1 cm in depth of a PMMA phantom. For these test exposures, the most relevant irradiation parameters for future clinical trials have been chosen: 50 micron FWHM and 400 micron c-t-c distance. The experimental data are compared with Monte Carlo calculations.

  5. In-Situ Observations of Longitudinal Compression Damage in Carbon-Epoxy Cross Ply Laminates Using Fast Synchrotron Radiation Computed Tomography

    NASA Technical Reports Server (NTRS)

    Bergan, Andrew C.; Garcea, Serafina C.

    2017-01-01

    The role of longitudinal compressive failure mechanisms in notched cross-ply laminates is studied experimentally with in-situ synchrotron radiation based computed tomography. Carbon/epoxy specimens loaded monotonically in uniaxial compression exhibited a quasi-stable failure process, which was captured with computed tomography scans recorded continuously with a temporal resolutions of 2.4 seconds and a spatial resolution of 1.1 microns per voxel. A detailed chronology of the initiation and propagation of longitudinal matrix splitting cracks, in-plane and out-of-plane kink bands, shear-driven fiber failure, delamination, and transverse matrix cracks is provided with a focus on kink bands as the dominant failure mechanism. An automatic segmentation procedure is developed to identify the boundary surfaces of a kink band. The segmentation procedure enables 3-dimensional visualization of the kink band and conveys the orientation, inclination, and spatial variation of the kink band. The kink band inclination and length are examined using the segmented data revealing tunneling and spatial variations not apparent from studying the 2-dimensional section data.

  6. The 60 micron to 20 centimeter infrared-to-radio ratio within spiral galaxies

    NASA Technical Reports Server (NTRS)

    Bicay, M. D.; Helou, G.

    1990-01-01

    A detailed comparison is presented of the distribution of 60 micron IR and 20 cm radio continuum emission within 25 galaxies, mostly disk spirals. Local maxima in the thermal IR and nonthermal radio emission are found to be spatially coincident on scales of less than about 0.4 kpc in the nearest sample galaxies. The IR-red disk in normal spirals appears to be characterized by a shorter scale length than that of the radio continuum disk, suggesting that the IR-to-radio ratio should decrease as a function of radius. A model that successfully accounts for the observations is introduced which is based on the assumptions of steady-state star formation activity within the disk on kpc scales and a tight coupling between the origins of the dust-heating radiation and the radio-emitting cosmic-ray electrons. The underlying source is described as an exponential disk. The results also suggest that a random walk process cannot by itself describe the temporal evolution of cosmic rays.

  7. The spatial sensitivity of the spectral diversity-biodiversity relationship: an experimental test in a prairie grassland.

    PubMed

    Wang, Ran; Gamon, John A; Cavender-Bares, Jeannine; Townsend, Philip A; Zygielbaum, Arthur I

    2018-03-01

    Remote sensing has been used to detect plant biodiversity in a range of ecosystems based on the varying spectral properties of different species or functional groups. However, the most appropriate spatial resolution necessary to detect diversity remains unclear. At coarse resolution, differences among spectral patterns may be too weak to detect. In contrast, at fine resolution, redundant information may be introduced. To explore the effect of spatial resolution, we studied the scale dependence of spectral diversity in a prairie ecosystem experiment at Cedar Creek Ecosystem Science Reserve, Minnesota, USA. Our study involved a scaling exercise comparing synthetic pixels resampled from high-resolution images within manipulated diversity treatments. Hyperspectral data were collected using several instruments on both ground and airborne platforms. We used the coefficient of variation (CV) of spectral reflectance in space as the indicator of spectral diversity and then compared CV at different scales ranging from 1 mm 2 to 1 m 2 to conventional biodiversity metrics, including species richness, Shannon's index, Simpson's index, phylogenetic species variation, and phylogenetic species evenness. In this study, higher species richness plots generally had higher CV. CV showed higher correlations with Shannon's index and Simpson's index than did species richness alone, indicating evenness contributed to the spectral diversity. Correlations with species richness and Simpson's index were generally higher than with phylogenetic species variation and evenness measured at comparable spatial scales, indicating weaker relationships between spectral diversity and phylogenetic diversity metrics than with species diversity metrics. High resolution imaging spectrometer data (1 mm 2 pixels) showed the highest sensitivity to diversity level. With decreasing spatial resolution, the difference in CV between diversity levels decreased and greatly reduced the optical detectability of biodiversity. The optimal pixel size for distinguishing α diversity in these prairie plots appeared to be around 1 mm to 10 cm, a spatial scale similar to the size of an individual herbaceous plant. These results indicate a strong scale-dependence of the spectral diversity-biodiversity relationships, with spectral diversity best able to detect a combination of species richness and evenness, and more weakly detecting phylogenetic diversity. These findings can be used to guide airborne studies of biodiversity and develop more effective large-scale biodiversity sampling methods. ©2018 The Authors Ecological Applications published by Wiley Periodicals, Inc. on behalf of Ecological Society of America.

  8. NIRCam: Development and Testing of the JWST Near-Infrared Camera

    NASA Technical Reports Server (NTRS)

    Greene, Thomas; Beichman, Charles; Gully-Santiago, Michael; Jaffe, Daniel; Kelly, Douglas; Krist, John; Rieke, Marcia; Smith, Eric H.

    2011-01-01

    The Near Infrared Camera (NIRCam) is one of the four science instruments of the James Webb Space Telescope (JWST). Its high sensitivity, high spatial resolution images over the 0.6 - 5 microns wavelength region will be essential for making significant findings in many science areas as well as for aligning the JWST primary mirror segments and telescope. The NIRCam engineering test unit was recently assembled and has undergone successful cryogenic testing. The NIRCam collimator and camera optics and their mountings are also progressing, with a brass-board system demonstrating relatively low wavefront error across a wide field of view. The flight model?s long-wavelength Si grisms have been fabricated, and its coronagraph masks are now being made. Both the short (0.6 - 2.3 microns) and long (2.4 - 5.0 microns) wavelength flight detectors show good performance and are undergoing final assembly and testing. The flight model subsystems should all be completed later this year through early 2011, and NIRCam will be cryogenically tested in the first half of 2011 before delivery to the JWST integrated science instrument module (ISIM).

  9. The Science Advantage of a Redder Filter for WFIRST

    NASA Astrophysics Data System (ADS)

    Bauer, James; Stauffer, John; Milam, Stefanie N.; Holler, Bryan J.

    2018-01-01

    WFIRST will be capable of providing Hubble-quality imaging performance over several thousand square degrees of the sky. The wide-area, high spatial resolution survey data from WFIRST will be unsurpassed for probably many decades into the future. With the current baseline design, the WFIRST filter complement will extend from the bluest wavelength allowed by the optical design to a reddest filter (F184W) that has a red cutoff at 2.0 microns. Extension of the imaging capabilities even slightly beyond the 2.0 micron wavelength cut-off would provide significant advantages over the presently proposed science for objects both near and far. The inclusion of a Ks (2.0-2.3 micron) filter would result in a wider range and more comprehensive set of Solar System investigations. It would also extend the range of higher-redshift population studies. In this poster, we outline some of the science advantages for adding a K filter, similar in bandpass to the 2MASS Ks filter, in order to extend the wavelength range for WFIRST as far to the red as the thermal performance of the spacecraft allows.

  10. Spatially modulated magnetic structure of EuS due to the tetragonal domain structure of SrTiO 3

    DOE PAGES

    Rosenberg, Aaron J.; Katmis, Ferhat; Kirtley, John R.; ...

    2017-12-15

    The combination of ferromagnets with topological superconductors or insulators allows for new phases of matter that support excitations such as chiral edge modes and Majorana fermions. EuS, a wide-bandgap ferromagnetic insulator with a Curie temperature around 16K, and SrTiO 3 (STO), an important substrate for engineering heterostructures, may support these phases. We present scanning superconducting quantum interference device measurements of EuS grown epitaxially on STO that reveal micron-scale variations in ferromagnetism and paramagnetism. These variations are oriented along the STO crystal axes and only change their configuration upon thermal cycling above the STO cubic-to-tetragonal structural transition temperature at 105 K,more » indicating that the observed magnetic features are due to coupling between EuS and the STO tetragonal structure. Here, we speculate that the STO tetragonal distortions may strain the EuS, altering the magnetic anisotropy on a micron scale. This result demonstrates that local variation in the induced magnetic order from EuS grown on STO needs to be considered when engineering new phases of matter that require spatially homogeneous exchange.« less

  11. Spatially modulated magnetic structure of EuS due to the tetragonal domain structure of SrTiO 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenberg, Aaron J.; Katmis, Ferhat; Kirtley, John R.

    The combination of ferromagnets with topological superconductors or insulators allows for new phases of matter that support excitations such as chiral edge modes and Majorana fermions. EuS, a wide-bandgap ferromagnetic insulator with a Curie temperature around 16K, and SrTiO 3 (STO), an important substrate for engineering heterostructures, may support these phases. We present scanning superconducting quantum interference device measurements of EuS grown epitaxially on STO that reveal micron-scale variations in ferromagnetism and paramagnetism. These variations are oriented along the STO crystal axes and only change their configuration upon thermal cycling above the STO cubic-to-tetragonal structural transition temperature at 105 K,more » indicating that the observed magnetic features are due to coupling between EuS and the STO tetragonal structure. Here, we speculate that the STO tetragonal distortions may strain the EuS, altering the magnetic anisotropy on a micron scale. This result demonstrates that local variation in the induced magnetic order from EuS grown on STO needs to be considered when engineering new phases of matter that require spatially homogeneous exchange.« less

  12. Generalized two-dimensional (2D) linear system analysis metrics (GMTF, GDQE) for digital radiography systems including the effect of focal spot, magnification, scatter, and detector characteristics.

    PubMed

    Jain, Amit; Kuhls-Gilcrist, Andrew T; Gupta, Sandesh K; Bednarek, Daniel R; Rudin, Stephen

    2010-03-01

    The MTF, NNPS, and DQE are standard linear system metrics used to characterize intrinsic detector performance. To evaluate total system performance for actual clinical conditions, generalized linear system metrics (GMTF, GNNPS and GDQE) that include the effect of the focal spot distribution, scattered radiation, and geometric unsharpness are more meaningful and appropriate. In this study, a two-dimensional (2D) generalized linear system analysis was carried out for a standard flat panel detector (FPD) (194-micron pixel pitch and 600-micron thick CsI) and a newly-developed, high-resolution, micro-angiographic fluoroscope (MAF) (35-micron pixel pitch and 300-micron thick CsI). Realistic clinical parameters and x-ray spectra were used. The 2D detector MTFs were calculated using the new Noise Response method and slanted edge method and 2D focal spot distribution measurements were done using a pin-hole assembly. The scatter fraction, generated for a uniform head equivalent phantom, was measured and the scatter MTF was simulated with a theoretical model. Different magnifications and scatter fractions were used to estimate the 2D GMTF, GNNPS and GDQE for both detectors. Results show spatial non-isotropy for the 2D generalized metrics which provide a quantitative description of the performance of the complete imaging system for both detectors. This generalized analysis demonstrated that the MAF and FPD have similar capabilities at lower spatial frequencies, but that the MAF has superior performance over the FPD at higher frequencies even when considering focal spot blurring and scatter. This 2D generalized performance analysis is a valuable tool to evaluate total system capabilities and to enable optimized design for specific imaging tasks.

  13. High-resolution spectra of the 3.29 micron interstellar emission feature - A summary

    NASA Technical Reports Server (NTRS)

    Tokunaga, A. T.; Sellgren, K.; Smith, R. G.; Nagata, T.; Sakata, A.; Nakada, Y.

    1991-01-01

    High spectral resolution observations of the 3.29-micron interstellar emission feature show two types of profiles. Type 1 has a central wavelength of 3.289-micron and is observed in extended objects such as planetary nebulae and H II regions. Type 2 has a central wavelength of 3.296 microns and is observed around a small number of stellar sources. Type 2 has a full width at half-maximum of 0.020 micron; Type 1 has a broader FWHM, perhaps as much as 0.042 micron, but this is uncertain because of contamination by Pf(delta) emission. These profiles are tabulated for comparison to laboratory data. It is found that no proposed identification for the 3.29-micron emission feature definitely matches the observational spectra, although amorphous aromatic materials and heated polycyclic aromatic hydrocarbons tend to fit the best.

  14. Predictor variable resolution governs modeled soil types

    USDA-ARS?s Scientific Manuscript database

    Soil mapping identifies different soil types by compressing a unique suite of spatial patterns and processes across multiple spatial scales. It can be quite difficult to quantify spatial patterns of soil properties with remotely sensed predictor variables. More specifically, matching the right scale...

  15. Scale criticality in estimating ecosystem carbon dynamics

    USGS Publications Warehouse

    Zhao, Shuqing; Liu, Shuguang

    2014-01-01

    Scaling is central to ecology and Earth system sciences. However, the importance of scale (i.e. resolution and extent) for understanding carbon dynamics across scales is poorly understood and quantified. We simulated carbon dynamics under a wide range of combinations of resolution (nine spatial resolutions of 250 m, 500 m, 1 km, 2 km, 5 km, 10 km, 20 km, 50 km, and 100 km) and extent (57 geospatial extents ranging from 108 to 1 247 034 km2) in the southeastern United States to explore the existence of scale dependence of the simulated regional carbon balance. Results clearly show the existence of a critical threshold resolution for estimating carbon sequestration within a given extent and an error limit. Furthermore, an invariant power law scaling relationship was found between the critical resolution and the spatial extent as the critical resolution is proportional to An (n is a constant, and A is the extent). Scale criticality and the power law relationship might be driven by the power law probability distributions of land surface and ecological quantities including disturbances at landscape to regional scales. The current overwhelming practices without considering scale criticality might have largely contributed to difficulties in balancing carbon budgets at regional and global scales.

  16. Signatures of Penumbral Magnetic Fields at Very High Spatial Resolution

    NASA Astrophysics Data System (ADS)

    Langhans, K.

    2006-12-01

    Full Stokes spectro-polarimetry, together with refined techniques to interpret the measurements and continual modeling efforts, have improved our understanding of sunspot penumbrae in the last years. In spite of this progress, an improvement in the spatial resolution of the observations is clearly needed to establish in a more direct way the fine structure of the penumbra. The discovery of dark penumbral cores by tet{l3 Sc02} suggests that we are starting to resolve the fundamental scales of the penumbra. Spectro-polarimetric measurements that are sensitive to the magnetic field in both the photosphere and higher layers, and obtained at a spatial resolution approaching 0.1 arcsec, may therefore allow us to draw firm conclusions about the fine scale organization of penumbral magnetic fields. In this paper I will discuss recent polarization measurements at very high spatial resolution, trying to reconcile the different scenarios put forward to explain the structure of the penumbra.

  17. Extended-range high-resolution dynamical downscaling over a continental-scale spatial domain with atmospheric and surface nudging

    NASA Astrophysics Data System (ADS)

    Husain, S. Z.; Separovic, L.; Yu, W.; Fernig, D.

    2014-12-01

    Extended-range high-resolution mesoscale simulations with limited-area atmospheric models when applied to downscale regional analysis fields over large spatial domains can provide valuable information for many applications including the weather-dependent renewable energy industry. Long-term simulations over a continental-scale spatial domain, however, require mechanisms to control the large-scale deviations in the high-resolution simulated fields from the coarse-resolution driving fields. As enforcement of the lateral boundary conditions is insufficient to restrict such deviations, large scales in the simulated high-resolution meteorological fields are therefore spectrally nudged toward the driving fields. Different spectral nudging approaches, including the appropriate nudging length scales as well as the vertical profiles and temporal relaxations for nudging, have been investigated to propose an optimal nudging strategy. Impacts of time-varying nudging and generation of hourly analysis estimates are explored to circumvent problems arising from the coarse temporal resolution of the regional analysis fields. Although controlling the evolution of the atmospheric large scales generally improves the outputs of high-resolution mesoscale simulations within the surface layer, the prognostically evolving surface fields can nevertheless deviate from their expected values leading to significant inaccuracies in the predicted surface layer meteorology. A forcing strategy based on grid nudging of the different surface fields, including surface temperature, soil moisture, and snow conditions, toward their expected values obtained from a high-resolution offline surface scheme is therefore proposed to limit any considerable deviation. Finally, wind speed and temperature at wind turbine hub height predicted by different spectrally nudged extended-range simulations are compared against observations to demonstrate possible improvements achievable using higher spatiotemporal resolution.

  18. Scaling Properties of Arctic Sea Ice Deformation in a High‐Resolution Viscous‐Plastic Sea Ice Model and in Satellite Observations

    PubMed Central

    Losch, Martin; Menemenlis, Dimitris

    2018-01-01

    Abstract Sea ice models with the traditional viscous‐plastic (VP) rheology and very small horizontal grid spacing can resolve leads and deformation rates localized along Linear Kinematic Features (LKF). In a 1 km pan‐Arctic sea ice‐ocean simulation, the small‐scale sea ice deformations are evaluated with a scaling analysis in relation to satellite observations of the Envisat Geophysical Processor System (EGPS) in the Central Arctic. A new coupled scaling analysis for data on Eulerian grids is used to determine the spatial and temporal scaling and the coupling between temporal and spatial scales. The spatial scaling of the modeled sea ice deformation implies multifractality. It is also coupled to temporal scales and varies realistically by region and season. The agreement of the spatial scaling with satellite observations challenges previous results with VP models at coarser resolution, which did not reproduce the observed scaling. The temporal scaling analysis shows that the VP model, as configured in this 1 km simulation, does not fully resolve the intermittency of sea ice deformation that is observed in satellite data. PMID:29576996

  19. Scaling Properties of Arctic Sea Ice Deformation in a High-Resolution Viscous-Plastic Sea Ice Model and in Satellite Observations

    NASA Astrophysics Data System (ADS)

    Hutter, Nils; Losch, Martin; Menemenlis, Dimitris

    2018-01-01

    Sea ice models with the traditional viscous-plastic (VP) rheology and very small horizontal grid spacing can resolve leads and deformation rates localized along Linear Kinematic Features (LKF). In a 1 km pan-Arctic sea ice-ocean simulation, the small-scale sea ice deformations are evaluated with a scaling analysis in relation to satellite observations of the Envisat Geophysical Processor System (EGPS) in the Central Arctic. A new coupled scaling analysis for data on Eulerian grids is used to determine the spatial and temporal scaling and the coupling between temporal and spatial scales. The spatial scaling of the modeled sea ice deformation implies multifractality. It is also coupled to temporal scales and varies realistically by region and season. The agreement of the spatial scaling with satellite observations challenges previous results with VP models at coarser resolution, which did not reproduce the observed scaling. The temporal scaling analysis shows that the VP model, as configured in this 1 km simulation, does not fully resolve the intermittency of sea ice deformation that is observed in satellite data.

  20. Scaling Properties of Arctic Sea Ice Deformation in a High-Resolution Viscous-Plastic Sea Ice Model and in Satellite Observations.

    PubMed

    Hutter, Nils; Losch, Martin; Menemenlis, Dimitris

    2018-01-01

    Sea ice models with the traditional viscous-plastic (VP) rheology and very small horizontal grid spacing can resolve leads and deformation rates localized along Linear Kinematic Features (LKF). In a 1 km pan-Arctic sea ice-ocean simulation, the small-scale sea ice deformations are evaluated with a scaling analysis in relation to satellite observations of the Envisat Geophysical Processor System (EGPS) in the Central Arctic. A new coupled scaling analysis for data on Eulerian grids is used to determine the spatial and temporal scaling and the coupling between temporal and spatial scales. The spatial scaling of the modeled sea ice deformation implies multifractality. It is also coupled to temporal scales and varies realistically by region and season. The agreement of the spatial scaling with satellite observations challenges previous results with VP models at coarser resolution, which did not reproduce the observed scaling. The temporal scaling analysis shows that the VP model, as configured in this 1 km simulation, does not fully resolve the intermittency of sea ice deformation that is observed in satellite data.

  1. New developments in magneto-optical imaging applied to rock magnetism: a case study on meteorites (Invited)

    NASA Astrophysics Data System (ADS)

    Uehara, M.; Gattacceca, J.; van der Beek, C. J.; Leroux, H.; Jacob, D.

    2010-12-01

    We present results of an integrated study of metallic grains in meteorites, combining magneto-optical imaging (MOI), petrography, FE-SEM, TEM, and microprobe analyses. Indeed, metallic Fe-Ni grains in meteorites have inner structures due to Ni diffusion during slow cooling subsequent to metamorphism on their parent body. Previous magnetic studies suggested that tetrataenite (ordered FeNi) is the stable magnetic carriers in these meteorites. On the other hand, mineralogical studies showed that tetrataenite is intimately mixed with other Fe-Ni phases (kamacite and taenite, that contain less than 10 wt.% and around 30 wt.% Ni, respectively), and forms complex microstructures (see below). However, due to the typical spatial resolution of classical bulk magnetic measurements (~1 mm), it has been so far difficult to isolate the contribution of these different Fe-Ni minerals. The MOI technique measures the magnetic flux threading a magneto-optically active film directly placed on the sample. This film rotates the polarization direction of transmitted light (Faraday rotation). Through the analyzer of a reflected light microscope, the vertical component of surface magnetic field of the sample is observed with a spatial resolution of a few µm, which allows direct comparison between mineralogical and magnetic microstructures of metal grains. We studied Agen (H5) and Ausson (L5) ordinary chondrites. Optical and electron microscopies showed two types of micron- to submicron-scaled tetrataenite-bearing microstructures: (1) Zoned taenite particles that consist of a taenite core, surrounded by a "cloudy zone" (20-150 nm large tetrataenite granules embedded in taenite matrix), and a 1-10 µm thick tetrataenite rim. (2) Zoneless plessite particles that consist of < 10 µm large tetrataenite grains embedded in a kamacite matrix. MOI of saturation remanence showed that only the nm-sized tetrataenite granules in cloudy zone carry very strong remanence. Micron-scale mapping of coercivity of remanence (Bcr), by means of DC demagnetization coupled with MOI, combined with FE-SEM and TEM study showed that this cloudy zone has zoning in Ni composition, tetrataenite grain size, and Bcr. The center part has finer tetrataenite (20 nm), lower bulk Ni composition (30 wt.%) and higher Bcr values (up to 1 T) than the outer part (150 nm, 55 wt.%, and 400 mT respectively). Therefore, tetrataenite in the cloudy zone is a potential very stable carrier of extraterrestrial remanence. Moreover, magnetically soft minerals (e.g. kamacite) are occasionally inversely magnetized by stray fields from adjacent cloudy zone. This implies that bulk measurements of FeNi-bearing meteorites may be misleading because of microscopic-scale interactions between magnetically hard tetrataenite and other soft minerals.

  2. AIRES: An Airborne Infra-Red Echelle Spectrometer for SOFIA

    NASA Technical Reports Server (NTRS)

    Dotson, Jessie J.; Erickson, Edwin F.; Haas, Michael R.; Colgan, Sean W. J.; Simpson, Janet P.; Telesco, Charles M.; Pina, Robert K.; Wolf, Juergen; Young, Erick T.

    1999-01-01

    SOFIA will enable astronomical observations with unprecedented angular resolution at infrared wavelengths obscured from the ground. To help open this new chapter in the exploration of the infrared universe, we are building AIRES, an Airborne Infra-Red Echelle Spectrometer. AIRES will be operated as a first generation, general purpose facility instrument by USRA, NASA's prime contractor for SOFIA. AIRES is a long slit spectrograph operating from 17 - 210 microns. In high resolution mode the spectral resolving power is approx. 10(exp 6) microns/A or approx. 10(exp 4) at 100 microns. Unfortunately, since the conference, a low resolution mode with resolving power about 100 times lower has been deleted due to budgetary constraints. AIRES includes a slit viewing camera which operates in broad bands at 18 and 25 microns.

  3. Rapid micropatterning of cell lines and human pluripotent stem cells on elastomeric membranes.

    PubMed

    Paik, Isha; Scurr, David J; Morris, Bryan; Hall, Graham; Denning, Chris; Alexander, Morgan R; Shakesheff, Kevin M; Dixon, James E

    2012-10-01

    Tissue function during development and in regenerative medicine completely relies on correct cell organization and patterning at micro and macro scales. We describe a rapid method for patterning mammalian cells including human embryonic stem cells (HESCs) and induced pluripotent stem cells (iPSCs) on elastomeric membranes such that micron-scale control of cell position can be achieved over centimeter-length scales. Our method employs surface engineering of hydrophobic polydimethylsiloxane (PDMS) membranes by plasma polymerization of allylamine. Deposition of plasma polymerized allylamine (ppAAm) using our methods may be spatially restricted using a micro-stencil leaving faithful hydrophilic ppAAm patterns. We employed airbrushing to create aerosols which deposit extracellular matrix (ECM) proteins (such as fibronectin and Matrigel™) onto the same patterned ppAAm rich regions. Cell patterns were created with a variety of well characterized cell lines (e.g., NIH-3T3, C2C12, HL1, BJ6, HESC line HUES7, and HiPSC line IPS2). Individual and multiple cell line patterning were also achieved. Patterning remains faithful for several days and cells are viable and proliferate. To demonstrate the utility of our technique we have patterned cells in a variety of configurations. The ability to rapidly pattern cells at high resolution over macro scales should aid future tissue engineering efforts for regenerative medicine applications and in creating in vitro stem cell niches. Copyright © 2012 Wiley Periodicals, Inc.

  4. FUEL3-D: A Spatially Explicit Fractal Fuel Distribution Model

    Treesearch

    Russell A. Parsons

    2006-01-01

    Efforts to quantitatively evaluate the effectiveness of fuels treatments are hampered by inconsistencies between the spatial scale at which fuel treatments are implemented and the spatial scale, and detail, with which we model fire and fuel interactions. Central to this scale inconsistency is the resolution at which variability within the fuel bed is considered. Crown...

  5. 3-D optical profilometry at micron scale with multi-frequency fringe projection using modified fibre optic Lloyd's mirror technique

    NASA Astrophysics Data System (ADS)

    Inanç, Arda; Kösoğlu, Gülşen; Yüksel, Heba; Naci Inci, Mehmet

    2018-06-01

    A new fibre optic Lloyd's mirror method is developed for extracting 3-D height distribution of various objects at the micron scale with a resolution of 4 μm. The fibre optic assembly is elegantly integrated to an optical microscope and a CCD camera. It is demonstrated that the proposed technique is quite suitable and practical to produce an interference pattern with an adjustable frequency. By increasing the distance between the fibre and the mirror with a micrometre stage in the Lloyd's mirror assembly, the separation between the two bright fringes is lowered down to the micron scale without using any additional elements as part of the optical projection unit. A fibre optic cable, whose polymer jacket is partially stripped, and a microfluidic channel are used as test objects to extract their surface topographies. Point by point sensitivity of the method is found to be around 8 μm, changing a couple of microns depending on the fringe frequency and the measured height. A straightforward calibration procedure for the phase to height conversion is also introduced by making use of the vertical moving stage of the optical microscope. The phase analysis of the acquired image is carried out by One Dimensional Continuous Wavelet Transform for which the chosen wavelet is the Morlet wavelet and the carrier removal of the projected fringe patterns is achieved by reference subtraction. Furthermore, flexible multi-frequency property of the proposed method allows measuring discontinuous heights where there are phase ambiguities like 2π by lowering the fringe frequency and eliminating the phase ambiguity.

  6. Titan - 1.5 micron photometry and spectrophotometry and a search for variability

    NASA Technical Reports Server (NTRS)

    Noll, Keith S.; Knacke, Roger F.

    1993-01-01

    The first photometric measurements of Titan in the mid-IR free of possible contamination from long-wavelength filter leaks are reported. A low-resolution spectrum covering the last unobserved gap in Titan's near-IR spectrum from 3.1 to 5.1 micron is shown. A series of photometric measurements is reported that may lay the foundation for long-term searches for variations in the albedos. Low-resolution spectra of Ganymede, Callisto, and Europa are also reported along with marginal detections of Neptune at 4.8 micron and two 4.8 micron observations of Uranus.

