Sample records for micron-scale surface structure

  1. Continuous micron-scaled rope engineering using a rotating multi-nozzle electrospinning emitter

    NASA Astrophysics Data System (ADS)

    Zhang, Chunchen; Gao, Chengcheng; Chang, Ming-Wei; Ahmad, Zeeshan; Li, Jing-Song

    2016-10-01

    Electrospinning (ES) enables simple production of fibers for broad applications (e.g., biomedical engineering, energy storage, and electronics). However, resulting structures are predominantly random; displaying significant disordered fiber entanglement, which inevitably gives rise to structural variations and reproducibility on the micron scale. Surface and structural features on this scale are critical for biomaterials, tissue engineering, and pharmaceutical sciences. In this letter, a modified ES technique using a rotating multi-nozzle emitter is developed and utilized to fabricate continuous micron-scaled polycaprolactone (PCL) ropes, providing control on fiber intercalation (twist) and structural order. Micron-scaled ropes comprising 312 twists per millimeter are generated, and rope diameter and pitch length are regulated using polymer concentration and process parameters. Electric field simulations confirm vector and distribution mechanisms, which influence fiber orientation and deposition during the process. The modified fabrication system provides much needed control on reproducibility and fiber entanglement which is crucial for electrospun biomedical materials.

  2. Direct observation of electrothermal instability structures on intensely Ohmically heated aluminum with current flowing in a surface skin layer

    NASA Astrophysics Data System (ADS)

    Awe, Thomas

    2017-10-01

    Implosions on the Z Facility assemble high-energy-density plasmas for radiation effects and ICF experiments, but achievable stagnation pressures and temperatures are degraded by the Magneto-Rayleigh-Taylor (MRT) instability. While the beryllium liners (tubes) used in Magnetized Liner Inertial Fusion (MagLIF) experiments are astonishingly smooth (10 to 50 nm RMS roughness), they also contain distributed micron-scale resistive inclusions, and large MRT amplitudes are observed. Early in the implosion, an electrothermal instability (ETI) may provide a perturbation which greatly exceeds the initial surface roughness of the liner. Resistive inhomogeneities drive nonuniform current density and Joule heating, resulting in locally higher temperature, and thus still higher resistivity. Such unstable temperature and pressure growth produce density perturbations which seed MRT. For MagLIF liners, ETI seeding of MRT has been inferred by evaluating late-time MRT, but a direct observation of ETI is not made. ETI is directly observed on the surface of 1.0-mm-diameter solid Al rods pulsed to 1 MA in 100 ns via high resolution gated optical imaging (2 ns temporal and 3 micron spatial resolution). Aluminum 6061 alloy rods, with micron-scale resistive inclusions, consistently first demonstrate overheating from distinct, 10-micron-scale, sub-eV spots, which 5-10 ns later merge into azimuthally stretched elliptical spots and discrete strata (40-100 microns wide by 10 microns tall). Axial plasma filaments form shortly thereafter. Surface plasma can be suppressed for rods coated with dielectric, enabling extended study of the evolution of stratified ETI structures, and experimental inference of ETI growth rates. This fundamentally new and highly 3-dimensional dataset informs ETI physics, including when the ETI seed of MRT may be initiated.

  3. The Hydrophobicity and Adhesion of Heterogeneous Surfaces of Dual Nanometer and Micron Scale Structures

    DTIC Science & Technology

    2011-04-11

    scale post geometry. superhydrophobic , surface modification, adhesion, contact angle, Cassie, Wenzel, PDMS, CYTOP, Teflon AF, roll-off angle U U U U SAR...width > 1, the micro-scale features dominated the wetting state regardless of the nano-scale post geometry., KEYWORDS superhydrophobic , surface... superhydrophobicity can be routinely found in nature. Fo~ example, many plant leaves1.2, bird feathers3, insect wings and insect legs4 take advantage of

  4. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Novel Route to Fabrication of Metal-Sandwiched Nanoscale Tapered Structures

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Yu, Da-Peng

    2009-08-01

    Tapered dielectric structures in metal have exhibited extraordinary performance in both surface plasmon polariton (SPP) waveguiding and SPP focusing. This is crucial to plasmonic research and industrial plasmonic device integration. We present a method that facilitates easy fabrication of smooth-surfaced sub-micron tapered structures in large scale simply with electron beam lithography (EBL). When a PMMA layer is spin-coated on previously-EBL-defined PMMA structures, steep edges can be transformed into a declining slope to form tapered PMMA structures, scaled from 10 nm to 1000 nm. Despite the simplicity of our method, patterns with PMMA surface smoothness can be well-positioned and replicated in large numbers, which therefore gives scientists easy access to research on the properties of tapered structures.

  5. Derivation of scaled surface reflectances from AVIRIS data

    NASA Technical Reports Server (NTRS)

    Gao, Bo-Cai; Heidebrecht, Kathleen B.; Goetz, Alexander F. H.

    1993-01-01

    A method for retrieving 'scaled surface reflectances' assuming horizontal surfaces having Lambertian reflectances from spectral data collected by Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) is presented here. In this method, the integrated water vapor amount on a pixel by pixel basis is derived from the 0.94 micron and 1.14 micron water vapor absorption features. The transmission spectra of H2O, CO2, O3, N2O, CO, CH4, and O2 in the 0.4-2.5 micron region are simulated. The scattering effect due to atmospheric molecules and aerosols is modeled with the 5S computer code. The AVIRIS radiances are divided by solar irradiances above the atmosphere to obtain the apparent reflectances. The scaled surface reflectances are derived from the apparent reflectances using the simulated atmospheric gaseous transmittances and the simulated molecular and aerosol scattering data. The scaled surface reflectances differ from the real surface reflectances by a multiplicative factor. In order to convert the scaled surface reflectances into real surface reflectances, the slopes and aspects of the surfaces must be known.

  6. Programmable gradational micropatterning of functional materials using maskless lithography controlling absorption.

    PubMed

    Jung, Yushin; Lee, Howon; Park, Tae-Joon; Kim, Sungsik; Kwon, Sunghoon

    2015-10-22

    The demand for patterning functional materials precisely on surfaces of stimuli-responsive devices has increased in many research fields. In situ polymerization technology is one of the most convenient ways to place the functional materials on a desired location with micron-scale accuracy. To fabricate stimuli-responsive surfaces, controlling concentration of the functional material is much as important as micropatterning them. However, patterning and controlling concentration of the functional materials simultaneously requires an additional process, such as preparing multiple co-flow microfluidic structures and numbers of solutions with various concentrations. Despite applying these processes, fabricating heterogeneous patterns in large scale (millimeter scale) is still impossible. In this study, we propose an advanced in situ polymerization technique to pattern the surface in micron scale in a concentration-controlled manner. Because the concentration of the functional materials is manipulated by self-assembly on the surface, a complex pattern could be easily fabricated without any additional procedure. The complex pattern is pre-designed with absorption amount of the functional material, which is pre-determined by the duration of UV exposure. We show that the resolution reaches up to 2.5 μm and demonstrate mm-scale objects, maintaining the same resolution. We also fabricated Multi-bit barcoded micro particles verify the flexibility of our system.

  7. Bone bonding at natural and biomaterial surfaces.

    PubMed

    Davies, John E

    2007-12-01

    Bone bonding is occurring in each of us and all other terrestrial vertebrates throughout life at bony remodeling sites. The surface created by the bone-resorbing osteoclast provides a three-dimensionally complex surface with which the cement line, the first matrix elaborated during de novo bone formation, interdigitates and is interlocked. The structure and composition of this interfacial bony matrix has been conserved during evolution across species; and we have known for over a decade that this interfacial matrix can be recapitulated at a biomaterial surface implanted in bone, given appropriate healing conditions. No evidence has emerged to suggest that bone bonding to artificial materials is any different from this natural biological process. Given this understanding it is now possible to explain why bone-bonding biomaterials are not restricted to the calcium-phosphate-based bioactive materials as was once thought. Indeed, in the absence of surface porosity, calcium phosphate biomaterials are not bone bonding. On the contrary, non-bonding materials can be rendered bone bonding by modifying their surface topography. This paper argues that the driving force for bone bonding is bone formation by contact osteogenesis, but that this has to occur on a sufficiently stable recipient surface which has micron-scale surface topography with undercuts in the sub-micron scale-range.

  8. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration.

    PubMed

    Wang, Mian; Favi, Pelagie; Cheng, Xiaoqian; Golshan, Negar H; Ziemer, Katherine S; Keidar, Michael; Webster, Thomas J

    2016-12-01

    Three-dimensional (3D) printing is a new fabrication method for tissue engineering which can precisely control scaffold architecture at the micron-scale. However, scaffolds not only need 3D biocompatible structures that mimic the micron structure of natural tissues, they also require mimicking of the nano-scale extracellular matrix properties of the tissue they intend to replace. In order to achieve this, the objective of the present in vitro study was to use cold atmospheric plasma (CAP) as a quick and inexpensive way to modify the nano-scale roughness and chemical composition of a 3D printed scaffold surface. Water contact angles of a normal 3D printed poly-lactic-acid (PLA) scaffold dramatically dropped after CAP treatment from 70±2° to 24±2°. In addition, the nano-scale surface roughness (Rq) of the untreated 3D PLA scaffolds drastically increased (up to 250%) after 1, 3, and 5min of CAP treatment from 1.20nm to 10.50nm, 22.90nm, and 27.60nm, respectively. X-ray photoelectron spectroscopy (XPS) analysis showed that the ratio of oxygen to carbon significantly increased after CAP treatment, which indicated that the CAP treatment of PLA not only changed nano-scale roughness but also chemistry. Both changes in hydrophilicity and nano-scale roughness demonstrated a very efficient plasma treatment, which in turn significantly promoted both osteoblast (bone forming cells) and mesenchymal stem cell attachment and proliferation. These promising results suggest that CAP surface modification may have potential applications for enhancing 3D printed PLA bone tissue engineering materials (and all 3D printed materials) in a quick and an inexpensive manner and, thus, should be further studied. Three-dimensional (3D) printing is a new fabrication method for tissue engineering which can precisely control scaffold architecture at the micron-scale. Although their success is related to their ability to exactly mimic the structure of natural tissues and control mechanical properties of scaffolds, 3D printed scaffolds have shortcomings such as limited mimicking of the nanoscale extracellular matrix properties of the tissue they intend to replace. In order to achieve this, the objective of the present in vitro study was to use cold atmospheric plasma (CAP) as a quick and inexpensive way to modify the nanoscale roughness and chemical composition of a 3D printed scaffold surface. The results indicated that using CAP surface modification could achieve a positive change of roughness and surface chemistry. Results showed that both hydrophilicity and nanoscale roughness changes to these scaffolds after CAP treatment played an important role in enhancing bone cell and mesenchymal stem cell attachment and functions. More importantly, this technique could be used for many 3D printed polymer-based biomaterials to improve their properties for numerous applications. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. [Corrosion resistant properties of different anodized microtopographies on titanium surfaces].

    PubMed

    Fangjun, Huo; Li, Xie; Xingye, Tong; Yueting, Wang; Weihua, Guo; Weidong, Tian

    2015-12-01

    To investigate the corrosion resistant properties of titanium samples prepared by anodic oxidation with different surface morphologies. Pure titanium substrates were treated by anodic oxidation to obtain porous titanium films in micron, submicron, and micron-submicron scales. The surface morphologies, coating cross-sectional morphologies, crystalline structures, and surface roughness of these samples were characterized. Electrochemical technique was used to measure the corrosion potential (Ecorr), current density of corrosion (Icorr), and polarization resistance (Rp) of these samples in a simulated body fluid. Pure titanium could be modified to exhibit different surface morphologies by the anodic oxidation technique. The Tafel curve results showed that the technique can improve the corrosion resistance of pure titanium. Furthermore, the corrosion resistance varied with different surface morphologies. The submicron porous surface sample demonstrated the best corrosion resistance, with maximal Ecorr and Rp and minimal Icorr. Anodic oxidation technology can improve the corrosion resistance of pure titanium in a simulated body fluid. The submicron porous surface sample exhibited the best corrosion resistance because of its small surface area and thick barrier layer.

  10. Age-related changes in the plasticity and toughness of human cortical bone at multiple length-scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zimmermann, Elizabeth A.; Schaible, Eric; Bale, Hrishikesh

    2011-08-10

    The structure of human cortical bone evolves over multiple length-scales from its basic constituents of collagen and hydroxyapatite at the nanoscale to osteonal structures at nearmillimeter dimensions, which all provide the basis for its mechanical properties. To resist fracture, bone’s toughness is derived intrinsically through plasticity (e.g., fibrillar sliding) at structural-scales typically below a micron and extrinsically (i.e., during crack growth) through mechanisms (e.g., crack deflection/bridging) generated at larger structural-scales. Biological factors such as aging lead to a markedly increased fracture risk, which is often associated with an age-related loss in bone mass (bone quantity). However, we find that age-relatedmore » structural changes can significantly degrade the fracture resistance (bone quality) over multiple lengthscales. Using in situ small-/wide-angle x-ray scattering/diffraction to characterize sub-micron structural changes and synchrotron x-ray computed tomography and in situ fracture-toughness measurements in the scanning electron microscope to characterize effects at micron-scales, we show how these age-related structural changes at differing size-scales degrade both the intrinsic and extrinsic toughness of bone. Specifically, we attribute the loss in toughness to increased non-enzymatic collagen cross-linking which suppresses plasticity at nanoscale dimensions and to an increased osteonal density which limits the potency of crack-bridging mechanisms at micron-scales. The link between these processes is that the increased stiffness of the cross-linked collagen requires energy to be absorbed by “plastic” deformation at higher structural levels, which occurs by the process of microcracking.« less

  11. Superhydrophobic ceramic coating: Fabrication by solution precursor plasma spray and investigation of wetting behavior.

    PubMed

    Xu, Pengyun; Coyle, Thomas W; Pershin, Larry; Mostaghimi, Javad

    2018-08-01

    Superhydrophobic surfaces are often created by fabricating suitable surface structures from low-surface-energy organic materials using processes that are not suitable for large-scale fabrication. Rare earth oxides (REO) exhibit hydrophobic behavior that is unusual among oxides. Solution precursor plasma spray (SPPS) deposition is a rapid, one-step process that can produce ceramic coatings with fine scale columnar structures. Manipulation of the structure of REO coatings through variation in deposition conditions may allow the wetting behavior to be controlled. Yb 2 O 3 coatings were fabricated via SPPS. Coating structure was investigated by scanning electron microscopy, digital optical microscopy, and x-ray diffraction. The static water contact angle and roll-off angle were measured, and the dynamic impact of water droplets on the coating surface recorded. Superhydrophobic behavior was observed; the best coating exhibited a water contact angle of ∼163°, a roll-off angle of ∼6°, and complete droplet rebound behavior. All coatings were crystalline Yb 2 O 3 , with a nano-scale roughness superimposed on a micron-scale columnar structure. The wetting behaviors of coatings deposited at different standoff distances were correlated with the coating microstructures and surface topographies. The self-cleaning, water flushing and water jetting tests were conducted and further demonstrated the excellent and durable hydrophobicity of the coatings. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Nondestructive evaluation of structural ceramics by photoacoustic microscopy

    NASA Technical Reports Server (NTRS)

    Khandelwal, Pramod K.

    1987-01-01

    A photoacoustic microscopy (PAM) digital imaging system was developed and utilized to characterize silicon nitride material at the various stages of the ceramic fabrication process. Correlation studies revealed that photoacoustic microscopy detected failure initiating defects in substantially more specimens than microradiography and ultrasonic techniques. Photoacoustic microscopy detected 10 to 100 micron size surface and subsurface pores and inclusions, respectively, up to 80 microns below the interrogating surface in machined sintered silicon nitride. Microradiography detected 50 micron diameter fracture controlling pores and inclusions. Subsurface holes were detected up to a depth of 570 microns and 1.00 mm in sintered silicon nitride and silicon carbide, respectively. Seeded voids of 20 to 30 micron diameters at the surface and 50 microns below the interrogating surface were detected by photoacoustic microscopy and microradiography with 1 percent X-ray thickness sensitivity. Tight surface cracks of 96 micron length x 48 micron depth were detected by photoacoustic microscopy. PAM volatilized and removed material in the green state which resulted in linear shallow microcracks after sintering. This significantly limits the use of PAM as an in-process NDE technique.

  13. Statistical scaling of pore-scale Lagrangian velocities in natural porous media.

    PubMed

    Siena, M; Guadagnini, A; Riva, M; Bijeljic, B; Pereira Nunes, J P; Blunt, M J

    2014-08-01

    We investigate the scaling behavior of sample statistics of pore-scale Lagrangian velocities in two different rock samples, Bentheimer sandstone and Estaillades limestone. The samples are imaged using x-ray computer tomography with micron-scale resolution. The scaling analysis relies on the study of the way qth-order sample structure functions (statistical moments of order q of absolute increments) of Lagrangian velocities depend on separation distances, or lags, traveled along the mean flow direction. In the sandstone block, sample structure functions of all orders exhibit a power-law scaling within a clearly identifiable intermediate range of lags. Sample structure functions associated with the limestone block display two diverse power-law regimes, which we infer to be related to two overlapping spatially correlated structures. In both rocks and for all orders q, we observe linear relationships between logarithmic structure functions of successive orders at all lags (a phenomenon that is typically known as extended power scaling, or extended self-similarity). The scaling behavior of Lagrangian velocities is compared with the one exhibited by porosity and specific surface area, which constitute two key pore-scale geometric observables. The statistical scaling of the local velocity field reflects the behavior of these geometric observables, with the occurrence of power-law-scaling regimes within the same range of lags for sample structure functions of Lagrangian velocity, porosity, and specific surface area.

  14. Organic pi-stacking Semiconducting Material: Design, Synthesis and the Analysis of Structure and Properties

    NASA Astrophysics Data System (ADS)

    Wilkinson, Taylor Marie

    Oil shales are naturally occurring heterogeneous composites with micro-scale, micro-structural variations. They may be found throughout the world, with large deposits located in the United States; shales are composed of organic matter known as kerogen, clays, calcite, quartz, and other minerals. Typically their microstructure consists of a composite network where the organic matter is housed in open and closed pores between different mineral phases that range in size from sub-micron to several microns. Currently, it is unknown how the micro-scale heterogeneity of the shale will impact hydraulic fracture, which is the key extraction technique used for these materials. In this thesis, high-resolution topographic and modulus maps were collected from oil shales with the use of new nanoindentation techniques in order to characterize the micro-scale, micro-structural variations that are typical for these materials. Dynamic modulus mapping allows for substantially higher spatial resolution of properties across grains and intragranular regions of kerogen than has previously been produced with standard quasistatic indentation methods. For accurate scanning, surface variations were minimized to maintain uniform contact of the tip and appropriate quasi-static and dynamic forces were used to maintain displacement amplitudes that avoid plastic deformation of the sample. Sample preparation to minimize surface roughness was completed with the use of focused ion beam milling, however, some variation was still noted. Due to the large changes in modulus values between the constituents of the shale, there were variations in the recorded displacement amplitude values as well. In order to distinguish biased data due to surface topography or a lack of displacement amplitude, filtering techniques were developed, optimization and implemented. Variations in surface topography, which resulted in the indenter tip not being able to accurately resolve surface features, and inadequate displacement amplitude values that prohibit differentiation between material changes and the noise floor of the machine, were removed. These filters resulted in a more valid interpretation of the micro-scale, micro-structural features and arrangement, as well as the mechanical properties, that are common to oil shales.

  15. Large area sub-micron chemical imaging of magnesium in sea urchin teeth.

    PubMed

    Masic, Admir; Weaver, James C

    2015-03-01

    The heterogeneous and site-specific incorporation of inorganic ions can profoundly influence the local mechanical properties of damage tolerant biological composites. Using the sea urchin tooth as a research model, we describe a multi-technique approach to spatially map the distribution of magnesium in this complex multiphase system. Through the combined use of 16-bit backscattered scanning electron microscopy, multi-channel energy dispersive spectroscopy elemental mapping, and diffraction-limited confocal Raman spectroscopy, we demonstrate a new set of high throughput, multi-spectral, high resolution methods for the large scale characterization of mineralized biological materials. In addition, instrument hardware and data collection protocols can be modified such that several of these measurements can be performed on irregularly shaped samples with complex surface geometries and without the need for extensive sample preparation. Using these approaches, in conjunction with whole animal micro-computed tomography studies, we have been able to spatially resolve micron and sub-micron structural features across macroscopic length scales on entire urchin tooth cross-sections and correlate these complex morphological features with local variability in elemental composition. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. pH-Driven Reversible Self-Assembly of Micron-Scale DNA Scaffolds.

    PubMed

    Green, Leopold N; Amodio, Alessia; Subramanian, Hari K K; Ricci, Francesco; Franco, Elisa

    2017-12-13

    Inspired by cytoskeletal scaffolds that sense and respond dynamically to environmental changes and chemical inputs with a unique capacity for reconfiguration, we propose a strategy that allows the dynamic and reversible control of the growth and breakage of micron-scale synthetic DNA structures upon pH changes. We do so by rationally designing a pH-responsive system composed of synthetic DNA strands that act as pH sensors, regulators, and structural elements. Sensor strands can dynamically respond to pH changes and route regulatory strands to direct the self-assembly of structural elements into tubular structures. This example represents the first demonstration of the reversible assembly and disassembly of micron-scale DNA scaffolds using an external chemical input other than DNA. The capacity to reversibly modulate nanostructure size may promote the development of smart devices for catalysis or drug-delivery applications.

  17. A multi-topographical-instrument analysis: the breast implant texture measurement

    NASA Astrophysics Data System (ADS)

    Garabédian, Charles; Delille, Rémi; Deltombe, Raphaël; Anselme, Karine; Atlan, Michael; Bigerelle, Maxence

    2017-06-01

    Capsular contracture is a major complication after implant-based breast augmentation. To address this tissue reaction, most manufacturers texture the outer breast implant surfaces with calibrated salt grains. However, the analysis of these surfaces on sub-micron scales has been under-studied. This scale range is of interest to understand the future of silicone particles potentially released from the implant surface and the aetiology of newly reported complications, such as Anaplastic Large Cell Lymphoma. The surface measurements were accomplished by tomography and by two optical devices based on interferometry and on focus variation. The robustness of the measurements was investigated from the tissue scale to the cellular scale. The macroscopic pore-based structure of the textured implant surfaces is consistently measured by the three instruments. However, the multi-scale analyses start to be discrepant in a scale range between 50 µm and 500 µm characteristic of a finer secondary roughness regardless of the pore shape. The focus variation and the micro-tomography would fail to capture this roughness regime because of a focus-related optical artefact and of step-shaped artefact respectively.

  18. Very high-cycle fatigue failure in micron-scale polycrystalline silicon films: Effects of environment and surface oxide thickness

    NASA Astrophysics Data System (ADS)

    Alsem, D. H.; Timmerman, R.; Boyce, B. L.; Stach, E. A.; De Hosson, J. Th. M.; Ritchie, R. O.

    2007-01-01

    Fatigue failure in micron-scale polycrystalline silicon structural films, a phenomenon that is not observed in bulk silicon, can severely impact the durability and reliability of microelectromechanical system devices. Despite several studies on the very high-cycle fatigue behavior of these films (up to 1012cycles), there is still an on-going debate on the precise mechanisms involved. We show here that for devices fabricated in the multiuser microelectromechanical system process (MUMPs) foundry and Sandia Ultra-planar, Multi-level MEMS Technology (SUMMiT V™) process and tested under equi-tension/compression loading at ˜40kHz in different environments, stress-lifetime data exhibit similar trends in fatigue behavior in ambient room air, shorter lifetimes in higher relative humidity environments, and no fatigue failure at all in high vacuum. The transmission electron microscopy of the surface oxides in the test samples shows a four- to sixfold thickening of the surface oxide at stress concentrations after fatigue failure, but no thickening after overload fracture in air or after fatigue cycling in vacuo. We find that such oxide thickening and premature fatigue failure (in air) occur in devices with initial oxide thicknesses of ˜4nm (SUMMiT V™) as well as in devices with much thicker initial oxides ˜20nm (MUMPs). Such results are interpreted and explained by a reaction-layer fatigue mechanism. Specifically, moisture-assisted subcritical cracking within a cyclic stress-assisted thickened oxide layer occurs until the crack reaches a critical size to cause catastrophic failure of the entire device. The entirety of the evidence presented here strongly indicates that the reaction-layer fatigue mechanism is the governing mechanism for fatigue failure in micron-scale polycrystalline silicon thin films.

  19. Microscopic Structure of Metal Whiskers

    NASA Astrophysics Data System (ADS)

    Borra, Vamsi; Georgiev, Daniel G.; Karpov, V. G.; Shvydka, Diana

    2018-05-01

    We present TEM images of the interior of metal whiskers (MWs) grown on electroplated Sn films. Along with earlier published information, our observations focus on a number of questions, such as, why MWs' diameters are in the micron range (significantly exceeding the typical nanosizes of nuclei in solids), why the diameters remain practically unchanged in the course of MW growth, what the nature of MW diameter stochasticity is, and what the origin of the well-known striation structure of MW side surfaces is. In an attempt to address such questions, we perform an in-depth study of MW structure at the nanoscale by detaching a MW from its original film, reducing its size to a thin slice by cutting its sides by a focused ion beam, and performing TEM on that structure. Also, we examine the root of the MW and Cu-Sn interface for the intermetallic compounds. Our TEM observations reveal a rich nontrivial morphology suggesting that MWs may consist of many side-by-side grown filaments. This structure appears to extend to the outside whisker surface and be the reason for the striation. In addition, we put forward a theory where nucleation of multiple thin metal needles results in micron-scale and larger MW diameters. This theory is developed in the average field approximation similar to the roughening transitions of metal surfaces. The theory also predicts MW nucleation barriers and other observed features.

  20. Venus Monitoring Camera (VMC/VEx) 1 micron emissivity and Magellan microwave properties of crater-related radar-dark parabolas and other terrains

    NASA Astrophysics Data System (ADS)

    Basilevsky, A. T.; Shalygina, O. S.; Bondarenko, N. V.; Shalygin, E. V.; Markiewicz, W. J.

    2017-09-01

    The aim of this work is a comparative study of several typical radar-dark parabolas, the neighboring plains and some other geologic units seen in the study areas which include craters Adivar, Bassi, Bathsheba, du Chatelet and Sitwell, at two depths scales: the upper several meters of the study object available through the Magellan-based microwave (at 12.6 cm wavelength) properties (microwave emissivity, Fresnel reflectivity, large-scale surface roughness, and radar cross-section), and the upper hundreds microns of the object characterized by the 1 micron emissivity resulted from the analysis of the near infra-red (NIR) irradiation of the night-side of the Venusian surface measured by the Venus Monitoring Camera (VMC) on-board of Venus Express (VEx).

  1. Micro and sub-micron surface structuring of AZ31 by laser re-melting and dimpling

    NASA Astrophysics Data System (ADS)

    Furlan, Valentina; Demir, Ali Gökhan; Previtali, Barbara

    2015-12-01

    In this work, the use of ns-pulsed fibre laser for surface structuring of AZ31 Mg alloy is investigated. Surface re-melting was employed to change surface morphology, especially in terms of surface roughness. Dimpling by percussion microdrilling was investigated to control the hole geometry.. With surface remelting mono-directional and homogeneous surfaces were obtained with Fl<500 J/cm2. Above 500 J/cm2 particle generation was observed, which induced sub-micron structure growth with nano-fibrous features. Moreover, surface roughness could be controlled below the initial value and much higher. With dimpling, transformation from gentle to strong ablation was observed at F0=10.3 J/cm2. XRD analysis was employed to link oxide growth to the surface morphology. Tensile tests were carried out to assess the damage on the mechanical properties after surface structuring.

  2. Formation of self-organized domain structures with charged domain walls in lithium niobate with surface layer modified by proton exchange

    NASA Astrophysics Data System (ADS)

    Shur, V. Ya.; Akhmatkhanov, A. R.; Chuvakova, M. A.; Dolbilov, M. A.; Zelenovskiy, P. S.; Lobov, A. I.

    2017-03-01

    We have studied the self-organized dendrite domain structures appeared as a result of polarization reversal in the uniform field in lithium niobate single crystals with the artificial surface layer created by proton exchange. We have revealed the self-organized sub-micron scale dendrite domain patterns consisting of domain stripes oriented along the X crystallographic directions separated by arrays of dashed residual domains at the surface by scanning probe microscopy. Raman confocal microscopy allowed visualizing the quasi-regular dendrite domain structures with similar geometry in the vicinity of both polar surfaces. The depth of the structure was about 20 μm for Z+ polar surface and 70 μm for Z- one. According to the proposed mechanism, the dendrite structure formation at the surface was related to the ineffective screening of the residual depolarization field. The computer simulation of the structure formation based on the cellular automata model with probabilistic switching rule proved the eligibility of the proposed scheme, the simulated dendrite domain patterns at various depths being similar to the experimental ones.

  3. Self-Assembly of Hierarchical DNA Nanotube Architectures with Well-Defined Geometries.

    PubMed

    Jorgenson, Tyler D; Mohammed, Abdul M; Agrawal, Deepak K; Schulman, Rebecca

    2017-02-28

    An essential motif for the assembly of biological materials such as actin at the scale of hundreds of nanometers and beyond is a network of one-dimensional fibers with well-defined geometry. Here, we demonstrate the programmed organization of DNA filaments into micron-scale architectures where component filaments are oriented at preprogrammed angles. We assemble L-, T-, and Y-shaped DNA origami junctions that nucleate two or three micron length DNA nanotubes at high yields. The angles between the nanotubes mirror the angles between the templates on the junctions, demonstrating that nanoscale structures can control precisely how micron-scale architectures form. The ability to precisely program filament orientation could allow the assembly of complex filament architectures in two and three dimensions, including circuit structures, bundles, and extended materials.

  4. Laser jetting of femto-liter metal droplets for high resolution 3D printed structures

    NASA Astrophysics Data System (ADS)

    Zenou, M.; Sa'Ar, A.; Kotler, Z.

    2015-11-01

    Laser induced forward transfer (LIFT) is employed in a special, high accuracy jetting regime, by adequately matching the sub-nanosecond pulse duration to the metal donor layer thickness. Under such conditions, an effective solid nozzle is formed, providing stability and directionality to the femto-liter droplets which are printed from a large gap in excess of 400 μm. We illustrate the wide applicability of this method by printing several 3D metal objects. First, very high aspect ratio (A/R > 20), micron scale, copper pillars in various configuration, upright and arbitrarily bent, then a micron scale 3D object composed of gold and copper. Such a digital printing method could serve the generation of complex, multi-material, micron-scale, 3D materials and novel structures.

  5. The spectroscopy and chemical dynamics of microparticles explored using an ultrasonic trap.

    PubMed

    Mason, N J; Drage, E A; Webb, S M; Dawes, A; McPheat, R; Hayes, G

    2008-01-01

    Microsized particles play an important role in many diverse areas of science and technology, for example, surface reactions of micron-sized particles play a key role in astrochemistry, plasma reactors and atmospheric chemistry. To date much of our knowledge of such surface chemistry is derived from 'traditional' surface science-based research. However, the large surface area and morphology of surface material commonly used in such surface science techniques may not necessarily mimic that on the surface of micron/nano scale particles. Hence, a new generation of experiments in which the spectroscopy (e.g., albedo) and chemical reactivity of micron-sized particles can be studied directly must be developed. One, as yet underexploited, non-invasive technique is the use of ultrasonic levitation. In this article, we describe the operation of an 'ultrasonic trap' to store and study the physical and chemical properties of microparticles.

  6. The evolution of slip surface roughness during earthquake propagation in carbonate faults

    NASA Astrophysics Data System (ADS)

    Zhu, B.; De Paola, N.; Llewellin, E. W.; Holdsworth, R.

    2014-12-01

    Slip surface roughness is understood to control the dynamics of earthquake propagation. Quantifying the micro- and nano-scale roughness of slip surfaces can give insight into the grain-scale processes controlling the strength of faults during earthquake propagation. Friction experiments were performed on fine-grained calcite gouges, at speed 1 ms-1, normal stress 18 MPa, displacements 0.009-1.46 m, and room temperature and humidity. Results show a two stage-evolution (S1-2) of the fault strength, with an initial increase up to peak value 0.82 (S1), followed by a sudden decrease to a low, steady-state value 0.18 (S2). Samples retrieved at the end of S1 show the development of a cohesive slip zone (SZ), made of micron-scale, angular clasts formed by brittle fracturing and cataclasis. The SZ of samples deformed up to S2, is composed of nanograin aggregates which exhibit polygonal grain boundaries indicating high temperature grain boundary sliding creep deformation. In both cases, the SZ is bounded by a sharply defined slip surface. The 3-D geometry of seven experimental slip surfaces (40μm×40μm) has been reconstructed by digital processing of sets of 1800 images of SZ cross sections acquired at 20 nm intervals perpendicular to the slip direction, using a slicing (Focussed Ion Beam) and viewing (Field Emission Scanning Electron Microscope) technique. Spectrum power density analyses show that nano- and micron-scale slip surface roughness is anisotropic for both S1 and S2 slip surfaces. At the nano- and micron-scale, root mean square values decrease with length for S1 slip surfaces, but only slightly for S2 surfaces, and are anisotropic in the slip-normal and slip-parallel directions. The anisotropy is reduced at the nano-scale, although S2 slip surfaces are still smoother parallel to slip than normal to slip. Hurst exponents vary through scales, and are anisotropic in the directions parallel and normal to slip. Variable Hurst exponents indicate that slip surface roughness is scale-dependent with anisotropic, not self-affine behaviour at the micro/nano-scale, in contrast to the self-affine behaviour inferred at the mm to km scales. Dynamic weakening and creep deformation, observed during S2, coincide with an evolution towards less anisotropic and scale-dependent slip surface roughness at the nanoscale.

  7. Resistive switching characteristics of polymer non-volatile memory devices in a scalable via-hole structure.

    PubMed

    Kim, Tae-Wook; Choi, Hyejung; Oh, Seung-Hwan; Jo, Minseok; Wang, Gunuk; Cho, Byungjin; Kim, Dong-Yu; Hwang, Hyunsang; Lee, Takhee

    2009-01-14

    The resistive switching characteristics of polyfluorene-derivative polymer material in a sub-micron scale via-hole device structure were investigated. The scalable via-hole sub-microstructure was fabricated using an e-beam lithographic technique. The polymer non-volatile memory devices varied in size from 40 x 40 microm(2) to 200 x 200 nm(2). From the scaling of junction size, the memory mechanism can be attributed to the space-charge-limited current with filamentary conduction. Sub-micron scale polymer memory devices showed excellent resistive switching behaviours such as a large ON/OFF ratio (I(ON)/I(OFF) approximately 10(4)), excellent device-to-device switching uniformity, good sweep endurance, and good retention times (more than 10,000 s). The successful operation of sub-micron scale memory devices of our polyfluorene-derivative polymer shows promise to fabricate high-density polymer memory devices.

  8. Non-contact tensile viscoelastic characterization of microscale biological materials

    NASA Astrophysics Data System (ADS)

    Li, Yuhui; Hong, Yuan; Xu, Guang-Kui; Liu, Shaobao; Shi, Qiang; Tang, Deding; Yang, Hui; Genin, Guy M.; Lu, Tian Jian; Xu, Feng

    2018-06-01

    Many structures and materials in nature and physiology have important "meso-scale" structures at the micron length-scale whose tensile responses have proven difficult to characterize mechanically. Although techniques such as atomic force microscopy and micro- and nano-identation are mature for compression and indentation testing at the nano-scale, and standard uniaxial and shear rheometry techniques exist for the macroscale, few techniques are applicable for tensile-testing at the micrometre-scale, leaving a gap in our understanding of hierarchical biomaterials. Here, we present a novel magnetic mechanical testing (MMT) system that enables viscoelastic tensile testing at this critical length scale. The MMT system applies non-contact loading, avoiding gripping and surface interaction effects. We demonstrate application of the MMT system to the first analyses of the pure tensile responses of several native and engineered tissue systems at the mesoscale, showing the broad potential of the system for exploring micro- and meso-scale analysis of structured and hierarchical biological systems.

  9. Non-contact tensile viscoelastic characterization of microscale biological materials

    NASA Astrophysics Data System (ADS)

    Li, Yuhui; Hong, Yuan; Xu, Guang-Kui; Liu, Shaobao; Shi, Qiang; Tang, Deding; Yang, Hui; Genin, Guy M.; Lu, Tian Jian; Xu, Feng

    2018-01-01

    Many structures and materials in nature and physiology have important "meso-scale" structures at the micron length-scale whose tensile responses have proven difficult to characterize mechanically. Although techniques such as atomic force microscopy and micro- and nano-identation are mature for compression and indentation testing at the nano-scale, and standard uniaxial and shear rheometry techniques exist for the macroscale, few techniques are applicable for tensile-testing at the micrometre-scale, leaving a gap in our understanding of hierarchical biomaterials. Here, we present a novel magnetic mechanical testing (MMT) system that enables viscoelastic tensile testing at this critical length scale. The MMT system applies non-contact loading, avoiding gripping and surface interaction effects. We demonstrate application of the MMT system to the first analyses of the pure tensile responses of several native and engineered tissue systems at the mesoscale, showing the broad potential of the system for exploring micro- and meso-scale analysis of structured and hierarchical biological systems.

  10. Biogeography of a human oral microbiome at the micron scale

    PubMed Central

    Mark Welch, Jessica L.; Rossetti, Blair J.; Rieken, Christopher W.; Dewhirst, Floyd E.; Borisy, Gary G.

    2016-01-01

    The spatial organization of complex natural microbiomes is critical to understanding the interactions of the individual taxa that comprise a community. Although the revolution in DNA sequencing has provided an abundance of genomic-level information, the biogeography of microbiomes is almost entirely uncharted at the micron scale. Using spectral imaging fluorescence in situ hybridization as guided by metagenomic sequence analysis, we have discovered a distinctive, multigenus consortium in the microbiome of supragingival dental plaque. The consortium consists of a radially arranged, nine-taxon structure organized around cells of filamentous corynebacteria. The consortium ranges in size from a few tens to a few hundreds of microns in radius and is spatially differentiated. Within the structure, individual taxa are localized at the micron scale in ways suggestive of their functional niche in the consortium. For example, anaerobic taxa tend to be in the interior, whereas facultative or obligate aerobes tend to be at the periphery of the consortium. Consumers and producers of certain metabolites, such as lactate, tend to be near each other. Based on our observations and the literature, we propose a model for plaque microbiome development and maintenance consistent with known metabolic, adherence, and environmental considerations. The consortium illustrates how complex structural organization can emerge from the micron-scale interactions of its constituent organisms. The understanding that plaque community organization is an emergent phenomenon offers a perspective that is general in nature and applicable to other microbiomes. PMID:26811460

  11. Metasurface Freeform Nanophotonics.

    PubMed

    Zhan, Alan; Colburn, Shane; Dodson, Christopher M; Majumdar, Arka

    2017-05-10

    Freeform optics aims to expand the toolkit of optical elements by allowing for more complex phase geometries beyond rotational symmetry. Complex, asymmetric curvatures are employed to enhance the performance of optical components while minimizing their size. Unfortunately, these high curvatures and complex forms are often difficult to manufacture with current technologies, especially at the micron scale. Metasurfaces are planar sub-wavelength structures that can control the phase, amplitude, and polarization of incident light, and can thereby mimic complex geometric curvatures on a flat, wavelength-scale thick surface. We present a methodology for designing analogues of freeform optics using a silicon nitride based metasurface platform for operation at visible wavelengths. We demonstrate a cubic phase plate with a point spread function exhibiting enhanced depth of field over 300 micron along the optical axis with potential for performing metasurface-based white light imaging, and an Alvarez lens with a tunable focal length range of over 2.5 mm corresponding to a change in optical power of ~1600 diopters with 100 micron of total mechanical displacement. The adaptation of freeform optics to a sub-wavelength metasurface platform allows for further miniaturization of optical components and offers a scalable route toward implementing near-arbitrary geometric curvatures in nanophotonics.

  12. Uncovering three-dimensional gradients in fibrillar orientation in an impact-resistant biological armour.

    PubMed

    Zhang, Y; Paris, O; Terrill, N J; Gupta, H S

    2016-05-23

    The complex hierarchical structure in biological and synthetic fibrous nanocomposites entails considerable difficulties in the interpretation of the crystallographic texture from diffraction data. Here, we present a novel reconstruction method to obtain the 3D distribution of fibres in such systems. An analytical expression is derived for the diffraction intensity from fibres, explaining the azimuthal intensity distribution in terms of the angles of the three dimensional fibre orientation distributions. The telson of stomatopod (mantis shrimp) serves as an example of natural biological armour whose high impact resistance property is believed to arise from the hierarchical organization of alpha chitin nanofibrils into fibres and twisted plywood (Bouligand) structures at the sub-micron and micron scale. Synchrotron microfocus scanning X-ray diffraction data on stomatopod telson were used as a test case to map the 3D fibre orientation across the entire tissue section. The method is applicable to a range of biological and biomimetic structures with graded 3D fibre texture at the sub-micron and micron length scales.

  13. Uncovering three-dimensional gradients in fibrillar orientation in an impact-resistant biological armour

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Paris, O.; Terrill, N. J.; Gupta, H. S.

    2016-05-01

    The complex hierarchical structure in biological and synthetic fibrous nanocomposites entails considerable difficulties in the interpretation of the crystallographic texture from diffraction data. Here, we present a novel reconstruction method to obtain the 3D distribution of fibres in such systems. An analytical expression is derived for the diffraction intensity from fibres, explaining the azimuthal intensity distribution in terms of the angles of the three dimensional fibre orientation distributions. The telson of stomatopod (mantis shrimp) serves as an example of natural biological armour whose high impact resistance property is believed to arise from the hierarchical organization of alpha chitin nanofibrils into fibres and twisted plywood (Bouligand) structures at the sub-micron and micron scale. Synchrotron microfocus scanning X-ray diffraction data on stomatopod telson were used as a test case to map the 3D fibre orientation across the entire tissue section. The method is applicable to a range of biological and biomimetic structures with graded 3D fibre texture at the sub-micron and micron length scales.

  14. Uncovering three-dimensional gradients in fibrillar orientation in an impact-resistant biological armour

    PubMed Central

    Zhang, Y.; Paris, O.; Terrill, N. J.; Gupta, H. S.

    2016-01-01

    The complex hierarchical structure in biological and synthetic fibrous nanocomposites entails considerable difficulties in the interpretation of the crystallographic texture from diffraction data. Here, we present a novel reconstruction method to obtain the 3D distribution of fibres in such systems. An analytical expression is derived for the diffraction intensity from fibres, explaining the azimuthal intensity distribution in terms of the angles of the three dimensional fibre orientation distributions. The telson of stomatopod (mantis shrimp) serves as an example of natural biological armour whose high impact resistance property is believed to arise from the hierarchical organization of alpha chitin nanofibrils into fibres and twisted plywood (Bouligand) structures at the sub-micron and micron scale. Synchrotron microfocus scanning X-ray diffraction data on stomatopod telson were used as a test case to map the 3D fibre orientation across the entire tissue section. The method is applicable to a range of biological and biomimetic structures with graded 3D fibre texture at the sub-micron and micron length scales. PMID:27211574

  15. Effect of micronization on the physicochemical properties of insoluble dietary fiber from citrus (Citrus junos Sieb. ex Tanaka) pomace.

    PubMed

    Ye, Fayin; Tao, Bingbing; Liu, Jia; Zou, Yan; Zhao, Guohua

    2016-04-01

    The aim of this work was to study the effect of micronization (mechanical and jet grindings) on the physicochemical properties of the insoluble dietary fiber from citrus pomace in comparison with ordinary grinding. The results showed that micronization treatment effectively pulverized the IDF-CP powders to micron scale and significantly increased the soluble dietary fiber content (p < 0.05). Compared with mechanical grinding, jet grinding was more effective in size reduction and resulted in IDF-CP powders with narrower particle size distributions. Micronized IDF-CP powders had smaller particle size, smoother surface, higher fluidity, cation-exchange capacity, and metal cation binding capacity values, but lower water holding capacity, oil holding capacity, and swelling capacity values. These functional properties were significantly dependent on surface area and particle size (D0.5). The present study suggested that micronization treatments could modify functional properties of IDF-CP powders, which promotes their use in food applications. © The Author(s) 2015.

  16. Nanoscale assembly of high-temperature oxidation-resistant nanocomposites.

    PubMed

    Peng, Xiao

    2010-02-01

    Structural considerations for designing a high-temperature oxidation-resistant metallic material are proposed, based on the dependence of the material structure on a promotion of the development of a protective scale of chromia or alumina. The material should have numerous sites on its surface for nucleating the protective oxides at the onset of oxidation and abundant grain boundaries in deeper areas for simultaneously supplying sufficient flux of the protective-oxide-forming elements toward the surface for a rapid linkage of the oxide nuclei through their lateral growth. Based on these considerations, we fabricated, using an electrochemical deposition method, novel nanocomposites which have a nanocrystalline metal matrix containing Cr and/or Al nanoparticles dispersed at the nano length scale. The validity of the design considerations is verified by comparing the high-temperature oxidation of a typical Ni-Cr nanocomposite system with two types of conventional Ni-Cr materials having similar or higher Cr content but different structure: one is a composite having a nanocrystalline Ni matrix containing Cr microparticles dispersed at the microscale and the other are micron-grained Ni-Cr alloys with the Cr distribution at the atomic length scale.

  17. Nanoscale assembly of high-temperature oxidation-resistant nanocomposites

    NASA Astrophysics Data System (ADS)

    Peng, Xiao

    2010-02-01

    Structural considerations for designing a high-temperature oxidation-resistant metallic material are proposed, based on the dependence of the material structure on a promotion of the development of a protective scale of chromia or alumina. The material should have numerous sites on its surface for nucleating the protective oxides at the onset of oxidation and abundant grain boundaries in deeper areas for simultaneously supplying sufficient flux of the protective-oxide-forming elements toward the surface for a rapid linkage of the oxide nuclei through their lateral growth. Based on these considerations, we fabricated, using an electrochemical deposition method, novel nanocomposites which have a nanocrystalline metal matrix containing Cr and/or Al nanoparticles dispersed at the nano length scale. The validity of the design considerations is verified by comparing the high-temperature oxidation of a typical Ni-Cr nanocomposite system with two types of conventional Ni-Cr materials having similar or higher Cr content but different structure: one is a composite having a nanocrystalline Ni matrix containing Cr microparticles dispersed at the microscale and the other are micron-grained Ni-Cr alloys with the Cr distribution at the atomic length scale.

  18. Microfluidic systems with embedded materials and structures and method thereof

    DOEpatents

    Morse, Jeffrey D [Martinez, CA; Rose, Klint A [Boston, MA; Maghribi, Mariam [Livermore, CA; Benett, William [Livermore, CA; Krulevitch, Peter [Pleasanton, CA; Hamilton, Julie [Tracy, CA; Graff, Robert T [Modesto, CA; Jankowski, Alan [Livermore, CA

    2007-03-06

    Described herein is a process for fabricating microfluidic systems with embedded components in which micron-scale features are molded into the polymeric material polydimethylsiloxane (PDMS). Micromachining is used to create a mold master and the liquid precursors for PDMS are poured over the mold and allowed to cure. The PDMS is then removed form the mold and bonded to another material such as PDMS, glass, or silicon after a simple surface preparation step to form sealed microchannels.

  19. DNA Origami Patterned Colloids for Programmed Design and Chirality

    NASA Astrophysics Data System (ADS)

    Ben Zion, Matan Yah; He, Xiaojin; Maass, Corinna; Sha, Ruojie; Seeman, Ned; Chaikin, Paul

    Micron size colloidal particles are scientifically important as model systems for equilibrium and active systems in physics, chemistry and biology and for technologies ranging from catalysis to photonics. The past decade has seen development of new particles with directional patches, lock and key reactions and specific recognition that guide assembly of structures such as complex crystalline arrays. What remains lacking is the ability to self-assemble structures of arbitrary shape with specific chirality, placement and orientation of neighbors. Here we demonstrate the adaptation of DNA origami nanotechnology to the micron colloidal scale with designed control of neighbor type, placement and dihedral angle. We use DNA origami belts with programmed flexibility, and functionality to pattern colloidal surfaces and bind particles to specific sites at specific angles and make uniquely right handed or left handed structures. The hybrid DNA origami colloid technology should allow the synthesis of designed functional structural and active materials. This work was supported as part of the Center for Bio-Inspired Energy Science, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award # DE-SC0000989.

  20. Hierarchical structure observation and nanoindentation size effect characterization for a limnetic shell

    NASA Astrophysics Data System (ADS)

    Song, Jingru; Fan, Cuncai; Ma, Hansong; Wei, Yueguang

    2015-06-01

    In the present research, hierarchical structure observation and mechanical property characterization for a type of biomaterial are carried out. The investigated biomaterial is Hyriopsis cumingii, a typical limnetic shell, which consists of two different structural layers, a prismatic "pillar" structure and a nacreous "brick and mortar" structure. The prismatic layer looks like a "pillar forest" with variation-section pillars sized on the order of several tens of microns. The nacreous material looks like a "brick wall" with bricks sized on the order of several microns. Both pillars and bricks are composed of nanoparticles. The mechanical properties of the hierarchical biomaterial are measured by using the nanoindentation test. Hardness and modulus are measured for both the nacre layer and the prismatic layer, respectively. The nanoindentation size effects for the hierarchical structural materials are investigated experimentally. The results show that the prismatic nanostructured material has a higher stiffness and hardness than the nacre nanostructured material. In addition, the nanoindentation size effects for the hierarchical structural materials are described theoretically, by using the trans-scale mechanics theory considering both strain gradient effect and the surface/interface effect. The modeling results are consistent with experimental ones.

  1. Surface chemistry of InP ridge structures etched in Cl{sub 2}-based plasma analyzed with angular XPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouchoule, Sophie, E-mail: sophie.bouchoule@lpn.cnrs.fr; Cambril, Edmond; Guilet, Stephane

    2015-09-15

    Two x-ray photoelectron spectroscopy configurations are proposed to analyze the surface chemistry of micron-scale InP ridge structures etched in chlorine-based inductively coupled plasma (ICP). Either a classical or a grazing configuration allows to retrieve information about the surface chemistry of the bottom surface and sidewalls of the etched features. The procedure is used to study the stoichiometry of the etched surface as a function of ridge aspect ratio for Cl{sub 2}/Ar and Cl{sub 2}/H{sub 2} plasma chemistries. The results show that the bottom surface and the etched sidewalls are P-rich, and indicate that the P-enrichment mechanism is rather chemically driven.more » Results also evidence that adding H{sub 2} to Cl{sub 2} does not necessarily leads to a more balanced surface stoichiometry. This is in contrast with recent experimental results obtained with the HBr ICP chemistry for which fairly stoichiometric surfaces have been obtained.« less

  2. Extreme limestone weathering rates due to micron-scale grain detachment

    NASA Astrophysics Data System (ADS)

    Emmanuel, Simon; Levenson, Yael

    2014-05-01

    Chemical dissolution is often assumed to control the weathering rates of carbonate rocks, although some studies have indicated that mechanical erosion could also play a significant role. Quantifying the rates of the different processes is challenging due to the high degree of variability encountered in both field and lab settings. To measure the rates and mechanisms controlling long-term limestone weathering, we analyse a lidar scan of the Western Wall, a Roman period edifice located in Jerusalem. Surface retreat rates in fine-grained micritic limestone blocks are found to be as much as 2 orders of magnitude higher than the average rates estimated for coarse-grained limestone blocks at the same site. In addition, in experiments that use atomic force microscopy to image dissolving micritic limestone, we show that these elevated reaction rates could be due to rapid dissolution along micron-scale grain boundaries, followed by mechanical detachment of tiny particles from the surface. Our analysis indicates that micron-scale grain detachment, rather than pure chemical dissolution, could be the dominant erosional mode for fine-grained carbonate rocks.

  3. Cooling and crystallization of rhyolite-obsidian lava: Insights from micron-scale projections on plagioclase microlites

    NASA Astrophysics Data System (ADS)

    Sano, Kyohei; Toramaru, Atsushi

    2017-07-01

    To reveal the cooling process of a rhyolite-obsidian flow, we studied the morphology of plagioclase microlites in the Tokachi-Ishizawa lava of Shirataki, northern Hokkaido, Japan, where the structure of the lava can be observed from obsidian at the base of the flow to the innermost rhyolite. Needle-like micron-scale textures, known as "projections", occur on the short side surfaces of the plagioclase microlites. Using FE-SEM we discovered a positive correlation between the lengths and spacings of these projections. On the basis of the instability theory of an interface between melt and crystal, and to understand the length and spacing data, we developed a model that explains the positive correlation and allows us to simultaneously estimate growth rates and growth times. Applying the model to our morphological data and the estimated growth rates and growth times, we suggest that the characteristics of the projections reflect the degree of undercooling, which in turn correlates with lava structure (the obsidian at the margin of the flow experienced a higher degree of undercooling than the interior rhyolite). The newly developed method provides insights into the degree of undercooling during the final stages of crystallization of a rhyolitic lava flow.

  4. Microfluidic fuel cell systems with embedded materials and structures and method thereof

    DOEpatents

    Morse, Jeffrey D.; Rose, Klint A; Maghribi, Mariam; Benett, William; Krulevitch, Peter; Hamilton, Julie; Graff, Robert T.; Jankowski, Alan

    2005-07-26

    Described herein is a process for fabricating microfluidic systems with embedded components in which micron-scale features are molded into the polymeric material polydimethylsiloxane (PDMS). Micromachining is used to create a mold master and the liquid precursors for PDMS are poured over the mold and allowed to cure. The PDMS is then removed form the mold and bonded to another material such as PDMS, glass, or silicon after a simple surface preparation step to form sealed microchannels.

  5. In vitro bioactivity of micro metal injection moulded stainless steel with defined surface features.

    PubMed

    Bitar, Malak; Friederici, Vera; Imgrund, Philipp; Brose, Claudia; Bruinink, Arie

    2012-05-04

    Micrometre- and nanometre-scale surface structuring with ordered topography features may dramatically enhance orthopaedic implant integration. In this study we utilised a previously optimised micron metal injection moulding (µ-MIM) process to produce medical grade stainless steel surfaces bearing micrometre scale, protruding, hemispheres of controlled dimensions and spatial distribution. Additionally, the structured surfaces were characterised by the presence of submicrometre surface roughness resulting from metal grain boundary formation. Following cytocompatibility (cytotoxicity) evaluation using 3T3 mouse fibroblast cell line, the effect on primary human cell functionality was assessed focusing on cell attachment, shape and cytoskeleton conformation. In this respect, and by day 7 in culture, significant increase in focal adhesion size was associated with the microstructured surfaces compared to the planar control. The morphological conformation of the seeded cells, as revealed by fluorescence cytoskeleton labelling, also appeared to be guided in the vertical dimension between the hemisphere bodies. Quantitative evaluation of this guidance took place using live cytoplasm fluorescence labelling and image morphometry analysis utilising both, compactness and elongation shape descriptors. Significant increase in cell compactness was associated with the hemisphere arrays indicating collective increase in focused cell attachment to the hemisphere bodies across the entire cell population. Micrometre-scale hemisphere array patterns have therefore influenced cell attachment and conformation. Such influence may potentially aid in enhancing key cellular events such as, for example, neo-osteogenesis on implanted orthopaedic surfaces.

  6. Characterization and evaluation of femtosecond laser-induced sub-micron periodic structures generated on titanium to improve osseointegration of implants

    NASA Astrophysics Data System (ADS)

    Lee, Bryan E. J.; Exir, Hourieh; Weck, Arnaud; Grandfield, Kathryn

    2018-05-01

    Reproducible and controllable methods of modifying titanium surfaces for dental and orthopaedic applications are of interest to prevent poor implant outcomes by improving osseointegration. This study made use of a femtosecond laser to generate laser-induced periodic surface structures with periodicities of 300, 620 and 760 nm on titanium substrates. The reproducible rippled patterns showed consistent submicron scale roughness and relatively hydrophobic surfaces as measured by atomic force microscopy and contact angle, respectively. Transmission electron microscopy and Auger electron spectroscopy identified a thicker oxide layer on ablated surfaces compared to controls. In vitro testing was conducted using osteosarcoma Saos-2 cells. Cell metabolism on the laser-ablated surfaces was comparable to controls and alkaline phosphatase activity was notably increased at late time points for the 620 and 760 nm surfaces compared to controls. Cells showed a more elongated shape on laser-ablated surfaces compared to controls and showed perpendicular alignment to the periodic structures. This work has demonstrated the feasibility of generating submicron features on an implant material with the ability to influence cell response and improve implant outcomes.

  7. [A surface reacted layer study of titanium-zirconium alloy after dental casting].

    PubMed

    Zhang, Y; Guo, T; Li, Z; Li, C

    2000-10-01

    To investigate the influence of the mold temperature on the surface reacted layer of Ti-Zr alloy castings. Ti-Zr alloy was casted into a mold which was made of a zircon (ZrO2.SiO2) for inner coating and a phosphate-bonded material for outer investing with a casting machine (China) designed as vacuum, pressure and centrifuge. At three mold temperatures (room temperature, 300 degrees C, 600 degrees C) the Ti-Zr alloy was casted separately. The surface roughness of the castings was calculated by instrument of smooth finish (China). From the surface to the inner part the Knoop hardness and thickness in reacted layer of Ti-Zr alloy casting was measured. The structure of the surface reacted layer was analysed by SEM. Elemental analyses of the interfacial zone of the casting was made by element line scanning observation. The surface roughness of the castings was increased significantly with the mold temperature increasing. At a higher mold temperature the Knoop hardness of the reactive layer was increased. At the three mold temperature the outmost surface was very hard, and microhardness data decreased rapidly where they reached constant values. The thickness was about 85 microns for castings at room temperature and 300 degrees C, 105 microns for castings at 600 degrees C. From the SEM micrograph of the Ti-Zr alloy casting, the surface reacted layer could be divided into three different layers. The first layer was called non-structure layer, which thickness was about 10 microns for room temperature group, 20 microns for 300 degrees C and 25 microns for 600 degrees C. The second layer was characterized by coarse-grained acicular crystal, which thickness was about 50 microns for three mold temperatures. The third layer was Ti-Zr alloy. The element line scanning showed non-structure layer with higher level of element of O, Al, Si and Zr, The higher the mold temperature during casting, the deeper the Si permeating and in the second layer the element Si could also be found. The mold temperature is one of the major factors influencing to casting quality. In order to reduce the surface reacted layer of Ti-Zr alloy castings, the lower mold temperature and the investment without Si should be chosen.

  8. Micro electro-mechanical heater

    DOEpatents

    Oh, Yunje; Asif, Syed Amanulla Syed; Cyrankowski, Edward; Warren, Oden Lee

    2016-04-19

    A sub-micron scale property testing apparatus including a test subject holder and heating assembly. The assembly includes a holder base configured to couple with a sub-micron mechanical testing instrument and electro-mechanical transducer assembly. The assembly further includes a test subject stage coupled with the holder base. The test subject stage is thermally isolated from the holder base. The test subject stage includes a stage subject surface configured to receive a test subject, and a stage plate bracing the stage subject surface. The stage plate is under the stage subject surface. The test subject stage further includes a heating element adjacent to the stage subject surface, the heating element is configured to generate heat at the stage subject surface.

  9. Micro electro-mechanical heater

    DOEpatents

    Oh, Yunje; Asif, Syed Amanulla Syed; Cyrankowski, Edward; Warren, Oden Lee

    2017-09-12

    A sub-micron scale property testing apparatus including a test subject holder and heating assembly. The assembly includes a holder base configured to couple with a sub-micron mechanical testing instrument and electro-mechanical transducer assembly. The assembly further includes a test subject stage coupled with the holder base. The test subject stage is thermally isolated from the holder base. The test subject stage includes a stage subject surface configured to receive a test subject, and a stage plate bracing the stage subject surface. The stage plate is under the stage subject surface. The test subject stage further includes a heating element adjacent to the stage subject surface, the heating element is configured to generate heat at the stage subject surface.

  10. Ignition dynamics and activation energies of metallic thermites: From nano- to micron-scale particulate composites

    NASA Astrophysics Data System (ADS)

    Hunt, Emily M.; Pantoya, Michelle L.

    2005-08-01

    Ignition behaviors associated with nano- and micron-scale particulate composite thermites were studied experimentally and modeled theoretically. The experimental analysis utilized a CO2 laser ignition apparatus to ignite the front surface of compacted nickel (Ni) and aluminum (Al) pellets at varying heating rates. Ignition delay time and ignition temperature as a function of both Ni and Al particle size were measured using high-speed imaging and microthermocouples. The apparent activation energy was determined from this data using a Kissinger isoconversion method. This study shows that the activation energy is significantly lower for nano- compared with micron-scale particulate media (i.e., as low as 17.4 compared with 162.5kJ /mol, respectively). Two separate Arrhenius-type mathematical models were developed that describe ignition in the nano- and the micron-composite thermites. The micron-composite model is based on a heat balance while the nanocomposite model incorporates the energy of phase transformation in the alumina shell theorized to be an initiating step in the solid-solid diffusion reaction and uniquely appreciable in nanoparticle media. These models were found to describe the ignition of the Ni /Al alloy for a wide range of heating rates.

  11. Tomography experiment of an integrated circuit specimen using 3 MeV electrons in the transmission electron microscope.

    PubMed

    Zhang, Hai-Bo; Zhang, Xiang-Liang; Wang, Yong; Takaoka, Akio

    2007-01-01

    The possibility of utilizing high-energy electron tomography to characterize the micron-scale three dimensional (3D) structures of integrated circuits has been demonstrated experimentally. First, electron transmission through a tilted SiO(2) film was measured with an ultrahigh-voltage electron microscope (ultra-HVEM) and analyzed from the point of view of elastic scattering of electrons, showing that linear attenuation of the logarithmic electron transmission still holds valid for effective specimen thicknesses up to 5 microm under 2 MV accelerating voltages. Electron tomography of a micron-order thick integrated circuit specimen including the Cu/via interconnect was then tried with 3 MeV electrons in the ultra-HVEM. Serial projection images of the specimen tilted at different angles over the range of +/-90 degrees were acquired, and 3D reconstruction was performed with the images by means of the IMOD software package. Consequently, the 3D structures of the Cu lines, via and void, were revealed by cross sections and surface rendering.

  12. Effects of Shock-Breakout Pressure on Ejection of Micron-Scale Material from Shocked Tin Surfaces

    NASA Astrophysics Data System (ADS)

    Zellner, Michael; Hammerberg, James; Hixson, Robert; Morley, Kevin; Obst, Andrew; Olson, Russell; Payton, Jeremy; Rigg, Paulo; Buttler, William; Grover, Michael; Iverson, Adam; Macrum, Gregory; Stevens, Gerald; Turley, William; Veeser, Lynn; Routley, Nathan

    2007-06-01

    Los Alamos National Lab (LANL) is actively engaged in the development of a model to predict the formation of micron-scale fragments ejected (ejecta) from shocked metal surfaces. The LANL ejecta model considers that the amount of ejecta is mainly related to the material's phase on shock release at the free-surface. This effort investigates the relation between ejecta production and shock-breakout pressure for Sn shocked with high explosives to pressures near the solid-on-release/partial-liquid-on-release phase transition region. We found that the amount of ejecta produced for shock-breakout pressures that resulted in partial-liquid-on-release increased significantly compared to that which resulted in solid-on-release. Additionally, we found that the amount of ejecta remained relatively constant within the partial-liquid-on-release, regardless of shock-breakout pressure.

  13. Characteristics of Cometary Dust Tracks in Stardust Aerogel and Laboratory Calibrations

    NASA Technical Reports Server (NTRS)

    Burchell, M. J.; Fairey, S. A. J.; Wozniakiewicz, P.; Brownlee, D. E.; Hoerz, F.; Kearsley, A. T.; See, T. H.; Tsou, P.; Westphal, A.; Green, S. F.; hide

    2007-01-01

    The cometary tray of the NASA Stardust spacecraft s aerogel collector has been examined to study the dust that was captured during the 2004 fly by of comet 81P/Wild-2. An optical scan of the entire collector surface revealed 256 impact features in the aerogel (width > 100 microns). 20 aerogel blocks (out of a total of 132) were removed from the collector tray for a higher resolution optical scan and 186 tracks were observed (track length > 50 microns and width > 8 microns). The impact features were classified into three types based on their morphology. Laboratory calibrations were conducted which reproduce all three types. This work suggests that the cometary dust consisted of some cohesive, relatively strong particles as well as particles with a more friable or low cohesion matrix containing smaller strong grains. The calibrations also permitted a particle size distribution to be estimated for the cometary dust. We estimate that approximately 1200 particles bigger than 1 micron struck the aerogel. The cumulative size distribution of the captured particles was obtained and compared with observations made by active dust detectors during the encounter. At large sizes (>20 microns) all measures of the dust are compatible, but at micrometer scales and smaller discrepancies exist between the various measurement systems which may reflect structure in the dust flux (streams, clusters etc.) along with some possible instrument effects.

  14. Thermal Emission Spectroscopy of 1 Ceres: Evidence for Olivine

    NASA Technical Reports Server (NTRS)

    Witteborn, F. C.; Roush, T. L.; Cohen, M.

    1999-01-01

    Thermal emission spectra of the largest asteroid 1 Ceres obtained from the Kuiper Airborne Observatory display features that may provide information on its surface mineralogy. A plot of the Ceres spectrum (calibrated using alpha Boo as a standard) divided by a standard thermal model (STM) is shown. Also shown is the emissivity spectrum deduced from reflectivity measurements for olivine grains <5 microns in diameter. The general shape of the Ceres and the olivine curves agree in essential details, such as the maxima from 8 to 12 microns, the minimum between 12 and 14 microns, the broad peak near 17.5 micron, and the slope beyond 22 micron. (Use of the 10 to 15-micron grain reflectivities provides a better match to the 12- to 14-micron dip. We used a value of unity for beta, the beaming factor associated with small-scale surface roughness in our STM. Adjustment of beta to a lower value raises the long-wavelength side of the Ceres spectrum, providing an even better match to the olivine curve.) The emissivity behavior roughly matches the emission coefficients which were calculated for olivine particles with a particle radius of 3 microns. Their calculations show not only the negative slope from 23 to 25 pm, but a continued decrease past 30 micron. The Ceres emissivity is thus similar to that of small olivine grains from 8 to 30 micron, but olivine's emissivity is lower from 5 to 8 pm.

  15. Micron-scale lens array having diffracting structures

    DOEpatents

    Goldberg, Kenneth A

    2013-10-29

    A novel micron-scale lens, a microlens, is engineered to concentrate light efficiently onto an area of interest, such as a small, light-sensitive detector element in an integrated electronic device. Existing microlens designs imitate the form of large-scale lenses and are less effective at small sizes. The microlenses described herein have been designed to accommodate diffraction effects, which dominate the behavior of light at small length scales. Thus a new class of light-concentrating optical elements with much higher relative performance has been created. Furthermore, the new designs are much easier to fabricate than previous designs.

  16. Simultaneous sizing and electrophoretic mobility measurement of sub-micron particles using Brownian motion

    PubMed Central

    Palanisami, Akilan; Miller, John H.

    2011-01-01

    The size and surface chemistry of micron scale particles are of fundamental importance in studies of biology and air particulate pollution. However, typical electrophoretic measurements of these and other sub-micron scale particles (300 nm – 1 μm) cannot resolve size information within heterogeneous mixtures unambiguously. Using optical microscopy, we monitor electrophoretic motion together with the Brownian velocity fluctuations—using the latter to measure size by either the Green-Kubo relation or by calibration from known size standards. Particle diameters are resolved to ±12% with 95% confidence. Strikingly, the size resolution improves as particle size decreases due to the increased Brownian motion. The sizing ability of the Brownian assessed electrophoresis method described here complements the electrophoretic mobility resolution of traditional capillary electrophoresis. PMID:20882556

  17. Bottom-up tissue engineering

    PubMed Central

    Elbert, Donald L.

    2011-01-01

    Recapitulating the elegant structures formed during development is an extreme synthetic and biological challenge. Great progress has been made in developing materials to support transplanted cells, yet the complexity of tissues is far beyond that found in even the most advanced scaffolds. Self-assembly is a motif used in development and a route for the production of complex materials. Self-assembly of peptides, proteins and other molecules at the nanoscale is promising, but in addition, intriguing ideas are emerging for self-assembly of micron-scale structures. In this brief review, very recent advances in the assembly of micron-scale cell aggregates and microgels will be described and discussed. PMID:21524904

  18. Curiosity's Mars Hand Lens Imager (MAHLI): Inital Observations and Activities

    NASA Technical Reports Server (NTRS)

    Edgett, K. S.; Yingst, R. A.; Minitti, M. E.; Robinson, M. L.; Kennedy, M. R.; Lipkaman, L. J.; Jensen, E. H.; Anderson, R. C.; Bean, K. M.; Beegle, L. W.; hide

    2013-01-01

    MAHLI (Mars Hand Lens Imager) is a 2-megapixel focusable macro lens color camera on the turret on Curiosity's robotic arm. The investigation centers on stratigraphy, grain-scale texture, structure, mineralogy, and morphology of geologic materials at Curiosity's Gale robotic field site. MAHLI acquires focused images at working distances of 2.1 cm to infinity; for reference, at 2.1 cm the scale is 14 microns/pixel; at 6.9 cm it is 31 microns/pixel, like the Spirit and Opportunity Microscopic Imager (MI) cameras.

  19. Nano Liquid Crystal Droplet Impact on Solid Surfaces

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; de Pablo, Juan; dePablo Team

    2015-03-01

    Liquid droplet impaction on solid surfaces is an important problem with a wide range of applications in everyday life. Liquid crystals (LCs) are anisotropic liquids whose internal structure gives rise to rich optical and morphological phenomena. In this work we study the liquid crystal droplet impaction on solid surfaces by molecular dynamics simulations. We employ a widely used Gay-Berne model to describe the elongated liquid crystal molecules and their interactions. Our work shows that, in contrast to isotropic liquids, drop deformation is symmetric unless an instability kicks in, in which case a nano scale liquid crystal droplet exhibits distinct anisotropic spreading modes that do not occur in simple liquids. The drop prefers spreading along the low viscosity direction, but inertia can in some cases overcome that bias. The effects of the director field of the droplet, preferred anchoring direction and the anchoring strength of the wall are investigated. Large scale (0.1 micron) simulations are performed to connect our nano scale results to the experiments. Our studies indicate that LCs could provide an interesting alternative for development of next-generation printing inks.

  20. Structure of a black chrome solar selective surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lampert, C.M.

    1978-07-01

    The structure of ''CHROM-ONYX'' type of black chrome/metal selective absorber was studied to gain a better understanding of its influence upon the mechanism of wavelength selectivity. Spectral reflectance measurements were performed on seven samples. The best selectivity was found by these measurements to be 0.7 micron of black chrome on nickel and 1.0 micron of black chrome on copper. Both scanning and transmission electron microscopy were employed to study microstructure and chemical composition. As a result of the combined studies, some effects of black chrome thickness and the metallic substrate were determined. It was found that black chrome consisted ofmore » a very fine metallic distribution of particles of chromium, possibly suspended within a matrix of an oxide of chromium. This combination was, in turn, agglomerated into larger particles within the 0.05 to 0.3 micron size range. These larger particles formed a network which constituted the surface coating.« less

  1. Optical properties of ion beam textured metals. [using copper, silicon, aluminum, titanium and stainless steels

    NASA Technical Reports Server (NTRS)

    Hudson, W. R.; Weigand, A. J.; Mirtich, M. J.

    1977-01-01

    Copper, silicon, aluminum, titanium and 316 stainless steel were textured by 1000 eV xenon ions from an 8 cm diameter electron bombardment ion source. Simultaneously sputter-deposited tantalum was used to facilitate the development of the surface microstructure. Scanning electron microscopy of the ion textured surfaces revealed two types of microstructure. Copper, silicon, and aluminum developed a cone structure with an average peak-to-peak distance ranging from 1 micron for silicon to 6 microns for aluminum. Titanium and 316 stainless steel developed a serpentine ridge structure. The average peak-to-peak distance for both of these materials was 0.5 micron. Spectral reflectance was measured using an integrating sphere and a holraum reflectometer. Total reflectance for air mass 0 and 2, solar absorptance and total emittance normalized for a 425 K black body were calculated from the reflectance measurements.

  2. Selective radiative cooling with MgO and/or LiF layers

    DOEpatents

    Berdahl, P.H.

    1984-09-14

    A selective radiation cooling material which is absorptive only in the 8 to 13 microns wavelength range is accomplished by placing ceramic magnesium oxide and/or polycrystalline lithium fluoride on an infrared-reflective substrate. The reflecting substrate may be a metallic coating, foil or sheet, such as aluminum, which reflects all atmospheric radiation from 0.3 to 8 microns, the magnesium oxide and lithium fluoride being nonabsorptive at those wavelengths. <10% of submicron voids in the material is permissible in which case the MgO and/or LiF layer is diffusely scattering, but still nonabsorbing, in the wavelength range of 0.3 to 8 microns. At wavelengths from 8 to 13 microns, the magnesium oxide and lithium fluoride radiate power through the ''window'' in the atmosphere, and thus remove heat from the reflecting sheet of material and the attached object to be cooled. At wavelengths longer than 13 microns, the magnesium oxide and lithium fluoride reflects the atmospheric radiation back into the atmosphere. This high reflectance is only obtained if the surface is sufficiently smooth: roughness on a scale of 1 micron is permissible but roughness on a scale of 10 microns is not. An infrared-transmitting cover or shield is mounted in spaced relationship to the material to reduce convective heat transfer. If this is utilized in direct sunlight, the infrared transmitting cover or shield should be opaque in the solar spectrum of 0.3 to 3 microns.

  3. Laser induced hierarchical calcium phosphate structures.

    PubMed

    Kurella, Anil; Dahotre, Narendra B

    2006-11-01

    The surface properties of biomedical implant materials control the dynamic interactions at tissue-implant interfaces. At such interfaces, if the nanoscale features influence protein interactions, those of the microscale and mesoscale aid cell orientation and provide tissue integration, respectively. It seems imperative that the synthetic materials expected to replace natural hard tissues are engineered to mimic the complexity of their hierarchical assembly. However, the current surface engineering approaches are single scaled. It is demonstrated that using laser surface engineering a controlled multiscale surface can be synthesized for bioactive functions. A systematic organization of bioactive calcium phosphate coating with multiphase composition on Ti-alloy substrate ranging from nano- to mesoscale has been achieved by effectively controlling the thermo physical interactions during laser processing. The morphology of the coating consisted of a periodic arrangement of Ti-rich and Ca-P-deficient star-like phases uniformly distributed inside a Ca-P-rich self-assembled cellular structure with the presence of CaO, alpha-tricalcium phosphate, CaTiO(3), TiO(2) and Ti phase in the coating matrix. The cellular structures ranged in diameter from 2.5 microm to 10 microm as an assembly of cuboid shaped particles of dimensions of approximately 200 nm x 1 microm. The multiscale texture also included nanoscale particles that are the precursors for many of these phases. The rapid cooling associated with the laser processing resulted in formation, organization and controlling dimensions of the Ca-P-rich glassy phase into a micron scale cellular morphology and submicron scale clusters of CaTiO(3) phase inside the cellular structures. The self-assembly of the coating into multiscale structure was influenced by chemical and physical interactions among the multiphases that evolved during laser processing.

  4. Enhanced Propagating Surface Plasmon Signal Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Y.; Joly, Alan G.; El-Khoury, Patrick Z.

    2016-12-21

    Overcoming the dissipative nature of propagating surface plasmons (PSPs) is pre-requisite to realizing functional plasmonic circuitry, in which large bandwidth signals can be manipulated over length scales far-below the diffraction limit of light. To this end, we report on a novel PSP enhanced signal detection technique achieved in an all-metallic substrate. We take advantage of two strategically spatio-temporally separated phase-locked femtosecond laser pulses, incident onto lithographically patterned PSP coupling structures. We follow PSP propagation with joint femtosecond temporal and nanometer spatial resolution in a time-resolved non-linear photoemission electron microscopy scheme. Initially, a PSP signal wave packet is launched from amore » hole etched into the silver surface from where it propagates through an open trench structure and is decoded through the use of a timed probe pulse. FDTD calculations demonstrate that PSP signal waves may traverse open trenches in excess of 10 microns in diameter, thereby allowing remote detection even through vacuum regions. This arrangement results in a 10X enhancement in photoemission relative to readout from the bare metal surface. The enhancement is attributed to an all-optical homodyne detection technique that mixes signal and reference PSP waves in a non-linear scheme. Larger readout trenches achieve higher readout levels, however reduced transmission through the trench limits the trench size to 6 microns for maximum readout levels. However, the use of an array of trenches increases the maximum enhancement to near 30X. The attainable enhancement factor may be harnessed to achieve extended coherent PSP propagation in ultrafast plasmonic circuitry.« less

  5. Acoustically Mounted Microcrystals Yield High Resolution X-ray Structures†,‡

    PubMed Central

    Soares, Alexei S.; Engel, Matthew A.; Stearns, Richard; Datwani, Sammy; Olechno, Joe; Ellson, Richard; Skinner, John M.; Allaire, Marc; Orville, Allen M.

    2011-01-01

    We demonstrate a general strategy to determine structures from showers of microcrystals. It uses acoustic droplet ejection (ADE) to transfer 2.5 nanoliter droplets from the surface of microcrystal slurries, through the air, and onto mounting micromesh pins. Individual microcrystals are located by raster-scanning a several micron X-ray beam across the cryocooled micromeshes. X-ray diffraction datasets merged from several micron-sized crystals are used to solve 1.8 Å resolution crystal structures. PMID:21542590

  6. Mode structure of planar optical antennas on dielectric substrates

    DOE PAGES

    Word, Robert C.; Konenkamp, Rolf

    2016-08-08

    Here, we report a numerical study, supported by photoemission electron microscopy (PEEM), of sub-micron planar optical antennas on transparent substrate. We find these antennas generate intricate near-field spatial field distributions with odd and even numbers of nodes. We show that the field distributions are primarily superpositions of planar surface plasmon polariton modes confined to the metal/substrate interface. The mode structure provides opportunities for coherent switching and optical control in sub-micron volumes.

  7. Design and characterization of MEMS interferometric sensing

    NASA Astrophysics Data System (ADS)

    Snyder, R.; Siahmakoun, A.

