Science.gov

Sample records for micron-sized focal adhesions

  1. Effects of hydrodynamic interaction on random adhesive loose packings of micron-sized particles

    NASA Astrophysics Data System (ADS)

    Liu, Wenwei; Tao, Ran; Chen, Sheng; Zhang, Huang; Li, Shuiqing

    2017-06-01

    Random loose packings of monodisperse spherical micron-sized particles under a uniform flow field are investigated via an adhesive discrete-element method with the two-way coupling between the particles and the fluid. Characterized by a dimensionless adhesion parameter, the packing fraction follows the similar law to that without fluid, but results in larger values due to the hydrodynamic compression. The total pressure drop through the packed bed shows a critical behaviour at the packing fraction of ϕ ≈ 0.22 in the present study. The normalized permeability of the packed bed for different parameters increases with the increase of porosities and is also in consistent with the Kozeny-Carman equation.

  2. Focal adhesions in osteoneogenesis

    PubMed Central

    Biggs, M.J.P; Dalby, M.J

    2010-01-01

    As materials technology and the field of tissue engineering advances, the role of cellular adhesive mechanisms, in particular the interactions with implantable devices, becomes more relevant in both research and clinical practice. A key tenet of medical device technology is to use the exquisite ability of biological systems to respond to the material surface or chemical stimuli in order to help develop next-generation biomaterials. The focus of this review is on recent studies and developments concerning focal adhesion formation in osteoneogenesis, with an emphasis on the influence of synthetic constructs on integrin mediated cellular adhesion and function. PMID:21287830

  3. Note: Adhesive stamp electrodes using spider silk masks for electronic transport measurements of supra-micron sized samples

    NASA Astrophysics Data System (ADS)

    Steven, E.; Jobiliong, E.; Eugenio, P. M.; Brooks, J. S.

    2012-04-01

    A procedure for fabricating adhesive stamp electrodes based on gold coated adhesive tape used to measure electronic transport properties of supra-micron samples in the lateral range 10-100 μm and thickness >1 μm is described. The electrodes can be patterned with a ˜4 μm separation by metal deposition through a mask using Nephila clavipes spider dragline silk fibers. Ohmic contact is made by adhesive lamination of a sample onto the patterned electrodes. The performance of the electrodes with temperature and magnetic field is demonstrated for the quasi-one-dimensional organic conductor (TMTSF)2PF6 and single crystal graphite, respectively.

  4. Note: adhesive stamp electrodes using spider silk masks for electronic transport measurements of supra-micron sized samples.

    PubMed

    Steven, E; Jobiliong, E; Eugenio, P M; Brooks, J S

    2012-04-01

    A procedure for fabricating adhesive stamp electrodes based on gold coated adhesive tape used to measure electronic transport properties of supra-micron samples in the lateral range 10-100 μm and thickness >1 μm is described. The electrodes can be patterned with a ~4 μm separation by metal deposition through a mask using Nephila clavipes spider dragline silk fibers. Ohmic contact is made by adhesive lamination of a sample onto the patterned electrodes. The performance of the electrodes with temperature and magnetic field is demonstrated for the quasi-one-dimensional organic conductor (TMTSF)(2)PF(6) and single crystal graphite, respectively. © 2012 American Institute of Physics

  5. Focal Adhesion-Independent Cell Migration.

    PubMed

    Paluch, Ewa K; Aspalter, Irene M; Sixt, Michael

    2016-10-06

    Cell migration is central to a multitude of physiological processes, including embryonic development, immune surveillance, and wound healing, and deregulated migration is key to cancer dissemination. Decades of investigations have uncovered many of the molecular and physical mechanisms underlying cell migration. Together with protrusion extension and cell body retraction, adhesion to the substrate via specific focal adhesion points has long been considered an essential step in cell migration. Although this is true for cells moving on two-dimensional substrates, recent studies have demonstrated that focal adhesions are not required for cells moving in three dimensions, in which confinement is sufficient to maintain a cell in contact with its substrate. Here, we review the investigations that have led to challenging the requirement of specific adhesions for migration, discuss the physical mechanisms proposed for cell body translocation during focal adhesion-independent migration, and highlight the remaining open questions for the future.

  6. The Focal Adhesion Analysis Server: a web tool for analyzing focal adhesion dynamics.

    PubMed

    Berginski, Matthew E; Gomez, Shawn M

    2013-01-01

    The Focal Adhesion Analysis Server (FAAS) is a web-based implementation of a set of computer vision algorithms designed to quantify the behavior of focal adhesions in cells imaged in 2D cultures. The input consists of one or more images of a labeled focal adhesion protein. The outputs of the system include a range of static and dynamic measurements for the adhesions present in each image as well as how these properties change over time. The user is able to adjust several parameters important for proper focal adhesion identification. This system provides a straightforward tool for the global, unbiased assessment of focal adhesion behavior common in optical microscopy studies. The webserver is available at: http://faas.bme.unc.edu/.

  7. Contractility Modulates Cell Adhesion Strengthening Through Focal Adhesion Kinase and Assembly of Vinculin-Containing Focal Adhesions

    PubMed Central

    Dumbauld, David W.; Shin, Heungsoo; Gallant, Nathan D.; Michael, Kristin E.; Radhakrishna, Harish; García, Andrés J.

    2010-01-01

    Actin-myosin contractility modulates focal adhesion assembly, stress fiber formation, and cell migration. We analyzed the contributions of contractility to fibroblast adhesion strengthening using a hydrodynamic adhesion assay and micropatterned substrates to control cell shape and adhesive area. Serum addition resulted in adhesion strengthening to levels 30–40% higher than serum-free cultures. Inhibition of myosin light chain kinase or Rho-kinase blocked phosphorylation of myosin light chain to similar extents and eliminated the serum-induced enhancements in strengthening. Blebbistatin-induced inhibition of myosin II reduced serum-induced adhesion strength to similar levels as those obtained by blocking myosin light chain phosphorylation. Reductions in adhesion strengthening by inhibitors of contractility correlated with loss of vinculin and talin from focal adhesions without changes in integrin binding. In vinculin-null cells, inhibition of contractility did not alter adhesive force, whereas controls displayed a 20% reduction in adhesion strength, indicating that the effects of contractility on adhesive force are vinculin-dependent. Furthermore, in cells expressing FAK, inhibitors of contractility reduced serum-induced adhesion strengthening as well as eliminated focal adhesion assembly. In contrast, in the absence of FAK, these inhibitors did not alter adhesion strength or focal adhesion assembly. These results indicate that contractility modulates adhesion strengthening via FAK-dependent, vinculin-containing focal adhesion assembly. PMID:20205236

  8. Focal Adhesion Kinase Modulates Cell Adhesion Strengthening via Integrin Activation

    PubMed Central

    Michael, Kristin E.; Dumbauld, David W.; Burns, Kellie L.; Hanks, Steven K.

    2009-01-01

    Focal adhesion kinase (FAK) is an essential nonreceptor tyrosine kinase regulating cell migration, adhesive signaling, and mechanosensing. Using FAK-null cells expressing FAK under an inducible promoter, we demonstrate that FAK regulates the time-dependent generation of adhesive forces. During the early stages of adhesion, FAK expression in FAK-null cells enhances integrin activation to promote integrin binding and, hence, the adhesion strengthening rate. Importantly, FAK expression regulated integrin activation, and talin was required for the FAK-dependent effects. A role for FAK in integrin activation was confirmed in human fibroblasts with knocked-down FAK expression. The FAK autophosphorylation Y397 site was required for the enhancements in adhesion strengthening and integrin-binding responses. This work demonstrates a novel role for FAK in integrin activation and the time-dependent generation of cell–ECM forces. PMID:19297531

  9. A kinetic model for RNA-interference of focal adhesions

    PubMed Central

    2013-01-01

    Background Focal adhesions are integrin-based cell-matrix contacts that transduce and integrate mechanical and biochemical cues from the environment. They develop from smaller and more numerous focal complexes under the influence of mechanical force and are key elements for many physiological and disease-related processes, including wound healing and metastasis. More than 150 different proteins localize to focal adhesions and have been systematically classified in the adhesome project (http://www.adhesome.org). First RNAi-screens have been performed for focal adhesions and the effect of knockdown of many of these components on the number, size, shape and location of focal adhesions has been reported. Results We have developed a kinetic model for RNA interference of focal adhesions which represents some of its main elements: a spatially layered structure, signaling through the small GTPases Rac and Rho, and maturation from focal complexes to focal adhesions under force. The response to force is described by two complementary scenarios corresponding to slip and catch bond behavior, respectively. Using estimated and literature values for the model parameters, three time scales of the dynamics of RNAi-influenced focal adhesions are identified: a sub-minute time scale for the assembly of focal complexes, a sub-hour time scale for the maturation to focal adhesions, and a time scale of days that controls the siRNA-mediated knockdown. Our model shows bistability between states dominated by focal complexes and focal adhesions, respectively. Catch bonding strongly extends the range of stability of the state dominated by focal adhesions. A sensitivity analysis predicts that knockdown of focal adhesion components is more efficient for focal adhesions with slip bonds or if the system is in a state dominated by focal complexes. Knockdown of Rho leads to an increase of focal complexes. Conclusions The suggested model provides a kinetic description of the effect of RNA

  10. Kindler syndrome: a focal adhesion genodermatosis.

    PubMed

    Lai-Cheong, J E; Tanaka, A; Hawche, G; Emanuel, P; Maari, C; Taskesen, M; Akdeniz, S; Liu, L; McGrath, J A

    2009-02-01

    Kindler syndrome (OMIM 173650) is an autosomal recessive genodermatosis characterized by trauma-induced blistering, poikiloderma, skin atrophy, mucosal inflammation and varying degrees of photosensitivity. Although Kindler syndrome is classified as a subtype of epidermolysis bullosa, it has distinct clinicopathological and molecular abnormalities. The molecular pathology of Kindler syndrome involves loss-of-function mutations in a newly recognized actin cytoskeleton-associated protein, now known as fermitin family homologue 1, encoded by the gene FERMT1. This protein mediates anchorage between the actin cytoskeleton and the extracellular matrix via focal adhesions, and thus the structural pathology differs from other forms of epidermolysis bullosa in which there is a disruption of the keratin intermediate filament-hemidesmosome network and the extracellular matrix. In the skin, fermitin family homologue 1 is mainly expressed in basal keratinocytes and binds to the cytoplasmic tails of beta1 and beta3 integrins as well as to fermitin family homologue 2 and filamin-binding LIM protein 1. It also plays a crucial role in keratinocyte migration, proliferation and adhesion. In this report, we review the clinical, cellular and molecular pathology of Kindler syndrome and discuss the role of fermitin family homologue 1 in keratinocyte biology.

  11. Focal Adhesion Kinase: The Reversible Molecular Mechanosensor

    NASA Astrophysics Data System (ADS)

    Bell, Samuel; Terentjev, Eugene M.

    2017-06-01

    Sensors are the first element of the pathways that control the response of cells to their environment. After chemical, the next most important cue is mechanical, and protein complexes that produce or enable a chemical signal in response to a mechanical stimulus are called mechanosensors. There is a sharp distinction between sensing an external force or pressure/tension applied to the cell, and sensing the mechanical stiffness of the environment. We call the first mechanosensitivity of the 1st kind, and the latter mechanosensitivity of the 2nd kind. There are two variants of protein complexes that act as mechanosensors of the 2nd kind: producing either a one-off or a reversible action. The latent complex of TGF-$\\beta$ is an example of the one-off action: on the release of active TGF-$\\beta$ signal, the complex is discarded and needs to be replaced. In contrast, focal adhesion kinase (FAK) in a complex with integrin is a reversible mechanosensor, which initiates the chemical signal in its active phosphorylated conformation, but can spontaneously return to its closed folded conformation. Here we study the physical mechanism of the reversible mechanosensor of the 2nd kind, using FAK as a practical example. We find how the rates of conformation changes depend on the substrate stiffness and the pulling force applied from the cell cytoskeleton. The results compare well with the phenotype observations of cells on different substrates.

  12. Analysis of the myosin-II-responsive focal adhesion proteome reveals a role for β-Pix in negative regulation of focal adhesion maturation.

    PubMed

    Kuo, Jean-Cheng; Han, Xuemei; Hsiao, Cheng-Te; Yates, John R; Waterman, Clare M

    2011-04-01

    Focal adhesions undergo myosin-II-mediated maturation wherein they grow and change composition to modulate integrin signalling for cell migration, growth and differentiation. To determine how focal adhesion composition is affected by myosin II activity, we performed proteomic analysis of isolated focal adhesions and compared protein abundance in focal adhesions from cells with and without myosin II inhibition. We identified 905 focal adhesion proteins, 459 of which changed in abundance with myosin II inhibition, defining the myosin-II-responsive focal adhesion proteome. The abundance of 73% of the proteins in the myosin-II-responsive focal adhesion proteome was enhanced by contractility, including proteins involved in Rho-mediated focal adhesion maturation and endocytosis- and calpain-dependent focal adhesion disassembly. During myosin II inhibition, 27% of proteins in the myosin-II-responsive focal adhesion proteome, including proteins involved in Rac-mediated lamellipodial protrusion, were enriched in focal adhesions, establishing that focal adhesion protein recruitment is also negatively regulated by contractility. We focused on the Rac guanine nucleotide exchange factor β-Pix, documenting its role in the negative regulation of focal adhesion maturation and the promotion of lamellipodial protrusion and focal adhesion turnover to drive cell migration. © 2011 Macmillan Publishers Limited. All rights reserved

  13. Focal adhesion signaling and therapy resistance in cancer.

    PubMed

    Eke, Iris; Cordes, Nils

    2015-04-01

    Interlocking gene mutations, epigenetic alterations and microenvironmental features perpetuate tumor development, growth, infiltration and spread. Consequently, intrinsic and acquired therapy resistance arises and presents one of the major goals to solve in oncologic research today. Among the myriad of microenvironmental factors impacting on cancer cell resistance, cell adhesion to the extracellular matrix (ECM) has recently been identified as key determinant. Despite the differentiation between cell adhesion-mediated drug resistance (CAMDR) and cell adhesion-mediated radioresistance (CAMRR), the underlying mechanisms share great overlap in integrin and focal adhesion hub signaling and differ further downstream in the complexity of signaling networks between tumor entities. Intriguingly, cell adhesion to ECM is per se also essential for cancer cells similar to their normal counterparts. However, based on the overexpression of focal adhesion hub signaling receptors and proteins and a distinct addiction to particular integrin receptors, targeting of focal adhesion proteins has been shown to potently sensitize cancer cells to different treatment regimes including radiotherapy, chemotherapy and novel molecular therapeutics. In this review, we will give insight into the role of integrins in carcinogenesis, tumor progression and metastasis. Additionally, literature and data about the function of focal adhesion molecules including integrins, integrin-associated proteins and growth factor receptors in tumor cell resistance to radio- and chemotherapy will be elucidated and discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Micron size superconducting quantum interference devices of lead (Pb)

    NASA Astrophysics Data System (ADS)

    Paul, Sagar; Biswas, Sourav; Gupta, Anjan K.

    2017-02-01

    Micron size superconducting quantum interference devices (μ-SQUID) of lead (Pb), for probing nano-magnetism, were fabricated and characterized. In order to get continuous Pb films with small grain size, Pb was thermally evaporated on a liquid nitrogen cooled Si substrate. Pb was sandwiched between two thin Cr layers for improved adhesion and protection. The SQUID pattern was made by e-beam lithography with Pb lift-off after deposition. The current-voltage characteristics of these devices show a critical current, which exhibits the expected SQUID oscillations with magnetic field, and two re-trapping currents. As a result these devices have hysteresis at low temperatures, which disappears just below the critical temperature.

  15. Actin machinery and mechanosensitivity in invadopodia, podosomes and focal adhesions

    PubMed Central

    Albiges-Rizo, Corinne; Destaing, Olivier; Fourcade, Bertrand; Planus, Emmanuelle; Block, Marc R.

    2009-01-01

    Summary The invasiveness of cells is correlated with the presence of dynamic actin-rich membrane structures called invadopodia, which are membrane protrusions that are associated with localized polymerization of sub-membrane actin filaments. Similar to focal adhesions and podosomes, invadopodia are cell matrix adhesion sites. Indeed, invadopodia share several features with podosomes, but whether they are distinct structures is still a matter of debate. Invadopodia are built upon an N-WASP-dependent branched actin network, and the Rho GTPase Cdc42 is involved in inducing invadopodial-membrane protrusion, which is mediated by actin filaments that are organized in bundles to form an actin core. Actin-core formation is thought to be an early step in invadopodium assembly, and the actin core is perpendicular to the extracellular matrix and the plasma membrane; this contrasts with the tangential orientation of actin stress fibers anchored to focal adhesions. In this Commentary, we attempt to summarize recent insights into the actin dynamics of invadopodia and podosomes, and the forces that are transmitted through these invasive structures. Although the mechanisms underlying force-dependent regulation of invadopodia and podosomes are largely unknown compared with those of focal adhesions, these structures do exhibit mechanosensitivity. Actin dynamics and associated forces might be key elements in discriminating between invadopodia, podosomes and focal adhesions. Targeting actin regulatory molecules that specifically promote invadopodium formation is an attractive strategy against cancer-cell invasion. PMID:19692590

  16. Cadherin-11 localizes to focal adhesions and promotes cell–substrate adhesion

    PubMed Central

    Langhe, Rahul P.; Gudzenko, Tetyana; Bachmann, Michael; Becker, Sarah F.; Gonnermann, Carina; Winter, Claudia; Abbruzzese, Genevieve; Alfandari, Dominique; Kratzer, Marie-Claire; Franz, Clemens M.; Kashef, Jubin

    2016-01-01

    Cadherin receptors have a well-established role in cell–cell adhesion, cell polarization and differentiation. However, some cadherins also promote cell and tissue movement during embryonic development and tumour progression. In particular, cadherin-11 is upregulated during tumour and inflammatory cell invasion, but the mechanisms underlying cadherin-11 stimulated cell migration are still incompletely understood. Here, we show that cadherin-11 localizes to focal adhesions and promotes adhesion to fibronectin in Xenopus neural crest, a highly migratory embryonic cell population. Transfected cadherin-11 also localizes to focal adhesions in different mammalian cell lines, while endogenous cadherin-11 shows focal adhesion localization in primary human fibroblasts. In focal adhesions, cadherin-11 co-localizes with β1-integrin and paxillin and physically interacts with the fibronectin-binding proteoglycan syndecan-4. Adhesion to fibronectin mediated by cadherin-11/syndecan-4 complexes requires both the extracellular domain of syndecan-4, and the transmembrane and cytoplasmic domains of cadherin-11. These results reveal an unexpected role of a classical cadherin in cell–matrix adhesion during cell migration. PMID:26952325

  17. Bifurcations: Focal Points of Particle Adhesion in Microvascular Networks

    PubMed Central

    Prabhakarpandian, Balabhaskar; Wang, Yi; Rea-Ramsey, Angela; Sundaram, Shivshankar; Kiani, Mohammad F.; Pant, Kapil

    2011-01-01

    Objective Particle adhesion in vivo is dependent on microcirculation environment which features unique anatomical (bifurcations, tortuosity, cross-sectional changes) and physiological (complex hemodynamics) characteristics. The mechanisms behind these complex phenomena are not well understood. In this study, we used a recently developed in vitro model of microvascular networks, called Synthetic Microvascular Network, for characterizing particle adhesion patterns in the microcirculation. Methods Synthetic microvascular networks were fabricated using soft lithography processes followed by particle adhesion studies using avidin and biotin-conjugated microspheres. Particle adhesion patterns were subsequently analyzed using CFD based modeling. Results Experimental and modeling studies highlighted the complex and heterogeneous fluid flow patterns encountered by particles in microvascular networks resulting in significantly higher propensity of adhesion (>1.5X) near bifurcations compared to the branches of the microvascular networks. Conclusion Bifurcations are the focal points of particle adhesion in microvascular networks. Changing flow patterns and morphology near bifurcations are the primary factors controlling the preferential adhesion of functionalized particles in microvascular networks. Synthetic microvascular networks provide an in vitro framework for understanding particle adhesion. PMID:21418388

  18. Focal adhesion kinase is involved in mechanosensing during fibroblast migration

    NASA Technical Reports Server (NTRS)

    Wang, H. B.; Dembo, M.; Hanks, S. K.; Wang, Y.

    2001-01-01

    Focal adhesion kinase (FAK) is a non-receptor protein tyrosine kinase localized at focal adhesions and is believed to mediate adhesion-stimulated effects. Although ablation of FAK impairs cell movement, it is not clear whether FAK might be involved in the guidance of cell migration, a role consistent with its putative regulatory function. We have transfected FAK-null fibroblasts with FAK gene under the control of the tetracycline repression system. Cells were cultured on flexible polyacrylamide substrates for the detection of traction forces and the application of mechanical stimulation. Compared with control cells expressing wild-type FAK, FAK-null cells showed a decrease in migration speed and directional persistence. In addition, whereas FAK-expressing cells responded to exerted forces by reorienting their movements and forming prominent focal adhesions, FAK-null cells failed to show such responses. Furthermore, FAK-null cells showed impaired responses to decreases in substrate flexibility, which causes control cells to generate weaker traction forces and migrate away from soft substrates. Cells expressing Y397F FAK, which cannot be phosphorylated at a key tyrosine site, showed similar defects in migration pattern and force-induced reorientation as did FAK-null cells. However, other aspects of F397-FAK cells, including the responses to substrate flexibility and the amplification of focal adhesions upon mechanical stimulation, were similar to that of control cells. Our results suggest that FAK plays an important role in the response of migrating cells to mechanical input. In addition, phosphorylation at Tyr-397 is required for some, but not all, of the functions of FAK in cell migration.

  19. Focal adhesion kinase is involved in mechanosensing during fibroblast migration

    NASA Technical Reports Server (NTRS)

    Wang, H. B.; Dembo, M.; Hanks, S. K.; Wang, Y.

    2001-01-01

    Focal adhesion kinase (FAK) is a non-receptor protein tyrosine kinase localized at focal adhesions and is believed to mediate adhesion-stimulated effects. Although ablation of FAK impairs cell movement, it is not clear whether FAK might be involved in the guidance of cell migration, a role consistent with its putative regulatory function. We have transfected FAK-null fibroblasts with FAK gene under the control of the tetracycline repression system. Cells were cultured on flexible polyacrylamide substrates for the detection of traction forces and the application of mechanical stimulation. Compared with control cells expressing wild-type FAK, FAK-null cells showed a decrease in migration speed and directional persistence. In addition, whereas FAK-expressing cells responded to exerted forces by reorienting their movements and forming prominent focal adhesions, FAK-null cells failed to show such responses. Furthermore, FAK-null cells showed impaired responses to decreases in substrate flexibility, which causes control cells to generate weaker traction forces and migrate away from soft substrates. Cells expressing Y397F FAK, which cannot be phosphorylated at a key tyrosine site, showed similar defects in migration pattern and force-induced reorientation as did FAK-null cells. However, other aspects of F397-FAK cells, including the responses to substrate flexibility and the amplification of focal adhesions upon mechanical stimulation, were similar to that of control cells. Our results suggest that FAK plays an important role in the response of migrating cells to mechanical input. In addition, phosphorylation at Tyr-397 is required for some, but not all, of the functions of FAK in cell migration.

  20. Nanoimaging of Focal Adhesion Dynamics in 3D

    PubMed Central

    Chiu, Chi-Li; Aguilar, Jose S.; Tsai, Connie Y.; Wu, GuiKai; Gratton, Enrico; Digman, Michelle A.

    2014-01-01

    Organization and dynamics of focal adhesion proteins have been well characterized in cells grown on two-dimensional (2D) cell culture surfaces. However, much less is known about the dynamic association of these proteins in the 3D microenvironment. Limited imaging technologies capable of measuring protein interactions in real time and space for cells grown in 3D is a major impediment in understanding how proteins function under different environmental cues. In this study, we applied the nano-scale precise imaging by rapid beam oscillation (nSPIRO) technique and combined the scaning-fluorescence correlation spectroscopy (sFCS) and the number and molecular brightness (N&B) methods to investigate paxillin and actin dynamics at focal adhesions in 3D. Both MDA-MB-231 cells and U2OS cells produce elongated protrusions with high intensity regions of paxillin in cell grown in 3D collagen matrices. Using sFCS we found higher percentage of slow diffusing proteins at these focal spots, suggesting assembling/disassembling processes. In addition, the N&B analysis shows paxillin aggregated predominantly at these focal contacts which are next to collagen fibers. At those sites, actin showed slower apparent diffusion rate, which indicated that actin is either polymerizing or binding to the scaffolds in these locals. Our findings demonstrate that by multiplexing these techniques we have the ability to spatially and temporally quantify focal adhesion assembly and disassembly in 3D space and allow the understanding tumor cell invasion in a more complex relevant environment. PMID:24959851

  1. Focal Adhesion Assembly Induces Phenotypic Changes and Dedifferentiation in Chondrocytes.

    PubMed

    Shin, Hyunjun; Lee, Mi Nam; Choung, Jin Seung; Kim, Sanghee; Choi, Byung Hyune; Noh, Minsoo; Shin, Jennifer H

    2016-08-01

    The expansion of autologous chondrocytes in vitro is used to generate sufficient populations for cell-based therapies. However, during monolayer culture, chondrocytes lose inherent characteristics and shift to fibroblast-like cells as passage number increase. Here, we investigated passage-dependent changes in cellular physiology, including cellular morphology, motility, and gene and protein expression, as well as the role of focal adhesion and cytoskeletal regulation in the dedifferentiation process. We found that the gene and protein expression levels of both the focal adhesion complex and small Rho GTPases are upregulated with increasing passage number and are closely linked to chondrocyte dedifferentiation. The inhibition of focal adhesion kinase (FAK) but not small Rho GTPases induced the loss of fibroblastic traits and the recovery of collagen type II, aggrecan, and SOX9 expression levels in dedifferentiated chondrocytes. Based on these findings, we propose a strategy to suppress chondrogenic dedifferentiation by inhibiting the identified FAK or Src pathways while maintaining the expansion capability of chondrocytes in a 2D environment. These results highlight a potential therapeutic target for the treatment of skeletal diseases and the generation of cartilage in tissue-engineering approaches. J. Cell. Physiol. 231: 1822-1831, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  2. Stability of focal adhesion enhanced by its inner force fluctuation

    NASA Astrophysics Data System (ADS)

    Mao, Zhi-Xiu; Chen, Xiao-Feng; Chen, Bin

    2015-08-01

    Cells actively sense and respond to mechanical signals from the extracellular matrix through focal adhesions. By representing a single focal adhesion as a cluster of slip bonds, it has been demonstrated that the cluster often became unstable under fluctuated forces. However, an unusual case was also reported, where the stability of the cluster might be substantially enhanced by a fluctuated force with a relatively low fluctuation frequency and high fluctuation amplitude. Such an observation cannot be explained by the conventional fracture theory of fatigue. Here, we intensively investigate this intriguing observation by carrying out systematic parametric studies. Our intensive simulation results indicate that stability enhancement of this kind is in fact quite robust, which can be affected by the stochastic features of a single bond and the profile of the fluctuated forces such as the average value of bond force. We then suggest that the fluctuation of traction force within a focal adhesion might enhance its stability in a certain way. Project supported by the National Natural Science Foundation of China (Grant No.*11372279).

  3. Focal adhesion complex proteins in epidermis and squamous cell carcinoma

    PubMed Central

    Duperret, Elizabeth K; Ridky, Todd W

    2013-01-01

    Focal adhesions (FAs) are large, integrin-containing, multi-protein assemblies spanning the plasma membrane that link the cellular cytoskeleton to surrounding extracellular matrix. They play critical roles in adhesion and cell signaling and are major regulators of epithelial homeostasis, tissue response to injury, and tumorigenesis. Most integrin subunits and their associated FA proteins are expressed in skin, and murine genetic models have provided insight into the functional roles of FAs in normal and neoplastic epidermis. Here, we discuss the roles of these proteins in normal epidermal proliferation, adhesion, wound healing, and cancer. While many downstream signaling mechanisms remain unclear, the critically important roles of FAs are highlighted by the development of therapeutics targeting FAs for human cancer. PMID:24036537

  4. Extracellular matrix-specific focal adhesions in vascular smooth muscle produce mechanically active adhesion sites

    PubMed Central

    Sun, Zhe; Martinez-Lemus, Luis A.; Hill, Michael A.; Meininger, Gerald A.

    2008-01-01

    Integrin-mediated mechanotransduction in vascular smooth muscle cells (VSMCs) plays an important role in the physiological control of tissue blood flow and vascular resistance. To test whether force applied to specific extracellular matrix (ECM)-integrin interactions could induce myogenic-like mechanical activity at focal adhesion sites, we used atomic force microscopy (AFM) to apply controlled forces to specific ECM adhesion sites on arteriolar VSMCs. The tip of AFM probes were fused with a borosilicate bead (2∼5 μm) coated with fibronectin (FN), collagen type I (CNI), laminin (LN), or vitronectin (VN). ECM-coated beads induced clustering of α5- and β3-integrins and actin filaments at sites of bead-cell contact indicative of focal adhesion formation. Step increases of an upward (z-axis) pulling force (800∼1,600 pN) applied to the bead-cell contact site for FN-specific focal adhesions induced a myogenic-like, force-generating response from the VSMC, resulting in a counteracting downward pull by the cell. This micromechanical event was blocked by cytochalasin D but was enhanced by jasplakinolide. Function-blocking antibodies to α5β1- and αvβ3-integrins also blocked the micromechanical cell event in a concentration-dependent manner. Similar pulling experiments with CNI, VN, or LN failed to induce myogenic-like micromechanical events. Collectively, these results demonstrate that mechanical force applied to integrin-FN adhesion sites induces an actin-dependent, myogenic-like, micromechanical event. Focal adhesions formed by different ECM proteins exhibit different mechanical characteristics, and FN appears of particular relevance in its ability to strongly attach to VSMCs and to induce myogenic-like, force-generating reactions from sites of focal adhesion in response to externally applied forces. PMID:18495809

  5. Focal adhesion kinase maintains, but not increases the adhesion of dental pulp cells.

    PubMed

    Qian, Yuyan; Shao, Meiying; Zou, Wenlin; Wang, Linyan; Cheng, Ran; Hu, Tao

    2017-04-01

    Focal adhesion kinase (FAK) functions as a key enzyme in the integrin-mediated adhesion-signalling pathway. Here, we aimed to investigate the effects of FAK on adhesion of human dental pulp (HDP) cells. We transfected lentiviral vectors to silence or overexpress FAK in HDP cells ex vivo. Early cell adhesion, cell survival and focal contacts (FCs)-related proteins (FAK and paxillin) were examined. By using immunofluorescence, the formation of FCs and cytoskeleton was detected, respectively. We found that both adhesion and survival of HDP cells were suppressed by FAK inhibition. However, FAK overexpression slightly inhibited cell adhesion and exhibited no change in cell survival compared with the control. A thick rim of cytoskeleton accumulated and smaller dot-shaped FCs appeared in FAK knockdown cells. Phosphorylation of paxillin (p-paxillin) was inhibited in FAK knockdown cells, verifying that the adhesion was inhibited. Less cytoskeleton and elongated FCs were observed in FAK-overexpressed cells. However, p-paxillin had no significant difference compared with the control. In conclusion, the data suggest that FAK maintains cell adhesion, survival and cytoskeleton formation, but excessive FAK has no positive effects on these aspects.

  6. YAP regulates cell mechanics by controlling focal adhesion assembly.

    PubMed

    Nardone, Giorgia; Oliver-De La Cruz, Jorge; Vrbsky, Jan; Martini, Cecilia; Pribyl, Jan; Skládal, Petr; Pešl, Martin; Caluori, Guido; Pagliari, Stefania; Martino, Fabiana; Maceckova, Zuzana; Hajduch, Marian; Sanz-Garcia, Andres; Pugno, Nicola Maria; Stokin, Gorazd Bernard; Forte, Giancarlo

    2017-05-15

    Hippo effectors YAP/TAZ act as on-off mechanosensing switches by sensing modifications in extracellular matrix (ECM) composition and mechanics. The regulation of their activity has been described by a hierarchical model in which elements of Hippo pathway are under the control of focal adhesions (FAs). Here we unveil the molecular mechanism by which cell spreading and RhoA GTPase activity control FA formation through YAP to stabilize the anchorage of the actin cytoskeleton to the cell membrane. This mechanism requires YAP co-transcriptional function and involves the activation of genes encoding for integrins and FA docking proteins. Tuning YAP transcriptional activity leads to the modification of cell mechanics, force development and adhesion strength, and determines cell shape, migration and differentiation. These results provide new insights into the mechanism of YAP mechanosensing activity and qualify this Hippo effector as the key determinant of cell mechanics in response to ECM cues.

  7. The mechanism of force transmission at bacterial focal adhesion complexes

    PubMed Central

    Faure, Laura M.; Fiche, Jean-Bernard; Espinosa, Leon; Ducret, Adrien; Anantharaman, Vivek; Luciano, Jennifer; Lhospice, Sébastien; Islam, Salim T.; Tréguier, Julie; Sotes, Mélanie; Kuru, Erkin; Van Nieuwenhze, Michael S.; Brun, Yves; Théodoly, Olivier; Aravind, L; Nollmann, Marcelo; Mignot, Tâm

    2017-01-01

    Summary Various rod-shaped bacteria mysteriously glide on surfaces in the absence of appendages such as flagella or pili. In the deltaproteobacterium Myxococcus xanthus, a putative gliding motility machinery (Agl–Glt) localizes to so-called Focal Adhesion sites (FA) that form stationary contact points with the underlying surface. We discovered that the Agl–Glt machinery contains an inner-membrane motor complex that moves intracellularly along a right-handed helical path, and when it becomes stationary at FA sites, it powers a left-handed rotation of the cell around its long axis. At FA sites, force transmission requires cyclic interactions between the molecular motor and adhesion proteins of the outer membrane via a periplasmic interaction platform, which presumably involves a contractile activity of motor components and possible interactions with the peptidoglycan. This work provides the first molecular model for bacterial gliding motility. PMID:27749817

  8. Optically controlled grippers for manipulating micron-sized particles

    NASA Astrophysics Data System (ADS)

    Gibson, Graham; Barron, Louise; Beck, Fiona; Whyte, Graeme; Padgett, Miles

    2007-01-01

    We report the development of a joystick controlled gripper for the real-time manipulation of micron-sized objects, driven using holographic optical tweezers (HOTs). The gripper consists of an arrangement of four silica beads, located in optical traps, which can be positioned and scaled in order to trap an object indirectly. The joystick can be used to grasp, move (lateral or axial), and change the orientation of the target object. The ability to trap objects indirectly allows us to demonstrate the manipulation of a strongly scattering micron-sized metallic particle.

  9. Quantitative studies of endothelial cell adhesion. Directional remodeling of focal adhesion sites in response to flow forces.

    PubMed Central

    Davies, P F; Robotewskyj, A; Griem, M L

    1994-01-01

    Focal adhesion sites were observed in cultured endothelial cells by tandem scanning confocal microscopy and digitized image analysis, techniques that provide real-time images of adhesion site area and topography in living cells. Image subtraction demonstrated that in the presence of unidirectional steady laminar flow (shear stress [tau] = 10 dyn/cm2) a substantial fraction of focal adhesion sites remodeled in the direction of flow. In contrast, focal adhesions of control (no flow) cells remodeled without preferred direction. In confluent monolayers subjected to shear stresses of 10 dyn/cm2, cells began to realign in the direction of flow after 7-9 h. This was accompanied by redistribution of intracellular stress fibers, alignment of individual focal adhesion sites, and the coalescence of smaller sites resulting in fewer, but larger, focal adhesions per cell. Cell adhesion, repeatedly calculated in the same cells as a function of the areas of focal contact and the separation distances between membrane and substratum, varied by < 10% during both short (30 min), or prolonged (< or = 24 h), periods of exposure to flow. Consistent with these measurements, the gains and losses of focal adhesion area as each site remodeled were approximately equivalent. When the glass substratum was coated with gelatin, rates of remodeling were inhibited by 47% during flow (tau = 10 dyn/cm2). These studies: (a) reveal the dynamic nature of focal adhesion; (b) demonstrate that these sites at the ablumenal endothelial membrane are both acutely and chronically responsive to frictional shear stress forces applied to the opposite (lumenal) cell surface; and (c) suggest that components of the focal adhesion complex may be mechanically responsive elements coupled to the cytoskeleton. Images PMID:8182135

  10. Focal adhesion kinase and its role in skeletal muscle

    PubMed Central

    Graham, Zachary A.; Gallagher, Philip M.; Cardozo, Christopher P.

    2015-01-01

    Skeletal muscle has a remarkable ability to respond to different physical stresses. Loading muscle through exercise, either anaerobic or aerobic, can lead to increases in muscle size and function while, conversely, the absence of muscle loading stimulates rapid decreases in size and function. A principal mediator of this load-induced change is focal adhesion kinase (FAK), a downstream non-receptor tyrosine kinase that translates the cytoskeletal stress and strain signals transmitted across the cytoplasmic membrane by integrins to activate multiple anti-apoptotic and cell growth pathways. Changes in FAK expression and phosphorylation have been found to correlate to specific developmental states in myoblast differentiation, muscle fiber formation and muscle size in response to loading and unloading. With the capability to regulate costamere formation, hypertrophy and glucose metabolism, FAK is a molecule with diverse functions that are important in regulating muscle cell health. PMID:26142360

  11. Focal adhesion kinase and its role in skeletal muscle.

    PubMed

    Graham, Zachary A; Gallagher, Philip M; Cardozo, Christopher P

    2015-10-01

    Skeletal muscle has a remarkable ability to respond to different physical stresses. Loading muscle through exercise, either anaerobic or aerobic, can lead to increases in muscle size and function while, conversely, the absence of muscle loading stimulates rapid decreases in size and function. A principal mediator of this load-induced change is focal adhesion kinase (FAK), a downstream non-receptor tyrosine kinase that translates the cytoskeletal stress and strain signals transmitted across the cytoplasmic membrane by integrins to activate multiple anti-apoptotic and cell growth pathways. Changes in FAK expression and phosphorylation have been found to correlate to specific developmental states in myoblast differentiation, muscle fiber formation and muscle size in response to loading and unloading. With the capability to regulate costamere formation, hypertrophy and glucose metabolism, FAK is a molecule with diverse functions that are important in regulating muscle cell health.

  12. Crystal Structure of the FERM Domain of Focal Adhesion Kinase

    SciTech Connect

    Ceccarelli,D.; Song, H.; Poy, F.; Schaller, M.; Eck, M.

    2006-01-01

    Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that localizes to focal adhesions in adherent cells. Through phosphorylation of proteins assembled at the cytoplasmic tails of integrins, FAK promotes signaling events that modulate cellular growth, survival, and migration. The amino-terminal region of FAK contains a region of sequence homology with band 4.1 and ezrin/radixin/moesin (ERM) proteins termed a FERM domain. FERM domains are found in a variety of signaling and cytoskeletal proteins and are thought to mediate intermolecular interactions with partner proteins and phospholipids at the plasma membrane and intramolecular regulatory interactions. Here we report two crystal structures of an NH2-terminal fragment of avian FAK containing the FERM domain and a portion of the regulatory linker that connects the FERM and kinase domains. The tertiary folds of the three subdomains (F1, F2, and F3) are similar to those of known FERM structures despite low sequence conservation. Differences in the sequence and relative orientation of the F3 subdomain alters the nature of the interdomain interface, and the phosphoinositide binding site found in ERM family FERM domains is not present in FAK. A putative protein interaction site on the F3 lobe is masked by the proximal region of the linker. Additionally, in one structure the adjacent Src SH3 and SH2 binding sites in the linker associate with the surfaces of the F3 and F1 lobes, respectively. These structural features suggest the possibility that protein interactions of the FAK FERM domain can be regulated by binding of Src kinases to the linker segment.

  13. Improved whisker pointing technique for micron-size diode contact

    NASA Technical Reports Server (NTRS)

    Mattauch, R. J.; Green, G.

    1982-01-01

    Pointed phosphor-bronze whiskers are commonly used to contact micron-size Schottky barrier diodes. A process is presented which allows pointing such wire and achieving the desired cone angle and tip diameter without the use of highly undesirable chemical reagents.

  14. Vacuum probe sampler removes micron-sized particles from surfaces

    NASA Technical Reports Server (NTRS)

    Whitfield, W. J.

    1968-01-01

    Vacuum probe sampler removes micron-sized particles from sensitive surfaces, without damage to the surface. The probe has a critical orifice to ensure an optimum airflow rate that disturbs the boundary layer of air and raises bacteria from the surface into the probe with the moving air stream.

  15. Improved whisker pointing technique for micron-size diode contact

    NASA Technical Reports Server (NTRS)

    Mattauch, R. J.; Green, G.

    1982-01-01

    Pointed phosphor-bronze whiskers are commonly used to contact micron-size Schottky barrier diodes. A process is presented which allows pointing such wire and achieving the desired cone angle and tip diameter without the use of highly undesirable chemical reagents.

  16. Talin determines the nanoscale architecture of focal adhesions

    PubMed Central

    Liu, Jaron; Wang, Yilin; Goh, Wah Ing; Goh, Honzhen; Baird, Michelle A.; Ruehland, Svenja; Teo, Shijia; Bate, Neil; Critchley, David R.; Davidson, Michael W.; Kanchanawong, Pakorn

    2015-01-01

    Insight into how molecular machines perform their biological functions depends on knowledge of the spatial organization of the components, their connectivity, geometry, and organizational hierarchy. However, these parameters are difficult to determine in multicomponent assemblies such as integrin-based focal adhesions (FAs). We have previously applied 3D superresolution fluorescence microscopy to probe the spatial organization of major FA components, observing a nanoscale stratification of proteins between integrins and the actin cytoskeleton. Here we combine superresolution imaging techniques with a protein engineering approach to investigate how such nanoscale architecture arises. We demonstrate that talin plays a key structural role in regulating the nanoscale architecture of FAs, akin to a molecular ruler. Talin diagonally spans the FA core, with its N terminus at the membrane and C terminus demarcating the FA/stress fiber interface. In contrast, vinculin is found to be dispensable for specification of FA nanoscale architecture. Recombinant analogs of talin with modified lengths recapitulated its polarized orientation but altered the FA/stress fiber interface in a linear manner, consistent with its modular structure, and implicating the integrin–talin–actin complex as the primary mechanical linkage in FAs. Talin was found to be ∼97 nm in length and oriented at ∼15° relative to the plasma membrane. Our results identify talin as the primary determinant of FA nanoscale organization and suggest how multiple cellular forces may be integrated at adhesion sites. PMID:26283369

  17. Talin determines the nanoscale architecture of focal adhesions.

    PubMed

    Liu, Jaron; Wang, Yilin; Goh, Wah Ing; Goh, Honzhen; Baird, Michelle A; Ruehland, Svenja; Teo, Shijia; Bate, Neil; Critchley, David R; Davidson, Michael W; Kanchanawong, Pakorn

    2015-09-01

    Insight into how molecular machines perform their biological functions depends on knowledge of the spatial organization of the components, their connectivity, geometry, and organizational hierarchy. However, these parameters are difficult to determine in multicomponent assemblies such as integrin-based focal adhesions (FAs). We have previously applied 3D superresolution fluorescence microscopy to probe the spatial organization of major FA components, observing a nanoscale stratification of proteins between integrins and the actin cytoskeleton. Here we combine superresolution imaging techniques with a protein engineering approach to investigate how such nanoscale architecture arises. We demonstrate that talin plays a key structural role in regulating the nanoscale architecture of FAs, akin to a molecular ruler. Talin diagonally spans the FA core, with its N terminus at the membrane and C terminus demarcating the FA/stress fiber interface. In contrast, vinculin is found to be dispensable for specification of FA nanoscale architecture. Recombinant analogs of talin with modified lengths recapitulated its polarized orientation but altered the FA/stress fiber interface in a linear manner, consistent with its modular structure, and implicating the integrin-talin-actin complex as the primary mechanical linkage in FAs. Talin was found to be ∼97 nm in length and oriented at ∼15° relative to the plasma membrane. Our results identify talin as the primary determinant of FA nanoscale organization and suggest how multiple cellular forces may be integrated at adhesion sites.

  18. ADAMTS-10 and -6 differentially regulate cell-cell junctions and focal adhesions.

    PubMed

    Cain, Stuart A; Mularczyk, Ewa J; Singh, Mukti; Massam-Wu, Teresa; Kielty, Cay M

    2016-10-25

    ADAMTS10 and ADAMTS6 are homologous metalloproteinases with ill-defined roles. ADAMTS10 mutations cause Weill-Marchesani syndrome (WMS), implicating it in fibrillin microfibril biology since some fibrillin-1 mutations also cause WMS. However little is known about ADAMTS6 function. ADAMTS10 is resistant to furin cleavage, however we show that ADAMTS6 is effectively processed and active. Using siRNA, over-expression and mutagenesis, it was found ADAMTS6 inhibits and ADAMTS10 is required for focal adhesions, epithelial cell-cell junction formation, and microfibril deposition. Either knockdown of ADAMTS6, or disruption of its furin processing or catalytic sites restores focal adhesions, implicating its enzyme activity acts on targets in the focal adhesion complex. In ADAMTS10-depleted cultures, expression of syndecan-4 rescues focal adhesions and cell-cell junctions. Recombinant C-termini of ADAMTS10 and ADAMTS6, both of which induce focal adhesions, bind heparin and syndecan-4. However, cells overexpressing full-length ADAMTS6 lack heparan sulphate and focal adhesions, whilst depletion of ADAMTS6 induces a prominent glycocalyx. Thus ADAMTS10 and ADAMTS6 oppositely affect heparan sulphate-rich interfaces including focal adhesions. We previously showed that microfibril deposition requires fibronectin-induced focal adhesions, and cell-cell junctions in epithelial cultures. Here we reveal that ADAMTS6 causes a reduction in heparan sulphate-rich interfaces, and its expression is regulated by ADAMTS10.

  19. ADAMTS-10 and -6 differentially regulate cell-cell junctions and focal adhesions

    PubMed Central

    Cain, Stuart A.; Mularczyk, Ewa J.; Singh, Mukti; Massam-Wu, Teresa; Kielty, Cay M.

    2016-01-01

    ADAMTS10 and ADAMTS6 are homologous metalloproteinases with ill-defined roles. ADAMTS10 mutations cause Weill-Marchesani syndrome (WMS), implicating it in fibrillin microfibril biology since some fibrillin-1 mutations also cause WMS. However little is known about ADAMTS6 function. ADAMTS10 is resistant to furin cleavage, however we show that ADAMTS6 is effectively processed and active. Using siRNA, over-expression and mutagenesis, it was found ADAMTS6 inhibits and ADAMTS10 is required for focal adhesions, epithelial cell-cell junction formation, and microfibril deposition. Either knockdown of ADAMTS6, or disruption of its furin processing or catalytic sites restores focal adhesions, implicating its enzyme activity acts on targets in the focal adhesion complex. In ADAMTS10-depleted cultures, expression of syndecan-4 rescues focal adhesions and cell-cell junctions. Recombinant C-termini of ADAMTS10 and ADAMTS6, both of which induce focal adhesions, bind heparin and syndecan-4. However, cells overexpressing full-length ADAMTS6 lack heparan sulphate and focal adhesions, whilst depletion of ADAMTS6 induces a prominent glycocalyx. Thus ADAMTS10 and ADAMTS6 oppositely affect heparan sulphate-rich interfaces including focal adhesions. We previously showed that microfibril deposition requires fibronectin-induced focal adhesions, and cell-cell junctions in epithelial cultures. Here we reveal that ADAMTS6 causes a reduction in heparan sulphate-rich interfaces, and its expression is regulated by ADAMTS10. PMID:27779234

  20. Focal Adhesion of Osteoblastic Cells on Titanium Surface with Amine Functionalities Formed by Plasma Polymerization

    NASA Astrophysics Data System (ADS)

    Song, Heesang; Jung, Sang Chul; Kim, Byung Hoon

    2012-08-01

    To enhance the focal adhesion of osteoblastic cells on a titanium surface, plasma polymerized allyl amine (AAm) thin films were deposited by plasma polymerization. This plasma polymer functionalization of titanium is advantageous for osteoblastic focal adhesion formation. Such Ti surfaces are useful for the fabrication of titanium-based dental implants for enhancement of osseointegration.

  1. Crosstalk between focal adhesions and material mechanical properties governs cell mechanics and functions.

    PubMed

    Fusco, Sabato; Panzetta, Valeria; Embrione, Valerio; Netti, Paolo A

    2015-09-01

    Mechanical properties of materials strongly influence cell fate and functions. Focal adhesions are involved in the extremely important processes of mechanosensing and mechanotransduction. To address the relationship between the mechanical properties of cell substrates, focal adhesion/cytoskeleton assembly and cell functions, we investigated the behavior of NIH/3T3 cells over a wide range of stiffness (3-1000kPa) using two of the most common synthetic polymers for cell cultures: polyacrylamide and polydimethylsiloxane. An overlapping stiffness region was created between them to compare focal adhesion characteristics and cell functions, taking into account their different time-dependent behavior. Indeed, from a rheological point of view, polyacrylamide behaves like a strong gel (elastically), whereas polydimethylsiloxane like a viscoelastic solid. First, focal adhesion characteristics and dynamics were addressed in terms of material stiffness, then cell spreading area, migration rate and cell mechanical properties were correlated with focal adhesion size and assembly. Focal adhesion size was found to increase in the whole range of stiffness and to be in agreement in the overlapping rigidity region for the investigated materials. Cell mechanics directly correlated with focal adhesion lengths, whereas migration rate followed an inverse correlation. Cell spreading correlated with the substrate stiffness on polyacrylamide hydrogel, while no specific trend was found on polydimethylsiloxane. Substrate mechanics can be considered as a key physical cue that regulates focal adhesion assembly, which in turn governs important cellular properties and functions.

  2. Myoferlin depletion elevates focal adhesion kinase and paxillin phosphorylation and enhances cell-matrix adhesion in breast cancer cells.

    PubMed

    Blackstone, B N; Li, R; Ackerman, W E; Ghadiali, S N; Powell, H M; Kniss, D A

    2015-04-15

    Breast cancer is the second leading cause of malignant death among women. A crucial feature of metastatic cancers is their propensity to lose adhesion to the underlying basement membrane as they transition to a motile phenotype and invade surrounding tissue. Attachment to the extracellular matrix is mediated by a complex of adhesion proteins, including integrins, signaling molecules, actin and actin-binding proteins, and scaffolding proteins. Focal adhesion kinase (FAK) is pivotal for the organization of focal contacts and maturation into focal adhesions, and disruption of this process is a hallmark of early cancer invasive potential. Our recent work has revealed that myoferlin (MYOF) mediates breast tumor cell motility and invasive phenotype. In this study we demonstrate that noninvasive breast cancer cell lines exhibit increased cell-substrate adhesion and that silencing of MYOF using RNAi in the highly invasive human breast cancer cell line MDA-MB-231 also enhances cell-substrate adhesion. In addition, we detected elevated tyrosine phosphorylation of FAK (FAK(Y397)) and paxillin (PAX(Y118)), markers of focal adhesion protein activation. Morphometric analysis of PAX expression revealed that RNAi-mediated depletion of MYOF resulted in larger, more elongated focal adhesions, in contrast to cells transduced with a control virus (MDA-231(LVC) cells), which exhibited smaller focal contacts. Finally, MYOF silencing in MDA-MB-231 cells exhibited a more elaborate ventral cytoskeletal structure near focal adhesions, typified by pronounced actin stress fibers. These data support the hypothesis that MYOF regulates cell adhesions and cell-substrate adhesion strength and may account for the high degree of motility in invasive breast cancer cells.

  3. Complementarity of PALM and SOFI for super-resolution live-cell imaging of focal adhesions

    NASA Astrophysics Data System (ADS)

    Deschout, Hendrik; Lukes, Tomas; Sharipov, Azat; Szlag, Daniel; Feletti, Lely; Vandenberg, Wim; Dedecker, Peter; Hofkens, Johan; Leutenegger, Marcel; Lasser, Theo; Radenovic, Aleksandra

    2016-12-01

    Live-cell imaging of focal adhesions requires a sufficiently high temporal resolution, which remains a challenge for super-resolution microscopy. Here we address this important issue by combining photoactivated localization microscopy (PALM) with super-resolution optical fluctuation imaging (SOFI). Using simulations and fixed-cell focal adhesion images, we investigate the complementarity between PALM and SOFI in terms of spatial and temporal resolution. This PALM-SOFI framework is used to image focal adhesions in living cells, while obtaining a temporal resolution below 10 s. We visualize the dynamics of focal adhesions, and reveal local mean velocities around 190 nm min-1. The complementarity of PALM and SOFI is assessed in detail with a methodology that integrates a resolution and signal-to-noise metric. This PALM and SOFI concept provides an enlarged quantitative imaging framework, allowing unprecedented functional exploration of focal adhesions through the estimation of molecular parameters such as fluorophore densities and photoactivation or photoswitching kinetics.

  4. Why do receptor–ligand bonds in cell adhesion cluster into discrete focal-adhesion sites?

    SciTech Connect

    Gao, Zhiwen; Gao, Yanfei

    2016-05-14

    We report that cell adhesion often exhibits the clustering of the receptor–ligand bonds into discrete focal-adhesion sites near the contact edge, thus resembling a rosette shape or a contracting membrane anchored by a small number of peripheral forces. The ligands on the extracellular matrix are immobile, and the receptors in the cell plasma membrane consist of two types: high-affinity integrins (that bond to the substrate ligands and are immobile) and low-affinity integrins (that are mobile and not bonded to the ligands). Thus the adhesion energy density is proportional to the high-affinity integrin density. This paper provides a mechanistic explanation for the clustering/assembling of the receptor–ligand bonds from two main points: (1) the cellular contractile force leads to the density evolution of these two types of integrins, and results into a large high-affinity integrin density near the contact edge and (2) the front of a propagating crack into a decreasing toughness field will be unstable and wavy. From this fracture mechanics perspective, the chemomechanical equilibrium is reached when a small number of patches with large receptor–ligand bond density are anticipated to form at the cell periphery, as opposed to a uniform distribution of bonds on the entire interface. Finally, cohesive fracture simulations show that the de-adhesion force can be significantly enhanced by this nonuniform bond density field, but the de-adhesion force anisotropy due to the substrate elastic anisotropy is significantly reduced.

  5. The ubiquitin-proteasome system regulates focal adhesions at the leading edge of migrating cells

    PubMed Central

    Teckchandani, Anjali; Cooper, Jonathan A

    2016-01-01

    Cell migration requires the cyclical assembly and disassembly of focal adhesions. Adhesion induces phosphorylation of focal adhesion proteins, including Cas (Crk-associated substrate/p130Cas/BCAR1). However, Cas phosphorylation stimulates adhesion turnover. This raises the question of how adhesion assembly occurs against opposition from phospho-Cas. Here we show that suppressor of cytokine signaling 6 (SOCS6) and Cullin 5, two components of the CRL5SOCS6 ubiquitin ligase, inhibit Cas-dependent focal adhesion turnover at the front but not rear of migrating epithelial cells. The front focal adhesions contain phospho-Cas which recruits SOCS6. If SOCS6 cannot access focal adhesions, or if cullins or the proteasome are inhibited, adhesion disassembly is stimulated. This suggests that the localized targeting of phospho-Cas within adhesions by CRL5SOCS6 and concurrent cullin and proteasome activity provide a negative feedback loop, ensuring that adhesion assembly predominates over disassembly at the leading edge. By this mechanism, ubiquitination provides a new level of spatio-temporal control over cell migration. DOI: http://dx.doi.org/10.7554/eLife.17440.001 PMID:27656905

  6. Nascent Focal Adhesions Are Responsible for the Generation of Strong Propulsive Forces in Migrating Fibroblasts

    PubMed Central

    Beningo, Karen A.; Dembo, Micah; Kaverina, Irina; Small, J. Victor; Wang, Yu-li

    2001-01-01

    Fibroblast migration involves complex mechanical interactions with the underlying substrate. Although tight substrate contact at focal adhesions has been studied for decades, the role of focal adhesions in force transduction remains unclear. To address this question, we have mapped traction stress generated by fibroblasts expressing green fluorescent protein (GFP)-zyxin. Surprisingly, the overall distribution of focal adhesions only partially resembles the distribution of traction stress. In addition, detailed analysis reveals that the faint, small adhesions near the leading edge transmit strong propulsive tractions, whereas large, bright, mature focal adhesions exert weaker forces. This inverse relationship is unique to the leading edge of motile cells, and is not observed in the trailing edge or in stationary cells. Furthermore, time-lapse analysis indicates that traction forces decrease soon after the appearance of focal adhesions, whereas the size and zyxin concentration increase. As focal adhesions mature, changes in structure, protein content, or phosphorylation may cause the focal adhesion to change its function from the transmission of strong propulsive forces, to a passive anchorage device for maintaining a spread cell morphology. PMID:11352946

  7. Endothelial paxillin and focal adhesion kinase (FAK) play a critical role in neutrophil transmigration.

    PubMed

    Parsons, Sean A; Sharma, Ritu; Roccamatisi, Dawn L; Zhang, Hong; Petri, Björn; Kubes, Paul; Colarusso, Pina; Patel, Kamala D

    2012-02-01

    During an inflammatory response, endothelial cells undergo morphological changes to allow for the passage of neutrophils from the blood vessel to the site of injury or infection. Although endothelial cell junctions and the cytoskeleton undergo reorganization during inflammation, little is known about another class of cellular structures, the focal adhesions. In this study, we examined several focal adhesion proteins during an inflammatory response. We found that there was selective loss of paxillin and focal adhesion kinase (FAK) from focal adhesions in proximity to transmigrating neutrophils; in contrast the levels of the focal adhesion proteins β1-integrin and vinculin were unaffected. Paxillin was lost from focal adhesions during neutrophil transmigration both under static and flow conditions. Down-regulating endothelial paxillin with siRNA blocked neutrophil transmigration while having no effect on rolling or adhesion. As paxillin dynamics are regulated partly by FAK, the role of FAK in neutrophil transmigration was examined using two complementary methods. siRNA was used to down-regulate total FAK protein while dominant-negative, kinase-deficient FAK was expressed to block FAK signaling. Disruption of the FAK protein or FAK signaling decreased neutrophil transmigration. Collectively, these findings reveal a novel role for endothelial focal adhesion proteins paxillin and FAK in regulating neutrophil transmigration.

  8. Shark cartilage extract interferes with cell adhesion and induces reorganization of focal adhesions in cultured endothelial cells.

    PubMed

    Chen, J S; Chang, C M; Wu, J C; Wang, S M

    2000-06-06

    In this study, we examined the effects of shark cartilage extract on the attachment and spreading properties and the focal adhesion structure of cultured bovine pulmonary artery endothelial cells. Treatment with cartilage extract resulted in cell detachment from the substratum. Immunofluorescence staining of those treated cells that remained attached showed that, instead of being present in both central and peripheral focal adhesions as in control cells, both integrin alpha(v)beta(3) and vinculin were found only in peripheral focal adhesion and thinner actin filament bundles were seen. In addition to causing cell detachment, cartilage extract partially inhibited the initial adherence of the cells to the substratum in a dose-dependent manner. Integrin alpha(v)beta(3) and vinculin staining of these cells also showed a peripheral focal adhesion distribution pattern. Vitronectin induced cell spreading in the absence of serum, but was blocked by simultaneous incubation with cartilage extract, which was shown to inhibit both integrin alpha(v)beta(3) and vinculin recruitment to focal adhesion and the formation of stress fibers. Dot binding assays showed that these inhibitory effects on cell attachment and spreading were not due to direct binding of cartilage extract components to integrin alpha(v)beta(3) or vitronectin. Shark cartilage chondroitin sulfate had no inhibitory effect on either cell attachment or spreading of endothelial cells. These results show that the inhibitory effects of cartilage extract on cell attachment and spreading are mediated by modification of the organization of focal adhesion proteins.

  9. An optical trapped nanohand for manipulating micron-sized particles

    NASA Astrophysics Data System (ADS)

    Gibson, Graham; Barron, Louise; Beck, Fiona; Whyte, Graeme; Padgett, Miles

    2006-08-01

    Optical tweezers use the electric-field gradient-force associated with tightly focused laser beams to trap micron-sized objects at the beam focus. Over the last few years optical tweezers have been revolutionized by the addition of spatial light modulators to split the laser beam into many traps that can be individually controlled; a technique called holographic optical tweezers. However, the reliance of optical tweezers on the gradient-force largely restricts their application to transparent objects that are not unduly sensitive to the effects of the laser light. Consequently, the manipulation of metallic particles or sensitive biomaterials can be problematic. In this work we use a holographic tweezers to position multiple silica beads acting as an optical gripper to lift, rotate and move micron-sized objects that otherwise do not lend themselves to tweezers control. We illustrate the use of the optical gripper under real-time joystick control to manipulate micron-sized metallic particles with nano-scale precision.

  10. Center or periphery? Modeling the effects of focal adhesion placement during cell spreading

    PubMed Central

    Rammohan, Aravind R.

    2017-01-01

    Focal adhesions are often observed at the cell’s periphery. We provide an explanation for this observation using a system-level mathematical model of a cell interacting with a two-dimensional substrate. The model describes the biological cell as a hypoelastic continuum material whose behavior is coupled to a deformable, linear elastic substrate via focal adhesions that are represented by collections of linear elastic attachments between the cell and the substrate. The evolution of the focal adhesions is coupled to local intracellular stresses which arise from mechanical cell-substrate interactions. Using this model we show that the cell has at least three mechanisms through which it can control its intracellular stresses: focal adhesion position, size, and attachment strength. We also propose that one reason why focal adhesions are typically located on the cell periphery instead of its center is because peripheral focal adhesions allow the cell to be more sensitive to changes in the microenvironment. This increased sensitivity is caused by the fact that peripherally located focal adhesions allow the cells to modulate its intracellular properties over a much larger portion of the cell area. PMID:28158263

  11. Center or periphery? Modeling the effects of focal adhesion placement during cell spreading.

    PubMed

    Stolarska, Magdalena A; Rammohan, Aravind R

    2017-01-01

    Focal adhesions are often observed at the cell's periphery. We provide an explanation for this observation using a system-level mathematical model of a cell interacting with a two-dimensional substrate. The model describes the biological cell as a hypoelastic continuum material whose behavior is coupled to a deformable, linear elastic substrate via focal adhesions that are represented by collections of linear elastic attachments between the cell and the substrate. The evolution of the focal adhesions is coupled to local intracellular stresses which arise from mechanical cell-substrate interactions. Using this model we show that the cell has at least three mechanisms through which it can control its intracellular stresses: focal adhesion position, size, and attachment strength. We also propose that one reason why focal adhesions are typically located on the cell periphery instead of its center is because peripheral focal adhesions allow the cell to be more sensitive to changes in the microenvironment. This increased sensitivity is caused by the fact that peripherally located focal adhesions allow the cells to modulate its intracellular properties over a much larger portion of the cell area.