  7. Multiscale and multi-modality visualization of angiogenesis in a human breast cancer model

    PubMed Central

    Cebulla, Jana; Kim, Eugene; Rhie, Kevin; Zhang, Jiangyang

    2017-01-01

    Angiogenesis in breast cancer helps fulfill the metabolic demands of the progressing tumor and plays a critical role in tumor metastasis. Therefore, various imaging modalities have been used to characterize tumor angiogenesis. While micro-CT (μCT) is a powerful tool for analyzing the tumor microvascular architecture at micron-scale resolution, magnetic resonance imaging (MRI) with its sub-millimeter resolution is useful for obtaining in vivo vascular data (e.g. tumor blood volume and vessel size index). However, integration of these microscopic and macroscopic angiogenesis data across spatial resolutions remains challenging. Here we demonstrate the feasibility of ‘multiscale’ angiogenesis imaging in a human breast cancer model, wherein we bridge the resolution gap between ex vivo μCT and in vivo MRI using intermediate resolution ex vivo MR microscopy (μMRI). To achieve this integration, we developed suitable vessel segmentation techniques for the ex vivo imaging data and co-registered the vascular data from all three imaging modalities. We showcase two applications of this multiscale, multi-modality imaging approach: (1) creation of co-registered maps of vascular volume from three independent imaging modalities, and (2) visualization of differences in tumor vasculature between viable and necrotic tumor regions by integrating μCT vascular data with tumor cellularity data obtained using diffusion-weighted MRI. Collectively, these results demonstrate the utility of ‘mesoscopic’ resolution μMRI for integrating macroscopic in vivo MRI data and microscopic μCT data. Although focused on the breast tumor xenograft vasculature, our imaging platform could be extended to include additional data types for a detailed characterization of the tumor microenvironment and computational systems biology applications. PMID:24719185

  8. Cross-Scale Molecular Analysis of Chemical Heterogeneity in Shale Rocks

    DOE PAGES

    Hao, Zhao; Bechtel, Hans A.; Kneafsey, Timothy; ...

    2018-02-07

    The organic and mineralogical heterogeneity in shale at micrometer and nanometer spatial scales contributes to the quality of gas reserves, gas flow mechanisms and gas production. Here, we demonstrate two molecular imaging approaches based on infrared spectroscopy to obtain mineral and kerogen information at these mesoscale spatial resolutions in large-sized shale rock samples. The first method is a modified microscopic attenuated total reflectance measurement that utilizes a large germanium hemisphere combined with a focal plane array detector to rapidly capture chemical images of shale rock surfaces spanning hundreds of micrometers with micrometer spatial resolution. The second method, synchrotron infrared nano-spectroscopy,more » utilizes a metallic atomic force microscope tip to obtain chemical images of micrometer dimensions but with nanometer spatial resolution. This chemically "deconvoluted" imaging at the nano-pore scale is then used to build a machine learning model to generate a molecular distribution map across scales with a spatial span of 1000 times, which enables high-throughput geochemical characterization in greater details across the nano-pore and micro-grain scales and allows us to identify co-localization of mineral phases with chemically distinct organics and even with gas phase sorbents. Finally, this characterization is fundamental to understand mineral and organic compositions affecting the behavior of shales.« less

  9. Cross-Scale Molecular Analysis of Chemical Heterogeneity in Shale Rocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, Zhao; Bechtel, Hans A.; Kneafsey, Timothy

    The organic and mineralogical heterogeneity in shale at micrometer and nanometer spatial scales contributes to the quality of gas reserves, gas flow mechanisms and gas production. Here, we demonstrate two molecular imaging approaches based on infrared spectroscopy to obtain mineral and kerogen information at these mesoscale spatial resolutions in large-sized shale rock samples. The first method is a modified microscopic attenuated total reflectance measurement that utilizes a large germanium hemisphere combined with a focal plane array detector to rapidly capture chemical images of shale rock surfaces spanning hundreds of micrometers with micrometer spatial resolution. The second method, synchrotron infrared nano-spectroscopy,more » utilizes a metallic atomic force microscope tip to obtain chemical images of micrometer dimensions but with nanometer spatial resolution. This chemically "deconvoluted" imaging at the nano-pore scale is then used to build a machine learning model to generate a molecular distribution map across scales with a spatial span of 1000 times, which enables high-throughput geochemical characterization in greater details across the nano-pore and micro-grain scales and allows us to identify co-localization of mineral phases with chemically distinct organics and even with gas phase sorbents. Finally, this characterization is fundamental to understand mineral and organic compositions affecting the behavior of shales.« less

  10. Canopies to Continents: What spatial scales are needed to represent landcover distributions in earth system models?

    NASA Astrophysics Data System (ADS)

    Guenther, A. B.; Duhl, T.

    2011-12-01

    Increasing computational resources have enabled a steady improvement in the spatial resolution used for earth system models. Land surface models and landcover distributions have kept ahead by providing higher spatial resolution than typically used in these models. Satellite observations have played a major role in providing high resolution landcover distributions over large regions or the entire earth surface but ground observations are needed to calibrate these data and provide accurate inputs for models. As our ability to resolve individual landscape components improves, it is important to consider what scale is sufficient for providing inputs to earth system models. The required spatial scale is dependent on the processes being represented and the scientific questions being addressed. This presentation will describe the development a contiguous U.S. landcover database using high resolution imagery (1 to 1000 meters) and surface observations of species composition and other landcover characteristics. The database includes plant functional types and species composition and is suitable for driving land surface models (CLM and MEGAN) that predict land surface exchange of carbon, water, energy and biogenic reactive gases (e.g., isoprene, sesquiterpenes, and NO). We investigate the sensitivity of model results to landcover distributions with spatial scales ranging over six orders of magnitude (1 meter to 1000000 meters). The implications for predictions of regional climate and air quality will be discussed along with recommendations for regional and global earth system modeling.

  11. A Spatial Framework to Map Heat Health Risks at Multiple Scales.

    PubMed

    Ho, Hung Chak; Knudby, Anders; Huang, Wei

    2015-12-18

    In the last few decades extreme heat events have led to substantial excess mortality, most dramatically in Central Europe in 2003, in Russia in 2010, and even in typically cool locations such as Vancouver, Canada, in 2009. Heat-related morbidity and mortality is expected to increase over the coming centuries as the result of climate-driven global increases in the severity and frequency of extreme heat events. Spatial information on heat exposure and population vulnerability may be combined to map the areas of highest risk and focus mitigation efforts there. However, a mismatch in spatial resolution between heat exposure and vulnerability data can cause spatial scale issues such as the Modifiable Areal Unit Problem (MAUP). We used a raster-based model to integrate heat exposure and vulnerability data in a multi-criteria decision analysis, and compared it to the traditional vector-based model. We then used the Getis-Ord G(i) index to generate spatially smoothed heat risk hotspot maps from fine to coarse spatial scales. The raster-based model allowed production of maps at spatial resolution, more description of local-scale heat risk variability, and identification of heat-risk areas not identified with the vector-based approach. Spatial smoothing with the Getis-Ord G(i) index produced heat risk hotspots from local to regional spatial scale. The approach is a framework for reducing spatial scale issues in future heat risk mapping, and for identifying heat risk hotspots at spatial scales ranging from the block-level to the municipality level.

  12. Spatial heterogeneity of leaf area index across scales from simulation and remote sensing

    NASA Astrophysics Data System (ADS)

    Reichenau, Tim G.; Korres, Wolfgang; Montzka, Carsten; Schneider, Karl

    2016-04-01

    Leaf area index (LAI, single sided leaf area per ground area) influences mass and energy exchange of vegetated surfaces. Therefore LAI is an input variable for many land surface schemes of coupled large scale models, which do not simulate LAI. Since these models typically run on rather coarse resolution grids, LAI is often inferred from coarse resolution remote sensing. However, especially in agriculturally used areas, a grid cell of these products often covers more than a single land-use. In that case, the given LAI does not apply to any single land-use. Therefore, the overall spatial heterogeneity in these datasets differs from that on resolutions high enough to distinguish areas with differing land-use. Detailed process-based plant growth models simulate LAI for separate plant functional types or specific species. However, limited availability of observations causes reduced spatial heterogeneity of model input data (soil, weather, land-use). Since LAI is strongly heterogeneous in space and time and since processes depend on LAI in a nonlinear way, a correct representation of LAI spatial heterogeneity is also desirable on coarse resolutions. The current study assesses this issue by comparing the spatial heterogeneity of LAI from remote sensing (RapidEye) and process-based simulations (DANUBIA simulation system) across scales. Spatial heterogeneity is assessed by analyzing LAI frequency distributions (spatial variability) and semivariograms (spatial structure). Test case is the arable land in the fertile loess plain of the Rur catchment near the Germany-Netherlands border.

  13. High Resolution Infrared Radiation Sounder (HIRS) for the Nimbus F Spacecraft

    NASA Technical Reports Server (NTRS)

    Koenig, E. W.

    1975-01-01

    Flown on Nimbus F in June 1975, the high resolution infrared radiation sounder (HIRS) scans with a geographical resolution of 23KM and samples radiance in seventeen selected spectral channels from visible (.7 micron) to far IR (15 micron). Vertical temperature profiles and atmospheric moisture content can be inferred from the output. System operation and test results are described.

  14. Higher resolution satellite remote sensing and the impact on image mapping

    USGS Publications Warehouse

    Watkins, Allen H.; Thormodsgard, June M.

    1987-01-01

    Recent advances in spatial, spectral, and temporal resolution of civil land remote sensing satellite data are presenting new opportunities for image mapping applications. The U.S. Geological Survey's experimental satellite image mapping program is evolving toward larger scale image map products with increased information content as a result of improved image processing techniques and increased resolution. Thematic mapper data are being used to produce experimental image maps at 1:100,000 scale that meet established U.S. and European map accuracy standards. Availability of high quality, cloud-free, 30-meter ground resolution multispectral data from the Landsat thematic mapper sensor, along with 10-meter ground resolution panchromatic and 20-meter ground resolution multispectral data from the recently launched French SPOT satellite, present new cartographic and image processing challenges.The need to fully exploit these higher resolution data increases the complexity of processing the images into large-scale image maps. The removal of radiometric artifacts and noise prior to geometric correction can be accomplished by using a variety of image processing filters and transforms. Sensor modeling and image restoration techniques allow maximum retention of spatial and radiometric information. An optimum combination of spectral information and spatial resolution can be obtained by merging different sensor types. These processing techniques are discussed and examples are presented.

  15. Snow depth spatial structure from hillslope to basin scale

    NASA Astrophysics Data System (ADS)

    Deems, J. S.

    2017-12-01

    Knowledge of spatial patterns of snow accumulation is required for understanding the hydrology, climatology, and ecology of mountain regions. Spatial structure in snow accumulation patterns changes with the scale of observation, a feature that has been characterized using fractal dimensions calculated from lidar-derived snow depth maps: fractal scaling structure at short length scales, with a `scale break' transition to more stochastic patterns at longer separation distances. Previous work has shown that this fractal structure of snow depth distributions differs between sites with different vegetation and terrain characteristics. Forested areas showed a transition to a nearly random spatial distribution at a much shorter lag distance than do unforested sites, enabling a statistical characterization. Alpine areas, however, showed strong spatial structure for a much wider scale range, and were the source of the dominant spatial pattern observable over a wider area. These spatial structure characteristics suggest that the choice of measurement or model resolution (satellite sensor, DEM, field survey point spacing, etc.) will strongly affect the estimates of snow volume or mass, as well as the magnitude of spatial variability. These prior efforts used data sets that were high resolution ( 1 m laser point spacing) but of limited extent ( 1 km2), constraining detection of scale features such as fractal dimension or scale breaks to areas of relatively similar characteristics and to lag distances of under 500 m. New datasets available from the NASA JPL Airborne Snow Observatory (ASO) provide similar resolution but over large areas, enabling assessment of snow spatial structure across an entire watershed, or in similar vegetation or physiography but in different parts of the basin. Additionally, the multi-year ASO time series allows an investigation into the temporal stability of these scale characteristics, within a single snow season and between seasons of strongly varying accumulation totals and patterns. This presentation will explore initial results from this study, using data from the Tuolumne River Basin in California, USA. Fractal scaling characteristics derived from ASO lidar snow depth measurements are examined at the basin scale, as well as in varying topographic and forest cover environments.

  16. Toward Imaging of Small Objects with XUV Radiation

    NASA Astrophysics Data System (ADS)

    Sayrac, Muhammed; Kolomenski, Alexandre A.; Boran, Yakup; Schuessler, Hans

    The coherent diffraction imaging (CDI) technique has the potential to capture high resolution images of nano- or micron-sized structures when using XUV radiation obtained by high harmonic radiation (HHG) process. When a small object is exposed to XUV radiation, a diffraction pattern of the object is created. The advances in the coherent HHG enable obtaining photon flux sufficient for XUV imaging. The diffractive imaging technique from coherent table top XUV beams have made possible nanometer-scale resolution imaging by replacing the imaging optics with a computer reconstruction algorithm. In this study, we present our initial work on diffractive imaging using a tabletop XUV source. The initial investigation of imaging of a micron-sized mesh with an optimized HHG source is demonstrated. This work was supported in part by the Robert A. Welch Foundation Grant No. A1546 and the Qatar Foundation under the grant NPRP 8-735-1-154. M. Sayrac acknowledges support from the Ministry of National Education of the Republic of Turkey.

  17. Urban-scale mapping of PM2.5 distribution via data fusion between high-density sensor network and MODIS Aerosol Optical Depth

    NASA Astrophysics Data System (ADS)

    Ba, Yu Tao; xian Liu, Bao; Sun, Feng; Wang, Li hua; Tang, Yu jia; Zhang, Da wei

    2017-04-01

    High-resolution mapping of PM2.5 is the prerequisite for precise analytics and subsequent anti-pollution interventions. Considering the large variances of particulate distribution, urban-scale mapping is challenging either with ground-based fixed stations, with satellites or via models. In this study, a dynamic fusion method between high-density sensor network and MODIS Aerosol Optical Depth (AOD) was introduced. The sensor network was deployed in Beijing ( > 1000 fixed monitors across 16000 km2 area) to provide raw observations with high temporal resolution (sampling interval < 1 hour), high spatial resolution in flat areas ( < 1 km), and low spatial resolution in mountainous areas ( > 5 km). The MODIS AOD was calibrated to provide distribution map with low temporal resolution (daily) and moderate spatial resolution ( = 3 km). By encoding the data quality and defects (e.g. could, reflectance, abnormal), a hybrid interpolation procedure with cross-validation generated PM2.5 distribution with both high temporal and spatial resolution. Several no-pollutant and high-pollution periods were tested to validate the proposed fusion method for capturing the instantaneous patterns of PM2.5 emission.

  18. Hi-C First Results

    NASA Technical Reports Server (NTRS)

    Cirtain, Jonathan

    2013-01-01

    Hi-C obtained the highest spatial and temporal resolution observatoins ever taken in the solar corona. Hi-C reveals dynamics and structure at the limit of its temporal and spatial resolution. Hi-C observed ubiquitous fine-scale flows consistent with the local sound speed.

  19. Sub-micron elastic property characterization of materials using a near-field scanning optical microscope

    NASA Astrophysics Data System (ADS)

    Blodgett, David W.; Spicer, James B.

    2001-12-01

    The ability to characterize the sub-surface mechanical properties of a bulk or thin film material at the sub-micron level has applications in the microelectronics and thin film industries. In the microelectronics industry, with the decrease of line widths and the increase of component densities, sub-surface voids have become increasingly detrimental. Any voids along an integrated circuit (IC) line can lead to improper electrical connections between components and can cause failure of the device. In the thin film industry, the detection of impurities is also important. Any impurities can detract from the film's desired optical, electrical, or mechanical properties. Just as important as the detection of voids and impurities, is the measurement of the elastic properties of a material on the nanometer scale. These elastic measurements provide insight into the microstructural properties of the material. We have been investigating a technique that couples the high-resolution surface imaging capabilities of the apertureless near-field scanning optical microscope (ANSOM) with the sub-surface characterization strengths of high-frequency ultrasound. As an ultrasonic wave propagates, the amplitude decreases due to geometrical spreading, attenuation from absorption, and scattering from discontinuities. Measurement of wave speeds and attenuation provides the information needed to quantify the bulk or surface properties of a material. The arrival of an ultrasonic wave at or along the surface of a material is accompanied with a small surface displacement. Conventional methods for the ultrasound detection rely on either a contact transducer or optical technique (interferometric, beam deflection, etc.). However, each of these methods is limited by the spatial resolution dictated by the detection footprint. As the footprint size increases, variations across the ultrasonic wavefront are effectively averaged, masking the presence of any nanometer-scale sub-surface or surface mechanical property variations. The use of an ANSOM for sensing ultrasonic wave arrivals reduces the detection footprint allowing any nanometer scale variations in the microstructure of a material to be detected. In an ANSOM, the ultrasonic displacement is manifested as perturbations on the near-field signal due to the small variations in the tip-sample caused by the wave arrival. Due to the linear dependence of the near-field signal on tip-sample separation, these perturbations can be interpreted using methods identical to those for conventional ultrasonic techniques. In this paper, we report results using both contact transducer (5 MHz) and laser-generated ultrasound.

  20. A LWIR hyperspectral imager using a Sagnac interferometer and cooled HgCdTe detector array

    NASA Astrophysics Data System (ADS)

    Lucey, Paul G.; Wood, Mark; Crites, Sarah T.; Akagi, Jason

    2012-06-01

    LWIR hyperspectral imaging has a wide range of civil and military applications with its ability to sense chemical compositions at standoff ranges. Most recent implementations of this technology use spectrographs employing varying degrees of cryogenic cooling to reduce sensor self-emission that can severely limit sensitivity. We have taken an interferometric approach that promises to reduce the need for cooling while preserving high resolution. Reduced cooling has multiple benefits including faster system readiness from a power off state, lower mass, and potentially lower cost owing to lower system complexity. We coupled an uncooled Sagnac interferometer with a 256x320 mercury cadmium telluride array with an 11 micron cutoff to produce a spatial interferometric LWIR hyperspectral imaging system operating from 7.5 to 11 microns. The sensor was tested in ground-ground applications, and from a small aircraft producing spectral imagery including detection of gas emission from high vapor pressure liquids.

  1. A Physically Based Runoff Routing Model for Land Surface and Earth System Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hongyi; Wigmosta, Mark S.; Wu, Huan

    2013-06-13

    A new physically based runoff routing model, called the Model for Scale Adaptive River Transport (MOSART), has been developed to be applicable across local, regional, and global scales. Within each spatial unit, surface runoff is first routed across hillslopes and then discharged along with subsurface runoff into a ‘‘tributary subnetwork’’ before entering the main channel. The spatial units are thus linked via routing through the main channel network, which is constructed in a scale-consistent way across different spatial resolutions. All model parameters are physically based, and only a small subset requires calibration.MOSART has been applied to the Columbia River basinmore » at 1/ 168, 1/ 88, 1/ 48, and 1/ 28 spatial resolutions and was evaluated using naturalized or observed streamflow at a number of gauge stations. MOSART is compared to two other routing models widely used with land surface models, the River Transport Model (RTM) in the Community Land Model (CLM) and the Lohmann routing model, included as a postprocessor in the Variable Infiltration Capacity (VIC) model package, yielding consistent performance at multiple resolutions. MOSART is further evaluated using the channel velocities derived from field measurements or a hydraulic model at various locations and is shown to be capable of producing the seasonal variation and magnitude of channel velocities reasonably well at different resolutions. Moreover, the impacts of spatial resolution on model simulations are systematically examined at local and regional scales. Finally, the limitations ofMOSART and future directions for improvements are discussed.« less

  2. The Eagle Nebula: a spectral template for star forming regions

    NASA Astrophysics Data System (ADS)

    Flagey, Nicolas; Boulanger, Francois; Carey, Sean; Compiegne, Mathieu; Dwek, Eli; Habart, Emilie; Indebetouw, Remy; Montmerle, Thierry; Noriega-Crespo, Alberto

    2008-03-01

    IRAC and MIPS have revealed spectacular images of massive star forming regions in the Galaxy. These vivid illustrations of the interaction between the stars, through their winds and radiation, and their environment, made of gas and dust, still needs to be explained. The large scale picture of layered shells of gas components, is affected by the small scale interaction of stars with the clumpy medium that surrounds them. To understand spatial variations of physical conditions and dust properties on small scales, spectroscopic imaging observations are required on a nearby object. The iconic Eagle Nebula (M16) is one of the nearest and most observed star forming region of our Galaxy and as such, is a well suited template to obtain this missing data set. We thus propose a complete spectral map of the Eagle Nebula (M16) with the IRS/Long Low module (15-38 microns) and MIPS/SED mode (55-95 microns). Analysis of the dust emission, spectral features and continuum, and of the H2 and fine-structure gas lines within our models will provide us with constraints on the physical conditions (gas ionization state, pressure, radiation field) and dust properties (temperature, size distribution) at each position within the nebula. Only such a spatially and spectrally complete map will allow us to characterize small scale structure and dust evolution within the global context and understand the impact of small scale structure on the evolution of dusty star forming regions. This project takes advantage of the unique ability of IRS at obtaining sensitive spectral maps covering large areas.

  3. Mapping evapotranspiration with high resolution aircraft imagery over vineyards using one and two source modeling schemes

    USDA-ARS?s Scientific Manuscript database

    Thermal and multispectral remote sensing data from low-altitude aircraft can provide high spatial resolution necessary for sub-field (= 10 m) and plant canopy (= 1 m) scale evapotranspiration (ET) monitoring. In this study, high resolution aircraft sub-meter scale thermal infrared and multispectral...

  4. Two micron pore size MCP-based image intensifiers

    NASA Astrophysics Data System (ADS)

    Glesener, John; Estrera, Joseph

    2010-02-01

    Image intensifiers (I2) have many advantages as detectors. They offer single photon sensitivity in an imaging format, they're light in weight and analog I2 systems can operate for hours on a single AA battery. Their light output is such as to exploit the peak in color sensitivity of the human eye. Until recent developments in CMOS sensors, they also were one of the highest resolution sensors available. The closest all solid state solution, the Texas Instruments Impactron chip, comes in a 1 megapixel format. Depending on the level of integration, an Impactron based system can consume 20 to 40 watts in a system configuration. In further investing in I2 technology, L-3 EOS determined that increasing I2 resolution merited a high priority. Increased I2 resolution offers the system user two desirable options: 1) increased detection and identification ranges while maintaining field-of-view (FOV) or 2) increasing FOV while maintaining the original system resolution. One of the areas where an investment in resolution is being made is in the microchannel plate (MCP). Incorporation of a 2 micron MCP into an image tube has the potential of increasing the system resolution of currently fielded systems. Both inverting and non-inverting configurations are being evaluated. Inverting tubes are being characterized in night vision goggle (NVG) and sights. The non-inverting 2 micron tube is being characterized for high resolution I2CMOS camera applications. Preliminary measurements show an increase in the MTF over a standard 5 micron pore size, 6 micron pitch plate. Current results will be presented.

  5. Effect of Spatial Resolution for Characterizing Soil Properties from Imaging Spectrometer Data

    NASA Astrophysics Data System (ADS)

    Dutta, D.; Kumar, P.; Greenberg, J. A.

    2015-12-01

    The feasibility of quantifying soil constituents over large areas using airborne hyperspectral data [0.35 - 2.5 μm] in an ensemble bootstrapping lasso algorithmic framework has been demonstrated previously [1]. However the effects of coarsening the spatial resolution of hyperspectral data on the quantification of soil constituents are unknown. We use Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data collected at 7.6m resolution over Birds Point New Madrid (BPNM) floodway for up-scaling and generating multiple coarser resolution datasets including the 60m Hyperspectral Infrared Imager (HyspIRI) like data. HyspIRI is a proposed visible shortwave/thermal infrared mission, which will provide global data over a spectral range of 0.35 - 2.5μm at a spatial resolution of 60m. Our results show that the lasso method, which is based on point scale observational data, is scalable. We found consistent good model performance (R2) values (0.79 < R2 < 0.82) and correct classifications as per USDA soil texture classes at multiple spatial resolutions. The results further demonstrate that the attributes of the pdf for different soil constituents across the landscape and the within-pixel variance are well preserved across scales. Our analysis provides a methodological framework with a sufficient set of metrics for assessing the performance of scaling up analysis from point scale observational data and may be relevant for other similar remote sensing studies. [1] Dutta, D.; Goodwell, A.E.; Kumar, P.; Garvey, J.E.; Darmody, R.G.; Berretta, D.P.; Greenberg, J.A., "On the Feasibility of Characterizing Soil Properties From AVIRIS Data," Geoscience and Remote Sensing, IEEE Transactions on, vol.53, no.9, pp.5133,5147, Sept. 2015. doi: 10.1109/TGRS.2015.2417547.

  6. Design of an imaging microscope for soft X-ray applications

    NASA Astrophysics Data System (ADS)

    Hoover, Richard B.; Shealy, David L.; Gabardi, David R.; Walker, Arthur B. C., Jr.; Lindblom, Joakim F.

    1988-01-01

    An imaging soft X-ray microscope with a spatial resolution of 0.1 micron and normal incidence multilayer optics is discussed. The microscope has a Schwarzschild configuration, which consists of two concentric spherical mirrors with radii of curvature which minimize third-order spherical aberration, coma, and astigmatism. The performance of the Stanford/MSFC Cassegrain X-ray telescope and its relevance to the present microscope are addressed. A ray tracing analysis of the optical system indicates that diffraction-limited performance can be expected for an object height of 0.2 mm.

  7. The development of a super-fine-grained nuclear emulsion

    NASA Astrophysics Data System (ADS)

    Asada, Takashi; Naka, Tatsuhiro; Kuwabara, Ken-ichi; Yoshimoto, Masahiro

    2017-06-01

    A nuclear emulsion with micronized crystals is required for the tracking detection of submicron ionizing particles, which are one of the targets of dark-matter detection and other techniques. We found that a new production method, called the PVA—gelatin mixing method (PGMM), could effectively control crystal size from 20 nm to 50 nm. We called the two types of emulsion produced with the new method the nano imaging tracker and the ultra-nano imaging tracker. Their composition and spatial resolution were measured, and the results indicate that these emulsions detect extremely short tracks.

  8. Ellipsometric surface analysis of wear tracks produced by different lubricants

    NASA Technical Reports Server (NTRS)

    Lauer, J. L.; Marxer, N.; Jones, W. R., Jr.

    1985-01-01

    Ellipsometric analyses of wear tracks in berings of M-50 steel were carried out after operation under severe conditions with different lubricant additives. The base lubricant was a synthetic ester. It was found that the surface and wear additives benzotirazole and tricresylyphosphate produced very patchy oxide layers. Dioctyldiphenylamine, a common antioxidant, on the other hand produced smoother films. The analyses were performed with a specially designed and constructed ellipsometer of very high (20 micron) spatial resolution. The results are consistent with data obtained by Auger electron spectroscopy.

  9. Image construction from the IRAS survey and data fusion

    NASA Technical Reports Server (NTRS)

    Bontekoe, Tj. R.

    1990-01-01

    The IRAS survey data can be used successfully to produce images of extended objects. The major difficulty, viz. non-uniform sampling, different response functions for each detector, and varying signal-to-noise levels for each detector for each scan, were resolved. The results of three different image construction techniques are compared: co-addition, constrained least squares, and maximum entropy. The maximum entropy result is superior. An image of the galaxy M51 with an average spatial resolution of 45 arc seconds, is presented using 60 micron survey data. This exceeds the telescope diffraction limit of 1 minute of arc, at this wavelength. Data fusion is a proposed method for combining data from different instruments, with different spatial resolutions, at different wavelengths. Direct estimates of the physical parameters, temperature, density and composition, can be made from the data without prior images (re-)construction. An increase in the accuracy of these parameters is expected as the result of this more systematic approach.

  10. Study of Electric Explosion of Flat Micron-Thick Foils at Current Densities of (5-50)×108 A/cm2

    NASA Astrophysics Data System (ADS)

    Shelkovenko, T. A.; Pikuz, S. A.; Tilikin, I. N.; Mingaleev, A. R.; Atoyan, L.; Hammer, D. A.

    2018-02-01

    Electric explosions of flat Al, Ti, Ni, Cu, and Ta foils with thicknesses of 1-16 μm, widths of 1-8 mm, and lengths of 5-11 mm were studied experimentally on the BIN, XP, and COBRA high-current generators at currents of 40-1000 kA and current densities of (5-50) × 108 A/cm2. The images of the exploded foils were taken at different angles to the foil surface by using point projection radiography with an X-pinch hot spot as the radiation source, the spatial resolution and exposure time being 3 μm and 50 ps, respectively, as well by the laser probing method with a spatial resolution of 20 μm and an exposure time of 180 ps. In the course of foil explosion, rapidly expanding objects resembling the core and corona of an exploded wire were observed. It is shown that the core of the exploded foil has a complicated time-varying structure.

  11. Hybrid ultrasound and dual-wavelength optoacoustic biomicroscopy for functional neuroimaging

    NASA Astrophysics Data System (ADS)

    Rebling, Johannes; Estrada, Hector; Zwack, Michael; Sela, Gali; Gottschalk, Sven; Razansky, Daniel

    2017-03-01

    Many neurological disorders are linked to abnormal activation or pathological alterations of the vasculature in the affected brain region. Obtaining simultaneous morphological and physiological information of neurovasculature is very challenging due to the acoustic distortions and intense light scattering by the skull and brain. In addition, the size of cerebral vasculature in murine brains spans an extended range from just a few microns up to about a millimeter, all to be recorded in 3D and over an area of several dozens of mm2. Numerous imaging techniques exist that excel at characterizing certain aspects of this complex network but are only capable of providing information on a limited spatiotemporal scale. We present a hybrid ultrasound and dual-wavelength optoacoustic microscope, capable of rapid imaging of murine neurovasculature in-vivo, with high spatial resolution down to 12 μm over a large field of view exceeding 50mm2. The dual wavelength imaging capability allows for the visualization of functional blood parameters through an intact skull while pulse-echo ultrasound biomicroscopy images are captured simultaneously by the same scan head. The flexible hybrid design in combination with fast high-resolution imaging in 3D holds promise for generating better insights into the architecture and function of the neurovascular system.