    2010-02-01

    A MEMS-based interferometric sensor is produced using the multi-user MEMS processing standard (MUMPS) micromirrors, movable by thermal actuation. The interferometer is comprised of gold reflection surfaces, polysilicon thermal actuators, hinges, latches and thin film polarization beam splitters. A polysilicon film of 3.5 microns reflects and transmits incident polarized light from an external laser source coupled to a multi-mode optical fiber. The input beam is shaped to a diameter of 10 to 20 microns for incidence upon the 100 micron mirrors. Losses in the optical path include diffraction effects from etch holes created in the manufacturing process, surface roughness of both gold and polysilicon layers, and misalignment of micro-scale optical components. Numerous optical paths on the chip vary by length, number of reflections, and mirror subsystems employed. Subsystems include thermal actuator batteries producing lateral position displacement, angularly tunable mirrors, double reflection surfaces, and static vertical mirrors. All mirror systems are raised via manual stimulation using two micron, residue-free probe tips and some may be aligned using electrical signals causing resistive heating in thermal actuators. The characterization of thermal actuator batteries includes maximum displacement, deflection, and frequency response that coincides with theoretical thermodynamic simulations using finite-element analysis. Maximum deflection of 35 microns at 400 mW input electrical power is shown for three types of actuator batteries as is deflection dependent frequency response data for electrical input signals up to 10 kHz.

  8. Digenetic Changes in Macro- to Nano-Scale Porosity in the St. Peter Sandstone:L An (Ultra) Small Angle Neutron Scattering and Backscattered Electron Imagining Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anovitz, Lawrence; Cole, David; Rother, Gernot

    2013-01-01

    Small- and Ultra-Small Angle Neutron Scattering (SANS and USANS) provide powerful tools for quantitative analysis of porous rocks, yielding bulk statistical information over a wide range of length scales. This study utilized (U)SANS to characterize shallowly buried quartz arenites from the St. Peter Sandstone. Backscattered electron imaging was also used to extend the data to larger scales. These samples contain significant volumes of large-scale porosity, modified by quartz overgrowths, and neutron scattering results show significant sub-micron porosity. While previous scattering data from sandstones suggest scattering is dominated by surface fractal behavior over many orders of magnitude, careful analysis of ourmore » data shows both fractal and pseudo-fractal behavior. The scattering curves are composed of subtle steps, modeled as polydispersed assemblages of pores with log-normal distributions. However, in some samples an additional surface-fractal overprint is present, while in others there is no such structure, and scattering can be explained by summation of non-fractal structures. Combined with our work on other rock-types, these data suggest that microporosity is more prevalent, and may play a much more important role than previously thought in fluid/rock interactions.« less

  9. In Situ Visualization of the Growth and Fluctuations of Nanoparticle Superlattice in Liquids

    NASA Astrophysics Data System (ADS)

    Ou, Zihao; Shen, Bonan; Chen, Qian

    We use liquid phase transmission electron microscopy to image and understand the crystal growth front and interfacial fluctuation of a nanoparticle superlattice. With single particle resolution and hundreds of nanoscale building blocks in view, we are able to identify the interface between ordered lattice and disordered structure and visualize the kinetics of single building block attachment at the lattice growth front. The spatial interfacial fluctuation profiles support the capillary wave theory, from which we derive a surface stiffness value consistent with scaling analysis. Our experiments demonstrate the potential of extending model study on collective systems to nanoscale with single particle resolution and testing fundamental theories of condensed matter at a length scale linking atoms and micron-sized colloids.

  10. Nanopatterns by phase separation of patterned mixed polymer monolayers

    DOEpatents

    Huber, Dale L; Frischknecht, Amalie

    2014-02-18

    Micron-size and sub-micron-size patterns on a substrate can direct the self-assembly of surface-bonded mixed polymer brushes to create nanoscale patterns in the phase-separated mixed polymer brush. The larger scale features, or patterns, can be defined by a variety of lithographic techniques, as well as other physical and chemical processes including but not limited to etching, grinding, and polishing. The polymer brushes preferably comprise vinyl polymers, such as polystyrene and poly(methyl methacrylate).

  11. Fabrication of micron scale metallic structures on photo paper substrates by low temperature photolithography for device applications

    NASA Astrophysics Data System (ADS)

    Cooke, M. D.; Wood, D.

    2015-11-01

    Using commercial standard paper as a substrate has a significant cost reduction implication over other more expensive substrate materials by approximately a factor of 100 (Shenton et al 2015 EMRS Spring Meeting; Zheng et al 2013 Nat. Sci. Rep. 3 1786). Discussed here is a novel process which allows photolithography and etching of simple metal films deposited on paper substrates, but requires no additional facilities to achieve it. This allows a significant reduction in feature size down to the micron scale over devices made using more conventional printing solutions which are of the order of tens of microns. The technique has great potential for making cheap disposable devices with additional functionality, which could include flexibility and foldability, simple disposability, porosity and low weight requirements. The potential for commercial applications and scale up is also discussed.

  12. Pre-Stressing Micron-Scale Aluminum Core-Shell Particles to Improve Reactivity

    PubMed Central

    Levitas, Valery I.; McCollum, Jena; Pantoya, Michelle

    2015-01-01

    The main direction in increasing reactivity of aluminum (Al) particles for energetic applications is reduction in their size down to nanoscale. However, Al nanoparticles are 30–50 times more expensive than micron scale particles and possess safety and environmental issues. Here, we improved reactivity of Al micron scale particles by synthesizing pre-stressed core-shell structures. Al particles were annealed and quenched to induce compressive stresses in the alumina passivation shell surrounding Al core. This thermal treatment was designed based on predictions of the melt-dispersion mechanism (MDM); a theory describing Al particle reaction under high heating rate. For all anneal treatment temperatures, experimental flame propagation rates for Al combined with nanoscale copper oxide (CuO) are in quantitative agreement with the theoretical predictions based on the MDM. The best treatment increases flame rate by 36% and achieves 68% of that for the best Al nanoparticles. PMID:25597747

  13. Observation of chiral currents at the magnetic domain boundary of a topological insulator

    DOE PAGES

    Wang, Y. H.; Kirtley, J. R.; Katmis, F.; ...

    2015-08-28

    A magnetic domain boundary on the surface of a three-dimensional topological insulator is predicted to host a chiral edge state, but direct demonstration is challenging. Here, we used a scanning superconducting quantum interference device to show that current in a magnetized EuS/Bi 2Se 3 heterostructure flows at the edge when the Fermi level is gate-tuned to the surface band gap. We further induced micron-scale magnetic structures on the heterostructure, and detected a chiral edge current at the magnetic domain boundary. The chirality of the current was determined by magnetization of the surrounding domain and its magnitude by the local chemicalmore » potential rather than the applied current. As a result, such magnetic structures, provide a platform for detecting topological magnetoelectric effects and may enable progress in quantum information processing and spintronics.« less

  14. Method of forming pointed structures

    NASA Technical Reports Server (NTRS)

    Pugel, Diane E. (Inventor)

    2011-01-01

    A method of forming an array of pointed structures comprises depositing a ferrofluid on a substrate, applying a magnetic field to the ferrofluid to generate an array of surface protrusions, and solidifying the surface protrusions to form the array of pointed structures. The pointed structures may have a tip radius ranging from approximately 10 nm to approximately 25 micron. Solidifying the surface protrusions may be carried out at a temperature ranging from approximately 10 degrees C. to approximately 30 degrees C.

  15. Surface Spectroscopy Center Of Excellence Project

    NASA Technical Reports Server (NTRS)

    Wooden, Diane

    2014-01-01

    We propose to develop a national center of excellence in Regolith Radiative Transfer (RRT), i.e., in modeling spectral reflectivity and emissivity of grainy or structured surfaces. The focus is the regime where the structural elements of grainy surfaces have grain sizes and separations of tens of microns, comparable to the wavelengths carrying diagnostic compositional information. This regime is of fundamental interest to remote sensing of planetary and terrestrial surfaces.

  16. Scalable fabrication of micron-scale graphene nanomeshes for high-performance supercapacitor applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hyun-Kyung; Bak, Seong-Min; Lee, Suk Woo

    Graphene nanomeshes (GNMs) with nanoscale periodic or quasi-periodic nanoholes have attracted considerable interest because of unique features such as their open energy band gap, enlarged specific surface area, and high optical transmittance. These features are useful for applications in semiconducting devices, photocatalysis, sensors, and energy-related systems. We report on the facile and scalable preparation of multifunctional micron-scale GNMs with high-density of nanoperforations by catalytic carbon gasification. The catalytic carbon gasification process induces selective decomposition on the graphene adjacent to the metal catalyst, thus forming nanoperforations. Furthermore, the pore size, pore density distribution, and neck size of the GNMs can bemore » controlled by adjusting the size and fraction of the metal oxide on graphene. The fabricated GNM electrodes exhibit superior electrochemical properties for supercapacitor (ultracapacitor) applications, including exceptionally high capacitance (253 F g -1 at 1 A g -1) and high rate capability (212 F g -1 at 100 A g -1) with excellent cycle stability (91% of the initial capacitance after 50 000 charge/discharge cycles). Moreover, the edge-enriched structure of GNMs plays an important role in achieving edge-selected and high-level nitrogen doping.« less

  17. Scalable fabrication of micron-scale graphene nanomeshes for high-performance supercapacitor applications

    DOE PAGES

    Kim, Hyun-Kyung; Bak, Seong-Min; Lee, Suk Woo; ...

    2016-01-27

    Graphene nanomeshes (GNMs) with nanoscale periodic or quasi-periodic nanoholes have attracted considerable interest because of unique features such as their open energy band gap, enlarged specific surface area, and high optical transmittance. These features are useful for applications in semiconducting devices, photocatalysis, sensors, and energy-related systems. We report on the facile and scalable preparation of multifunctional micron-scale GNMs with high-density of nanoperforations by catalytic carbon gasification. The catalytic carbon gasification process induces selective decomposition on the graphene adjacent to the metal catalyst, thus forming nanoperforations. Furthermore, the pore size, pore density distribution, and neck size of the GNMs can bemore » controlled by adjusting the size and fraction of the metal oxide on graphene. The fabricated GNM electrodes exhibit superior electrochemical properties for supercapacitor (ultracapacitor) applications, including exceptionally high capacitance (253 F g -1 at 1 A g -1) and high rate capability (212 F g -1 at 100 A g -1) with excellent cycle stability (91% of the initial capacitance after 50 000 charge/discharge cycles). Moreover, the edge-enriched structure of GNMs plays an important role in achieving edge-selected and high-level nitrogen doping.« less

  18. Generalized model for laser-induced surface structure in metallic glass

    NASA Astrophysics Data System (ADS)

    Lin-Mao, Ye; Zhen-Wei, Wu; Kai-Xin, Liu; Xiu-Zhang, Tang; Xiang-Ming, Xiong

    2016-06-01

    The details of the special three-dimensional micro-nano scale ripples with a period of hundreds of microns on the surfaces of a Zr-based and a La-based metallic glass irradiated separately by single laser pulse are investigated. We use the small-amplitude capillary wave theory to unveil the ripple formation mechanism through considering each of the molten metallic glasses as an incompressible viscous fluid. A generalized model is presented to describe the special morphology, which fits the experimental result well. It is also revealed that the viscosity brings about the biggest effect on the monotone decreasing nature of the amplitude and the wavelength of the surface ripples. The greater the viscosity is, the shorter the amplitude and the wavelength are. Project supported by the National Natural Science Foundation of China (Grant Nos. 10572002, 10732010, and 11332002).

  19. Internal structure of normal maize starch granules revealed by chemical surface gelatinization.

    PubMed

    Pan, D D; Jane, J I

    2000-01-01

    Normal maize starch was fractionated into two sizes: large granules with diameters more than 5 microns and small granules with diameters less than 5 microns. The large granules were surface gelatinized by treating them with an aqueous LiCl solution (13 M) at 22-23 degrees C. Surface-gelatinized remaining granules were obtained by mechanical blending, and gelatinized surface starch was obtained by grinding with a mortar and a pestle. Starches of different granular sizes and radial locations, obtained after different degrees of surface gelatinization, were subjected to scanning electron microscopy, iodine potentiometric titration, gel-permeation chromatography, and amylopectin branch chain length analysis. Results showed that the remaining granules had a rough surface with a lamella structure. Amylose was more concentrated at the periphery than at the core of the granule. Amylopectin had longer long B-chains at the core than at the periphery of the granule. Greater proportions of the long B-chains were present at the core than at the periphery of the granule.

  20. SCIL nanoimprint solutions: high-volume soft NIL for wafer scale sub-10nm resolution

    NASA Astrophysics Data System (ADS)

    Voorkamp, R.; Verschuuren, M. A.; van Brakel, R.

    2016-10-01

    Nano-patterning materials and surfaces can add unique functionalities and properties which cannot be obtained in bulk or micro-structured materials. Examples range from hetro-epitaxy of semiconductor nano-wires to guiding cell expression and growth on medical implants. [1] Due to the cost and throughput requirements conventional nano-patterning techniques such as deep UV lithography (cost and flat substrate demands) and electron-beam lithography (cost, throughput) are not an option. Self-assembly techniques are being considered for IC manufacturing, but require nano-sized guiding patterns, which have to be fabricated in any case.[2] Additionally, the self-assembly process is highly sensitive to the environment and layer thickness, which is difficult to control on non-flat surfaces such as PV silicon wafers or III/V substrates. Laser interference lithography can achieve wafer scale periodic patterns, but is limited by the throughput due to intensity of the laser at the pinhole and only regular patterns are possible where the pattern fill fraction cannot be chosen freely due to the interference condition.[3] Nanoimprint lithography (NIL) is a promising technology for the cost effective fabrication of sub-micron and nano-patterns on large areas. The challenges for NIL are related to the technique being a contact method where a stamp which holds the patterns is required to be brought into intimate contact with the surface of the product. In NIL a strong distinction is made between the type of stamp used, either rigid or soft. Rigid stamps are made from patterned silicon, silica or plastic foils and are capable of sub-10nm resolution and wafer scale patterning. All these materials behave similar at the micro- to nm scale and require high pressures (5 - 50 Bar) to enable conformal contact to be made on wafer scales. Real world conditions such as substrate bow and particle contaminants complicate the use of rigid stamps for wafer scale areas, reducing stamp lifetime and yield. Soft stamps, usually based on silicone rubber, behave fundamentally different compared to rigid stamps on the macro-, micro- and nanometer level. The main limitation of traditional silicones is that they are too soft to support sub-micron features against surface tension based stamp deformation and collapse [4] and handling a soft stamp to achieve accurate feature placement on wafer scales to allow overlay alignment with sub-100nm overlay accuracy.

  1. Multiscale characterization and mechanical modeling of an Al-Zn-Mg electron beam weld

    NASA Astrophysics Data System (ADS)

    Puydt, Quentin; Flouriot, Sylvain; Ringeval, Sylvain; Parry, Guillaume; De Geuser, Frédéric; Deschamps, Alexis

    Welding of precipitation hardening alloys results in multi-scale microstructural heterogeneities, from the hardening nano-scale precipitates to the micron-scale solidification structures and to the component geometry. This heterogeneity results in a complex mechanical response, with gradients in strength, stress triaxiality and damage initiation sites.

  2. Engineering design of sub-micron topographies for simultaneously adherent and reflective metal-polymer interfaces

    NASA Technical Reports Server (NTRS)

    Brown, Christopher A.

    1993-01-01

    The approach of the project is to base the design of multi-function, reflective topographies on the theory that topographically dependent phenomena react with surfaces and interfaces at certain scales. The first phase of the project emphasizes the development of methods for understanding the sizes of topographic features which influence reflectivity. Subsequent phases, if necessary, will address the scales of interaction for adhesion and manufacturing processes. A simulation of the interaction of electromagnetic radiation, or light, with a reflective surface is performed using specialized software. Reflectivity of the surface as a function of scale is evaluated and the results from the simulation are compared with reflectivity measurements made on multi-function, reflective surfaces.

  3. Front surface structured targets for enhancing laser-plasma interactions

    NASA Astrophysics Data System (ADS)

    Snyder, Joseph; George, Kevin; Ji, Liangliang; Yalamanchili, Sasir; Simonoff, Ethan; Cochran, Ginevra; Daskalova, Rebecca; Poole, Patrick; Willis, Christopher; Lewis, Nathan; Schumacher, Douglass

    2016-10-01

    We present recent progress made using front surface structured interfaces for enhancing ultrashort, relativistic laser-plasma interactions. Structured targets can increase laser absorption and enhance ion acceleration through a number of mechanisms such as direct laser acceleration and laser guiding. We detail experimental results obtained at the Scarlet laser facility on hollow, micron-scale plasma channels for enhancing electron acceleration. These targets show a greater than three times enhancement in the electron cutoff energy as well as an increased slope temperature for the electron distribution when compared to a flat interface. Using three-dimensional particle-in-cell (PIC) simulations, we have modeled the interaction to give insight into the physical processes responsible for the enhancement. Furthermore, we have used PIC simulations to design structures that are more advantageous for ion acceleration. Such targets necessitate advanced target fabrication methods and we describe techniques used to manufacture optimized structures, including vapor-liquid-solid growth, cryogenic etching, and 3D printing using two-photon-polymerization. This material is based upon work supported by the Air Force Office of Scientific Research under Award Number FA9550-14-1-0085.

  4. Hydrophobization of epoxy nanocomposite surface with 1H,1H,2H,2H-perfluorooctyltrichlorosilane for superhydrophobic properties

    NASA Astrophysics Data System (ADS)

    Psarski, Maciej; Marczak, Jacek; Celichowski, Grzegorz; Sobieraj, Grzegorz B.; Gumowski, Konrad; Zhou, Feng; Liu, Weimin

    2012-10-01

    Nature inspires the design of synthetic materials with superhydrophobic properties, which can be used for applications ranging from self-cleaning surfaces to microfluidic devices. Their water repellent properties are due to hierarchical (micrometer- and nanometre-scale) surface morphological structures, either made of hydrophobic substances or hydrophobized by appropriate surface treatment. In this work, the efficiency of two surface treatment procedures, with a hydrophobic fluoropolymer, synthesized and deposited from 1H,1H,2H,2H-perfluorooctyltrichlorosilane (PFOTS) is investigated. The procedures involved reactions from the gas and liquid phases of the PFOTS/hexane solutions. The hierarchical structure is created in an epoxy nanocomposite surface, by filling the resin with alumina nanoparticles and micron-sized glass beads and subsequent sandblasting with corundum microparticles. The chemical structure of the deposited fluoropolymer was examined using XPS spectroscopy. The topography of the modified surfaces was characterized using scanning electron microscopy (SEM), and atomic force microscopy (AFM). The hydrophobic properties of the modified surfaces were investigated by water contact and sliding angles measurements. The surfaces exhibited water contact angles of above 150° for both modification procedures, however only the gas phase modification provided the non-sticking behaviour of water droplets (sliding angle of 3°). The discrepancy is attributed to extra surface roughness provided by the latter procedure.

  5. Mixing of nanosize particles by magnetically assisted impaction techniques

    NASA Astrophysics Data System (ADS)

    Scicolone, James V.

    Nanoparticles and nanocomposites offer unique properties that arise from their small size, large surface area, and the interactions of phases at their interfaces, and are attractive for their potential to improve performance of drugs, biomaterials, catalysts and other high-value-added materials. However, a major problem in utilizing nanoparticles is that they often lose their high surface area due to grain growth. Creating nanostructured composites where two or more nanosized constituents are intimately mixed can prevent this loss in surface area, but in order to obtain homogeneous mixing, de-agglomeration of the individual nanoparticle constituents is necessary. Due to high surface area, nano-particles form very large, fractal agglomerates. The structure of these agglomerates can have a large agglomerate composed of sub-agglomerates (SA), which itself consists of primary agglomerates (PA), that contain chain or net like nano-particle structures; typically sub-micron size. Thus the final agglomerate has a hierarchical, fractal structure, and depending upon the forces applied, it could break down to a certain size scale. The agglomerates can be fairly porous and fragile or they could be quite dense, based on primary particle size and its surface energy. Thus depending upon the agglomerate strength at different length scales, one could achieve deagglomeration and subsequent mixing at varying length scale. A better understanding of this can have a major impact on the field of nano-structured materials; thus the long term objective of this project is to gain fundamental understanding of deagglomeration and mixing of nano-agglomerates. Dry mixing is in general not effective in achieving desired mixing at nanoscale, whereas wet mixing suffers from different disadvantages like nanomaterial of interest should be insoluble, has to wet the liquid, and involves additional steps of filtration and drying. This research examines the use of environmentally friendly a novel approach based on use of small magnetic particles as mixing media is introduced that achieves a high-degree of mixing at scales of about a micron. The method is tested for binary mixture of alumina/silica and silica/titania. Various parameters such as processing time, size of the magnets, and magnetic particle to powder mixed ratio are considered. Experiments are carried out in batch containers in liquid and dry mediums, as well as a fluidized bed set-up. Homogeneity of Mixing (HoM), defined as the compliment of the Intensity of Segregation, was evaluated at the micron scale through field-emission scanning electron microscopy (FESEM) and the energy dispersive x-ray spectroscopy (EDS). Secondary electron images, along with elemental mappings, were used to visualize the change in agglomerate sizes. Compositional percent data of each element were obtained through an EDS spatial distribution point analysis and used to obtain quantitative analysis on the homogeneity of the mixture. The effect of magnet impaction on mixing quality was examined on the HoM of binary mixtures. The research shows that HoM improved with magnetically assisted impaction mixing techniques indicating that the HoM depends on the product of processing time with the number of magnets. In a fluidized bed set-up, MAIM not only improved dispersion, but it was also found that the magnetic particles served to break down the larger agglomerates, to reduce the minimum fluidization velocity, to delay the onset of bubbling, and to convert the fluidization behavior of ABF powder to APF. Thus MAIM techniques may be used to achieve mixing of nanopowders at a desired HoM through adjusting the number of magnets and processing time; and its inherent advantages are its simplicity, an environmentally benign operation, and reduced cost as compared with wet mixing techniques.

  6. Spun-wrapped aligned nanofiber (SWAN) lithography for fabrication of micro/nano-structures on 3D objects

    NASA Astrophysics Data System (ADS)

    Ye, Zhou; Nain, Amrinder S.; Behkam, Bahareh

    2016-06-01

    Fabrication of micro/nano-structures on irregularly shaped substrates and three-dimensional (3D) objects is of significant interest in diverse technological fields. However, it remains a formidable challenge thwarted by limited adaptability of the state-of-the-art nanolithography techniques for nanofabrication on non-planar surfaces. In this work, we introduce Spun-Wrapped Aligned Nanofiber (SWAN) lithography, a versatile, scalable, and cost-effective technique for fabrication of multiscale (nano to microscale) structures on 3D objects without restriction on substrate material and geometry. SWAN lithography combines precise deposition of polymeric nanofiber masks, in aligned single or multilayer configurations, with well-controlled solvent vapor treatment and etching processes to enable high throughput (>10-7 m2 s-1) and large-area fabrication of sub-50 nm to several micron features with high pattern fidelity. Using this technique, we demonstrate whole-surface nanopatterning of bulk and thin film surfaces of cubes, cylinders, and hyperbola-shaped objects that would be difficult, if not impossible to achieve with existing methods. We demonstrate that the fabricated feature size (b) scales with the fiber mask diameter (D) as b1.5 ~ D. This scaling law is in excellent agreement with theoretical predictions using the Johnson, Kendall, and Roberts (JKR) contact theory, thus providing a rational design framework for fabrication of systems and devices that require precisely designed multiscale features.Fabrication of micro/nano-structures on irregularly shaped substrates and three-dimensional (3D) objects is of significant interest in diverse technological fields. However, it remains a formidable challenge thwarted by limited adaptability of the state-of-the-art nanolithography techniques for nanofabrication on non-planar surfaces. In this work, we introduce Spun-Wrapped Aligned Nanofiber (SWAN) lithography, a versatile, scalable, and cost-effective technique for fabrication of multiscale (nano to microscale) structures on 3D objects without restriction on substrate material and geometry. SWAN lithography combines precise deposition of polymeric nanofiber masks, in aligned single or multilayer configurations, with well-controlled solvent vapor treatment and etching processes to enable high throughput (>10-7 m2 s-1) and large-area fabrication of sub-50 nm to several micron features with high pattern fidelity. Using this technique, we demonstrate whole-surface nanopatterning of bulk and thin film surfaces of cubes, cylinders, and hyperbola-shaped objects that would be difficult, if not impossible to achieve with existing methods. We demonstrate that the fabricated feature size (b) scales with the fiber mask diameter (D) as b1.5 ~ D. This scaling law is in excellent agreement with theoretical predictions using the Johnson, Kendall, and Roberts (JKR) contact theory, thus providing a rational design framework for fabrication of systems and devices that require precisely designed multiscale features. Electronic supplementary information (ESI) available: SWAN lithography on silicon; comparison of SWAN lithography and state-of-the-art nanopatterning methods; replica molding using SWAN lithography fabricated template; PDMS nanofluidic device, gold nanopattern characterization. See DOI: 10.1039/c6nr03323g

  7. Cu Pillar Low Temperature Bonding and Interconnection Technology of for 3D RF Microsystem

    NASA Astrophysics Data System (ADS)

    Shi, G. X.; Qian, K. Q.; Huang, M.; Yu, Y. W.; Zhu, J.

    2018-03-01

    In this paper 3D interconnects technologies used Cu pillars are discussed with respect to RF microsystem. While 2.5D Si interposer and 3D packaging seem to rely to cu pillars for the coming years, RF microsystem used the heterogeneous chip such as GaAs integration with Si interposers should be at low temperature. The pillars were constituted by Cu (2 micron) -Ni (2 micron) -Cu (3 micron) -Sn (1 micron) multilayer metal and total height is 8 micron on the front-side of the wafer by using electroplating. The wafer backside Cu pillar is obtained by temporary bonding, thinning and silicon surface etching. The RF interposers are stacked by Cu-Sn eutectic bonding at 260 °C. Analyzed the reliability of different pillar bonding structure.

  8. Patterning of nanocrystalline diamond films for diamond microstructures useful in MEMS and other devices

    DOEpatents

    Gruen, Dieter M [Downers Grove, IL; Busmann, Hans-Gerd [Bremen, DE; Meyer, Eva-Maria [Bremen, DE; Auciello, Orlando [Bolingbrook, IL; Krauss, Alan R [late of Naperville, IL; Krauss, Julie R [Naperville, IL

    2004-11-02

    MEMS structure and a method of fabricating them from ultrananocrystalline diamond films having average grain sizes of less than about 10 nm and feature resolution of less than about one micron . The MEMS structures are made by contacting carbon dimer species with an oxide substrate forming a carbide layer on the surface onto which ultrananocrystalline diamond having average grain sizes of less than about 10 nm is deposited. Thereafter, microfabrication process are used to form a structure of predetermined shape having a feature resolution of less than about one micron.

  9. In-Situ Roughening of Polymeric Microstructures

    PubMed Central

    Shadpour, Hamed; Allbritton, Nancy L.

    2010-01-01

    A method to perform in-situ roughening of arrays of microstructures weakly adherent to an underlying substrate was presented. SU8, 1002F, and polydimethylsiloxane (PDMS) microstructures were roughened by polishing with a particle slurry. The roughness and the percentage of dislodged or damaged microstructures was evaluated as a function of the roughening time for both SU8 and 1002F structures. A maximal RMS roughness of 7-18 nm for the surfaces was obtained within 15 to 30 s of polishing with the slurry. This represented a 4-9 fold increase in surface roughness relative to that of the native surface. Less than 0.8% of the microstructures on the array were removed or damage after 5 min of polishing. Native and roughened arrays were assessed for their ability to support fibronectin adhesion and cell attachment and growth. The quantity of adherent fibronectin was increased on roughened arrays by two-fold over that on native arrays. Cell adhesion to the roughened surfaces was also increased compared to native surfaces. Surface roughening with the particle slurry also improved the ability to stamp molecules onto the substrate during microcontact printing. Roughening both the PDMS stamp and substrate resulted in up to a 20-fold improvement in the transfer of BSA-Alexa Fluor 647 from the stamp to the substrate. Thus roughening of micron-scale surfaces with a particle slurry increased the adhesion of biomolecules as well as cells to microstructures with little to no damage to large scale arrays of the structures. PMID:20423129

  10. Influence of Shockwave Profile on Ejecta

    NASA Astrophysics Data System (ADS)

    Zellner, Michael B.; Dimonte, Guy; Germann, Timothy C.; Hammerberg, James E.; Rigg, Paulo A.; Stevens, Gerald D.; Turley, William D.; Buttler, William T.

    2009-12-01

    We investigate the relation between shock-pulse shape and the amount of micron-scale fragments ejected upon shock release at the metal/vacuum interface of shocked Sn targets. These micron-scale particles are commonly referred to as ejecta. Two shock-pulse shapes are considered: a supported shock created by impacting a Sn target with a sabot that was accelerated using a powder gun; and an unsupported or Taylor Shockwave, created by detonation of high explosive that was press-fit to the front-side of the Sn target. Ejecta production at the back-side or free-surface of the Sn coupons were characterized through use of piezoelectric pins, Asay foils, optical shadowgraphy, and x-ray attenuation.

  11. Influence of Shockwave Profile on Ejection of Micron-Scale Material From Shocked Tin Surfaces

    NASA Astrophysics Data System (ADS)

    Zellner, Michael; Hammerberg, Jim; Hixson, Robert; Olson, Russel; Rigg, Paulo; Stevens, Gerald; Turley, William; Buttler, William

    2008-03-01

    This effort investigates the relation between shock-pulse shape and the amount of micron-scale fragments ejected (ejecta) upon shock release at the metal/vacuum interface of shocked Sn targets. Two shock-pulse shapes are considered: a supported shock created by impacting a Sn target with a sabot that was accelerated using a powder gun; and an unsupported or triangular-shaped Taylor shockwave, created by detonation of high explosive that was press-fit to the front-side of the Sn target. Ejecta production at the back-side or free-side of the Sn coupons were characterized through use of piezoelectric pins, Asay foil, optical shadowgraphy, and X-ray attenuation.

  12. Simultaneous formation and micronization of pharmaceutical cocrystals by rapid expansion of supercritical solutions (RESS).

    PubMed

    Müllers, Katrin C; Paisana, Maria; Wahl, Martin A

    2015-02-01

    We investigated the RESS process as a means of simultaneous micronization and cocrystallization of a model drug with poor aqueous solubility. 1:1 cocrystals of ibuprofen (IBU) and nicotinamide (NA) were produced with a pilot scale unit for RESS processing.IBU and NA were dissolved in scCO2 at 30 MPa and 50°C. After 24 h, the supercritical solution was expanded at a medium CO2 flow rate of 3.8 kg/h during 60 min into an expansion vessel kept at ambient conditions. Cocrystals were identified with DSC, XRD and confocal Raman microscopy (CRM) and further characterized by SEM, specific surface area, wetting ability, solubility and dissolution testing. Judging by DSC, XRD and CRM, cocrystals with high purity could be produced with the RESS technique. Micronization via RESS was successful, since the specific surface area of RESS cocrystals was increased almost tenfold in comparison to cocrystals produced by slow solvent evaporation. Due to the additional micronization, the mean dissolution time of IBU from RESS cocrystals was decreased. RESS cocrystallization offers the advantage of combining micronization and cocrystallization in a single production step. For drugs with dissolution-limited bioavailability, RESS cocrystallization may therefore be a superior approach in comparison to established cocrystallization techniques.

  13. Limestone weathering rates accelerated by micron-scale grain detachment

    NASA Astrophysics Data System (ADS)

    Emmanuel, S.; Levenson, Y.

    2014-12-01

    The weathering rates of carbonate rocks is often thought to be controlled by chemical dissolution, although some studies have suggested that mechanical erosion could also play an important role. Quantifying the rates of the different processes has proved challenging due to the high degree of variability encountered in both field and lab settings. To determine the rates and mechanisms controlling long-term limestone weathering, we analyse a lidar scan of the Western Wall, a Roman period edifice located in Jerusalem. Weathering rates in fine-grained micritic limestone blocks are up to 2 orders of magnitude higher than the average rates estimated for coarse-grained limestone blocks at the same site. In addition, in experiments that use atomic force microscopy to image dissolving micritic limestone, we show that these higher reaction rates could be due to rapid dissolution along micron-scale grain boundaries, followed by mechanical detachment of tiny particles from the surface. Our analysis indicates that micron-scale grain detachment, rather than pure chemical dissolution, could be the dominant erosional mode for fine-grained rocks in many carbonate terrains.

  14. Variations in the 3 micron spectrum across the Orion Bar: polycyclic aromatic hydrocarbons and related molecules

    NASA Technical Reports Server (NTRS)

    Sloan, G. C.; Bregman, J. D.; Geballe, T. R.; Allamandola, L. J.; Woodward, C. E.

    1997-01-01

    Long-slit spectra across the Orion Bar reveal significant differences in the spatial behavior of the components of the 3 microns polycyclic aromatic hydrocarbon (PAH) spectrum. The strong PAH band at 3.29 microns generally decreases exponentially with distance from the ionization front into the molecular cloud (scale height approximately 12"), although excesses appear approximately 10" and 20" behind the ionization front, close to layers of H2 and CO emission, respectively. The 3.40 microns PAH feature separates into two components with very different spatial distributions. The main component (at 3.395 microns), along with the 3.51 microns band and the PAH plateau (3.3-3.6 microns), shows excess emission approximately 10" and approximately 20" behind the ionization front, stronger than the excesses in the 3.29 microns band. The extra component of the 3.40 microns band, which peaks at approximately 3.405 microns, has a spatial distribution very similar to the H2 emission. Aromatic C-H stretches in PAHs most likely produce the 3.29 microns feature. Aliphatic C-H stretches in either attached methyl side-groups or superhydrogenated PAHs, or perhaps both, could produce the complicated spectral and spatial structure at 3.40 microns.

  15. Robust Hydrophobic Surfaces from Suspension HVOF Thermal Sprayed Rare-Earth Oxide Ceramics Coatings.

    PubMed

    Bai, M; Kazi, H; Zhang, X; Liu, J; Hussain, T

    2018-05-03

    This study has presented an efficient coating method, namely suspension high velocity oxy-fuel (SHVOF) thermal spraying, to produce large super-hydrophobic ceramic surfaces with a unique micro- and nano-scale hierarchical structures to mimic natural super-hydrophobic surfaces. CeO 2 was selected as coatings material, one of a group of rare-earth oxide (REO) ceramics that have recently been found to exhibit intrinsic hydrophobicity, even after exposure to high temperatures and abrasive wear. Robust hydrophobic REO ceramic surfaces were obtained from the deposition of thin CeO 2 coatings (3-5 μm) using an aqueous suspension with a solid concentration of 30 wt.% sub-micron CeO 2 particles (50-200 nm) on a selection of metallic substrates. It was found that the coatings' hydrophobicity, microstructure, surface morphology, and deposition efficiency were all determined by the metallic substrates underneath. More importantly, it was demonstrated that the near super-hydrophobicity of SHVOF sprayed CeO 2 coatings was achieved not only by the intrinsic hydrophobicity of REO but also their unique hierarchically structure. In addition, the coatings' surface hydrophobicity was sensitive to the O/Ce ratio, which could explain the 'delayed' hydrophobicity of REO coatings.

  16. Submicron scale tissue multifractal anisotropy in polarized laser light scattering

    NASA Astrophysics Data System (ADS)

    Das, Nandan Kumar; Dey, Rajib; Chakraborty, Semanti; Panigrahi, Prasanta K.; Meglinski, Igor; Ghosh, Nirmalya

    2018-03-01

    The spatial fluctuations of the refractive index within biological tissues exhibit multifractal anisotropy, leaving its signature as a spectral linear diattenuation of scattered polarized light. The multifractal anisotropy has been quantitatively assessed by the processing of relevant Mueller matrix elements in the Fourier domain, utilizing the Born approximation and subsequent multifractal analysis. The differential scaling exponent and width of the singularity spectrum appear to be highly sensitive to the structural multifractal anisotropy at the micron/sub-micron length scales. An immediate practical use of these multifractal anisotropy parameters was explored for non-invasive screening of cervical precancerous alterations ex vivo, with the indication of a strong potential for clinical diagnostic purposes.

  17. Creating micro-scale surface topology to achieve anisotropic wettability on an aluminum surface

    NASA Astrophysics Data System (ADS)

    Sommers, Andrew D.; Jacobi, Anthony M.

    2006-08-01

    A technique for fabricating micropatterned aluminum surfaces with parallel grooves 30 µm wide and tens of microns in depth is described. Standard photolithographic techniques are used to obtain this precise surface-feature patterning. Positive photoresists, S1813 and AZ4620, are selected to mask the surface, and a mixture of BCl3 and Cl2 gases is used to perform the etching. Experimental data show that a droplet placed on the micro-grooved aluminum surface using a micro-syringe exhibits an increased apparent contact angle, and for droplets condensed on these etched surfaces, more than a 50% reduction in the volume needed for the onset of droplet sliding is manifest. No chemical surface treatment is necessary to achieve this water repellency; it is accomplished solely by an anisotropic surface morphology that manipulates droplet geometry and creates and exploits discontinuities in the three-phase contact line. These micro-structured surfaces are proposed for use in a broad range of air-cooling applications, where the management of condensate and defrost liquid on the heat transfer surface is essential to the energy-efficient operation of the machine.

  18. Mesostructural investigation of micron-sized glass particles during shear deformation - An experimental approach vs. DEM simulation

    NASA Astrophysics Data System (ADS)

    Torbahn, Lutz; Weuster, Alexander; Handl, Lisa; Schmidt, Volker; Kwade, Arno; Wolf, Dietrich E.

    2017-06-01

    The interdependency of structure and mechanical features of a cohesive powder packing is on current scientific focus and far from being well understood. Although the Discrete Element Method provides a well applicable and widely used tool to model powder behavior, non-trivial contact mechanics of micron-sized particles demand a sophisticated contact model. Here, a direct comparison between experiment and simulation on a particle level offers a proper approach for model validation. However, the simulation of a full scale shear-tester experiment with micron-sized particles, and hence, validating this simulation remains a challenge. We address this task by down scaling the experimental setup: A fully functional micro shear-tester was developed and implemented into an X-ray tomography device in order to visualize the sample on a bulk and particle level within small bulk volumes of the order of a few micro liter under well-defined consolidation. Using spherical micron-sized particles (30 μm), shear tests with a particle number accessible for simulations can be performed. Moreover, particle level analysis allows for a direct comparison of experimental and numerical results, e.g., regarding structural evolution. In this talk, we focus on density inhomogeneity and shear induced heterogeneity during compaction and shear deformation.

  19. Quantitative analysis of nano-pore geomaterials and representative sampling for digital rock physics

    NASA Astrophysics Data System (ADS)

    Yoon, H.; Dewers, T. A.

    2014-12-01

    Geomaterials containing nano-pores (e.g., shales and carbonate rocks) have become increasingly important for emerging problems such as unconventional gas and oil resources, enhanced oil recovery, and geologic storage of CO2. Accurate prediction of coupled geophysical and chemical processes at the pore scale requires realistic representation of pore structure and topology. This is especially true for chalk materials, where pore networks are small and complex, and require characterization at sub-micron scale. In this work, we apply laser scanning confocal microscopy to characterize pore structures and microlithofacies at micron- and greater scales and dual focused ion beam-scanning electron microscopy (FIB-SEM) for 3D imaging of nanometer-to-micron scale microcracks and pore distributions. With imaging techniques advanced for nano-pore characterization, a problem of scale with FIB-SEM images is how to take nanometer scale information and apply it to the thin-section or larger scale. In this work, several texture characterization techniques including graph-based spectral segmentation, support vector machine, and principal component analysis are applied for segmentation clusters represented by 1-2 FIB-SEM samples per each cluster. Geometric and topological properties are analyzed and lattice-Boltzmann method (LBM) is used to obtain permeability at several different scales. Upscaling of permeability to the Darcy scale (e.g., the thin-section scale) with image dataset will be discussed with emphasis on understanding microfracture-matrix interaction, representative volume for FIB-SEM sampling, and multiphase flow and reactive transport. Funding from the DOE Basic Energy Sciences Geosciences Program is gratefully acknowledged. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  20. A High-Average-Power Free Electron Laser for Microfabrication and Surface Applications

    NASA Technical Reports Server (NTRS)

    Dylla, H. F.; Benson, S.; Bisognano, J.; Bohn, C. L.; Cardman, L.; Engwall, D.; Fugitt, J.; Jordan, K.; Kehne, D.; Li, Z.; hide

    1995-01-01

    CEBAF has developed a comprehensive conceptual design of an industrial user facility based on a kilowatt ultraviolet (UV) (160-1000 mm) and infrared (IR) (2-25 micron) free electron laser (FEL) driven by a recirculating, energy recovering 200 MeV superconducting radio frequency (SRF) accelerator. FEL users, CEBAF's partners in the Lase Processing Consortium, including AT&T, DuPont, IBM, Northrop Grumman, 3M, and Xerox, are developing applications such as metal, ceramic, and electronic material micro-fabrication and polymer and metal surface processing, with the overall effort leading to later scale-up to industrial systems at 50-100 kW. Representative applications are described. The proposed high-average-power FEL overcomes limitations of conventional laser sources in available power, cost-effectiveness, tunability, and pulse structure.

  1. An instrument for in situ coherent x-ray studies of metal-organic vapor phase epitaxy of III-nitrides.

    PubMed

    Ju, Guangxu; Highland, Matthew J; Yanguas-Gil, Angel; Thompson, Carol; Eastman, Jeffrey A; Zhou, Hua; Brennan, Sean M; Stephenson, G Brian; Fuoss, Paul H

    2017-03-01

    We describe an instrument that exploits the ongoing revolution in synchrotron sources, optics, and detectors to enable in situ studies of metal-organic vapor phase epitaxy (MOVPE) growth of III-nitride materials using coherent x-ray methods. The system includes high-resolution positioning of the sample and detector including full rotations, an x-ray transparent chamber wall for incident and diffracted beam access over a wide angular range, and minimal thermal sample motion, giving the sub-micron positional stability and reproducibility needed for coherent x-ray studies. The instrument enables surface x-ray photon correlation spectroscopy, microbeam diffraction, and coherent diffraction imaging of atomic-scale surface and film structure and dynamics during growth, to provide fundamental understanding of MOVPE processes.

  2. An instrument for in situ coherent x-ray studies of metal-organic vapor phase epitaxy of III-nitrides

    NASA Astrophysics Data System (ADS)

    Ju, Guangxu; Highland, Matthew J.; Yanguas-Gil, Angel; Thompson, Carol; Eastman, Jeffrey A.; Zhou, Hua; Brennan, Sean M.; Stephenson, G. Brian; Fuoss, Paul H.

    2017-03-01

    We describe an instrument that exploits the ongoing revolution in synchrotron sources, optics, and detectors to enable in situ studies of metal-organic vapor phase epitaxy (MOVPE) growth of III-nitride materials using coherent x-ray methods. The system includes high-resolution positioning of the sample and detector including full rotations, an x-ray transparent chamber wall for incident and diffracted beam access over a wide angular range, and minimal thermal sample motion, giving the sub-micron positional stability and reproducibility needed for coherent x-ray studies. The instrument enables surface x-ray photon correlation spectroscopy, microbeam diffraction, and coherent diffraction imaging of atomic-scale surface and film structure and dynamics during growth, to provide fundamental understanding of MOVPE processes.

  3. A high-average-power FEL for industrial applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dylla, H.F.; Benson, S.; Bisognano, J.

    1995-12-31

    CEBAF has developed a comprehensive conceptual design of an industrial user facility based on a kilowatt UV (150-1000 nm) and IR (2-25 micron) FEL driven by a recirculating, energy-recovering 200 MeV superconducting radio-frequency (SRF) accelerator. FEL users{endash}CEBAF`s partners in the Laser Processing Consortium, including AT&T, DuPont, IBM, Northrop-Grumman, 3M, and Xerox{endash}plan to develop applications such as polymer surface processing, metals and ceramics micromachining, and metal surface processing, with the overall effort leading to later scale-up to industrial systems at 50-100 kW. Representative applications are described. The proposed high-average-power FEL overcomes limitations of conventional laser sources in available power, cost-effectiveness, tunabilitymore » and pulse structure. 4 refs., 3 figs., 2 tabs.« less

  4. High Surface Area Dendrite Nanoelectrodes for Electrochemistry

    NASA Astrophysics Data System (ADS)

    Nesbitt, Nathan; Glover, Jennifer; Goyal, Saurabh; Simidjiysky, Svetoslav; Naughton, Michael

    2014-03-01

    Solution-based electrodeposition of metal using a low ion concentration, surface passivation agents, and/or electrochemical crystal conditioning has allowed for the formation of high surface area metal electrodes, useful for Raman spectroscopy and electrochemical sensors. Additionally, high frequency electrical oscillations have been used to electrically connect co-planar electrodes, a process called directed electrochemical nanowire assembly (DENA). These approaches aim to control the crystal face that metal atoms in solution will nucleate onto, thus causing anisotropic growth of metal crystals. However, DENA has not been used to create high surface area electrodes, and no study has been conducted on the effect of micron-scale surface topography on the initial nucleation of metal crystals on the electrode surface. When DENA is used to create a high surface area electrode, such a texture has a strong impact on the subsequent topography of the three dimensional dendritic structures by limiting the areal density of crystals on the electrode surface. Such structures both demonstrate unique physics concerning the nucleation of metal dendrites, and offer a unique and highly facile fabrication method of high surface area electrodes, useful for chemical and biological sensing. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. (DGE-1258923).

  5. Surface Modification of ICF Target Capsules by Pulsed Laser Ablation

    DOE PAGES

    Carlson, Lane C.; Johnson, Michael A.; Bunn, Thomas L.

    2016-06-30

    Topographical modifications of spherical surfaces are imprinted on National Ignition Facility (NIF) target capsules by extending the capabilities of a recently developed full surface (4π) laser ablation and mapping apparatus. The laser ablation method combines the precision, energy density and long reach of a focused laser beam to pre-impose sinusoidal modulations on the outside surface of High Density Carbon (HDC) capsules and the inside surface of Glow Discharge Polymer (GDP) capsules. Sinusoidal modulations described in this paper have sub-micron to 10’s of microns vertical scale and wavelengths as small as 30 μm and as large as 200 μm. The modulatedmore » patterns are created by rastering a focused laser fired at discrete capsule surface locations for a specified number of pulses. The computer program developed to create these raster patterns uses inputs such as laser beam intensity profile, the material removal function, the starting surface figure and the desired surface figure. The patterns are optimized to minimize surface roughness. Lastly, in this paper, simulated surfaces are compared with actual ablated surfaces measured using confocal microscopy.« less

  6. Micron-scale plasma membrane curvature is recognized by the septin cytoskeleton

    PubMed Central

    Bridges, Andrew A.; Jentzsch, Maximilian S.; Oakes, Patrick W.; Occhipinti, Patricia

    2016-01-01

    Cells change shape in response to diverse environmental and developmental conditions, creating topologies with micron-scale features. Although individual proteins can sense nanometer-scale membrane curvature, it is unclear if a cell could also use nanometer-scale components to sense micron-scale contours, such as the cytokinetic furrow and base of neuronal branches. Septins are filament-forming proteins that serve as signaling platforms and are frequently associated with areas of the plasma membrane where there is micron-scale curvature, including the cytokinetic furrow and the base of cell protrusions. We report here that fungal and human septins are able to distinguish between different degrees of micron-scale curvature in cells. By preparing supported lipid bilayers on beads of different curvature, we reconstitute and measure the intrinsic septin curvature preference. We conclude that micron-scale curvature recognition is a fundamental property of the septin cytoskeleton that provides the cell with a mechanism to know its local shape. PMID:27044896

  7. Enhanced heat transfer is dependent on thickness of graphene films: the heat dissipation during boiling

    PubMed Central

    Ahn, Ho Seon; Kim, Jin Man; Kim, TaeJoo; Park, Su Cheong; Kim, Ji Min; Park, Youngjae; Yu, Dong In; Hwang, Kyoung Won; Jo, HangJin; Park, Hyun Sun; Kim, Hyungdae; Kim, Moo Hwan

    2014-01-01

    Boiling heat transfer (BHT) is a particularly efficient heat transport method because of the latent heat associated with the process. However, the efficiency of BHT decreases significantly with increasing wall temperature when the critical heat flux (CHF) is reached. Graphene has received much recent research attention for applications in thermal engineering due to its large thermal conductivity. In this study, graphene films of various thicknesses were deposited on a heated surface, and enhancements of BHT and CHF were investigated via pool-boiling experiments. In contrast to the well-known surface effects, including improved wettability and liquid spreading due to micron- and nanometer-scale structures, nanometer-scale folded edges of graphene films provided a clue of BHT improvement and only the thermal conductivity of the graphene layer could explain the dependence of the CHF on the thickness. The large thermal conductivity of the graphene films inhibited the formation of hot spots, thereby increasing the CHF. Finally, the provided empirical model could be suitable for prediction of CHF. PMID:25182076

  8. Active microrheology and simultaneous visualization of sheared phospholipid monolayers

    PubMed Central

    Choi, S.Q.; Steltenkamp, S.; Zasadzinski, J.A.; Squires, T.M.

    2011-01-01

    Two-dimensional films of surface-active agents—from phospholipids and proteins to nanoparticles and colloids—stabilize fluid interfaces, which are essential to the science, technology and engineering of everyday life. The 2D nature of interfaces present unique challenges and opportunities: coupling between the 2D films and the bulk fluids complicates the measurement of surface dynamic properties, but allows the interfacial microstructure to be directly visualized during deformation. Here we present a novel technique that combines active microrheology with fluorescence microscopy to visualize fluid interfaces as they deform under applied stress, allowing structure and rheology to be correlated on the micron-scale in monolayer films. We show that even simple, single-component lipid monolayers can exhibit viscoelasticity, history dependence, a yield stress and hours-long time scales for elastic recoil and aging. Simultaneous visualization of the monolayer under stress shows that the rich dynamical response results from the cooperative dynamics and deformation of liquid-crystalline domains and their boundaries. PMID:21587229

  9. Lab Demonstration of the Hybrid Doppler Wind Lidar (HDWL) Transceiver

    NASA Technical Reports Server (NTRS)

    Marx, Catherine T.; Gentry, Bruce; Jordan, Patrick; Dogoda, Peter; Faust, Ed; Kavaya, Michael

    2013-01-01

    The recommended design approach for the 3D Tropospheric Winds mission is a hybrid Doppler lidar which combines the best elements of both a coherent aerosol Doppler lidar operating at 2 micron and a direct detection molecular Doppler lidar operating at 0.355 micron. In support of the mission, we built a novel, compact, light-weighted multi-field of view transceiver where multiple telescopes are used to cover the required four fields of view. A small mechanism sequentially selects both the "transmit" and "receive" fields of view. The four fields are combined to stimulate both the 0.355 micron receiver and the 2 micron receiver. This version is scaled (0.2 micron diameter aperture) from the space-based version but still demonstrates the feasibility of the hybrid approach. The primary mirrors were conventionally light-weighted and coated with dielectric, high reflectivity coatings with high laser damage thresholds at both 2 micron and 0.355 micron. The mechanical structure and mounts were fabricated from composites to achieve dimensional stability while significantly reducing the mass. In the laboratory, we demonstrated the system level functionality at 0.355 micron and at 2 micron raising the Technology Readiness Level (TRL) from 2 to 4.

  10. Refinement in black chrome for use as a solar selective coating

    NASA Technical Reports Server (NTRS)

    Mcdonald, G. E.

    1974-01-01

    Black chrome is significant as a solar selective coating because the current extensive use of black chrome in the electroplating industry as a durable decorative finish makes black chrome widely available on a commercial scale and potentially low in cost as a solar selective coating. Black-chrome deposits were modified by underplating with dull nickel or by being plated on rough surfaces. Both of these procedures increased the visible absorptance. There was no change in the infrared reflectance for the dull-nickel - black-chrome combination from that reported for the bright-nickel - black-chrome combination. However, the bright-nickel - black-chrome coating plated on rough surfaces indicated a slight decrease in infrared reflectance. As integrated over the solar spectrum for air mass 2, the reflectance of the dull-nickel - black-chrome coating was 0.077, of the bright-nickel - black-chrome coating plated on a 0.75-micron (30-microinch) surface was 0.070, of the bright-nickel - black-chrome coating plated on a 2.5 micron (100-microinch) surface was 0.064. The corresponding values for the bright-nickel - black-chrome coating on a 0.0125-micron (0.5-microinch) surface, two samples of black nickel, and two samples of Nextrel black paint were 0.132, 0.123, 0.133, and 0.033, respectively.

  11. Negative Searches for Evidence of Aqueous Alteration on Asteroid Surfaces

    NASA Technical Reports Server (NTRS)

    Vilas, F.

    2005-01-01

    Small bodies in the Solar System preserve evidence of the processes occurring during early Solar System formation, unlike the larger planets that undergo continuous churning of their surfaces. We study these bodies to understand what processes affected different stages of Solar System formation. The action of aqueous alteration (the alteration of material by the interaction of that material with liquid formed by the melting of incorporated ice) of near-subsurface material has been inferred to occur on many asteroids based on the spectrophotometric evidence of phyllosilicates and iron alteration minerals. The definitive indication of aqueous alteration is the 3.0- micron absorption feature attributed to structural hydroxyl (OH) and interlayer and adsorbed water (H2O) in phyllosilicates (clays) (hereafter water of hydration). A weak absorption feature centered near 0.7 microns attributed to an Fe (2+) right arrow Fe (3+) charge transfer transition in oxidized iron in phyllosilicates has been observed in the reflectance spectra and photometry of approximately 50% of the main-belt C-class asteroids. An approximately 85% correlation between this 0.7- micron feature and the 3.0- micron water of hydration absorption feature was found among the low-albedo asteroids. The feature is usually centered near 0.68 microns in asteroid spectra, and ranges in wavelength from approximately 0.57 to 0.83 microns. Serendipitously, three of the Eight Color Asteroid Survey filters the v (0.550 microns), w (0.701 microns), and x (0.853 microns)-bracket this feature well, and can be used to determine the presence of this feature in the reflectance properties of an asteroid, and probe the aqueous alteration history of larger samples of asteroid data. Two efforts to search for evidence of aqueous alteration based on the presence of this 0.7- micron absorption feature are presented here.

  12. Focused ion beam assisted three-dimensional rock imaging at submicron scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomutsa, Liviu; Radmilovic, Velimir

    2003-05-09

    Computation of effective flow properties of fluids in porous media based on three dimensional (3D) pore structure information has become more successful in the last few years, due to both improvements in the input data and the network models. Computed X-ray microtomography has been successful in 3D pore imaging at micron scale, which is adequate for many sandstones. For other rocks of economic interest, such as chalk and diatomite, submicron resolution is needed in order to resolve the 3D-pore structure. To achieve submicron resolution, a new method of sample serial sectioning and imaging using Focused Ion Beam (FIB) technology hasmore » been developed and 3D pore images of the pore system for diatomite and chalk have been obtained. FIB was used in the milling of layers as wide as 50 micrometers and as thin as 100 nanometers by sputtering of atoms from the sample surface. The focused ion beam, consisting of gallium ions (Ga+) accelerated by potentials of up to 30 kV and currents up to 20,000 pA, yields very clean, flat surfaces in which the pore-grain boundaries appear in high contrast. No distortion of the pore boundaries due to the ion milling is apparent. After each milling step, as a new surface is exposed, an image of the surface is generated. Using secondary electrons or ions, resolutions as high as 10 nm can be obtained. Afterwards, the series of 2D images can be stacked in the computer and, using appropriate interpolation and surface rendering algorithms, the 3D pore structure is reconstructed.« less

  13. Darkening effect on AZ31B magnesium alloy surface induced by nanosecond pulse Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Guan, Y. C.; Zhou, W.; Zheng, H. Y.; Li, Z. L.

    2013-09-01

    Permanent darkening effect was achieved on surface of AZ31B Mg alloy irradiated with nanosecond pulse Nd:YAG laser, and special attention was made to examine how surface structure as well as oxidation affect the darkening effect. Experiments were carried out to characterize morphological evolution and chemical composition of the irradiated areas by optical reflection spectrometer, Talysurf surface profiler, SEM, EDS, and XPS. The darkening effect was found to be occurred at the surface under high laser energy. Optical spectra showed that the induced darkening surface was uniform over the spectral range from 200 nm to 1100 nm. SEM and surface profiler showed that surface morphology of darkening areas consisted of large number of micron scale cauliflower-like clusters and protruding particles. EDS and XPS showed that compared to non-irradiated area, oxygen content at the darkening areas increased significantly. It was proposed a mechanism that involved trapping of light in the surface morphology and chemistry variation of irradiated areas to explain the laser-induced darkening effect on AZ31B Mg alloy.

  14. Inference of the boundary layer structure over the oceans from satellite infrared measurements

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Dalu, G.; Lo, R.; Nath, N. R.

    1980-01-01

    Remote infrared spectral measurements in the 8-13 micron m window region, at a resolution about 3 cm/1, contain useful information about the water vapor and temperature stratification of the atmosphere within the first few kilometers above the water surface. Two pieces of information are retrieved from the spectral measurements: precipitable water vapor in the atmosphere, from the depth of the line structure between 8 and 9 micron m due to water vapor lines; and sea surface temperature, from the variation of brightness temperature between 11 and 13 micron m. Together, these two pieces of information can signify either the presence of a deep moist convective layer or the prevalence of stable conditions, such as caused by temperature inversions, which inhibit moist convection. A simple infrared radiative transfer model of the 9 micron m water vapor lines was developed to validate the method. With the help of this model and the Nimbus 4 infrared interferometer spectrometer data, a gross picture of the planetary boundary layer for different seasons over the global oceans is deduced. The important regions of the trade wind inversion and the intertropical convergence zones over all the oceans are clearly identified with this method. The derived information is in reasonable agreement with some observed climatological patterns over the oceans.

  15. Microcavity surface plasmon resonance bio-sensors

    NASA Astrophysics Data System (ADS)

    Mosavian, Nazanin

    This work discusses a miniature surface plasmon biosensor which uses a dielectric sub- micron diameter core with gold spherical shell. The shell has a subwavelength nanoaperture believed to excite stationary plasmon resonances at the biosensor's surface. The sub-micron cavity enhances the measurement sensitivity of molecules binding to the sensor surface. We used visible-range optical spectroscopy to study the wavelength shift as bio-molecules absorbed-desorbed at the shell surface. We also used Scanning Electron Microscopy (SEM) and Focused Ion Beam (FIB) ablation to study the characteristics of microcavity surface plasmon resonance sensor (MSPRS) and the inner structure formed with metal deposition and its spectrum. We found that resonances at 580 nm and 670 nm responded to bound test agents and that Surface Plasmon Resonance (SPR) sensor intensity could be used to differentiate between D-glucose and L-glucose. The responsiveness of the system depended upon the mechanical integrity of the metallic surface coating.

  16. Visible and Near-Infrared Spectroscopy of Hephaestus Fossae Cratered Cones, Mars

    NASA Astrophysics Data System (ADS)

    Dapremont, A.; Wray, J. J.

    2017-12-01

    Hephaestus Fossae are a system of sub-parallel fractures on Mars (> 500 km long) interpreted as near-surface tensional cracks [1]. Images of the Martian surface from the High Resolution Imaging Science Experiment have revealed cratered cones within the Hephaestus Fossae region. A volcanic origin (cinder/tuff cones) has been proposed for these features based on morphometric measurements and fine-scale surface characteristics [2]. In an effort to further constrain the origin of these cones as the products of igneous or sedimentary volcanism, we use data from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM). We take advantage of CRISM's S (0.4 - 1.0 microns) and L (1.0 - 3.9 microns) detector wavelength ranges to investigate the presence or absence of spectral signatures consistent with previous identifications of igneous and mud volcanism products on Mars [3,4]. Hephaestus Fossae cratered cone rims exhibit a consistent nanophase ferric oxide signature. We also identify ferrous phases and 3-micron absorptions (attributed to fundamental vibrational stretch frequencies in H2O) on the crater rims of several cones. Mafic signatures on cratered cone rims support an igneous provenance for these features. The 3-micron absorptions are consistent with the presence of structurally bound or adsorbed water. Our CRISM observations are similar to those of small edifice features in Chryse Planitia, which were interpreted as mud volcanism products based on their enrichment of nanophase ferric minerals and 3-micron absorptions on summit crater rims [3]. Hydrothermal activity was invoked for a Coprates Chasma pitted cone (scoria/tuff cone) based on CRISM identification of partially dehydrated opaline silica, which we do not observe in Hephaestus Fossae [4]. Our spectral observations are more consistent with mud volcanism, but we do not definitively rule out an igneous volcanic origin for the cones in our study region. We demonstrate that VNIR spectroscopy is a valuable tool in developing criteria to determine the origin (igneous/sedimentary/periglacial) of cone features on Mars. [1] Skinner and Tanaka (2007) Icarus 186: 41-59. [2] Dundas et al (2007) LPSC XXXVIII Abs #2116. [3] Komatsu et al (2016) Icarus 268: 56-75. [4] Brož et al (2017) Earth and Planetary Sci Letters 473: 122-130.

  17. Latest Developments in SLD Scaling

    NASA Technical Reports Server (NTRS)

    Tsao, Jen-Ching; Anderson, David N.

    2006-01-01

    Scaling methods have been shown previously to work well for super cooled large droplet (SLD) main ice shapes. However, feather sizes for some conditions have not been well represented by scale tests. To determine if there are fundamental differences between the development of feathers for appendix C and SLD conditions, this study used time-sequenced photographs, viewing along the span of the model during icing sprays. An airspeed of 100 kt, cloud water drop MVDs of 30 and 140 microns, and stagnation freezing fractions of 0.30 and 0.50 were tested in the NASA Glenn Icing Research Tunnel using an unswept 91-cm-chord NACA0012 airfoil model mounted at 0deg AOA. The photos indicated that the feathers that developed in a distinct region downstream of the leading-edge ice determined the horn location and angle. The angle at which feathers grew from the surface were also measured; results are shown for an airspeed of 150 kt, an MVD of 30 microns, and stagnation freezing fractions of 0.30 to 0.60. Feather angles were found to depend strongly on the stagnation freezing fraction, and were independent of either chordwise position on the model or time into the spray. Feather angles also correlated well with horn angles. For these tests, there did not appear to be fundamental differences between the physics of SLD and appendix C icing; therefore, for these conditions similarity parameters used for appendix C scaling appear to be valid for SLD scaling as well. Further investigation into the cause for the large feather structures observed for some SLD conditions will continue.

  18. Nanowall formation by maskless wet-etching on a femtosecond laser irradiated silicon surface

    NASA Astrophysics Data System (ADS)

    Lee, Siwoo; Jo, Kukhyun; Keum, Hee-sung; Chae, Sangmin; Kim, Yonghyeon; Choi, Jiyeon; Lee, Hyun Hwi; Kim, Hyo Jung

    2018-04-01

    We found that micro-cells surrounded by nanowalls can be formed by a maskless wet-etching process on Si (100) surfaces possessing Laser Induced Periodic Surface Structure (LIPSS) by femtosecond laser irradiation. The LIPSS process could produce periodic one-dimensional micron scale ripples on a Si surface, which could be developed into micro-cells by a subsequent etching process. The solution etching conditions strongly affected both the micro-cell and nanowall shapes such as the height and the thickness of nanowalls. The tetramethylammonium hydroxide solution created thin nanowalls and the resulting micro-cells with a well-flattened bottom while the KOH solution formed thick walls and incomplete micro-cells. The bottoms of micro-cells surrounded by the nanowalls were considerably flat with a 3.10 nm surface roughness. A pentacene layer was deposited on the micro-cells of a Si surface to evaluate the film properties by grazing incidence wide angle x-ray scattering measurements. The pentacene film on the micro-cell Si surface showed a strong film phase, which was comparable to the film phase grown on the atomically flat Si surface.

  19. Assessing mechanical deconstruction of softwood cell wall for cellulosic biofuels production

    NASA Astrophysics Data System (ADS)

    Jiang, Jinxue

    Mechanical deconstruction offers a promising strategy to overcome biomass recalcitrance for facilitating enzymatic hydrolysis of pretreated substrates with zero chemicals input and presence of inhibitors. The goal of this dissertation research is to gain a more fundamental understanding on the impact of mechanical pretreatment on generating digestible micronized-wood and how the physicochemical characteristics influence the subsequent enzymatic hydrolysis of micronized wood. The initial moisture content of feedstock was found to be the key factor affecting the development of physical features and enzymatic hydrolysis of micronized wood. Lower moisture content resulted in much rounder particles with lower crystallinity, while higher moisture content resulted in the milled particles with larger aspect ratio and crystallinity. The enzymatic hydrolysis of micronized wood was improved as collectively increasing surface area (i.e., reducing particle size and aspect ratio) and decreasing crystallinity during mechanical milling pretreatment. Energy efficiency analysis demonstrated that low-moisture content feedstock with multi-step milling process would contribute to cost-effectiveness of mechanical pretreatment for achieving more than 70% of total sugars conversion. In the early stage of mechanical pretreatment, the types of cell fractures were distinguished by the initial moisture contents of wood, leading to interwall fracture at the middle lamella region for low moisture content samples and intrawall fracture at the inner cell wall for high moisture content samples. The changes in cell wall fractures also resulted in difference in the distribution of surface chemical composition and energy required for milling process. In an effort to exploit the underlying mechanism associated with the reduced recalcitrance in micronized wood, we reported the increased enzymatic sugar yield and correspondingly structural and accessible properties of micronized feedstock. Electronic microscopy analysis detailed the structural alternation of cell wall during mechanical process, including cell fracture and delamination, ultrastructure disintegration, and cell wall fragments amorphization, as coincident with the particle size reduction. It was confirmed with Simons' staining that longer milling time resulted in increased substrate accessibility and porosity. The changes in cellulose molecular structure with respect to degree of polymerization (DP) and crystallinity index (CrI) also benefited to decreasing recalcitrance and facilitating enzymatic hydrolysis of micronized wood.

  20. GaAs/Ge crystals grown on Si substrates patterned down to the micron scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taboada, A. G., E-mail: gonzalez@phys.ethz.ch; Kreiliger, T.; Falub, C. V.

    Monolithic integration of III-V compounds into high density Si integrated circuits is a key technological challenge for the next generation of optoelectronic devices. In this work, we report on the metal organic vapor phase epitaxy growth of strain-free GaAs crystals on Si substrates patterned down to the micron scale. The differences in thermal expansion coefficient and lattice parameter are adapted by a 2-μm-thick intermediate Ge layer grown by low-energy plasma enhanced chemical vapor deposition. The GaAs crystals evolve during growth towards a pyramidal shape, with lateral facets composed of (111) planes and an apex formed by (137) and (001) surfaces.more » The influence of the anisotropic GaAs growth kinetics on the final morphology is highlighted by means of scanning and transmission electron microscopy measurements. The effect of the Si pattern geometry, substrate orientation, and crystal aspect ratio on the GaAs structural properties was investigated by means of high resolution X-ray diffraction. The thermal strain relaxation process of GaAs crystals with different aspect ratio is discussed within the framework of linear elasticity theory by Finite Element Method simulations based on realistic geometries extracted from cross-sectional scanning electron microscopy images.« less

  1. Solid sulfur in vacuum: Sublimation effects on surface microtexture, color and spectral reflectance, and applications to planetary surfaces

    NASA Technical Reports Server (NTRS)

    Nash, D. B.

    1987-01-01

    A form of sulfur that is white at room temperature and very fluffy in texture has been found in laboratory experiments on the effects of vacuum sublimation (evaporation) on solid sulfur. This work is an outgrowth of proton sputtering experiments on sulfur directed toward understanding Jovian magnetospheric effects on the surface of Io. Fluffy white sulfur is formed on the surface of solid yellow, tan, or brown sulfur melt freezes in vacuum by differential (fractional) evaporation of two or more sulfur molecular species present in the original sulfur; S(8) ring sulfur is thought to be the dominant sublimination phase lost to the vacuum sink, and polymeric chain sulfur S(u) the dominant residual phase that remains in place, forming the residual fluffy surface layer. The reflectance spectrum of the original sulfur surface is greaty modified by formation of the fluffy layer: the blue absorption band-edge and shoulder move 0.05 to 0.06 microns toward shorter wavelengths resulting in a permanent increase in reflectivity near 0.42 to 0.46 microns; the UV reflectivity below 0.40 microns is reduced. This form of sulfur should exist in large quantity on the surface of Io, especially in hotspot regions if there is solid free sulfur there that has solidified from a melt. Its color and spectra will indicate relative crystallization age on a scale of days to months and/or surface temperature distribution history.

  2. Surface modification of poly(dimethylsiloxane) for microfluidic assay applications

    NASA Astrophysics Data System (ADS)

    Séguin, Christine; McLachlan, Jessica M.; Norton, Peter R.; Lagugné-Labarthet, François

    2010-02-01

    The surface of a poly(dimethylsiloxane) (PDMS) film was imparted with patterned functionalities at the micron-scale level. Arrays of circles with diameters of 180 and 230 μm were functionalized using plasma oxidation coupled with aluminum deposition, followed by silanization with solutions of 3-aminopropyltrimethoxy silane (3-APTMS) and 3-mercaptopropyltrimethoxy silane (3-MPTMS), to obtain patterned amine and thiol functionalities, respectively. The modification of the samples was confirmed using X-ray photoelectron spectroscopy (XPS), gold nanoparticle adhesion coupled with optical microscopy, as well as by derivatization with fluorescent dyes. To further exploit the novel surface chemistry of the modified PDMS, samples with surface amine functionalities were used to develop a protein assay as well as an array capable of cellular capture and patterning. The modified substrate was shown to successfully selectively immobilize fluorescently labeled immunoglobulin G (IgG) by tethering Protein A to the surface, and, for the cellular arrays, C2C12 rat endothelial cells were captured. Finally, this novel method of patterning chemical functionalities onto PDMS has been incorporated into microfluidic channels. Finally, we demonstrate the in situ chemical modification of the protected PDMS oxidized surface within a microfluidic device. This emphasizes the potential of our method for applications involving micron-scale assays since the aluminum protective layer permits to functionalize the oxidized PDMS surface several weeks after plasma treatment simply after etching away the metallic thin film.

  3. All-back-Schottky-contact thin-film photovoltaics

    NASA Astrophysics Data System (ADS)

    Nardone, Marco

    2016-02-01

    The concept of All-Back-Schottky-Contact (ABSC) thin-film photovoltaic (TFPV) devices is introduced and evaluated using 2D numerical simulation. Reach-through Schottky junctions due to two metals of different work functions in an alternating, side-by-side pattern along the non-illuminated side generate the requisite built-in field. It is shown that our simulation method quantitatively describes existing data for a recently demonstrated heterojunction thin-film cell with interdigitated back contacts (IBCs) of one metal type. That model is extended to investigate the performance of ABSC devices with bimetallic IBCs within a pertinent parameter space. Our calculations indicate that 20% efficiency is achievable with micron-scale features and sufficient surface passivation. Bimetallic, micron-scale IBCs are readily fabricated using photo-lithographic techniques and the ABSC design allows for optically transparent surface passivation layers that need not be electrically conductive. The key advantages of the ABSC-TFPV architecture are that window layers, buffer layers, heterojunctions, and module scribing are not required because both contacts are located on the back of the device.

  4. Lab Demonstration of the Hybrid Doppler Wind Lidar (HDWL) Transceiver

    NASA Technical Reports Server (NTRS)

    Marx, Catherine T.; Gentry, Bruce; Jordan, Patrick; Dogoda, Peter; Faust, Ed; Kavaya, Michael

    2013-01-01

    The recommended design approach for the 3D Tropospheric Winds mission is a hybrid Doppler lidar which combines the best elements of both a coherent aerosol Doppler lidar operating at 2 microns and a direct detection molecular Doppler lidar operating at 0.355 microns. In support of the mission, we built a novel, compact, light-weighted multi-field of view transceiver where multiple telescopes are used to cover the required four fields of view. A small mechanism sequentially selects both the "transmit" and "receive" fields of view. The four fields are combined to stimulate both the 0.355 micron receiver and the 2 micron receiver. This version is scaled (0.2 m diameter aperture) from the space-based version but still demonstrates the feasibility of the hybrid approach. The primary mirrors were conventionally light-weighted and coated with dielectric, high reflectivity coatings with high laser damage thresholds at both 2 microns and 0.355 microns. The mechanical structure and mounts were fabricated from composites to achieve dimensional stability while significantly reducing the mass. In the laboratory, we demonstrated the system level functionality at 0.355 microns and at 2 microns, raising the Technology Readiness Level (TRL) from 2 to 4.

  5. Reflectance spectra of Fe(2+)-Mg(2+) disordered pyroxenes: Implications to remote-sensed spectra of planetary surfaces

    NASA Technical Reports Server (NTRS)

    Burns, Roger G.; Besancon, James R.; Pratt, Stephen F.

    1991-01-01

    The reflectance spectra of Fe(2+)-Mg(2+) disordered orthopyroxenes are relevant to surfaces of terrestrial planets onto which basaltic magma has been extruded. If cooling rates of basalt lava flows were fast, equilibrium iron intersite partitioning may not have been achieved so that abnormal enrichments of Fe(2+) ions in M1 sites would occur. The two intense pyroxene Fe(2+) site CF bands in the 1 micron and 2 micron regions would continue to dominate the the reflectance spectra so that the pyroxene composition and structure type would be readily identified in telescopic spectral profiles. However, abnormal intensification of the Fe(2+)/M1 site CF band at 1.20 microns could lead to the false identification of olivine in remote sensed spectra because in pyroxene-olivine mixtures the inflection around 1.20 microns is the only spectral feature for detecting the presence of olivine. The identification of iron-bearing plagioclase feldspars, too, would be obscured by the pyroxene Fe(2+)/M1 site CF band at 1.20 microns. Such interference would be a major problem if in situ reflectance spectra could be measured on the surface of Venus where ambient temperatures are as high as 475 C. Disordering of Fe(2+) and Mg(2+) ions comparable to that in the orthopyroxenes used in this spectral chemical study might be expected in low Ca pyroxenes occurring on the Venusian surface. Researchers conclude that Fe(2+)/M1 site spectral features need to be carefully assessed in remote-sensed spectra before deductions are made about the presence of olivine on planetary surfaces.

  6. Heat Transfer Enhancement by Finned Heat Sinks with Micro-structured Roughness

    NASA Astrophysics Data System (ADS)

    Ventola, L.; Chiavazzo, E.; Calignano, F.; Manfredi, D.; Asinari, P.

    2014-04-01

    We investigated the benefits of micro-structured roughness on heat transfer performance of heat sinks, cooled by forced air. Heat sinks in aluminum alloy by direct metal laser sintering (DMLS) manufacturing technique were fabricated; values of the average surface roughness Ra from 1 to 25 microns (standard milling leads to roughness around 1 micron) under turbulent regimes (Reynolds number based on heating edge from 3000 to 17000) have been explored. An enhancement of 50% in thermal performances with regards to standard manufacturing was observed. This may open the way for huge boost in the technology of electronic cooling by DMLS.

  7. Experimental and Numerical Correlation of Gravity Sag in Solar Sail Quality Membranes

    NASA Technical Reports Server (NTRS)

    Black, Jonathan T.; Leifer, Jack; DeMoss, Joshua A.; Walker, Eric N.; Belvin, W. Keith

    2004-01-01

    Solar sails are among the most studied members of the ultra-lightweight and inflatable (Gossamer) space structures family due to their potential to provide propellentless propulsion. They are comprised of ultra-thin membrane panels that, to date, have proven very difficult to experimentally characterize and numerically model due to their reflectivity and flexibility, and the effects of gravity sag and air damping. Numerical models must be correlated with experimental measurements of sub-scale solar sails to verify that the models can be scaled up to represent full-sized solar sails. In this paper, the surface shapes of five horizontally supported 25 micron thick aluminized Kapton membranes were measured to a 1.0 mm resolution using photogrammetry. Several simple numerical models closely match the experimental data, proving the ability of finite element simulations to predict actual behavior of solar sails.

  8. Microfluidics: Science and Engineering at the Edge of the Continuum

    NASA Astrophysics Data System (ADS)

    Breuer, Kenny

    2002-11-01

    The widespread growth of microengineering and the development of a new generation of micron- and nanometer scale diagnostic techniques has focussed much recent attention on the mechanics of fluids at the micron and sub-micron scale. Challenges with both scientific and engineering relevance have been raised by this activity, ranging from the prediction of viscous damping and lubrication effects in MEMS to the design of microengines to the understanding of bacterial propulsion. Identifying and addressing these challenges form the basis of this talk. >From a scientific perspective, a question that refuses to die is that of the applicability of the continuum hypothesis, and the possible existence of new physical phenomena only observable in small systems. To be brief, the reports of the demise of the Navier-Stokes equations are greatly exaggerated and to illustrate this we will review the more recent work on near-continuum fluid mechanics in micron and sub-micron scale devices with an emphasis on our own experiments on the breakdown of the continuum description in both gaseous and liquid flows. From an engineering perspective, the tight coupling between fluids, structures and manufacturing result in flows characterized by unfamiliar parameter regimes and unconventional geometries. We will look at several examples of such microfluidic engineering, drawn from MEMS (inertial instruments, microengines) and biology (bacterial propulsion) that illustrate the the unique design challenges that we encounter in microfluidic devices and the solutions (and lack of solutions) to these problems.

  9. Hierarchical micro-nano structured Ti6Al4V surface topography via two-step etching process for enhanced hydrophilicity and osteoblastic responses.

    PubMed

    Moon, Byeong-Seok; Kim, Sungwon; Kim, Hyoun-Ee; Jang, Tae-Sik

    2017-04-01

    Hierarchical micro-nano (HMN) surface structuring of dental implants is a fascinating strategy for achieving fast and mechanically stable fixation due to the synergetic effect of micro- and nano-scale surface roughness with surrounding tissues. However, the introduction of a well-defined nanostructure on a microstructure having complex surface geometry is still challenging. As a means of fabricating HMN surface on Ti6Al4V-ELI, target-ion induced plasma sputtering (TIPS) was used onto a sand-blasted, large-grit and acid-etched substrate. The HMN surface topography was simply controlled by adjusting the tantalum (Ta) target power of the TIPS technique, which is directly related to the Ta ion flux and the surface chemical composition of the substrate. Characterization using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and laser scanning microscopy (LSM) verified that well-defined nano-patterned surface structures with a depth of ~300 to 400nm and a width of ~60 to 70nm were uniformly distributed and followed the complex micron-sized surface geometry. In vitro cellular responses of pre-osteoblast cells (MC3T3-E1) were assessed by attachment and proliferation of cells on flat, nano-roughened, micro-roughened, and an HMN surface structure of Ti6Al4V-ELI. Moreover, an in vivo dog mandible defect model study was used to investigate the biological effect of the HMN surface structure compared with the micro-roughened surface. The results showed that the surface nanostructure significantly increased the cellular activities of flat and micro-roughened Ti, and the bone-to-implant contact area and new bone volume were significantly improved on the HMN surface structured Ti. These results support the idea that an HMN surface structure on Ti6Al4V-ELI alloy has great potential for enhancing the biological performance of dental implants. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. An instrument for in situ coherent x-ray studies of metal-organic vapor phase epitaxy of III-nitrides

    DOE PAGES

    Ju, Guangxu; Highland, Matthew J.; Yanguas-Gil, Angel; ...