  12. Electromechanical characterization of individual micron-sized metal coated polymer particles

    SciTech Connect

    Bazilchuk, Molly; Kristiansen, Helge; Pettersen, Sigurd Rolland; Zhang, Zhiliang; He, Jianying

    2016-06-28

    Micron-sized polymer particles with nanoscale metal coatings are essential in conductive adhesives for electronics assembly. The particles function in a compressed state in the adhesives. The link between mechanical properties and electrical conductivity is thus of the utmost importance in the formation of good electrical contact. A custom flat punch set-up based on nanoindentation has been developed to simultaneously deform and electrically probe individual particles. The set-up has a sufficiently low internal resistance to allow the measurement of sub-Ohm contact resistances. Additionally, the set-up can capture mechanical failure of the particles. Combining this data yields a fundamental understanding of contact behavior. We demonstrate that this method can clearly distinguish between particles of different sizes, with different thicknesses of metal coating, and different metallization schemes. The technique provides good repeatability and physical insight into the behavior of these particles that can guide adhesive design and the optimization of bonding processes.

  13. Electromechanical characterization of individual micron-sized metal coated polymer particles

    NASA Astrophysics Data System (ADS)

    Bazilchuk, Molly; Pettersen, Sigurd Rolland; Kristiansen, Helge; Zhang, Zhiliang; He, Jianying

    2016-06-01

    Micron-sized polymer particles with nanoscale metal coatings are essential in conductive adhesives for electronics assembly. The particles function in a compressed state in the adhesives. The link between mechanical properties and electrical conductivity is thus of the utmost importance in the formation of good electrical contact. A custom flat punch set-up based on nanoindentation has been developed to simultaneously deform and electrically probe individual particles. The set-up has a sufficiently low internal resistance to allow the measurement of sub-Ohm contact resistances. Additionally, the set-up can capture mechanical failure of the particles. Combining this data yields a fundamental understanding of contact behavior. We demonstrate that this method can clearly distinguish between particles of different sizes, with different thicknesses of metal coating, and different metallization schemes. The technique provides good repeatability and physical insight into the behavior of these particles that can guide adhesive design and the optimization of bonding processes.

  14. Focal adhesion protein abnormalities in myelodysplastic mesenchymal stromal cells

    SciTech Connect

    Aanei, Carmen Mariana; Eloae, Florin Zugun; Flandrin-Gresta, Pascale; Tavernier, Emmanuelle; Carasevici, Eugen; Guyotat, Denis; Campos, Lydia

    2011-11-01

    Direct cell-cell contact between haematopoietic progenitor cells (HPCs) and their cellular microenvironment is essential to maintain 'stemness'. In cancer biology, focal adhesion (FA) proteins are involved in survival signal transduction in a wide variety of human tumours. To define the role of FA proteins in the haematopoietic microenvironment of myelodysplastic syndromes (MDS), CD73-positive mesenchymal stromal cells (MSCs) were immunostained for paxillin, pFAK [Y{sup 397}], and HSP90{alpha}/{beta} and p130CAS, and analysed for reactivity, intensity and cellular localisation. Immunofluorescence microscopy allowed us to identify qualitative and quantitative differences, and subcellular localisation analysis revealed that in pathological MSCs, paxillin, pFAK [Y{sup 397}], and HSP90{alpha}/{beta} formed nuclear molecular complexes. Increased expression of paxillin, pFAK [Y{sup 397}], and HSP90{alpha}/{beta} and enhanced nuclear co-localisation of these proteins correlated with a consistent proliferative advantage in MSCs from patients with refractory anaemia with excess blasts (RAEB) and negatively impacted clonogenicity of HPCs. These results suggest that signalling via FA proteins could be implicated in HPC-MSC interactions. Further, because FAK is an HSP90{alpha}/{beta} client protein, these results suggest the utility of HSP90{alpha}/{beta} inhibition as a target for adjuvant therapy for myelodysplasia.

  15. Progress in researches about focal adhesion kinase in gastrointestinal tract.

    PubMed

    Hao, Hui-Fang; Naomoto, Yoshio; Bao, Xiao-Hong; Watanabe, Nobuyuki; Sakurama, Kazufumi; Noma, Kazuhiro; Tomono, Yasuko; Fukazawa, Takuya; Shirakawa, Yasuhiro; Yamatsuji, Tomoki; Matsuoka, Junji; Takaoka, Munenori

    2009-12-21

    Focal adhesion kinase (FAK) is a 125-kDa non-receptor protein tyrosine. Growth factors or the clustering of integrins facilitate the rapid phosphorylation of FAK at Tyr-397 and this in turn recruits Src-family protein tyrosine kinases, resulting in the phosphorylation of Tyr-576 and Tyr-577 in the FAK activation loop and full catalytic FAK activation. FAK plays a critical role in the biological processes of normal and cancer cells including the gastrointestinal tract. FAK also plays an important role in the restitution, cell survival and apoptosis and carcinogenesis of the gastrointestinal tract. FAK is over-expressed in cancer cells and its over-expression and elevated activities are associated with motility and invasion of cancer cells. FAK has been proposed as a potential target in cancer therapy. Small molecule inhibitors effectively inhibit the kinase activity of FAK and show a potent inhibitory effect for the proliferation and migration of tumor cells, indicating a high potential for application in cancer therapy.

  16. Mechanosensing through focal adhesion-anchored intermediate filaments.

    PubMed

    Gregor, Martin; Osmanagic-Myers, Selma; Burgstaller, Gerald; Wolfram, Michael; Fischer, Irmgard; Walko, Gernot; Resch, Guenter P; Jörgl, Almut; Herrmann, Harald; Wiche, Gerhard

    2014-02-01

    Integrin-based mechanotransduction involves a complex focal adhesion (FA)-associated machinery that is able to detect and respond to forces exerted either through components of the extracellular matrix or the intracellular contractile actomyosin network. Here, we show a hitherto unrecognized regulatory role of vimentin intermediate filaments (IFs) in this process. By studying fibroblasts in which vimentin IFs were decoupled from FAs, either because of vimentin deficiency (V0) or loss of vimentin network anchorage due to deficiency in the cytolinker protein plectin (P0), we demonstrate attenuated activation of the major mechanosensor molecule FAK and its downstream targets Src, ERK1/2, and p38, as well as an up-regulation of the compensatory feedback loop acting on RhoA and myosin light chain. In line with these findings, we show strongly reduced FA turnover rates in P0 fibroblasts combined with impaired directional migration, formation of protrusions, and up-regulation of "stretched" high-affinity integrin complexes. By exploiting tension-independent conditions, we were able to mechanistically link these defects to diminished cytoskeletal tension in both P0 and V0 cells. Our data provide important new insights into molecular mechanisms underlying cytoskeleton-regulated mechanosensing, a feature that is fundamental for controlled cell movement and tumor progression.

  17. Mechanical Stability Determines Stress Fiber and Focal Adhesion Orientation.

    PubMed

    Stamenović, Dimitrije; Lazopoulos, Konstantinos A; Pirentis, Athanassios; Suki, Béla

    2009-12-01

    It is well documented in a variety of adherent cell types that in response to anisotropic signals from the microenvironment cells alter their cytoskeletal organization. Previous theoretical studies of these phenomena were focused primarily on the elasticity of cytoskeletal actin stress fibers (SFs) and of the substrate while the contribution of focal adhesions (FAs) through which the cytoskeleton is linked to the external environment has not been considered. Here we propose a mathematical model comprised of a single linearly elastic SF and two identical linearly elastic FAs of a finite size at the endpoints of the SF to investigate cytoskeletal realignment in response to uniaxial stretching of the substrate. The model also includes the contribution of the chemical potential energies of the SF and the FAs to the total potential energy of the SF-FA assembly. Using the global (Maxwell's) stability criterion, we predict stable configurations of the SF-FA assembly in response to substrate stretching. Model predictions obtained for physiologically feasible values of model parameters are consistent with experimental data from the literature. The model shows that elasticity of SFs alone can not predict their realignment during substrate stretching and that geometrical and elastic properties of SFs and FAs need to be included.

  18. Rho and Rab Small G Proteins Coordinately Reorganize Stress Fibers and Focal Adhesions in MDCK Cells

    PubMed Central

    Imamura, Hiroshi; Takaishi, Kenji; Nakano, Katsutoshi; Kodama, Atsuko; Oishi, Hideto; Shiozaki, Hitoshi; Monden, Morito; Sasaki, Takuya; Takai, Yoshimi

    1998-01-01

    The Rho subfamily of the Rho small G protein family (Rho) regulates formation of stress fibers and focal adhesions in many types of cultured cells. In moving cells, dynamic and coordinate disassembly and reassembly of stress fibers and focal adhesions are observed, but the precise mechanisms in the regulation of these processes are poorly understood. We previously showed that 12-O-tetradecanoylphorbol-13-acetate (TPA) first induced disassembly of stress fibers and focal adhesions followed by their reassembly in MDCK cells. The reassembled stress fibers showed radial-like morphology that was apparently different from the original. We analyzed here the mechanisms of these TPA-induced processes. Rho inactivation and activation were necessary for the TPA-induced disassembly and reassembly, respectively, of stress fibers and focal adhesions. Both inactivation and activation of the Rac subfamily of the Rho family (Rac) inhibited the TPA-induced reassembly of stress fibers and focal adhesions but not their TPA-induced disassembly. Moreover, microinjection or transient expression of Rab GDI, a regulator of all the Rab small G protein family members, inhibited the TPA-induced reassembly of stress fibers and focal adhesions but not their TPA-induced disassembly, indicating that, furthermore, activation of some Rab family members is necessary for their TPA-induced reassembly. Of the Rab family members, at least Rab5 activation was necessary for the TPA-induced reassembly of stress fibers and focal adhesions. The TPA-induced, small G protein-mediated reorganization of stress fibers and focal adhesions was closely related to the TPA-induced cell motility. These results indicate that the Rho and Rab family members coordinately regulate the TPA-induced reorganization of stress fibers and focal adhesions that may cause cell motility. PMID:9725912

  19. Why do receptor–ligand bonds in cell adhesion cluster into discrete focal-adhesion sites?

    DOE PAGES

    Gao, Zhiwen; Gao, Yanfei

    2016-05-14

    We report that cell adhesion often exhibits the clustering of the receptor–ligand bonds into discrete focal-adhesion sites near the contact edge, thus resembling a rosette shape or a contracting membrane anchored by a small number of peripheral forces. The ligands on the extracellular matrix are immobile, and the receptors in the cell plasma membrane consist of two types: high-affinity integrins (that bond to the substrate ligands and are immobile) and low-affinity integrins (that are mobile and not bonded to the ligands). Thus the adhesion energy density is proportional to the high-affinity integrin density. This paper provides a mechanistic explanation formore » the clustering/assembling of the receptor–ligand bonds from two main points: (1) the cellular contractile force leads to the density evolution of these two types of integrins, and results into a large high-affinity integrin density near the contact edge and (2) the front of a propagating crack into a decreasing toughness field will be unstable and wavy. From this fracture mechanics perspective, the chemomechanical equilibrium is reached when a small number of patches with large receptor–ligand bond density are anticipated to form at the cell periphery, as opposed to a uniform distribution of bonds on the entire interface. Finally, cohesive fracture simulations show that the de-adhesion force can be significantly enhanced by this nonuniform bond density field, but the de-adhesion force anisotropy due to the substrate elastic anisotropy is significantly reduced.« less

  20. Conformational Dynamics of the Focal Adhesion Targeting Domain Control Specific Functions of Focal Adhesion Kinase in Cells*

    PubMed Central

    Kadaré, Gress; Gervasi, Nicolas; Brami-Cherrier, Karen; Blockus, Heike; El Messari, Said; Arold, Stefan T.; Girault, Jean-Antoine

    2015-01-01

    Focal adhesion (FA) kinase (FAK) regulates cell survival and motility by transducing signals from membrane receptors. The C-terminal FA targeting (FAT) domain of FAK fulfils multiple functions, including recruitment to FAs through paxillin binding. Phosphorylation of FAT on Tyr925 facilitates FA disassembly and connects to the MAPK pathway through Grb2 association, but requires dissociation of the first helix (H1) of the four-helix bundle of FAT. We investigated the importance of H1 opening in cells by comparing the properties of FAK molecules containing wild-type or mutated FAT with impaired or facilitated H1 openings. These mutations did not alter the activation of FAK, but selectively affected its cellular functions, including self-association, Tyr925 phosphorylation, paxillin binding, and FA targeting and turnover. Phosphorylation of Tyr861, located between the kinase and FAT domains, was also enhanced by the mutation that opened the FAT bundle. Similarly phosphorylation of Ser910 by ERK in response to bombesin was increased by FAT opening. Although FAK molecules with the mutation favoring FAT opening were poorly recruited at FAs, they efficiently restored FA turnover and cell shape in FAK-deficient cells. In contrast, the mutation preventing H1 opening markedly impaired FAK function. Our data support the biological importance of conformational dynamics of the FAT domain and its functional interactions with other parts of the molecule. PMID:25391654

  1. Focal adhesion kinase overexpression and its impact on human osteosarcoma

    PubMed Central

    Chen, Yong; Yang, Aizhen; Chen, Hui; Zhang, Jian; Wu, Sujia; Shi, Xin; Wang, Chen; Sun, Xiaoliang

    2015-01-01

    Focal adhesion kinase (FAK) has been implicated in tumorigenesis in various malignancies. We sought to examine the expression patterns of FAK and the activated form, phosphorylated FAK (pFAK), in human osteosarcoma and to investigate the correlation of FAK expression with clinicopathologic parameters and prognosis. In addition, the functional consequence of manipulating the FAK protein level was investigated in human osteosarcoma cell lines. Immunohistochemical staining was used to detect FAK and pFAK in pathologic archived materials from 113 patients with primary osteosarcoma. Kaplan-Meier survival and Cox regression analyses were performed to evaluate the prognoses. The role of FAK in the cytological behavior of MG63 and 143B human osteosarcoma cell lines was studied via FAK protein knock down with siRNA. Cell proliferation, migration, invasiveness and apoptosis were assessed using the CCK8, Transwell and Annexin V/PI staining methods. Both FAK and pFAK were overexpressed in osteosarcoma. There were significant differences in overall survival between the FAK-/pFAK- and FAK+/pFAK- groups (P = 0.016), the FAK+/pFAK- and FAK+/pFAK+ groups (P = 0.012) and the FAK-/pFAK- and FAK+/pFAK+ groups (P < 0.001). There were similar differences in metastasis-free survival between groups. The Cox proportional hazards analysis showed that the FAK expression profile was an independent indicator of both overall and metastasis-free survival. siRNA-based knockdown of FAK not only dramatically reduced the migration and invasion of MG63 and 143B cells, but also had a distinct effect on osteosarcoma cell proliferation and apoptosis. These results collectively suggest that FAK overexpression and phosphorylation might predict more aggressive biologic behavior in osteosarcoma and may be an independent predictor of poor prognosis. PMID:26393679

  2. The Focal Adhesion: A Regulated Component of Aortic Stiffness

    PubMed Central

    Saphirstein, Robert J.; Gao, Yuan Z.; Jensen, Mikkel H.; Gallant, Cynthia M.; Vetterkind, Susanne; Moore, Jeffrey R.; Morgan, Kathleen G.

    2013-01-01

    Increased aortic stiffness is an acknowledged predictor and cause of cardiovascular disease. The sources and mechanisms of vascular stiffness are not well understood, although the extracellular matrix (ECM) has been assumed to be a major component. We tested here the hypothesis that the focal adhesions (FAs) connecting the cortical cytoskeleton of vascular smooth muscle cells (VSMCs) to the matrix in the aortic wall are a component of aortic stiffness and that this component is dynamically regulated. First, we examined a model system in which magnetic tweezers could be used to monitor cellular cortical stiffness, serum-starved A7r5 aortic smooth muscle cells. Lysophosphatidic acid (LPA), an activator of myosin that increases cell contractility, increased cortical stiffness. A small molecule inhibitor of Src-dependent FA recycling, PP2, was found to significantly inhibit LPA-induced increases in cortical stiffness, as well as tension-induced increases in FA size. To directly test the applicability of these results to force and stiffness development at the level of vascular tissue, we monitored mouse aorta ring stiffness with small sinusoidal length oscillations during agonist-induced contraction. The alpha-agonist phenylephrine, which also increases myosin activation and contractility, increased tissue stress and stiffness in a PP2- and FAK inhibitor 14-attenuated manner. Subsequent phosphotyrosine screening and follow-up with phosphosite-specific antibodies confirmed that the effects of PP2 and FAK inhibitor 14 in vascular tissue involve FA proteins, including FAK, CAS, and paxillin. Thus, in the present study we identify, for the first time, the FA of the VSMC, in particular the FAK-Src signaling complex, as a significant subcellular regulator of aortic stiffness and stress. PMID:23626821

  3. Focal adhesion kinase negatively regulates neuronal insulin resistance.

    PubMed

    Gupta, Amit; Bisht, Bharti; Dey, Chinmoy Sankar

    2012-06-01

    Focal adhesion kinase (FAK), a non-receptor protein kinase, is known to be a phosphatidyl inositol 3-kinase (PI3K) pathway activator and thus widely implicated in regulation of cell survival and cancer. In recent years FAK has also been strongly implicated as a crucial regulator of insulin resistance in peripheral tissues like skeletal muscle and liver, where decrease in its expression/activity has been shown to lead to insulin resistance. However, in the present study we report an altogether different role of FAK in regulation of insulin/PI3K signaling in neurons, the post-mitotic cells. An aberrant increase in FAK tyrosine phosphorylation was observed in insulin resistant Neuro-2a (N2A) cells. Downregulation of FAK expression utilizing RNAi mediated gene silencing in insulin resistant N2A cells completely ameliorated the impaired insulin/PI3K signaling and glucose uptake. FAK silencing in primary cortical neurons also showed marked enhancement in glucose uptake. The results thus suggest that in neurons FAK acts as a negative regulator of insulin/PI3K signaling. Interestingly, the available literature also demonstrates cell-type specific functions of FAK in neurons. FAK that is well known for its cell survival effects has been shown to be involved in neurodegeneration. Along with these previous reports, present findings highlight a novel and critical role of FAK in neurons. Moreover, as this implicates differential regulation of insulin/PI3K pathway by FAK in peripheral tissues and neuronal cells, it strongly suggests precaution while considering FAK modulators as possible therapeutics.

  4. [Therapeutic effect of focal adhesion kinase gene silence on leukemia].

    PubMed

    Xu, Lü-Hong; Fang, Jian-Pei; Weng, Wen-Jun; Xu, Hong-Gui; Zhang, Ya-Ting

    2011-06-01

    This study was aimed to investigate the effects of focal adhesion kinase (FAK) gene silence on leukemia cell growth, leukemogenesis and efficacy of chemotherapy drug. Vector containing lentiviral-FAK-shRNA was constructed and transfected into BCR/ABL-BaF3 leukemic cells, the cell growth and apoptosis were detected in vitro. The effect of FAK shRNA on leukemogenesis was studied in a murine model with leukemia. The apoptosis of leukemia cells and survival of leukemic mice treated by FAK shRNA combined with drug STI571 were monitored. The results showed that FAK gene expression was knocked down by lentiviral-FAK-shRNA. FAK gene silencing inhibited leukemia cell growth in vitro. The apoptosis test results showed that the percentages of Annexin V(+) cells in vector control group and FAK shRNA group were (3.46 ± 0.56)% and (7.3 ± 0.79)%, respectively, and the difference was statistically significant (p < 0.05). The mice in vector control group died at day 21 to 27, while the mice in FAK shRNA group died between day 52 and 60, and the difference was statistically significant (p < 0.05). Moreover, FAK gene silence combined with drug STI571 could enhance the apoptosis of leukemia cells and prolong survival time of leukemic mice. It is concluded that FAK gene silence inhibits leukemogenesis and promotes efficacy of chemotherapy drug on leukemia cells, indicating FAK gene silence may be considered as a new therapeutic strategy for leukemia.

  5. Actin cap associated focal adhesions and their distinct role in cellular mechanosensing

    PubMed Central

    Kim, Dong-Hwee; Khatau, Shyam B.; Feng, Yunfeng; Walcott, Sam; Sun, Sean X.; Longmore, Gregory D.; Wirtz, Denis

    2012-01-01

    The ability for cells to sense and adapt to different physical microenvironments plays a critical role in development, immune responses, and cancer metastasis. Here we identify a small subset of focal adhesions that terminate fibers in the actin cap, a highly ordered filamentous actin structure that is anchored to the top of the nucleus by the LINC complexes; these differ from conventional focal adhesions in morphology, subcellular organization, movements, turnover dynamics, and response to biochemical stimuli. Actin cap associated focal adhesions (ACAFAs) dominate cell mechanosensing over a wide range of matrix stiffness, an ACAFA-specific function regulated by actomyosin contractility in the actin cap, while conventional focal adhesions are restrictively involved in mechanosensing for extremely soft substrates. These results establish the perinuclear actin cap and associated ACAFAs as major mediators of cellular mechanosensing and a critical element of the physical pathway that transduce mechanical cues all the way to the nucleus. PMID:22870384

  6. The Non-Equilibrium Thermodynamics and Kinetics of Focal Adhesion Dynamics

    PubMed Central

    Olberding, Joseph E.; Thouless, Michael D.; Arruda, Ellen M.; Garikipati, Krishna

    2010-01-01

    Background We consider a focal adhesion to be made up of molecular complexes, each consisting of a ligand, an integrin molecule, and associated plaque proteins. Free energy changes drive the binding and unbinding of these complexes and thereby controls the focal adhesion's dynamic modes of growth, treadmilling and resorption. Principal Findings We have identified a competition among four thermodynamic driving forces for focal adhesion dynamics: (i) the work done during the addition of a single molecular complex of a certain size, (ii) the chemical free energy change associated with the addition of a molecular complex, (iii) the elastic free energy change associated with deformation of focal adhesions and the cell membrane, and (iv) the work done on a molecular conformational change. We have developed a theoretical treatment of focal adhesion dynamics as a nonlinear rate process governed by a classical kinetic model. We also express the rates as being driven by out-of-equilibrium thermodynamic driving forces, and modulated by kinetics. The mechanisms governed by the above four effects allow focal adhesions to exhibit a rich variety of behavior without the need to introduce special constitutive assumptions for their response. For the reaction-limited case growth, treadmilling and resorption are all predicted by a very simple chemo-mechanical model. Treadmilling requires symmetry breaking between the ends of the focal adhesion, and is achieved by driving force (i) above. In contrast, depending on its numerical value (ii) causes symmetric growth, resorption or is neutral, (iii) causes symmetric resorption, and (iv) causes symmetric growth. These findings hold for a range of conditions: temporally-constant force or stress, and for spatially-uniform and non-uniform stress distribution over the FA. The symmetric growth mode dominates for temporally-constant stress, with a reduced treadmilling regime. Significance In addition to explaining focal adhesion dynamics, this

  7. Microtubule-destabilizing agents induce focal adhesion structure disorganization and anoikis in cancer cells.

    PubMed

    Deschesnes, Réna G; Patenaude, Alexandre; Rousseau, Jean L C; Fortin, Jessica S; Ricard, Christine; Côté, Marie-France; Huot, Jacques; C-Gaudreault, René; Petitclerc, Eric

    2007-02-01

    Microtubule disruption provokes cytoskeleton and cell adhesion changes whose importance for apoptosis induction remains unclear. The present study focuses on the functional and the molecular adhesion kinetics that are induced by microtubule disruption-mediated apoptosis. We showed that antimicrotubules induce a biphasic sequence of adhesion response that precedes the onset of apoptosis and focal adhesion kinase hydrolysis. Antimicrotubules first induced an increase of the cellular adhesion paralleled by the raise of focal adhesion sites and actin contractility, which was followed by a sharp decrease of cell adhesion and disorganization of focal adhesion and actin stress fibers. The latter sequence of events ends by cell rounding, detachment from the extracellular matrix, and cell death. Microtubule-disrupting agents induced a sustained paxillin phosphorylation, before the activation of apoptosis, that requires the prior activation of extracellular signal-regulated kinase and p38 but not c-Jun NH(2)-terminal kinase. Interestingly, integrin-linked kinase overexpression rescued the antimicrotubule-mediated loss of cell viability. Altogether, these results propound that antimicrotubule agents induce anoikis through the loss of focal adhesion structure integrity.

  8. Fibronectin is not Present in the Focal Adhesions Formed between Normal Cultured Fibroblasts and Their Substrata

    NASA Astrophysics Data System (ADS)

    Chen, Wen-Tien; Singer, S. J.

    1980-12-01

    Fibronectin is an extracellular matrix protein that has been implicated in the spreading and adhesion of cultured fibroblasts to their substrata. In this paper, double immunoelectron microscopic labeling experiments for fibronectin and for concanavalin A-binding proteins on the cell surface were carried out on ultrathin frozen sections of cultures of embryonic chicken heart fibroblasts. On cross sections through the focal adhesions of the cell to the substratum there was substantial labeling for concanavalin A-binding proteins but no detectable labeling for fibronectin, whereas both the binding proteins and fibronectin were extensively labeled elsewhere on the cell surface and substratum. These results demonstrate that fibronectin is not present within the sites of focal adhesions. Therefore, the functions of fibronectin in cell spreading and adhesion are not directly mediated through its binding at focal adhesion sites. An alternative model is presented which can account for such fibronectin functions.

  9. TES is a novel focal adhesion protein with a role in cell spreading.

    PubMed

    Coutts, Amanda S; MacKenzie, Elaine; Griffith, Elen; Black, Donald M

    2003-03-01

    Previously, we identified TES as a novel candidate tumour suppressor gene that mapped to human chromosome 7q31.1. In this report we demonstrate that the TES protein is localised at focal adhesions, actin stress fibres and areas of cell-cell contact. TES has three C-terminal LIM domains that appear to be important for focal adhesion targeting. Additionally, the N-terminal region is important for targeting TES to actin stress fibres. Yeast two-hybrid and biochemical analyses yielded interactions with several focal adhesion and/or cytoskeletal proteins including mena, zyxin and talin. The fact that TES localises to regions of cell adhesion suggests that it functions in events related to cell motility and adhesion. In support of this, we demonstrate that fibroblasts stably overexpressing TES have an increased ability to spread on fibronectin.

  10. Assembly of focal adhesions: progress, paradigms, and portents.

    PubMed

    Craig, S W; Johnson, R P

    1996-02-01

    Receptor-mediated assembly of an adhesion plaque occurs through an ordered series of steps, and intermediate assemblies can be identified. The recent demonstration of some of these partial reactions in permeabilized cells predicts that cell-free reconstitution of adhesion plaque assembly is an attainable goal. Newly discovered cryptic actin-binding sites in vinculin and ezrin, two proteins recruited to adhesion sites, suggest that actin-binding proteins are targets for the signals generated by adhesion receptors.

  11. RhoJ interacts with the GIT–PIX complex and regulates focal adhesion disassembly

    PubMed Central

    Wilson, Eleanor; Leszczynska, Katarzyna; Poulter, Natalie S.; Edelmann, Francesca; Salisbury, Victoria A.; Noy, Peter J.; Bacon, Andrea; Rappoport, Joshua Z.; Heath, John K.; Bicknell, Roy; Heath, Victoria L.

    2014-01-01

    ABSTRACT RhoJ is a Rho GTPase expressed in endothelial cells and tumour cells, which regulates cell motility, invasion, endothelial tube formation and focal adhesion numbers. This study aimed to further delineate the molecular function of RhoJ. Using timelapse microscopy RhoJ was found to regulate focal adhesion disassembly; small interfering RNA (siRNA)-mediated knockdown of RhoJ increased focal adhesion disassembly time, whereas expression of an active mutant (daRhoJ) decreased it. Furthermore, daRhoJ co-precipitated with the GIT–PIX complex, a regulator of focal adhesion disassembly. An interaction between daRhoJ and GIT1 was confirmed using yeast two-hybrid experiments, and this depended on the Spa homology domain of GIT1. GIT1, GIT2, β-PIX (also known as ARHGEF7) and RhoJ all colocalised in focal adhesions and depended on each other for their recruitment to focal adhesions. Functionally, the GIT–PIX complex regulated endothelial tube formation, with knockdown of both GIT1 and GIT2, or β-PIX phenocopying RhoJ knockdown. RhoJ-knockout mice showed reduced tumour growth and diminished tumour vessel density, identifying a role for RhoJ in mediating tumour angiogenesis. These studies give new insight into the molecular function of RhoJ in regulating cell motility and tumour vessel formation. PMID:24928894

  12. Focal adhesion kinase is required for actin polymerization and remodeling of the cytoskeleton during sperm capacitation

    PubMed Central

    Roa-Espitia, Ana L.; Hernández-Rendón, Eva R.; Baltiérrez-Hoyos, Rafael; Muñoz-Gotera, Rafaela J.; Cote-Vélez, Antonieta; Jiménez, Irma; González-Márquez, Humberto

    2016-01-01

    ABSTRACT Several focal adhesion proteins are known to cooperate with integrins to link the extracellular matrix to the actin cytoskeleton; as a result, many intracellular signaling pathways are activated and several focal adhesion complexes are formed. However, how these proteins function in mammalian spermatozoa remains unknown. We confirm the presence of focal adhesion proteins in guinea pig spermatozoa, and we explore their role during capacitation and the acrosome reaction, and their relationship with the actin cytoskeleton. Our results suggest the presence of a focal adhesion complex formed by β1-integrin, focal adhesion kinase (FAK), paxillin, vinculin, talin, and α-actinin in the acrosomal region. Inhibition of FAK during capacitation affected the protein tyrosine phosphorylation associated with capacitation that occurs within the first few minutes of capacitation, which caused the acrosome reaction to become increasingly Ca2+ dependent and inhibited the polymerization of actin. The integration of vinculin and talin into the complex, and the activation of FAK and paxillin during capacitation, suggests that the complex assembles at this time. We identify that vinculin and α-actinin increase their interaction with F-actin while it remodels during capacitation, and that during capacitation focal adhesion complexes are structured. FAK contributes to acrosome integrity, likely by regulating the polymerization and the remodeling of the actin cytoskeleton. PMID:27402964

  13. Nuclear transport of paxillin depends on focal adhesion dynamics and FAT domains

    PubMed Central

    Sathe, Aneesh R.; Shivashankar, G. V.; Sheetz, Michael P.

    2016-01-01

    ABSTRACT The nuclear transport of paxillin appears to be crucial for paxillin function but the mechanism of transport remains unclear. Here, we show that the nuclear transport of paxillin is regulated by focal adhesion turnover and the presence of FAT domains. Focal adhesion turnover was controlled using triangular or circular fibronectin islands. Circular islands caused higher focal adhesion turnover and increased the nuclear transport of paxillin relative to triangular islands. Mutating several residues of paxillin had no effect on its nuclear transport, suggesting that the process is controlled by multiple domains. Knocking out FAK (also known as PTK2) and vinculin caused an increase in nuclear paxillin. This could be reversed by rescue with wild-type FAK but not by FAK with a mutated FAT domain, which inhibits paxillin binding. Expressing just the FAT domain of FAK not only brought down nuclear levels of paxillin but also caused a large immobile fraction of paxillin to be present at focal adhesions, as demonstrated by fluorescence recovery after photobleaching (FRAP) studies. Taken together, focal adhesion turnover and FAT domains regulate the nuclear localization of paxillin, suggesting a possible role for transcriptional control, through paxillin, by focal adhesions. PMID:27068537

  14. In vivo epidermal migration requires focal adhesion targeting of ACF7.

    PubMed

    Yue, Jiping; Zhang, Yao; Liang, Wenguang G; Gou, Xuewen; Lee, Philbert; Liu, Han; Lyu, Wanqing; Tang, Wei-Jen; Chen, Shao-Yu; Yang, Feng; Liang, Hong; Wu, Xiaoyang

    2016-05-24

    Turnover of focal adhesions allows cell retraction, which is essential for cell migration. The mammalian spectraplakin protein, ACF7 (Actin-Crosslinking Factor 7), promotes focal adhesion dynamics by targeting of microtubule plus ends towards focal adhesions. However, it remains unclear how the activity of ACF7 is regulated spatiotemporally to achieve focal adhesion-specific guidance of microtubule. To explore the potential mechanisms, we resolve the crystal structure of ACF7's NT (amino-terminal) domain, which mediates F-actin interactions. Structural analysis leads to identification of a key tyrosine residue at the calponin homology (CH) domain of ACF7, whose phosphorylation by Src/FAK (focal adhesion kinase) complex is essential for F-actin binding of ACF7. Using skin epidermis as a model system, we further demonstrate that the phosphorylation of ACF7 plays an indispensable role in focal adhesion dynamics and epidermal migration in vitro and in vivo. Together, our findings provide critical insights into the molecular mechanisms underlying coordinated cytoskeletal dynamics during cell movement.

  15. Focal adhesion kinase is required for actin polymerization and remodeling of the cytoskeleton during sperm capacitation.

    PubMed

    Roa-Espitia, Ana L; Hernández-Rendón, Eva R; Baltiérrez-Hoyos, Rafael; Muñoz-Gotera, Rafaela J; Cote-Vélez, Antonieta; Jiménez, Irma; González-Márquez, Humberto; Hernández-González, Enrique O

    2016-09-15

    Several focal adhesion proteins are known to cooperate with integrins to link the extracellular matrix to the actin cytoskeleton; as a result, many intracellular signaling pathways are activated and several focal adhesion complexes are formed. However, how these proteins function in mammalian spermatozoa remains unknown. We confirm the presence of focal adhesion proteins in guinea pig spermatozoa, and we explore their role during capacitation and the acrosome reaction, and their relationship with the actin cytoskeleton. Our results suggest the presence of a focal adhesion complex formed by β1-integrin, focal adhesion kinase (FAK), paxillin, vinculin, talin, and α-actinin in the acrosomal region. Inhibition of FAK during capacitation affected the protein tyrosine phosphorylation associated with capacitation that occurs within the first few minutes of capacitation, which caused the acrosome reaction to become increasingly Ca(2+) dependent and inhibited the polymerization of actin. The integration of vinculin and talin into the complex, and the activation of FAK and paxillin during capacitation, suggests that the complex assembles at this time. We identify that vinculin and α-actinin increase their interaction with F-actin while it remodels during capacitation, and that during capacitation focal adhesion complexes are structured. FAK contributes to acrosome integrity, likely by regulating the polymerization and the remodeling of the actin cytoskeleton.

  16. RhoJ interacts with the GIT-PIX complex and regulates focal adhesion disassembly.

    PubMed

    Wilson, Eleanor; Leszczynska, Katarzyna; Poulter, Natalie S; Edelmann, Francesca; Salisbury, Victoria A; Noy, Peter J; Bacon, Andrea; Rappoport, Joshua Z; Heath, John K; Bicknell, Roy; Heath, Victoria L

    2014-07-15

    RhoJ is a Rho GTPase expressed in endothelial cells and tumour cells, which regulates cell motility, invasion, endothelial tube formation and focal adhesion numbers. This study aimed to further delineate the molecular function of RhoJ. Using timelapse microscopy RhoJ was found to regulate focal adhesion disassembly; small interfering RNA (siRNA)-mediated knockdown of RhoJ increased focal adhesion disassembly time, whereas expression of an active mutant (daRhoJ) decreased it. Furthermore, daRhoJ co-precipitated with the GIT-PIX complex, a regulator of focal adhesion disassembly. An interaction between daRhoJ and GIT1 was confirmed using yeast two-hybrid experiments, and this depended on the Spa homology domain of GIT1. GIT1, GIT2, β-PIX (also known as ARHGEF7) and RhoJ all colocalised in focal adhesions and depended on each other for their recruitment to focal adhesions. Functionally, the GIT-PIX complex regulated endothelial tube formation, with knockdown of both GIT1 and GIT2, or β-PIX phenocopying RhoJ knockdown. RhoJ-knockout mice showed reduced tumour growth and diminished tumour vessel density, identifying a role for RhoJ in mediating tumour angiogenesis. These studies give new insight into the molecular function of RhoJ in regulating cell motility and tumour vessel formation. © 2014. Published by The Company of Biologists Ltd.

  17. In vivo epidermal migration requires focal adhesion targeting of ACF7

    DOE PAGES

    Yue, Jiping; Zhang, Yao; Liang, Wenguang G.; ...

    2016-05-24

    Turnover of focal adhesions allows cell retraction, which is essential for cell migration. The mammalian spectraplakin protein, ACF7 (Actin-Crosslinking Factor 7), promotes focal adhesion dynamics by targeting of microtubule plus ends towards focal adhesions. However, it remains unclear how the activity of ACF7 is regulated spatiotemporally to achieve focal adhesion-specific guidance of microtubule. To explore the potential mechanisms, we resolve the crystal structure of ACF7's NT (amino-terminal) domain, which mediates F-actin interactions. Structural analysis leads to identification of a key tyrosine residue at the calponin homology (CH) domain of ACF7, whose phosphorylation by Src/FAK (focal adhesion kinase) complex is essentialmore » for F-actin binding of ACF7. Using skin epidermis as a model system, we further demonstrate that the phosphorylation of ACF7 plays an indispensable role in focal adhesion dynamics and epidermal migration in vitro and in vivo. Altogether, our findings provide critical insights into the molecular mechanisms underlying coordinated cytoskeletal dynamics during cell movement.« less

  18. In vivo epidermal migration requires focal adhesion targeting of ACF7

    SciTech Connect

    Yue, Jiping; Zhang, Yao; Liang, Wenguang G.; Gou, Xuewen; Lee, Philbert; Liu, Han; Lyu, Wanqing; Tang, Wei -Jen; Chen, Shao -Yu; Yang, Feng; Liang, Hong; Wu, Xiaoyang

    2016-05-24

    Turnover of focal adhesions allows cell retraction, which is essential for cell migration. The mammalian spectraplakin protein, ACF7 (Actin-Crosslinking Factor 7), promotes focal adhesion dynamics by targeting of microtubule plus ends towards focal adhesions. However, it remains unclear how the activity of ACF7 is regulated spatiotemporally to achieve focal adhesion-specific guidance of microtubule. To explore the potential mechanisms, we resolve the crystal structure of ACF7's NT (amino-terminal) domain, which mediates F-actin interactions. Structural analysis leads to identification of a key tyrosine residue at the calponin homology (CH) domain of ACF7, whose phosphorylation by Src/FAK (focal adhesion kinase) complex is essential for F-actin binding of ACF7. Using skin epidermis as a model system, we further demonstrate that the phosphorylation of ACF7 plays an indispensable role in focal adhesion dynamics and epidermal migration in vitro and in vivo. Altogether, our findings provide critical insights into the molecular mechanisms underlying coordinated cytoskeletal dynamics during cell movement.

  19. ROCK-2 is associated with focal adhesion maturation during myoblast migration.

    PubMed

    Goetsch, K P; Snyman, C; Myburgh, K H; Niesler, C U

    2014-07-01

    Satellite cell migration is critical for skeletal muscle growth and regeneration. Controlled cell migration is dependent on the formation of mature focal adhesions between the cell and the underlying extracellular matrix (ECM). These cell-ECM interactions trigger the activation of signalling events such as the Rho/ROCK pathway. We have previously identified a specific role for ROCK-2 during myoblast migration. In this study we report that ROCK inhibition with Y-27632 increases C2C12 myoblast velocity, but at the expense of directional migration. In response to Y-27632 an increased number of smaller focal adhesions were distributed across adhesion sites that in turn were clearly larger than sites in untreated cells, suggesting a reduction in focal adhesion maturation. We also confirm ROCK-2 localisation to the focal adhesion sites in migrating myoblasts and demonstrate a change in the distribution of these ROCK-2 containing adhesions in response to Y-27632. Taken together, our observations provide further proof that ROCK-2 regulates directional myoblast migration through focal adhesion formation and maturation.

  20. Intracellular micro-rheology probed by micron-sized wires.

    PubMed

    Chevry, Loudjy; Colin, Rémy; Abou, Bérengère; Berret, Jean-François

    2013-09-01

    In the last decade, rapid advances have been made in the field of micro-rheology of cells and tissues. Given the complexity of living systems, there is a need for the development of new types of nano- and micron-sized probes, and in particular of probes with controlled interactions with the surrounding medium. In the present paper, we evaluate the use of micron-sized wires as potential probes of the mechanical properties of cells. The wire-based micro-rheology technique is applied to living cells such as murine fibroblasts and canine kidney epithelial cells. The mean-squared angular displacement of wires associated to their rotational dynamics is obtained as a function of the time using optical microscopy and image processing. It reveals a Brownian-like diffusive regime of the form Δψ(2)(t,L) ≈ t/L(3), where L denotes the wire length. This scaling suggests that an effective viscosity of the intracellular medium can be determined, and that in the range 1-10 μm it does not depend on the length scale over which it is measured.

  1. Focal Adhesion Targeting: The Critical Determinant of FAK Regulation and Substrate Phosphorylation

    PubMed Central

    Shen, Yu; Schaller, Michael D.

    1999-01-01

    The focal adhesion kinase (FAK) is discretely localized to focal adhesions via its C-terminal focal adhesion–targeting (FAT) sequence. FAK is regulated by integrin-dependent cell adhesion and can regulate tyrosine phosphorylation of downstream substrates, like paxillin. By the use of a mutational strategy, the regions of FAK that are required for cell adhesion–dependent regulation and for inducing tyrosine phosphorylation of paxillin were determined. The results show that the FAT sequence was the single region of FAK that was required for each function. Furthermore, the FAT sequence of FAK was replaced with a focal adhesion–targeting sequence from vinculin, and the resulting chimera exhibited cell adhesion–dependent tyrosine phosphorylation and could induce paxillin phosphorylation like wild-type FAK. These results suggest that subcellular localization is the major determinant of FAK function. PMID:10436008

  2. In silico CDM model sheds light on force transmission in cell from focal adhesions to nucleus.

    PubMed

    Milan, Jean-Louis; Manifacier, Ian; Beussman, Kevin M; Han, Sangyoon J; Sniadecki, Nathan J; About, Imad; Chabrand, Patrick

    2016-09-06

    Cell adhesion is crucial for many types of cell, conditioning differentiation, proliferation, and protein synthesis. As a mechanical process, cell adhesion involves forces exerted by the cytoskeleton and transmitted by focal adhesions to extracellular matrix. These forces constitute signals that infer specific biological responses. Therefore, analyzing mechanotransduction during cell adhesion could lead to a better understanding of the mechanobiology of adherent cells. For instance this may explain how, the shape of adherent stem cells influences their differentiation or how the stiffness of the extracellular matrix affects adhesion strength. To assess the mechanical signals involved in cell adhesion, we computed intracellular forces using the Cytoskeleton Divided Medium model in endothelial cells adherent on micropost arrays of different stiffnesses. For each cell, focal adhesion location and forces measured by micropost deflection were used as an input for the model. The cytoskeleton and the nucleoskeleton were computed as systems of multiple tensile and compressive interactions. At the end of computation, the systems respected mechanical equilibrium while exerting the exact same traction force intensities on focal adhesions as the observed cell. The results indicate that not only the level of adhesion forces, but also the shape of the cell has an influence on intracellular tension and on nucleus strain. The combination of experimental micropost technology with the present CDM model constitutes a tool able to estimate the intracellular forces. Copyright © 2016. Published by Elsevier Ltd.

  3. The Na+ /H+ -exchanger (NHE1) generates pH nanodomains at focal adhesions.

    PubMed

    Ludwig, Florian Timo; Schwab, Albrecht; Stock, Christian

    2013-06-01

    Many tumor cells are characterized by an increased net acid production. They extrude the excess protons mainly through the Na(+) /H(+) -exchanger NHE1. An increased NHE1 activity elevates the metastatic potential of tumor cells. Cell migration, a key step in the metastatic cascade, requires the formation and release of integrin-mediated cell-matrix contacts (focal adhesions). As NHE1 has been localized to focal adhesion sites, the present study tests the hypothesis that NHE1 generates measurable pH nanodomains right at focal adhesions. In order to ratiometrically measure pH close to the plasma membrane, we established a novel application of the total internal reflection fluorescence microscopy (TIRFM). Human melanoma cells were transfected with DsRed2-paxillin to identify focal adhesion sites. The pH-sensitive dyes BCECF and WGA-fluorescein were used to measure the submembranous cytosolic and the pericellular pH, respectively. Distinct pH nanodomains were found at focal adhesions, particularly at those located at the cell front, where NHE1 was concentrated. These sites featured a remarkably alkaline cytosolic and an acidic pericellular pH and thus a much steeper proton gradient across the plasma membrane compared to the rest of the cell. The generation of pH nanodomains could be assigned to NHE1-mediated H(+) export because such pH domains could not be detected in NHE1-deficient cells. Given that both integrin avidity and mechanisms contributing to adhesion turnover are pH-sensitive, we propose that pH nanodomains at focal adhesions, locally created and maintained by NHE1 activity especially at the cell front, modulate adhesion dynamics in migrating cells.

  4. Multiple-Instrument Analyses of Single Micron-Size Particles

    NASA Astrophysics Data System (ADS)

    Admon, Uri; Donohue, David; Aigner, Helmut; Tamborini, Gabriele; Bildstein, Olivier; Betti, Maria

    2005-08-01

    Physical, chemical, and isotopic analyses of individual radioactive and other particles in the micron-size range, key tools in environmental research and in nuclear forensics, require the ability to precisely relocate particles of interest (POIs) in the secondary ion mass spectrometer (SIMS) or in another instrument, after having been located, identified, and characterized in the scanning electron microscope (SEM). This article describes the implementation, testing, and evaluation of the triangulation POIs re-location method, based on microscopic reference marks imprinted on or attached to the sample holder, serving as an inherent coordinate system. In SEM-to-SEM and SEM-to-SIMS experiments re-location precision better than 10 [mu]m and 20 [mu]m, respectively, is readily attainable for instruments using standard specimen stages. The method is fast, easy to apply, and facilitates repeated analyses of individual particles in different instruments and laboratories.

  5. Nanoscale patterns on micron-sized bubbles in foams

    NASA Astrophysics Data System (ADS)

    Dressaire, Emilie; Bell, David; Bee, Rodney; Lips, Alex; Stone, Howard

    2006-11-01

    The rheology and coarsening of foams is closely related to the microstructural characteristics of the small gas bubbles and their surface properties. We present experimental results of a foam formed upon shearing a mixture composed of glucose syrup and sucrose ester. Transmission Electron Microscopy reveals micron-size bubbles whose surfaces are fully covered with regular nanodimension, generally hexagonal, patterns. The influence of the shear rate during foam generation and the setting time on the development of the nanoscale patterns on the gas microcells are described. Plausible routes, driven by disproportionation of the gas from the small bubbles, for the formation of the nanoscale patterns are considered including a nucleation/crystallization pathway (Kim et al. 2003 Langmuir 19, p. 8455) and the buckling of an elastic insoluble surface film.

  6. A doublet microlens array for imaging micron-sized objects

    PubMed Central

    Tripathi, A; Chronis, N

    2011-01-01

    We present a high-numerical aperture, doublet microlens array for imaging micron-sized objects. The proposed doublet architecture consists of glass microspheres trapped on a predefined array of silicon microholes and covered with a thin polymer layer. A standard silicon microfabrication process and a novel fluidic assembly technique were combined to obtain an array of 56 μm diameter microlenses with a numerical aperture of ~0.5. Using such an array, we demonstrated brightfield and fluorescent image formation of objects directly on a CCD sensor without the use of intermediate lenses. The proposed technology is a significant advancement toward the unmet need of inexpensive, miniaturized optical modules which can be further integrated with lab-on-chip microfluidic devices and photonic chips for a variety of high-end imaging/detection applications. PMID:22003271

  7. Spatiotemporal Constraints on the Force-Dependent Growth of Focal Adhesions

    PubMed Central

    Stricker, Jonathan; Aratyn-Schaus, Yvonne; Oakes, Patrick W.; Gardel, Margaret L.

    2011-01-01

    Focal adhesions (FAs) are the predominant mechanism by which cells mechanically couple to and exert traction forces on their extracellular matrix (ECM). It is widely presumed that FA size is modulated by force to mediate changes in adhesion strength at different levels of cellular tension. However, previous studies seeking correlations between force and FA morphology have yielded variable and often conflicting results. Here we show that a strong correlation between adhesion size and traction force exists only during the initial stages of myosin-mediated adhesion maturation and growth. For mature adhesions, no correlation between traction stress and size is observed. Rather, the tension that is sustained at mature adhesions is more strongly influenced by proximity to the cell edge, with peripheral adhesions transmitting higher tension than adhesions near the cell center. Finally, we show that mature adhesions can withstand sixfold increases in tension without changes in size. Thus, although a strong correlation between adhesion size and mechanical tension is observed during the initial stages of myosin-mediated adhesion maturation, no correlation is observed in mature, elongated adhesions. This work places spatiotemporal constraints on the force-dependent growth of adhesions and provides insight into the mechanical regulation of cell-ECM adhesion. PMID:21689521

  8. F-actin-anchored focal adhesions distinguish endothelial phenotypes of human arteries and veins.

    PubMed

    van Geemen, Daphne; Smeets, Michel W J; van Stalborch, Anne-Marieke D; Woerdeman, Leonie A E; Daemen, Mat J A P; Hordijk, Peter L; Huveneers, Stephan

    2014-09-01

    Vascular endothelial-cadherin- and integrin-based cell adhesions are crucial for endothelial barrier function. Formation and disassembly of these adhesions controls endothelial remodeling during vascular repair, angiogenesis, and inflammation. In vitro studies indicate that vascular cytokines control adhesion through regulation of the actin cytoskeleton, but it remains unknown whether such regulation occurs in human vessels. We aimed to investigate regulation of the actin cytoskeleton and cell adhesions within the endothelium of human arteries and veins. We used an ex vivo protocol for immunofluorescence in human vessels, allowing detailed en face microscopy of endothelial monolayers. We compared arteries and veins of the umbilical cord and mesenteric, epigastric, and breast tissues and find that the presence of central F-actin fibers distinguishes the endothelial phenotype of adult arteries from veins. F-actin in endothelium of adult veins as well as in umbilical vasculature predominantly localizes cortically at the cell boundaries. By contrast, prominent endothelial F-actin fibers in adult arteries anchor mostly to focal adhesions containing integrin-binding proteins paxillin and focal adhesion kinase and follow the orientation of the extracellular matrix protein fibronectin. Other arterial F-actin fibers end in vascular endothelial-cadherin-based endothelial focal adherens junctions. In vitro adhesion experiments on compliant substrates demonstrate that formation of focal adhesions is strongly induced by extracellular matrix rigidity, irrespective of arterial or venous origin of endothelial cells. Our data show that F-actin-anchored focal adhesions distinguish endothelial phenotypes of human arteries from veins. We conclude that the biomechanical properties of the vascular extracellular matrix determine this endothelial characteristic. © 2014 American Heart Association, Inc.

  9. Complementarity of PALM and SOFI for super-resolution live-cell imaging of focal adhesions

    PubMed Central

    Deschout, Hendrik; Lukes, Tomas; Sharipov, Azat; Szlag, Daniel; Feletti, Lely; Vandenberg, Wim; Dedecker, Peter; Hofkens, Johan; Leutenegger, Marcel; Lasser, Theo; Radenovic, Aleksandra

    2016-01-01

    Live-cell imaging of focal adhesions requires a sufficiently high temporal resolution, which remains a challenge for super-resolution microscopy. Here we address this important issue by combining photoactivated localization microscopy (PALM) with super-resolution optical fluctuation imaging (SOFI). Using simulations and fixed-cell focal adhesion images, we investigate the complementarity between PALM and SOFI in terms of spatial and temporal resolution. This PALM-SOFI framework is used to image focal adhesions in living cells, while obtaining a temporal resolution below 10 s. We visualize the dynamics of focal adhesions, and reveal local mean velocities around 190 nm min−1. The complementarity of PALM and SOFI is assessed in detail with a methodology that integrates a resolution and signal-to-noise metric. This PALM and SOFI concept provides an enlarged quantitative imaging framework, allowing unprecedented functional exploration of focal adhesions through the estimation of molecular parameters such as fluorophore densities and photoactivation or photoswitching kinetics. PMID:27991512

  10. Neuropilin-2 regulates α6β1 integrin in the formation of focal adhesions and signaling

    PubMed Central

    Goel, Hira Lal; Pursell, Bryan; Standley, Clive; Fogarty, Kevin; Mercurio, Arthur M.

    2012-01-01

    The neuropilins (NRPs) contribute to the function of cancer cells in their capacity as VEGF receptors. Given that NRP2 is induced in breast cancer and correlates with aggressive disease, we examined the role of NRP2 in regulating the interaction of breast cancer cells with the ECM. Using epithelial cells from breast tumors, we defined NRP2high and NRP2low populations that differed in integrin expression and adhesion to laminin. Specifically, the NRP2high population adhered more avidly to laminin and expressed high levels of the α6β1 integrin than the NRP2low population. The NRP2high population formed numerous focal adhesions on laminin that were not seen in the NRP2low population. These results were substantiated using breast carcinoma cell lines that express NRP2 and α6β1 integrin. Depletion experiments revealed that adhesive strength on laminin but not collagen is dependent on NRP2, and that VEGF is needed for adhesion on laminin. A specific interaction between NRP2 and α6β1 integrin was detected by co-immunoprecipitation. NRP2 is necessary for focal adhesion formation on laminin and for the association of α6β1 integrin with the cytoskeleton. NRP2 also facilitates α6β1-integrin-mediated activation of FAK and Src. Unexpectedly, we discovered that NRP2 is located in focal adhesions on laminin. The mechanism by which NRP2 regulates the interaction of α6β1 integrin with laminin to form focal adhesions involves PKC activation. Together, our data reveal a new VEGF–NRP2 signaling pathway that activates the α6β1 integrin and enables it to form focal adhesions and signal. This pathway is important in the pathogenesis of breast cancer. PMID:22302985

  11. Neuropilin-2 regulates α6β1 integrin in the formation of focal adhesions and signaling.

    PubMed

    Goel, Hira Lal; Pursell, Bryan; Standley, Clive; Fogarty, Kevin; Mercurio, Arthur M

    2012-01-15

    The neuropilins (NRPs) contribute to the function of cancer cells in their capacity as VEGF receptors. Given that NRP2 is induced in breast cancer and correlates with aggressive disease, we examined the role of NRP2 in regulating the interaction of breast cancer cells with the ECM. Using epithelial cells from breast tumors, we defined NRP2(high) and NRP2(low) populations that differed in integrin expression and adhesion to laminin. Specifically, the NRP2(high) population adhered more avidly to laminin and expressed high levels of the α6β1 integrin than the NRP2(low) population. The NRP2(high) population formed numerous focal adhesions on laminin that were not seen in the NRP2(low) population. These results were substantiated using breast carcinoma cell lines that express NRP2 and α6β1 integrin. Depletion experiments revealed that adhesive strength on laminin but not collagen is dependent on NRP2, and that VEGF is needed for adhesion on laminin. A specific interaction between NRP2 and α6β1 integrin was detected by co-immunoprecipitation. NRP2 is necessary for focal adhesion formation on laminin and for the association of α6β1 integrin with the cytoskeleton. NRP2 also facilitates α6β1-integrin-mediated activation of FAK and Src. Unexpectedly, we discovered that NRP2 is located in focal adhesions on laminin. The mechanism by which NRP2 regulates the interaction of α6β1 integrin with laminin to form focal adhesions involves PKC activation. Together, our data reveal a new VEGF-NRP2 signaling pathway that activates the α6β1 integrin and enables it to form focal adhesions and signal. This pathway is important in the pathogenesis of breast cancer.

  12. Multidimensional traction force microscopy reveals out-of-plane rotational moments about focal adhesions.

    PubMed

    Legant, Wesley R; Choi, Colin K; Miller, Jordan S; Shao, Lin; Gao, Liang; Betzig, Eric; Chen, Christopher S

    2013-01-15

    Recent methods have revealed that cells on planar substrates exert both shear (in-plane) and normal (out-of-plane) tractions against the extracellular matrix (ECM). However, the location and origin of the normal tractions with respect to the adhesive and cytoskeletal elements of cells have not been elucidated. We developed a high-spatiotemporal-resolution, multidimensional (2.5D) traction force microscopy to measure and model the full 3D nature of cellular forces on planar 2D surfaces. We show that shear tractions are centered under elongated focal adhesions whereas upward and downward normal tractions are detected on distal (toward the cell edge) and proximal (toward the cell body) ends of adhesions, respectively. Together, these forces produce significant rotational moments about focal adhesions in both protruding and retracting peripheral regions. Temporal 2.5D traction force microscopy analysis of migrating and spreading cells shows that these rotational moments are highly dynamic, propagating outward with the leading edge of the cell. Finally, we developed a finite element model to examine how rotational moments could be generated about focal adhesions in a thin lamella. Our model suggests that rotational moments can be generated largely via shear lag transfer to the underlying ECM from actomyosin contractility applied at the intracellular surface of a rigid adhesion of finite thickness. Together, these data demonstrate and probe the origin of a previously unappreciated multidimensional stress profile associated with adhesions and highlight the importance of new approaches to characterize cellular forces.

  13. Monitoring in real-time focal adhesion protein dynamics in response to a discrete mechanical stimulus.

    PubMed

    von Bilderling, Catalina; Caldarola, Martín; Masip, Martín E; Bragas, Andrea V; Pietrasanta, Lía I

    2017-01-01

    The adhesion of cells to the extracellular matrix is a hierarchical, force-dependent, multistage process that evolves at several temporal scales. An understanding of this complex process requires a precise measurement of forces and its correlation with protein responses in living cells. We present a method to quantitatively assess live cell responses to a local and specific mechanical stimulus. Our approach combines atomic force microscopy with fluorescence imaging. Using this approach, we evaluated the recruitment of adhesion proteins such as vinculin, focal adhesion kinase, paxillin, and zyxin triggered by applying forces in the nN regime to live cells. We observed in real time the development of nascent adhesion sites, evident from the accumulation of early adhesion proteins at the position where the force was applied. We show that the method can be used to quantify the recruitment characteristic times for adhesion proteins in the formation of focal complexes. We also found a spatial remodeling of the mature focal adhesion protein zyxin as a function of the applied force. Our approach allows the study of a variety of complex biological processes involved in cellular mechanotransduction.

  14. Talin-KANK1 interaction controls the recruitment of cortical microtubule stabilizing complexes to focal adhesions

    PubMed Central

    Bouchet, Benjamin P; Gough, Rosemarie E; Ammon, York-Christoph; van de Willige, Dieudonnée; Post, Harm; Jacquemet, Guillaume; Altelaar, AF Maarten; Heck, Albert JR; Goult, Benjamin T; Akhmanova, Anna

    2016-01-01

    The cross-talk between dynamic microtubules and integrin-based adhesions to the extracellular matrix plays a crucial role in cell polarity and migration. Microtubules regulate the turnover of adhesion sites, and, in turn, focal adhesions promote the cortical microtubule capture and stabilization in their vicinity, but the underlying mechanism is unknown. Here, we show that cortical microtubule stabilization sites containing CLASPs, KIF21A, LL5β and liprins are recruited to focal adhesions by the adaptor protein KANK1, which directly interacts with the major adhesion component, talin. Structural studies showed that the conserved KN domain in KANK1 binds to the talin rod domain R7. Perturbation of this interaction, including a single point mutation in talin, which disrupts KANK1 binding but not the talin function in adhesion, abrogates the association of microtubule-stabilizing complexes with focal adhesions. We propose that the talin-KANK1 interaction links the two macromolecular assemblies that control cortical attachment of actin fibers and microtubules. DOI: http://dx.doi.org/10.7554/eLife.18124.001 PMID:27410476

  15. Monitoring in real-time focal adhesion protein dynamics in response to a discrete mechanical stimulus

    NASA Astrophysics Data System (ADS)

    von Bilderling, Catalina; Caldarola, Martín; Masip, Martín E.; Bragas, Andrea V.; Pietrasanta, Lía I.

    2017-01-01

    The adhesion of cells to the extracellular matrix is a hierarchical, force-dependent, multistage process that evolves at several temporal scales. An understanding of this complex process requires a precise measurement of forces and its correlation with protein responses in living cells. We present a method to quantitatively assess live cell responses to a local and specific mechanical stimulus. Our approach combines atomic force microscopy with fluorescence imaging. Using this approach, we evaluated the recruitment of adhesion proteins such as vinculin, focal adhesion kinase, paxillin, and zyxin triggered by applying forces in the nN regime to live cells. We observed in real time the development of nascent adhesion sites, evident from the accumulation of early adhesion proteins at the position where the force was applied. We show that the method can be used to quantify the recruitment characteristic times for adhesion proteins in the formation of focal complexes. We also found a spatial remodeling of the mature focal adhesion protein zyxin as a function of the applied force. Our approach allows the study of a variety of complex biological processes involved in cellular mechanotransduction.

  16. Glycogen Synthase Kinase 3β Dictates Podocyte Motility and Focal Adhesion Turnover by Modulating Paxillin Activity

    PubMed Central

    Xu, Weiwei; Ge, Yan; Liu, Zhihong; Gong, Rujun

    2015-01-01

    Aberrant focal adhesion turnover is centrally involved in podocyte actin cytoskeleton disorganization and foot process effacement. The structural and dynamic integrity of focal adhesions is orchestrated by multiple cell signaling molecules, including glycogen synthase kinase 3β (GSK3β), a multitasking kinase lately identified as a mediator of kidney injury. However, the role of GSK3β in podocytopathy remains obscure. In doxorubicin (Adriamycin)-injured podocytes, lithium, a GSK3β inhibitor and neuroprotective mood stabilizer, obliterated the accelerated focal adhesion turnover, rectified podocyte hypermotility, and restored actin cytoskeleton integrity. Mechanistically, lithium counteracted the doxorubicin-elicited GSK3β overactivity and the hyperphosphorylation and overactivation of paxillin, a focal adhesion–associated adaptor protein. Moreover, forced expression of a dominant negative kinase dead mutant of GSK3β highly mimicked, whereas ectopic expression of a constitutively active GSK3β mutant abolished, the effect of lithium in doxorubicin-injured podocytes, suggesting that the effect of lithium is mediated, at least in part, through inhibition of GSK3β. Furthermore, paxillin interacted with GSK3β and served as its substrate. In mice with doxorubicin nephropathy, a single low dose of lithium ameliorated proteinuria and glomerulosclerosis. Consistently, lithium therapy abrogated GSK3β overactivity, blunted paxillin hyperphosphorylation, and reinstated actin cytoskeleton integrity in glomeruli associated with an early attenuation of podocyte foot process effacement. Thus, GSK3β-modulated focal adhesion dynamics might serve as a novel therapeutic target for podocytopathy. PMID:25239564

  17. Crystallization of the Focal Adhesion Kinase Targeting (FAT) Domain in a Primitive Orthorhombic Space Group

    SciTech Connect

    Magis,A.; Bailey, K.; Kurenova, E.; Hernandez Prada, J.; Cance, W.; Ostrov, D.

    2008-01-01

    X-ray diffraction data from the targeting (FAT) domain of focal adhesion kinase (FAK) were collected from a single crystal that diffracted to 1.99 Angstroms resolution and reduced to the primitive orthorhombic lattice. A single molecule was predicted to be present in the asymmetric unit based on the Matthews coefficient. The data were phased using molecular-replacement methods using an existing model of the FAK FAT domain. All structures of human focal adhesion kinase FAT domains solved to date have been solved in a C-centered orthorhombic space group.