  12. Spatial Downscaling of TRMM Precipitation using MODIS product in the Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Cho, H.; Choi, M.

    2013-12-01

    Precipitation is a major driving force in the water cycle. But, it is difficult to provide spatially distributed precipitation data from isolated individual in situ. The Tropical Rainfall Monitoring Mission (TRMM) satellite can provide precipitation data with relatively coarse spatial resolution (0.25° scale) at daily basis. In order to overcome the coarse spatial resolution of TRMM precipitation products, we conducted a downscaling technique using a scaling parameter from the Moderate Resolution Imaging Spectroradiometers (MODIS) sensor. In this study, statistical relations between precipitation estimates derived from the TRMM satellite and the normalized difference vegetation index (NDVI) which is obtained from the MODIS sensor in TERRA satellite are found for different spatial scales on the Korean peninsula in northeast Asia. We obtain the downscaled precipitation mapping by regression equation between yearly TRMM precipitations values and annual average NDVI aggregating 1km to 25 degree. The downscaled precipitation is validated using time series of the ground measurements precipitation dataset provided by Korea Meteorological Organization (KMO) from 2002 to 2005. To improve the spatial downscaling of precipitation, we will conduct a study about correlation between precipitation and land surface temperature, perceptible water and other hydrological parameters.

  13. Far-infrared image restoration analysis of the protostellar cluster in S140

    NASA Technical Reports Server (NTRS)

    Lester, D. F.; Harvey, P. M.; Joy, M.; Ellis, H. B., Jr.

    1986-01-01

    Image restoration techniques are applied to one-dimensional scans at 50 and 100 microns of the protostellar cluster in S140. These measurements resolve the surrounding nebula clearly, and Fourier methods are used to match the effective beam profiles at these wavelengths. This allows the radial distribution of temperature and dust column density to be derived at a diffraction limited spatial resolution of 23 arcsec (0.1 pc). Evidence for heating of the S140 molecular cloud by a nearby ionization front is established, and the dissociation of molecules inside the ionization front is spatially well correlated with the heating of the dust. The far-infrared spectral distribution of the three near-infrared sources within 10 arcsesc of the cluster center is presented.

  14. Stochastic Downscaling of Digital Elevation Models

    NASA Astrophysics Data System (ADS)

    Rasera, Luiz Gustavo; Mariethoz, Gregoire; Lane, Stuart N.

    2016-04-01

    High-resolution digital elevation models (HR-DEMs) are extremely important for the understanding of small-scale geomorphic processes in Alpine environments. In the last decade, remote sensing techniques have experienced a major technological evolution, enabling fast and precise acquisition of HR-DEMs. However, sensors designed to measure elevation data still feature different spatial resolution and coverage capabilities. Terrestrial altimetry allows the acquisition of HR-DEMs with centimeter to millimeter-level precision, but only within small spatial extents and often with dead ground problems. Conversely, satellite radiometric sensors are able to gather elevation measurements over large areas but with limited spatial resolution. In the present study, we propose an algorithm to downscale low-resolution satellite-based DEMs using topographic patterns extracted from HR-DEMs derived for example from ground-based and airborne altimetry. The method consists of a multiple-point geostatistical simulation technique able to generate high-resolution elevation data from low-resolution digital elevation models (LR-DEMs). Initially, two collocated DEMs with different spatial resolutions serve as an input to construct a database of topographic patterns, which is also used to infer the statistical relationships between the two scales. High-resolution elevation patterns are then retrieved from the database to downscale a LR-DEM through a stochastic simulation process. The output of the simulations are multiple equally probable DEMs with higher spatial resolution that also depict the large-scale geomorphic structures present in the original LR-DEM. As these multiple models reflect the uncertainty related to the downscaling, they can be employed to quantify the uncertainty of phenomena that are dependent on fine topography, such as catchment hydrological processes. The proposed methodology is illustrated for a case study in the Swiss Alps. A swissALTI3D HR-DEM (with 5 m resolution) and a SRTM-derived LR-DEM from the Western Alps are used to downscale a SRTM-based LR-DEM from the eastern part of the Alps. The results show that the method is capable of generating multiple high-resolution synthetic DEMs that reproduce the spatial structure and statistics of the original DEM.

  15. Scale considerations for ecosystem management

    Treesearch

    Jonathan B. Haufler; Thomas R. Crow; David Wilcove

    1999-01-01

    One of the difficult challenges facing ecosystem management is the determination of appropriate spatial and temporal scales to use. Scale in spatial sence includes considerations of both the size area or extent of an ecosystem management activity, as well as thedegree of resolution of mapped or measured data. In the temporal sense, scale concerns the duration of both...

  16. Printing of metallic 3D micro-objects by laser induced forward transfer.

    PubMed

    Zenou, Michael; Kotler, Zvi

    2016-01-25

    Digital printing of 3D metal micro-structures by laser induced forward transfer under ambient conditions is reviewed. Recent progress has allowed drop on demand transfer of molten, femto-liter, metal droplets with a high jetting directionality. Such small volume droplets solidify instantly, on a nanosecond time scale, as they touch the substrate. This fast solidification limits their lateral spreading and allows the fabrication of high aspect ratio and complex 3D metal structures. Several examples of micron-scale resolution metal objects printed using this method are presented and discussed.

  17. Micron-scale plasma membrane curvature is recognized by the septin cytoskeleton

    PubMed Central

    Bridges, Andrew A.; Jentzsch, Maximilian S.; Oakes, Patrick W.; Occhipinti, Patricia

    2016-01-01

    Cells change shape in response to diverse environmental and developmental conditions, creating topologies with micron-scale features. Although individual proteins can sense nanometer-scale membrane curvature, it is unclear if a cell could also use nanometer-scale components to sense micron-scale contours, such as the cytokinetic furrow and base of neuronal branches. Septins are filament-forming proteins that serve as signaling platforms and are frequently associated with areas of the plasma membrane where there is micron-scale curvature, including the cytokinetic furrow and the base of cell protrusions. We report here that fungal and human septins are able to distinguish between different degrees of micron-scale curvature in cells. By preparing supported lipid bilayers on beads of different curvature, we reconstitute and measure the intrinsic septin curvature preference. We conclude that micron-scale curvature recognition is a fundamental property of the septin cytoskeleton that provides the cell with a mechanism to know its local shape. PMID:27044896

  18. The Use of Coarse Resolution Satellite Imagery to Predict Human Puumala Virus Epidemics in Sweden.

    DTIC Science & Technology

    1992-09-11

    the adverse effects on NDVI data quality can occur in both the spatial and temporal dimension. In other words, a specific pixel value recorded in...are compared to the land-oriented systems.22 On the other hand, the very course spatial resolution has the advantage of greatly reducing the volume...necessary on the scale of individual fields, in which case LANDSAT-TM has higher spatial resolution ; and secondly, when specific

  19. Development of Finer Spatial Resolution Optical Properties from MODIS

    DTIC Science & Technology

    2008-02-04

    infrared (SWIR) channels at 1240 nm and 2130 run. The increased resolution spectral Rrs channels are input into bio-optical algorithms (Quasi...processes. Additionally, increased resolution is required for validation of ocean color products in coastal regions due to the shorter spatial scales of...with in situ Rrs data to determine the "best" method in coastal regimes. We demonstrate that finer resolution is required for validation of coastal

  20. Mercuric iodide medical imagers for low-exposure radiography and fluoroscopy

    NASA Astrophysics Data System (ADS)

    Zentai, George; Partain, Larry; Pavlyuchkova, Raisa; Proano, Cesar; Breen, Barry N.; Taieb, A.; Dagan, Ofer; Schieber, Michael; Gilboa, Haim; Thomas, Jerry

    2004-05-01

    Photoconductive polycrystalline mercuric iodide deposited on flat panel thin film transistor (TFT) arrays is being developed for direct digital X-ray detectors that can perform both radiographic and fluoroscopic medical imaging. The mercuric iodide is either vacuum deposited by Physical Vapor Deposition (PVD) or coated onto the array by a wet Particle-In-Binder (PIB) process. The PVD deposition technology has been scaled up to the 20 cm x 25 cm size required in common medical imaging applications. A TFT array with a pixel pitch of 127 microns is used for these imagers. Arrays of 10 cm x 10 cm size have been used to evaluate performance of mercuric iodide imagers. Radiographic and fluoroscopic images of diagnostic quality at up to 15 pulses per second were demonstrated. As we previously reported, the resolution is limited to the TFT array Nyquist frequency of ~3.9 lp/mm (127 micron pixel pitch). Detective Quantum Efficiency (DQE) has been measured as a function of spatial frequency for these imagers. The DQE is lower than the theoretically calculated value due to some additional noise sources of the electronics and the array. We will retest the DQE after eliminating these noise sources. Reliability and stress testing was also began for polycrystalline mercuric iodide PVD and PIB detectors. These are simplified detectors based upon a stripe electrode or circular electrode structure. The detectors were stressed under various voltage bias, temperature and time conditions. The effects of the stress tests on the detector dark current and sensitivity were determined.

  1. A Spatio-Temporal Enhancement Method for medium resolution LAI (STEM-LAI)

    NASA Astrophysics Data System (ADS)

    Houborg, Rasmus; McCabe, Matthew F.; Gao, Feng

    2016-05-01

    Satellite remote sensing has been used successfully to map leaf area index (LAI) across landscapes, but advances are still needed to exploit multi-scale data streams for producing LAI at both high spatial and temporal resolution. A multi-scale Spatio-Temporal Enhancement Method for medium resolution LAI (STEM-LAI) has been developed to generate 4-day time-series of Landsat-scale LAI from existing medium resolution LAI products. STEM-LAI has been designed to meet the demands of applications requiring frequent and spatially explicit information, such as effectively resolving rapidly evolving vegetation dynamics at sub-field (30 m) scales. In this study, STEM-LAI is applied to Moderate Resolution Imaging Spectroradiometer (MODIS) based LAI data and utilizes a reference-based regression tree approach for producing MODIS-consistent, but Landsat-based, LAI. The Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) is used to interpolate the downscaled LAI between Landsat acquisition dates, providing a high spatial and temporal resolution improvement over existing LAI products. STARFM predicts high resolution LAI by blending MODIS and Landsat based information from a common acquisition date, with MODIS data from a prediction date. To demonstrate its capacity to reproduce fine-scale spatial features observed in actual Landsat LAI, the STEM-LAI approach is tested over an agricultural region in Nebraska. The implementation of a 250 m resolution LAI product, derived from MODIS 1 km data and using a scale consistent approach based on the Normalized Difference Vegetation Index (NDVI), is found to significantly improve accuracies of spatial pattern prediction, with the coefficient of efficiency (E) ranging from 0.77-0.94 compared to 0.01-0.85 when using 1 km LAI inputs alone. Comparisons against an 11-year record of in-situ measured LAI over maize and soybean highlight the utility of STEM-LAI in reproducing observed LAI dynamics (both characterized by r2 = 0.86) over a range of plant development stages. Overall, STEM-LAI represents an effective downscaling and temporal enhancement mechanism that predicts in-situ measured LAI better than estimates derived through linear interpolation between Landsat acquisitions. This is particularly true when the in-situ measurement date is greater than 10 days from the nearest Landsat acquisition, with prediction errors reduced by up to 50%. With a streamlined and completely automated processing interface, STEM-LAI represents a flexible tool for LAI disaggregation in space and time that is adaptable to different land cover types, landscape heterogeneities, and cloud cover conditions.

  2. Superconducting transition detectors for low-energy gamma-ray astrophysics

    NASA Astrophysics Data System (ADS)

    Kurfess, J. D.; Johnson, W. N.; Fritz, G. G.; Strickman, M. S.; Kinzer, R. L.; Jung, G.; Drukier, A. K.; Chmielowski, M.

    1990-08-01

    A program to investigate superconducting devices such as STDs for use in high-resolution Compton telescopes and coded-aperture detectors is presented. For higher energy applications, techniques are investigated with potential for scaling to large detectors, while also providing excellent energy and positional resolution. STDs are discussed, utilizing a uniform array of spherical granules tens of microns in diameter. The typical temperature-magnetic field phase for a low-temperature superconductor, the signal produced by the superconducting-normal transition in the 32-m diameter Sn granule, and the temperature history of an STD granule following heating by an ionizing particle are illustrated.

  3. Recent advances in small molecule OLED-on-silicon microdisplays

    NASA Astrophysics Data System (ADS)

    Ghosh, Amalkumar P.; Ali, Tariq A.; Khayrullin, Ilyas; Vazan, Fridrich; Prache, Olivier F.; Wacyk, Ihor

    2009-08-01

    High resolution OLED-on-silicon microdisplay technology is unique and challenging since it requires very small subpixel dimensions (~ 2-5 microns). eMagin's OLED microdisplay is based on white top emitter architecture using small molecule organic materials. The devices are fabricated using high Tg materials. The devices are hermetically sealed with vacuum deposited thin film layers. LCD-type color filters are patterned using photolithography methods to generate primary R, G, B colors. Results of recent improvements in the OLED-on-silicon microdisplay technology, with emphasis on efficiencies, lifetimes, grey scale and CIE color coordinates for SVGA and SXGA resolution microdisplays is presented.

  4. Development of large field-of-view two photon microscopy for imaging mouse cortex (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Bumstead, Jonathan; Côté, Daniel C.; Culver, Joseph P.

    2017-02-01

    Spontaneous neuronal activity has been measured at cellular resolution in mice, zebrafish, and C. elegans using optical sectioning microscopy techniques, such as light sheet microscopy (LSM) and two photon microscopy (TPM). Recent improvements in these modalities and genetically encoded calcium indicators (GECI's) have enabled whole brain imaging of calcium dynamics in zebrafish and C. elegans. However, these whole brain microscopy studies have not been extended to mice due to the limited field of view (FOV) of TPM and the cumbersome geometry of LSM. Conventional TPM is restricted to diffraction limited imaging over this small FOV (around 500 x 500 microns) due to the use of high magnification objectives (e.g. 1.0 NA; 20X) and the aberrations introduced by relay optics used in scanning the beam across the sample. To overcome these limitations, we have redesigned the entire optical path of the two photon microscope (scanning optics and objective lens) to support a field of view of Ø7 mm with relatively high spatial resolution (<10 microns). Using optical engineering software Zemax, we designed our system with commercially available optics that minimize astigmatism, field curvature, chromatic focal shift, and vignetting. Performance of the system was also tested experimentally with fluorescent beads in agarose, fixed samples, and in vivo structural imaging. Our large-FOV TPM provides a modality capable of studying distributed brain networks in mice at cellular resolution.

  5. High-Resolution Mid-IR Imaging of Jupiter's Great Red Spot: Comparing Cassini, VLT and Subaru Observations

    NASA Astrophysics Data System (ADS)

    Fletcher, Leigh N.; Orton, G. S.; Yanamandra-Fisher, P.; Irwin, P. G. J.; Baines, K. H.; Edkins, E.; Line, M. R.; Mousis, O.; Parrish, P. D.; Vanzi, L.; Fuse, T.; Fujoyoshi, T.

    2008-09-01

    In the eight years since the Cassini fly-by of Jupiter, the spatial resolution of ground-based observations of Jupiter's giant anticyclonic storm systems (the Great Red Spot, Oval BA and others) using 8m-class telescopes has surpassed the resolution of the Cassini/CIRS maps. We present a time-series of mid-IR imaging of the Great Red Spot (GRS) and its environs from the VISIR instrument on the Very Large Telescope (UT3/Melipal) and the COMICS instrument on the Subaru telescope (Hawaii). The NEMESIS optimal-estimation retrieval algorithm (Irwin et al., 2008) is used to analyse both the 7-25 micron filtered imaging from 2005-2008 and Cassini/CIRS 7-16 micron data from 2000. We demonstrate the ability to map temperatures in the 100-400 mbar range, NH3, aerosol opacity and the para-H2 fraction from the filtered imaging. Furthermore, the Cassini/CIRS spectra are used to map the PH3 mole fraction around the GRS. The thermal field, gaseous composition and aerosol distribution are used as diagnostics for the atmospheric motion associated with the GRS. Changes in the atmospheric state in response to close encounters with Oval BA and other vortices will be assessed. These results will be discussed in light of their implications for the planning of the Europa-Jupiter System Mission.

  6. Accuracy of stream habitat interpolations across spatial scales

    USGS Publications Warehouse

    Sheehan, Kenneth R.; Welsh, Stuart A.

    2013-01-01

    Stream habitat data are often collected across spatial scales because relationships among habitat, species occurrence, and management plans are linked at multiple spatial scales. Unfortunately, scale is often a factor limiting insight gained from spatial analysis of stream habitat data. Considerable cost is often expended to collect data at several spatial scales to provide accurate evaluation of spatial relationships in streams. To address utility of single scale set of stream habitat data used at varying scales, we examined the influence that data scaling had on accuracy of natural neighbor predictions of depth, flow, and benthic substrate. To achieve this goal, we measured two streams at gridded resolution of 0.33 × 0.33 meter cell size over a combined area of 934 m2 to create a baseline for natural neighbor interpolated maps at 12 incremental scales ranging from a raster cell size of 0.11 m2 to 16 m2 . Analysis of predictive maps showed a logarithmic linear decay pattern in RMSE values in interpolation accuracy for variables as resolution of data used to interpolate study areas became coarser. Proportional accuracy of interpolated models (r2 ) decreased, but it was maintained up to 78% as interpolation scale moved from 0.11 m2 to 16 m2 . Results indicated that accuracy retention was suitable for assessment and management purposes at various scales different from the data collection scale. Our study is relevant to spatial modeling, fish habitat assessment, and stream habitat management because it highlights the potential of using a single dataset to fulfill analysis needs rather than investing considerable cost to develop several scaled datasets.

  7. The spatial and temporal domains of modern ecology.

    PubMed

    Estes, Lyndon; Elsen, Paul R; Treuer, Timothy; Ahmed, Labeeb; Caylor, Kelly; Chang, Jason; Choi, Jonathan J; Ellis, Erle C

    2018-05-01

    To understand ecological phenomena, it is necessary to observe their behaviour across multiple spatial and temporal scales. Since this need was first highlighted in the 1980s, technology has opened previously inaccessible scales to observation. To help to determine whether there have been corresponding changes in the scales observed by modern ecologists, we analysed the resolution, extent, interval and duration of observations (excluding experiments) in 348 studies that have been published between 2004 and 2014. We found that observational scales were generally narrow, because ecologists still primarily use conventional field techniques. In the spatial domain, most observations had resolutions ≤1 m 2 and extents ≤10,000 ha. In the temporal domain, most observations were either unreplicated or infrequently repeated (>1 month interval) and ≤1 year in duration. Compared with studies conducted before 2004, observational durations and resolutions appear largely unchanged, but intervals have become finer and extents larger. We also found a large gulf between the scales at which phenomena are actually observed and the scales those observations ostensibly represent, raising concerns about observational comprehensiveness. Furthermore, most studies did not clearly report scale, suggesting that it remains a minor concern. Ecologists can better understand the scales represented by observations by incorporating autocorrelation measures, while journals can promote attentiveness to scale by implementing scale-reporting standards.

  8. Mapping land cover change over continental Africa using Landsat and Google Earth Engine cloud computing.

    PubMed

    Midekisa, Alemayehu; Holl, Felix; Savory, David J; Andrade-Pacheco, Ricardo; Gething, Peter W; Bennett, Adam; Sturrock, Hugh J W

    2017-01-01

    Quantifying and monitoring the spatial and temporal dynamics of the global land cover is critical for better understanding many of the Earth's land surface processes. However, the lack of regularly updated, continental-scale, and high spatial resolution (30 m) land cover data limit our ability to better understand the spatial extent and the temporal dynamics of land surface changes. Despite the free availability of high spatial resolution Landsat satellite data, continental-scale land cover mapping using high resolution Landsat satellite data was not feasible until now due to the need for high-performance computing to store, process, and analyze this large volume of high resolution satellite data. In this study, we present an approach to quantify continental land cover and impervious surface changes over a long period of time (15 years) using high resolution Landsat satellite observations and Google Earth Engine cloud computing platform. The approach applied here to overcome the computational challenges of handling big earth observation data by using cloud computing can help scientists and practitioners who lack high-performance computational resources.

  9. Mapping land cover change over continental Africa using Landsat and Google Earth Engine cloud computing

    PubMed Central

    Holl, Felix; Savory, David J.; Andrade-Pacheco, Ricardo; Gething, Peter W.; Bennett, Adam; Sturrock, Hugh J. W.

    2017-01-01

    Quantifying and monitoring the spatial and temporal dynamics of the global land cover is critical for better understanding many of the Earth’s land surface processes. However, the lack of regularly updated, continental-scale, and high spatial resolution (30 m) land cover data limit our ability to better understand the spatial extent and the temporal dynamics of land surface changes. Despite the free availability of high spatial resolution Landsat satellite data, continental-scale land cover mapping using high resolution Landsat satellite data was not feasible until now due to the need for high-performance computing to store, process, and analyze this large volume of high resolution satellite data. In this study, we present an approach to quantify continental land cover and impervious surface changes over a long period of time (15 years) using high resolution Landsat satellite observations and Google Earth Engine cloud computing platform. The approach applied here to overcome the computational challenges of handling big earth observation data by using cloud computing can help scientists and practitioners who lack high-performance computational resources. PMID:28953943

  10. Global Monitoring of Air Pollution Using Spaceborne Sensors

    NASA Technical Reports Server (NTRS)

    Chu, D. A.; Kaufman, Y. J.; Tanre, D.; Remer, L. A.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The MODIS sensor onboard EOS-Terra satellite provides not only daily global coverage but also high spectral (36 channels from 0.41 to 14 microns wavelength) and spatial (250m, 500m and 1km) resolution measurements. A similar MODIS instrument will be also configured into EOS-Aqua satellite to be launched soon. Using the complementary EOS-Terra and EOS-Aqua sun-synchronous orbits (10:30 AM and 1:30 PM equator-crossing time respectively), it enables us also to study the diurnal changes of the Earth system. It is unprecedented for the derivation of aerosol properties with such high spatial resolution and daily global converge. Aerosol optical depth and other aerosol properties, e.g., Angstrom coefficient over land and particle size over ocean, are derived as standard products at a spatial resolution of 10 x 10 sq km. The high resolution results are found surprisingly useful in detecting aerosols in both urban and rural regions as a result of urban/industrial pollution and biomass burning. For long-lived aerosols, the ability to monitoring the evolution of these aerosol events could help us to establish an system of air quality especially for highly populated areas. Aerosol scenarios with city pollution and biomass burning will be presented. Also presented are the method used in the derivation of aerosol optical properties and preliminary results will be presented, and issue as well as obstacles in validating aerosol optical depth with AERONET ground-based observations.

  11. Nanoscale Spatial Organization of Prokaryotic Cells Studied by Super-Resolution Optical Microscopy

    NASA Astrophysics Data System (ADS)

    McEvoy, Andrea Lynn

    All cells spatially organize their interiors, and this arrangement is necessary for cell viability. Until recently, it was believed that only eukaryotic cells spatially segregate their components. However, it is becoming increasingly clear that bacteria also assemble their proteins into complex patterns. In eukaryotic cells, spatial organization arises from membrane bound organelles as well as motor transport proteins which can move cargos within the cell. To date, there are no known motor transport proteins in bacteria and most microbes lack membrane bound organelles, so it remains a mystery how bacterial spatial organization emerges. In hind-sight it is not surprising that bacteria also exhibit complex spatial organization considering much of what we have learned about the basic processes that take place in all cells, such as transcription and translation was first discovered in prokaryotic cells. Perhaps the fundamental principles that govern spatial organization in prokaryotic cells may be applicable in eukaryotic cells as well. In addition, bacteria are attractive model organism for spatial organization studies because they are genetically tractable, grow quickly and much biochemical and structural data is known about them. A powerful tool for observing spatial organization in cells is the fluorescence microscope. By specifically tagging a protein of interest with a fluorescent probe, it is possible to examine how proteins organize and dynamically assemble inside cells. A significant disadvantage of this technology is its spatial resolution (approximately 250 nm laterally and 500 nm axially). This limitation on resolution causes closely spaced proteins to look blurred making it difficult to observe the fine structure within the complexes. This resolution limit is especially problematic within small cells such as bacteria. With the recent invention of new optical microscopies, we now can surpass the existing limits of fluorescence imaging. In some cases, we can now see individual proteins inside of large complexes or observe structures with ten times the resolution of conventional imaging. These techniques are known as super-resolution microscopes. In this dissertation, I use super-resolution microscopes to understand how a model microbe, Escherichia coli, assembles complex protein structures. I focus on two spatially organized systems, the chemotaxis network and the cell division machinery. These assembly mechanisms could be general mechanisms for protein assembly in all organisms. I also characterize new fluorescent probes for use in multiple super-resolution imaging modalities and discuss the practicalities of using different super-resolution microscopes. The chemotaxis network in E. coli is the best understood signal transduction network in biology. Chemotaxis receptors cluster into complexes of thousands of proteins located at the cell poles and are used to move bacteria towards favorable stimuli in the environment. In these dense clusters, the receptors can bind each other and communicate to filter out noise and amplify weak signals. It is surprising that chemotaxis receptors are spatially segregated and the mechanism for polar localization of these complexes remains unclear. Using data from PALM images, we develop a model to understand how bacteria organize their receptors into large clusters. The model, stochastic cluster nucleation, is surprising in that is generates micron-scale periodic patterns without the need for accessory proteins to provide scaffolding or active transport. This model may be a general mechanism that cells utilize to organize small and large complexes of proteins. During cell division, E. coli must elongate, replicate its DNA and position its components properly prior to binary fission. Prior to septum formation, a ubiquitous protein called FtsZ, assembles into a ring at mid-cell (Z-ring) which constricts during cell division and recruits the remaining proteins necessary for cytokinesis. Though many details have been revealed about FtsZ, the detailed in vivo structure of the Z-ring is not well understood, and many questions remain about how ring constriction occurs. Using multiple super-resolution imaging modalities, in combination with conventional time-lapse fluorescence imaging, we show that the Z-ring does not form a long uniform filament around the circumference of the bacterium. We detail how this structure changes during division and how removal of proteins that help to position FtsZ affects the Z-ring as it proceeds through cytokinesis. Ultimately we present a simple model for Z-ring constriction during division.

  12. Nanoscale thermal transport. II. 2003-2012

    NASA Astrophysics Data System (ADS)

    Cahill, David G.; Braun, Paul V.; Chen, Gang; Clarke, David R.; Fan, Shanhui; Goodson, Kenneth E.; Keblinski, Pawel; King, William P.; Mahan, Gerald D.; Majumdar, Arun; Maris, Humphrey J.; Phillpot, Simon R.; Pop, Eric; Shi, Li

    2014-03-01

    A diverse spectrum of technology drivers such as improved thermal barriers, higher efficiency thermoelectric energy conversion, phase-change memory, heat-assisted magnetic recording, thermal management of nanoscale electronics, and nanoparticles for thermal medical therapies are motivating studies of the applied physics of thermal transport at the nanoscale. This review emphasizes developments in experiment, theory, and computation in the past ten years and summarizes the present status of the field. Interfaces become increasingly important on small length scales. Research during the past decade has extended studies of interfaces between simple metals and inorganic crystals to interfaces with molecular materials and liquids with systematic control of interface chemistry and physics. At separations on the order of ˜ 1 nm , the science of radiative transport through nanoscale gaps overlaps with thermal conduction by the coupling of electronic and vibrational excitations across weakly bonded or rough interfaces between materials. Major advances in the physics of phonons include first principles calculation of the phonon lifetimes of simple crystals and application of the predicted scattering rates in parameter-free calculations of the thermal conductivity. Progress in the control of thermal transport at the nanoscale is critical to continued advances in the density of information that can be stored in phase change memory devices and new generations of magnetic storage that will use highly localized heat sources to reduce the coercivity of magnetic media. Ultralow thermal conductivity—thermal conductivity below the conventionally predicted minimum thermal conductivity—has been observed in nanolaminates and disordered crystals with strong anisotropy. Advances in metrology by time-domain thermoreflectance have made measurements of the thermal conductivity of a thin layer with micron-scale spatial resolution relatively routine. Scanning thermal microscopy and thermal analysis using proximal probes has achieved spatial resolution of 10 nm, temperature precision of 50 mK, sensitivity to heat flows of 10 pW, and the capability for thermal analysis of sub-femtogram samples.

  13. Linear mixing model applied to coarse resolution satellite data

    NASA Technical Reports Server (NTRS)

    Holben, Brent N.; Shimabukuro, Yosio E.