    2017-03-21

    Here, we describe an instrument that exploits the ongoing revolution in synchrotron sources, optics, and detectors to enable in situ studies of metal-organic vapor phase epitaxy (MOVPE) growth of III-nitride materials using coherent x-ray methods. The system includes high-resolution positioning of the sample and detector including full rotations, an x-ray transparent chamber wall for incident and diffracted beam access over a wide angular range, and minimal thermal sample motion, giving the sub-micron positional stability and reproducibility needed for coherent x-ray studies. The instrument enables surface x-ray photon correlation spectroscopy, microbeam diffraction, and coherent diffraction imaging of atomic-scale surface and filmmore » structure and dynamics during growth, to provide fundamental understanding of MOVPE processes.« less

  11. Microstructural and wear properties of sputtered carbides and silicides

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1977-01-01

    Sputtered Cr3C2, Cr3Si2, and MoSi2 wear-resistant films (0.05 to 3.5 microns thick) were deposited on metal and glass surfaces. Electron transmission, electron diffraction, and scanning electron microscopy were used to determine the microstructural appearance. Strong adherence was obtained with these sputtered films. Internal stresses and defect crystallographic growth structures of various configurations within the film have progressively more undesirable effects for film thicknesses greater than 1.5 microns. Sliding contact and rolling element bearing tests were performed with these sputtered films. Bearings sputtered with a duplex coating (0.1-micron-thick undercoating of Cr3Si2 and subsequently 0.6-micron coating of MoS2) produced marked improvement over straight MoS2 films.

  12. Ultrafast Bessel beams: advanced tools for laser materials processing

    NASA Astrophysics Data System (ADS)

    Stoian, Razvan; Bhuyan, Manoj K.; Zhang, Guodong; Cheng, Guanghua; Meyer, Remy; Courvoisier, Francois

    2018-05-01

    Ultrafast Bessel beams demonstrate a significant capacity of structuring transparent materials with a high degree of accuracy and exceptional aspect ratio. The ability to localize energy on the nanometer scale (bypassing the 100-nm milestone) makes them ideal tools for advanced laser nanoscale processing on surfaces and in the bulk. This allows to generate and combine micron and nano-sized features into hybrid structures that show novel functionalities. Their high aspect ratio and the accurate location can equally drive an efficient material modification and processing strategy on large dimensions. We review, here, the main concepts of generating and using Bessel non-diffractive beams and their remarkable features, discuss general characteristics of their interaction with matter in ablation and material modification regimes, and advocate their use for obtaining hybrid micro and nanoscale structures in two and three dimensions (2D and 3D) performing complex functions. High-throughput applications are indicated. The example list ranges from surface nanostructuring and laser cutting to ultrafast laser welding and the fabrication of 3D photonic systems embedded in the volume.

  13. Single particle tracking reveals spatial and dynamic organization of the Escherichia coli biofilm matrix

    NASA Astrophysics Data System (ADS)

    Birjiniuk, Alona; Billings, Nicole; Nance, Elizabeth; Hanes, Justin; Ribbeck, Katharina; Doyle, Patrick S.

    2014-08-01

    Biofilms are communities of surface-adherent bacteria surrounded by secreted polymers known as the extracellular polymeric substance. Biofilms are harmful in many industries, and thus it is of great interest to understand their mechanical properties and structure to determine ways to destabilize them. By performing single particle tracking with beads of varying surface functionalization it was found that charge interactions play a key role in mediating mobility within biofilms. With a combination of single particle tracking and microrheological concepts, it was found that Escherichia coli biofilms display height dependent charge density that evolves over time. Statistical analyses of bead trajectories and confocal microscopy showed inter-connecting micron scale channels that penetrate throughout the biofilm, which may be important for nutrient transfer through the system. This methodology provides significant insight into a particular biofilm system and can be applied to many others to provide comparisons of biofilm structure. The elucidation of structure provides evidence for the permeability of biofilms to microscale objects, and the ability of a biofilm to mature and change properties over time.

  14. Femtosecond laser structuring of titanium implants

    NASA Astrophysics Data System (ADS)

    Vorobyev, A. Y.; Guo, Chunlei

    2007-06-01

    In this study we perform the first femtosecond laser surface treatment of titanium in order to determine the potential of this technology for surface structuring of titanium implants. We find that the femtosecond laser produces a large variety of nanostructures (nanopores, nanoprotrusions) with a size down to 20 nm, multiple parallel grooved surface patterns with a period on the sub-micron level, microroughness in the range of 1-15 μm with various configurations, smooth surface with smooth micro-inhomogeneities, and smooth surface with sphere-like nanostructures down to 10 nm. Also, we have determined the optimal conditions for producing these surface structural modifications. Femtosecond laser treatment can produce a richer variety of surface structures on titanium for implants and other biomedical applications than long-pulse laser treatments.

  15. A MEMS-enabled 3D zinc-air microbattery with improved discharge characteristics based on a multilayer metallic substructure

    NASA Astrophysics Data System (ADS)

    Armutlulu, A.; Fang, Y.; Kim, S. H.; Ji, C. H.; Bidstrup Allen, S. A.; Allen, M. G.

    2011-10-01

    This paper reports the design, fabrication and testing of a three-dimensional zinc-air microbattery with improved areal energy density and areal capacity, particularly at high discharge rates. The device is based on a multilayer, micron-scale, low-resistance metallic skeleton with an improved surface area. This skeleton consists of alternating Cu and Ni layers supporting Zn as electrodeposited anode electrode, and provides a high surface area, low-resistance path for electron transfer. A proof-of-concept zinc-air microbattery based on this technology was developed, characterized and compared with its two-dimensional thin-film counterparts fabricated on the same footprint area with equal amount of the Zn anode electrode. Using this approach, we were able to improve a single-layer initial structure with a surface area of 1.3 mm2 to a scaffold structure with ten layers having a surface area of 15 mm2. Discharging through load resistances ranging from 100 to 3000 Ω, the areal energy density and areal capacity of the microbattery were measured as 2.5-3 mWh cm-2 and ~2.5 mAh cm-2, respectively.

  16. Analysis of leaf surfaces using scanning ion conductance microscopy.

    PubMed

    Walker, Shaun C; Allen, Stephanie; Bell, Gordon; Roberts, Clive J

    2015-05-01

    Leaf surfaces are highly complex functional systems with well defined chemistry and structure dictating the barrier and transport properties of the leaf cuticle. It is a significant imaging challenge to analyse the very thin and often complex wax-like leaf cuticle morphology in their natural state. Scanning electron microscopy (SEM) and to a lesser extent Atomic force microscopy are techniques that have been used to study the leaf surface but their remains information that is difficult to obtain via these approaches. SEM is able to produce highly detailed and high-resolution images needed to study leaf structures at the submicron level. It typically operates in a vacuum or low pressure environment and as a consequence is generally unable to deal with the in situ analysis of dynamic surface events at submicron scales. Atomic force microscopy also possess the high-resolution imaging required and can follow dynamic events in ambient and liquid environments, but can over exaggerate small features and cannot image most leaf surfaces due to their inherent roughness at the micron scale. Scanning ion conductance microscopy (SICM), which operates in a liquid environment, provides a potential complementary analytical approach able to address these issues and which is yet to be explored for studying leaf surfaces. Here we illustrate the potential of SICM on various leaf surfaces and compare the data to SEM and atomic force microscopy images on the same samples. In achieving successful imaging we also show that SICM can be used to study the wetting of hydrophobic surfaces in situ. This has potentially wider implications than the study of leaves alone as surface wetting phenomena are important in a range of fundamental and applied studies. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  17. Mechanisms for fatigue and wear of polysilicon structural thinfilms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alsem, Daniel Henricus

    2006-01-01

    Fatigue and wear in micron-scale polysilicon structural films can severely impact the reliability of microelectromechanical systems (MEMS). Despite studies on fatigue and wear behavior of these films, there is still an on-going debate regarding the precise physical mechanisms for these two important failure modes. Although macro-scale silicon does not fatigue, this phenomenon is observed in micron-scale silicon. It is shown that for polysilicon devices fabricated in the MUMPs foundry and SUMMiT process stress-lifetime data exhibits similar trends in ambient air, shorter lifetimes in higher relative humidity environments and no fatigue failure at all in high vacuum. Transmission electron microscopy ofmore » the surface oxides of the samples show an approximate four-fold thickening of the oxide at stress concentrations after fatigue failure, but no thickening after fracture in air or after fatigue cycling in vacuo. It is found that such oxide thickening and fatigue failure (in air) occurs in devices with initial oxide thicknesses of ~4-20 nm. Such results are interpreted and explained by a reaction layer fatigue mechanism; specifically, moisture-assisted subcritical cracking within a cyclic stress-assisted thickened oxide layer occurs until the crack reaches a critical size to cause catastrophic failure. Polysilicon specimens from the SUMMiT process are used to study wear mechanisms in micron-scale silicon in ambient air. Worn parts are examined by analytical scanning and transmission electron microscopy, while temperature changes are monitored using infrared microscopy. These results are compared with the development of values of static coefficients of friction (COF) with number of wear cycles. Observations show amorphous debris particles (~50-100 nm) created by fracture through the silicon grains (~500 nm), which subsequently oxidize, agglomerate into clusters and create plowing tracks. A nano-crystalline layer (~20-200 nm) forms at worn regions. No dislocations or extreme temperature increases are found, ruling out plasticity and temperature-assisted mechanisms. The COF reaches a steady-state value of ~0.20±0.05 after a short time at an initial value of ~0.11±0.01. Plowing tracks are found before the steady-state value of the COF is reached, suggesting only a short adhesive wear regime. This suggests a predominantly abrasive wear mechanism, controlled by fracture, which commences by the first particles created by adhesive wear.« less

  18. Mechanisms for fatigue and wear of polysilicon structural thin films

    NASA Astrophysics Data System (ADS)

    Alsem, Daniel Henricus

    Fatigue and wear in micron-scale polysilicon structural films can severely impact the reliability of microelectromechanical systems (MEMS). Despite studies on fatigue and wear behavior of these films, there is still an on-going debate regarding the precise physical mechanisms for these two important failure modes. Although macro-scale silicon does not fatigue, this phenomenon is observed in micron-scale silicon. It is shown that for polysilicon devices fabricated in the MUMPs foundry and SUMMiT(TM) process stress-lifetime data exhibits similar trends in ambient air, shorter lifetimes in higher relative humidity environments and no fatigue failure at all in high vacuum. Transmission electron microscopy of the surface oxides of the samples show an approximate four-fold thickening of the oxide at stress concentrations after fatigue failure, but no thickening after fracture in air or after fatigue cycling in vacuo . It is found that such oxide thickening and fatigue failure (in air) occurs in devices with initial oxide thicknesses of ˜4-20 nm. Such results are interpreted and explained by a reaction-layer fatigue mechanism; specifically, moisture-assisted subcritical cracking within a cyclic stress-assisted thickened oxide layer occurs until the crack reaches a critical size to cause catastrophic failure. Polysilicon specimens from the SUMMiT(TM) process are used to study wear mechanisms in micron-scale silicon in ambient air. Worn parts are examined by analytical scanning and transmission electron microscopy, while temperature changes are monitored using infrared microscopy. These results are compared with the development of values of static coefficients of friction (COF) with number of wear cycles. Observations show amorphous debris particles (˜50-100 nm) created by fracture through the silicon grains (˜500 nm), which subsequently oxidize, agglomerate into clusters and create plowing tracks. A nano-crystalline layer (˜20-200 nm) forms at worn regions. No dislocations or extreme temperature increases are found, ruling out plasticity and temperature-assisted mechanisms. The COF reaches a steady-state value of ˜0.20+/-0.05 after a short time at an initial value of ˜0.11+/-0.01. Plowing tracks are found before the steady-state value of the COF is reached, suggesting only a short adhesive wear regime. This suggests a predominantly abrasive wear mechanism, controlled by fracture, which commences by the first particles created by adhesive wear.

  19. Triton's streaks as windblown dust

    NASA Technical Reports Server (NTRS)

    Sagan, Carl; Chyba, Christopher

    1990-01-01

    Explanations for the surface streaks observed by Voyager 2 on Triton's southern hemisphere are discussed. It is shown that, despite Triton's tenuous atmosphere, low-cohesion dust trains with diameters of about 5 micron or less may be carried into suspension by aeolian surface shear stress, given expected geostrophic wind speeds of about 10 m/s. For geyser-like erupting dust plumes, it is shown that dust-settling time scales and expected wind velocities can produce streaks with length scales in good agreement with those of the streaks. Thus, both geyserlike eruptions or direct lifting by surface winds appear to be viable mechanisms for the origin of the streaks.

  20. A two scale analysis of tight sandstones

    NASA Astrophysics Data System (ADS)

    Adler, P. M.; Davy, C. A.; Song, Y.; Troadec, D.; Hauss, G.; Skoczylas, F.

    2015-12-01

    Tight sandstones have a low porosity and a very small permeability K. Available models for K do not compare well with measurements. These sandstones are made of SiO_2 grains, with a typical size of several hundreds of micron. These grains are separated by a network of micro-cracks, with sizes ranging between microns down to tens of nm. Therefore, the structure can be schematized by Voronoi polyhedra separated by plane and permeable polygonal micro-cracks. Our goal is to estimate K based on a two scale analysis and to compare the results to measurements. For a particular sample [2], local measurements on several scales include FIB/SEM [3], CMT and 2D SEM. FIB/SEM is selected because the peak pore size given by Mercury Intrusion Porosimetry is of 350nm. FIB/SEM imaging (with 50 nm voxel size) identifies an individual crack of 180nm average opening, whereas CMT provides a connected porosity (individual crack) for 60 nm voxel size, of 4 micron average opening. Numerical modelling is performed by combining the micro-crack network scale (given by 2D SEM) and the 3D micro-crack scale (given by either FIB/SEM or CMT). Estimates of the micro-crack density are derived from 2D SEM trace maps by counting the intersections with scanlines, the surface density of traces, and the number of fracture intersections. K is deduced by using a semi empirical formula valid for identical, isotropic and uniformly distributed fractures [1]. This value is proportional to the micro-crack transmissivity sigma. Sigma is determined by solving the Stokes equation in the micro-cracks measured by FIB/SEM or CMT. K is obtained by combining the two previous results. Good correlation with measured values on centimetric plugs is found when using sigma from CMT data. The results are discussed and further research is proposed. [1] Adler et al, Fractured porous media, Oxford Univ. Press, 2012. [2] Duan et al, Int. J. Rock Mech. Mining Sci., 65, p75, 2014. [3] Song et al, Marine and Petroleum Eng., 65, p63, 2015.

  1. Detection of 12 micron Mg I and OH lines in stellar spectra

    NASA Technical Reports Server (NTRS)

    Jennings, D. E.; Deming, D.; Wiedemann, G. R.; Keady, J. J.

    1986-01-01

    Infrared lines of Mg I and OH have been detected in stellar spectra near 12.3 microns. The Mg I 7i-6h transition was seen in Alpha Ori and Alpha Tau, and the R2e(23.5) and R1f(24.5) transitions of OH were seen in Alpha Ori. All lines appear in absorption, in contrast to the solar spectrum where the Mg I line shows a prominent emission core. The lack of emission in these low surface gravity stars is due to a greatly reduced volume recombination rate for the high-n states of Mg I, which is not fully compensated by the increased chromospheric scale height. The OH equivalent widths are sensitive to the temperature structure of the upper photosphere of Alpha Ori, and they indicate that the photosphere near tau 5000 of about 10 to the -5th is approximately 100 K hotter than is given by flux constant models. The OH measurements agree more closely with the 1981 semiemprical model of Basri, Linsky, and Eriksson (1981), which is based on Ca II and Mg II ultraviolet features.

  2. Engineered Surfaces for Mitigation of Insect Residue Adhesion

    NASA Technical Reports Server (NTRS)

    Siochi, Emilie J.; Smith, Joseph G.; Wohl, Christopher J.; Gardner, J. M.; Penner, Ronald K.; Connell, John W.

    2013-01-01

    Maintenance of laminar flow under operational flight conditions is being investigated under NASA s Environmentally Responsible Aviation (ERA) Program. Among the challenges with natural laminar flow is the accretion of residues from insect impacts incurred during takeoff or landing. Depending on air speed, temperature, and wing structure, the critical residue height for laminar flow disruption can be as low as 4 microns near the leading edge. In this study, engineered surfaces designed to minimize insect residue adhesion were examined. The coatings studied included chemical compositions containing functional groups typically associated with abhesive (non-stick) surfaces. To reduce surface contact by liquids and enhance abhesion, the engineered surfaces consisted of these coatings doped with particulate additives to generate random surface topography, as well as coatings applied to laser ablated surfaces having precision patterned topographies. Performance evaluation of these surfaces included contact angle goniometry of pristine coatings and profilometry of surfaces after insect impacts were incurred in laboratory scale tests, wind tunnel tests and flight tests. The results illustrate the complexity of designing antifouling surfaces for effective insect contamination mitigation under dynamic conditions and suggest that superhydrophobic surfaces may not be the most effective solution for preventing insect contamination on aircraft wing leading edges.

  3. Phosphatized algal-bacterial assemblages in Late Cretaceous phosphorites of the Voronezh Anteclise

    NASA Astrophysics Data System (ADS)

    Maleonkina, Svetlana Y.

    2003-01-01

    Late Cretaceous phosphogenesis of the Voronezh Anteclise has occurred during Cenomanian and Early Campanian. SEM studies show the presence of phosphatized algal-bacterial assemblages both in Cenomanian and Campanian phosphorites. In some Cenomanian nodular phosphorite samples revealed empty tubes 1 - 5 microns in diameter, which are most likely trichomes of cyanobacterial filaments. Other samples contained accumulations of spheres 0,5-3 microns, similar to coccoidal bacteria. Complicated tubular forms with variable diameter 2 - 5 microns occur on surface of some quartz grains in nodules. They are probably pseudomorphs after algae. We found similar formations in the Campanian phosphate grains. Frequently, grain represents a cyanobacterial mat, which is sometimes concentrically coated by phosphatic films. The films of some grains retain the primary structure, their concentric layers are formed by pseudomorphs after different bacterial types and obviously they represent oncolite. In other cases, the primary structure is unobservable because of recrystallization process erases them. Occasionally, the central part retains the coccoidal structure and the recrystallization affects only films. Besides the core of such oncolite can be represented not only by phosphatic grain, but also by grains of other minerals, such as quartz, glauconite and heavy minerals, which serve as a substrate for cyanobacterial colonies. Bacteria also could settle on cavity surfaces and interiors frames of sponge fragments, teeth and bones.

  4. Convection and mass loss through the chromosphere of Betelgeuse

    NASA Astrophysics Data System (ADS)

    Ridgway, Stephen

    2011-10-01

    Betelgeuse is well suited for detailed study of the mass loss process in a massive red supergiant. We have engaged in a multi-scale, multi-color study to trace the ejected material from the photosphere to the interstellar medium, and understand its chemical evolution {formation of molecules and dust}. Infrared interferometry already gave us a detailed image of the photosphere, compatible with large convective cells. Adaptive optics spectro-imaging {1.0-2.2 microns} allowed us to detect the presence of the CN molecule and mass loss plume structures up to at least 6 R*. At larger distances, we observed silicate-rich dust in thermal IR {8-20 microns}. From the surface to 100 R*, we therefore have a continuous coverage with multicolor imagery. The chromosphere lies at a key location, between the photosphere and the molecular envelope. As shown by STIS spatially resolved spectroscopy {Lobel & Dupree 2001}, it contains rising and falling gases. Such structure is supported by our 3D modeling of the convection. In order to probe the dynamics of the envelope and its relation to photospheric spots and mass loss plumes, we propose to obtain UV imaging with STIS at 3 epochs to complement our coordinated ground-based effort as well as the earlier HST UV snapshots. We will use this imagery to correlate structures at different radii and temperatures, and to explore the time-scales of evolution. With the support of our 3D models, this information will answer specific questions including deciding between convective and polar explanations for bright spots and plumes. Our infrared imaging observations will be repeated contemporaneously with the requested HST/STIS images.

  5. Multitemporal Three Dimensional Imaging of Volcanic Products on the Macro- and Micro- Scale

    NASA Astrophysics Data System (ADS)

    Carter, A. J.; Ramsey, M. S.; Durant, A. J.; Skilling, I. P.

    2006-12-01

    Satellite data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) can be processed using a nadir- and backward-viewing band at the same wavelength to generate a Digital Elevation Model (DEM) at a maximum spatial resolution of 15 metres. Bezymianny Volcano (Kamchatka Peninsula, Russia) was chosen as a test target for multitemporal DEM generation. DEMs were used to generate a layer stack and calculate coarse topographic changes from 2000 to 2006, the most significant of which was a new crater that formed in spring 2005. The eruption that occurred on 11 January 2005 produced a pyroclastic deposit on the east flank, which was mapped and from which samples were collected in August 2005. A comparison was made between field-based observations of the deposit and micron-scale roughness (analogous to vesicularity) derived from ASTER thermal infrared data following the model described in Ramsey and Fink (1999) on lava domes. In order to investigate applying this technique to the pyroclastic deposits, 18 small samples from Bezymianny were selected for Scanning Electron Microscope (SEM) micron-scale analysis. The SEM image data were processed using software capable of calculating surface roughness and vesicle volume from stereo pairs: a statistical analysis of samples is presented using a high resolution grid of surface profiles. The results allow for a direct comparison to field, laboratory, and satellite-based estimates of micron-scale roughness. Prior to SEM processing, laboratory thermal emission spectra of the microsamples were collected and modelled to estimate vesicularity. Each data set was compared and assessed for coherence within the limitations of each technique. This study outlines the value of initially imaging at the macro-scale to assess major topographic changes over time at the volcano. This is followed by an example of the application of micro-scale SEM imaging and spectral deconvolution, highlighting the advantages of using multiple resolutions to analyse frequently overlapping products at Bezymianny.

  6. Nonlinear simulations of Jupiter's 5-micron hot spots

    NASA Technical Reports Server (NTRS)

    Showman, A. P.; Dowling, T. E.

    2000-01-01

    Large-scale nonlinear simulations of Jupiter's 5-micron hot spots produce long-lived coherent structures that cause subsidence in local regions, explaining the low cloudiness and the dryness measured by the Galileo probe inside a hot spot. Like observed hot spots, the simulated coherent structures are equatorially confined, have periodic spacing, propagate west relative to the flow, are generally confined to one hemisphere, and have an anticyclonic gyre on their equatorward side. The southern edge of the simulated hot spots develops vertical shear of up to 70 meters per second in the eastward wind, which can explain the results of the Galileo probe Doppler wind experiment.

  7. Cell adhesion on nanotopography

    NASA Astrophysics Data System (ADS)

    Tsai, Irene; Kimura, Masahiro; Stockton, Rebecca; Jacobson, Bruce; Russell, Thomas

    2003-03-01

    Cell adhesion, a key element in understanding the cell-biomaterial interactions, underpins proper cell growth, function and survival. Understanding the parameters influencing cell adhesion is critical for applications in biosensors, implants and bioreactors. A gradient surface is used to study the effect of the surface topography on cell adhesion. A gradient surface is generated by block copolymer and homopolymer blends. The two homopolymers will phase separate on the micron scale and gradually decrease to nano-scale by the microphase separation of the diblock. Gradient surfaces offer a unique opportunity to probe lateral variations in the topography and interactions. Using thin films of mixtures of diblock copolymers of PS-b-MMA with PS and PMMA homopolymers, where the concentration of the PS-b-MMA varies across the surface, a gradient in the size scale of the morphology, from the nanoscopic to microscopic, was produced. By UV exposure, the variation in morphology translated into a variation in topography. The extent of cell spreading and cytoskeleton formation was investigated and marked dependence on the length scale of the surface topography was found.

  8. Magnetic and clast fabrics as measurements of grain-scale processes within the Death Valley shallow crustal detachment faults

    NASA Astrophysics Data System (ADS)

    Hayman, Nicholas W.; Housen, B. A.; Cladouhos, T. T.; Livi, K.

    2004-05-01

    The rock product of shallow-crustal faulting includes fine-grained breccia and clay-rich gouge. Many gouges and breccias have a fabric produced by distributed deformation. The orientation of fabric elements provides constraints on the kinematics of fault slip and is the structural record of intrafault strain not accommodated by planar and penetrative surfaces. However, it can be difficult to quantify the deformational fabric of fault rocks, especially the preferred orientations of fine-grained minerals, or to uniquely determine the relationship between fabric geometry and finite strain. Here, we present the results of a fabric study of gouge and breccia sampled from low-angle normal (detachment) faults in the Black Mountains, Death Valley, CA. We measured a preferred orientation of the long axes of the clasts inherited from the crystalline footwall of the fault and compared the shape preferred orientation to the anisotropy of magnetic susceptibility of the fault rocks. The two measurements of fabric exhibit systematic similarities and differences in orientation and anisotropy that are compatible with the large-scale kinematics of fault slip. The dominant carriers of the magnetic susceptibility are micron- and sub-micron scale iron oxides and clay minerals. Therefore even the finest grains in the fault rock were sensitive to the distributed deformation and the micro-mechanics of particle interaction must have departed from those assumed by the passive-marker kinematic model that best explains the fabric.

  9. Diamond field emitter array cathodes and possibilities for employing additive manufacturing for dielectric laser accelerating structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simakov, Evgenya Ivanovna; Andrews, Heather Lynn; Herman, Matthew Joseph

    2016-09-20

    These are slides for a presentation at Stanford University. The outline is as follows: Motivation: customers for compact accelerators, LANL's technologies for laser acceleration, DFEA cathodes, and additive manufacturing of micron-size structures. Among the stated conclusions are the following: preliminary study identified DFEA cathodes as promising sources for DLAs--high beam current and small emittance; additive manufacturing with Nanoscribe Professional GT can produce structures with the right scale features for a DLA operating at micron wavelengths (fabrication tolerances need to be studied, DLAs require new materials). Future plans include DLA experiment with a beam produced by the DFEA cathode with fieldmore » emission, demonstration of photoemission from DFEAs, and new structures to print and test.« less

  10. Demonstration and properties of a planar heterojunction bipolar transistor with lateral current flow

    NASA Astrophysics Data System (ADS)

    Thornton, Robert L.; Mosby, William J.; Chung, Harlan F.

    1989-10-01

    The authors present fabrication techniques and device performance for a novel transistor structure, the lateral heterojunction bipolar transistor. The lateral heterojunctions are formed by impurity-induced disordering of a GaAs base layer sandwiched between two AlGaAs layers. These transistor structures exhibit current gains of 14 for base widths of 0.74 micron. Transistor action in this device occurs parallel to the surface of the device structure. The active base region of the structure is completely submerged, resulting in a reduction of surface recombination as a mechanism for gain reduction in the device. Impurity-induced disordering is used to widen the bandgap of the alloy in the emitter and collector, resulting in an improvement of the emitter injection efficiency. Since the device is based entirely on a surface diffusion process, the device is completely planar and has no steps involving etching of the III-V alloy material. These advantages lead this device to be considered as a candidate for optoelectronic integration applications. The transistor device functions as a buried heterostructure laser, with a threshold current as low as 6 mA for a 1.4-micron stripe.

  11. Fabrication of superhydrophilic and underwater superoleophobic metal mesh by laser treatment and its application

    NASA Astrophysics Data System (ADS)

    Yu, Peng; Lian, Zhongxu; Xu, Jinkai; Yu, Zhanjiang; Ren, Wanfei; Yu, Huadong

    2018-04-01

    In this paper, a lot of micron-sized sand granular structures were formed on the substrate of the stainless steel mesh (SSM) by laser treatment. The rough surface with sand granular structures showed superhydrophilic in air and superoleophobic under water. With its special wettability, the SSM by laser treatment could achieve the separation of the oil/water mixture, showing good durability and high separation efficiency, which was very useful in the practical application of large-scale oil/water separation facility for reducing the impacts of oil leaked on the environment. In addition, it showed that the laser-treated SSM had a very high separation rate. The development of the laser-treated SSM is a simple, environmental, economical and high-efficiency method, which provides a new approach to the production of high efficiency facilities for oil/water separation.

  12. New constraints on deformation processes in serpentinite from sub-micron Raman Spectroscopy and TEM

    NASA Astrophysics Data System (ADS)

    Smith, S. A. F.; Tarling, M.; Rooney, J. S.; Gordon, K. C.; Viti, C.

    2017-12-01

    Extensive work has been performed to characterize the mineralogical and mechanical properties of the various serpentine minerals (i.e. antigorite, lizardite, chrysotile, polyhedral and polygonal serpentine). However, correct identification of serpentine minerals is often difficult or impossible using conventional analytical techniques such as optical- and SEM-based microscopy, X-ray diffraction and infrared spectroscopy. Transmission Electron Microscopy (TEM) is the best analytical technique to identify the serpentine minerals, but TEM requires complex sample preparation and typically results in very small analysis areas. Sub-micron confocal Raman spectroscopy mapping of polished thin sections provides a quick and relatively inexpensive way of unambiguously distinguishing the main serpentine minerals within their in-situ microstructural context. The combination of high spatial resolution (with a diffraction-limited system, 366 nm), large-area coverage (up to hundreds of microns in each dimension) and ability to map directly on thin sections allows intricate fault rock textures to be imaged at a sample-scale, which can then form the target of more focused TEM work. The potential of sub-micron Raman Spectroscopy + TEM is illustrated by examining sub-micron-scale mineral intergrowths and deformation textures in scaly serpentinites (e.g. dissolution seams, mineral growth in pressure shadows), serpentinite crack-seal veins and polished fault slip surfaces from a serpentinite-bearing mélange in New Zealand. The microstructural information provided by these techniques has yielded new insights into coseismic dehydration and amorphization processes and the interplay between creep and localised rupture in serpentinite shear zones.

  13. Development of microchannel plate x-ray optics

    NASA Technical Reports Server (NTRS)

    Kaaret, Philip

    1995-01-01

    The goal of this research program was to develop a novel technique for focusing x-rays based on the optical system of a lobster's eye. A lobster eye employs many closely packed reflecting surfaces arranged within a spherical or cylindrical shell. These optics have two unique properties: they have unlimited fields of view and can be manufactured via replication of identical structures. Because the angular resolution is given by the ratio of the size of the individual optical elements to the focal length, optical elements with size on the order of one hundred microns are required to achieve good angular resolution with a compact telescope. We employed anisotropic etching of single crystal silicon wafers for the fabrication of micron-scale optical elements. This technique, commonly referred to as silicon micromachining, is based on silicon fabrication techniques developed by the microelectronics industry. We have succeeded in producing silicon lenses with a geometry suitable for a 1-d focusing x-ray optics. These lenses have an aspect ratio (40:1) suitable for x-ray reflection and have very good optical surface alignment. We have developed a number of process refinements which improved the quality of the lens geometry and the repeatability of the etch process. In addition to the silicon fabrication, an x-ray beam line was constructed at Columbia for testing the optics. Most recently, we have done several experiments to find the fundamental limits that the anisotropic etch process placed on the etched surface roughness.

  14. Time-resolved Sensing of Meso-scale Shock Compression with Multilayer Photonic Crystal Structures

    NASA Astrophysics Data System (ADS)

    Scripka, David; Lee, Gyuhyon; Summers, Christopher J.; Thadhani, Naresh

    2017-06-01

    Multilayer Photonic Crystal structures can provide spatially and temporally resolved data needed to validate theoretical and computational models relevant for understanding shock compression in heterogeneous materials. Two classes of 1-D photonic crystal multilayer structures were studied: optical microcavities (OMC) and distributed Bragg reflectors (DBR). These 0.5 to 5 micron thick structures were composed of SiO2, Al2O3, Ag, and PMMA layers fabricated primarily via e-beam evaporation. The multilayers have unique spectral signatures inherently linked to their time-resolved physical states. By observing shock-induced changes in these signatures, an optically-based pressure sensor was developed. Results to date indicate that both OMCs and DBRs exhibit nanosecond-resolved spectral shifts of several to 10s of nanometers under laser-driven shock compression loads of 0-10 GPa, with the magnitude of the shift strongly correlating to the shock load magnitude. Additionally, spatially and temporally resolved spectral shifts under heterogeneous laser-driven shock compression created by partial beam blocking have been successfully demonstrated. These results illustrate the potential for multilayer structures to serve as meso-scale sensors, capturing temporal and spatial pressure profile evolutions in shock-compressed heterogeneous materials, and revealing meso-scale pressure distributions across a shocked surface. Supported by DTRA Grant HDTRA1-12-1-005 and DoD, AFOSR, National Defense Science and Eng. Graduate Fellowship, 32 CFR 168a.

  15. Multi-Scale Transport Properties of Fine-Grained Rocks: A Case Study of the Kirtland Formation, San Juan Basin, USA

    NASA Astrophysics Data System (ADS)

    Heath, J. E.; Dewers, T. A.; McPherson, B. J.; Wilson, T. H.; Flach, T.

    2009-12-01

    Understanding and characterizing transport properties of fine-grained rocks is critical in development of shale gas plays or assessing retention of CO2 at geologic storage sites. Difficulties arise in that both small scale (i.e., ~ nm) properties of the rock matrix and much larger scale fractures, faults, and sedimentological architecture govern migration of multiphase fluids. We present a multi-scale investigation of sealing and transport properties of the Kirtland Formation, which is a regional aquitard and reservoir seal in the San Juan Basin, USA. Sub-micron dual FIB/SEM imaging and reconstruction of 3D pore networks in core samples reveal a variety of pore types, including slit-shaped pores that are co-located with sedimentary structures and variations in mineralogy. Micron-scale chemical analysis and XRD reveal a mixture of mixed-layer smectite/illite, chlorite, quartz, and feldspar with little organic matter. Analysis of sub-micron digital reconstructions, mercury capillary injection pressure, and gas breakthrough measurements indicate a high quality sealing matrix. Natural full and partially mineralized fractures observed in core and in FMI logs include those formed from early soil-forming processes, differential compaction, and tectonic events. The potential impact of both fracture and matrix properties on large-scale transport is investigated through an analysis of natural helium from core samples, 3D seismic data and poro-elastic modeling. While seismic interpretations suggest considerable fracturing of the Kirtland, large continuous fracture zones and faults extending through the seal to the surface cannot be inferred from the data. Observed Kirtland Formation multi-scale transport properties are included as part of a risk assessment methodology for CO2 storage. Acknowledgements: The authors gratefully acknowledge the U.S. Department of Energy’s (DOE) National Energy Technology Laboratory for sponsoring this project. The DOE’s Basic Energy Science Office funded the dual FIB/SEM analysis. The Kirtland Formation overlies the coal seams of the Fruitland into which CO2 has been injected as a Phase II demonstration of the Southwest Regional Partnership on Carbon Sequestration. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy under contract DE-ACOC4-94AL85000.

  16. Surface microstructuring of biocompatible bone analogue material HAPEX using LIGA technique and embossing

    NASA Astrophysics Data System (ADS)

    Schneider, Andreas; Rea, Susan; Huq, Ejaz; Bonfield, William

    2003-04-01

    HAPEX is an artificial bone analogue composite based on hydroxyapatite and polyethylene, which can be applied for growth of bone cells. Due to its biocompatibility and favourable mechanical properties, HAPEX is used for orthopaedic implants like tympanic (middle ear) bones. The morphology of HAPEX surfaces is of high interest and it is believed that surface structuring on a micron scale might improve the growth conditions for bone cells. A new and simple approach for the microstructuring of HAPEX surfaces has been investigated using LIGA technique. LIGA is a combination of several processes, in particular lithography, electroplating and forming/moulding. For HAPEX surface structuring, arrays of dots, grids and lines with typical lateral dimension ranging from 5 μm to 50 μm were created on a chromium photomask and the patterns were transferred into thick SU-8 photoresist (structure height > 10 μm) by UV lithography. Subsequently, the SU-8 structures served as moulds for electroplating nickel on Si wafers and nickel substrates. The final nickel microstructures were used as embossing master for the HAPEX material. Embossing was carried out using a conventional press (> 500 hPa) with the facility to heat the master and the HAPEX. The temperature ranged from ambient to a few degrees above glass transition temperature (Tg) of HAPEX. The paper will include details of the fabrication process and process tolerances in lateral and vertical directions. Data obtained are correlated to the temperature used during embossing.

  17. Precision segmented reflectors for space applications

    NASA Technical Reports Server (NTRS)

    Lehman, David H.; Pawlik, Eugene V.; Meinel, Aden B.; Fichter, W. B.

    1990-01-01

    A project to develop precision segmented reflectors (PSRs) which operate at submillimeter wavelengths is described. The development of a light efficient means for the construction of large-aperture segmented reflecting space-based telescopes is the primary aim of the project. The 20-m Large Deployable Reflector (LDR) telescope is being developed for a survey mission, and it will make use of the reflector panels and materials, structures, and figure control being elaborated for the PSR. The surface accuracy of a 0.9-m PSR panel is shown to be 1.74-micron RMS, the goal of 100-micron RMS positioning accuracy has been achieved for a 4-m erectable structure. A voice-coil actuator for the figure control system architecture demonstrated 1-micron panel control accuracy in a 3-axis evaluation. The PSR technology is demonstrated to be of value for several NASA projects involving optical communications and interferometers as well as missions which make use of large-diameter segmented reflectors.

  18. Precision segmented reflectors for space applications

    NASA Astrophysics Data System (ADS)

    Lehman, David H.; Pawlik, Eugene V.; Meinel, Aden B.; Fichter, W. B.

    1990-08-01

    A project to develop precision segmented reflectors (PSRs) which operate at submillimeter wavelengths is described. The development of a light efficient means for the construction of large-aperture segmented reflecting space-based telescopes is the primary aim of the project. The 20-m Large Deployable Reflector (LDR) telescope is being developed for a survey mission, and it will make use of the reflector panels and materials, structures, and figure control being elaborated for the PSR. The surface accuracy of a 0.9-m PSR panel is shown to be 1.74-micron RMS, the goal of 100-micron RMS positioning accuracy has been achieved for a 4-m erectable structure. A voice-coil actuator for the figure control system architecture demonstrated 1-micron panel control accuracy in a 3-axis evaluation. The PSR technology is demonstrated to be of value for several NASA projects involving optical communications and interferometers as well as missions which make use of large-diameter segmented reflectors.

  19. A high volume cost efficient production macrostructuring process. [for silicon solar cell surface treatment

    NASA Technical Reports Server (NTRS)

    Chitre, S. R.

    1978-01-01

    The paper presents an experimentally developed surface macro-structuring process suitable for high volume production of silicon solar cells. The process lends itself easily to automation for high throughput to meet low-cost solar array goals. The tetrahedron structure observed is 0.5 - 12 micron high. The surface has minimal pitting with virtually no or very few undeveloped areas across the surface. This process has been developed for (100) oriented as cut silicon. Chemi-etched, hydrophobic and lapped surfaces were successfully texturized. A cost analysis as per Samics is presented.

  20. Progress in p(+)n InP solar cells fabricated by thermal diffusion

    NASA Technical Reports Server (NTRS)

    Flood, D. J.; Brinker, D. J.; Weinberg, I.; Vargas, C.; Faur, Mircea; Faur, Maria; Goradia, C.; Goradia, M.; Fatemi, N. S.

    1993-01-01

    The performance results of our most recently thermally diffused InP solar cells using the p(+)n (Cd,S) structures are presented. We have succeeded in fabricating cells with measured AMO, 25 C V(sub oc) exceeding 880 mV (bare cells) which to the best of our knowledge is higher than previously reported V(sub oc) values for any InP homojunction solar cells. The cells were fabricated by thinning the emitter, after Au-Zn front contacting, from its initial thickness of about 4.5 microns to about 0.6 microns. After thinning, the exposed surface of the emitter was passivated by a thin (approximately 50A) P-rich oxide. Based on the measured EQY and J(sub sc)-V(sub oc) characteristics of our experimental high V(sub oc) p(+)n InP solar cells, we project that reducing the emitter thickness to 0.3 microns, using an optimized AR coating, maintaining the surface hole concentration of 3 x 10(exp 18)cm(sup -3), reducing the grid shadowing from actual 10.55 percent to 6 percent and reducing the contact resistance will increase the actual measured 12.57 percent AMO 25 C efficiency to about 20.1 percent. By using our state-of-the-art p(+)n structures which have a surface hole concentration of 4 x 10(exp 18)cm(sup -3) and slightly improving the front surface passivation, an even higher practically achievable AMO, 25 C efficiency of 21.3 percent is projected.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarshar, Mohammad Amin; Swarctz, Christopher; Hunter, Scott Robert

    In this paper, the iceophobic properties of superhydrophobic surfaces are investigated under dynamic flow conditions by using a closed loop low-temperature wind tunnel. Superhydrophobic surfaces were prepared by coating the substrates of aluminum and steel plates with nano-structured hydrophobic particles. The superhydrophobic plates along with uncoated control ones were exposed to an air flow of 12 m/s and 20 F accompanying micron-sized water droplets in the icing wind tunnel and the ice formation and accretion were probed by high-resolution CCD cameras. Results show that the superhydrophobic coatings significantly delay the ice formation and accretion even under the dynamic flow conditionmore » of the highly energetic impingement of accelerated super-cooled water droplets. It is found that there is a time scale for this phenomenon (delay of the ice formation) which has a clear correlation with the contact angle hysteresis and the length scale of surface roughness of the superhydrophobic surface samples, being the highest for the plate with the lowest contact angle hysteresis and finer surface roughness. The results suggest that the key parameter for designing iceophobic surfaces is to retain a low contact angle hysteresis (dynamic property) and the non-wetting superhydrophobic state under the hydrodynamic pressure of impinging droplets, rather than to only have a high contact angle (static property), in order to result in efficient anti-icing properties under dynamic conditions such as forced flows.« less

  2. Spatially modulated magnetic structure of EuS due to the tetragonal domain structure of SrTiO3

    NASA Astrophysics Data System (ADS)

    Rosenberg, Aaron J.; Katmis, Ferhat; Kirtley, John R.; Gedik, Nuh; Moodera, Jagadeesh S.; Moler, Kathryn A.

    2017-12-01

    The combination of ferromagnets with topological superconductors or insulators allows for new phases of matter that support excitations such as chiral edge modes and Majorana fermions. EuS, a wide-bandgap ferromagnetic insulator with a Curie temperature around 16 K, and SrTiO3 (STO), an important substrate for engineering heterostructures, may support these phases. We present scanning superconducting quantum interference device measurements of EuS grown epitaxially on STO that reveal micron-scale variations in ferromagnetism and paramagnetism. These variations are oriented along the STO crystal axes and only change their configuration upon thermal cycling above the STO cubic-to-tetragonal structural transition temperature at 105 K, indicating that the observed magnetic features are due to coupling between EuS and the STO tetragonal structure. We speculate that the STO tetragonal distortions may strain the EuS, altering the magnetic anisotropy on a micron scale. This result demonstrates that local variation in the induced magnetic order from EuS grown on STO needs to be considered when engineering new phases of matter that require spatially homogeneous exchange.

  3. LDR structural technology activities at JPL

    NASA Technical Reports Server (NTRS)

    Wada, Ben

    1988-01-01

    The status of the Large Deployable Reflector (LDR) technology requirements and the availability of that technology in the next few years are summarized. The research efforts at JPL related to these technology needs are also discussed. LDR requires that a large and relatively stiff truss-type backup structure have a surface accurate to 100 microns in space (initial position with thermal distortions) and the dynamic characteristics predictable and/or measurable by on-orbit system identification for micron level motion. This motion may result from the excitation of the lower modes or from wave-type motions. It is also assumed that the LDR structure can be ground tested to validate its ability to meet mission requirements. No program manager will commit a structural design based solely on analysis, unless the analysis is backed by a validation test program.

  4. SnTe microcrystals: Surface cleaning of a topological crystalline insulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saghir, M., E-mail: M.Saghir@warwick.ac.uk, E-mail: G.Balakrishnan@warwick.ac.uk; Walker, M.; McConville, C. F.

    Investigating nanometer and micron sized materials thought to exhibit topological surface properties that can present a challenge, as clean surfaces are a pre-requisite for band structure measurements when using nano-ARPES or laser-ARPES in ultra-high vacuum. This issue is exacerbated when dealing with nanometer or micron sized materials, which have been prepared ex-situ and so have been exposed to atmosphere. We present the findings of an XPS study where various cleaning methods have been employed to reduce the surface contamination and preserve the surface quality for surface sensitive measurements. Microcrystals of the topological crystalline insulator SnTe were grown ex-situ and transferredmore » into ultra high vacuum (UHV) before being treated with either atomic hydrogen, argon sputtering, annealing, or a combination of treatments. The samples were also characterised using the scanning electron microscopy, both before and after treatment. It was found that atomic hydrogen cleaning with an anneal cycle (200 °C) gave the best clean surface results.« less

  5. A scanning tunneling microscope capable of imaging specified micron-scale small samples.

    PubMed

    Tao, Wei; Cao, Yufei; Wang, Huafeng; Wang, Kaiyou; Lu, Qingyou

    2012-12-01

    We present a home-built scanning tunneling microscope (STM) which allows us to precisely position the tip on any specified small sample or sample feature of micron scale. The core structure is a stand-alone soft junction mechanical loop (SJML), in which a small piezoelectric tube scanner is mounted on a sliding piece and a "U"-like soft spring strip has its one end fixed to the sliding piece and its opposite end holding the tip pointing to the sample on the scanner. Here, the tip can be precisely aligned to a specified small sample of micron scale by adjusting the position of the spring-clamped sample on the scanner in the field of view of an optical microscope. The aligned SJML can be transferred to a piezoelectric inertial motor for coarse approach, during which the U-spring is pushed towards the sample, causing the tip to approach the pre-aligned small sample. We have successfully approached a hand cut tip that was made from 0.1 mm thin Pt∕Ir wire to an isolated individual 32.5 × 32.5 μm(2) graphite flake. Good atomic resolution images and high quality tunneling current spectra for that specified tiny flake are obtained in ambient conditions with high repeatability within one month showing high and long term stability of the new STM structure. In addition, frequency spectra of the tunneling current signals do not show outstanding tip mount related resonant frequency (low frequency), which further confirms the stability of the STM structure.

  6. Ion Beam Surface Treatment: A New Technique for Thermally Modifying Surfaces Using Intense, Pulsed Ion Beams

    DTIC Science & Technology

    1995-07-01

    background gasses in the treatment chamber. Polishing of Ti - 6Al - 4V In other experiments we treated Ti - 6Al - 4V on the Anaconda accelerator (400 kV peak...4. IBEST treatment of a Ti - 6Al - 4V machined surface (top) treated with 4, 400 ns, 7 J/cm2 mixed proton and carbon beam pulses demonstrates...Figure 8. This technique shows promise for surface porosity reduction but also shows some microcracking on a 0.1 micron scale. 50 Before After Figure

  7. Multi Length Scale Imaging of Flocculated Estuarine Sediments; Insights into their Complex 3D Structure

    NASA Astrophysics Data System (ADS)

    Wheatland, Jonathan; Bushby, Andy; Droppo, Ian; Carr, Simon; Spencer, Kate

    2015-04-01

    Suspended estuarine sediments form flocs that are compositionally complex, fragile and irregularly shaped. The fate and transport of suspended particulate matter (SPM) is determined by the size, shape, density, porosity and stability of these flocs and prediction of SPM transport requires accurate measurements of these three-dimensional (3D) physical properties. However, the multi-scaled nature of flocs in addition to their fragility makes their characterisation in 3D problematic. Correlative microscopy is a strategy involving the spatial registration of information collected at different scales using several imaging modalities. Previously, conventional optical microscopy (COM) and transmission electron microscopy (TEM) have enabled 2-dimensional (2D) floc characterisation at the gross (> 1 µm) and sub-micron scales respectively. Whilst this has proven insightful there remains a critical spatial and dimensional gap preventing the accurate measurement of geometric properties and an understanding of how structures at different scales are related. Within life sciences volumetric imaging techniques such as 3D micro-computed tomography (3D µCT) and focused ion beam scanning electron microscopy [FIB-SEM (or FIB-tomography)] have been combined to characterise materials at the centimetre to micron scale. Combining these techniques with TEM enables an advanced correlative study, allowing material properties across multiple spatial and dimensional scales to be visualised. The aims of this study are; 1) to formulate an advanced correlative imaging strategy combining 3D µCT, FIB-tomography and TEM; 2) to acquire 3D datasets; 3) to produce a model allowing their co-visualisation; 4) to interpret 3D floc structure. To reduce the chance of structural alterations during analysis samples were first 'fixed' in 2.5% glutaraldehyde/2% formaldehyde before being embedding in Durcupan resin. Intermediate steps were implemented to improve contrast and remove pore water, achieved by the addition of heavy metal stains and washing samples in a series of ethanol solutions and acetone. Gross-scale characterisation involved scanning samples using a Nikon Metrology HM X 225 µCT. For micro-scale analysis a working surface was revealed by microtoming the sample. Ultrathin sections were then collected and analysed using a JEOL 1200 Ex II TEM, and FIB-tomography datasets obtained using an FEI Quanta 3D FIB-SEM. Finally, to locate the surface and relate TEM and FIB-tomography datasets to the original floc, samples were rescanned using the µCT. Image processing was initially conducted in ImageJ. Following this datasets were imported into Amira 5.5 where pixel intensity thresholding allowed particle-matrix boundaries to be defined. Using 'landmarks' datasets were then registered to enable their co-visualisation in 3D models. Analysis of registered datasets reveals the complex non-fractal nature of flocs, whose properties span several of orders of magnitude. Primary particles are organised into discrete 'bundles', the arrangement of which directly influences their gross morphology. This strategy, which allows the co-visualisation of spatially registered multi-scale 3D datasets, provides unique insights into the true nature floc which would other have been impossible.

  8. Effect of processing history on the surface interfacial properties of budesonide in carrier-based dry-powder inhalers.

    PubMed

    Shur, Jagdeep; Pitchayajittipong, Chonladda; Rogueda, Philippe; Price, Robert

    2013-08-01

    Influence of air-jet micronization, post-micronization conditioning and storage on the surface properties of budesonide in dry-powder inhaler formulations was investigated. Crystalline budesonide was air jet-micronized and conditioned using organic vapor. Particle engineering was also used to fabricate respirable particles of budesonide. Surface imaging by atomic force microscopy suggested that micronized material possessed process-induced surface disorder, which relaxed upon conditioning with organic vapor. Particle engineered material was devoid of such surface disorder. Surface interfacial properties of all batches were different and correlated to in vitro fine particle delivery. The surface properties and in vitro performance of the conditioned material changed upon storage of the budesonide at 44% relative humidity and 25°C, while the micronized and particle-engineered material remained stable. These data suggest that processing conditions of budesonide affected the surface properties of the material, which was demonstrated to have direct affect on dry-powder inhaler formulation performance.

  9. Surface Plasmon Polariton-Assisted Long-Range Exciton Transport in Monolayer Semiconductor Lateral Heterostructure

    NASA Astrophysics Data System (ADS)

    Shi, Jinwei; Lin, Meng-Hsien; Chen, Yi-Tong; Estakhri, Nasim Mohammadi; Tseng, Guo-Wei; Wang, Yanrong; Chen, Hung-Ying; Chen, Chun-An; Shih, Chih-Kang; Alã¹, Andrea; Li, Xiaoqin; Lee, Yi-Hsien; Gwo, Shangjr

    Recently, two-dimensional (2D) semiconductor heterostructures, i.e., atomically thin lateral heterostructures (LHSs) based on transition metal dichalcogenides (TMDs) have been demonstrated. In an optically excited LHS, exciton transport is typically limited to a rather short spatial range ( 1 micron). Furthermore, additional losses may occur at the lateral interfacial regions. Here, to overcome these challenges, we experimentally implement a planar metal-oxide-semiconductor (MOS) structure by placing a monolayer of WS2/MoS2 LHS on top of an Al2O3 capped Ag single-crystalline plate. We found that the exciton transport range can be extended to tens of microns. The process of long-range exciton transport in the MOS structure is confirmed to be mediated by an exciton-surface plasmon polariton-exciton conversion mechanism, which allows a cascaded energy transfer process. Thus, the planar MOS structure provides a platform seamlessly combining 2D light-emitting materials with plasmonic planar waveguides, offering great potential for developing integrated photonic/plasmonic functionalities.

  10. A novel method for the fabrication of microfluidic devices by photopolymerization of polymethylmethacrylate

    NASA Astrophysics Data System (ADS)

    Forstater, Jacob; Augustine, Brian; Hughes, Chris

    2006-11-01

    We have developed a new technique for the rapid fabrication of structures useful for microfluidic devices called micromolding by photopolymerization in capillaries (μ-PIC). The technique involves the replication of features from a silicon master in which features on the order of tens to hundreds of microns have been formed by crystallographic etching. The negative of the features is then transferred to a sheet of polymethylmethacrylate (PMMA) by placing the PMMA sheet over the silicon master and injecting a solution of methylmethacrylate monomer with a benzoin methyl ether photoinitiator. This solution is drawn between the PMMA and the silicon by capillary action forming a liquid layer that is no more than a few hundred microns thick. This liquid is then polymerized by exposure to ultraviolet light for less than a half hour. The features transferred in this manner have nearly identical surface structure and roughness. Analysis of these surfaces and structures by atomic force microscopy and scanning electron microscopy will be presented.

  11. Microprobe studies of microtomed particles of white druse salts in shergottite EETA 79001

    NASA Technical Reports Server (NTRS)

    Lindstrom, D. J.

    1991-01-01

    The white druse material in Antarctic shergottite EETA 79001 has attracted much attention as a possible sample fo Martian aqueous deposits. Instrumental Neutron Activation Analysis (INAA) was used to determine trace element analyses of small particles of this material obtained by handpicking of likely grains from broken surfaces of the meteorite. Electron microprobe work was attempted on grain areas as large as 150x120 microns. Backscattered electron images show considerable variations in brightness, and botryoidal structures were observed. Microprobe analyses showed considerable variability both within single particles and between different particles. Microtomed surfaces of small selected particles were shown to be very useful in obtaining information on the texture and composition of rare lithologies like the white druse of EETA 79001. This material is clearly heterogeneous on all distance scales, so a large number of further analyses will be required to characterize it.

  12. Plasma nanotexturing of silicon surfaces for photovoltaics applications: influence of initial surface finish on the evolution of topographical and optical properties

    PubMed Central

    FISCHER, GUILLAUME; DRAHI, ETIENNE; FOLDYNA, MARTIN; GERMER, THOMAS A.; JOHNSON, ERIK V.

    2018-01-01

    Using a plasma to generate a surface texture with feature sizes on the order of tens to hundreds of nanometers (“nanotexturing”) is a promising technique being considered to improve efficiency in thin, high-efficiency crystalline silicon solar cells. This study investigates the evolution of the optical properties of silicon samples with various initial surface finishes (from mirror polish to various states of micron-scale roughness) during a plasma nanotexturing process. It is shown that during said process, the appearance and growth of nanocone-like structures are essentially independent of the initial surface finish, as quantified by the auto-correlation function of the surface morphology. During the first stage of the process (2 min to 15 min etching), the reflectance and light-trapping abilities of the nanotextured surfaces are strongly influenced by the initial surface roughness; however, the differences tend to diminish as the nanostructures become larger. For the longest etching times (15 min or more), the effective reflectance is less than 5 % and a strong anisotropic scattering behavior is also observed for all samples, leading to very elevated levels of light-trapping. PMID:29220984

  13. Micro heat barrier

    DOEpatents

    Marshall, Albert C.; Kravitz, Stanley H.; Tigges, Chris P.; Vawter, Gregory A.

    2003-08-12

    A highly effective, micron-scale micro heat barrier structure and process for manufacturing a micro heat barrier based on semiconductor and/or MEMS fabrication techniques. The micro heat barrier has an array of non-metallic, freestanding microsupports with a height less than 100 microns, attached to a substrate. An infrared reflective membrane (e.g., 1 micron gold) can be supported by the array of microsupports to provide radiation shielding. The micro heat barrier can be evacuated to eliminate gas phase heat conduction and convection. Semi-isotropic, reactive ion plasma etching can be used to create a microspike having a cusp-like shape with a sharp, pointed tip (<0.1 micron), to minimize the tip's contact area. A heat source can be placed directly on the microspikes. The micro heat barrier can have an apparent thermal conductivity in the range of 10.sup.-6 to 10.sup.-7 W/m-K. Multiple layers of reflective membranes can be used to increase thermal resistance.

  14. GaN-based LEDs with a high light extraction composite surface structure fabricated by a modified YAG laser lift-off technology and the patterned sapphire substrates

    NASA Astrophysics Data System (ADS)

    Sun, Yongjian; Trieu, Simeon; Yu, Tongjun; Chen, Zhizhong; Qi, Shengli; Tian, Pengfei; Deng, Junjing; Jin, Xiaoming; Zhang, Guoyi

    2011-08-01

    Vertical structure LEDs have been fabricated with a novel light extraction composite surface structure composed of a micron grating and nano-structure. The composite surface structure was generated by using a modified YAG laser lift-off technique, separating the wafers from cone-shaped patterned sapphire substrates. LEDs thus fabricated showed the light output power increase about 1.7-2.5 times when compared with conventional vertical structure LEDs grown on plane sapphire substrates. A three-dimensional finite difference time domain method was used to simulate this new kind of LED device. It was determined that nano-structures in composite surface patterns play a key role in the improvement of light extraction efficiency of LEDs.

  15. Template-guided highly aligned, nano-scale wrinkle structure on a large-area

    NASA Astrophysics Data System (ADS)

    Lim, Jongcheon; Kim, Pilnam

    This study presents a novel technique to induce aligned, nano-scale wrinkle on a polysiloxane-based UV curable resin. There have been studies on generating randomized sub-micron wrinkle using oxygen plasma treatment which causes equibiaxial compressive stress on the film surface. Few works have been reported on how to control the surface wrinkle orientation. Currently available approaches for regulating the wrinkle pattern typically require polydimethylsiloxane (PDMS)-based bilayer system under uniaxial stress condition which hampers various technological applications. Here, we demonstrate a method to generate aligned wrinkle with UV curable polymers. Highly regular array of nanoscale wrinkles were formed by elastic buckling of bilayered UV curable resin, resulting from a combination of confinement effect and anchor-guided propagation of structure. The wrinkle tends to align uniformly lateral to the template pattern as the resin filled in the pattern forms more convex meniscus. The wavelength of the wrinkle was controlled by UV exposure time yielding as small as 170nm. From our results, we suggest the confinement provided by the template pattern may have affected the direction of thin film's expansion yielding unidirectional compressive stress. This work was supported by Samsung Research Funding Center of Samsung Electronics under Project Number SRFC-IT1402-02.

  16. Soufrière Hills Plagioclase: Postcards From the Edge.

    NASA Astrophysics Data System (ADS)

    Genareau, K.; Clarke, A.; Hervig, R.

    2005-12-01

    Secondary Ion Mass Spectrometry (SIMS) can provide sub-micron depth resolution for analyzing products of volcanic eruptions. SIMS was used to examine the outer rims of plagioclase phenocrysts derived from both explosive and effusive eruptions of the Soufrière Hills Volcano (SHV), Montserrat. Phenocrysts were separated from the host igneous rock by crushing with a mortar and pestle and then cleaned with a Branson Sonifier. A 12.5 kV O2+ primary ion beam was used to examine the variation in ten elements (Ca, Na, Si, Al, Ti, Zr, K, Fe, Sr, Li) through a crystal depth of 5-9 microns. Plagioclase crystals separated from explosively produced pumice clasts show increasing anorthite (An) content with depth into the crystal surface, starting at ~10% An at the surface and reaching a constant composition of ~45% An at 2-4 microns depth. According to experimentally determined estimates of plagioclase growth rates for the SHV magma (Couch et al. 2003; J. Petrology 44, 1477-1502), the 2-4 microns depth over which An changes corresponds to 1-7 hours of growth. Sr also shows a general increase with depth into the crystal. K shows a rapid decrease in abundance with depth. Fe shows more complex patterns that may indicate late-stage crystallization of magnetite. Plagioclase derived from exogenous dome samples also have surface compositions of ~10% An increasing with depth to ~30% An, but rather than plateau, the values begin to decrease again at 2-5 microns depth. This fluctuating abundance of An may reveal the presence of micron-scale decompression-induced growth zones that have not been previously documented due to limitations in the spatial resolution of conventional analytical techniques. Explosive and effusive samples exhibit conflicting Li trends. The explosively derived plagioclase have elevated surface Li concentrations while the dome derived plagioclase have low surface Li concentrations. These differing trends may provide evidence of closed system vs. open system degassing as a function of eruptive style. Geochemical analyses of igneous phenocrysts using the SIMS depth-profiling technique can be used to constrain the style of magma decompression and eruption. Additional analyses are currently being performed on an expanded suite of samples in order to confirm these results and to relate crystal-edge chemistry to other parameters such as quench pressure and degree of magma degassing.

  17. Method of producing carbon coated nano- and micron-scale particles

    DOEpatents

    Perry, W. Lee; Weigle, John C; Phillips, Jonathan

    2013-12-17

    A method of making carbon-coated nano- or micron-scale particles comprising entraining particles in an aerosol gas, providing a carbon-containing gas, providing a plasma gas, mixing the aerosol gas, the carbon-containing gas, and the plasma gas proximate a torch, bombarding the mixed gases with microwaves, and collecting resulting carbon-coated nano- or micron-scale particles.

  18. Silicone elastomers capable of large isotropic dimensional change

    DOEpatents

    Lewicki, James; Worsley, Marcus A.

    2017-07-18

    Described herein is a highly effective route towards the controlled and isotropic reduction in size-scale, of complex 3D structures using silicone network polymer chemistry. In particular, a class of silicone structures were developed that once patterned and cured can `shrink` micron scale additive manufactured and lithographically patterned structures by as much as 1 order of magnitude while preserving the dimensions and integrity of these parts. This class of silicone materials is compatible with existing additive manufacture and soft lithographic fabrication processes and will allow access to a hitherto unobtainable dimensionality of fabrication.

  19. Feasibility of Sensing Tropospheric Ozone with MODIS 9.6 Micron Observations

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Iacovazzi, R., Jr.; Moon-Yoo, Jung

    2004-01-01

    With the infrared observations made by the Moderate Resolution Imaging Spectrometer (MODIS) on board the EOS-Aqua satellite, which include the 9.73 micron channel, a method is developed to deduce horizontal patterns of tropospheric ozone in cloud free conditions on a scale of about 100 km. It is assumed that on such small scale, at a given instant, horizontal changes in stratospheric ozone are small compared to that in the troposphere. From theoretical simulations it is found that uncertainties in the land surface emissivity and the vertical thermal stratification in the troposphere can lead to significant errors in the inferred tropospheric ozone. Because of this reason in order to derive horizontal patterns of tropospheric ozone in a given geographic area a tuning of this method is necessary with the help of a few dependent cases. After tuning, this method is applied to independent cases of MODIS data taken over Los Angeles basin in cloud free conditions to derive horizontal distribution of ozone in the troposphere. Preliminary results indicate that the derived patterns of ozone resemble crudely the patterns of surface ozone reported by EPA.

  20. Atomic Oxygen (ATOX) simulation of Teflon FEP and Kapton H surfaces using a high intensity, low energy, mass selected, ion beam facility

    NASA Technical Reports Server (NTRS)

    Vered, R.; Grossman, E.; Lempert, G. D.; Lifshitz, Y.

    1994-01-01

    A high intensity (greater than 10(exp 15) ions/sq cm) low energy (down to 5 eV) mass selected ion beam (MSIB) facility was used to study the effects of ATOX on two polymers commonly used for space applications (Kapton H and Teflon FEP). The polymers were exposed to O(+) and Ne(+) fluences on 10(exp 15) - 10(exp 19) ions/sq cm, using 30eV ions. A variety of analytical methods were used to analyze the eroded surfaces including: (1) atomic force microscopy (AFM) for morphology measurements; (2) total mass loss measurements using a microbalance; (3) surface chemical composition using x-ray photoelectron spectroscopy (XPS), and (4) residual gas analysis (RGA) of the released gases during bombardment. The relative significance of the collisional and chemical degradation processes was evaluated by comparing the effects of Ne(+) and O(+) bombardment. For 30 eV ions it was found that the Kapton is eroded via chemical mechanisms while Teflon FEP is eroded via collisional mechanisms. AFM analysis was found very powerful in revealing the evolution of the damage from its initial atomic scale (roughness of approx. 1 nm) to its final microscopic scale (roughness greater than 1 micron). Both the surface morphology and the average roughness of the bombarded surfaces (averaged over 1 micron x 1 micron images by the system's computer) were determined for each sample. For 30 eV a non linear increase of the Kapton roughness with the O(+) fluence was discovered (a slow increase rate for fluences phi less than 5 x 10(exp 17) O(+)/sq cm, and a rapid increase rate for phi greater than 5 x 10(exp 17) O(+)/sq cm). Comparative studies on the same materials exposed to RF and DC oxygen plasmas indicate that the specific details of the erosion depend on the simulation facility emphasizing the advantages of the ion beam facility.

  1. Groundbased near-IR observations of the surface of Venus

    NASA Technical Reports Server (NTRS)

    Meadows, V. S.; Crisp, D.; Allen, D. A.

    1992-01-01

    We present images of the nightside of Venus taken in the near-infrared windows at 1.0, 1.1, 1.18, 1.28, 1.31, and 2.3 microns with the new infrared camera/spectrometer IRIS on the Anglo-Australian Telescope. These data were taken in spectral-mapping mode. This technique involves scanning the telescope perpendicular to the slit, while collecting spectra at successive slit positions across the planet. We produce data cubes with one spectral and two spatial dimensions. Images can be extracted over any wavelength regions. Each image has square pixels of 0.8 inch resolution. We reduced the scattered light from the sunlit crescent in images extracted from each window by subtracting images taken on either side of the window, where the Venus atmosphere is opaque. Unlike the short wavelength windows, which reveal thermal contrasts that originate primarily from the surface and deep atmosphere, the emission in the 2.3 microns window is produced at much higher altitudes (30-40 km). Emission contrasts seen near 2.3 microns are associated with horizontal variations in the cloud optical depths, and have rotation periods of about six days. We detect large contrasts in infrared emission (20-40 percent) across the disc of Venus in the 1.0-, 1.1-, 1.18-, 1.28-, and 1.31-micron images. Contrasts at these wavelengths may be due to a combination of variations in the optical depths of the overlying sulfuric acid clouds and differences in surface emission. Comparison with the 2.3-micron images show that the patterns seen in the 1.28- and 1.31-micron windows are consistent with cloud optical depth variations alone and require no contribution from the surface. However, images at 1.0, 1.1, and 1.8 microns from July 1991 show a dark feature having a contrast that increases with decreasing wavelength. This behavior is contrary to that expected of cloud absorption. Images taken on three successive days in October show another dark feature that is stationary with respect to the surface. These regions of lower emission correspond closely to the high-altitude surface regions of Beta Regio and Aphrodite Terra. The images can potentially reveal the near-infrared emissiveity of the surface of Venus, thereby complementing Magellan radar reflectivity and ground based radio emissivity measurements. The contrast ratio between highlands and plains is much smaller than would be expected for blackbody radiation from the surface along. Unlike at radio wavelengths, where the atmosphere is essentially transparent, at near-infrared wavelengths the atmosphere emits, absorbs, and scatters radiation, and can modify the observed topographically induced contrasts. The additional radiation from the atmosphere reduces the contrast, and further modification would be expected if terrain at different altitudes has different emissivities. A fit to our data therefore requires, and may constrain, a model of the lowest scale height of the atmosphere.

  2. Ultrathin Nickel Hydroxide and Oxide Nanosheets: Synthesis, Characterizations and Excellent Supercapacitor Performances

    PubMed Central

    Zhu, Youqi; Cao, Chuanbao; Tao, Shi; Chu, Wangsheng; Wu, Ziyu; Li, Yadong

    2014-01-01

    High-quality ultrathin two-dimensional nanosheets of α-Ni(OH)2 are synthesized at large scale via microwave-assisted liquid-phase growth under low-temperature atmospheric conditions. After heat treatment, non-layered NiO nanosheets are obtained while maintaining their original frame structure. The well-defined and freestanding nanosheets exhibit a micron-sized planar area and ultrathin thickness (<2 nm), suggesting an ultrahigh surface atom ratio with unique surface and electronic structure. The ultrathin 2D nanostructure can make most atoms exposed outside with high activity thus facilitate the surface-dependent electrochemical reaction processes. The ultrathin α-Ni(OH)2 and NiO nanosheets exhibit enhanced supercapacitor performances. Particularly, the α-Ni(OH)2 nanosheets exhibit a maximum specific capacitance of 4172.5 F g−1 at a current density of 1 A g−1. Even at higher rate of 16 A g−1, the specific capacitance is still maintained at 2680 F g−1 with 98.5% retention after 2000 cycles. Even more important, we develop a facile and scalable method to produce high-quality ultrathin transition metal hydroxide and oxide nanosheets and make a possibility in commercial applications. PMID:25168127

  3. Peering to the Heart of Massive Star Birth - II. A Survey of 8 Protostars

    NASA Astrophysics Data System (ADS)

    Tan, Jonathan

    2012-10-01

    We propose to follow-up our SOFIA FORCAST Basic Science observation of G35.20-0.74 with similar observations of seven other massive protostars, with a total time request of about 5 hours. Our goal is to use mid-infrared (MIR) and far-infrared (FIR) imaging, especially at wavelengths of 31 and 37 microns that are unique to SOFIA, to constrain detailed radiative transfer models of massive star formation. In particular, we show that if massive stars are forming from high mass surface density cores, then the observed MIR and FIR morphologies are strongly influenced by the presence of protostellar outflow cavities. For typical surface densities of ~1 g cm^2, the observed radiation at wavelengths less than about 30 microns escapes preferentially along the near-facing outflow cavity. At longer wavelengths we begin to see emission from the far-facing cavity, and thus the proposed SOFIA FORCAST observations are particularly powerful for constraining the properties of the star-forming core such as the mass surface density in the immediate vicinity of the protostar. Our full analysis will involve comparing these SOFIA FORCAST data with images at other wavelengths, including Spitzer IRAC (3 to 8 microns), ground-based (10 & 20 microns) and Herschel (70 microns), to derive flux profiles and spectral energy distributions as a function of projected distance along the outflow axis. These observations have the potential to: (1) test basic scenarios of massive star formation; (2) begin to provide detailed measurements such as the mass surface density structure of massive star-forming cores and the line-of-sight orientation, opening angle, degree of symmetry and dust content of their outflow cavities. With a sample of eight protostars in total we will begin to be able to search for trends in these properties with core mass surface density and protostellar luminosity.

  4. Optical Imaging and Spectroscopic Characterization of Self-Assembled Environmental Adsorbates on Graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallagher, Patrick; Li, Yilei; Watanabe, Kenji

    Topographic studies using scanning probes have found that graphene surfaces are often covered by micron-scale domains of periodic stripes with a 4 nm pitch. These stripes have been variously interpreted as structural ripples or as self-assembled adsorbates. We show that the stripe domains are optically anisotropic by imaging them using a polarization-contrast technique. Optical spectra between 1.1 and 2.8 eV reveal that the anisotropy in the in-plane dielectric function is predominantly real, reaching 0.6 for an assumed layer thickness of 0.3 nm. Furthermore, the spectra are incompatible with a rippled graphene sheet but would be quantitatively explained by the self-assemblymore » of chainlike organic molecules into nanoscale stripes.« less

  5. Non-ultraviolet-based patterning of polymer structures by optically induced electrohydrodynamic instability

    NASA Astrophysics Data System (ADS)

    Wang, Feifei; Yu, Haibo; Liu, Na; Mai, John D.; Liu, Lianqing; Lee, Gwo-Bin; Jung Li, Wen

    2013-11-01

    We report here an approach to rapidly construct organized formations of micron-scale pillars from a thin polydimethylsiloxane (PDMS) film by optically induced electrohydrodynamic instability (OEHI). In OEHI, a heterogeneous electric field is induced across two thin fluidic layers by stimulating a photoconductive thin film in a parallel-plate capacitor configuration with visible light. We demonstrated that this OEHI method could control nucleation sites of pillars formed by electrohydrodynamic instability. To investigate this phenomenon, a tangential electric force component is assumed to have arisen from the surface polarization charge and is introduced into the traditional perfect dielectric model for PDMS films. Numerical simulation results showed that this tangential electric force played an important role in OEHI.

  6. Optical Imaging and Spectroscopic Characterization of Self-Assembled Environmental Adsorbates on Graphene

    DOE PAGES

    Gallagher, Patrick; Li, Yilei; Watanabe, Kenji; ...

    2018-03-28

    Topographic studies using scanning probes have found that graphene surfaces are often covered by micron-scale domains of periodic stripes with a 4 nm pitch. These stripes have been variously interpreted as structural ripples or as self-assembled adsorbates. We show that the stripe domains are optically anisotropic by imaging them using a polarization-contrast technique. Optical spectra between 1.1 and 2.8 eV reveal that the anisotropy in the in-plane dielectric function is predominantly real, reaching 0.6 for an assumed layer thickness of 0.3 nm. Furthermore, the spectra are incompatible with a rippled graphene sheet but would be quantitatively explained by the self-assemblymore » of chainlike organic molecules into nanoscale stripes.« less

  7. Effect of grinding and fluoride-gel exposure on strength of ion-exchanged porcelain.

    PubMed

    Anusavice, K J; Hojjatie, B; Chang, T C

    1994-08-01

    Strengthening of dental porcelain through a diffusion heat treatment at 450 degrees C of a potassium-enriched, ion-exchange surface coating has been demonstrated in several recent studies. However, little attention has been focused on the potential strength reduction of these materials when the treated surfaces are ground or etched under clinically simulated conditions. The objective of this study was to test the hypothesis that partial removal of the surface layers of ion-exchanged porcelains by grinding or exposure to acidulated fluoride gel will significantly reduce their flexure strength. Nine groups of body porcelain disks were ion-exchanged at 450 degrees C for 30 min. One of these groups was subjected to ion exchange and no further surface treatment. Eight specimen groups were subjected to the following procedures after ion exchange: grinding to depths of 50 microns, 100 microns, 150 microns, 200 microns, and 250 microns, and exposure to acidulated fluoride for 30 min, 60 min, and 300 min. A tenth group (FC) was fired at 960 degrees C and fast-cooled in air, but the disks were not subjected to the ion-exchange treatment. Surface stress was calculated from measured values of cracks induced in the treated surfaces. Fluoride exposure for up to 60 min resulted in a significant decrease in surface compression (P < or = 0.05), although this treatment had no effect on strength. Grinding to a depth of from 100 microns to 250 microns caused a significant decrease in strength, while removal of a 50-microns layer caused no significant change (P > 0.05).

  8. 3-D optical profilometry at micron scale with multi-frequency fringe projection using modified fibre optic Lloyd's mirror technique

    NASA Astrophysics Data System (ADS)

    Inanç, Arda; Kösoğlu, Gülşen; Yüksel, Heba; Naci Inci, Mehmet

    2018-06-01

    A new fibre optic Lloyd's mirror method is developed for extracting 3-D height distribution of various objects at the micron scale with a resolution of 4 μm. The fibre optic assembly is elegantly integrated to an optical microscope and a CCD camera. It is demonstrated that the proposed technique is quite suitable and practical to produce an interference pattern with an adjustable frequency. By increasing the distance between the fibre and the mirror with a micrometre stage in the Lloyd's mirror assembly, the separation between the two bright fringes is lowered down to the micron scale without using any additional elements as part of the optical projection unit. A fibre optic cable, whose polymer jacket is partially stripped, and a microfluidic channel are used as test objects to extract their surface topographies. Point by point sensitivity of the method is found to be around 8 μm, changing a couple of microns depending on the fringe frequency and the measured height. A straightforward calibration procedure for the phase to height conversion is also introduced by making use of the vertical moving stage of the optical microscope. The phase analysis of the acquired image is carried out by One Dimensional Continuous Wavelet Transform for which the chosen wavelet is the Morlet wavelet and the carrier removal of the projected fringe patterns is achieved by reference subtraction. Furthermore, flexible multi-frequency property of the proposed method allows measuring discontinuous heights where there are phase ambiguities like 2π by lowering the fringe frequency and eliminating the phase ambiguity.

  9. Micron Scale Mineralogy

    NASA Astrophysics Data System (ADS)

    Caldwell, W. A.; Tamura, N.; Celestre, R. S.; Padmore, H. A.; Patel, J. R.

    2002-12-01

    Although x-ray diffraction has been used for nearly a century as the mineralogist's definitive tool in determining crystalline structures, it has proved impossible to use this technique to spatially resolve the highly heterogeneous nature of many minerals at the mesoscopic level. Due to recent revolutions in the brightness of x-ray sources and in our ability to focus x-rays, we can now carry out conventional monochromatic rotation crystallography as well as Laue diffraction with sub-micron spatial resolution and produce maps of orientation, strain, mineral type, and even chemical speciation over tens of microns in a short amount of time. We have pioneered the development of these techniques at the 3rd generation synchrotron radiation source (Advanced Light Source) in Berkeley, and will describe their application to understanding the structure of a quartz-geode. Our results show the manner in which grain structure and texture change as a function of distance from the cavity wall and are compared with models of crystal growth in such systems. This example highlights the great utility of a synchrotron based x-ray micro-diffraction beamline and the possibilities it opens to the mineralogist.

  10. Effect of an amorphous titania nanotubes coating on the fatigue and corrosion behaviors of the biomedical Ti-6Al-4V and Ti-6Al-7Nb alloys.

    PubMed

    Campanelli, Leonardo Contri; Bortolan, Carolina Catanio; da Silva, Paulo Sergio Carvalho Pereira; Bolfarini, Claudemiro; Oliveira, Nilson Tadeu Camarinho

    2017-01-01

    An array of self-organized TiO 2 nanotubes with an amorphous structure was produced on the biomedical Ti-6Al-4V and Ti-6Al-7Nb alloys, and the resulting fatigue and corrosion behaviors were studied. The electrochemical response of the nanotubular oxide surfaces was investigated in Ringer physiological solution through potentiodynamic polarization and electrochemical impedance spectroscopy measurements. The absence of transpassivation in the chloride-containing solution, in addition to the micron-scale values of the passivation current density, indicated the excellent corrosion behavior of the coating and the satisfactory protection against the creation of potential stress concentrators in the surface. Axial fatigue tests were performed in physiological solution on polished and coated conditions, with characterization of the treated surfaces by scanning electron microscopy before and after the tests. The surface modification was not deleterious to the fatigue response of both alloys mainly due to the nano-scale dimension of the nanotubes layer. An estimation based on fracture mechanics revealed that a circumferential crack in the range of 5μm depth would be necessary to affect the fatigue performance, which is far from the thickness of the studied coating, although no cracks were actually observed in the oxide surfaces after the tests. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. In situ AFM investigation of slow crack propagation mechanisms in a glassy polymer

    NASA Astrophysics Data System (ADS)

    George, M.; Nziakou, Y.; Goerke, S.; Genix, A.-C.; Bresson, B.; Roux, S.; Delacroix, H.; Halary, J.-L.; Ciccotti, M.