  18. Focal adhesive arachnoiditis of the spinal cord: Imaging diagnosis and surgical resolution

    PubMed Central

    Morisako, Hiroki; Takami, Toshihiro; Yamagata, Toru; Chokyu, Isao; Tsuyuguchi, Naohiro; Ohata, Kenji

    2010-01-01

    Background: Although adhesive arachnoiditis of the spinal cord can cause progressive symptoms associated with syringomyelia or myelomalacia, its surgical resolution based on the imaging diagnosis is not well characterized. This study aims to describe the use of imaging for the diagnosis of focal adhesive arachnoiditis of the spinal cord and its surgical resolution using microsurgical arachnoidolysis. Materials and Methods: Four consecutive patients with symptomatic syringomyelia or myelomalacia caused by focal adhesive arachnoiditis underwent microsurgical arachnoidolysis. Comprehensive imaging evaluation using constructive interference in steady-state (CISS) magnetic resonance imaging (MRI) or myelographic MR imaging using true fast imaging with steady-state precession (TrueFISP) sequences was included before surgery to determine the surgical indication. Results: In all four patients a focal adhesion was identified at the cervical or thoracic level of the spinal cord, a consequence of infection or trauma. Three patients showed modest or minor improvement in neurological function, and one patient was unchanged after surgery. The syringomyelia or myelomalacia resolved after surgery and no recurrence was noted within the follow-up period, which ranged from 5 months to 30 months. Conclusions: MRI diagnosis of focal adhesive arachnoiditis is critical to determine the surgical indication. Microsurgical arachnoidolysis appears to be a straightforward method for stabilizing the progressive symptoms, though the procedure is technically demanding. PMID:21572630

  19. Focal adhesive arachnoiditis of the spinal cord: Imaging diagnosis and surgical resolution.

    PubMed

    Morisako, Hiroki; Takami, Toshihiro; Yamagata, Toru; Chokyu, Isao; Tsuyuguchi, Naohiro; Ohata, Kenji

    2010-07-01

    Although adhesive arachnoiditis of the spinal cord can cause progressive symptoms associated with syringomyelia or myelomalacia, its surgical resolution based on the imaging diagnosis is not well characterized. This study aims to describe the use of imaging for the diagnosis of focal adhesive arachnoiditis of the spinal cord and its surgical resolution using microsurgical arachnoidolysis. Four consecutive patients with symptomatic syringomyelia or myelomalacia caused by focal adhesive arachnoiditis underwent microsurgical arachnoidolysis. Comprehensive imaging evaluation using constructive interference in steady-state (CISS) magnetic resonance imaging (MRI) or myelographic MR imaging using true fast imaging with steady-state precession (TrueFISP) sequences was included before surgery to determine the surgical indication. In all four patients a focal adhesion was identified at the cervical or thoracic level of the spinal cord, a consequence of infection or trauma. Three patients showed modest or minor improvement in neurological function, and one patient was unchanged after surgery. The syringomyelia or myelomalacia resolved after surgery and no recurrence was noted within the follow-up period, which ranged from 5 months to 30 months. MRI diagnosis of focal adhesive arachnoiditis is critical to determine the surgical indication. Microsurgical arachnoidolysis appears to be a straightforward method for stabilizing the progressive symptoms, though the procedure is technically demanding.

  20. Chemically generated convective transport of micron sized particles

    NASA Astrophysics Data System (ADS)

    Shklyaev, Oleg; Das, Sambeeta; Altemose, Alicia; Shum, Henry; Balazs, Anna; Sen, Ayusman

    2015-11-01

    A variety of chemical and biological applications require manipulation of micron sized objects like cells, viruses, and large molecules. Increasing the size of particles up to a micron reduces performance of techniques based on diffusive transport. Directional transport of cargo toward detecting elements reduces the delivery time and improves performance of sensing devices. We demonstrate how chemical reactions can be used to organize fluid flows carrying particles toward the assigned destinations. Convection is driven by density variations caused by a chemical reaction occurring at a catalyst or enzyme-covered target site. If the reaction causes a reduction in fluid density, as in the case of catalytic decomposition of hydrogen peroxide, then fluid and suspended cargo is drawn toward the target along the bottom surface. The intensity of the fluid flow and the time of cargo delivery are controlled by the amount of reagent in the system. After the reagent has been consumed, the fluid pump stops and particles are found aggregated on and around the enzyme-coated patch. The pumps are reusable, being reactivated upon injection of additional reagent. The developed technique can be implemented in lab-on-a-chip devices for transportation of micro-scale object immersed in solution.

  1. Modeling photoacoustic spectral features of micron-sized particles.

    PubMed

    Strohm, Eric M; Gorelikov, Ivan; Matsuura, Naomi; Kolios, Michael C

    2014-10-07

    The photoacoustic signal generated from particles when irradiated by light is determined by attributes of the particle such as the size, speed of sound, morphology and the optical absorption coefficient. Unique features such as periodically varying minima and maxima are observed throughout the photoacoustic signal power spectrum, where the periodicity depends on these physical attributes. The frequency content of the photoacoustic signals can be used to obtain the physical attributes of unknown particles by comparison to analytical solutions of homogeneous symmetric geometric structures, such as spheres. However, analytical solutions do not exist for irregularly shaped particles, inhomogeneous particles or particles near structures. A finite element model (FEM) was used to simulate photoacoustic wave propagation from four different particle configurations: a homogeneous particle suspended in water, a homogeneous particle on a reflecting boundary, an inhomogeneous particle with an absorbing shell and non-absorbing core, and an irregularly shaped particle such as a red blood cell. Biocompatible perfluorocarbon droplets, 3-5 μm in diameter containing optically absorbing nanoparticles were used as the representative ideal particles, as they are spherical, homogeneous, optically translucent, and have known physical properties. The photoacoustic spectrum of micron-sized single droplets in suspension and on a reflecting boundary were measured over the frequency range of 100-500 MHz and compared directly to analytical models and the FEM. Good agreement between the analytical model, FEM and measured values were observed for a droplet in suspension, where the spectral minima agreed to within a 3.3 MHz standard deviation. For a droplet on a reflecting boundary, spectral features were correctly reproduced using the FEM but not the analytical model. The photoacoustic spectra from other common particle configurations such as particle with an absorbing shell and a

  2. Modeling photoacoustic spectral features of micron-sized particles

    NASA Astrophysics Data System (ADS)

    Strohm, Eric M.; Gorelikov, Ivan; Matsuura, Naomi; Kolios, Michael C.

    2014-10-01

    The photoacoustic signal generated from particles when irradiated by light is determined by attributes of the particle such as the size, speed of sound, morphology and the optical absorption coefficient. Unique features such as periodically varying minima and maxima are observed throughout the photoacoustic signal power spectrum, where the periodicity depends on these physical attributes. The frequency content of the photoacoustic signals can be used to obtain the physical attributes of unknown particles by comparison to analytical solutions of homogeneous symmetric geometric structures, such as spheres. However, analytical solutions do not exist for irregularly shaped particles, inhomogeneous particles or particles near structures. A finite element model (FEM) was used to simulate photoacoustic wave propagation from four different particle configurations: a homogeneous particle suspended in water, a homogeneous particle on a reflecting boundary, an inhomogeneous particle with an absorbing shell and non-absorbing core, and an irregularly shaped particle such as a red blood cell. Biocompatible perfluorocarbon droplets, 3-5 μm in diameter containing optically absorbing nanoparticles were used as the representative ideal particles, as they are spherical, homogeneous, optically translucent, and have known physical properties. The photoacoustic spectrum of micron-sized single droplets in suspension and on a reflecting boundary were measured over the frequency range of 100-500 MHz and compared directly to analytical models and the FEM. Good agreement between the analytical model, FEM and measured values were observed for a droplet in suspension, where the spectral minima agreed to within a 3.3 MHz standard deviation. For a droplet on a reflecting boundary, spectral features were correctly reproduced using the FEM but not the analytical model. The photoacoustic spectra from other common particle configurations such as particle with an absorbing shell and a

  3. Nanotopographical manipulation of focal adhesion formation for enhanced differentiation of human neural stem cells.

    PubMed

    Yang, Kisuk; Jung, Kyuhwan; Ko, Eunkyung; Kim, Jin; Park, Kook In; Kim, Jinseok; Cho, Seung-Woo

    2013-11-13

    Manipulating neural stem cell (NSC) fate is of great importance for improving the therapeutic efficacy of NSCs to treat neurodegenerative disorders. Biophysical cues, in addition to biochemical factors, regulate NSC phenotype and function. In this study, we assessed the extent to which surface nanotopography of culture substrates modulates human NSC (hNSC) differentiation. Fibronectin-coated polymer substrates with diverse nanoscale shapes (groove and pillar) and dimensions (ranging from 300 to 1500 nm groove width and pillar gap) were used to investigate the effects of topographical cues on hNSC morphology, alignment, focal adhesion, and differentiation. The majority of nanopatterned substrates induced substantial changes in cellular morphology and alignment along the patterned shapes, leading to alterations in focal adhesion and F-actin reorganization. Certain types of nanopatterned substrates, in particular the ones with small nanostructures (e.g., 300-300 nm groove ridges and 300-300 nm pillar diameter gaps), were found to effectively enhance focal adhesion complex development. Consequently, these substrates enhanced hNSC differentiation toward neurons and astrocytes. Nanotopographical-induced formation of focal adhesions in hNSCs activates integrin-mediated mechanotransduction and intracellular signaling pathways such as MEK-ERK, which may ultimately promote gene expression related to NSC differentiation. This strategy of manipulating matrix surface topography could be applied to develop culture substrates and tissue engineered scaffolds that improve the efficacy of NSC therapeutics.

  4. Comparing the mechanical influence of vinculin, focal adhesion kinase and p53 in mouse embryonic fibroblasts

    SciTech Connect

    Klemm, Anna H.; Diez, Gerold; Alonso, Jose-Luis

    2009-02-13

    Cytoskeletal reorganization is an ongoing process when cells adhere, move or invade extracellular substrates. The cellular force generation and transmission are determined by the intactness of the actomyosin-(focal adhesion complex)-integrin connection. We investigated the intracellular course of action in mouse embryonic fibroblasts deficient in the focal adhesion proteins vinculin and focal adhesion kinase (FAK) and the nuclear matrix protein p53 using magnetic tweezer and nanoparticle tracking techniques. Results show that the lack of these proteins decrease cellular stiffness and affect cell rheological behavior. The decrease in cellular binding strength was higher in FAK- to vinculin-deficient cells, whilst p53-deficient cells showed no effect compared to wildtype cells. The intracellular cytoskeletal activity was lowest in wildtype cells, but increased in the following order when cells lacked FAK+p53 > p53 > vinculin. In summary, cell mechanical processes are differently affected by the focal adhesion proteins vinculin and FAK than by the nuclear matrix protein, p53.

  5. The regulation of traction force in relation to cell shape and focal adhesions.

    PubMed

    Rape, Andrew D; Guo, Wei-Hui; Wang, Yu-Li

    2011-03-01

    Mechanical forces provide critical inputs for proper cellular functions. The interplay between the generation of, and response to, mechanical forces regulate such cellular processes as differentiation, proliferation, and migration. We postulate that adherent cells respond to a number of physical and topographical factors, including cell size and shape, by detecting the magnitude and/or distribution of traction forces under different conditions. To address this possibility we introduce a new simple method for precise micropatterning of hydrogels, and then apply the technique to systematically investigate the relationship between cell geometry, focal adhesions, and traction forces in cells with a series of spread areas and aspect ratios. Contrary to previous findings, we find that traction force is not determined primarily by the cell spreading area but by the distance from cell center to the perimeter. This distance in turn controls traction forces by regulating the size of focal adhesions, such that constraining the size of focal adhesions by micropatterning can override the effect of geometry. We propose that the responses of traction forces to center-periphery distance, possibly through a positive feedback mechanism that regulates focal adhesions, provide the cell with the information on its own shape and size. A similar positive feedback control may allow cells to respond to a variety of physical or topographical signals via a unified mechanism. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Combining PALM and SOFI for quantitative imaging of focal adhesions in living cells

    NASA Astrophysics Data System (ADS)

    Deschout, Hendrik; Lukes, Tomas; Sharipov, Azat; Feletti, Lely; Lasser, Theo; Radenovic, Aleksandra

    2017-02-01

    Focal adhesions are complicated assemblies of hundreds of proteins that allow cells to sense their extracellular matrix and adhere to it. Although most focal adhesion proteins have been identified, their spatial organization in living cells remains challenging to observe. Photo-activated localization microscopy (PALM) is an interesting technique for this purpose, especially since it allows estimation of molecular parameters such as the number of fluorophores. However, focal adhesions are dynamic entities, requiring a temporal resolution below one minute, which is difficult to achieve with PALM. In order to address this problem, we merged PALM with super-resolution optical fluctuation imaging (SOFI) by applying both techniques to the same data. Since SOFI tolerates an overlap of single molecule images, it can improve the temporal resolution compared to PALM. Moreover, an adaptation called balanced SOFI (bSOFI) allows estimation of molecular parameters, such as the fluorophore density. We therefore performed simulations in order to assess PALM and SOFI for quantitative imaging of dynamic structures. We demonstrated the potential of our PALM-SOFI concept as a quantitative imaging framework by investigating moving focal adhesions in living cells.

  7. Evaluation of the Correlation between Focal Adhesion Kinase Phosphorylation and Cell Adhesion Force Using “DEP” Technology

    PubMed Central

    Ay, Chyung; Yeh, Chih-Chang; Hsu, Min-Chih; Hurng, Huaang-Youh; Kwok, Philip Chi Lip; Chang, Hsin-I.

    2012-01-01

    Dielectrophoresis (DEP) is the phenomenon in which a particle, such as a living cell, is polarized and moved by electrical gravity in a non-uniform electric field. In the present study, the DEP force is utilized to act on the cells to induce spatial movement for investigating the correlation between the cell adhesion force and activation level of focal adhesion kinase (FAK). The DEP force produced by the non-uniform electric field was used to measure the cell adhesion force of ECV304 cells, on type 1 collagen (COL1)- and fibronectin (FN)-coated polydimethylsiloxane (PDMS) membranes. For COL1-coating, ECV304 cells revealed weak and variable adhesion force (0.343–0.760 nN) in the first eight hours of incubation. Interestingly, the cell adhesion force of ECV304 at two and five hours of cultivation was significantly high and matched their FAK activation level. In comparison, ECV304 on FN-coated membrane had higher and more stable cell adhesion force (0.577–2.053 nN). FN coating intensified the cell adhesion force of ECV304 with culture time and similar outcome was present on the activation level of FAK. Therefore, this study demonstrated a relationship between cell adhesion force and FAK activation level that was dependant on the choice of the extracellular matrix (ECM) component. Subsequently, two tyrosine kinase inhibitors (AG18 and genistein) and one PI3K inhibitor (LY294002) were applied to study the influence of protein phosphorylation on the cell adhesion force. FAK plays an important role on cell attachment and DEP force measurement is a useful technique for studying cell adhesion. PMID:22778624

  8. Quantitative measurement of changes in adhesion force involving focal adhesion kinase during cell attachment, spread, and migration

    SciTech Connect

    Wu, C.-C.; Su, H.-W.; Lee, C.-C.; Tang, M.-J.; Su, F.-C. . E-mail: fcsu@mail.ncku.edu.tw

    2005-04-01

    Focal adhesion kinase (FAK) is a critical protein for the regulation of integrin-mediated cellular functions and it can enhance cell motility in Madin-Darby canine kidney (MDCK) cells by hepatocyte growth factor (HGF) induction. We utilized optical trapping and cytodetachment techniques to measure the adhesion force between pico-Newton and nano-Newton (nN) for quantitatively investigating the effects of FAK on adhesion force during initial binding (5 s), beginning of spreading (30 min), spreadout (12 h), and migration (induced by HGF) in MDCK cells with overexpressed FAK (FAK-WT), FAK-related non-kinase (FRNK), as well as normal control cells. Optical tweezers was used to measure the initial binding force between a trapped cell and glass coverslide or between a trapped bead and a seeded cell. In cytodetachment, the commercial atomic force microscope probe with an appropriate spring constant was used as a cyto-detacher to evaluate the change of adhesion force between different FAK expression levels of cells in spreading, spreadout, and migrating status. The results demonstrated that FAK-WT significantly increased the adhesion forces as compared to FRNK cells throughout all the different stages of cell adhesion. For cells in HGF-induced migration, the adhesion force decreased to almost the same level ({approx}600 nN) regardless of FAK levels indicating that FAK facilitates cells to undergo migration by reducing the adhesion force. Our results suggest FAK plays a role of enhancing cell adhesive ability in the binding and spreading, but an appropriate level of adhesion force is required for HGF-induced cell migration.

  9. Focal adhesion kinase and paxillin promote migration and adhesion to fibronectin by swine skeletal muscle satellite cells.

    PubMed

    Wang, Dan; Gao, Chun-Qi; Chen, Rong-Qiang; Jin, Cheng-Long; Li, Hai-Chang; Yan, Hui-Chao; Wang, Xiu-Qi

    2016-05-24

    The focal adhesion kinase (FAK) signaling pathway contributes to the cell migration and adhesion that is critical for wound healing and regeneration of damaged muscle, but its function in skeletal muscle satellite cells (SCs) is less clear. We compared the migration and adhesion of SCs derived from two species of pig (Lantang and Landrace) in vitro, and explored how FAK signaling modulates the two processes. The results showed that Lantang SCs had greater ability to migrate and adhere to fibronection (P < 0.05) than Landrace SCs. Compared to Landrace SCs, Lantang SCs expressed many more focal adhesion (FA) sites, which were indicated by the presence of p-paxillin (Tyr118), and exhibited less F-actin reorganization 24 h after seeding onto fibronectin. Levels of p-FAK (Tyr397) and p-paxillin (Tyr118) were greater (P < 0.05) in Lantang SCs than Landrace SCs after migration for 24 h. Similarly, Lantang SCs showed much higher levels of p-FAK (Tyr397), p-paxillin (Tyr118) and p-Akt (Ser473) than Landrace SCs 2 h after adhesion. Treatment with the FAK inhibitor PF-573228 (5 or 10 μmol/L) inhibited Lantang SC migration and adhesion to fibronectin (P < 0.05), decreased levels of p-paxillin (Tyr118) and p-Akt (Ser473) (P < 0.05), and suppressed the formation of FA sites on migrating SCs. Thus FAK appears to play a key role in the regulation of SC migration and adhesion necessary for muscle regeneration.

  10. Focal adhesion kinase and paxillin promote migration and adhesion to fibronectin by swine skeletal muscle satellite cells

    PubMed Central

    Wang, Dan; Gao, Chun-qi; Chen, Rong-qiang; Jin, Cheng-long; Li, Hai-chang; Yan, Hui-chao; Wang, Xiu-qi

    2016-01-01

    The focal adhesion kinase (FAK) signaling pathway contributes to the cell migration and adhesion that is critical for wound healing and regeneration of damaged muscle, but its function in skeletal muscle satellite cells (SCs) is less clear. We compared the migration and adhesion of SCs derived from two species of pig (Lantang and Landrace) in vitro, and explored how FAK signaling modulates the two processes. The results showed that Lantang SCs had greater ability to migrate and adhere to fibronection (P < 0.05) than Landrace SCs. Compared to Landrace SCs, Lantang SCs expressed many more focal adhesion (FA) sites, which were indicated by the presence of p-paxillin (Tyr118), and exhibited less F-actin reorganization 24 h after seeding onto fibronectin. Levels of p-FAK (Tyr397) and p-paxillin (Tyr118) were greater (P < 0.05) in Lantang SCs than Landrace SCs after migration for 24 h. Similarly, Lantang SCs showed much higher levels of p-FAK (Tyr397), p-paxillin (Tyr118) and p-Akt (Ser473) than Landrace SCs 2 h after adhesion. Treatment with the FAK inhibitor PF-573228 (5 or 10 μmol/L) inhibited Lantang SC migration and adhesion to fibronectin (P < 0.05), decreased levels of p-paxillin (Tyr118) and p-Akt (Ser473) (P < 0.05), and suppressed the formation of FA sites on migrating SCs. Thus FAK appears to play a key role in the regulation of SC migration and adhesion necessary for muscle regeneration. PMID:27127174

  11. A Chemomechanical Model of Matrix and Nuclear Rigidity Regulation of Focal Adhesion Size

    PubMed Central

    Cao, Xuan; Lin, Yuan; Driscoll, Tristian P.; Franco-Barraza, Janusz; Cukierman, Edna; Mauck, Robert L.; Shenoy, Vivek B.

    2015-01-01

    In this work, a chemomechanical model describing the growth dynamics of cell-matrix adhesion structures (i.e., focal adhesions (FAs)) is developed. We show that there are three regimes for FA evolution depending on their size. Specifically, nascent adhesions with initial lengths below a critical value that are yet to engage in actin fibers will dissolve, whereas bigger ones will grow into mature FAs with a steady state size. In adhesions where growth surpasses the steady state size, disassembly will occur until their sizes are reduced to the equilibrium state. This finding arises from the fact that polymerization of adhesion proteins is force-dependent. Under actomyosin contraction, individual integrin bonds within small FAs (i.e., nascent adhesions or focal complexes) must transmit higher loads while the phenomenon of stress concentration occurs at the edge of large adhesion patches. As such, an effective stiffness of the FA-extracellular matrix complex that is either too small or too large will be relatively low, resulting in a limited actomyosin pulling force developed at the edge that is insufficient to prevent disassembly. Furthermore, it is found that a stiffer extracellular matrix and/or nucleus, as well as a stronger chemomechanical feedback, will induce larger adhesions along with a higher level of contraction force. Interestingly, switching the extracellular side from an elastic half-space, corresponding to some widely used in vitro gel substrates, to a one-dimensional fiber (as in the case of cells anchoring to a fibrous scaffold in vivo) does not qualitative change these conclusions. Our model predictions are in good agreement with a variety of experimental observations obtained in this study as well as those reported in the literature. Furthermore, this new model, to our knowledge, provides a framework with which to understand how both intracellular and extracellular perturbations lead to changes in adhesion structure number and size. PMID:26536258

  12. FAK dimerization controls its kinase-dependent functions at focal adhesions

    PubMed Central

    Brami-Cherrier, Karen; Gervasi, Nicolas; Arsenieva, Diana; Walkiewicz, Katarzyna; Boutterin, Marie-Claude; Ortega, Alvaro; Leonard, Paul G; Seantier, Bastien; Gasmi, Laila; Bouceba, Tahar; Kadaré, Gress; Girault, Jean-Antoine; Arold, Stefan T

    2014-01-01

    Focal adhesion kinase (FAK) controls adhesion-dependent cell motility, survival, and proliferation. FAK has kinase-dependent and kinase-independent functions, both of which play major roles in embryogenesis and tumor invasiveness. The precise mechanisms of FAK activation are not known. Using x-ray crystallography, small angle x-ray scattering, and biochemical and functional analyses, we show that the key step for activation of FAK's kinase-dependent functions—autophosphorylation of tyrosine-397—requires site-specific dimerization of FAK. The dimers form via the association of the N-terminal FERM domain of FAK and are stabilized by an interaction between FERM and the C-terminal FAT domain. FAT binds to a basic motif on FERM that regulates co-activation and nuclear localization. FAK dimerization requires local enrichment, which occurs specifically at focal adhesions. Paxillin plays a dual role, by recruiting FAK to focal adhesions and by reinforcing the FAT:FERM interaction. Our results provide a structural and mechanistic framework to explain how FAK combines multiple stimuli into a site-specific function. The dimer interfaces we describe are promising targets for blocking FAK activation. PMID:24480479

  13. Human fibroblasts display a differential focal adhesion phenotype relative to chimpanzee.

    PubMed

    Advani, Alexander S; Chen, Annie Y; Babbitt, Courtney C

    2016-01-01

    There are a number of documented differences between humans and our closest relatives in responses to wound healing and in disease susceptibilities, suggesting a differential cellular response to certain environmental factors. In this study, we sought to look at a specific cell type, fibroblasts, to examine differences in cellular adhesion between humans and chimpanzees in visualized cells and in gene expression. We have found significant differences in the number of focal adhesions between primary human and chimpanzee fibroblasts. Additionally, we see that adhesion related gene ontology categories are some of the most differentially expressed between human and chimpanzee in normal fibroblast cells. These results suggest that human and chimpanzee fibroblasts may have somewhat different adhesive properties, which could play a role in differential disease phenotypes and responses to external factors.

  14. Human fibroblasts display a differential focal adhesion phenotype relative to chimpanzee

    PubMed Central

    Advani, Alexander S.; Chen, Annie Y.; Babbitt, Courtney C.

    2016-01-01

    There are a number of documented differences between humans and our closest relatives in responses to wound healing and in disease susceptibilities, suggesting a differential cellular response to certain environmental factors. In this study, we sought to look at a specific cell type, fibroblasts, to examine differences in cellular adhesion between humans and chimpanzees in visualized cells and in gene expression. We have found significant differences in the number of focal adhesions between primary human and chimpanzee fibroblasts. Additionally, we see that adhesion related gene ontology categories are some of the most differentially expressed between human and chimpanzee in normal fibroblast cells. These results suggest that human and chimpanzee fibroblasts may have somewhat different adhesive properties, which could play a role in differential disease phenotypes and responses to external factors. PMID:26971204

  15. Adhesive ligand tether length affects the size and length of focal adhesions and influences cell spreading and attachment

    PubMed Central

    Attwood, Simon J.; Cortes, Ernesto; Haining, Alexander William M.; Robinson, Benjamin; Li, Danyang; Gautrot, Julien; del Río Hernández, Armando

    2016-01-01

    Cells are known to respond to physical cues from their microenvironment such as matrix rigidity. Discrete adhesive ligands within flexible strands of fibronectin connect cell surface integrins to the broader extracellular matrix and are thought to mediate mechanosensing through the cytoskeleton-integrin-ECM linkage. We set out to determine if adhesive ligand tether length is another physical cue that cells can sense. Substrates were covalently modified with adhesive arginylglycylaspartic acid (RGD) ligands coupled with short (9.5 nm), medium (38.2 nm) and long (318 nm) length inert polyethylene glycol tethers. The size and length of focal adhesions of human foreskin fibroblasts gradually decreased from short to long tethers. Furthermore, we found cell adhesion varies in a linker length dependent manner with a remarkable 75% reduction in the density of cells on the surface and a 50% reduction in cell area between the shortest and longest linkers. We also report the interplay between RGD ligand concentration and tether length in determining cellular spread area. Our findings show that without varying substrate rigidity or ligand density, tether length alone can modulate cellular behaviour. PMID:27686622

  16. Adhesive ligand tether length affects the size and length of focal adhesions and influences cell spreading and attachment

    NASA Astrophysics Data System (ADS)

    Attwood, Simon J.; Cortes, Ernesto; Haining, Alexander William M.; Robinson, Benjamin; Li, Danyang; Gautrot, Julien; Del Río Hernández, Armando

    2016-09-01

    Cells are known to respond to physical cues from their microenvironment such as matrix rigidity. Discrete adhesive ligands within flexible strands of fibronectin connect cell surface integrins to the broader extracellular matrix and are thought to mediate mechanosensing through the cytoskeleton-integrin-ECM linkage. We set out to determine if adhesive ligand tether length is another physical cue that cells can sense. Substrates were covalently modified with adhesive arginylglycylaspartic acid (RGD) ligands coupled with short (9.5 nm), medium (38.2 nm) and long (318 nm) length inert polyethylene glycol tethers. The size and length of focal adhesions of human foreskin fibroblasts gradually decreased from short to long tethers. Furthermore, we found cell adhesion varies in a linker length dependent manner with a remarkable 75% reduction in the density of cells on the surface and a 50% reduction in cell area between the shortest and longest linkers. We also report the interplay between RGD ligand concentration and tether length in determining cellular spread area. Our findings show that without varying substrate rigidity or ligand density, tether length alone can modulate cellular behaviour.

  17. Adhesive ligand tether length affects the size and length of focal adhesions and influences cell spreading and attachment.

    PubMed

    Attwood, Simon J; Cortes, Ernesto; Haining, Alexander William M; Robinson, Benjamin; Li, Danyang; Gautrot, Julien; Del Río Hernández, Armando

    2016-09-30

    Cells are known to respond to physical cues from their microenvironment such as matrix rigidity. Discrete adhesive ligands within flexible strands of fibronectin connect cell surface integrins to the broader extracellular matrix and are thought to mediate mechanosensing through the cytoskeleton-integrin-ECM linkage. We set out to determine if adhesive ligand tether length is another physical cue that cells can sense. Substrates were covalently modified with adhesive arginylglycylaspartic acid (RGD) ligands coupled with short (9.5 nm), medium (38.2 nm) and long (318 nm) length inert polyethylene glycol tethers. The size and length of focal adhesions of human foreskin fibroblasts gradually decreased from short to long tethers. Furthermore, we found cell adhesion varies in a linker length dependent manner with a remarkable 75% reduction in the density of cells on the surface and a 50% reduction in cell area between the shortest and longest linkers. We also report the interplay between RGD ligand concentration and tether length in determining cellular spread area. Our findings show that without varying substrate rigidity or ligand density, tether length alone can modulate cellular behaviour.

  18. Thrombomodulin promotes focal adhesion kinase activation and contributes to angiogenesis by binding to fibronectin

    PubMed Central

    Hsu, Yun-Yan; Shi, Guey-Yueh; Wang, Kuan-Chieh; Ma, Chih-Yuan; Cheng, Tsung-Lin; Wu, Hua-Lin

    2016-01-01

    Angiogenesis promotes tumor growth and metastasis. Cell adhesion molecules interact with the extracellular matrix (ECM) and increase cell adhesion and migration during angiogenesis. Thrombomodulin (TM) is a cell surface transmembrane glycoprotein expressed in endothelial cells. However, the function and significance of TM in cell-matrix interactions and angiogenesis remain unclear. Here, we first demonstrated that recombinant lectin-like domain of TM interacts with an ECM protein, fibronectin, and identified the N-terminal 70-kDa domain of fibronectin as the TM-binding site. Exogenous expression of TM in TM-deficient A2058 melanoma cells enhanced cell adhesion and migration on fibronectin and invasion on Matrigel. In addition, TM increased focal adhesion kinase (FAK) phosphorylation and matrix metalloproteinase-9 production. In mice bearing subcutaneous B16F10 melanoma tumors, immunofluorescence analysis indicated that TM was highly expressed and co-localized with fibronectin on the tumor vasculature. The interaction between TM and fibronectin in tumor blood vessels was also validated by the proximity ligation assay. In human umbilical vein endothelial cells, up-regulation of TM by vascular endothelial growth factor (VEGF), a tumor angiogenic factor, promoted cell adhesion and tube formation, whereas TM knockdown by RNA interference attenuated VEGF-induced cell adhesion and tube formation. In summary, TM promotes angiogenesis by enhancing cell adhesion, migration, and FAK activation through interaction with fibronectin. TM may represent a novel target for inhibiting tumor angiogenesis. PMID:27602495

  19. Hyaluronan and the hyaluronan receptor RHAMM promote focal adhesion turnover and transient tyrosine kinase activity

    PubMed Central

    1994-01-01

    The molecular mechanisms whereby hyaluronan (HA) stimulates cell motility was investigated in a C-H-ras transformed 10T 1/2 fibroblast cell line (C3). A significant (p < 0.001) stimulation of C3 cell motility with HA (10 ng/ml) was accompanied by an increase in protein tyrosine phosphorylation as detected by anti-phosphotyrosine antibodies using immunoblot analysis and immunofluorescence staining of cells. Tyrosine phosphorylation of several proteins was found to be both rapid and transient with phosphorylation occurring within 1 min of HA addition and dissipating below control levels 10-15 min later. These responses were also elicited by an antibody generated against a peptide sequence within the HA receptor RHAMM. Treatment of cells with tyrosine kinase inhibitors (genistein, 10 micrograms/ml or herbimycin A, 0.5 micrograms/ml) or microinjection of anti-phosphotyrosine antibodies inhibited the transient protein tyrosine phosphorylation in response to HA as well as prevented HA stimulation of cell motility. To determine a link between HA-stimulated tyrosine phosphorylation and the resulting cell locomotion, cytoskeletal reorganization was examined in C3 cells plated on fibronectin and treated with HA or anti-RHAMM antibody. These agents caused a rapid assembly and disassembly of focal adhesions as revealed by immunofluorescent localization of vinculin. The time course with which HA and antibody induced focal adhesion turnover exactly paralleled the induction of transient protein tyrosine phosphorylation. In addition, phosphotyrosine staining colocalized with vinculin within structures in the lamellapodia of these cells. Notably, the focal adhesion kinase, pp125FAK, was rapidly phosphorylated and dephosphorylated after HA stimulation. These results suggest that HA stimulates locomotion via a rapid and transient protein tyrosine kinase signaling event mediated by RHAMM. They also provide a possible molecular basis for focal adhesion turnover, a process that is

  20. Plakophilin 2 Affects Cell Migration by Modulating Focal Adhesion Dynamics and Integrin Protein Expression

    PubMed Central

    Koetsier, Jennifer L.; Amargo, Evangeline V.; Todorović, Viktor; Green, Kathleen J.; Godsel, Lisa M.

    2014-01-01

    Plakophilin 2 (PKP2), a desmosome component, modulates the activity and localization of the small GTPase RhoA at sites of cell–cell contact. PKP2 regulates cortical actin rearrangement during junction formation, and its loss is accompanied by an increase in actin stress fibers. We hypothesized that PKP2 may regulate focal adhesion dynamics and cell migration. Here we show that PKP2-deficient cells bind efficiently to the extracellular matrix, but upon spreading display total cell areas ~30% smaller than control cells. Focal adhesions in PKP2-deficient cells are ~2× larger and more stable than in control cells, and vinculin displays an increased time for fluorescence recovery after photobleaching. Furthermore, β4 and β1 integrin protein and mRNA expression is elevated in PKP2-silenced cells. Normal focal adhesion phenotypes can be restored in PKP2-null cells by dampening the RhoA pathway or silencing β1 integrin. However, integrin expression levels are not restored by RhoA signaling inhibition. These data uncover a potential role for PKP2 upstream of β1 integrin and RhoA in integrating cell–cell and cell–substrate contact signaling in basal keratinocytes necessary for the morphogenesis, homeostasis, and reepithelialization of the stratified epidermis. PMID:23884246

  1. α-actinin1 and 4 tyrosine phosphorylation is critical for stress fiber establishment, maintenance and focal adhesion maturation.

    PubMed

    Feng, Yunfeng; Ngu, Hai; Alford, Shannon K; Ward, Michael; Yin, Frank; Longmore, Gregory D

    2013-05-01

    In polarized, migrating cells, stress fibers are a highly dynamic network of contractile acto-myosin structures composed of bundles of actin filaments held together by actin cross-linking proteins such as α-actinins. As such, α-actinins influence actin cytoskeleton organization and dynamics and focal adhesion maturation. In response to environmental signals, α-actinins are tyrosine phosphorylated and this affects their binding to actin stress fibers; however, the cellular role of α-actinin tyrosine phosphorylation remains largely unknown. We found that non-muscle α-actinin1/4 are critical for the establishment of dorsal stress fibers and maintenance of transverse arc stress fibers. Analysis of cells genetically depleted of α-actinin1 and 4 reveals two distinct modes for focal adhesion maturation. An α-actinin1 or 4 dependent mode that uses dorsal stress fiber precursors as a template for establishing focal adhesions and their maturation, and an α-actinin-independent manner that uses transverse arc precursors to establish focal adhesions at both ends. Focal adhesions formed in the absence of α-actinins are delayed in their maturation, exhibit altered morphology, have decreased amounts of Zyxin and VASP, and reduced adhesiveness to extracellular matrix. Further rescue experiments demonstrate that the tyrosine phosphorylation of α-actinin1 at Y12 and α-actinin4 at Y265 is critical for dorsal stress fiber establishment, transverse arc maintenance and focal adhesion maturation.

  2. Role of Titanium Surface Topography and Surface Wettability on Focal Adhesion Kinase Mediated Signaling in Fibroblasts

    PubMed Central

    Oates, Christine J.; Wen, Weiyan; Hamilton, Douglas W.

    2011-01-01

    Changes of titanium surface roughness and surface free energy may influence protein absorption that increases cell differentiation through activation of focal adhesion kinase related pathways. However, the influence of titanium surface roughness and hydrophilicity on fibroblast behavior is not well understood. The aim of this study was to investigate the influence of topography and hydrophilicity on fibroblast attachment, spreading, morphology, intracellular signaling, proliferation, and collagen I mRNA levels. Using a cellular FAK knockout (FAK−/−) model and wild-type (WT) controls, we also investigated the contribution of adhesion in fibroblasts cultured on smooth (PT), sand-blasted, large grit, acid-etched (SLA) and hydrophilic SLA topographies. Loss of FAK did not significantly affect fibroblast attachment to any surface, but SLA and hydrophilic SLA surface attenuated spreading of WT cells significantly more than FAK−/− fibroblasts. Both FAK−/− and WT cells formed numerous focal adhesions on PT surfaces, but significantly less on SLA and hydrophilic SLA surfaces. In WT cells, phosphorylation levels of FAK were lower on SLA and hydrophilic SLA in comparison with PT 24 h post seeding. Labeling of cells with antibodies to cortactin showed that FAK−/− cells contained significantly more cortactin-rich focal adhesion in comparison with WT cells on PT surfaces, but not on SLA or hydrophilic SLA. ERK 1/2 phosphorylation was highest in WT cells on all surfaces which correlated with collagen I expression levels. We conclude that fibroblasts are sensitive to changes in surface roughness and hydrophilicity, with adhesive interactions mediated through FAK, an important modulator of fibroblast response. PMID:28879956

  3. Focal adhesions control cleavage furrow shape and spindle tilt during mitosis

    PubMed Central

    Taneja, Nilay; Fenix, Aidan M.; Rathbun, Lindsay; Millis, Bryan A.; Tyska, Matthew J.; Hehnly, Heidi; Burnette, Dylan T.

    2016-01-01

    The geometry of the cleavage furrow during mitosis is often asymmetric in vivo and plays a critical role in stem cell differentiation and the relative positioning of daughter cells during development. Early observations of adhesive cell lines revealed asymmetry in the shape of the cleavage furrow, where the bottom (i.e., substrate attached side) of the cleavage furrow ingressed less than the top (i.e., unattached side). This data suggested substrate attachment could be regulating furrow ingression. Here we report a population of mitotic focal adhesions (FAs) controls the symmetry of the cleavage furrow. In single HeLa cells, stronger adhesion to the substrate directed less ingression from the bottom of the cell through a pathway including paxillin, focal adhesion kinase (FAK) and vinculin. Cell-cell contacts also direct ingression of the cleavage furrow in coordination with FAs in epithelial cells—MDCK—within monolayers and polarized cysts. In addition, mitotic FAs established 3D orientation of the mitotic spindle and the relative positioning of mother and daughter centrosomes. Therefore, our data reveals mitotic FAs as a key link between mitotic cell shape and spindle orientation, and may have important implications in our understanding stem cell homeostasis and tumorigenesis. PMID:27432211

  4. Micrometer scale spacings between fibronectin nanodots regulate cell morphology and focal adhesions

    NASA Astrophysics Data System (ADS)

    Horzum, Utku; Ozdil, Berrin; Pesen-Okvur, Devrim

    2014-04-01

    Cell adhesion to extracellular matrix is an important process for both health and disease states. Surface protein patterns that are topographically flat, and do not introduce other chemical, topographical or rigidity related functionality and, more importantly, that mimic the organization of the in vivo extracellular matrix are desired. Previous work showed that vinculin and cytoskeletal organization are modulated by size and shape of surface nanopatterns. However, quantitative analysis on cell morphology and focal adhesions as a function of micrometer scale spacings of FN nanopatterns was absent. Here, electron beam lithography was used to pattern fibronectin nanodots with micrometer scale spacings on a K-casein background on indium tin oxide coated glass which, unlike silicon, is transparent and thus suitable for many light microscopy techniques. Exposure times were significantly reduced using the line exposure mode with micrometer scale step sizes. Micrometer scale spacings of 2, 4 and 8 μm between fibronectin nanodots proved to modulate cell adhesion through modification of cell area, focal adhesion number, size and circularity. Overall, cell behavior was shown to shift at the apparent threshold of 4 μm spacing. The findings presented here offer exciting new opportunities for cell biology research.

  5. In-situ coupling between kinase activities and protein dynamics within single focal adhesions

    NASA Astrophysics Data System (ADS)

    Wu, Yiqian; Zhang, Kaiwen; Seong, Jihye; Fan, Jason; Chien, Shu; Wang, Yingxiao; Lu, Shaoying

    2016-07-01

    The dynamic activation of oncogenic kinases and regulation of focal adhesions (FAs) are crucial molecular events modulating cell adhesion in cancer metastasis. However, it remains unclear how these events are temporally coordinated at single FA sites. Therefore, we targeted fluorescence resonance energy transfer (FRET)-based biosensors toward subcellular FAs to report local molecular events during cancer cell adhesion. Employing single FA tracking and cross-correlation analysis, we quantified the dynamic coupling characteristics between biochemical kinase activities and structural FA within single FAs. We show that kinase activations and FA assembly are strongly and sequentially correlated, with the concurrent FA assembly and Src activation leading focal adhesion kinase (FAK) activation by 42.6 ± 12.6 sec. Strikingly, the temporal coupling between kinase activation and individual FA assembly reflects the fate of FAs at later stages. The FAs with a tight coupling tend to grow and mature, while the less coupled FAs likely disassemble. During FA disassembly, however, kinase activations lead the disassembly, with FAK being activated earlier than Src. Therefore, by integrating subcellularly targeted FRET biosensors and computational analysis, our study reveals intricate interplays between Src and FAK in regulating the dynamic life of single FAs in cancer cells.

  6. Anisotropic forces from spatially constrained focal adhesions mediate contact guidance directed cell migration.

    PubMed

    Ray, Arja; Lee, Oscar; Win, Zaw; Edwards, Rachel M; Alford, Patrick W; Kim, Deok-Ho; Provenzano, Paolo P

    2017-04-12

    Directed migration by contact guidance is a poorly understood yet vital phenomenon, particularly for carcinoma cell invasion on aligned collagen fibres. We demonstrate that for single cells, aligned architectures providing contact guidance cues induce constrained focal adhesion maturation and associated F-actin alignment, consequently orchestrating anisotropic traction stresses that drive cell orientation and directional migration. Consistent with this understanding, relaxing spatial constraints to adhesion maturation either through reduction in substrate alignment density or reduction in adhesion size diminishes the contact guidance response. While such interactions allow single mesenchymal-like cells to spontaneously 'sense' and follow topographic alignment, intercellular interactions within epithelial clusters temper anisotropic cell-substratum forces, resulting in substantially lower directional response. Overall, these results point to the control of contact guidance by a balance of cell-substratum and cell-cell interactions, modulated by cell phenotype-specific cytoskeletal arrangements. Thus, our findings elucidate how phenotypically diverse cells perceive ECM alignment at the molecular level.

  7. TRPM4 Is a Novel Component of the Adhesome Required for Focal Adhesion Disassembly, Migration and Contractility

    PubMed Central

    Cáceres, Mónica; Ortiz, Liliana; Recabarren, Tatiana; Romero, Anibal; Colombo, Alicia; Leiva-Salcedo, Elías; Varela, Diego; Rivas, José; Silva, Ian; Morales, Diego; Campusano, Camilo; Almarza, Oscar; Simon, Felipe; Toledo, Hector; Park, Kang-Sik; Trimmer, James S.; Cerda, Oscar

    2015-01-01

    Cellular migration and contractility are fundamental processes that are regulated by a variety of concerted mechanisms such as cytoskeleton rearrangements, focal adhesion turnover, and Ca2+ oscillations. TRPM4 is a Ca2+-activated non-selective cationic channel (Ca2+-NSCC) that conducts monovalent but not divalent cations. Here, we used a mass spectrometry-based proteomics approach to identify putative TRPM4-associated proteins. Interestingly, the largest group of these proteins has actin cytoskeleton-related functions, and among these nine are specifically annotated as focal adhesion-related proteins. Consistent with these results, we found that TRPM4 localizes to focal adhesions in cells from different cellular lineages. We show that suppression of TRPM4 in MEFs impacts turnover of focal adhesions, serum-induced Ca2+ influx, focal adhesion kinase (FAK) and Rac activities, and results in reduced cellular spreading, migration and contractile behavior. Finally, we demonstrate that the inhibition of TRPM4 activity alters cellular contractility in vivo, affecting cutaneous wound healing. Together, these findings provide the first evidence, to our knowledge, for a TRP channel specifically localized to focal adhesions, where it performs a central role in modulating cellular migration and contractility. PMID:26110647

  8. TRPM4 Is a Novel Component of the Adhesome Required for Focal Adhesion Disassembly, Migration and Contractility.

    PubMed

    Cáceres, Mónica; Ortiz, Liliana; Recabarren, Tatiana; Romero, Anibal; Colombo, Alicia; Leiva-Salcedo, Elías; Varela, Diego; Rivas, José; Silva, Ian; Morales, Diego; Campusano, Camilo; Almarza, Oscar; Simon, Felipe; Toledo, Hector; Park, Kang-Sik; Trimmer, James S; Cerda, Oscar

    2015-01-01

    Cellular migration and contractility are fundamental processes that are regulated by a variety of concerted mechanisms such as cytoskeleton rearrangements, focal adhesion turnover, and Ca2+ oscillations. TRPM4 is a Ca2+-activated non-selective cationic channel (Ca2+-NSCC) that conducts monovalent but not divalent cations. Here, we used a mass spectrometry-based proteomics approach to identify putative TRPM4-associated proteins. Interestingly, the largest group of these proteins has actin cytoskeleton-related functions, and among these nine are specifically annotated as focal adhesion-related proteins. Consistent with these results, we found that TRPM4 localizes to focal adhesions in cells from different cellular lineages. We show that suppression of TRPM4 in MEFs impacts turnover of focal adhesions, serum-induced Ca2+ influx, focal adhesion kinase (FAK) and Rac activities, and results in reduced cellular spreading, migration and contractile behavior. Finally, we demonstrate that the inhibition of TRPM4 activity alters cellular contractility in vivo, affecting cutaneous wound healing. Together, these findings provide the first evidence, to our knowledge, for a TRP channel specifically localized to focal adhesions, where it performs a central role in modulating cellular migration and contractility.

  9. Regulation of tensin-promoted cell migration by its focal adhesion binding and Src homology domain 2.

    PubMed Central

    Chen, Huaiyang; Lo, Su Hao

    2003-01-01

    Tensin1 is an actin- and phosphotyrosine-binding protein that localizes to focal adhesions. Recently, we have shown that both tensin1 and a new family member, tensin2, promote cell migration [Chen, Duncan, Bozorgchami and Lo (2002) Proc. Natl. Acad. Sci. U.S.A. 99, 733-738]. Since localization of proteins to particular intracellular compartments often regulates their functions, and Src homology domain 2 may mediate signals related to cell migration, we hypothesize that tensin-mediated cell migration is regulated by the focal adhesion localization and the Src homology domain 2 of tensin. To test this hypothesis, we have analysed the effects of a series of tensin1 mutants on cell migration. Our results have shown that (1) tensin1 contains two focal adhesion-binding sites, (2) the wild-type tensin1 significantly promotes cell migration, (3) mutants with one focal adhesion-binding site do not promote cell migration, (4) the non-focal adhesion localized mutant suppresses cell migration and (5) the mutant that is not able to bind to phosphotyrosine-containing proteins has no effect on cell migration. These results have indicated that focal adhesion localization of tensin1 and the phosphotyrosine-binding activity are two critical factors in regulating tensin-mediated cell migration. PMID:12495434

  10. Talin tension sensor reveals novel features of focal adhesion force transmission and mechanosensitivity

    PubMed Central

    Kumar, Abhishek; Ouyang, Mingxing; Van den Dries, Koen; McGhee, Ewan James; Tanaka, Keiichiro; Anderson, Marie D.; Groisman, Alexander; Goult, Benjamin T.; Anderson, Kurt I.

    2016-01-01

    Integrin-dependent adhesions are mechanosensitive structures in which talin mediates a linkage to actin filaments either directly or indirectly by recruiting vinculin. Here, we report the development and validation of a talin tension sensor. We find that talin in focal adhesions is under tension, which is higher in peripheral than central adhesions. Tension on talin is increased by vinculin and depends mainly on actin-binding site 2 (ABS2) within the middle of the rod domain, rather than ABS3 at the far C terminus. Unlike vinculin, talin is under lower tension on soft substrates. The difference between central and peripheral adhesions requires ABS3 but not vinculin or ABS2. However, differential stiffness sensing by talin requires ABS2 but not vinculin or ABS3. These results indicate that central versus peripheral adhesions must be organized and regulated differently, and that ABS2 and ABS3 have distinct functions in spatial variations and stiffness sensing. Overall, these results shed new light on talin function and constrain models for cellular mechanosensing. PMID:27161398

  11. Liprin-α1 and ERC1 control cell edge dynamics by promoting focal adhesion turnover

    PubMed Central

    Astro, Veronica; Tonoli, Diletta; Chiaretti, Sara; Badanai, Sabrina; Sala, Kristyna; Zerial, Marino; de Curtis, Ivan

    2016-01-01

    Liprin-α1 and ERC1 are interacting scaffold proteins regulating the motility of normal and tumor cells. They act as part of plasma membrane-associated platforms at the edge of motile cells to promote protrusion by largely unknown mechanisms. Here we identify an amino-terminal region of the liprin-α1 protein (liprin-N) that is sufficient and necessary for the interaction with other liprin-α1 molecules. Similar to liprin-α1 or ERC1 silencing, expression of the liprin-N negatively affects tumor cell motility and extracellular matrix invasion, acting as a dominant negative by interacting with endogenous liprin-α1 and causing the displacement of the endogenous ERC1 protein from the cell edge. Interfering with the localization of ERC1 at the cell edge inhibits the disassembly of focal adhesions, impairing protrusion. Liprin-α1 and ERC1 proteins colocalize with active integrin β1 clusters distinct from those colocalizing with cytoplasmic focal adhesion proteins, and influence the localization of peripheral Rab7-positive endosomes. We propose that liprin-α1 and ERC1 promote protrusion by displacing cytoplasmic adhesion components to favour active integrin internalization into Rab7-positive endosomes. PMID:27659488

  12. Liprin-α1 and ERC1 control cell edge dynamics by promoting focal adhesion turnover.

    PubMed

    Astro, Veronica; Tonoli, Diletta; Chiaretti, Sara; Badanai, Sabrina; Sala, Kristyna; Zerial, Marino; de Curtis, Ivan

    2016-09-23

    Liprin-α1 and ERC1 are interacting scaffold proteins regulating the motility of normal and tumor cells. They act as part of plasma membrane-associated platforms at the edge of motile cells to promote protrusion by largely unknown mechanisms. Here we identify an amino-terminal region of the liprin-α1 protein (liprin-N) that is sufficient and necessary for the interaction with other liprin-α1 molecules. Similar to liprin-α1 or ERC1 silencing, expression of the liprin-N negatively affects tumor cell motility and extracellular matrix invasion, acting as a dominant negative by interacting with endogenous liprin-α1 and causing the displacement of the endogenous ERC1 protein from the cell edge. Interfering with the localization of ERC1 at the cell edge inhibits the disassembly of focal adhesions, impairing protrusion. Liprin-α1 and ERC1 proteins colocalize with active integrin β1 clusters distinct from those colocalizing with cytoplasmic focal adhesion proteins, and influence the localization of peripheral Rab7-positive endosomes. We propose that liprin-α1 and ERC1 promote protrusion by displacing cytoplasmic adhesion components to favour active integrin internalization into Rab7-positive endosomes.

  13. Hormonal regulation of focal adhesions in bovine adrenocortical cells: induction of paxillin dephosphorylation by adrenocorticotropic hormone.

    PubMed Central

    Vilgrain, I; Chinn, A; Gaillard, I; Chambaz, E M; Feige, J J

    1998-01-01

    A study of bovine adrenocortical cell shape on adrenocorticotropic hormone (ACTH) challenge showed that the cells round up and develop arborized processes. This effect was found to be (1) specific for ACTH because angiotensin II and basic fibroblast growth factor have no effect; (2) mediated by a cAMP-dependent pathway because forskolin reproduces the effect of the hormone; (3) inhibited by sodium orthovanadate, a phosphotyrosine phosphatase inhibitor, but unchanged by okadaic acid, a serine/threonine phosphatase inhibitor; and (4) correlated with a complete loss of focal adhesions. Biochemical studies of the focal-adhesion-associated proteins showed that pp125fak, vinculin (110 kDa) and paxillin (70 kDa) were detected in the Triton X-100-insoluble fraction from adrenocortical cells. During cell adhesion on fibronectin as substratum, two major phosphotyrosine-containing proteins of molecular masses 125 and 68 kDa were immunodetected in the same fraction. A dramatic decrease in the extent of tyrosine phosphorylation of these proteins was observed within 60 min after treatment with ACTH. No change in pp125fak tyrosine phosphorylation nor in Src activity was detected. In contrast, paxillin was found to be tyrosine-dephosphorylated in a time-dependent manner in ACTH-treated cells. Sodium orthovanadate completely prevented the effect of ACTH. These observations suggest a possible role for phosphotyrosine phosphatases in hormone-dependent cellular regulatory processes. PMID:9601084

  14. Hormonal regulation of focal adhesions in bovine adrenocortical cells: induction of paxillin dephosphorylation by adrenocorticotropic hormone.

    PubMed

    Vilgrain, I; Chinn, A; Gaillard, I; Chambaz, E M; Feige, J J

    1998-06-01

    A study of bovine adrenocortical cell shape on adrenocorticotropic hormone (ACTH) challenge showed that the cells round up and develop arborized processes. This effect was found to be (1) specific for ACTH because angiotensin II and basic fibroblast growth factor have no effect; (2) mediated by a cAMP-dependent pathway because forskolin reproduces the effect of the hormone; (3) inhibited by sodium orthovanadate, a phosphotyrosine phosphatase inhibitor, but unchanged by okadaic acid, a serine/threonine phosphatase inhibitor; and (4) correlated with a complete loss of focal adhesions. Biochemical studies of the focal-adhesion-associated proteins showed that pp125fak, vinculin (110 kDa) and paxillin (70 kDa) were detected in the Triton X-100-insoluble fraction from adrenocortical cells. During cell adhesion on fibronectin as substratum, two major phosphotyrosine-containing proteins of molecular masses 125 and 68 kDa were immunodetected in the same fraction. A dramatic decrease in the extent of tyrosine phosphorylation of these proteins was observed within 60 min after treatment with ACTH. No change in pp125fak tyrosine phosphorylation nor in Src activity was detected. In contrast, paxillin was found to be tyrosine-dephosphorylated in a time-dependent manner in ACTH-treated cells. Sodium orthovanadate completely prevented the effect of ACTH. These observations suggest a possible role for phosphotyrosine phosphatases in hormone-dependent cellular regulatory processes.

  15. p38 mitogen-activated protein kinase interacts with vinculin at focal adhesions during fatty acid-stimulated cell adhesion.

    PubMed

    George, Margaret D; Wine, Robert N; Lackford, Brad; Kissling, Grace E; Akiyama, Steven K; Olden, Kenneth; Roberts, John D

    2013-12-01

    Arachidonic acid stimulates cell adhesion by activating α2β1 integrins in a process that depends on protein kinases, including p38 mitogen activated protein kinase. Here, we describe the interaction of cytoskeletal components with key signaling molecules that contribute to the spreading of, and morphological changes in, arachidonic acid-treated MDA-MB-435 human breast carcinoma cells. Arachidonic acid-treated cells showed increased attachment and spreading on collagen type IV, as measured by electric cell-substrate impedance sensing. Fatty acid-treated cells displayed short cortical actin filaments associated with an increased number of β1 integrin-containing pseudopodia, whereas untreated cells displayed elongated stress fibers and fewer clusters of β1 integrins. Confocal microscopy of arachidonic acid-treated cells showed that vinculin and phospho-p38 both appeared enriched in pseudopodia and at the tips of actin filaments, and fluorescence ratio imaging indicated the increase was specific for the phospho-(active) form of p38. Immunoprecipitates of phospho-p38 from extracts of arachidonic acid-treated cells contained vinculin, and GST-vinculin fusion proteins carrying the central region of vinculin bound phospho-p38, whereas fusion proteins expressing the terminal portions of vinculin did not. These data suggest that phospho-p38 associates with particular domains on critical focal adhesion proteins that are involved in tumor cell adhesion and spreading, and that this association can be regulated by factors in the tumor microenvironment.

  16. p38 mitogen-activated protein kinase interacts with vinculin at focal adhesions during fatty acid-stimulated cell adhesion

    PubMed Central

    George, Margaret D.; Wine, Robert N.; Lackford, Brad; Kissling, Grace E.; Akiyama, Steven K.; Olden, Kenneth; Roberts, John D.

    2014-01-01

    Arachidonic acid stimulates cell adhesion by activating α2β1 integrins in a process that depends on protein kinases, including p38 mitogen activated protein kinase. Here, we describe the interaction of cytoskeletal components with key signaling molecules that contribute to spreading of, and morphological changes in, arachidonic acid-treated MDA-MB-435 human breast carcinoma cells. Arachidonic acid-treated cells showed increased attachment and spreading on collagen type IV as measured by electric cell-substrate impedance sensing. Fatty acid-treated cells displayed short cortical actin filaments associated with an increased number of β1 integrin-containing pseudopodia whereas untreated cells displayed elongated stress fibers and fewer clusters of β1 integrins. Confocal microscopy of arachidonic acid-treated cells showed that vinculin and phospho-p38 both appeared enriched in pseudopodia and at the tips of actin filaments, and fluorescence ratio imaging indicated the increase was specific for the phospho-(active) form of p38. Immunoprecipitates of phospho-p38 from extracts of arachidonic acid-treated cells contained vinculin, and GST-vinculin fusion proteins carrying the central region of vinculin bound phospho-p38, whereas fusion proteins expressing the terminal portions of vinculin did not. These data suggest that phospho-p38 associates with particular domains on critical focal adhesion proteins that are involved in tumor cell adhesion and spreading and that this association can be regulated by factors in the tumor microenvironment. PMID:24219282

  17. Structural Basis for Paxillin Binding and Focal Adhesion Targeting of β-Parvin*

    PubMed Central

    Stiegler, Amy L.; Draheim, Kyle M.; Li, Xiaofeng; Chayen, Naomi E.; Calderwood, David A.; Boggon, Titus J.

    2012-01-01

    β-Parvin is a cytoplasmic adaptor protein that localizes to focal adhesions where it interacts with integrin-linked kinase and is involved in linking integrin receptors to the cytoskeleton. It has been reported that despite high sequence similarity to α-parvin, β-parvin does not bind paxillin, suggesting distinct interactions and cellular functions for these two closely related parvins. Here, we reveal that β-parvin binds directly and specifically to leucine-aspartic acid repeat (LD) motifs in paxillin via its C-terminal calponin homology (CH2) domain. We present the co-crystal structure of β-parvin CH2 domain in complex with paxillin LD1 motif to 2.9 Å resolution and find that the interaction is similar to that previously observed between α-parvin and paxillin LD1. We also present crystal structures of unbound β-parvin CH2 domain at 2.1 Å and 2.0 Å resolution that show significant conformational flexibility in the N-terminal α-helix, suggesting an induced fit upon paxillin binding. We find that β-parvin has specificity for the LD1, LD2, and LD4 motifs of paxillin, with KD values determined to 27, 42, and 73 μm, respectively, by surface plasmon resonance. Furthermore, we show that proper localization of β-parvin to focal adhesions requires both the paxillin and integrin-linked kinase binding sites and that paxillin is important for early targeting of β-parvin. These studies provide the first molecular details of β-parvin binding to paxillin and help define the requirements for β-parvin localization to focal adhesions. PMID:22869380

  18. Hyaluronan Stabilizes Focal Adhesions, Filopodia, and the Proliferative Phenotype in Esophageal Squamous Carcinoma Cells*

    PubMed Central

    Twarock, Sören; Tammi, Markku I.; Savani, Rashmin C.; Fischer, Jens W.

    2010-01-01

    Hyaluronan (HA) is a polysaccharide component in the parenchyma and stroma of human esophageal squamous cell carcinoma (ESCC). Clinically, esophageal cancer represents a highly aggressive tumor type with poor prognosis resulting in a 5-year survival rate of 5%. The aim of the present study was the detailed analysis of the role of HA synthesis for ESCC phenotype in vitro using the ESCC cell line OSC1. In OSC1 cells, pericellular HA-matrix surrounding extended actin-dependent filopodia was detected. The small molecule inhibitor of HA synthesis, 4-methylumbelliferone (4-MU, 0.3 mm) caused loss of these filopodia and focal adhesions and inhibited proliferation and migration. In search of the underlying mechanism cleavage of focal adhesion kinase (FAK) was detected by immunoblotting. In addition, displacing HA by an HA-binding peptide (Pep-1, 500 μg/ml) and digestion of pericellular HA by hyaluronidase resulted in cleavage of focal adhesions. Furthermore, real-time reverse transcription PCR revealed that HA synthase 3 (HAS3) > HAS2 are the predominant HA-synthases in OSC1. Lentiviral transduction with shHAS3, and to a lesser extent with shHAS2, reduced intact FAK protein and filopodia as well as proliferation and migration. Furthermore, down-regulation by lentiviral shRNA of RHAMM (receptor of HA-mediated motility) but not CD44 induced loss of filopodia and caused FAK cleavage. In contrast, knockdown of both HA receptors inhibited proliferation and migration of OSC1. In conclusion, HA synthesis and, in turn, RHAMM and CD44 signaling promoted an activated phenotype of OSC1. Because RHAMM appears to support both filopodia, FAK, and the proliferative and migratory phenotype, it may be promising to explore RHAMM as a potential therapeutic target in esophageal cancer. PMID:20463012

  19. Secretagogin affects insulin secretion in pancreatic β-cells by regulating actin dynamics and focal adhesion

    PubMed Central

    Yang, Seo-Yun; Lee, Jae-Jin; Lee, Jin-Hee; Lee, Kyungeun; Oh, Seung Hoon; Lim, Yu-Mi; Lee, Myung-Shik; Lee, Kong-Joo

    2016-01-01

    Secretagogin (SCGN), a Ca2+-binding protein having six EF-hands, is selectively expressed in pancreatic β-cells and neuroendocrine cells. Previous studies suggested that SCGN enhances insulin secretion by functioning as a Ca2+-sensor protein, but the underlying mechanism has not been elucidated. The present study explored the mechanism by which SCGN enhances glucose-induced insulin secretion in NIT-1 insulinoma cells. To determine whether SCGN influences the first or second phase of insulin secretion, we examined how SCGN affects the kinetics of insulin secretion in NIT-1 cells. We found that silencing SCGN suppressed the second phase of insulin secretion induced by glucose and H2O2, but not the first phase induced by KCl stimulation. Recruitment of insulin granules in the second phase of insulin secretion was significantly impaired by knocking down SCGN in NIT-1 cells. In addition, we found that SCGN interacts with the actin cytoskeleton in the plasma membrane and regulates actin remodelling in a glucose-dependent manner. Since actin dynamics are known to regulate focal adhesion, a critical step in the second phase of insulin secretion, we examined the effect of silencing SCGN on focal adhesion molecules, including FAK (focal adhesion kinase) and paxillin, and the cell survival molecules ERK1/2 (extracellular-signal-regulated kinase 1/2) and Akt. We found that glucose- and H2O2-induced activation of FAK, paxillin, ERK1/2 and Akt was significantly blocked by silencing SCGN. We conclude that SCGN controls glucose-stimulated insulin secretion and thus may be useful in the therapy of Type 2 diabetes. PMID:27095850

  20. Nanoengineered surfaces for focal adhesion guidance trigger mesenchymal stem cell self-organization and tenogenesis.

    PubMed

    Iannone, Maria; Ventre, Maurizio; Formisano, Lucia; Casalino, Laura; Patriarca, Eduardo J; Netti, Paolo A

    2015-03-11

    The initial conditions for morphogenesis trigger a cascade of events that ultimately dictate structure and functions of tissues and organs. Here we report that surface nanopatterning can control the initial assembly of focal adhesions, hence guiding human mesenchymal stem cells (hMSCs) through the process of self-organization and differentiation. This process self-sustains, leading to the development of macroscopic tissues with molecular profiles and microarchitecture reminiscent of embryonic tendons. Therefore, material surfaces can be in principle engineered to set off the hMSC program toward tissuegenesis in a deterministic manner by providing adequate sets of initial environmental conditions.