    1992-01-01

    A linear mixing model typically applied to high resolution data such as Airborne Visible/Infrared Imaging Spectrometer, Thematic Mapper, and Multispectral Scanner System is applied to the NOAA Advanced Very High Resolution Radiometer coarse resolution satellite data. The reflective portion extracted from the middle IR channel 3 (3.55 - 3.93 microns) is used with channels 1 (0.58 - 0.68 microns) and 2 (0.725 - 1.1 microns) to run the Constrained Least Squares model to generate fraction images for an area in the west central region of Brazil. The derived fraction images are compared with an unsupervised classification and the fraction images derived from Landsat TM data acquired in the same day. In addition, the relationship betweeen these fraction images and the well known NDVI images are presented. The results show the great potential of the unmixing techniques for applying to coarse resolution data for global studies.

  14. Fabrication of Ultrasensitive Transition Edge Sensor Bolometric Detectors for HIRMES

    NASA Technical Reports Server (NTRS)

    Brown, Ari-David; Brekosky, Regis; Franz, David; Hsieh, Wen-Ting; Kutyrev, Alexander; Mikula, Vilem; Miller, Timothy; Moseley, S. Harvey; Oxborrow, Joseph; Rostem, Karwan; hide

    2017-01-01

    The high resolution mid-infrared spectrometer (HIRMES) is a high resolving power (R approx. 100,000) instrument operating in the 25-122 micron spectral range and will fly on board the Stratospheric Observatory for Far-Infrared Astronomy (SOFIA) in 2019. Central ot HIRMES are its two transition edge sensor (TES) bolometric cameras, an 8x16 detector high resolution array and a 64x16 detector low resolution array. Both types of detectors consist of MoAu TES fabricated on leg-isolated Si membranes. Whereas the high resolution detectors, with noise equivalent power (NEP) approx. 2 aW/square root of (Hz), are fabricated on 0.45 micron Si substrates, the low resolution detectors, with NEP approx. 10 aW/square root of (Hz), are fabricated on 1.40 micron Si. Here we discuss the similarities and difference in the fabrication methodologies used to realize the two types of detectors.

  15. High Spatial Resolution Europa Coverage by the Galileo Near Infrared Mapping Spectrometer (NIMS)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The NIMS instrument on the Galileo spacecraft, which is being used to map the mineral and ice properties over the surfaces of the Jovian moons, produces global spectral images at modest spatial resolution and high resolution spectral images for small selected regions on the satellites. This map illustrates the high resolution coverage of Europa obtained by NIMS through the April 1997 G7 orbit.

    The areas covered are displayed on a Voyager-derived map. A good sampling of the dark trailing-side material (180 to 360 degrees) has been obtained, with less coverage of Europa's leading side.

    The false-color composites use red, green and blue to represent the infrared brightnesses at 0.7, 1.51 and 1.82 microns respectively. Considerable variations are evident and are related to the composition and sizes of the surface grains.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov.

  16. Examining fire-induced forest changes using novel remote sensing technique: a case study in a mixed pine-oak forest

    NASA Astrophysics Data System (ADS)

    Meng, R.; Wu, J.; Zhao, F. R.; Cook, B.; Hanavan, R. P.; Serbin, S.

    2017-12-01

    Fire-induced forest changes has long been a central focus for forest ecology and global carbon cycling studies, and is becoming a pressing issue for global change biologists particularly with the projected increases in the frequency and intensity of fire with a warmer and drier climate. Compared with time-consuming and labor intensive field-based approaches, remote sensing offers a promising way to efficiently assess fire effects and monitor post-fire forest responses across a range of spatial and temporal scales. However, traditional remote sensing studies relying on simple optical spectral indices or coarse resolution imagery still face a number of technical challenges, including confusion or contamination of the signal by understory dynamics and mixed pixels with moderate to coarse resolution data (>= 30 m). As such, traditional remote sensing may not meet the increasing demand for more ecologically-meaningful monitoring and quantitation of fire-induced forest changes. Here we examined the use of novel remote sensing technique (i.e. airborne imaging spectroscopy and LiDAR measurement, very high spatial resolution (VHR) space-borne multi-spectral measurement, and high temporal-spatial resolution UAS-based (Unmanned Aerial System) imagery), in combination with field and phenocam measurements to map forest burn severity across spatial scales, quantify crown-scale post-fire forest recovery rate, and track fire-induced phenology changes in the burned areas. We focused on a mixed pine-oak forest undergoing multiple fire disturbances for the past several years in Long Island, NY as a case study. We demonstrate that (1) forest burn severity mapping from VHR remote sensing measurement can capture crown-scale heterogeneous fire patterns over large-scale; (2) the combination of VHR optical and structural measurements provides an efficient means to remotely sense species-level post-fire forest responses; (3) the UAS-based remote sensing enables monitoring of fire-induced forest phenology changes at unprecedented temporal and spatial resolutions. This work provides the methodological approach monitor fire-induced forest changes in a spatially explicit manner across scales, with important implications for fire-related forest management and for constraining/benchmarking process models.

  17. High Spectral Resolution, High Cadence, Imaging X-Ray Microcalorimeters for Solar Physics

    NASA Technical Reports Server (NTRS)

    Bandler, Simon R.; Bailey, Catherine N.; Bookbinder, Jay A.; DeLuca, Edward E.; Chervenak, Jay A.; Eckart, Megan E.; Finkbeiner, Fred M.; Kelley, Daniel P.; Kelley, Richard L.; Kilbourne, Caroline A.; hide

    2010-01-01

    High spectral resolution, high cadence, imaging x-ray spectroscopy has the potential to revolutionize the study of the solar corona. To that end we have been developing transition-edge-sensor (TES) based x-ray micro calorimeter arrays for future solar physics missions where imaging and high energy resolution spectroscopy will enable previously impossible studies of the dynamics and energetics of the solar corona. The characteristics of these x-ray microcalorimeters are significantly different from conventional micro calorimeters developed for astrophysics because they need to accommodate much higher count rates (300-1000 cps) while maintaining high energy resolution of less than 4 eV FWHM in the X-ray energy band of 0.2-10 keV. The other main difference is a smaller pixel size (less than 75 x 75 square microns) than is typical for x-ray micro calorimeters in order to provide angular resolution less than 1 arcsecond. We have achieved at energy resolution of 2.15 eV at 6 keV in a pixel with a 12 x 12 square micron TES sensor and 34 x 34 x 9.1 micron gold absorber, and a resolution of 2.30 eV at 6 keV in a pixel with a 35 x 35 micron TES and a 57 x 57 x 9.1 micron gold absorber. This performance has been achieved in pixels that are fabricated directly onto solid substrates, ie. they are not supported by silicon nitride membranes. We present the results from these detectors, the expected performance at high count-rates, and prospects for the use of this technology for future Solar missions.

  18. Applications of Fractal Analytical Techniques in the Estimation of Operational Scale

    NASA Technical Reports Server (NTRS)

    Emerson, Charles W.; Quattrochi, Dale A.

    2000-01-01

    The observational scale and the resolution of remotely sensed imagery are essential considerations in the interpretation process. Many atmospheric, hydrologic, and other natural and human-influenced spatial phenomena are inherently scale dependent and are governed by different physical processes at different spatial domains. This spatial and operational heterogeneity constrains the ability to compare interpretations of phenomena and processes observed in higher spatial resolution imagery to similar interpretations obtained from lower resolution imagery. This is a particularly acute problem, since longterm global change investigations will require high spatial resolution Earth Observing System (EOS), Landsat 7, or commercial satellite data to be combined with lower resolution imagery from older sensors such as Landsat TM and MSS. Fractal analysis is a useful technique for identifying the effects of scale changes on remotely sensed imagery. The fractal dimension of an image is a non-integer value between two and three which indicates the degree of complexity in the texture and shapes depicted in the image. A true fractal surface exhibits self-similarity, a property of curves or surfaces where each part is indistinguishable from the whole, or where the form of the curve or surface is invariant with respect to scale. Theoretically, if the digital numbers of a remotely sensed image resemble an ideal fractal surface, then due to the self-similarity property, the fractal dimension of the image will not vary with scale and resolution, and the slope of the fractal dimension-resolution relationship would be zero. Most geographical phenomena, however, are not self-similar at all scales, but they can be modeled by a stochastic fractal in which the scaling properties of the image exhibit patterns that can be described by statistics such as area-perimeter ratios and autocovariances. Stochastic fractal sets relax the self-similarity assumption and measure many scales and resolutions to represent the varying form of a phenomenon as the pixel size is increased in a convolution process. We have observed that for images of homogeneous land covers, the fractal dimension varies linearly with changes in resolution or pixel size over the range of past, current, and planned space-borne sensors. This relationship differs significantly in images of agricultural, urban, and forest land covers, with urban areas retaining the same level of complexity, forested areas growing smoother, and agricultural areas growing more complex as small pixels are aggregated into larger, mixed pixels. Images of scenes having a mixture of land covers have fractal dimensions that exhibit a non-linear, complex relationship to pixel size. Measuring the fractal dimension of a difference image derived from two images of the same area obtained on different dates showed that the fractal dimension increased steadily, then exhibited a sharp decrease at increasing levels of pixel aggregation. This breakpoint of the fractal dimension/resolution plot is related to the spatial domain or operational scale of the phenomenon exhibiting the predominant visible difference between the two images (in this case, mountain snow cover). The degree to which an image departs from a theoretical ideal fractal surface provides clues as to how much information is altered or lost in the processes of rescaling and rectification. The measured fractal dimension of complex, composite land covers such as urban areas also provides a useful textural index that can assist image classification of complex scenes.

  19. In-situ tomographic observation of tissue surface during laser ablation

    NASA Astrophysics Data System (ADS)

    Haruna, Masamitsu; Konoshita, Ryuh; Ohmi, Masato; Kunizawa, Naomi; Miyachi, Mayumi

    2001-07-01

    In laser ablation of tissues, tomography of the tissue surface is necessary for measurement of the crater depth and observation of damage of the surrounding tissue. We demonstrate here OCT images of craters made by UV laser ablation of different tissues. The maximum depth of a crater is found among several OCT images, and then the ablation rate is determined. The conventional OCT of the spatial resolution of 15 μm was used in our experiment, but OCT of the resolution of the order of 1 μm is required because the ablation rate is usually a few microns per pulse. Such a high-resolution OCT is also demonstrated in this paper, where the light source is a halogen lamp. Combination of laser ablation and OCT will lead to in situ tomographic observation of tissue surface during laser ablation, which should allow us to develop new laser surgeries.

  20. Mass loss from red giants - Infrared spectroscopy

    NASA Technical Reports Server (NTRS)

    Wannier, P. G.

    1985-01-01

    A discussion is presented of IR spectroscopy, particularly high-resolution spectroscopy in the approximately 1-20 micron band, as it impacts the study of circumstellar envelopes. The molecular bands within this region contain an enormous amount of information, especially when observed with sufficient resolution to obtain kinematic information. In a single spectrum, it is possible to resolve lines from up to 50 different rotational/vibrational levels of a given molecule and to detect several different isotopic variants. When high resolution techniques are combined with mapping techniques and/or time sequence observations of variable stars, the resulting information can paint a very detailed picture of the mass-loss phenomenon. To date, near-IR observations have been made of 20 molecular species. CO is the most widely observed molecule and useful information has been gleaned from the observed rotational excitation, kinematics, time variability and spatial structure of its lines. Examples of different observing techniques are discussed in the following sections.

  1. Coarse climate change projections for species living in a fine-scaled world.

    PubMed

    Nadeau, Christopher P; Urban, Mark C; Bridle, Jon R

    2017-01-01

    Accurately predicting biological impacts of climate change is necessary to guide policy. However, the resolution of climate data could be affecting the accuracy of climate change impact assessments. Here, we review the spatial and temporal resolution of climate data used in impact assessments and demonstrate that these resolutions are often too coarse relative to biologically relevant scales. We then develop a framework that partitions climate into three important components: trend, variance, and autocorrelation. We apply this framework to map different global climate regimes and identify where coarse climate data is most and least likely to reduce the accuracy of impact assessments. We show that impact assessments for many large mammals and birds use climate data with a spatial resolution similar to the biologically relevant area encompassing population dynamics. Conversely, impact assessments for many small mammals, herpetofauna, and plants use climate data with a spatial resolution that is orders of magnitude larger than the area encompassing population dynamics. Most impact assessments also use climate data with a coarse temporal resolution. We suggest that climate data with a coarse spatial resolution is likely to reduce the accuracy of impact assessments the most in climates with high spatial trend and variance (e.g., much of western North and South America) and the least in climates with low spatial trend and variance (e.g., the Great Plains of the USA). Climate data with a coarse temporal resolution is likely to reduce the accuracy of impact assessments the most in the northern half of the northern hemisphere where temporal climatic variance is high. Our framework provides one way to identify where improving the resolution of climate data will have the largest impact on the accuracy of biological predictions under climate change. © 2016 John Wiley & Sons Ltd.

  2. Femtosecond few- to single-electron point-projection microscopy for nanoscale dynamic imaging

    PubMed Central

    Bainbridge, A. R.; Barlow Myers, C. W.; Bryan, W. A.

    2016-01-01

    Femtosecond electron microscopy produces real-space images of matter in a series of ultrafast snapshots. Pulses of electrons self-disperse under space-charge broadening, so without compression, the ideal operation mode is a single electron per pulse. Here, we demonstrate femtosecond single-electron point projection microscopy (fs-ePPM) in a laser-pump fs-e-probe configuration. The electrons have an energy of only 150 eV and take tens of picoseconds to propagate to the object under study. Nonetheless, we achieve a temporal resolution with a standard deviation of 114 fs (equivalent to a full-width at half-maximum of 269 ± 40 fs) combined with a spatial resolution of 100 nm, applied to a localized region of charge at the apex of a nanoscale metal tip induced by 30 fs 800 nm laser pulses at 50 kHz. These observations demonstrate real-space imaging of reversible processes, such as tracking charge distributions, is feasible whilst maintaining femtosecond resolution. Our findings could find application as a characterization method, which, depending on geometry, could resolve tens of femtoseconds and tens of nanometres. Dynamically imaging electric and magnetic fields and charge distributions on sub-micron length scales opens new avenues of ultrafast dynamics. Furthermore, through the use of active compression, such pulses are an ideal seed for few-femtosecond to attosecond imaging applications which will access sub-optical cycle processes in nanoplasmonics. PMID:27158637

  3. Evaluating the Value of High Spatial Resolution in National Capacity Expansion Models using ReEDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnan, Venkat; Cole, Wesley

    2016-11-14

    Power sector capacity expansion models (CEMs) have a broad range of spatial resolutions. This paper uses the Regional Energy Deployment System (ReEDS) model, a long-term national scale electric sector CEM, to evaluate the value of high spatial resolution for CEMs. ReEDS models the United States with 134 load balancing areas (BAs) and captures the variability in existing generation parameters, future technology costs, performance, and resource availability using very high spatial resolution data, especially for wind and solar modeled at 356 resource regions. In this paper we perform planning studies at three different spatial resolutions--native resolution (134 BAs), state-level, and NERCmore » region level--and evaluate how results change under different levels of spatial aggregation in terms of renewable capacity deployment and location, associated transmission builds, and system costs. The results are used to ascertain the value of high geographically resolved models in terms of their impact on relative competitiveness among renewable energy resources.« less

  4. LFNet: A Novel Bidirectional Recurrent Convolutional Neural Network for Light-Field Image Super-Resolution.

    PubMed

    Wang, Yunlong; Liu, Fei; Zhang, Kunbo; Hou, Guangqi; Sun, Zhenan; Tan, Tieniu

    2018-09-01

    The low spatial resolution of light-field image poses significant difficulties in exploiting its advantage. To mitigate the dependency of accurate depth or disparity information as priors for light-field image super-resolution, we propose an implicitly multi-scale fusion scheme to accumulate contextual information from multiple scales for super-resolution reconstruction. The implicitly multi-scale fusion scheme is then incorporated into bidirectional recurrent convolutional neural network, which aims to iteratively model spatial relations between horizontally or vertically adjacent sub-aperture images of light-field data. Within the network, the recurrent convolutions are modified to be more effective and flexible in modeling the spatial correlations between neighboring views. A horizontal sub-network and a vertical sub-network of the same network structure are ensembled for final outputs via stacked generalization. Experimental results on synthetic and real-world data sets demonstrate that the proposed method outperforms other state-of-the-art methods by a large margin in peak signal-to-noise ratio and gray-scale structural similarity indexes, which also achieves superior quality for human visual systems. Furthermore, the proposed method can enhance the performance of light field applications such as depth estimation.

  5. High Spatial Resolution Mid-IR Imaging of V838 Monocerotis: Evidence of New Circumstellar Dust Creation

    NASA Technical Reports Server (NTRS)

    Winsiewski, John P.; Clampin, Mark; Bjorkman, Karen S.; Barry, Richard K.

    2008-01-01

    The eruptive variable V838 Monocerotis experienced three dramatic outbursts in early 2002. Its unexpectedly erratic photometric behavior wes matched by strong spectroscopic variability, in which the srar transitioned through the F, K, G spectral type s in 2002 February, reseabled a M5 supergiant by 2002 Aprll, and had a L-type super qiant spectram in 2002 October. The star is also infamous for producisg e spectacu lar light echo whose evolction has beer traced by HST/ACS. We report high sFatial resolution 11.2 and 18.1 micron imagicq of V838 Nonoceroris obrained with Genini Ob servatory's Klchelle in 2007 March. The 2007 flux density of the unresclved stellar core of is rouqhly 2 tixes brighter than zhaz observed in 2C04. We interpret tkese aata as evidecce t-at V838 Mon has experienced a new circumsellar dust creatioc evezt. We suggest that this newly c reated dust is Likely clumpy, and speculate that one (or ore) of Ekese clumps migh t have passed through the line-cf-sight in late 2036, prodccing the brief rnalti-wav elength pkotonetric event reported by Bond (2006) and Yunari ez a1 (2007). A gap o f spatially exzended therrrzl (18 micron) emission is present over radial distances of 1860 - 93000 AU from che central source. Assuming ejecta material expands at a constant velocity of 300-500 km/s, this gap suggests that no prior significanz circ unstellar dust production events have occurred withiin the past approx. 900-1500 years.

  6. Planning the 8-meter Chinese Giant Solar Telescope

    NASA Astrophysics Data System (ADS)

    Beckers, Jacques M.; Liu, Z.; Deng, Y.; Ji, H.

    2013-07-01

    The Chinese Giant Solar Telescope (CGST) will be a diffraction limited solar telescope optimized for the near-infrared (NIR) spectral region (0.8 - 2.5 microns). Its diffraction limit will be reached by the incorporation of Multi-Conjugate Adaptive Optics (MCAO) enhanced by image restoration techniques to achieve uniform (u.v) plane coverage over the angular spatial frequency region allowed by its 8-meter aperture. Thus it will complement the imaging capabilities of 4-meter telescopes being planned elsewhere which are optimized for the visible (VIS) spectral region (300 - 1000 nm) In the NIR spectral regions the CGST will have access to unique spectral features which will improve the diagnostics of the solar atmosphere. These include the CaII lines near 860 nm , the HeI lines near 1083 nm, the 1074 nm FeXIII coronal lines, the large Zeeman-split FeI line at 1548 nm, and (v) the H- continuum absorption minimum at 1.6 micron. Especially in sunspot umbrae the simultaneous observation of continua and lines across the NIR spectral range will cover a substantial depth range in the solar atmosphere. Of course the mid- and far- infrared regions are also available for unequalled high-angular resolution solar observations, for example, in the Hydrogen Bracket lines, CO molecular bands, and the MgI emission line at 12.3 microns. The CGST is a so-called ring telescope in which the light is captured by a 1 meter wide segmented ring or by a ring of 7 smaller off-axis aperture telescopes. The open central area of the telescope is large. The advantages of such a ring configuration is that (a) it covers all the spatial frequencies out to those corresponding to its outer diameter, (b) its circular symmetry makes it polarization neutral, (c) its large central hole helps thermal control, and (d) it provides ample space for the MCAO system and instrumentation in the Gregorian focus. Even though optimized for the NIR, we expect to use the CGST also at visible wavelengths in the so-called “Partial Adaptive Optics” (PAO) mode (Applied Optics 31,424,1992) to obtain angular resolution twice that of a 4-meter telescope if their observations indicate that higher resolution is desirable. The CGST is a Chinese solar community project.

  7. The Use of Scale-Dependent Precision to Increase Forecast Accuracy in Earth System Modelling

    NASA Astrophysics Data System (ADS)

    Thornes, Tobias; Duben, Peter; Palmer, Tim

    2016-04-01

    At the current pace of development, it may be decades before the 'exa-scale' computers needed to resolve individual convective clouds in weather and climate models become available to forecasters, and such machines will incur very high power demands. But the resolution could be improved today by switching to more efficient, 'inexact' hardware with which variables can be represented in 'reduced precision'. Currently, all numbers in our models are represented as double-precision floating points - each requiring 64 bits of memory - to minimise rounding errors, regardless of spatial scale. Yet observational and modelling constraints mean that values of atmospheric variables are inevitably known less precisely on smaller scales, suggesting that this may be a waste of computer resources. More accurate forecasts might therefore be obtained by taking a scale-selective approach whereby the precision of variables is gradually decreased at smaller spatial scales to optimise the overall efficiency of the model. To study the effect of reducing precision to different levels on multiple spatial scales, we here introduce a new model atmosphere developed by extending the Lorenz '96 idealised system to encompass three tiers of variables - which represent large-, medium- and small-scale features - for the first time. In this chaotic but computationally tractable system, the 'true' state can be defined by explicitly resolving all three tiers. The abilities of low resolution (single-tier) double-precision models and similar-cost high resolution (two-tier) models in mixed-precision to produce accurate forecasts of this 'truth' are compared. The high resolution models outperform the low resolution ones even when small-scale variables are resolved in half-precision (16 bits). This suggests that using scale-dependent levels of precision in more complicated real-world Earth System models could allow forecasts to be made at higher resolution and with improved accuracy. If adopted, this new paradigm would represent a revolution in numerical modelling that could be of great benefit to the world.

  8. X-Ray Diffractive Optics

    NASA Technical Reports Server (NTRS)

    Dennis, Brian; Li, Mary; Skinner, Gerald

    2013-01-01

    X-ray optics were fabricated with the capability of imaging solar x-ray sources with better than 0.1 arcsecond angular resolution, over an order of magnitude finer than is currently possible. Such images would provide a new window into the little-understood energy release and particle acceleration regions in solar flares. They constitute one of the most promising ways to probe these regions in the solar atmosphere with the sensitivity and angular resolution needed to better understand the physical processes involved. A circular slit structure with widths as fine as 0.85 micron etched in a silicon wafer 8 microns thick forms a phase zone plate version of a Fresnel lens capable of focusing approx. =.6 keV x-rays. The focal length of the 3-cm diameter lenses is 100 microns, and the angular resolution capability is better than 0.1 arcsecond. Such phase zone plates were fabricated in Goddard fs Detector Development Lab. (DDL) and tested at the Goddard 600-microns x-ray test facility. The test data verified that the desired angular resolution and throughput efficiency were achieved.

  9. Orbiting lidar simulations. I - Aerosol and cloud measurements by an independent-wavelength technique

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Morley, B. M.; Livingston, J. M.; Grams, G. W.; Patterson, E. M.

    1982-01-01

    Aerosol and cloud measurements have been simulated for a Space Shuttle lidar. Expected errors - in signal, transmission, density, and calibration - are calculated algebraically and checked by simulating measurements and retrievals using random-number generators. By day, vertical structure is retrieved for tenuous clouds, Saharan aerosols, and boundary layer aerosols (at 0.53 and 1.06 micron) as well as strong volcanic stratospheric aerosols (at 0.53 micron). By night, all these constituents are retrieved plus upper tropospheric and stratospheric aerosols (at 1.06 micron), mesospheric aerosols (at 0.53 micron), and noctilucent clouds (at 1.06 and 0.53 micron). The vertical resolution was 0.1-0.5 km in the troposphere, 0.5-2.0 km above, except 0.25-1.0 km in the mesospheric cloud and aerosol layers; horizontal resolution was 100-2000 km.

  10. Terahertz imaging with sub-wavelength resolution by femtosecond laser filament in air

    PubMed Central

    Zhao, Jiayu; Chu, Wei; Guo, Lanjun; Wang, Zhi; Yang, Jing; Liu, Weiwei; Cheng, Ya; Xu, Zhizhan

    2014-01-01

    Terahertz (THz) imaging provides cutting edge technique in biology, medical sciences and non-destructive evaluation. However, due to the long wavelength of the THz wave, the obtained resolution of THz imaging is normally a few hundred microns and is much lower than that of the traditional optical imaging. We introduce a sub-wavelength resolution THz imaging technique which uses the THz radiation generated by a femtosecond laser filament in air as the probe. This method is based on the fact that the femtosecond laser filament forms a waveguide for the THz wave in air. The diameter of the THz beam, which propagates inside the filament, varies from 20 μm to 50 μm, which is significantly smaller than the wavelength of the THz wave. Using this highly spatially confined THz beam as the probe, THz imaging with resolution as high as 20 μm (~λ/38 at 0.4 THz) can be realized. PMID:24457525

  11. The Large Deployable Reflector (LDR) report of the Science Coordination Group

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The Large Deployable Reflector (LDR) is a telescope designed to carry out high-angular resolution, high-sensitivity observations at far-infrared and submillimeter wavelengths. The scientific rationale for the LDR is discussed in light of the recent Infrared Astronomical Satellite (IRAS) and Kuiper Airborne Observatory (KAO) results and the several new ground-based observatories planned for the late 1980s. The importance of high sensitivity and high angular resolution observations from space in the submillimeter region is stressed. The scientific and technical problems of using the LDR in a light bucket mode at approx. less than 5 microns and in designing the LDR as an unfilled aperture with subarcsecond resolution are also discussed. The need for an aperture as large as 20 m is established, along with the requirements of beam-shape stability, spatial chopping, thermal control, and surface figure stability. The instrument complement required to cover the wavelength-spectral resolution region of interest to the LDR is defined.

  12. Downscaling remotely sensed imagery using area-to-point cokriging and multiple-point geostatistical simulation

    NASA Astrophysics Data System (ADS)

    Tang, Yunwei; Atkinson, Peter M.; Zhang, Jingxiong

    2015-03-01

    A cross-scale data integration method was developed and tested based on the theory of geostatistics and multiple-point geostatistics (MPG). The goal was to downscale remotely sensed images while retaining spatial structure by integrating images at different spatial resolutions. During the process of downscaling, a rich spatial correlation model in the form of a training image was incorporated to facilitate reproduction of similar local patterns in the simulated images. Area-to-point cokriging (ATPCK) was used as locally varying mean (LVM) (i.e., soft data) to deal with the change of support problem (COSP) for cross-scale integration, which MPG cannot achieve alone. Several pairs of spectral bands of remotely sensed images were tested for integration within different cross-scale case studies. The experiment shows that MPG can restore the spatial structure of the image at a fine spatial resolution given the training image and conditioning data. The super-resolution image can be predicted using the proposed method, which cannot be realised using most data integration methods. The results show that ATPCK-MPG approach can achieve greater accuracy than methods which do not account for the change of support issue.

  13. The Impact of Spatial and Temporal Resolutions in Tropical Summer Rainfall Distribution: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Chiu, L. S.; Hao, X.

    2017-10-01

    The abundance or lack of rainfall affects peoples' life and activities. As a major component of the global hydrological cycle (Chokngamwong & Chiu, 2007), accurate representations at various spatial and temporal scales are crucial for a lot of decision making processes. Climate models show a warmer and wetter climate due to increases of Greenhouse Gases (GHG). However, the models' resolutions are often too coarse to be directly applicable to local scales that are useful for mitigation purposes. Hence disaggregation (downscaling) procedures are needed to transfer the coarse scale products to higher spatial and temporal resolutions. The aim of this paper is to examine the changes in the statistical parameters of rainfall at various spatial and temporal resolutions. The TRMM Multi-satellite Precipitation Analysis (TMPA) at 0.25 degree, 3 hourly grid rainfall data for a summer is aggregated to 0.5,1.0, 2.0 and 2.5 degree and at 6, 12, 24 hourly, pentad (five days) and monthly resolutions. The probability distributions (PDF) and cumulative distribution functions(CDF) of rain amount at these resolutions are computed and modeled as a mixed distribution. Parameters of the PDFs are compared using the Kolmogrov-Smironov (KS) test, both for the mixed and the marginal distribution. These distributions are shown to be distinct. The marginal distributions are fitted with Lognormal and Gamma distributions and it is found that the Gamma distributions fit much better than the Lognormal.