    2018-03-01

    A novel experimental technique based on in situ AFM monitoring of the mechanisms of damage and the strain fields associated to the slow steady-state propagation of a fracture in glassy polymers is presented. This micron-scale investigation is complemented by optical measurements of the sample deformation up to the millimetric macroscopic scale of the sample in order to assess the proper crack driving conditions. These multi-scale observations provide important insights towards the modeling of the fracture toughness of glassy polymers and its relationship with the macromolecular structure and non-linear rheological properties. This novel technique is first tested on a standard PMMA thermoplastic in order to both evaluate its performance and the richness of this new kind of observations. Although the fracture propagation in PMMA is well known to proceed through crazing in the bulk of the samples, our observations provide a clear description and quantitative evaluation of a change of fracture mechanism towards shear yielding fracture accompanied by local necking close to the free surface of the sample, which can be explained by the local change of stress triaxiality. Moreover, this primary surface necking mechanism is shown to be accompanied by a network of secondary grooves that can be related to surface crazes propagating towards the interior of the sample. This overall scenario is validated by post-mortem fractographic investigations by scanning electron microscopy.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xiao; Martínez-González, José A.; Hernández-Ortiz, Juan P.

    Liquid crystal blue phases (BPs) are highly ordered at two levels. Molecules exhibit orientational order at nanometer length scales, while chirality leads to ordered arrays of doubletwisted cylinders over micrometer scales. Past studies of polycrystalline BPs were challenged by grain boundaries between randomly oriented crystalline nanodomains. Here, the nucleation of BPs is controlled with considerable precision by relying on chemically nano-patterned surfaces, leading to macroscopic single-crystal BP specimens where the dynamics of meso-crystal formation can be directly observed. Theory and experiments show that transitions between two BPs having a different network structure proceed through local re-organization of the crystalline array,more » without diffusion of the double twisted cylinders. In solid crystals, martensitic transformations between crystal structures involve the concerted motion of a few atoms, without diffusion. The transformation between BPs, where crystal features arise in the sub-micron regime, is found to be martensitic in nature, with the diffusion-less feature associated to the collective behavior of the double twist cylinders. Single-crystal BPs are shown to offer fertile grounds for the study of directed crystal-nucleation and the controlled growth of soft matter.« less

  13. Highly directional thermal emitter

    DOEpatents

    Ribaudo, Troy; Shaner, Eric A; Davids, Paul; Peters, David W

    2015-03-24

    A highly directional thermal emitter device comprises a two-dimensional periodic array of heavily doped semiconductor structures on a surface of a substrate. The array provides a highly directional thermal emission at a peak wavelength between 3 and 15 microns when the array is heated. For example, highly doped silicon (HDSi) with a plasma frequency in the mid-wave infrared was used to fabricate nearly perfect absorbing two-dimensional gratings structures that function as highly directional thermal radiators. The absorption and emission characteristics of the HDSi devices possessed a high degree of angular dependence for infrared absorption in the 10-12 micron range, while maintaining high reflectivity of solar radiation (.about.64%) at large incidence angles.

  14. Orbital debris and meteoroid population as estimated from LDEF impact data

    NASA Technical Reports Server (NTRS)

    Zhang, Jingchang; Kessler, Donald J.

    1995-01-01

    Examination of LDEF's various surfaces shows numerous craters and holes due to hypervelocity impacts of meteoroids and man-made orbital debris. In this paper, the crater numbers as reported by Humes have been analyzed in an effort to understand the orbital debris and natural meteoroid environment in LEO. To determine the fraction of man-made to natural impacts, the side to top ratio of impacts and results of the Chemistry of Micrometeoroids Experiment are used. For craters in the 100 micron to 500 micron size range, about 25 percent to 30 percent of the impacts on the forward-facing surfaces and about 10 percent of the impacts on the trailing surfaces were estimated due to man-made orbital debris. A technique has been developed to convert crater numbers to particle fluxes, taking the fact into account that the distributions of impact velocity and incidence angle vary over the different surfaces of LDEF, as well as the ratio of the surface area flux to the cross-sectional area flux. Applying this technique, Humes' data concerning craters with limiting lip diameters of 100 micron, 200 micron and 500 micron have been converted into orbital debris and meteoroid fluxes ranging from about 20 micron to 200 micron particle diameter. The results exhibit good agreement with orbital debris model and meteoroid model. The converted meteoroid flux is slightly larger than Grun's model (by 40 to 70 percent). The converted orbital debris flux is slightly lower than Kessler's model for particle diameter smaller than about 30 micron and slightly larger than the model for particle diameter larger than about 40 micron. Taking also into account the IDE data point at about 0.8 micron particle diameter, it suggests to change the slope log (flux) versus log (diameter) of orbital debris flux in the 1 micron to 100 micron particle diameter range from 2.5 to 1.9.

  15. Dark field photoelectron emission microscopy of micron scale few layer graphene

    NASA Astrophysics Data System (ADS)

    Barrett, N.; Conrad, E.; Winkler, K.; Krömker, B.

    2012-08-01

    We demonstrate dark field imaging in photoelectron emission microscopy (PEEM) of heterogeneous few layer graphene (FLG) furnace grown on SiC(000-1). Energy-filtered, threshold PEEM is used to locate distinct zones of FLG graphene. In each region, selected by a field aperture, the k-space information is imaged using appropriate transfer optics. By selecting the photoelectron intensity at a given wave vector and using the inverse transfer optics, dark field PEEM gives a spatial distribution of the angular photoelectron emission. In the results presented here, the wave vector coordinates of the Dirac cones characteristic of commensurate rotations of FLG on SiC(000-1) are selected providing a map of the commensurate rotations across the surface. This special type of contrast is therefore a method to map the spatial distribution of the local band structure and offers a new laboratory tool for the characterisation of technically relevant, microscopically structured matter.

  16. High-resolution (SIMS) versus bulk sulfur isotope patterns of pyrite in Proterozoic microbialites with diverse mat textures

    NASA Astrophysics Data System (ADS)

    Gomes, M. L.; Fike, D. A.; Bergmann, K.; Knoll, A. H.

    2015-12-01

    Sulfur (S) isotope signatures of sedimentary pyrite preserved in marine rocks provide a rich suite of information about changes in biogeochemical cycling associated with the evolution of microbial metabolisms and oxygenation of Earth surface environments. Conventionally, these S isotope records are based on bulk rock measurements. Yet, in modern microbial mat environments, S isotope compositions of sulfide can vary by up to 40‰ over a spatial range of ~ 1 mm. Similar ranges of S isotope variability have been found in Archean pyrite grains using both Secondary Ion Mass Spectrometry and other micro-analytical techniques. These micron-scale patterns have been linked to changes in rates of microbial sulfate reduction and/or sulfide oxidation, isotopic distillation of the sulfate reservoir due to microbial sulfate reduction, and post-depositional alteration. Fine-scale mapping of S isotope compositions of pyrite can thus be used to differentiate primary environmental signals from post-depositional overprinting - improving our understanding of both. Here, we examine micron-scale S isotope patterns of pyrite in microbialites from the Mesoproterozoic-Neoproterozoic Sukhaya Tunguska Formation and Neoproterozoic Draken Formation in order to explore S isotope variability associated with different mat textures and pyrite grain morphologies. A primary goal is to link modern observations of how sulfide spatial isotope distributions reflect active microbial communities present at given depths in the mats to ancient processes driving fine-sale pyrite variability in microbialites. We find large (up to 60‰) S isotope variability within a spatial range of less than 2.5cm. The micron-scale S isotope measurements converge around the S isotope composition of pyrite extracted from bulk samples of the same microbialites. These micron-scale pyrite S isotope patterns have the potential to reveal important information about ancient biogeochemical cycling in Proterozoic mat environments with implications for interpreting S isotope signatures from the geological record.

  17. Directed assembly of three-dimensional structures with micron-scale features

    DOEpatents

    Gratson, Gregory; Lewis, Jennifer A.

    2006-11-28

    The invention provides polyelectrolyte inks comprising a solvent, a cationic polyelectrolyte, dissolved in the solvent, and an anionic polyelectrolyte, dissolved in the solvent. The concentration of at least one of the polyelectrolytes in the solvent is in a semidilute regime.

  18. Electronic structure of nickel silicide in subhalf-micron lines and blanket films: An x-ray absorption fine structures study at the Ni and Si L3,2 edge

    NASA Astrophysics Data System (ADS)

    Naftel, S. J.; Coulthard, I.; Sham, T. K.; Xu, D.-X.; Erickson, L.; Das, S. R.

    1999-05-01

    We report a Ni and Si L3,2-edge x-ray absorption near edge structures (XANES) study of nickel-silicon interaction in submicron (0.15 and 0.2 μm) lines on a n-Si(100) wafer as well as a series of well characterized Ni-Si blanket films. XANES measurements recorded in both total electron yield and soft x-ray fluorescence yield indicate that under the selected silicidation conditions, the more desirable low resistivity phase, NiSi, is indeed the dominant phase in the subhalf-micron lines although the formation of this phase is less complete as the line becomes narrower and this is accompanied by a Ni rich surface.

  19. Recent advancements in anti-reflective surface structures (ARSS) for near- to mid-infrared optics

    NASA Astrophysics Data System (ADS)

    Florea, Catalin M.; Busse, Lynda E.; Bayya, Shyam S.; Shaw, Brandon; Aggarwal, Ish D.; Sanghera, Jas S.

    2013-06-01

    Fused silica, YAG crystals, and spinel ceramics substrates have been successfully patterned through reactive ion etching (RIE). Reflection losses as low as 0.1% have been demonstrated for fused silica at 1.06 microns. Laser damage thresholds have been measured for substrates with ARSS and compared with uncoated and/or thin-film anti-reflection (AR) coated substrates. Thresholds as high as 100 J/cm2 have been demonstrated in fused silica with ARSS at 1.06 microns, with ARSS substrates showing improved thresholds when compared with uncoated substrates.

  20. Microstructural and wear properties of sputtered carbides and silicides

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1977-01-01

    Sputtered Cr3C2, Cr3Si2, and MoSi2 wear-resistant films (0.05 to 3.5 microns thick) were deposited on metal and glass surfaces. Electron transmission, electron diffraction, and scanning electron microscopy were used to determine the microstructural appearance. Strong adherence was obtained with these sputtered films. Internal stresses and defect crystallographic growth structures of various configurations within the film have progressively more undesirable effects for film thicknesses greater than 1.5 microns. Sliding contact and rolling-element bearing tests were also performed with these sputtered films.

  1. Water Ice Clouds in the Martian Atmosphere: A View from MGS TES

    NASA Technical Reports Server (NTRS)

    Hale, A. S.; Tamppari, L. K.; Christensen, P. R.; Smith, M. D.; Bass, Deborah; Qu, Zheng; Pearl, J. C.

    2005-01-01

    We use the method of Tamppari et al. to map water ice clouds in the Martian atmosphere. This technique was originally developed to analyze the broadband Viking IRTM channels and we have now applied it to the TES data. To do this, the TES spectra are convolved to the IRTM bandshapes and spatial resolutions, enabling use of the same processing techniques as were used in Tamppari et al.. This retrieval technique relies on using the temperature difference recorded in the 20 micron and 11 micron IRTM bands (or IRTM convolved TES bands) to map cold water ice clouds above the warmer Martian surface. Careful removal of surface contributions to the observed radiance is therefore necessary, and we have used both older Viking-derived basemaps of the surface emissivity and albedo, and new MGS derived basemaps in order the explore any possible differences on cloud retrieval due to differences in surface contribution removal. These results will be presented in our poster. Our previous work has concentrated primarily on comparing MGS TES to Viking data; that work saw that large-scale cloud features, such as the aphelion cloud belt, are quite repeatable from year to year, though small scale behavior shows some variation. Comparison of Viking and MGS era cloud maps will be presented in our poster. In the current stage of our study, we have concentrated our efforts on close analysis of water ice cloud behavior in the northern summer of the three MGS mapping years on relatively small spatial scales, and present our results below. Additional information is included in the original extended abstract.

  2. Color from hierarchy: Diverse optical properties of micron-sized spherical colloidal assemblies.

    PubMed

    Vogel, Nicolas; Utech, Stefanie; England, Grant T; Shirman, Tanya; Phillips, Katherine R; Koay, Natalie; Burgess, Ian B; Kolle, Mathias; Weitz, David A; Aizenberg, Joanna

    2015-09-01

    Materials in nature are characterized by structural order over multiple length scales have evolved for maximum performance and multifunctionality, and are often produced by self-assembly processes. A striking example of this design principle is structural coloration, where interference, diffraction, and absorption effects result in vivid colors. Mimicking this emergence of complex effects from simple building blocks is a key challenge for man-made materials. Here, we show that a simple confined self-assembly process leads to a complex hierarchical geometry that displays a variety of optical effects. Colloidal crystallization in an emulsion droplet creates micron-sized superstructures, termed photonic balls. The curvature imposed by the emulsion droplet leads to frustrated crystallization. We observe spherical colloidal crystals with ordered, crystalline layers and a disordered core. This geometry produces multiple optical effects. The ordered layers give rise to structural color from Bragg diffraction with limited angular dependence and unusual transmission due to the curved nature of the individual crystals. The disordered core contributes nonresonant scattering that induces a macroscopically whitish appearance, which we mitigate by incorporating absorbing gold nanoparticles that suppress scattering and macroscopically purify the color. With increasing size of the constituent colloidal particles, grating diffraction effects dominate, which result from order along the crystal's curved surface and induce a vivid polychromatic appearance. The control of multiple optical effects induced by the hierarchical morphology in photonic balls paves the way to use them as building blocks for complex optical assemblies--potentially as more efficient mimics of structural color as it occurs in nature.

  3. The formation of Colloidal 2D/3D MoS2 Nanostructures in Organic Liquid Environment

    NASA Astrophysics Data System (ADS)

    Durgun, Engin; Sen, H. Sener; Oztas, Tugba; Ortac, Bulend

    2015-03-01

    2D MoS2 nanosheets (2D MoS2 NS) and fullerene-like MoS2 nanostructures (3D MoS2 NS) with varying sizes are synthesized by nanosecond laser ablation of hexagonal crystalline 2H-MoS2 powder in methanol. Structural, chemical, and optical properties of MoS2 NS are characterized by optical microscopy, SEM, TEM, XRD, Raman and UV/VIS/NIR absorption spectroscopy techniques. Results of structural analysis show that the obtained MoS2 NS mainly present layered morphology from micron to nanometer surface area. Detailed analysis of the product also proves the existence of inorganic polyhedral fullerene-like 3D MoS2 NS generated by pulsed laser ablation in methanol. The possible factors which may lead to formation of both 2D and 3D MoS2 NS in methanol are examined by ab initio calculations and shown that it is correlated with vacancy formation. The hexagonal crystalline structure of MoS2 NS was determined by XRD analysis. The colloidal MoS2 NS solution presents broadband absorption edge tailoring from UV region to NIR region. Investigations of MoS2 NS show that the one step physical process of pulsed laser ablation-bulk MoS2 powder interaction in organic solution opens doors to the formation of ``two scales'' micron- and nanometer-sized layered and fullerene-like morphology MoS2 structures. This work was partially supported by TUBITAK under the Project No. 113T050 and Bilim Akademisi - The Science Academy, Turkey under the BAGEP program.

  4. Color from hierarchy: Diverse optical properties of micron-sized spherical colloidal assemblies

    PubMed Central

    Vogel, Nicolas; Utech, Stefanie; England, Grant T.; Shirman, Tanya; Phillips, Katherine R.; Koay, Natalie; Burgess, Ian B.; Kolle, Mathias; Weitz, David A.; Aizenberg, Joanna

    2015-01-01

    Materials in nature are characterized by structural order over multiple length scales have evolved for maximum performance and multifunctionality, and are often produced by self-assembly processes. A striking example of this design principle is structural coloration, where interference, diffraction, and absorption effects result in vivid colors. Mimicking this emergence of complex effects from simple building blocks is a key challenge for man-made materials. Here, we show that a simple confined self-assembly process leads to a complex hierarchical geometry that displays a variety of optical effects. Colloidal crystallization in an emulsion droplet creates micron-sized superstructures, termed photonic balls. The curvature imposed by the emulsion droplet leads to frustrated crystallization. We observe spherical colloidal crystals with ordered, crystalline layers and a disordered core. This geometry produces multiple optical effects. The ordered layers give rise to structural color from Bragg diffraction with limited angular dependence and unusual transmission due to the curved nature of the individual crystals. The disordered core contributes nonresonant scattering that induces a macroscopically whitish appearance, which we mitigate by incorporating absorbing gold nanoparticles that suppress scattering and macroscopically purify the color. With increasing size of the constituent colloidal particles, grating diffraction effects dominate, which result from order along the crystal’s curved surface and induce a vivid polychromatic appearance. The control of multiple optical effects induced by the hierarchical morphology in photonic balls paves the way to use them as building blocks for complex optical assemblies—potentially as more efficient mimics of structural color as it occurs in nature. PMID:26290583

  5. Structural and emission characteristics of ion-irradiated Reticulated Vitreous Carbon

    NASA Astrophysics Data System (ADS)

    Chacon, Judith Rebecca

    Cathodes formed from Reticulated Vitreous Carbon (RVC) were treated under varying conditions of Argon-ion beam current, beam voltage and irradiation duration. Surface structures, such as balls, cones, nanowires, and nanowhiskers were formed in the RVC network through a series of ion-impact sputtering and self-diffusion reactions. Raman shifts to the D and E2g' peak suggest C=C bonding within the original RVC structure was converted to the lesser-bound C-C bonding structure. Cathodes demonstrating the most stable electronic configuration exhibited significant vertical growth to graphitic domains as determined by calculations based on XRD measurements. Carbon nanotubes at the surface were observed at the surface through micro-Raman techniques. The surface structures formed by argon-bombardment, are responsible for cathodes exhibiting lower field-emission extraction fields. The electric field required for the onset of electron emission was measured to change from 6.03 V/micron in non-irradiated RVC to 1.62V/micron for RVC irradiated for 15 minutes at a beam voltage of 1200V and beam current of 200mA (ion-beam current density 2.24mA/cm2). Treated surfaces were also responsible for increased stability in emission over time. For untreated RVC, the field required for emission dropped 25% over a 48 hour training period, whilst modestly treated RVC (15min, 1200V, 100mA, or 1.52mA/cm2) rose as little as 3%. Field-emissive RVC, is an inexpensively produced, mechanically robust cathode with potential applications in lighting, displays and microwave sources.

  6. Surface evaluation of the grazing incidence mirrors for the Extreme Ultraviolet Explorer

    NASA Technical Reports Server (NTRS)

    Green, James; Finley, David S.; Bowyer, Stuart; Malina, Roger F.

    1987-01-01

    The EUV scattering from the Wolter-Schwarzschild type I short wavelength scanner mirror aboard the Extreme Ultraviolet Explorer is measured, and the results are used to evaluate the surface microroughness of the mirror. It is found that the most likely values for the mirror surface are sigma = 20 A, and rho = 40 microns. These results are consistent with previous estimates, but with a higher degree of certainty. The full-scale simulation presented here allows over 99 percent of the light distribution to be reasonably modeled.

  7. Ion and laser microprobes applied to the measurement of corrosion produced hydrogen on a microscopic scale.

    NASA Technical Reports Server (NTRS)

    Gray, H. R.

    1972-01-01

    Use of an ion microprobe and a laser microprobe to measure concentrations of corrosion-produced hydrogen on a microscopic scale. Hydrogen concentrations of several thousand ppm were measured by both analytical techniques below corroded and fracture surfaces of hot salt stress corroded titanium alloy specimens. This extremely high concentration compares with only about 100 ppm hydrogen determined by standard vacuum fusion chemical analyses of bulk samples. Both the ion and laser microprobes were used to measure hydrogen concentration profiles in stepped intervals to substantial depths below the original corroded and fracture surfaces. For the ion microprobe, the area of local analysis was 22 microns in diameter and for the laser microprobe, the area of local analysis was about 300 microns in diameter. The segregation of hydrogen below fracture surfaces supports a previously proposed theory that corrosion-produced hydrogen is responsible for hot salt stress corrosion embrittlement and cracking of titanium alloys. These advanced analytical techniques suggest great potential for many areas of stress corrosion and hydrogen embrittlement research, quality control, and field inspection of corrosion problems. For example, it appears possible that a contour map of hydrogen distribution at notch roots and crack tips could be quantitatively determined. Such information would be useful in substantiating current theories of stress corrosion and hydrogen embrittlement.

  8. Preservation of three-dimensional spatial structure in the gut microbiome.

    PubMed

    Hasegawa, Yuko; Mark Welch, Jessica L; Rossetti, Blair J; Borisy, Gary G

    2017-01-01

    Preservation of three-dimensional structure in the gut is necessary in order to analyze the spatial organization of the gut microbiota and gut luminal contents. In this study, we evaluated preparation methods for mouse gut with the goal of preserving micron-scale spatial structure while performing fluorescence imaging assays. Our evaluation of embedding methods showed that commonly used media such as Tissue-Tek Optimal Cutting Temperature (OCT) compound, paraffin, and polyester waxes resulted in redistribution of luminal contents. By contrast, a hydrophilic methacrylate resin, Technovit H8100, preserved three-dimensional organization. Our mouse intestinal preparation protocol optimized using the Technovit H8100 embedding method was compatible with microbial fluorescence in situ hybridization (FISH) and other labeling techniques, including immunostaining and staining with both wheat germ agglutinin (WGA) and 4', 6-diamidino-2-phenylindole (DAPI). Mucus could be visualized whether the sample was fixed with paraformaldehyde (PFA) or with Carnoy's fixative. The protocol optimized in this study enabled simultaneous visualization of micron-scale spatial patterns formed by microbial cells in the mouse intestines along with biogeographical landmarks such as host-derived mucus and food particles.

  9. Scalable preparation of porous micron-SnO2/C composites as high performance anode material for lithium ion battery

    NASA Astrophysics Data System (ADS)

    Wang, Ming-Shan; Lei, Ming; Wang, Zhi-Qiang; Zhao, Xing; Xu, Jun; Yang, Wei; Huang, Yun; Li, Xing

    2016-03-01

    Nano tin dioxide-carbon (SnO2/C) composites prepared by various carbon materials, such as carbon nanotubes, porous carbon, and graphene, have attracted extensive attention in wide fields. However, undesirable concerns of nanoparticles, including in higher surface area, low tap density, and self-agglomeration, greatly restricted their large-scale practical applications. In this study, novel porous micron-SnO2/C (p-SnO2/C) composites are scalable prepared by a simple hydrothermal approach using glucose as a carbon source and Pluronic F127 as a pore forming agent/soft template. The SnO2 nanoparticles were homogeneously dispersed in micron carbon spheres by assembly with F127/glucose. The continuous three-dimensional porous carbon networks have effectively provided strain relaxation for SnO2 volume expansion/shrinkage during lithium insertion/extraction. In addition, the carbon matrix could largely minimize the direct exposure of SnO2 to the electrolyte, thus ensure formation of stable solid electrolyte interface films. Moreover, the porous structure could also create efficient channels for the fast transport of lithium ions. As a consequence, the p-SnO2/C composites exhibit stable cycle performance, such as a high capacity retention of over 96% for 100 cycles at a current density of 200 mA g-1 and a long cycle life up to 800 times at a higher current density of 1000 mA g-1.

  10. Smallest Nanoelectronic with Atomic Devices with Precise Structures

    NASA Technical Reports Server (NTRS)

    Yamada, Toshishige

    2000-01-01

    Since its invention in 1948, the transistor has revolutionized our everyday life - transistor radios and TV's appeared in the early 1960s, personal computers came into widespread use in the mid-1980s, and cellular phones, laptops, and palm-sized organizers dominated the 1990s. The electronics revolution is based upon transistor miniaturization; smaller transistors are faster, and denser circuitry has more functionality. Transistors in current generation chips are 0.25 micron or 250 nanometers in size, and the electronics industry has completed development of 0.18 micron transistors which will enter production within the next few years. Industry researchers are now working to reduce transistor size down to 0.13 micron - a thousandth of the width of a human hair. However, studies indicate that the miniaturization of silicon transistors will soon reach its limit. For further progress in microelectronics, scientists have turned to nanotechnology to advance the science. Rather than continuing to miniaturize transistors to a point where they become unreliable, nanotechnology offers the new approach of building devices on the atomic scale [see sidebar]. One vision for the next generation of miniature electronics is atomic chain electronics, where devices are composed of atoms aligned on top of a substrate surface in a regular pattern. The Atomic Chain Electronics Project (ACEP) - part of the Semiconductor Device Modeling and Nanotechnology group, Integrated Product Team at the NAS Facility has been developing the theory of understanding atomic chain devices, and the author's patent for atomic chain electronics is now pending.

  11. Optical coherence tomography as an accurate inspection and quality evaluation technique in paper industry

    NASA Astrophysics Data System (ADS)

    Prykäri, Tuukka; Czajkowski, Jakub; Alarousu, Erkki; Myllylä, Risto

    2010-05-01

    Optical coherence tomography (OCT), a technique for the noninvasive imaging of turbid media, based on low-coherence interferometry, was originally developed for the imaging of biological tissues. Since the development of the technique, most of its applications have been related to the area of biomedicine. However, from early stages, the vertical resolution of the technique has already been improved to a submicron scale. This enables new possibilities and applications. This article presents the possible applications of OCT in paper industry, where submicron or at least a resolution close to one micron is required. This requirement comes from the layered structure of paper products, where layer thickness may vary from single microns to tens of micrometers. This is especially similar to the case with high-quality paper products, where several different coating layers are used to obtain a smooth surface structure and a high gloss. In this study, we demonstrate that optical coherence tomography can be used to measure and evaluate the quality of the coating layer of a premium glossy photopaper. In addition, we show that for some paper products, it is possible to measure across the entire thickness range of a paper sheet. Furthermore, we suggest that in addition to topography and tomography images of objects, it is possible to obtain information similar to gloss by tracking the magnitude of individual interference signals in optical coherence tomography.

  12. The design and evaluation of grazing incidence relay optics

    NASA Technical Reports Server (NTRS)

    Davis, John M.; Chase, R. C.; Silk, J. K.; Krieger, A. S.

    1989-01-01

    X-ray astronomy, both solar and celestial, has many needs for high spatial resolution observations which have to be performed with electronic detectors. If the resolution is not to be detector limited, plate scales in excess of 25 microns arc/sec, corresponding to focal lengths greater than 5 m, are required. In situations where the physical size is restricted, the problem can be solved by the use of grazing incidence relay optics. A system was developed which employs externally polished hyperboloid-hyperboloid surfaces to be used in conjunction with a Wolter-Schwarzschild primary. The secondary is located in front of the primary focus and provides a magnification of 4, while the system has a plate scale of 28 microns arc/sec and a length of 1.9 m. The design, tolerance specification, fabrication and performance at visible and X-ray wavelengths of this optical system are described.

  13. Effect of abrasive grit size on wear of manganese-zinc ferrite under three-body abrasion

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1987-01-01

    Wear experiments were conducted using replication electron microscopy and reflection electron diffraction to study abrasion and deformed layers produced in single-crystal Mn-Zn ferrites under three-body abrasion. The abrasion mechanism of Mn-Zn ferrite changes drastically with the size of abrasive grits. With 15-micron (1000-mesh) SiC grits, abrasion of Mn-Zn ferrite is due principally to brittle fracture; while with 4- and 2-micron (4000- and 6000-mesh) SiC grits, abrasion is due to plastic deformation and fracture. Both microcracking and plastic flow produce polycrystalline states on the wear surfaces of single-crystal Mn-Zn ferrites. Coefficient of wear, total thickness of the deformed layers, and surface roughness of the wear surfaces increase markedly with an increase in abrasive grit size. The total thicknesses of the deformed layers are 3 microns for the ferrite abraded by 15-micron SiC, 0.9 microns for the ferrite abraded by 4-micron SiC, and 0.8 microns for the ferrite abraded by 1-micron SiC.

  14. Neutron reflectometry as a tool to study magnetism.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Felcher, G. P.

    1999-09-21

    Polarized-neutron specular reflectometry (PNR) was developed in the 1980's as a means of measuring magnetic depth profiles in flat films. Starting from simple profiles, and gradually solving structures of greater complexity, PNR has been used to observe or clarify a variety of magnetic phenomena. It has been used to measure the absolute magnetization of films of thickness not exceeding a few atomic planes, the penetration of magnetic fields in micron-thick superconductors, and the detailed magnetic coupling across non-magnetic spacers in multilayers and superlattices. Although PNR is considered a probe of depth dependent magnetic structure, laterally averaged in the plane ofmore » the film, the development of new scattering techniques promises to enable the characterization of lateral magnetic structures. Retaining the depth-sensitivity of specular reflectivity, off-specular reflectivity may be brought to resolve in-plane structures over nanometer to micron length scales.« less

  15. Thermal analysis of wildfires and effects on global ecosystem cycling

    NASA Technical Reports Server (NTRS)

    Ambrosia, Vincent G.; Brass, James A.

    1988-01-01

    Biomass combustion plays an important role in the earth's biogeochemical cycling. The monitoring of wildfires and their associated variables at global scales is feasible and can lead to predictions of the influence of combustion on biogeochemical cycling and tropospheric chemistry. Remote sensing data collected during the 1985 California wildfire season indicate that the information content of key thermal and infrared/thermal wave band channels centered at 11.5 microns, 3.8 microns, and 2.25 microns are invaluable for discriminating and calculating fire related variables. These variables include fire intensity, rate-of-spread, soil cooling recovery behind the fire front, and plume structure. Coinciding Advanced Very High Resolution Radiometer (AVHRR) data provided information regarding temperature estimations and the movement of the smoke plume from one wildfire into the Los Angeles basin.

  16. Spatially modulated magnetic structure of EuS due to the tetragonal domain structure of SrTiO 3

    DOE PAGES

    Rosenberg, Aaron J.; Katmis, Ferhat; Kirtley, John R.; ...

    2017-12-15

    The combination of ferromagnets with topological superconductors or insulators allows for new phases of matter that support excitations such as chiral edge modes and Majorana fermions. EuS, a wide-bandgap ferromagnetic insulator with a Curie temperature around 16K, and SrTiO 3 (STO), an important substrate for engineering heterostructures, may support these phases. We present scanning superconducting quantum interference device measurements of EuS grown epitaxially on STO that reveal micron-scale variations in ferromagnetism and paramagnetism. These variations are oriented along the STO crystal axes and only change their configuration upon thermal cycling above the STO cubic-to-tetragonal structural transition temperature at 105 K,more » indicating that the observed magnetic features are due to coupling between EuS and the STO tetragonal structure. Here, we speculate that the STO tetragonal distortions may strain the EuS, altering the magnetic anisotropy on a micron scale. This result demonstrates that local variation in the induced magnetic order from EuS grown on STO needs to be considered when engineering new phases of matter that require spatially homogeneous exchange.« less

  17. Spatially modulated magnetic structure of EuS due to the tetragonal domain structure of SrTiO 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenberg, Aaron J.; Katmis, Ferhat; Kirtley, John R.

    The combination of ferromagnets with topological superconductors or insulators allows for new phases of matter that support excitations such as chiral edge modes and Majorana fermions. EuS, a wide-bandgap ferromagnetic insulator with a Curie temperature around 16K, and SrTiO 3 (STO), an important substrate for engineering heterostructures, may support these phases. We present scanning superconducting quantum interference device measurements of EuS grown epitaxially on STO that reveal micron-scale variations in ferromagnetism and paramagnetism. These variations are oriented along the STO crystal axes and only change their configuration upon thermal cycling above the STO cubic-to-tetragonal structural transition temperature at 105 K,more » indicating that the observed magnetic features are due to coupling between EuS and the STO tetragonal structure. Here, we speculate that the STO tetragonal distortions may strain the EuS, altering the magnetic anisotropy on a micron scale. This result demonstrates that local variation in the induced magnetic order from EuS grown on STO needs to be considered when engineering new phases of matter that require spatially homogeneous exchange.« less

  18. A new model for Mars atmospheric dust based upon analysis of ultraviolet through infrared observations from Mariner 9, Viking, and Phobos

    NASA Technical Reports Server (NTRS)

    Clancy, R. T.; Lee, S. W.; Gladstone, G. R.; McMillan, W. W.; Rousch, T.

    1995-01-01

    We propose key modifications to the Toon et al. (1977) model of the particle size distribution and composition of Mars atmospheric dust, based on a variety of spacecraft and wavelength observations of the dust. A much broader (r(sub eff)variance-0.8 micron), smaller particle size (r(sub mode)-0.02 microns) distribution coupled with a "palagonite-like" composition is argued to fit the complete ultraviolet-to-30-micron absorption properties of the dust better than the montmorillonite-basalt r(sub eff)variance= 0.4 micron, r(sub mode)= 0.40 micron dust model of Toon et al. Mariner 9 (infrared interferometer spectrometer) IRIS spectra of high atmospheric dust opacities during the 1971 - 1972 Mars global dust storm are analyzed in terms of the Toon et al. dust model, and a Hawaiian palagonite sample with two different size distribution models incorporating smaller dust particle sizes. Viking Infrared Thermal Mapper (IRTM) emission-phase-function (EPF) observations at 9 microns are analyzed to retrieve 9-micron dust opacities coincident with solar band dust opacities obtained from the same EPF sequences. These EPF dust opacities provide an independent measurement of the visible/9-microns extinction opacity ratio (> or equal to 2) for Mars atmospheric dust, which is consistent with a previous measurement by Martin (1986). Model values for the visible/9-microns opacity ratio and the ultraviolet and visible single-scattering albedos are calculated for the palagonite model with the smaller particle size distributions and compared to the same properties for the Toon et al. model of dust. The montmorillonite model of the dust is found to fit the detailed shape of the dust 9-micron absorption well. However, it predicts structured, deep absorptions at 20 microns which are not observed and requires a separate ultraviolet-visible absorbing component to match the observed behavior of the dust in this wavelength region. The modeled palagonite does not match the 8- to 9-micron absorption presented by the dust in the IRIS spectra, probably due to its low SiO2 content (31%). However, it does provide consistent levels of ultraviolet/visible absorption, 9- to 12-micron absorption, and a lack of structured absorption at 20 microns. The ratios of dust extinction opacities at visible, 9 microns, and 30 microns are strongly affected by the dust particle size distribution. The Toon et al. dust size distribution (r(sub mode)= 0.40, r(sub eff)variance= 0.4 microns, r(sub cw mu)= 2.7 microns) predicts the correct ratio of the 9- to 30-micron opacity, but underpredicts the visible/9-micron opacity ratio considerably (1 versus > or equal to 2). A similar particle distribution width with smaller particle sizes (r(sub mode)= 0.17, r(sub eff)variance= 0.4 microns, r(sub cw mu)=1.2 microns) will fit the observed visible/9-micron opacity ratio, but overpredicts the observed 9-micron/30-micron opacity ratio. A smaller and much broader particle size distribution (r(sub mode)= 0.02, r(sub eff)variance= 0.8 microns, r(sub cw mu)= 1.8 microns) can fit both dust opacity ratios. Overall, the nanocrystalline structure of palagonite coupled with a smaller, broader distribution of dust particle sizes provides a more consistent fit than the Toon et al. model of the dust to the IRIS spectra, the observed visible/9-micron dust opacity ratio, the Phobos occultation measurements of dust particle sizes, and the weakness of surface near IR absorptions expected for clay minerals.

  19. Characterization of fine volcanic ash from explosive eruption from Sakurajima volcano, South Japan

    NASA Astrophysics Data System (ADS)

    Nanayama, F.; Furukawa, R.; Ishizuka, Y.; Yamamoto, T.; Geshi, N.; Oishi, M.

    2013-12-01

    Explosive volcanic eruptions can affect infrastructure and ecosystem by their dispersion of the volcanic particle. Characterization of volcanic particle expelled by explosive eruption is crucial for evaluating for quantitative hazard assessment by future volcanic eruption. Especially for fine volcanic ash less than 64 micron in diameter, it can disperse vast area from the source volcano and be easily remobilized by surface wind and precipitation after the deposition. As fine volcanic ash is not preserved well at the earth surface and in strata except for enormously large scale volcanic eruption. In order to quantify quantitative characteristics of fine volcanic ash particle, we sampled volcanic ash directly falling from the eruption cloud from Showa crater, the most active vent of Sakurajima volcano, just before landing on ground. We newly adopted high precision digital microscope and particle grain size analyzer to develop hazard evaluation method of fine volcanic ash particle. Field survey was performed 5 sequential days in January, 2013 to take tamper-proof volcanic ash samples directly obtained from the eruption cloud of the Sakurajima volcano using disposable paper dishes and plastic pails. Samples were taken twice a day with time-stamp in 40 localities from 2.5 km to 43 km distant from the volcano. Japan Meteorological Agency reported 16 explosive eruptions of vulcanian style occurred during our survey and we took 140 samples of volcanic ash. Grain size distribution of volcanic ash was measured by particle grain size analyzer (Mophologi G3S) detecting each grain with parameters of particle diameter (0.3 micron - 1 mm), perimeter, length, area, circularity, convexity, solidity, and intensity. Component of volcanic ash was analyzed by CCD optical microscope (VHX-2000) which can take high resolution optical image with magnifying power of 100-2500. We discriminated each volcanic ash particle by color, texture of surface, and internal structure. Grain size distributions of volcanic ash from Sakurajima volcano have basically characteristics of unimodal and gaussian. Mode of distributions are 150 - 200 micron at 5 km and 70-80 micron at 20 km respectively from the Showa crater. Mode and deviation of the grain size distribution are function of distance from the source. Fine volcanic ash less than 1 micron in diameter is few and exists in every samples. Component of volcanic ash samples are dark-colored dense glass shard (ca. 50%), light-colored dense glass shard (10%), variously colored and vesiculated glass shard (10%), free crystal (20%), lithic fragment (10%), and altered fragment (less than 5%) which are mostly having similar ratio in every location suggesting single source process of the eruption. We also found fine volcanic ash samples less than 10 micron are frequently aggregated. The present study includes the result of "Research and Development of Margin Assessment Methodology of Decay Heat Removal Function against External Hazards" entrusted to Japan Atomic Energy Agency by the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT).

  20. Xenon-Ion Drilling of Tungsten Films

    NASA Technical Reports Server (NTRS)

    Garner, C. E.

    1986-01-01

    High-velocity xenon ions used to drill holes of controlled size and distribution through tungsten layer that sheaths surface of controlled-porosity dispenser cathode of traveling wave-tube electron emitter. Controlled-porosity dispenser cathode employs barium/calcium/ aluminum oxide mixture that migrates through pores in cathode surface, thus coating it and reducing its work function. Rapid, precise drilling technique applied to films of other metals and used in other applications where micron-scale holes required. Method requires only few hours, as opposed to tens of hours by prior methods.

  1. Studies of thermal wave phenomena on the Jovian planets

    NASA Technical Reports Server (NTRS)

    Deming, Drake

    1991-01-01

    Ground based and Voyager observations of Jupiter have provided evidence that the tropospheric temperature shows global scale longitudinal variations which are often wavelike in character. Voyager data are reported to exhibit the presence of slowly moving thermal features, wherein the jovian tropospheric temperature patterns are not advected by the equatorial zonal winds, but are not found to rotate at the System III (interior) rate. Ground based data in a broad infrared band (8 to 13 micron) show a wavelike structure whose amplitude and spatial scale are similar to the reported properties of the slowly moving thermal features. This study is directed toward obtaining additional ground based data in infrared spectral bands whose contribution functions are optimized for specific atmospheric regions (tropospheric at 20 micron, and stratospheric at 7.8 micron), in order to confirm the previous results, and to identify the nature and physical significance of wavelike longitudinal temperature fluctuations on the Jovian planets. A 2-D infrared array detector and low resolution cryogenic grating spectrometer is being adapted to obtain maps in approx. 2/cm bandpasses.

  2. Extended Source/Galaxy All Sky 2

    NASA Image and Video Library

    2003-03-27

    This panoramic view encompasses the entire sky and reveals the distribution of galaxies beyond the Milky Way galaxy, which astronomers call extended sources, as observed by Two Micron All-Sky Survey. The image is assembled from a database of over 1.6 million galaxies listed in the survey’s All-Sky Survey Extended Source Catalog; more than half of the galaxies have never before been catalogued. The colors represent how the many galaxies appear at three distinct wavelengths of infrared light (blue at 1.2 microns, green at 1.6 microns, and red at 2.2 microns). Quite evident are the many galactic clusters and superclusters, as well as some streamers composing the large-scale structure of the nearby universe. The blue overlay represents the very close and bright stars from our own Milky Way galaxy. In this projection, the bluish Milky Way lies predominantly toward the upper middle and edges of the image. http://photojournal.jpl.nasa.gov/catalog/PIA04251

  3. Methods for fabricating a micro heat barrier

    DOEpatents

    Marshall, Albert C.; Kravitz, Stanley H.; Tigges, Chris P.; Vawter, Gregory A.

    2004-01-06

    Methods for fabricating a highly effective, micron-scale micro heat barrier structure and process for manufacturing a micro heat barrier based on semiconductor and/or MEMS fabrication techniques. The micro heat barrier has an array of non-metallic, freestanding microsupports with a height less than 100 microns, attached to a substrate. An infrared reflective membrane (e.g., 1 micron gold) can be supported by the array of microsupports to provide radiation shielding. The micro heat barrier can be evacuated to eliminate gas phase heat conduction and convection. Semi-isotropic, reactive ion plasma etching can be used to create a microspike having a cusp-like shape with a sharp, pointed tip (<0.1 micron), to minimize the tip's contact area. A heat source can be placed directly on the microspikes. The micro heat barrier can have an apparent thermal conductivity in the range of 10.sup.-6 to 10.sup.-7 W/m-K. Multiple layers of reflective membranes can be used to increase thermal resistance.

  4. Ultraviolet photometry from the Orbiting Astronomical Observatory. XXXIX - The structure of the eclipsing Wolf-Rayet binary V444 Cygni as derived from light curves between 2460 A and 3. 5 microns

    NASA Technical Reports Server (NTRS)

    Cherepashchuk, A. M.; Khaliullin, Kh. F.; Eaton, J. A.

    1984-01-01

    The WN5 component of V444 Cyg is characterized on the basis of light curves constructed using 1971 OAO observations at 425, 332, 298, and 246 nm and the broadband data at 2.2 and 3.5 microns of Hartmann (1978). Data and calculation results are presented in tables and graphs and discussed. Parameters estimated include core radius 2.9 solar radii, surface temperature 90,000 K, surface electron density 9 x 10 to the 12th/cu cm, surface outflow velocity 400 km/s, and terminal velocity (at about 10 solar radii) 2500 km/s, suggesting that the flow is He. These results are found to agree with the model of Wolf-Rayet atmospheres proposed by Beals (1929, 1944).

  5. Gene transfer device utilizing micron-spiked electrodes produced by the self-organization phenomenon of Fe-alloy.

    PubMed

    Miyano, Naoki; Inoue, Yuuki; Teramura, Yuji; Fujii, Keisuke; Tsumori, Fujio; Iwata, Hiroo; Kotera, Hidetoshi

    2008-07-01

    In the diffusional phase transformation of two-phase alloys, the new phase precipitates form the matrix phase at specific temperatures, followed by the formation of a mixed microstructure comprising the precipitate and the matrix. It has been found that by specific chemical-etching treatment, the precipitate in Fe-25Cr-6Ni alloy projects substantially and clusters at the surface. The configuration of the precipitate has an extremely high aspect ratio: it is several microns in width and several tens of microns in length (known as micron-spiked). This study targets the development of a gene transfer device with a micro-spike produced based on the self-organization phenomenon of the Fe-25Cr-6Ni alloy. With this spike-projected device, we tried to efficiently transfer plasmid DNA into adherent cells by electric pulse-triggered gene transfer using a plasmid-loaded electrode (electroporation-based reverse transfection). The spiked structure was applied to a substrate of the device to allow efficient gene transfer into adherent cells, although the general substrate was flat and had a smooth surface. The results suggest that this unique spike-projected device has potential applications in gene transfer devices for the analysis of the human genome in the post-genome period.

  6. Three-dimensional metamaterials

    DOEpatents

    Burckel, David Bruce [Albuquerque, NM

    2012-06-12

    A fabrication method is capable of creating canonical metamaterial structures arrayed in a three-dimensional geometry. The method uses a membrane suspended over a cavity with predefined pattern as a directional evaporation mask. Metallic and/or dielectric material can be evaporated at high vacuum through the patterned membrane to deposit resonator structures on the interior walls of the cavity, thereby providing a unit cell of micron-scale dimension. The method can produce volumetric metamaterial structures comprising layers of such unit cells of resonator structures.

  7. Printing of metallic 3D micro-objects by laser induced forward transfer.

    PubMed

    Zenou, Michael; Kotler, Zvi

    2016-01-25

    Digital printing of 3D metal micro-structures by laser induced forward transfer under ambient conditions is reviewed. Recent progress has allowed drop on demand transfer of molten, femto-liter, metal droplets with a high jetting directionality. Such small volume droplets solidify instantly, on a nanosecond time scale, as they touch the substrate. This fast solidification limits their lateral spreading and allows the fabrication of high aspect ratio and complex 3D metal structures. Several examples of micron-scale resolution metal objects printed using this method are presented and discussed.

  8. Micron-scale coherence in interphase chromatin dynamics

    PubMed Central

    Zidovska, Alexandra; Weitz, David A.; Mitchison, Timothy J.

    2013-01-01

    Chromatin structure and dynamics control all aspects of DNA biology yet are poorly understood, especially at large length scales. We developed an approach, displacement correlation spectroscopy based on time-resolved image correlation analysis, to map chromatin dynamics simultaneously across the whole nucleus in cultured human cells. This method revealed that chromatin movement was coherent across large regions (4–5 µm) for several seconds. Regions of coherent motion extended beyond the boundaries of single-chromosome territories, suggesting elastic coupling of motion over length scales much larger than those of genes. These large-scale, coupled motions were ATP dependent and unidirectional for several seconds, perhaps accounting for ATP-dependent directed movement of single genes. Perturbation of major nuclear ATPases such as DNA polymerase, RNA polymerase II, and topoisomerase II eliminated micron-scale coherence, while causing rapid, local movement to increase; i.e., local motions accelerated but became uncoupled from their neighbors. We observe similar trends in chromatin dynamics upon inducing a direct DNA damage; thus we hypothesize that this may be due to DNA damage responses that physically relax chromatin and block long-distance communication of forces. PMID:24019504

  9. Surface-induced brightness temperature variations and their effects on detecting thin cirrus clouds using IR emission channels in the 8-12 microns region

    NASA Technical Reports Server (NTRS)

    Gao, Bo-Cai; Wiscombe, W. J.

    1994-01-01

    A method for detecting cirrus clouds in terms of brightness temperature differences between narrowbands at 8, 11, and 12 microns has been proposed by Ackerman et al. In this method, the variation of emissivity with wavelength for different surface targets was not taken into consideration. Based on state-of-the-art laboratory measurements of reflectance spectra of terrestrial materials by Salisbury and D'Aria, it is found that the brightness temperature differences between the 8- and 11-microns bands for soils, rocks, and minerals, and dry vegetation can vary between approximately -8 and +8 K due solely to surface emissivity variations. The large brightness temperature differences are sufficient to cause false detection of cirrus clouds from remote sensing data acquired over certain surface targets using the 8-11-12-microns method directly. It is suggested that the 8-11-12-microns method should be improved to include the surface emissivity effects. In addition, it is recommended that in the future the variation of surface emissivity with wavelength should be taken into account in algorithms for retrieving surface temperatures and low-level atmospheric temperature and water vapor profiles.

  10. Saturn's satellites: Predictions for Cassini

    NASA Astrophysics Data System (ADS)

    Delitsky, M. L.; Hibbitts, C. A.

    2004-11-01

    Saturn's satellites are subjected to a variety of energy inputs (from photons, magnetospheric and solar ions and electrons) which will affect their surface composition. The Saturn magnetosphere contains an assortment of ions, including O+ and H+ from sputtering of water ice on the inner satellites and N+ from sputtering of Titan's atmosphere. Implantation of these ions onto the surfaces of the satellites may produce compounds possibly detectable by Cassini instruments. The satellites contain water ice and carbon dioxide ice (and possibly organics, on Phoebe). In Delitsky and Lane (2002), chemistry resulting from nitrogen ion implantation into water ice and carbon dioxide ice was outlined. From deposition of N+ ions into H2O/CO2, a complicated C-H-N-O chemistry may result, including formation of isocyanates, nitriles, nitrogen oxides and amino acids. Upon irradiation, H2O/CO2 mixtures will yield esters, ketones, alcohols, carboxylic acids and other interesting compounds. Cassini's infrared instruments CIRS and VIMS have spectral ranges that can detect many bands of these compounds. VIMS spectral range is 0.35 - 5.1 microns; CIRS covers the spectral range 7 - 100 microns, although its Mid-IR interferometer portion (7 -16 microns) is where organic materials are particularly spectrally active. Weak features are present in the short IR for NO (1.91 microns), NO2 (1.95), NH3 (2.00, 2.24), CH3OH (2.27, 2.34), and CO2 (1.965, 2.01) [Quirico et al.,1999]. Some molecules have stronger absorption features at these wavelengths: [CO2: 4.25 - 4.27 microns; NH3: 3 microns and 9.2 microns (important because the 3 micron band can be masked by water); H2CO3: 3.88 microns (weak); HCOOH: 8.2 microns; O2: 9.7 microns]. These molecules may exist as ices, or as molecules trapped in the surface. CH- and CN-containing molecules absorb at 3.2 - 3.4 microns, and 4.6 microns, respectively. H2O2, detected on Europa by its 3.5 micron band, may exist in the icy surfaces of the Saturn satellites as well.

  11. Cosmic Infrared Background Sources Clustered Around Quasars

    NASA Astrophysics Data System (ADS)

    Hall, Kirsten R.; Zakamska, Nadia; Marriage, Tobias; Crichton, Devin; Gralla, Megan

    2017-06-01

    Powerful quasars can be seen out to large distances. As they reside in massive dark matter halos, they provide a useful tracer of large scale structure. We stack Herschel-SPIRE images at 250, 350, and 500 microns at the locations of 13,000 quasars in redshift bins spanning 0.5 < z < 3.5. While the detected signal is dominated on instrumental beam scales by the unresolved dust emission of the quasar and its host galaxy, at z 2 the extended emission is clearly spatially resolved on Mpc scales. This emission is due to star-forming galaxies clustered around the dark matter halos hosting quasars. We measure radial surface brightness profiles of the stacked images to compute the angular correlation function of dusty star-forming galaxies correlated with quasars. We generate a halo occupation distribution model in order to determine the masses of the dark matter halos in which dusty star forming galaxies reside. We are probing potential changes in the halo mass most efficient at hosting star forming galaxies, and assessing any evidence that this halo mass evolved with redshift in the context of "cosmic downsizing".

  12. Ion implantation enhanced metal-Si-metal photodetectors

    NASA Astrophysics Data System (ADS)

    Sharma, A. K.; Scott, K. A. M.; Brueck, S. R. J.; Zolper, J. C.; Myers, D. R.

    1994-05-01

    The quantum efficiency and frequency response of simple Ni-Si-Ni metal-semiconductor-metal (MSM) photodetectors at long wavelengths are significantly enhanced with a simple, ion-implantation step to create a highly absorbing region approx. 1 micron below the Si surface. The internal quantum efficiency is improved by a factor of approx. 3 at 860 nm (to 64%) and a full factor of ten at 1.06 microns (to 23%) as compared with otherwise identical unimplanted devices. Dark currents are only slightly affected by the implantation process and are as low as 630 pA for a 4.5-micron gap device at 10-V bias. Dramatic improvement in the impulse response is observed, 100 ps vs. 600 ps, also at 10-V bias and 4.5-micron gap, due to the elimination of carrier diffusion tails in the implanted devices. Due to its planar structure, this device is fully VLSI compatible. Potential applications include optical interconnections for local area networks and multi-chip modules.

  13. Femtosecond mega-electron-volt electron microdiffraction

    DOE PAGES

    Shen, X.; Li, R. K.; Lundstrom, U.; ...

    2017-09-01

    To understand and control the basic functions of physical, chemical and biological processes from micron to nano-meter scale, an instrument capable of visualizing transient structural changes of inhomogeneous materials with atomic spatial and temporal resolutions, is required. One such technique is femtosecond electron microdiffraction, in which a short electron pulse with femtosecond-scale duration is focused into a micron-scale spot and used to obtain diffraction images to resolve ultrafast structural dynamics over a localized crystalline domain. In this letter, we report the experimental demonstration of time-resolved mega-electron-volt electron microdiffraction which achieves a 5 μm root-mean-square (rms) beam size on the samplemore » and a 110 fs rms temporal resolution. Using pulses of 10k electrons at 4.2 MeV energy with a normalized emittance 3 nm-rad, we obtained high quality diffraction from a single 10 μm paraffin ( C 44 H 90) crystal. The phonon softening mode in optical-pumped polycrystalline Bi was also time-resolved, demonstrating the temporal resolution limits of the instrument. In conclusion, this new characterization capability will open many research opportunities in material and biological sciences.« less

  14. Femtosecond mega-electron-volt electron microdiffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, X.; Li, R. K.; Lundstrom, U.

    To understand and control the basic functions of physical, chemical and biological processes from micron to nano-meter scale, an instrument capable of visualizing transient structural changes of inhomogeneous materials with atomic spatial and temporal resolutions, is required. One such technique is femtosecond electron microdiffraction, in which a short electron pulse with femtosecond-scale duration is focused into a micron-scale spot and used to obtain diffraction images to resolve ultrafast structural dynamics over a localized crystalline domain. In this letter, we report the experimental demonstration of time-resolved mega-electron-volt electron microdiffraction which achieves a 5 μm root-mean-square (rms) beam size on the samplemore » and a 110 fs rms temporal resolution. Using pulses of 10k electrons at 4.2 MeV energy with a normalized emittance 3 nm-rad, we obtained high quality diffraction from a single 10 μm paraffin ( C 44 H 90) crystal. The phonon softening mode in optical-pumped polycrystalline Bi was also time-resolved, demonstrating the temporal resolution limits of the instrument. In conclusion, this new characterization capability will open many research opportunities in material and biological sciences.« less

  15. Method of making an ion beam sputter-etched ventricular catheter for hydrocephalus shunt

    NASA Technical Reports Server (NTRS)

    Banks, B. A. (Inventor)

    1984-01-01

    The centricular catheter comprises a multiplicity of inlet microtubules. Each microtubule has both a large opening at its inlet end and a multiplicity of microscopic openings along its lateral surfaces. The microtubules are perforated by an ion beam sputter etch technique. The holes are etched in each microtubule by directing an ion beam through an electro formed mesh mask producing perforations having diameters ranging from about 14 microns to about 150 microns. This structure assures a reliable means for shunting cerebrospinal fluid from the cerebral ventricles to selected areas of the body.

  16. The Along Track Scanning Radiometer (ATSR) - Orbital performance and future developments

    NASA Astrophysics Data System (ADS)

    Sandford, M. C. W.; Edwards, T.; Mutlow, C. T.; Delderfield, J.; Llewellyn-Jones, D. T.

    1992-08-01

    The Along-Track Scanning Radiometer (ATSR), a new kind of infrared radiometer which is intended to make sea surface temperature measurements with an absolute accuracy of +/- 0.5 K averaged over cells of 0.5 deg in latitude, is discussed. The ATSR employs four detectors centered at 12, 11, 3.7, and 1.6 microns. The noise performance thermal performance, and Stirling cycle cooler performance of the ATSR on ERS-1 are examined along with 3.7 micron channel results. The calibration, structure, and data handling of the ATSRs planned for ERS-2 and for the POEM mission are examined.

  17. The Organic Aerosols of Titan's Atmosphere

    NASA Technical Reports Server (NTRS)

    Sotin, Christophe; Lawrence, Kenneth; Beauchamp, Patricia M.; Zimmerman, Wayne

    2012-01-01

    One of Titan's many characteristics is the presence of a haze that veils its surface. This haze is composed of heavy organic particles and determining the chemical composition of these particles is a primary objective for future probes that would conduct in situ analysis. Meanwhile, solar occultations provide constraints on the optical characteristics of the haze layer. This paper describes solar occultation observations obtained by the Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft. These observations strongly constrain the optical characteristics of the haze layer. We detail the different steps involved in the processing of these data and apply them to two occultations that were observed at the South Pole and at the equator in order to investigate the latitudinal dependence of optical properties. The light curves obtained in seven atmospheric windows between 0.933-microns to 5-microns allow us to characterize atmospheric layers from 300 km to the surface. Very good fits of the light curves are obtained using a simple profile of number density of aerosols that is characterized by a scale height. The main difference between the South Pole and the equator is that the value of the scale height increases with altitude at the South Pole whereas it decreases at the equator. The vertically integrated amount of aerosols is similar at the two locations. The curve describing the cross-section versus wavelength is identical at the two locations suggesting that the aerosols have similar characteristics. Finally, we find that the two-way vertical transmission at 5-microns is as large as 80% at both locations.

  18. Cascaded exciton energy transfer in a monolayer semiconductor lateral heterostructure assisted by surface plasmon polariton.

    PubMed

    Shi, Jinwei; Lin, Meng-Hsien; Chen, I-Tung; Mohammadi Estakhri, Nasim; Zhang, Xin-Quan; Wang, Yanrong; Chen, Hung-Ying; Chen, Chun-An; Shih, Chih-Kang; Alù, Andrea; Li, Xiaoqin; Lee, Yi-Hsien; Gwo, Shangjr

    2017-06-26

    Atomically thin lateral heterostructures based on transition metal dichalcogenides have recently been demonstrated. In monolayer transition metal dichalcogenides, exciton energy transfer is typically limited to a short range (~1 μm), and additional losses may be incurred at the interfacial regions of a lateral heterostructure. To overcome these challenges, here we experimentally implement a planar metal-oxide-semiconductor structure by placing a WS 2 /MoS 2 monolayer heterostructure on top of an Al 2 O 3 -capped Ag single-crystalline plate. We find that the exciton energy transfer range can be extended to tens of microns in the hybrid structure mediated by an exciton-surface plasmon polariton-exciton conversion mechanism, allowing cascaded exciton energy transfer from one transition metal dichalcogenides region supporting high-energy exciton resonance to a different transition metal dichalcogenides region in the lateral heterostructure with low-energy exciton resonance. The realized planar hybrid structure combines two-dimensional light-emitting materials with planar plasmonic waveguides and offers great potential for developing integrated photonic and plasmonic devices.Exciton energy transfer in monolayer transition metal dichalcogenides is limited to short distances. Here, Shi et al. fabricate a planar metal-oxide-semiconductor structure and show that exciton energy transfer can be extended to tens of microns, mediated by an exciton-surface-plasmon-polariton-exciton conversion mechanism.

  19. Nanoscale structure in AgSbTe2 determined by diffuse elastic neutron scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Specht, Eliot D; Ma, Jie; Delaire, Olivier A

    2015-01-01

    Diffuse elastic neutron scattering measurements confirm that AgSbTe2 has a hierarchical structure, with defects on length scales from nanometers to microns. While scattering from mesoscale structure is consistent with previously-proposed structures in which Ag and Sb order on a NaCl lattice, more diffuse scattering from nanoscale structure suggests a structural rearrangement in which hexagonal layers form a combination of (ABC), (ABA), and (AAB) stacking sequences. The AgCrSe2 structure is the best-fitting model for the local atomic arrangements.

  20. Deploying Liquid Filaments and Suspensions with an Electrohydrodynamic Liquid Bridge

    NASA Astrophysics Data System (ADS)

    Saville, D. A.

    2005-11-01

    We show that a dynamic liquid bridge can be formed by deploying the filament issuing from a Taylor Cone onto a surface with the nozzle and surface held at different electric potentials. This configuration differs sharply form the familiar `electrospinning' configuration where the filament whips violently. Nevertheless, although the aspect ratio (length/diameter) exceeds the Plateau limit by more than two orders of magnitude the bridge is stable. Here we report on the stability characteristics and show that such a bridge can be used to `print' sub-micron scale features on a moving surface with both clear fluids and suspensions.

  1. Nanotube Surface Arrays: Weaving, Bending, and Assembling on Patterned Silicon

    NASA Astrophysics Data System (ADS)

    Tsukruk, Vladimir V.; Ko, Hyunhyub; Peleshanko, Sergiy

    2004-02-01

    We report the fabrication of ordered arrays of oriented and bent carbon nanotube on a patterned silicon surface with a micron scale spacing extending over millimeter size surface areas. We suggest that the patterning is controlled by the hydrodynamic behavior of a fluid front and orientation and bending mechanisms are facilitated by the pinned carbon nanotubes trapped by the liquid-solid-vapor contact line. The bending of the pinned nanotubes occurs along the shrinking receding front of the drying microdroplets. The formation of stratified microfluidic layers is vital for stimulating periodic instabilities of the contact line.

  2. Inversion layer on the Ge(001) surface from the four-probe conductance measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wojtaszek, Mateusz; Lis, Jakub, E-mail: j.lis@uj.edu.pl; Zuzak, Rafal

    2014-07-28

    We report four-probe conductance measurements with sub-micron resolution on atomically clean Ge(001) surfaces. A qualitative difference between n-type and p-type crystals is observed. The scaling behavior of the resistance on n-type samples indicates two-dimensional current flow, while for the p-type crystal a three-dimensional description is appropriate. We interpret this in terms of the formation of an inversion layer at the surface. This result points to the surface states, i.e., dangling bonds, as the driving force behind band bending in germanium. It also explains the intrinsic character of band bending in germanium.

  3. Laser patterning of platinum electrodes for safe neurostimulation

    NASA Astrophysics Data System (ADS)

    Green, R. A.; Matteucci, P. B.; Dodds, C. W. D.; Palmer, J.; Dueck, W. F.; Hassarati, R. T.; Byrnes-Preston, P. J.; Lovell, N. H.; Suaning, G. J.

    2014-10-01

    Objective. Laser surface modification of platinum (Pt) electrodes was investigated for use in neuroprosthetics. Surface modification was applied to increase the surface area of the electrode and improve its ability to transfer charge within safe electrochemical stimulation limits. Approach. Electrode arrays were laser micromachined to produce Pt electrodes with smooth surfaces, which were then modified with four laser patterning techniques to produce surface structures which were nanosecond patterned, square profile, triangular profile and roughened on the micron scale through structured laser interference patterning (SLIP). Improvements in charge transfer were shown through electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and biphasic stimulation at clinically relevant levels. A new method was investigated and validated which enabled the assessment of in vivo electrochemically safe charge injection limits. Main results. All of the modified surfaces provided electrical advantage over the smooth Pt. The SLIP surface provided the greatest benefit both in vitro and in vivo, and this surface was the only type which had injection limits above the threshold for neural stimulation, at a level shown to produce a response in the feline visual cortex when using an electrode array implanted in the suprachoroidal space of the eye. This surface was found to be stable when stimulated with more than 150 million clinically relevant pulses in physiological saline. Significance. Critical to the assessment of implant devices is accurate determination of safe usage limits in an in vivo environment. Laser patterning, in particular SLIP, is a superior technique for improving the performance of implant electrodes without altering the interfacial electrode chemistry through coating. Future work will require chronic in vivo assessment of these electrode patterns.

  4. Compact Micromachined Bandpass Filters for Infrared Planetary Spectroscopy

    NASA Technical Reports Server (NTRS)

    Brown, Ari D.; Aslam, Shahid; Chervenak, James A.; Huang, Wei-Chung; Merrell, Willie; Quijada, Manuel

    2011-01-01

    The thermal instrument strawman payload of the Jupiter Europa Orbiter on the Europa Jupiter Science Mission will map out thermal anomalies, the structure, and atmospheric conditions of Europa and Jupiter within the 7-100 micron spectral range. One key requirement for the payload is that the mass cannot exceed 3.7 kg. Consequently, a new generation of light-weight miniaturized spectrometers needs to be developed. On the path toward developing these spectrometers is development of ancillary miniaturized spectroscopic components. In this paper, we present a strategy for making radiation hard and low mass FIR band pass metal mesh filters. Our strategy involves using MEMS-based fabrication techniques, which will permit the quasi-optical filter structures to be made with micron-scale precision. This will enable us to achieve tight control over both the pass band of the filter and the micromachined silicon support structure architecture, which will facilitate integration of the filters for a variety of applications.

  5. Sex difference in human fingertip recognition of micron-level randomness as unpleasant.

    PubMed

    Nakatani, M; Kawasoe, T; Denda, M

    2011-08-01

    We investigated sex difference in evaluation, using the human fingertip, of the tactile impressions of three different micron-scale patterns laser-engraved on plastic plates. There were two ordered (periodical) patterns consisting of ripples on a scale of a few micrometres and one pseudo-random (non-periodical) pattern; these patterns were considered to mimic the surface geometry of healthy and damaged human hair, respectively. In the first experiment, 10 women and 10 men ran a fingertip over each surface and determined which of the three plates felt most unpleasant. All 10 female participants reported the random pattern, but not the ordered patterns, as unpleasant, whereas the majority of the male participants did not. In the second experiment, 9 of 10 female participants continued to report the pseudo-random pattern as unpleasant even after their fingertip had been coated with a collodion membrane. In the third experiment, participants were asked to evaluate the magnitude of the tactile impression for each pattern. The results again indicated that female participants tend to report a greater magnitude of unpleasantness than male participants. Our findings indicate that the female participants could readily detect microgeometric surface characteristics and that they evaluated the random pattern as more unpleasant. Possible physical and perceptual mechanisms involved are discussed. © 2011 The Authors. ICS © 2011 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  6. Porotic paradox: distribution of cortical bone pore sizes at nano- and micro-levels in healthy vs. fragile human bone.

    PubMed

    Milovanovic, Petar; Vukovic, Zorica; Antonijevic, Djordje; Djonic, Danijela; Zivkovic, Vladimir; Nikolic, Slobodan; Djuric, Marija

    2017-05-01

    Bone is a remarkable biological nanocomposite material showing peculiar hierarchical organization from smaller (nano, micro) to larger (macro) length scales. Increased material porosity is considered as the main feature of fragile bone at larger length-scales. However, there is a shortage of quantitative information on bone porosity at smaller length-scales, as well as on the distribution of pore sizes in healthy vs. fragile bone. Therefore, here we investigated how healthy and fragile bones differ in pore volume and pore size distribution patterns, considering a wide range of mostly neglected pore sizes from nano to micron-length scales (7.5 to 15000 nm). Cortical bone specimens from four young healthy women (age: 35 ± 6 years) and five women with bone fracture (age: 82 ± 5 years) were analyzed by mercury porosimetry. Our findings showed that, surprisingly, fragile bone demonstrated lower pore volume at the measured scales. Furtnermore, pore size distribution showed differential patterns between healthy and fragile bones, where healthy bone showed especially high proportion of pores between 200 and 15000 nm. Therefore, although fragile bones are known for increased porosity at macroscopic level and level of tens or hundreds of microns as firmly established in the literature, our study with a unique assessment range of nano-to micron-sized pores reveal that osteoporosis does not imply increased porosity at all length scales. Our thorough assessment of bone porosity reveals a specific distribution of porosities at smaller length-scales and contributes to proper understanding of bone structure which is important for designing new biomimetic bone substitute materials.

  7. Simulations of microphysical, radiative, and dynamical processes in a continental-scale forest fire smoke plume

    NASA Technical Reports Server (NTRS)

    Westphal, Douglas L.; Toon, Owen B.

    1991-01-01

    The impact of a large forest fire smoke plume on atmospheric processes is studied through a numerical model of meteorology, aerosols, and radiative transfer. The simulated smoke optical depths at 0.63-micron wavelength are in agreement with analyses of satellite data and show values as high as 1.8. The smoke has an albedo of 35 percent, or more than double the clear-sky value, and cools the surface by as much as 5 K. An imaginary refractive index, n sub im, of 0.01 yields results which closely match the observed cooling, single scattering albedo, and the Angstrom wavelength exponent. An n exp im of 0.1, typical of smoke from urban fires, produces 9 K cooling. Coagulation causes the geometric mean radius by number to increase from the initial value of 0.08 micron to a final value of 0.15 micron, while the specific extinction and absorption increase by 40 and 25 percent, respectively.

  8. The Eagle Nebula: a spectral template for star forming regions

    NASA Astrophysics Data System (ADS)

    Flagey, Nicolas; Boulanger, Francois; Carey, Sean; Compiegne, Mathieu; Dwek, Eli; Habart, Emilie; Indebetouw, Remy; Montmerle, Thierry; Noriega-Crespo, Alberto

    2008-03-01

    IRAC and MIPS have revealed spectacular images of massive star forming regions in the Galaxy. These vivid illustrations of the interaction between the stars, through their winds and radiation, and their environment, made of gas and dust, still needs to be explained. The large scale picture of layered shells of gas components, is affected by the small scale interaction of stars with the clumpy medium that surrounds them. To understand spatial variations of physical conditions and dust properties on small scales, spectroscopic imaging observations are required on a nearby object. The iconic Eagle Nebula (M16) is one of the nearest and most observed star forming region of our Galaxy and as such, is a well suited template to obtain this missing data set. We thus propose a complete spectral map of the Eagle Nebula (M16) with the IRS/Long Low module (15-38 microns) and MIPS/SED mode (55-95 microns). Analysis of the dust emission, spectral features and continuum, and of the H2 and fine-structure gas lines within our models will provide us with constraints on the physical conditions (gas ionization state, pressure, radiation field) and dust properties (temperature, size distribution) at each position within the nebula. Only such a spatially and spectrally complete map will allow us to characterize small scale structure and dust evolution within the global context and understand the impact of small scale structure on the evolution of dusty star forming regions. This project takes advantage of the unique ability of IRS at obtaining sensitive spectral maps covering large areas.

  9. Development of a pulsed 9.5 micron lidar for regional scale O3 measurement

    NASA Technical Reports Server (NTRS)

    Stewart, R. W.

    1980-01-01

    A pulsed infrared lidar system designed for application to the remote sensing of atmospheric trace gases from an airborne platform is described. The system is also capable of measuring the infrared backscatter characteristics of the ocean surface, terrain, cloud, and aerosol targets. The lidar employed is based on dual wavelength pulse energy measurements in the 9-11 micrometer wavelength region.

  10. Thermal emission spectra of Mars (5.4-10.5 microns) - Evidence for sulfates, carbonates, and hydrates

    NASA Technical Reports Server (NTRS)

    Pollack, James B.; Roush, Ted; Witteborn, Fred; Bregman, Jesse; Wooden, Diane; Stoker, Carol; Toon, Owen B.

    1990-01-01

    Spectra of the Martian thermal emission in the 5.4-10.5 micron region are reported. Emission features at 7.8 and 9.7 microns are attributed to surface silicates, and an emission feature at 6.1 micron is attributed to a molecular water component of the surface material. An absorption band at 8.7 micron and a possible one at 9.8 microns is attributed to sulfate or bisulfate anions probably located at a distorted crystalline site, and an absorption band at 6.7 microns is attributed to carbonate or bicarbonate anions located in a distorted crystalline site. Spectral simulations indicate that the sulfate- and carbonate-bearing minerals are contained in the same particles of airborne dust as the dominant silicate minerals, that the dust optical depth is about 0.6 at a reference wavelength of 0.3 micron over the area of the observed spots, and that sulfates and carbonates constitute 10-15 percent and 1-3 percent by volume of the airborne dust, respectively.

  11. An experimental study of hydromagmatic fragmentation through energetic, non-explosive magma-water mixing

    USGS Publications Warehouse

    Mastin, L.G.; Spieler, O.; Downey, W.S.

    2009-01-01

    In this paper we report the first experimental investigation of non-explosive hydromagmatic fragmentation during energetic mixing with water. We mix magma and water by two methods: (1) pouring a basaltic melt between two converging water sprays; and (2) jetting basaltic melt at high pressure (3??MPa) through a nozzle into a tank of stagnant water. These experiments involved shear at relative velocities of ~ 5-16??m/s and vigorous mixing for less than a second, providing sufficient time for glassy rinds to grow but insufficient time for clot interiors to cool. In resulting fragments, we examined the gross morphology, which reflects fluid deformation during mixing, and surface textures, which reflect the growth and disruption of glassy rinds. We find major differences in both fragment morphology and surface texture between experiments. Water-spray experiments produced Pele's hair, thin bubble shards, melt droplets, and angular, fracture-bound droplet pieces. Melt-jet experiments produced mostly coarse (> 1??mm diameter), wavy fluidal fragments with broken ends. Fluidal surfaces of fragments produced by water-spray experiments were generally shiny under reflected light and, in microscopic examination, smooth down to micron scale, implying no disruption of glassy rinds, except for (a) rare flaking on Pele's hair that was bent prior to solidification; or (b) cracking and alligator-skin textures on segments of melt balls that had expanded before complete cooling. In contrast, textures of fluidal surfaces on fragments produced by melt-jet experiments are dull in reflected light and, in scanning electron images, exhibit ubiquitous discontinuous skins ("rinds") that are flaked, peeled, or smeared away in stripes. Adhering to these surfaces are flakes, blocks, and blobs of detached material microns to tens of microns in diameter. In the water-spray fragments, we interpret the scarcity of disrupted surface rinds to result from lack of bending after surfaces formed. In the melt-jet fragments, the ubiquity of partially detached rinds and rind debris likely reflects repeated bending, scraping, impact, and other disruption through turbulent velocity fluctuations. When extrapolated to jets of Surtseyan scale, where velocity fluctuations reach tens of meters per second and turbulent mixing persists for tens of seconds, rind disintegration could fragment a large fraction of the erupted material.

  12. High surface area, low weight composite nickel fiber electrodes

    NASA Technical Reports Server (NTRS)

    Johnson, Bradley A.; Ferro, Richard E.; Swain, Greg M.; Tatarchuk, Bruce J.

    1993-01-01

    The energy density and power density of light weight aerospace batteries utilizing the nickel oxide electrode are often limited by the microstructures of both the collector and the resulting active deposit in/on the collector. Heretofore, these two microstructures were intimately linked to one another by the materials used to prepare the collector grid as well as the methods and conditions used to deposit the active material. Significant weight and performance advantages were demonstrated by Britton and Reid at NASA-LeRC using FIBREX nickel mats of ca. 28-32 microns diameter. Work in our laboratory investigated the potential performance advantages offered by nickel fiber composite electrodes containing a mixture of fibers as small as 2 microns diameter (Available from Memtec America Corporation). These electrode collectors possess in excess of an order of magnitude more surface area per gram of collector than FIBREX nickel. The increase in surface area of the collector roughly translates into an order of magnitude thinner layer of active material. Performance data and advantages of these thin layer structures are presented. Attributes and limitations of their electrode microstructure to independently control void volume, pore structure of the Ni(OH)2 deposition, and resulting electrical properties are discussed.

  13. Two-Color Laser Speckle Shift Strain Measurement System

    NASA Technical Reports Server (NTRS)

    Tuma, Margaret L.; Krasowski, Michael J.; Oberle, Lawrence G.; Greer, Lawrence C., III; Spina, Daniel; Barranger, John

    1996-01-01

    A two color laser speckle shift strain measurement system based on the technique of Yamaguchi was designed. The dual wavelength light output from an Argon Ion laser was coupled into two separate single-mode optical fibers (patchcords). The output of the patchcords is incident on the test specimen (here a structural fiber). Strain on the fiber, in one direction, is produced using an Instron 4502. Shifting interference patterns or speckle patterns will be detected at real-time rates using 2 CCD cameras with image processing performed by a hardware correlator. Strain detected in fibers with diameters from 21 microns to 143 microns is expected to be resolved to 15 mu epsilon. This system was designed to be compact and robust and does not require surface preparation of the structural fibers.

  14. Process-Structure-Property Relationships of Micron Thick Gadolinium Oxide Films Deposited by Reactive Electron Beam-Physical Vapor Deposition (EB-PVD)

    DTIC Science & Technology

    2014-12-01

    surface roughness on film properties must be considered. Stability at the interface between the film and the substrate becomes critical with...etc.). Addition of atoms to the growing surface creates additional surface energy. Therefore, nuclei of a critical size 23 must be formed in order... critical nuclei size and a lower nucleation rate. Higher deposition rates result in a decreased critical nuclei size which leads to an increase in

  15. Abiotic Versus Biotic Weathering Of Olivine As Possible Biosignatures

    NASA Technical Reports Server (NTRS)

    Longazo, Teresa G.; Wentworth, Susan J.; Clemett, Simon J.; Southam, Gordon; McKay, David S.

    2001-01-01

    We are investigating the weathering of silicate minerals by both purely inorganic, and biologically mediated processes using field-emission scanning electron microscopy (FESEM) and energy dispersive x-ray spectroscopy (EDS). By resolving surface textures and chemical compositions of weathered surfaces at the sub-micron scale we hope to be able to distinguish abiotic from biotic weathering processes and so establish a new biosignature applicable to the study of astromaterials including but not limited to the Martian meteorites. Sterilized olivine grains (San Carlos, Arizona) no more than 1-2 mm in their longest dimension were optically assayed to be uniform in color and free of inclusions were selected as weathering subjects. Prior to all experiments surface morphologies and Fe/Mg ratios were determined for each grain using FE-SEM and EDS. Experiments were divided into two categories abiotic and biotic and were compared with "naturally" weathered samples. For the preliminary experiments, two trials (open and closed to the ambient laboratory environment) were performed under abiotic conditions, and three trials under biotic conditions (control, day 1 and day 2). The open system abiotic trials used sterile grains heated at 98 C and 200 C for both 24 and 48 hours in 1L double distilled de-ionized water. The closed system abiotic trials were conducted under the same conditions but in a sealed two layer steel/Teflon "bomb" apparatus. The biotic trials used sterile grains mounted in a flow-through device attached to a wellhead on the Columbia River aquifer. Several discolored, altered, grains were selected to document "natural" weathering surface textures for comparison with the experimental samples. Preliminary results indicate there are qualitative differences in weathered surface textures among all the designed experiments. The olivine grains in abiotic trials displayed etching, pitting, denticulate margins, dissolution and clay formation. The scale of the features ranged from tens to a few microns with textures that remained relatively sharp and were crystallographically controlled. These results were comparable to that observed in the "naturally" weathered comparison/reference grains. Chemical analysis by EDS indicates these textures correlated with the relative loss of Mg and Fe cations by diffusional processes. In contrast the biotic results indicated changes in the etching patterns on the scale of hundreds of nm, which are neither sharp nor crystallographically controlled (nanoetching). Organisms, organic debris and/or extracellular polymeric substances (biofilm) were often in close proximity or direct contact with the nanoetching. While there are many poorly constrained variables in natural weathering experiments to contend with, such as the time scale, the chemistry of the fluids and degree of biologic participation, some preliminary observations can be made: (1) certain distinct surface textures appear correlated with the specific processes giving rise to these textures; (2) the process of diffusing cations can produce many similar styles of surface textural changes; and (3) the main difference between abiotic and biotically produced weathering is the scale (microns versus nanometers) and the style (crystallographically versus noncrystallographically controlled) of the textural features. Further investigation into nanosize scale surface textures should attempt to quantify both textures and chemical changes of the role of microorganisms in the weathering of silicates. Additional experiments addressing nanoscale textures of shock features for comparison with the current data set.