  1. Sensing substrate rigidity by mechanosensitive ion channels with stress fibers and focal adhesions.

    PubMed

    Kobayashi, Takeshi; Sokabe, Masahiro

    2010-10-01

    Cell motility, spreading, proliferation and differentiation are critically influenced by substrate rigidity. To sense substrate rigidity, cells apply traction forces to cell-substrate adhesions via actin stress fibers (SFs) and measure mechanical responses of the substrate. Besides mechanosensitive adaptor proteins, mechanosensitive (MS) channels are involved in the substrate rigidity sensing. MS channels located at or near focal adhesions (FAs) convert the rigidity-dependent stress generated in SF/FA system into the level of cytoplasmic Ca(2+) concentration ([Ca(2+)]cyt) by locally altering their Ca(2+) permeability. Besides by external forces, cells spontaneously generate rigidity-dependent localized [Ca(2+)]cyt increases, implicating MS channels as intrinsic force measurement system. This mechanism may contribute to not only substrate rigidity sensing but also regulation of cell migration.

  2. Enhanced focal adhesion assembly reflects increased mechanosensation and mechanotransduction at maternal-conceptus interface and uterine wall during ovine pregnancy.

    PubMed

    Burghardt, Robert C; Burghardt, James R; Taylor, James D; Reeder, Adele T; Nguen, Bar T; Spencer, Thomas E; Bayless, Kayla J; Johnson, Greg A

    2009-03-01

    The integrity of the fetal-maternal interface is critical for proper fetal nourishment during pregnancy. Integrins are important adhesion molecules present at the interface during implantation; however, in vivo evidence for integrin activation and focal adhesion formation at the maternal-conceptus interface is limited. We hypothesized that focal adhesion assembly in uterine luminal epithelium (LE) and conceptus trophectoderm (Tr) results from integrin binding of extracellular matrix (ECM) at this interface to provide increased tensile forces and signaling to coordinate utero-placental development. An ovine model of unilateral pregnancy was used to evaluate mechanotransduction events leading to focal adhesion assembly at the maternal-conceptus interface and within the uterine wall. Animals were hysterectomized on days 40, 80, or 120 of pregnancy, and uteri immunostained for integrins (ITGAV, ITGA4, ITGA5, ITGB1, ITGB3, and ITGB5), ECM proteins (SPP1, LGALS15, fibronectin (FN), and vitronectin (VTN)), cytoskeletal molecules (ACTN and TLN1), and a signal generator (PTK2). Focal adhesion assembly in myometrium and stroma was also studied to provide a frame of reference for mechanical stretch of the uterine wall. Large focal adhesions containing aggregates of ITGAV, ITGA4, ITGA5, ITGB1, ITGB5, ACTN, and PTK2 were detected in interplacentomal uterine LE and Tr of gravid but not non-gravid uterine horns and increased during pregnancy. SPP1 and LGALS15, but not FN or VTN, were present along LE and Tr interfaces in both uterine horns. These data support the idea that focal adhesion assembly at the maternal-conceptus interface reflects adaptation to increasing forces caused by the growing fetus. Cooperative binding of multiple integrins to SPP1 deposited at the maternal-conceptus interface forms an adhesive mosaic to maintain a tight connection between uterine and placental surfaces along regions of epitheliochorial placentation in sheep.

  3. Deoxycholic acid differentially regulates focal adhesion kinase phosphorylation: role of tyrosine phosphatase ShP2.

    PubMed

    Khare, Sharad; Holgren, Cory; Samarel, Allen M

    2006-12-01

    Environmental factors, including dietary fats, are implicated in colonic carcinogenesis. Dietary fats modulate secondary bile acids including deoxycholic acid (DCA) concentrations in the colon, which are thought to contribute to the nutritional-related component of colon cancer risk. Here we demonstrate, for the first time, that DCA differentially regulated the site-specific phosphorylation of focal adhesion kinase (FAK). DCA decreased adhesion of HCA-7 cells to the substratum and induced dephosphorylation of FAK at tyrosine-576/577 (Tyr-576/577) and Tyr-925. Tyrosine phosphorylation of FAK at Tyr-397 remained unaffected by DCA stimulation. Interestingly, we found that c-Src was constitutively associated with FAK and DCA actually activated Src, despite no change in FAK-397 and an inhibition of FAK-576 phosphorylation. DCA concomitantly and significantly increased association of tyrosine phosphatase ShP2 with FAK. Incubation of immunoprecipitated FAK, in vitro, with glutathione-S-transferase-ShP2 fusion protein resulted in tyrosine dephosphorylation of FAK in a concentration-dependent manner. Antisense oligodeoxynucleotides directed against ShP2 decreased ShP2 protein levels and attenuated DCA-induced FAK dephosphorylation. Inhibition of FAK by adenoviral-mediated overexpression of FAK-related nonkinase and gene silencing of Shp2 both abolished DCA's effect on cell adhesion, thus providing a possible mechanism for inside-out signaling by DCA in colon cancer cells. Our results suggest that DCA differentially regulates focal adhesion complexes and that tyrosine phosphatase ShP2 has a role in DCA signaling.

  4. PDK1 regulates focal adhesion disassembly by modulating endocytosis of αvβ3 integrin.

    PubMed

    di Blasio, Laura; Gagliardi, Paolo Armando; Puliafito, Alberto; Sessa, Roberto; Seano, Giorgio; Bussolino, Federico; Primo, Luca

    2015-03-01

    Non-amoeboid cell migration is characterised by dynamic competition among multiple protrusions to establish new adhesion sites at the cell's leading edge. However, the mechanisms that regulate the decision to disassemble or to grow nascent adhesions are not fully understood. Here we show that, in endothelial cells, 3-phosphoinositide-dependent protein kinase 1 (PDK1) promotes focal adhesion (FA) turnover by controlling endocytosis of integrin αvβ3 in a PI3K-dependent manner. We demonstrate that PDK1 binds and phosphorylates integrin αvβ3. Downregulation of PDK1 increases FA size and slows down their disassembly. This process requires both PDK1 kinase activity and PI3K activation but does not involve Akt. Moreover, PDK1 silencing stabilises FA in membrane protrusions decreasing migration of endothelial cells on vitronectin. These results indicate that modulation of integrin endocytosis by PDK1 hampers endothelial cell adhesion and migration on extracellular matrix, thus unveiling a novel role for this kinase.

  5. Association of the amino-terminal half of c-Src with focal adhesions alters their properties and is regulated by phosphorylation of tyrosine 527.

    PubMed Central

    Kaplan, K B; Bibbins, K B; Swedlow, J R; Arnaud, M; Morgan, D O; Varmus, H E

    1994-01-01

    We have characterized the mechanism by which the subcellular distribution of c-Src is controlled by the phosphorylation of tyrosine 527. Mutation of this tyrosine dramatically redistributes c-Src from endosomal membranes to focal adhesions. Redistribution to focal adhesions occurs independently of kinase activity and cellular transformation. In cells lacking the regulatory kinase (CSK) that phosphorylates tyrosine 527, c-Src is also found predominantly in focal adhesions, confirming that phosphorylation of tyrosine 527 affects the location of c-Src inside the cell. The first 251 amino acids of c-Src are sufficient to allow association with focal adhesions, indicating that at least one signal for positioning c-Src in focal adhesions resides in the amino-terminal half. Point mutations and deletions in the first 251 amino acids of c-Src reveal that association with focal adhesions requires the myristylation site needed for membrane attachment, as well as the SH3 domain. Expression of the amino-terminal region alters both the structural and biochemical properties of focal adhesions. Focal adhesions containing this non-catalytic portion of c-Src are larger and exhibit increased levels of phosphotyrosine staining. Our results suggest that c-Src may regulate focal adhesions and cellular adhesion by a kinase-independent mechanism. Images PMID:7525268

  6. Cross-Phosphorylation and Interaction between Src/FAK and MAPKAP5/PRAK in Early Focal Adhesions Controls Cell Motility

    PubMed Central

    Dwyer, Sheila Figel; Gelman, Irwin H

    2015-01-01

    P38-regulated and activated kinase (PRAK/MAPKAPK5) is a serine/threonine kinase which lies downstream of the p38 and ERK3/4 MAP kinase pathways. PRAK plays diverse roles in the processes of cell growth, nutrient starvation response, programmed cell death, senescence and motility. PRAK has been shown to both promote and inhibit cell motility in different contexts. The pro-motility functions of PRAK are attributed mainly to cytoskeletal rearrangement occurring downstream of its phosphorylated substrate HSP27; however, it was recently shown that PRAK is required for motility in endothelial cells upstream of Focal adhesion kinase (FAK). Along with Src, FAK functions as a mediator of motility signaling through the phosphorylation of substrates in focal adhesions. Here, we show that PRAK, initially identified as a FAK substrate in an in situ/ kinase overlay assay, is a Src substrate, the phosphorylation of which directs PRAK to focal adhesions. Focal adhesion localization of PRAK was not found to affect cell motility, however transient over expression of PRAK inhibited motility in HeLa cells. This effect requires PRAK kinase activity and proceeds through an impairment of FAK activation via phosphorylation on Y861. Our studies demonstrate for the first time that PRAK is regulated by tyrosine phosphorylation, localizes to focal adhesions, and interacts physically with and can phosphorylate FAK/Src. Further we provide a novel mechanism for the inhibition of motility downstream of PRAK. PMID:26042227

  7. Serine palmitoyltransferase subunit 1 is present in the endoplasmic reticulum, nucleus and focal adhesions, and functions in cell morphology

    PubMed Central

    Wei, Jia; Yerokun, Tokunbo; Leipelt, Martina; Haynes, Chris A.; Radhakrishna, Harish; Momin, Amin; Kelly, Samuel; Park, Hyejung; Wang, Elaine; Carton, Jill M.; Uhlinger, David J.; Merrill, Alfred H.

    2009-01-01

    Serine palmitoyltransferase (SPT) has been localized to the endoplasmic reticulum (ER) by subcellular fractionation and enzymatic assays, and fluorescence microscopy of epitope-tagged SPT; however, our studies have suggested that SPT subunit 1 might be present also in focal adhesions and the nucleus. These additional locations have been confirmed by confocal microscopy using HEK293 and HeLa cells, and for focal adhesions by the demonstration that SPT1 co-immunoprecipitates with vinculin, a focal adhesion marker protein. The focal adhesion localization of SPT1 is associated with cell morphology, and possibly cell migration, because it is seen in most cells before they reach confluence but disappears when then become confluent, and is restored by a standard scratch-wound healing assay. Conversely, elimination of SPT1 using SPTLC1 siRNA causes cell rounding. Thus, in addition to its “traditional” localization in the ER for de novo sphingolipid biosynthesis, SPT1 is present in other cellular compartments, including focal adhesions where it is associated with cell morphology. PMID:19362163

  8. Dynamics and mechanism of p130Cas localization to focal adhesions.

    PubMed

    Donato, Dominique M; Ryzhova, Larisa M; Meenderink, Leslie M; Kaverina, Irina; Hanks, Steven K

    2010-07-02

    The docking protein p130Cas is a major Src substrate involved in integrin signaling and mechanotransduction. Tyrosine phosphorylation of p130Cas in focal adhesions (FAs) has been linked to enhanced cell migration, invasion, proliferation, and survival. However, the mechanism of p130Cas targeting to FAs is uncertain, and dynamic aspects of its localization have not been explored. Using live cell microscopy, we show that fluorophore-tagged p130Cas is a component of FAs throughout the FA assembly and disassembly stages, although it resides transiently in FAs with a high mobile fraction. Deletion of either the N-terminal Src homology 3 (SH3) domain or the Cas-family C-terminal homology (CCH) domain significantly impaired p130Cas FA localization, and deletion of both domains resulted in full exclusion. Focal adhesion kinase was implicated in the FA targeting function of the p130Cas SH3 domain. Consistent with their roles in FA targeting, both the SH3 and CCH domains were found necessary for p130Cas to fully undergo tyrosine phosphorylation and promote cell migration. By revealing the capacity of p130Cas to function in FAs throughout their lifetime, clarifying FA targeting mechanism, and demonstrating the functional importance of the highly conserved CCH domain, our results advance the understanding of an important aspect of integrin signaling.

  9. Crystal Structures of Free and Ligand-Bound Focal Adhesion Targeting Domain of Pyk2

    SciTech Connect

    Lulo, J.; Yuzawa, S; Schlessinger, J

    2009-01-01

    Focal adhesion targeting (FAT) domains target the non-receptor tyrosine kinases FAK and Pyk2 to cellular focal adhesion areas, where the signaling molecule paxillin is also located. Here, we report the crystal structures of the Pyk2 FAT domain alone or in complex with paxillin LD4 peptides. The overall structure of Pyk2-FAT is an antiparallel four-helix bundle with an up-down, up-down, right-handed topology. In the LD4-bound FAT complex, two paxillin LD4 peptides interact with two opposite sides of Pyk2-FAT, at the surfaces of the a1a4 and a2a3 helices of each FAT molecule. We also demonstrate that, while paxillin is phosphorylated by Pyk2, complex formation between Pyk2 and paxillin does not depend on Pyk2 tyrosine kinase activity. These experiments reveal the structural basis underlying the selectivity of paxillin LD4 binding to the Pyk2 FAT domain and provide insights about the molecular details which influence the different behavior of these two closely-related kinases.

  10. Signal transduction in endothelial cells by the angiogenesis inhibitor histidine-rich glycoprotein targets focal adhesions

    SciTech Connect

    Lee, Chunsik; Dixelius, Johan; Thulin, Asa; Kawamura, Harukiyo; Claesson-Welsh, Lena; Olsson, Anna-Karin . E-mail: Anna-Karin.Olsson@genpat.uu.se

    2006-08-01

    Histidine-rich glycoprotein (HRGP) is an abundant heparin-binding plasma protein. We have shown that a fragment released from the central histidine/proline-rich (His/Pro-rich) domain of HRGP blocks endothelial cell migration in vitro and vascularization and growth of murine fibrosarcoma in vivo. The minimal active HRGP domain exerting the anti-angiogenic effect was recently narrowed down to a 35 amino acid peptide, HRGP330, derived from the His/Pro-rich domain of HRGP. By use of a signal transduction antibody array representing 400 different signal transduction molecules, we now show that HRGP and the synthetic peptide HRGP330 specifically induce tyrosine phosphorylation of focal adhesion kinase and its downstream substrate paxillin in endothelial cells. HRGP/HRGP330 treatment of endothelial cells induced disruption of actin stress fibers, a process reversed by treatment of cells with the FAK inhibitor geldanamycin. In addition, VEGF-mediated endothelial cell tubular morphogenesis in a three-dimensional collagen matrix was inhibited by HRGP and HRGP330. In contrast, VEGF-induced proliferation was not affected by HRGP or HRGP330, demonstrating the central role of cell migration during tube formation. In conclusion, our data show that HRGP targets focal adhesions in endothelial cells, thereby disrupting the cytoskeletal organization and the ability of endothelial cells to assemble into vessel structures.

  11. Effects of the plasmid-encoded toxin of enteroaggregative Escherichia coli on focal adhesion complexes

    PubMed Central

    Cappello, Renato E; Estrada-Gutierrez, Guadalupe; Irles, Claudine; Giono-Cerezo, Silvia; Bloch, Robert J; Nataro, James P

    2011-01-01

    Enteroaggregative Escherichia coli (EAEC) is an emerging diarrheal pathogen. Many EAEC strains produce the plasmid encoded toxin (Pet), which elicits cytotoxic effects on human intestinal tissue. Pet-intoxicated HEp-2 cells exhibit rounding and detachment from the substratum, accompanied by loss of F-actin stress fibers and condensation of the spectrin-containing membrane cytoskeleton. Although studies suggest that Pet directly cleaves spectrin, it is not known if this is the essential mode of action of the toxin. In addition, the effects of Pet on cytoskeletal elements other than actin and spectrin have not been reported. Here, we demonstrate by immunofluorescence that upon Pet intoxication, HEp-2 and HT29 cells lose focal adhesion complexes (FAC), a process that includes redistribution of focal adhesion kinase (FAK), α-actinin, paxillin, vinculin, F-actin, and spectrin itself. This redistribution was coupled with depletion of phosphotyrosine labeling at FACs. Immunoblotting and immunoprecipitation experiments revealed that FAK was tyrosine dephosphorylated, prior to the redistribution of FAK and spectrin. Moreover, phosphatase inhibition blocked cell retraction, suggesting that tyrosine dephosphorylation is an event that precedes FAK cleavage. Finally, we show that in vitro tyrosine-dephophorylated FAK was susceptible to Pet cleavage. These data suggest that mechanisms other than spectrin redistribution occur during Pet intoxication. PMID:21205005

  12. Vinculin-p130Cas interaction is critical for focal adhesion dynamics and mechano-transduction.

    PubMed

    Goldmann, Wolfgang H

    2014-03-01

    Adherent cells, when mechanically stressed, show a wide range of responses including large-scale changes in their mechanical behaviour and gene expression pattern. This is in part facilitated by activating the focal adhesion (FA) protein p130Cas through force-induced conformational changes that lead to the phosphorylation by src family kinases. Janostiak et al. [Janostiak et al. Cell Mol Life Sci (2013) DOI 10.1007/s00018-013-1450-x] have reported that the phosphorylation site Y12 on the SH3 domain of p130Cas modulates the binding with vinculin, a prominent mechano-coupling protein in FAs. Tension changes in FAs (due to the anchorage of the SH3 domain and C-terminal) bring about an extension of the substrate domain of p130Cas by unmasking the phosphorylation sites. These observations demonstrate that vinculin is an important modulator of the p130Cas-mediated mechano-transduction pathway in cells. The central aim should be now to test that vinculin is critical for p130Cas incorporation into the focal adhesion complex and for transmitting forces to the p130Cas molecule.

  13. The role of focal adhesion kinase in the regulation of cellular mechanical properties

    NASA Astrophysics Data System (ADS)

    Mierke, Claudia Tanja

    2013-12-01

    The regulation of mechanical properties is necessary for cell invasion into connective tissue or intra- and extravasation through the endothelium of blood or lymph vessels. Cell invasion is important for the regulation of many healthy processes such as immune response reactions and wound healing. In addition, cell invasion plays a role in disease-related processes such as tumor metastasis and autoimmune responses. Until now the role of focal adhesion kinase (FAK) in regulating mechanical properties of cells and its impact on cell invasion efficiency is still not well known. Thus, this review focuses on mechanical properties regulated by FAK in comparison to the mechano-regulating protein vinculin. Moreover, it points out the connection between cancer cell invasion and metastasis and FAK by showing that FAK regulates cellular mechanical properties required for cellular motility. Furthermore, it sheds light on the indirect interaction of FAK with vinculin by binding to paxillin, which then impairs the binding of paxillin to vinculin. In addition, this review emphasizes whether FAK fulfills regulatory functions similar to vinculin. In particular, it discusses the differences and the similarities between FAK and vinculin in regulating the biomechanical properties of cells. Finally, this paper highlights that both focal adhesion proteins, vinculin and FAK, synergize their functions to regulate the mechanical properties of cells such as stiffness and contractile forces. Subsequently, these mechanical properties determine cellular invasiveness into tissues and provide a source sink for future drug developments to inhibit excessive cell invasion and hence, metastases formation.

  14. Proteomics study reveals that the dysregulation of focal adhesion and ribosome contribute to early pregnancy loss

    PubMed Central

    Xin, Lingli; Xu, Benhong; Ma, Li; Hou, Qingxiang; Ye, Mei; Meng, Shu; Ge, Wei

    2016-01-01

    Purpose Early pregnancy loss (EPL) affects 50–70% pregnant women in first trimester. The precise molecular mechanisms underlying EPL are far from being fully understood. Therefore, we aim to identify the molecular signaling pathways relating to EPL. Experimental design We performed proteomics and bioinformatics analysis of the placental villi in women who have undergone EPL and in normal pregnant women. The proteomics data were validated by Western blot analysis. Results We identified a total of 5952 proteins in placental villi, of which 588 proteins were differentially expressed in the EPL women. Bioinformatics analysis revealed that these differentially expressed proteins participated in a variety of signaling pathways, including the focal adhesion pathway and ribosome pathway. Moreover, results of the Western blot confirmed that Desmin, Lamin A/C, MMP‐9, and histone H4 were upregulated in EPL and the Lamin C/ Lamin A ratio decreased obviously in EPL. These proteins could be associated with the pathophysiology of EPL. The data have been deposited to the ProteomeXchange with identifier PXD002391. Conclusion and clinical relevance Our study demonstrated that the focal adhesion pathway and ribosome pathway are involved in EPL, and these findings might contribute to unveil the pathophysiology of EPL. PMID:26947931

  15. Focal adhesion kinase regulation in stem cell alignment and spreading on nanofibers.

    PubMed

    Andalib, Mohammad Nahid; Lee, Jeong Soon; Ha, Ligyeom; Dzenis, Yuris; Lim, Jung Yul

    2016-05-13

    While electrospun nanofibers have demonstrated the potential for novel tissue engineering scaffolds, very little is known about the molecular mechanism of how cells sense and adapt to nanofibers. Here, we revealed the role of focal adhesion kinase (FAK), one of the key molecular sensors in the focal adhesion complex, in regulating mesenchymal stem cell (MSC) shaping on nanofibers. We produced uniaxially aligned and randomly distributed nanofibers from poly(l-lactic acid) to have the same diameters (about 130 nm) and evaluated MSC behavior on these nanofibers comparing with that on flat PLLA control. C3H10T1/2 murine MSCs exhibited upregulations in FAK expression and phosphorylation (pY397) on nanofibrous cultures as assessed by immunoblotting, and this trend was even greater on aligned nanofibers. MSCs showed significantly elongated and well-spread morphologies on aligned and random nanofibers, respectively. In the presence of FAK silencing via small hairpin RNA (shRNA), cell elongation length in the aligned nanofiber direction (cell major axis length) was significantly decreased, while cells still showed preferred orientation along the aligned nanofibers. On random nanofibers, MSCs with FAK-shRNA showed impaired cell spreading resulting in smaller cell area and higher circularity. Our study provides new data on how MSCs shape their morphologies on aligned and random nanofibrous cultures potentially via FAK-mediated mechanism. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Selected Contribution: Skeletal muscle focal adhesion kinase, paxillin, and serum response factor are loading dependent

    NASA Technical Reports Server (NTRS)

    Gordon, S. E.; Fluck, M.; Booth, F. W.

    2001-01-01

    This investigation examined the effect of mechanical loading state on focal adhesion kinase (FAK), paxillin, and serum response factor (SRF) in rat skeletal muscle. We found that FAK concentration and tyrosine phosphorylation, paxillin concentration, and SRF concentration are all lower in the lesser load-bearing fast-twitch plantaris and gastrocnemius muscles compared with the greater load-bearing slow-twitch soleus muscle. Of these three muscles, 7 days of mechanical unloading via tail suspension elicited a decrease in FAK tyrosine phosphorylation only in the soleus muscle and decreases in FAK and paxillin concentrations only in the plantaris and gastrocnemius muscles. Unloading decreased SRF concentration in all three muscles. Mechanical overloading (via bilateral gastrocnemius ablation) for 1 or 8 days increased FAK and paxillin concentrations in the soleus and plantaris muscles. Additionally, whereas FAK tyrosine phosphorylation and SRF concentration were increased by < or =1 day of overloading in the soleus muscle, these increases did not occur until somewhere between 1 and 8 days of overloading in the plantaris muscle. These data indicate that, in the skeletal muscles of rats, the focal adhesion complex proteins FAK and paxillin and the transcription factor SRF are generally modulated in association with the mechanical loading state of the muscle. However, the somewhat different patterns of adaptation of these proteins to altered loading in slow- vs. fast-twitch skeletal muscles indicate that the mechanisms and time course of adaptation may partly depend on the prior loading state of the muscle.

  17. Measuring integrated cellular mechanical stress response at focal adhesions by optical tweezers

    NASA Astrophysics Data System (ADS)

    Bordeleau, François; Bessard, Judicael; Marceau, Normand; Sheng, Yunlong

    2011-09-01

    The ability of cells to sustain mechanical stress is largely modulated by the cytoskeleton. We present a new application of optical tweezers to study cell's mechanical properties. We trap a fibronectin-coated bead attached to an adherent H4II-EC3 rat hepatoma cell in order to apply the force to the cell surface membrane. The bead position corresponding to the cell's local mechanical response at focal adhesions is measured with a quadrant detector. We assessed the cell response by tracking the evolution of the equilibrium force for 40 cells selected at random and selected a temporal window to assess the cell initial force expression at focal adhesions. The mean value of the force within this time window over 40 randomly selected bead/cell bounds was 52.3 pN. Then, we assessed the responses of the cells with modulation of the cytoskeletons, namely the ubiquitous actin-microfilaments and microtubules, plus the differentiation-dependent keratin intermediate filaments. Notably, a destabilization of the first two networks led to around 50 and 30% reductions in the mean equilibrium forces, respectively, relative to untreated cells, whereas a loss of the third one yielded a 25% increase. The differences in the forces from untreated and treated cells are resolved by the optical tweezers experiment.

  18. Selected Contribution: Skeletal muscle focal adhesion kinase, paxillin, and serum response factor are loading dependent

    NASA Technical Reports Server (NTRS)

    Gordon, S. E.; Fluck, M.; Booth, F. W.

    2001-01-01

    This investigation examined the effect of mechanical loading state on focal adhesion kinase (FAK), paxillin, and serum response factor (SRF) in rat skeletal muscle. We found that FAK concentration and tyrosine phosphorylation, paxillin concentration, and SRF concentration are all lower in the lesser load-bearing fast-twitch plantaris and gastrocnemius muscles compared with the greater load-bearing slow-twitch soleus muscle. Of these three muscles, 7 days of mechanical unloading via tail suspension elicited a decrease in FAK tyrosine phosphorylation only in the soleus muscle and decreases in FAK and paxillin concentrations only in the plantaris and gastrocnemius muscles. Unloading decreased SRF concentration in all three muscles. Mechanical overloading (via bilateral gastrocnemius ablation) for 1 or 8 days increased FAK and paxillin concentrations in the soleus and plantaris muscles. Additionally, whereas FAK tyrosine phosphorylation and SRF concentration were increased by < or =1 day of overloading in the soleus muscle, these increases did not occur until somewhere between 1 and 8 days of overloading in the plantaris muscle. These data indicate that, in the skeletal muscles of rats, the focal adhesion complex proteins FAK and paxillin and the transcription factor SRF are generally modulated in association with the mechanical loading state of the muscle. However, the somewhat different patterns of adaptation of these proteins to altered loading in slow- vs. fast-twitch skeletal muscles indicate that the mechanisms and time course of adaptation may partly depend on the prior loading state of the muscle.

  19. Inhibition of focal adhesion kinase induces apoptosis in human osteosarcoma SAOS-2 cells.

    PubMed

    Wang, Jialiang; Zu, Jianing; Xu, Gongping; Zhao, Wei; Jinglong, Yan

    2014-02-01

    Focal adhesion kinase (FAK), a non-receptor tyrosine kinase protein, acts as an early modulator of integrin signaling cascade, regulating basic cellular functions. In transformed cells, unopposed FAK signaling has been considered to promote tumor growth, progression, and metastasis. The aim of this study was to assess the role of focal adhesion kinase in human osteosarcoma SAOS-2 cells. SAOS-2 cells were transfected with PGPU6/GFP/shNC, and PGPU6/GFP/FAK-334 (shRNA-334), respectively. Expression of FAK was detected by real-time PCR and western blots. MTT assay was used to examine changes in cell proliferation. Cell apoptosis was analyzed by flow cytometry. The expression of caspase-3,-7,-9 was measured by Western blots. The expression of FAK in SAOS-2 cells significantly decreased in shRNA-334 group contrast to the control group (P < 0.01). Cells proliferation was inhibited by shRNA-334 and shRNA-334 + cisplatin, and the effects were clearly enhanced when cells treated with the anticancer agents. The level of cell apoptosis in shRNA-334 and shRNA-334 + cisplatin group was higher than in the control group (P < 0.01). The current data support evidence that down-regulation of FAK could induce SAOS-2 apoptosis through the caspase-dependent cell death pathway. Inhibition of the kinases may be important for therapies designed to enhance the apoptosis in osteosarcoma.

  20. Analysis of the myosinII-responsive focal adhesion proteome reveals a role for β-Pix in negative regulation of focal adhesion maturation

    PubMed Central

    Kuo, Jean-Cheng; Han, Xuemei; Hsiao, Cheng-Te; Yates, John R.; Waterman, Clare M.

    2011-01-01

    Focal adhesions (FAs) undergo myosinII-mediated maturation wherein they grow and change composition to modulate integrin signaling for cell migration, growth and differentiation. To determine how FA composition is modulated by myosinII activity, we performed proteomic analysis of isolated FAs and compared protein abundance in FAs from cells with and without myosinII inhibition. We identified FA 905 proteins, 459 of which changed in FA abundance with myosinII inhibition, defining the myosinII-responsive FA proteome. FA abundance of 73% of proteins was enhanced by contractility, including those involved in Rho-mediated FA maturation and endocytosis- and calpain-dependent FA disassembly. 27% of proteins, including those involved in Rac-mediated lamellipodial protrusion, were enriched in FA by myosinII inhibition, establishing for the first time negative regulation of FA protein recruitment by contractility. We focused on the Rac guanine nucleotide exchange factor, β-PIX, documenting its role in negative regulation of FA maturation and promotion of lamellipodial protrusion, FA turnover to drive cell migration. PMID:21423176

  1. The effect of substrate microtopography on focal adhesion maturation and actin organization via the RhoA/ROCK pathway.

    PubMed

    Seo, Chang Ho; Furukawa, Katsuko; Montagne, Kevin; Jeong, Heonuk; Ushida, Takashi

    2011-12-01

    Recently, a growing number of reports have reported that micro- or nanoscale topography enhances cellular functions such as cell adhesion and stem cell differentiation, but the mechanisms responsible for this topography-mediated cell behavior are not fully understood. In this study, we examine the underlying processes and mechanisms behind specific topography-mediated cellular functions. Formation of focal adhesions (FA) was studied by culturing cells on different kinds of topographies, including a flat surface and surfaces with a micropatterned topography (2 μm lattice pattern with 3 μm intervals). We found that the formation and maturation of focal adhesions were highly dependent on the topography of the substrate although the shape, morphology and spreading of cells on the different substrates were not significantly affected. Focal adhesion maturation and actin polymerization were also promoted in cells cultured on the micropatterned substrate. These differences in cell adhesion led us to focus on the Rho GTPases, RhoA and downstream pathways since a number of reports have demonstrated that RhoA-activated cells have highly enhanced focal adhesions and actin activation such as polymerization. By inhibiting the Rho-associated kinase (ROCK) and downstream myosin II, we found that the FA formation, actin organization, and FAK phosphorylation were dramatically decreased. The topographical dependency of FA formation was also highly decreased. These results show that the FA formation and actin cytoskeleton organization of cells on the microtopography is regulated by the RhoA/ROCK pathway.

  2. Sediment toxicity and bioaccumulation of nano and micron-sized aluminum oxide.

    PubMed

    Stanley, Jacob K; Coleman, Jessica G; Weiss, Charles A; Steevens, Jeffery A

    2010-02-01

    Nano-aluminum oxide (Al(2)O(3)) is used commercially in coatings and abrasives. Nano-Al(2)O(3) can also be generated through the oxidation of nano-aluminum in military propellants and energetics. The purpose of the present study was to assess toxicity and bioaccumulation of nano-Al(2)O(3) to a variety of sediment organisms (Tubifex tubifex, Hyalella azteca, Lumbriculus variegatus, and Corbicula fluminea). The bioaccumulation and toxicity of nano-Al(2)O(3) was compared with that of micron-sized Al(2)O(3) to investigate potential size-related effects. Results of the present study show species-specific differences in relative bioaccumulation of nano and micron-sized Al(2)O(3). Significant toxic effects (survival and growth) were observed in H. azteca testing, but only at high concentrations unlikely to be found in the environment. Nano-Al(2)O(3) was found to be more toxic than micron-sized Al(2)O(3) to H. azteca survival in a 14-d study in which organisms were in direct contact with a thin layer of 625 or 2,500 mg of Al(2)O(3) dispersed on the surface of either sediment or sand. A significant growth effect was also observed for nano but not micron-sized Al(2)O(3) at the highest treatment level tested (100 g/kg Al(2)O(3)) in a 10-d H. azteca bioassay in which Al(2)O(3) was homogenized with sediment. However, differences in measured sediment Al concentrations (micron-sized = 55.1 [+/-0.6] g/kg Al; nano-sized = 66.2 [+/-0.6] g/kg Al) in the nano and micron-sized Al(2)O(3) preclude direct comparison of the toxicity of these two treatments based on particle size.

  3. A small fibronectin-mimicking protein from bacteria induces cell spreading and focal adhesion formation.

    PubMed

    Tegtmeyer, Nicole; Hartig, Roland; Delahay, Robin M; Rohde, Manfred; Brandt, Sabine; Conradi, Jens; Takahashi, Seiichiro; Smolka, Adam J; Sewald, Norbert; Backert, Steffen

    2010-07-23

    Fibronectin, a 250-kDa eukaryotic extracellular matrix protein containing an RGD motif plays crucial roles in cell-cell communication, development, tissue homeostasis, and disease development. The highly complex fibrillar fibronectin meshwork orchestrates the functions of other extracellular matrix proteins, promoting cell adhesion, migration, and intracellular signaling. Here, we demonstrate that CagL, a 26-kDa protein of the gastric pathogen and type I carcinogen Helicobacter pylori, mimics fibronectin in various cellular functions. Like fibronectin, CagL contains a RGD motif and is located on the surface of the bacterial type IV secretion pili as previously shown. CagL binds to the integrin receptor alpha(5)beta(1) and mediates the injection of virulence factors into host target cells. We show that purified CagL alone can directly trigger intracellular signaling pathways upon contact with mammalian cells and can complement the spreading defect of fibronectin(-/-) knock-out cells in vitro. During interaction with various human and mouse cell lines, CagL mimics fibronectin in triggering cell spreading, focal adhesion formation, and activation of several tyrosine kinases in an RGD-dependent manner. Among the activated factors are the nonreceptor tyrosine kinases focal adhesion kinase and Src but also the epidermal growth factor receptor and epidermal growth factor receptor family member Her3/ErbB3. Interestingly, fibronectin activates a similar range of tyrosine kinases but not Her3/ErbB3. These findings suggest that the bacterial protein CagL not only exhibits functional mimicry with fibronectin but is also capable of activating fibronectin-independent signaling events. We thus postulate that CagL may contribute directly to H. pylori pathogenesis by promoting aberrant signaling cross-talk within host cells.

  4. Anisotropic forces from spatially constrained focal adhesions mediate contact guidance directed cell migration

    PubMed Central

    Ray, Arja; Lee, Oscar; Win, Zaw; Edwards, Rachel M.; Alford, Patrick W.; Kim, Deok-Ho; Provenzano, Paolo P.

    2017-01-01

    Directed migration by contact guidance is a poorly understood yet vital phenomenon, particularly for carcinoma cell invasion on aligned collagen fibres. We demonstrate that for single cells, aligned architectures providing contact guidance cues induce constrained focal adhesion maturation and associated F-actin alignment, consequently orchestrating anisotropic traction stresses that drive cell orientation and directional migration. Consistent with this understanding, relaxing spatial constraints to adhesion maturation either through reduction in substrate alignment density or reduction in adhesion size diminishes the contact guidance response. While such interactions allow single mesenchymal-like cells to spontaneously ‘sense' and follow topographic alignment, intercellular interactions within epithelial clusters temper anisotropic cell–substratum forces, resulting in substantially lower directional response. Overall, these results point to the control of contact guidance by a balance of cell–substratum and cell–cell interactions, modulated by cell phenotype-specific cytoskeletal arrangements. Thus, our findings elucidate how phenotypically diverse cells perceive ECM alignment at the molecular level. PMID:28401884

  5. Ultraviolet B Inhibits Skin Wound Healing by Affecting Focal Adhesion Dynamics.

    PubMed

    Liu, Han; Yue, Jiping; Lei, Qiang; Gou, Xuewen; Chen, Shao-Yu; He, Yu-Ying; Wu, Xiaoyang

    2015-01-01

    As the most important interface between human body and external environment, skin acts as an essential barrier preventing various environmental damages, among which DNA-damaging UV radiation from the sun remains the major environmental risk factor causing various skin diseases. It has been well documented that wavelengths in the ultraviolet B (UVB) radiation range (290-320 nm) of the solar spectrum can be absorbed by skin and lead to cutaneous injury and various other deleterious effects. During process such as wound healing, the orchestrated movement of cells in a particular direction is essential and highly regulated, integrating signals controlling adhesion, polarity and the cytoskeleton. Cell adhesion and migration are modulated through both of actin and microtubule cytoskeletons. However, little was known about how UVB affects skin wound healing and migration of epidermal keratinocytes. Here, we demonstrate that UVB can delay the wound healing progress in vivo with a murine model of full-thickness skin wound. In addition, UVB significantly inhibited keratinocyte motility by altering focal adhesion turnover and cytoskeletal dynamics. Our results provide new insights into the etiology of UVB exposure-induced skin damages. © 2015 The American Society of Photobiology.

  6. Cell fusion mediates dramatic alterations in the actin cytoskeleton, focal adhesions, and E-cadherin in trophoblastic cells.

    PubMed

    Ishikawa, Atsuko; Omata, Waka; Ackerman, William E; Takeshita, Toshiyuki; Vandré, Dale D; Robinson, John M

    2014-04-01

    The syncytiotrophoblast of the human placenta is a unique epithelia structure with millions of nuclei sharing a common cytoplasm. The syncytiotrophoblast forms by cell-cell fusion of cytotrophoblasts (CTB), the mononuclear precursor cells. The trophoblastic BeWo cell line has been used as a surrogate for CTB since they can be induced to fuse, and subsequently display numerous syncytiotrophoblast differentiation markers following syncytial formation. In this study, we have focused on alterations in the cell-adhesion molecule E-cadherin, actin cytoskeleton, and focal adhesions following BeWo cell fusion, since these entities may be interrelated. There was a dramatic reorganization of the distribution of E-cadherin as well as a reduction in the amount of E-cadherin following cell fusion. Reorganization of the actin cytoskeleton was also observed, which was associated with a change in the globular actin (G-actin)/filamentous actin (F-actin) ratio. Concomitantly, the morphology of focal adhesions was altered, but this occurred without a corresponding change in the levels of focal adhesion marker proteins. Thus, extensive remodeling of the actin cytoskeleton and focal adhesions accompanies cell fusion and differentiation and appears related to alterations in E-cadherin in trophoblastic cells.

  7. Inhibition of focal adhesion kinase prevents experimental lung fibrosis and myofibroblast formation.

    PubMed

    Lagares, David; Busnadiego, Oscar; García-Fernández, Rosa Ana; Kapoor, Mohit; Liu, Shangxi; Carter, David E; Abraham, David; Shi-Wen, Xu; Carreira, Patricia; Fontaine, Benjamin A; Shea, Barry S; Tager, Andrew M; Leask, Andrew; Lamas, Santiago; Rodríguez-Pascual, Fernando

    2012-05-01

    Enhanced adhesive signaling, including activation of focal adhesion kinase (FAK), is a hallmark of fibroblasts from lung fibrosis patients, and FAK has therefore been hypothesized to be a key mediator of this disease. This study was undertaken to characterize the contribution of FAK to the development of pulmonary fibrosis both in vivo and in vitro. FAK expression and activity were analyzed in lung tissue samples from lung fibrosis patients by immunohistochemistry. Mice orally treated with the FAK inhibitor PF-562,271, or with small interfering RNA (siRNA)-mediated silencing of FAK were exposed to intratracheally instilled bleomycin to induce lung fibrosis, and lungs were harvested for histologic and biochemical analysis. Using endothelin 1 (ET-1) as a stimulus, cell adhesion and contraction, as well as profibrotic gene expression, were studied in fibroblasts isolated from wild-type and FAK-deficient mouse embryos. ET-1-mediated FAK activation and gene expression were studied in primary mouse lung fibroblasts, as well as in wild-type and β1 integrin-deficient mouse fibroblasts. FAK expression and activity were up-regulated in fibroblast foci and remodeled vessels from lung fibrosis patients. Pharmacologic or siRNA-mediated targeting of FAK resulted in marked abrogation of bleomycin-induced lung fibrosis in mice. Loss of FAK impaired the acquisition of a profibrotic phenotype in response to ET-1. Profibrotic gene expression leading to myofibroblast differentiation required cell adhesion, and was driven by JNK activation through β1 integrin/FAK signaling. These results implicate FAK as a central mediator of fibrogenesis, and highlight this kinase as a potential therapeutic target in fibrotic diseases. Copyright © 2012 by the American College of Rheumatology.

  8. Inhibition of focal adhesion kinase prevents experimental lung fibrosis and myofibroblast formation

    PubMed Central

    Lagares, David; Busnadiego, Oscar; García-Fernández, Rosa Ana; Kapoor, Mohit; Liu, Shangxi; Carter, David E.; Abraham, David; Shi-Wen, Xu; Carreira, Patricia; Fontaine T, Benjamin A; Shea, Barry S; Tager, Andrew M; Leask, Andrew; Lamas, Santiago; Rodríguez-Pascual, Fernando

    2011-01-01

    Objective Enhanced adhesive signaling including activation of the focal adhesion kinase (FAK) is a hallmark of fibroblasts from lung fibrosis patients, and FAK has been therefore hypothesized to be a key mediator of this disease. This study was undertaken to characterize the contribution of FAK to the development of pulmonary fibrosis both in vivo and in vitro. Methods FAK expression and activity were analyzed in lung tissue samples from lung fibrosis patients by immunohistochemistry. Mice orally treated with the FAK inhibitor, PF-562,271, or with siRNA-mediated silencing of FAK, were exposed to intratracheally instilled bleomycin to induce lung fibrosis, and the lungs were harvested for histological and biochemical analysis. Using endothelin-1 (ET-1) as stimulus, cell adhesion and contraction, as well as profibrotic gene expression were studied in fibroblasts isolated from wild type and FAK-deficient mouse embryos. ET-1-mediated FAK activation and gene expression were studied in primary mouse lung fibroblasts, as well as in wild type and integrin β1-deficient fibroblasts. Results Increased FAK expression and activity are upregulated in fibroblast foci and remodeled vessels in lung fibrosis patients. Pharmacological or siRNA-mediated targeting of FAK resulted in marked abrogation of bleomycin-induced lung fibrosis. Loss of FAK impaired the acquisition of a profibrotic phenotype in response to ET-1. Profibrotic gene expression leading to myofibroblast differentiation required cell adhesion, and was driven by Jun N-terminal kinase activation through integrin β1/FAK signaling. Conclusion These results implicate FAK as a central mediator of fibrogenesis, and highlight this kinase as a potential therapeutic target in fibrotic diseases. PMID:22492165

  9. Evaluation of micron-sized wood and bark particles as filler in thermoplastic composites

    Treesearch

    David P. Harper; Thomas L. Eberhardt

    2010-01-01

    Micron-sized particles, prepared from loblolly pine (Pinus taeda L.) wood and bark, were evaluated for use in wood-plastic composites (WPCs). Particles were also prepared from hard (periderm) and soft (obliterated phloem) components in the bark and compared to whole wood (without bark) filler commonly used by the WPC industry. All bark fillers had...

  10. Haematopoietic focal adhesion kinase deficiency alters haematopoietic homeostasis to drive tumour metastasis.

    PubMed

    Batista, Silvia; Maniati, Eleni; Reynolds, Louise E; Tavora, Bernardo; Lees, Delphine M; Fernandez, Isabelle; Elia, George; Casanovas, Oriol; Lo Celso, Cristina; Hagemann, Thorsten; Hodivala-Dilke, Kairbaan

    2014-10-01

    Metastasis is the main cause of cancer-related death and thus understanding the molecular and cellular mechanisms underlying this process is critical. Here, our data demonstrate, contrary to established dogma, that loss of haematopoietic-derived focal adhesion kinase (FAK) is sufficient to enhance tumour metastasis. Using both experimental and spontaneous metastasis models, we show that genetic ablation of haematopoietic FAK does not affect primary tumour growth but enhances the incidence of metastasis significantly. At a molecular level, haematopoietic FAK deletion results in an increase in PU-1 levels and decrease in GATA-1 levels causing a shift of hematopoietic homeostasis towards a myeloid commitment. The subsequent increase in circulating granulocyte number, with an increase in serum CXCL12 and granulocyte CXCR4 levels, was required for augmented metastasis in mice lacking haematopoietic FAK. Overall our findings provide a mechanism by which haematopoietic FAK controls cancer metastasis.

  11. Targeting the C-terminal focal adhesion kinase scaffold in pancreatic cancer

    PubMed Central

    Gogate, Priyanka N.; Kurenova, Elena V.; Ethirajan, Manivannan; Liao, Jianqun; Yemma, Michael; Sen, Arindam; Pandey, Ravindra K.; Cance, William G.

    2014-01-01

    Preliminary studies in our laboratory have demonstrated the importance of both the NH2 and COOH terminus scaffolding functions of focal adhesion kinase (FAK). Here, we describe a new small molecule inhibitor, C10 that targets the FAK C-terminus scaffold. C10 showed marked selectivity for cells overexpressing VEGFR3 when tested in isogenic cell lines, MCF7 and MCF7-VEGFR3. C10 preferentially inhibited pancreatic tumor growth in vivo in cells with high FAK-Y925 and VEGFR3 expression. Treatment with C10 led to a significant inhibition in endothelial cell proliferation and tumor endothelial and lymphatic vessel density and decrease in interstitial fluid pressure. These results highlight the underlying importance of targeting the FAK scaffold to treat human cancers. PMID:25067788

  12. Novel anticancer agent, SQAP, binds to focal adhesion kinase and modulates its activity

    PubMed Central

    Izaguirre-Carbonell, Jesus; Kawakubo, Hirofumi; Murata, Hiroshi; Tanabe, Atsushi; Takeuchi, Toshifumi; Kusayanagi, Tomoe; Tsukuda, Senko; Hirakawa, Takeshi; Iwabata, Kazuki; Kanai, Yoshihiro; Ohta, Keisuke; Miura, Masahiko; Sakaguchi, Kengo; Matsunaga, Sachihiro; Sahara, Hiroeki; Kamisuki, Shinji; Sugawara, Fumio

    2015-01-01

    SQAP is a novel and promising anticancer agent that was obtained by structural modifications from a natural compound. SQAP inhibits angiogenesis in vivo resulting in increased hypoxia and reduced tumor volume. In this study, the mechanism by which SQAP modifies the tumor microenvironment was revealed through the application of a T7 phage display screening. This approach identified five SQAP-binding proteins including sterol carrier protein 2, multifunctional enzyme type 2, proteasomal ubiquitin receptor, UV excision repair protein and focal adhesion kinase (FAK). All the interactions were confirmed by surface plasmon resonance analysis. Since FAK plays an important role in cell turnover and angiogenesis, the influence of SQAP on FAK was the principal goal of this study. SQAP decreased FAK phosphorylation and cell migration in human umbilical vein endothelial cells and A549 cancer cells. These findings suggest that inhibition of FAK phosphorylation works as the mechanism for the anti-angiogenesis activity of SQAP. PMID:26456697

  13. Biphasic function of focal adhesion kinase in endothelial tube formation induced by fibril-forming collagens.

    PubMed

    Nakamura, Junko; Shigematsu, Satoshi; Yamauchi, Keishi; Takeda, Teiji; Yamazaki, Masanori; Kakizawa, Tomoko; Hashizume, Kiyoshi

    2008-10-03

    Migration and tube formation of endothelial cells are important in angiogenesis and require a coordinated response to the extra-cellular matrix (ECM) and growth factor. Since focal adhesion kinase (FAK) integrates signals from both ECM and growth factor, we investigated its role in angiogenesis. Type I and II collagens are fibril-forming collagens and stimulate human umbilical vein endothelial cells (HUVECs) to form tube structure. Although knockdown of FAK restrained cell motility and resulted in inhibition of tube formation, FAK degradation and tube formation occurred simultaneously after incubation with fibril-forming collagens. The compensation for the FAK degradation by a calpain inhibitor or transient over-expression of FAK resulted in disturbance of tube formation. These phenomena are specific to fibril-forming collagens and mediated via alpha2beta1 integrin. In conclusion, our data indicate that FAK is functioning in cell migration, but fibril-forming collagen-induced FAK degradation is necessary for endothelial tube formation.

  14. Focal adhesion kinase modulates activation of NF-κB by flow in endothelial cells

    PubMed Central

    Petzold, Tobias; Orr, A. Wayne; Hahn, Cornelia; Jhaveri, Krishna A.; Parsons, J. Thomas

    2009-01-01

    Atherogenesis involves activation of NF-κB in endothelial cells by fluid shear stress. Because this pathway involves integrins, we investigated the involvement of focal adhesion kinase (FAK). We found that FAK was not required for flow-stimulated translocation of the p65 NF-κB subunit to the nucleus but was essential for phosphorylation of p65 on serine 536 and induction of ICAM-1, an NF-κB-dependent gene. NF-κB activation by TNF-α or hydrogen peroxide was FAK independent. Events upstream of NF-κB, including integrin activation, Rac activation, reactive oxygen production, and degradation of IκB, were FAK independent. FAK therefore regulates NF-κB phosphorylation and transcriptional activity in response to flow by a novel mechanism. PMID:19587216

  15. Src Kinase Determines the Dynamic Exchange of the Docking Protein NEDD9 (Neural Precursor Cell Expressed Developmentally Down-regulated Gene 9) at Focal Adhesions*

    PubMed Central

    Bradbury, Peta; Bach, Cuc T.; Paul, Andre; O'Neill, Geraldine M.

    2014-01-01

    Dynamic exchange of molecules between the cytoplasm and integrin-based focal adhesions provides a rapid response system for modulating cell adhesion. Increased residency time of molecules that regulate adhesion turnover contributes to adhesion stability, ultimately determining migration speed across two-dimensional surfaces. In the present study we test the role of Src kinase in regulating dynamic exchange of the focal adhesion protein NEDD9/HEF1/Cas-L. Using either chemical inhibition or fibroblasts genetically null for Src together with fluorescence recovery after photobleaching (FRAP), we find that Src significantly reduces NEDD9 exchange at focal adhesions. Analysis of NEDD9 mutant constructs with the two major Src-interacting domains disabled revealed the greatest effects were due to the NEDD9 SH2 binding domain. This correlated with a significant change in two-dimensional migratory speed. Given the emerging role of NEDD9 as a regulator of focal adhesion stability, the time of NEDD9 association at the focal adhesions is key in modulating rates of migration and invasion. Our study suggests that Src kinase activity determines NEDD9 exchange at focal adhesions and may similarly modulate other focal adhesion-targeted Src substrates to regulate cell migration. PMID:25059660

  16. Prolactin signaling through focal adhesion complexes is amplified by stiff extracellular matrices in breast cancer cells.

    PubMed

    Barcus, Craig E; Keely, Patricia J; Eliceiri, Kevin W; Schuler, Linda A

    2016-07-26

    Estrogen receptor α positive (ERα+) breast cancer accounts for most breast cancer deaths. Both prolactin (PRL) and extracellular matrix (ECM) stiffness/density have been implicated in metastatic progression of this disease. We previously demonstrated that these factors cooperate to fuel processes involved in cancer progression. Culture of ERα+ breast cancer cells in dense/stiff 3D collagen-I matrices shifts the repertoire of PRL signals, and increases crosstalk between PRL and estrogen to promote proliferation and invasion. However, previous work did not distinguish ECM stiffness and collagen density. In order to dissect the ECM features that control PRL signals, we cultured T47D and MCF-7 cells on polyacrylamide hydrogels of varying elastic moduli (stiffness) with varying collagen-I concentrations (ligand density). Increasing stiffness from physiological to pathological significantly augmented PRL-induced phosphorylation of ERK1/2 and the SFK target, FAK-Y925, with only modest effects on pSTAT5. In contrast, higher collagen-I ligand density lowered PRL-induced pSTAT5 with no effect on pERK1/2 or pFAK-Y925. Disrupting focal adhesion signaling decreased PRL signals and PRL/estrogen-induced proliferation more efficiently in stiff, compared to compliant, extracellular environments. These data indicate that matrix stiffness shifts the balance of PRL signals from physiological (JAK2/STAT5) to pathological (FAK/SFK/ERK1/2) by increasing PRL signals through focal adhesions. Together, our studies suggest that PRL signaling to FAK and SFKs may be useful targets in clinical aggressive ERα+ breast carcinomas.

  17. Prolactin signaling through focal adhesion complexes is amplified by stiff extracellular matrices in breast cancer cells

    PubMed Central

    Barcus, Craig E.; Keely, Patricia J.; Eliceiri, Kevin W.; Schuler, Linda A.

    2016-01-01

    Estrogen receptor α positive (ERα+) breast cancer accounts for most breast cancer deaths. Both prolactin (PRL) and extracellular matrix (ECM) stiffness/density have been implicated in metastatic progression of this disease. We previously demonstrated that these factors cooperate to fuel processes involved in cancer progression. Culture of ERα+ breast cancer cells in dense/stiff 3D collagen-I matrices shifts the repertoire of PRL signals, and increases crosstalk between PRL and estrogen to promote proliferation and invasion. However, previous work did not distinguish ECM stiffness and collagen density. In order to dissect the ECM features that control PRL signals, we cultured T47D and MCF-7 cells on polyacrylamide hydrogels of varying elastic moduli (stiffness) with varying collagen-I concentrations (ligand density). Increasing stiffness from physiological to pathological significantly augmented PRL-induced phosphorylation of ERK1/2 and the SFK target, FAK-Y925, with only modest effects on pSTAT5. In contrast, higher collagen-I ligand density lowered PRL-induced pSTAT5 with no effect on pERK1/2 or pFAK-Y925. Disrupting focal adhesion signaling decreased PRL signals and PRL/estrogen-induced proliferation more efficiently in stiff, compared to compliant, extracellular environments. These data indicate that matrix stiffness shifts the balance of PRL signals from physiological (JAK2/STAT5) to pathological (FAK/SFK/ERK1/2) by increasing PRL signals through focal adhesions. Together, our studies suggest that PRL signaling to FAK and SFKs may be useful targets in clinical aggressive ERα+ breast carcinomas. PMID:27344177

  18. Teneurin-4 promotes cellular protrusion formation and neurite outgrowth through focal adhesion kinase signaling

    PubMed Central

    Suzuki, Nobuharu; Numakawa, Tadahiro; Chou, Joshua; de Vega, Susana; Mizuniwa, Chihiro; Sekimoto, Kaori; Adachi, Naoki; Kunugi, Hiroshi; Arikawa-Hirasawa, Eri; Yamada, Yoshihiko; Akazawa, Chihiro

    2014-01-01

    Teneurin-4 (Ten-4), a transmembrane protein, is highly expressed in the central nervous system; however, its cellular and molecular function in neuronal differentiation remains unknown. In this study, we aimed to elucidate the function of Ten-4 in neurite outgrowth. Ten-4 expression was induced during neurite outgrowth of the neuroblastoma cell line Neuro-2a. Ten-4 protein was localized at the neurite growth cones. Knockdown of Ten-4 expression in Neuro-2a cells decreased the formation of the filopodia-like protrusions and the length of individual neurites. Conversely, overexpression of Ten-4 promoted filopodia-like protrusion formation. In addition, knockdown and overexpression of Ten-4 reduced and elevated the activation of focal adhesion kinase (FAK) and Rho-family small GTPases, Cdc42 and Rac1, key molecules for the membranous protrusion formation downstream of FAK, respectively. Inhibition of the activation of FAK and neural Wiskott-Aldrich syndrome protein (N-WASP), which is a downstream regulator of FAK and Cdc42, blocked protrusion formation by Ten-4 overexpression. Further, Ten-4 colocalized with phosphorylated FAK in the filopodia-like protrusion regions. Together, our findings show that Ten-4 is a novel positive regulator of cellular protrusion formation and neurite outgrowth through the FAK signaling pathway.—Suzuki, N., Numakawa, T., Chou, J., de Vega, S., Mizuniwa, C., Sekimoto, K., Adachi, N., Kunugi, H., Arikawa-Hirasawa, E., Yamada, Y., Akazawa, C. Teneurin-4 promotes cellular protrusion formation and neurite outgrowth through focal adhesion kinase signaling. PMID:24344332

  19. Structural basis of focal adhesion targeting domain-mediated signaling in cardiac hypertrophy.

    PubMed

    Mohanty, Pallavi; Bhatnagar, Sonika

    2017-02-01

    The focal adhesion targeting (FAT) domain of focal adhesion kinase (FAK) exists in monomeric closed (c) or arm exchanged (ae) dimeric state. FAT interaction with Grb2 necessitates an intermediate open (o) state that interacts with Grb2 and activates signaling pathways leading to pathological cardiac hypertrophy. Targeted molecular dynamics (TMD) simulation was carried out in order to capture the structure of the intermediate formed by opening of Helix1 (H1) from monomeric cFAT leading to the formation of monomeric aeFAT. During TMD, H1 separated from the four helices bundle of cFAT, completely unfolded and performed a full turn before folding back to a helix inclined at an acute angle to the helical bundle in aeFAT. The entire transition can be described in six distinct intermediate structural stages. The most significant correlation of H1 motion was observed with Loop3 (L3) and is the likely reason for the complete disruption of the FAT interaction with paxillin during the transition. High-affinity analogs of the paxillin LD4 region can be a promising strategy to drive the equilibrium towards cFAT, thus antagonizing FAT-Grb2 association. During transition, the overall shift in orientation of all the four helices rejects paxillin binding and approves Grb2 association. Exposure and β-turn conformation of the YENV motif (residues 925-928) in oFAT-facilitated phosphorylation and Grb2 binding. Docking, MD simulation and conservation analysis of oFAT-Grb2 complex provided insight into the structural determinants of binding and specificity. Our work provides a structural basis for pharmacological modulation of dynamic conformational changes and interactions of FAT.

  20. Focal Adhesion Kinase: Insight into Molecular Roles and Functions in Hepatocellular Carcinoma

    PubMed Central

    Panera, Nadia; Crudele, Annalisa; Romito, Ilaria; Gnani, Daniela; Alisi, Anna

    2017-01-01

    Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. Due to the high incidence of post-operative recurrence after current treatments, the identification of new and more effective drugs is required. In previous years, new targetable genes/pathways involved in HCC pathogenesis have been discovered through the help of high-throughput sequencing technologies. Mutations in TP53 and β-catenin genes are the most frequent aberrations in HCC. However, approaches able to reverse the effect of these mutations might be unpredictable. In fact, if the reactivation of proteins, such as p53 in tumours, holds great promise as anticancer therapy, there are studies arguing that chronic activation of these types of molecules may be deleterious. Thus, recently the efforts on potential targets have focused on actionable mutations, such as those occurring in the gene encoding for focal adhesion kinase (FAK). This tyrosine kinase, localized to cellular focal contacts, is over-expressed in a variety of human tumours, including HCC. Moreover, several lines of evidence demonstrated that FAK depletion or inhibition impair in vitro and in vivo HCC growth and metastasis. Here, we provide an overview of FAK expression and activity in the context of tumour biology, discussing the current evidence of its connection with HCC development and progression. PMID:28067792

  1. Composite resin's adhesive resistance to dentin: influence of Er:YAG laser focal distance variation.

    PubMed

    Corona, Silmara Aparecida Milori; Atoui, Juliana Abdallah; Chimello, Daniela Thomazatti; Borsatto, Maria Cristina; Pecora, Jesus Djalma; Dibb, Regina Guenka Palma

    2005-04-01

    The aim of this study was to analyze in vitro the influence of Er:YAG laser focal distance variation on tensile bond strength of a composite resin to dentin. Although there are several studies using the Er:YAG laser for dentin treatment, there is a lack of available literature related to the Er:YAG laser focal distance variation. Sixty vestibular and lingual dentin surfaces from extracted human third molars, kept in a 0.4% azide sodium solution, were ground and assigned to six groups. The control group was conditioned with 35% phosphoric acid (CA). In the lased groups, the dentin surface treatment was performed by irradiation with Er:YAG laser (80 mJ/2 Hz), varying the focal distance (11, 12, 14, 16, and 17 mm), followed by acid etching. The Single Bond/Filtek Z250 (3M) resinous system was used for the specimen manufacture. The tensile bond strength tests were performed in a Universal Testing Machine with 50 kgf load cell and 0.5 mm/min cross head speed. The averages in MPa were: CA: 18.03 (+/-2.09); 11 mm; 9.92 (+/-3.34); 12 mm: 9.49 (+/-2.29); 14 mm: 10.99 (+/-3.45); 16 mm: 10.56 (+/-1.93); and 17 mm: 17.05 (+/-2.31). It was concluded that the application of Er:YAG laser in a defocused mode (17 mm) associated with acid etching was similar to the treatment of acid solely. Er:YAG laser irradiation in a focused (12 mm) and a defocused (11, 14, and 16 mm) mode coupled with acid conditioning produced the lowest values of adhesion.

  2. Alpha-actinin-1 phosphorylation modulates pressure-induced colon cancer cell adhesion through regulation of focal adhesion kinase-Src interaction.

    PubMed

    Craig, David H; Haimovich, Beatrice; Basson, Marc D

    2007-12-01

    Physical forces including pressure, strain, and shear can be converted into intracellular signals that regulate diverse aspects of cell biology. Exposure to increased extracellular pressure stimulates colon cancer cell adhesion by a beta(1)-integrin-dependent mechanism that requires an intact cytoskeleton and activation of focal adhesion kinase (FAK) and Src. alpha-Actinin facilitates focal adhesion formation and physically links integrin-associated focal adhesion complexes with the cytoskeleton. We therefore hypothesized that alpha-actinin may be necessary for the mechanical response pathway that mediates pressure-stimulated cell adhesion. We reduced alpha-actinin-1 and alpha-actinin-4 expression with isoform-specific small interfering (si)RNA. Silencing of alpha-actinin-1, but not alpha-actinin-4, blocked pressure-stimulated cell adhesion in human SW620, HT-29, and Caco-2 colon cancer cell lines. Cell exposure to increased extracellular pressure stimulated alpha-actinin-1 tyrosine phosphorylation and alpha-actinin-1 interaction with FAK and/or Src, and enhanced FAK phosphorylation at residues Y397 and Y576. The requirement for alpha-actinin-1 phosphorylation in the pressure response was investigated by expressing the alpha-actinin-1 tyrosine phosphorylation mutant Y12F in the colon cancer cells. Expression of Y12F blocked pressure-mediated adhesion and inhibited the pressure-induced association of alpha-actinin-1 with FAK and Src, as well as FAK activation. Furthermore, siRNA-mediated reduction of alpha-actinin-1 eliminated the pressure-induced association of alpha-actinin-1 and Src with beta(1)-integrin receptor, as well as FAK-Src complex formation. These results suggest that alpha-actinin-1 phosphorylation at Y12 plays a crucial role in pressure-activated cell adhesion and mechanotransduction by facilitating Src recruitment to beta(1)-integrin, and consequently the association of FAK with Src, to enhance FAK phosphorylation.