  14. Thematic and spatial resolutions affect model-based predictions of tree species distribution.

    PubMed

    Liang, Yu; He, Hong S; Fraser, Jacob S; Wu, ZhiWei

    2013-01-01

    Subjective decisions of thematic and spatial resolutions in characterizing environmental heterogeneity may affect the characterizations of spatial pattern and the simulation of occurrence and rate of ecological processes, and in turn, model-based tree species distribution. Thus, this study quantified the importance of thematic and spatial resolutions, and their interaction in predictions of tree species distribution (quantified by species abundance). We investigated how model-predicted species abundances changed and whether tree species with different ecological traits (e.g., seed dispersal distance, competitive capacity) had different responses to varying thematic and spatial resolutions. We used the LANDIS forest landscape model to predict tree species distribution at the landscape scale and designed a series of scenarios with different thematic (different numbers of land types) and spatial resolutions combinations, and then statistically examined the differences of species abundance among these scenarios. Results showed that both thematic and spatial resolutions affected model-based predictions of species distribution, but thematic resolution had a greater effect. Species ecological traits affected the predictions. For species with moderate dispersal distance and relatively abundant seed sources, predicted abundance increased as thematic resolution increased. However, for species with long seeding distance or high shade tolerance, thematic resolution had an inverse effect on predicted abundance. When seed sources and dispersal distance were not limiting, the predicted species abundance increased with spatial resolution and vice versa. Results from this study may provide insights into the choice of thematic and spatial resolutions for model-based predictions of tree species distribution.

  15. Thematic and Spatial Resolutions Affect Model-Based Predictions of Tree Species Distribution

    PubMed Central

    Liang, Yu; He, Hong S.; Fraser, Jacob S.; Wu, ZhiWei

    2013-01-01

    Subjective decisions of thematic and spatial resolutions in characterizing environmental heterogeneity may affect the characterizations of spatial pattern and the simulation of occurrence and rate of ecological processes, and in turn, model-based tree species distribution. Thus, this study quantified the importance of thematic and spatial resolutions, and their interaction in predictions of tree species distribution (quantified by species abundance). We investigated how model-predicted species abundances changed and whether tree species with different ecological traits (e.g., seed dispersal distance, competitive capacity) had different responses to varying thematic and spatial resolutions. We used the LANDIS forest landscape model to predict tree species distribution at the landscape scale and designed a series of scenarios with different thematic (different numbers of land types) and spatial resolutions combinations, and then statistically examined the differences of species abundance among these scenarios. Results showed that both thematic and spatial resolutions affected model-based predictions of species distribution, but thematic resolution had a greater effect. Species ecological traits affected the predictions. For species with moderate dispersal distance and relatively abundant seed sources, predicted abundance increased as thematic resolution increased. However, for species with long seeding distance or high shade tolerance, thematic resolution had an inverse effect on predicted abundance. When seed sources and dispersal distance were not limiting, the predicted species abundance increased with spatial resolution and vice versa. Results from this study may provide insights into the choice of thematic and spatial resolutions for model-based predictions of tree species distribution. PMID:23861828

  16. Toward daily monitoring of vegetation conditions at field scale through fusing data from multiple sensors

    USDA-ARS?s Scientific Manuscript database

    Vegetation monitoring requires remote sensing data at fine spatial and temporal resolution. While imagery from coarse resolution sensors such as MODIS/VIIRS can provide daily observations, they lack spatial detail to capture surface features for crop and rangeland monitoring. The Landsat satellite s...

  17. Daily monitoring of vegetation conditions and evapotranspiration at field scale by fusing multi-satellite images

    USDA-ARS?s Scientific Manuscript database

    Vegetation monitoring requires frequent remote sensing observations. While imagery from coarse resolution sensors such as MODIS/VIIRS can provide daily observations, they lack spatial detail to capture surface features for vegetation monitoring. The medium spatial resolution (10-100m) sensors are su...

  18. Effects of Digitization and JPEG Compression on Land Cover Classification Using Astronaut-Acquired Orbital Photographs

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.; Webb, Edward L.; Evangelista, Arlene

    2000-01-01

    Studies that utilize astronaut-acquired orbital photographs for visual or digital classification require high-quality data to ensure accuracy. The majority of images available must be digitized from film and electronically transferred to scientific users. This study examined the effect of scanning spatial resolution (1200, 2400 pixels per inch [21.2 and 10.6 microns/pixel]), scanning density range option (Auto, Full) and compression ratio (non-lossy [TIFF], and lossy JPEG 10:1, 46:1, 83:1) on digital classification results of an orbital photograph from the NASA - Johnson Space Center archive. Qualitative results suggested that 1200 ppi was acceptable for visual interpretive uses for major land cover types. Moreover, Auto scanning density range was superior to Full density range. Quantitative assessment of the processing steps indicated that, while 2400 ppi scanning spatial resolution resulted in more classified polygons as well as a substantially greater proportion of polygons < 0.2 ha, overall agreement between 1200 ppi and 2400 ppi was quite high. JPEG compression up to approximately 46:1 also did not appear to have a major impact on quantitative classification characteristics. We conclude that both 1200 and 2400 ppi scanning resolutions are acceptable options for this level of land cover classification, as well as a compression ratio at or below approximately 46:1. Auto range density should always be used during scanning because it acquires more of the information from the film. The particular combination of scanning spatial resolution and compression level will require a case-by-case decision and will depend upon memory capabilities, analytical objectives and the spatial properties of the objects in the image.

  19. Kite aerial photography for low-cost, ultra-high spatial resolution multi-spectral mapping of intertidal landscapes.

    PubMed

    Bryson, Mitch; Johnson-Roberson, Matthew; Murphy, Richard J; Bongiorno, Daniel

    2013-01-01

    Intertidal ecosystems have primarily been studied using field-based sampling; remote sensing offers the ability to collect data over large areas in a snapshot of time that could complement field-based sampling methods by extrapolating them into the wider spatial and temporal context. Conventional remote sensing tools (such as satellite and aircraft imaging) provide data at limited spatial and temporal resolutions and relatively high costs for small-scale environmental science and ecologically-focussed studies. In this paper, we describe a low-cost, kite-based imaging system and photogrammetric/mapping procedure that was developed for constructing high-resolution, three-dimensional, multi-spectral terrain models of intertidal rocky shores. The processing procedure uses automatic image feature detection and matching, structure-from-motion and photo-textured terrain surface reconstruction algorithms that require minimal human input and only a small number of ground control points and allow the use of cheap, consumer-grade digital cameras. The resulting maps combine imagery at visible and near-infrared wavelengths and topographic information at sub-centimeter resolutions over an intertidal shoreline 200 m long, thus enabling spatial properties of the intertidal environment to be determined across a hierarchy of spatial scales. Results of the system are presented for an intertidal rocky shore at Jervis Bay, New South Wales, Australia. Potential uses of this technique include mapping of plant (micro- and macro-algae) and animal (e.g. gastropods) assemblages at multiple spatial and temporal scales.

  20. Kite Aerial Photography for Low-Cost, Ultra-high Spatial Resolution Multi-Spectral Mapping of Intertidal Landscapes

    PubMed Central

    Bryson, Mitch; Johnson-Roberson, Matthew; Murphy, Richard J.; Bongiorno, Daniel

    2013-01-01

    Intertidal ecosystems have primarily been studied using field-based sampling; remote sensing offers the ability to collect data over large areas in a snapshot of time that could complement field-based sampling methods by extrapolating them into the wider spatial and temporal context. Conventional remote sensing tools (such as satellite and aircraft imaging) provide data at limited spatial and temporal resolutions and relatively high costs for small-scale environmental science and ecologically-focussed studies. In this paper, we describe a low-cost, kite-based imaging system and photogrammetric/mapping procedure that was developed for constructing high-resolution, three-dimensional, multi-spectral terrain models of intertidal rocky shores. The processing procedure uses automatic image feature detection and matching, structure-from-motion and photo-textured terrain surface reconstruction algorithms that require minimal human input and only a small number of ground control points and allow the use of cheap, consumer-grade digital cameras. The resulting maps combine imagery at visible and near-infrared wavelengths and topographic information at sub-centimeter resolutions over an intertidal shoreline 200 m long, thus enabling spatial properties of the intertidal environment to be determined across a hierarchy of spatial scales. Results of the system are presented for an intertidal rocky shore at Jervis Bay, New South Wales, Australia. Potential uses of this technique include mapping of plant (micro- and macro-algae) and animal (e.g. gastropods) assemblages at multiple spatial and temporal scales. PMID:24069206

  1. Spatial Statistical and Modeling Strategy for Inventorying and Monitoring Ecosystem Resources at Multiple Scales and Resolution Levels

    Treesearch

    Robin M. Reich; C. Aguirre-Bravo; M.S. Williams

    2006-01-01

    A statistical strategy for spatial estimation and modeling of natural and environmental resource variables and indicators is presented. This strategy is part of an inventory and monitoring pilot study that is being carried out in the Mexican states of Jalisco and Colima. Fine spatial resolution estimates of key variables and indicators are outputs that will allow the...

  2. Low-Cost Ultra-High Spatial and Temporal Resolution Mapping of Intertidal Rock Platforms

    NASA Astrophysics Data System (ADS)

    Bryson, M.; Johnson-Roberson, M.; Murphy, R.

    2012-07-01

    Intertidal ecosystems have primarily been studied using field-based sampling; remote sensing offers the ability to collect data over large areas in a snapshot of time which could compliment field-based sampling methods by extrapolating them into the wider spatial and temporal context. Conventional remote sensing tools (such as satellite and aircraft imaging) provide data at relatively course, sub-meter resolutions or with limited temporal resolutions and relatively high costs for small-scale environmental science and ecology studies. In this paper, we describe a low-cost, kite-based imaging system and photogrammetric pipeline that was developed for constructing highresolution, 3D, photo-realistic terrain models of intertidal rocky shores. The processing pipeline uses automatic image feature detection and matching, structure-from-motion and photo-textured terrain surface reconstruction algorithms that require minimal human input and only a small number of ground control points and allow the use of cheap, consumer-grade digital cameras. The resulting maps combine colour and topographic information at sub-centimeter resolutions over an area of approximately 100m, thus enabling spatial properties of the intertidal environment to be determined across a hierarchy of spatial scales. Results of the system are presented for an intertidal rock platform at Cape Banks, Sydney, Australia. Potential uses of this technique include mapping of plant (micro- and macro-algae) and animal (e.g. gastropods) assemblages at multiple spatial and temporal scales.

  3. The Canadian Hydrological Model (CHM): A multi-scale, variable-complexity hydrological model for cold regions

    NASA Astrophysics Data System (ADS)

    Marsh, C.; Pomeroy, J. W.; Wheater, H. S.

    2016-12-01

    There is a need for hydrological land surface schemes that can link to atmospheric models, provide hydrological prediction at multiple scales and guide the development of multiple objective water predictive systems. Distributed raster-based models suffer from an overrepresentation of topography, leading to wasted computational effort that increases uncertainty due to greater numbers of parameters and initial conditions. The Canadian Hydrological Model (CHM) is a modular, multiphysics, spatially distributed modelling framework designed for representing hydrological processes, including those that operate in cold-regions. Unstructured meshes permit variable spatial resolution, allowing coarse resolutions at low spatial variability and fine resolutions as required. Model uncertainty is reduced by lessening the necessary computational elements relative to high-resolution rasters. CHM uses a novel multi-objective approach for unstructured triangular mesh generation that fulfills hydrologically important constraints (e.g., basin boundaries, water bodies, soil classification, land cover, elevation, and slope/aspect). This provides an efficient spatial representation of parameters and initial conditions, as well as well-formed and well-graded triangles that are suitable for numerical discretization. CHM uses high-quality open source libraries and high performance computing paradigms to provide a framework that allows for integrating current state-of-the-art process algorithms. The impact of changes to model structure, including individual algorithms, parameters, initial conditions, driving meteorology, and spatial/temporal discretization can be easily tested. Initial testing of CHM compared spatial scales and model complexity for a spring melt period at a sub-arctic mountain basin. The meshing algorithm reduced the total number of computational elements and preserved the spatial heterogeneity of predictions.

  4. [Comparison of film-screen combinations in contrast-detail diagram and with interactive image analysis. 3: Trimodal histograms of gray scale distribution in bar groups of lead pattern images].

    PubMed

    Hagemann, G; Eichbaum, G; Stamm, G

    1998-05-01

    The following four screen film combinations were compared: a) a combination of anticrossover film and UV-light emitting screens, b) a combination of blue-light emitting screens and film and c) two conventional green fluorescing screen film combinations. Radiographs of a specially designed plexiglass phantom (0.2 x 0.2 x 0.12 m3) with bar patterns of lead and plaster and of air, respectively were obtained using the following parameters: 12 pulse generator, 0.6 mm focus size, 4.7 mm aluminum prefilter, a grid with 40 lines/cm (12:1) and a focus-detector distance of 1.15 m. Image analysis was performed using an Ibas system and a Zeiss Kontron computer. Display conditions were the following: display distance 0.12 m, a vario film objective 35/70 (Zeiss), a video camera tube with a PbO photocathode, 625 lines (Siemens Heimann), an Ibas image matrix of 512 x 512 pixels with a spatial resolution of ca. 7 cycles/mm, the projected matrix area was 5000 micron 2. Maxima in the histograms of a grouped bar pattern were estimated as mean values from the bar and gap regions ("mean value method"). They were used to calculate signal contrast, standard deviations of the means and scatter fraction. Comparing the histograms with respect to spatial resolution and kV setting a clear advantage of the UVR system becomes obvious. The quantitative analysis yielded a maximum spatial resolution of approx. 3 cycles/mm for the UVR system at 60 kV which decreased to half of this value at 117 kV caused by the increasing influence of scattered radiation. A ranking of screen-film systems with respect to image quality and dose requirement is presented. For its evaluation an interactive image analysis using the mean value method was found to be superior to signal/noise ratio measurements and visual analysis in respect to diagnostic relevance and saving of time.

  5. MIPS - The Multiband Imaging Photometer for SIRTF. [Multiband Imaging Photometer for SIRTF

    NASA Technical Reports Server (NTRS)

    Rieke, G. H.; Lada, C.; Lebofsky, M.; Low, F.; Strittmatter, P.; Young, E.; Arens, J.; Beichman, C.; Gautier, T. N.; Werner, M.

    1986-01-01

    The Multiband Imaging Photometer for SIRTF (MIPS) is to be designed to reach as closely as possible the fundamental sensitivity and angular resolution limits for SIRTF over the 3 to 700 micron spectral region. It will use high performance photoconductive detectors from 3 to 200 micron with integrating JFET amplifiers. From 200 to 700 microns, the MIPS will use a bolometer cooled by an adiabatic demagnetization refrigerator. Over much of its operating range, the MIPS will make possible observations at and beyond the conventional Rayleigh diffraction limit of angular resolution.

  6. MIPS - The Multiband Imaging Photometer for SIRTF

    NASA Technical Reports Server (NTRS)

    Rieke, G. H.; Lada, C.; Lebofsky, M.; Low, F.; Strittmatter, P.; Young, E.; Beichman, C.; Gautier, T. N.; Mould, J.; Werner, M.

    1986-01-01

    The Multiband Imaging Photometer System (MIPS) for SIRTF is to be designed to reach as closely as possible the fundamental sensitivity and angular resolution limits for SIRTF over the 3 to 700 microns spectral region. It will use high performance photoconductive detectors from 3 to 200 microns with integrating JFET amplifiers. From 200 to 700 microns, the MIPS will use a bolometer cooled by an adiabatic demagnetization refrigerator. Over much of its operating range, the MIPS will make possible observations at and beyond the conventional Rayleigh diffraction limit of angular resolution.

  7. High-resolution x-ray imaging using a structured scintillator.

    PubMed

    Hormozan, Yashar; Sychugov, Ilya; Linnros, Jan

    2016-02-01

    In this study, the authors introduce a new generation of finely structured scintillators with a very high spatial resolution (a few micrometers) compared to conventional scintillators, yet maintaining a thick absorbing layer for improved detectivity. Their concept is based on a 2D array of high aspect ratio pores which are fabricated by ICP etching, with spacings (pitches) of a few micrometers, on silicon and oxidation of the pore walls. The pores were subsequently filled by melting of powdered CsI(Tl), as the scintillating agent. In order to couple the secondary emitted photons of the back of the scintillator array to a CCD device, having a larger pixel size than the pore pitch, an open optical microscope with adjustable magnification was designed and implemented. By imaging a sharp edge, the authors were able to calculate the modulation transfer function (MTF) of this finely structured scintillator. The x-ray images of individually resolved pores suggest that they have been almost uniformly filled, and the MTF measurements show the feasibility of a few microns spatial resolution imaging, as set by the scintillator pore size. Compared to existing techniques utilizing CsI needles as a structured scintillator, their results imply an almost sevenfold improvement in resolution. Finally, high resolution images, taken by their detector, are presented. The presented work successfully shows the functionality of their detector concept for high resolution imaging and further fabrication developments are most likely to result in higher quantum efficiencies.

  8. High-resolution x-ray imaging using a structured scintillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hormozan, Yashar, E-mail: hormozan@kth.se; Sychugov, Ilya; Linnros, Jan

    2016-02-15

    Purpose: In this study, the authors introduce a new generation of finely structured scintillators with a very high spatial resolution (a few micrometers) compared to conventional scintillators, yet maintaining a thick absorbing layer for improved detectivity. Methods: Their concept is based on a 2D array of high aspect ratio pores which are fabricated by ICP etching, with spacings (pitches) of a few micrometers, on silicon and oxidation of the pore walls. The pores were subsequently filled by melting of powdered CsI(Tl), as the scintillating agent. In order to couple the secondary emitted photons of the back of the scintillator arraymore » to a CCD device, having a larger pixel size than the pore pitch, an open optical microscope with adjustable magnification was designed and implemented. By imaging a sharp edge, the authors were able to calculate the modulation transfer function (MTF) of this finely structured scintillator. Results: The x-ray images of individually resolved pores suggest that they have been almost uniformly filled, and the MTF measurements show the feasibility of a few microns spatial resolution imaging, as set by the scintillator pore size. Compared to existing techniques utilizing CsI needles as a structured scintillator, their results imply an almost sevenfold improvement in resolution. Finally, high resolution images, taken by their detector, are presented. Conclusions: The presented work successfully shows the functionality of their detector concept for high resolution imaging and further fabrication developments are most likely to result in higher quantum efficiencies.« less

  9. The influence of model grid resolution on estimation of national scale nitrogen deposition and exceedance of critical levels

    NASA Astrophysics Data System (ADS)

    Dore, A. J.; Kryza, M.; Hall, J. R.; Hallsworth, S.; Keller, V. J. D.; Vieno, M.; Sutton, M. A.

    2011-12-01

    The Fine Resolution Atmospheric Multi-pollutant Exchange model (FRAME) has been applied to model the spatial distribution of nitrogen deposition and air concentration over the UK at a 1 km spatial resolution. The modelled deposition and concentration data were gridded at resolutions of 1 km, 5 km and 50 km to test the sensitivity of calculations of the exceedance of critical loads for nitrogen deposition to the deposition data resolution. The modelled concentrations of NO2 were validated by comparison with measurements from the rural sites in the national monitoring network and were found to achieve better agreement with the high resolution 1 km data. High resolution plots were found to represent a more physically realistic distribution of nitrogen air concentrations and deposition resulting from use of 1 km resolution precipitation and emissions data as compared to 5 km resolution data. Summary statistics for national scale exceedance of the critical load for nitrogen deposition were not highly sensitive to the grid resolution of the deposition data but did show greater area exceedance with coarser grid resolution due to spatial averaging of high nitrogen deposition hot spots. Local scale deposition at individual Sites of Special Scientific Interest and high precipitation upland sites was sensitive to choice of grid resolution of deposition data. Use of high resolution data tended to generate lower deposition values in sink areas for nitrogen dry deposition (Sites of Scientific Interest) and higher values in high precipitation upland areas. In areas with generally low exceedance (Scotland) and for certain vegetation types (montane), the exceedance statistics were more sensitive to model data resolution.

  10. The influence of model grid resolution on estimation of national scale nitrogen deposition and exceedance of critical loads

    NASA Astrophysics Data System (ADS)

    Dore, A. J.; Kryza, M.; Hall, J. R.; Hallsworth, S.; Keller, V. J. D.; Vieno, M.; Sutton, M. A.

    2012-05-01

    The Fine Resolution Atmospheric Multi-pollutant Exchange model (FRAME) was applied to model the spatial distribution of reactive nitrogen deposition and air concentration over the United Kingdom at a 1 km spatial resolution. The modelled deposition and concentration data were gridded at resolutions of 1 km, 5 km and 50 km to test the sensitivity of calculations of the exceedance of critical loads for nitrogen deposition to the deposition data resolution. The modelled concentrations of NO2 were validated by comparison with measurements from the rural sites in the national monitoring network and were found to achieve better agreement with the high resolution 1 km data. High resolution plots were found to represent a more physically realistic distribution of reactive nitrogen air concentrations and deposition resulting from use of 1 km resolution precipitation and emissions data as compared to 5 km resolution data. Summary statistics for national scale exceedance of the critical load for nitrogen deposition were not highly sensitive to the grid resolution of the deposition data but did show greater area exceedance with coarser grid resolution due to spatial averaging of high nitrogen deposition hot spots. Local scale deposition at individual Sites of Special Scientific Interest and high precipitation upland sites was sensitive to choice of grid resolution of deposition data. Use of high resolution data tended to generate lower deposition values in sink areas for nitrogen dry deposition (Sites of Scientific Interest) and higher values in high precipitation upland areas. In areas with generally low exceedance (Scotland) and for certain vegetation types (montane), the exceedance statistics were more sensitive to model data resolution.

  11. Understanding Local Luminous Infrared Galaxies in the Herschel Era

    NASA Astrophysics Data System (ADS)

    Chu, Jason; Sanders, David B.; Larson, Kirsten L.; Mazzarella, Joseph M.; Howell, Justin; Diaz Santos, Tanio; Xu, C. Kevin; Paladini, Roberta; Schulz, Bernhard; Shupe, David L.; Appleton, Philip N.; Armus, Lee; Billot, Nicolas; Pan Chan, Hiu; Evans, Aaron S.; Fadda, Dario; Frayer, David T.; Haan, Sebastian; Mie Ishida, Catherine; Iwasawa, Kazushi; Kim, Dong-Chan; Lord, Steven D.; Murphy, Eric J.; Petric, Andreea; Privon, George C.; Surace, Jason A.; Treister, Ezequiel; Great Observatories All-Sky LIRG Survey, Cosmic Evolution Survey

    2017-06-01

    Luminous and ultraluminous infrared galaxies [(U)LIRGs] are some of the most extreme objects in the universe with their elevated star formation rates and/or presence of a powerful AGN, playing a central role in the evolution of galaxies throughout cosmic history. The 201 local (U)LIRGs (z<0.088) within the Great Observatories All-Sky LIRG Survey (GOALS) provide an unmatched opportunity to characterize the diverse properties in a large, statistically significant sample, in addition to comparisons with their high redshift counterparts. In this thesis talk I will first present the Herschel PACS and SPIRE far infrared image atlas of the entire GOALS sample (encompassing the 70-500 micron wavelength range), and demonstrate the excellent data quality. The Herschel GOALS images presented here are the highest resolution, most sensitive and comprehensive far-infrared imaging survey of the nearest (U)LIRGs to date. This allows us for the first time to directly probe the critical far infrared and submillimeter wavelength regime of these systems, enabling us to accurately determine the bolometric luminosities, infrared surface brightnesses, star formation rates, and dust masses and temperatures on spatial scales of 2-5 kpc. In addition, the superb resolution of Herschel means we can resolve many of the galaxy pairs and systems within the GOALS sample, allowing us to measure far infrared fluxes of component galaxies. Finally, using the Herschel photometry in conjunction with Spitzer, WISE, and IRAS data, I will show our first results on the global properties of (U)LIRGs such as their average 3-500 micron infrared SEDs and far infrared colors, and compare them to lower infrared luminosity objects. We will also compare and contrast their infrared SED shapes with previously published SED templates from the literature. If time permits, I will also show initial results from our rest-frame optical spectroscopy program on z~2.3 infrared selected galaxies in the COSMOS field.

  12. Evaluating the Impact of Spatial Resolution of Landsat Predictors on the Accuracy of Biomass Models for Large-area Estimation Across the Eastern USA

    NASA Astrophysics Data System (ADS)

    Deo, R. K.; Domke, G. M.; Russell, M.; Woodall, C. W.

    2017-12-01

    Landsat data have been widely used to support strategic forest inventory and management decisions despite the limited success of passive optical remote sensing for accurate estimation of aboveground biomass (AGB). The archive of publicly available Landsat data, available at 30-m spatial resolutions since 1984, has been a valuable resource for cost-effective large-area estimation of AGB to inform national requirements such as for the US national greenhouse gas inventory (NGHGI). In addition, other optical satellite data such as MODIS imagery of wider spatial coverage and higher temporal resolution are enriching the domain of spatial predictors for regional scale mapping of AGB. Because NGHGIs require national scale AGB information and there are tradeoffs in the prediction accuracy versus operational efficiency of Landsat, this study evaluated the impact of various resolutions of Landsat predictors on the accuracy of regional AGB models across three different sites in the eastern USA: Maine, Pennsylvania-New Jersey, and South Carolina. We used recent national forest inventory (NFI) data with numerous Landsat-derived predictors at ten different spatial resolutions ranging from 30 to 1000 m to understand the optimal spatial resolution of the optical data for enhanced spatial inventory of AGB for NGHGI reporting. Ten generic spatial models at different spatial resolutions were developed for all sites and large-area estimates were evaluated (i) at the county-level against the independent designed-based estimates via the US NFI Evalidator tool and (ii) within a large number of strips ( 1 km wide) predicted via LiDAR metrics at a high spatial resolution. The county-level estimates by the Evalidator and Landsat models were statistically equivalent and produced coefficients of determination (R2) above 0.85 that varied with sites and resolution of predictors. The mean and standard deviation of county-level estimates followed increasing and decreasing trends, respectively, with models of decreasing resolutions. The Landsat-based total AGB estimates within the strips against the total AGB obtained using LiDAR metrics did not differ significantly and were within ±15 Mg/ha for each of the sites. We conclude that the optical satellite data at resolutions up to 1000 m provide acceptable accuracy for the US' NGHGI.

  13. Laboratory simulation of infrared astrophysical features. [Terrestrial silicate, meteoritic and lunar soil 10-micron spectral comparisons with comets Bennet and Kohoutek

    NASA Technical Reports Server (NTRS)

    Rose, L. A.

    1979-01-01

    Laboratory infrared emission and absorption spectra have been taken of terrestrial silicates, meteorites, and lunar soils in the form of micrometer and submicrometer grains. The emission spectra were taken in a way that imitates telescopic observations. The purpose was to see which materials best simulate the 10-micron astrophysical feature. The emission spectra of dunite, fayalite, and Allende give a good fit to the 10-micron broadband emission feature of comets Bennett and Kohoutek. A study of the effect of grain size on the presence of the 10-micron emission feature of dunite shows that for particles larger than 37 microns no feature is seen. The emission spectrum of the Murray meteorite, a Type 2 carbonaceous chrondrite, is quite similar to the intermediate-resolution spectrum of comet Kohoutek in the 10-micron region. Hydrous silicates or amorphous magnesium silicates in combination with high-temperature condensates, such as olivine or anorthite, would yield spectra that match the intermediate-resolution spectrum of comet Kohoutek in the 10-micron region. Glassy olivine and glassy anorthite in approximately equal proportions would also give a spectrum that is a good fit to the cometary 10-micron feature.

  14. EXAMINATION OF MODEL PREDICTIONS AT DIFFERENT HORIZONTAL GRID RESOLUTIONS

    EPA Science Inventory

    While fluctuations in meteorological and air quality variables occur on a continuum of spatial scales, the horizontal grid spacing of coupled meteorological and photochemical models sets a lower limit on the spatial scales that they can resolve. However, both computational costs ...

  15. Confocal Imaging of porous media

    NASA Astrophysics Data System (ADS)

    Shah, S.; Crawshaw, D.; Boek, D.

    2012-12-01

    Carbonate rocks, which hold approximately 50% of the world's oil and gas reserves, have a very complicated and heterogeneous structure in comparison with sandstone reservoir rock. We present advances with different techniques to image, reconstruct, and characterize statistically the micro-geometry of carbonate pores. The main goal here is to develop a technique to obtain two dimensional and three dimensional images using Confocal Laser Scanning Microscopy. CLSM is used in epi-fluorescent imaging mode, allowing for the very high optical resolution of features well below 1μm size. Images of pore structures were captured using CLSM imaging where spaces in the carbonate samples were impregnated with a fluorescent, dyed epoxy-resin, and scanned in the x-y plane by a laser probe. We discuss the sample preparation in detail for Confocal Imaging to obtain sub-micron resolution images of heterogeneous carbonate rocks. We also discuss the technical and practical aspects of this imaging technique, including its advantages and limitation. We present several examples of this application, including studying pore geometry in carbonates, characterizing sub-resolution porosity in two dimensional images. We then describe approaches to extract statistical information about porosity using image processing and spatial correlation function. We have managed to obtain very low depth information in z -axis (~ 50μm) to develop three dimensional images of carbonate rocks with the current capabilities and limitation of CLSM technique. Hence, we have planned a novel technique to obtain higher depth information to obtain high three dimensional images with sub-micron resolution possible in the lateral and axial planes.