  16. Formation and field-driven dynamics of nematic spheroids.

    PubMed

    Fu, Fred; Abukhdeir, Nasser Mohieddin

    2017-07-19

    Unlike the canonical application of liquid crystals (LCs), LC displays, emerging technologies based on LC materials are increasingly leveraging the presence of nanoscale defects. The inherent nanoscale characteristics of LC defects present both significant opportunities as well as barriers for the application of this fascinating class of materials. Simulation-based approaches to the study of the effects of confinement and interface anchoring conditions on LC domains has resulted in significant progress over the past decade, where simulations are now able to access experimentally-relevant length scales while simultaneously capturing nanoscale defect structures. In this work, continuum simulations were performed in order to study the dynamics of micron-scale nematic LC spheroids of varying shape. Nematic spheroids are one of the simplest inherently defect-containing LC structures and are relevant to polymer-dispersed LC-based "smart" window technology. Simulation results include nematic phase formation and external field-switching dynamics of nematic spheroids ranging in shape from oblate to prolate. Results include both qualitative and quantitative insight into the complex coupling of nanoscale defect dynamics and structure transitions to micron-scale reorientation. Dynamic mechanisms are presented and related to structural transitions in LC defects present in the nematic domain. Domain-averaged metrics including order parameters and response times are determined for a range of experimentally-accessible electric field strengths. These results have both fundamental and technological relevance, in that increased understanding of LC dynamics in the presence of defects is a key barrier to continued advancement in the field.

  17. Dynamic Behavior of Engineered Lattice Materials

    PubMed Central

    Hawreliak, J. A.; Lind, J.; Maddox, B.; Barham, M.; Messner, M.; Barton, N.; Jensen, B. J.; Kumar, M.

    2016-01-01

    Additive manufacturing (AM) is enabling the fabrication of materials with engineered lattice structures at the micron scale. These mesoscopic structures fall between the length scale associated with the organization of atoms and the scale at which macroscopic structures are constructed. Dynamic compression experiments were performed to study the emergence of behavior owing to the lattice periodicity in AM materials on length scales that approach a single unit cell. For the lattice structures, both bend and stretch dominated, elastic deflection of the structure was observed ahead of the compaction of the lattice, while no elastic deformation was observed to precede the compaction in a stochastic, random structure. The material showed lattice characteristics in the elastic response of the material, while the compaction was consistent with a model for compression of porous media. The experimental observations made on arrays of 4 × 4 × 6 lattice unit cells show excellent agreement with elastic wave velocity calculations for an infinite periodic lattice, as determined by Bloch wave analysis, and finite element simulations. PMID:27321697

  18. Self-assembled asymmetric membrane containing micron-size germanium for high capacity lithium ion batteries

    DOE PAGES

    Byrd, Ian; Chen, Hao; Webber, Theron; ...

    2015-10-23

    We report the formation of novel asymmetric membrane electrode containing micron-size (~5 μm) germanium powders through a self-assembly phase inversion method for high capacity lithium ion battery anode. 850 mA h g -1 capacity (70%) can be retained at a current density of 600 mA g -1 after 100 cycles with excellent rate performance. Such a high retention rate has rarely been seen for pristine micron-size germanium anodes. Moreover, scanning electron microscope studies reveal that germanium powders are uniformly embedded in a networking porous structure consisting of both nanopores and macropores. It is believed that such a unique porous structuremore » can efficiently accommodate the ~260% volume change during germanium alloying and de-alloying process, resulting in an enhanced cycling performance. Finally, these porous membrane electrodes can be manufactured in large scale using a roll-to-roll processing method.« less

  19. The lunar environment and its effect on optical astronomy

    NASA Technical Reports Server (NTRS)

    Taylor, G. Jeffrey

    1992-01-01

    The Moon's geologic environment features: (1) gravity field one-sixth that of Earth; (2) sidereal rotation period of 27.3 days; (3) surface with greater curvature than Earth's surface (a chord along a 10 km baseline would have a bulge of 7.2 m); (4) seismically and tidally stable platform on which to make astronomical observations (most moonquakes have magnitudes of 1 to 2 on the Richter scale, within the earth's seismic noise, resulting in ground motions only 1 nm); (5) tenuous atmosphere (the total mass at night is only 10(exp 4) kg) that has an optical depth of 10(exp -6) and does not cause wind induced stresses and vibrations on structures; (6) large diurnal temperature variation (100 to 385 K in equatorial regions), which telescopes must be designed to withstand; (7) weak magnetic field, ranging from 3 to 330 x 10(exp -9) T, compared to 3 x 10(exp -5) T on Earth at the equator; (8) surface exposed to radiation, the most dangerous of which are high energy (1 to 100 Mev) particles resulting from solar flares; (9) high flux of micrometeorites which are not slowed down from their cosmic velocities because of the lack of air (data indicate that microcraters greater than 10 microns across will form at the rate of 3000/sq m/yr); (10) regolith 2 to 30 m thick which blankets the entire lunar surface (this layer is fine-grained (average grain sizes range from 40 to 268 microns), has a low density (800 to 1000 kg/cu m in the upper few mm, rising to 1500 to 1800 kg/cu m at depths of 10 to 20 cm), is porous (35 to 45 pct), cohesive (0.1 to 1.0 kN/sq m), and has a low thermal diffusivity (0.7 to 1.0 x 110-8 sq m/sec); about 29 pct of the regolith is less than 20 micron in size (this dust could pose a hazard to optical telescopes); (11) rubbly upper several hundred meters in which intact bedrock is uncommon, especially in the lunar highlands; and (12) craters with diameter-to-depth ratios of 5 if fresh and less than km across (larger and eroded craters have diameter-to-depth ratios greater than 5).

  20. The lunar environment and its effect on optical astronomy

    NASA Astrophysics Data System (ADS)

    Taylor, G. Jeffrey

    1992-11-01

    The Moon's geologic environment features: (1) gravity field one-sixth that of Earth; (2) sidereal rotation period of 27.3 days; (3) surface with greater curvature than Earth's surface (a chord along a 10 km baseline would have a bulge of 7.2 m); (4) seismically and tidally stable platform on which to make astronomical observations (most moonquakes have magnitudes of 1 to 2 on the Richter scale, within the earth's seismic noise, resulting in ground motions only 1 nm); (5) tenuous atmosphere (the total mass at night is only 104 kg) that has an optical depth of 10-6 and does not cause wind induced stresses and vibrations on structures; (6) large diurnal temperature variation (100 to 385 K in equatorial regions), which telescopes must be designed to withstand; (7) weak magnetic field, ranging from 3 to 330 x 10-9 T, compared to 3 x 10-5 T on Earth at the equator; (8) surface exposed to radiation, the most dangerous of which are high energy (1 to 100 Mev) particles resulting from solar flares; (9) high flux of micrometeorites which are not slowed down from their cosmic velocities because of the lack of air (data indicate that microcraters greater than 10 microns across will form at the rate of 3000/sq m/yr); (10) regolith 2 to 30 m thick which blankets the entire lunar surface (this layer is fine-grained (average grain sizes range from 40 to 268 microns), has a low density (800 to 1000 kg/cu m in the upper few mm, rising to 1500 to 1800 kg/cu m at depths of 10 to 20 cm), is porous (35 to 45 pct), cohesive (0.1 to 1.0 kN/sq m), and has a low thermal diffusivity (0.7 to 1.0 x 110-8 sq m/sec); about 29 pct of the regolith is less than 20 micron in size (this dust could pose a hazard to optical telescopes); (11) rubbly upper several hundred meters in which intact bedrock is uncommon, especially in the lunar highlands; and (12) craters with diameter-to-depth ratios of 5 if fresh and less than km across (larger and eroded craters have diameter-to-depth ratios greater than 5).

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong Ruobing; Rafikov, Roman; Zhu Zhaohuan

    Through detailed radiative transfer modeling, we present a disk+cavity model to simultaneously explain both the spectral energy distribution (SED) and Subaru H-band polarized light imaging for the pre-transitional protoplanetary disk PDS 70. In particular, we are able to match not only the radial dependence but also the absolute scale of the surface brightness of the scattered light. Our disk model has a cavity 65 AU in radius, which is heavily depleted of sub-micron-sized dust grains, and a small residual inner disk that produces a weak but still optically thick near-IR excess in the SED. To explain the contrast of themore » cavity's edge in the Subaru image, a factor of {approx}1000 depletion for the sub-micron-sized dust inside the cavity is required. The total dust mass of the disk may be on the order of 10{sup -4} M {sub Sun }, only weakly constrained due to the lack of long-wavelength observations and the uncertainties in the dust model. The scale height of the sub-micron-sized dust is {approx}6 AU at the cavity edge, and the cavity wall is optically thick in the vertical direction at H-band. PDS 70 is not a member of the class of (pre-)transitional disks identified by Dong et al., whose members only show evidence of the cavity in the millimeter-size dust but not the sub-micron-sized dust in resolved images. The two classes of (pre-)transitional disks may form through different mechanisms, or they may simply be at different evolution stages in the disk-clearing process.« less

  2. Saturn's satellites - Near-infrared spectrophotometry (0.65-2.5 microns) of the leading and trailing sides and compositional implications

    NASA Technical Reports Server (NTRS)

    Steele, A.; Clark, R. N.; Brown, R. H.; Owensby, P. D.

    1984-01-01

    Water ice absorptions at 2.0, 1.5, and 1.25 microns are noted in near-IR spectra of Tethys, Dione, Rhea, Iapetus, and Hyperion, and the weak 1.04-micron ice absorption, which is detected for Rhea and Dione, is studied to establish band depth upper limits. The leading-trailing side 1.04-micron ice band depth differences on Saturn's satellites are similar to those for the Galilean satellites, indicating possible surface modification by magnetospheric charged particle bombardment. Limits are obtained for the amounts of particulates, trapped gases, and ammonium hydroxide on the surface. With the exception of the dark side of Iapetus, the surfaces of all of Saturn's satellites are nearly pure ice water.

  3. Brane Craft

    NASA Technical Reports Server (NTRS)

    Janson, Siegfried

    2017-01-01

    A Brane Craft is a membrane spacecraft with solar cells, command and control electronics, communications systems, antennas, propulsion systems, attitude and proximity sensors, and shape control actuators as thin film structures manufactured on 10 micron thick plastic sheets. This revolutionary spacecraft design can have a thickness of tens of microns with a surface area of square meters to maximize area-to-mass ratios for exceptionally low-mass spacecraft. Communications satellites, solar power satellites, solar electric propulsion stages, and solar sails can benefit from Brane Craft design. It also enables new missions that require low-mass spacecraft with exceptionally high delta-V. Active removal of orbital debris from Earth orbit is the target application for this study.

  4. Quantifying Wrinkle Features of Thin Membrane Structures

    NASA Technical Reports Server (NTRS)

    Jacobson, Mindy B.; Iwasa, Takashi; Naton, M. C.

    2004-01-01

    For future micro-systems utilizing membrane based structures, quantified predictions of wrinkling behavior in terms of amplitude, angle and wavelength are needed to optimize the efficiency and integrity of such structures, as well as their associated control systems. For numerical analyses performed in the past, limitations on the accuracy of membrane distortion simulations have often been related to the assumptions made. This work demonstrates that critical assumptions include: effects of gravity, supposed initial or boundary conditions, and the type of element used to model the membrane. In this work, a 0.2 m x 02 m membrane is treated as a structural material with non-negligible bending stiffness. Finite element modeling is used to simulate wrinkling behavior due to a constant applied in-plane shear load. Membrane thickness, gravity effects, and initial imperfections with respect to flatness were varied in numerous nonlinear analysis cases. Significant findings include notable variations in wrinkle modes for thickness in the range of 50 microns to 1000 microns, which also depend on the presence of an applied gravity field. However, it is revealed that relationships between overall strain energy density and thickness for cases with differing initial conditions are independent of assumed initial conditions. In addition, analysis results indicate that the relationship between wrinkle amplitude scale (W/t) and structural scale (L/t) is independent of the nonlinear relationship between thickness and stiffness.

  5. Electron backscatter diffraction as a domain analysis technique in BiFeO(3)-PbTiO(3) single crystals.

    PubMed

    Burnett, T L; Comyn, T P; Merson, E; Bell, A J; Mingard, K; Hegarty, T; Cain, M

    2008-05-01

    xBiFeO(3)-(1-x)PbTiO(3) single crystals were grown via a flux method for a range of compositions. Presented here is a study of the domain configuration in the 0.5BiFeO(3)-0.5PbTiO(3) composition using electron backscatter diffraction to demonstrate the ability of the technique to map ferroelastic domain structures at the micron and submicron scale. The micron-scale domains exhibit an angle of approximately 85 degrees between each variant, indicative of a ferroelastic domain wall in a tetragonal system with a spontaneous strain, c/a - 1 of 0.10, in excellent agreement with the lattice parameters derived from x-ray diffraction. Contrast seen in forescatter images is attributed to variations in the direction of the electrical polarization vector, providing images of ferroelectric domain patterns.

  6. Ceramic Spheres From Cation Exchange Beads

    NASA Technical Reports Server (NTRS)

    Dynys, F. W.

    2003-01-01

    Porous ZrO2 and hollow TiO2 spheres were synthesized from a strong acid cation exchange resin. Spherical cation exchange beads, polystyrene based polymer, were used as a morphological-directing template. Aqueous ion exchange reaction was used to chemically bind (ZrO)(2+) ions to the polystyrene structure. The pyrolysis of the polystyrene at 600 C produces porous ZrO2 spheres with a surface area of 24 sq m/g with a mean sphere size of 42 microns. Hollow TiO2 spheres were synthesized by using the beads as a micro-reactor. A direct surface reaction - between titanium isopropoxide and the resin beads forms a hydrous TiO2 shell around the polystyrene core. The pyrolysis of the polystyrene core at 600 C produces hollow anatase spheres with a surface area of 42 sq m/g with a mean sphere size of 38 microns. The formation of ceramic spheres was studied by XRD, SEM and B.E.T. nitrogen adsorption measurements.

  7. Three-dimensional high-resolution ultrasonic imaging of the eye

    NASA Astrophysics Data System (ADS)

    Silverman, Ronald H.; Lizzi, Frederick L.; Kalisz, Andrew; Coleman, D. J.

    2000-04-01

    Very high frequency (50 MHz) ultrasound provides spatial resolution on the order of 30 microns axially by 60 microns laterally. Our aim was to reconstruct the three-dimensional anatomy of the eye in the full detail permitted by this fine- scale transducer resolution. We scanned the eyes of human subjects and anesthetized rabbits in a sequence of parallel planes 50 microns apart. Within each scan plane, vectors were also spaced 50 microns apart. Radio-frequency data were digitized at a rate of 250 MHz or higher. A series of spectrum analysis and segmentation algorithms was applied to data acquired in each plane; the outputs of these procedures were used to produce color-coded 3-D representations of the sclera, iris and ciliary processes to enhance 3-D volume rendered presentation. We visualized the radial pattern of individual ciliary processes in humans and rabbits and the geodetic web of supporting connections between the ciliary processes and iris that exist only in the rabbit. By acquiring data such that adjacent vectors and planes are separated by less than the transducer's lateral resolution, we were able to visualize structures, such as the ciliary web, that had not been seen before in-vivo. Our techniques offer the possibility of high- precision imaging and measurement of anterior segment structures. This would be relevant in monitoring of glaucoma, tumors, foreign bodies and other clinical conditions.

  8. Mars atmospheric dust properties: A synthesis of Mariner 9, Viking, and Phobos observations

    NASA Technical Reports Server (NTRS)

    Clancy, R. T.; Lee, S. W.; Gladstone, G. R.

    1993-01-01

    We have modified a doubling-and-adding code to reanalyze the Mariner 9 IRIS spectra of Mars atmospheric dust as well as Viking IRTM EPF sequences in the 7, 9, and 20 micron channels. The code is capable of accurate emission/ absorption/scattering radiative transfer calculations over the 5-30 micron wavelength region for variable dust composition and particle size inputs, and incorporates both the Viking IRTM channel weightings and the Mariner 9 IRIS wavelength resolution for direct comparisons to these datasets. We adopt atmospheric temperature profiles according to the algorithm of Martin (1986) in the case of the Viking IRTM comparisons, and obtained Mariner 9 IRIS temperature retrievals from the 15 micron CO2 band for the case of the IRIS comparisons. We consider palagonite as the primary alternative to the montmorillonite composition of Mars atmospheric dust, based on several considerations. Palagonite absorbs in the ultraviolet and visible wavelength region due to its Fe content. Palagonite is also, in principal, consistent with the observed lack of clays on the Mars surface. Furthermore, palagonite does not display strong, structured absorption near 20 microns as does montmorillonite (in conflict with the IRIS observations). We propose that a palagonite composition with particle sizes roughly one-half that of the Toon et al. (1977) determination provide a much improved model to Mars atmospheric dust. Since palagonite is a common weathering product of terrrestrial basalts, it would not be unreasonable for palagonite to be a major surface component for Mars. The lack of even a minor component of Al-rich clays on the surface of Mars could be consistent with a palagonite composition for Mars dust if the conditions for basalt weathering on Mars were sufficiently anhydrous. Variations in palagonite composition could also lead to the inability of the modeled palagonite to fit the details of the 9 micron absorbtion indicated by the IRIS observations.

  9. Fabrication of two-dimensional periodic structures on silicon after scanning irradiation with femtosecond laser multi-beams

    NASA Astrophysics Data System (ADS)

    Pan, An; Si, Jinhai; Chen, Tao; Li, Cunxia; Hou, Xun

    2016-04-01

    Two-dimensional (2D) periodic structures were fabricated on silicon surfaces by femtosecond laser irradiation in air and water, with the assistance of a microlens array (MLA) placed in the beam's path. By scanning the laser beam along the silicon surface, multiple grooves were simultaneously fabricated in parallel along with smaller laser-induced ripples. The 2D periodic structures contained long-periodic grooves and perpendicular short-periodic laser-induced ripples, which had periods of several microns and several hundred nanometers, respectively. We investigated the influence of laser power and scanning velocity on the morphological evolution of the 2D periodic structures in air and water. Large-area grid-like structures with ripples were fabricated by successively scanning once along each direction of the silicon's surface, which showed enhanced optical absorption. Hydrofluoric acid was then used to remove any oxygen and laser-induced defects for all-silicon structures.

  10. Unique Spectral Features Search In The 20 - 35 Micron Range of Mgs Tes Data

    NASA Astrophysics Data System (ADS)

    Altieri, F.; Bellucci, G.

    TES is the Thermal Emission Spectrometer aboard the NASA mission Mars Global Surveyor (MGS) orbiting around Mars since September 1997. It is collecting 6 - 50 micron thermal emission spectra and one of its principal purposes is to determine and map the Mars surface composition. Spectral features directly ascribable to sur- face minerals have been identified in the 20 - 35 micron spectral range: deposits of crystalline gray hematite have been localized in three regions, Sinus Meridiani, Aram Chaos and Valles Marineris [1, 2], and outcrops of olivines have been individuated in Nili Fossae [3]. The crystalline gray hematite areas have been interpreted to be formed by aqueous mineralization, indicating that liquid water was stable near the Mars sur- face for a long period of time in some limited regions. On the other hand there is no evidence in TES data for large scale occurrences (< 10 km) of moderate-grained (> 50 micron) carbonates exposed at the surface at a detection limit of 10 % [2]. Mars thermal emission spectra show, in general, significant variance between 20 and 35 mi- cron. This variance is not directly attributable to surface mineralogical components for the difficulty of discriminating the contribute of atmospheric components: CO2 and water vapour gas, dust and water ice aerosols. Moreover, the dust layer deposited on the soil has a spectral masking effect, obscuring superficial signature related to smaller mineral deposit and making difficult their identification. In this study we report some examples of single TES spectra with typical hematite and olivine bands and spectra with other unique features in the 20 - 35 micron range likely related to superficial components. For some of them we have analysed how the spectral features change in two different Mars seasons. These single TES pixels could be best investigated by instruments with an higher spatial resolution, as THEMIS and OMEGA. References: [1] Christensen P. R., et al., JGR, 105, 9623-9642, 2000. [2] Christensen P. R., et al., JGR,106, 23823-23871, 2001. [3] Hoefen T. M. and Clark R. N., LPS XXXII, 2049, 2001.

  11. SO2 frost - UV-visible reflectivity and Io surface coverage

    NASA Technical Reports Server (NTRS)

    Nash, D. B.; Fanale, F. P.; Nelson, R. M.

    1980-01-01

    The reflectance spectrum in the range 0.24-0.85 microns of SO2 frost is measured in light of the discovery of SO2 gas in the atmosphere of Io and the possible discovery of the frost on its surface. Frost deposits up to 1.5 mm thick were grown in vacuum at 130 K and bi-directional reflectance spectra were obtained. Typical SO2 frost is found to exhibit very low reflectivity (2-5%) at 0.30 microns, rising steeply at 0.32 microns to attain a maximum reflectivity (75-80%) at 4.0 microns and uniformly high reflectivity throughout the visible and near infrared. Comparison with the full disk spectrum of Io reveals that no more than 20% of the surface can be covered with optically thick SO2 frost. Combinations of surface materials including SO2 frost which can produce the observed spectrum are indicated.

  12. Studying Titan's surface photometry in the 5 microns atmospheric window with the Cassini/VIMS instrument

    NASA Astrophysics Data System (ADS)

    Cornet, T.; Altobelli, N.; Sotin, C.; Le Mouelic, S.; Rodriguez, S.; Philippe, S.; Brown, R. H.; Barnes, J. W.; Buratti, B. J.; Baines, K. H.; Clark, R. N.; Nicholson, P. D.

    2014-12-01

    Due to the influence of methane gas and a thick aerosols haze in the atmosphere, Titan's surface is only visible in 7 spectral atmospheric windows centered at 0.93, 1.08, 1.27, 1.59, 2.01, 2.7-2.8 and 5 microns with the Cassini Visual and Infrared Mapping Spectrometer (VIMS). The 5 microns atmospheric window constitutes the only one being almost insensitive to the haze scattering and which presents only a reduced atmospheric absorption contribution to the signal recorded by the instrument. Despite these advantages leading to the almost direct view of the surface, the 5 microns window is also the noisiest spectral window of the entire VIMS spectrum (an effect highly dependent on the time exposure used for the observations), and it is not totally free from atmospheric contributions, enough to keep "artefacts" in mosaics of several thousands of cubes due to atmospheric and surface photometric effects amplified by the very heterogeneous viewing conditions between each Titan flyby. At first order, a lambertian surface photometry at 5 microns has been used as an initial parameter in order to estimate atmospheric opacity and surface photometry in all VIMS atmospheric windows and to determine the albedo of the surface, yet unknown, both using radiative transfer codes on single cubes or empirical techniques on global hyperspectral mosaics. Other studies suggested that Titan's surface photometry would not be uniquely lambertian but would also contain anisotropic lunar-like contributions. In the present work, we aim at constraining accurately the surface photometry of Titan and residual atmospheric absorption effects in this 5 microns window using a comprehensive study of relevant sites located at various latitudes. Those include bright and dark (dunes) terrains, 5-microns bright terrains (Hotei Regio and Tui Regio), the Huygens Landing Site and high latitudes polar lakes and seas. The VIMS 2004 to 2014 database, composed of more than 40,000 hyperspectral cubes acquired on Titan, has been decomposed into a MySQL relational database in order to perform the present study looking at both spatial and temporal (seasonal) aspects.

  13. Calibration of VIIRS F1 Sensor Fire Detection Band Using lunar Observations

    NASA Technical Reports Server (NTRS)

    McIntire, Jeff; Efremova, Boryana; Xiong, Xiaoxiong

    2012-01-01

    Visible Infrared Imager Radiometer Suite (VIIRS) Fight 1 (Fl) sensor includes a fire detection band at roughly 4 microns. This spectral band has two gain states; fire detection occurs in the low gain state above approximately 345 K. The thermal bands normally utilize an on-board blackbody to provide on-orbit calibration. However, as the maximum temperature of this blackbody is 315 K, the low gain state of the 4 micron band cannot be calibrated in the same manner as the rest of the thermal bands. Regular observations of the moon provide an alternative calibration source. The lunar surface temperature has been recently mapped by the DIVINER sensor on the LRO platform. The periodic on-board high gain calibration along with the DIVINER surface temperatures was used to determine the emissivity and solar reflectance of the lunar surface at 4 microns; these factors and the lunar data are then used to fit the low gain calibration coefficients of the 4 micron band. Furthermore, the emissivity of the lunar surface is well known near 8.5 microns due to the Christiansen feature (an emissivity maximum associated with Si-O stretching vibrations) and the solar reflectance is negligible. Thus, the 8.5 micron band is used for relative calibration with the 4 micron band to de-trend any temporal variations. In addition, the remaining thermal bands are analyzed in a similar fashion, with both calculated emissivities and solar reflectances produced.

  14. HOS cell adhesion on Ti6Al4V ELI texturized by CO2 laser

    NASA Astrophysics Data System (ADS)

    Sandoval-Amador, A.; Bayona–Alvarez, Y. M.; Carreño Garcia, H.; Escobar-Rivero, P.; Y Peña-Ballesteros, D.

    2017-12-01

    In this work, the response of HOS cells on Ti6Al4V ELI textured surfaces by a CO2 laser was evaluated. The test surfaces were; smooth Ti6Al4V, used as the control, and four textured surfaces with linear geometry. These four surfaces had different separation distances between textured lines, D1 (1000 microns), D2 (750 microns), D3 (500 microns) and D4 (250 microns). Toxicity of textured surfaces was assessed by MTT and the cellular adhesion test was performed using HOS ATCC CRL 1543 line cells. This test was done after 5 days of culture in a RPMI 1640 medium supplemented with 10% fetal bovine serum and 1% antibiotics. The results showed that the linear textures present 23% toxicity after 30 days of incubation, nevertheless, the adhesion tests results are inconclusive in such conditions and therefore the effect of the line separation on the cell adhesion cannot be determined.

  15. Development of microchannel plate x-ray optics

    NASA Technical Reports Server (NTRS)

    Kaaret, Philip; Chen, Andrew

    1994-01-01

    The goal of this research program was to develop a novel technique for focusing x-rays based on the optical system of a lobster's eye. A lobster eye employs many closely packed reflecting surfaces arranged within a spherical or cylindrical shell. These optics have two unique properties: they have unlimited fields of view and can be manufactured via replication of identical structures. Because the angular resolution is given by the ratio of the size of the individual optical elements to the focal length, optical elements with sizes on the order of one hundred microns are required to achieve good angular resolution with a compact telescope. We employed anisotropic etching of single crystal silicon wafers for the fabrication of micron-scale optical elements. This technique, commonly referred to as silicon micromachining, is based on silicon fabrication techniques developed by the microelectronics industry. An anisotropic etchant is a chemical which etches certain silicon crystal planes much more rapidly than others. Using wafers in which the slowly etched crystal planes are aligned perpendicularly to the wafer surface, it is possible to etch a pattern completely through a wafer with very little distortion. Our optics consist of rectangular pores etched completely through group of zone axes (110) oriented silicon wafers. The larger surfaces of the pores (the mirror elements) were aligned with the group of zone axes (111) planes of the crystal perpendicular to the wafer surface. We have succeeded in producing silicon lenses with a geometry suitable for 1-d focusing x-ray optics. These lenses have an aspect ratio (40:1) suitable for x-ray reflection and have very good optical surface alignment. We have developed a number of process refinements which improved the quality of the lens geometry and the repeatability of the etch process. A significant progress was made in obtaining good optical surface quality. The RMS roughness was decreased from 110 A for our initial lenses to 30 A in the final lenses. A further factor of three improvement in surface quality is required for the production of efficient x-ray optics. In addition to the silicon fabrication, an x-ray beam line was constructed at Columbia for testing the optics.

  16. Temperature and thermal emissivity of the surface of Neptune's satellite Triton

    NASA Technical Reports Server (NTRS)

    Nelson, Robert M.; Smythe, William D.; Wallis, Brad D.; Horn, Linda J.; Lane, Arthur L.; Mayo, Marvin J.

    1990-01-01

    Analysis of the preliminary results from the Voyager mission to the Neptune system has provided the scientific community with several methods by which the temperature of Neptune's satellite Triton may be determined. If the 37.5 K surface temperature reported by several Voyager investigations is correct, then the photometry reported by the imaging experiment on Voyager requires that Triton's surface have a remarkably low emissivity. Such a low emissivity is not required in order to explain the photometry from the photopolarimeter experiment on Voyager. A low emissivity would be inconsistent with Triton having a rough surface at the about 100-micron scale as might be expected given the active renewal processes which appear to dominate Triton's surface.

  17. Superhydrophobic surfaces using selected zinc oxide microrod growth on ink-jetted patterns.

    PubMed

    Myint, Myo Tay Zar; Kitsomboonloha, Rungrot; Baruah, Sunandan; Dutta, Joydeep

    2011-02-15

    The synthesis and properties of superhydrophobic surfaces based on binary surface topography made of zinc oxide (ZnO) microrod-decorated micropatterns are reported. ZnO is intrinsically hydrophilic but can be utilized to create hydrophobic surfaces by creating artificial roughness via microstructuring. Micron scale patterns consisting of nanocrystalline ZnO seed particles were applied to glass substrates with a modified ink-jet printer. Microrods were then grown on the patterns by a hydrothermal process without any further chemical modification. Water contact angle (WCA)(1) up to 153° was achieved. Different micro array patterned surfaces with varying response of static contact angle or sessile droplet analysis are reported. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. Characterization of Mineralogy Across Vesta

    NASA Technical Reports Server (NTRS)

    De Sanctis, M. C.; Ammannito, E.; Capria, M. T.; Capaccioni, F.; Carraro, F.; Fonte, S.; Frigeri, A.; Magni, G.; Marchi, S.; Palomba, E.; hide

    2012-01-01

    Dawn VIR spectra are characterized by pyroxene absorptions and no clear evidence for abundant other minerals are observed at the scale of the present measurements. Even though Vesta spectra are dominated by pyroxenes, spectral variation at regional and local scales are evident and distinct color units are identified. Although almost all of the surface materials exhibit spectra like those of howardites, some large units can be interpreted to be material richer in diogenite (based on pyroxenes band depths and band centers) and some others like eucrite-rich howardite units. VIR data strongly indicate that the south polar region (Rheasilvia) has its own spectral characteristics, indicating the presence of Mg-pyroxene-rich terrains (diogenite-like), while the equatorial areas have swallower band depths and average band centers at slightly longer wavelengths, consistent with more eucrite rich materials. Vesta surface shows considerable diversity at smaller scales (tens of km), in terms of spectral reflectance and emission, band depths and slopes. Many bright and dark spots are present on Vesta. Dark spots have low reflectance at visible wavelengths and are spectrally characterized by shallower 1 and 2 micron bands with respect the surrounding terrains. Bright materials have high reflectance and are often spectrally characterized by deep pyroxenes absorption bands. Vesta presents complex geology/topography and the mineral distribution is often correlated with geological and topographical structures. Ejecta from large craters have distinct spectral behaviors, and materials exposed in the craters show distinct spectra on floors and rims. VIR reveals the mineralogical variation of Vesta s crustal stratigraphy on local and global scales. Maps of spectral parameters show surface and subsurface unit compositions in their stratigraphic context. The hypothesis that Vesta is the HED parent body is consistent with, and strengthened by, the geologic and spectral context for pyroxene distribution provided by Dawn.

  19. Diversity of dermal denticle structure in sharks: Skin surface roughness and three-dimensional morphology.

    PubMed

    Ankhelyi, Madeleine V; Wainwright, Dylan K; Lauder, George V

    2018-05-29

    Shark skin is covered with numerous placoid scales or dermal denticles. While previous research has used scanning electron microscopy and histology to demonstrate that denticles vary both around the body of a shark and among species, no previous study has quantified three-dimensional (3D) denticle structure and surface roughness to provide a quantitative analysis of skin surface texture. We quantified differences in denticle shape and size on the skin of three individual smooth dogfish sharks (Mustelus canis) using micro-CT scanning, gel-based surface profilometry, and histology. On each smooth dogfish, we imaged between 8 and 20 distinct areas on the body and fins, and obtained further comparative skin surface data from leopard, Atlantic sharpnose, shortfin mako, spiny dogfish, gulper, angel, and white sharks. We generated 3D images of individual denticles and measured denticle volume, surface area, and crown angle from the micro-CT scans. Surface profilometry was used to quantify metrology variables such as roughness, skew, kurtosis, and the height and spacing of surface features. These measurements confirmed that denticles on different body areas of smooth dogfish varied widely in size, shape, and spacing. Denticles near the snout are smooth, paver-like, and large relative to denticles on the body. Body denticles on smooth dogfish generally have between one and three distinct ridges, a diamond-like surface shape, and a dorsoventral gradient in spacing and roughness. Ridges were spaced on average 56 µm apart, and had a mean height of 6.5 µm, comparable to denticles from shortfin mako sharks, and with narrower spacing and lower heights than other species measured. We observed considerable variation in denticle structure among regions on the pectoral, dorsal, and caudal fins, including a leading-to-trailing edge gradient in roughness for each region. Surface roughness in smooth dogfish varied around the body from 3 to 42 microns. © 2018 Wiley Periodicals, Inc.

  20. Method for large-scale fabrication of atomic-scale structures on material surfaces using surface vacancies

    DOEpatents

    Lim, Chong Wee; Ohmori, Kenji; Petrov, Ivan Georgiev; Greene, Joseph E.

    2004-07-13

    A method for forming atomic-scale structures on a surface of a substrate on a large-scale includes creating a predetermined amount of surface vacancies on the surface of the substrate by removing an amount of atoms on the surface of the material corresponding to the predetermined amount of the surface vacancies. Once the surface vacancies have been created, atoms of a desired structure material are deposited on the surface of the substrate to enable the surface vacancies and the atoms of the structure material to interact. The interaction causes the atoms of the structure material to form the atomic-scale structures.

  1. Martian Moon Phobos in Thermal Infrared Image

    NASA Image and Video Library

    2017-10-04

    Colors in this image of the Martian moon Phobos indicate a range of surface temperatures detected by observing the moon on Sept. 29, 2017, with the Thermal Emission Imaging System (THEMIS) camera on NASA's Mars Odyssey orbiter. The left edge of the small moon was in darkness, and the right edge in morning sunlight. Phobos has an oblong shape with average diameter of about 14 miles (22 kilometers). Temperature information was derived from thermal-infrared imaging such as the grayscale image shown smaller at lower left with the moon in the same orientation. The color-coding merges information from THEMIS observations made in four thermal-infrared wavelength bands, centered from 11.04 microns to 14.88 microns. The scale bar correlates color-coding to the temperature range on the Kelvin scale, from 130 K (minus 226 degrees Fahrenheit) for dark purple to 270 K (26 degrees F) for red. Researchers will analyze the surface-temperature information from this observation and possible future THEMIS observations to learn how quickly the surface warms after sunup or cools after sundown. That could provide information about surface materials, because larger rocks heat or cool more slowly than smaller particles do. Researchers have been using THEMIS to examine Mars since early 2002, but the maneuver turning the orbiter around to point the camera at Phobos was developed only recently. Odyssey orbits Mars at an altitude of about 250 miles (400 kilometers), much closer to the planet than to Phobos, which orbits about 3,700 miles (6,000 kilometers) above the surface of Mars. The distance to Phobos from Odyssey during the observation was about 3,424 miles (5,511 kilometers). https://photojournal.jpl.nasa.gov/catalog/PIA21858

  2. Probing charge transfer in a novel class of luminescent perovskite-based heterostructures composed of quantum dots bound to RE-activated CaTiO 3 phosphors

    DOE PAGES

    Crystal S. Lewis; Wong, Stanislaus S.; Liu, Haiqing; ...

    2016-01-04

    We report on the synthesis and structural characterization of novel semiconducting heterostructures composed of cadmium selenide (CdSe) quantum dots (QDs) attached onto the surfaces of novel high-surface area, porous rare-earth-ion doped alkaline earth titanate micron-scale spherical motifs, i.e. both Eu-doped and Pr-doped CaTiO 3, composed of constituent, component nanoparticles. These unique metal oxide perovskite building blocks were created by a multi-pronged synthetic strategy involving molten salt and hydrothermal protocols. Subsequently, optical characterization of these heterostructures indicated a clear behavioral dependence of charge transfer in these systems upon a number of parameters such as the nature of the dopant, the reactionmore » temperature, and particle size. Specifically, 2.7 nm diameter ligand-functionalized CdSe QDs were anchored onto sub-micron sized CaTiO 3-based spherical assemblies, prepared by molten salt protocols. We found that both the Pr- and Eu-doped CaTiO 3 displayed pronounced PL emissions, with maximum intensities observed using optimized lanthanide concentrations of 0.2 mol% and 6 mol%, respectively. Analogous experiments were performed on Eu-doped BaTiO 3 and SrTiO 3 motifs, but CaTiO 3 still performed as the most effective host material amongst the three perovskite systems tested. Furthermore, the ligand-capped CdSe QD-doped CaTiO 3 heterostructures exhibited effective charge transfer between the two individual constituent nanoscale components, an assertion corroborated by the corresponding quenching of their measured PL signals.« less

  3. The composition and origin of the C, P, and D asteroids - Water as a tracer of thermal evolution in the outer belt

    NASA Technical Reports Server (NTRS)

    Jones, Thomas D.; Lebofsky, Larry A.; Lewis, John S.; Marley, Mark S.

    1990-01-01

    A telescopic and laboratory investigation of water distribution among low albedo asteroids in the outer belt, using the 3-micron reflectance absorption of molecular H2O and structural OH ions (coincident with the 3-micron spectral signature of meteorite and asteroid hydrated silicates) shows that 66 percent of the C-class asteroids in the sample have hydrated silicate surfaces. In conjunction with the apparently anhydrous P and D surfaces, this pronounced hydration difference between C-class asteroids and the more distant P and D classes points to an original outer belt asteroid composition of anhydrous silicates, water ice, and complex organic material. Early solar-wind induction heating of protoasteroids, declining in intensity with distance from the sun, is conjectured to have produced the observed diminution of hydrated silicate abundance.

  4. Growth and dissolution of an encapsulated contrast microbubble: effects of encapsulation permeability

    PubMed Central

    Sarkar, Kausik; Katiyar, Amit; Jain, Pankaj

    2009-01-01

    Gas diffusion from an encapsulated microbubble is modeled using an explicit linear relation for gas permeation through the encapsulation. Both the cases of single gas (air) and multiple gases (perfluorocarbon inside the bubble and air dissolved in surrounding liquid) are considered. An analytical expression for the dissolution time for an encapsulated air bubble is obtained; it showed that for small permeability the dissolution time increases linearly with decreasing permeability. A perfluorocarbon-filled contrast microbubble such as Definity was predicted to experience a transient growth due to air infusion before it dissolves in conformity with previous experimental findings. The growth phase occurs only for bubbles with a critical value of initial partial mole fraction of perfluorocarbon relative to air. With empirically obtained property values, the dissolution time of a 2.5 micron diameter (same as that of Definity) lipid coated octafluoropropane bubble with surface tension 25 mN/m predicts a lifetime of 42 minutes in an air saturated medium. The properties such as shell permeability, surface tension, relative mole fraction of octafluoropropane are varied to investigate their effects on the time scales of bubble growth and dissolution including their asymptotic scalings where appropriate. The dissolution dynamics scales with permeability, in that when the time is nondimensioanlized with permeability, curves for different permeabilities collapse on a single curve. Investigation of bubbles filled with other gases (non-octafluoropropane perfluorocarbon and sulfur hexafluoride) indicates longer dissolution time due to lower solubility and lower diffusivity for larger gas molecules. For such micron size encapsulated bubbles, lifetime of hours is possible only at extremely low surface tension (<1mN/m) or at extreme oversaturation. PMID:19616160

  5. Large Format Transition Edge Sensor Microcalorimeter Arrays

    NASA Technical Reports Server (NTRS)

    Chervenak, J. A.; Adams, J. A.; Bandler, S. b.; Busch, S. E.; Eckart, M. E.; Ewin, A. E.; Finkbeiner, F. M.; Kilbourne, C. A.; Kelley, R. L.; Porst, J. P.; hide

    2012-01-01

    We have produced a variety of superconducting transition edge sensor array designs for microcalorimetric detection of x-rays. Designs include kilopixel scale arrays of relatively small sensors (approximately 75 micron pitch) atop a thick metal heat sinking layer as well as arrays of membrane-isolated devices on 250 micron and up to 600 micron pitch. We discuss fabrication and performance of microstripline wiring at the small scales achieved to date. We also address fabrication issues with reduction of absorber contact area in small devices.

  6. Surface Morphologies of Ti and Ti-Al-V Bombarded by 1.0-MeV Au+ Ions

    NASA Astrophysics Data System (ADS)

    Garcia, M. A.; Rickards, J.; Cuerno, R.; Trejo-Luna, R.; Cañetas-Ortega, J.; de la Vega, L. R.; Rodríguez-Fernández, L.

    2017-12-01

    Ion implantation is known to enhance the mechanical properties of biomaterials such as, e.g., the wear resistance of orthopedic joints. Increasing the surface area of implants may likewise improve their integration with, e.g., bone tissue, which requires surface features with sizes in the micron range. Ion implantation of biocompatible metals has recently been demonstrated to induce surface ripples with wavelengths of a few microns. However, the physical mechanisms controlling the formation and characteristics of these patterns are yet to be understood. We bombard Ti and Ti-6Al-4V surfaces with 1.0-MeV Au+ ions. Analysis by scanning electron and atomic force microscopies shows the formation of surface ripples with typical dimensions in the micron range, with potential indeed for biomedical applications. Under the present specific experimental conditions, the ripple properties are seen to strongly depend on the fluence of the implanted ions while being weakly dependent on the target material. Moreover, by examining experiments performed for incidence angle values θ =8 ° , 23°, 49°, and 67°, we confirm the existence of a threshold incidence angle for (ripple) pattern formation. Surface indentation is also used to study surface features under additional values of θ , agreeing with our single-angle experiments. All properties of the surface structuring process are very similar to those found in the production of surface nanopatterns under low-energy ion bombardment of semiconductor targets, in which the stopping power is dominated by nuclear contributions, as in our experiments. We consider a continuum model that combines the effects of various physical processes as originally developed in that context, with parameters that we estimate under a binary-collision approximation. Notably, reasonable agreement with our experimental observations is achieved, even under our high-energy conditions. Accordingly, in our system, ripple formation is determined by mass-redistribution currents reinforced by ion-implantation effects, which compete with an unstable curvature dependence of the sputtering yield.

  7. Large area bulk superconductors

    DOEpatents

    Miller, Dean J.; Field, Michael B.

    2002-01-01

    A bulk superconductor having a thickness of not less than about 100 microns is carried by a polycrystalline textured substrate having misorientation angles at the surface thereof not greater than about 15.degree.; the bulk superconductor may have a thickness of not less than about 100 microns and a surface area of not less than about 50 cm.sup.2. The textured substrate may have a thickness not less than about 10 microns and misorientation angles at the surface thereof not greater than about 15.degree.. Also disclosed is a process of manufacturing the bulk superconductor and the polycrystalline biaxially textured substrate material.

  8. Electrostatic Assembly of Nanomaterials for Hybrid Electrodes and Supercapacitors

    NASA Astrophysics Data System (ADS)

    Hammond, Paula

    2015-03-01

    Electrostatic assembly methods have been used to generate a range of new materials systems of interest for electrochemical energy and storage applications. Over the past several years, it has been demonstrated that carbon nanotubes, metals, metal oxides, polymeric nanomaterials, and biotemplated materials systems can be incorporated into ultrathin films to generate supercapacitors and battery electrodes that illustrate significant energy density and power. The unique ability to control the incorporation of such a broad range of materials at the nanometer length scale allows tailoring of the final properties of these unique composite systems, as well as the capability of creating complex micron-scale to nanoporous morphologies based on the scale of the nanomaterial that is absorbed within the structure, or the conditions of self-assembly. Recently we have expanded these capabilities to achieve new electrodes that are templated atop electrospun polmer fiber scaffolds, in which the polymer can be selectively removed to achieve highly porous materials. Spray-layer-by-layer and filtration methods of functionalized multiwall carbon nanotubes and polyaniline nanofibers enable the generation of electrode systems with unusually high surface. Incorporation of psuedocapacitive nanoparticles can enhance capacitive properties, and other catalytic or metallic nanoparticles can be implemented to enhance electrochemical or catalytic function.

  9. Occulting focal plane masks for Terrestrial Planet Finder Coronagraph: design, fabrication, simulations and test results

    NASA Technical Reports Server (NTRS)

    Balasubramanian, Kunjithapatham; Hoppe, Daniel J.; Halverson, Peter G.; Wilson, Daniel W.; Echternach, Pierre M.; Shi, Fang; Lowman, Andrew E.; Niessner, Albert F.; Trauger, John T.; Shaklan, Stuart B.

    2005-01-01

    Occulting focal plane masks for the Terrestrial Planet Finder Coronagraph (TPF-C) could be designed with continuous gray scale profile of the occulting pattern such as 1-sinc2 on a suitable material or with micron-scale binary transparent and opaque structures of metallic pattern on glass. We have designed, fabricated and tested both kinds of masks. The fundamental characteristics of such masks and initial test results from the High Contrast Imaging Test bed (HCIT) at JPL are presented.

  10. Surveying Galaxy Evolution in the Far-Infrared: A Far-Infrared All-Sky Survey Concept

    NASA Technical Reports Server (NTRS)

    Benford, D. J.; Amato, M. J.; Dwek, E.; Freund, M. M.; Gardner, J. P.; Kashlinsky, A.; Leisawitz, D. T.; Mather, J. C.; Moseley, S. H.; Shafer, R. A.

    2004-01-01

    Half of the total luminosity in the Universe is emitted at rest wavelengths approximately 80-100 microns. At the highest known galaxy redshifts (z greater than or equal to 6) this energy is redshifted to approximately 600 microns. Quantifying the evolution of galaxies at these wavelengths is crucial to our understanding of the formation of structure in the Universe following the big bang. Surveying the whole sky will find the rare and unique objects, enabling follow-up observations. SIRCE, the Survey of Infrared Cosmic Evolution, is such a mission concept under study at NASA's Goddard Space Flight Center. A helium-cooled telescope with ultrasensitive detectors can image the whole sky to the confusion limit in 6 months. Multiple wavelength bands permit the extraction of photometric redshifts, while a large telescope yields a low confusion limit. We discuss the implications of such a survey for galaxy formation and evolution, large-scale structure, star formation, and the structure of interstellar dust.

  11. Do cyanobacteria swim using traveling surface waves?

    PubMed Central

    Ehlers, K M; Samuel, A D; Berg, H C; Montgomery, R

    1996-01-01

    Bacteria that swim without the benefit of flagella might do so by generating longitudinal or transverse surface waves. For example, swimming speeds of order 25 microns/s are expected for a spherical cell propagating longitudinal waves of 0.2 micron length, 0.02 micron amplitude, and 160 microns/s speed. This problem was solved earlier by mathematicians who were interested in the locomotion of ciliates and who considered the undulations of the envelope swept out by ciliary tips. A new solution is given for spheres propagating sinusoidal waveforms rather than Legendre polynomials. The earlier work is reviewed and possible experimental tests are suggested. Images Fig. 1 PMID:8710872

  12. A Study of the Effects of Relative Humidity on Small Particle Adhesion to Surfaces

    NASA Technical Reports Server (NTRS)

    Whitfield, W. J.; David, T.

    1971-01-01

    Ambient dust ranging in size from less than one micron up to 140 microns was used as test particles. Relative humidities of 33% to 100% were used to condition test surfaces after loading with the test particles. A 20 psi nitrogen blowoff was used as the removal mechanism to test for particle adhesion. Particles were counted before and after blowoff to determine retention characteristics. Particle adhesion increased drastically as relative humidity increased above 50%. The greatest adhesion changes occurred within the first hour of conditioning time. Data are presented for total particle adhesion, for particles 10 microns and larger, and 50 microns and larger.

  13. Hypervelocity sub 10-micron impacts into aluminium foil: new experimental data and implications for comet 81P/Wild-2's dust fluence

    NASA Astrophysics Data System (ADS)

    Price, Mark C.; Kearsley, Anton T.; Burchell, Mark J.; Horz, Friedrich; Cole, Mike J.

    2009-06-01

    Recent experimental work (Price, M. C. et. al., LPSC XXXX, #1564, 2009) has shown that the lip-to-lip diameter of hypervelocity impact craters at micron-scales (Dp< 10 microns) is a non-linear function of the impactor's diameter (Dp). We present data for monodisperse silica projectiles impacting aluminium-1100 and elemental aluminium at 6.1 kmsec and discuss the implications of this effect for the Stardust fluence calibration for micron-scale particles (which make up the majority of the impactor flux). Hydrocodes have been used to investigate the potential causes of the phenomena and the results are presented.

  14. Mineral Precipitation in Fractures: Multiscale Imaging and Geochemical Modeling

    NASA Astrophysics Data System (ADS)

    Hajirezaie, S.; Peters, C. A.; Swift, A.; Sheets, J. M.; Cole, D. R.; Crandall, D.; Cheshire, M.; Stack, A. G.; Anovitz, L. M.

    2017-12-01

    For subsurface energy technologies such as geologic carbon sequestration, fractures are potential pathways for fluid migration from target formations. Highly permeable fractures may become sealed by mineral precipitation. In this study, we examined shale specimens with existing cemented fractures as natural analogues, using an array of imaging methods to characterize mineralogy and porosity at several spatial scales. In addition, we used reactive transport modeling to investigate geochemical conditions that can lead to extensive mineral precipitation and to simulate the impacts on fracture hydraulic properties. The naturally-cemented fractured rock specimens were from the Upper Wolfcamp formation in Texas, at 10,000 ft depth. The specimens were scanned using x-ray computed tomography (xCT) at resolution of 13 microns. The xCT images revealed an original fracture aperture of 1.9 mm filled with several distinct mineral phases and vuggy void regions, and the mineral phase volumes and surface areas were quantified and mapped in 3D. Specimens were thin-sectioned and examined at micron- and submicron-scales using petrographic microscopy (PM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and small angle X-ray scattering (SAXS). Collectively these methods revealed crystals of dolomite as large as 900 microns in length overlain with a heterogeneous mixture of carbonate minerals including calcite, dolomite, and Fe-rich dolomite, interspersed at spatial scales as small as 5 microns. In addition, secondary precipitation of SiO2 was found to fill some of the void space. This multiscale imaging was used to inform the reactive transport modeling employed to examine the conditions that can cause the observed mineral precipitation in fractures at a larger scale. Two brines containing solutions that when mixed would lead to precipitation of various carbonate minerals were simulated as injectants into a fracture domain. In particular, the competing effects of transport dynamics and reaction kinetics were investigated in the context of profiles of the precipitated minerals and permeability behavior of the fracture flow path. This study contributes rich knowledge toward mastering the subsurface for energy production and storage and for the management of energy waste streams.

  15. Carbonized Micro- and Nanostructures: Can Downsizing Really Help?

    PubMed Central

    Naraghi, Mohammad; Chawla, Sneha

    2014-01-01

    In this manuscript, we discuss relationships between morphology and mechanical strength of carbonized structures, obtained via pyrolysis of polymeric precursors, across multiple length scales, from carbon fibers (CFs) with diameters of 5–10 μm to submicron thick carbon nanofibers (CNFs). Our research points to radial inhomogeneity, skin–core structure, as a size-dependent feature of polyacrylonitrile-based CFs. This inhomogeneity is a surface effect, caused by suppressed diffusion of oxygen and stabilization byproducts during stabilization through skin. Hence, reducing the precursor diameters from tens of microns to submicron appears as an effective strategy to develop homogeneous carbonized structures. Our research establishes the significance of this downsizing in developing lightweight structural materials by comparing intrinsic strength of radially inhomogeneous CFs with that of radially homogeneous CNF. While experimental studies on the strength of CNFs have targeted randomly oriented turbostratic domains, via continuum modeling, we have estimated that strength of CNFs can reach 14 GPa, when the basal planes of graphitic domains are parallel to nanofiber axis. The CNFs in our model are treated as composites of amorphous carbon (matrix), reinforced with turbostratic domains, and their strength is predicted using Tsai–Hill criterion. The model was calibrated with existing experimental data. PMID:28788651

  16. Quantifying Square Membrane Wrinkle Behavior Using MITC Shell Elements

    NASA Technical Reports Server (NTRS)

    Jacobson, Mindy B.; Iwasa, Takashi; Natori, M. C.

    2004-01-01

    For future membrane based structures, quantified predictions of membrane wrinkling behavior in terms of amplitude, angle and wavelength are needed to optimize the efficiency and integrity of such structures, as well as their associated control systems. For numerical analyses performed in the past, limitations on the accuracy of membrane distortion simulations have often been related to the assumptions made while using finite elements. Specifically, this work demonstrates that critical assumptions include: effects of gravity. supposed initial or boundary conditions, and the type of element used to model the membrane. In this work, a 0.2 square meter membrane is treated as a structural material with non-negligible bending stiffness. Mixed Interpolation of Tensorial Components (MTTC) shell elements are used to simulate wrinkling behavior due to a constant applied in-plane shear load. Membrane thickness, gravity effects, and initial imperfections with respect to flatness were varied in numerous nonlinear analysis cases. Significant findings include notable variations in wrinkle modes for thickness in the range of 50 microns to 1000 microns, which also depend on the presence of an applied gravity field. However, it is revealed that relationships between overall strain energy density for cases with differing initial conditions are independent of assumed initial con&tions. In addition, analysis results indicate that the relationship between amplitude scale (W/t) and structural scale (L/t) is linear in the presence of a gravity field.

  17. In vivo layer visualization of rat olfactory bulb by a swept source optical coherence tomography and its confirmation through electrocoagulation and anatomy

    PubMed Central

    Watanabe, Hideyuki; Rajagopalan, Uma Maheswari; Nakamichi, Yu; Igarashi, Kei M.; Madjarova, Violeta Dimitrova; Kadono, Hirofumi; Tanifuji, Manabu

    2011-01-01

    Here, we report in vivo 3-D visualization of the layered organization of a rat olfactory bulb (OB) by a swept source optical coherence tomography (SS-OCT). The SS-OCT operates at a wavelength of 1334 nm with respective theoretical depth and lateral resolutions of 6.7 μm and 15.4 μm in air and hence it is possible to get a 3D structural map of OB in vivo at the micron level resolution with millimeter-scale imaging depth. Up until now, with methods such as MRI, confocal microscopy, OB depth structure in vivo had not been clearly visualized as these do not satisfy the criterion of simultaneously providing micron-scale spatial resolution and imaging up to a few millimeter in depth. In order to confirm the OB’s layered organization revealed by SS-OCT, we introduced the technique of electrocoagulation to make landmarks across the layered structure. To our knowledge this is such a first study that combines electrocoagulation and OCT in vivo of rat OB. Our results confirmed the layered organization of OB, and moreover the layers were clearly identified by electrocoagulation landmarks both in the OCT structural and anatomical slice images. We expect such a combined study is beneficial for both OCT and neuroscience fields. PMID:21833364

  18. Single-ion microwave near-field quantum sensor

    NASA Astrophysics Data System (ADS)

    Wahnschaffe, M.; Hahn, H.; Zarantonello, G.; Dubielzig, T.; Grondkowski, S.; Bautista-Salvador, A.; Kohnen, M.; Ospelkaus, C.

    2017-01-01

    We develop an intuitive model of 2D microwave near-fields in the unusual regime of centimeter waves localized to tens of microns. Close to an intensity minimum, a simple effective description emerges with five parameters that characterize the strength and spatial orientation of the zero and first order terms of the near-field, as well as the field polarization. Such a field configuration is realized in a microfabricated planar structure with an integrated microwave conductor operating near 1 GHz. We use a single 9 Be+ ion as a high-resolution quantum sensor to measure the field distribution through energy shifts in its hyperfine structure. We find agreement with simulations at the sub-micron and few-degree level. Our findings give a clear and general picture of the basic properties of oscillatory 2D near-fields with applications in quantum information processing, neutral atom trapping and manipulation, chip-scale atomic clocks, and integrated microwave circuits.

  19. The relative effect of surface strontium chemistry and super-hydrophilicity on the early osseointegration of moderately rough titanium surface in the rabbit femur.

    PubMed

    Park, Jin-Woo; Kwon, Tae-Geon; Suh, Jo-Young

    2013-06-01

    It is unclear whether surface bioactive chemistry or hydrophilicity plays a more dominant role in the osseointegration of micro-structured titanium implants having the same surface topography at the micrometer and submicrometer scales. To understand their comparative effect on enhancing the early osseointegration of micro-rough-surfaced implants, this study compared the bone healing-promoting effect of surface strontium (Sr) chemistry that has been shown in numerous studies to super-hydrophilicity in the early osseointegration of moderately rough-surfaced clinical oral implants (SLA(®) implant) in rabbit cancellous bone. Hydrothermal treatment was performed to incorporate Sr ions into the surface of clinical SLA implants (SLA/Sr implant). The surface characteristics were evaluated by using field emission-scanning electron microscopy, X-ray photoelectron spectroscopy and optical profilometry. Twenty screw implants (10 control and 10 experimental) were placed in the femoral condyles of 10 New Zealand White rabbits. The early osseointegration of the SLA/Sr implant was compared with a chemically modified super-hydrophilic SLA implant (SLActive(®) implant) by histomorphometric and resonance frequency analysis after 2 weeks of implantation. The SLA/Sr and SLActive implants exhibited an identical surface topography and average R(a) values at the micron and submicron scales. The SLA/Sr implant displayed a high amount of surface Sr content (15.6 at.%). There was no significant difference in the implant stability quotient (ISQ) values between the two groups. However, histomorphometric analysis revealed a significantly higher bone-to-implant contact percentage in the SLA/Sr implants compared with the SLActive implants in rabbit cancellous bone (P < 0.01). The results indicate that the surface Sr chemistry surpasses the effect of super-hydrophilicity in promoting the early bone apposition of moderately rough Ti surface in cancellous bone. © 2012 John Wiley & Sons A/S.

  20. Infrared astronomical satellite (IRAS) catalogs and atlases. Volume 7: The small scale structure catalog

    NASA Technical Reports Server (NTRS)

    Helou, George (Editor); Walker, D. W. (Editor)

    1988-01-01

    The Infrared Astronomical Satellite (IRAS) was launched January 26, 1983. During its 300-day mission, it surveyed over 96 pct of the celestial sphere at four infrared wavelengths, centered approximately at 12, 25, 60, and 100 microns. Volume 1 describes the instrument, the mission, and the data reduction process. Volumes 2 through 6 present the observations of the approximately 245,000 individual point sources detected by IRAS; each volume gives sources within a specified range of declination. Volume 7 gives the observations of the approximately 16,000 sources spatially resolved by IRAS and smaller than 8'. This is Volume 7, The Small Scale Structure Catalog.

  1. Temperature distribution and heat radiation of patterned surfaces at short wavelengths.

    PubMed

    Emig, Thorsten

    2017-05-01

    We analyze the equilibrium spatial distribution of surface temperatures of patterned surfaces. The surface is exposed to a constant external heat flux and has a fixed internal temperature that is coupled to the outside heat fluxes by finite heat conductivity across the surface. It is assumed that the temperatures are sufficiently high so that the thermal wavelength (a few microns at room temperature) is short compared to all geometric length scales of the surface patterns. Hence the radiosity method can be employed. A recursive multiple scattering method is developed that enables rapid convergence to equilibrium temperatures. While the temperature distributions show distinct dependence on the detailed surface shapes (cuboids and cylinder are studied), we demonstrate robust universal relations between the mean and the standard deviation of the temperature distributions and quantities that characterize overall geometric features of the surface shape.

  2. Temperature distribution and heat radiation of patterned surfaces at short wavelengths

    NASA Astrophysics Data System (ADS)

    Emig, Thorsten

    2017-05-01

    We analyze the equilibrium spatial distribution of surface temperatures of patterned surfaces. The surface is exposed to a constant external heat flux and has a fixed internal temperature that is coupled to the outside heat fluxes by finite heat conductivity across the surface. It is assumed that the temperatures are sufficiently high so that the thermal wavelength (a few microns at room temperature) is short compared to all geometric length scales of the surface patterns. Hence the radiosity method can be employed. A recursive multiple scattering method is developed that enables rapid convergence to equilibrium temperatures. While the temperature distributions show distinct dependence on the detailed surface shapes (cuboids and cylinder are studied), we demonstrate robust universal relations between the mean and the standard deviation of the temperature distributions and quantities that characterize overall geometric features of the surface shape.

  3. Motion-compensated optical coherence tomography using envelope-based surface detection and Kalman-based prediction

    NASA Astrophysics Data System (ADS)

    Irsch, Kristina; Lee, Soohyun; Bose, Sanjukta N.; Kang, Jin U.

    2018-02-01

    We present an optical coherence tomography (OCT) imaging system that effectively compensates unwanted axial motion with micron-scale accuracy. The OCT system is based on a swept-source (SS) engine (1060-nm center wavelength, 100-nm full-width sweeping bandwidth, and 100-kHz repetition rate), with axial and lateral resolutions of about 4.5 and 8.5 microns respectively. The SS-OCT system incorporates a distance sensing method utilizing an envelope-based surface detection algorithm. The algorithm locates the target surface from the B-scans, taking into account not just the first or highest peak but the entire signature of sequential A-scans. Subsequently, a Kalman filter is applied as predictor to make up for system latencies, before sending the calculated position information to control a linear motor, adjusting and maintaining a fixed system-target distance. To test system performance, the motioncorrection algorithm was compared to earlier, more basic peak-based surface detection methods and to performing no motion compensation. Results demonstrate increased robustness and reproducibility, particularly noticeable in multilayered tissues, while utilizing the novel technique. Implementing such motion compensation into clinical OCT systems may thus improve the reliability of objective and quantitative information that can be extracted from OCT measurements.

  4. Temporal variability of the chemical composition of surface aerosol in the Moscow region in 1999-2005 from the results of infrared spectroscopy of aerosol samples

    NASA Astrophysics Data System (ADS)

    Shukurova, L. M.; Gruzdev, A. N.

    2010-06-01

    The temporal variability of the chemical composition of surface aerosol with particle diameters of 0.7-2 μm is analyzed. This analysis is based on the results of measurements of infrared transmission spectra of aerosol samples collected with the use of a cascade impactor at the Zvenigorod Scientific Station of the Institute of Atmospheric Physics (IAP) in 1999-2005. Seasonal features of the aerosol chemical composition and its dependence on the particle size are revealed. The interdiurnal variability of the aerosol composition depends on the season, and it manifests itself more strongly in winter and spring. Air-mass changes lead to changes in the relation of sulfates and nitrates in the micron fraction of aerosol. The enrichment of samples in nitrates is especially characteristic of the winter and spring seasons. Compounds containing the NO2 group are often met in the samples of aerosol with particle sizes of 0.7-1.3 μm during the cold time of the year. The estimates of the optical thickness of micron aerosol in the sulfate absorption band are obtained, and optical-thickness variations of some scales are detected. The quantitative characteristics of statistical relations between different chemical components of aerosol inside individual fractions and between chemical components of the micron and submicron fractions are obtained and analyzed.

  5. Mechanical properties, microstructure, and specific adhesion of phospholipid monolayer-coated microbubbles

    NASA Astrophysics Data System (ADS)

    Kim, Dennis Heejong

    1999-10-01

    The objective of this study was to characterize properties of phospholipid monolayer shells formed on gas microbubbles, specifically (1)yield shear and shear viscosity as a function of the shell composition, (2)yield shear, shear viscosity, and microstructural domain density as a function of the quenching rate of the microbubbles following production, and (3)the adhesion of a lipid-coated microbubble to a colloidal substrate via receptor-ligand mediated specific interaction, either enhanced or inhibited by the presence of surface-grafted polymeric structures. The primary experimental technique employed was the micromanipulation method, wherein tapered fluid-filled pipets with bores on the order of 4-10 microns were used to (1)capture and maneuver individual micron scale bubbles in aqueous medium, and (2)apply suction pressures over the range of 1 dyn cm-2 to 10 5 dyn cm-2 (10-6 to 10 -1 atm) and track the corresponding deformation of the microbubble under applied pressure. The yield shear and shear viscosity increase with increasing acyl chain length of the lipid; an equivalent statement is that the yield shear and shear viscosity increase with reduced temperature of the shell material. Crystalline lipid domain sizes are dictated by the rate at which the system is (temperature) quenched in a manner predicted by classic materials science and metallurgy: rapidly cooled samples form the smallest grains and exhibit the lowest levels of yield shear and shear viscosity. Slowly cooled samples produce large grains and exhibit high levels of yield and viscosity. The success and strength of adhesion of a microbubble to a substrate is dictated by the identity of the adhesive molecules participating in the adhesion, as well as the surface architecture of the interfaces participating in adhesion. The term surface architecture is used to describe the physical arrangement of the full complement of steric stabilizers, spacers, and binding molecules present at the surface of a typical coated microbubble shell. Adhesion is successful for systems where the binding ligand is not impeded by the presence of surface-grafted poly(ethylene glycol) (PEG) moieties. Like the shell composition itself, the surface construct can be engineered to produce optimal performance in adhesion.

  6. Micro-computed tomography: Applications for high-resolution skeletal density determinations: An example using annually banded crustose coralline algae

    NASA Astrophysics Data System (ADS)

    Chan, P.; Halfar, J.; Norley, C. J. D.; Pollmann, S. I.; Adey, W.; Holdsworth, D. W.

    2017-09-01

    Warming and acidification of the world's oceans are expected to have widespread consequences for marine biodiversity and ecosystem functioning. However, due to the relatively short record of instrumental observations, one has to rely upon geochemical and physical proxy information stored in biomineralized shells and skeletons of calcareous marine organisms as in situ recorders of past environments. Of particular interest is the response of marine calcifiers to ocean acidification through the examination of structural growth characteristics. Here we demonstrate the application of micro-computed tomography (micro-CT) for three-dimensional visualization and analysis of growth, skeletal density, and calcification in a slow-growing, annually banded crustose coralline alga Clathromorphum nereostratum (increment width ˜380 µm). X-ray images and time series of skeletal density were generated at 20 µm resolution and rebinned to 40, 60, 80, and 100 µm for comparison in a sensitivity analysis. Calcification rates were subsequently calculated as the product of density and growth (linear extension). While both skeletal density and calcification rates do not significantly differ at varying spatial resolutions (the latter being strongly influenced by growth rates), clear visualization of micron-scale growth features and the quantification of structural changes on subannual time scales requires higher scanning resolutions. In the present study, imaging at 20 µm resolution reveals seasonal cycles in density that correspond to summer/winter variations in skeletal structure observed using scanning electron microscopy (SEM). Micro-CT is a fast, nondestructive, and high-resolution technique for structural and morphometric analyses of temporally banded paleoclimate archives, particularly those that exhibit slow or compressed growth or micron-scale structures.

  7. Understanding and controlling the step bunching instability in aqueous silicon etching

    NASA Astrophysics Data System (ADS)

    Bao, Hailing

    Chemical etching of silicon has been widely used for more than half a century in the semiconductor industry. It not only forms the basis for current wafer cleaning processes, it also serves as a powerful tool to create a variety of surface morphologies for different applications. Its potential for controlling surface morphology at the atomic scale over micron-size regions is especially appealing. In spite of its wide usage, the chemistry of silicon etching is poorly understood. Many seemingly simple but fundamental questions have not been answered. As a result, the development of new etchants and new etching protocols are based on expensive and tedious trial-and-error experiments. A better understanding of the etching mechanism would direct the rational formulation of new etchants that produce controlled etch morphologies. Particularly, micron-scale step bunches spontaneously develop on the vicinal Si(111) surface etched in KOH or other anisotropic aqueous etchants. The ability to control the size, orientation, density and regularity of these surface features would greatly improve the performance of microelectromechanical devices. This study is directed towards understanding the chemistry and step bunching instability in aqueous anisotropic etching of silicon through a combination of experimental techniques and theoretical simulations. To reveal the cause of step-bunching instability, kinetic Monte Carlo simulations were constructed based on an atomistic model of the silicon lattice and a modified kinematic wave theory. The simulations showed that inhomogeneity was the origin of step-bunching, which was confirmed through STM studies of etch morphologies created under controlled flow conditions. To quantify the size of the inhomogeneities in different etchants and to clarify their effects, a five-parallel-trench pattern was fabricated. This pattern used a nitride mask to protect most regions of the wafer; five evenly spaced etch windows were opened to the Si(110) substrate. Combining data from these etched patterns and surface IR spectra, a modified mechanism, which explained most experimental observations, was proposed. Control of the step-bunching instability was accomplished with a second micromachined etch barrier pattern which consisted of a circular array of seventy-two long, narrow trenches in an etch mask. Using this pattern, well aligned, regularly shaped, evenly-distributed, near-atomically flat terraces in micron size were produced controllably.

  8. Photometric and polarimetric properties of the Bruderheim chondritic meteorite

    NASA Technical Reports Server (NTRS)

    Egan, W. G.; Veverka, J.; Noland, M.; Hilgeman, T.

    1973-01-01

    Photometric and polarimetric laboratory measurements were made as a function of phase angle in the U(0.36 microns), G(0.54 microns) and R(0.67 microns) bands for 0, 30 and 60 deg incident illumination on four particle size ranges of Bruderheim, an L6 olivine-hypersthene chondritic meteorite. The four particle size ranges were: 0.25-4.76 mm coated with less than 74 microns powder, 74-250 microns, and less than 37 microns. In addition, normal reflectance measurements were made in the spectral range from 0.31 to 1.1 microns. Comparison with astronomical data reveals that none of the asteroids in the main belt for which adequate observations exist can be matched with Bruderheim, which is representative of the most common meteoritic material encountered by the Earth. However, it appears from the polarization and photometry data that the surface of the Apollo asteroid Icarus is consistent with an ordinary chondrite composition. This suggests the possibility that this material, although common in Earth-crossing orbits, is rare as a surface constituent in the main asteroid belt.

  9. Porous silicon in drug delivery devices and materials☆

    PubMed Central

    Anglin, Emily J.; Cheng, Lingyun; Freeman, William R.; Sailor, Michael J.

    2009-01-01

    Porous Si exhibits a number of properties that make it an attractive material for controlled drug delivery applications: The electrochemical synthesis allows construction of tailored pore sizes and volumes that are controllable from the scale of microns to nanometers; a number of convenient chemistries exist for the modification of porous Si surfaces that can be used to control the amount, identity, and in vivo release rate of drug payloads and the resorption rate of the porous host matrix; the material can be used as a template for organic and biopolymers, to prepare composites with a designed nanostructure; and finally, the optical properties of photonic structures prepared from this material provide a self-reporting feature that can be monitored in vivo. This paper reviews the preparation, chemistry, and properties of electrochemically prepared porous Si or SiO2 hosts relevant to drug delivery applications. PMID:18508154

  10. Holographic free-electron light source

    PubMed Central

    Li, Guanhai; Clarke, Brendan P.; So, Jin-Kyu; MacDonald, Kevin F.; Zheludev, Nikolay I.

    2016-01-01

    Recent advances in the physics and technology of light generation via free-electron proximity and impact interactions with nanostructures (gratings, photonic crystals, nano-undulators, metamaterials and antenna arrays) have enabled the development of nanoscale-resolution techniques for such applications as mapping plasmons, studying nanoparticle structural transformations and characterizing luminescent materials (including time-resolved measurements). Here, we introduce a universal approach allowing generation of light with prescribed wavelength, direction, divergence and topological charge via point-excitation of holographic plasmonic metasurfaces. It is illustrated using medium-energy free-electron injection to generate highly-directional visible to near-infrared light beams, at selected wavelengths in prescribed azimuthal and polar directions, with brightness two orders of magnitude higher than that from an unstructured surface, and vortex beams with topological charge up to ten. Such emitters, with micron-scale dimensions and the freedom to fully control radiation parameters, offer novel applications in nano-spectroscopy, nano-chemistry and sensing. PMID:27910853

  11. The Development of Layered Photonic Band Gap Structures Using a Micro-Transfer Molding Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutherland, Kevin Jerome

    Over the last ten years, photonic band gap (PBG) theory and technology have become an important area of research because of the numerous possible applications ranging from high-efficiency laser diodes to optical circuitry. This research concentrates on reducing the length scale in the fabrication of layered photonic band gap structures and developing procedures to improve processing consistency. Various procedures and materials have been used in the fabrication of layered PBG structures. This research focused on an economical micro transfer molding approach to create the final PBG structure. A poly dimethylsiloxane (PDMS) rubber mold was created from a silicon substrate. Itmore » was filled with epoxy and built layer-by-layer to create a 3-D epoxy structure. This structure was infiltrated with nanoparticle titania or a titania sol-gel, then fired to remove the polymer mold, leaving a monolithic ceramic inverse of the epoxy structure. The final result was a lattice of titania rolds that resembles a face-centered tetragonal structure. The original intent of this research was to miniaturize this process to a bar size small enough to create a photonic band gap for wavelengths of visible electro-magnetic radiation. The factor limiting progress was the absence of a silicon master mold of small enough dimensions. The Iowa State Microelectronics Research Center fabricated samples with periodicities of 2.5 and 1.0 microns with the existing technology, but a sample was needed on the order of 0.3 microns or less. A 0.4 micron sample was received from Sandia National Laboratory, which was made through an electron beam lithography process, but it contained several defects. The results of the work are primarily from the 2.5 and 1.0 micron samples. Most of the work focused on changing processing variables in order to optimize the infiltration procedure for the best results. Several critical parameters were identified, ranging from the ambient conditions to the specifics of the procedure. It is believed that most critical for fabrication of high quality samples is control of the temperature of the sample during and after infiltration, and the rate and amount of time spent applying epoxy to the PDMS.« less

  12. Probing softness of the parietal pleural surface at the micron scale

    PubMed Central

    Kim, Jae Hun; Butler, James P.; Loring, Stephen H.

    2011-01-01

    The pleural surfaces of the chest wall and lung slide against each other, lubricated by pleural fluid. During sliding motion of soft tissues, shear induced hydrodynamic pressure deforms the surfaces, promoting uniformity of the fluid layer thickness, thereby reducing friction. To assess pleural deformability at length scales comparable to pleural fluid thickness, we measured the modulus of the parietal pleura of rat chest wall using atomic force microscopy (AFM) to indent the pleural surface with spheres (radius 2.5 µm and 5 µm). The pleura exhibited two distinct indentation responses depending on location, reflecting either homogeneous or significantly heterogeneous tissue properties. We found an elastic modulus of 0.38–0.95 kPa, lower than the values measured using flat-ended cylinders > 100 µm radii (Gouldstone et al., 2003, Journal of Applied Physiology 95, 2345–2349). Interestingly, the pleura exhibited a three-fold higher modulus when probed using 2.5 µm vs. 5 µm spherical tips at the same normalized depth, confirming depth dependent inhomogeneous elastic properties. The observed softness of the pleura supports the hypothesis that unevenness of the pleural surface on this scale is smoothed by local hydrodynamic pressure. PMID:21820660

  13. Topography of calcium phosphate ceramics regulates primary cilia length and TGF receptor recruitment associated with osteogenesis.

    PubMed

    Zhang, Jingwei; Dalbay, Melis T; Luo, Xiaoman; Vrij, Erik; Barbieri, Davide; Moroni, Lorenzo; de Bruijn, Joost D; van Blitterswijk, Clemens A; Chapple, J Paul; Knight, Martin M; Yuan, Huipin

    2017-07-15

    The surface topography of synthetic biomaterials is known to play a role in material-driven osteogenesis. Recent studies show that TGFβ signalling also initiates osteogenic differentiation. TGFβ signalling requires the recruitment of TGFβ receptors (TGFβR) to the primary cilia. In this study, we hypothesize that the surface topography of calcium phosphate ceramics regulates stem cell morphology, primary cilia structure and TGFβR recruitment to the cilium associated with osteogenic differentiation. We developed a 2D system using two types of tricalcium phosphate (TCP) ceramic discs with identical chemistry. One sample had a surface topography at micron-scale (TCP-B, with a bigger surface structure dimension) whilst the other had a surface topography at submicron scale (TCP-S, with a smaller surface structure dimension). In the absence of osteogenic differentiation factors, human bone marrow stromal cells (hBMSCs) were more spread on TCP-S than on TCP-B with alterations in actin organization and increased primary cilia prevalence and length. The cilia elongation on TCP-S was similar to that observed on glass in the presence of osteogenic media and was followed by recruitment of transforming growth factor-β RII (p-TGFβ RII) to the cilia axoneme. This was associated with enhanced osteogenic differentiation of hBMSCs on TCP-S, as shown by alkaline phosphatase activity and gene expression for key osteogenic markers in the absence of additional osteogenic growth factors. Similarly, in vivo after a 12-week intramuscular implantation in dogs, TCP-S induced bone formation while TCP-B did not. It is most likely that the surface topography of calcium phosphate ceramics regulates primary cilia length and ciliary recruitment of p-TGFβ RII associated with osteogenesis and bone formation. This bioengineering control of osteogenesis via primary cilia modulation may represent a new type of biomaterial-based ciliotherapy for orthopedic, dental and maxillofacial surgery applications. The surface topography of synthetic biomaterials plays important roles in material-driven osteogenesis. The data presented herein have shown that the surface topography of calcium phosphate ceramics regulates mesenchymal stromal cells (e.g., human bone marrow mesenchymal stromal cells, hBMSCs) with respect to morphology, primary cilia structure and TGFβR recruitment to the cilium associated with osteogenic differentiation in vitro. Together with bone formation in vivo, our results suggested a new type of biomaterial-based ciliotherapy for orthopedic, dental and maxillofacial surgery by the bioengineering control of osteogenesis via primary cilia modulation. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Venus surface optical imaging from a balloon or a probe during descent : Monte Carlo simulation and the proposal of the experiment on TV-camera in transparency windows of a 1.02 and 0.85 microns

    NASA Astrophysics Data System (ADS)

    Ekonomov, A.

    2011-10-01

    The problem of imaging of the planet surfaces is a priority for space exploration, since the surface is crucial to study the origin mechanisms . However, if for other planets in the solar system conducted hundreds of experiments in this direction, for Venus there are only a few . This is due to an optically dense cloud cover in the upper atmosphere of Venus. Until now, the global picture is obtained only in radio wavelengths. First spacecraft to the board which was carried out large-scale location of Venus was on the Pioneer Venus Orbiter (1978), which carried out radar mapping of the surface. AMS Venus 15/16 (1978) have got on board the DBR with a resolution of 1-2 km, and Magellan (1989) had a DBR with a resolution of 100 m. During 1975-1982 Soviet leanders, being on a surface, have taken a number of panoramas with the high resolution of the order of shares of meter. Thus, there is a gap between the resolution of 100 m and shares of meter and it should be filled. Such experiment could be imaging from undercloud layer in a transparency window of 1 microns. Idea is not new, but technical study was not conducted.

  15. Venus surface optical imaging from a balloon or a probe during descent : Monte Carlo simulation and the proposal of the experiment on TV-camera in transparency windows of a 1.02 and 0.85 microns.

    NASA Astrophysics Data System (ADS)

    Ekonomov, A.