  3. Focal adhesion kinase modulates radial glia-dependent neuronal migration through connexin-26.

    PubMed

    Valiente, Manuel; Ciceri, Gabriele; Rico, Beatriz; Marín, Oscar

    2011-08-10

    Focal adhesion kinase (FAK) is an intracellular kinase and scaffold protein that regulates migration in many different cellular contexts but whose function in neuronal migration remains controversial. Here, we have analyzed the function of FAK in two populations of neurons with very distinct migratory behaviors: cortical interneurons, which migrate tangentially and independently of radial glia; and pyramidal cells, which undergo glial-dependent migration. We found that FAK is dispensable for glial-independent migration but is cell-autonomously required for the normal interaction of pyramidal cells with radial glial fibers. Loss of FAK function disrupts the normal morphology of migrating pyramidal cells, delays migration, and increases the tangential dispersion of neurons arising from the same radial unit. FAK mediates this process by regulating the assembly of Connexin-26 contact points in the membrane of migrating pyramidal cells. These results indicate that FAK plays a fundamental role in the dynamic regulation of Gap-mediated adhesions during glial-guided neuronal migration in the mouse.

  4. Identification of Novel Focal Adhesion Kinase Substrates: Role for FAK in NFκB Signaling

    PubMed Central

    Dwyer, Sheila Figel; Gao, Lingqiu; Gelman, Irwin H.

    2015-01-01

    Focal adhesion kinase (FAK) is a major signaling molecule which functions downstream of integrins or in conjunction with mitogenic signaling pathways. FAK is overexpressed and/or activated in many types of human tumors, in which it promotes cell adhesion, survival, migration and invasion. In addition to FAK's ability to regulate signaling through its scaffolding activities, FAK encodes an intrinsic kinase activity. Although some FAK substrates have been identified, a more comprehensive analysis of substrates is lacking. In this study, we use a protein microarray to screen the human proteome for FAK substrates. We confirm that several of the proteins identified are bona fide in vitro FAK substrates, including several factors which are known to regulate the NFκB pathway. Finally, we identify a role for FAK's kinase activity in both canonical and non-canonical NFκB signaling. Our screen therefore represents the first high throughput screen for FAK substrates and provides the basis for future in-depth analysis of the role of FAK's kinase activity in the processes of tumorigenesis. PMID:25798060

  5. The simulation of stress fibre and focal adhesion development in cells on patterned substrates

    PubMed Central

    Pathak, Amit; Deshpande, Vikram S; McMeeking, Robert M; Evans, Anthony G

    2007-01-01

    The remodelling of the cytoskeleton and focal adhesion (FA) distributions for cells on substrates with micro-patterned ligand patches is investigated using a bio-chemo-mechanical model. We investigate the effect of ligand pattern shape on the cytoskeletal arrangements and FA distributions for cells having approximately the same area. The cytoskeleton model accounts for the dynamic rearrangement of the actin/myosin stress fibres. It entails the highly nonlinear interactions between signalling, the kinetics of tension-dependent stress-fibre formation/dissolution and stress-dependent contractility. This model is coupled with another model that governs FA formation and accounts for the mechano-sensitivity of the adhesions from thermodynamic considerations. This coupled modelling scheme is shown to capture a variety of key experimental observations including: (i) the formation of high concentrations of stress fibres and FAs at the periphery of circular and triangular, convex-shaped ligand patterns; (ii) the development of high FA concentrations along the edges of the V-, T-, Y- and U-shaped concave ligand patterns; and (iii) the formation of highly aligned stress fibres along the non-adhered edges of cells on the concave ligand patterns. When appropriately calibrated, the model also accurately predicts the radii of curvature of the non-adhered edges of cells on the concave-shaped ligand patterns. PMID:17939980

  6. Titin-Based Nanoparticle Tension Sensors Map High-Magnitude Integrin Forces within Focal Adhesions.

    PubMed

    Galior, Kornelia; Liu, Yang; Yehl, Kevin; Vivek, Skanda; Salaita, Khalid

    2016-01-13

    Mechanical forces transmitted through integrin transmembrane receptors play important roles in a variety of cellular processes ranging from cell development to tumorigenesis. Despite the importance of mechanics in integrin function, the magnitude of integrin forces within adhesions remains unclear. Literature suggests a range from 1 to 50 pN, but the upper limit of integrin forces remains unknown. Herein we challenge integrins with the most mechanically stable molecular tension probe, which is comprised of the immunoglobulin 27th (I27) domain of cardiac titin flanked with a fluorophore and gold nanoparticle. Cell experiments show that integrin forces unfold the I27 domain, suggesting that integrin forces exceed ∼30-40 pN. The addition of a disulfide bridge within I27 "clamps" the probe and resists mechanical unfolding. Importantly, incubation with a reducing agent initiates SH exchange, thus unclamping I27 at a rate that is dependent on the applied force. By recording the rate of S-S reduction in clamped I27, we infer that integrins apply 110 ± 9 pN within focal adhesions of rat embryonic fibroblasts. The rates of S-S exchange are heterogeneous and integrin subtype-dependent. Nanoparticle titin tension sensors along with kinetic analysis of unfolding demonstrate that a subset of integrins apply tension many fold greater than previously reported.

  7. RhoGEFs in cell motility: Novel links between Rgnef and focal adhesion kinase

    PubMed Central

    Miller, Nichol L. G.; Kleinschmidt, Elizabeth G.; Schlaepfer, David D.

    2014-01-01

    Rho guanine exchange factors (GEFs) are a large, diverse family of proteins defined by their ability to catalyze the exchange of GDP for GTP on small GTPase proteins such as Rho family members. GEFs act as integrators from varied intra- and extracellular sources to promote spatiotemporal activity of Rho GTPases that control signaling pathways regulating cell proliferation and movement. Here we review recent studies elucidating roles of RhoGEF proteins in cell motility. Emphasis is placed on Dbl-family GEFs and connections to development, integrin signaling to Rho GTPases regulating cell adhesion and movement, and how these signals may enhance tumor progression. Moreover, RhoGEFs have additional domains that confer distinctive functions or specificity. We will focus on a unique interaction between Rgnef (also termed Arhgef28 or p190RhoGEF) and focal adhesion kinase (FAK), a non-receptor tyrosine kinase that controls migration properties of normal and tumor cells. This Rgnef-FAK interaction activates canonical GEF-dependent RhoA GTPase activity to govern contractility and also functions as a scaffold in a GEF-independent manner to enhance FAK activation. Recent studies have also brought to light the importance of specific regions within the Rgnef pleckstrin homology (PH) domain for targeting the membrane. As revealed by ongoing Rgnef-FAK investigations, exploring GEF roles in cancer will yield fundamental new information on the molecular mechanisms promoting tumor spread and metastasis. PMID:24467206

  8. Focal adhesion kinase regulates syndecan-2-mediated tumorigenic activity of HT1080 fibrosarcoma cells.

    PubMed

    Park, Haein; Han, Innoc; Kwon, Ho Jeong; Oh, Eok-Soo

    2005-11-01

    Expression of syndecan-2, a transmembrane heparan sulfate proteoglycan, is crucial for the tumorigenic activity in colon carcinoma cells. However, despite the high-level expression of syndecan-2 in mesenchymal cells, few studies have addressed the function of syndecan-2 in sarcoma cells. In HT1080 fibrosarcoma cells, we found that syndecan-2 regulated migration, invasion into Matrigel, and anchorage-independent growth but not cell-extracellular matrix adhesion or proliferation, suggesting that syndecan-2 plays different functional roles in fibrosarcoma and colon carcinoma cells. Consistent with the increased cell migration/invasion of syndecan-2-overexpressing HT1080 cells, syndecan-2 overexpression increased phosphorylation and interaction of focal adhesion kinase (FAK) and phosphatidylinositol 3-kinase (PI3K), membrane localization of T-lymphoma invasion and metastasis gene-1 (Tiam-1), and activation of Rac. Syndecan-2-mediated cell migration/invasion of HT1080 cells was diminished when (a) cells were cotransfected with nonphosphorylatable mutant FAK Y397F or with other FAK mutants lacking PI3K interactions, (b) cells were treated with a specific PI3K inhibitor, or (c) levels of Tiam-1 were knocked down with small interfering RNAs. Furthermore, expression of several FAK mutants inhibited syndecan-2-mediated enhancement of anchorage-independent growth in HT1080 cells. Taken together, these data suggest that syndecan-2 regulates the tumorigenic activities of HT1080 fibrosarcoma cells and that FAK is a key regulator of syndecan-2-mediated tumorigenic activities.

  9. Decipher the dynamic coordination between enzymatic activity and structural modulation at focal adhesions in living cells

    NASA Astrophysics Data System (ADS)

    Lu, Shaoying; Seong, Jihye; Wang, Yi; Chang, Shiou-Chi; Eichorst, John Paul; Ouyang, Mingxing; Li, Julie Y.-S.; Chien, Shu; Wang, Yingxiao

    2014-07-01

    Focal adhesions (FAs) are dynamic subcellular structures crucial for cell adhesion, migration and differentiation. It remains an enigma how enzymatic activities in these local complexes regulate their structural remodeling in live cells. Utilizing biosensors based on fluorescence resonance energy transfer (FRET), we developed a correlative FRET imaging microscopy (CFIM) approach to quantitatively analyze the subcellular coordination between the enzymatic Src activation and the structural FA disassembly. CFIM reveals that the Src kinase activity only within the microdomain of lipid rafts at the plasma membrane is coupled with FA dynamics. FA disassembly at cell periphery was linearly dependent on this raft-localized Src activity, although cells displayed heterogeneous levels of response to stimulation. Within lipid rafts, the time delay between Src activation and FA disassembly was 1.2 min in cells seeded on low fibronectin concentration ([FN]) and 4.3 min in cells on high [FN]. CFIM further showed that the level of Src-FA coupling, as well as the time delay, was regulated by cell-matrix interactions, as a tight enzyme-structure coupling occurred in FA populations mediated by integrin αvβ3, but not in those by integrin α5β1. Therefore, different FA subpopulations have distinctive regulation mechanisms between their local kinase activity and structural FA dynamics.

  10. GEF-H1 controls focal adhesion signaling that regulates mesenchymal stem cell lineage commitment

    PubMed Central

    Huang, I-Husan; Hsiao, Cheng-Te; Wu, Jui-Chung; Liu, Ching-Yi; Wang, Yang-Kao; Chen, Yu-Chen; Huang, Chi-Ming; del álamo, Juan C.; Chang, Zee-Fen; Tang, Ming-Jer; Khoo, Kay-Hooi; Kuo, Jean-Cheng

    2014-01-01

    ABSTRACT Focal adhesions (FAs) undergo maturation that culminates in size and composition changes that modulate adhesion, cytoskeleton remodeling and differentiation. Although it is well recognized that stimuli for osteogenesis of mesenchymal stem cells (MSCs) drive FA maturation, actin organization and stress fiber polarization, the extent to which FA-mediated signals regulated by the FA protein composition specifies MSC commitment remains largely unknown. Here, we demonstrate that, upon dexamethasone (osteogenic induction) treatment, guanine nucleotide exchange factor H1 (GEF-H1, also known as Rho guanine nucleotide exchange factor 2, encoded by ARHGEF2) is significantly enriched in FAs. Perturbation of GEF-H1 inhibits FA formation, anisotropic stress fiber orientation and MSC osteogenesis in an actomyosin-contractility-independent manner. To determine the role of GEF-H1 in MSC osteogenesis, we explore the GEF-H1-modulated FA proteome that reveals non-muscle myosin-II heavy chain-B (NMIIB, also known as myosin-10, encoded by MYH10) as a target of GEF-H1 in FAs. Inhibition of targeting NMIIB into FAs suppresses FA formation, stress fiber polarization, cell stiffness and osteogenic commitments in MSCs. Our data demonstrate a role for FA signaling in specifying MSC commitment. PMID:25107365

  11. Integrin binding and mechanical tension induce movement of mRNA and ribosomes to focal adhesions

    NASA Technical Reports Server (NTRS)

    Chicurel, M. E.; Singer, R. H.; Meyer, C. J.; Ingber, D. E.

    1998-01-01

    The extracellular matrix (ECM) activates signalling pathways that control cell behaviour by binding to cell-surface integrin receptors and inducing the formation of focal adhesion complexes (FACs). In addition to clustered integrins, FACs contain proteins that mechanically couple the integrins to the cytoskeleton and to immobilized signal-transducing molecules. Cell adhesion to the ECM also induces a rapid increase in the translation of preexisting messenger RNAs. Gene expression can be controlled locally by targeting mRNAs to specialized cytoskeletal domains. Here we investigate whether cell binding to the ECM promotes formation of a cytoskeletal microcompartment specialized for translational control at the site of integrin binding. High-resolution in situ hybridization revealed that mRNA and ribosomes rapidly and specifically localized to FACs that form when cells bind to ECM-coated microbeads. Relocation of these protein synthesis components to the FAC depended on the ability of integrins to mechanically couple the ECM to the contractile cytoskeleton and on associated tension-moulding of the actin lattice. Our results suggest a new type of gene regulation by integrins and by mechanical stress which may involve translation of mRNAs into proteins near the sites of signal reception.

  12. Integrin binding and mechanical tension induce movement of mRNA and ribosomes to focal adhesions

    NASA Technical Reports Server (NTRS)

    Chicurel, M. E.; Singer, R. H.; Meyer, C. J.; Ingber, D. E.

    1998-01-01

    The extracellular matrix (ECM) activates signalling pathways that control cell behaviour by binding to cell-surface integrin receptors and inducing the formation of focal adhesion complexes (FACs). In addition to clustered integrins, FACs contain proteins that mechanically couple the integrins to the cytoskeleton and to immobilized signal-transducing molecules. Cell adhesion to the ECM also induces a rapid increase in the translation of preexisting messenger RNAs. Gene expression can be controlled locally by targeting mRNAs to specialized cytoskeletal domains. Here we investigate whether cell binding to the ECM promotes formation of a cytoskeletal microcompartment specialized for translational control at the site of integrin binding. High-resolution in situ hybridization revealed that mRNA and ribosomes rapidly and specifically localized to FACs that form when cells bind to ECM-coated microbeads. Relocation of these protein synthesis components to the FAC depended on the ability of integrins to mechanically couple the ECM to the contractile cytoskeleton and on associated tension-moulding of the actin lattice. Our results suggest a new type of gene regulation by integrins and by mechanical stress which may involve translation of mRNAs into proteins near the sites of signal reception.

  13. PROLACTIN-INDUCED TYROSINE PHOSPHORYLATION, ACTIVATION AND RECEPTOR ASSOCIATION OF FOCAL ADHESION KINASE (FAK) IN MAMMARY EPITHELIAL CELLS

    EPA Science Inventory

    Prolactin-Induced Tyrosine Phosphorylation, Activation and Receptor
    Association of Focal Adhesion Kinase (FAK) in Mammary Epithelial Cells.
    Suzanne E. Fenton1 and Lewis G. Sheffield2. 1U.S. Environmental Protection
    Agency, MD-72, Research Triangle Park, NC 27711, and

  14. Decoupling Substrate Stiffness, Spread Area, and Micropost Density: A Close Spatial Relationship between Traction Forces and Focal Adhesions

    PubMed Central

    Han, Sangyoon J.; Bielawski, Kevin S.; Ting, Lucas H.; Rodriguez, Marita L.; Sniadecki, Nathan J.

    2012-01-01

    Mechanical cues can influence the manner in which cells generate traction forces and form focal adhesions. The stiffness of a cell’s substrate and the available area on which it can spread can influence its generation of traction forces, but to what extent these factors are intertwined is unclear. In this study, we used microcontact printing and micropost arrays to control cell spreading, substrate stiffness, and post density to assess their effect on traction forces and focal adhesions. We find that both the spread area and the substrate stiffness influence traction forces in an independent manner, but these factors have opposite effects: cells on stiffer substrates produce higher average forces, whereas cells with larger spread areas generate lower average forces. We show that post density influences the generation of traction forces in a manner that is more dominant than the effect of spread area. Additionally, we observe that focal adhesions respond to spread area, substrate stiffness, and post density in a manner that closely matches the trends seen for traction forces. This work supports the notion that traction forces and focal adhesions have a close relationship in their response to mechanical cues. PMID:22947925

  15. PROLACTIN-INDUCED TYROSINE PHOSPHORYLATION, ACTIVATION AND RECEPTOR ASSOCIATION OF FOCAL ADHESION KINASE (FAK) IN MAMMARY EPITHELIAL CELLS

    EPA Science Inventory

    Prolactin-Induced Tyrosine Phosphorylation, Activation and Receptor
    Association of Focal Adhesion Kinase (FAK) in Mammary Epithelial Cells.
    Suzanne E. Fenton1 and Lewis G. Sheffield2. 1U.S. Environmental Protection
    Agency, MD-72, Research Triangle Park, NC 27711, and

  16. mDia2 regulates actin and focal adhesion dynamics and organization in the lamella for efficient epithelial cell migration.

    PubMed

    Gupton, Stephanie L; Eisenmann, Kathryn; Alberts, Arthur S; Waterman-Storer, Clare M

    2007-10-01

    Cell migration requires spatial and temporal regulation of filamentous actin (F-actin) dynamics. This regulation is achieved by distinct actin-associated proteins, which mediate polymerization, depolymerization, severing, contraction, bundling or engagement to the membrane. Mammalian Diaphanous-related (mDia) formins, which nucleate, processively elongate, and in some cases bundle actin filaments, have been extensively studied in vitro, but their function in the cell has been less well characterized. Here we study the role of mDia2 activity in the dynamic organization of F-actin in migrating epithelial cells. We find that mDia2 localizes in the lamella of migrating epithelial cells, where it is involved in the formation of a stable pool of cortical actin and in maintenance of polymerization-competent free filament barbed ends at focal adhesions. Specific inhibition of mDia2 alters focal adhesion turnover and reduces migration velocity. We suggest that the regulation of filament assembly dynamics at focal adhesions may be necessary for the formation of a stable pool of cortical lamella actin and the proper assembly and disassembly dynamics of focal adhesions, making mDia2 an important factor in epithelial cell migration.

  17. RhoJ/TCL regulates endothelial motility and tube formation and modulates actomyosin contractility and focal adhesion numbers.

    PubMed

    Kaur, Sukhbir; Leszczynska, Katarzyna; Abraham, Sabu; Scarcia, Margherita; Hiltbrunner, Sabina; Marshall, Christopher J; Mavria, Georgia; Bicknell, Roy; Heath, Victoria L

    2011-03-01

    RhoJ/TCL was identified by our group as an endothelial-expressed Rho GTPase. The aim of this study was to determine its tissue distribution, subcellular localization, and function in endothelial migration and tube formation. Using in situ hybridization, RhoJ was localized to endothelial cells in a set of normal and cancerous tissues and in the vasculature of mouse embryos; endogenous RhoJ was localized to focal adhesions by immunofluorescence. The proangiogenic factor vascular endothelial growth factor activated RhoJ in endothelial cells. Using either small interfering (si)RNA-mediated knockdown of RhoJ expression or overexpression of constitutively active RhoJ (daRhoJ), RhoJ was found to positively regulate endothelial motility and tubule formation. Downregulating RhoJ expression increased focal adhesions and stress fibers in migrating cells, whereas daRhoJ overexpression resulted in the converse. RhoJ downregulation resulted in increased contraction of a collagen gel and increased phospho-myosin light chain, indicative of increased actomyosin contractility. Pharmacological inhibition of Rho-kinase (which phosphorylates myosin light chain) or nonmuscle myosin II reversed the defective tube formation and migration of RhoJ knockdown cells. RhoJ is endothelial-expressed in vivo, activated by vascular endothelial growth factor, localizes to focal adhesions, regulates endothelial cell migration and tube formation, and modulates actomyosin contractility and focal adhesion numbers.

  18. Regulation of the L-type calcium channel by alpha 5beta 1 integrin requires signaling between focal adhesion proteins.

    PubMed

    Wu, X; Davis, G E; Meininger, G A; Wilson, E; Davis, M J

    2001-08-10

    The L-type calcium channel is the major calcium influx pathway in vascular smooth muscle and is regulated by integrin ligands, suggesting an important link between extracellular matrix and vascular tone regulation in tissue injury and remodeling. We examined the role of integrin-linked tyrosine kinases and focal adhesion proteins in regulation of L-type calcium current in single vascular myocytes. Soluble tyrosine kinase inhibitors blocked the increase in current produced by alpha(5) integrin antibody or fibronectin, whereas tyrosine phosphatase inhibition enhanced the effect. Cell dialysis with an antibody to focal adhesion kinase or with FRNK, the C-terminal noncatalytic domain of focal adhesion kinase, produced moderate (24 or 18%, respectively) inhibition of basal current but much greater inhibition (63 or 68%, respectively) of integrin-enhanced current. A c-Src antibody and peptide inhibitors of the Src homology-2 domain or a putative Src tyrosine phosphorylation site on the channel produced similar inhibition. Antibodies to the cytoskeletal proteins paxillin and vinculin, but not alpha-actinin, inhibited integrin-dependent current by 65-80%. Therefore, alpha(5)beta(1) integrin appears to regulate a tyrosine phosphorylation cascade involving Src and various focal adhesion proteins that control the function of the L-type calcium channel. This interaction may represent a novel mechanism for control of calcium influx in vascular smooth muscle and other cell types.

  19. Restructuring of focal adhesion plaques by PI 3-kinase. Regulation by PtdIns (3,4,5)-p(3) binding to alpha-actinin.

    PubMed

    Greenwood, J A; Theibert, A B; Prestwich, G D; Murphy-Ullrich, J E

    2000-08-07

    Focal adhesions are an elaborate network of interconnecting proteins linking actin stress fibers to the extracellular matrix substrate. Modulation of the focal adhesion plaque provides a mechanism for the regulation of cellular adhesive strength. Using interference reflection microscopy, we found that activation of phosphoinositide 3-kinase (PI 3-kinase) by PDGF induces the dissipation of focal adhesions. Loss of this close apposition between the cell membrane and the extracellular matrix coincided with a redistribution of alpha-actinin and vinculin from the focal adhesion complex to the Triton X-100-soluble fraction. In contrast, talin and paxillin remained localized to focal adhesions, suggesting that activation of PI 3-kinase induced a restructuring of the plaque rather than complete dispersion. Furthermore, phosphatidylinositol (3,4, 5)-trisphosphate (PtdIns (3,4,5)-P(3)), a lipid product of PI 3-kinase, was sufficient to induce restructuring of the focal adhesion plaque. We also found that PtdIns (3,4,5)-P(3) binds to alpha-actinin in PDGF-treated cells. Further evidence demonstrated that activation of PI 3-kinase by PDGF induced a decrease in the association of alpha-actinin with the integrin beta subunit, and that PtdIns (3,4,5)-P(3) could disrupt this interaction in vitro. Modification of focal adhesion structure by PI 3-kinase and its lipid product, PtdIns (3,4,5)-P(3), has important implications for the regulation of cellular adhesive strength and motility.

  20. Label-free proteomics uncovers energy metabolism and focal adhesion regulations responsive for endometrium receptivity.

    PubMed

    Chen, Qian; Zhang, Aijun; Yu, Feng; Gao, Jing; Liu, Yue; Yu, Chengli; Zhou, Hu; Xu, Chen

    2015-04-03

    The menstrual cycle of the female uterus leads to periodic changes of the endometrium. These changes are important for developing the endometrial receptivity and for achieving competency of embryo implantation. However, the molecular events underlying the endometrial receptivity process remain poorly understood. Here we applied an LC-MS-based label-free quantitative proteomic approach to compare the endometrial tissues in the midsecretory (receptive) phase with the endometrial tissues in the proliferative phase from age-matched woman (n = 6/group). The proteomes of endometrial tissues were extracted using an SDS-based detergent, digested by the filter-aided sample preparation procedures, and subsequently analyzed by nano-LC-MS/MS (Orbitrap XL) with a 4 h gradient. Reliable protein expression profiles were reproducibly obtained from the endometrial tissues in the receptive and proliferative phases. A total of 2138 protein groups were quantified under highly stringent criteria with a false discovery rate of <1% for peptide and protein groups. Among these proteins, 317 proteins had differences in expression that were statistically significant between the receptive and proliferative phases. Direct protein-protein interaction network analyses of these significantly changed proteins showed that the up-regulation of creatine kinase B-type (CKB) in the receptive phase may be related to endometrium receptivity. The interaction network also showed that proteins related to cell-cell adhesion were down-regulated. Moreover, the results from KEGG pathway analyses are consistent with the protein-protein interaction results. The proteins, including alpha-actinin (ACTN), extracellular matrix proteins, integrin alpha-V, and so on, that are involved in the focal adhesion pathway were down-regulated in the receptive phase compared with the proliferative phase, which may facilitate the implantation of the fertilized ovum. Selected proteins were validated by Western blot analysis and

  1. Tyrosine phosphorylation of focal adhesion kinase (p125FAK): regulation by cAMP and thrombin in mesangial cells.

    PubMed

    Troyer, D A; Bouton, A; Bedolla, R; Padilla, R

    1996-03-01

    Stress fibers, composed of actin filaments, converge upon and associate with a number of proteins, including focal adhesion kinase (p125FAK), and integrin receptors to form areas of close contact between cells and the extracellular matrix referred to as focal adhesions. Treatment of mesangial cells with cAMP-elevating agents causes a loss of focal adhesions, fragmentation of stress fibers, and decreased tyrosine phosphorylation of p125FAK. Thrombin reverses these effects of cAMP, and this model can be used to address some of the cellular mechanisms involved in regulating the loss and formation of focal adhesions. This study reports the effects of cAMP and thrombin on mesangial cell shape, distribution of actin, formation of stress fibers, and tyrosine phosphorylation of p125FAK. cAMP-treated cells display a condensed cell body with slender processes that traverse the area formerly covered by the cell. Addition of thrombin to these cells restores actin filaments (stress fibers) and increases tyrosine phosphorylation of p125FAK, and the cells resume a flattened morphology, even in the continued presence of cAMP-elevating agents. Peptides that mimic the tethered ligand portion of the thrombin receptor have the same effects on cell morphology and stress fiber formation as thrombin. In selected experiments, agents that disrupt either stress fibers (cytochalasin D) or microtubules (nocodazole; Sigma Chemical, St. Louis, MO) were used to examine the role of these cytoskeletal elements in thrombin-induced restoration of focal adhesions. Cytochalasin D blocked the ability of thrombin to restore focal adhesions and phosphorylate p125FAK. The effects of nocodazole, an agent that destabilizes microtubules (but which has no known receptor), are very similar to those of thrombin. The findings discussed in this study indicate that thrombin can modulate the formation of focal adhesions. The organization of stress fibers and microtubules is apparently intimately related to the

  2. Translucent titanium coating altered the composition of focal adhesions and promoted migration of osteoblast-like MG-63 cells on glass.

    PubMed

    Ho, Yi; Kok, Sang-Heng; Wang, Juo-Song; Lin, Li-Deh

    2014-04-01

    "TiGlass" was designed and was known to promote initial adhesion and increase migration of rat calvarial osteoblats. In this article, migration study and a series of epifluorescence microscopic studies were conducted to find out the composition of focal adhesion on titanium surface. The translucent titanium surface was applied in random migration analysis and immunofluorescence cell staining. In the immunofluorescent double staining, phosphorylated focal adhesion kinase was tested with vinculin. Various integrin subunits were then tested with vinculin to study the composition of activated focal adhesions. Integrin subunit α5 and αV were tested against β3; integrin subunits α5, αV, β3, and αVβ3 were tested with F-actin, respectively. The MG-63 cells began migration earlier and migrated faster on "TiGlass." Immunofluorescent double staining revealed that all focal adhesion kinase in the focal adhesions were activated on both the surfaces. The osteoblast was inferred to made adhesion to titanium and glass through integrins. The focal adhesions on glass were found to be composed of integrin subunits αV and β3. However, on "TiGlass," integrin subunits α5 might have supplemented the adhesion to titanium. Results from double staining of integrin subunits α5, αV, β3, and αVβ3 with F-actin also supported integrin subunits α5 might have involved in adhesion of titanium.

  3. Self-assembled asymmetric membrane containing micron-size germanium for high capacity lithium ion batteries

    DOE PAGES

    Byrd, Ian; Chen, Hao; Webber, Theron; ...

    2015-10-23

    We report the formation of novel asymmetric membrane electrode containing micron-size (~5 μm) germanium powders through a self-assembly phase inversion method for high capacity lithium ion battery anode. 850 mA h g-1 capacity (70%) can be retained at a current density of 600 mA g-1 after 100 cycles with excellent rate performance. Such a high retention rate has rarely been seen for pristine micron-size germanium anodes. Moreover, scanning electron microscope studies reveal that germanium powders are uniformly embedded in a networking porous structure consisting of both nanopores and macropores. It is believed that such a unique porous structure can efficientlymore » accommodate the ~260% volume change during germanium alloying and de-alloying process, resulting in an enhanced cycling performance. Finally, these porous membrane electrodes can be manufactured in large scale using a roll-to-roll processing method.« less

  4. Self-assembled asymmetric membrane containing micron-size germanium for high capacity lithium ion batteries

    SciTech Connect

    Byrd, Ian; Chen, Hao; Webber, Theron; Li, Jianlin; Wu, Ji

    2015-10-23

    We report the formation of novel asymmetric membrane electrode containing micron-size (~5 μm) germanium powders through a self-assembly phase inversion method for high capacity lithium ion battery anode. 850 mA h g-1 capacity (70%) can be retained at a current density of 600 mA g-1 after 100 cycles with excellent rate performance. Such a high retention rate has rarely been seen for pristine micron-size germanium anodes. Moreover, scanning electron microscope studies reveal that germanium powders are uniformly embedded in a networking porous structure consisting of both nanopores and macropores. It is believed that such a unique porous structure can efficiently accommodate the ~260% volume change during germanium alloying and de-alloying process, resulting in an enhanced cycling performance. Finally, these porous membrane electrodes can be manufactured in large scale using a roll-to-roll processing method.

  5. In-situ detection of micron-sized dust particles in near-Earth space

    NASA Technical Reports Server (NTRS)

    Gruen, E.; Zook, H. A.

    1985-01-01

    In situ detectors for micron sized dust particles based on the measurement of impact ionization have been flown on several space missions (Pioneer 8/9, HEOS-2 and Helios 1/2). Previous measurements of small dust particles in near-Earth space are reviewed. An instrument is proposed for the measurement of micron sized meteoroids and space debris such as solid rocket exhaust particles from on board an Earth orbiting satellite. The instrument will measure the mass, speed, flight direction and electrical charge of individually impacting debris and meteoritic particles. It is a multicoincidence detector of 1000 sq cm sensitive area and measures particle masses in the range from 10 to the -14th power g to 10 to the -8th power g at an impact speed of 10 km/s. The instrument is lightweight (5 kg), consumes little power (4 watts), and requires a data sampling rate of about 100 bits per second.

  6. DNA-linked micron-sized colloids: reversibility and melting temperature

    NASA Astrophysics Data System (ADS)

    Valignat, Marie-Pierre; Kim, Anthony; Crocker, John; Chaikin, Paul

    2004-03-01

    We present experimental results on a system of micron-sized latex spheres linked with DNA. We mix fluorescent and non-fluorescent beads bearing complementary strands of DNA and we observe their aggregation by fluorescence microscopy. Upon increasing the temperature, the aggregation is expected to be reversible due to the de-hybridization of the DNA. For micron-sized particles, the reversibility process is far from straightforward and to our knowledge has never been observed in a binary mixture. We show that the reversibility can be reached when the colloidal dispersion is further stabilized with a polymeric layer. In this case, we propose a simple thermodynamic model for the equilibrium between singlet beads and aggregates. From this model, the melting temperature of the system (temperature for which half the beads are in a singlet state) is predicted and is in good agreement with the experimental data.

  7. Charging of Individual Micron-Size Interstellar/Planetary Dust Grains by Secondary Electron Emissions

    NASA Technical Reports Server (NTRS)

    Tankosic, D.; Abbas, M. M.

    2012-01-01

    Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with UV/X-ray radiation, as well as by electron/ion impact. Knowledge of physical and optical properties of individual dust grains is required for understanding of the physical and dynamical processes in space environments and the role of dust in formation of stellar and planetary systems. In this paper, we discuss experimental results on dust charging by electron impact, where low energy electrons are scattered or stick to the dust grains, thereby charging the dust grains negatively, and at sufficiently high energies the incident electrons penetrate the grain leading to excitation and emission of electrons referred to as secondary electron emission (SEE). Currently, very limited experimental data are available for charging of individual micron-size dust grains, particularly by low energy electron impact. Available theoretical models based on the Sternglass equation (Sternglass, 1954) are applicable for neutral, planar, and bulk surfaces only. However, charging properties of individual micron-size dust grains are expected to be different from the values measured on bulk materials. Our recent experimental results on individual, positively charged, micron-size lunar dust grains levitated in an electrodynamic balance facility (at NASA-MSFC) indicate that the SEE by electron impact is a complex process. The electron impact may lead to charging or discharging of dust grains depending upon the grain size, surface potential, electron energy, electron flux, grain composition, and configuration (e.g. Abbas et al, 2010). Here we discuss the complex nature of SEE charging properties of individual micron-size lunar dust grains and silica microspheres.

  8. Unlocking the energy capabilities of micron-sized LiFePO4

    NASA Astrophysics Data System (ADS)

    Guo, Limin; Zhang, Yelong; Wang, Jiawei; Ma, Lipo; Ma, Shunchao; Zhang, Yantao; Wang, Erkang; Bi, Yujing; Wang, Deyu; McKee, William C.; Xu, Ye; Chen, Jitao; Zhang, Qinghua; Nan, Cewen; Gu, Lin; Bruce, Peter G.; Peng, Zhangquan

    2015-08-01

    Utilization of LiFePO4 as a cathode material for Li-ion batteries often requires size nanonization coupled with calcination-based carbon coating to improve its electrochemical performance, which, however, is usually at the expense of tap density and may be environmentally problematic. Here we report the utilization of micron-sized LiFePO4, which has a higher tap density than its nano-sized siblings, by forming a conducting polymer coating on its surface with a greener diazonium chemistry. Specifically, micron-sized LiFePO4 particles have been uniformly coated with a thin polyphenylene film via the spontaneous reaction between LiFePO4 and an aromatic diazonium salt of benzenediazonium tetrafluoroborate. The coated micron-sized LiFePO4, compared with its pristine counterpart, has shown improved electrical conductivity, high rate capability and excellent cyclability when used as a `carbon additive free' cathode material for rechargeable Li-ion batteries. The bonding mechanism of polyphenylene to LiFePO4/FePO4 has been understood with density functional theory calculations.

  9. Measurement of Characteristics of Micron Size Individual Dust Particles of Astrophysical Interest

    NASA Technical Reports Server (NTRS)

    Craven, P. D.; Abbas, M. M.; Tankosic, D.; Spann, J. F.

    2003-01-01

    A laboratory facility for levitating single isolated dust particles in an electrodynamic balance has been developed at NASA's Marshall Space Flight Center for conducting studies of the physical and optical properties of the analogs of interstellar and interplanetary dust grains of 0.2-20 micron size under controlled pressures/temperatures simulating astrophysical environments. We plan three classes of experiments using this facility: (1) Charge characteristics of micron size single dust grains: The photoelectric efficiencies, yields, and equilibrium potentials when exposed to UV radiation found from these measurements will provide much-needed photoelectric emission data for individual dust particles; (2) Infrared optical properties of dust particles: Specifically, we will determines the complex refractive indices, the extinction coefficients, the scattering phase functions, and the polarization properties of single dust grains of interest in interstellar environments, in the 1- 25 micron spectral region; (3) Condensation experiments to investigate the deposition of volatile gases on colder nucleated particles in dense interstellar clouds and lower planetary atmospheres: The measured data will permit determination of the sticking efficiencies of volatile gases of astrophysical interest. Brief descriptions of the experimental setup for the last two classes of experiments will be given. We will present results of measurements of photoelectric emission using 0.2-6.6 micron size silica particles exposed to UV radiation at 120-200 nm and also results of radiation pressure measurements using the same size silica particles and laser light at 5320 Angstrom.

  10. Measurement of Characteristics of Micron Size Individual Dust Particles of Astrophysical Interest

    NASA Technical Reports Server (NTRS)

    Craven, P. D.; Abbas, M. M.; Tankosic, D.; Spann, J. F.

    2003-01-01

    A laboratory facility for levitating single isolated dust particles in an electrodynamic balance has been developed at NASA's Marshall Space Flight Center for conducting studies of the physical and optical properties of the analogs of interstellar and interplanetary dust grains of 0.2-20 micron size under controlled pressures/temperatures simulating astrophysical environments. We plan three classes of experiments using this facility: (1) Charge characteristics of micron size single dust grains: The photoelectric efficiencies, yields, and equilibrium potentials when exposed to UV radiation found from these measurements will provide much-needed photoelectric emission data for individual dust particles; (2) Infrared optical properties of dust particles: Specifically, we will determines the complex refractive indices, the extinction coefficients, the scattering phase functions, and the polarization properties of single dust grains of interest in interstellar environments, in the 1- 25 micron spectral region; (3) Condensation experiments to investigate the deposition of volatile gases on colder nucleated particles in dense interstellar clouds and lower planetary atmospheres: The measured data will permit determination of the sticking efficiencies of volatile gases of astrophysical interest. Brief descriptions of the experimental setup for the last two classes of experiments will be given. We will present results of measurements of photoelectric emission using 0.2-6.6 micron size silica particles exposed to UV radiation at 120-200 nm and also results of radiation pressure measurements using the same size silica particles and laser light at 5320 Angstrom.

  11. Unlocking the energy capabilities of micron-sized LiFePO4.

    PubMed

    Guo, Limin; Zhang, Yelong; Wang, Jiawei; Ma, Lipo; Ma, Shunchao; Zhang, Yantao; Wang, Erkang; Bi, Yujing; Wang, Deyu; McKee, William C; Xu, Ye; Chen, Jitao; Zhang, Qinghua; Nan, Cewen; Gu, Lin; Bruce, Peter G; Peng, Zhangquan

    2015-08-03

    Utilization of LiFePO4 as a cathode material for Li-ion batteries often requires size nanonization coupled with calcination-based carbon coating to improve its electrochemical performance, which, however, is usually at the expense of tap density and may be environmentally problematic. Here we report the utilization of micron-sized LiFePO4, which has a higher tap density than its nano-sized siblings, by forming a conducting polymer coating on its surface with a greener diazonium chemistry. Specifically, micron-sized LiFePO4 particles have been uniformly coated with a thin polyphenylene film via the spontaneous reaction between LiFePO4 and an aromatic diazonium salt of benzenediazonium tetrafluoroborate. The coated micron-sized LiFePO4, compared with its pristine counterpart, has shown improved electrical conductivity, high rate capability and excellent cyclability when used as a 'carbon additive free' cathode material for rechargeable Li-ion batteries. The bonding mechanism of polyphenylene to LiFePO4/FePO4 has been understood with density functional theory calculations.

  12. Unlocking the energy capabilities of micron-sized LiFePO4

    PubMed Central

    Guo, Limin; Zhang, Yelong; Wang, Jiawei; Ma, Lipo; Ma, Shunchao; Zhang, Yantao; Wang, Erkang; Bi, Yujing; Wang, Deyu; McKee, William C.; Xu, Ye; Chen, Jitao; Zhang, Qinghua; Nan, Cewen; Gu, Lin; Bruce, Peter G.; Peng, Zhangquan

    2015-01-01

    Utilization of LiFePO4 as a cathode material for Li-ion batteries often requires size nanonization coupled with calcination-based carbon coating to improve its electrochemical performance, which, however, is usually at the expense of tap density and may be environmentally problematic. Here we report the utilization of micron-sized LiFePO4, which has a higher tap density than its nano-sized siblings, by forming a conducting polymer coating on its surface with a greener diazonium chemistry. Specifically, micron-sized LiFePO4 particles have been uniformly coated with a thin polyphenylene film via the spontaneous reaction between LiFePO4 and an aromatic diazonium salt of benzenediazonium tetrafluoroborate. The coated micron-sized LiFePO4, compared with its pristine counterpart, has shown improved electrical conductivity, high rate capability and excellent cyclability when used as a ‘carbon additive free' cathode material for rechargeable Li-ion batteries. The bonding mechanism of polyphenylene to LiFePO4/FePO4 has been understood with density functional theory calculations. PMID:26235395

  13. Laser-induced alteration of Raman spectra for micron-sized solid particles

    NASA Astrophysics Data System (ADS)

    Böttger, U.; Pavlov, S. G.; Deßmann, N.; Hanke, F.; Weber, I.; Fritz, J.; Hübers, H.-W.

    2017-04-01

    The Raman Laser Spectrometer (RLS) instrument on board of the future ESAs ExoMars mission will analyze micron-sized powder samples in a low pressure atmosphere. Such micron-sized polycrystalline solid particles might be heated by the laser during the Raman measurements. Here, we report on the temperature-induced alteration of Raman spectra from micron-sized polycrystalline solid particles by comparing Raman spectra on silicon and the rock forming minerals olivine and pyroxene taken at different laser intensities and different ambient temperatures. Our analyses indicate that laser-induced heating results in both broadening and shifting of characteristic Raman lines in the Stokes and anti-Stokes spectral regions. For elementary crystalline silicon a significant local temperature increase and relevant changes in Raman spectra have been observed in particles with median sizes below 250 μm. In comparison, significantly weaker laser-induced Raman spectral changes were observed in more complex rock-forming silicate minerals; even for lower grain sizes. Laser power densities realized in the RLS ExoMars instrument should cause only low local heating effects and, thus, negligible frequency shifts of the major Raman lines in common silicate minerals such as olivine and pyroxene.

  14. The mTOR-FAK mechanotransduction signaling axis for focal adhesion maturation and cell proliferation

    PubMed Central

    Lee, Fan-Yen; Zhen, Yen-Yi; Yuen, Chun-Man; Fan, Raymond; Chen, Yen-Ta; Sheu, Jiunn-Jye; Chen, Yi-Ling; Wang, Ching-Jen; Sun, Cheuk-Kwan; Yip, Hon-Kan

    2017-01-01

    Background: Mechanotransduction (MTD) is an important physiopathological signalling pathway associated with cardiovascular disease such as hypertension. Phosphorylation of focal adhesion kinase (FAK) is a MTD-sensing protein. This study tested the hypothesis that mTOR-FAK MTD signaling axis was crucial for focal adhesion (FA) maturation and cell proliferation. Methods: Shock-wave was adopted as a tool for MTD and mTOR-FAK signaling. Results: After demonstrating a failure in FAK phosphorylation after microfilament depolymerization, we attempted to identify the upstream regulator out of three kinases known to be activated in pressure-stimulated MTD [i.e., GSK-3β, Akt, and mTORC1 (mammalian target of rapamycin complex 1)]. Of the three specific inhibitors, only rapamycin, an inhibitor of mTORC1, was found to inhibit FAK phosphorylation, suggesting that mTORC1 is the upstream regulator in shock-wave-elicited FAK phosphorylation. Moreover, mTOR and its readout protein S6K were found to be activated by shock-wave stimulation. On the other hand, microscopic examination revealed not only MTD-induced increase in the number of actin stress fibers, but also alternative subcellular localization of mTORC1 as vesicle-like inclusions on microfilaments. Besides, rapamycin was found to destruct the granular pattern of mTORC1, while dissociation between F-actin and mTORC1 was noted after cytochalasin D administration. Since mTORC1 and FAK are essential for cell proliferation, we performed proliferation assay for mesenchymal stem cell (MSC) with and without shock-wave administration/rapamycin treatment/FAK depletion. The results demonstrated significant enhancement of cell proliferation after shock-wave stimulation but remarkable suppression after rapamycin and siFAK treatment. Conclusion: Our findings suggest not only a co-ordinated regulation of FAK phosphorylation by mTORC1 and microfilaments, but also the participation of mTORC1-FAK signalling in MSC proliferation. PMID:28469768

  15. Cadmium affects focal adhesion kinase (FAK) in mesangial cells: involvement of CaMK-II and the actin cytoskeleton.

    PubMed

    Choong, Grace; Liu, Ying; Templeton, Douglas M

    2013-08-01

    The toxic metal ion cadmium (Cd(2+)) induces pleiotropic effects on cell death and survival, in part through effects on cell signaling mechanisms and cytoskeletal dynamics. Linking these phenomena appears to be calmodulin-dependent activation of the Ca(2+)/calmodulin-dependent protein kinase II (CaMK-II). Here we show that interference with the dynamics of the filamentous actin cytoskeleton, either by stabilization or destabilization, results in disruption of focal adhesions at the ends of organized actin structures, and in particular the loss of vinculin and focal adhesion kinase (FAK) from the contacts is a result. Low-level exposure of renal mesangial cells to CdCl2 disrupts the actin cytoskeleton and recapitulates the effects of manipulation of cytoskeletal dynamics with biological agents. Specifically, Cd(2+) treatment causes loss of vinculin and FAK from focal contacts, concomitant with cytoskeletal disruption, and preservation of cytoskeletal integrity with either a calmodulin antagonist or a CaMK-II inhibitor abrogates these effects of Cd(2+). Notably, inhibition of CaMK-II decreases the migration of FAK-phosphoTyr925 to a membrane-associated compartment where it is otherwise sequestered from focal adhesions in a Cd(2+)-dependent manner. These results add further insight into the mechanism of the CaMK-II-dependent effects of Cd(2+) on cellular function. Copyright © 2013 Wiley Periodicals, Inc.

  16. Laminin α2-mediated focal adhesion kinase activation triggers Alport glomerular pathogenesis.

    PubMed

    Delimont, Duane; Dufek, Brianna M; Meehan, Daniel T; Zallocchi, Marisa; Gratton, Michael Anne; Phillips, Grady; Cosgrove, Dominic

    2014-01-01

    It has been known for some time that laminins containing α1 and α2 chains, which are normally restricted to the mesangial matrix, accumulate in the glomerular basement membranes (GBM) of Alport mice, dogs, and humans. We show that laminins containing the α2 chain, but not those containing the α1 chain activates focal adhesion kinase (FAK) on glomerular podocytes in vitro and in vivo. CD151-null mice, which have weakened podocyte adhesion to the GBM rendering these mice more susceptible to biomechanical strain in the glomerulus, also show progressive accumulation of α2 laminins in the GBM, and podocyte FAK activation. Analysis of glomerular mRNA from both models demonstrates significant induction of MMP-9, MMP-10, MMP-12, MMPs linked to GBM destruction in Alport disease models, as well as the pro-inflammatory cytokine IL-6. SiRNA knockdown of FAK in cultured podocytes significantly reduced expression of MMP-9, MMP-10 and IL-6, but not MMP-12. Treatment of Alport mice with TAE226, a small molecule inhibitor of FAK activation, ameliorated fibrosis and glomerulosclerosis, significantly reduced proteinuria and blood urea nitrogen levels, and partially restored GBM ultrastructure. Glomerular expression of MMP-9, MMP-10 and MMP-12 mRNAs was significantly reduced in TAE226 treated animals. Collectively, this work identifies laminin α2-mediated FAK activation in podocytes as an important early event in Alport glomerular pathogenesis and suggests that FAK inhibitors, if safe formulations can be developed, might be employed as a novel therapeutic approach for treating Alport renal disease in its early stages.

  17. Laminin α2-Mediated Focal Adhesion Kinase Activation Triggers Alport Glomerular Pathogenesis

    PubMed Central

    Delimont, Duane; Dufek, Brianna M.; Meehan, Daniel T.; Zallocchi, Marisa; Gratton, Michael Anne; Phillips, Grady; Cosgrove, Dominic

    2014-01-01

    It has been known for some time that laminins containing α1 and α2 chains, which are normally restricted to the mesangial matrix, accumulate in the glomerular basement membranes (GBM) of Alport mice, dogs, and humans. We show that laminins containing the α2 chain, but not those containing the α1 chain activates focal adhesion kinase (FAK) on glomerular podocytes in vitro and in vivo. CD151-null mice, which have weakened podocyte adhesion to the GBM rendering these mice more susceptible to biomechanical strain in the glomerulus, also show progressive accumulation of α2 laminins in the GBM, and podocyte FAK activation. Analysis of glomerular mRNA from both models demonstrates significant induction of MMP-9, MMP-10, MMP-12, MMPs linked to GBM destruction in Alport disease models, as well as the pro-inflammatory cytokine IL-6. SiRNA knockdown of FAK in cultured podocytes significantly reduced expression of MMP-9, MMP-10 and IL-6, but not MMP-12. Treatment of Alport mice with TAE226, a small molecule inhibitor of FAK activation, ameliorated fibrosis and glomerulosclerosis, significantly reduced proteinuria and blood urea nitrogen levels, and partially restored GBM ultrastructure. Glomerular expression of MMP-9, MMP-10 and MMP-12 mRNAs was significantly reduced in TAE226 treated animals. Collectively, this work identifies laminin α2-mediated FAK activation in podocytes as an important early event in Alport glomerular pathogenesis and suggests that FAK inhibitors, if safe formulations can be developed, might be employed as a novel therapeutic approach for treating Alport renal disease in its early stages. PMID:24915008

  18. Focal Adhesion Kinase as a Potential Target in AML and MDS.

    PubMed

    Carter, Bing Z; Mak, Po Yee; Wang, Xiangmeng; Yang, Hui; Garcia-Manero, Guillermo; Mak, Duncan; Mu, Hong; Ruvolo, Vivian; Qiu, Yihua; Coombes, Kevin; Zhang, Nianxiang; Ragon, Brittany; Weaver, David T; Pachter, Jonathan A; Kornblau, Steven; Andreeff, Michael

    2017-03-07

    Although overexpression/activation of focal adhesion kinase (FAK) is widely known in solid tumors to control cell growth, survival, invasion, metastasis, gene expression, and stem cell self-renewal, its expression and function in myeloid leukemia are not well investigated. Using reverse-phase protein arrays in large cohorts of newly diagnosed acute myeloid leukemia (AML) and myeloid dysplastic syndrome (MDS) samples, we found that high FAK expression was associated with unfavorable cytogenetics (P = 2 x 10-4) and relapse (P = 0.02) in AML. FAK expression was significantly lower in patients with FLT3-ITD (P = 0.0024) or RAS (P = 0.05) mutations and strongly correlated with p-SRC and integrinβ3 levels. FAK protein levels were significantly higher in CD34+ (P = 5.42 x 10-20) and CD34+ CD38- MDS (P = 7.62 x 10-9) cells compared to normal CD34+ cells. MDS patients with higher FAK in CD34+ cells tended to have better OS (P = 0.05). FAK expression was significantly higher in MDS patients who later transformed to compared with not transformed to AML and in AML patients who transformed from MDS compared with those with de novo AML. Co-culture with mesenchymal stromal cells (MSCs) increased FAK expression in AML cells. Inhibition of FAK decreased MSC-mediated adhesion/migration and viability of AML cells and prolonged survival in an AML xenograft murine model. Our results suggest that FAK regulates leukemia-stromal interactions and supports leukemia cell survival; hence FAK is a potential therapeutic target in myeloid leukemia.

  19. Deguelin inhibits vasculogenic function of endothelial progenitor cells in tumor progression and metastasis via suppression of focal adhesion.

    PubMed

    Nguyen, Minh Phuong; Lee, Dongjin; Lee, Se-Hyung; Lee, Hye-Eun; Lee, Ho-Young; Lee, You Mie

    2015-06-30

    Deguelin is a nature-derived chemopreventive drug. Endothelial progenitor cells (EPCs) are bone-marrow (BM)-derived key components to induce new blood vessels in early tumorigenesis and metastasis. Here we determined whether deguelin inhibits EPC function in vitro and in vivo at doses not affecting cancer cell apoptosis. Deguelin significantly reduced the number of EPC colony forming units of BM-derived c-kit+/sca-1+ mononuclear cells (MNCs), proliferation, migration, and adhesion to endothelial cell monolayers, and suppressed incorporation of EPC into tube-like vessel networks when co-cultured with endothelial cells. Deguelin caused cell cycle arrest at G1 without induction of apoptosis in EPC. In a mouse tumor xenograft model, tumor growth, lung metastasis and tumor-induced circulating EPCs were supressed by deguelin treatment (2 mg/kg). In mice tranplanted with GFP-expressing BM-MNCs, deguelin reduced the co-localization of CD31 and GFP, suggesting suppression of BM-derived EPC incoporation into tumor vessels. Interestingly, focal adhesion kinase (FAK)-integrin-linked kinase (ILK) activation and actin polymerization were repressed by deguelin. Decreased number of focal adhesions and a depolarized morphology was found in deguelin-treated EPCs. Taken together, our results suggest that the deguelin inhibits tumorigenesis and metastasis via EPC suppression and that suppression of focal adhesion by FAK-integrin-ILK-dependent actin remodeling is a key underlying molecular mechanism.

  20. NEDD9 stabilizes focal adhesions, increases binding to the extra-cellular matrix and differentially effects 2D versus 3D cell migration.

    PubMed

    Zhong, Jessie; Baquiran, Jaime B; Bonakdar, Navid; Lees, Justin; Ching, Yu Wooi; Pugacheva, Elena; Fabry, Ben; O'Neill, Geraldine M

    2012-01-01

    The speed of cell migration on 2-dimensional (2D) surfaces is determined by the rate of assembly and disassembly of clustered integrin receptors known as focal adhesions. Different modes of cell migration that have been described in 3D environments are distinguished by their dependence on integrin-mediated interactions with the extra-cellular matrix. In particular, the mesenchymal invasion mode is the most dependent on focal adhesion dynamics. The focal adhesion protein NEDD9 is a key signalling intermediary in mesenchymal cell migration, however whether NEDD9 plays a role in regulating focal adhesion dynamics has not previously been reported. As NEDD9 effects on 2D migration speed appear to depend on the cell type examined, in the present study we have used mouse embryo fibroblasts (MEFs) from mice in which the NEDD9 gene has been depleted (NEDD9 -/- MEFs). This allows comparison with effects of other focal adhesion proteins that have previously been demonstrated using MEFs. We show that focal adhesion disassembly rates are increased in the absence of NEDD9 expression and this is correlated with increased paxillin phosphorylation at focal adhesions. NEDD9-/- MEFs have increased rates of migration on 2D surfaces, but conversely, migration of these cells is significantly reduced in 3D collagen gels. Importantly we show that myosin light chain kinase is activated in 3D in the absence of NEDD9 and is conversely inhibited in 2D cultures. Measurement of adhesion strength reveals that NEDD9-/- MEFs have decreased adhesion to fibronectin, despite upregulated α5β1 fibronectin receptor expression. We find that β1 integrin activation is significantly suppressed in the NEDD9-/-, suggesting that in the absence of NEDD9 there is decreased integrin receptor activation. Collectively our data suggest that NEDD9 may promote 3D cell migration by slowing focal adhesion disassembly, promoting integrin receptor activation and increasing adhesion force to the ECM.

  1. Deformation Behavior of Sub-micron and Micron Sized Alumina Particles in Compression.

    SciTech Connect

    Sarobol, Pylin; Chandross, Michael E.; Carroll, Jay; Mook, William; Boyce, Brad; Kotula, Paul Gabriel; McKenzie, Bonnie Beth; Bufford, Daniel Charles; Hall, Aaron Christopher.

    2014-09-01

    The ability to integrate ceramics with other materials has been limited due to high temperature (>800degC) ceramic processing. Recently, researchers demonstrated a novel process , aerosol deposition (AD), to fabricate ceramic films at room temperature (RT). In this process, sub - micro n sized ceramic particles are accelerated by pressurized gas, impacted on the substrate, plastically deformed, and form a dense film under vacuum. This AD process eliminates high temperature processing thereby enabling new coatings and device integration, in which ceramics can be deposited on metals, plastics, and glass. However, k nowledge in fundamental mechanisms for ceramic particle s to deform and form a dense ceramic film is still needed and is essential in advancing this novel RT technology. In this wo rk, a combination of experimentation and atomistic simulation was used to determine the deformation behavior of sub - micron sized ceramic particle s ; this is the first fundamental step needed to explain coating formation in the AD process . High purity, singl e crystal, alpha alumina particles with nominal size s of 0.3 um and 3.0 um were examined. Particle characterization, using transmission electron microscopy (TEM ), showed that the 0.3 u m particles were relatively defect - free single crystals whereas 3.0 u m p articles were highly defective single crystals or particles contained low angle grain boundaries. Sub - micron sized Al 2 O 3 particles exhibited ductile failure in compression. In situ compression experiments showed 0.3um particles deformed plastically, fractured, and became polycrystalline. Moreover, dislocation activit y was observed within the se particles during compression . These sub - micron sized Al 2 O 3 particles exhibited large accum ulated strain (2 - 3 times those of micron - sized particles) before first fracture. I n agreement with the findings from experimentation , a tomistic simulation s of nano - Al 2 O 3 particles showed dislocation slip and

  2. Apigenin Attenuates Melanoma Cell Migration by Inducing Anoikis through Integrin and Focal Adhesion Kinase Inhibition.

    PubMed

    Hasnat, Md Abul; Pervin, Mehnaz; Lim, Ji Hong; Lim, Beong Ou

    2015-11-27

    Apigenin, a nonmutagenic flavonoid, has been found to have antitumor properties and is therefore particularly relevant for the development of chemotherapeutic agents for cancers. In this study, time- and dose-dependent cell viability and cytotoxicity were assessed to determine the effects of apigenin on A2058 and A375 melanoma cells. Melanoma cells were pretreated with different concentrations of apigenin and analyzed for morphological changes, anoikis induction, cell migration, and levels of proteins associated with apoptosis. Apigenin reduced integrin protein levels and inhibited the phosphorylation of focal adhesion kinase (FAK) and extracellular signal-regulated kinase (ERK1/2), which induce anoikis in human cutaneous melanoma cells. Apigenin exhibited dose-dependent inhibition of melanoma cell migration, unlike untreated controls. Furthermore, apigenin treatment increased apoptotic factors such as caspase-3 and cleaved poly(ADP-ribose) polymerase in a dose-dependent manner, demonstrating the metastasis of melanoma cells. Our results provide a new insight into the mechanisms by which apigenin prevents melanoma metastasis by sensitizing anoikis induced by the loss of integrin proteins in the FAK/ERK1/2 signaling pathway. These findings elucidate the related mechanisms and suggest the potential of apigenin in developing clinical treatment strategies against malignant melanoma.

  3. Strain reorganizes focal adhesions and cytoskeleton in cultured airway smooth muscle cells.

    PubMed

    Smith, P G; Garcia, R; Kogerman, L

    1997-04-10

    Abnormal mechanical stress on pulmonary structures is associated with increased airway resistance and impaired gas exchange as a result of increased airway smooth muscle (ASM) deposition. Using an in vitro system with cultured ASM cells, we have demonstrated that cyclic deformational strain increases ASM cellular myosin and myosin light chain kinase. To determine if these contractile protein increases were accompanied by ultrastructural changes in cells indicating phenotypic modulation, cells subjected to strain were compared to cells grown under static conditions by transmission electron microscopy (TEM) and fluorescent staining. The strained ASM cells oriented perpendicular to the strain direction were more elongated and contained more actin stress fibers than identical cells grown under physically static conditions. The stress fiber bundles were thicker and reorganized parallel to the long axis of the cell. Marked increases in the numbers and lengths of focal adhesions between the cell membrane and the substratum were found by both TEM and immunostaining for talin. Mechanical strain thus increases organization of cytoskeletal elements in cultured ASM cells. Similar effects in vivo may serve to promote the expression of the contractile phenotype of cultured ASM cells independent of other in vivo factors and alter cell contractility. Increased organization of cytoskeletal elements might also increase the efficiency of signal transduction from the extracellular matrix into the cell interior.

  4. The Role of Focal Adhesion Kinase in Keratinocyte Fibrogenic Gene Expression

    PubMed Central

    Januszyk, Michael; Kwon, Sun Hyung; Wong, Victor W.; Padmanabhan, Jagannath; Maan, Zeshaan N.; Whittam, Alexander J.; Major, Melanie R.; Gurtner, Geoffrey C.

    2017-01-01

    Abnormal skin scarring causes functional impairment, psychological stress, and high socioeconomic cost. Evidence shows that altered mechanotransduction pathways have been linked to both inflammation and fibrosis, and that focal adhesion kinase (FAK) is a key mediator of these processes. We investigated the importance of keratinocyte FAK at the single cell level in key fibrogenic pathways critical for scar formation. Keratinocytes were isolated from wildtype and keratinocyte-specific FAK-deleted mice, cultured, and sorted into single cells. Keratinocytes were evaluated using a microfluidic-based platform for high-resolution transcriptional analysis. Partitive clustering, gene enrichment analysis, and network modeling were applied to characterize the significance of FAK on regulating keratinocyte subpopulations and fibrogenic pathways important for scar formation. Considerable transcriptional heterogeneity was observed within the keratinocyte populations. FAK-deleted keratinocytes demonstrated increased expression of genes integral to mechanotransduction and extracellular matrix production, including Igtbl, Mmpla, and Col4a1. Transcriptional activities upon FAK deletion were not identical across all single keratinocytes, resulting in higher frequency of a minor subpopulation characterized by a matrix-remodeling profile compared to wildtype keratinocyte population. The importance of keratinocyte FAK signaling gene expression was revealed. A minor subpopulation of keratinocytes characterized by a matrix-modulating profile may be a keratinocyte subset important for mechanotransduction and scar formation. PMID:28880199

  5. The stimulation of dendrite growth by Sema3A requires integrin engagement and focal adhesion kinase.

    PubMed

    Schlomann, Uwe; Schwamborn, Jens C; Müller, Myriam; Fässler, Reinhard; Püschel, Andreas W

    2009-06-15

    The rate and direction of axon and dendrite growth depend on multiple guidance signals and growth factors. Semaphorin 3A (Sema3A) acts as a repellent for axons and attractant for dendrites. Here, we show that the requirement for integrin engagement distinguishes the response of axons and dendrites to Sema3A in hippocampal neurons. Sema3A promotes the extension of hippocampal dendrites by a pathway that requires focal adhesion kinase (FAK). The stimulation of dendrite growth and FAK phosphorylation by Sema3A depend on integrin engagement. Unlike their function as a target of Sema3A during the collapse of axonal growth cones, integrins facilitate the stimulation of dendrite extension. Conditional inactivation of the genes encoding beta1 integrin or FAK blocks the growth-promoting effect of Sema3A but not the collapse of axonal growth cones. Our results demonstrate that different pathways mediate the stimulation of dendrite growth and the collapse of axonal growth cones by Sema3A.

  6. Design and evaluation of a real-time activity probe for focal adhesion kinase.

    PubMed

    Beck, Jon R; Zhou, Xinqi; Casey, Garrett R; Stains, Cliff I

    2015-10-15

    Focal adhesion kinase (FAK) has been identified as a potential therapeutic target for the treatment of metastatic cancers. Herein we describe the design, synthesis and optimization of a direct activity sensor for FAK and its application to screening FAK inhibitors. We find that the position of the sensing moiety, a phosphorylation-sensitive sulfonamido-oxine fluorophore, can dramatically influence the performance of peptide sensors for FAK. Real-time fluorescence activity assays using an optimized sensor construct, termed FAKtide-S2, are highly reproducible (Z' = 0.91) and are capable of detecting as little as 1 nM recombinant FAK. Utilizing this robust assay format, we define conditions for the screening of FAK inhibitors and demonstrate the utility of this platform using a set of well-characterized small molecule kinase inhibitors. Additionally, we provide the selectivity profile of FAKtide-S2 among a panel of closely related enzymes, identifying conditions for selectively monitoring FAK activity in the presence of off-target enzymes. In the long term, the chemosensor platform described in this work can be used to identify novel FAK inhibitor scaffolds and potentially assess the efficacy of FAK inhibitors in disease models. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Diamagnetic levitation causes changes in the morphology, cytoskeleton, and focal adhesion proteins expression in osteocytes.