  16. Added-values of high spatiotemporal remote sensing data in crop yield estimation

    NASA Astrophysics Data System (ADS)

    Gao, F.; Anderson, M. C.

    2017-12-01

    Timely and accurate estimation of crop yield before harvest is critical for food market and administrative planning. Remote sensing derived parameters have been used for estimating crop yield by using either empirical or crop growth models. The uses of remote sensing vegetation index (VI) in crop yield modeling have been typically evaluated at regional and country scales using coarse spatial resolution (a few hundred to kilo-meters) data or assessed over a small region at field level using moderate resolution spatial resolution data (10-100m). Both data sources have shown great potential in capturing spatial and temporal variability in crop yield. However, the added value of data with both high spatial and temporal resolution data has not been evaluated due to the lack of such data source with routine, global coverage. In recent years, more moderate resolution data have become freely available and data fusion approaches that combine data acquired from different spatial and temporal resolutions have been developed. These make the monitoring crop condition and estimating crop yield at field scale become possible. Here we investigate the added value of the high spatial and temporal VI for describing variability of crop yield. The explanatory ability of crop yield based on high spatial and temporal resolution remote sensing data was evaluated in a rain-fed agricultural area in the U.S. Corn Belt. Results show that the fused Landsat-MODIS (high spatial and temporal) VI explains yield variability better than single data source (Landsat or MODIS alone), with EVI2 performing slightly better than NDVI. The maximum VI describes yield variability better than cumulative VI. Even though VI is effective in explaining yield variability within season, the inter-annual variability is more complex and need additional information (e.g. weather, water use and management). Our findings augment the importance of high spatiotemporal remote sensing data and supports new moderate resolution satellite missions for agricultural applications.

  17. The impact of the resolution of meteorological datasets on catchment-scale drought studies

    NASA Astrophysics Data System (ADS)

    Hellwig, Jost; Stahl, Kerstin

    2017-04-01

    Gridded meteorological datasets provide the basis to study drought at a range of scales, including catchment scale drought studies in hydrology. They are readily available to study past weather conditions and often serve real time monitoring as well. As these datasets differ in spatial/temporal coverage and spatial/temporal resolution, for most studies there is a tradeoff between these features. Our investigation examines whether biases occur when studying drought on catchment scale with low resolution input data. For that, a comparison among the datasets HYRAS (covering Central Europe, 1x1 km grid, daily data, 1951 - 2005), E-OBS (Europe, 0.25° grid, daily data, 1950-2015) and GPCC (whole world, 0.5° grid, monthly data, 1901 - 2013) is carried out. Generally, biases in precipitation increase with decreasing resolution. Most important variations are found during summer. In low mountain range of Central Europe the datasets of sparse resolution (E-OBS, GPCC) overestimate dry days and underestimate total precipitation since they are not able to describe high spatial variability. However, relative measures like the correlation coefficient reveal good consistencies of dry and wet periods, both for absolute precipitation values and standardized indices like the Standardized Precipitation Index (SPI) or Standardized Precipitation Evaporation Index (SPEI). Particularly the most severe droughts derived from the different datasets match very well. These results indicate that absolute values of sparse resolution datasets applied to catchment scale might be critical to use for an assessment of the hydrological drought at catchment scale, whereas relative measures for determining periods of drought are more trustworthy. Therefore, studies on drought, that downscale meteorological data, should carefully consider their data needs and focus on relative measures for dry periods if sufficient for the task.

  18. A near infrared spectroscopic study of the interstellar gas in the starburst core of M82

    NASA Technical Reports Server (NTRS)

    Lester, Dan F.; Carr, John; Joy, Marshall; Gaffney, Niall

    1990-01-01

    Researchers used the McDonald Observatory Infrared Grating Spectrometer, to complete a program of spatially resolved spectroscopy of M82. The inner 300 pc of the starburst was observed with 4 inch (50 pc) resolution. Complete J, H and K band spectra with resolution 0.0035 micron (lambda/delta lambda=620 at K) were measured at the near-infrared nucleus of the galaxy. Measurements of selected spectral features including lines of FeII, HII and H2 were observed along the starburst ridge-line, so the relative distribution of the diagnostic features could be understood. This information was used to better define the extinction towards the starburst region, the excitation conditions in the gas, and to characterize the stellar populations there.

  19. Parameterization of volcanic ash remobilization by wind-tunnel erosion experiments.

    NASA Astrophysics Data System (ADS)

    Del Bello, Elisabetta; Taddeucci, Jacopo; Merrison, Jonathan; Alois, Stefano; Iversen, Jens Jacob; Scarlato, Piergiorgio

    2017-04-01

    The remobilization of volcanic ash from the ground is one of the many problems posing threat to life and infrastructures during and after the course of an explosive volcanic eruption. A proper management of the risks connected to this problem requires a thorough understanding of the factors that influence and promote the dispersal of particles over large distances. Towards this target, we conducted a series of experiments aimed at defining first-order processes controlling the remobilization threshold of ash particles by wind erosion. In the framework of the EU-funded Europlanet project, we joinly used the environmental wind tunnel facility at Aarhus University (DK) and the state-of-the art high-speed imaging equipment of INGV experimental lab (Italy) to capture at unparalleled temporal and spatial resolution the removal dynamics of ash-sized (half-millimetre to micron-sized) particles. A homogenous layer of particles was set at on a plate placed downwind a boundary layer setup. Resuspension processes were filmed at 2000 fps and 50 micron pixel resolution, and the plate weighted pre and post-experiment. Explored variables include: 1) wind speed (from ca. 1 to 7 m/s) and boundary layer structure; 2) particle grain size (from 32-63 to 90-125 micron), and sample sorting); 3) chemical and textural features, using basalt and trachyte samples from Campi Flegrei (Pomici Principali,10 ka) and Eyjafjallajökull (May 2010) eruptions; and 4) temperature and humidity, by conducting experiments either at ambient conditions or with a heated sample. We found that the grain size distribution exerts a strong control on the fundamental dynamics of gas-particle coupling. Particles > 90 micron detach from the particles layer individually, also entering the gas flow individually. Conversely, removal < 63 micron particles occurs in clumps of aggregates. These clumps, once taken in charge by the gas flow, are frequently disaggregated and dispersed rapidly (order of few milliseconds). Our preliminary results shows that, for a given size distribution, the boundary between the two dynamics may shift greatly as a function of ambient humidity.

  20. Variability of Jupiter's Five-Micron Hot Spot Inventory

    NASA Technical Reports Server (NTRS)

    Yanamandra-Fisher, Padma A.; Orton, G. S.; Wakefield, L.; Rogers, J. H.; Simon-Miller, A. A.; Boydstun, K.

    2012-01-01

    Global upheavals on Jupiter involve changes in the albedo of entire axisymmetric regions, lasting several years, with the last two occurring in 1989 and 2006. Against this backdrop of planetary-scale changes, discrete features such as the Great Red Spot (GRS), and other vortices exhibit changes on shorter spatial- and time-scales. We track the variability of the discrete equatorial 5-micron hot spots, semi-evenly spaced in longitude and confined to a narrow latitude band centered at 6.5degN (southern edge of the North Equatorial Belt, NEB), abundant in Voyager images. Tantalizingly similar patterns were observed in the visible (bright plumes and blue-gray regions), where reflectivity in the red is anti-correlated with 5-microns thermal radiance. Ortiz et al. (1998, GRL, 103) characterized the latitude and drift rates of the hot spots, including the descent of the Galileo probe at the southern edge of a 5-micron hot spot, as the superposition of equatorial Rossby waves, with phase speeds between 99 - 103m/s, relative to System III. We note that the high 5-micron radiances correlate well but not perfectly with high 8.57-micron radiances. Because the latter are modulated primarily by changes in the upper ammonia (NH3) ice cloud opacity, this correlation implies that changes in the ammonia ice cloud field may be responsible for the variability seen in the 5-m maps. During the NEB fade (2011 - early 2012), however, these otherwise ubiquitous features were absent, an atmospheric state not seen in decades. The ongoing NEB revival indicates nascent 5-m hot spots as early as April 2012, with corresponding visible dark spots. Their continuing growth through July 2012 indicates the possit.le re-establishment of Rossby waves. The South Equatorial Belt (SEB) and NEB revivals began similarly with an instability that developed into a major outbreak, and many similarities in the observed propagation of clear regions.

  1. Estimation of Actual Crop ET of Paddy Using the Energy Balance Model SMARET and Validation with Field Water Balance Measurements and a Crop Growth Model (ORYZA)

    NASA Astrophysics Data System (ADS)

    Nallasamy, N. D.; Muraleedharan, B. V.; Kathirvel, K.; Narasimhan, B.

    2014-12-01

    Sustainable management of water resources requires reliable estimates of actual evapotranspiration (ET) at fine spatial and temporal resolution. This is significant in the case of rice based irrigation systems, one of the major consumers of surface water resources and where ET forms a major component of water consumption. However huge tradeoff in the spatial and temporal resolution of satellite images coupled with lack of adequate number of cloud free images within a growing season act as major constraints in deriving ET at fine spatial and temporal resolution using remote sensing based energy balance models. The scale at which ET is determined is decided by the spatial and temporal scale of Land Surface Temperature (LST) and Normalized Difference Vegetation Index (NDVI), which form inputs to energy balance models. In this context, the current study employed disaggregation algorithms (NL-DisTrad and DisNDVI) to generate time series of LST and NDVI images at fine resolution. The disaggregation algorithms aimed at generating LST and NDVI at finer scale by integrating temporal information from concurrent coarse resolution data and spatial information from a single fine resolution image. The temporal frequency of the disaggregated images is further improved by employing composite images of NDVI and LST in the spatio-temporal disaggregation method. The study further employed half-hourly incoming surface insolation and outgoing long wave radiation obtained from the Indian geostationary satellite (Kalpana-1) to convert the instantaneous ET into daily ET and subsequently to the seasonal ET, thereby improving the accuracy of ET estimates. The estimates of ET were validated with field based water balance measurements carried out in Gadana, a subbasin predominated by rice paddy fields, located in Tamil Nadu, India.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnan, Venkat; Cole, Wesley

    Power sector capacity expansion models (CEMs) have a broad range of spatial resolutions. This paper uses the Regional Energy Deployment System (ReEDS) model, a long-term national scale electric sector CEM, to evaluate the value of high spatial resolution for CEMs. ReEDS models the United States with 134 load balancing areas (BAs) and captures the variability in existing generation parameters, future technology costs, performance, and resource availability using very high spatial resolution data, especially for wind and solar modeled at 356 resource regions. In this paper we perform planning studies at three different spatial resolutions--native resolution (134 BAs), state-level, and NERCmore » region level--and evaluate how results change under different levels of spatial aggregation in terms of renewable capacity deployment and location, associated transmission builds, and system costs. The results are used to ascertain the value of high geographically resolved models in terms of their impact on relative competitiveness among renewable energy resources.« less

  3. Wavefront control with a spatial light modulator containing dual-frequency liquid crystal

    NASA Astrophysics Data System (ADS)

    Gu, Dong-Feng; Winker, Bruce; Wen, Bing; Taber, Don; Brackley, Andrew; Wirth, Allan; Albanese, Marc; Landers, Frank

    2004-10-01

    A versatile, scalable wavefront control approach based upon proven liquid crystal (LC) spatial light modulator (SLM) technology was extended for potential use in high-energy near-infrared laser applications. The reflective LC SLM module demonstrated has a two-inch diameter active aperture with 812 pixels. Using an ultra-low absorption transparent conductor in the LC SLM, a high laser damage threshold was demonstrated. Novel dual frequency liquid crystal materials and addressing schemes were implemented to achieve fast switching speed (<1ms at 1.31 microns). Combining this LCSLM with a novel wavefront sensing method, a closed loop wavefront controller is being demonstrated. Compared to conventional deformable mirrors, this non-mechanical wavefront control approach offers substantial improvements in speed (bandwidth), resolution, power consumption and system weight/volume.

  4. Feasibility Study of Space-based CO2 Remote Sensing Using Pulsed 2-micron Integrated Path Differential Absorption Lidar

    NASA Astrophysics Data System (ADS)

    Singh, U. N.; Refaat, T. F.; Ismail, S.; Davis, K. J.; Kawa, S. R.; Menzies, R. T.; Petros, M.; Yu, J.

    2016-12-01

    Carbon dioxide (CO2) is recognized as the most important anthropogenic greenhouse gas. While CO2 concentration is rapidly increasing, understanding of the global carbon cycle remains a primary scientific challenge. This is mainly due to the lack of full characterization of CO2 sources and sinks. Quantifying the current global distribution of CO2 sources and sinks with sufficient accuracy and spatial resolution is a critical requirement for improving models of carbon-climate interactions and for attributing them to specific biogeochemical processes. This requires sustained atmospheric CO2 observations with high precision, and low bias for high accuracy, and spatial and temporal dense representation that cannot be fully realized with current CO2 observing systems, including existing satellite CO2 passive remote sensors. Progress in 2-micron instrument technologies, airborne testing, and system performance simulations indicates that the necessary lower tropospheric weighted CO2 measurements can be achieved from space using new high pulse energy 2-micron direct detection active remote sensing. Advantages of the CO2 active remote sensing include low bias measurements that are independent of sun light or Earth's radiation and day/night coverage over all latitudes and seasons. In addition, the direct detection system provides precise ranging with simultaneous measurement of aerosol and cloud distributions. The 2-micron active remote sensing offers strong CO2 absorption lines with optimum low tropospheric and near surface weighting. A feasibility study, including system optimization and sensitivity analysis of a space-based 2-micron pulsed IPDA lidar for CO2 measurement, is presented. This is based on the successful demonstration of the CO2 double-pulse IPDA lidar and the technology maturation of the triple-pulse IPDA lidar, currently under development at NASA Langley Research Center. Preliminary simulations indicate CO2 random measurement errors of 0.71, 0.35 and 0.13 ppm for snow, ocean surface, and desert surface reflectivity, respectively. These simulations assume a 400 km altitude polar orbit, 100 mJ pulse energy, a 1.5 m telescope, a 6.2 MHz detection bandwidth, 0.05 aerosol optical depth and 7 second data average.

  5. Venus surface optical imaging from a balloon or a probe during descent : Monte Carlo simulation and the proposal of the experiment on TV-camera in transparency windows of a 1.02 and 0.85 microns

    NASA Astrophysics Data System (ADS)

    Ekonomov, A.

    2011-10-01

    The problem of imaging of the planet surfaces is a priority for space exploration, since the surface is crucial to study the origin mechanisms . However, if for other planets in the solar system conducted hundreds of experiments in this direction, for Venus there are only a few . This is due to an optically dense cloud cover in the upper atmosphere of Venus. Until now, the global picture is obtained only in radio wavelengths. First spacecraft to the board which was carried out large-scale location of Venus was on the Pioneer Venus Orbiter (1978), which carried out radar mapping of the surface. AMS Venus 15/16 (1978) have got on board the DBR with a resolution of 1-2 km, and Magellan (1989) had a DBR with a resolution of 100 m. During 1975-1982 Soviet leanders, being on a surface, have taken a number of panoramas with the high resolution of the order of shares of meter. Thus, there is a gap between the resolution of 100 m and shares of meter and it should be filled. Such experiment could be imaging from undercloud layer in a transparency window of 1 microns. Idea is not new, but technical study was not conducted.

  6. Venus surface optical imaging from a balloon or a probe during descent : Monte Carlo simulation and the proposal of the experiment on TV-camera in transparency windows of a 1.02 and 0.85 microns.

    NASA Astrophysics Data System (ADS)

    Ekonomov, A.

    2011-10-01

    The problem of imaging of the planet surfaces is a priority for space exploration, since the surface is crucial to study the origin mechanisms . However, if for other planets in the solar system conducted hundreds of experiments in this direction, for Venus there are only a few . This is due to an optically dense cloud cover in the upper atmosphere of Venus. Until now, the global picture is obtained only in radio wavelengths. First spacecraft to the board which was carried out large-scale location of Venus was on the Pioneer Venus Orbiter (1978), which carried out radar mapping of the surface. AMS Venus 15/16 (1978) have got on board the DBR with a resolution of 1-2 km, and Magellan (1989) had a DBR with a resolution of 100 m. During 1975-1982 Soviet leanders, being on a surface, have taken a number of panoramas with the high resolution of the order of shares of meter. Thus, there is a gap between the resolution of 100 m and shares of meter and it should be filled. Such experiment could be imaging from undercloud layer in a transparency window of 1 microns. Idea is not new, but technical study was not conducted.

  7. Lithographically-fabricated channel arrays for confocal x-ray fluorescence microscopy and XAFS

    NASA Astrophysics Data System (ADS)

    Woll, Arthur R.; Agyeman-Budu, David; Choudhury, Sanjukta; Coulthard, Ian; Finnefrock, Adam C.; Gordon, Robert; Hallin, Emil; Mass, Jennifer

    2014-03-01

    Confocal X-ray Fluorescence Microscopy (CXRF) employs overlapping focal regions of two x-ray optics—a condenser and collector—to directly probe a 3D volume. The minimum-achievable size of this probe volume is limited by the collector, for which polycapillaries are generally the optic of choice. Recently, we demonstrated an alternative collection optic for CXRF, consisting of an array of micron-scale collimating channels, etched in silicon, and arranged like spokes of a wheel directed towards a single source position. The optic, while successful, had a working distance of only 0.2 mm and exhibited relatively low total collection efficiency, limiting its practical application. Here, we describe a new design in which the collimating channels are formed by a staggered array of pillars whose side-walls taper away from the channel axis. This approach improves both collection efficiency and working distance, while maintaining excellent spatial resolution. We illustrate these improvements with confocal XRF data obtained at the Cornell High Energy Synchrotron Source (CHESS) and the Advanced Photon Source (APS) beamline 20-ID-B.

  8. Coherent anti-stokes Raman spectroscopy for detecting explosives in real time

    NASA Astrophysics Data System (ADS)

    Dogariu, Arthur; Pidwerbetsky, Alex

    2012-06-01

    We demonstrate real-time stand-off detection and imaging of trace explosives using collinear, backscattered Coherent Anti-Stokes Raman Spectroscopy (CARS). Using a hybrid time-resolved broad-band CARS we identify nanograms of explosives on the millisecond time scale. The broad-band excitation in the near-mid-infrared region excites the vibrational modes in the fingerprint region, and the time-delayed probe beam ensures the reduction of any non-resonant contributions to the CARS signal. The strong coherent enhancement allows for recording Raman spectra in real-time. We demonstrate stand-off detection by acquiring, analyzing, and identifying vibrational fingerprints in real-time with very high sensitivity and selectivity. By extending the focused region from a 100-micron sized spot to a 5mm long line we can obtain the spectral information from an extended region of the remote target with high spatial resolution. We demonstrate fast hyperspectral imaging by one-dimensional scanning of the Line-CARS. The three-dimensional data structure contains the vibrational spectra of the target at each sampled location, which allows for chemical mapping of the remote target.

  9. A comparative study of optical and radiative characteristics of X-ray-induced luminescent defects in Ag-doped glass and LiF thin films and their applications in 2-D imaging

    NASA Astrophysics Data System (ADS)

    Kurobori, T.; Miyamoto, Y.; Maruyama, Y.; Yamamoto, T.; Sasaki, T.

    2014-05-01

    We report novel disk-type X-ray two-dimensional (2-D) imaging detectors utilising Ag-doped phosphate glass and lithium fluoride (LiF) thin films based on the radiophotoluminescence (RPL) and photoluminescence (PL) phenomena, respectively. The accumulated X-ray doses written in the form of atomic-scale Ag-related luminescent centres in Ag-doped glass and F-aggregated centres in LiF thin films were rapidly reconstructed as a dose distribution using a homemade readout system. The 2-D images reconstructed from the RPL and PL detectors are compared with that from the optically stimulated luminescence (OSL) detector. In addition, the optical and dosimetric characteristics of LiF thin films are investigated and evaluated. The possibilities of dose distributions with a high spatial resolution on the order of microns over large areas, a wide dynamic range covering 11 orders of magnitude and a non-destructive readout are successfully demonstrated by combining the Ag-doped glass with LiF thin films.

  10. Single shot, three-dimensional fluorescence microscopy with a spatially rotating point spread function

    PubMed Central

    Wang, Zhaojun; Cai, Yanan; Liang, Yansheng; Zhou, Xing; Yan, Shaohui; Dan, Dan; Bianco, Piero R.; Lei, Ming; Yao, Baoli

    2017-01-01

    A wide-field fluorescence microscope with a double-helix point spread function (PSF) is constructed to obtain the specimen’s three-dimensional distribution with a single snapshot. Spiral-phase-based computer-generated holograms (CGHs) are adopted to make the depth-of-field of the microscope adjustable. The impact of system aberrations on the double-helix PSF at high numerical aperture is analyzed to reveal the necessity of the aberration correction. A modified cepstrum-based reconstruction scheme is promoted in accordance with properties of the new double-helix PSF. The extended depth-of-field images and the corresponding depth maps for both a simulated sample and a tilted section slice of bovine pulmonary artery endothelial (BPAE) cells are recovered, respectively, verifying that the depth-of-field is properly extended and the depth of the specimen can be estimated at a precision of 23.4nm. This three-dimensional fluorescence microscope with a framerate-rank time resolution is suitable for studying the fast developing process of thin and sparsely distributed micron-scale cells in extended depth-of-field. PMID:29296483

  11. Connotations of pixel-based scale effect in remote sensing and the modified fractal-based analysis method

    NASA Astrophysics Data System (ADS)

    Feng, Guixiang; Ming, Dongping; Wang, Min; Yang, Jianyu

    2017-06-01

    Scale problems are a major source of concern in the field of remote sensing. Since the remote sensing is a complex technology system, there is a lack of enough cognition on the connotation of scale and scale effect in remote sensing. Thus, this paper first introduces the connotations of pixel-based scale and summarizes the general understanding of pixel-based scale effect. Pixel-based scale effect analysis is essentially important for choosing the appropriate remote sensing data and the proper processing parameters. Fractal dimension is a useful measurement to analysis pixel-based scale. However in traditional fractal dimension calculation, the impact of spatial resolution is not considered, which leads that the scale effect change with spatial resolution can't be clearly reflected. Therefore, this paper proposes to use spatial resolution as the modified scale parameter of two fractal methods to further analyze the pixel-based scale effect. To verify the results of two modified methods (MFBM (Modified Windowed Fractal Brownian Motion Based on the Surface Area) and MDBM (Modified Windowed Double Blanket Method)); the existing scale effect analysis method (information entropy method) is used to evaluate. And six sub-regions of building areas and farmland areas were cut out from QuickBird images to be used as the experimental data. The results of the experiment show that both the fractal dimension and information entropy present the same trend with the decrease of spatial resolution, and some inflection points appear at the same feature scales. Further analysis shows that these feature scales (corresponding to the inflection points) are related to the actual sizes of the geo-object, which results in fewer mixed pixels in the image, and these inflection points are significantly indicative of the observed features. Therefore, the experiment results indicate that the modified fractal methods are effective to reflect the pixel-based scale effect existing in remote sensing data and it is helpful to analyze the observation scale from different aspects. This research will ultimately benefit for remote sensing data selection and application.

  12. Atomic-Scale Nuclear Spin Imaging Using Quantum-Assisted Sensors in Diamond

    NASA Astrophysics Data System (ADS)

    Ajoy, A.; Bissbort, U.; Lukin, M. D.; Walsworth, R. L.; Cappellaro, P.

    2015-01-01

    Nuclear spin imaging at the atomic level is essential for the understanding of fundamental biological phenomena and for applications such as drug discovery. The advent of novel nanoscale sensors promises to achieve the long-standing goal of single-protein, high spatial-resolution structure determination under ambient conditions. In particular, quantum sensors based on the spin-dependent photoluminescence of nitrogen-vacancy (NV) centers in diamond have recently been used to detect nanoscale ensembles of external nuclear spins. While NV sensitivity is approaching single-spin levels, extracting relevant information from a very complex structure is a further challenge since it requires not only the ability to sense the magnetic field of an isolated nuclear spin but also to achieve atomic-scale spatial resolution. Here, we propose a method that, by exploiting the coupling of the NV center to an intrinsic quantum memory associated with the nitrogen nuclear spin, can reach a tenfold improvement in spatial resolution, down to atomic scales. The spatial resolution enhancement is achieved through coherent control of the sensor spin, which creates a dynamic frequency filter selecting only a few nuclear spins at a time. We propose and analyze a protocol that would allow not only sensing individual spins in a complex biomolecule, but also unraveling couplings among them, thus elucidating local characteristics of the molecule structure.

  13. Evaluating the influence of spatial resolution of Landsat predictors on the accuracy of biomass models for large-area estimation across the eastern USA

    NASA Astrophysics Data System (ADS)

    Deo, Ram K.; Domke, Grant M.; Russell, Matthew B.; Woodall, Christopher W.; Andersen, Hans-Erik

    2018-05-01

    Aboveground biomass (AGB) estimates for regional-scale forest planning have become cost-effective with the free access to satellite data from sensors such as Landsat and MODIS. However, the accuracy of AGB predictions based on passive optical data depends on spatial resolution and spatial extent of target area as fine resolution (small pixels) data are associated with smaller coverage and longer repeat cycles compared to coarse resolution data. This study evaluated various spatial resolutions of Landsat-derived predictors on the accuracy of regional AGB models at three different sites in the eastern USA: Maine, Pennsylvania-New Jersey, and South Carolina. We combined national forest inventory data with Landsat-derived predictors at spatial resolutions ranging from 30–1000 m to understand the optimal spatial resolution of optical data for large-area (regional) AGB estimation. Ten generic models were developed using the data collected in 2014, 2015 and 2016, and the predictions were evaluated (i) at the county-level against the estimates of the USFS Forest Inventory and Analysis Program which relied on EVALIDator tool and national forest inventory data from the 2009–2013 cycle and (ii) within a large number of strips (~1 km wide) predicted via LiDAR metrics at 30 m spatial resolution. The county-level estimates by the EVALIDator and Landsat models were highly related (R 2 > 0.66), although the R 2 varied significantly across sites and resolution of predictors. The mean and standard deviation of county-level estimates followed increasing and decreasing trends, respectively, with models of coarser resolution. The Landsat-based total AGB estimates were larger than the LiDAR-based total estimates within the strips, however the mean of AGB predictions by LiDAR were mostly within one-standard deviations of the mean predictions obtained from the Landsat-based model at any of the resolutions. We conclude that satellite data at resolutions up to 1000 m provide acceptable accuracy for continental scale analysis of AGB.

  14. Exploring Hominin and Non-hominin Primate Dental Fossil Remains with Neutron Microtomography

    NASA Astrophysics Data System (ADS)

    Zanolli, Clément; Schillinger, Burkhard; Beaudet, Amélie; Kullmer, Ottmar; Macchiarelli, Roberto; Mancini, Lucia; Schrenk, Friedemann; Tuniz, Claudio; Vodopivec, Vladimira

    Fossil dental remains are an archive of unique information for paleobiological studies. Computed microtomography based on X-ray microfocus sources (X-μCT) and Synchrotron Radiation (SR-μCT) allow subtle quantification at the micron and sub-micron scale of the meso- and microstructural signature imprinted in the mineralized tissues, such as enamel and dentine, through high-resolution ;virtual histology;. Nonetheless, depending on the degree of alterations undergone during fossilization, X-ray analyses of tooth tissues do not always provide distinct imaging contrasts, thus preventing the extraction of essential morphological and anatomical details. We illustrate here by three examples the successful application of neutron microtomography (n-μCT) in cases where X-rays have previously failed to deliver contrasts between dental tissues of fossilized specimen.

  15. Fragmentation of urban forms and the environmental consequences: results from a high-spatial resolution model system

    NASA Astrophysics Data System (ADS)

    Tang, U. W.; Wang, Z. S.

    2008-10-01

    Each city has its unique urban form. The importance of urban form on sustainable development has been recognized in recent years. Traditionally, air quality modelling in a city is in a mesoscale with grid resolution of kilometers, regardless of its urban form. This paper introduces a GIS-based air quality and noise model system developed to study the built environment of highly compact urban forms. Compared with traditional mesoscale air quality model system, the present model system has a higher spatial resolution down to individual buildings along both sides of the street. Applying the developed model system in the Macao Peninsula with highly compact urban forms, the average spatial resolution of input and output data is as high as 174 receptor points per km2. Based on this input/output dataset with a high spatial resolution, this study shows that even the highly compact urban forms can be fragmented into a very small geographic scale of less than 3 km2. This is due to the significant temporal variation of urban development. The variation of urban form in each fragment in turn affects air dispersion, traffic condition, and thus air quality and noise in a measurable scale.