    2011-10-01

    The problem of imaging of the planet surfaces is a priority for space exploration, since the surface is crucial to study the origin mechanisms . However, if for other planets in the solar system conducted hundreds of experiments in this direction, for Venus there are only a few . This is due to an optically dense cloud cover in the upper atmosphere of Venus. Until now, the global picture is obtained only in radio wavelengths. First spacecraft to the board which was carried out large-scale location of Venus was on the Pioneer Venus Orbiter (1978), which carried out radar mapping of the surface. AMS Venus 15/16 (1978) have got on board the DBR with a resolution of 1-2 km, and Magellan (1989) had a DBR with a resolution of 100 m. During 1975-1982 Soviet leanders, being on a surface, have taken a number of panoramas with the high resolution of the order of shares of meter. Thus, there is a gap between the resolution of 100 m and shares of meter and it should be filled. Such experiment could be imaging from undercloud layer in a transparency window of 1 microns. Idea is not new, but technical study was not conducted.

  16. A Preliminary Study of Ice-Accretion Scaling for SLD Conditions

    NASA Technical Reports Server (NTRS)

    Anderson, David N.

    2003-01-01

    Proposed changes to aircraft icing certification rules are being considered by European, Canadian, and American regulatory agencies to include operation in super-cooled large droplet conditions (SLD). This paper reports results of an experimental study in the NASA Glenn Icing Research Tunnel (IRT) to evaluate how well scaling methods developed for Appendix C conditions might apply to SLD conditions. Until now, scaling studies have been confined to the FAA FAR-25 Appendix C envelope of atmospheric cloud conditions. Tests were made in which it was attempted to scale to a droplet MVD of 50 microns from clouds having droplet MVDs of 175, 120, 100, and 70 microns. Scaling was based on the Ruff method with scale velocities found either by maintaining constant Weber number or by using the average of the velocities obtained by maintaining constant Weber number and constant Reynolds number. Models were unswept NACA 0012 wing sections. The reference model had a chord of 91.4 cm. Scale models had chords of 91.4, 80.0, and 53.3 cm. Tests were conducted with reference airspeeds of 100 and 150 kt (52 and 77 m/s) and with freezing fractions of 1.0, 0.6, and 0.3. It was demonstrated that the scaled 50-micron cloud simulated well the non-dimensional ice shapes accreted in clouds with MVD's of 120 microns or less.

  17. Development of a Photoemission Surface for 1.06 Micron Wavelength

    DOT National Transportation Integrated Search

    1973-02-01

    Development of a negative affirmity photoemitter with 10% quantum effieciency at the Nd3+ laser wavelengths near 1.06 microns. : Observed quantum yield of 7.55% (electrons per incident photon - 11% per absorbed photon) at 1.06 microns, from an InGaAs...

  18. Development of Interference Lithography Capability Using a Helium Cadmium Ultraviolet Multimode Laser for the Fabrication of Sub-Micron-Structured Optical Materials

    DTIC Science & Technology

    2011-03-01

    into separate parts, transmitted into different directions , and then recombined upon a surface to produce interference. The concern with this type of...photoresist (PR), is a radiation sensitive compound that is classified as positive or negative, depending on how it responds to radiation . Each is designed...emerging waves, and are referred to as diffraction gratings. Upon reflection from these kinds of gratings, light scattered from the periodic surface

  19. Fabrication Method for LOBSTER-Eye Optics in <110> Silicon

    NASA Technical Reports Server (NTRS)

    Chervenak, James; Collier, Michael; Mateo, Jennette

    2013-01-01

    Soft x-ray optics can use narrow slots to direct x-rays into a desirable pattern on a focal plane. While square-pack, square-pore, slumped optics exist for this purpose, they are costly. Silicon (Si) is being examined as a possible low-cost replacement. A fabrication method was developed for narrow slots in <110> Si demonstrating the feasibility of stacked slot optics to replace micropores. Current micropore optics exist that have 20-micron-square pores on 26-micron pitch in glass with a depth of 1 mm and an extent of several square centimeters. Among several proposals to emulate the square pore optics are stacked slot chips with etched vertical slots. When the slots in the stack are positioned orthogonally to each other, the component will approach the soft x-ray focusing observed in the micropore optics. A specific improvement Si provides is that it can have narrower sidewalls between slots to permit greater throughput of x-rays through the optics. In general, Si can have more variation in slot geometry (width, length). Further, the sidewalls can be coated with high-Z materials to enhance reflection and potentially reduce the surface roughness of the reflecting surface. Narrow, close-packed deep slots in <110> Si have been produced using potassium hydroxide (KOH) etching and a patterned silicon nitride (SiN) mask. The achieved slot geometries have sufficient wall smoothness, as observed through scanning electron microscope (SEM) imaging, to enable evaluation of these slot plates as an optical element for soft x-rays. Etches of different angles to the crystal plane of Si were evaluated to identify a specific range of etch angles that will enable low undercut slots in the Si <110> material. These slots with the narrow sidewalls are demonstrated to several hundred microns in depth, and a technical path to 500-micron deep slots in a precision geometry of narrow, closepacked slots is feasible. Although intrinsic stress in ultrathin wall Si is observed, slots with walls approaching 1.5 microns can be achieved (a significant improvement over the 6-micron walls in micro - pore optics). The major advantages of this technique are the potential for higher x-ray throughout (due to narrow slot walls) and lower cost over the existing slumped micropore glass plates. KOH etching of smooth sidewalls has been demonstrated for many applications, suggesting its feasibility for implementation in x-ray optics. Si cannot be slumped like the micropore optics, so the focusing will be achieved with millimeter-scale slot plates that populate a spherical dome. The possibility for large-scale production exists for Si parts that is more difficult to achieve in micropore parts.

  20. Morphology transformations in tetrabutyl titanate-acetic acid system and sub-micron/micron hierarchical TiO2 for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Huang, Niu; Xie, Yanan; Sebo, Bobby; Liu, Yumin; Sun, Xiaohua; Peng, Tao; Sun, Weiwei; Bu, Chenghao; Guo, Shishang; Zhao, Xingzhong

    2013-11-01

    The concentration of tetrabutyl titanate (TBT) and H2O influence on the reaction kinetics of TBT and acetic acid (AcOH) solvothermal system are systematically studied. It is found that TBT and H2O have greatly accelerated the hydrolysis-condensation process of the TBT-AcOH system. By adjusting those concentrations with reaction time, we prepare five kinds of sub-micron/micron precursors, which are hierarchical structures consisting of different primary building blocks. The morphology of these precursors varies from noninterlaced structures composed of flower-like microsphere and ellipsoid sphere to interlaced structures composed of flower-like microsphere interlaced nanofibers, ellipsoid spheres interlaced flower-like microsphere and nanoparticles interlaced flower-like microsphere. These interlaced structures are synthesized for the first time and are not ordinary mixtures of the noninterlaced structures. After heat treatment, these precursors are transformed to anatase TiO2. Shape-dependent photovoltaic performances of dye-sensitized solar cells (DSSCs) are also discussed. DSSCs based on these hierarchical sub-micron/micron TiO2 show 7.3%-7.9% energy conversion efficiencies, and the devices based on interlaced structures have higher efficiencies (7.4%-7.9%) than those of the devices based on noninterlaced structures (7.3%-7.6%).

  1. Sub-micron elastic property characterization of materials using a near-field scanning optical microscope

    NASA Astrophysics Data System (ADS)

    Blodgett, David W.; Spicer, James B.

    2001-12-01

    The ability to characterize the sub-surface mechanical properties of a bulk or thin film material at the sub-micron level has applications in the microelectronics and thin film industries. In the microelectronics industry, with the decrease of line widths and the increase of component densities, sub-surface voids have become increasingly detrimental. Any voids along an integrated circuit (IC) line can lead to improper electrical connections between components and can cause failure of the device. In the thin film industry, the detection of impurities is also important. Any impurities can detract from the film's desired optical, electrical, or mechanical properties. Just as important as the detection of voids and impurities, is the measurement of the elastic properties of a material on the nanometer scale. These elastic measurements provide insight into the microstructural properties of the material. We have been investigating a technique that couples the high-resolution surface imaging capabilities of the apertureless near-field scanning optical microscope (ANSOM) with the sub-surface characterization strengths of high-frequency ultrasound. As an ultrasonic wave propagates, the amplitude decreases due to geometrical spreading, attenuation from absorption, and scattering from discontinuities. Measurement of wave speeds and attenuation provides the information needed to quantify the bulk or surface properties of a material. The arrival of an ultrasonic wave at or along the surface of a material is accompanied with a small surface displacement. Conventional methods for the ultrasound detection rely on either a contact transducer or optical technique (interferometric, beam deflection, etc.). However, each of these methods is limited by the spatial resolution dictated by the detection footprint. As the footprint size increases, variations across the ultrasonic wavefront are effectively averaged, masking the presence of any nanometer-scale sub-surface or surface mechanical property variations. The use of an ANSOM for sensing ultrasonic wave arrivals reduces the detection footprint allowing any nanometer scale variations in the microstructure of a material to be detected. In an ANSOM, the ultrasonic displacement is manifested as perturbations on the near-field signal due to the small variations in the tip-sample caused by the wave arrival. Due to the linear dependence of the near-field signal on tip-sample separation, these perturbations can be interpreted using methods identical to those for conventional ultrasonic techniques. In this paper, we report results using both contact transducer (5 MHz) and laser-generated ultrasound.

  2. Measurements of electron detection efficiencies in solid state detectors.

    NASA Technical Reports Server (NTRS)

    Lupton, J. E.; Stone, E. C.

    1972-01-01

    Detailed laboratory measurement of the electron response of solid state detectors as a function of incident electron energy, detector depletion depth, and energy-loss discriminator threshold. These response functions were determined by exposing totally depleted silicon surface barrier detectors with depletion depths between 50 and 1000 microns to the beam from a magnetic beta-ray spectrometer. The data were extended to 5000 microns depletion depth using the results of previously published Monte Carlo electron calculations. When the electron counting efficiency of a given detector is plotted as a function of energy-loss threshold for various incident energies, the efficiency curves are bounded by a smooth envelope which represents the upper limit to the detection efficiency. These upper limit curves, which scale in a simple way, make it possible to easily estimate the electron sensitivity of solid-state detector systems.

  3. Large Scale Variability of Mid-Tropospheric Carbon Dioxide as Observed by the Atmospheric Infrared Sounder (AIRS) on the NASA EOS Aqua Platform

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Olsen, Edward T.

    2012-01-01

    The Atmospheric Infrared Sounder (AIRS) is a hyperspectral infrared instrument on the EOS Aqua Spacecraft, launched on May 4, 2002. AIRS has 2378 infrared channels ranging from 3.7 microns to 15.4 microns and a 13.5 km footprint. AIRS, in conjunction with the Advanced Microwave Sounding Unit (AMSU), produces temperature profiles with 1K/km accuracy, water vapor profiles (20%/2km), infrared cloud height and fraction, and trace gas amounts for CO2, CO, SO2, O3 and CH4 in the mid to upper troposphere. AIRS wide swath(cedilla) +/-49.5 deg , enables daily global daily coverage for over 95% of the Earth's surface. AIRS data are used for weather forecasting, validating climate model distribution and processes, and observing long-range transport of greenhouse gases. In this study, we examine the large scale and regional horizontal variability in the AIRS Mid-tropospheric Carbon Dioxide product as a function of season and associate the observed variability with known atmospheric transport processes, and sources and sinks of CO2.

  4. Feasibility and process scale-up low cost alumina fibers for advanced Re-usable Surface Insulation (RSI)

    NASA Technical Reports Server (NTRS)

    Pearson, A.

    1975-01-01

    The objective of this program was to establish feasibility of a process to produce low cost aluminum oxide fibers having sufficient strength, flexibility, and thermal stability for multiple re-use at temperatures to 1480 C in advanced RSI type heat shields for reentry vehicles. Using bench-scale processing apparatus, the Alcoa 'Saphiber' process was successfully modified to produce nominally 8 microns diameter polycrystalline alpha-alumina fiber. Thermal stability was demonstrated in vacuum reheating tests to 1371 C and in atmospheric reheating to 1483 C. Individual fiber properties of strength, modulus, and flexibility were not determined because of friability and short length of the fiber. Rigidized tile produced from fiber of nominally 8, 20 and 40 micron diameter had thermal conductivities significantly higher than those of RSI SiO2 or mullite at relatively low temperature but became comparable above about 1000 C. Tile densities were high due to short fiber length, especially in the coarser diameter fiber. No significant effect of fiber diameter on thermal properties could be determined form the data. Mechanical properties of tiles deteriorated as fiber diameter increased.

  5. The study of voids in the AuAl thin-film system using the nuclear microprobe

    NASA Astrophysics Data System (ADS)

    de Waal, H. S.; Pretorius, R.; Prozesky, V. M.; Churms, C. L.

    1997-07-01

    A Nuclear Microprobe (NMP) was used to study void formation in thin film gold-aluminium systems. Microprobe Rutherford Backscattering Spectrometry (μRBS) was utilised to effectively obtain a three-dimensional picture of the void structure on the scale of a few nanometers in the depth dimension and a few microns in the in-plane dimension. This study illustrates the usefulness of the NMP in the study of materials and specifically thin-film structures.

  6. Rectangular Relief Diffraction Gratings for Coherent Lidar Beam Scanning

    NASA Technical Reports Server (NTRS)

    Cole, H. J.; Chambers, D. M.; Dixit, S. N.; Britten, J. A.; Shore, B. W.; Kavaya, M. J.

    1999-01-01

    The application of specialized rectangular relief transmission gratings to coherent lidar beam scanning is presented. Two types of surface relief transmission grating approaches are studied with an eye toward potential insertion of a constant thickness, diffractive scanner where refractive wedges now exist. The first diffractive approach uses vertically oriented relief structure in the surface of an optical flat; illumination of the diffractive scanner is off-normal in nature. The second grating design case describes rectangular relief structure slanted at a prescribed angle with respect to the surface. In this case, illumination is normal to the diffractive scanner. In both cases, performance predictions for 2.0 micron, circularly polarized light at beam deflection angles of 30 or 45 degrees are presented.

  7. In situ crosslinking of surface-initiated ring opening metathesis polymerization of polynorbornene for improved stability.

    PubMed

    Fursule, Ishan A; Abtahi, Ashkan; Watkins, Charles B; Graham, Kenneth R; Berron, Brad J

    2018-01-15

    In situ crosslinking is expected to increase the solvent stability of coatings formed by surface-initiated ring opening metathesis polymerization (SI ROMP). Solvent-associated degradation limits the utility of SI ROMP coatings. SI ROMP coatings have a unique capacity for post-functionalization through reaction of the unsaturated site on the polymer backbone. Any post-reaction scheme which requires a liquid solvent has the potential to degrade the coating and lower the thickness of the resulting film. We designed a macromolecular crosslinking group based on PEG dinorbornene. The PEG length is tailored to the expected mean chain to chain distance during surface-initiated polymerization. This crosslinking macromer is randomly copolymerized with norbornene through SI ROMP on a gold coated substrate. The solvent stability of polynorbornene coatings with and without PEG dinorbornene is quantitatively determined, and the mechanism of degradation is further supported through XPS and AFM analyses. The addition of the 0.25mol% PEG dinorbornene significantly increases the solvent stability of the SI ROMP coatings. The crosslinker presence in the more stable films is supported with observable PEG absorbances by FTIR and an increase in contact angle hysteresis when compared to non-crosslinked coatings. The oxidation of the SI ROMP coatings is supported by the observation of carbonyl oxygen in the polynorbornene coatings. The rapid loss of the non-crosslinked SI ROMP coating corresponds to nanoscale pitting across the surface and micron-scale regions of widespread film loss. The crosslinked coatings have uniform nanoscale pitting, but the crosslinked films show no evidence of micron-scale film damage. In all, the incorporation of minimal crosslinking content is a simple strategy for improving the solvent stability of SI ROMP coatings. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Thickness limitations in carbon nanotube reinforced silicon nitride coatings synthesized by vapor infiltration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eres, Gyula

    Chemical vapor infiltration is a convenient method for synthesizing carbon nanotube (CNT)-reinforced ceramic coatings. The thickness over which infiltration is relatively uniform is limited by gas phase diffusion in the pore structure. These effects were investigated in two types of silicon nitride matrix composites. With CNTs that were distributed uniformly on the substrate surface dense coatings were limited to thicknesses of several microns. With dual structured CNT arrays produced by photolithography coatings up to 400 gm thick were obtained with minimal residual porosity. Gas transport into these dual structured materials was facilitated by creating micron sized channels between "CNT pillars"more » (i.e. each pillar consisted of a large number of individual CNTs). The experimental results are consistent with basic comparisons between the rates of gas diffusion and silicon nitride growth in porous structures. This analysis also provides a general insight into optimizing infiltration conditions during the fabrication of thick CNT-reinforced composite coatings. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.« less

  9. Surface radiation budget for climate applications

    NASA Technical Reports Server (NTRS)

    Suttles, J. T. (Editor); Ohring, G. (Editor)

    1986-01-01

    The Surface Radiation Budget (SRB) consists of the upwelling and downwelling radiation fluxes at the surface, separately determined for the broadband shortwave (SW) (0 to 5 micron) and longwave (LW) (greater than 5 microns) spectral regions plus certain key parameters that control these fluxes, specifically, SW albedo, LW emissivity, and surface temperature. The uses and requirements for SRB data, critical assessment of current capabilities for producing these data, and directions for future research are presented.

  10. Amino Acid Analyses of Acid Hydrolysates in Desert Varnish

    NASA Technical Reports Server (NTRS)

    Perry, Randall S.; Staley, James T.; Dworkin, Jason P.; Engel, Mike

    2001-01-01

    There has long been a debate as to whether rock varnish deposits are microbially mediated or are deposited by inorganic processes. Varnished rocks are found throughout the world primarily in arid and semi-arid regions. The varnish coats are typically up to 200 microns thick and are composed of clays and alternating layers enriched in manganese and iron oxides. The individual layers range in thickness from 1 micron to greater than 10 microns and may continue laterally for more than a 100 microns. Overlapping botryoidal structures are visible in thin section and scanning electron micrographs. The coatings also include small amounts of organic mater and detrital grains. Amino-acid hydrolysates offer a means of assessing the organic composition of rock varnish collected from the Sonoran Desert, near Phoenix, AZ. Chromatographic analyses of hydrolysates from powdered samples of rock varnish suggest that the interior of rock varnish is relatively enriched in amino acids and specifically in d-alanine and glutamic acid. Peptidoglycan (murein) is the main structural component of gram-positive bacterial cell walls. The d-enantiomer of alanine and glutamic acid are specific to peptidoglycan and are consequently an indicator for the presence of bacteria. D-alanine is also found in teichoic acid which is only found in gram-positive bacteria. Several researchers have cultured bacteria from the surface of rock varnish and most have been gram-positive, suggesting that gram-positive bacteria are intimately associated with varnish coatings and may play a role in the formation of varnish coatings.

  11. Lunar dust charging by photoelectric emissions

    NASA Astrophysics Data System (ADS)

    Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, E. A.

    2007-05-01

    The lunar surface is covered with a thick layer of sub-micron/micron size dust grains formed by meteoritic impact over billions of years. The fine dust grains are levitated and transported on the lunar surface, as indicated by the transient dust clouds observed over the lunar horizon during the Apollo 17 mission. Theoretical models suggest that the dust grains on the lunar surface are charged by the solar ultraviolet (UV) radiation as well as the solar wind. Even without any physical activity, the dust grains are levitated by electrostatic fields and transported away from the surface in the near vacuum environment of the Moon. The current dust charging and levitation models, however, do not fully explain the observed phenomena. Since the abundance of dust on the Moon's surface with its observed adhesive characteristics has the potential of severe impact on human habitat and operations and lifetime of a variety of equipment, it is necessary to investigate the charging properties and the lunar dust phenomena in order to develop appropriate mitigating strategies. Photoelectric emission induced by the solar UV radiation with photon energies higher than the work function (WF) of the grain materials is recognized to be the dominant process for charging of the lunar dust, and requires measurements of the photoelectric yields to determine the charging and equilibrium potentials of individual dust grains. In this paper, we present the first laboratory measurements of the photoelectric efficiencies and yields of individual sub-micron/micron size dust grains selected from sample returns of Apollo 17 and Luna-24 missions as well as similar size dust grains from the JSC-1 simulants. The measurements were made on a laboratory facility based on an electrodynamic balance that permits a variety of experiments to be conducted on individual sub-micron/micron size dust grains in simulated space environments. The photoelectric emission measurements indicate grain size dependence with the yield increasing by an order of magnitude for grains of sub-micron to several micron size radii, at which it reaches asymptotic values. The yield for large size grains is found to be more than an order of magnitude higher than the bulk measurements on lunar fines reported in the literature.

  12. Laboratory Measurements of Optical and Physical Properties of Individual Lunar Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Tankosic, D.; Craven, P. D.; Hoover, R. B.

    2006-01-01

    The lunar surface is covered with a thick layer of sub-micron/micron size dust grains formed by meteoritic impact over billions of years. The fine dust grains are levitated and transported on the lunar surface, and transient dust clouds over the lunar horizon were observed by experiments during the Apollo 17 mission. Theoretical models suggest that the dust grains on the lunar surface are charged by the solar UV radiation as well as the solar wind. Even without any physical activity, the dust grains are levitated by electrostatic fields and transported away from the surface in the near vacuum environment of the Moon. The current dust charging and levitation models, however, do not fully explain the observed phenomena. Since the abundance of dust on the Moon's surface with its observed adhesive characteristics has the potential of severe impact on human habitat and operations and lifetime of a variety of equipment, it is necessary to investigate the charging properties and the lunar dust phenomena in order to develop appropriate mitigating strategies. Photoelectric emission induced by the solar UV radiation with photon energies higher than the work function of the grain materials is recognized to be the dominant process for charging of the lunar dust, and requires measurements of the photoelectric yields to determine the charging and equilibrium potentials of individual dust grains. In this paper, we present the first laboratory measurements of the photoelectric yields of individual sub-micron/micron size dust grains selected from sample returns of Apollo 17, and Luna 24 missions, as well as similar size dust grains from the JSC-1 simulants. The experimental results were obtained on a laboratory facility based on an electrodynamic balance that permits a variety of experiments to be conducted on individual sub-micron/micron size dust grains in simulated space environments. The photoelectric emission measurements indicate grain size dependence with the yield increasing by an order of magnitude for grains of radii sub-micron size to several micron radii, at which it reaches asymptotic values. The yield for large size grains is found to be more than an order of magnitude higher than the bulk measurements on lunar fines reported in the literature.

  13. Lunar Dust Charging by Photoelectric Emissions

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, E. A.

    2007-01-01

    The lunar surface is covered with a thick layer of sub-micron/micron size dust grains formed by meteoritic impact over billions of years. The fine dust grains are levitated and transported on the lunar surface, as indicated by the transient dust clouds observed over the lunar horizon during the Apollo 17 mission. Theoretical models suggest that the dust grains on the lunar surface are charged by the solar ultraviolet (UV) radiation as well as the solar wind. Even without any physical activity, the dust grains are levitated by electrostatic fields and transported away from the surface in the near vacuum environment of the Moon. The current dust charging and levitation models, however, do not fully explain the observed phenomena. Since the abundance of dust on the Moon's surface with its observed adhesive characteristics has the potential of severe impact on human habitat and operations and lifetime of a variety of equipment, it is necessary to investigate the charging properties and the lunar dust phenomena in order to develop appropriate mitigating strategies. Photoelectric emission induced by the solar UV radiation with photon energies higher than the work function (WF) of the grain materials is recognized to be the dominant process for charging of the lunar dust, and requires measurements of the photoelectric yields to determine the charging and equilibrium potentials of individual dust grains. In this paper, we present the first laboratory measurements of the photoelectric efficiencies and yields of individual sub-micron/micron size dust grains selected from sample returns of Apollo 17 and Luna-24 missions as well as similar size dust grains from the JSC-1 simulants. The measurements were made on a laboratory facility based on an electrodynamic balance that permits a variety of experiments to be conducted on individual sub-micron/micron size dust grains in simulated space environments. The photoelectric emission measurements indicate grain size dependence with the yield increasing by an order of magnitude for grains of sub-micron to several micron size radii, at which it reaches asymptotic values. The yield for large size grains is found to be more than an order of magnitude higher than the bulk measurements on lunar fines reported in the literature.

  14. Lunar Dust Charging by Photoelectric Emissions

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, E. A.

    2007-01-01

    The lunar surface is covered with a thick layer of sub-micron/micron size dust grains formed by meteoritic impact over billions of years. The fine dust grains are levitated and transported on the lunar surface, as indicated by the transient dust clouds observed over the lunar horizon during the Apollo 17 mission. Theoretical models suggest that the dust grains on the lunar surface are charged by the solar UV radiation as well as the solar wind. Even without any physical activity, the dust grains are levitated by electrostatic fields and transported away from the surface in the near vacuum environment of the Moon. The current dust charging and levitation models, however, do not fully explain the observed phenomena. Since the abundance of dust on the Moon s surface with its observed adhesive characteristics has the potential of severe impact on human habitat and operations and lifetime of a variety of equipment, it is necessary to investigate the charging properties and the lunar dust phenomena in order to develop appropriate mitigating strategies. Photoelectric emission induced by the solar UV radiation with photon energies higher than the work function of the grain materials is recognized to be the dominant process for charging of the lunar dust, and requires measurements of the photoelectric yields to determine the charging and equilibrium potentials of individual dust grains. In this paper, we present the first laboratory measurements of the photoelectric efficiencies and yields of individual sub-micron/micron size dust grains selected from sample returns of Apollo 17, and Luna 24 missions, as well as similar size dust grains from the JSC-1 simulants. The measurements were made on a laboratory facility based on an electrodynamic balance that permits a variety of experiments to be conducted on individual sub-micron/micron size dust grains in simulated space environments. The photoelectric emission measurements indicate grain size dependence with the yield increasing by an order of magnitude for grains of sub-micron to several micron size radii, at which it reaches asymptotic values. The yield for large size grains is found to be more than an order of magnitude higher than the bulk measurements on lunar fines reported in the literature.

  15. The formation of hydrogen permeation barriers on steels by aluminising

    NASA Astrophysics Data System (ADS)

    Forcey, K. S.; Ross, D. K.; Wu, C. H.

    1991-06-01

    An extensive investigation has been carried out into the effectiveness of aluminised layers as permeation barriers on AISI 316L stainless and DIN 1.4914 martensitic steels. The study involved measurement of the hydrogen permeation rate through commercially aluminised steel discs of thicknesses in the range 1-1.6 mm, at temperatures between 250 and 600 °C and for an upstream hydrogen pressure of 10 5 Pa. The composition and structure of the aluminide layers were investigated by a number of techniques such as SEM, electron beam microprobe and X-ray diffraction. Accelerator based techniques such as RBS and NRA were employed to study the top micron or so of the surfaces of the samples. By these techniques it was found that the effectiveness of the permeation barrier depended on the formation of a thin surface oxide layer consisting of Al 2O 3. It was found that the permeation rate through the aluminised steels could be reduced by 3-4 orders of magnitude by forming a surface oxide layer up to a micron or so in thickness.

  16. Sensitivity of MODIS 2.1 micron Channel for Off-Nadir View Angles for Use in Remote Sensing of Aerosol

    NASA Technical Reports Server (NTRS)

    Gatebe, C. K.; King, M. D.; Tsay, S.-C.; Ji, Q.

    2000-01-01

    Remote sensing of aerosol over land, from MODIS will be based on dark targets using mid-IR channels 2.1 and 3.9 micron. This approach was developed by Kaufman et al (1997), who suggested that dark surface reflectance in the red (0.66 micron -- rho(sub 0.66)) channel is half of that at 2.2 micron (rho(sub 2.2)), and the reflectance in the blue (0.49 micron - rho(sub 0.49)) channel is a quarter of that at 2.2 micron. Using this relationship, the surface reflectance in the visible channels can be predicted within Delta.rho(sub 0.49) approximately Delat.rho(sub 0.66) approximately 0.006 from rho(sub 2.2) for rho(sub 2.2) <= 0.10. This was half the error obtained using the 3.75 micron and corresponds to an error in aerosol optical thickness of Delat.tau approximately 0.06. These results, though applicable to several biomes (e.g. forests, and brighter lower canopies), have only been tested at one view angle - the nadir (theta = 0 deg). Considering the importance of the results in remote sensing of aerosols over land surfaces from space, we are validating the relationships for off-nadir view angles using Cloud Absorption Radiometer (CAR) data. The CAR data are available for channels between 0.3 and 2.3 micron and for different surface types and conditions: forest, tundra, ocean, sea-ice, swamp, grassland and over areas covered with smoke. In this study we analyzed data collected during the Smoke, Clouds, and Radiation - Brazil (SCAR-B) experiment to validate Kaufman et al.'s (1997) results for non-nadir view angles. We will show the correlation between rho(sub 0.472), rho(sub 0.675), and rho(sub 2.2) for view angles between nadir (0 deg) and 55 deg off-nadir, and for different viewing directions in the backscatter and forward scatter directions.

  17. Mars 2001 Mission: Addressing Scientific Questions Regarding the Characteristics and Origin of Local Bedrock and Soil

    NASA Technical Reports Server (NTRS)

    Saunders, R. S.; Arvidson, R. E.; Weitz, C. M.; Marshall, J.; Squyres, S. W.; Christensen, P. R.; Meloy, T.; Smith, P.

    1999-01-01

    The Mars Surveyor Program 2001 Mission will carry instruments on the orbiter, lander and rover that will support synergistic observations and experiments to address important scientific questions regarding the local bedrock and soils. The martian surface is covered in varying degrees by fine materials less than a few mms in size. Viking and Pathfinder images of the surface indicate that soils at those sites are composed of fine particles. Wheel tracks from the Sojourner rover suggest that soil deposits are composed of particles <40 mm. Viking images show that dunes are common in many areas on Mars and new MOC images indicate that dunes occur nearly everywhere. Dunes on Mars are thought to be composed of 250-500 microns particles based upon Viking IRTM data and Mars wind tunnel experiments. If martian dunes are composed of sand particles > 100 microns and soils are dominated by <10 micron particles, then where are the intermediate grain sizes? Have they been wom away through prolonged transport over the eons? Were they never generated to begin with? Or are they simply less easy to identify because do they not form distinctive geomorphic features such as dunes or uniform mantles that tend to assume superposition in the soil structure?

  18. Galaxy evolution and large-scale structure in the far-infrared. I - IRAS pointed observations

    NASA Astrophysics Data System (ADS)

    Lonsdale, Carol J.; Hacking, Perry B.

    1989-04-01

    Redshifts for 66 galaxies were obtained from a sample of 93 60-micron sources detected serendipitously in 22 IRAS deep pointed observations, covering a total area of 18.4 sq deg. The flux density limit of this survey is 150 mJy, 4 times fainter than the IRAS Point Source Catalog (PSC). The luminosity function is similar in shape with those previously published for samples selected from the PSC, with a median redshift of 0.048 for the fainter sample, but shifted to higher space densities. There is evidence that some of the excess number counts in the deeper sample can be explained in terms of a large-scale density enhancement beyond the Pavo-Indus supercluster. In addition, the faintest counts in the new sample confirm the result of Hacking et al. (1989) that faint IRAS 60-micron source counts lie significantly in excess of an extrapolation of the PSC counts assuming no luminosity or density evolution.

  19. Galaxy evolution and large-scale structure in the far-infrared. I. IRAS pointed observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lonsdale, C.J.; Hacking, P.B.

    1989-04-01

    Redshifts for 66 galaxies were obtained from a sample of 93 60-micron sources detected serendipitously in 22 IRAS deep pointed observations, covering a total area of 18.4 sq deg. The flux density limit of this survey is 150 mJy, 4 times fainter than the IRAS Point Source Catalog (PSC). The luminosity function is similar in shape with those previously published for samples selected from the PSC, with a median redshift of 0.048 for the fainter sample, but shifted to higher space densities. There is evidence that some of the excess number counts in the deeper sample can be explained inmore » terms of a large-scale density enhancement beyond the Pavo-Indus supercluster. In addition, the faintest counts in the new sample confirm the result of Hacking et al. (1989) that faint IRAS 60-micron source counts lie significantly in excess of an extrapolation of the PSC counts assuming no luminosity or density evolution. 81 refs.« less

  20. Galaxy evolution and large-scale structure in the far-infrared. I - IRAS pointed observations

    NASA Technical Reports Server (NTRS)

    Lonsdale, Carol J.; Hacking, Perry B.

    1989-01-01

    Redshifts for 66 galaxies were obtained from a sample of 93 60-micron sources detected serendipitously in 22 IRAS deep pointed observations, covering a total area of 18.4 sq deg. The flux density limit of this survey is 150 mJy, 4 times fainter than the IRAS Point Source Catalog (PSC). The luminosity function is similar in shape with those previously published for samples selected from the PSC, with a median redshift of 0.048 for the fainter sample, but shifted to higher space densities. There is evidence that some of the excess number counts in the deeper sample can be explained in terms of a large-scale density enhancement beyond the Pavo-Indus supercluster. In addition, the faintest counts in the new sample confirm the result of Hacking et al. (1989) that faint IRAS 60-micron source counts lie significantly in excess of an extrapolation of the PSC counts assuming no luminosity or density evolution.

  1. Microstructure of a black chrome solar selective absorber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lampert, C.M.

    1978-08-01

    The structure of Harshaw Chemicals' CHROM-ONYX type of black chrome/metal selective absorber was studied to gain a better understanding of its influence upon the mechanism of wavelength selectivity. Spectral reflectance measurements were performed on seven samples. In this study, the best selectivity was found by these measurements to be 1.0 micron of black chrome on copper and 0.7 micron of black chrome on nickel. Both transmission and scanning electron microscopy were employed to study microstructure and chemical composition. As a result of the combined studies, some effects of black chrome thickness and the metallic substrate were determined. It was foundmore » that black chrome consisted of a very fine metallic distribution of particles of chromium, possibly suspended within a matrix of an oxide of chromium. This combination was, in turn, agglomerated into larger particles within the 0.05--0.3 micron size range. These larger particles formed a network which constituted the surface coating.« less

  2. Clustering of the Diffuse Infrared Light from the COBE DIRBE Maps. 3; Power Spectrum Analysis and Excess Isotropic Component of Fluctuations

    NASA Technical Reports Server (NTRS)

    Kashlinsky, A.; Mather, J. C.; Odenwald, S.

    1999-01-01

    The cosmic infrared background (CIB) radiation is the cosmic repository for energy release throughout the history of the universe. The spatial fluctuations of the CIB resulting from galaxy clustering are expected to be at least a few percent on scales of a degree, depending on the luminosity and clustering history of the early universe. Using the all-sky data from the COBE DIRBE instrument at wavelengths 1.25 - 100 microns we attempt to measure the CIB fluctuations. In the near-IR, foreground emission is dominated by small scale structure due to stars in the Galaxy. There we find a strong correlation between the amplitude of the fluctuations and Galactic latitude after removing bright foreground stars. Using data outside the Galactic plane (absolute value of b > 20 deg) and away from the center (90 deg < l < 270 deg) we extrapolate the amplitude of the fluctuations to cosec absolute value of b = 0. We find a positive intercept of delta.F(sub rms) = 15.5(sup +3.7, sub -7.0), 5.9(sup +1.6, sub -3.7), 2.4(sup +0.5, sub -0.9), 2.0(sup +0.25, sub -0.5) nW/sq m.sr at 1.25, 2.2, 3.5 and 4.9 microns respectively, where the errors are the range of 92% confidence limits. For color subtracted maps between band 1 and 2 we find the isotropic part of the fluctuations at 7.6(sup +1.2, sub -2.4) nW/sq m.sr. Based on detailed numerical and analytic models, this residual is not likely to originate from the Galaxy, our clipping algorithm, or instrumental noise. We demonstrate that the residuals from the fit used in the extrapolation are distributed isotropically and suggest that this extra variance may result from structure in the CIB. We also obtain a positive intercept from a linear combination of maps at 1.25 and 2.2 microns. For 2 deg < theta < 15 deg, a power-spectrum analysis yields limits of (theta/5 deg) x delta.F(sub rms)(theta) < 6, 2.5, 0.8, 0.5 nW/sq m.sr at 1.25, 2.2, 3.5 and 4.9 microns respectively. From 10 - 100 microns, the dominant foregrounds are emission by dust in the Solar system and the Galaxy. There the upper limits on the CIB fluctuations are below 1 nW/sq m.sr and are lowest (< equal 0.5 nW/sq m.sr) at 25 microns.

  3. Effects of surface contamination on the infrared emissivity and visible-light scattering of highly reflective surfaces at cryogenic temperatures

    NASA Technical Reports Server (NTRS)

    Viehmann, W.; Eubanks, A. G.

    1972-01-01

    A technique is described for the simultaneous in situ measurement of film thickness, refractive index, total normal emissivity, visible-light scattering, and reflectance of contaminant films on a highly reflective liquid-nitrogen cooled, stainless steel substrate. Emissivities and scattering data are obtained for films of water, carbon dioxide, silicone oil, and a number of aromatic and aliphatic hydrocarbons as a function of film thickness between zero and 20 microns. Of the contaminants investigated, water has by far the greatest effect on emissivity, followed by silicone oil, aliphatic hydrocarbons, aromatic hydrocarbons, and carbon dioxide. The emissivity increases more rapidly with film thickness between zero and 2.5 microns than at thicknesses greater than 2.5 microns. Scattering of visible light changes very little below 2 microns thickness but increases rapidly with thickness beyond 2 to 3 microns. The effect of contaminant films on passive radiation coolers is discussed.

  4. Selective coating for solar panels. [using black chrome and black nickel

    NASA Technical Reports Server (NTRS)

    Mcdonald, G. E. (Inventor)

    1977-01-01

    The energy absorbing properties of solar heating panels are improved by depositing a black chrome coating of controlled thickness on a specially prepared surface of a metal substrate. The surface is prepared by depositing a dull nickel on the substrate, and the black chrome is plated on this low emittance surface to a thickness between 0.5 micron and 2.5 microns.

  5. Multistage polymeric lens structure in silica-waveguides for photonic functional circuits

    NASA Astrophysics Data System (ADS)

    Tate, Atsushi; Suzuki, Takanori; Tsuda, Hiroyuki

    2005-04-01

    A waveguide lens composed of multistage polymer-filled thin grooves in a silica planar lightwave circuit (PLC) is proposed and the low-loss structure is designed. Both an imaging optical system and a Fourier-Transform optical system can be configured in a PLC by use of a waveguide lens. It makes a PLC functional and its design flexible. Moreover, a focal length of a lens is tunable with large thermo-optic effect of the polymer. A concatenated lens is formed to attain a desirable focal length with low-loss. The thickness of each lens and the spacing are about 10-50 microns. The simulation showed that the radiation loss of the light propagate through 20-stage grooves filled with a polymer was only 0.868 dB when the refractive index of the polymer was 1.57, the groove width was 30 microns, and the spacing between adjacent grooves was 15 microns. For example, the single lens structure that the center thickness is 30 microns, the diameter is 300 microns, and the refractive index of the polymer was 1.57, have a focal length of 4600 microns. The focal length of 450 microns can be obtained with 20-stage concatenated lens structure. The larger numerical aperture can be realized with a polymer of higher refractive index. We have applied the concatenated lens structure to various photonic circuits including optical couplers, a variable optical attenuator.

  6. Measurements of Photoelectric Yield and Physical Properties of Individual Lunar Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, F. A.; Taylor, L.; Hoover, R.

    2005-01-01

    Micron size dust grains levitated and transported on the lunar surface constitute a major problem for the robotic and human habitat missions for the Moon. It is well known since the Apollo missions that the lunar surface is covered with a thick layer of micron/sub-micron size dust grains. Transient dust clouds over the lunar horizon were observed by experiments during the Apollo 17 mission. Theoretical models suggest that the dust grains on the lunar surface are charged by the solar UV radiation as well as the solar wind. Even without any physical activity, the dust grains are levitated by electrostatic fields and transported away from the surface in the near vacuum environment of the Moon. The current dust charging and the levitation models, however, do not fully explain the observed phenomena. Since the abundance of dust on the Moon's surface with its observed adhesive characteristics is believed to have a severe impact on the human habitat and the lifetime and operations of a variety of equipment, it is necessary to investigate the phenomena and the charging properties of the lunar dust in order to develop appropriate mitigating strategies. We will present results of some recent laboratory experiments on individual micro/sub-micron size dust grains levitated in electrodynamic balance in simulated space environments. The experiments involve photoelectric emission measurements of individual micron size lunar dust grains illuminated with UV radiation in the 120-160 nm wavelength range. The photoelectric yields are required to determine the charging properties of lunar dust illuminated by solar UV radiation. We will present some recent results of laboratory measurement of the photoelectric yields and the physical properties of individual micron size dust grains from the Apollo and Luna-24 sample returns as well as the JSC-1 lunar simulants.

  7. Micron-scale mapping of megagauss magnetic fields using optical polarimetry to probe hot electron transport in petawatt-class laser-solid interactions.

    PubMed

    Chatterjee, Gourab; Singh, Prashant Kumar; Robinson, A P L; Blackman, D; Booth, N; Culfa, O; Dance, R J; Gizzi, L A; Gray, R J; Green, J S; Koester, P; Kumar, G Ravindra; Labate, L; Lad, Amit D; Lancaster, K L; Pasley, J; Woolsey, N C; Rajeev, P P

    2017-08-21

    The transport of hot, relativistic electrons produced by the interaction of an intense petawatt laser pulse with a solid has garnered interest due to its potential application in the development of innovative x-ray sources and ion-acceleration schemes. We report on spatially and temporally resolved measurements of megagauss magnetic fields at the rear of a 50-μm thick plastic target, irradiated by a multi-picosecond petawatt laser pulse at an incident intensity of ~10 20 W/cm 2 . The pump-probe polarimetric measurements with micron-scale spatial resolution reveal the dynamics of the magnetic fields generated by the hot electron distribution at the target rear. An annular magnetic field profile was observed ~5 ps after the interaction, indicating a relatively smooth hot electron distribution at the rear-side of the plastic target. This is contrary to previous time-integrated measurements, which infer that such targets will produce highly structured hot electron transport. We measured large-scale filamentation of the hot electron distribution at the target rear only at later time-scales of ~10 ps, resulting in a commensurate large-scale filamentation of the magnetic field profile. Three-dimensional hybrid simulations corroborate our experimental observations and demonstrate a beam-like hot electron transport at initial time-scales that may be attributed to the local resistivity profile at the target rear.

  8. Microscopy of Analogs for Martian Dust and Soil

    NASA Technical Reports Server (NTRS)

    Anderson, M. A.; Pike, W. T.; Weitz, C. M.

    1999-01-01

    The upcoming Mars 2001 lander will carry an atomic force microscope (AFM) as part of the Mars Environmental Compatibility Assessment (MECA) payload. By operating in a tapping mode, the AFM is capable of sub-nanometer resolution in three dimensions and can distinguish between substances of different compositions by employing phase-contrast imaging. Phase imaging is an extension of tapping-mode AFM that provides nanometer-scale information about surface composition not revealed in the topography. Phase imaging maps the phase of the cantilever oscillation during the tapping mode scan, hence detecting variations in composition, adhesion, friction, and viscoelasticity. Because phase imaging highlights edges and is not affected by large-scale height differences, it provides for clearer observation of fine features, such as grain edges, which can be obscured by rough topography. To prepare for the Mars 01 mission, we are testing the AFM on a lunar soil and terrestrial basaltic glasses to determine the AFMOs ability to define particle shapes and sizes and grain-surface textures. The test materials include the Apollo 17 soil 79221, which is a mixture of agglutinates, impact and volcanic beads, and mare and highland rock and mineral fragments. The majority of the lunar soil particles are less than 100 microns in size, comparable to the sizes estimated for Martian dust. The terrestrial samples are millimeter size basaltic glasses collected on Black Pointe at Mono Lake, just north of the Long Valley caldera in California. The basaltic glass formed by a phreatomagmatic eruption 13,000 years ago beneath a glacier that covered the Mono Lake region. Because basaltic glass formed by reworking of pyroclastic deposits may represent a likely source for Martian dunes, these basaltic glass samples represent plausible analogs to the types of particles that may be studied in sand dunes by the 01 lander and rover. We have used the AFM to examine several different soil particles at various resolutions. The instrument has demonstrated the ability to identify parallel ridges characteristic of twinning on a 150-micron plagioclase feldspar particle. Extremely small (10-100 nanometer) adhering particles are visible on the surface of the feldspar grain, and appear elongate with smooth surfaces. Phase contrast imaging of the nanometer particles shows several compositions to be present. When the AFM was applied to a 100-micron glass spherule, it was possible to define an extremely smooth surface.E Also visible on the surface of the glass spherule were chains of 100-nanometer- and-smaller impact melt droplets. Additional information is contained in the original extended abstract.

  9. Fully automated three-dimensional microscopy system

    NASA Astrophysics Data System (ADS)

    Kerschmann, Russell L.

    2000-04-01

    Tissue-scale structures such as vessel networks are imaged at micron resolution with the Virtual Tissue System (VT System). VT System imaging of cubic millimeters of tissue and other material extends the capabilities of conventional volumetric techniques such as confocal microscopy, and allows for the first time the integrated 2D and 3D analysis of important tissue structural relationships. The VT System eliminates the need for glass slide-mounted tissue sections and instead captures images directly from the surface of a block containing a sample. Tissues are en bloc stained with fluorochrome compounds, embedded in an optically conditioned polymer that suppresses image signals form dep within the block , and serially sectioned for imaging. Thousands of fully registered 2D images are automatically captured digitally to completely convert tissue samples into blocks of high-resolution information. The resulting multi gigabyte data sets constitute the raw material for precision visualization and analysis. Cellular function may be seen in a larger anatomical context. VT System technology makes tissue metrics, accurate cell enumeration and cell cycle analyses possible while preserving full histologic setting.

  10. Longitudinal Proximity Effect, Lateral Inverse Proximity Effect, and Nonequilibrium Superconductivity in Transition-edge Sensors

    NASA Technical Reports Server (NTRS)

    Sadleir, John E.

    2010-01-01

    We have recently shown that normal-metal/superconductor (N/S) bilayer TESs (superconducting Transition-Edge Sensors) exhibit weak-link behavior. Our measurements were explained in terms of a longitudinal proximity effect model in which superconducting order from the higher transition temperature leads is induced into the TES bilayer plane over remarkably long distances (up to 290 micron). Here we extend our understanding to include TESs with added noise-mitigating normal-metal structures (N structures). We explain our results of an effect converse to the longitudinal proximity effect (LoPE), the lateral inverse proximity effect (LaiPE), for which the order parameter in the N/S bilayer is reduced due to the neighboring N structures. We present resistance and critical current measurements as a function of temperature and magnetic field taken on square Mo/Au bilayer TESs with lengths ranging from 8 to 130 micron with and without added N structures. We observe the inverse proximity effect on the bilayer over in-plane distances many tens of microns and find the transition shifts to lower temperature scale approximately as the inverse square of the in-plane N-structure separation distance, without appreciable broadening of the transition width. We find TESs with added Au structures exhibit weak-link behavior as evidenced by exponential temperature dependence of the critical current and Josephson-like oscillations of the critical current with applied magnetic field. We also present evidence for nonequilbrium superconductivity and estimate a quasiparticle lifetime of 1.8 x 10(exp -10) s for the bilayer. The LoPE model is also used to explain the increased conductivity at temperatures above the bilayer's steep resistive transition

  11. Longitudinal Proximity Effect, Lateral Inverse Proximity Effect, and Nonequilibrium Superconductivity in Transition-Edge Sensors

    NASA Technical Reports Server (NTRS)

    Sadleir, John E.

    2010-01-01

    We have recently shown that normal-metal/superconductor (N /S) bilayer TESs (superconducting Transition-Edge Sensors) exhibit weak-link behavior. Our measurements were explained in terms of a longitudinal proximity effect model in which superconducting order from the higher transition temperature leads is induced into the TES bilayer plane over remarkably long distances (up to 290 micron). Here we extend our understanding to include TESs with added noise-mitigating normal-metal structures (N structures). We explain our results in terms of an effect converse to the longitudinal proximity effect (LoPE), the lateral inverse proximity effect (LaiPE), for which the order parameter in the N /S bilayer is reduced due to the neighboring N structures. We present resistance and critical current measurements as a function of temperature and magnetic field taken on square Mo/Au bilayer TESs with lengths ranging from 8 to 130 micron with and without added N structures. We observe the inverse proximity effect on the bilayer over in-plane distances many tens of microns and find the transition shifts to lower temperatures scale approximately as the inverse square of the in-plane N-structure separation distance, without appreciable broadening of the transition width. We find TESs with added Au structures exhibit weak-link behavior as evidenced by exponential temperature dependence of the critical current and Josephson-like oscillations of the critical current with applied magnetic field. We also present evidence for nonequilbrium superconductivity and estimate a quasiparticle lifetime of 1.8 x 10(exp -10) s for the bilayer. The LoPE model is also used to explain the increased conductivity at temperatures above the bilayer's steep resistive transition.

  12. Organic Matter Stabilization in Soil Microaggregates: Implications from Spatial Heterogeneity of Organic Carbon Contents and Carbon Forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehmann,J.; Kinyangi, J.; Solomon, D.

    2007-01-01

    This study investigates the spatial distribution of organic carbon (C) in free stable microaggregates (20-250 {mu}m; not encapsulated within macroaggregates) from one Inceptisol and two Oxisols in relation to current theories of the mechanisms of their formation. Two-dimensional micro- and nano-scale observations using synchrotron-based Fourier-transform infrared (FTIR) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy yielded maps of the distribution of C amounts and chemical forms. Carbon deposits were unevenly distributed within microaggregates and did not show any discernable gradients between interior and exterior of aggregates. Rather, C deposits appeared to be patchy within the microaggregates. In contrast to themore » random location of C, there were micron-scale patterns in the spatial distribution of aliphatic C-H (2922 cm-1), aromatic C=C and N-H (1589 cm-1) and polysaccharide C-O (1035 cm-1). Aliphatic C forms and the ratio of aliphatic C/aromatic C were positively correlated (r 2 of 0.66-0.75 and 0.27-0.59, respectively) to the amount of O-H on kaolinite surfaces (3695 cm-1), pointing at a strong role for organo-mineral interactions in C stabilization within microaggregates and at a possible role for molecules containing aliphatic C-H groups in such interactions. This empirical relationship was supported by nanometer-scale observations using NEXAFS which showed that the organic matter in coatings on mineral surfaces had more aliphatic and carboxylic C with spectral characteristics resembling microbial metabolites than the organic matter of the entire microaggregate. Our observations thus support models of C stabilization in which the initially dominant process is adsorption of organics on mineral surfaces rather than occlusion of organic debris by adhering clay particles.« less

  13. Track chambers based on precision drift tubes housed inside 30 mm mylar pipe

    NASA Astrophysics Data System (ADS)

    Borisov, A.; Bozhko, N.; Fakhrutdinov, R.; Kozhin, A.; Leontiev, B.; Levin, A.

    2014-06-01

    We describe drift chambers consisting of 3 layers of 30 mm (OD) drift tubes made of double sided aluminized mylar film with thickness 0.125 mm. A single drift tube is self-supported structure withstanding 350 g tension of 50 microns sense wire located in the tube center with 10 microns precision with respect to end-plug outer surface. Such tubes allow to create drift chambers with small amount of material, construction of such chambers doesn't require hard frames. Twenty six chambers with working area from 0.8 × 1.0 to 2.5 × 2.0 m2 including 4440 tubes have been manufactured for experiments at 70-GeV proton accelerator at IHEP(Protvino).

  14. A new radiotherapy surface dose detector:the MOSFET.

    PubMed

    Butson, M J; Rozenfeld, A; Mathur, J N; Carolan, M; Wong, T P; Metcalfe, P E

    1996-05-01

    Radiotherapy x-ray and electron beam surface doses are accurately measurable by use of a MOS-FET detector system. The MOSFET (Metal Oxide Semiconductor Field Effect Transistor) is approximately 200-microns in diameter and consists of a 0.5-microns Al electrode on top of a 1-microns SiO2 and 300-microns Si substrate. Results for % surface dose were within +/- 2% compared to the Attix chamber and within +/- 3% of TLD extrapolation results for normally incident beams. Detectors were compared using different energies, field size, and beam modifying devices such as block trays and wedges. Percentage surface dose for 10 x 10-cm and 40 x 40-cm field size for 6-MV x rays at 100-cm SSD using the MOSFET were 16% and 42% of maximum, respectively. Factors such as its small size, immediate retrieval of results, high accuracy attainable from low applied doses, and as the MOSFET records its dose history make it a suitable in vivo dosimeter where surface and skin doses need to be determined. This can be achieved within part of the first fraction of dose (i.e., only 10 cGy is required.)

  15. Modification of the sample's surface of hypereutectic silumin by pulsed electron beam

    NASA Astrophysics Data System (ADS)

    Rygina, M. E.; Ivanov, Yu F.; Lasconev, A. P.; Teresov, A. D.; Cherenda, N. N.; Uglov, V. V.; Petricova, E. A.; Astashinskay, M. V.

    2016-04-01

    The article presents the results of the analysis of the elemental and phase composition, defect substructures. It demonstrates strength and tribological characteristics of the aluminium-silicon alloy of the hypereutectic composition in the cast state and after irradiation with a high-intensity pulsed electron beam of a submillisecond exposure duration (a Solo installation, Institute of High Current Electrons of the Siberian Branch of the Russian Academy of Sciences). The research has been conducted using optical and scanning electron microscopy, and the X-ray phase analysis. Mechanical properties have been characterized by microhardness, tribological properties - by wear resistance and the friction coefficient value. Irradiation of silumin with the high-intensity pulsed electron beam has led to the modification of the surface layer up to 1000 microns thick. The surface layer with the thickness of up to 100 microns is characterized by melting of all phases present in the alloy; subsequent highspeed crystallization leads to the formation of a submicro- and nanocrystalline structure in this layer. The hardness of the modified layer decreases with the increasing distance from the surface exposure. The hardness of the surface layer is more than twice the hardness of cast silumin. Durability of silumin treated with a high intensity electron beam is ≈ 1, 2 times as much as the wear resistance of the cast material.

  16. Sub-microanalysis of solid samples with near-field enhanced atomic emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Xiaohua; Liang, Zhisen; Meng, Yifan; Wang, Tongtong; Hang, Wei; Huang, Benli

    2018-03-01

    A novel approach, which we have chosen to name it as near-field enhanced atomic emission spectroscopy (NFE-AES), was proposed by introducing a scanning tunnelling microscope (STM) system into a laser-induced breakdown spectrometry (LIBS). The near-field enhancement of a laser-illuminated tip was utilized to improve the lateral resolution tremendously. Using the hybrid arrangement, pure metal tablets were analyzed to verify the performance of NFE-AES both in atmosphere and in vacuum. Due to localized surface plasmon resonance (LSPR), the incident electromagnetic field is enhanced and confined at the apex of tip, resulting in sub-micron scale ablation and elemental emission signal. We discovered that the signal-to-noise ratio (SNR) and the spectral resolution obtained in vacuum condition are better than those acquired in atmospheric condition. The quantitative capability of NFE-AES was demonstrated by analyzing Al and Pb in Cu matrix, respectively. Submicron-sized ablation craters were achieved by performing NFE-AES on a Si wafer with an Al film, and the spectroscopic information from a crater of 650 nm diameter was successfully obtained. Due to its advantage of high lateral resolution, NFE-AES imaging of micro-patterned Al lines on an integrated circuit of a SIM card was demonstrated with a sub-micron lateral resolution. These results reveal the potential of the NFE-AES technique in sub-microanalysis of solids, opening an opportunity to map chemical composition at sub-micron scale.

  17. Bio-inspired, subwavelength surface structures to control reflectivity, transmission, and scattering in the infrared

    NASA Astrophysics Data System (ADS)

    Lora Gonzalez, Federico

    Controlling the reflection of visible and infrared (IR) light at interfaces is extremely important to increase the power efficiency and performance of optics, electro-optical and (thermo)photovoltaic systems. The eye of the moth has evolved subwavelength protuberances that increase light transmission into the eye tissue and prevent reflection. The subwavelength protuberances effectively grade the refractive index from that of air (n=1) to that of the tissue (n=1.4), making the interface gradual, suppressing reflection. In theory, the moth-eye (ME) structures can be implemented with any material platform to achieve an antireflectance effect by scaling the pitch and size of protuberances for the wavelength range of interest. In this work, a bio-inspired, scalable and substrate-independent surface modification protocol was developed to realize broadband antireflective structures based on the moth-eye principle. Quasi-ordered ME arrays were fabricated in IR relevant materials using a colloidal lithography method to achieve highly efficient, omni-directional transmission of mid and far infrared (IR) radiation. The effect of structure height and aspect ratio on transmittance and scattering is explored, with discussion on experimental techniques and effective medium theory (EMT). The highest aspect ratio structures (AR = 9.4) achieved peak single-side transmittance of 98%, with >85% transmission for lambda = 7--30 microns. A detailed photon balance constructed by transmission, forward scattering, specular reflection and diffuse reflection measurements to quantify optical losses due to near-field effects will be discussed. In addition, angle-dependent transmission measurements showed that moth-eye structures provide superior antireflective properties compared to unstructured interfaces over a wide angular range (0--60° incidence). Finally, subwavelength ME structures are incorporated on a Si substrate to enhance the absorption of near infrared (NIR) light in PtSi films to increase Schottky-barrier detector efficiency. Absorbance enhancement of 70--200% in the lambda =1--2.5 micron range is demonstrated in crystalline PtSi films grown via electron beam evaporation of Pt and subsequent vacuum annealing. Low total reflectance (<10%) was measured in ME films, demonstrating the efficacy of the moth eye effect. Effective medium theory and transfer matrix calculations show that the large absorption enhancement at short wavelengths is partly due to light trapping, which increases the effective optical path length in PtSi. The demonstrated structures are promising candidates for efficient PtSi/p-Si Schottky barrier diode detectors in the NIR. Results further suggest a general method for relatively low-cost absorption enhancement of backside-illuminated detectors based on a wide variety of infrared absorptive materials. The methods presented here to fabricate quasi-ordered ME structures provide a general platform for creating antireflective structures in many different materials, devices, and bandwidths. Furthermore, understanding the relationship between protuberance shape, height, aspect ratio, etc. and performance (antireflection, scattering loss, etc.) can guide the design of antireflective surfaces for different applications (for example, in certain applications, large amounts of forward scattering is desired, e.g. photovoltaics).

  18. Scatter from optical components; Proceedings of the Meeting, San Diego, CA, Aug. 8-10, 1989

    NASA Astrophysics Data System (ADS)

    Stover, John C.

    Various papers on scatter from optical components are presented. Individual topics addressed include: BRDF of SiC and Al foam compared to black paint at 3.39 microns, characterization of optical baffle materials, bidirectional transmittance distribution function of several IR materials at 3.39 microns, thermal cycling effects on the BRDF of beryllium mirrors, BTDV of ZnSe with multilayer coatings at 3.39 microns, scattering from contaminated surfaces, cleanliness correlation by BRDF and PFO instruments, contamination effects on optical surfaces, means of eliminating the effects of particulate contamination on scatter measurements of superfine optical surfaces, vacuum BRDF measurement of cryogenic optical surfaces, Monte Carlo simulation of contaminant transport to and deposition on complex spacecraft surfaces, surface particle observation and BRDF predictions, satellite material contaminant optical properties, dark field photographic techniques for documenting optical surface contamination, design of a laboratory study of contaminant film darkening in space, contamination monitoring approaches for EUV space optics.

  19. Observations of Reflectivity of the Martian Surface in the Mars Orbiter Laser Altimeter (MOLA) Investigation

    NASA Technical Reports Server (NTRS)

    Ivanov, Anton B.; Muhleman, Duane O.

    2000-01-01

    We are presenting results of calculation of the surface albedo of Mars at 1 micron wavelength from the Mars Orbiter Laser Altimeter (MOLA) reflectivity measurements. The Mars Global Surveyor Thermal Emission Spectrometer (MGS TES) 9 micron opacity is employed to remove opacity from the MOLA measurements.

  20. Advances toward submicron resolution optics for x-ray instrumentation and applications

    NASA Astrophysics Data System (ADS)

    Cordier, Mark; Stripe, Benjamin; Yun, Wenbing; Lau, S. H.; Lyon, Alan; Reynolds, David; Lewis, Sylvia J. Y.; Chen, Sharon; Semenov, Vladimir A.; Spink, Richard I.; Seshadri, Srivatsan

    2017-08-01

    Sigray's axially symmetric x-ray optics enable advanced microanalytical capabilities for focusing x-rays to microns-scale to submicron spot sizes, which can potentially unlock many avenues for laboratory micro-analysis. The design of these optics allows submicron spot sizes even at low x-ray energies, enabling research into low atomic number elements and allows increased sensitivity of grazing incidence measurements and surface analysis. We will discuss advances made in the fabrication of these double paraboloidal mirror lenses designed for use in laboratory x-ray applications. We will additionally present results from as-built paraboloids, including surface figure error and focal spot size achieved to-date.

  1. The micrometeoroid complex and evolution of the lunar regolith

    NASA Technical Reports Server (NTRS)

    Hoerz, F.; Morrison, D. A.; Gault, D. E.; Oberbeck, V. R.; Quaide, W. L.; Vedder, J. F.; Brownlee, D. E.; Hartung, J. B.

    1974-01-01

    The interaction of the micrometeoroid complex with the lunar surface is evidenced by numerous glass-lined microcraters on virtually every lunar surface exposed to space. Such craters range in size from less than .1 micron to approximately 2 sq cm diameter. Using small scale laboratory cratering experiments for calibration, the observed crater-sized frequency distributions may be converted into micrometeoroid mass distributions. These lunar mass distributions are in essential agreement with satellite data. Some physical properties of micrometeoroids may be deduced by comparing lunar crater geometries with those obtained in laboratory experiments. The proponderance of circular outlines of lunar microcraters necessitates equidimensional, if not spherical, micrometeoroids.

  2. The impact of ARM on climate modeling

    DOE PAGES

    Randall, David A.; Del Genio, Anthony D.; Donner, Lee J.; ...

    2016-07-15

    Climate models are among humanity’s most ambitious and elaborate creations. They are designed to simulate the interactions of the atmosphere, ocean, land surface, and cryosphere on time scales far beyond the limits of deterministic predictability and including the effects of time-dependent external forcings. The processes involved include radiative transfer, fluid dynamics, microphysics, and some aspects of geochemistry, biology, and ecology. The models explicitly simulate processes on spatial scales ranging from the circumference of Earth down to 100 km or smaller and implicitly include the effects of processes on even smaller scales down to a micron or so. In addition, themore » atmospheric component of a climate model can be called an atmospheric global circulation model (AGCM).« less

  3. A Search for Structure in PAH Emission in Extended Sources at 3.3 and 3.4 Microns

    NASA Technical Reports Server (NTRS)

    Bregman, Jesse; Temi, P.; Rank, D. M.; Sloan, G. C.; Schultz, A. S. B.; Witteborn, Fred C. (Technical Monitor)

    1994-01-01

    We have observed three extended sources of the infrared emission features associated with polycyclic aromatic hydrocarbons (PAHs), using a 128x128 InSb array mounted on the 1.5 m NASA/Steward telescope on Mt. Lemmon. We used a CVF (1.5% bandpass) to isolate the emission from the 3.29 and 3.40 microns PAH features in NGC 1333 #3, Sharpless 106, and the Orion Bar. In all three sources, the 3.29 and 3.40 microns emission features arise from the same regions, but show decidedly different structure. We are analyzing the images to determine the relationship of the 3.40 microns feature to the main feature at 3.29 microns. The 3.40 microns feature may be a vibrational overtone of the 3.29 microns feature, or it may arise from attached molecular sidegroups.

  4. Enhanced endothelial cell density on NiTi surfaces with sub-micron to nanometer roughness

    PubMed Central

    Samaroo, Harry D; Lu, Jing; Webster, Thomas J

    2008-01-01

    The shape memory effect and superelastic properties of NiTi (or Nitinol, a nickel-titanium alloy) have already attracted much attention for various biomedical applications (such as vascular stents, orthodontic wires, orthopedic implants, etc). However, for vascular stents, conventional approaches have required coating NiTi with anti-thrombogenic or anti-inflammatory drug-eluting polymers which as of late have proven problematic for healing atherosclerotic blood vessels. Instead of focusing on the use of drug-eluting anti-thrombogenic or anti-inflammatory proteins, this study focused on promoting the formation of a natural anti-thrombogenic and anti-inflammatory surface on metallic stents: the endothelium. In this study, we synthesized various NiTi substrates with different micron to nanometer surface roughness by using dissimilar dimensions of constituent NiTi powder. Endothelial cell adhesion on these compacts was compared with conventional commercially pure (cp) titanium (Ti) samples. The results after 5 hrs showed that endothelial cells adhered much better on fine grain (<60 μm) compared with coarse grain NiTi compacts (<100 μm). Coarse grain NiTi compacts and conventional Ti promoted similar levels of endothelial cell adhesion. In addition, cells proliferated more after 5 days on NiTi with greater sub-micron and nanoscale surface roughness compared with coarse grain NiTi. In this manner, this study emphasized the positive pole that NiTi with sub-micron to nanometer surface features can play in promoting a natural anti-thrombogenic and anti-inflammatory surface (the endothelium) on a vascular stent and, thus, suggests that more studies should be conducted on NiTi with sub-micron to nanometer surface features. PMID:18488418

  5. Refinement of Promising Coating Compositions for Directionally Cast Eutectics

    NASA Technical Reports Server (NTRS)

    Strangman, T. E.; Felten, E. J.; Benden, R. S.

    1976-01-01

    The successful application of high creep strength, directionally solidified gamma/gamma prime-delta (Ni-19.7Cb-6Cr-2.5Al) eutectic superalloy turbine blades requires the development of suitable coatings for airfoil, root and internal blade surfaces. In order to improve coatings for the gamma/gamma prime-delta alloy, the current investigation had the goals of (1) refining promising coating compositions for directionally solidified eutectics, (2) evaluating the effects of coating/ substrate interactions on the mechanical properties of the alloy, and (3) evaluating diffusion aluminide coatings for internal surfaces. Burner rig cyclic oxidation, furnace cyclic hot corrosion, ductility, and thermal fatigue tests indicated that NiCrAlY+Pt(63 to 127 micron Ni-18Cr-12Al-0.3Y + 6 micron Pt) and NiCrAlY(63 to 127 micron Ni-18Cr-12Al-0.3Y) coatings are capable of protecting high temperature gas path surfaces of eutectic alloy airfoils. Burner rig (Mach 0.37) testing indicated that the useful coating life of the 127 micron thick coatings exceeded 1000 hours at 1366 K (2000 deg F). Isothermal fatigue and furnance hot corrosion tests indicated that 63 micron NiCrAlY, NiCrAlY + Pt and platinum modified diffusion aluminide (Pt + Al) coating systems are capable of protecting the relatively cooler surfaces of the blade root. Finally, a gas phase coating process was evaluated for diffusion aluminizing internal surfaces and cooling holes of air-cooled gamma/gamma prime-delta turbine blades.

  6. Spectroscopic imaging, diffraction, and holography with x-ray photoemission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-02-01

    X-ray probes are capable of determining the spatial structure of an atom in a specific chemical state, over length scales from about a micron all the way down to atomic resolution. Examples of these probes include photoemission microscopy, energy-dependent photoemission diffraction, photoelectron holography, and X-ray absorption microspectroscopy. Although the method of image formation, chemical-state sensitivity, and length scales can be very different, these X-ray techniques share a common goal of combining a capability for structure determination with chemical-state specificity. This workshop will address recent advances in holographic, diffraction, and direct imaging techniques using X-ray photoemission on both theoretical and experimentalmore » fronts. A particular emphasis will be on novel structure determinations with atomic resolution using photoelectrons.« less

  7. Zone-specific cell biosynthetic activity in mature bovine articular cartilage: a new method using confocal microscopic stereology and quantitative autoradiography.

    PubMed

    Wong, M; Wuethrich, P; Eggli, P; Hunziker, E

    1996-05-01

    A new methodology was developed to measure spatial variations in chondrocyte/matrix structural parameters and chondrocyte biosynthetic activity in articular cartilage. This technique is based on the use of a laser scanning confocal microscope that can "optically" section chemically fixed, unembedded tissue. The confocal images are used for morphometric measurement of stereologic parameters such as cell density (cells/mm3), cell volume fraction (%), surface density (l/cm), mean cell volume (micron3), and mean cell surface area (micron2). Adjacent pieces of tissue are simultaneously processed for conventional liquid emulsion autoradiography, and a semiautomated grain counting program is used to measure the silver grain density at regions corresponding to the same sites used for structural measurements. An estimate of chondrocyte biosynthetic activity in terms of grains per cell is obtained by dividing the value for grain density by that for cell density. In this paper, the newly developed methodology was applied to characterize the zone-specific behavior of adult articular cartilage in the free-swelling state. Cylinders of young adult bovine articular cartilage were labelled with either [3H]proline or [35S]sulfate, and chondrocyte biosynthesis and structural parameters were measured from the articular surface to the tidemark. The results showed that chondrocytes of the radial zone occupied twice the volume and surface area of the chondrocytes of the superficial zone but were 10 times more synthetically active. This efficient and unbiased technique may prove useful in studying the correlation between mechanically induced changes in cell form and biosynthetic activity within inhomogeneous tissue as well as metabolic changes in cartilage due to ageing and disease.

  8. Effects of Suction on Swept-Wing Transition

    NASA Technical Reports Server (NTRS)

    Saric, William S.

    1998-01-01

    Stability experiments are conducted in the Arizona State University Unsteady Wind Tunnel on a 45 deg swept airfoil. The pressure gradient is designed to provide purely crossflow-dominated transition; that is, the boundary layer is subcritical to Tollmien-Schlichting disturbances. The airfoil surface is hand polished to a 0.25 microns rms finish. Under these conditions, stationary crossflow disturbances grow to nonuniform amplitude due to submicron surface irregularities near the leading edge. Uniform stationary crossflow waves are produced by controlling the initial conditions with spanwise arrays of micron-sized roughness elements near the attachment line. Hot-wire measurements provide detailed maps of the crossflow wave structure, and accurate spectral decompositions isolate individual-mode growth rates for the fundamental and harmonic disturbances. Roughness spacing, roughness height, and Reynolds number are varied to investigate the growth of all amplified wavelengths. The measurements show early nonlinear mode interaction causing amplitude saturation well before transition. Comparisons with nonlinear parabolized stability equations calculations show excellent agreement in both the disturbance amplitude and the mode-shape profiles.

  9. Interfacial Shear Strength and Adhesive Behavior of Silk Ionomer Surfaces.

    PubMed

    Kim, Sunghan; Geryak, Ren D; Zhang, Shuaidi; Ma, Ruilong; Calabrese, Rossella; Kaplan, David L; Tsukruk, Vladimir V

    2017-09-11

    The interfacial shear strength between different layers in multilayered structures of layer-by-layer (LbL) microcapsules is a crucial mechanical property to ensure their robustness. In this work, we investigated the interfacial shear strength of modified silk fibroin ionomers utilized in LbL shells, an ionic-cationic pair with complementary ionic pairing, (SF)-poly-l-glutamic acid (Glu) and SF-poly-l-lysine (Lys), and a complementary pair with partially screened Coulombic interactions due to the presence of poly(ethylene glycol) (PEG) segments and SF-Glu/SF-Lys[PEG] pair. Shearing and adhesive behavior between these silk ionomer surfaces in the swollen state were probed at different spatial scales and pressure ranges by using functionalized atomic force microscopy (AFM) tips as well as functionalized colloidal probes. The results show that both approaches were consistent in analyzing the interfacial shear strength of LbL silk ionomers at different spatial scales from a nanoscale to a fraction of a micron. Surprisingly, the interfacial shear strength between SF-Glu and SF-Lys[PEG] pair with partially screened ionic pairing was greater than the interfacial shear strength of the SF-Glu and SF-Lys pair with a high density of complementary ionic groups. The difference in interfacial shear strength and adhesive strength is suggested to be predominantly facilitated by the interlayer hydrogen bonding of complementary amino acids and overlap of highly swollen PEG segments.

  10. Galaxy evolution and large-scale structure in the far-infrared. II - The IRAS faint source survey

    NASA Astrophysics Data System (ADS)

    Lonsdale, Carol J.; Hacking, Perry B.; Conrow, T. P.; Rowan-Robinson, M.

    1990-07-01

    The new IRAS Faint Source Survey data base is used to confirm the conclusion of Hacking et al. (1987) that the 60 micron source counts fainter than about 0.5 Jy lie in excess of predictions based on nonevolving model populations. The existence of an anisotropy between the northern and southern Galactic caps discovered by Rowan-Robinson et al. (1986) and Needham and Rowan-Robinson (1988) is confirmed, and it is found to extend below their sensitivity limit to about 0.3 Jy in 60 micron flux density. The count anisotropy at f(60) greater than 0.3 can be interpreted reasonably as due to the Local Supercluster; however, no one structure accounting for the fainter anisotropy can be easily identified in either optical or far-IR two-dimensional sky distributions. The far-IR galaxy sky distributions are considerably smoother than distributions from the published optical galaxy catalogs. It is likely that structure of the large size discussed here have been discriminated against in earlier studies due to insufficient volume sampling.

  11. Galaxy evolution and large-scale structure in the far-infrared. II. The IRAS faint source survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lonsdale, C.J.; Hacking, P.B.; Conrow, T.P.

    1990-07-01

    The new IRAS Faint Source Survey data base is used to confirm the conclusion of Hacking et al. (1987) that the 60 micron source counts fainter than about 0.5 Jy lie in excess of predictions based on nonevolving model populations. The existence of an anisotropy between the northern and southern Galactic caps discovered by Rowan-Robinson et al. (1986) and Needham and Rowan-Robinson (1988) is confirmed, and it is found to extend below their sensitivity limit to about 0.3 Jy in 60 micron flux density. The count anisotropy at f(60) greater than 0.3 can be interpreted reasonably as due to themore » Local Supercluster; however, no one structure accounting for the fainter anisotropy can be easily identified in either optical or far-IR two-dimensional sky distributions. The far-IR galaxy sky distributions are considerably smoother than distributions from the published optical galaxy catalogs. It is likely that structure of the large size discussed here have been discriminated against in earlier studies due to insufficient volume sampling. 105 refs.« less

  12. Galaxy evolution and large-scale structure in the far-infrared. II - The IRAS faint source survey

    NASA Technical Reports Server (NTRS)

    Lonsdale, Carol J.; Hacking, Perry B.; Conrow, T. P.; Rowan-Robinson, M.

    1990-01-01

    The new IRAS Faint Source Survey data base is used to confirm the conclusion of Hacking et al. (1987) that the 60 micron source counts fainter than about 0.5 Jy lie in excess of predictions based on nonevolving model populations. The existence of an anisotropy between the northern and southern Galactic caps discovered by Rowan-Robinson et al. (1986) and Needham and Rowan-Robinson (1988) is confirmed, and it is found to extend below their sensitivity limit to about 0.3 Jy in 60 micron flux density. The count anisotropy at f(60) greater than 0.3 can be interpreted reasonably as due to the Local Supercluster; however, no one structure accounting for the fainter anisotropy can be easily identified in either optical or far-IR two-dimensional sky distributions. The far-IR galaxy sky distributions are considerably smoother than distributions from the published optical galaxy catalogs. It is likely that structure of the large size discussed here have been discriminated against in earlier studies due to insufficient volume sampling.

  13. Fabrication and characterization of sub-micron scale hall devices from 2-dimensional electron gas at the heterostrutcure of GaAs/AlGaAs

    NASA Astrophysics Data System (ADS)

    Keswani, Neeti; Nakajima, Yoshikata; Chauhan, Neha; Kumar, Sakthi; Ohno, H.; Das, Pintu

    2018-05-01

    In this work, we report the fabrication and transport properties of sub-micron Hall devices to be used for nanomagnetic studies. Hall bars were fabricated using electron-beam lithography followed by wet etching of GaAs/AlGaAs heterostructures containing two-dimensional electron gas (2-DEG). Metallization using multiple metallic layers were used to achieve ohmic contacts with the 2-DEG which is about 240 nm below the surface. Detailed characterization of the metallic layers using X-ray Photoelectron Spectroscopy (XPS) demonstrate the role of alloy formation and diffusion to form ohmic contacts with the 2-DEG. Electronic transport measurements show the metallic character of the 2-DEG. Hall effect and magnetoresistance were measured to estimate the carrier mobility of 4.2×104 cm2/V-s at 5 K in dark.

  14. Method of Manufacturing Micro-Disperse Particles of Sodium Borohydride

    DOEpatents

    Kravitz, Stanley H.; Hecht, Andrew M.; Sylwester. Alan P.; Bell, Nelson S.

    2008-09-23

    A compact solid source of hydrogen gas, where the gas is generated by contacting water with micro-disperse particles of sodium borohydride in the presence of a catalyst, such as cobalt or ruthenium. The micro-disperse particles can have a substantially uniform diameter of 1-10 microns, and preferably about 3-5 microns. Ruthenium or cobalt catalytic nanoparticles can be incorporated in the micro-disperse particles of sodium borohydride, which allows a rapid and complete reaction to occur without the problems associated with caking and scaling of the surface by the reactant product sodium metaborate. A closed loop water management system can be used to recycle wastewater from a PEM fuel cell to supply water for reacting with the micro-disperse particles of sodium borohydride in a compact hydrogen gas generator. Capillary forces can wick water from a water reservoir into a packed bed of micro-disperse fuel particles, eliminating the need for using an active pump.

  15. Method of generating hydrogen gas from sodium borohydride

    DOEpatents

    Kravitz, Stanley H.; Hecht, Andrew M.; Sylwester, Alan P.; Bell, Nelson S.

    2007-12-11

    A compact solid source of hydrogen gas, where the gas is generated by contacting water with micro-disperse particles of sodium borohydride in the presence of a catalyst, such as cobalt or ruthenium. The micro-disperse particles can have a substantially uniform diameter of 1-10 microns, and preferably about 3-5 microns. Ruthenium or cobalt catalytic nanoparticles can be incorporated in the micro-disperse particles of sodium borohydride, which allows a rapid and complete reaction to occur without the problems associated with caking and scaling of the surface by the reactant product sodium metaborate. A closed loop water management system can be used to recycle wastewater from a PEM fuel cell to supply water for reacting with the micro-disperse particles of sodium borohydride in a compact hydrogen gas generator. Capillary forces can wick water from a water reservoir into a packed bed of micro-disperse fuel particles, eliminating the need for using an active pump.

  16. Compact solid source of hydrogen gas

    DOEpatents

    Kravitz, Stanley H.; Hecht, Andrew M.; Sylwester, Alan P.; Bell, Nelson S.