    PubMed

    Qian, A R; Wang, L; Gao, X; Zhang, W; Hu, L F; Han, J; Li, J B; Di, S M; Shang, Peng

    2012-01-01

    Diamagnetic levitation technology is a novel simulated weightless technique and has recently been applied in life-science research. We have developed a superconducting magnet platform with large gradient high magnetic field (LG-HMF), which can provide three apparent gravity levels, namely, μg (diamagnetic levitation), 1g, and 2g for diamagnetic materials. In this study, the effects of LG-HMF on the activity, morphology, and cytoskeleton (actin filament, microtubules, and vimentin intermediate filaments) in osteocyte - like cell line MLO-Y4 were detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) methods, hematoxylin-eosin (HE) staining, and laser scanning confocal microscopy (LSCM), respectively. The changes induced by LG-HMF in distribution and expression of focal adhesion (FA) proteins, including vinculin, paxillin, and talin in MLO-Y4 were determined by LSCM and Western blotting. The results showed that LG-HMF produced by superconducting magnet had no lethal effects on MLO-Y4. Compared to control, diamagnetic levitation (μg) affected MLO-Y4 morphology, nucleus size, cytoskeleton architecture, and FA proteins distribution and expression. The study indicates that osteocytes are sensitive to altered gravity and FA proteins (vinculin, paxillin, and talin) may be involved in osteocyte mechanosensation. The diamagnetic levitation may be a novel ground-based space-gravity simulator and can be used for biological experiment at cellular level.

  8. Focal adhesion kinase as a mechanotransducer during rapid brain growth of the chick embryo.

    PubMed

    Desmond, Mary E; Knepper, Janice E; DiBenedetto, Angela J; Malaugh, Elizabeth; Callejo, Sagrario; Carretero, Raquel; Alonso, Maria-Isabel; Gato, Angel

    2014-01-01

    Expansion of the hollow fluid-filled embryonic brain occurs by an increase in intraluminal pressure created by accumulation of cerebrospinal fluid (CSF). Experiments have shown a direct correlation between cavity pressure and cell proliferation within the neuroepithelium. These findings lead us to ask how mechanistically this might come about. Are there perhaps molecules on the luminal surface of the embryonic neuroepithelium, such as focal adhesion kinases (FAKs) known to respond to tension in other epithelial cells? Immunodetection using antibodies to total FAK and p-FAK was performed with subsequent confocal analysis of the pattern of their activation under normal intraluminal pressure and induced chronic pressure. Western analysis was also done to look at the amount of FAK expression, as well as its activation under these same conditions. Using immunolocalization, we have shown that FAK is present and activated on both apical and basolateral surfaces and within the cytoplasm of the neuroepithelial cells. This pattern changed profoundly when the neuroepithelium was under pressure. By Western blot, we have shown that FAK was upregulated and activated in the neuroepithelium of the embryos just after the neural tube becomes a closed pressurized system, with phosphorylation detected on the luminal instead of the basal surface, along with an increase in cell proliferation. Chronic hyper-pressure does not induce an increase in phosphorylation of FAK. In conclusion, here we show that neuroepithelial cells respond to intraluminal pressure via FAK phosphorylation on the luminal surface.

  9. High-Content Microscopy Analysis of Subcellular Structures: Assay Development and Application to Focal Adhesion Quantification.

    PubMed

    Kroll, Torsten; Schmidt, David; Schwanitz, Georg; Ahmad, Mubashir; Hamann, Jana; Schlosser, Corinne; Lin, Yu-Chieh; Böhm, Konrad J; Tuckermann, Jan; Ploubidou, Aspasia

    2016-07-01

    High-content analysis (HCA) converts raw light microscopy images to quantitative data through the automated extraction, multiparametric analysis, and classification of the relevant information content. Combined with automated high-throughput image acquisition, HCA applied to the screening of chemicals or RNAi-reagents is termed high-content screening (HCS). Its power in quantifying cell phenotypes makes HCA applicable also to routine microscopy. However, developing effective HCA and bioinformatic analysis pipelines for acquisition of biologically meaningful data in HCS is challenging. Here, the step-by-step development of an HCA assay protocol and an HCS bioinformatics analysis pipeline are described. The protocol's power is demonstrated by application to focal adhesion (FA) detection, quantitative analysis of multiple FA features, and functional annotation of signaling pathways regulating FA size, using primary data of a published RNAi screen. The assay and the underlying strategy are aimed at researchers performing microscopy-based quantitative analysis of subcellular features, on a small scale or in large HCS experiments. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  10. Targeting Focal Adhesion Kinase Renders Pancreatic Cancers Responsive to Checkpoint Immunotherapy

    PubMed Central

    Jiang, Hong; Hegde, Samarth; Knolhoff, Brett L.; Zhu, Yu; Herndon, John M.; Meyer, Melissa A.; Nywening, Timothy M.; Hawkins, William G.; Shapiro, Irina M.; Weaver, David T.; Pachter, Jonathan A.; Wang-Gillam, Andrea; DeNardo, David G.

    2016-01-01

    Single-agent immunotherapy has achieved limited clinical benefit to date in patients suffering from pancreatic ductal adenocarcinoma (PDAC). This may be due to the presence of a uniquely immunosuppressive tumor microenvironment (TME). Critical obstacles to immunotherapy in PDAC tumors include a high number of tumor-associated immunosuppressive cells and a uniquely desmoplastic stroma that acts as a barrier to T-cell infiltration. We have identified hyperactivated focal adhesion kinase (FAK) activity in neoplastic PDAC cells as a significant regulator of the fibrotic and immunosuppressive TME. We found that FAK activity was elevated in human PDAC tissues and correlates with high levels of fibrosis and poor CD8+ cytotoxic T-cell infiltration. Single-agent FAK inhibition using the selective FAK inhibitor VS-4718 significantly limited tumor progression, resulting in a doubling of survival in the p48-Cre/LSL-KrasG12D/p53Flox/+ (KPC) mouse model of human PDAC. This delay in tumor progression was associated with dramatically reduced tumor fibrosis, and decreased numbers of tumor-infiltrating immunosuppressive cells. We also found that FAK inhibition rendered the previously unresponsive KPC mouse model responsive to T cell immunotherapy and PD-1 antagonists. These data suggest that FAK inhibition increases immune surveillance by overcoming the fibrotic and immunosuppressive PDAC TME and renders tumors responsive to immunotherapy. PMID:27376576

  11. Control of axonal branching and synapse formation by focal adhesion kinase.

    PubMed

    Rico, Beatriz; Beggs, Hilary E; Schahin-Reed, Dorreyah; Kimes, Nikole; Schmidt, Andrea; Reichardt, Louis F

    2004-10-01

    The formation of neuronal networks in the central nervous system (CNS) requires precise control of axonal branch development and stabilization. Here we show that cell-specific ablation of the murine gene Ptk2 (more commonly known as fak), encoding focal adhesion kinase (FAK), increases the number of axonal terminals and synapses formed by neurons in vivo. Consistent with this, fak mutant neurons also form greater numbers of axonal branches in culture because they have increased branch formation and reduced branch retraction. Expression of wild-type FAK, but not that of several FAK variants that prevent interactions with regulators of Rho family GTPases including the p190 Rho guanine nuclear exchange factor (p190RhoGEF), rescues the axonal arborization phenotype observed in fak mutant neurons. In addition, expression of a mutant p190RhoGEF that cannot associate with FAK results in a phenotype very similar to that of neurons lacking FAK. Thus, FAK functions as a negative regulator of axonal branching and synapse formation, and it seems to exert its actions, in part, through Rho family GTPases.

  12. Control of axonal branching and synapse formation by focal adhesion kinase

    PubMed Central

    Rico, Beatriz; Beggs, Hilary E; Schahin-Reed, Dorreyah; Kimes, Nikole; Schmidt, Andrea; Reichardt, Louis F

    2009-01-01

    The formation of neuronal networks in the central nervous system (CNS) requires precise control of axonal branch development and stabilization. Here we show that cell-specific ablation of the murine gene Ptk2 (more commonly known as fak), encoding focal adhesion kinase (FAK), increases the number of axonal terminals and synapses formed by neurons in vivo. Consistent with this, fak mutant neurons also form greater numbers of axonal branches in culture because they have increased branch formation and reduced branch retraction. Expression of wild-type FAK, but not that of several FAK variants that prevent interactions with regulators of Rho family GTPases including the p190 Rho guanine nuclear exchange factor (p190RhoGEF), rescues the axonal arborization phenotype observed in fak mutant neurons. In addition, expression of a mutant p190RhoGEF that cannot associate with FAK results in a phenotype very similar to that of neurons lacking FAK. Thus, FAK functions as a negative regulator of axonal branching and synapse formation, and it seems to exert its actions, in part, through Rho family GTPases. PMID:15378065

  13. Force Fluctuations within Focal Adhesions Mediate ECM-Rigidity Sensing to Guide Directed Cell Migration

    PubMed Central

    Plotnikov, Sergey V.; Pasapera, Ana M.; Sabass, Benedikt; Waterman, Clare M.

    2013-01-01

    Summary Cell migration toward areas of higher extracellular matrix (ECM) rigidity via a process called “durotaxis” is thought to contribute to development, immune response, and cancer metastasis. To understand how cells sample ECM rigidity to guide durotaxis, we characterized cell-generated forces on the nanoscale within single mature integrin-based focal adhesions (FAs). We found that individual FAs act autonomously, exhibiting either stable or dynamically fluctuating (“tugging”) traction. We show that a FAK/phosphopaxillin/vinculin pathway is essential for high FA traction and to enable tugging FA traction over a broad range of ECM rigidities. We show that tugging FA traction is dispensable for FA maturation, chemotaxis, and haptotaxis but is critical to direct cell migration toward rigid ECM. We conclude that individual FAs dynamically sample rigidity by applying fluctuating pulling forces to the ECM to act as sensors to guide durotaxis, and that FAK/phosphopaxillin/vinculin signaling defines the rigidity range over which this dynamic sensing process operates. PMID:23260139

  14. Two distinct actin networks mediate traction oscillations to confer mechanosensitivity of focal adhesions

    NASA Astrophysics Data System (ADS)

    Wu, Zhanghan; Plotnikov, Sergey; Waterman, Clare; Liu, Jian

    Cells sense the mechanical stiffness of their extracellular matrix (ECM) by exerting traction force through focal adhesions (FAs), which are integrin-based protein assemblies. Strikingly, FA-mediated traction forces oscillate in time and space and govern durotaxis - the tendency of most cell types to migrate toward stiffer ECM. The underlying mechanism of this intriguing oscillation of FA traction force is unknown. Combing theory and experiment, we develop a model of FA growth, which integrates coordinated contributions of a branched actin network and stress fibers in the process. We show that retrograde flux of branched actin network contributes to a traction peak near the FA distal tip and that stress fiber-mediated actomyosin Contractility generates a second traction peak near the FA center. Formin-mediated stress fiber elongation negatively feeds back with actomyosin Contractility, resulting in the central traction peak oscillation. This underpins observed spatio-temporal patterns of the FA traction, and broadens the ECM stiffness range, over which FAs could accurately adapt with traction force generation. Our findings shed light on the fundamental mechanism of FA mechanosensing and hence durotaxis.

  15. Focal Adhesion Kinase Regulates the DNA Damage Response and Its Inhibition Radiosensitizes Mutant KRAS Lung Cancer.

    PubMed

    Tang, Ke-Jing; Constanzo, Jerfiz D; Venkateswaran, Niranjan; Melegari, Margherita; Ilcheva, Mariya; Morales, Julio C; Skoulidis, Ferdinandos; Heymach, John V; Boothman, David A; Scaglioni, Pier Paolo

    2016-12-01

    Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related deaths worldwide due to the limited availability of effective therapeutic options. For instance, there are no effective strategies for NSCLCs that harbor mutant KRAS, the most commonly mutated oncogene in NSCLC. Thus, our purpose was to make progress toward the generation of a novel therapeutic strategy for NSCLC. We characterized the effects of suppressing focal adhesion kinase (FAK) by RNA interference (RNAi), CRISPR/CAS9 gene editing or pharmacologic approaches in NSCLC cells and in tumor xenografts. In addition, we tested the effects of suppressing FAK in association with ionizing radiation (IR), a standard-of-care treatment modality. FAK is a critical requirement of mutant KRAS NSCLC cells. With functional experiments, we also found that, in mutant KRAS NSCLC cells, FAK inhibition resulted in persistent DNA damage and susceptibility to exposure to IR. Accordingly, administration of IR to FAK-null tumor xenografts causes a profound antitumor effect in vivo CONCLUSIONS: FAK is a novel regulator of DNA damage repair in mutant KRAS NSCLC and its pharmacologic inhibition leads to radiosensitizing effects that could be beneficial in cancer therapy. Our results provide a framework for the rationale clinical testing of FAK inhibitors in NSCLC patients. Clin Cancer Res; 22(23); 5851-63. ©2016 AACR. ©2016 American Association for Cancer Research.

  16. Focal adhesion kinase is involved in the migration of human osteosarcoma cells

    PubMed Central

    FENG, SITAN; SHI, XIN; REN, KE; WU, SUJIA; SUN, XIAOLIANG

    2015-01-01

    The aim of the present study was to analyze the expression of focal adhesion kinase (FAK) in osteosarcoma (OS) cell lines with different migration abilities in order to determine the role of FAK in migration. A number of different 143B subclone cell lines (A1, A2, A3, A4 and A5) were obtained by a limiting dilution method, and the expression of FAK was detected using western blot analysis. The role of FAK in the migration of OS cells was investigated using small interfering RNA (siRNA), and the ratio of the number of lamellipodia was compared by immunofluorescence staining. The A2 and A3 OS 143B subclone cell lines demonstrated a stronger migration ability and exhibited higher FAK expression compared with the A1 cell line (P<0.05). Following transfection with FAK-siRNA, the migration ability of the A3 cells was significantly decreased (P<0.05), and the ratio of the number of lamellipodia formed was reduced from 35 to 11% (P<0.05). In conclusion, the level of FAK expression was higher in the cell lines with a stronger migration ability. FAK affects the migration ability of OS cells by suppressing the formation of lamellipodia. PMID:26137126

  17. Focal adhesion kinase regulates neuronal growth, synaptic plasticity and hippocampus-dependent spatial learning and memory.

    PubMed

    Monje, Francisco J; Kim, Eun-Jung; Pollak, Daniela D; Cabatic, Maureen; Li, Lin; Baston, Arthur; Lubec, Gert

    2012-01-01

    The focal adhesion kinase (FAK) is a non-receptor tyrosine kinase abundantly expressed in the mammalian brain and highly enriched in neuronal growth cones. Inhibitory and facilitatory activities of FAK on neuronal growth have been reported and its role in neuritic outgrowth remains controversial. Unlike other tyrosine kinases, such as the neurotrophin receptors regulating neuronal growth and plasticity, the relevance of FAK for learning and memory in vivo has not been clearly defined yet. A comprehensive study aimed at determining the role of FAK in neuronal growth, neurotransmitter release and synaptic plasticity in hippocampal neurons and in hippocampus-dependent learning and memory was therefore undertaken using the mouse model. Gain- and loss-of-function experiments indicated that FAK is a critical regulator of hippocampal cell morphology. FAK mediated neurotrophin-induced neuritic outgrowth and FAK inhibition affected both miniature excitatory postsynaptic potentials and activity-dependent hippocampal long-term potentiation prompting us to explore the possible role of FAK in spatial learning and memory in vivo. Our data indicate that FAK has a growth-promoting effect, is importantly involved in the regulation of the synaptic function and mediates in vivo hippocampus-dependent spatial learning and memory.

  18. GFAP isoforms control intermediate filament network dynamics, cell morphology, and focal adhesions.

    PubMed

    Moeton, Martina; Stassen, Oscar M J A; Sluijs, Jacqueline A; van der Meer, Vincent W N; Kluivers, Liselot J; van Hoorn, Hedde; Schmidt, Thomas; Reits, Eric A J; van Strien, Miriam E; Hol, Elly M

    2016-11-01

    Glial fibrillary acidic protein (GFAP) is the characteristic intermediate filament (IF) protein in astrocytes. Expression of its main isoforms, GFAPα and GFAPδ, varies in astrocytes and astrocytoma implying a potential regulatory role in astrocyte physiology and pathology. An IF-network is a dynamic structure and has been functionally linked to cell motility, proliferation, and morphology. There is a constant exchange of IF-proteins with the network. To study differences in the dynamic properties of GFAPα and GFAPδ, we performed fluorescence recovery after photobleaching experiments on astrocytoma cells with fluorescently tagged GFAPs. Here, we show for the first time that the exchange of GFP-GFAPδ was significantly slower than the exchange of GFP-GFAPα with the IF-network. Furthermore, a collapsed IF-network, induced by GFAPδ expression, led to a further decrease in fluorescence recovery of both GFP-GFAPα and GFP-GFAPδ. This altered IF-network also changed cell morphology and the focal adhesion size, but did not alter cell migration or proliferation. Our study provides further insight into the modulation of the dynamic properties and functional consequences of the IF-network composition.

  19. Focal adhesion kinase knockdown modulates the response of human corneal epithelial cells to topographic cues.

    PubMed

    Dreier, Britta; Raghunathan, Vijaya Krishna; Russell, Paul; Murphy, Christopher J

    2012-12-01

    A rapidly expanding literature broadly documents the impact of biophysical cues on cellular behaviors. In spite of increasing research efforts in this field, the underlying signaling processes are poorly understood. One of the candidate molecules for being involved in mechanotransduction is focal adhesion kinase (FAK). To examine the role of FAK in the response of immortalized human corneal epithelial (hTCEpi) cells to topographic cues, FAK was depleted by siRNA transfection. Contrary to expectations, FAK knockdown resulted in an enhanced response with a greater number of hTCEpi cells aligned to the long axis of anisotropically ordered surface ridges and grooves. Both underlying topographic features and FAK depletion modulated the migration of corneal epithelial cells. The impact of FAK knockdown on both migration and alignment varied depending on the topographic cues to which the cells were exposed, with the most significant change observed on the biologically relevant size scale (400nm). Additionally, a change in expression of genes encoding perinuclear Nesprins 1 and 2 (SYNE1, 2) was observed in response to topographic cues. SYNE1/2 expression was also altered by FAK depletion, suggesting that these proteins might represent a link between cytosolic and nuclear signaling processes. The data presented here have relevance to our understanding of the fundamental processes involved in corneal cell behavior to topographic cues. These results highlight the importance of incorporating biophysical cues in the conduction of in vitro studies and into the design and fabrication of implantable prosthetics.

  20. Focal adhesion kinase and p53 synergistically decrease neuroblastoma cell survival.

    PubMed

    Gillory, Lauren A; Stewart, Jerry E; Megison, Michael L; Waters, Alicia M; Beierle, Elizabeth A

    2015-06-15

    Neuroblastoma is the most common extracranial solid tumor of childhood and is responsible for over 15% of pediatric cancer deaths. Focal adhesion kinase (FAK) is a nonreceptor tyrosine kinase that is important in many facets of neuroblastoma tumor development and progression. The p53 oncogene, although wild type in most neuroblastomas, lacks significant function as a tumor suppressor in these tumors. Recent reports have found that FAK and p53 interact in some tumor types. We have hypothesized FAK and p53 coordinately control each other's expression and also interact in neuroblastoma. In the present study, we showed that not only do FAK and p53 interact but each one controls the expression of the other. In addition, we also examined the effects of FAK inhibition combined with p53 activation in neuroblastoma and showed that these two, in combination, had a synergistic effect on neuroblastoma cell survival. The findings from this present study help to further our understanding of the regulation of neuroblastoma tumorigenesis and may provide novel therapeutic strategies and targets for neuroblastoma and other pediatric solid tumors.

  1. Probing mechanical principles of focal contacts in cell–matrix adhesion with a coupled stochastic–elastic modelling framework

    PubMed Central

    Gao, Huajian; Qian, Jin; Chen, Bin

    2011-01-01

    Cell–matrix adhesion depends on the collective behaviours of clusters of receptor–ligand bonds called focal contacts between cell and extracellular matrix. While the behaviour of a single molecular bond is governed by statistical mechanics at the molecular scale, continuum mechanics should be valid at a larger scale. This paper presents an overview of a series of recent theoretical studies aimed at probing the basic mechanical principles of focal contacts in cell–matrix adhesion via stochastic–elastic models in which stochastic descriptions of molecular bonds and elastic descriptions of interfacial traction–separation are unified in a single modelling framework. The intention here is to illustrate these principles using simple analytical and numerical models. The aim of the discussions is to provide possible clues to the following questions: why does the size of focal adhesions (FAs) fall into a narrow range around the micrometre scale? How can cells sense and respond to substrates of varied stiffness via FAs? How do the magnitude and orientation of mechanical forces affect the binding dynamics of FAs? The effects of cluster size, cell–matrix elastic modulus, loading direction and cytoskeletal pretension on the lifetime of FA clusters have been investigated by theoretical arguments as well as Monte Carlo numerical simulations, with results showing that intermediate adhesion size, stiff substrate, cytoskeleton stiffening, low-angle pulling and moderate cytoskeletal pretension are factors that contribute to stable FAs. From a mechanistic point of view, these results provide possible explanations for a wide range of experimental observations and suggest multiple mechanisms by which cells can actively control adhesion and de-adhesion via cytoskeletal contractile machinery in response to mechanical properties of their surroundings. PMID:21632610

  2. cAMP-induced Epac-Rap activation inhibits epithelial cell migration by modulating focal adhesion and leading edge dynamics.

    PubMed

    Lyle, Karen S; Raaijmakers, Judith H; Bruinsma, Wytse; Bos, Johannes L; de Rooij, Johan

    2008-06-01

    Epithelial cell migration is a complex process crucial for embryonic development, wound healing and tumor metastasis. It depends on alterations in cell-cell adhesion and integrin-extracellular matrix interactions and on actomyosin-driven, polarized leading edge protrusion. The small GTPase Rap is a known regulator of integrins and cadherins that has also been implicated in the regulation of actin and myosin, but a direct role in cell migration has not been investigated. Here, we report that activation of endogenous Rap by cAMP results in an inhibition of HGF- and TGFbeta-induced epithelial cell migration in several model systems, irrespective of the presence of E-cadherin adhesion. We show that Rap activation slows the dynamics of focal adhesions and inhibits polarized membrane protrusion. Importantly, forced integrin activation by antibodies does not mimic these effects of Rap on cell motility, even though it does mimic Rap effects in short-term cell adhesion assays. From these results, we conclude that Rap inhibits epithelial cell migration, by modulating focal adhesion dynamics and leading edge activity. This extends beyond the effect of integrin affinity modulation and argues for an additional function of Rap in controlling the migration machinery of epithelial cells.

  3. Calculation of forces at focal adhesions from elastic substrate data: the effect of localized force and the need for regularization.

    PubMed

    Schwarz, U S; Balaban, N Q; Riveline, D; Bershadsky, A; Geiger, B; Safran, S A

    2002-09-01

    Forces exerted by stationary cells have been investigated on the level of single focal adhesions by combining elastic substrates, fluorescence labeling of focal adhesions, and the assumption of localized force when solving the inverse problem of linear elasticity theory. Data simulation confirms that the inverse problem is ill-posed in the presence of noise and shows that in general a regularization scheme is needed to arrive at a reliable force estimate. Spatial and force resolution are restricted by the smoothing action of the elastic kernel, depend on the details of the force and displacement patterns, and are estimated by data simulation. Corrections arising from the spatial distribution of force and from finite substrate size are treated in the framework of a force multipolar expansion. Our method is computationally cheap and could be used to study mechanical activity of cells in real time.

  4. Calculation of forces at focal adhesions from elastic substrate data: the effect of localized force and the need for regularization.

    PubMed Central

    Schwarz, U S; Balaban, N Q; Riveline, D; Bershadsky, A; Geiger, B; Safran, S A

    2002-01-01

    Forces exerted by stationary cells have been investigated on the level of single focal adhesions by combining elastic substrates, fluorescence labeling of focal adhesions, and the assumption of localized force when solving the inverse problem of linear elasticity theory. Data simulation confirms that the inverse problem is ill-posed in the presence of noise and shows that in general a regularization scheme is needed to arrive at a reliable force estimate. Spatial and force resolution are restricted by the smoothing action of the elastic kernel, depend on the details of the force and displacement patterns, and are estimated by data simulation. Corrections arising from the spatial distribution of force and from finite substrate size are treated in the framework of a force multipolar expansion. Our method is computationally cheap and could be used to study mechanical activity of cells in real time. PMID:12202364

  5. RacGAP1-driven focal adhesion formation promotes melanoma transendothelial migration through mediating adherens junction disassembly.

    PubMed

    Zhang, Pu; Bai, Huiyuan; Fu, Changliang; Chen, Feng; Zeng, Panying; Wu, Chengxiang; Ye, Qichao; Dong, Cheng; Song, Yang; Song, Erqun

    2015-03-27

    Melanoma cell migration across vascular endothelial cells is an essential step of tumor metastasis. Here, we provide evidence that RacGAP1, a cytokinesis-related Rho GTPase-activating protein, contributed to this process. Depletion of RacGAP1 with RacGAP1-targeting siRNA or overexpression of RacGAP1 mutant (T249A) attenuated melanoma cell transendothelial migration and concomitant changes of adherens junctions. In addition, RacGAP1 promoted the activations of RhoA, FAK, paxillin and triggered focal adhesion formation and cytoskeletal rearrangement. By overexpressing FAK-related non-kinase (FRNK) in endothelium, we showed that RacGAP1 mediated endothelial barrier function loss and melanoma transmigration in a focal adhesion-dependent manner. These results suggest that endothelial RacGAP1 may play critical roles in pathogenic processes of cancer by regulating endothelial permeability.

  6. Myocardin-related transcription factor A (MRTF-A) activity-dependent cell adhesion is correlated to focal adhesion kinase (FAK) activity.

    PubMed

    Kishi, Takayuki; Mayanagi, Taira; Iwabuchi, Sadahiro; Akasaka, Toshihide; Sobue, Kenji

    2016-11-01

    The regulation of cell-substrate adhesion is tightly linked to the malignant phenotype of tumor cells and plays a role in their migration, invasion, and metastasis. Focal adhesions (FAs) are dynamic adhesion structures that anchor the cell to the extracellular matrix. Myocardin-related transcription factors (MRTFs), co-regulators of the serum response factor (SRF), regulate expression of a set of genes encoding actin cytoskeletal/FA-related proteins. Here we demonstrated that the forced expression of a constitutively active MRTF-A (CA-MRTF-A) in B16F10 melanoma cells induced the up-regulation of actin cytoskeletal and FA proteins, resulting in FA reorganization and the suppression of cell migration. Expression of CA-MRTF-A markedly increased phosphorylation of focal adhesion kinase (FAK) and paxillin, which are important components for FA dynamics. Notably, FAK activation was triggered by the clustering of up-regulated integrins. Our results revealed that the MRTF-SRF-dependent regulation of cell migration requires both the up-regulation of actin cytoskeletal/FA proteins and the integrin-mediated regulation of FA components via the FAK/Src pathway. We also demonstrated that activation of the MRTF-dependent transcription correlates FAK activation in various tumor cells. The elucidation of the correlation between MRTF and FAK activities would be an effective therapeutic target in focus of tumor cell migration.

  7. Fetuin-A associates with histones intracellularly and shuttles them to exosomes to promote focal adhesion assembly resulting in rapid adhesion and spreading in breast carcinoma cells.

    PubMed

    Nangami, Gladys; Koumangoye, Rainelli; Shawn Goodwin, J; Sakwe, Amos M; Marshall, Dana; Higginbotham, James; Ochieng, Josiah

    2014-11-01

    The present analyses were undertaken to define the mechanisms by which fetuin-A modulates cellular adhesion. FLAG-tagged fetuin-A was expressed in breast carcinoma and HEK-293T cells. We demonstrated by confocal microscopy that fetuin-A co-localizes with histone H2A in the cell nucleus, forms stable complexes with histones such as H2A and H3 in solution, and shuttles histones to exosomes. The rate of cellular adhesion and spreading to either fibronectin or laminin coated wells was accelerated significantly in the presence of either endogenous fetuin-A or serum derived protein. More importantly, the formation of focal adhesion complexes on surfaces coated by laminin or fibronectin was accelerated in the presence of fetuin-A or histone coated exosomes. Cellular adhesion mediated by histone coated exosomes was abrogated by heparin and heparinase III. Heparinase III cleaves heparan sulfate from cell surface heparan sulfate proteoglycans. Lastly, the uptake of histone coated exosomes and subsequent cellular adhesion, was abrogated by heparin. Taken together, the data suggest a mechanism where fetuin-A, either endogenously synthesized or supplied extracellularly can extract histones from the nucleus or elsewhere in the cytosol/membrane and load them on cellular exosomes which then mediate adhesion by interacting with cell surface heparan sulfate proteoglycans via bound histones.

  8. Activation of focal adhesion kinase enhances the adhesion of Fusarium solani to human corneal epithelial cells via the tyrosine-specific protein kinase signaling pathway.

    PubMed

    Pan, Xiaojing; Wang, Ye; Zhou, Qingjun; Chen, Peng; Xu, Yuanyuan; Chen, Hao; Xie, Lixin

    2011-03-05

    To determine the role of the integrin-FAK signaling pathway triggered by the adherence of F. solani to human corneal epithelial cells (HCECs). After pretreatment with/without genistein, HCECs were incubated with F. solani spores at different times (0-24 h). Cell adhesion assays were performed by optical microscopy. Changes of the ultrastructure were observed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The expression of F-actin and Paxillin (PAX) were detected by immunofluorescence and western blotting to detect the expression of these key proteins with/without genistein treatment. Cell adhesion assays showed that the number of adhered spores began to rise at 6 h after incubation and peaked at 8 h. SEM and TEM showed that the HCECs exhibited a marked morphological alteration induced by the attachment and entry of the spores. The expression of PAX increased, while the expression of F-actin decreased by stimulation with F. solani. The interaction of F. solani with HCECs causes actin rearrangement in HCECs. Genistein strongly inhibited FAK phosphorylation and the activation of the downstream protein (PAX). F. solani-induced enhancement of cell adhesion ability was inhibited along with the inhibition of FAK phosphorylation. Our results suggest that the integrin-FAK signaling pathway is involved in the control of F. solani adhesion to HCECs and that the activation of focal adhesion kinase enhances the adhesion of human corneal epithelial cells to F. solani via the tyrosine-specific protein kinase signaling pathway.

  9. Fetuin-A associates with histones intracellularly and shuttles them to exosomes to promote focal adhesion assembly resulting in rapid adhesion and spreading in breast carcinoma cells

    PubMed Central

    Nangami, Gladys; Koumangoye, Rainelli; Goodwin, J. Shawn; Sakwe, Amos M.; Marshall, Dana; Higginbotham, James; Ochieng, Josiah

    2014-01-01

    The present analyses were undertaken to define the mechanisms by which fetuin-A modulates cellular adhesion. FLAG-tagged fetuin-A was expressed in breast carcinoma and HEK-293T cells. We demonstrated by confocal microscopy that fetuin-A co-localizes with histone H2A in the cell nucleus, forms stable complexes with histones such as H2A and H3 in solution, and shuttles histones to exosomes. The rate of cellular adhesion and spreading to either fibronectin or laminin coated wells was accelerated significantly in the presence of either endogenous fetuin-A or serum derived protein. More importantly, the formation of focal adhesion complexes on surfaces coated by laminin or fibronectin was accelerated in the presence of fetuin-A or histone coated exosomes. Cellular adhesion mediated by histone coated exosomes was abrogated by heparin and heparinase III. Heparinase III cleaves heparan sulfate from cell surface heparan sulfate proteoglycans. Lastly, the uptake of histone coated exosomes and subsequent cellular adhesion, was abrogated by heparin. Taken together, the data suggest a mechanism where fetuin-A, either endogenously synthesized or supplied extracellularly can extract histones from the nucleus or elsewhere in the cytosol/membrane and load them on cellular exosomes which then mediate adhesion by interacting with cell surface heparan sulfate proteoglycans via bound histones. PMID:25194507

  10. A Discovery Strategy for Selective Inhibitors of c-Src in Complex with the Focal Adhesion Kinase SH3/SH2-binding Region

    PubMed Central

    Moroco, Jamie A.; Baumgartner, Matthew P.; Rust, Heather L.; Choi, Hwan Geun; Hur, Wooyoung; Gray, Nathanael S.; Camacho, Carlos J.; Smithgall, Thomas E.

    2015-01-01

    The c-Src tyrosine kinase co-operates with the focal adhesion kinase to regulate cell adhesion and motility. Focal adhesion kinase engages the regulatory SH3 and SH2 domains of c-Src, resulting in localized kinase activation that contributes to tumor cell metastasis. Using assay conditions where c-Src kinase activity required binding to a tyrosine phosphopeptide based on the focal adhesion kinase SH3-SH2 docking sequence, we screened a kinase-biased library for selective inhibitors of the Src/focal adhesion kinase peptide complex versus c-Src alone. This approach identified an aminopyrimidinyl carbamate compound, WH-4-124-2, with nanomolar inhibitory potency and fivefold selectivity for c-Src when bound to the phospho-focal adhesion kinase peptide. Molecular docking studies indicate that WH-4-124-2 may preferentially inhibit the ‘DFG-out’ conformation of the kinase active site. These findings suggest that interaction of c-Src with focal adhesion kinase induces a unique kinase domain conformation amenable to selective inhibition. PMID:25376742

  11. DNA copy number aberrations in small-cell lung cancer reveal activation of the focal adhesion pathway

    PubMed Central

    Ocak, S; Yamashita, H; Udyavar, AR; Miller, AN; Gonzalez, AL; Zou, Y; Jiang, A; Yi, Y; Shyr, Y; Estrada, L; Quaranta, V; Massion, PP

    2015-01-01

    Small-cell lung cancer (SCLC) is the most aggressive subtype of lung cancer in its clinical behavior, with a 5-year overall survival as low as 5%. Despite years of research in the field, molecular determinants of SCLC behavior are still poorly understood, and this deficiency has translated into an absence of specific diagnostics and targeted therapeutics. We hypothesized that tumor DNA copy number alterations would allow the identification of molecular pathways involved in SCLC progression. Array comparative genomic hybridization was performed on DNA extracted from 46 formalin-fixed paraffin-embedded SCLC tissue specimens. Genomic profiling of tumor and sex-matched control DNA allowed the identification of 70 regions of copy number gain and 55 regions of copy number loss. Using molecular pathway analysis, we found a strong enrichment in these regions of copy number alterations for 11 genes associated with the focal adhesion pathway. We verified these findings at the genomic, gene expression and protein level. Focal Adhesion Kinase (FAK), one of the central genes represented in this pathway, was commonly expressed in SCLC tumors and constitutively phosphorylated in SCLC cell lines. Those were poorly adherent to most substrates but not to laminin-322. Inhibition of FAK phosphorylation at Tyr397 by a small-molecule inhibitor, PF-573,228, induced a dose-dependent decrease of adhesion and an increase of spreading in SCLC cell lines on laminin-322. Cells that tended to spread also showed a decrease in focal adhesions, as demonstrated by a decreased vinculin expression. These results support the concept that pathway analysis of genes in regions of copy number alterations may uncover molecular mechanisms of disease progression and demonstrate a new role of FAK and associated adhesion pathways in SCLC. Further investigations of FAK at the functional level may lead to a better understanding of SCLC progression and may have therapeutic implications. PMID:20802517

  12. Simulated Microgravity Alters Actin Cytoskeleton and Integrin-Mediated Focal Adhesions of Cultured Human Mesenchymal Stromal Cells

    NASA Astrophysics Data System (ADS)

    Gershovich, P. M.; Gershovic, J. G.; Buravkova, L. B.

    2008-06-01

    Cytoskeletal alterations occur in several cell types including lymphocytes, glial cells, and osteoblasts, during spaceflight and under simulated microgravity (SMG) (3, 4). One potential mechanism for cytoskeletal gravisensitivity is disruption of extracellular matrix (ECM) and integrin interactions. Focal adhesions are specialized sites of cell-matrix interaction composed of integrins and the diversity of focal adhesion-associated cytoplasmic proteins including vinculin, talin, α-actinin, and actin filaments (4, 5). Integrins produce signals essential for proper cellular function, survival and differentiation. Therefore, we investigated the effects of SMG on F-actin cytoskeleton structure, vinculin focal adhesions, expression of some integrin subtypes and cellular adhesion molecules (CAMs) in mesenchymal stem cells derived from human bone marrow (hMSCs). Simulated microgravity was produced by 3D-clinostat (Dutch Space, Netherlands). Staining of actin fibers with TRITC-phalloidin showed reorganization even after 30 minutes of simulated microgravity. The increasing of cells number with abnormal F-actin was observed after subsequent terms of 3D-clinorotation (6, 24, 48, 120 hours). Randomization of gravity vector altered dimensional structure of stress fibers and resulted in remodeling of actin fibers inside the cells. In addition, we observed vinculin redistribution inside the cells after 6 hours and prolonged terms of clinorotation. Tubulin fibers in a contrast with F-actin and vinculin didn't show any reorganization even after long 3Dclinorotation (120 hours). The expression of integrin α2 increased 1,5-6-fold in clinorotated hMSCs. Also we observed decrease in number of VCAM-1-positive cells and changes in expression of ICAM-1. Taken together, our findings indicate that SMG leads to microfilament and adhesion alterations of hMSCs most probably associated with involvement of some integrin subtypes.

  13. Impact of laser-accelerated micron-size projectile on dense plasma

    SciTech Connect

    Wang, J. W.; Lei, A. L.; Wang, Xin; Yu, Wei; Yu, M. Y.; Cai, H. B.; Chen, J.; Wong, A. Y.

    2009-03-15

    The impact of a laser-accelerated micron-size projectile on a dense plasma target is studied using two-dimensional particle-in-cell simulations. The projectile is first accelerated by an ultraintense laser. It then impinges on the dense plasma target and merges with the latter. Part of the kinetic energy of the laser-accelerated ions in the projectile is deposited in the fused target, and an extremely high concentration of plasma ions with a mean kinetic energy needed for fusion reaction is induced. The interaction is thus useful for laser-driven impact fusion and as a compact neutron source.

  14. Targeting Focal Adhesion Kinase and Resistance to mTOR Inhibition in Pancreatic Neuroendocrine Tumors

    PubMed Central

    François, Rony A.; Maeng, Kyungah; Nawab, Akbar; Kaye, Frederic J.; Hochwald, Steven N.; Zajac-Kaye, Maria

    2015-01-01

    Background: Focal adhesion kinase (FAK) mediates survival of normal pancreatic islets through activation of AKT. Upon malignant transformation of islet cells into pancreatic neuroendocrine tumors (PanNETs), AKT is frequently overexpressed and mutations in the AKT/mTOR pathway are detected. Because mTOR inhibitors rarely induce PanNET tumor regression, partly because of feedback activation of AKT, novel combination strategies are needed to target FAK/AKT/mTOR signaling. Methods: We characterized the activation of FAK in PanNETs using immunohistochemistry and Western blot analysis and tested the FAK inhibitor PF-04554878 in human PanNET cells in vitro and in vivo (at least three mice per group). In addition, we evaluated the effect of combined FAK and mTOR inhibition on PanNET viability and apoptosis. All statistical tests were two-sided. Results: We found that FAK is overexpressed and hyperphosphorylated in human PanNETs and that PF-04554878 strongly inhibited FAK (Tyr397) autophosphorylation in a dose-dependent manner. We found that PF-04554878 inhibited cell proliferation and clonogenicity and induced apoptosis in PanNET cells. Moreover, oral administration of PF-04554878 statistically significantly reduced tumor growth in a patient-derived xenograft model of PanNET (P = .02) and in a human PanNET xenograft model of peritoneal carcinomatosis (P = .03). Importantly, PF-04554878 synergized with the mTOR inhibitor everolimus by preventing feedback AKT activation. Conclusions: We demonstrate for the first time that FAK is overexpressed in PanNETs and that inhibition of FAK activity induces apoptosis and inhibits PanNET proliferation. We found that the novel FAK inhibitor PF-04554878 synergizes with everolimus, a US Food and Drug Administration–approved agent for PanNETs. Our findings warrant the clinical investigation of combined FAK and mTOR inhibition in PanNETs. PMID:25971297

  15. Focal adhesion kinase: an alternative focus for anti-angiogenesis therapy in ovarian cancer.

    PubMed

    Stone, Rebecca L; Baggerly, Keith A; Armaiz-Pena, Guillermo N; Kang, Yu; Sanguino, Angela M; Thanapprapasr, Duangmani; Dalton, Heather J; Bottsford-Miller, Justin; Zand, Behrouz; Akbani, Rehan; Diao, Lixia; Nick, Alpa M; DeGeest, Koen; Lopez-Berestein, Gabriel; Coleman, Robert L; Lutgendorf, Susan; Sood, Anil K

    2014-07-01

    This investigation describes the clinical significance of phosphorylated focal adhesion kinase (FAK) at the major activating tyrosine site (Y397) in epithelial ovarian cancer (EOC) cells and tumor-associated endothelial cells. FAK gene amplification as a mechanism for FAK overexpression and the effects of FAK tyrosine kinase inhibitor VS-6062 on tumor growth, metastasis, and angiogenesis were examined. FAK and phospho-FAK(Y397) were quantified in tumor (FAK-T; pFAK-T) and tumor-associated endothelial (FAK-endo; pFAK-endo) cell compartments of EOCs using immunostaining and qRT-PCR. Associations between expression levels and clinical variables were evaluated. Data from The Cancer Genome Atlas were used to correlate FAK gene copy number and expression levels in EOC specimens. The in vitro and in vivo effects of VS-6062 were assayed in preclinical models. FAK-T and pFAK-T overexpression was significantly associated with advanced stage disease and increased microvessel density (MVD). High MVD was observed in tumors with elevated endothelial cell FAK (59%) and pFAK (44%). Survival was adversely affected by FAK-T overexpression (3.03 vs 2.06 y, P = 0.004), pFAK-T (2.83 vs 1.78 y, P<0.001), and pFAK-endo (2.33 vs 2.17 y, P = 0.005). FAK gene copy number was increased in 34% of tumors and correlated with expression levels (P<0.001). VS-6062 significantly blocked EOC and endothelial cell migration as well as endothelial cell tube formation in vitro. VS-6062 reduced mean tumor weight by 56% (P = 0.005), tumor MVD by 40% (P = 0.0001), and extraovarian metastasis (P<0.01) in orthotopic EOC mouse models. FAK may be a unique therapeutic target in EOC given the dual anti-angiogenic and anti-metastatic potential of FAK inhibitors.

  16. Protective effect of focal adhesion kinase against skeletal muscle reperfusion injury after acute limb ischemia.

    PubMed

    Flück, M; von Allmen, R S; Ferrié, C; Tevaearai, H; Dick, F

    2015-03-01

    In cardiac muscle, ischemia reperfusion (IR) injury is attenuated by mitochondrial function, which may be upregulated by focal adhesion kinase (FAK). The aim of this study was to determine whether increased FAK levels reduced rhabdomyolysis in skeletal muscle too. In a translational in vivo experiment, rat lower limbs were subjected to 4 hours of ischemia followed by 24 or 72 hours of reperfusion. FAK expression was stimulated 7 days before (via somatic transfection with pCMV-driven FAK expression plasmid) and outcomes were measured against non-transfected and empty transfected controls. Slow oxidative (i.e., mitochondria-rich) and fast glycolytic (i.e., mitochondria-poor) type muscles were analyzed separately regarding rhabdomyolysis, apoptosis, and inflammation. Severity of IR injury was assessed using paired non-ischemic controls. After 24 hours of reperfusion, marked rhabdomyolysis was found in non-transfected and empty plasmid-transfected fast-type glycolytic muscle, tibialis anterior. Prior transfection enhanced FAK concentration significantly (p = 0.01). Concomitantly, levels of BAX, promoting mitochondrial transition pores, were reduced sixfold (p = 0.02) together with a blunted inflammation (p = 0.01) and reduced rhabdomyolysis (p = 0.003). Slow oxidative muscle, m. soleus, reacted differently: although apoptosis was detectable after IR, rhabdomyolysis did not appear before 72 hours of reperfusion; and FAK levels were not enhanced in ischemic muscle despite transfection (p = 0.66). IR-induced skeletal muscle rhabdomyolysis is a fiber type-specific phenomenon that appears to be modulated by mitochondria reserves. Stimulation of FAK may exploit these reserves constituting a potential therapeutic approach to reduce tissue loss following acute limb IR in fast-type muscle. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Lung epithelial cell focal adhesion kinase signaling inhibits lung injury and fibrosis.

    PubMed

    Wheaton, Amanda K; Agarwal, Manisha; Jia, Shijing; Kim, Kevin K

    2017-05-01

    Progressive pulmonary fibrosis is a devastating consequence of many acute and chronic insults to the lung. Lung injury leads to alveolar epithelial cell (AEC) death, destruction of the basement membrane, and activation of transforming growth factor-β (TGF-β). There is subsequent resolution of the injury and a coordinated and concurrent initiation of fibrosis. Both of these processes may involve activation of similar intracellular signaling pathways regulated in part by dynamic changes to the extracellular matrix. Matrix signaling can augment the profibrotic fibroblast response to TGF-β. However, similar matrix/integrin signaling pathways may also be involved in the inhibition of ongoing TGF-β-induced AEC apoptosis. Focal adhesion kinase (FAK) is an integrin-associated signaling molecule expressed by many cell types. We used mice with AEC-specific FAK deletion to isolate the epithelial aspect of integrin signaling in the bleomycin model of lung injury and fibrosis. Mice with AEC-specific deletion of FAK did not exhibit spontaneous lung injury but did have significantly greater terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling-positive cells (18.6 vs. 7.1) per ×200 field, greater bronchoalveolar lavage protein (3.2 vs. 1.8 mg/ml), and significantly greater death (77 vs. 19%) after bleomycin injury compared with littermate control mice. Within primary AECs, activated FAK directly associates with caspase-8 and inhibits activation of the caspase cascade resulting in less apoptosis in response to TGF-β. Our studies support a model in which dynamic changes to the extracellular matrix after injury promote fibroblast activation and inhibition of epithelial cell apoptosis in response to TGF-β through FAK activation potentially complicating attempts to nonspecifically target this pathway for antifibrotic therapy. Copyright © 2017 the American Physiological Society.

  18. Two Distinct Actin Networks Mediate Traction Oscillations to Confer Focal Adhesion Mechanosensing.

    PubMed

    Wu, Zhanghan; Plotnikov, Sergey V; Moalim, Abdiwahab Y; Waterman, Clare M; Liu, Jian

    2017-02-28

    Focal adhesions (FAs) are integrin-based transmembrane assemblies that connect a cell to its extracellular matrix (ECM). They are mechanosensors through which cells exert actin cytoskeleton-mediated traction forces to sense the ECM stiffness. Interestingly, FAs themselves are dynamic structures that adapt their growth in response to mechanical force. It is unclear how the cell manages the plasticity of the FA structure and the associated traction force to accurately sense ECM stiffness. Strikingly, FA traction forces oscillate in time and space, and govern the cell mechanosensing of ECM stiffness. However, precisely how and why the FA traction oscillates is unknown. We developed a model of FA growth that integrates the contributions of the branched actin network and stress fibers (SFs). Using the model in combination with experimental tests, we show that the retrograde flux of the branched actin network promotes the proximal growth of the FA and contributes to a traction peak near the FA's distal tip. The resulting traction gradient within the growing FA favors SF formation near the FA's proximal end. The SF-mediated actomyosin contractility further stabilizes the FA and generates a second traction peak near the center of the FA. Formin-mediated SF elongation negatively feeds back with actomyosin contractility, resulting in central traction peak oscillation. This underpins the observed FA traction oscillation and, importantly, broadens the ECM stiffness range over which FAs can accurately adapt to traction force generation. Actin cytoskeleton-mediated FA growth and maturation thus culminate with FA traction oscillation to drive efficient FA mechanosensing. Published by Elsevier Inc.

  19. Focal adhesion kinase regulates smooth muscle cell recruitment to the developing vasculature

    PubMed Central

    Cheng, Zhaokang; Sundberg-Smith, Liisa J.; Mangiante, Lee E.; Sayers, Rebecca L.; Hakim, Zeenat S.; Musunuri, Srilaxmi; Maguire, Colin T.; Majesky, Mark W.; Zhou, Zhigang; Mack, Christopher P.; Taylor, Joan M.

    2011-01-01

    Objective The investment of newly formed endothelial cell tubes with differentiated smooth muscle cells (SMC) is critical for appropriate vessel formation, but the underlying mechanisms remain unknown. We previously showed that depletion of focal adhesion kinase (FAK) in the nkx2.5 expression domain led to aberrant outflow tract (OFT) morphogenesis and strove herein to determine the cell types and mechanisms involved. Methods and Results We crossed fakloxp targeted mice with available Cre drivers to deplete FAK in OFT SMC (FAKwnt and FAKnk) or coronary SMC (FAKcSMC). In each case, depletion of FAK led to defective vasculogenesis that was incompatible with post-natal life. Immunohistochemical analysis of the mutant vascular structures revealed that FAK was not required for progenitor cell proliferation, survival, or differentiation into SMC, but was necessary for subsequent SMC recruitment to developing vasculature. Using a novel FAK-null SMC culture model, we found that depletion of FAK did not influence SMC growth or survival, but blocked directional SMC motility and invasion toward the potent endothelial-derived chemokine, PDGFBB. FAK depletion resulted in un-stable lamellipodial protrusions due to defective spatial-temporal activation of the small GTPase, Rac-1 and lack of Rac1-dependent recruitment of cortactin (an actin stabilizing protein) to the leading edge. Moreover, FAK null SMC exhibited a significant reduction in PDGF-stimulated extracellular matrix degradation. Conclusions FAK drives PDGFBB-stimulated SMC chemotaxis/invasion and is essential for SMC to appropriately populate the aorticopulmonary septum and the coronary vascular plexus. PMID:21757658

  20. Role of focal adhesion kinase in regulating YB-1-mediated paclitaxel resistance in ovarian cancer.

    PubMed

    Kang, Yu; Hu, Wei; Ivan, Cristina; Dalton, Heather J; Miyake, Takahito; Pecot, Chad V; Zand, Behrouz; Liu, Tao; Huang, Jie; Jennings, Nicholas B; Rupaimoole, Rajesha; Taylor, Morgan; Pradeep, Sunila; Wu, Sherry Y; Lu, Chunhua; Wen, Yunfei; Huang, Jianfei; Liu, Jinsong; Sood, Anil K

    2013-10-02

    We previously found focal adhesion kinase (FAK) inhibition sensitizes ovarian cancer to taxanes; however, the mechanisms are not well understood. We characterized the biologic response of taxane-resistant and taxane-sensitive ovarian cancer models to a novel FAK inhibitor (VS-6063). We used reverse-phase protein arrays (RPPA) to identify novel downstream targets in taxane-resistant cell lines. Furthermore, we correlated clinical and pathological data with nuclear and cytoplasmic expression of FAK and YB-1 in 105 ovarian cancer samples. Statistical tests were two-sided, and P values were calculated with Student t test or Fisher exact test. We found that VS-6063 inhibited FAK phosphorylation at the Tyr397 site in a time- and dose-dependent manner. The combination of VS-6063 and paclitaxel markedly decreased proliferation and increased apoptosis, which resulted in 92.7% to 97.9% reductions in tumor weight. RPPA data showed that VS-6063 reduced levels of AKT and YB-1 in taxane-resistant cell lines. FAK inhibition enhanced chemosensitivity in taxane-resistant cells by decreasing YB-1 phosphorylation and subsequently CD44 in an AKT-dependent manner. In human ovarian cancer samples, nuclear FAK expression was associated with increased nuclear YB-1 expression (χ²) = 37.7; P < .001). Coexpression of nuclear FAK and YB-1 was associated with statistically significantly worse median overall survival (24.9 vs 67.3 months; hazard ratio = 2.64; 95% confidence interval = 1.38 to 5.05; P = .006). We have identified a novel pathway whereby FAK inhibition with VS-6063 overcomes YB-1-mediated paclitaxel resistance by an AKT-dependent pathway. These findings have implications for clinical trials aimed at targeting FAK.

  1. Orientation-specific responses to sustained uniaxial stretching in focal adhesion growth and turnover

    PubMed Central

    Chen, Yun; Pasapera, Ana M.; Koretsky, Alan P.; Waterman, Clare M.

    2013-01-01

    Cells are mechanosensitive to extracellular matrix (ECM) deformation, which can be caused by muscle contraction or changes in hydrostatic pressure. Focal adhesions (FAs) mediate the linkage between the cell and the ECM and initiate mechanically stimulated signaling events. We developed a stretching apparatus in which cells grown on fibronectin-coated elastic substrates can be stretched and imaged live to study how FAs dynamically respond to ECM deformation. Human bone osteosarcoma epithelial cell line U2OS was transfected with GFP-paxillin as an FA marker and subjected to sustained uniaxial stretching. Two responses at different timescales were observed: rapid FA growth within seconds after stretching, and delayed FA disassembly and loss of cell polarity that occurred over tens of minutes. Rapid FA growth occurred in all cells; however, delayed responses to stretch occurred in an orientation-specific manner, specifically in cells with their long axes perpendicular to the stretching direction, but not in cells with their long axes parallel to stretch. Pharmacological treatments demonstrated that FA kinase (FAK) promotes but Src inhibits rapid FA growth, whereas FAK, Src, and calpain 2 all contribute to delayed FA disassembly and loss of polarity in cells perpendicular to stretching. Immunostaining for phospho-FAK after stretching revealed that FAK activation was maximal at 5 s after stretching, specifically in FAs oriented perpendicular to stretch. We hypothesize that orientation-specific activation of strain/stress-sensitive proteins in FAs upstream to FAK and Src promote orientation-specific responses in FA growth and disassembly that mediate polarity rearrangement in response to sustained stretch. PMID:23754369

  2. Cortactin and focal adhesion kinase as predictors of cancer risk in patients with laryngeal premalignancy.

    PubMed

    Rodrigo, Juan P; Álvarez-Alija, Gustavo; Menéndez, Sofía Tirados; Mancebo, Gonzalo; Allonca, Eva; García-Carracedo, Darío; Fresno, Manuel Florentino; Suárez, Carlos; García-Pedrero, Juana María

    2011-08-01

    Novel markers are needed to accurately predict the risk of malignant transformation in laryngeal premalignancies. We therefore investigated the clinical significance of cortactin (CTTN) and focal adhesion kinase (FAK) during laryngeal tumorigenesis and their potential utility as cancer risk markers. CTTN and FAK protein expression and gene amplification were assessed in 82 patients with laryngeal dysplasia and correlated with clinicopathologic parameters and laryngeal cancer risk. Increased CTTN and FAK expression was found respectively in 41 (50%) and 40 (49%) of 82 laryngeal dysplasias; protein expression was maintained or further augmented in the corresponding patient-matched invasive tumors subsequently developed. CTTN and FAK/PTK2 gene amplifications were respectively detected in 10 (12%) and 26 (32%) laryngeal dysplasias. Both CTTN and FAK protein expression increased with the grade of dysplasia; however, CTTN and FAK expression but not histology correlated significantly with increased laryngeal cancer risk (P = 0.009 and P = 0.002, respectively). Patients carrying strong CTTN- or FAK-expressing dysplastic lesions experienced a significantly higher cancer incidence (P = 0.006 and P = 0.001, respectively; log-rank test). Furthermore, FAK expression was an independent predictor of laryngeal cancer development (HR = 3.706, 95% CI: 1.735-7.916; P = 0.001) and the combination of FAK and CTTN showed superior predictive value (HR = 5.042, 95% CI: 2.255-11.274; P < 0.001). Taken together, our findings support the involvement of CTTN and FAK in malignant transformation and provide original evidence for their potential clinical utility as biomarkers for the risk of developing laryngeal cancer.

  3. Doxycycline inhibits leukemic cell migration via inhibition of matrix metalloproteinases and phosphorylation of focal adhesion kinase.

    PubMed

    Wang, Chunhuai; Xiang, Ru; Zhang, Xiangzhong; Chen, Yunxian

    2015-09-01

    Doxycycline, a tetracycline-based antibiotic, has been reported to attenuate melanoma cell migration through inhibiting the focal adhesion kinase (FAK) signaling pathway. However, it remains to be elucidated whether doxycycline exerts this effect on leukemia cell migration. The present study aimed to examine the role of doxycycline in leukemia cell migration. The invasion capacities of the human leukemia cell lines KG1a (acute myelogenous leukemia) and K562 (chronic myelogenous leukemia) were evaluated using Matrigel® matrix‑coated Transwell® chamber assays; leukemic cell lines treated with doxycycline (1 µg/ml) or anti‑β1‑integrin antibodies were added to the upper chamber, while untreated cells were included as controls. Reverse transcription quantitative polymerase chain reaction was performed in order to further understand the influence of doxycycline treatment on the expression of FAK and gelatinases in the KG1a and K562 leukemic cell lines. In addition, FAK protein expression and phosphorylation were determined using western blot analysis in order to investigate the mechanism by which doxycycline inhibited leukemic cell migration. The results revealed that doxycycline treatment significantly attenuated the migration of KG1a and K562 cells, which was demonstrated to be associated with inhibition of the expression and phosphorylation of FAK. In addition, doxycycline treatment inhibited matrix metalloproteinase (MMP)‑2 and MMP‑9 expression. Furthermore, incubation with blocking anti‑β1‑integrin antibodies had an analogous inhibitory effect on leukemic cell migration to that of doxycycline. In conclusion, the results of the present study suggested that doxycycline attenuated leukemic cell migration through inhibiting the FAK signaling pathway. Therefore, doxycycline may have potential for use as a novel strategy for the treatment of leukemia.

  4. Focal adhesion kinase activity is required for actomyosin contractility-based invasion of cells into dense 3D matrices

    PubMed Central

    Mierke, Claudia T.; Fischer, Tony; Puder, Stefanie; Kunschmann, Tom; Soetje, Birga; Ziegler, Wolfgang H.

    2017-01-01

    The focal adhesion kinase (FAK) regulates the dynamics of integrin-based cell adhesions important for motility. FAK’s activity regulation is involved in stress-sensing and focal-adhesion turnover. The effect of FAK on 3D migration and cellular mechanics is unclear. We analyzed FAK knock-out mouse embryonic fibroblasts and cells expressing a kinase-dead FAK mutant, R454-FAK, in comparison to FAK wild-type cells. FAK knock-out and FAKR454/R454 cells invade dense 3D matrices less efficiently. These results are supported by FAK knock-down in wild-type fibroblasts and MDA-MB-231 human breast cancer cells showing reduced invasiveness. Pharmacological interventions indicate that in 3D matrices, cells deficient in FAK or kinase-activity behave similarly to wild-type cells treated with inhibitors of Src-activity or actomyosin-contractility. Using magnetic tweezers experiments, FAKR454/R454 cells are shown to be softer and exhibit impaired adhesion to fibronectin and collagen, which is consistent with their reduced 3D invasiveness. In line with this, FAKR454/R454 cells cannot contract the matrix in contrast to FAK wild-type cells. Finally, our findings demonstrate that active FAK facilitates 3D matrix invasion through increased cellular stiffness and transmission of actomyosin-dependent contractile force in dense 3D extracellular matrices. PMID:28202937

  5. TOTAL RESPIRATORY TRACT DEPOSITION OF FINE MICRON-SIZED PARTICLES IN HEALTHY ADULTS: EMPIRICIAL EQUATIONS FOR GENDER AND BREATHING PATTERN

    EPA Science Inventory

    An accurate dose estimation under various inhalation conditions is important for assessing both the potential health effects of pollutant particles and the therapeutic efficacy of medical aerosols. We measured total deposition fraction (TDF) of monodisperse micron-sized particles...

  6. TOTAL RESPIRATORY TRACT DEPOSITION OF FINE MICRON-SIZED PARTICLES IN HEALTHY ADULTS: EMPIRICIAL EQUATIONS FOR GENDER AND BREATHING PATTERN

    EPA Science Inventory

    An accurate dose estimation under various inhalation conditions is important for assessing both the potential health effects of pollutant particles and the therapeutic efficacy of medical aerosols. We measured total deposition fraction (TDF) of monodisperse micron-sized particles...

  7. Reorganization of the actin cytoskeleton via transcriptional regulation of cytoskeletal/focal adhesion genes by myocardin-related transcription factors (MRTFs/MAL/MKLs)

    SciTech Connect

    Morita, Tsuyoshi; Mayanagi, Taira; Sobue, Kenji

    2007-10-01

    RhoA is a crucial regulator of stress fiber and focal adhesion formation through the activation of actin nucleation and polymerization. It also regulates the nuclear translocation of myocardin-related transcription factor-A and -B (MRTF-A/B, MAL or MKL 1/2), which are co-activators of serum response factor (SRF). In dominant-negative MRTF-A (DN-MRTF-A)-expressing NIH 3T3 cell lines, the expressions of several cytoskeletal/focal adhesion genes were down-regulated, and the formation of stress fiber and focal adhesion was severely diminished. MRTF-A/B-knockdown cells also exhibited such cytoskeletal defects. In reporter assays, both RhoA and MRTF-A enhanced promoter activities of these genes in a CArG-box-dependent manner, and DN-MRTF-A inhibited the RhoA-mediated activation of these promoters. In dominant-negative RhoA (RhoA-N19)-expressing NIH 3T3 cell lines, the nuclear translocation of MRTF-A/B was predominantly prevented, resulting in the reduced expression of cytoskeletal/focal adhesion proteins. Further, constitutive-active MRTF-A/B increased the expression of endogenous cytoskeletal/focal adhesion proteins, and thereby rescued the defective phenotype of stress fibers and focal adhesions in RhoA-N19 expressing cells. These results indicate that MRTF-A/B act as pivotal mediators of stress fiber and focal adhesion formation via the transcriptional regulation of a subset of cytoskeletal/focal adhesion genes.

  8. Generating Color from Polydisperse, Near Micron-Sized TiO2 Particles.

    PubMed

    Alam, Al-Mahmnur; Baek, Kyungnae; Son, Jieun; Pei, Yi-Rong; Kim, Dong Ha; Choy, Jin-Ho; Hyun, Jerome K

    2017-07-19

    Single particle Mie calculations of near micron-sized TiO2 particles predict strong light scattering dominating the visible range that would give rise to a white appearance. We demonstrate that a polydisperse collection of these "white" particles can result in the generation of visible colors through ensemble scattering. The weighted averaging of the scattering over the particle size distribution modifies the sharp, multiple, high order scattering modes from individual particles into broad variations in the collective extinction. These extinction variations are apparent as visible colors for particles suspended in organic solvent at low concentration, or for a monolayer of particles supported on a transparent substrate viewed in front of a white light source. We further exploit the color variations on optical sensitivity to the surrounding environment to promote micron-sized TiO2 particles as stable and robust agents for detecting the optical index of homogeneous media with high contrast sensitivities. Such distribution-modulated scattering properties provide TiO2 particles an intriguing opportunity to impart color and optical sensitivity to their widespread electronic and chemical platforms such as antibacterial windows, catalysis, photocatalysis, optical sensors, and photovoltaics.