  16. Spatial variations of the Sr I 4607 Å scattering polarization peak

    NASA Astrophysics Data System (ADS)

    Bianda, M.; Berdyugina, S.; Gisler, D.; Ramelli, R.; Belluzzi, L.; Carlin, E. S.; Stenflo, J. O.; Berkefeld, T.

    2018-06-01

    Context. The scattering polarization signal observed in the photospheric Sr I 4607 Å line is expected to vary at granular spatial scales. This variation can be due to changes in the magnetic field intensity and orientation (Hanle effect), but also to spatial and temporal variations in the plasma properties. Measuring the spatial variation of such polarization signal would allow us to study the properties of the magnetic fields at subgranular scales, but observations are challenging since both high spatial resolution and high spectropolarimetric sensitivity are required. Aims: We aim to provide observational evidence of the polarization peak spatial variations, and to analyze the correlation they might have with granulation. Methods: Observations conjugating high spatial resolution and high spectropolarimetric precision were performed with the Zurich IMaging POLarimeter, ZIMPOL, at the GREGOR solar telescope, taking advantage of the adaptive optics system and the newly installed image derotator. Results: Spatial variations of the scattering polarization in the Sr I 4607 Å line are clearly observed. The spatial scale of these variations is comparable with the granular size. Small correlations between the polarization signal amplitude and the continuum intensity indicate that the polarization is higher at the center of granules than in the intergranular lanes.

  17. High-resolution speckle masking interferometry and radiative transfer modeling of the oxygen-rich AGB star AFGL 2290

    NASA Astrophysics Data System (ADS)

    Gauger, A.; Balega, Y. Y.; Irrgang, P.; Osterbart, R.; Weigelt, G.

    1999-06-01

    We present the first diffraction-limited speckle masking observations of the oxygen-rich AGB star AFGL 2290. The speckle interferograms were recorded with the Russian 6 m SAO telescope. At the wavelength 2.11 microns a resolution of 75 milli-arcsec (mas) was obtained. The reconstructed diffraction-limited image reveals that the circumstellar dust shell (CDS) of AFGL 2290 is at least slightly non-spherical. The visibility function shows that the stellar contribution to the total 2.11 microns flux is less than ~ 40%, indicating a rather large optical depth of the circumstellar dust shell. The 2-dimensional Gaussian visibility fit yields a diameter of AFGL 2290 at 2.11 microns of 43 masx51 mas, which corresponds to a diameter of 42 AUx50 AU for an adopted distance of 0.98 kpc. Our new observational results provide additional constraints on the CDS of AFGL 2290, which supplement the information from the spectral energy distribution (SED). To determine the structure and the properties of the CDS we have performed radiative transfer calculations for spherically symmetric dust shell models. The observed SED approximately at phase 0.2 can be well reproduced at all wavelengths by a model with T_eff=2000 K, a dust temperature of 800 K at the inner boundary r1, an optical depth tau_ {V}=100 and a radius for the single-sized grains of a_gr=0.1 microns . However, the 2.11 microns visibility of the model does not match the observation. Exploring the parameter space, we found that grain size is the key parameter in achieving a fit of the observed visibility while retaining the match of the SED, at least partially. Both the slope and the curvature of the visibility strongly constrain the possible grain radii. On the other hand, the SED at longer wavelengths, the silicate feature in particular, determines the dust mass loss rate and, thereby, restricts the possible optical depths of the model. With a larger grain size of 0.16 microns and a higher tau_ {V}=150, the observed visibility can be reproduced preserving the match of the SED at longer wavelengths. Nevertheless, the model shows a deficiency of flux at short wavelengths, which is attributed to the model assumption of a spherically symmetric dust distribution, whereas the actual structure of the CDS around AFGL 2290 is in fact non-spherical. Our study demonstrates the possible limitations of dust shell models which are constrained solely by the spectral energy distribution, and emphasizes the importance of high spatial resolution observations for the determination of the structure and the properties of circumstellar dust shells around evolved stars. Based on data collected at the 6~m telescope of the Special Astrophysical Observatory in Russia

  18. Spatial variations of the 3 micron emission features within UV-excited nebulae - Photochemical evolution of interstellar polycyclic aromatic hydrocarbons

    NASA Technical Reports Server (NTRS)

    Geballe, T. R.; Tielens, A. G. G. M.; Allamandola, L. J.; Moorhouse, A.; Brand, P. W. J. L.

    1989-01-01

    Spectra at 3 microns have been obtained at several positions in the Orion Bar region and in the nebula surrounding HD 44179. Weak emission features at 3.40, 3.46, 3.51, and 3.57 microns are prominent in the Orion Bar region. The 3.40- and 3.51-micron features increase in intensity relative to the dominant 3.29-micron feature. The spectrum obtained in the Red Rectangle region 5 arcsecs north of HD 44179 are similar to those in the Orion Bar, with a weak, broad 3.40-micron feature at the position of HD 44179. The spatial behavior of the weak emission features is explained in terms of hot bands of the CH stretch and overtones, and combination bands of other fundamental vibrations in simple PAHs. Based on the susceptibility of PAHs to destruction by the far UV fields in both regions, PAH sizes are estimated at 20-50 carbon atoms.

  19. Synchrotron X-ray Microdiffraction Analysis of Proton Irradiated Polycrystalline Diamond Films

    NASA Technical Reports Server (NTRS)

    Newton, R. I.; Davidson, J. L.; Ice, G. E.; Liu, W.

    2004-01-01

    X-ray microdiffraction is a non-destructive technique that allows for depth-resolved, strain measurements with sub-micron spatial resolution. These capabilities make this technique promising for understanding the mechanical properties of MicroElectroMechanical Systems (MEMS). This investigation examined the local strain induced by irradiating a polycrystalline diamond thin film with a dose of 2x10(exp 17) H(+)per square centimeter protons. Preliminary results indicate that a measurable strain, on the order of 10(exp -3), was introduced into the film near the End of Range (EOR) region of the protons.

  20. 433 micron laser heterodyne observations of galactic CO from Mauna Kea

    NASA Technical Reports Server (NTRS)

    Buhl, D.; Chin, G.; Koepf, G. A.; Fetterman, H. R.; Peck, D. D.; Clifton, B. J.; Tannenwald, P. E.; Goldsmith, P. F.; Erickson, N. R.; Mcavoy, N.

    1981-01-01

    A submillimeter heterodyne radiometer, developed for astronomical applications, uses an optically pumped laser local oscillator and a quasi-optical Schottky diode mixer. The resultant telescope-mounted system, which has a noise temperature less than 4000 K (double sideband) and high frequency and spatial resolution, has been used to detect the J = 6 to 5 rotational transition of carbon monoxide at 434 micrometers in the Orion molecular clouds. The measurements, when compared with previous millimeter-wave data, indicate that the broad carbon monoxide emission feature is produced by an optically thin gas whose temperature exceeds 180 K.

  1. Towards a Full-sky, High-resolution Dust Extinction Map with WISE and Planck

    NASA Astrophysics Data System (ADS)

    Meisner, Aaron M.; Finkbeiner, D. P.

    2014-01-01

    We have recently completed a custom processing of the entire WISE 12 micron All-sky imaging data set. The result is a full-sky map of diffuse, mid-infrared Galactic dust emission with angular resolution of 15 arcseconds, and with contaminating artifacts such as compact sources removed. At the same time, the 2013 Planck HFI maps represent a complementary data set in the far-infrared, with zero-point relatively immune to zodiacal contamination and angular resolution superior to previous full-sky data sets at similar frequencies. Taken together, these WISE and Planck data products present an opportunity to improve upon the SFD (1998) dust extinction map, by virtue of enhanced angular resolution and potentially better-controlled systematics on large scales. We describe our continuing efforts to construct and test high-resolution dust extinction and temperature maps based on our custom WISE processing and Planck HFI data.

  2. On the relationship between thermal emissivity and the Normalized Difference Vegetation Index for natural surfaces

    NASA Technical Reports Server (NTRS)

    Van De Griend, A. A.; Owe, M.

    1993-01-01

    The spatial variation of both the thermal emissivity (8-14 microns) and Normalized Difference Vegetation Index (NDVI) was measured for a series of natural surfaces within a savanna environment in Botswana. The measurements were performed with an emissivity-box and with a combined red and near-IR radiometer, with spectral bands corresponding to NOAA/AVHRR. It was found that thermal emissivity was highly correlated with NDVI after logarithmic transformation, with a correlation coefficient of R = 0.94. This empirical relationship is of potential use for energy balance studies using thermal IR remote sensing. The relationship was used in combination with AVHRR (GAC), AVHRR (LAC), and Landsat (TM) data to demonstrate and compare the spatial variability of various spatial scales.

  3. Two-component Thermal Dust Emission Model: Application to the Planck HFI Maps

    NASA Astrophysics Data System (ADS)

    Meisner, Aaron M.; Finkbeiner, Douglas P.

    2014-06-01

    We present full-sky, 6.1 arcminute resolution maps of dust optical depth and temperature derived by fitting the Finkbeiner et al. (1999) two-component dust emission model to the Planck HFI and IRAS 100 micron maps. This parametrization of the far infrared thermal dust SED as the sum of two modified blackbodies serves as an important alternative to the commonly adopted single modified blackbody dust emission model. We expect our Planck-based maps of dust temperature and optical depth to form the basis for a next-generation, high-resolution extinction map which will additionally incorporate small-scale detail from WISE imaging.

  4. GIEMS-D3: A new long-term, dynamical, high-spatial resolution inundation extent dataset at global scale

    NASA Astrophysics Data System (ADS)

    Aires, Filipe; Miolane, Léo; Prigent, Catherine; Pham Duc, Binh; Papa, Fabrice; Fluet-Chouinard, Etienne; Lehner, Bernhard

    2017-04-01

    The Global Inundation Extent from Multi-Satellites (GIEMS) provides multi-year monthly variations of the global surface water extent at 25kmx25km resolution. It is derived from multiple satellite observations. Its spatial resolution is usually compatible with climate model outputs and with global land surface model grids but is clearly not adequate for local applications that require the characterization of small individual water bodies. There is today a strong demand for high-resolution inundation extent datasets, for a large variety of applications such as water management, regional hydrological modeling, or for the analysis of mosquitos-related diseases. A new procedure is introduced to downscale the GIEMS low spatial resolution inundations to a 3 arc second (90 m) dataset. The methodology is based on topography and hydrography information from the HydroSHEDS database. A new floodability index is adopted and an innovative smoothing procedure is developed to ensure the smooth transition, in the high-resolution maps, between the low-resolution boxes from GIEMS. Topography information is relevant for natural hydrology environments controlled by elevation, but is more limited in human-modified basins. However, the proposed downscaling approach is compatible with forthcoming fusion with other more pertinent satellite information in these difficult regions. The resulting GIEMS-D3 database is the only high spatial resolution inundation database available globally at the monthly time scale over the 1993-2007 period. GIEMS-D3 is assessed by analyzing its spatial and temporal variability, and evaluated by comparisons to other independent satellite observations from visible (Google Earth and Landsat), infrared (MODIS) and active microwave (SAR).

  5. Eddy Fluxes and Sensitivity of the Water Cycle to Spatial Resolution in Idealized Regional Aquaplanet Model Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagos, Samson M.; Leung, Lai-Yung R.; Gustafson, William I.

    2014-02-28

    A multi-scale moisture budget analysis is used to identify the mechanisms responsible for the sensitivity of the water cycle to spatial resolution using idealized regional aquaplanet simulations. In the higher resolution simulations, moisture transport by eddies fluxes dry the boundary layer enhancing evaporation and precipitation. This effect of eddies, which is underestimated by the physics parameterizations in the low-resolution simulations, is found to be responsible for the sensitivity of the water cycle both directly, and through its upscale effect, on the mean circulation. Correlations among moisture transport by eddies at adjacent ranges of scales provides the potential for reducing thismore » sensitivity by representing the unresolved eddies by their marginally resolved counterparts.« less

  6. Downscaling Global Land Cover Projections from an Integrated Assessment Model for Use in Regional Analyses: Results and Evaluation for the US from 2005 to 2095

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, Tristram O.; Le Page, Yannick LB; Huang, Maoyi

    2014-06-05

    Projections of land cover change generated from Integrated Assessment Models (IAM) and other economic-based models can be applied for analyses of environmental impacts at subregional and landscape scales. For those IAM and economic models that project land use at the sub-continental or regional scale, these projections must be downscaled and spatially distributed prior to use in climate or ecosystem models. Downscaling efforts to date have been conducted at the national extent with relatively high spatial resolution (30m) and at the global extent with relatively coarse spatial resolution (0.5 degree).

  7. Characteristics of Cometary Dust Tracks in Stardust Aerogel and Laboratory Calibrations

    NASA Technical Reports Server (NTRS)

    Burchell, M. J.; Fairey, S. A. J.; Wozniakiewicz, P.; Brownlee, D. E.; Hoerz, F.; Kearsley, A. T.; See, T. H.; Tsou, P.; Westphal, A.; Green, S. F.; hide

    2007-01-01

    The cometary tray of the NASA Stardust spacecraft s aerogel collector has been examined to study the dust that was captured during the 2004 fly by of comet 81P/Wild-2. An optical scan of the entire collector surface revealed 256 impact features in the aerogel (width > 100 microns). 20 aerogel blocks (out of a total of 132) were removed from the collector tray for a higher resolution optical scan and 186 tracks were observed (track length > 50 microns and width > 8 microns). The impact features were classified into three types based on their morphology. Laboratory calibrations were conducted which reproduce all three types. This work suggests that the cometary dust consisted of some cohesive, relatively strong particles as well as particles with a more friable or low cohesion matrix containing smaller strong grains. The calibrations also permitted a particle size distribution to be estimated for the cometary dust. We estimate that approximately 1200 particles bigger than 1 micron struck the aerogel. The cumulative size distribution of the captured particles was obtained and compared with observations made by active dust detectors during the encounter. At large sizes (>20 microns) all measures of the dust are compatible, but at micrometer scales and smaller discrepancies exist between the various measurement systems which may reflect structure in the dust flux (streams, clusters etc.) along with some possible instrument effects.

  8. New Developments and Geoscience Applications of Synchrotron Computed Microtomography (Invited)

    NASA Astrophysics Data System (ADS)

    Rivers, M. L.; Wang, Y.; Newville, M.; Sutton, S. R.; Yu, T.; Lanzirotti, A.

    2013-12-01

    Computed microtomography is the extension to micron spatial resolution of the CAT scanning technique developed for medical imaging. Synchrotron sources are ideal for the method, since they provide a monochromatic, parallel beam with high intensity. High energy storage rings such as the Advanced Photon Source at Argonne National Laboratory produce x-rays with high energy, high brilliance, and high coherence. All of these factors combine to produce an extremely powerful imaging tool for earth science research. Techniques that have been developed include: - Absorption and phase contrast computed tomography with spatial resolution below one micron. - Differential contrast computed tomography, imaging above and below the absorption edge of a particular element. - High-pressure tomography, imaging inside a pressure cell at pressures above 10GPa. - High speed radiography and tomography, with 100 microsecond temporal resolution. - Fluorescence tomography, imaging the 3-D distribution of elements present at ppm concentrations. - Radiographic strain measurements during deformation at high confining pressure, combined with precise x-ray diffraction measurements to determine stress. These techniques have been applied to important problems in earth and environmental sciences, including: - The 3-D distribution of aqueous and organic liquids in porous media, with applications in contaminated groundwater and petroleum recovery. - The kinetics of bubble formation in magma chambers, which control explosive volcanism. - Studies of the evolution of the early solar system from 3-D textures in meteorites - Accurate crystal size distributions in volcanic systems, important for understanding the evolution of magma chambers. - The equation-of-state of amorphous materials at high pressure using both direct measurements of volume as a function of pressure and also by measuring the change x-ray absorption coefficient as a function of pressure. - The location and chemical speciation of toxic elements such as arsenic and nickel in soils and in plant tissues in contaminated Superfund sites. - The strength of earth materials under the pressure and temperature conditions of the Earth's mantle, providing insights into plate tectonics and the generation of earthquakes.

  9. Development of a high-resolution liquid xenon detector for gamma-ray astrophysics

    NASA Astrophysics Data System (ADS)

    Mukherjee, Reshmi

    It has been shown here that liquid xenon is one of the most promising detector media for future gamma-ray detectors, owing to an excellent combination of physical properties. The feasibility of the construction of a high resolution liquid xenon detector as a gamma-ray detector for astrophysics has been demonstrated. Up to 3.5 liters of liquid xenon has been successfully purified and using both small and large volume prototypes, the charge and the energy resolution response of such detectors to gamma-rays, internal conversion electrons and alpha particles have been measured. The best energy resolution measured was 4.5 percent FWHM at 1 MeV. Cosmic ray tracks have been imaged using a 2-dimensional liquid xenon multiwire imaging chamber. The spatial resolution along the direction of the drifting electrons was 180 microns rms. Experiments have been performed to study the scintillation light in liquid xenon, as the prompt scintillation signal in the liquid is an electron-ion pair in liquid krypton was measured for the first time with a pulsed ionization chamber to be 18.4 plus or minus 0.3 eV.

  10. Spatial and Temporal Varying Thresholds for Cloud Detection in Satellite Imagery

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary; Haines, Stephanie

    2007-01-01

    A new cloud detection technique has been developed and applied to both geostationary and polar orbiting satellite imagery having channels in the thermal infrared and short wave infrared spectral regions. The bispectral composite threshold (BCT) technique uses only the 11 micron and 3.9 micron channels, and composite imagery generated from these channels, in a four-step cloud detection procedure to produce a binary cloud mask at single pixel resolution. A unique aspect of this algorithm is the use of 20-day composites of the 11 micron and the 11 - 3.9 micron channel difference imagery to represent spatially and temporally varying clear-sky thresholds for the bispectral cloud tests. The BCT cloud detection algorithm has been applied to GOES and MODIS data over the continental United States over the last three years with good success. The resulting products have been validated against "truth" datasets (generated by the manual determination of the sky conditions from available satellite imagery) for various seasons from the 2003-2005 periods. The day and night algorithm has been shown to determine the correct sky conditions 80-90% of the time (on average) over land and ocean areas. Only a small variation in algorithm performance occurs between day-night, land-ocean, and between seasons. The algorithm performs least well. during he winter season with only 80% of the sky conditions determined correctly. The algorithm was found to under-determine clouds at night and during times of low sun angle (in geostationary satellite data) and tends to over-determine the presence of clouds during the day, particularly in the summertime. Since the spectral tests use only the short- and long-wave channels common to most multispectral scanners; the application of the BCT technique to a variety of satellite sensors including SEVERI should be straightforward and produce similar performance results.

  11. Comparing SMAP to Macro-scale and Hyper-resolution Land Surface Models over Continental U. S.

    NASA Astrophysics Data System (ADS)

    Pan, Ming; Cai, Xitian; Chaney, Nathaniel; Wood, Eric

    2016-04-01

    SMAP sensors collect moisture information in top soil at the spatial resolution of ~40 km (radiometer) and ~1 to 3 km (radar, before its failure in July 2015). Such information is extremely valuable for understanding various terrestrial hydrologic processes and their implications on human life. At the same time, soil moisture is a joint consequence of numerous physical processes (precipitation, temperature, radiation, topography, crop/vegetation dynamics, soil properties, etc.) that happen at a wide range of scales from tens of kilometers down to tens of meters. Therefore, a full and thorough analysis/exploration of SMAP data products calls for investigations at multiple spatial scales - from regional, to catchment, and to field scales. Here we first compare the SMAP retrievals to the Variable Infiltration Capacity (VIC) macro-scale land surface model simulations over the continental U. S. region at 3 km resolution. The forcing inputs to the model are merged/downscaled from a suite of best available data products including the NLDAS-2 forcing, Stage IV and Stage II precipitation, GOES Surface and Insolation Products, and fine elevation data. The near real time VIC simulation is intended to provide a source of large scale comparisons at the active sensor resolution. Beyond the VIC model scale, we perform comparisons at 30 m resolution against the recently developed HydroBloks hyper-resolution land surface model over several densely gauged USDA experimental watersheds. Comparisons are also made against in-situ point-scale observations from various SMAP Cal/Val and field campaign sites.

  12. Optical method for high magnification imaging and video recording of live cells at sub-micron resolution

    NASA Astrophysics Data System (ADS)

    Romo, Jaime E., Jr.

    Optical microscopy, the most common technique for viewing living microorganisms, is limited in resolution by Abbe's criterion. Recent microscopy techniques focus on circumnavigating the light diffraction limit by using different methods to obtain the topography of the sample. Systems like the AFM and SEM provide images with fields of view in the nanometer range with high resolvable detail, however these techniques are expensive, and limited in their ability to document live cells. The Dino-Lite digital microscope coupled with the Zeiss Axiovert 25 CFL microscope delivers a cost-effective method for recording live cells. Fields of view ranging from 8 microns to 300 microns with fair resolution provide a reliable method for discovering native cell structures at the nanoscale. In this report, cultured HeLa cells are recorded using different optical configurations resulting in documentation of cell dynamics at high magnification and resolution.

  13. Thermal Jeans Fragmentation within ∼1000 au in OMC-1S

    NASA Astrophysics Data System (ADS)

    Palau, Aina; Zapata, Luis A.; Román-Zúñiga, Carlos G.; Sánchez-Monge, Álvaro; Estalella, Robert; Busquet, Gemma; Girart, Josep M.; Fuente, Asunción; Commerçon, Benoit

    2018-03-01

    We present subarcsecond 1.3 mm continuum ALMA observations toward the Orion Molecular Cloud 1 South (OMC-1S) region, down to a spatial resolution of 74 au, which reveal a total of 31 continuum sources. We also present subarcsecond 7 mm continuum VLA observations of the same region, which allow further study of fragmentation down to a spatial resolution of 40 au. By applying a method of “mean surface density of companions” we find a characteristic spatial scale at ∼560 au, and we use this spatial scale to define the boundary of 19 “cores” in OMC-1S as groupings of millimeter sources. We find an additional characteristic spatial scale at ∼2800 au, which is the typical scale of the filaments in OMC-1S, suggesting a two-level fragmentation process. We measured the fragmentation level within each core and find a higher fragmentation toward the southern filament. In addition, the cores of the southern filament are also the densest cores (within 1100 au) in OMC-1S. This is fully consistent with previous studies of fragmentation at spatial scales one order of magnitude larger, and suggests that fragmentation down to 40 au seems to be governed by thermal Jeans processes in OMC-1S.

  14. SIMS Studies of Allende Projectiles Fired into Stardust-type Aluminum Foils at 6 km/s

    NASA Technical Reports Server (NTRS)

    Hoppe, Peter; Stadermann, Frank J.; Stephan, Thomas; Floss, Christine; Leitner, Jan; Marhas, Kuljeet; Horz, Friedrich

    2006-01-01

    We have explored the feasibility of C-, N-, and O-isotopic measurements by NanoSIMS and of elemental abundance determinations by TOF-SIMS on residues of Allende projectiles that impacted Stardust-type aluminum foils in the laboratory at 6 km/s. These investigations are part of a consortium study aimed at providing the foundation for the characterization of matter associated with micro-craters that were produced during the encounter of the Stardust space probe with comet 81P/Wild 2. Eleven experimental impact craters were studied by NanoSIMS and eighteen by TOF-SIMS. Crater sizes were between 3 and 190 microns. The NanoSIMS measurements have shown that the crater morphology has only a minor effect on spatial resolution and on instrumental mass fractionation. The achievable spatial resolution is always better than 200 nm, and C- and O-isotopic ratios can be measured with a precision of several percent at a scale of several 100 nm, the typical size of presolar grains. This clearly demonstrates that presolar matter, provided it survives the impact into the aluminum foil partly intact, is recognizable even if embedded in material of Solar System origin. TOF-SIMS studies are restricted to materials from the crater rim. The element ratios of the major rockforming elements in the Allende projectiles are well characterized by the TOF-SIMS measurements, indicating that fractionation of those elements during impact can be expected to be negligible. This permits information on the type of impactor material to be obtained. For any more detailed assignments to specific chondrite groups, however, information on the abundances of the light elements, especially C, is crucial.

  15. Radially polarized tip-enhanced near-field coherent anti-Stokes Raman scattering microscopy for vibrational nano-imaging

    NASA Astrophysics Data System (ADS)

    Lin, Jian; Zi Jian Er, Kenneth; Zheng, Wei; Huang, Zhiwei

    2013-08-01

    We report a radially polarized tip-enhanced near-field coherent anti-Stokes Raman scattering (RP-TE-CARS) microscopy technique for high-contrast vibrational imaging of subcellular organelles at nano-scale resolutions. The radially polarized pump and Stokes laser beams are tightly focused onto the sample while a gold-coated metallic probe is placed at the upper surface of the sample to enhance the electric field and CARS signals. The back-scattered CARS signal is measured with the gold-coated nano-tip being stationary at the focal region of laser beams. The RP-TE-CARS signal is ˜6-fold higher than that using linearly polarized laser excitation. We demonstrate the good performance of the RP-TE-CARS technique developed by imaging sub-micron polystyrene beads and mitochondria at nano-scale resolutions.

  16. Spatial resolution of a spherical x-ray crystal spectrometer at various magnifications

    DOE PAGES

    Gao, Lan; Hill, K. W.; Bitter, M.; ...

    2016-08-23

    Here, a high spatial resolution of a few μm is often required for probing small-scale high-energy-density plasmas using high resolution x-ray imaging spectroscopy. This resolution can be achieved by adjusting system magnification to overcome the inherent limitation of the detector pixel size. Laboratory experiments on investigating the relation between spatial resolution and system magnification for a spherical crystal spectrometer are presented. Tungsten Lβ 2 rays from a tungsten-target micro-focus x-ray tube were diffracted by a Ge 440 crystal, which was spherically bent to a radius of 223 mm, and imaged onto an x-ray CCD with 13-μm pixel size. The source-to-crystalmore » (p) and crystal-to-detector (q) distances were varied to produce spatial magnifications ( M = q/p) ranging from 2 to 10. The inferred instrumental spatial width reduces with increasing system magnification M. However, the experimental measurement at each M is larger than the theoretical value of pixel size divided by M. Future work will focus on investigating possible broadening mechanisms that limit the spatial resolution.« less

  17. Analysis of Trace Siderophile Elements at High Spatial Resolution Using Laser Ablation ICP-MS

    NASA Astrophysics Data System (ADS)

    Campbell, A. J.; Humayun, M.

    2006-05-01

    Laser ablation inductively coupled plasma mass spectometry is an increasingly important method of performing spatially resolved trace element analyses. Over the last several years we have applied this technique to measure siderophile element distributions at the ppm level in a variety of natural and synthetic samples, especially metallic phases in meteorites and experimental run products intended for trace element partitioning studies. These samples frequently require trace element analyses to be made at a finer spatial resolution (25 microns or better) than is frequently attained using LA-ICP-MS. In this presentation we review analytical protocols that were developed to optimize the LA-ICP-MS measurements for high spatial resolution. Particular attention is paid to the trade-offs involving sensitivity, ablation pit depth and diameter, background levels, and number of elements measured. To maximize signal/background ratios and avoid difficulties associated with ablating to depths greater than the ablation pit diameter, measurement involved integration of rapidly varying, transient but well-behaved signals. The abundances of platinum group elements and other siderophile elements in ferrous metals were calibrated against well-characterized standards, including iron meteorites and NIST certified steels. The calibrations can be set against the known abundance of an independently determined element, but normalization to 100 percent can also be employed, and was more useful in many circumstances. Evaluation of uncertainties incorporated counting statistics as well as a measure of instrumental uncertainty, determined by replicate analyses of the standards. These methods have led to a number of insights into the formation and chemical processing of metal in the early solar system.

  18. Scales of snow depth variability in high elevation rangeland sagebrush

    NASA Astrophysics Data System (ADS)

    Tedesche, Molly E.; Fassnacht, Steven R.; Meiman, Paul J.

    2017-09-01

    In high elevation semi-arid rangelands, sagebrush and other shrubs can affect transport and deposition of wind-blown snow, enabling the formation of snowdrifts. Datasets from three field experiments were used to investigate the scales of spatial variability of snow depth around big mountain sagebrush ( Artemisia tridentata Nutt.) at a high elevation plateau rangeland in North Park, Colorado, during the winters of 2002, 2003, and 2008. Data were collected at multiple resolutions (0.05 to 25 m) and extents (2 to 1000 m). Finer scale data were collected specifically for this study to examine the correlation between snow depth, sagebrush microtopography, the ground surface, and the snow surface, as well as the temporal consistency of snow depth patterns. Variograms were used to identify the spatial structure and the Moran's I statistic was used to determine the spatial correlation. Results show some temporal consistency in snow depth at several scales. Plot scale snow depth variability is partly a function of the nature of individual shrubs, as there is some correlation between the spatial structure of snow depth and sagebrush, as well as between the ground and snow depth. The optimal sampling resolution appears to be 25-cm, but over a large area, this would require a multitude of samples, and thus a random stratified approach is recommended with a fine measurement resolution of 5-cm.