    2004-06-08

    A compact solid source of hydrogen gas, where the gas is generated by contacting water with micro-disperse particles of sodium borohydride in the presence of a catalyst, such as cobalt or ruthenium. The micro-disperse particles can have a substantially uniform diameter of 1-10 microns, and preferably about 3-5 microns. Ruthenium or cobalt catalytic nanoparticles can be incorporated in the micro-disperse particles of sodium borohydride, which allows a rapid and complete reaction to occur without the problems associated with caking and scaling of the surface by the reactant product sodium metaborate. A closed loop water management system can be used to recycle wastewater from a PEM fuel cell to supply water for reacting with the micro-disperse particles of sodium borohydride in a compact hydrogen gas generator. Capillary forces can wick water from a water reservoir into a packed bed of micro-disperse fuel particles, eliminating the need for using an active pump.

  17. Unusual Microtopography on an Apollo 12 Soil Grain

    NASA Technical Reports Server (NTRS)

    Thomas-Keprta, K. L.; Keprta, N. T.; Clemett, S. J.; Berger, E. L.; Rahman, Z.; McKay, D. S.; Gibson, E. K.; Wentworth, S. J.

    2014-01-01

    We have observed the presence of a previously undescribed microtopography in several regions on the surface of a lunar grain from Apollo regolith sample 12070,29. This microtopography consists of flattened triangular prisms, henceforth referred to as denticles, set in an orderly arrangement. We propose three possible processes to describe the presence of these structures: (1) radiation; (2) aqueous activity; or (3) impact. Radiation—the surface of the Earth’s moon is subject to energetic ion and photon irradiation which can produce a multitude of morphological effects on grain surfaces including erosion/sputtering, vesicle formation, and amorphization of crystalline phases. Under certain conditions surface erosion can result in the formation of well-ordered nanostructures including mounds, dots, wave-shaped, rippled or corrugated features typically <10s nm in size and organized into pattered arrays. However larger pyramid-shaped features up to approx. 300 nm at the base, similar in shape to lunar denticles, were produced on Cu substrates ex-posed to ion beam sputtering.. Aqueous alteration—recent reports of purported water on the Moon imply the possibility of brief, limited exposure of surface materials to aqueous fluids. Aqueous corrosion of silicates can result in the formation of crystallographically controlled denticulated features, up to 10s of micron at the base, arranged in a patterned formation. Impact—the surface of the moon is impacted by meteorites, particularly by micron-size particles, resulting in the formation of a variety of crater types. While it is difficult to envision a scenario in which a patterned array could be formed by impact, fracturing along planes of crystallographic structural weakness due to external stress could explain these features.

  18. Composite structures for optical mirror applications

    NASA Astrophysics Data System (ADS)

    Brand, Richard A.; Marks, John E.

    1990-10-01

    The employment of composites in RF structures such as antennas, feedhorns, and waveguides is outlined, and focus is placed on the parameters of a composite mirror operating in the 3-5- and 8-12-micron areas. A large beam-steering composite mirror fabricated from ultrahigh-modulus graphite/epoxy is described, including its three subassemblies: the core subassembly and two facesheet subassemblies. Attention is given to an alternative approach in which a gel coat resin is applied to the glass surface and the mirror substrate is pressed to the tool to cover the mirror with the resin. Another method is to seal the composite from the effects of moisture expansion by applying a eutectic coating; voids and crystal-grain growth are the main sources of surface perturbation on such mirror surfaces.

  19. Concepts for thin-film GaAs concentrator cells. [for solar photovoltaic space power systems

    NASA Technical Reports Server (NTRS)

    Spitzer, M. B.; Gale, R. P.; Mcclelland, R.; King, B.; Dingle, J.

    1989-01-01

    The development of advanced GaAs concentrator solar cells, and in particular, the use of CLEFT (cleavage of lateral epitaxial films for transfer) processes for formation of thin-film structures is reported. The use of CLEFT has made possible processing of the back, and cells with back surface grids are discussed. Data on patterned junction development are presented; such junctions are expected to be useful in back surface applications requiring point contacts, grating structures, and interdigitated back contacts. CLEFT concentrator solar cells with grids on the front and back surfaces are reported here; these cells are 4 microns thick and are bonded to glass covers for support. Air mass zero efficiency of 18.8 percent has been obtained for a CLEFT concentrator operating at 18.5 suns.

  20. Imaging the surface morphology, chemistry and conductivity of LiNi 1/3 Fe 1/3 Mn 4/3 O 4 crystalline facets using scanning transmission X-ray microscopy

    DOE PAGES

    Zhou, Jigang; Wang, Jian; Cutler, Jeffrey; ...

    2016-07-26

    We have employed scanning transmission X-ray microscopy (STXM) using the X-ray fluorescence mode in order to elucidate the chemical structures at Ni, Fe, Mn and O sites from the (111) and (100) facets of micron-sized LiNi 1/3Fe 1/3Mn 4/3O 4 energy material particles. Furthermore, STXM imaging using electron yield mode has mapped out the surface conductivity of the crystalline particles. Our study presents a novel approach that visualizes local element segregation, chemistry and conductivity variation among different crystal facets, which will assist further tailoring of the morphology and surface structure of this high voltage spinel lithium ion battery cathode material.

  1. Effect of long-range repulsive Coulomb interactions on packing structure of adhesive particles.

    PubMed

    Chen, Sheng; Li, Shuiqing; Liu, Wenwei; Makse, Hernán A

    2016-02-14

    The packing of charged micron-sized particles is investigated using discrete element simulations based on adhesive contact dynamic model. The formation process and the final obtained structures of ballistic packings are studied to show the effect of interparticle Coulomb force. It is found that increasing the charge on particles causes a remarkable decrease of the packing volume fraction ϕ and the average coordination number 〈Z〉, indicating a looser and chainlike structure. Force-scaling analysis shows that the long-range Coulomb interaction changes packing structures through its influence on particle inertia before they are bonded into the force networks. Once contact networks are formed, the expansion effect caused by repulsive Coulomb forces are dominated by short-range adhesion. Based on abundant results from simulations, a dimensionless adhesion parameter Ad*, which combines the effects of the particle inertia, the short-range adhesion and the long-range Coulomb interaction, is proposed and successfully scales the packing results for micron-sized particles within the latest derived adhesive loose packing (ALP) regime. The structural properties of our packings follow well the recent theoretical prediction which is described by an ensemble approach based on a coarse-grained volume function, indicating some kind of universality in the low packing density regime of the phase diagram regardless of adhesion or particle charge. Based on the comprehensive consideration of the complicated inter-particle interactions, our findings provide insight into the roles of short-range adhesion and repulsive Coulomb force during packing formation and should be useful for further design of packings.

  2. Ultra-thin, light-trapping silicon solar cells

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    1989-01-01

    Design concepts for ultra-thin (2 to 10 microns) high efficiency single-crystal silicon cells are discussed. Light trapping allows more light to be absorbed at a given thickness, or allows thinner cells of a given Jsc. Extremely thin cells require low surface recombination velocity at both surfaces, including the ohmic contacts. Reduction of surface recombination by growth of heterojunctions of ZnS and GaP on Si has been demonstrated. The effects of these improvements on AM0 efficiency is shown. The peak efficiency increases, and the optimum thickness decreases. Cells under 10 microns thickness can retain almost optimum power. The increase of absorptance due to light trapping is considered. This is not a problem if the light-trapping cells are sufficiently thin. Ultra-thin cells have high radiation tolerance. A 2 microns thick light-trapping cell remains over 18 percent efficient after the equivalent of 20 years in geosynchronous orbit. Including a 50 microns thick coverglass, the thin cells had specific power after irradiation over ten times higher than the baseline design.

  3. A novel 3D micron-scale DPTV (Defocused Particle Tracking Velocimetry) and its applications in microfluidic devices

    NASA Astrophysics Data System (ADS)

    Roberts, John

    2005-11-01

    The rapid advancements in micro/nano biotechnology demand quantitative tools for characterizing microfluidic flows in lab-on-a-chip applications, validation of computational results for fully 3D flows in complex micro-devices, and efficient observation of cellular dynamics in 3D. We present a novel 3D micron-scale DPTV (defocused particle tracking velocimetry) that is capable of mapping out 3D Lagrangian, as well as 3D Eulerian velocity flow fields at sub-micron resolution and with one camera. The main part of the imaging system is an epi-fluorescent microscope (Olympus IX 51), and the seeding particles are fluorescent particles with diameter range 300nm - 10um. A software package has been developed for identifying (x,y,z,t) coordinates of the particles using the defocused images. Using the imaging system, we successfully mapped the pressure driven flow fields in microfluidic channels. In particular, we measured the Laglangian flow fields in a microfluidic channel with a herring bone pattern at the bottom, the later is used to enhance fluid mixing in lateral directions. The 3D particle tracks revealed the flow structure that has only been seen in numerical computation. This work is supported by the National Science Foundation (CTS - 0514443), the Nanobiotechnology Center at Cornell, and The New York State Center for Life Science Enterprise.

  4. The Two Micron All Sky Survey

    NASA Technical Reports Server (NTRS)

    Kleinmann, S. G.; Lysaght, M. G.; Pughe, W. L.; Schneider, S. E.; Skrutskie, M. F.; Weinberg, M. D.; Price, S. D.; Matthews, K.; Soifer, B. T.; Huchra, J. P.

    1994-01-01

    The Two Micron All Sky Survey (2MASS) will provide a uniform survey of the entire sky at three near-infrared wavebands: J(lambda(sub eff) = 1.25 micrometers), H(lambda(sub eff) = 1.65 micrometers), and K(sub s)(lambda(sub eff) = 2.16 micrometers). A major goal of the survey is to probe large scale structures in the Milky Way and in the Local Universe, exploiting the relatively high transparency of the interstellar medium in the near-infrared, and the high near-infrared luminosities of evolved low- and intermediate-mass stars. A sensitive overview of the near-infrared sky is also an essential next step to maximize the gains achievable with infrared array technology. Our assessment of the astrophysical questions that might be addressed with these new arrays is currently limited by the very bright flux limit of the only preceding large scale near-infrared sky survey, the Two Micron Sky Survey carried out at Caltech in the late 1960's. Near-infrared instruments based on the new array technology have already obtained spectra of objects 1 million times fainter than the limit of the TMSS! This paper summarizes the essential parameters of the 2MASS project and the rationale behind those choices, and gives an overview of results obtained with a prototype camera that has been in operation since May 1992. We conclude with a list of expected data products and a statement of the data release policy.

  5. Tests of the Weak Equivalence Principal Below Fifty Microns

    NASA Astrophysics Data System (ADS)

    Leopardi, Holly; Hoyle, C. D.; Smith, Dave; Cardenas, Crystal; Harter, Andrew Conrad

    2014-03-01

    Due to the incompatibility of the Standard Model and General Relativity, tests of gravity remain at the forefront of experimental physics research. The Weak Equivalence Principle (WEP), which states that in a uniform gravitational field all objects fall with the same acceleration regardless of composition, total mass, or structure, is fundamentally the result of the equality of inertial mass and gravitational mass. The WEP has been effectively studied since the time of Galileo, and is a central feature of General Relativity; its violation at any length scale would bring into question fundamental aspects of the current model of gravitational physics. A variety of scenarios predict possible mechanisms that could result in a violation of the WEP. The Humboldt State University Gravitational Physics Laboratory is using a torsion pendulum with equal masses of different materials (a ``composition dipole'' configuration) to determine whether the WEP holds below the 50-micron distance scale. The experiment will measure the twist of a torsion pendulum as an attractor mass is oscillated nearby in a parallel-plate configuration, providing a time varying torque on the pendulum. The size and distance dependence of the torque variation will provide means to determine deviations from accepted models of gravity on untested distance scales. P.I.

  6. Intriguing differences and similarities in the surface compositions of the icy Saturnian and Galilean satellites

    NASA Astrophysics Data System (ADS)

    Hibbitts, C.

    2006-12-01

    Many materials in addition to water ice have been discovered in the surfaces of the icy Galilean and Saturnian satellites. Spacecraft infrared spectroscopy show intriguing differences and similarities suggestive of variations in primordial compositions and subsequent alteration. However, within the diverse compositions in their surfaces are similarities that cross between the systems. For instance, when nonice material is detected on these satellites, it is always hydrated. CO2 is detected in both systems where it is trapped in a host material except possibly for Enceladus where it may be deposited as ice from plumes [1-7]. Satellites in both systems contain aromatic hydrocarbons [8] and possibly CN-bearing materials [9]. The surfaces of Callisto, Ganymede, Europa, Iapetus, Phoebe, Hyperion, and Dione each contain some low albedo non-ice materials. The spectra have a broad 3-micron absorption feature due to structural OH or adsorbed water. However, the band is not sharp like a well-ordered clay mineral but broad, similar in some regards to less well-structured palagonite, goethite, or Murchison meteorite. The hydration of Jovian satellite nonice materials is greater for surfaces that have experienced more tectonism and alteration (i.e. increases from Callisto inward to Europa). The nonice material on Callisto appears to be a single composition (though itself possibly a mixture) that is slightly hydrated [10]. The nonice material on Europa is also of uniform composition everywhere observed, a very heavily hydrated material, perhaps a salt, hydrated SO4 (i.e. sulfuric acid), or both, that either originates from the subsurface ocean, radiolytically altered surface material, or both [11-13]. Ganymede appears to contain two types nonice materials; one an unidentified heavily hydrated material spectrally distinct from the Europa hydrate [11] and a second much less-abundant, less hydrated material spectrally similar to the Callisto nonice material that is largely associated with dark ray craters, possibly impactor contamination or desiccated Ganymede hydrate. The nonice materials on Phoebe and Iapetus is redder (from 1-2.5 microns) than the reddest material on the Galilean satellites (on Callisto) and compositionally different from each other. Iapetus appears to contain some (more) tholin material than Phoebe [14]. The CO2 on both satellites is similar to the CO2 detected in the nonice materials on Callisto and Ganymede with a reflectance minimum ~ 4.258 microns. The spectrum of the CO2 detected on Hyperion and Dione is distinct from that on Iapetus and Phoebe, having a reflectance minimum 10nm shorter at ~ 4.246 microns. This suggests a different bonding energy and possibly a different host material. In summary, the compositions of the icy Galilean satellites reflect the evolutionary state of their surfaces. The compositions of the icy Saturnian satellites are also complex, but with the exception of Enceladus, do not yet show any obvious dependencies on surface structure. There may some commonality in primordial compositions between the satellites of the two systems. References: [1]1Carlson et al., (1996) Science; [2] McCord et al., (1998) J. Geophys. Res.;[3] Hibbitts et al., (2000), J. Geophys. Res; [4] Hibbitts et al., (2003) J. Geophys. Res; [5] Clark et al., (2005) Nature; [6] Buratti et al., (2005) Astrophys. J.; [7] Brown et al., (2006) , Icarus; [8] Clark et al., (2005), Fall AGU; [9] Cruikshank et al., (2005), DPS [10] Calvin et al., (1991), Icarus; [11] McCord et al., 2000; [12]Carlson et al., 1999; [13]Orlando et al., (2005) Icarus; [14] Owens et al., (2001) Icarus;.

  7. Investigation of Titan's surface and atmosphere photometric functions using the Cassini/VIMS instrument

    NASA Astrophysics Data System (ADS)

    Cornet, Thomas; Altobelli, Nicolas; Rodriguez, Sébastien; Maltagliati, Luca; Le Mouélic, Stéphane; Sotin, Christophe; Brown, Robert; Barnes, Jason; Buratti, Bonnie; Baines, Kevin; Clark, Roger; Nicholson, Phillip

    2015-04-01

    After 106 flybys spread over 10 years, the Cassini Visual and Infrared Mapping Spectrometer (VIMS) instrument acquired 33151 hyperspectral cubes pointing at the surface of Titan on the dayside. Despite this huge amount of data available for surface studies, and due to the strong influence of the atmosphere (methane absorption and haze scattering), Titan's surface is only visible with VIMS in 7 spectral atmospheric windows centred at 0.93, 1.08, 1.27, 1.59, 2.01, 2.7-2.8 and 5 microns. Atmospheric scattering and absorption effects dominate Titan's spectrum at wavelengths shorter than 3 microns, while the 5 micron window, almost insensitive to the haze scattering, only presents a reduced atmospheric absorption contribution to the signal recorded by VIMS. In all cases, the recorded I/F represents an apparent albedo, which depends on the atmospheric contributions and the surface photometry at each wavelength. We therefore aim to determine real albedo values for Titan's surface by finding photometric functions for the surface and the atmosphere that could be used as a basis for empirical corrections or Radiative Transfer calculations. After updating the navigation of the VIMS archive, we decomposed the entire VIMS data set into a MySQL relational database gathering the viewing geometry, location, time (season) and I/F (for pure atmosphere and surface-atmosphere images) for each pixel of the 33151 individual VIMS cubes. We then isolated all the VIMS pixels where Titan's surface has been repeatedly imaged at low phase angles (< 20 degrees) in order to characterize phase curves for the surface at 5 microns and for the atmosphere. Among these, the T88 flyby appears noteworthy, with a "Emergence-Phase Function (EPF)"-type observation: 25 cubes acquired during the same flyby, over the same area (close to Tortola Facula, in relatively dark terrains), at a constant incidence and with varying emergence and phase (from 0 to 60 degrees) angles. The data clearly exhibit an increase of I/F at 5 microns at very low phase angles, which is indicative of an opposition effect for the surface, and kinks in the I/F at low and high emergence/phase angles, increasing with decreasing wavelength (and thus with increasing atmospheric scattering). The latter dependency is present in both pure atmosphere and surface-atmosphere images, which clearly indicates that it is of atmospheric origin. We are currently investigating these dependencies with angles and try to determine best fit models that would describe the phase curves for the surface at 5 microns and for the atmosphere at lower wavelengths in this particular area.

  8. From micron to mountain-scale, using accessory phase petrochronology to quantify the rates of deformation in the Himalaya and beyond

    NASA Astrophysics Data System (ADS)

    Mottram, C. M.

    2016-12-01

    Mountains form where the Earth's plates collide; during this upheaval rocks are deformed by massive forces. The rates and timescales over which these deformational processes occur are determined from tiny accessory minerals that record geological time through radioactive decay. However, there remain major unresolved challenges in using chemical and microstructural markers to link the dates yielded from these accessory phases to specific deformation events and discerning the effects of deformation on the isotopic and elemental tracers in these phases. Here, the chemical signatures and deformation textures from micron-scale accessory phases are used to decode the record of mountain belt-scale deformational processes encrypted in the rocks. The Himalayan orogen is used as an ideal natural laboratory to understand the chemical processes that have modified the Earth's crust during orogenesis. Combined laser ablation split-stream U-Th-Pb and REE analysis of deformed monazite and titanite, along with Electron BackScatter Diffraction (EBSD) imaging and Pressure-Temperature (P-T) phase equilibria modelling are used to: (1) link accessory phase `age' to `metamorphic stage'; (2) to quantify the influence of deformation on monazite (re)crystallisation mechanisms and its subsequent effect on the crystallographic structure, ages and trace-element distribution in individual grains; and (3) understand how deformation is accommodated through different chemical and structural processes that operate at varying scales through time. This study highlights the importance of fully integrating the pressure-temperature-time-deformation history of multiple accessory phases to better interpret the deformational history of the cores of evolving mountain belts.

  9. Reflectance spectroscopy and GEX simulation of palagonite and iron-rich montmorillonite clay mixtures: Implications for the surface composition of Mars

    NASA Technical Reports Server (NTRS)

    Orenberg, J. B.; Handy, J.; Quinn, R.

    1992-01-01

    Because of the power of remote sensing reflectance spectroscopy in determining mineralogy, it has been used as the major method of identifying a possible mineral analogue of the martian surface. A summary of proposed martian surface compositions from reflectance spectroscopy before 1979 was presented by Singer et al. Since that time, iron-rich montmorillonite clay, nanocrystalline or nanophase hematite, and palagonite have been suggested as Mars soil analogue materials. Palagonite in petrological terms is best described as an amorphous, hydrated, ferric iron, silica gel. Montmorillonite is a member of the smectite clay group, and its structure is characterized by an octahedral sheet in coordination with two tetrahedral sheets in which oxygen atoms are shared. The crystal unity of montmorillonite is well defined in contrast to palagonite where it is considered amorphous or poorly crystalline at best. Because of the absence of the diagnostic strong 2.2-micron reflectance band characteristic of clays in the near-infrared (NIR) spectrum of Mars and palagonite and based upon a consideration of wide wavelength coverage (0.3-50 microns), Roush et al. concluded that palagonite is a more likely Mars surface analogue. In spite of the spectral agreement of palagonite and the Mars reflectance spectrum in the 2.2-micron region, palagonite shows poor correspondence with the results of the Viking LR experiment. In contrast, iron-rich montmorillonite clays show relatively good agreement with the results of the Viking LR experiment. This spectral study was undertaken to evaluate the spectral properties of mixtures of palagonite and Mars analogue iron-rich montmorillonite clay (16-18 wt. percent Fe as Fe2O3) as a Mars surface mineralogical model. Mixtures of minerals as Mars surface analogue materials have been studied before, but the mixtures were restricted to crystalline clays and iron oxides.

  10. GPI-anchored protein organization and dynamics at the cell surface

    PubMed Central

    Saha, Suvrajit; Anilkumar, Anupama Ambika; Mayor, Satyajit

    2016-01-01

    The surface of eukaryotic cells is a multi-component fluid bilayer in which glycosylphosphatidylinositol (GPI)-anchored proteins are an abundant constituent. In this review, we discuss the complex nature of the organization and dynamics of GPI-anchored proteins at multiple spatial and temporal scales. Different biophysical techniques have been utilized for understanding this organization, including fluorescence correlation spectroscopy, fluorescence recovery after photobleaching, single particle tracking, and a number of super resolution methods. Major insights into the organization and dynamics have also come from exploring the short-range interactions of GPI-anchored proteins by fluorescence (or Förster) resonance energy transfer microscopy. Based on the nanometer to micron scale organization, at the microsecond to the second time scale dynamics, a picture of the membrane bilayer emerges where the lipid bilayer appears inextricably intertwined with the underlying dynamic cytoskeleton. These observations have prompted a revision of the current models of plasma membrane organization, and suggest an active actin-membrane composite. PMID:26394904

  11. GPI-anchored protein organization and dynamics at the cell surface.

    PubMed

    Saha, Suvrajit; Anilkumar, Anupama Ambika; Mayor, Satyajit

    2016-02-01

    The surface of eukaryotic cells is a multi-component fluid bilayer in which glycosylphosphatidylinositol (GPI)-anchored proteins are an abundant constituent. In this review, we discuss the complex nature of the organization and dynamics of GPI-anchored proteins at multiple spatial and temporal scales. Different biophysical techniques have been utilized for understanding this organization, including fluorescence correlation spectroscopy, fluorescence recovery after photobleaching, single particle tracking, and a number of super resolution methods. Major insights into the organization and dynamics have also come from exploring the short-range interactions of GPI-anchored proteins by fluorescence (or Förster) resonance energy transfer microscopy. Based on the nanometer to micron scale organization, at the microsecond to the second time scale dynamics, a picture of the membrane bilayer emerges where the lipid bilayer appears inextricably intertwined with the underlying dynamic cytoskeleton. These observations have prompted a revision of the current models of plasma membrane organization, and suggest an active actin-membrane composite. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.

  12. Electrodeposited Structurally Stable V2O5 Inverse Opal Networks as High Performance Thin Film Lithium Batteries.

    PubMed

    Armstrong, Eileen; McNulty, David; Geaney, Hugh; O'Dwyer, Colm

    2015-12-09

    High performance thin film lithium batteries using structurally stable electrodeposited V2O5 inverse opal (IO) networks as cathodes provide high capacity and outstanding cycling capability and also were demonstrated on transparent conducting oxide current collectors. The superior electrochemical performance of the inverse opal structures was evaluated through galvanostatic and potentiodynamic cycling, and the IO thin film battery offers increased capacity retention compared to micron-scale bulk particles from improved mechanical stability and electrical contact to stainless steel or transparent conducting current collectors from bottom-up electrodeposition growth. Li(+) is inserted into planar and IO structures at different potentials, and correlated to a preferential exposure of insertion sites of the IO network to the electrolyte. Additionally, potentiodynamic testing quantified the portion of the capacity stored as surface bound capacitive charge. Raman scattering and XRD characterization showed how the IO allows swelling into the pore volume rather than away from the current collector. V2O5 IO coin cells offer high initial capacities, but capacity fading can occur with limited electrolyte. Finally, we demonstrate that a V2O5 IO thin film battery prepared on a transparent conducting current collector with excess electrolyte exhibits high capacities (∼200 mAh g(-1)) and outstanding capacity retention and rate capability.

  13. Performance of Large Format Transition Edge Sensor Microcalorimeter Arrays

    NASA Technical Reports Server (NTRS)

    Chervenak, J. A.; Adams, J. A.; Bandler, S. B.; Busch, S. E.; Eckart, M. E.; Ewin, A. E.; Finkbeiner, F. M.; Kilbourne, C. A.; Kelley, R. L.; Porst, J. P.; hide

    2012-01-01

    We have produced a variety of superconducting transition edge sensor array designs for microcalorimetric detection of x-rays. Arrays are characterized with a time division SQUID multiplexer such that greater than 10 devices from an array can be measured in the same cooldown. Designs include kilo pixel scale arrays of relatively small sensors (-75 micron pitch) atop a thick metal heatsinking layer as well as arrays of membrane-isolated devices on 250 micron and up to 600 micron pitch. We discuss fabrication and performance of microstripline wiring at the small scales achieved to date. We also address fabrication issues with reduction of absorber contact area in small devices.

  14. Precision Extruding Deposition for Freeform Fabrication of PCL and PCL-HA Tissue Scaffolds

    NASA Astrophysics Data System (ADS)

    Shor, L.; Yildirim, E. D.; Güçeri, S.; Sun, W.

    Computer-aided tissue engineering approach was used to develop a novel Precision Extrusion Deposition (PED) process to directly fabricate Polycaprolactone (PCL) and composite PCL/Hydroxyapatite (PCL-HA) tissue scaffolds. The process optimization was carried out to fabricate both PCL and PCL-HA (25% concentration by weight of HA) with a controlled pore size and internal pore structure of the 0°/90° pattern. Two groups of scaffolds having 60 and 70% porosity and with pore sizes of 450 and 750 microns, respectively, were evaluated for their morphology and compressive properties using Scanning Electron Microscopy (SEM) and mechanical testing. The surface modification with plasma was conducted on PCL scaffold to increase the cellular attachment and proliferation. Our results suggested that inclusion of HA significantly increased the compressive modulus from 59 to 84 MPa for 60% porous scaffolds and from 30 to 76 MPa for 70% porous scaffolds. In vitro cell-scaffolds interaction study was carried out using primary fetal bovine osteoblasts to assess the feasibility of scaffolds for bone tissue engineering application. In addition, the results in surface hydrophilicity and roughness show that plasma surface modification can increase the hydrophilicity while introducing the nano-scale surface roughness on PCL surface. The cell proliferation and differentiation were calculated by Alamar Blue assay and by determining alkaline phosphatase activity. The osteoblasts were able to migrate and proliferate over the cultured time for both PCL as well as PCL-HA scaffolds. Our study demonstrated the viability of the PED process to the fabricate PCL and PCL-HA composite scaffolds having necessary mechanical property, structural integrity, controlled pore size and pore interconnectivity desired for bone tissue engineering.

  15. Self-assembled three-dimensional chiral colloidal architecture

    NASA Astrophysics Data System (ADS)

    Ben Zion, Matan Yah; He, Xiaojin; Maass, Corinna C.; Sha, Ruojie; Seeman, Nadrian C.; Chaikin, Paul M.

    2017-11-01

    Although stereochemistry has been a central focus of the molecular sciences since Pasteur, its province has previously been restricted to the nanometric scale. We have programmed the self-assembly of micron-sized colloidal clusters with structural information stemming from a nanometric arrangement. This was done by combining DNA nanotechnology with colloidal science. Using the functional flexibility of DNA origami in conjunction with the structural rigidity of colloidal particles, we demonstrate the parallel self-assembly of three-dimensional microconstructs, evincing highly specific geometry that includes control over position, dihedral angles, and cluster chirality.

  16. IRAS surface brightness maps of reflection nebulae in the Pleiades

    NASA Technical Reports Server (NTRS)

    Castelaz, Michael W.; Werner, M. W.; Sellgren, K.

    1987-01-01

    Surface brightness maps at 12, 25, 60, and 100 microns were made of a 2.5 deg x 2.5 deg area of the reflection nebulae in the Pleiades by coadding IRAS scans of this region. Emission is seen surrounding 17 Tau, 20 Tau, 23 Tau, and 25 Tau in all four bands, coextensive with the visible reflection nebulosity, and extending as far as 30 arcminutes from the illuminating stars. The infrared energy distributions of the nebulae peak in the 100 micron band, but up to 40 percent of the total infrared power lies in the 12 and 25 micron bands. The brightness of the 12 and 25 micron emission and the absence of temperature gradients at these wavelengths are inconsistent with the predictions of equilibrium thermal emission models. The emission at these wavelengths appears to be the result of micron nonequilibrium emission from very small grains, or from molecules consisting of 10-100 carbon atoms, which have been excited by ultraviolet radiation from the illuminating stars.

  17. Manipulating polymers and composites from the nanoscopic to microscopic length scales

    NASA Astrophysics Data System (ADS)

    Gupta, Suresh

    2008-10-01

    This thesis focuses on the manipulation of polymers and composites on length scales ranging from the nanoscopic to microscopic. In particular, on the microscopic length scale electric fields were used to produce instabilities at the air surface and at polymer interfaces that lead to novel three dimensional structures and patterns. On the nanoscopic length scale, the interaction of ligands attached to nanoparticles and polymer matrix were used to induce self-assembly processes that, in turn, lead to systems that self-heal, self-corral, or are patterned. For manipulation at the micron length scale, electrohydrodynamic instabilities were used in trilayer system composed of a layer of poly(methyl methacrylate) (PMMA), a second layer of polystyrene (PS) and a third layer of air. Dewetting of the polymer at the substrate at the polymer/polymer interface under an applied electric field was used to generate novel three dimensional structures. Also, electrohydrodynamic instabilities were used to pattern thin polymer films in conjunction with ultrasonic vibrations and patterned upper electrodes. Self-assembly processes involving polymers and nanoparticles offer a unique means of generating pattern materials or materials that self heal. Simple polymer/nanoparticle composites were investigated. Here, in the absence of interactions between the poly(ethylene oxide) ligands attached to the nanoparticles and PMMA polymer matrix, the opportunity to generate self-healing systems was opened. The size of the nanoparticle was varied and the effect on diffusion of nanoparticle in the polymer matrix was studied. CdSe nanorods were also assembled on a substrate templated with or guided by microphase separated diblock copolymers. The nanorods were incorporated in the diblock copolymer thin films by spin coating the co-solution of nanorods and polymer, surface adsorption of nanorods on to the patterned diblock copolymer films and surface reconstruction of PS/PMMA diblock copolymer thin film. Further, the interactions between the PMMA polymer matrix and the tri n-octyl phosphine oxide ligands attached to an anisotropic nanoparticle, i.e. nanorods, were used to influence the dispersion of the nanorods in the polymer. This led to a novel assembly, termed self-corralling where under an applied electric field highly oriented, highly ordered arrays of nanorods form. Further, self corralling of nanorods was directed by chemically patterned substrates.

  18. Coherent lidar design and performance verification

    NASA Technical Reports Server (NTRS)

    Frehlich, Rod

    1993-01-01

    The verification of LAWS beam alignment in space can be achieved by a measurement of heterodyne efficiency using the surface return. The crucial element is a direct detection signal that can be identified for each surface return. This should be satisfied for LAWS but will not be satisfied for descoped LAWS. The performance of algorithms for velocity estimation can be described with two basic parameters: the number of coherently detected photo-electrons per estimate and the number of independent signal samples per estimate. The average error of spectral domain velocity estimation algorithms are bounded by a new periodogram Cramer-Rao Bound. Comparison of the periodogram CRB with the exact CRB indicates a factor of two improvement in velocity accuracy is possible using non-spectral domain estimators. This improvement has been demonstrated with a maximum-likelihood estimator. The comparison of velocity estimation algorithms for 2 and 10 micron coherent lidar was performed by assuming all the system design parameters are fixed and the signal statistics are dominated by a 1 m/s rms wind fluctuation over the range gate. The beam alignment requirements for 2 micron are much more severe than for a 10 micron lidar. The effects of the random backscattered field on estimating the alignment error is a major problem for space based lidar operation, especially if the heterodyne efficiency cannot be estimated. For LAWS, the biggest science payoff would result from a short transmitted pulse, on the order of 0.5 microseconds instead of 3 microseconds. The numerically errors for simulation of laser propagation in the atmosphere have been determined as a joint project with the University of California, San Diego. Useful scaling laws were obtained for Kolmogorov atmospheric refractive turbulence and an atmospheric refractive turbulence characterized with an inner scale. This permits verification of the simulation procedure which is essential for the evaluation of the effects of refractive turbulence on coherent Doppler lidar systems. The analysis of 2 micron Doppler lidar data from Coherent Technologies, Inc. (CTI) has demonstrated many of the advantages of doppler lidar measurements of boundary layer winds. The effects of wind shear and wind turbulence over the pulse volume are probably the dominant source of the reduced performance. The effects of wind shear and wind turbulence on the statistical description of doppler lidar data has been derived and calculated.

  19. Some ultrastructural characteristics of the renal artery and abdominal aorta in the rat.

    PubMed Central

    Osborne-Pellegrin, M J

    1978-01-01

    The rat renal artery and abdominal aorta have been studied by light and electron microscopy. In rats of 200 g body weight the extracellular space in aortic media ranges between 50-60% and that of the distal renal artery between 15-25%. The surface to volume ratio of aortic smooth muscle cells is 2.7 micron2/micron3 compared to 1.6 micron2/micron3 in the distal renal artery. Dense bodies are rare in aortic smooth muscle cells but are abundant in those of the distal renal artery. Other ultrastructural details of the smooth muscle cells are similar in the two types of artery. Cell-to-cell contacts consist of simple apposition of plasm membranes and their number is proportional to the total length of cell membrane profile. Mitochondria represent 7-8% of the cell volume in both arteries. The proximal renal artery shows structural characteristics which are intermediate between those of the aorta and distal renal artery. In all renal arteries examined, bands of longitudinal smooth muscle are present in the adventitia, principally at branch points. In older rats, regions of discontinuity of the internal elastic lamina have been observed. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:640965

  20. Surface 3D Micro Free Forms: Multifunctional Microstructured Mesoporous α-Alumina by in Situ Slip Casting Using Excimer Laser Ablated Polycarbonate Molds.

    PubMed

    Rowthu, Sriharitha; Böhlen, Karl; Bowen, Paul; Hoffmann, Patrik

    2015-11-11

    Ceramic surface microstructuring is a rapidly growing field with a variety of applications in tribology, wetting, biology, and so on. However, there are limitations to large-area microstructuring and fabrication of three-dimensional (3D) micro free forms. Here, we present a route to obtain intricate surface structures through in situ slip casting using polydimethylsiloxane (PDMS) negative molds which are replicated from excimer laser ablated polycarbonate (PC) master molds. PC sheets are ablated with a nanosecond KrF (λ = 248 nm) excimer laser mask projection system to obtain micron-scale 3D surface features over a large area of up to 3 m(2). Complex surface structures that include 3D free forms such as 3D topography of Switzerland, shallow structures such as diffractive optical elements (60 nm step) and conical micropillars have been obtained. The samples are defect-free produced with thicknesses of up to 10 mm and 120 mm diameter. The drying process of the slip cast alumina slurry takes place as a one-dimensional process, through surface evaporation and water permeation through the PDMS membrane. This allows homogeneous one-dimensional shrinkage during the drying process, independent of the sample's lateral dimensions. A linear mass diffusion model has been proposed to predict and explain the drying process of these ceramic colloidal suspensions. The calculated drying time is linearly proportional to the height of the slurry and the thickness of the negatively structured PDMS and is validated by the experimental results. An experimentally observed optimum Sylgard PDMS thickness range of ∼400 μm to 1 mm has achieved the best quality microstructured green compacts. Further, the model predicts that the drying time is independent of the microstructured areas and was validated using experimental observations carried out with microstructured areas of 300 mm(2), 1200 mm(2), and 120 cm(2). Therefore, in principle, the structures can be further replicated in areas up to 3 m(2) with the same drying time for the same slurry height. The surface-structured ceramics display interesting wetting properties, for example, eicosane-coated mesoporous microstructured alumina shows superhydrophobic behavior. Additionally, ceramic bulk samples could be further used as second-generation very hard and low-wear molds for further microfabrication.

  1. Effects of orbital exposure on Halar during the LDEF mission

    NASA Technical Reports Server (NTRS)

    Brower, William E., Jr.; Holla, Harish; Bauer, Robert A.

    1992-01-01

    Thermomechanical Analysis (TMA), Differential Scanning Calorimetry (DSC), and Thermogravimetric Analysis (TGA) were performed on samples of Halar exposed on the LDEF Mission for 6 years in orbit and unexposed Halar control samples. Sections 10-100 microns thick were removed from the exposed surface down to a depth of 1,000 microns through the 3 mm thick samples. The TMA and DSC results, which arise from the entire slice and not just its surface, showed no differences between the LDEF and the control samples. TMA scans were run from ambient to 300 C; results were compared by a tabulation of the glass transition temperatures. DSC scans were run from ambient to 700 C; the enthalpy of melting was compared for the samples as a function of section depth with the sample. The TGA results, which arise from the surface of the sample initially, showed a sharp increase in the topmost 50 micron section (the exposed, discolored side) in the weight loss of 170 C in oxygen. This weight loss dropped to bulk values in the range of depth of 50-200 microns. The control sample showed only a slight increase in weight loss as the top surface was approached. The LDEF Halar sample appears to be mechanically undamaged, with a surface layer which oxidizes faster as a result of orbital exposure.

  2. The ISO View of Star Forming Galaxies

    NASA Technical Reports Server (NTRS)

    Helou, George

    1999-01-01

    ISO studies of normal galaxies in the local Universe have revealed basic new properties whose significant implications for the star formation process and cosmology are only starting to be understood. This review will touch on the general results of a statistical nature, and provide a quick summary of the profusion of exciting results on individual objects. In the mid-infrared, PHT-S has established that the spectra of star forming galaxies between 6 and-13microns are dominated by the Aromatic Features in Emission (AFE), and show little variation as a function of the heating intensity. The Carriers of the AFE (CAFE) are thus a universal component of dust with standard properties, and contribute between 10 and 25% of the total dust luminosity. In addition to AFE, the spectra show a low-level continuum detectable at wavelengths longer than 3.5microns whose origin is still under investigation. The mid-infrared colors formed as the ratio of flux densities in the 6.75micron and the 15micron bands of ISO-CAM remain essentially constant and near unity for quiescent and mildly active galaxies. As dust heating increases further, the 15micron flux increases steeply compared to 6.75microns, indicating that dust heated to 100K

  3. Optical magnetic imaging of living cells

    PubMed Central

    Le Sage, D.; Arai, K.; Glenn, D. R.; DeVience, S. J.; Pham, L. M.; Rahn-Lee, L.; Lukin, M. D.; Yacoby, A.; Komeili, A.; Walsworth, R. L.

    2013-01-01

    Magnetic imaging is a powerful tool for probing biological and physical systems. However, existing techniques either have poor spatial resolution compared to optical microscopy and are hence not generally applicable to imaging of sub-cellular structure (e.g., magnetic resonance imaging [MRI]1), or entail operating conditions that preclude application to living biological samples while providing sub-micron resolution (e.g., scanning superconducting quantum interference device [SQUID] microscopy2, electron holography3, and magnetic resonance force microscopy [MRFM]4). Here we demonstrate magnetic imaging of living cells (magnetotactic bacteria) under ambient laboratory conditions and with sub-cellular spatial resolution (400 nm), using an optically-detected magnetic field imaging array consisting of a nanoscale layer of nitrogen-vacancy (NV) colour centres implanted at the surface of a diamond chip. With the bacteria placed on the diamond surface, we optically probe the NV quantum spin states and rapidly reconstruct images of the vector components of the magnetic field created by chains of magnetic nanoparticles (magnetosomes) produced in the bacteria, and spatially correlate these magnetic field maps with optical images acquired in the same apparatus. Wide-field sCMOS acquisition allows parallel optical and magnetic imaging of multiple cells in a population with sub-micron resolution and >100 micron field-of-view. Scanning electron microscope (SEM) images of the bacteria confirm that the correlated optical and magnetic images can be used to locate and characterize the magnetosomes in each bacterium. The results provide a new capability for imaging bio-magnetic structures in living cells under ambient conditions with high spatial resolution, and will enable the mapping of a wide range of magnetic signals within cells and cellular networks5, 6. PMID:23619694

  4. Panchromatic Imaging of a Transitional Disk: The Disk of GM AUR in Optical and FUV Scattered Light

    NASA Technical Reports Server (NTRS)

    Hornbeck, J. B.; Swearingen, J. R.; Grady, C. A.; Williger, G. M.; Brown, A.; Sitko, M. L.; Wisniewski, J. P.; Perrin, M. D.; Lauroesch, J. T.; Schneider, G.; hide

    2016-01-01

    We have imaged GM Aurigae with the Hubble Space Telescope, detected its disk in scattered light at 1400 and 1650 A, and compared these with observations at 3300 A, 5550 A, 1.1 micron, and 1.6 micron. The scattered light increases at shorter wavelengths. The radial surface brightness profile at 3300 A shows no evidence of the 24 au radius cavity that has been previously observed in submillimeter observations. Comparison with dust grain opacity models indicates that the surface of the entire disk is populated with submicron grains. We have compiled a spectral energy distribution from 0.1 micron to 1 mm and used it to constrain a model of the star + disk system that includes the submillimeter cavity using the Monte Carlo radiative transfer code by Barbara Whitney. The best-fit model image indicates that the cavity should be detectable in the F330W bandpass if the cavity has been cleared of both large and small dust grains, but we do not detect it. The lack of an observed cavity can be explained by the presence of submicron grains interior to the submillimeter cavity wall. We suggest one explanation for this that could be due to a planet of mass less than 9M(sub J) interior to 24 au. A unique cylindrical structure is detected in the far- UV data from the Advanced Camera for Surveys/Solar Blind Channel. It is aligned along the system semiminor axis, but does not resemble an accretion-driven jet. The structure is limb brightened and extends 190 +/- 35 au above the disk midplane. The inner radius of the limb brightening is 40 +/- 10 au, just beyond the submillimeter cavity wall.

  5. Finishing of display glass for mobile electronics using 3M Trizact diamond tile abrasive pads

    NASA Astrophysics Data System (ADS)

    Zheng, Lianbin; Fletcher, Tim; Na, Tee Koon; Sventek, Bruce; Romero, Vince; Lugg, Paul S.; Kim, Don

    2010-10-01

    This paper will describe a new method being used during the finishing of glass displays for mobile electronics including mobile hand held devices and notebook computers. The new method consists of using 3M TrizactTM Diamond Tile Abrasive Pads. TrizactTM Diamond Tile is a structured fixed abrasive grinding technology developed by 3M Company. The TrizactTM Diamond Tile structured abrasive pad consists of an organic (polymeric binder) - inorganic (abrasive mineral, i.e., diamond) composite that is used with a water-based coolant. TrizactTM Diamond Tile technology can be applied in both double and single side grinding applications. A unique advantage of TrizactTM Diamond Tile technology is the combination of high stock removal and low sub-surface damage. Grinding results will be presented for both 9 micron and 20 micron grades of TrizactTM Diamond Tile abrasive pads used to finish several common display glasses including Corning GorillaTM glass and Soda Lime glass.

  6. Characterization of Beryllium Windows Using Coherent X-rays at 1-km Beamline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goto, Shunji; Yabashi, Makina; Takahashi, Sunao

    2004-05-12

    Beryllium windows were characterized using coherent x-rays at the one-kilometer beamline of SPring-8. Non-uniformity of transmission x-ray images is largely due to Fresnel diffraction from deficiencies such as surface pits with diameter of order of one micron to ten microns, having no correlation with averaged surface roughness measured with an optical profilometer.

  7. Vertical-cavity surface-emitting lasers - Design, growth, fabrication, characterization

    NASA Astrophysics Data System (ADS)

    Jewell, Jack L.; Lee, Y. H.; Harbison, J. P.; Scherer, A.; Florez, L. T.

    1991-06-01

    The authors have designed, fabricated, and tested vertical-cavity surface-emitting lasers (VCSEL) with diameters ranging from 0.5 microns to above 50 microns. Design issues, molecular beam epitaxial growth, fabrication, and lasing characteristics are discussed. The topics considered in fabrication of VCSELs are microlaser geometries; ion implementation and masks; ion beam etching; packaging and arrays; and ultrasmall devices.

  8. Introduction to Micro/Nanofabrication

    NASA Astrophysics Data System (ADS)

    Ziaie, Babak; Baldi, Antonio; Atashbar, Massood

    This chapter outlines and discusses important micro- and nanofabrication techniques. We start with the most basic methods borrowed from the integrated circuit (IC) industry, such as thin film deposition, lithography and etching, and then move on to look at MEMS and nanofabrication technologies. We cover a broad range of dimensions, from the micron to the nanometer scale. Although most of the current research is geared towards the nanodomain, a good understanding of top-down methods for fabricating micron-sized objects can aid our understanding of this research. Due to space constraints, we have focused here on the most important technologies; in the microdomain these include surface, bulk and high aspect ratio micromachining; in the nanodomain we concentrate on e-beam lithography, epitaxial growth, template manufacturing and self-assembly. MEMS technology is maturing rapidly, with some new technologies displacing older ones that have proven to be unsuited to manufacture on a commercial scale. However, the jury is still out on methods used in the nanodomain, although it appears that bottom-up methods are the most feasible, and these will have a major impact in a variety of application areas such as biology, medicine, environmental monitoring and nanoelectronics.

  9. Microfabrication of microsystem-enabled photovoltaic (MEPV) cells

    NASA Astrophysics Data System (ADS)

    Nielson, Gregory N.; Okandan, Murat; Cruz-Campa, Jose L.; Resnick, Paul J.; Wanlass, Mark W.; Clews, Peggy J.; Pluym, Tammy C.; Sanchez, Carlos A.; Gupta, Vipin P.

    2011-02-01

    Microsystem-Enabled Photovoltaic (MEPV) cells allow solar PV systems to take advantage of scaling benefits that occur as solar cells are reduced in size. We have developed MEPV cells that are 5 to 20 microns thick and down to 250 microns across. We have developed and demonstrated crystalline silicon (c-Si) cells with solar conversion efficiencies of 14.9%, and gallium arsenide (GaAs) cells with a conversion efficiency of 11.36%. In pursuing this work, we have identified over twenty scaling benefits that reduce PV system cost, improve performance, or allow new functionality. To create these cells, we have combined microfabrication techniques from various microsystem technologies. We have focused our development efforts on creating a process flow that uses standard equipment and standard wafer thicknesses, allows all high-temperature processing to be performed prior to release, and allows the remaining post-release wafer to be reprocessed and reused. The c-Si cell junctions are created using a backside point-contact PV cell process. The GaAs cells have an epitaxially grown junction. Despite the horizontal junction, these cells also are backside contacted. We provide recent developments and details for all steps of the process including junction creation, surface passivation, metallization, and release.

  10. A microfabricated gecko-inspired controllable and reusable dry adhesive

    NASA Astrophysics Data System (ADS)

    Chary, Sathya; Tamelier, John; Turner, Kimberly

    2013-02-01

    Geckos utilize a robust reversible adhesive to repeatedly attach and detach from a variety of vertical and inverted surfaces, using structurally anisotropic micro- and nano-scale fibrillar structures. These fibers, when suitably articulated, are able to control the real area of contact and thereby generate high-to-low van der Waals forces. Key characteristics of the natural system include highly anisotropic adhesion and shear forces for controllable attachment, a high adhesion to initial preload force ratio (μ‧) of 8-16, lack of inter-fiber self-adhesion, and operation over more than 30 000 cycles without loss of adhesion performance. A highly reusable synthetic adhesive has been developed using tilted polydimethylsiloxane (PDMS) half-cylinder micron-scale fibers, retaining up to 77% of the initial value over 10 000 repeated test cycles against a flat glass puck. In comparison with other gecko-inspired adhesives tested over 10 000 cycles or more thus far, this paper reports the highest value of μ‧, along with a large shear force of ˜78 kPa, approaching the 88-226 kPa range of gecko toes. The anisotropic adhesion forces are close to theoretical estimates from the Kendall peel model, quantitatively showing how lateral shearing articulation in a manner similar to the gecko may be used to obtain adhesion anisotropy with synthetic fibers using a combination of tilt angle and anisotropic fiber geometry.

  11. Directed formation of micro- and nanoscale patterns of functional light-harvesting LH2 complexes.

    PubMed

    Reynolds, Nicholas P; Janusz, Stefan; Escalante-Marun, Maryana; Timney, John; Ducker, Robert E; Olsen, John D; Otto, Cees; Subramaniam, Vinod; Leggett, Graham J; Hunter, C Neil

    2007-11-28

    The precision placement of the desired protein components on a suitable substrate is an essential prelude to any hybrid "biochip" device, but a second and equally important condition must also be met: the retention of full biological activity. Here we demonstrate the selective binding of an optically active membrane protein, the light-harvesting LH2 complex from Rhodobacter sphaeroides, to patterned self-assembled monolayers at the micron scale and the fabrication of nanometer-scale patterns of these molecules using near-field photolithographic methods. In contrast to plasma proteins, which are reversibly adsorbed on many surfaces, the LH2 complex is readily patterned simply by spatial control of surface polarity. Near-field photolithography has yielded rows of light-harvesting complexes only 98 nm wide. Retention of the native optical properties of patterned LH2 molecules was demonstrated using in situ fluorescence emission spectroscopy.

  12. Multiscale deformation behavior for multilayered steel by in-situ FE-SEM

    NASA Astrophysics Data System (ADS)

    Tanaka, Y.; Kishimoto, S.; Yin, F.; Kobayashi, M.; Tomimatsu, T.; Kagawa, K.

    2010-03-01

    The multi-scale deformation behavior of multi-layered steel during tensile loading was investigated by in-situ FE-SEM observation coupled with multi-scale pattern. The material used was multi-layered steel sheet consisting of martensitic and austenitic stainless steel layers. Prior to in-situ tensile testing, the multi-scale pattern combined with a grid and random dots were fabricated by electron beam lithography on the polished surface in the area of 1 mm2 to facilitate direct observation of multi-scale deformation. Both of the grids with pitches of 10 μm and a random speckle pattern ranging from 200 nm to a few μm sizes were drawn onto the specimen surface at same location. The electron moiré method was applied to measure the strain distribution in the deformed specimens at a millimeter scale and digital images correlation method was applied to measure the in-plane deformation and strain distribution at a micron meter scale acquired before and after at various increments of straining. The results showed that the plastic deformation in the austenitic stainless steel layer was larger than the martensitic steel layer at millimeter scale. However, heterogeneous intrinsic grain-scale plastic deformation was clearly observed and it increased with increasing the plastic deformation.

  13. Development of a process for producing ribbon shaped filaments. [production of silicon carbide filaments

    NASA Technical Reports Server (NTRS)

    Debolt, H. E.; Krukonis, V. J.

    1973-01-01

    Silicon carbide (SiC) ribbon filaments were produced on a carbon ribbon substrate, about 1500 microns (60 mils) wide and 100 microns (4 mils) thick in lengths up to 2 meters (6 ft), and with tensile strengths up to 142 KN/cm sq (206 Ksi). During the course of the study, ribbon filaments of boron were also produced on the carbon ribbon substrate; the boron ribbon produced was extremely fragile. The tensile strength of the SiC ribbon was limited by large growths or flaws caused by anomalies at the substrate surface; these anomalies were either foreign dirt or substrate imperfections or both. Related work carried out on round 100 micron (4 mils) diameter SiC filaments on a 33 micron (1.3 mil) diameter, very smooth carbon monofilament substrate has shown that tensile strengths as high as 551 KN/cm sq (800 Ksi) are obtainable with the SiC-carbon round substrate combination, and indicates that if the ribbon substrate surface and ribbon deposition process can be improved similar strengths can be realizable. Cost analysis shows that 100 micron x 5-10 micron SiC ribbon can be very low cost reinforcement material.

  14. Model Calculations of Solar Spectral Irradiance in the 3.7 Micron Band for Earth Remote Sensing Applications

    NASA Technical Reports Server (NTRS)

    Platnick, Steven; Fontenla, Juan M.

    2006-01-01

    Since the launch of the first Advanced Very High Resolution Radiometer (AVHRR) instrument aboard TIROS-N, measurements in the 3.7 micron atmospheric window have been exploited for use in cloud detection and screening, cloud thermodynamic phase and surface snow/ice discrimination, and quantitative cloud particle size retrievals. The utility of the band has led to the incorporation of similar channels on a number of existing satellite imagers and future operational imagers. Daytime observations in the band include both reflected solar and thermal emission energy. Since 3.7 micron channels are calibrated to a radiance scale (via onboard blackbodies), knowledge of the top-of-atmosphere solar irradiance in the spectral region is required to infer reflectance. Despite the ubiquity of 3.7 micron channels, absolute solar spectral irradiance data comes from either a single measurement campaign (Thekaekara et al. 1969) or synthetic spectra. In this study, we compare historical 3.7 micron band spectral irradiance data sets with the recent semi-empirical solar model of the quiet-Sun by Fontenla et al. (2006). The model has expected uncertainties of about 2 % in the 3.7 pm spectral region. We find that channel-averaged spectral irradiances using the observations reported by Thekaekara et al. are 3.2-4.1% greater than those derived from the Fontenla et al. model for MODIS and AVHRR instrument bandpasses; the Kurucz spectrum (1995) as included in the MODTRAN4 distribution, gives channel-averaged irradiances 1.2-1.5 % smaller than the Fontenla model. For the MODIS instrument, these solar irradiance uncertainties result in cloud microphysical retrievals uncertainties comparable with other fundamental reflectance error sources.

  15. Rock surface roughness measurement using CSI technique and analysis of surface characterization by qualitative and quantitative results

    NASA Astrophysics Data System (ADS)

    Mukhtar, Husneni; Montgomery, Paul; Gianto; Susanto, K.

    2016-01-01

    In order to develop image processing that is widely used in geo-processing and analysis, we introduce an alternative technique for the characterization of rock samples. The technique that we have used for characterizing inhomogeneous surfaces is based on Coherence Scanning Interferometry (CSI). An optical probe is first used to scan over the depth of the surface roughness of the sample. Then, to analyse the measured fringe data, we use the Five Sample Adaptive method to obtain quantitative results of the surface shape. To analyse the surface roughness parameters, Hmm and Rq, a new window resizing analysis technique is employed. The results of the morphology and surface roughness analysis show micron and nano-scale information which is characteristic of each rock type and its history. These could be used for mineral identification and studies in rock movement on different surfaces. Image processing is thus used to define the physical parameters of the rock surface.

  16. A New Model of Size-graded Soil Veneer on the Lunar Surface

    NASA Technical Reports Server (NTRS)

    Basu, Abhijit; McKay, David S.

    2005-01-01

    Introduction. We propose a new model of distribution of submillimeter sized lunar soil grains on the lunar surface. We propose that in the uppermost millimeter or two of the lunar surface, soil-grains are size graded with the finest nanoscale dust on top and larger micron-scale particles below. This standard state is perturbed by ejecta deposition of larger grains at the lunar surface, which have a coating of dusty layer that may not have substrates of intermediate sizes. Distribution of solar wind elements (SWE), agglutinates, vapor deposited nanophase Fe0 in size fractions of lunar soils and ir spectra of size fractions of lunar soils are compatible with this model. A direct test of this model requires bringing back glue-impregnated tubes of lunar soil samples to be dissected and examined on Earth.

  17. Large-scale self-assembly of uniform submicron silver sulfide material driven by precise pressure control

    NASA Astrophysics Data System (ADS)

    Qi, Juanjuan; Chen, Ke; Zhang, Shuhao; Yang, Yun; Guo, Lin; Yang, Shihe

    2017-03-01

    The controllable self-assembly of nanosized building blocks into larger specific structures can provide an efficient method of synthesizing novel materials with excellent properties. The self-assembly of nanocrystals by assisted means is becoming an extremely active area of research, because it provides a method of producing large-scale advanced functional materials with potential applications in the areas of energy, electronics, optics, and biologics. In this study, we applied an efficient strategy, namely, the use of ‘pressure control’ to the assembly of silver sulfide (Ag2S) nanospheres with a diameter of approximately 33 nm into large-scale, uniform Ag2S sub-microspheres with a size of about 0.33 μm. More importantly, this strategy realizes the online control of the overall reaction system, including the pressure, reaction time, and temperature, and could also be used to easily fabricate other functional materials on an industrial scale. Moreover, the thermodynamics and kinetics parameters for the thermal decomposition of silver diethyldithiocarbamate (Ag(DDTC)) are also investigated to explore the formation mechanism of the Ag2S nanosized building blocks which can be assembled into uniform sub-micron scale architecture. As a method of producing sub-micron Ag2S particles by means of the pressure-controlled self-assembly of nanoparticles, we foresee this strategy being an efficient and universally applicable option for constructing other new building blocks and assembling novel and large functional micromaterials on an industrial scale.

  18. Micron-scale roughness of volcanic surfaces from thermal infrared spectroscopy and scanning electron microscopy

    NASA Astrophysics Data System (ADS)

    Carter, Adam J.; Ramsey, Michael S.; Durant, Adam J.; Skilling, Ian P.; Wolfe, Amy

    2009-02-01

    Textural characteristics of recently emplaced volcanic materials provide information on the degassing history, volatile content, and future explosive activity of volcanoes. Thermal infrared (TIR) remote sensing has been used to derive the micron-scale roughness (i.e., surface vesicularity) of lavas using a two-component (glass plus blackbody) spectral deconvolution model. We apply and test this approach on TIR data of pyroclastic flow (PF) deposits for the first time. Samples from two PF deposits (January 2005: block-rich and March 2000: ash-rich) were collected at Bezymianny Volcano (Russia) and analyzed using (1) TIR emission spectroscopy, (2) scanning electron microscope (SEM)-derived roughness (profiling), (3) SEM-derived surface vesicularity (imaging), and (4) thin section observations. Results from SEM roughness (0.9-2.8 μm) and SEM vesicularity (18-26%) showed a positive correlation. These were compared to the deconvolution results from the laboratory and spaceborne spectra, as well as to field-derived percentages of the block and ash. The spaceborne results were within 5% of the laboratory results and showed a positive correlation. However, a negative correlation between the SEM and spectral results was observed and was likely due to a combination of factors; an incorrect glass end-member, particle size effects, and subsequent weathering/reworking of the PF deposits. Despite these differences, this work shows that microscopic textural heterogeneities on PF deposits can be detected with TIR remote sensing using a technique similar to that used for lavas, but the results must be carefully interpreted. If applied correctly, it could be an important tool to map recent PF deposits and infer the causative eruption style/mechanism.

  19. The influence of secondary processing on the structural relaxation dynamics of fluticasone propionate.

    PubMed

    Depasquale, Roberto; Lee, Sau L; Saluja, Bhawana; Shur, Jagdeep; Price, Robert

    2015-06-01

    This study investigated the structural relaxation of micronized fluticasone propionate (FP) under different lagering conditions and its influence on aerodynamic particle size distribution (APSD) of binary and tertiary carrier-based dry powder inhaler (DPI) formulations. Micronized FP was lagered under low humidity (LH 25 C, 33% RH [relative humidity]), high humidity (HH 25°C, 75% RH) for 30, 60, and 90 days, respectively, and high temperature (HT 60°C, 44% RH) for 14 days. Physicochemical, surface interfacial properties via cohesive-adhesive balance (CAB) measurements and amorphous disorder levels of the FP samples were characterized. Particle size, surface area, and rugosity suggested minimal morphological changes of the lagered FP samples, with the exception of the 90-day HH (HH90) sample. HH90 FP samples appeared to undergo surface reconstruction with a reduction in surface rugosity. LH and HH lagering reduced the levels of amorphous content over 90-day exposure, which influenced the CAB measurements with lactose monohydrate and salmeterol xinafoate (SX). CAB analysis suggested that LH and HH lagering led to different interfacial interactions with lactose monohydrate but an increasing adhesive affinity with SX. HT lagering led to no detectable levels of the amorphous disorder, resulting in an increase in the adhesive interaction with lactose monohydrate. APSD analysis suggested that the fine particle mass of FP and SX was affected by the lagering of the FP. In conclusion, environmental conditions during the lagering of FP may have a profound effect on physicochemical and interfacial properties as well as product performance of binary and tertiary carrier-based DPI formulations.

  20. Hierarchical micron-sized mesoporous/macroporous graphene with well-tuned surface oxygen chemistry for high capacity and cycling stability Li-O2 battery.

    PubMed

    Zhou, Wei; Zhang, Hongzhang; Nie, Hongjiao; Ma, Yiwen; Zhang, Yining; Zhang, Huamin

    2015-02-11

    Nonaqueous Li-O2 battery is recognized as one of the most promising energy storage devices for electric vehicles due to its super-high energy density. At present, carbon or catalyst-supporting carbon materials are widely used for cathode materials of Li-O2 battery. However, the unique electrode reaction and complex side reactions lead to numerous hurdles that have to be overcome. The pore blocking caused by the solid products and the byproducts generated from the side reactions severely limit the capacity performance and cycling stability. Thus, there is a great need to develop carbon materials with optimized pore structure and tunable surface chemistry to meet the special requirement of Li-O2 battery. Here, we propose a strategy of vacuum-promoted thermal expansion to fabricate one micron-sized graphene matrix with a hierarchical meso-/macroporous structure, combining with a following deoxygenation treatment to adjust the surface chemistry by reducing the amount of oxygen and selectively removing partial unstable groups. The as-made graphene demonstrates dramatically tailored pore characteristics and a well-tuned surface chemical environment. When applied in Li-O2 battery as cathode, it exhibits an outstanding capacity up to 19 800 mA h g(-1) and is capable of enduring over 50 cycles with a curtaining capacity of 1000 mA h g(-1) at a current density of 1000 mA g(-1). This will provide a novel pathway for the design of cathodes for Li-O2 battery.

  1. [The influence of surface conditioning on the shear bond strength of La-Porcelain and titanium].

    PubMed

    Mo, Anchun; Cen, Yuankun; Liao, Yunmao

    2003-04-20

    To determine the influence of different surface conditioning methods on bonding strength of low fusing porcelain (La-Porcelain) and titanium. The surface of the samples were sandblasted for 2 min with 80-250 microns Al2O3 or coated for two times with Si-couple agent or conditioned by pre-oxidation. The shear bond strength was examined by push-type shear test with a speed of 0.5 mm/min in a universal testing machine. Scanning electron microscopy (SEM) and electron probe micro-analyzer (EPMA) were employed to explore the relationship between bonding strength and microstructures, as well as the element diffusion at the interface between porcelain coating and titanium when heated at 800 degrees C. Bonding strength was not statistically different (P > 0.05) after sandblasting with Al2O3 in particle size ranged from 80 microns to 250 microns. When a Si-couple agent was used, bond of porcelain to titanium was significantly lower (P < 0.05). The shear bond strength of the porcelain to the pre-oxidized titanium surface remained unchanged after heating (P > 0.05). The SEM results revealed integrity of porcelain and titanium. La-Porcelain showed a small effect of surface coarseness. Sandblasting the titanium surface with 150-180 microns Al2O3 can be recommended as a method for better bonding between La-Porcelain and titanium. The Si-couple agent coating and pre-oxidation of titanium surface is unnecessary.

  2. Contribution of human skin topography to the characterization of dynamic skin tension during senescence: morpho-mechanical approach

    NASA Astrophysics Data System (ADS)

    Zahouani, H.; Djaghloul, M.; Vargiolu, R.; Mezghani, S.; Mansori, M. E. L.

    2014-03-01

    The structuring of the dermis with a network of collagen and elastic fibres gives a three-dimensional structure to the skin network with directions perpendicular and parallel to the skin surface. This three-dimensional morphology prints on the surface of the stratum corneum a three dimensional network of lines which express the mechanical tension of the skin at rest. To evaluate the changes of skin morphology, we used a three-dimensional confocal microscopy and characterization of skin imaging of volar forearm microrelief. We have accurately characterize the role of skin line network during chronological aging with the identification of depth scales on the network of lines (z <= 60μm) and the network of lines covering Langer's lines (z > 60 microns). During aging has been highlighted lower rows for elastic fibres, the decrease weakened the tension and results in enlargement of the plates of the microrelief, which gives us a geometric pertinent indicator to quantify the loss of skin tension and assess the stage of aging. The study of 120 Caucasian women shows that ageing in the volar forearm zone results in changes in the morphology of the line network organisation. The decrease in secondary lines (z <= 60 μm) is counterbalanced by an increase in the depth of the primary lines (z > 60 μm) and an accentuation of the anisotropy index.

  3. Novel deformable mirror design for possible wavefront correction in CO2 laser fusion system

    NASA Astrophysics Data System (ADS)

    Gunn, S. V.; Heinz, T. A.; Henderson, W. D.; Massie, N. A.; Viswanathan, V. K.

    1980-11-01

    Analysis at Los Alamos and elsewhere has resulted in the conclusion that deformable mirrors can substantially improve the optical performance of laser fusion systems, as the errors are mostly static or quasi-static with mainly low spatial frequencies across the aperture resulting in low order Seidel aberrations in the beam. A novel deformable mirror assembly (Fig. 1) has been fabricated with 19 actuators capable of surface deflection of ±20 microns. The mirror surface deflections are produced by a unique differential ball screw that acts as both a force and position actuator. The screw is driven by a stepper motor giving a surface positioning resolution of 0.025 micron. No holding voltage potential is required, and a piezoceramic element in series with each ball screw provides a ±1 micron amplitude high-frequency surface dither to aid the correction process. Mirror performance in terms of individual actuator influence function, cross-coupling, figure attainment, long-term surface stability as well as optical performance characteristics will be discussed.

  4. Biomimetic DNA emulsions: specific, thermo-reversible and adjustable binding from a liquid-like DNA layer

    NASA Astrophysics Data System (ADS)

    Pontani, Lea-Laetitia; Feng, Lang; Dreyfus, Remi; Seeman, Nadrian; Chaikin, Paul; Brujic, Jasna

    2013-03-01

    We develop micron-sized emulsions coated with specific DNA sequences and complementary sticky ends. The emulsions are stabilized with phospholipids on which the DNA strands are grafted through biotin-streptavidin interactions, which allows the DNA to diffuse freely on the surface. We produce two complementary emulsions: one is functionalized with S sticky ends and dyed with red streptavidin, the other displays the complementary S' sticky ends and green streptavidin. Mixing those emulsions reveals specific adhesion between them due to the short-range S-S' hybridization. As expected this interaction is thermo-reversible: the red-green adhesive droplets dissociate upon heating and reassemble after cooling. Here the fluid phospholipids layer also leads to diffusive adhesion patches, which allows the bound droplets to rearrange throughout the packing structure. We quantify the adhesion strength between two droplets and build a theoretical framework that captures the observed trends through parameters such as the size of the droplets, the DNA surface density, the various DNA constructs or the temperature. This colloidal-scale, specific, thermo-reversible biomimetic emulsion offers a new versatile and powerful tool for the development of complex self-assembled materials.

  5. Evaluation of physical structural features on influencing enzymatic hydrolysis efficiency of micronized wood

    Treesearch

    Jinxue Jiang; Jinwu Wang; Xiao Zhang; Michael Wolcott

    2016-01-01

    Enzymatic hydrolysis of lignocellulosic biomass is highly dependent on the changes in structural features after pretreatment. Mechanical milling pretreatment is an effective approach to alter the physical structure of biomass and thus improve enzymatic hydrolysis. This study examined the influence of structural characteristics on the enzymatic hydrolysis of micronized...

  6. Zeolites on Mars: Prospects for Remote Sensing

    NASA Technical Reports Server (NTRS)

    Gaffney, E. S.; Singer, R. B.; Kunkle, T. D.

    1985-01-01

    The Martian surface composition measured by Viking can be represented by several combinations of minerals incorporating major fractions of zeolites known to occur in altered mafic rocks and polar soils on Earth. The abundant occurrence of zeolites on Mars is consistent with what is known about both the physical and chemical environment of that planet. The laboratory reflectance spectra (0.65 to 2.55 microns) of a number of relatively pure zeolite minerals and some naturally occurring zeolite-clay soils were measured. All of the spectra measured are dominated by strong absorption near 1.4 and 1.9 microns and a steep reflectance drop longward of about 2.2 microns, all of which are due to abundant H2O. Weaker water overtone bands are also apparent, and in most cases there is spectral evidence for minor Fe(3+). In these features the zeolite spectra are similar to spectra of smectite clays which have abundant interlayer water. The most diagnostic difference between clay and zeolite spectra is the total absence in the zeolites of the weak structural OH absorption.

  7. Thermal stability tests of CFRP sandwich panels for far infrared astronomy

    NASA Technical Reports Server (NTRS)

    Hoffmann, W. F.; Helwig, G.; Scheulen, D.

    1986-01-01

    An account is given of fabrication methods and low temperature figure tests for CFRP sandwich panels, in order to ascertain their applicability to ultralightweight 3-m aperture primary mirrors for balloon-borne sub-mm and far-IF telescopes that must maintain a 1-2 micron rms surface figure accuracy at -40 to -50 C. Optical figure measurements on the first two of a series of four 0.5-m test panels, replicated to a spherical surface, show a radius-of-curvature change and astigmatism down to -60 C; this approximately follows the composite's theoretical predictions and implies that material and process control is excellent, so that the large scale changes observed can be compensated for.

  8. Nano-indentation creep properties of the S2 cell wall lamina and compound corner middle lamella [abstract

    Treesearch

    Joseph E. Jakes; Charles R. Frihart; James F. Beecher; Donald S. Stone

    2010-01-01

    Bulk wood properties are derived from an ensemble of processes taking place at the micron-scale, and at this level the properties differ dramatically in going from cell wall layers to the middle lamella. To better understand the properties of these micron-scaled regions of wood, we have developed a unique set of nano-indentation tools that allow us to measure local...

  9. Observational evidence of crystalline iron oxides on Mars

    NASA Technical Reports Server (NTRS)

    Bell, James F., III; Mccord, Thomas B.; Owensby, Pamela D.

    1990-01-01

    A series of new spectral observations of Mars was obtained at Mauna Kea Observatory in the 0.4-1.0-micron wavelength range during the extremely favorable 1988 opposition, which yielded new spectral reflectance and relative reflectance data for a number of distinct spots on the Martian surface at 500-600 km spatial resolution. The new spectra revealed absorptions at 0.62-0.72 micron and at 0.81-0.94 micron, both seen clearly for the first time. These absorption features are interpreted as Fe(3+) electronic transition bands that indicate the presence of crystalline ferric oxide or hydroxide minerals on the Martian surface.

  10. Reflectance spectra characteristics from an SPR grating fabricated by nano-imprint lithography technique for biochemical nanosensor applications

    NASA Astrophysics Data System (ADS)

    Setiya Pradana, Jalu; Hidayat, Rahmat

    2018-04-01

    In this paper, we report our research work on developing a Surface Plasmon Resonance (SPR) element with sub-micron (hundreds of nanometers) periodicity grating structure. This grating structure was fabricated by using a simple nano-imprint lithography technique from an organically siloxane polymers, which was then covered by nanometer thin gold layer. The formed grating structure was a very well defined square-shaped periodic structure. The measured reflectance spectra indicate the SPR wave excitation on this grating structure. For comparison, the simulations of reflectance spectra have been also carried out by using Rigorous Coupled-Wave Analysis (RCWA) method. The experimental results are in very good agreement with the simulation results.

  11. Mapping the microvascular and the associated absolute values of oxy-hemoglobin concentration through turbid media via local off-set diffuse optical imaging

    NASA Astrophysics Data System (ADS)

    Chen, Chen; Klämpfl, Florian; Stelzle, Florian; Schmidt, Michael

    2014-11-01

    An imging resolution of micron-scale has not yet been discovered by diffuse optical imaging (DOI), while a superficial response was eliminated. In this work, we report on a new approach of DOI with a local off-set alignment to subvert the common boundary conditions of the modified Beer-Lambert Law (MBLL). It can resolve a superficial target in micron scale under a turbid media. To validate both major breakthroughs, this system was used to recover a subsurface microvascular mimicking structure under an skin equivalent phantom. This microvascular was included with oxy-hemoglobin solution in variant concentrations to distiguish the absolute values of CtRHb and CtHbO2 . Experimental results confirmed the feasibility of recovering the target vascular of 50 µm in diameter, and graded the values of the concentrations of oxy-hemoglobin from 10 g/L to 50 g/L absolutely. Ultimately, this approach could evolve into a non-invasive imaging system to map the microvascular pattern and the associated oximetry under a human skin in-vivo.

  12. Micro-Scale Regenerative Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Moran, Matthew E.; Stelter, Stephan; Stelter, Manfred

    2004-01-01

    A micro-scale regenerative heat exchanger has been designed, optimized and fabricated for use in a micro-Stirling device. Novel design and fabrication techniques enabled the minimization of axial heat conduction losses and pressure drop, while maximizing thermal regenerative performance. The fabricated prototype is comprised of ten separate assembled layers of alternating metal-dielectric composite. Each layer is offset to minimize conduction losses and maximize heat transfer by boundary layer disruption. A grating pattern of 100 micron square non-contiguous flow passages were formed with a nominal 20 micron wall thickness, and an overall assembled ten-layer thickness of 900 microns. Application of the micro heat exchanger is envisioned in the areas of micro-refrigerators/coolers, micropower devices, and micro-fluidic devices.

  13. Low loss fusion splicing of micron scale silica fibers.

    PubMed

    Pal, Parama; Knox, Wayne H

    2008-07-21

    Tapered micron-sized optical fibers may be important in the future for development of microscale integrated photonic devices. Complex photonic circuits require many devices and a robust technique for interconnection. We demonstrate splicing of four micron diameter step-index air-clad silica microfibers using a CO2 laser. We obtain splice losses lower than 0.3%. Compared with evanescent coupling of microfibers, our splices are more mechanically stable and efficient.

  14. The Carnegie Hubble Program: The Leavitt Law at 3.6 microns and 4.5 microns in the Large Magellanic Cloud

    NASA Technical Reports Server (NTRS)

    Scowcroft, Victoria; Freedman, Wendy L.; Madore, Barry F.; Monson, Andrew J.; Persson, S. E.; Seibert, Mark; Rigby, Jane R.; Sturch, Laura

    2011-01-01

    The Carnegie Hubble Program (CHP) is designed to improve the extragalactic distance scale using data from the post-cryogenic era of Spitzer. The ultimate goal is a determination of the Hubble constant to an accuracy of 2%. This paper is the first in a series on the Cepheid population of the Large Magellanic Cloud, and focuses on the period-luminosity relations (Leavitt laws) that will be used, in conjunction with observations of Milky Way Cepheids, to set the slope and zero-point of the Cepheid distance scale in the mid-infrared. To this end, we have obtained uniformly-sampled light curves for 85 LMC Cepheids, having periods between 6 and 140 days. Period- luminosity and period-color relations are presented in the 3.6 micron and 4.5 micron bands. We demonstrate that the 3.6 micron band is a superb distance indicator. The cyclical variation of the [3.6]-[4.5] color has been measured for the first time. We attribute the amplitude and phase of the color curves to the dissociation and recombination of CO molecules in the Cepheid s atmosphere. The CO affects only the 4.5 micron flux making it a potential metallicity indicator.

  15. The Mid-Infrared Spectrum of the Galactic Center: A Starburst Nucleus

    NASA Technical Reports Server (NTRS)

    Simpson, J. P.; Witteborn, F. C.; Cohen, M.; Price, S. D.

    1998-01-01

    Using the Michelson interferometer on the Midcourse Space Experiment (MSX), we have taken spectra of many positions in the central 25 min of the Galactic Center (GC) with a 6 min x 9 min FOV. The spectral coverage was 380 to 1700/ cm (6 to 26 microns) and the resolution was approx. 21/cm. The spectra exhibit strong UIR/PAH features at 6.2, 7.7, 8.6 and 11.3 microns, in addition to the ionic lines of (Ne II), at 12.8 microns, (S III) 18.7 microns, and (Ar II) 6.98 microns. There are deep silicate absorption features at 10 and 18 microns and a cold continuum increasing at the longest wavelengths. Additional weak features are present in the spectra. We discuss the variation in the extinction at 10 microns as a function of location in the GC. Compared to the MSX spectrum of the Orion nebula, smoothed to the same resolution and multiplied by the estimated GC extinction, the GC spectra have similar PAH features, but the Orion Nebula also has strong lines of (He III) 15.6 microns, (S IV) 10.5 microns, and (Ar III) 8.99 microns and its 25 microns continuum is stronger (colder). Thus, the GC exhibits the mid-IR spectrum of a low excitation H II region and a nearby molecular cloud with a surface photodissociation region (PDR). This is in excellent agreement with the canonical model of a starburst nucleus in which the hot stars and molecular clouds are randomly distributed. The outer surfaces of the clouds are photodissociated and ionized by the photons from the stars located outside the clouds. The PAH molecules are transiently heated by the stellar photons. Since the exciting stars are located well outside the clouds, the radiation field is dilute compared to a newly-formed blister H II region like Orion; this dilute radiation field causes the relatively low excitation of the ionic lines.

  16. Impacts on the Hubble Space Telescope Wide Field and Planetary Camera 2: Microanalysis and Recognition of Micrometeoroid Compositions

    NASA Technical Reports Server (NTRS)

    Kearsley, A. T.; Ross, D. K.; Anz-Meador, P.; Liou, J. C.; Opiela, J.; Grime, G. W.; Webb, R. P.; Jeynes, C.; Palitsin, V. V.; Colaux, J. L.; hide

    2014-01-01

    Postflight surveys of the Wide Field and Planetary Camera 2 (WFPC2) on the Hubble Space Telescope have located hundreds of features on the 2.2 by 0.8 m curved plate, evidence of hypervelocity impact by small particles during 16 years of exposure to space in low Earth orbit (LEO). The radiator has a 100 - 200 micron surface layer of white paint, overlying 4 mm thick Al alloy, which was not fully penetrated by any impact. Over 460 WFPC2 samples were extracted by coring at JSC. About half were sent to NHM in a collaborative program with NASA, ESA and IBC. The structural and compositional heterogeneity at micrometer scale required microanalysis by electron and ion beam microscopes to determine the nature of the impactors (artificial orbital debris, or natural micrometeoroids, MM). Examples of MM impacts are described elsewhere. Here we describe the development of novel electron beam analysis protocols, required to recognize the subtle traces of MM residues.

  17. Self-assembling holographic biosensors and biocomputers.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Light, Yooli Kim; Bachand, George David; Schoeniger, Joseph S.