  9. Theoretical considerations on imaging of micron size electron beam with optical transition radiation

    NASA Astrophysics Data System (ADS)

    Xiang, Dao; Huang, Wen-Hui

    2007-01-01

    Optical transition radiation (OTR) has been widely used to image electron beam profile. In this paper, we systematically investigated the issues related to imaging of electron beam with OTR. It is found that the point-spread function (PSF) largely depends on the acceptance angle of the lens and is only very weakly dependent on beam energy and the distance from the OTR target to the lens. This excludes the potential obstacles to imaging of high-energy electron beam for which, the photons are emitted in a relatively small cone and the far field condition is hard to fulfill. The image of a whole beam is found by convoluting the real beam distribution with the PSF. It is shown that for micron size beam, the image formed with OTR largely deviates from the real beam distribution. And the real beam distribution could be restored from deconvoluting the image with the PSF. The effectiveness of the restoration is demonstrated, which opens up the possibility of measuring micron size beam profile with OTR.

  10. Micron-Sized Particles Detected in the Vicinity of Jupiter by the Voyager Plasma Wave Instruments

    NASA Technical Reports Server (NTRS)

    Tsintikidis, D.; Gurnett, D. A.; Kurth, W. S.; Granroth, L. J.

    1996-01-01

    Wideband waveform data obtained by the plasma wave instruments onboard the Voyager 1 and 2 spacecraft have been used to study micron-sized dust particles in the vicinity of Jupiter. The technique used was developed during the flybys of Saturn, Uranus, and Neptune, and makes use of the fact that a particle striking the spacecraft at 10-20 km/s causes a voltage pulse in the plasma wave receiver. The waveform of the voltage pulse is much different than the waveform of plasma waves and provides a highly reliable method of detecting micron-sized dust particles. Although the dust impact rate observed in the vicinity of Jupiter is much lower than the rates at Saturn, Uranus, and Neptune, the particles are easily detectable. Approximately 1200 48-second frames of wideband waveform data were examined in the vicinity of Jupiter. Dust impact signatures were found in approximately 20% of these frames. The peak impact rates are about 1 impact per second, and the peak number densities are about 10(exp -5) m(exp -3). Most of the impacts occurred near the equatorial plane at radial distances less than about 35 R(sub j) from Jupiter. Analysis of the detection threshold indicates that the particles have masses greater than 10(exp -11) g, which corresponds to particles with diameters of a few micrometers or larger.

  11. Inositol hexaphosphate (IP6) inhibits key events of cancer metastasis: II. Effects on integrins and focal adhesions.

    PubMed

    Tantivejkul, Kwanchanit; Vucenik, Ivana; Shamsuddin, Abulkalam M

    2003-01-01

    We have shown that inositol hexaphosphate (IP6), a natural compound and a potent anti-cancer agent, inhibited cancer cell adhesion to the extracellular matrix (ECM) proteins, thereby leading to inhibition of cell migration and invasion. Cell adhesion to ECM is mediated by specific cell surface integrins, which transduce intracellular signals through their interaction and activation of other proteins that are recruited to the focal adhesion. We hypothesize that IP6 decreases cell adhesion by suppressing the integrin receptors and their subsequent signaling pathway. We analyzed integrin expressions of the highly invasive estrogen receptor-negative human breast cancer MDA-MB 231 cells exposed to IP6 by flow cytometry. The expression of focal adhesion proteins was investigated by immunocytochemistry and Western blotting. IP6 treatment caused a significant (P < 0.005) decrease in the expression of integrin heterodimers alpha 2 beta 1 (collagen receptor), alpha 5 beta 1 (fibronectin receptor) and alpha v beta 3 (vitronectin receptor); flow cytometry showed that it was the alpha 5 subunit that was down-regulated ( < 0.001). However, the expression of the alpha 2, alpha v, beta 1 and beta 3 subunits were not affected by IP6 treatment. When the expression of integrins on the cell surface was assessed, there was a dramatic 82% decrease in the expression of alpha 5 beta 1 on IP6-treated cells (P < 0.0001), indicating a decrease in cell surface expression of the heterodimers. No effect was seen when inositol hexasulfate (IS6), an analogue of IP6, was used as a control. Immunocytochemistry showed a lack of clustering of paxillin; tyrosine-phosphorylated proteins in IP6-treated cells were discontinuous and scattered around the cell periphery, whereas the patterns were more dense and localized in control cells. Consistent with these observations, focal adhesion kinase (FAK) autophosphorylation at tyrosine-397 residue was suppressed, albeit modestly, by IP6 treatment, suggesting a

  12. Akt directly regulates focal adhesion kinase through association and serine phosphorylation: implication for pressure-induced colon cancer metastasis

    PubMed Central

    Wang, Shouye

    2011-01-01

    Although focal adhesion kinase (FAK) is typically considered upstream of Akt, extracellular pressure stimulates cancer cell adhesion via Akt-dependent FAK activation. How Akt regulates FAK is unknown. We studied Akt-FAK interaction in colon cancer cells under 15 mmHg increased extracellular pressure. Pressure enhanced Akt-FAK association, blocked by inhibiting FAK or silencing Akt1 but not Akt2, and stimulated FAK serine phosphorylation in Caco-2 and human colon cancer cells from surgical specimens Akt1-dependently. FAK includes three serine (S517/601/695) and one threonine (T600)-containing consensus sequences for Akt phosphorylation. Studying S–>A nonphosphorylatable point mutants suggests that these sites coordinately upregulate FAK Y397 tyrosine phosphorylation, which conventionally initiates FAK activation, and mediate pressure-induced cancer cell adhesion. FAK(T600A) mutation did not prevent pressure-induced FAK(Y397) phosphorylation or adhesion. Akt1 appeared to directly bind FAK, and this binding did not depend on the FAK autophosphorylation site (Y397). In addition, our results demonstrated that Akt phosphorylated FAK at three novel serine phosphorylation sites, which were also not required for FAK-Akt binding. This novel interaction suggests that FAK and Akt may be dual kinase targets to prevent cancer cell adhesion and metastasis. PMID:21209368

  13. Silencing profilin-1 inhibits gastric cancer progression via integrin β1/focal adhesion kinase pathway modulation

    PubMed Central

    Cheng, Ya-Jun; Zhu, Zhen-Xin; Zhou, Jian-Sheng; Hu, Zun-Qi; Zhang, Jian-Peng; Cai, Qing-Ping; Wang, Liang-Hua

    2015-01-01

    AIM: To investigate the role of profilin-1 (PFN1) in gastric cancer and the underlying mechanisms. METHODS: Immunohistochemical analysis, quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot were performed to detect PFN1 expression in clinical gastric carcinoma and adjacent tissues, and the association of PFN1 expression with patient clinicopathological characteristics was analyzed. PFN1 was knocked down to investigate the role of this protein in cell proliferation and metastasis in the SGC-7901 cell line. To explore the underlying mechanisms, the expression of integrin β1 and the activity of focal adhesion kinase (FAK) and the downstream proteins extracellular-regulated kinase (ERK)1/2, P38 mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K), AKT and mammalian target of rapamycin (mTOR) were measured through Western blot or qRT-PCR analysis. Fibronectin (FN), a ligand of integrin β1, was used to verify the correlation between alterations in the integrin β1/FAK pathway and changes in tumor cell aggressiveness upon PFN1 perturbation. RESULTS: Immunohistochemical, Western blot and qRT-PCR analyses revealed that PFN1 expression was higher at both the protein and mRNA levels in gastric carcinoma tissues compared with the adjacent tissues. In addition, high PFN1 expression (53/75, 70.4%) was correlated with tumor infiltration, lymph node metastasis and TNM stage in gastric cancer, but not with gender, age, location, tumor size, or histological differentiation. In vitro experiments showed that PFN1 knockdown inhibited the proliferation of SGC-7901 cells through the induction G0/G1 arrest. Silencing PFN1 inhibited cell migration and invasion and down-regulated the expression of matrix metalloproteinase (MMP)-2 and MMP9. Moreover, silencing PFN1 reduced the expression of integrin β1 at the protein level and inhibited the activity of FAK, and the downstream effectors ERK1/2, P38MAPK, PI3K, AKT and mTOR. FN-promoted cell

  14. Prognostic Value of Focal Adhesion Kinase (FAK) in Human Solid Carcinomas: A Meta-Analysis

    PubMed Central

    Ma, Li-Li; Tseng, Yu-Jen; Zhao, Nai-Qing; Chen, Shi-Yao

    2016-01-01

    Background Recently, the number of reports on focal adhesion kinase (FAK) as a vital therapeutic target in solid carcinomas has increased; however, the prognostic role of FAK status remains poorly understood. This study aims to evaluate the prognostic effect of FAK by means of a meta-analysis. Methods We performed a systematic literature search in order to examine the correlation between expression of FAK and overall survival(OS). The hazard ratio (HR) of OS was used to measure survival. A random-effects model was used to pool study statistics. Sensitivity and publication bias analyses were also conducted. Results Thirty eligible studies involving 4702 patients were included. The median expression rate of FAK was 54%. Meta-analysis of the HRs demonstrated that high FAK expression was associated with worse OS (average HR = 2.073, 95%confidence interval[CI]:1.712–2.510, p = 0.000). Regarding cancer type, FAK was associated with worse OS in gastric cancer (HR = 2.646,95% CI:1.743–4.017, p = 0.000), hepatocellular carcinoma (HR = 1.788,95% CI:1.228–2.602, p = 0.002), ovarian cancer (HR = 1.815, 95% CI: 1.193–2.762, p = 0.005), endometrial cancer (HR = 4.149, 95% CI:2.832–6.079, p = 0.000), gliomas (HR = 2.650, 95% CI: 1.205–5.829, p = 0.015), and squamous cell carcinoma (HR = 1,696, 95% CI: 1.030–2.793, p = 0.038). No association was found between HR and disease staging according to our meta-regression analysis. Conclusions Our study shows that high expression of FAK is associated with a worse OS in patients with carcinomas, but the association between FAK and prognosis varies according to cancer type. The value of FAK status in clinical prognosis in cancer needs further research. PMID:27637100

  15. Cyclic strain dominates over microtopography in regulating cytoskeletal and focal adhesion remodeling of human mesenchymal stem cells.

    PubMed

    Doroudian, Golnar; Curtis, Matthew W; Gang, Anjulie; Russell, Brenda

    2013-01-18

    Human bone marrow-derived mesenchymal stem cell (hMSCs) function depends on chemical factors and also on the physical cues of the microenvironmental niche. Here, this physical microenvironment is recapitulated with controlled modes of mechanical strain applied to substrata containing three-dimensional features in order to analyze the effects on cell morphology, focal adhesion distribution, and gene expression. Ten percentage of strain at 1 Hz is delivered for 48 h to hMSCs cultured on flat surfaces, or on substrata with 15 μm-high microtopographic posts spaced 75 μm apart. Adding strain to microtopography produced stable semicircular focal adhesions, and actin spanning from post to post. Strain dominated over microtopography for expression of genes for the cytoskeleton (caldesmon-1 and calponin 3), cell adhesion (integrin-α2, vinculin, and paxillin), and extracellular matrix remodeling (MMP13) (p<0.05). Overall, attention to external mechanical stimuli is necessary for optimizing the stem cell niche for regenerative medicine.

  16. Nucleation and decay initiation are the stiffness-sensitive phases of focal adhesion maturation.

    PubMed

    Walcott, Sam; Kim, Dong-Hwee; Wirtz, Denis; Sun, Sean X

    2011-12-21

    A cell plated on a two-dimensional substrate forms adhesions with that surface. These adhesions, which consist of aggregates of various proteins, are thought to be important in mechanosensation, the process by which the cell senses and responds to the mechanical properties of the substrate (e.g., stiffness). On the basis of experimental measurements, we model these proteins as idealized molecules that can bind to the substrate in a strain-dependent manner and can undergo a force-dependent state transition. The model forms molecular aggregates that are similar to adhesions. Substrate stiffness affects whether a simulated adhesion is initially formed and how long it grows, but not how that adhesion grows or shrinks. Our own experimental tests support these predictions, suggesting that the mechanosensitivity of adhesions is an emergent property of a simple molecular-mechanical system.

  17. Modified Dirac Hamiltonian for efficient quantum mechanical simulations of micron sized devices

    SciTech Connect

    Habib, K. M. Masum Ghosh, Avik W.; Sajjad, Redwan N.

    2016-03-14

    Representing massless Dirac fermions on a spatial lattice poses a potential challenge known as the Fermion Doubling problem. Addition of a quadratic term to the Dirac Hamiltonian provides a possible way to circumvent this problem. We show that the modified Hamiltonian with the additional term results in a very small Hamiltonian matrix when discretized on a real space square lattice. The resulting Hamiltonian matrix is considerably more efficient for numerical simulations without sacrificing on accuracy and is several orders of magnitude faster than the atomistic tight binding model. Using this Hamiltonian and the non-equilibrium Green's function formalism, we show several transport phenomena in graphene, such as magnetic focusing, chiral tunneling in the ballistic limit, and conductivity in the diffusive limit in micron sized graphene devices. The modified Hamiltonian can be used for any system with massless Dirac fermions such as Topological Insulators, opening up a simulation domain that is not readily accessible otherwise.

  18. Brillouin light scattering from quantized spin waves in micron-size magnetic wires

    NASA Astrophysics Data System (ADS)

    Jorzick, J.; Demokritov, S. O.; Mathieu, C.; Hillebrands, B.; Bartenlian, B.; Chappert, C.; Rousseaux, F.; Slavin, A. N.

    1999-12-01

    An experimental study of spin-wave quantization in arrays of micron-size magnetic Ni80Fe20 wires by means of Brillouin light-scattering spectroscopy is reported. Dipolar-dominated Damon-Eshbach spin-wave modes laterally quantized in a single wire with quantized wave vector values determined by the width of the wire are studied. The frequency splitting between quantized modes, which decreases with increasing mode number, depends on the wire sizes and is up to 1.5 GHz. The transferred wave vector interval, where each mode is observed, is calculated using a light-scattering theory for confined geometries. The frequencies of the modes are calculated, taking into account finite-size effects. The results of the calculations are in a good agreement with the experimental data.

  19. Growth and wetting of water droplet condensed between micron-sized particles and substrate

    NASA Astrophysics Data System (ADS)

    Quang, Tran Si Bui; Leong, Fong Yew; An, Hongjie; Tan, Beng Hau; Ohl, Claus-Dieter

    2016-08-01

    We study heterogeneous condensation growth of water droplets on micron-sized particles resting on a level substrate. Through numerical simulations on equilibrium droplet profiles, we find multiple wetting states towards complete wetting of the particle. Specifically, a partially wetting droplet could undergo a spontaneous transition to complete wetting during condensation growth, for contact angles above a threshold minimum. In addition, we find a competitive wetting behavior between the particle and the substrate, and interestingly, a reversal of the wetting dependence on contact angles during late stages of droplet growth. Using quasi-steady assumption, we simulate a growing droplet under a constant condensation flux, and the results are in good agreement with our experimental observations. As a geometric approximation for particle clusters, we propose and validate a pancake model, and with it, show that a particle cluster has greater wetting tendency compared to a single particle. Together, our results indicate a strong interplay between contact angle, capillarity and geometry during condensation growth.

  20. Electrical four-point probing of spherical metallic thin films coated onto micron sized polymer particles

    SciTech Connect

    Pettersen, Sigurd R. E-mail: jianying.he@ntnu.no; Stokkeland, August Emil; Zhang, Zhiliang; He, Jianying E-mail: jianying.he@ntnu.no; Kristiansen, Helge; Njagi, John; Goia, Dan V.; Redford, Keith

    2016-07-25

    Micron-sized metal-coated polymer spheres are frequently used as filler particles in conductive composites for electronic interconnects. However, the intrinsic electrical resistivity of the spherical thin films has not been attainable due to deficiency in methods that eliminate the effect of contact resistance. In this work, a four-point probing method using vacuum compatible piezo-actuated micro robots was developed to directly investigate the electric properties of individual silver-coated spheres under real-time observation in a scanning electron microscope. Poly(methyl methacrylate) spheres with a diameter of 30 μm and four different film thicknesses (270 nm, 150 nm, 100 nm, and 60 nm) were investigated. By multiplying the experimental results with geometrical correction factors obtained using finite element models, the resistivities of the thin films were estimated for the four thicknesses. These were higher than the resistivity of bulk silver.

  1. Droplet formation from the breakup of micron-sized liquid jets

    NASA Astrophysics Data System (ADS)

    van Hoeve, Wim; van der Bos, Arjan; Versluis, Michel; Snoeijer, Jacco; Brenner, Michael P.; Lohse, Detlef

    2009-11-01

    Droplet formation from the breakup of a liquid jet emerging from a micron-sized circular nozzle is investigated with ultra high-speed imaging at 1 million frames per second and within a lubrication approximation model [Eggers and Dupont, Phys. Rev. Lett. 262, 1994, 205-221]. The capillary time τc= √ρr^3 / γ is extremely small -- of the order of 1μs. In the analyzed low Reynolds number regime the jet breakup is driven by surface tension forces only. Rayleigh breakup is not influenced by the surrounding air. The high- speed imaging results and those from the model calculation perfectly agree for various liquid viscosities and jet velocities, confirming a universal scaling law also for diminutive Rayleigh jets.

  2. Fabrication of micron-sized Al/Ni tetrapod particles with self-propagating exothermic function

    NASA Astrophysics Data System (ADS)

    Inoue, Keita; Fujito, Toshihisa; Fujita, Kazuhiro; Kuroda, Yoshikazu; Takane, Katsuhisa; Namazu, Takahiro

    2015-06-01

    In this paper, we describe the fabrication of micron-sized Al/Ni tetrapod particles using injection molding and electroless plating techniques. By injection molding of Al powders with diameters of 3 and 30 µm, porous Al tetrapod particles are produced. The particles are subjected to electroless Ni plating to grow Ni into small pores, and the plating solution is successfully impregnated into Al particles consisting of 30-µm-diameter Al powders. Differential scanning calorimetry suggests that the produced Al/Ni particles have the same exothermic function as Al/Ni multilayer films. By applying a small electric power to the particles, an exothermic reaction can occur and slowly propagate along each leg one by one. The maximum surface temperature and reaction duration of the particles are compared with the performance characteristics of Al/Ni multilayer films.

  3. Radiation damage in protein crystals is reduced with a micron-sized X-ray beam.

    PubMed

    Sanishvili, Ruslan; Yoder, Derek W; Pothineni, Sudhir Babu; Rosenbaum, Gerd; Xu, Shenglan; Vogt, Stefan; Stepanov, Sergey; Makarov, Oleg A; Corcoran, Stephen; Benn, Richard; Nagarajan, Venugopalan; Smith, Janet L; Fischetti, Robert F

    2011-04-12

    Radiation damage is a major limitation in crystallography of biological macromolecules, even for cryocooled samples, and is particularly acute in microdiffraction. For the X-ray energies most commonly used for protein crystallography at synchrotron sources, photoelectrons are the predominant source of radiation damage. If the beam size is small relative to the photoelectron path length, then the photoelectron may escape the beam footprint, resulting in less damage in the illuminated volume. Thus, it may be possible to exploit this phenomenon to reduce radiation-induced damage during data measurement for techniques such as diffraction, spectroscopy, and imaging that use X-rays to probe both crystalline and noncrystalline biological samples. In a systematic and direct experimental demonstration of reduced radiation damage in protein crystals with small beams, damage was measured as a function of micron-sized X-ray beams of decreasing dimensions. The damage rate normalized for dose was reduced by a factor of three from the largest (15.6 μm) to the smallest (0.84 μm) X-ray beam used. Radiation-induced damage to protein crystals was also mapped parallel and perpendicular to the polarization direction of an incident 1-μm X-ray beam. Damage was greatest at the beam center and decreased monotonically to zero at a distance of about 4 μm, establishing the range of photoelectrons. The observed damage is less anisotropic than photoelectron emission probability, consistent with photoelectron trajectory simulations. These experimental results provide the basis for data collection protocols to mitigate with micron-sized X-ray beams the effects of radiation damage.

  4. Micron-sized intrapulmonary particle deposition in the developing rat lung.

    PubMed

    Schulz, Holger; Eder, Gunter; Bolle, Ines; Tsuda, Akira; Karrasch, Stefan

    2012-03-01

    Little is known about the effects of postnatal developmental changes in lung architecture and breathing patterns on intrapulmonary particle deposition. We measured deposition in the developing Wistar-Kyoto rat, whose lung development largely parallels that of humans. Deposition of 2-μm sebacate particles was determined in anesthetized, intubated, spontaneously breathing rats on postnatal days (P) 7 to 90 by aerosol photometry (Karrasch S, Eder G, Bolle I, Tsuda A, Schulz H. J Appl Physiol 107: 1293-1299, 2009). Respiratory parameters were determined by body plethysmography. Tidal volume increased substantially from P7 (0.19 ml) to P90 (2.1 ml) while respiratory rate declined from 182 to 107/min. Breath-specific deposition was lowest (9%) at P7 and P90 and markedly higher at P35 (almost 16%). Structural changes of the alveolar region include a ninefold increase in surface area (Bolle I, Eder G, Takenaka S, Ganguly K, Karrasch S, Zeller C, Neuner M, Kreyling WG, Tsuda A, Schulz H. J Appl Physiol 104: 1167-1176, 2008). Particle deposition per unit of time and surface area peaked at P35 and showed a minimum at P90. At an inhaled particle number concentration of 10(5)/cm(3), there was an estimated 450, 690, and 330 particles/(min × cm(2)) at P7, P35, and P90, respectively. Multiple regression models showed that deposition depends on the mean linear intercept as structural component and the breathing parameters, tidal volume, and respiratory rate (r(2) > 0.9). In conclusion, micron-sized particle deposition was dependent on the stage of postnatal lung development. A maximum was observed during late alveolarization (P35), which corresponds to human lungs of about eight years of age. Children at this age may therefore be more susceptible to micron-sized airborne environmental health hazards.

  5. Radiation damage in protein crystals is reduced with a micron-sized X-ray beam

    PubMed Central

    Sanishvili, Ruslan; Yoder, Derek W.; Pothineni, Sudhir Babu; Rosenbaum, Gerd; Xu, Shenglan; Vogt, Stefan; Stepanov, Sergey; Makarov, Oleg A.; Corcoran, Stephen; Benn, Richard; Nagarajan, Venugopalan; Smith, Janet L.; Fischetti, Robert F.

    2011-01-01

    Radiation damage is a major limitation in crystallography of biological macromolecules, even for cryocooled samples, and is particularly acute in microdiffraction. For the X-ray energies most commonly used for protein crystallography at synchrotron sources, photoelectrons are the predominant source of radiation damage. If the beam size is small relative to the photoelectron path length, then the photoelectron may escape the beam footprint, resulting in less damage in the illuminated volume. Thus, it may be possible to exploit this phenomenon to reduce radiation-induced damage during data measurement for techniques such as diffraction, spectroscopy, and imaging that use X-rays to probe both crystalline and noncrystalline biological samples. In a systematic and direct experimental demonstration of reduced radiation damage in protein crystals with small beams, damage was measured as a function of micron-sized X-ray beams of decreasing dimensions. The damage rate normalized for dose was reduced by a factor of three from the largest (15.6 μm) to the smallest (0.84 μm) X-ray beam used. Radiation-induced damage to protein crystals was also mapped parallel and perpendicular to the polarization direction of an incident 1-μm X-ray beam. Damage was greatest at the beam center and decreased monotonically to zero at a distance of about 4 μm, establishing the range of photoelectrons. The observed damage is less anisotropic than photoelectron emission probability, consistent with photoelectron trajectory simulations. These experimental results provide the basis for data collection protocols to mitigate with micron-sized X-ray beams the effects of radiation damage. PMID:21444772

  6. Simulation of Micron-Sized Debris Populations in Low Earth Orbit

    NASA Astrophysics Data System (ADS)

    Xu, Yu-Lin; Matney, Mark; Liou, J.-C.; Hyde, James; Prior, Thomas G.

    The update of ORDEM2000, the NASA Orbital Debris Engineering Model, to its new version -ORDEM2010, is nearly complete. As a part of the ORDEM upgrade, this paper addresses the simulation of micro-debris (greater than 10 µm and smaller than 1 mm in size) populations in low Earth orbit. The principal data used in the modeling of the micron-sized debris popu-lations are in-situ hypervelocity impact records, accumulated in post-flight damage surveys on the space-exposed surfaces of returned spacecrafts. The development of the micro-debris model populations follows the general approach to deriving other ORDEM2010-required input popu-lations for various components and types of debris. This paper describes the key elements and major steps in the statistical inference of the ORDEM2010 micro-debris populations. A crucial step is the construction of a degradation/ejecta source model to provide prior information on the micron-sized objects (such as orbital and object-size distributions). Another critical step is to link model populations with data, which is rather involved. It demands detailed information on area-time/directionality for all the space-exposed elements of a shuttle orbiter and damage laws, which relate impact damage with the physical properties of a projectile and impact con-ditions such as impact angle and velocity. Also needed are model-predicted debris fluxes as a function of object size and impact velocity from all possible directions. In spite of the very limited quantity of the available shuttle impact data, the population-derivation process is satis-factorily stable. Final modeling results obtained from shuttle window and radiator impact data are reasonably convergent and consistent, especially for the debris populations with object-size thresholds at 10 and 100 µm.

  7. Simulation of Micron-Sized Debris Populations in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Xu, Y.-L.; Hyde, J. L.; Prior, T.; Matney, Mark

    2010-01-01

    The update of ORDEM2000, the NASA Orbital Debris Engineering Model, to its new version ORDEM2010, is nearly complete. As a part of the ORDEM upgrade, this paper addresses the simulation of micro-debris (greater than 10 m and smaller than 1 mm in size) populations in low Earth orbit. The principal data used in the modeling of the micron-sized debris populations are in-situ hypervelocity impact records, accumulated in post-flight damage surveys on the space-exposed surfaces of returned spacecrafts. The development of the micro-debris model populations follows the general approach to deriving other ORDEM2010-required input populations for various components and types of debris. This paper describes the key elements and major steps in the statistical inference of the ORDEM2010 micro-debris populations. A crucial step is the construction of a degradation/ejecta source model to provide prior information on the micron-sized objects (such as orbital and object-size distributions). Another critical step is to link model populations with data, which is rather involved. It demands detailed information on area-time/directionality for all the space-exposed elements of a shuttle orbiter and damage laws, which relate impact damage with the physical properties of a projectile and impact conditions such as impact angle and velocity. Also needed are model-predicted debris fluxes as a function of object size and impact velocity from all possible directions. In spite of the very limited quantity of the available shuttle impact data, the population-derivation process is satisfactorily stable. Final modeling results obtained from shuttle window and radiator impact data are reasonably convergent and consistent, especially for the debris populations with object-size thresholds at 10 and 100 m.

  8. Simulation of Micron-Sized Debris Populations in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Xu, Y.-L.; Hyde, J. L.; Prior, T.; Matney, Mark

    2010-01-01

    The update of ORDEM2000, the NASA Orbital Debris Engineering Model, to its new version ORDEM2010, is nearly complete. As a part of the ORDEM upgrade, this paper addresses the simulation of micro-debris (greater than 10 m and smaller than 1 mm in size) populations in low Earth orbit. The principal data used in the modeling of the micron-sized debris populations are in-situ hypervelocity impact records, accumulated in post-flight damage surveys on the space-exposed surfaces of returned spacecrafts. The development of the micro-debris model populations follows the general approach to deriving other ORDEM2010-required input populations for various components and types of debris. This paper describes the key elements and major steps in the statistical inference of the ORDEM2010 micro-debris populations. A crucial step is the construction of a degradation/ejecta source model to provide prior information on the micron-sized objects (such as orbital and object-size distributions). Another critical step is to link model populations with data, which is rather involved. It demands detailed information on area-time/directionality for all the space-exposed elements of a shuttle orbiter and damage laws, which relate impact damage with the physical properties of a projectile and impact conditions such as impact angle and velocity. Also needed are model-predicted debris fluxes as a function of object size and impact velocity from all possible directions. In spite of the very limited quantity of the available shuttle impact data, the population-derivation process is satisfactorily stable. Final modeling results obtained from shuttle window and radiator impact data are reasonably convergent and consistent, especially for the debris populations with object-size thresholds at 10 and 100 m.

  9. Simulation of Micron-Sized Debris Populations in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Xu, Y.-L.; Matney, M.; Liou, J.-C.; Hyde, J. L.; Prior, T. G.

    2010-01-01

    The update of ORDEM2000, the NASA Orbital Debris Engineering Model, to its new version . ORDEM2010, is nearly complete. As a part of the ORDEM upgrade, this paper addresses the simulation of micro-debris (greater than 10 micron and smaller than 1 mm in size) populations in low Earth orbit. The principal data used in the modeling of the micron-sized debris populations are in-situ hypervelocity impact records, accumulated in post-flight damage surveys on the space-exposed surfaces of returned spacecrafts. The development of the micro-debris model populations follows the general approach to deriving other ORDEM2010-required input populations for various components and types of debris. This paper describes the key elements and major steps in the statistical inference of the ORDEM2010 micro-debris populations. A crucial step is the construction of a degradation/ejecta source model to provide prior information on the micron-sized objects (such as orbital and object-size distributions). Another critical step is to link model populations with data, which is rather involved. It demands detailed information on area-time/directionality for all the space-exposed elements of a shuttle orbiter and damage laws, which relate impact damage with the physical properties of a projectile and impact conditions such as impact angle and velocity. Also needed are model-predicted debris fluxes as a function of object size and impact velocity from all possible directions. In spite of the very limited quantity of the available shuttle impact data, the population-derivation process is satisfactorily stable. Final modeling results obtained from shuttle window and radiator impact data are reasonably convergent and consistent, especially for the debris populations with object-size thresholds at 10 and 100 micron.

  10. Perturbation of a radially oscillating single-bubble by a micron-sized object.

    PubMed

    Montes-Quiroz, W; Baillon, F; Louisnard, O; Boyer, B; Espitalier, F

    2017-03-01

    A single bubble oscillating in a levitation cell is acoustically monitored by a piezo-ceramics microphone glued on the cell external wall. The correlation of the filtered signal recorded over distant cycles on one hand, and its harmonic content on the other hand, are shown to carry rich information on the bubble stability and existence. For example, the harmonic content of the signal is shown to increase drastically once air is fully dissociated in the bubble, and the resulting pure argon bubble enters into the upper branch of the sonoluminescence regime. As a consequence, the bubble disappearance can be unambiguously detected by a net drop in the harmonic content. On the other hand, we perturb a stable sonoluminescing bubble by approaching a micron-sized fiber. The bubble remains unperturbed until the fiber tip is approached within a critical distance, below which the bubble becomes unstable and disappears. This distance can be easily measured by image treatment, and is shown to scale roughly with 3-4 times the bubble maximal radius. The bubble disappearance is well detected by the drop of the microphone harmonic content, but several thousands of periods after the bubble actually disappeared. The delay is attributed to the slow extinction of higher modes of the levitation cell, excited by the bubble oscillation. The acoustic detection method should however allow the early detection and imaging of non-predictable perturbations of the bubble by foreign micron-sized objects, such as crystals or droplets. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Using immuno-scanning electron microscopy for the observation of focal adhesion-substratum interactions at the nano- and microscale in S-phase cells.

    PubMed

    Biggs, Manus J P; Richards, R Geoff; Dalby, Matthew J

    2011-01-01

    It is becoming clear that the nano/microtopography of a biomaterial in vivo is of first importance in influencing focal adhesion formation and subsequent cellular behaviour. When considering next-generation biomaterials, where the material's ability to elicit a regulated cell response will be key to device success, focal adhesion analysis is an useful indicator of cytocompatibility and can be used to determine functionality. Here, a methodology is described to allow simultaneous high-resolution imaging of focal adhesion sites and the material topography using field emission scanning electron microscopy. Furthermore, through the use of BrdU pulse labelling and immunogold detection, S-phase cells can be selected from a near-synchronised population of cells to remove artefacts due to cell cycle phase. This is a key factor in adhesion quantification as there is natural variation in focal adhesion density as cells progress through the cell cycle, which can skew the quantitative analysis of focal adhesion formation on fabricated biomaterials.

  12. Imaging of primary human hepatocytes performed with micron-sized iron oxide particles and clinical magnetic resonance tomography.

    PubMed

    Raschzok, Nathanael; Morgul, Mehmet H; Pinkernelle, Jens; Vondran, Florian W R; Billecke, Nils; Kammer, Nora N; Pless, Gesine; Adonopoulou, Michaela K; Leist, Christian; Stelter, Lars; Teichgraber, Ulf; Schwartlander, Ruth; Sauer, Igor M

    2008-08-01

    Transplantation of primary human hepatocytes is a promising approach in certain liver diseases. For the visualization of the hepatocytes during and following cell application and the ability of a timely response to potential complications, a non-invasive modality for imaging the transplanted cells has to be established. The aim of this study was to label primary human hepatocytes with micron-sized iron oxide particles (MPIOs), enabling the detection of cells by clinical magnetic resonance imaging (MRI). Primary human hepatocytes isolated from 13 different donors were used for the labelling experiments. Following the dose-finding studies, hepatocytes were incubated with 30 particles/cell for 4 hrs in an adhesion culture. Particle incorporation was investigated via light, fluorescence and electron microscopy, and labelled cells were fixed and analysed in an agarose suspension by a 3.0 Tesla MR scanner. The hepatocytes were enzymatically resuspended and analysed during a 5-day reculture period for viability, total protein, enzyme leakage (aspartate aminotransferase [AST], lactate dehydrogenase [LDH]) and metabolic activity (urea, albumin). A mean uptake of 18 particles/cell could be observed, and the primary human hepatocytes were clearly detectable by MR instrumentation. The particle load was not affected by resuspension and showed no alternations during the culture period. Compared to control groups, labelling and resuspension had no adverse effects on the viability, enzyme leakage and metabolic activity of the human hepatocytes. The feasibility of preparing MPIO-labelled primary human hepatocytes detectable by clinical MR equipment was shown in vitro. MPIO-labelled cells could serve for basic research and quality control in the clinical setting of human hepatocyte transplantation.

  13. Shear stress modulates endothelial cell morphology and F-actin organization through the regulation of focal adhesion-associated proteins.

    PubMed

    Girard, P R; Nerem, R M

    1995-04-01

    Flow-related shear stress has been shown to modulate endothelial cell structure and function including F-actin microfilament organization. Focal adhesion-associated proteins such as vinculin, talin, and specific integrins may play a role in the modulation of these cytoskeletal and morphological changes. Double-label immunofluorescence studies indicated that, in static culture, alpha 5 beta 1 fibronectin receptors (alpha 5 beta 1 FNRs) and alpha v beta 3 vitronectin receptors (alpha v beta 3 VNRs) were found predominantly in the peripheral regions of bovine aortic endothelial cells (BAECs) corresponding to the localization of vinculin, talin, and actin microfilament terminations. In response to shear stress, concomitant with cell elongation and the appearance of stress fibers aligned with the direction of flow, there was a prominent localization of vinculin and alpha v beta 3 VNRs as the "upstream" end of the cells. Stress fiber terminations were clearly evident at these concentrations of focal adhesion-associated proteins. These data suggest that the upstream concentration of these proteins may direct shear stress-induced stress fiber formation and may function in the alignment of the fibers in the direction of flow. Levels of surface alpha v beta 3 VNRs were found to decrease in response to flow, possibly reflecting the decrease in numbers of "downstream" receptors. Unlike the arrangement of vinculin and alpha v beta 3 VNRs observed following exposure to flow, talin and alpha 5 beta 1 FNRs, in addition to being localized at the upstream end of the cell, were also evenly distributed throughout the rest of the cell. Surface levels of alpha 5 beta 1 FNRs increased in response to shear stress, perhaps providing an increased adherence of BAECs to the extracellular matrix through these receptors. These data suggest that focal adhesion-associated proteins play specific roles in the response of BAECs to shear stress.

  14. Focal adhesion kinase: predictor of tumour response and risk factor for recurrence after neoadjuvant chemoradiation in rectal cancer.

    PubMed

    Gómez Del Pulgar, Teresa; Cebrián, Arancha; Fernández-Aceñero, Maria Jesús; Borrero-Palacios, Aurea; Del Puerto-Nevado, Laura; Martínez-Useros, Javier; Marín-Arango, Juan Pablo; Caramés, Cristina; Vega-Bravo, Ricardo; Rodríguez-Remírez, María; Cruz-Ramos, Marlid; Manzarbeitia, Félix; García-Foncillas, Jesús

    2016-09-01

    Rectal cancer represents about 30% of colorectal cancers, being around 50% locally advanced at presentation. Chemoradiation (CRT) followed by total mesorectal excision is the standard of care for these locally advanced stages. However, it is not free of adverse effects and toxicity and the complete pathologic response rate is between 10% and 30%. This makes it extremely important to define factors that can predict response to this therapy. Focal adhesion kinase (FAK) expression has been correlated with worse prognosis in several tumours and its possible involvement in cancer radio- and chemosensitivity has been suggested; however, its role in rectal cancer has not been analysed yet. To analyse the association of FAK expression with tumour response to CRT in locally advanced rectal cancer. This study includes 73 patients with locally advanced rectal cancer receiving standard neoadjuvant CRT followed by total mesorectal excision. Focal adhesion kinase protein levels were immunohistochemically analysed in the pre-treatment biopsies of these patients and correlated with tumour response to CRT and patients survival. Low FAK expression was significantly correlated with local and distant recurrence (P = 0.013). Low FAK expression was found to be a predictive marker of tumour response to neoadjuvant therapy (P = 0.007) and patients whose tumours did not express FAK showed a strong association with lower disease-free survival (P = 0.01). Focal adhesion kinase expression predicts neoadjuvant CRT response in rectal cancer patients and it is a clinically relevant risk factor for local and distant recurrence. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  15. Junctional complex and focal adhesion rearrangement mediates pulmonary endothelial barrier enhancement by FTY720 S-phosphonate.

    PubMed

    Wang, Lichun; Bittman, Robert; Garcia, Joe G N; Dudek, Steven M

    2015-05-01

    Modulation of pulmonary vascular barrier function is an important clinical goal given the devastating effects of vascular leak in acute lung injury (ALI). We previously demonstrated that FTY720 S-phosphonate (Tys), an analog of sphingosine 1-phosphate (S1P) and FTY720, has more potent pulmonary barrier protective effects than these agents in vitro and in mouse models of ALI. Tys preserves expression of the barrier-promoting S1P1 receptor (S1PR1), whereas S1P and FTY720 induce its ubiquitination and degradation. Here we further characterize the novel barrier promoting effects of Tys in cultured human pulmonary endothelial cells (EC). In human lung EC, Tys significantly increased peripheral redistribution of adherens junction proteins VE-cadherin and β-catenin and tight junction protein ZO-1. Inhibition of VE-cadherin with blocking antibody significantly attenuated Tys-induced transendothelial resistance (TER) elevation, while ZO-1 siRNA partially inhibited this elevation. Tys significantly increased focal adhesion formation and phosphorylation of focal adhesion kinase (FAK). Pharmacologic inhibition of FAK significantly attenuated Tys-induced TER elevation. Tys significantly increased phosphorylation and peripheral redistribution of the actin-binding protein, cortactin, while cortactin siRNA partially attenuated Tys-induced TER elevation. Although Tys significantly increased phosphorylation of Akt and GSK3β, neither PI3 kinase nor GSK3β inhibition altered Tys-induced TER elevation. Tys significantly increased Rac1 activity, while inhibition of Rac1 activity significantly attenuated Tys-induced VE-cadherin redistribution and TER elevation. Junctional complex, focal adhesion rearrangement and Rac1 activation play critical roles in Tys-mediated barrier protection in pulmonary EC. These results provide mechanistic insights into the effects of this potential ALI therapy. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Eptifibatide and abciximab inhibit insulin-induced focal adhesion formation and proliferative responses in human aortic smooth muscle cells

    PubMed Central

    Pathak, Alokkumar; Zhao, Renyi; Huang, Jianhua; Stouffer, George A

    2008-01-01

    Background The use of abciximab (c7E3 Fab) or eptifibatide improves clinical outcomes in diabetics undergoing percutaneous coronary intervention. These β3 integrin inhibitors antagonize fibrinogen binding to αIIbβ3 integrins on platelets and ligand binding to αvβ3 integrins on vascular cells. αvβ3 integrins influence responses to insulin in various cell types but effects in human aortic smooth muscle cells (HASMC) are unknown. Results and discussion Insulin elicited a dose-dependent proliferative response in HASMC. Pretreatment with m7E3 (an anti-β3 integrin monoclonal antibody from which abciximab is derived), c7E3 or LM609 inhibited proliferative responses to insulin by 81%, 59% and 28%, respectively. Eptifibatide or cyclic RGD peptides completely abolished insulin-induced proliferation whereas tirofiban, which binds αIIbβ3 but not αvβ3, had no effect. Insulin-induced increases in c-Jun NH2-terminal kinase-1 (JNK1) activity were partially inhibited by m7E3 and eptifibatide whereas antagonism of αvβ3 integrins had no effect on insulin-induced increases in extracellular signal-regulated kinase (ERK) activity. Insulin stimulated a rapid increase in the number of vinculin-containing focal adhesions per cell and treatment with m7E3, c7E3 or eptifibatide inhibited insulin-induced increases in focal adhesions by 100%, 74% and 73%, respectively. Conclusion These results demonstrate that αvβ3 antagonists inhibit signaling, focal adhesion formation and proliferation of insulin-treated HASMC. PMID:19108709

  17. Direct observation of dynamic force propagation between focal adhesions of cells on microposts by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Okada, Akinori; Mizutani, Yusuke; Subagyo, Agus; Hosoi, Hirotaka; Nakamura, Motonori; Sueoka, Kazuhisa; Kawahara, Koichi; Okajima, Takaharu

    2011-12-01

    We investigated dynamic force propagation between focal adhesions of fibroblast cells cultured on polydimethylsiloxane micropost substrates, by atomic force microscopy. Live cells were mechanically modulated by the atomic force microscopy probe bound to cell apical surfaces at 0.01-0.5 Hz, while microposts served as a force sensor at basal surfaces. We observed that cells exhibited rheological behavior at the apical surface but had no apparent out-of-phase response at the basal surface, indicating that the dynamic force propagating through cytoskeletal filaments behaves in an elastic manner. Moreover, the direction of the propagated force was observed to be intimately associated with the prestress.

  18. Insights into the Utility of the Focal Adhesion Scaffolding Proteins in the Anaerobic Fungus Orpinomyces sp. C1A

    PubMed Central

    Calkins, Shelby; Youssef, Noha H.

    2016-01-01

    Focal adhesions (FAs) are large eukaryotic multiprotein complexes that are present in all metazoan cells and function as stable sites of tight adhesion between the extracellular matrix (ECM) and the cell’s cytoskeleton. FAs consist of anchor membrane protein (integrins), scaffolding proteins (e.g. α-actinin, talin, paxillin, and vinculin), signaling proteins of the IPP complex (e.g. integrin-linked kinase, α-parvin, and PINCH), and signaling kinases (e.g. focal adhesion kinase (FAK) and Src kinase). While genes encoding complete focal adhesion machineries are present in genomes of all multicellular Metazoa; incomplete machineries were identified in the genomes of multiple non-metazoan unicellular Holozoa, basal fungal lineages, and amoebozoan representatives. Since a complete FA machinery is required for functioning, the putative role, if any, of these incomplete FA machineries is currently unclear. We sought to examine the expression patterns of FA-associated genes in the anaerobic basal fungal isolate Orpinomyces sp. strain C1A under different growth conditions and at different developmental stages. Strain C1A lacks clear homologues of integrin, and the two signaling kinases FAK and Src, but encodes for all scaffolding proteins, and the IPP complex proteins. We developed a protocol for synchronizing growth of C1A cultures, allowing for the collection and mRNA extraction from flagellated spores, encysted germinating spores, active zoosporangia, and late inactive sporangia of strain C1A. We demonstrate that the genes encoding the FA scaffolding proteins α-actinin, talin, paxillin, and vinculin are indeed transcribed under all growth conditions, and at all developmental stages of growth. Further, analysis of the observed transcriptional patterns suggests the putative involvement of these components in alternative non-adhesion-specific functions, such as hyphal tip growth during germination and flagellar assembly during zoosporogenesis. Based on these results

  19. Kinetic Mechanism and Rate-Limiting Steps of Focal Adhesion Kinase-1

    SciTech Connect

    Schneck, Jessica L.; Briand, Jacques; Chen, Stephanie; Lehr, Ruth; McDevitt, Patrick; Zhao, Baoguang; Smallwood, Angela; Concha, Nestor; Oza, Khyati; Kirkpatrick, Robert; Yan, Kang; Villa, James P.; Meek, Thomas D.; Thrall, Sara H.

    2010-12-07

    Steady-state kinetic analysis of focal adhesion kinase-1 (FAK1) was performed using radiometric measurement of phosphorylation of a synthetic peptide substrate (Ac-RRRRRRSETDDYAEIID-NH{sub 2}, FAK-tide) which corresponds to the sequence of an autophosphorylation site in FAK1. Initial velocity studies were consistent with a sequential kinetic mechanism, for which apparent kinetic values k{sub cat} (0.052 {+-} 0.001 s{sup -1}), K{sub MgATP} (1.2 {+-} 0.1 {micro}M), K{sub iMgATP} (1.3 {+-} 0.2 {micro}M), K{sub FAK-tide} (5.6 {+-} 0.4 {micro}M), and K{sub iFAK-tide} (6.1 {+-} 1.1 {micro}M) were obtained. Product and dead-end inhibition data indicated that enzymatic phosphorylation of FAK-tide by FAK1 was best described by a random bi bi kinetic mechanism, for which both E-MgADP-FAK-tide and E-MgATP-P-FAK-tide dead-end complexes form. FAK1 catalyzed the {beta}{gamma}-bridge:{beta}-nonbridge positional oxygen exchange of [{gamma}-{sup 18}O{sub 4}]ATP in the presence of 1 mM [{gamma}-{sup 18}O{sub 4}]ATP and 1.5 mM FAK-tide with a progressive time course which was commensurate with catalysis, resulting in a rate of exchange to catalysis of k{sub x}/k{sub cat} = 0.14 {+-} 0.01. These results indicate that phosphoryl transfer is reversible and that a slow kinetic step follows formation of the E-MgADP-P-FAK-tide complex. Further kinetic studies performed in the presence of the microscopic viscosogen sucrose revealed that solvent viscosity had no effect on k{sub cat}/K{sub FAK-tide}, while k{sub cat} and k{sub cat}/K{sub MgATP} were both decreased linearly at increasing solvent viscosity. Crystallographic characterization of inactive versus AMP-PNP-liganded structures of FAK1 showed that a large conformational motion of the activation loop upon ATP binding may be an essential step during catalysis and would explain the viscosity effect observed on k{sub cat}/K{sub m} for MgATP but not on k{sub cat}/K{sub m} for FAK-tide. From the positional isotope exchange, viscosity, and

  20. Glycogen synthase kinase 3β dictates podocyte motility and focal adhesion turnover by modulating paxillin activity: implications for the protective effect of low-dose lithium in podocytopathy.

    PubMed

    Xu, Weiwei; Ge, Yan; Liu, Zhihong; Gong, Rujun

    2014-10-01

    Aberrant focal adhesion turnover is centrally involved in podocyte actin cytoskeleton disorganization and foot process effacement. The structural and dynamic integrity of focal adhesions is orchestrated by multiple cell signaling molecules, including glycogen synthase kinase 3β (GSK3β), a multitasking kinase lately identified as a mediator of kidney injury. However, the role of GSK3β in podocytopathy remains obscure. In doxorubicin (Adriamycin)-injured podocytes, lithium, a GSK3β inhibitor and neuroprotective mood stabilizer, obliterated the accelerated focal adhesion turnover, rectified podocyte hypermotility, and restored actin cytoskeleton integrity. Mechanistically, lithium counteracted the doxorubicin-elicited GSK3β overactivity and the hyperphosphorylation and overactivation of paxillin, a focal adhesion-associated adaptor protein. Moreover, forced expression of a dominant negative kinase dead mutant of GSK3β highly mimicked, whereas ectopic expression of a constitutively active GSK3β mutant abolished, the effect of lithium in doxorubicin-injured podocytes, suggesting that the effect of lithium is mediated, at least in part, through inhibition of GSK3β. Furthermore, paxillin interacted with GSK3β and served as its substrate. In mice with doxorubicin nephropathy, a single low dose of lithium ameliorated proteinuria and glomerulosclerosis. Consistently, lithium therapy abrogated GSK3β overactivity, blunted paxillin hyperphosphorylation, and reinstated actin cytoskeleton integrity in glomeruli associated with an early attenuation of podocyte foot process effacement. Thus, GSK3β-modulated focal adhesion dynamics might serve as a novel therapeutic target for podocytopathy.

  1. Phosphoproteomic Analysis Identifies Focal Adhesion Kinase 2 (FAK2) as a Potential Therapeutic Target for Tamoxifen Resistance in Breast Cancer.

    PubMed

    Wu, Xinyan; Zahari, Muhammad Saddiq; Renuse, Santosh; Nirujogi, Raja Sekhar; Kim, Min-Sik; Manda, Srikanth S; Stearns, Vered; Gabrielson, Edward; Sukumar, Saraswati; Pandey, Akhilesh

    2015-11-01

    Tamoxifen, an estrogen receptor-α (ER) antagonist, is an important agent for the treatment of breast cancer. However, this therapy is complicated by the fact that a substantial number of patients exhibit either de novo or acquired resistance. To characterize the signaling mechanisms underlying this resistance, we treated the MCF7 breast cancer cell line with tamoxifen for over six months and showed that this cell line acquired resistance to tamoxifen in vitro and in vivo. We performed SILAC-based quantitative phosphoproteomic profiling on the tamoxifen resistant and vehicle-treated sensitive cell lines to quantify the phosphorylation alterations associated with tamoxifen resistance. From >5600 unique phosphopeptides identified, 1529 peptides exhibited hyperphosphorylation and 409 peptides showed hypophosphorylation in the tamoxifen resistant cells. Gene set enrichment analysis revealed that focal adhesion pathway was one of the most enriched signaling pathways activated in tamoxifen resistant cells. Significantly, we showed that the focal adhesion kinase FAK2 was not only hyperphosphorylated but also transcriptionally up-regulated in tamoxifen resistant cells. FAK2 suppression by specific siRNA knockdown or a small molecule inhibitor repressed cellular proliferation in vitro and tumor formation in vivo. More importantly, our survival analysis revealed that high expression of FAK2 is significantly associated with shorter metastasis-free survival in estrogen receptor-positive breast cancer patients treated with tamoxifen. Our studies suggest that FAK2 is a potential therapeutic target for the management of hormone-refractory breast cancers.

  2. Vimentin contributes to epithelial-mesenchymal transition cancer cell mechanics by mediating cytoskeletal organization and focal adhesion maturation

    PubMed Central

    Liu, Ching-Yi; Lin, Hsi-Hui; Tang, Ming-Jer; Wang, Yang-Kao

    2015-01-01

    Modulations of cytoskeletal organization and focal adhesion turnover correlate to tumorigenesis and epithelial-mesenchymal transition (EMT), the latter process accompanied by the loss of epithelial markers and the gain of mesenchymal markers (e.g., vimentin). Clinical microarray results demonstrated that increased levels of vimentin mRNA after chemotherapy correlated to a poor prognosis of breast cancer patients. We hypothesized that vimentin mediated the reorganization of cytoskeletons to maintain the mechanical integrity in EMT cancer cells. By using knockdown strategy, the results showed reduced cell proliferation, impaired wound healing, loss of directional migration, and increased large membrane extension in MDA-MB 231 cells. Vimentin depletion also induced reorganization of cytoskeletons and reduced focal adhesions, which resulted in impaired mechanical strength because of reduced cell stiffness and contractile force. In addition, overexpressing vimentin in MCF7 cells increased cell stiffness, elevated cell motility and directional migration, reoriented microtubule polarity, and increased EMT phenotypes due to the increased β1-integrin and the loss of junction protein E-cadherin. The EMT-related transcription factor slug was also mediated by vimentin. The current study demonstrated that vimentin serves as a regulator to maintain intracellular mechanical homeostasis by mediating cytoskeleton architecture and the balance of cell force generation in EMT cancer cells. PMID:25965826

  3. KSHV-TK is a tyrosine kinase that disrupts focal adhesions and induces Rho-mediated cell contraction

    PubMed Central

    Gill, Michael B; Turner, Rachel; Stevenson, Philip G; Way, Michael

    2015-01-01

    Paradoxically, the thymidine kinase (TK) encoded by Kaposi sarcoma-associated herpesvirus (KSHV) is an extremely inefficient nucleoside kinase, when compared to TKs from related herpesviruses. We now show that KSHV-TK, in contrast to HSV1-TK, associates with the actin cytoskeleton and induces extensive cell contraction followed by membrane blebbing. These dramatic changes in cell morphology depend on the auto-phosphorylation of tyrosines 65, 85 and 120 in the N-terminus of KSHV-TK. Phosphorylation of tyrosines 65/85 and 120 results in an interaction with Crk family proteins and the p85 regulatory subunit of PI3-Kinase, respectively. The interaction of Crk with KSHV-TK leads to tyrosine phoshorylation of this cellular adaptor. Auto-phosphorylation of KSHV-TK also induces a loss of FAK and paxillin from focal adhesions, resulting in activation of RhoA-ROCK signalling to myosin II and cell contraction. In the absence of FAK or paxillin, KSHV-TK has no effect on focal adhesion integrity or cell morphology. Our observations demonstrate that by acting as a tyrosine kinase, KSHV-TK modulates signalling and cell morphology. PMID:25471072

  4. Vimentin contributes to epithelial-mesenchymal transition cancer cell mechanics by mediating cytoskeletal organization and focal adhesion maturation.

    PubMed

    Liu, Ching-Yi; Lin, Hsi-Hui; Tang, Ming-Jer; Wang, Yang-Kao

    2015-06-30

    Modulations of cytoskeletal organization and focal adhesion turnover correlate to tumorigenesis and epithelial-mesenchymal transition (EMT), the latter process accompanied by the loss of epithelial markers and the gain of mesenchymal markers (e.g., vimentin). Clinical microarray results demonstrated that increased levels of vimentin mRNA after chemotherapy correlated to a poor prognosis of breast cancer patients. We hypothesized that vimentin mediated the reorganization of cytoskeletons to maintain the mechanical integrity in EMT cancer cells. By using knockdown strategy, the results showed reduced cell proliferation, impaired wound healing, loss of directional migration, and increased large membrane extension in MDA-MB 231 cells. Vimentin depletion also induced reorganization of cytoskeletons and reduced focal adhesions, which resulted in impaired mechanical strength because of reduced cell stiffness and contractile force. In addition, overexpressing vimentin in MCF7 cells increased cell stiffness, elevated cell motility and directional migration, reoriented microtubule polarity, and increased EMT phenotypes due to the increased β1-integrin and the loss of junction protein E-cadherin. The EMT-related transcription factor slug was also mediated by vimentin. The current study demonstrated that vimentin serves as a regulator to maintain intracellular mechanical homeostasis by mediating cytoskeleton architecture and the balance of cell force generation in EMT cancer cells.

  5. Neural-specific deletion of the focal adhesion adaptor protein paxillin slows migration speed and delays cortical layer formation.

    PubMed

    Rashid, Mamunur; Belmont, Judson; Carpenter, David; Turner, Christopher E; Olson, Eric C

    2017-09-21

    Paxillin and Hic-5 are homologous focal adhesion adaptor proteins that coordinate cytoskeletal rearrangements in response to integrin-signaling, but their role(s) in cortical development are unknown. Here, we find that Hic-5 deficient mice are postnatal viable with normal cortical layering. Mice with a neural-specific deletion of paxillin are also postnatal viable, but show evidence of a cortical neuron migration delay that is evident pre and perinatally, but is not detected at postnatal day 35 (P35). This phenotype is not modified by Hic-5 deficiency (double knockout). Specific deletion of paxillin in postmitotic neurons by Nex-Cre mediated recombination as well as in utero electroporation of a Cre-expression construct identified a cell-autonomous requirement for paxillin in migrating neurons. Paxillin-deficient neurons have shorter leading processes that exhibited multiple swellings in comparison to control. Multiphoton imaging revealed that paxillin-deficient neurons migrate ∼30% slower than control neurons. This phenotype is similar to that produced by deletion of focal adhesion kinase (FAK), a signaling partner of paxillin and suggests paxillin and FAK function cell autonomously to control migrating neuron morphology and speed during cortical development. © 2017. Published by The Company of Biologists Ltd.

  6. Arsenic alters vascular smooth muscle cell focal adhesion complexes leading to activation of FAK-src mediated pathways

    SciTech Connect

    Pysher, Michele D. Chen, Qin M.; Vaillancourt, Richard R.

    2008-09-01

    Chronic exposure to arsenic has been linked to tumorigenesis, cardiovascular disease, hypertension, atherosclerosis, and peripheral vascular disease; however, the molecular mechanisms underlying its pathological effects remain elusive. In this study, we investigated arsenic-induced alteration of focal adhesion protein complexes in normal, primary vascular smooth muscle cells. We demonstrate that exposure to environmentally relevant concentrations of arsenic (50 ppb As{sup 3+}) can alter focal adhesion protein co-association leading to activation of downstream pathways. Co-associated proteins were identified and quantitated via co-immunoprecipitation, SDS-PAGE, and Western blot analysis followed by scanning densitometry. Activation of MAPK pathways in total cell lysates was evaluated using phosphor-specific antibodies. In our model, arsenic treatment caused a sustained increase in FAK-src association and activation, and induced the formation of unique signaling complexes (beginning after 3-hour As{sup 3+} exposure and continuing throughout the 12-hour time course studied). The effects of these alterations were manifested as chronic stimulation of downstream PAK, ERK and JNK pathways. Past studies have demonstrated that these pathways are involved in cellular survival, growth, proliferation, and migration in VSMCs.

  7. Endorepellin causes endothelial cell disassembly of actin cytoskeleton and focal adhesions through α2β1 integrin

    PubMed Central

    Bix, Gregory; Fu, Jian; Gonzalez, Eva M.; Macro, Laura; Barker, Amy; Campbell, Shelly; Zutter, Mary M.; Santoro, Samuel A.; Kim, Jiyeun K.; Höök, Magnus; Reed, Charles C.; Iozzo, Renato V.

    2004-01-01

    Endorepellin, the COOH-terminal domain of the heparan sulfate proteoglycan perlecan, inhibits several aspects of angiogenesis. We provide evidence for a novel biological axis that links a soluble fragment of perlecan protein core to the major cell surface receptor for collagen I, α2β1 integrin, and provide an initial investigation of the intracellular signaling events that lead to endorepellin antiangiogenic activity. The interaction between endorepellin and α2β1 integrin triggers a unique signaling pathway that causes an increase in the second messenger cAMP; activation of two proximal kinases, protein kinase A and focal adhesion kinase; transient activation of p38 mitogen-activated protein kinase and heat shock protein 27, followed by a rapid down-regulation of the latter two proteins; and ultimately disassembly of actin stress fibers and focal adhesions. The end result is a profound block of endothelial cell migration and angiogenesis. Because perlecan is present in both endothelial and smooth muscle cell basement membranes, proteolytic activity during the initial stages of angiogenesis could liberate antiangiogenic fragments from blood vessels' walls, including endorepellin. PMID:15240572

  8. Phosphoproteomic Analysis Identifies Focal Adhesion Kinase 2 (FAK2) as a Potential Therapeutic Target for Tamoxifen Resistance in Breast Cancer*

    PubMed Central

    Wu, Xinyan; Zahari, Muhammad Saddiq; Renuse, Santosh; Nirujogi, Raja Sekhar; Kim, Min-Sik; Manda, Srikanth S.; Stearns, Vered; Gabrielson, Edward; Sukumar, Saraswati; Pandey, Akhilesh

    2015-01-01

    Tamoxifen, an estrogen receptor-α (ER) antagonist, is an important agent for the treatment of breast cancer. However, this therapy is complicated by the fact that a substantial number of patients exhibit either de novo or acquired resistance. To characterize the signaling mechanisms underlying this resistance, we treated the MCF7 breast cancer cell line with tamoxifen for over six months and showed that this cell line acquired resistance to tamoxifen in vitro and in vivo. We performed SILAC-based quantitative phosphoproteomic profiling on the tamoxifen resistant and vehicle-treated sensitive cell lines to quantify the phosphorylation alterations associated with tamoxifen resistance. From >5600 unique phosphopeptides identified, 1529 peptides exhibited hyperphosphorylation and 409 peptides showed hypophosphorylation in the tamoxifen resistant cells. Gene set enrichment analysis revealed that focal adhesion pathway was one of the most enriched signaling pathways activated in tamoxifen resistant cells. Significantly, we showed that the focal adhesion kinase FAK2 was not only hyperphosphorylated but also transcriptionally up-regulated in tamoxifen resistant cells. FAK2 suppression by specific siRNA knockdown or a small molecule inhibitor repressed cellular proliferation in vitro and tumor formation in vivo. More importantly, our survival analysis revealed that high expression of FAK2 is significantly associated with shorter metastasis-free survival in estrogen receptor-positive breast cancer patients treated with tamoxifen. Our studies suggest that FAK2 is a potential therapeutic target for the management of hormone-refractory breast cancers. PMID:26330541

  9. SSX2 regulates focal adhesion but does not drive the epithelial to mesenchymal transition in prostate cancer

    PubMed Central

    Bloom, Jordan E.; McNeel, Douglas G.

    2016-01-01

    Prostate cancer is the most commonly diagnosed malignancy for men in the United States. Metastatic prostate cancer, the lethal form of the disease, has a life expectancy of approximately five years. Identification of factors associated with this transition to metastatic disease is crucial for future therapies. One such factor is the SSX gene family, a family of cancer/testis antigens (CTA) transcription factors which have been shown to be aberrantly expressed in other cancers and associated with the epithelial to mesenchymal transition (EMT). We have previously shown that SSX expression in prostate cancers was restricted to metastatic tissue and not primary tumors. In this study, we have identified SSX2 as the predominant SSX family member expressed in prostate cancer, and found its expression in the peripheral blood of 19 of 54 (35%) prostate cancer patients, with expression restricted to circulating tumor cells, and in 7 of 15 (47%) metastatic cDNA samples. Further, we examined SSX2 function in prostate cancer through knockdown and overexpression in prostate cancer cell lines. While overexpression had little effect on morphology or gene transcript changes, knockdown of SSX2 resulted in an epithelial morphology, increased cell proliferation, increased expression of genes involved in focal adhesion, decreased anchorage independent growth, increased invasion, and increased tumorigenicity in vivo. We conclude from these findings that SSX2 expression in prostate cancer is not a driver of EMT, but is involved in processes associated with EMT including loss of focal adhesion that may be related to tumor cell dissemination. PMID:27276714

  10. Hydroxyalkenals and oxidized phospholipids modulation of endothelial cytoskeleton, focal adhesion and adherens junction proteins in regulating endothelial barrier function.