  19. L-band Soil Moisture Mapping using Small UnManned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Dai, E.

    2015-12-01

    Soil moisture is of fundamental importance to many hydrological, biological and biogeochemical processes, plays an important role in the development and evolution of convective weather and precipitation, and impacts water resource management, agriculture, and flood runoff prediction. The launch of NASA's Soil Moisture Active/Passive (SMAP) mission in 2015 promises to provide global measurements of soil moisture and surface freeze/thaw state at fixed crossing times and spatial resolutions as low as 5 km for some products. However, there exists a need for measurements of soil moisture on smaller spatial scales and arbitrary diurnal times for SMAP validation, precision agriculture and evaporation and transpiration studies of boundary layer heat transport. The Lobe Differencing Correlation Radiometer (LDCR) provides a means of mapping soil moisture on spatial scales as small as several meters (i.e., the height of the platform) .Compared with various other proposed methods of validation based on either situ measurements [1,2] or existing airborne sensors suitable for manned aircraft deployment [3], the integrated design of the LDCR on a lightweight small UAS (sUAS) is capable of providing sub-watershed (~km scale) coverage at very high spatial resolution (~15 m) suitable for scaling scale studies, and at comparatively low operator cost. The LDCR on Tempest unit can supply the soil moisture mapping with different resolution which is of order the Tempest altitude.

  20. Evaluating a Local Ensemble Transform Kalman Filter snow cover data assimilation method to estimate SWE within a high-resolution hydrologic modeling framework across Western US mountainous regions

    NASA Astrophysics Data System (ADS)

    Oaida, C. M.; Andreadis, K.; Reager, J. T., II; Famiglietti, J. S.; Levoe, S.

    2017-12-01

    Accurately estimating how much snow water equivalent (SWE) is stored in mountainous regions characterized by complex terrain and snowmelt-driven hydrologic cycles is not only greatly desirable, but also a big challenge. Mountain snowpack exhibits high spatial variability across a broad range of spatial and temporal scales due to a multitude of physical and climatic factors, making it difficult to observe or estimate in its entirety. Combing remotely sensed data and high resolution hydrologic modeling through data assimilation (DA) has the potential to provide a spatially and temporally continuous SWE dataset at horizontal scales that capture sub-grid snow spatial variability and are also relevant to stakeholders such as water resource managers. Here, we present the evaluation of a new snow DA approach that uses a Local Ensemble Transform Kalman Filter (LETKF) in tandem with the Variable Infiltration Capacity macro-scale hydrologic model across the Western United States, at a daily temporal resolution, and a horizontal resolution of 1.75 km x 1.75 km. The LETKF is chosen for its relative simplicity, ease of implementation, and computational efficiency and scalability. The modeling/DA system assimilates daily MODIS Snow Covered Area and Grain Size (MODSCAG) fractional snow cover over, and has been developed to efficiently calculate SWE estimates over extended periods of time and covering large regional-scale areas at relatively high spatial resolution, ultimately producing a snow reanalysis-type dataset. Here we focus on the assessment of SWE produced by the DA scheme over several basins in California's Sierra Nevada Mountain range where Airborne Snow Observatory data is available, during the last five water years (2013-2017), which include both one of the driest and one of the wettest years. Comparison against such a spatially distributed SWE observational product provides a greater understanding of the model's ability to estimate SWE and SWE spatial variability, and highlights under which conditions snow cover DA can add value in estimating SWE.

  1. Advances in Gamma-Ray Imaging with Intensified Quantum-Imaging Detectors

    NASA Astrophysics Data System (ADS)

    Han, Ling

    Nuclear medicine, an important branch of modern medical imaging, is an essential tool for both diagnosis and treatment of disease. As the fundamental element of nuclear medicine imaging, the gamma camera is able to detect gamma-ray photons emitted by radiotracers injected into a patient and form an image of the radiotracer distribution, reflecting biological functions of organs or tissues. Recently, an intensified CCD/CMOS-based quantum detector, called iQID, was developed in the Center for Gamma-Ray Imaging. Originally designed as a novel type of gamma camera, iQID demonstrated ultra-high spatial resolution (< 100 micron) and many other advantages over traditional gamma cameras. This work focuses on advancing this conceptually-proven gamma-ray imaging technology to make it ready for both preclinical and clinical applications. To start with, a Monte Carlo simulation of the key light-intensification device, i.e. the image intensifier, was developed, which revealed the dominating factor(s) that limit energy resolution performance of the iQID cameras. For preclinical imaging applications, a previously-developed iQID-based single-photon-emission computed-tomography (SPECT) system, called FastSPECT III, was fully advanced in terms of data acquisition software, system sensitivity and effective FOV by developing and adopting a new photon-counting algorithm, thicker columnar scintillation detectors, and system calibration method. Originally designed for mouse brain imaging, the system is now able to provide full-body mouse imaging with sub-350-micron spatial resolution. To further advance the iQID technology to include clinical imaging applications, a novel large-area iQID gamma camera, called LA-iQID, was developed from concept to prototype. Sub-mm system resolution in an effective FOV of 188 mm x 188 mm has been achieved. The camera architecture, system components, design and integration, data acquisition, camera calibration, and performance evaluation are presented in this work. Mounted on a castered counter-weighted clinical cart, the camera also features portable and mobile capabilities for easy handling and on-site applications at remote locations where hospital facilities are not available.

  2. Packaging of ferroelectric liquid crystal-on-silicon spatial light modulators

    NASA Astrophysics Data System (ADS)

    Lin, W.; Morozova, Nina D.; Ju, TehHua; Zhang, Weidong; Lee, Yung-Cheng; McKnight, Douglas J.; Johnson, Kristina M.

    1996-11-01

    A self-pulling soldering technology has been demonstrated for assembling liquid crystal on silicon (LCOS) spatial light modulators (SLMs). One of the major challenges in manufacturing the LCOS modules is to reproducibly control the thickness of the gap between the very large scale integrated circuit (VLSI) chip and the cover glass. The liquid crystal material is sandwiched between the VLSI chop and the cover glass which is coated with a transparent conductor. Solder joints with different profiles and sizes have been designed to provide surface tension forces to control the gap accommodating the ferroelectric liquid crystal layer in the range of a micron level with sub- micron uniformity. The optimum solder joint design is defined as a joint that results in the maximum pulling force. This technology provides an automatic, batch assembly process for a LCOS SLM through one reflow process. Fluxless soldering technology is used to assemble the module. This approach avoids residues from chemical of flux and oxides, and eliminates potential contamination to the device. Two different LCOS SLM designs and the process optimization are described.

  3. Enhanced Exoplanet Biosignature from an Interferometer Addition to Low Resolution Spectrographs

    NASA Astrophysics Data System (ADS)

    Erskine, D. J.; Muirhead, P. S.; Vanderburg, A. M.; Szentgyorgyi, A.

    2017-12-01

    The absorption spectral signature of many atmospheric molecules consists of a group of 40 or so lines that are approximately periodic due to the physics of molecular vibration. This is fortuitous for detecting atmospheric features in an exoEarth, since it has a similar periodic nature as an interferometer's transmission, which is sinusoidal. The period (in wavenumbers) of the interferometer is selectable, being inversely proportional to the delay (in cm). We show that the addition of a small interferometer of 0.6 cm delay to an existing dispersive spectrograph can greatly enhance the detection of molecular features, by several orders of magnitude for initially low resolution spectrographs. We simulate the Gemini Planet Imager measuring a telluric spectrum having native resolution of 40 and 70 in the 1.65 micron and 2 micron bands. These low resolutions are insufficient to resolve the fine features of the molecular feature group. However, the addition of a 0.6 cm delay outside the spectrograph and in series with it increases the local amplitude of the signal to a level similar to a R=4400 (at 1.65 micron) or R=3900 (at 2 micron) classical spectrograph. Prepared by LLNL under Contract DE-AC52-07NA27344.

  4. Study of Electric Explosion of Flat Micron-Thick Foils at Current Densities of (5-50)×10 8A/cm 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shelkovenko, T. A.; Pikuz, S. A.; Tilikin, I. N.

    Electric explosions of flat Al, Тi, Ni, Cu, and Та foils with thicknesses of 1-16 μm, widths of 1-8 mm, and lengths of 5-11 mm were studied experimentally on the BIN, XP, and COBRA high-current generators at currents of 40-1000 kA and current densities of (5–50) × 10 8 A/cm 2. The images of the exploded foils were taken at different angles to the foil surface by using point projection radiography with an X-pinch hot spot as the radiation source, the spatial resolution and exposure time being 3 μm and 50 ps, respectively, as well by the laser probing methodmore » with a spatial resolution of 20 μm and an exposure time of 180 ps. In the course of foil explosion, rapidly expanding objects resembling the core and corona of an exploded wire were observed. It is shown that the core of the exploded foil has a complicated time-varying structure.« less

  5. Elemental and topographical imaging of microscopic variations in deposition on NSTX-U and DIII-D samples

    NASA Astrophysics Data System (ADS)

    Skinner, C. H.; Kaita, R.; Koel, B. E.; Chrobak, C. P.; Wampler, W. R.

    2017-10-01

    Tokamak plasma facing components (PFCs) have surface roughness that can cause microscopic spatial variations in erosion and deposition and hence influence material migration. Previous RBS measurements showed indirect evidence for this but the spatial (0.5mm) resolution was insufficient for direct imaging. We will present elemental images at sub-micron resolution of deposition on NSTX-U and DiMES samples that show strong microscopic variations and correlate this with 3D topographical maps of surface irregularities. The elemental imaging is performed with a Scanning Auger Microprobe (SAM) that measures element-specific Auger electrons excited by an SEM electron beam. 3D topographical maps of the samples are performed with a Leica DCM 3D confocal light microscope and compared to the elemental deposition pattern. The initial results appear consistent with erosion at the downstream edges of the surface pores exposed to the incident ion flux, whereas the deeper regions are shadowed and serve as deposition traps. Support was provided through DOE Contract Numbers DE-AC02-09CH11466, DE-FC02-04ER54698 and DE-NA0003525.

  6. Study of Electric Explosion of Flat Micron-Thick Foils at Current Densities of (5-50)×10 8A/cm 2

    DOE PAGES

    Shelkovenko, T. A.; Pikuz, S. A.; Tilikin, I. N.; ...

    2018-01-01

    Electric explosions of flat Al, Тi, Ni, Cu, and Та foils with thicknesses of 1-16 μm, widths of 1-8 mm, and lengths of 5-11 mm were studied experimentally on the BIN, XP, and COBRA high-current generators at currents of 40-1000 kA and current densities of (5–50) × 10 8 A/cm 2. The images of the exploded foils were taken at different angles to the foil surface by using point projection radiography with an X-pinch hot spot as the radiation source, the spatial resolution and exposure time being 3 μm and 50 ps, respectively, as well by the laser probing methodmore » with a spatial resolution of 20 μm and an exposure time of 180 ps. In the course of foil explosion, rapidly expanding objects resembling the core and corona of an exploded wire were observed. It is shown that the core of the exploded foil has a complicated time-varying structure.« less

  7. Scale effects on the evapotranspiration estimation over a water-controlled Mediterranean ecosystem and its influence on hydrological modelling

    NASA Astrophysics Data System (ADS)

    Carpintero, Elisabet; González-Dugo, María P.; José Polo, María; Hain, Christopher; Nieto, Héctor; Gao, Feng; Andreu, Ana; Kustas, William; Anderson, Martha

    2017-04-01

    The integration of currently available satellite data into surface energy balance models can provide estimates of evapotranspiration (ET) with spatial and temporal resolutions determined by sensor characteristics. The use of data fusion techniques may increase the temporal resolution of these estimates using multiple satellites, providing a more frequent ET monitoring for hydrological purposes. The objective of this work is to analyze the effects of pixel resolution on the estimation of evapotranspiration using different remote sensing platforms, and to provide continuous monitoring of ET over a water-controlled ecosystem, the Holm oak savanna woodland known as dehesa. It is an agroforestry system with a complex canopy structure characterized by widely-spaced oak trees combined with crops, pasture and shrubs. The study was carried out during two years, 2013 and 2014, combining ET estimates at different spatial and temporal resolutions and applying data fusion techniques for a frequent monitoring of water use at fine spatial resolution. A global and daily ET product at 5 km resolution, developed with the ALEXI model using MODIS day-night temperature difference (Anderson et al., 2015a) was used as a starting point. The associated flux disaggregation scheme, DisALEXI (Norman et al., 2003), was later applied to constrain higher resolution ET from both MODIS and Landsat 7/8 images. The Climate Forecast System Reanalysis (CFSR) provided the meteorological data. Finally, a data fusion technique, the STARFM model (Gao et al., 2006), was applied to fuse MODIS and Landsat ET maps in order to obtain daily ET at 30 m resolution. These estimates were validated and analyzed at two different scales: at local scale over a dehesa experimental site and at watershed scale with a predominant Mediterranean oak savanna landscape, both located in Southern Spain. Local ET estimates from the modeling system were validated with measurements provided by an eddy covariance tower installed in the dehesa (38 ° 12 'N, 4 ° 17' W, 736 m a.s.l.). The results supported the ability of ALEXI/DisALEXI model to accurately estimate turbulent and radiative fluxes over this complex landscape, both at 1 Km and at 30 m spatial resolution. The application of the STARFM model gave significant improvement in capturing the spatio-temporal heterogeneity of ET over the different seasons, compared with traditional interpolation methods using MODIS and Landsat ET data. At basin scale, the physically-based distributed hydrological model WiMMed has been applied to evaluate ET estimates. This model focuses on the spatial interpolation of the meteorological variables and the physical modelling of the daily water balance at the cell and watershed scale, using daily streamflow rates measured at the watershed outlet for final comparison.

  8. Images of the 10-micron source in the Cygnus 'Egg'

    NASA Technical Reports Server (NTRS)

    Jaye, D.; Fienberg, R. Tresch; Fazio, G. G.; Gezari, D. Y.; Lamb, G. M.; Shu, P. K.; Hoffmann, W. F.; Mccreight, C. R.

    1989-01-01

    Mid-IR images of AFGL 2688, the Egg nebula, obtained with a 16 x 16 pixel array camera (field of view 12.5 x 12.5 arcsec) resolve the central source. It appears as a centrally peaked ellipsoid with major axis of symmetry parallel to the axis of the visible nebulosity. This is contrary to the expected extension perpendicular to this axis implied by proposed dust-toroid models of the IR source. Maps of the spatial distribution of 8-13 micron color temperature and warm dust opacity derived from the multiwavelength images further characterize the IR emission. The remarkable flatness of the color temperature conflicts with the radial temperature gradient expected across a thick shell of material with a single heat source at its center. The new data suggest instead that the source consists of a central star surrounded by a dust shell that is too thin to provide a detectable temperature gradient and too small to permit the resolution of limb brightening.

  9. Landsat-D TM application to porphyry copper exploration

    NASA Technical Reports Server (NTRS)

    Abrams, M.; Brown, D.; Sadowski, R.; Lepley, L.

    1982-01-01

    For a number of years Landsat data have been used to locate areas of iron oxide occurrences which might be associated with hydrothermal alteration zones. However, the usefulness of the Landsat data was restricted because of certain limitations of the spectral information provided by Landsat. A new generation multispectral scanner will, therefore, be carried by the fourth Landsat, which is to be launched in July, 1982. This instrument, called the Thematic Mapper (TM), will have seven channels and provide data with 30 m spatial resolution. Two of the spectral channels (1.6 micron and 2.2 micron) should allow detection of hydrous minerals. Possible applications of Landsat-D TM data for copper exploration were studied on the basis of a comparison of Landsat data with simulated TM data acquired using an aircraft scanner instrument. Three porphyr copper deposits in Arizona were selected for the study. It is concluded that the new Landsat-D TM scanner will provide Exploration geologists with a new improved tool for surveying mineral resources on a global basis.

  10. How Many Grid Points are Required for Time Accurate Simulations Scheme Selection and Scale-Discriminant Stabilization

    DTIC Science & Technology

    2015-11-24

    spatial concerns: ¤ how well are gradients captured? (resolution requirement) spatial/temporal concerns: ¤ dispersion and dissipation error...distribution is unlimited. Gradient Capture vs. Resolution: Single Mode FFT: Solution/Derivative: Convergence: f x( )= sin(x) with x∈[0,2π ] df dx...distribution is unlimited. Gradient Capture vs. Resolution: 
 Multiple Modes FFT: Solution/Derivative: Convergence: 6 __ CD02 __ CD04 __ CD06

  11. Enhanced Propagating Surface Plasmon Signal Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Y.; Joly, Alan G.; El-Khoury, Patrick Z.

    2016-12-21

    Overcoming the dissipative nature of propagating surface plasmons (PSPs) is pre-requisite to realizing functional plasmonic circuitry, in which large bandwidth signals can be manipulated over length scales far-below the diffraction limit of light. To this end, we report on a novel PSP enhanced signal detection technique achieved in an all-metallic substrate. We take advantage of two strategically spatio-temporally separated phase-locked femtosecond laser pulses, incident onto lithographically patterned PSP coupling structures. We follow PSP propagation with joint femtosecond temporal and nanometer spatial resolution in a time-resolved non-linear photoemission electron microscopy scheme. Initially, a PSP signal wave packet is launched from amore » hole etched into the silver surface from where it propagates through an open trench structure and is decoded through the use of a timed probe pulse. FDTD calculations demonstrate that PSP signal waves may traverse open trenches in excess of 10 microns in diameter, thereby allowing remote detection even through vacuum regions. This arrangement results in a 10X enhancement in photoemission relative to readout from the bare metal surface. The enhancement is attributed to an all-optical homodyne detection technique that mixes signal and reference PSP waves in a non-linear scheme. Larger readout trenches achieve higher readout levels, however reduced transmission through the trench limits the trench size to 6 microns for maximum readout levels. However, the use of an array of trenches increases the maximum enhancement to near 30X. The attainable enhancement factor may be harnessed to achieve extended coherent PSP propagation in ultrafast plasmonic circuitry.« less

  12. Validation of AIRS/AMSU Cloud Retrievals Using MODIS Cloud Analyses

    NASA Technical Reports Server (NTRS)

    Molnar, Gyula I.; Susskind, Joel

    2005-01-01

    The AIRS/AMSU (flying on the EOS-AQUA satellite) sounding retrieval methodology allows for the retrieval of key atmospheric/surface parameters under partially cloudy conditions (Susskind et al.). In addition, cloud parameters are also derived from the AIRS/AMSU observations. Within each AIRS footprint, cloud parameters at up to 2 cloud layers are determined with differing cloud top pressures and effective (product of infrared emissivity at 11 microns and physical cloud fraction) cloud fractions. However, so far the AIRS cloud product has not been rigorously evaluated/validated. Fortunately, collocated/coincident radiances measured by MODIS/AQUA (at a much lower spectral resolution but roughly an order of-magnitude higher spatial resolution than that of AIRS) are used to determine analogous cloud products from MODIS. This allows us for a rather rare and interesting possibility: the intercomparisons and mutual validation of imager vs. sounder-based cloud products obtained from the same satellite positions. First, we present results of small-scale (granules) instantaneous intercomparisons. Next, we will evaluate differences of temporally averaged (monthly) means as well as the representation of inter-annual variability of cloud parameters as presented by the two cloud data sets. In particular, we present statistical differences in the retrieved parameters of cloud fraction and cloud top pressure. We will investigate what type of cloud systems are retrieved most consistently (if any) with both retrieval schemes, and attempt to assess reasons behind statistically significant differences.

  13. Molecular interferometric imaging study of molecular interactions

    NASA Astrophysics Data System (ADS)

    Zhao, Ming; Wang, Xuefeng; Nolte, David

    2008-02-01

    Molecular Interferometric Imaging (MI2) is a sensitive detection platform for direct optical detection of immobilized biomolecules. It is based on inline common-path interferometry combined with far-field optical imaging. The substrate is a simple thermal oxide on a silicon surface with a thickness at or near the quadrature condition that produces a π/2 phase shift between the normal-incident wave reflected from the top oxide surface and the bottom silicon surface. The presence of immobilized or bound biomolecules on the surface produces a relative phase shift that is converted to a far-field intensity shift and is imaged by a reflective microscope onto a CCD camera. Shearing interferometry is used to remove the spatial 1/f noise from the illumination to achieve shot-noise-limited detection of surface dipole density profiles. The lateral resolution of this technique is diffraction limited at 0.4 micron, and the best longitudinal resolution is 10 picometers. The minimum detectable mass at the metrology limit is 2 attogram, which is 8 antibody molecules of size 150 kDa. The corresponding scaling mass sensitivity is 5 fg/mm compared with 1 pg/mm for typical SPR sensitivity. We have applied MI2 to immunoassay applications, and real-time binding kinetics has been measured for antibody-antigen reactions. The simplicity of the substrate and optical read-out make MI2 a promising analytical assay tool for high-throughput screening and diagnostics.

  14. Micro-Slit Collimators for X-Ray/Gamma-Ray Imaging

    NASA Technical Reports Server (NTRS)

    Appleby, Michael; Fraser, Iain; Klinger, Jill

    2011-01-01

    A hybrid photochemical-machining process is coupled with precision stack lamination to allow for the fabrication of multiple ultra-high-resolution grids on a single array substrate. In addition, special fixturing and etching techniques have been developed that allow higher-resolution multi-grid collimators to be fabricated. Building on past work of developing a manufacturing technique for fabricating multi-grid, high-resolution coating modulation collimators for arcsecond and subarcsecond x-ray and gamma-ray imaging, the current work reduces the grid pitch by almost a factor of two, down to 22 microns. Additionally, a process was developed for reducing thin, high-Z (tungsten or molybdenum) from the thinnest commercially available foil (25 microns thick) down to approximately equal to 10 microns thick using precisely controlled chemical etching

  15. Spatial Downscaling of Alien Species Presences using Machine Learning

    NASA Astrophysics Data System (ADS)

    Daliakopoulos, Ioannis N.; Katsanevakis, Stelios; Moustakas, Aristides

    2017-07-01

    Large scale, high-resolution data on alien species distributions are essential for spatially explicit assessments of their environmental and socio-economic impacts, and management interventions for mitigation. However, these data are often unavailable. This paper presents a method that relies on Random Forest (RF) models to distribute alien species presence counts at a finer resolution grid, thus achieving spatial downscaling. A sufficiently large number of RF models are trained using random subsets of the dataset as predictors, in a bootstrapping approach to account for the uncertainty introduced by the subset selection. The method is tested with an approximately 8×8 km2 grid containing floral alien species presence and several indices of climatic, habitat, land use covariates for the Mediterranean island of Crete, Greece. Alien species presence is aggregated at 16×16 km2 and used as a predictor of presence at the original resolution, thus simulating spatial downscaling. Potential explanatory variables included habitat types, land cover richness, endemic species richness, soil type, temperature, precipitation, and freshwater availability. Uncertainty assessment of the spatial downscaling of alien species’ occurrences was also performed and true/false presences and absences were quantified. The approach is promising for downscaling alien species datasets of larger spatial scale but coarse resolution, where the underlying environmental information is available at a finer resolution than the alien species data. Furthermore, the RF architecture allows for tuning towards operationally optimal sensitivity and specificity, thus providing a decision support tool for designing a resource efficient alien species census.

  16. "HOOF-Print" Genotyping and Haplotype Inference Discriminates among Brucella spp Isolates From a Small Spatial Scale

    USDA-ARS?s Scientific Manuscript database

    We demonstrate that the “HOOF-Print” assay provides high power to discriminate among Brucella isolates collected on a small spatial scale (within Portugal). Additionally, we illustrate how haplotype identification using non-random association among markers allows resolution of B. melitensis biovars ...

  17. On the importance of image formation optics in the design of infrared spectroscopic imaging systems

    PubMed Central

    Mayerich, David; van Dijk, Thomas; Walsh, Michael; Schulmerich, Matthew; Carney, P. Scott

    2014-01-01

    Infrared spectroscopic imaging provides micron-scale spatial resolution with molecular contrast. While recent work demonstrates that sample morphology affects the recorded spectrum, considerably less attention has been focused on the effects of the optics, including the condenser and objective. This analysis is extremely important, since it will be possible to understand effects on recorded data and provides insight for reducing optical effects through rigorous microscope design. Here, we present a theoretical description and experimental results that demonstrate the effects of commonly-employed cassegranian optics on recorded spectra. We first combine an explicit model of image formation and a method for quantifying and visualizing the deviations in recorded spectra as a function of microscope optics. We then verify these simulations with measurements obtained from spatially heterogeneous samples. The deviation of the computed spectrum from the ideal case is quantified via a map which we call a deviation map. The deviation map is obtained as a function of optical elements by systematic simulations. Examination of deviation maps demonstrates that the optimal optical configuration for minimal deviation is contrary to prevailing practice in which throughput is maximized for an instrument without a sample. This report should be helpful for understanding recorded spectra as a function of the optics, the analytical limits of recorded data determined by the optical design, and potential routes for optimization of imaging systems. PMID:24936526

  18. On the importance of image formation optics in the design of infrared spectroscopic imaging systems.

    PubMed

    Mayerich, David; van Dijk, Thomas; Walsh, Michael J; Schulmerich, Matthew V; Carney, P Scott; Bhargava, Rohit

    2014-08-21

    Infrared spectroscopic imaging provides micron-scale spatial resolution with molecular contrast. While recent work demonstrates that sample morphology affects the recorded spectrum, considerably less attention has been focused on the effects of the optics, including the condenser and objective. This analysis is extremely important, since it will be possible to understand effects on recorded data and provides insight for reducing optical effects through rigorous microscope design. Here, we present a theoretical description and experimental results that demonstrate the effects of commonly-employed cassegranian optics on recorded spectra. We first combine an explicit model of image formation and a method for quantifying and visualizing the deviations in recorded spectra as a function of microscope optics. We then verify these simulations with measurements obtained from spatially heterogeneous samples. The deviation of the computed spectrum from the ideal case is quantified via a map which we call a deviation map. The deviation map is obtained as a function of optical elements by systematic simulations. Examination of deviation maps demonstrates that the optimal optical configuration for minimal deviation is contrary to prevailing practice in which throughput is maximized for an instrument without a sample. This report should be helpful for understanding recorded spectra as a function of the optics, the analytical limits of recorded data determined by the optical design, and potential routes for optimization of imaging systems.

  19. Resolution, sensitivity, and in vivo application of high-resolution computed tomography for titanium-coated polymethyl methacrylate (PMMA) dental implants.

    PubMed

    Cuijpers, Vincent M J I; Jaroszewicz, Jacub; Anil, Sukumaran; Al Farraj Aldosari, Abdullah; Walboomers, X Frank; Jansen, John A

    2014-03-01

    The aims of this study were (i) to determine the spatial resolution and sensitivity of micro- versus nano-computed tomography (CT) techniques and (ii) to validate micro- versus nano-CT in a dog dental implant model, comparative to histological analysis. To determine spatial resolution and sensitivity, standardized reference samples containing standardized nano- and microspheres were prepared in polymer and ceramic matrices. Thereafter, 10 titanium-coated polymer dental implants (3.2 mm in Ø by 4 mm in length) were placed in the mandible of Beagle dogs. Both micro- and nano-CT, as well as histological analyses, were performed. The reference samples confirmed the high resolution of the nano-CT system, which was capable of revealing sub-micron structures embedded in radiodense matrices. The dog implantation study and subsequent statistical analysis showed equal values for bone area and bone-implant contact measurements between micro-CT and histology. However, because of the limited sample size and field of view, nano-CT was not rendering reliable data representative of the entire bone-implant specimen. Micro-CT analysis is an efficient tool to quantitate bone healing parameters at the bone-implant interface, especially when using titanium-coated PMMA implants. Nano-CT is not suitable for such quantification, but reveals complementary morphological information rivaling histology, yet with the advantage of a 3D visualization. © 2013 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  20. Built-Up Area Detection from High-Resolution Satellite Images Using Multi-Scale Wavelet Transform and Local Spatial Statistics

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Zhang, Y.; Gao, J.; Yuan, Y.; Lv, Z.

    2018-04-01

    Recently, built-up area detection from high-resolution satellite images (HRSI) has attracted increasing attention because HRSI can provide more detailed object information. In this paper, multi-resolution wavelet transform and local spatial autocorrelation statistic are introduced to model the spatial patterns of built-up areas. First, the input image is decomposed into high- and low-frequency subbands by wavelet transform at three levels. Then the high-frequency detail information in three directions (horizontal, vertical and diagonal) are extracted followed by a maximization operation to integrate the information in all directions. Afterward, a cross-scale operation is implemented to fuse different levels of information. Finally, local spatial autocorrelation statistic is introduced to enhance the saliency of built-up features and an adaptive threshold algorithm is used to achieve the detection of built-up areas. Experiments are conducted on ZY-3 and Quickbird panchromatic satellite images, and the results show that the proposed method is very effective for built-up area detection.

Top