    2006-05-01

    We present concepts for self-assembly of diffractive optics with potential uses in biosensors and biocomputers. The simplest such optics, diffraction gratings, can potentially be made from chemically-stabilized microtubules migrating on nanopatterned tracks of the motor protein kinesin. We discuss the fabrication challenges involved in patterning sub-micron-scale structures with proteins that must be maintained in aqueous buffers to preserve their activity. A novel strategy is presented that employs dry contact printing onto glass-supported amino-silane monolayers of heterobifunctional crosslinkers, followed by solid-state reactions of these cross-linkers, to graft patterns of reactive groups onto the surface. Successive solution-phase addition of cysteine-mutant proteins andmore » amine-reactive polyethylene glycol allows assembly of features onto the printed patterns. We present data from initial experiments showing successful micro- and nanopatterning of lines of single-cysteine mutants of kinesin interleaved with lines of polyethylene, indicating that this strategy can be employed to arrays of features with resolutions suitable for gratings.« less

  18. Hierarchical tailoring of strut architecture to control permeability of additive manufactured titanium implants.

    PubMed

    Zhang, Z; Jones, D; Yue, S; Lee, P D; Jones, J R; Sutcliffe, C J; Jones, E

    2013-10-01

    Porous titanium implants are a common choice for bone augmentation. Implants for spinal fusion and repair of non-union fractures must encourage blood flow after implantation so that there is sufficient cell migration, nutrient and growth factor transport to stimulate bone ingrowth. Additive manufacturing techniques allow a large number of pore network designs. This study investigates how the design factors offered by selective laser melting technique can be used to alter the implant architecture on multiple length scales to control and even tailor the flow. Permeability is a convenient parameter that characterises flow, correlating to structure openness (interconnectivity and pore window size), tortuosity and hence flow shear rates. Using experimentally validated computational simulations, we demonstrate how additive manufacturing can be used to tailor implant properties by controlling surface roughness at a microstructual level (microns), and by altering the strut ordering and density at a mesoscopic level (millimetre). Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  19. OT1_tvelusam_2: HIFI studies of the small-scale structures in the Galactic diffuse clouds with [CII] and [CI

    NASA Astrophysics Data System (ADS)

    Velusamy, T.

    2010-07-01

    The 1.9 THz [CII] observations provide a powerful probe of warm diffuse clouds, because they can observe them in emission and are useful as a tracer of their molecular H2 not directly traced by CO or other means. HIFI observations of [CII] provide a high resolution of 12 arcsec, better than that for single dish CO (> 30 arcsec) maps, and much better than HI (>30 arcsec). Thus with HIFI we have an opportunity probe the small scale structures in diffuse clouds in the inner Galaxy at distances > 3 kpc. To study the structure of diffuse ISM gas at small scales we propose HIFI maps of 1.9 THz (158 micron) [CII] line emission in a selection of 16 lines of sight (LOSs) towards the inner Galaxy, which are also being observed as part of the GOT C+ survey of [CII] in the Galactic plane. GOT C+ provides mainly single point spectra without any spatial data. Maps of [CII] will constrain better the cloud properties and models when combining [CII] and HI data. The proposed OTF X map will be along the longitude and latitude centered on 18 selected GOT C+ LOS over a length of 3 arcmin in each direction, which is adequate enough to provide sufficient spatial information on the small scale structures at larger distances (>3 kpc) and to characterize the CII filling factor in the larger beams of the ancillary (HI, CO, and CI data). The [CI] 609 & 370micron and the 12CO(7-6) (which lies within the CI band) are excellent diagnostics of the physical conditions of transition clouds and PDRs. We will use the ratio of the [CI] lines to constrain the kinetic temperature and volume density of the CII/CI/CO transition zones in molecular clouds using radiative transfer codes. We also propose OTF X maps in both the [CI] lines for all CII target LOSs. We anticipate fully resolved structural data in [CII] on at least 300 velocity resolved clouds along with their [CI] emissions. We request a total of 33.2 hrs of HIFI observing time.

  20. Temperature-Induced Transitions in the Structure and Interfacial Rheology of Human Meibum

    PubMed Central

    Leiske, Danielle L.; Leiske, Christopher I.; Leiske, Daniel R.; Toney, Michael F.; Senchyna, Michelle; Ketelson, Howard A.; Meadows, David L.; Fuller, Gerald G.

    2012-01-01

    Meibomian lipids are the primary component of the lipid layer of the tear film. Composed primarily of a mixture of lipids, meibum exhibits a range of melt temperatures. Compositional changes that occur with disease may alter the temperature at which meibum melts. Here we explore how the mechanical properties and structure of meibum from healthy subjects depend on temperature. Interfacial films of meibum were highly viscoelastic at 17°C, but as the films were heated to 30°C the surface moduli decreased by more than two orders of magnitude. Brewster angle microscopy revealed the presence of micron-scale inhomogeneities in meibum films at higher temperatures. Crystalline structure was probed by small angle x-ray scattering of bulk meibum, which showed evidence of a majority crystalline structure in all samples with lamellar spacing of 49 Å that melted at 34°C. A minority structure was observed in some samples with d-spacing at 110 Å that persisted up to 40°C. The melting of crystalline phases accompanied by a reduction in interfacial viscosity and elasticity has implications in meibum behavior in the tear film. If the melt temperature of meibum was altered significantly from disease-induced compositional changes, the resultant change in viscosity could alter secretion of lipids from meibomian glands, or tear-film stabilization properties of the lipid layer. PMID:22339874

  1. Apparatus for producing carbon-coated nanoparticles and carbon nanospheres

    DOEpatents

    Perry, W. Lee; Weigle, John C.; Phillips, Jonathan

    2015-10-20

    An apparatus for producing carbon-coated nano- or micron-scale particles comprising a container for entraining particles in an aerosol gas, providing an inlet for carbon-containing gas, providing an inlet for plasma gas, a proximate torch for mixing the aerosol gas, the carbon-containing gas, and the plasma gas, bombarding the mixed gases with microwaves, and providing a collection device for gathering the resulting carbon-coated nano- or micron-scale particles. Also disclosed is a method and apparatus for making hollow carbon nano- or micro-scale spheres.

  2. Multi-Wavelength Observations of 2100 Ra-Shalom: Radar and Lightcurves

    NASA Technical Reports Server (NTRS)

    Shepard, M. K.; Clark-Joseph, B. E.; Benner, L. A. M.; Giorgini, J. D.; Kusnirak, P.; Margot, J.-L.; Nolan, M. C.; Ostro, S. J.; Pravec, P.; Sarounova, L.

    2004-01-01

    We conducted a multi-wavelength campaign to study the near-Earth asteroid (NEA) 2100 Ra-Shalom during its August 2003 encounter. Rotationally resolved observations were acquired at Arecibo (12.6 cm radar), the IRTF (0.8-2.5 micron and 3 micron), McDonald Observatory (0.48-0.92 micron), Palomar Observatory (8-15 micron), and Ondrejov Observatory (optical lightcurves). Our objectives were to determine Ra-Shalom's size and shape, and the composition and physical state of its near-surface material. Preliminary results from radar and lightcurve measurements will be presented here.

  3. Probability of brittle failure

    NASA Technical Reports Server (NTRS)

    Kim, A.; Bosnyak, C. P.; Chudnovsky, A.

    1991-01-01

    A methodology was developed for collecting statistically representative data for crack initiation and arrest from small number of test specimens. An epoxy (based on bisphenol A diglycidyl ether and polyglycol extended diglycyl ether and cured with diethylene triamine) is selected as a model material. A compact tension specimen with displacement controlled loading is used to observe multiple crack initiation and arrests. The energy release rate at crack initiation is significantly higher than that at a crack arrest, as has been observed elsewhere. The difference between these energy release rates is found to depend on specimen size (scale effect), and is quantitatively related to the fracture surface morphology. The scale effect, similar to that in statistical strength theory, is usually attributed to the statistics of defects which control the fracture process. Triangular shaped ripples (deltoids) are formed on the fracture surface during the slow subcritical crack growth, prior to the smooth mirror-like surface characteristic of fast cracks. The deltoids are complementary on the two crack faces which excludes any inelastic deformation from consideration. Presence of defects is also suggested by the observed scale effect. However, there are no defects at the deltoid apexes detectable down to the 0.1 micron level.

  4. NC-AFM observation of atomic scale structure of rutile-type TiO2(110) surface prepared by wet chemical process.

    PubMed

    Namai, Yoshimichi; Matsuoka, Osamu

    2006-04-06

    We succeeded in observing the atomic scale structure of a rutile-type TiO2(110) single-crystal surface prepared by the wet chemical method of chemical etching in an acid solution and surface annealing in air. Ultrahigh vacuum noncontact atomic force microscopy (UHV-NC-AFM) was used for observing the atomic scale structures of the surface. The UHV-NC-AFM measurements at 450 K, which is above a desorption temperature of molecularly adsorbed water on the TiO2(110) surface, enabled us to observe the atomic scale structure of the TiO2(110) surface prepared by the wet chemical method. In the UHV-NC-AFM measurements at room temperature (RT), however, the atomic scale structure of the TiO2(110) surface was not observed. The TiO2(110) surface may be covered with molecularly adsorbed water after the surface was prepared by the wet chemical method. The structure of the TiO2(110) surface that was prepared by the wet chemical method was consistent with the (1 x 1) bulk-terminated model of the TiO2(110) surface.

  5. Release of MEMS devices with hard-baked polyimide sacrificial layer

    NASA Astrophysics Data System (ADS)

    Boroumand Azad, Javaneh; Rezadad, Imen; Nath, Janardan; Smith, Evan; Peale, Robert E.

    2013-03-01

    Removal of polyimides used as sacrificial layer in fabricating MEMS devices can be challenging after hardbaking, which may easily result by the end of multiple-step processing. We consider the specific commercial co-developable polyimide ProLift 100 (Brewer Science). Excessive heat hardens this material, so that during wet release in TMAH based solvents, intact sheets break free from the substrate, move around in the solution, and break delicate structures. On the other hand, dry reactive-ion etching of hard-baked ProLift is so slow, that MEMS structures are damaged from undesirably-prolonged physical bombardment by plasma ions. We found that blanket exposure to ultraviolet light allows rapid dry etch of the ProLift surrounding the desired structures without damaging them. Subsequent removal of ProLift from under the devices can then be safely performed using wet or dry etch. We demonstrate the approach on PECVD-grown silicon-oxide cantilevers of 100 micron × 100 micron area supported 2 microns above the substrate by ~100-micron-long 8-micron-wide oxide arms.

  6. Accurate atomistic potentials and training sets for boron-nitride nanostructures

    NASA Astrophysics Data System (ADS)

    Tamblyn, Isaac

    Boron nitride nanotubes exhibit exceptional structural, mechanical, and thermal properties. They are optically transparent and have high thermal stability, suggesting a wide range of opportunities for structural reinforcement of materials. Modeling can play an important role in determining the optimal approach to integrating nanotubes into a supporting matrix. Developing accurate, atomistic scale models of such nanoscale interfaces embedded within composites is challenging, however, due to the mismatch of length scales involved. Typical nanotube diameters range from 5-50 nm, with a length as large as a micron (i.e. a relevant length-scale for structural reinforcement). Unlike their carbon-based counterparts, well tested and transferable interatomic force fields are not common for BNNT. In light of this, we have developed an extensive training database of BN rich materials, under conditions relevant for BNNT synthesis and composites based on extensive first principles molecular dynamics simulations. Using this data, we have produced an artificial neural network potential capable of reproducing the accuracy of first principles data at significantly reduced computational cost, allowing for accurate simulation at the much larger length scales needed for composite design.

  7. Airborne spectrophotometry of Eta Carinae from 4.5 to 7.5 microns and a model for source morphology

    NASA Technical Reports Server (NTRS)

    Russell, Ray W.; Lynch, David K.; Hackwell, John A.; Rudy, Richard J.; Rossano, George S.; Castelaz, M. W.

    1987-01-01

    Spectrophotometric observations of Eta Car between 4.5 and 7.5 microns show a featureless thermal-like spectrum with no fine-structure lines or broad emission or absorption features. The color temperature of the spectrum is approximately 375 K. High spatial resolution maps at 3.5, 4.8, and 10 microns obtained from the ground are used to discuss the dust distribution and temperature structure, and to present a model for general source morphology. The upper limit to the brightness of the forbidden Ar II fine-structure emission line at 6.98 microns is less than 7 x 10 to the -16th W/sq cm, which still allows for a significant overabundance of argon and is consistent with the evolved nature of the source.

  8. Microstructural Characterization of Base Metal Alloys with Conductive Native Oxides for Electrical Contact Applications

    NASA Astrophysics Data System (ADS)

    Senturk, Bilge Seda

    Metallic contacts are a ubiquitous method of connecting electrical and electronic components/systems. These contacts are usually fabricated from base metals because they are inexpensive, have high bulk electrical conductivities and exhibit excellent formability. Unfortunately, such base metals oxidize in air under ambient conditions, and the characteristics of the native oxide scales leads to contact resistances orders of magnitude higher than those for mating bare metal surface. This is a critical technological issue since the development of unacceptably high contact resistances over time is now by far the most common cause of failure in electrical/electronic devices and systems. To overcome these problems, several distinct approaches are developed for alloying base metals to promote the formation of self-healing inherently conductive native oxide scales. The objective of this dissertation study is to demonstrate the viability of these approaches through analyzing the data from Cu-9La (at%) and Fe-V binary alloy systems. The Cu-9 La alloy structure consists of eutectic colonies tens of microns in diameter wherein a rod-like Cu phase lies within a Cu6La matrix phase. The thin oxide scale formed on the Cu phase was found to be Cu2O as expected while the thicker oxide scale formed on the Cu6La phase was found to be a polycrystalline La-rich Cu2O. The enhanced electrical conductivity in the native oxide scale of the Cu-9La alloy arises from heavy n-type doping of the Cu2O lattice by La3+. The Fe-V alloy structures consist of a mixture of large elongated and equiaxed grains. A thin polycrystalline Fe3O4 oxide scale formed on all of the Fe-V alloys. The electrical conductivities of the oxide scales formed on the Fe-V alloys are higher than that formed on pure Fe. It is inferred that this enhanced conductivity arises from doping of the magnetite with V+4 which promotes electron-polaron hopping. Thus, it has been demonstrated that even in simple binary alloy systems one can obtain a dramatic reduction in the contact resistances of alloy oxidized surfaces as compared with those of the pure base metals.

  9. Mapping alpha-Particle X-Ray Fluorescence Spectrometer (Map-X)

    NASA Technical Reports Server (NTRS)

    Blake, D. F.; Sarrazin, P.; Bristow, T.

    2014-01-01

    Many planetary surface processes (like physical and chemical weathering, water activity, diagenesis, low-temperature or impact metamorphism, and biogenic activity) leave traces of their actions as features in the size range 10s to 100s of micron. The Mapping alpha-particle X-ray Spectrometer ("Map-X") is intended to provide chemical imaging at 2 orders of magnitude higher spatial resolution than previously flown instruments, yielding elemental chemistry at or below the scale length where many relict physical, chemical, and biological features can be imaged and interpreted in ancient rocks.

  10. Topics in the mechanics of self-organizing systems

    NASA Astrophysics Data System (ADS)

    Tambe, Dhananjay

    Self-organization, in one of its accepted definitions, is the appearance of non-random structures in a system without explicit constraints from forces outside the system. In this thesis two self-organizing systems are studied from the viewpoint of mechanics. In the first system---semiconductor crystal surfaces---the internal constraints that lead to self-assembly of nanoscale structures on silicon-germanium (SiGe) films are studied. In the second system---actin cytoskeleton---a consequence of dynamic self-organization of actin filaments in the form of motion of micron-sized beads through a cytoplasmic medium is studied. When Ge film is deposited on Si(001) substrate, nanoscale features form on the surface and self-organize by minimizing energy contributions from the surface and the strain resulting from difference in lattice constants of the film and the substrate. Clean Si(001) and Ge(001) surfaces are very similar, but experiments to date have shown that atomic scale defects such as dimer-vacancies self-organize into vacancy lines only on Si(001). Through atomic simulations, we show that the observed difference originate from the magnitude of compressive surface strain which reduces formation energy of the dimer-vacancies. During initial stages of the film deposition, the surface is composed of steps and vacancy lines organized in periodic patterns. Using theory of elasticity and atomic simulations we show that these line defects self-organize due to monopolar nature of steps and dipolar nature of the vacancy lines. This self-organized pattern further develops to form pyramidal islands bounded with (105) facets and high Ge content. Mismatch strain of the island is then reduced by incorporation of Si from the substrate surrounding the island leaving behind trenches whose depth is proportional to the basewidth of the island. Using finite element simulations we show that such a relationship is an outcome of competition between elastic energy and surface energy. Some experimental studies also report observation of steeper (103) and (104) facets on pyramidal islands. Using numerical simulations we derive a phase diagram which shows that the steeper facets are stabilized because they provide better relaxation of mismatch strain with only slight increase in surface energy. In the second system, the actin cytoskeleton is a key structural and propulsion element of eukaryotic cells. Micron-sized "cargoes", which under pathological conditions include bacteria, are propelled by dynamic self-organization of the actin filaments. Recently it is shown that the trajectories of a bacterium, Listeria monocytogenes, propelled by actin filaments are periodic; implying that the organization of actin filaments impart an effective force that spins about the axis of the bacterium. We show that the motion of spherical beads is also non-random; the effective force has an additional degree of freedom due to the spherical symmetry of the bead. Agreement of the theoretical trajectories with experimental observations suggest that the actin-based motility can be generally described using deterministic equations. We also propose microscopic basis for the effective force model which can guide development of microscopic theory to predict the long term trajectories of actin propelled objects.

  11. Fabrication of biomimetic nanomaterials and their effect on cell behavior

    NASA Astrophysics Data System (ADS)

    Porri, Teresa Jane

    Cells in vivo respond to an intricate combination of chemical and mechanical signals. The corneal epithelium, a structure which prevents the admission of bacteria and undesirable molecules into the eye, grows on a basement membrane which presents both nanoscale topographic and adhesive chemical signals. An effective approach to biomaterials design takes advantage of the synergistic effects of the multiple cellular inputs which are available to engineer cell-substrate interactions. We have previously demonstrated the effects of nanoscale topography on a variety of corneal epithelial cell behaviors. To gain a better understanding of cell-level control in vivo, we employ a systems-level approach which looks at the effect of nanoscale topography in conjunction with a biomimetic surface chemistry. First, we discuss a novel method of fabricating nanoscale topography through templated electroless deposition of gold into PVP-coated polycarbonate membranes. This technique creates nanowires of gold with an uniform outer diameter that is dependent upon the size of the pores in the membrane used, and a nanowire length that is dependent upon the extent of etching into the polymer membrane. The gold nanowires can be modified with self-assembled monolayers (SAMs) of alkanethiols. Using these substrates, we study the effect of topographic length scale and surface chemistry on cells attached to a discontinuous nanoscale topography, and find a transition in cellular behavior at a length scale (between 600 and 2000 nm inter-wire spacing) that is commensurate with the transition length scale seen on surfaces presenting continuous grooves and ridges. Secondly, we study the effect of non-fouling peptide-modified SAMs on cellular behavior. We examine the effect of co-presented RGD and AG73 peptides and show that cell spreading is a function of the relative ratios of RGD and AG73 present on the surface. Finally, we explore the combinatorial effects of biologically relevant chemistry with anisotropic nanoscale topography with dimensions that vary from the micron to the nanoscale. We show that integrin binding, syndecan binding, and topographic length scale each independently influence epithelial cell response to nanoscale features, lending a high degree of control over cell morphologic responses.

  12. The structural coloration of textile materials using self-assembled silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Gao, Weihong; Rigout, Muriel; Owens, Huw

    2017-09-01

    The work presented investigates how to produce structural colours on textile materials by applying a surface coating of silica nanoparticles (SNPs). Uniform SNPs with particle diameters in a controlled micron size range (207-350 nm) were synthesized using a Stöber-based solvent varying (SV) method which has been reported previously. Photonic crystals (PCs) were formed on the surface of a piece of textile fabric through a process of natural sedimentation self-assembly of the colloidal suspension containing uniform SNPs. Due to the uniformity and a particular diameter range of the prepared SNPs, structural colours were observed from the fabric surface due to the Bragg diffraction of white light with the ordered structure of the silica PCs. By varying the mean particle diameter, a wide range of spectral colours from red to blue were obtained. The comparison of structural colours on fabrics and on glasses suggests that a smooth substrate is critical when producing materials with high colour intensity and spatial uniformity. This work suggested a promising approach to colour textile materials without the need for traditional dyes and/or pigments. [Figure not available: see fulltext.

  13. The structural coloration of textile materials using self-assembled silica nanoparticles.

    PubMed

    Gao, Weihong; Rigout, Muriel; Owens, Huw

    2017-01-01

    The work presented investigates how to produce structural colours on textile materials by applying a surface coating of silica nanoparticles (SNPs). Uniform SNPs with particle diameters in a controlled micron size range (207-350 nm) were synthesized using a Stöber-based solvent varying (SV) method which has been reported previously. Photonic crystals (PCs) were formed on the surface of a piece of textile fabric through a process of natural sedimentation self-assembly of the colloidal suspension containing uniform SNPs. Due to the uniformity and a particular diameter range of the prepared SNPs, structural colours were observed from the fabric surface due to the Bragg diffraction of white light with the ordered structure of the silica PCs. By varying the mean particle diameter, a wide range of spectral colours from red to blue were obtained. The comparison of structural colours on fabrics and on glasses suggests that a smooth substrate is critical when producing materials with high colour intensity and spatial uniformity. This work suggested a promising approach to colour textile materials without the need for traditional dyes and/or pigments. Graphical abstract.

  14. A 100 electrode intracortical array: structural variability.

    PubMed

    Campbell, P K; Jones, K E; Normann, R A

    1990-01-01

    A technique has been developed for fabricating three dimensional "hair brush" electrode arrays from monocrystalline silicon blocks. Arrays consist of a square pattern of 100 penetrating electrodes, with 400 microns interelectrode spacing. Each electrode is 1.5mm in length and tapers from about 100 microns at its base to a sharp point at the tip. The tips of each electrode are coated with platinum and the entire structure, with the exception of the tips, is insulated with polyimide. Electrical connection to selected electrodes is made by wire bonding polyimide insulated 25 microns diameter gold lead wires to bonding pads on the rear surface of the array. As the geometrical characteristics of the electrodes in such an aray will influence their electrical properties (such as impedance, capacitance, spreading resistance in an electrolyte, etc.) it is desirable that such an array have minimal variability in geometry from electrode to electrode. A study was performed to determine the geometrical variability resulting from our micromachining techniques. Measurements of the diameter of each of the 100 electrodes were made at various planes above the silicon substrate of the array. For the array that was measured, the standard deviation of the diameters was approximately 9% of the mean diameter near the tip, 8% near the middle, and 6% near the base. We describe fabrication techniques which should further reduce these variabilities.

  15. Remote sensing of the surface emissivity at 9 microns over the globe. [over desert regions with IR Interferometer Spectrometer data

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Dalu, G.

    1976-01-01

    The infrared spectral measurements made by the Nimbus 4 infrared interferometer spectrometer (Iris) for a period of about 10 months are used to study the surface emissivity properties over the globe. It is found that the surface emissivity at 9 microns, as measured by Iris with a circular field of view of about 100-km diameter, is significantly less than unity over arid and semiarid areas. The spectral features in the 8-12-micron window observed over these lands reveal emissivity characteristics essentially due to quartz (SiO2). It is found that these emissivity features are significantly weakened by the presence of clay, clay horizons, or pedogenic horizons in the soil. Low emissivity is observed over sandy or sandy loam areas (psamments) with no clay or pedogenic horizons.

  16. A Study of Inner Disk Gas around Young Stars in the Lupus Complex

    NASA Astrophysics Data System (ADS)

    Arulanantham, Nicole Annemarie; France, Kevin; Hoadley, Keri

    2018-06-01

    We present a study of molecular hydrogen at the surfaces of the disks around five young stars in the Lupus complex: RY Lupi, RU Lupi, MY Lupi, Sz 68, and TYC 7851. Each system was observed with the Cosmic Origins Spectrograph (COS) onboard the Hubble Space Telescope (HST), and we detect a population of fluorescent H2 in all five sources. The temperatures required for LyA fluorescence to proceed (T ~ 1500-2500 K) place the gas within ~15 AU of the central stars. We have used these features to extract the radial distribution of H2 in the inner disk, where planet formation may already be taking place. The objects presented here have very different outer disk morphologies, as seen by ALMA via 890 micron dust continuum emission, ranging from full disks with no signs of cavities to systems with large regions that are clearly depleted (e.g. TYC 7851, with a cavity extending to 75 and 60 AU in dust and gas, respectively). Our results are interpreted in conjunction with sub-mm data from the five systems in an effort to piece together a more complete picture of the overall disk structure. We have previously applied this multi-wavelength approach to RY Lupi, including 4.7 micron IR-CO emission in our analysis. These IR-CO and UV-H2 observations were combined with 10 micron silicate emission, the 890 micron dust continuum, and 1.3 mm CO observations from the literature to infer a gapped structure in the inner disk. This single system has served as a testing ground for the larger Lupus complex sample, which we compare here to examine any trends between the outer disk morphology and inner disk gas distributions.

  17. The production of ultrathin polyimide films for the solar sail program and Large Space Structures Technology (LSST): A feasibility study

    NASA Technical Reports Server (NTRS)

    Forester, R. H.

    1978-01-01

    Polyimide membranes of a thickness range from under 0.01 micron m to greater than 1 micron m can be produced at an estimated cost of 50 cents per sq m (plus the cost of the polymer). The polymer of interest is dissolved in a solvent which is solube in water. The polymer or casting solution is allowed to flow down an inclined ramp onto a water surface where a pool of floating polymer develops. The solvent dissolves into the water lowering the surface tension of the water on equently, the contact angle of the polymer pool is very low and the edge of the pool is very thin. The solvent dissolves from this thin region too rapidly to be replenished from the bulk of the pool and a solid polymer film forms. Firm formation is rapid and spontaneous and the film spreads out unaided, many feet from the leading edge of the pool. The driving force for this process is the exothermic solution of the organic solvent from the polymer solution into the water.

  18. Avian reovirus microNS protein forms homo-oligomeric inclusions in a microtubule-independent fashion, which involves specific regions of its C-terminal domain.

    PubMed

    Brandariz-Nuñez, Alberto; Menaya-Vargas, Rebeca; Benavente, Javier; Martinez-Costas, Jose

    2010-05-01

    Members of the genus Orthoreovirus replicate in cytoplasmic inclusions termed viral factories. Compelling evidence suggests that the nonstructural protein microNS forms the matrix of the factories and recruits specific viral proteins to these structures. In the first part of this study, we analyzed the properties of avian reovirus factories and microNS-derived inclusions and found that they are nonaggresome cytoplasmic globular structures not associated with the cytoskeleton which do not require an intact microtubule network for formation and maturation. We next investigated the capacity of avian reovirus microNS to form inclusions in transfected and baculovirus-infected cells. Our results showed that microNS is the main component of the inclusions formed by recombinant baculovirus expression. This, and the fact that microNS is able to self-associate inside the cell, suggests that microNS monomers contain all the interacting domains required for inclusion formation. Examination of the inclusion-forming capacities of truncated microNS versions allowed us to identify the region spanning residues 448 to 635 of microNS as the smallest that was inclusion competent, although residues within the region 140 to 380 seem to be involved in inclusion maturation. Finally, we investigated the roles that four different motifs present in microNS(448-635) play in inclusion formation, and the results suggest that the C-terminal tail domain is a key determinant in dictating the initial orientation of monomer-to-monomer contacts to form basal oligomers that control inclusion shape and inclusion-forming efficiency. Our results contribute to an understanding of the generation of structured protein aggregates that escape the cellular mechanisms of protein recycling.

  19. Optical Communications and Detection Systems

    DOT National Transportation Integrated Search

    1971-08-01

    The two milestones of the program (1) development of a high quantum efficiency 1.06 micron photomissive surface and (2) narrow pulse propatation in the earth's atmosphere at 0.63 microns were completed. : Item 1 was completed in a contract award. : I...

  20. From Pore to Core: Do Engineered Nanoparticles Violate Upscaling Assumptions? A Microtomographic Investigation

    NASA Astrophysics Data System (ADS)

    Molnar, I. L.; O'Carroll, D. M.; Gerhard, J.; Willson, C. S.

    2014-12-01

    The recent success in using Synchrotron X-ray Computed Microtomography (SXCMT) for the quantification of nanoparticle concentrations within real, three-dimensional pore networks [1] has opened up new opportunities for collecting experimental data of pore-scale flow and transport processes. One opportunity is coupling SXCMT with nanoparticle/soil transport experiments to provide unique insights into how pore-scale processes influence transport at larger scales. Understanding these processes is a key step in accurately upscaling micron-scale phenomena to the continuum-scale. Upscaling phenomena from the micron-scale to the continuum-scale typically involves the assumption that the pore space is well mixed. Using this 'well mixed assumption' it is implicitly assumed that the distribution of nanoparticles within the pore does not affect its retention by soil grains. This assumption enables the use of volume-averaged parameters in calculating transport and retention rates. However, in some scenarios, the well mixed assumption will likely be violated by processes such as deposition and diffusion. These processes can alter the distribution of the nanoparticles in the pore space and impact retention behaviour, leading to discrepancies between theoretical predictions and experimental observations. This work investigates the well mixed assumption by employing SXCMT to experimentally examine pore-scale mixing of silver nanoparticles during transport through sand packed columns. Silver nanoparticles were flushed through three different sands to examine the impact of grain distribution and nanoparticle retention rates on mixing: uniform silica (low retention), well graded silica sand (low retention) and uniform iron oxide coated silica sand (high retention). The SXCMT data identified diffusion-limited retention as responsible for violations of the well mixed assumption. A mathematical description of the diffusion-limited retention process was created and compared to the experimental data at the pore and column-scale. The mathematical description accurately predicted trends observed within the SXCMT-datasets such as concentration gradients away from grain surfaces and also accurately predicted total retention of nanoparticles at the column scale. 1. ES&T 2014, 48, (2), 1114-1122.

  1. A conceptual design study for a two-dimensional, electronically scanned thinned array radiometer

    NASA Technical Reports Server (NTRS)

    Mutton, Philip; Chromik, Christopher C.; Dixon, Iain; Statham, Richard B.; Stillwagen, Frederic H.; Vontheumer, Alfred E.; Sasamoto, Washito A.; Garn, Paul A.; Cosgrove, Patrick A.; Ganoe, George G.

    1993-01-01

    A conceptual design for the Two-Dimensional, Electronically Steered Thinned Array Radiometer (ESTAR) is described. This instrument is a synthetic aperture microwave radiometer that operates in the L-band frequency range for the measurement of soil moisture and ocean salinity. Two auxiliary instruments, an 8-12 micron, scanning infrared radiometer and a 0.4-1.0 micron, charge coupled device (CCD) video camera, are included to provided data for sea surface temperature measurements and spatial registration of targets respectively. The science requirements were defined by Goddard Space Flight Center. Instrument and the spacecraft configurations are described for missions using the Pegasus and Taurus launch vehicles. The analyses and design trades described include: estimations of size, mass and power, instrument viewing coverage, mechanical design trades, structural and thermal analyses, data and communications performance assessments, and cost estimation.

  2. Interfacial recombination at /AlGa/As/GaAs heterojunction structures

    NASA Technical Reports Server (NTRS)

    Ettenberg, M.; Kressel, H.

    1976-01-01

    Experiments were conducted to determine the interfacial recombination velocity at Al0.25Ga0.75As/GaAs and Al0.5Ga0.5As/GaAs heterojunctions. The recombination velocity was derived from a study of the injected minority-carrier lifetime as a function of the junction spacing. It is found that for heterojunction spacings in excess of about 1 micron, the interfacial recombination can be characterized by a surface recombination velocity of 4,000 and 8,000 cm/sec for the two types of heterojunctions, respectively. For double-heterojunction spacings below 1 micron, the constancy of the minority-carrier lifetime suggests that the interfacial recombination velocity decreases effectively. This effect is technologically very important since it makes it possible to construct very low-threshold injection lasers. No such effect is observed in single-heterojunction diodes.

  3. 3 micron spectrophotometry of Comet Halley - Evidence for water ice

    NASA Technical Reports Server (NTRS)

    Bregman, Jesse D.; Tielens, A. G. G. M.; Witteborn, Fred C.; Rank, David M.; Wooden, Diane

    1988-01-01

    Structure has been observed in the 3-3.6 micron preperihelion spectrum of Comet Halley consistent with either an absorption band near 3.1 microns or emission near 3.3 microns. The results suggest that a large fraction of the water molecules lost by the comet are initially ejected in the form of small ice particles rather than in the gas phase.

  4. Numerical analyses of planer plasmonic focusing lens

    NASA Astrophysics Data System (ADS)

    Chou, Yen-Yu; Lee, Yeeu-Chang

    2018-03-01

    The use of polystyrene (PS) sphere lithography has been widely applied in the fabrication of micron and nano structures, due to their low cost and ease of fabrication in large scale applications. This study evaluated the feasibility of plasmonic lens base on metal thin films with nanohole structures fabricated by using PS sphere lithography through three-dimensional (3D) finite difference time domain (FDTD) method. We calculated the intensity profile of lens with various wavelength of incident light, lens size, cutting positions, diameters of nanohole, and periods of nanohole to investigate the geometric parameters influence on the focusing properties of the plasmonic lens.

  5. Magnetic Actuation of Self-Assembled DNA Hinges

    NASA Astrophysics Data System (ADS)

    Lauback, S.; Mattioli, K.; Armstrong, M.; Miller, C.; Pease, C.; Castro, C.; Sooryakumar, R.

    DNA nanotechnology offers a broad range of applications spanning from the creation of nanoscale devices, motors and nanoparticle templates to the development of precise drug delivery systems. Central to advancing this technology is the ability to actuate or reconfigure structures in real time, which is currently achieved primarily by DNA strand displacement yielding slow actuation times (about 1-10min). Here we exploit superparamagnetic beads to magnetically actuate DNA structures which also provides a system to measure forces associated with molecular interactions. DNA nanodevices are folded using DNA origami, whereby a long single-stranded DNA is folded into a precise compact geometry using hundreds of short oligonucleotides. Our DNA nanodevice is a nanohinge from which rod shaped DNA nanostructures are polymerized into micron-scale filaments forming handles for actuation. By functionalizing one arm of the hinge and the filament ends, the hinge can be attached to a surface while still allowing an arm to rotate and the filaments can be labeled with magnetic beads enabling the hinge to be actuated almost instantaneously by external magnetic fields. These results lay the groundwork to establish real-time manipulation and direct force application of DNA constructs.

  6. Multipactor suppression by micro-structured gold/silver coatings for space applications

    NASA Astrophysics Data System (ADS)

    Nistor, Valentin; González, Luis A.; Aguilera, Lydya; Montero, Isabel; Galán, Luis; Wochner, Ulrich; Raboso, David

    2014-10-01

    The secondary electron emission (SEE) from materials used in high power RF devices in space is the main trigger and sustaining mechanism of the resonant avalanche electron discharge known as the multipactor effect. It limits the attainable power of those devices. During recent decades, some scientific research has been focused on material properties for obtaining anti-multipactor coatings of low secondary emission yield (SEY). The European Space Agency (ESA) is leading a technological research on a new approach based on surface roughness that might perform as a kind of blackbody or Faraday cage effect. A multilayer coating structure was adopted for fulfilling the stringent requirements of the space. The surface of a standard silver plating was modified by a two-step treatment. First, a wet chemically etching process created a roughness of high aspect ratio, in the scale of microns. Secondly, the surface was coated with a protective 2 μm overlayer of gold, using magnetron sputtering. This anti-multipactor coating has been tested on several types of Ku-band WR75 waveguide transformers and band-pass filters, with excellent results. The multipactor effect was suppressed for two waveguides, even when applying the maximum available power levels. As for the other final four, the increase of multipactor power level was in the range of 4-6 dB. These results were obtained after more than one year of air exposure. In spite of the strong roughness, the insertion losses were diminished by 25% with respect to the values attained in the tests of the standard anti-multipactor coating, Alodine.

  7. Full-sky, High-resolution Maps of Interstellar Dust

    NASA Astrophysics Data System (ADS)

    Meisner, Aaron Michael

    We present full-sky, high-resolution maps of interstellar dust based on data from the Wide-field Infrared Survey Explorer (WISE) and Planck missions. We describe our custom processing of the entire WISE 12 micron All-Sky imaging data set, and present the resulting 15 arcsecond resolution, full-sky map of diffuse Galactic dust emission, free of compact sources and other contaminating artifacts. Our derived 12 micron dust map offers angular resolution far superior to that of all other existing full-sky, infrared dust emission maps, revealing a wealth of small-scale filamentary structure. We also apply the Finkbeiner et al. (1999) two-component thermal dust emission model to the Planck HFI maps. We derive full-sky 6.1 arcminute resolution maps of dust optical depth and temperature by fitting this two-component model to Planck 217-857 GHz along with DIRBE/IRAS 100 micron data. In doing so, we obtain the first ever full-sky 100-3000 GHz Planck-based thermal dust emission model, as well as a dust temperature correction with ~10 times enhanced angular resolution relative to DIRBE-based temperature maps. Analyzing the joint Planck/DIRBE dust spectrum, we show that two-component models provide a better fit to the 100-3000 GHz emission than do single-MBB models, though by a lesser margin than found by Finkbeiner et al. (1999) based on FIRAS and DIRBE. We find that, in diffuse sky regions, our two-component 100-217 GHz predictions are on average accurate to within 2.2%, while extrapolating the Planck Collaboration (2013) single-MBB model systematically underpredicts emission by 18.8% at 100 GHz, 12.6% at 143 GHz and 7.9% at 217 GHz. We calibrate our two-component optical depth to reddening, and compare with reddening estimates based on stellar spectra. We find the dominant systematic problems in our temperature/reddening maps to be zodiacal light on large angular scales and the cosmic infrared background anisotropy on small angular scales. Future work will focus on combining our WISE 12 micron dust map and Planck dust model to create a next-generation, full-sky dust extinction map with angular resolution several times better than Schlegel et al. (1998).

  8. Chemical Mapping of Proterozoic Organic Matter at Sub-Micron Spatial Resolution

    NASA Technical Reports Server (NTRS)

    Oehler, Dorothy Z.; Robert, Francois; Mostefaoui, Smail; Meibom, Anders; Selo, Madeleine; McKay, David S.

    2006-01-01

    We have used a NanoSIMS ion microprobe to map sub-micron-scale distributions of carbon, nitrogen, sulfur, silicon, and oxygen in organic microfossils and laminae from the approximately 0.85 Ga Bitter Springs Formation of Australia. The data provide clues about the original chemistry of the microfossils, the silicification process, and biosignatures of specific microorganisms and microbial communities. Chemical maps of fossil unicells and filaments reveal distinct wall-and sheath-like structures enriched in C, N and S, consistent with their accepted biological origin. Surprisingly, organic laminae, previously considered to be amorphous, also exhibit filamentous and apparently compressed spheroidal structures defined by strong enrichments in C, N and S. By analogy to data from the well-preserved microfossils, these structures are interpreted as being of biological origin, most likely representing densely packed remnants of microbial mats. Because the preponderance of organic matter in Precambrian sediments is similarly "amorphous," our findings open a large body of generally neglected material to in situ structural, chemical, and isotopic study. Our results also offer new criteria for assessing biogenicity of problematic kerogenous materials and thus can be applied to assessments of poorly preserved or fragmentary organic residues in early Archean sediments and any that might occur in meteorites or other extraterrestrial samples.

  9. A new structure for comparing surface passivation materials of GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Desalvo, Gregory C.; Barnett, Allen M.

    1989-01-01

    The surface recombination velocity (S sub rec) for bare GaAs is typically as high as 10 to the 6th power to 10 to the 7th power cm/sec, which dramatically lowers the efficiency of GaAs solar cells. Early attempts to circumvent this problem by making an ultra thin junction (xj less than .1 micron) proved unsuccessful when compared to lowering S sub rec by surface passivation. Present day GaAs solar cells use an GaAlAs window layer to passivate the top surface. The advantages of GaAlAs in surface passivation are its high bandgap energy and lattice matching to GaAs. Although GaAlAs is successful in reducing the surface recombination velocity, it has other inherent problems of chemical instability (Al readily oxidizes) and ohmic contact formation. The search for new, more stable window layer materials requires a means to compare their surface passivation ability. Therefore, a device structure is needed to easily test the performance of different passivating candidates. Such a test device is described.

  10. Structural complexities in the active layers of organic electronics.

    PubMed

    Lee, Stephanie S; Loo, Yueh-Lin

    2010-01-01

    The field of organic electronics has progressed rapidly in recent years. However, understanding the direct structure-function relationships between the morphology in electrically active layers and the performance of devices composed of these materials has proven difficult. The morphology of active layers in organic electronics is inherently complex, with heterogeneities existing across multiple length scales, from subnanometer to micron and millimeter range. A major challenge still facing the organic electronics community is understanding how the morphology across all of the length scales in active layers collectively determines the device performance of organic electronics. In this review we highlight experiments that have contributed to the elucidation of structure-function relationships in organic electronics and also point to areas in which knowledge of such relationships is still lacking. Such knowledge will lead to the ability to select active materials on the basis of their inherent properties for the fabrication of devices with prespecified characteristics.

  11. Shale across Scales from the Depths of Sedimentary Basins to Soil and Water at Earth's Surface

    NASA Astrophysics Data System (ADS)

    Brantley, S. L.; Gu, X.

    2017-12-01

    Shale has become highly important on the world stage because it can host natural gas. In addition, shale is now targeted as a formation that can host repositories for disposal of radioactive waste. This newly recognized importance of shale has driven increased research into the nature of this unusual material. Much of this research incorporates characterization tools that probe shale at scales from nanometers to millimeters. Many of the talks in this Union session discuss these techniques and how scientists use them to understand how they impact the flow of fluids at larger scales. Another research avenue targets how material properties affect soil formation on this lithology and how water quality is affected in sedimentary basins where shale gas resources are under development. For example, minerals in shale are dominated by clays aligned along bedding. As the shales are exhumed and exposed at the surface during weathering, bedding planes open and fractures and microfractures form, allowing outfluxes or influxes of fluids. These phenomena result in specific patterns of fluid flow and, eventually, soil formation and landscape development. Specifically, in the Marcellus Formation gas play - the largest shale gas play in the U.S.A. - exposures of the shale at the surface result in deep oxidation of pyrite and organic matter, deep dissolution of carbonates, and relatively shallow alteration of clays. Micron-sized particles are also lost from all depths above the oxidation front. These characteristics result in deeply weathered and quickly eroded landscapes, and may also be related to patterns in water quality in shale gas plays. For example, across the entire Marcellus shale gas play in Pennsylvania, the single most common water quality issue is contamination by natural gas. This contamination is rare and is observed to be more prevalent in certain areas. These areas are likely related to shale material properties and geological structure. Specifically, natural gas moves along opening bedding planes as well as through faults and other larger scale geologic structures within basins. Understanding how shale acts as a material at all depths from that of fracking to that of the forest will enhance our ability to power our societal needs, dispose of our wastes, and sustain our water and soil resources.

  12. Planetary science: A 5-micron-bright spot on Titan: Evidence for surface diversity

    USGS Publications Warehouse

    Barnes, J.W.; Brown, R.H.; Turtle, E.P.; McEwen, A.S.; Lorenz, R.D.; Janssen, M.; Schaller, E.L.; Brown, M.E.; Buratti, B.J.; Sotin, Christophe; Griffith, C.; Clark, R.; Perry, J.; Fussner, S.; Barbara, J.; West, R.; Elachi, C.; Bouchez, A.H.; Roe, H.G.; Baines, K.H.; Bellucci, G.; Bibring, J.-P.; Capaccioni, F.; Cerroni, P.; Combes, M.; Coradini, A.; Cruikshank, D.P.; Drossart, P.; Formisano, V.; Jaumann, R.; Langevin, Y.; Matson, D.L.; McCord, T.B.; Nicholson, P.D.; Sicardy, B.

    2005-01-01

    Observations from the Cassini Visual and Infrared Mapping Spectrometer show an anomalously bright spot on Titan located at 80??W and 20??S. This area is bright in reflected tight at all observed wavelengths, but is most noticeable at 5 microns. The spot is associated with a surface albedo feature identified in images taken by the Cassini Imaging Science Subsystem. We discuss various hypotheses about the source of the spot, reaching the conclusion that the spot is probably due to variation in surface composition, perhaps associated with recent geophysical phenomena.

  13. Proposed method of producing large optical mirrors Single-point diamond crushing followed by polishing with a small-area tool

    NASA Technical Reports Server (NTRS)

    Wright, G.; Bryan, J. B.

    1986-01-01

    Faster production of large optical mirrors may result from combining single-point diamond crushing of the glass with polishing using a small area tool to smooth the surface and remove the damaged layer. Diamond crushing allows a surface contour accurate to 0.5 microns to be generated, and the small area computer-controlled polishing tool allows the surface roughness to be removed without destroying the initial contour. Final contours with an accuracy of 0.04 microns have been achieved.

  14. A 5-micron-bright spot on Titan: evidence for surface diversity.

    PubMed

    Barnes, Jason W; Brown, Robert H; Turtle, Elizabeth P; McEwen, Alfred S; Lorenz, Ralph D; Janssen, Michael; Schaller, Emily L; Brown, Michael E; Buratti, Bonnie J; Sotin, Christophe; Griffith, Caitlin; Clark, Roger; Perry, Jason; Fussner, Stephanie; Barbara, John; West, Richard; Elachi, Charles; Bouchez, Antonin H; Roe, Henry G; Baines, Kevin H; Bellucci, Giancarlo; Bibring, Jean-Pierre; Capaccioni, Fabrizio; Cerroni, Priscilla; Combes, Michel; Coradini, Angioletta; Cruikshank, Dale P; Drossart, Pierre; Formisano, Vittorio; Jaumann, Ralf; Langevin, Yves; Matson, Dennis L; McCord, Thomas B; Nicholson, Phillip D; Sicardy, Bruno

    2005-10-07

    Observations from the Cassini Visual and Infrared Mapping Spectrometer show an anomalously bright spot on Titan located at 80 degrees W and 20 degrees S. This area is bright in reflected light at all observed wavelengths, but is most noticeable at 5 microns. The spot is associated with a surface albedo feature identified in images taken by the Cassini Imaging Science Subsystem. We discuss various hypotheses about the source of the spot, reaching the conclusion that the spot is probably due to variation in surface composition, perhaps associated with recent geophysical phenomena.

  15. Ultra-high aspect ratio titania nanoflakes for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Lee, Yang-Yao; El-Shall, Hassan

    2017-12-01

    Micron sized titania flakes with thickness about 40 nm were used in the titania pastes to assemble dye-sensitized solar cells (DSSCs). Using the same deposition method, better particle dispersion of titania flakes resulted in well bonded and integral films comparing to cracking of Degussa P25 nanoparticle films during the evaporation and sintering processes. There are two features of titania flakes which leads to improved conversion efficiency of DSSC: (1) Higher and stronger adsorption of N-719 dyes due to high specific surface area (2) Stronger light scattering of visible light spectrum because of micron scale wide in two dimensions of the flakes. The thickness of the conducting TiO2 was critical to the IV characteristics of DSSC such as the short-circuit current density (Isc) and open-circuit voltage (Voc). Under the same thickness basis, calcined titania flakes provided 5 times higher efficiency than the photoelectrodes consisted of Degussa P25 nanoparticles (7.4% vs. 1.2%).

  16. An Investigation of Differential Deposition for Figure Corrections in Full-Shell Grazing-Incidents X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail V.; Kilaru, Kirenmayee; Ramsey, Brian D.

    2009-01-01

    We are investigating differential deposition as a way of correcting small figure errors inside full-shell grazing-incidence x-ray optics. The optics in our study are fabricated using the electroformed-nickel-replication technique, and the figure errors arise from fabrication errors in the mandrel, from which the shells are replicated, as well as errors induced during the electroforming process. Combined, these give sub-micron-scale figure deviations which limit the angular resolution of the optics to approx. 10 arcsec. Sub-micron figure errors can be corrected by selectively depositing (physical vapor deposition) material inside the shell. The requirements for this filler material are that it must not degrade the ultra-smooth surface finish necessary for efficient x-ray reflection (approx. 5 A rms), and must not be highly stressed. In addition, a technique must be found to produce well controlled and defined beams within highly constrained geometries, as some of our mirror shells are less than 3 cm in diameter.

  17. Surface texture of Vesta from optical polarimetry

    NASA Technical Reports Server (NTRS)

    Le Bertre, T.; Zellner, B.

    1980-01-01

    Polarimetric, photometric, and reflective spectroscopic properties of asteroid 4 Vesta are simulated in the laboratory by a preparation of eucrite Bereba consisting of a broad mixture of particle sizes (mainly greater than 50-micron) mixed and partially coated with particles of size 10 microns and less. Coarse grains are necessary for producing the same albedo and a very fine dust coating is necessary for producing the same polarization inversion angle as observed for Vesta. There are less small grains and fine dust in this sample than in lunar soils. Photometrically, if coating a sphere, this sample shows a constant brightness on the sunward half of the observed hemisphere, the brightness being given on the other half by the Minnaert reciprocity principle. With such a photometric behavior, the global geometric albedo and the sub-earth point geometric albedo differ by no more than 5%. The microscopic phase coefficient is 0.021 magnitude per degree for the sample; the larger value, 0.025, observed telescopically for Vesta, indicates that large-scale roughness is present on this asteroid.

  18. The Diverse Surface Compositions of the Galilean Satellites

    NASA Technical Reports Server (NTRS)

    Carlson, R. W.

    2002-01-01

    The galilean satellites represent a diverse collection, ranging from the volcanic moon Io, with a surface that is changing yearly, to Callisto, with a dark, ancient surface overlying ice. The composition of these surfaces are also quite different due to a variety of processes and influences, including tidal heating, radiolysis, gardening, a magnetic field (Ganymede), and meteoritic infall. Io's surface contains large quantities of sulfur dioxide (SO2) and colorful sulfur allotropes, both originating in plumes and flows from the tidally driven volcanoes. A broad, 1-micron band is found at high latitudes and may be due to absorption by long-chain sulfur polymers produced by SO2 radiolysis, although iron and iron sulfide compounds are candidates. An unidentified 3.15 micron absorber is equatorially distributed while a 4.62 micron band, perhaps due to a sulfate compound, exhibits a non-uniform distribution. Hot spots are generally dark, and some exhibit negative reflectance slopes (i.e., blue). The composition of these lavas has not been established spectroscopically, but the high temperatures of some volcanoes suggest ultramafic silicates or perhaps more refractory material such as oxides.

  19. Phenyl/Perfluorophenyl Stacking Interactions Enhance Structural Order in Two-Dimensional Covalent Organic Frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Justin C; Braunecker, Wade A; Hurst, Katherine E

    A two-dimensional imine-based covalent organic framework (COF) was designed and synthesized such that phenyl and perfluorophenyl structural units can seamlessly alternate between layers of the framework. X-ray diffraction of the COF powders reveals a striking increase in crystallinity for the COF with self-complementary phenyl/perfluorophenyl interactions (FASt-COF). Whereas measured values of the Brunauer-Emmet-Teller (BET) surface areas for the nonfluorinated Base-COF and the COF employing hydrogen bonding were ~37% and 59%, respectively, of their theoretical Connolly surface areas, the BET value for FASt-COF achieves >90% of its theoretical value (~1700 m2/g). Transmission electron microscopy images also revealed unique micron-sized rodlike features inmore » FASt-COF that were not present in the other materials. The results highlight a promising approach for improving surface areas and long-range order in two-dimensional COFs.« less

  20. Fabrication of Super-Hydrophobic Microchannels via Strain-Recovery Deformations of Polystyrene and Oxygen Reactive Ion Etch.

    PubMed

    Chakraborty, Anirban; Xiang, Mingming; Luo, Cheng

    2013-08-19

    In this article, we report a simple approach to generate micropillars (whose top portions are covered by sub-micron wrinkles) on the inner surfaces of polystyrene (PS) microchannels, as well as on the top surface of the PS substrate, based on strain-recovery deformations of the PS and oxygen reactive ion etch (ORIE). Using this approach, two types of micropillar-covered microchannels are fabricated. Their widths range from 118 μm to 132 μm, depths vary from 40 μm to 44 μm, and the inclined angles of their sidewalls are from 53° to 64°. The micropillars enable these microchannels to have super-hydrophobic properties. The contact angles observed on the channel-structured surfaces are above 162°, and the tilt angles to make water drops roll off from these channel-structured substrates can be as small as 1°.

  1. Progressive deformation of ultramafic rocks accompanied with deflection of layered structure and mylonitization culminating into a pseudotachylyte-bearing seismogenic fault - a field evidence of plastic instability

    NASA Astrophysics Data System (ADS)

    Ueda, T.; Obata, M.

    2011-12-01

    Plastic instability leading to rupture nucleation and propagetion (e.g. Hobbs et al.1986, Kelemen and Hirth, 2007) is an attractive hypothesis for deep earthquakes but lacked clear field evidences. 1D across-fault shear localization observed in some places (e.g. Jin et al.1998) is not clear if the deformation is directly related with seismicity. We present a clear field evidence of plastic instability as guided by pyroxenite/peridotite layering deflection structure (hereafter called LD structure, see figure) accompanied with mylonitization in spinel(Sp)-peridotite facies (P>~1GPa) in Balmuccia peridotite, Ivrea-Verbano Zone, Italy. The studied area contains abundant PST-bearing faults and N-S trending primary pyroxenite layers. Many faults in the area cut pyroxenite layers, but LD structure is found only in one place presented here. Many PSTs in the area have been (re)crystallized in Sp-peridotite facies, and have typically ultramylonitic texture (Ueda et al., 2008) with some injection veins. The fault with LD structure is situated in a fault system, which has two dominant attitudes with regional N-S extension. The shear strain of LD structure measured on outcrop surface is ~2.0. Near the fault, elongated Opx porphyroclasts (ellipses in figure) oblique to local layering are visible in peridotite. The dominant deformation textures are dynamic recrystallization in peridotite and kinking or undulatory extinction in pyroxenite. The mineral assemblages of the mylonite neoblast in the peridotite and the pyroxenite are Ol+Opx+Cpx+Sp+hornblende(Hbl), Cpx+Opx+Sp, respectively. Hbl typically occur only in neoblast. In the vicinity (several hundreds of micron) of the fault, dolomite(Dol) also occur in equilibrium with the assemblage above. The recrystallized grain sizes are 20-50 microns in peridotite and 10-30 microns in pyroxenite. The rarity of LD structure is consistent with general conception that deformation processes which lead to dynamic rupture initiation ought to be recorded in limited area on a resultant fault surface. The N-S extensional arrangement of the fault system including the fault of LD structure, the depth of PST (re)crystallization and mylonitization, all indicate that the rupture nucleation occurred in extensional tectonics (Souquiere and Fabbri , 2010). The occurrence of Dol in the vicinity of the PST fault suggests that this is the very place where plastic instability accompanied with fluid chemistry evolution (from H2O-rich to CO2-rich, caused by mylonitization and hydration) of Ueda et al. (2008.) had taken place.

  2. Computational Challenges in the Analysis of Petrophysics Using Microtomography and Upscaling

    NASA Astrophysics Data System (ADS)

    Liu, J.; Pereira, G.; Freij-Ayoub, R.; Regenauer-Lieb, K.

    2014-12-01

    Microtomography provides detailed 3D internal structures of rocks in micro- to tens of nano-meter resolution and is quickly turning into a new technology for studying petrophysical properties of materials. An important step is the upscaling of these properties as micron or sub-micron resolution can only be done on the sample-scale of millimeters or even less than a millimeter. We present here a recently developed computational workflow for the analysis of microstructures including the upscaling of material properties. Computations of properties are first performed using conventional material science simulations at micro to nano-scale. The subsequent upscaling of these properties is done by a novel renormalization procedure based on percolation theory. We have tested the workflow using different rock samples, biological and food science materials. We have also applied the technique on high-resolution time-lapse synchrotron CT scans. In this contribution we focus on the computational challenges that arise from the big data problem of analyzing petrophysical properties and its subsequent upscaling. We discuss the following challenges: 1) Characterization of microtomography for extremely large data sets - our current capability. 2) Computational fluid dynamics simulations at pore-scale for permeability estimation - methods, computing cost and accuracy. 3) Solid mechanical computations at pore-scale for estimating elasto-plastic properties - computational stability, cost, and efficiency. 4) Extracting critical exponents from derivative models for scaling laws - models, finite element meshing, and accuracy. Significant progress in each of these challenges is necessary to transform microtomography from the current research problem into a robust computational big data tool for multi-scale scientific and engineering problems.

  3. On scattered waves and lipid domains: detecting membrane rafts with X-rays and neutrons

    DOE PAGES

    Marquardt, Drew; Heberle, Frederick A.; Nickels, Jonathan D.; ...

    2015-09-21

    In order to understand the biological role of lipids in cell membranes, it is necessary to determine the mesoscopic structure of well-defined model membrane systems. Neutron and X-ray scattering are non-invasive, probe-free techniques that have been used extensively in such systems to probe length scales ranging from angstroms to microns, and dynamics occurring over picosecond to millisecond time scales. Finally, recent developments in the area of phase separated lipid systems mimicking membrane rafts will be presented, and the underlying concepts of the different scattering techniques used to study them will be discussed in detail.

  4. Cellular Structure Fabricated on Ni Wire by a Simple and Cost-Effective Direct-Flame Approach and Its Application in Fiber-Shaped Supercapacitors.

    PubMed

    Wang, Zhihong; Cao, Fenhui; Chen, Kongfa; Yan, Yingming; Chen, Yifu; Zhang, Yaohui; Zhu, Xingbao; Wei, Bo; Xiong, Yueping; Lv, Zhe

    2018-03-09

    Cellular metals with the large surface/volume ratios and excellent electrical conductivity are widely applicable and have thus been studied extensively. It is highly desirable to develop a facile and cost-effective process for fabrication of porous metallic structures, and yet more so for micro/nanoporous structures. A direct-flame strategy is developed for in situ fabrication of micron-scale cellular architecture on a Ni metal precursor. The flame provides the required heat and also serves as a fuel reformer, which provides a gas mixture of H 2 , CO, and O 2 for redox treatment of metallic Ni. The redox processes at elevated temperatures allow fast reconstruction of the metal, leading to a cellular structure on Ni wire. This process is simple and clean and avoids the use of sacrificial materials or templates. Furthermore, nanocrystalline MnO 2 is coated on the microporous Ni wire (MPNW) to form a supercapacitor electrode. The MnO 2 /MPNW electrode and the corresponding fiber-shaped supercapacitor exhibit high specific capacitance and excellent cycling stability. Moreover, this work provides a novel strategy for the fabrication of cellular metals and alloys for a variety of applications, including catalysis, energy storage and conversion, and chemical sensing. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. PCT MAO’s Enhanced Performance by Specially Designed Sealers for Superior Service & Environments

    DTIC Science & Technology

    2014-11-01

    PCT’s Process is with low silicon content. • Aluminized Steel + PCT MAO can be a cost effective alternative to Stainless Steel, Super Duplex...is applied PCT – P seal • Typical Layer thickness: 40-80 micron* • Organic sealer • Hydrophobic surface, reduces sedimentation...PCT - S seal • Typical Layer thickness: 10-40 micron* • Organo-ceramic sealer • Hydrophobic surface, reduces sedimentation. PCT Classic 1000

  6. Estimation of sea surface temperature from remote measurements in the 11-13 micron window region

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Conrath, B. J.; Kunde, V. G.

    1972-01-01

    The Nimbus-4 IRIS data was examined in the spectral region 775 to 1250/cm (8-13 microns) for useful information to determine the sea surface temperature. The high spectral resolution data of IRIS was degraded to low resolution by averaging to simulate a multi-channel radiometer in the window region. These simulated data show that within the region 775-975/cm (12.9-10.25 microns) the brightness temperatures are linearly related to the absorption parameters. Such a linear relationship is observed over cloudy as well as clear regions and over a wide range of latitudes. From this linear relationship it is feasible to correct for the atmospheric attenuation and get the sea surface temperature, accurate to within 1 K, in a cloud free field of view. The information about the cloud cover is taken from the TV pictures and BUV albedo measurements on board the Nimbus-4 satellite.

  7. Investigating biofilm structure using x-ray microtomography and gratings-based phase contrast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Erin A.; Xiao, Xianghui; Miller, Micah D.

    2012-10-17

    Direct examination of natural and engineered environments has revealed that the majority of microorganisms in these systems live in structured communities termed biofilms. To gain a better understanding for how biofilms function and interact with their local environment, fundamental capabilities for enhanced visualization, compositional analysis, and functional characterization of biofilms are needed. For pore-scale and community-scale analysis (100’s of nm to 10’s of microns), a variety of surface tools are available. However, understanding biofilm structure in complex three-dimensional (3-D) environments is considerably more difficult. X-ray microtomography can reveal a biofilm’s internal structure, but the obtaining sufficient contrast to image low-Zmore » biological material against a higher-Z substrate makes detecting biofilms difficult. Here we present results imaging Shewanella oneidensis biofilms on a Hollow-fiber Membrane Biofilm Reactor (HfMBR), using the x-ray microtomography system at sector 2-BM of the Advanced Photon Source (APS), at energies ranging from 13-15.4 keV and pixel sizes of 0.7 and 1.3 μm/pixel. We examine the use of osmium (Os) as a contrast agent to enhance biofilm visibility and demonstrate that staining improves imaging of hydrated biofilms. We also present results using a Talbot interferometer to provide phase and scatter contrast information in addition to absorption. Talbot interferometry allows imaging of unstained hydrated biofilms with phase contrast, while absorption contrast primarily highlights edges and scatter contrast provides little information. However, the gratings used here limit the spatial resolution to no finer than 2 μm, which hinders the ability to detect small features. Future studies at higher resolution or higher Talbot order for greater sensitivity to density variations may improve imaging.« less

  8. Pressure Effects on the Ejection of Material from Shocked Tin Surfaces

    NASA Astrophysics Data System (ADS)

    Zellner, M. B.; Grover, M.; Hammerberg, J. E.; Hixson, R. S.; Iverson, A. J.; Macrum, G. S.; Morley, K. B.; Obst, A. W.; Olson, R. T.; Payton, J. R.; Rigg, P. A.; Routley, N.; Stevens, G. D.; Turley, W. D.; Veeser, L.; Buttler, W. T.

    2007-12-01

    Los Alamos National Lab (LANL) is actively engaged in the development of a model to predict the formation of micron-scale fragments ejected (ejecta) from shocked metals that have surface defects. The LANL ejecta model considers that the amount of ejecta is mainly related to the material's phase on shock release at the free-surface. This effort investigates the relation between ejecta production and shock-breakout pressure for Sn shocked with high explosives to pressures near the solid-on-release/partial-liquid-on-release phase transition region. We found that the amount of ejecta produced for shock-breakout pressures that resulted in partial-liquid-on-release increased significantly compared to that which resulted in solid-on-release. Additionally, we found that the amount of ejecta remained relatively constant within the partial-liquid-on-release, regardless of shock-breakout pressure.

  9. Soluto-inertial phenomena: Designing long-range, long-lasting, surface-specific interactions in suspensions

    PubMed Central

    Banerjee, Anirudha; Williams, Ian; Azevedo, Rodrigo Nery; Squires, Todd M.

    2016-01-01

    Equilibrium interactions between particles in aqueous suspensions are limited to distances less than 1 μm. Here, we describe a versatile concept to design and engineer nonequilibrium interactions whose magnitude and direction depends on the surface chemistry of the suspended particles, and whose range may extend over hundreds of microns and last thousands of seconds. The mechanism described here relies on diffusiophoresis, in which suspended particles migrate in response to gradients in solution. Three ingredients are involved: a soluto-inertial “beacon” designed to emit a steady flux of solute over long time scales; suspended particles that migrate in response to the solute flux; and the solute itself, which mediates the interaction. We demonstrate soluto-inertial interactions that extend for nearly half a millimeter and last for tens of minutes, and which are attractive or repulsive, depending on the surface chemistry of the suspended particles. Experiments agree quantitatively with scaling arguments and numerical computations, confirming the basic phenomenon, revealing design strategies, and suggesting a broad set of new possibilities for the manipulation and control of suspended particles. PMID:27410044

  10. Effects of shock-breakout pressure on ejection of micron-scale material from shocked tin surfaces

    NASA Astrophysics Data System (ADS)

    Zellner, M. B.; Grover, M.; Hammerberg, J. E.; Hixson, R. S.; Iverson, A. J.; Macrum, G. S.; Morley, K. B.; Obst, A. W.; Olson, R. T.; Payton, J. R.; Rigg, P. A.; Routley, N.; Stevens, G. D.; Turley, W. D.; Veeser, L.; Buttler, W. T.

    2007-07-01

    This effort investigates the relation between ejecta production and shock-breakout pressure (PSB) for Sn shocked with a Taylor shockwave (unsupported) to pressures near the solid-on-release/partial melt-on-release phase transition region. The shockwaves were created by detonation of high explosive (HE) PBX-9501 on the front side of Sn coupons. Ejecta production at the backside or free side of the Sn coupons was characterized through use of piezoelectric pins, optical shadowgraphy, x-ray attenuation radiography, and optical-heterodyne velocimetry. Ejecta velocities, dynamic volume densities, and areal densities were then correlated with the shock-breakout pressure of Sn surfaces characterized by roughness average of Ra=16 μin or Ra=32 μin.

  11. On the relationship between thermal emissivity and the Normalized Difference Vegetation Index for natural surfaces

    NASA Technical Reports Server (NTRS)

    Van De Griend, A. A.; Owe, M.

    1993-01-01

    The spatial variation of both the thermal emissivity (8-14 microns) and Normalized Difference Vegetation Index (NDVI) was measured for a series of natural surfaces within a savanna environment in Botswana. The measurements were performed with an emissivity-box and with a combined red and near-IR radiometer, with spectral bands corresponding to NOAA/AVHRR. It was found that thermal emissivity was highly correlated with NDVI after logarithmic transformation, with a correlation coefficient of R = 0.94. This empirical relationship is of potential use for energy balance studies using thermal IR remote sensing. The relationship was used in combination with AVHRR (GAC), AVHRR (LAC), and Landsat (TM) data to demonstrate and compare the spatial variability of various spatial scales.

  12. Geologic Structures in Crater Walls on Vesta

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, David W.; Beck, A. W.; Ammannito, E.; Carsenty, U.; DeSanctis, M. C.; LeCorre, L.; McCoy, T. J.; Reddy, V.; Schroeder, S. E.

    2012-01-01

    The Framing Camera (FC) on the Dawn spacecraft has imaged most of the illuminated surface of Vesta with a resolution of apporpx. 20 m/pixel through different wavelength filters that allow for identification of lithologic units. The Visible and Infrared Mapping Spectrometer (VIR) has imaged the surface at lower spatial resolution but high spectral resolution from 0.25 to 5 micron that allows for detailed mineralogical interpretation. The FC has imaged geologic structures in the walls of fresh craters and on scarps on the margin of the Rheasilvia basin that consist of cliff-forming, competent units, either as blocks or semi-continuous layers, hundreds of m to km below the rims. Different units have different albedos, FC color ratios and VIR spectral characteristics, and different units can be juxtaposed in individual craters. We will describe different examples of these competent units and present preliminary interpretations of the structures. A common occurrence is of blocks several hundred m in size of high albedo (bright) and low albedo (dark) materials protruding from crater walls. In many examples, dark material deposits lie below coherent bright material blocks. In FC Clementine color ratios, bright material is green indicating deeper 1 m pyroxene absorption band. VIR spectra show these to have deeper and wider 1 and 2 micron pyroxene absorption bands than the average vestan surface. The associated dark material has subdued pyroxene absorption features compared to the average vestan surface. Some dark material deposits are consistent with mixtures of HED materials with carbonaceous chondrites. This would indicate that some dark material deposits in crater walls are megabreccia blocks. The same would hold for bright material blocks found above them. Thus, these are not intact crustal units. Marcia crater is atypical in that the dark material forms a semi-continuous, thin layer immediately below bright material. Bright material occurs as one or more layers. In one region, there is an apparent angular unconformity between the bright material and the dark material where bright material layers appear to be truncated against the underlying dark layer. One crater within the Rheasilvia basin contains two distinct types of bright materials outcropping on its walls, one like that found elsewhere on Vesta and the other an anomalous block 200 m across. This material has the highest albedo; almost twice that of the vestan average. Unlike all other bright materials, this block has a subdued 1 micron pyroxene absorption band in FC color ratios. These data indicate that this block represents a distinct vestan lithology that is rarely exposed.

  13. Structural, morphological and Raman studies on hybridized PVDF/BaTiO3 nanocomposites

    NASA Astrophysics Data System (ADS)

    Rajamanickam, N.; Jayakumar, K.; Ramachandran, K.

    2017-05-01

    Hybridized nanocomposites of polyvinylidene fluoride (PVDF) and nano - barium titanate (BaTiO3) were prepared using the solution casting method for different concentrations of nano-BaTiO3 and were characterized by X-ray diffraction and scanning electron microscopy. The flower like structure for morphology was observed in SEM. Raman analysis showed that the modified BaTiO3 particles, due to higher specific surfaces, induce, predominantly, the crystallization of the electrically active β-phase of PVDF, while the initial micron size particles induce the formation of the most common but non-polar α-crystal form.

  14. Triple-Pulsed Two-Micron Integrated Path Differential Absorption Lidar: A New Active Remote Sensing Capability with Path to Space

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Refaat, Tamer F.; Petros, Mulugeta; Yu, Jirong

    2015-01-01

    The two-micron wavelength is suitable for monitoring atmospheric water vapor and carbon dioxide, the two most dominant greenhouse gases. Recent advances in 2-micron laser technology paved the way for constructing state-of-the-art lidar transmitters for active remote sensing applications. In this paper, a new triple-pulsed 2-micron integrated path differential absorption lidar is presented. This lidar is capable of measuring either two species or single specie with two different weighting functions, simultaneously and independently. Development of this instrument is conducted at NASA Langley Research Center. Instrument scaling for projected future space missions will be discussed.

  15. Laboratory Studies of Organic Compounds With Reflectance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Curchin, J. M.; Clark, R. N.; Hoefen, T. M.

    2007-12-01

    In order to properly interpret reflectance spectra of any solar system surface from the earth to the Oort cloud, laboratory spectra of candidate materials for comparative analysis are needed. Although the common cosmochemical species (H2O, CO2, CO, NH3, and CH4) are well represented in the spectroscopic literature, comparatively little reflectance work has been done on organics from room to cryogenic temperatures at visible to near infrared wavelengths. Reflectance spectra not only enhance weak or unseen transmission features, they are also more analogous to spectra obtained by spacecraft that are imaging such bodies as giant planet moons, kuiper belt objects, centaurs, comets and asteroids, as well as remote sensing of the earth. The USGS Spectroscopy Laboratory is measuring reflectance spectra of organic compounds from room to cryogenic temperatures over the spectral range of 0.35 to 15.5 microns. This region encompasses the fundamental absorptions and many overtones and combinations of C, H, O, and N molecular bonds. Because most organic compounds belong to families whose members have similar structure and composition, individual species identification within a narrow wavelength range may be ambiguous. By measuring spectral reflectance of the pure laboratory samples from the visible through the near and mid-infrared, absorption bands unique to each can be observed, cataloged, and compared to planetary reflectance data. We present here spectra of organic compounds belonging to five families: the alkanes, alkenes, alkynes, aromatics, and cyanides. Common to all of these are the deep C-H stretch fundamental absorptions, which shift shortward from 3.35+ microns in alkanes to 3.25+ microns in aromatics, to 3.2+ microns in alkenes, and down to 3.0+ microns in alkynes. Mid-IR absorptions due to C-H bending deformations at 6.8+ and 7.2+ microns are also identified. In the near infrared these stretching and bending fundamentals yield a diagnostic set of combination absorptions at approximately 2.3 microns, as well as the first C-H stretching overtones at 1.6 to 1.7 microns, and even the second stretching overtones at 1.2+ microns. Additionally, the spectral properties of these organic materials have applications to remote sensing of terrestrial environments, including hazardous waste and disaster site characterization.

  16. Sub-micron scale patterning of fluorescent silver nanoclusters using low-power laser.

    PubMed

    Kunwar, Puskal; Hassinen, Jukka; Bautista, Godofredo; Ras, Robin H A; Toivonen, Juha

    2016-04-05

    Noble metal nanoclusters are ultrasmall nanomaterials with tunable properties and huge application potential; however, retaining their enhanced functionality is difficult as they readily lose their properties without stabilization. Here, we demonstrate a facile synthesis of highly photostable silver nanoclusters in a polymer thin film using visible light photoreduction. Furthermore, the different stages of the nanocluster formation are investigated in detail using absorption and fluorescence spectroscopy, fluorescence microscopy, and atomic force microscopy. A cost-effective fabrication of photostable micron-sized fluorescent silver nanocluster barcode is demonstrated in silver-impregnated polymer films using a low-power continuous-wave laser diode. It is shown that a laser power of as low as 0.75 mW is enough to write fluorescent structures, corresponding to the specifications of a commercially available laser pointer. The as-formed nanocluster-containing microstructures can be useful in direct labeling applications such as authenticity marking and fluorescent labeling.

  17. Spectroscopic infrared extinction mapping as a probe of grain growth in IRDCs

    NASA Astrophysics Data System (ADS)

    Lim, Wanggi; Carey, Sean J.

    2014-07-01

    We present photometric and spectroscopic tests of MIR to FIR extinction laws toward IRDC G028.36+00.07, a potential site of massive star formation. Lim & Tan (2014, hereafter LT14) developed methods of FIR extinction mapping of this source using Spitzer-MIPS 24 micron and Herschel-PACS 70 micron images, and extending the MIR 8 micron mapping methods of (Butler & Tan 2012, hereafter BT12), finding evidence for grain growth in the highest mass surface density regions. Here we present initial results of spectroscopic infrared extinction (SIREX) mapping using Spitzer-IRS (14 to 38 micron) data of the same IRDC. These methods allow us to measure the SED of the diffuse Galactic ISM, which we compare to theoretical models of Draine & Li (2007), as well as to search for opacity law variations with mass surface density within the IRDC. By comparison with theoretical dust models, e.g., Ossenkopf & Henning (1994) and Ormel et al. (2011), we are able to search for compositional signatures of the grain ices, such as water and methanol. We find evidence for generally flatter MIR to FIR extinction laws as mass surface density increases, strengthening the evidence for grain and ice mantle growth in higher density regions.

  18. Ectopic bone formation by marrow stromal osteoblast transplantation using poly(DL-lactic-co-glycolic acid) foams implanted into the rat mesentery

    NASA Technical Reports Server (NTRS)

    Ishaug-Riley, S. L.; Crane, G. M.; Gurlek, A.; Miller, M. J.; Yasko, A. W.; Yaszemski, M. J.; Mikos, A. G.; McIntire, L. V. (Principal Investigator)

    1997-01-01

    Porous biodegradable poly(DL-lactic-co-glycolic acid) foams were seeded with rat marrow stromal cells and implanted into the rat mesentery to investigate in vivo bone formation at an ectopic site. Cells were seeded at a density of 6.83 x 10(5) cells/cm2 onto polymer foams having pore sizes ranging from either 150 to 300 to 710 microns and cultured for 7 days in vitro prior to implantation. The polymer/cell constructs were harvested after 1, 7, 28, or 49 days in vivo and processed for histology and gel permeation chromatography. Visual observation of hematoxylin and eosin-stained sections and von Kossa-stained sections revealed the formation of mineralized bonelike tissue in the constructs within 7 days postimplantation. Ingrowth of vascular tissue was also found adjacent to the islands of bone, supplying the necessary metabolic requirements to the newly formed tissue. Mineralization and bone tissue formation were investigated by histomorphometry. The average penetration depth of mineralized tissue in the construct ranged from 190 +/- 50 microns for foams with 500-710-microns pores to 370 +/- 160 microns for foams with 150-300-microns pores after 49 days in vivo. The mineralized bone volume per surface area and total bone volume per surface area had maximal values of 0.28 +/- 0.21 mm (500-710-microns pore size, day 28) and 0.038 +/- 0.024 mm (150-300-microns, day 28), respectively. As much as 11% of the foam volume penetrated by bone tissue was filled with mineralized tissue. No significant trends over time were observed for any of the measured values (penetration depth, bone volume/surface area, or percent mineralized bone volume). These results suggest the feasibility of bone formation by osteoblast transplantation in an orthotopic site where not only bone formation from transplanted cells but also ingrowth from adjacent bone may occur.

  19. Cryo-TEM of morphology and kinetics of self-assembled nanostructures

    NASA Astrophysics Data System (ADS)

    Dong, Jingshan

    Cryogenic Transmission Electron Microscopy (Cryo-TEM) is applied to study various structures in solutions and suspensions from micron to nanometer scale. By vitrifying the liquid samples at different moments, sequential stages of a dynamic process can be frozen and the structures occurring from about 30 sec to over 10 min can be imaged. Therefore a picture of how the structures evolve with time in the liquid systems can be established. This method has been proven to be a powerful technique in studying the morphology and kinetics of self-assembled nanostructures. Such a pseudo-in-situ technique is used to "watch" the crystallization process of silver stearate (AgSt) from sodium stearate (NaSt) dispersions. AgSt crystal is produced from a reaction of NaSt and silver nitrate. The reaction, as a AgSt crystallization process, starts from AgSt micelles, which aggregate and grow into hexagonal shaped crystals of about 10 microns. If silver bromide (AgBr) grains are present, the micelles do not prefer to aggregate, but rather deposit on the surface of the AgBr crystalline grains. Variation of the carboxylate chain length does not affect the crystallization process very much, although the morphology of both the reactant and the product is changed. Nanostructure transition in sodium lauryl ether sulfate (SLES) solutions is investigated as well. A micellar network structure can form if equal molar calcium chloride is added to 3 wt% SLES solution. The network can be broken into wormlike micelle segments such as spheres and rods by sonication. After about 10 min, these broken pieces can reassemble and reform the network through wormlike micelle growth and connection. Also by using Cryo-TEM, 100-200 nm casein micelles are observed at 1 wt% casein solution, but aggregated submicelles cannot be distinguished. However, individual submicelles of about 30 nm are indeed captured in a 0.03 wt% solution. By adding acid or EDTA, the casein micelles can be disrupted into small particles, the size of which is close to the estimated radius of gyration of single casein molecules.

  20. Generation of large-area and glow-like surface discharge in atmospheric pressure air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Ying; Bi, Zhenhua; Wang, Xueyang

    2016-08-15

    A large-area (6 cm × 6 cm) air surface dielectric barrier discharge has been generated at atmospheric pressure by using well-aligned and micron-sized dielectric tubes with tungsten wire electrodes. Intensified CCD images with an exposure time of 5 ns show that the uniform surface air discharge can be generated during the rising and falling time of pulsed DC voltage. Current and voltage and optical measurements confirm the formation of glow-like air discharges on the surface of micron-sized dielectric tubes. Simulation results indicate that the microelectrode configuration contributes to the formation of strong surface electric field and plays an important role in the generation of uniformmore » surface air discharge.« less

Top