    PubMed

    Usatyuk, Peter V; Natarajan, Viswanathan

    2012-01-01

    Lipid peroxidation of polyunsaturated fatty acids generates bioactive aldehydes, which exhibit pro- and anti-inflammatory effects in cells and tissues. Accumulating evidence indicates that 4-hydroxynonenal (4-HNE), a major aldehyde derived from lipid peroxidation of n-6 polyunsaturated fatty acids trigger signals that modulates focal adhesion and adherens junction proteins thereby inducing endothelial barrier dysfunction. Similarly, oxidized phospholipids (Ox-PLs) generated by lipid peroxidation of phospholipids with polyunsaturated fatty acids have been implicated in atherogenesis, inflammation and gene expression. Interestingly, physiological concentration of Ox-PLs is anti-inflammatory and protect against endotoxin- and ventilator-associated acute lung injury. Thus, excess generation of bioactive hydroxyalkenals and Ox-PLs during oxidative stress contributes to pathophysiology of various diseases by modulating signaling pathways that regulate pro- and anti-inflammatory responses and barrier regulation. This review summarizes the role of 4-HNE and Ox-PLs affecting cell signaling pathways and endothelial barrier dysfunction through modulation of the activities of proteins/enzymes by Michael adducts formation, enhancing the level of protein tyrosine phosphorylation of the target proteins, and by reorganization of cytoskeletal, focal adhesion, and adherens junction proteins. A better understanding of molecular mechanisms of hydroxyalkenals- and Ox-PLs-mediated pro-and anti-inflammatory responses and barrier function may lead to development of novel therapies to ameliorate oxidative stress related cardio-pulmonary disorders. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Endorepellin causes endothelial cell disassembly of actin cytoskeleton and focal adhesions through alpha2beta1 integrin.

    PubMed

    Bix, Gregory; Fu, Jian; Gonzalez, Eva M; Macro, Laura; Barker, Amy; Campbell, Shelly; Zutter, Mary M; Santoro, Samuel A; Kim, Jiyeun K; Höök, Magnus; Reed, Charles C; Iozzo, Renato V

    2004-07-05

    Endorepellin, the COOH-terminal domain of the heparan sulfate proteoglycan perlecan, inhibits several aspects of angiogenesis. We provide evidence for a novel biological axis that links a soluble fragment of perlecan protein core to the major cell surface receptor for collagen I, alpha2beta1 integrin, and provide an initial investigation of the intracellular signaling events that lead to endorepellin antiangiogenic activity. The interaction between endorepellin and alpha2beta1 integrin triggers a unique signaling pathway that causes an increase in the second messenger cAMP; activation of two proximal kinases, protein kinase A and focal adhesion kinase; transient activation of p38 mitogen-activated protein kinase and heat shock protein 27, followed by a rapid down-regulation of the latter two proteins; and ultimately disassembly of actin stress fibers and focal adhesions. The end result is a profound block of endothelial cell migration and angiogenesis. Because perlecan is present in both endothelial and smooth muscle cell basement membranes, proteolytic activity during the initial stages of angiogenesis could liberate antiangiogenic fragments from blood vessels' walls, including endorepellin.

  12. Colocalization of Kindlin-1, Kindlin-2, and Migfilin at Keratinocyte Focal Adhesion and Relevance to the Pathophysiology of Kindler Syndrome

    PubMed Central

    Lai-Cheong, JE; Ussar, S; Arita, K; Hart, IR; McGrath, JA

    2009-01-01

    Kindler syndrome (KS) results from pathogenic loss-of-function mutations in the KIND1 gene, which encodes kindlin-1, a focal adhesion and actin cytoskeleton-related protein. How and why abnormalities in kindlin-1 disrupt keratinocyte cell biology in KS, however, is not yet known. In this study, we identified two previously unreported binding proteins of kindlin-1: kindlin-2 and migfilin. Co-immunoprecipitation and confocal microscopy studies show that these three proteins bind to each other and colocalize at focal adhesion in HaCaT cells and normal human keratinocytes. Moreover, loss-of-function mutations in KIND1 result in marked variability in kindlin-1 immunolabeling in KS skin, which is mirrored by similar changes in kindlin-2 and migfilin immunoreactivity. Kindlin-1, however, may function independently of kindlin-2 and migfilin, as loss of kindlin-1 expression in HaCaT keratinocytes by RNA interference and in KS keratinocytes does not affect KIND2 or FBLIM1 (migfilin) gene expression or kindlin-2 and migfilin protein localization. In addition to identifying protein-binding partners for kindlin-1, this study also highlights that KIND1 gene expression and kindlin-1 protein labeling are not always reduced in KS, findings that are relevant to the accurate laboratory diagnosis of this genodermatosis by skin immunohistochemistry. PMID:18528435

  13. Colocalization of kindlin-1, kindlin-2, and migfilin at keratinocyte focal adhesion and relevance to the pathophysiology of Kindler syndrome.

    PubMed

    Lai-Cheong, J E; Ussar, S; Arita, K; Hart, I R; McGrath, J A

    2008-09-01

    Kindler syndrome (KS) results from pathogenic loss-of-function mutations in the KIND1 gene, which encodes kindlin-1, a focal adhesion and actin cytoskeleton-related protein. How and why abnormalities in kindlin-1 disrupt keratinocyte cell biology in KS, however, is not yet known. In this study, we identified two previously unreported binding proteins of kindlin-1: kindlin-2 and migfilin. Co-immunoprecipitation and confocal microscopy studies show that these three proteins bind to each other and colocalize at focal adhesion in HaCaT cells and normal human keratinocytes. Moreover, loss-of-function mutations in KIND1 result in marked variability in kindlin-1 immunolabeling in KS skin, which is mirrored by similar changes in kindlin-2 and migfilin immunoreactivity. Kindlin-1, however, may function independently of kindlin-2 and migfilin, as loss of kindlin-1 expression in HaCaT keratinocytes by RNA interference and in KS keratinocytes does not affect KIND2 or FBLIM1 (migfilin) gene expression or kindlin-2 and migfilin protein localization. In addition to identifying protein-binding partners for kindlin-1, this study also highlights that KIND1 gene expression and kindlin-1 protein labeling are not always reduced in KS, findings that are relevant to the accurate laboratory diagnosis of this genodermatosis by skin immunohistochemistry.

  14. Interleukin-8 Regulates Endothelial Permeability by Down-regulation of Tight Junction but not Dependent on Integrins Induced Focal Adhesions

    PubMed Central

    Yu, Hongchi; Huang, Xianliang; Ma, Yunlong; Gao, Min; Wang, Ou; Gao, Ting; Shen, Yang; Liu, Xiaoheng

    2013-01-01

    Interleukin-8 (IL-8) is a common inflammatory factor, which involves in various non-specific pathological processes of inflammation. It has been found that increased endothelial permeability accompanied with high expression of IL-8 at site of injured endothelium and atherosclerotic plaque at early stages, suggesting that IL-8 participated in regulating endothelial permeability in the developing processes of vascular disease. The purpose of this study is to investigate the regulation effects of IL-8 on the vascular endothelial permeability, and the mRNA and protein expression of tight junction components (i.e., ZO-1, Claudin-5 and Occludin). Endothelial cells were stimulated by IL-8 with the dose of 50, 100 and 200 ng/mL, and duration of 2, 4, 6, 8h, respectively. The mRNA and protein expression level of tight junction components with IL-8 under different concentration and duration was examined by RT-PCR and Western blot, respectively. Meanwhile, the integrins induced focal adhesions event with IL-8 stimulation was also investigated. The results showed that IL-8 regulated the permeability of endothelium by down-regulation of tight junction in a dose- and time-dependence manner, but was not by integrins induced focal adhesions. This finding reveals the molecular mechanism in the increase of endothelial cell permeability induced by IL-8, which is expected to provide a new idea as a therapeutic target in vascular diseases. PMID:24155670

  15. Protein Kinase D1 regulates focal adhesion dynamics and cell adhesion through Phosphatidylinositol-4-phosphate 5-kinase type-l γ

    PubMed Central

    Durand, Nisha; Bastea, Ligia I.; Long, Jason; Döppler, Heike; Ling, Kun; Storz, Peter

    2016-01-01

    Focal adhesions (FAs) are highly dynamic structures that are assembled and disassembled on a continuous basis. The balance between the two processes mediates various aspects of cell behavior, ranging from cell adhesion and spreading to directed cell migration. The turnover of FAs is regulated at multiple levels and involves a variety of signaling molecules and adaptor proteins. In the present study, we show that in response to integrin engagement, a subcellular pool of Protein Kinase D1 (PKD1) localizes to the FAs. PKD1 affects FAs by decreasing turnover and promoting maturation, resulting in enhanced cell adhesion. The effects of PKD1 are mediated through direct phosphorylation of FA-localized phosphatidylinositol-4-phosphate 5-kinase type-l γ (PIP5Klγ) at serine residue 448. This phosphorylation occurs in response to Fibronectin-RhoA signaling and leads to a decrease in PIP5Klγs’ lipid kinase activity and binding affinity for Talin. Our data reveal a novel function for PKD1 as a regulator of FA dynamics and by identifying PIP5Klγ as a novel PKD1 substrate provide mechanistic insight into this process. PMID:27775029

  16. Protein Kinase D1 regulates focal adhesion dynamics and cell adhesion through Phosphatidylinositol-4-phosphate 5-kinase type-l γ.

    PubMed

    Durand, Nisha; Bastea, Ligia I; Long, Jason; Döppler, Heike; Ling, Kun; Storz, Peter

    2016-10-24

    Focal adhesions (FAs) are highly dynamic structures that are assembled and disassembled on a continuous basis. The balance between the two processes mediates various aspects of cell behavior, ranging from cell adhesion and spreading to directed cell migration. The turnover of FAs is regulated at multiple levels and involves a variety of signaling molecules and adaptor proteins. In the present study, we show that in response to integrin engagement, a subcellular pool of Protein Kinase D1 (PKD1) localizes to the FAs. PKD1 affects FAs by decreasing turnover and promoting maturation, resulting in enhanced cell adhesion. The effects of PKD1 are mediated through direct phosphorylation of FA-localized phosphatidylinositol-4-phosphate 5-kinase type-l γ (PIP5Klγ) at serine residue 448. This phosphorylation occurs in response to Fibronectin-RhoA signaling and leads to a decrease in PIP5Klγs' lipid kinase activity and binding affinity for Talin. Our data reveal a novel function for PKD1 as a regulator of FA dynamics and by identifying PIP5Klγ as a novel PKD1 substrate provide mechanistic insight into this process.

  17. Identification of methyl violet 2B as a novel blocker of focal adhesion kinase signaling pathway in cancer cells

    SciTech Connect

    Kim, Hwan; Kim, Nam Doo; Lee, Jiyeon; Han, Gyoonhee; Sim, Taebo

    2013-07-26

    Highlights: •FAK signaling cascade in cancer cells is profoundly inhibited by methyl violet 2B. •Methyl violet 2B identified by virtual screening is a novel allosteric FAK inhibitor. •Methyl violet 2B possesses extremely high kinase selectivity. •Methyl violet 2B suppresses strongly the proliferation of cancer cells. •Methyl violet 2B inhibits focal adhesion, invasion and migration of cancer cells. -- Abstract: The focal adhesion kinase (FAK) signaling cascade in cancer cells was profoundly inhibited by methyl violet 2B identified with the structure-based virtual screening. Methyl violet 2B was shown to be a non-competitive inhibitor of full-length FAK enzyme vs. ATP. It turned out that methyl violet 2B possesses extremely high kinase selectivity in biochemical kinase profiling using a large panel of kinases. Anti-proliferative activity measurement against several different cancer cells and Western blot analysis showed that this substance is capable of suppressing significantly the proliferation of cancer cells and is able to strongly block FAK/AKT/MAPK signaling pathways in a dose dependent manner at low nanomolar concentration. Especially, phosphorylation of Tyr925-FAK that is required for full activation of FAK was nearly completely suppressed even with 1 nM of methyl violet 2B in A375P cancer cells. To the best of our knowledge, it has never been reported that methyl violet possesses anti-cancer effects. Moreover, methyl violet 2B significantly inhibited FER kinase phosphorylation that activates FAK in cell. In addition, methyl violet 2B was found to induce cell apoptosis and to exhibit strong inhibitory effects on the focal adhesion, invasion, and migration of A375P cancer cells at low nanomolar concentrations. Taken together, these results show that methyl violet 2B is a novel, potent and selective blocker of FAK signaling cascade, which displays strong anti-proliferative activities against a variety of human cancer cells and suppresses adhesion

  18. Semaphorin 3A Increases FAK Phosphorylation at Focal Adhesions to Modulate MDA-MB-231 Cell Migration and Spreading on Different Substratum Concentrations

    PubMed Central

    Compere, Frances V.; Miller, Alex M.

    2017-01-01

    Interactions between integrin-mediated adhesions and the extracellular matrix (ECM) are important regulators of cell migration and spreading. However, mechanisms by which extracellular ligands regulate cell migration and spreading in response to changes in substratum concentration are not well understood. Semaphorin 3A (Sema3A) has been shown to inhibit cell motility and alter integrin signaling in various cell types. We propose that Sema3A alters focal adhesions to modulate breast carcinoma cell migration and spreading on substrata coated with different concentrations of ECM. We demonstrate that Sema3A inhibits MDA-MB-231 cell migration and spreading on substrata coated with high concentrations of collagen and fibronectin but enhances migration and spreading at lower concentrations of collagen and fibronectin. Sema3A increases focal adhesion kinase phosphorylation at tyrosine 397 (pFAK397) at focal adhesions on all substratum concentrations of collagen and fibronectin but decreased pFAK397 levels on laminin. Rho-associated protein kinase (ROCK) inhibition blocks the Sema3A-mediated effects on cell migration, spreading, and pFAK397 at focal adhesions when cultured on all concentrations of collagen. These results suggest that Sema3A shifts the optimal level of cell-matrix adhesions to a nonoptimal ECM coating concentration, in particular collagen, to yield maximal cell migration and spreading that may be mediated through a ROCK-dependent mechanism. PMID:28182100

  19. Radiation damage in a micron-sized protein crystal studied via reciprocal space mapping and Bragg coherent diffractive imaging

    DOE PAGES

    Coughlan, H. D.; Darmanin, C.; Phillips, N. W.; ...

    2015-04-29

    For laboratory and synchrotron based X-ray sources, radiation damage has posed a significant barrier to obtaining high-resolution structural data from biological macromolecules. The problem is particularly acute for micron-sized crystals where the weaker signal often necessitates the use of higher intensity beams to obtain the relevant data. Here, we employ a combination of techniques, including Bragg coherent diffractive imaging to characterise the radiation induced damage in a micron-sized protein crystal over time. The approach we adopt here could help screen for potential protein crystal candidates for measurement at X-ray free election laser sources.

  20. Radiation damage in a micron-sized protein crystal studied via reciprocal space mapping and Bragg coherent diffractive imaging

    PubMed Central

    Coughlan, H. D.; Darmanin, C.; Phillips, N. W.; Hofmann, F.; Clark, J. N.; Harder, R. J.; Vine, D. J.; Abbey, B.

    2015-01-01

    For laboratory and synchrotron based X-ray sources, radiation damage has posed a significant barrier to obtaining high-resolution structural data from biological macromolecules. The problem is particularly acute for micron-sized crystals where the weaker signal often necessitates the use of higher intensity beams to obtain the relevant data. Here, we employ a combination of techniques, including Bragg coherent diffractive imaging to characterise the radiation induced damage in a micron-sized protein crystal over time. The approach we adopt here could help screen for potential protein crystal candidates for measurement at X-ray free election laser sources. PMID:26798804

  1. Direct correlation of collagen matrix deformation with focal adhesion dynamics in living corneal fibroblasts.

    PubMed

    Petroll, W Matthew; Ma, Lisha; Jester, James V

    2003-04-15

    The purpose of this study was to develop and apply a new model for investigating how the organization and movement of cell-matrix adhesion sites correlate with force generation by corneal fibroblasts on a fibrillar collagen extracellular matrix. Primary cultures of rabbit corneal fibroblasts were transfected using a vector encoding GFP-zyxin to allow visualization of adhesion sites. Cells were plated at low density on top of 100 micro m thick fibrillar collagen lattices embedded with 2 micro m diameter red fluorescent beads. Time-lapse imaging was performed at one minute intervals for up to 3 hours. At each time interval, GFP-zyxin, bead and DIC images were acquired in rapid succession using filter wheels. Cells were treated with cytochalasin D and/or Triton X-100 at the end of each experiment. The movements of adhesions and nearby matrix landmarks were measured and correlated from the time-lapse digital images, and the size, intensity and orientation of the adhesions were quantified. GFP-zyxin was detected in adhesions of transfected corneal fibroblasts as confirmed using vinculin counterstaining. Time-lapse imaging revealed extensions and retractions of cell processes and displacements of the fiduciary beads that were similar to control cells. Extending processes exhibited the most complex behavior, with new adhesions continuously forming at the leading edge while existing adhesions moved backward in a retrograde fashion. This process generated tractional forces as indicated by pulling in of the extracellular matrix in front of the cell. Interestingly, during extension, adhesions along the ventral surface of the cell body generally moved toward those at the tip, resulting in contractile-like shortening and matrix compression at the base of lamellipodia. Overall, a high correlation was found between both the magnitude (R=0.87, P<0.001) and direction (R=0.98, P<0.001) of the adhesions and nearby matrix displacements. Cytochalasin D induced rapid and reversible

  2. The novel focal adhesion gene kindlin-2 promotes the invasion of gastric cancer cells mediated by tumor-associated macrophages.

    PubMed

    Shen, Zhanlong; Ye, Yingjiang; Kauttu, Tuuli; Seppänen, Hanna; Vainionpää, Sanna; Wang, Shan; Mustonen, Harri; Puolakkainen, Pauli

    2013-02-01

    Kindlin-2 is a novel focal adhesion gene mediating the cell-extracellular matrix (ECM) adhesion. Tumor-associated macrophages (TAMs) play an important role in linking chronic inflammation to cancer progression. Both kindlin-2 and TAMs have been found to promote the invasion of gastric cancer cells in our previous studies. However, the correlation between kindlin-2 and TAMs remains unclear. Real-time RT-PCR was used to investigate kindlin-2 expression in the AGS, NCI and Hs-746T gastric cancer cell lines co-cultured with TAMs under normal or hypoxic conditions. IL8, IL10, IL11, IL17b, IL18, IL22 and IL24 expressions were measured by real-time RT-PCR in the gastric cancer lines with varying levels of kindlin-2 expression, as well as after downregulation of kindlin-2 mRNA expression by the siRNA method. We found that kindlin-2 was upregulated in all three gastric cancer cell lines when co-cultured with TAMs under normal conditions. Under hypoxic conditions, the induction of kindlin-2 expression induced by macrophages was significantly downregulated in the Hs-746T cell line. IL8, IL11, IL17b, IL22 and IL24 expression was significantly higher in gastric cell lines with high kindlin-2 expression. Downregulation of kindlin-2 mRNA decreased IL10, IL11, IL17b, IL22 and IL24 expression but IL8 and IL18 expression was upregulated. Therefore, the novel focal adhesion gene kindlin-2 may play an important role in promoting the invasion of gastric cancer cells mediated by TAMs through regulating interleukin expression.

  3. cAMP inhibits migration, ruffling and paxillin accumulation in focal adhesions of pancreatic ductal adenocarcinoma cells: effects of PKA and EPAC.

    PubMed

    Burdyga, Alex; Conant, Alan; Haynes, Lee; Zhang, Jin; Jalink, Kees; Sutton, Robert; Neoptolemos, John; Costello, Eithne; Tepikin, Alexei

    2013-12-01

    We demonstrated that increasing intracellular cAMP concentrations result in the inhibition of migration of PANC-1 and other pancreatic ductal adenocarcinoma (PDAC) cell types. The rise of cAMP was accompanied by rapid and reversible cessation of ruffling, by inhibition of focal adhesion turnover and by prominent loss of paxillin from focal adhesions. All these phenomena develop rapidly suggesting that cAMP effectors have a direct influence on the cellular migratory apparatus. The role of two primary cAMP effectors, exchange protein activated by cAMP (EPAC) and protein kinase A (PKA), in cAMP-mediated inhibition of PDAC cell migration and migration-associated processes was investigated. Experiments with selective activators of EPAC and PKA demonstrated that the inhibitory effect of cAMP on migration, ruffling, focal adhesion dynamics and paxillin localisation is mediated by PKA, whilst EPAC potentiates migration.

  4. Measuring Sub-micron Size Fractionated Particulate Matter on Aluminum Impactor Disks

    SciTech Connect

    Buchholz, B A; Zermeno, P; Hwang, H; Young, T M

    2009-07-28

    Sub-micron sized airborne particulate matter is not collected well on regular quartz or glass fiber filter papers. We used a micro-orifice uniform deposit impactor (MOUDI) to size fractionate particulate matter (PM) into six size fractions and deposit it on specially designed high purity thin aluminum disks. The MOUDI separated PM into fractions 56-100 nm, 100-180 nm, 180-320 nm, 320-560 nm, 560-1000 nm, and 1000-1800 nm. Since MOUDI have low flow rates, it takes several days to collect sufficient carbon on 47 mm foil disks. The small carbon mass (20-200 microgram C) and large aluminum substrate ({approx}25 mg Al) presents several challenges to production of graphite targets for accelerator mass spectrometry (AMS) analysis. The Al foil consumes large amounts of oxygen as it is heated and tends to melt into quartz combustion tubes, causing gas leaks. We describe sample processing techniques to reliably produce graphitic targets for {sup 14}C-AMS analysis of PM deposited on Al impact foils.

  5. Conformational transitions of cytochrome c in sub-micron-sized capsules at air/buffer interface.

    PubMed

    Jaganathan, Maheshkumar; Dhathathreyan, Aruna

    2014-09-30

    This work presents the design of sub-micron-sized capsules of Cytochrome c (cyt c) in the range 300-350 nm and the conformational transitions of the protein that occur when the films of these capsules spread at the air/buffer interface are subjected to repeated compression-expansion cycles. Steady state fluorescence, time-resolved fluorescence, and circular dichroic (CD) spectra have been used to study the highly compact native conformation (70% helicity) of the protein in the capsules and its stability has been analyzed using cyclic voltammetry. The capsules have been characterized using zeta sizer and high resolution transmission electron microscopy (HRTEM). Surface concentration-surface pressure (Γ-π) isotherms of the films of the capsules spread at air/buffer interface following compression-expansion show destabilizing effect on cyt c. FTIR and CD spectra of these films skimmed from the surface show that the protein transitions gradually from its native helical to an anomalous beta sheet aggregated state. This results from a competition between stabilizing hydrated polar segments of the protein in the capsule and destabilizing nonspecific hydrophobic interactions arising at the air/buffer interface. This 2D model could further our understanding of the spatial and temporal roles of proteins in confined spaces and also in the design of new drug delivery vehicles using proteins.

  6. Optical droplet vaporization of micron-sized perfluorocarbon droplets and their photoacoustic detection

    NASA Astrophysics Data System (ADS)

    Strohm, Eric; Rui, Min; Gorelikov, Ivan; Matsuura, Naomi; Kolios, Michael

    2011-03-01

    An acoustic and photoacoustic characterization of micron-sized perfluorocarbon (PFC) droplets is presented. PFC droplets are currently being investigated as acoustic and photoacoustic contrast agents and as cancer therapy agents. Pulse echo measurements at 375 MHz were used to determine the diameter, ranging from 3.2 to 6.5 μm, and the sound velocity, ranging from 311 to 406 m/s of nine droplets. An average sound velocity of 379 +/- 18 m/s was calculated for droplets larger than the ultrasound beam width of 4.0 μm. Optical droplet vaporization, where vaporization of a single droplet occurred upon laser irradiation of sufficient intensity, was verified using pulse echo acoustic methods. The ultrasonic backscatter amplitude, acoustic impedance and attenuation increased after vaporization, consistent with a phase change from a liquid to gas core. Photoacoustic measurements were used to compare the spectra of three droplets ranging in diameter from 3.0 to 6.2 μm to a theoretical model. Good agreement in the spectral features was observed over the bandwidth of the 375 MHz transducer.

  7. Magnetic memory in a ceramic YBCO superconductor composed of sub-micron-size grains

    NASA Astrophysics Data System (ADS)

    Deguchi, Hiroyuki; Ashida, Takuya; Syudo, Mitsuhiro; Mito, Masaki; Takagi, Seishi; Hagiwara, Makoto; Koyama, Kuniyuki

    2013-06-01

    The ceramic YBa2Cu4O8 (YBCO) composed of sub-micron-size grains is considered as a random Josephson-coupled network of 0 and π junctions and shows successive phase transitions. The first transition occurs inside each grain at T c1 = 81 K, and the second transition occurs among the grains at T c2 = 47 K. A magnetic glass behavior similar to those of spin-glasses is observed at temperatures below T c2. The memory phenomena are investigated by recording the zero-fieldcooled and thermoremanent magnetizations measured on heating after the cooling process with a halt at T s = 41 K. Memory effects of the halt are imprinted in the system when the sample is re-heated. In the case without a field switch at T s , the influence of the halt is confined to a narrow temperature region near T s whereas the memory effect of the halt employing a field switch is extended over a wide temperature region below T s . The results suggest that chiral-glass ordering occurs at T c2 in the ceramic YBCO.

  8. Analysis of stochastic crystallization in micron-sized droplets of undercooled liquid l-arabitol.

    PubMed

    Guinet, Yannick; Carpentier, Laurent; Paccou, Laurent; Derollez, Patrick; Hédoux, Alain

    2016-11-29

    Kinetics of isothermal crystallization of l-arabitol were analyzed from the undercooled liquid state within micron-sized droplets from micro-Raman spectroscopy. This study reveals that crystallization slightly above Tg is controlled by stochastic heterogeneous nucleation inherent to the droplet size. Microscopic Raman investigations performed in droplets give the unique opportunity to analyze the pure metastable Form II of l-arabitol. It was found that Form II is characterized by a molecular packing more compact than that of the stable Form I, inherent to strong intermolecular hydrogen bonding. Kinetics laws obtained by analyzing several droplets at different temperatures, reveal the transient character of Form II, quasi systematically detected during the crystallization process of form I. Form II appears as the first step of crystallization prior to successive short-living metastable states which is necessary to achieve a complete crystallization in Form I. It was found that the kinetics of conversion between the metastable states (Form II) into Form I is dependent on the amount of strong hydrogen bonding distinctive of Form II. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Growth and wetting of water droplet condensed between micron-sized particles and substrate

    PubMed Central

    Quang, Tran Si Bui; Leong, Fong Yew; An, Hongjie; Tan, Beng Hau; Ohl, Claus-Dieter

    2016-01-01

    We study heterogeneous condensation growth of water droplets on micron-sized particles resting on a level substrate. Through numerical simulations on equilibrium droplet profiles, we find multiple wetting states towards complete wetting of the particle. Specifically, a partially wetting droplet could undergo a spontaneous transition to complete wetting during condensation growth, for contact angles above a threshold minimum. In addition, we find a competitive wetting behavior between the particle and the substrate, and interestingly, a reversal of the wetting dependence on contact angles during late stages of droplet growth. Using quasi-steady assumption, we simulate a growing droplet under a constant condensation flux, and the results are in good agreement with our experimental observations. As a geometric approximation for particle clusters, we propose and validate a pancake model, and with it, show that a particle cluster has greater wetting tendency compared to a single particle. Together, our results indicate a strong interplay between contact angle, capillarity and geometry during condensation growth. PMID:27487977

  10. Condition for the formation of micron-sized dust grains in dense molecular cloud cores

    NASA Astrophysics Data System (ADS)

    Hirashita, Hiroyuki; Li, Zhi-Yun

    2013-07-01

    We investigate the condition for the formation of micron-sized grains in dense cores of molecular clouds. This is motivated by the detection of mid-infrared emission from deep inside a number of dense cores, the so-called `coreshine,' which is thought to come from scattering by micron (μm)-sized grains. Based on numerical calculations of coagulation starting from the typical grain-size distribution in the diffuse interstellar medium, we obtain a conservative lower limit to the time t to form μm-sized grains: t/tff > 3(5/S)(nH/105 cm-3)-1/4 (where tff is the free-fall time at hydrogen number density nH in the core and S the enhancement factor of the grain-grain collision cross-section to account for non-compact aggregates). At the typical core density nH = 105 cm-3, it takes at least a few free-fall times to form the μm-sized grains responsible for coreshine. The implication is that those dense cores observed in coreshine are relatively long-lived entities in molecular clouds, rather than dynamically transient objects that last for one free-fall time or less.

  11. Hyphal responses of Neurospora crassa to micron-sized beads with functional chemical surface groups

    NASA Astrophysics Data System (ADS)

    Held, Marie; Edwards, Clive; Nicolau, Dan V.

    2011-02-01

    Filamentous fungi include serious plant and animal pathogens that explore their environment efficiently in order to penetrate the host. This environment is physically and chemically heterogeneous and the fungi rely on specific physical and chemical signals to find the optimal point/s of attack. This study presents a methodology to introduce distinct structures with dimensions similar to the hyphal diameter and specific chemical surface groups into a controllable environment in order to study the fungal response. We introduced 3.3 μm polystyrene beads covered with Epoxy surface groups into microfluidic channels made from PDMS by rapid replica molding. The experimental setup resulted in different areas with low and high densities of beads as well as densely packed patches. The observations of the fungus exploring the areas long-term showed that the growth parameters were altered significantly, compared with the values measured on agar. The fungus responded to both, the physical and chemical parameters of the beads, including temporary directional changes, increased branching angles, decreased branching distances, decreased apical extension velocities and occasional cell wall lysis. The wealth and magnitude of the observed responses indicates that the microfluidic structures provide a powerful platform for the investigation of micron-sized features on filamentous fungi.

  12. Reflectance of micron-sized dust particles retrieved with the Umov law

    NASA Astrophysics Data System (ADS)

    Zubko, Evgenij; Videen, Gorden; Zubko, Nataliya; Shkuratov, Yuriy

    2017-03-01

    The maximum positive polarization Pmax that initially unpolarized light acquires when scattered from a particulate surface inversely correlates with its geometric albedo A. In the literature, this phenomenon is known as the Umov law. We investigate the Umov law in application to single-scattering submicron and micron-sized agglomerated debris particles, model particles that have highly irregular morphology. We find that if the complex refractive index m is constrained to Re(m)=1.4-1.7 and Im(m)=0-0.15, model particles of a given size distribution have a linear inverse correlation between log(Pmax) and log(A). This correlation resembles what is measured in particulate surfaces, suggesting a similar mechanism governing the Umov law in both systems. We parameterize the dependence of log(A) on log(Pmax) of single-scattering particles and analyze the airborne polarimetric measurements of atmospheric aerosols reported by Dolgos & Martins in [1]. We conclude that Pmax ≈ 50% measured by Dolgos & Martins corresponds to very dark aerosols having geometric albedo A=0.019 ± 0.005.

  13. SnSb micron-sized particles for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Simonin, L.; Lafont, U.; Kelder, E. M.

    Micrometre-sized particles of Sn/SnSb were produced with a simple technique consisting in melting commercial ingots of tin and antimony separately at 280 °C and 680 °C, respectively, and casting them together in a ceramic boat. The solid alloy was then crushed into a homogeneous powder by grinding and sieving. The obtained powder was characterised by X-ray diffraction, and electron microscopy. Elemental and phase composition analyses were performed via, inductive coupled plasma and differential scanning calorimetry, respectively. The material was further tested as electrode material in a lithium galvanic cell. It showed relatively good capacity retention for at least 15 cycles. TEM analysis on post-mortem electrode samples showed the formation of nanostructures after the first discharge followed by a progressive disappearance of the micron-sized particles upon further cycling. Fading at higher cycles is explained by the formation of isolated metallic nano-particles that become inactive for further storage of lithium.

  14. Therapeutic effects of tyroservatide on metastasis of lung cancer and its mechanism affecting integrin-focal adhesion kinase signal transduction.

    PubMed

    Huang, Yu-ting; Zhao, Lan; Fu, Zheng; Zhao, Meng; Song, Xiao-meng; Jia, Jing; Wang, Song; Li, Jin-ping; Zhu, Zhi-feng; Lin, Gang; Lu, Rong; Yao, Zhi

    2016-01-01

    Tyroservatide (YSV) can inhibit the growth and metastasis of mouse lung cancer significantly. This study investigated the therapeutic effects of tripeptide YSV on metastasis of human lung cancer cells and explored its possible mechanism that affects integrin-focal adhesion kinase (FAK) signal transduction in tumor cells. YSV significantly inhibited the adhesion and the invasion of highly metastatic human lung cancer cell lines 95D, A549, and NCI-H1299. In addition, YSV significantly inhibited phosphorylation of FAK Tyr397 and FAK Tyr576/577 in the 95D, A549, and NCI-H1299 human lung cancer cells in vitro. And the mRNA level and protein expression of FAK in these human lung cancer cells decreased at the same time. YSV also significantly inhibited mRNA and protein levels of integrin β1 and integrin β3 in the 95D, A549, and NCI-H1299 human lung cancer cells. Our research showed that YSV inhibited adhesion and invasion of human lung cancer cells and exhibited therapeutic effects on metastasis of lung cancer.

  15. Can the Lateral Proximity Effect Be Used to Create the Superconducting Transition of a Micron-Sized TES?

    NASA Technical Reports Server (NTRS)

    Barrentine, E. M.; Brandl, D. E.; Brown, A. D.; Denis, K. L.; Fionkbeiner, F. M.; Hsieh, W. T.; Nagler, P. C.; Stevenson, T. R.; Timble, P. T.; U-Yen, K.

    2012-01-01

    Recent measurements of micron-sized Mo/Au bilayer Transition Edge Sensors (TESs) have demonstrated that the TES can behave like an S-S'-S weak link due to the lateral proximity effect from superconducting leads. In this regime the Tc is a function of bias current, and the effective Tc shifts from the bilayer Tc towards the lead Tc. We explore the idea that a micron-sized S-N-S weak link could provide a new method to engineer the TES Tc. This method would be particularly useful when small size requirements for a bilayer TES (such as for a hot-electron microbolometer) lead to undesirable shifts in the bilayer Te. We present measurements of a variety of micron-sized normal Au 'TES' devices with Nb leads. We find no evidence of a superconducting transition in the Au film of these devices, in dramatic contrast to the strong lateral proximity effect seen in micron-sized Mo/Au bilayer devices. The absence of a transition in these devices is also in disagreement with theoretical predictions for S-N-S weak links. We hypothesize that a finite contact resistance between the Nb and Au may be weakening the effect. We conclude that the use of the lateral proximity effect to create a superconducting transition will be difficult given current fabrication procedures.

  16. Critical Percolation Stresses of Random Frank-Read Sources in Micron-Sized Crystals of Superalloys (Preprint)

    DTIC Science & Technology

    2011-11-01

    tendency for a saturation stress value, most likely because the experimental size-effect data does not include small enough sizes of micron-sized crystals...D, Gumbsch P, Kraft O, Scripta Mater 2008; 58:587. 7) Tang H, Schwarz KW, Espinosa HD, Acta Mater 2007; 55:1607. 8) Zhou C, Biner S, Lesar R

  17. Time-dependent subcellular structure injuries induced by nano-/micron-sized calcium oxalate monohydrate and dihydrate crystals.

    PubMed

    Sun, Xin-Yuan; Yu, Kai; Ouyang, Jian-Ming

    2017-10-01

    Comparative studies were conducted to investigate the time effect of cell injury induced by nano-sized (50nm) and micron-sized (10μm) calcium oxalate monohydrate (COM) and dihydrate (COD) crystals in African green monkey renal epithelial (Vero) cells. The effects of nano-/micron-sized COM and COD exposure on Vero cells were investigated by detecting the cell viability, cell morphology, LDH release, reactive oxygen species, mitochondrial membrane potential, cell cycle, and cell apoptosis, as well as the intracellular and extracellular crystal distribution. Nano-/micron-sized COM and COD exposure lead to subcellular organelle injury in varying degrees, but the injury sequence of various organelles differed. The time sequence of organelle injury presenting significant variation was described as follows: cell membrane injury (1h)micron-sized crystals, and COM crystals showed more obvious time-dependent effects than the same-sized COD crystals. This study may provide insights into the damage to renal epithelial cells induced by urinary crystals and the formation mechanism of kidney stones. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Acousto-optic Imaging System for In-situ Measurement of the High Temperature Distribution in Micron-size Specimens

    NASA Astrophysics Data System (ADS)

    Machikhin, Alexander S.; Zinin, Pavel V.; Shurygin, Alexander V.

    We developed a unique acousto-optic imaging system for in-situ measurement of high temperature distribution on micron-size specimens. The system was designed to measure temperature distribution inside minerals and functional material phases subjected to high pressure and high temperatures in a diamond anvil cell (DAC) heated by a high powered laser.

  19. Hematopoietic PBX-interacting protein (HPIP) is over expressed in breast infiltrative ductal carcinoma and regulates cell adhesion and migration through modulation of focal adhesion dynamics.

    PubMed

    Bugide, S; David, D; Nair, A; Kannan, N; Samanthapudi, V S K; Prabhakar, J; Manavathi, B

    2015-08-27

    The scaffolding protein, hematopoietic PBX-interacting protein (HPIP/PBXIP1), regulates cell migration necessary for cancer cell dissemination. However, the mechanism that governs this process remains unknown. We show here that HPIP expression is associated with stages of breast cancer where cell dissemination results in poor patient outcome. Our investigation finds a novel association of HPIP with focal adhesion kinase (FAK) regulating FA dynamics. Interestingly, this interaction that led to activation of FAK protein was mediated by the C-terminal domain of HPIP and not the typical integrin-binding motif. Further, short hairpin RNA-mediated knockdown of FAK expression significantly reduced HPIP-induced cell migration indicating participation of FAK pathway. Live-cell time-lapse imaging and biochemical analysis further established the role of HPIP in microtubule-induced FA disassembly. We also found that HPIP-mediated MAPK activation led to phosphorylation and subsequent activation of calpain2, and the activated calpain2 in turn proteolyses FA protein, talin. Interestingly, HPIP is also proteolysed by calpain2 in breast cancer cells. The proteolysis of HPIP and talin by calpain2, and the activation of calapin2 by HPIP-mediated MAPK phosphorylation, is a novel regulatory axis to modulate the cell migration signal. Together, we have determined HPIP as a novel activator of FAK and a new substrate of calpain2. These molecular interactions between HPIP and FAK, and HPIP and calpain2 regulate cell adhesion and migration through modulation of FA dynamics.

  20. Effect of the micron-sized silica particles (MSSP) on biogas conversion of sewage sludge.

    PubMed

    Dai, Xiaohu; Xu, Ying; Dong, Bin

    2017-05-15

    Micron-sized silica particles (MSSP), ranging from 3 μm to 50 μm, have been widely found in the sewage sludge. The inhibition of MSSP to biogas conversion of both excess sludge (ES) and model sludge (MS) are explored in this study. It is observed that with the effect of MSSP, the net cumulative methane production (NCMP) of ES and MS were decreased by 23.5% and 22.3%, respectively, and the apparent activation energy (AAE) of organic solubilisation of ES and MS were increased by 38.7% and 215%, respectively, which implies a crucial role for MSSP in anaerobic sludge digestion. Analysis of physicochemical properties of sludges before and after interaction with MSSP reveals that MSSP can bond with organic matter from sludge on the surface sites to form a larger bioinorganic-floc. Further analysis indicates that MSSP can increase the AAE of sludge organic solubilisation by reducing the surface site density, thus resulting in poor NCMP. Through characterizing the bioinorganic-floc, it is found that the protein in sludge is the main component that bonds with MSSP. Further research show that the interactions between protein and MSSP are mainly enthalpy-driven with exothermic (the enthalpy was about -10.93 ± 0.10 kJ/mol, at 25 °C), indicating that protein is more stable after non-covalent bonding. These findings can provide a new understanding of the characteristics of sludge and important references for the improvement of anaerobic sludge digestion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Separation of micron-sized particles in macro-scale cavities by ultrasonic standing waves

    NASA Astrophysics Data System (ADS)

    Lipkens, B.; Dionne, J.; Trask, A.; Szczur, B.; Stevens, A.; Rietman, E.

    2010-01-01

    The separation of micron-sized particles from a steady flow of water through the use of ultrasonic standing waves is discussed. An ultrasonic resonator has been designed with a flow inlet and outlet for the water stream. The resonator is typically about 0.15 m long with a cross-section of 0.0254 m×0.0254 m. The flow inlet and outlet ports have been designed to ensure laminar flow conditions into and out of the resonator. A PZT-4, 2-MHz, transducer is used to generate ultrasonic standing waves in the resonator. At fixed frequency excitation, particles are concentrated at the stable locations of the acoustic radiation force. Particle translation is achieved by a periodic sweeping of the frequency of excitation, which generates a slowly moving standing wave. The effect of the sweep period and the sweep frequency range on particle translation speed has been investigated for the separation of 6 micron polystyrene beads. A numerical model has been developed to compute the trajectories of particles subjected to the acoustic radiation force, fluid drag force, and buoyancy force. The acoustic radiation force is determined from a one-dimensional acoustic field model. A CFD model is used to calculate the mean fluid flow into and out of the resonator and is used to calculate the fluid drag force. The equations of motion are then integrated to yield the particle trajectories. Typical particle translation speeds are on the order of 5 mm/s. Successful separation of 6 micron polystyrene beads from a water inlet flow, with typical volume flow rates of 150 ml/min, has been achieved.

  2. Color from hierarchy: Diverse optical properties of micron-sized spherical colloidal assemblies.

    PubMed

    Vogel, Nicolas; Utech, Stefanie; England, Grant T; Shirman, Tanya; Phillips, Katherine R; Koay, Natalie; Burgess, Ian B; Kolle, Mathias; Weitz, David A; Aizenberg, Joanna

    2015-09-01

    Materials in nature are characterized by structural order over multiple length scales have evolved for maximum performance and multifunctionality, and are often produced by self-assembly processes. A striking example of this design principle is structural coloration, where interference, diffraction, and absorption effects result in vivid colors. Mimicking this emergence of complex effects from simple building blocks is a key challenge for man-made materials. Here, we show that a simple confined self-assembly process leads to a complex hierarchical geometry that displays a variety of optical effects. Colloidal crystallization in an emulsion droplet creates micron-sized superstructures, termed photonic balls. The curvature imposed by the emulsion droplet leads to frustrated crystallization. We observe spherical colloidal crystals with ordered, crystalline layers and a disordered core. This geometry produces multiple optical effects. The ordered layers give rise to structural color from Bragg diffraction with limited angular dependence and unusual transmission due to the curved nature of the individual crystals. The disordered core contributes nonresonant scattering that induces a macroscopically whitish appearance, which we mitigate by incorporating absorbing gold nanoparticles that suppress scattering and macroscopically purify the color. With increasing size of the constituent colloidal particles, grating diffraction effects dominate, which result from order along the crystal's curved surface and induce a vivid polychromatic appearance. The control of multiple optical effects induced by the hierarchical morphology in photonic balls paves the way to use them as building blocks for complex optical assemblies--potentially as more efficient mimics of structural color as it occurs in nature.

  3. Nonsuperconducting Micron Size Particle as Effective Pinning Centre for Enhanced Jc in High-Tc Superconductors

    NASA Astrophysics Data System (ADS)

    Roul, B. K.

    2008-10-01

    Understanding the real mechanism responsible for achieving high transport critical current density (Jc) in the high temperature (high-Tc) cuprate superconductors has been one of the primary goal. The only promising way is to tailor the high-Tc cuprate material during preparation stage incorporating suitable non-superconducting particles within superconducting matrix, which are known to serve as effective pining centers. Incorporation of non-superconducting particle like silver with dimension down to micron/submicron size in the superconducting matrix is very stable and form a homogenous solid solution matrix, which has got the better stability on aging and found to be effective in enhancing flux pining in high-Tc superconducting system. In this paper, studies have been made to investigate and review the effect of non-superconducting micron size Ag particle in to the matrix of RE-Ba-Cu-O (RE = Sm, Gd & Y) 123 high-Tc ceramic superconducting system. XRD, SEM, magnetization, magnetotransport and microwave induce DC voltage measurements were carried out to study the effect of Ag into 123-superconducting system. It is observed that controlled addition of Ag into Sm-Ba-Cu-O (SBCO), Gd-Ba-Cu-O (GBCO) and Y-Ba-Cu-O (YBCO) ceramic superconductor do not react with the decomposed phases but remains in the metallic form. This brings about a lowering of the normal-state resistivity. The increase of magnetic critical current density (Jmc), transport critical current density (Jtc), and, hence pinning force density (Fp) with Ag addition into above three systems suggest the creation of an SNS-type proximity junction at the intergranular region and stronger Josephson current paths between the superconducting intergrains. This is attributed to the physical densification and consequent reduction of the total number of weak links by Ag addition into the above mentioned ceramic superconducting system.

  4. Color from hierarchy: Diverse optical properties of micron-sized spherical colloidal assemblies

    PubMed Central

    Vogel, Nicolas; Utech, Stefanie; England, Grant T.; Shirman, Tanya; Phillips, Katherine R.; Koay, Natalie; Burgess, Ian B.; Kolle, Mathias; Weitz, David A.; Aizenberg, Joanna

    2015-01-01

    Materials in nature are characterized by structural order over multiple length scales have evolved for maximum performance and multifunctionality, and are often produced by self-assembly processes. A striking example of this design principle is structural coloration, where interference, diffraction, and absorption effects result in vivid colors. Mimicking this emergence of complex effects from simple building blocks is a key challenge for man-made materials. Here, we show that a simple confined self-assembly process leads to a complex hierarchical geometry that displays a variety of optical effects. Colloidal crystallization in an emulsion droplet creates micron-sized superstructures, termed photonic balls. The curvature imposed by the emulsion droplet leads to frustrated crystallization. We observe spherical colloidal crystals with ordered, crystalline layers and a disordered core. This geometry produces multiple optical effects. The ordered layers give rise to structural color from Bragg diffraction with limited angular dependence and unusual transmission due to the curved nature of the individual crystals. The disordered core contributes nonresonant scattering that induces a macroscopically whitish appearance, which we mitigate by incorporating absorbing gold nanoparticles that suppress scattering and macroscopically purify the color. With increasing size of the constituent colloidal particles, grating diffraction effects dominate, which result from order along the crystal’s curved surface and induce a vivid polychromatic appearance. The control of multiple optical effects induced by the hierarchical morphology in photonic balls paves the way to use them as building blocks for complex optical assemblies—potentially as more efficient mimics of structural color as it occurs in nature. PMID:26290583

  5. Comparative numerical modeling of inhaled micron-sized particle deposition in human and rat nasal cavities.

    PubMed

    Shang, Yidan; Dong, Jingliang; Inthavong, Kiao; Tu, Jiyuan

    2015-01-01

    Micron-sized particle deposition in anatomically realistic models of a rat and human nasal cavity was numerically investigated. A steady laminar inhalation flow rate was applied and particles were released from the outside air. Particles showing equivalent total particle deposition fractions were classified into low, medium and high inertial particle. Typical particle sizes are 2.5, 9 and 20 μm for the human model and 1, 2 and 3 μm for the rat model, respectively. Using a surface-mapping technique the 3D nasal cavity surface was "unwrapped" into a 2D domain and the particle deposition locations were plotted for complete visual coverage of the domain surface. The total surface area comparison showed that the surface area of the human nasal model was about ten times the size of the rat model. In contrast, the regional surface area percentage analysis revealed the olfactory region of the rat model was significantly larger than all other regions making up ∼55.6% of the total surface area, while that of the human nasal model only occupying 10.5%. Flow pattern comparisons showed rapid airflow acceleration was found at the nasopharynx region and the nostril region for the human and rat model, respectively. For the human model, the main passage is the major deposition region for micro-particles. While for the rat model, it is the vestibule. Through comparing the regional deposition flux between human and rat models, this study can contribute towards better extrapolation approach of inhalation exposure data between inter-subject species.

  6. Combustion characteristics of fuel droplets with addition of nano and micron-sized aluminum particles

    SciTech Connect

    Gan, Yanan; Qiao, Li

    2011-02-15

    The burning characteristics of fuel droplets containing nano and micron-sized aluminum particles were investigated. Particle size, surfactant concentration, and the type of base fluid were varied. In general, nanosuspensions can last much longer than micron suspensions, and ethanol-based fuels were found to achieve much better suspension than n-decane-based fuels. Five distinctive stages (preheating and ignition, classical combustion, microexplosion, surfactant flame, and aluminum droplet flame) were identified for an n-decane/nano-Al droplet, while only the first three stages occurred for an n-decane/micron-Al droplet. For the same solid loading rate and surfactant concentration, the disruption and microexplosion behavior of the micron suspension occurred later with much stronger intensity. The intense droplet fragmentation was accompanied by shell rupture, which caused a massive explosion of particles, and most of them were burned during this event. On the contrary, for the nanosuspension, combustion of the large agglomerate at the later stage requires a longer time and is less complete because of formation of an oxide shell on the surface. This difference is mainly due to the different structure and characteristics of particle agglomerates formed during the early stage, which is a spherical, porous, and more-uniformly distributed aggregate for the nanosuspension, but it is a densely packed and impermeable shell for the micron suspension. A theoretical analysis was then conducted to understand the effect of particle size on particle collision mechanism and aggregation rate. The results show that for nanosuspensions, particle collision and aggregation are dominated by the random Brownian motion. For micron suspensions, however, they are dominated by fluid motion such as droplet surface regression, droplet expansion resulting from bubble formation, and internal circulation. And the Brownian motion is the least important. This theoretical analysis explains the

  7. Expression of focal adhesion kinase in endometrial stromal cells of women with endometriosis was adjusted by ovarian steroid hormones.

    PubMed

    Mu, Lin; Ma, Yan-Yan

    2015-01-01

    The aim of our study is to investigate the effects of ovarian steroid hormones on focal adhesion kinase (FAK) expression in ESCs and whether there is alteration in women with endometriosis. FAK expression was assessed by western blotting analysis. Elevated expression of FAK was seen in the cultured ESCs treated with estrogen (P < 0.05). Expression of FAK protein was not changed in ESCs after treated by progesterone or treated by estrogen and progesterone. The level of up-regulation by estrogen in endometriosis is significantly higher than that from women without endometriosis (P < 0.05). FAK expression in endometrial stromal cells from endometriosis was more sensitive to estrogen, which might contribute to the pathogenesis and progress of endometriosis.

  8. A site-specific phosphorylation of the focal adhesion kinase controls the formation of spheroid cell clusters.

    PubMed

    Beck, Hans Christian; Gosau, Martin; Kristensen, Lars Peter; Morsczeck, Christian

    2014-07-01

    Human dental follicle cells (DFCs) are ectomesenchymal multipotent stem cells that form spheroid cell clusters (SCCs) under serum free medium cell culture conditions (SFM). Until today, molecular mechanisms for the formation of SCCs are unknown. In this study a quantitative phosphoproteomics approach revealed regulated phosphorylated proteins in SCCs, which were derived from DFCs after 24 and 48 h in SFM. These regulated proteins were categorized using the Kyoto encyclopedia of genes and genomes program. Here, cellular processes and signaling pathway were identified such as the focal adhesion kinase (FAK) signaling pathway. In addition to the phosphoproteomics approach we showed that a specific phosphorylation of FAK (Y397) was required for the formation of SCCs. In conclusion, this study disclosed the phosphoproteome of SCCs for the first time and showed that the FAK signaling pathway is required for the formation of SCCs.

  9. EphB2 receptor controls proliferation/migration dichotomy of glioblastoma by interacting with focal adhesion kinase

    PubMed Central

    Wang, Shervin D.; Rath, Prakash; Lal, Bachchu; Richard, Jean-Philippe; Li, Yunqing; Goodwin, C. Rory; Laterra, John; Xia, Shuli

    2012-01-01

    Glioblastoma multiforme (GBM) are the most frequent and aggressive primary brain tumors in adults. Uncontrolled proliferation and abnormal cell migration are two prominent spatially and temporally disassociated characteristics of GBMs. In this study, we investigated the role of the receptor tyrosine kinase EphB2 in controlling the proliferation/migration dichotomy of GBM. We studied EphB2 gain-of-function and loss-of function in glioblastoma-derived stem-like neurospheres (GBM-SCs), whose in vivo growth pattern closely replicates human GBM. EphB2 expression stimulated GBM neurosphere cell migration and invasion, and inhibited neurosphere cell proliferation in vitro. In parallel, EphB2 silencing increased tumor cell proliferation and decreased tumor cell migration. EphB2 was found to increase tumor cell invasion in vivo using an internally controlled dual-fluorescent xenograft model. Xenografts derived from EphB2 overexpressing GBM neurospheres also showed decreased cellular proliferation. The non-receptor tyrosine kinase focal adhesion kinase (FAK) was found to be co-associated with and highly activated by EphB2 expression and FAK activation facilitated focal adhesion formation, cytoskeleton structure change and cell migration in EphB2-expression GBM neurosphere cells. Taken together, our findings indicate that EphB2 has pro-invasive and anti-proliferative actions in GBM stem-like neurospheres mediated, in part, by interactions between EphB2 receptors and FAK. These novel findings suggest that tumor cell invasion can be therapeutically targeted by inhibiting EphB2 signaling and that optimal anti-tumor responses to EphB2 targeting may require the concurrent use of anti-proliferative agents. PMID:22310282

  10. RhoA-mediated Phospholipase D1 signaling is not required for the formation of stress fibers and focal adhesions.

    PubMed

    Su, Wenjuan; Chardin, Pierre; Yamazaki, Masakazu; Kanaho, Yasunori; Du, Guangwei

    2006-04-01

    The small GTPase RhoA regulates a wide spectrum of cellular functions including transformation and cytoskeletal reorganization. A large number of proteins have been identified as targets of RhoA, but their specific roles in these processes are not clear. Phospholipase D (PLD) was shown to be one such target several years ago; more recent work from our laboratory and others has demonstrated that of the two mammalian PLD isozymes, PLD1 but not PLD2 is activated by RhoA and this activation proceeds through direct binding both in vitro and in vivo. In this study, using a series of RhoA mutants, we have defined a PLD1-specific interacting site on RhoA composed of the residues Asn41, Trp58 and Asp76, using the yeast two-hybrid system, co-immunoprecipitation, and a PLD in vivo assay. The results further substantiate our previous finding that RhoA activates PLD1 through direct interaction. These mutants were then used to investigate the role of PLD1 in the cytoskeletal reorganization stimulated by RhoA signaling. Our results show that PLD1 is not required for the RhoA-mediated stress fiber and focal adhesion formation. The lack of importance of PLD1 signaling in RhoA-mediated cytoskeletal reorganization is further supported by the observation that PLD1 depletion using an shRNA approach and tetracycline-induced overexpression of the wild-type and the catalytically inactive mutant of PLD1 in stable cell lines do not alter stress fiber and focal adhesion formation.

  11. High-resolution traction force microscopy on small focal adhesions - improved accuracy through optimal marker distribution and optical flow tracking

    PubMed Central

    Holenstein, Claude N.; Silvan, Unai; Snedeker, Jess G.

    2017-01-01

    The accurate determination of cellular forces using Traction Force Microscopy at increasingly small focal attachments to the extracellular environment presents an important yet substantial technical challenge. In these measurements, uncertainty regarding accuracy is prominent since experimental calibration frameworks at this size scale are fraught with errors – denying a gold standard against which accuracy of TFM methods can be judged. Therefore, we have developed a simulation platform for generating synthetic traction images that can be used as a benchmark to quantify the influence of critical experimental parameters and the associated errors. Using this approach, we show that TFM accuracy can be improved >35% compared to the standard approach by placing fluorescent beads as densely and closely as possible to the site of applied traction. Moreover, we use the platform to test tracking algorithms based on optical flow that measure deformation directly at the beads and show that these can dramatically outperform classical particle image velocimetry algorithms in terms of noise sensitivity and error. We then report how optimized experimental and numerical strategy can improve traction map accuracy, and further provide the best available benchmark to date for defining practical limits to TFM accuracy as a function of focal adhesion size. PMID:28164999

  12. Secreted Frizzled-related protein 1 (sFRP1) regulates spermatid adhesion in the testis via dephosphorylation of focal adhesion kinase and the nectin-3 adhesion protein complex

    PubMed Central

    Wong, Elissa W. P.; Lee, Will M.; Cheng, C. Yan

    2013-01-01

    Development of spermatozoa in adult mammalian testis during spermatogenesis involves extensive cell migration and differentiation. Spermatogonia that reside at the basal compartment of the seminiferous epithelium differentiate into more advanced germ cell types that migrate toward the apical compartment until elongated spermatids are released into the tubule lumen during spermiation. Apical ectoplasmic specialization (ES; a testis-specific anchoring junction) is the only cell junction that anchors and maintains the polarity of elongating/elongated spermatids (step 8–19 spermatids) in the epithelium. Little is known regarding the signaling pathways that trigger the disassembly of the apical ES at spermiation. Here, we show that secreted Frizzled-related protein 1 (sFRP1), a putative tumor suppressor gene that is frequently down-regulated in multiple carcinomas, is a crucial regulatory protein for spermiation. The expression of sFRP1 is tightly regulated in adult rat testis to control spermatid adhesion and sperm release at spermiation. Down-regulation of sFRP1 during testicular development was found to coincide with the onset of the first wave of spermiation at approximately age 45 d postpartum, implying that sFRP1 might be correlated with elongated spermatid adhesion conferred by the apical ES before spermiation. Indeed, administration of sFRP1 recombinant protein to the testis in vivo delayed spermiation, which was accompanied by down-regulation of phosphorylated (p)-focal adhesion kinase (FAK)-Tyr397 and retention of nectin-3 adhesion protein at the apical ES. To further investigate the functional relationship between p-FAK-Tyr397 and localization of nectin-3, we overexpressed sFRP1 using lentiviral vectors in the Sertoli-germ cell coculture system. Consistent with the in vivo findings, overexpression of sFRP1 induced down-regulation of p-FAK-Tyr397, leading to a decline in phosphorylation of nectin-3. In summary, this report highlights the critical role of s

  13. Loss of β-PIX inhibits focal adhesion disassembly and promotes keratinocyte motility via myosin light chain activation.

    PubMed

    Hiroyasu, Sho; Stimac, Gregory P; Hopkinson, Susan B; Jones, Jonathan C R

    2017-07-15

    During healing of the skin, the cytoskeleton of keratinocytes and their matrix adhesions, including focal adhesions (FAs), undergo reorganization. These changes are coordinated by small GTPases and their regulators, including the guanine nucleotide exchange factor β-PIX (also known as ARHGEF7). In fibroblasts, β-PIX activates small GTPases, thereby enhancing migration. In keratinocytes in vitro, β-PIX localizes to FAs. To study β-PIX functions, we generated β-PIX knockdown keratinocytes. During wound closure of β-PIX knockdown cell monolayers, disassembly of FAs is impaired, and their number and size are increased. In addition, in the β-PIX knockdown cells, phosphorylated myosin light chain (MLC; also known as MYL2) is present not only in the leading edge of cells at the wound front, but also in the cells following the front, while p21-activated kinase 2 (PAK2), a regulator of MLC kinase (MYLK), is mislocalized. Inhibition or depletion of MYLK restores FA distribution in β-PIX knockdown cells. Traction forces generated by β-PIX knockdown cells are increased relative to those in control cells, a result consistent with an unexpected enhancement in the migration of single β-PIX knockdown cells and monolayers of such cells. We propose that targeting β-PIX might be a means of promoting epithelialization of wounds in vivo. © 2017. Published by The Company of Biologists Ltd.

  14. Focal Adhesion Kinase-Dependent Role of the Soluble Form of Neurotensin Receptor-3/Sortilin in Colorectal Cancer Cell Dissociation

    PubMed Central

    Béraud-Dufour, Sophie; Devader, Christelle; Massa, Fabienne; Roulot, Morgane; Coppola, Thierry; Mazella, Jean

    2016-01-01

    The aim of the present review is to unravel the mechanisms of action of the soluble form of the neurotensin (NT) receptor-3 (NTSR3), also called Sortilin, in numerous physiopathological processes including cancer development, cardiovascular diseases and depression. Sortilin/NTSR3 is a transmembrane protein thought to exert multiple functions both intracellularly and at the level of the plasma membrane. The Sortilin/NTSR3 extracellular domain is released by shedding from all the cells expressing the protein. Although the existence of the soluble form of Sortilin/NTSR3 (sSortilin/NTSR3) has been evidenced for more than 10 years, the studies focusing on the role of this soluble protein at the mechanistic level remain rare. Numerous cancer cells, including colonic cancer cells, express the receptor family of neurotensin (NT), and particularly Sortilin/NTSR3. This review aims to summarize the functional role of sSortilin/NTSR3 characterized in the colonic cancer cell line HT29. This includes mechanisms involving signaling cascades through focal adhesion kinase (FAK), a key pathway leading to the weakening of cell–cell and cell–extracellular matrix adhesions, a series of events which could be responsible for cancer metastasis. Finally, some future approaches targeting the release of sNTSR3 through the inhibition of matrix metalloproteases (MMPs) are suggested. PMID:27834811

  15. Bacterial genotoxins promote inside-out integrin β1 activation, formation of focal adhesion complexes and cell spreading.

    PubMed

    Levi, Laura; Toyooka, Tatsushi; Patarroyo, Manuel; Frisan, Teresa

    2015-01-01

    Integrins are membrane bound receptors that regulate several cellular processes, such as cell adhesion, migration, survival and proliferation, and may contribute to tumor initiation/progression in cells exposed to genotoxic stress. The extent of integrin activation and its role in cell survival upon intoxication with bacterial genotoxins are still poorly characterized. These toxins induce DNA strand breaks in the target cells and activate the DNA damage response (DDR), coordinated by the Ataxia Telangectasia Mutated (ATM) kinase. In the present study, we demonstrate that induction of DNA damage by two bacterial genotoxins promotes activation of integrin β1, leading to enhanced assembly of focal adhesions and cell spreading on fibronectin, but not on vitronectin. This phenotype is mediated by an ATM-dependent inside-out integrin signaling, and requires the actin cytoskeleton remodeler NET1. The toxin-mediated cell spreading and anchorage-independent survival further relies on ALIX and TSG101, two components of the endosomal sorting complex required for transport (ESCRT), known to regulate integrin intracellular trafficking. These data reveal a novel aspect of the cellular response to bacterial genotoxins, and provide new tools to understand the carcinogenic potential of these effectors in the context of chronic intoxication and infection.

  16. New single-molecule speckle microscopy reveals modification of the retrograde actin flow by focal adhesions at nanometer scales.

    PubMed

    Yamashiro, Sawako; Mizuno, Hiroaki; Smith, Matthew B; Ryan, Gillian L; Kiuchi, Tai; Vavylonis, Dimitrios; Watanabe, Naoki

    2014-04-01

    Speckle microscopy directly visualizes the retrograde actin flow, which is believed to promote cell-edge protrusion when linked to focal adhesions (FAs). However, it has been argued that, due to rapid actin turnover, the use of green fluorescent protein-actin, the lack of appropriate analysis algorithms, and technical difficulties, speckle microscopy does not necessarily report the flow velocities of entire actin populations. In this study, we developed a new, user-friendly single-molecule speckle (SiMS) microscopy using DyLight dye-labeled actin. Our new SiMS method enables in vivo nanometer-scale displacement analysis with a low localization error of ±8-8.5 nm, allowing accurate flow-velocity measurement for actin speckles with lifetime <5 s. In lamellipodia, both short- and long-lived F-actin molecules flow with the same speed, indicating they are part of a single actin network. These results do not support coexistence of F-actin populations with different flow speeds, which is referred to as the lamella hypothesis. Mature FAs, but not nascent adhesions, locally obstruct the retrograde flow. Interestingly, the actin flow in front of mature FAs is fast and biased toward FAs, suggesting that mature FAs attract the flow in front and actively remodel the local actin network.

  17. An immediate-early protein of white spot syndrome virus modulates the phosphorylation of focal adhesion kinase of shrimp.

    PubMed

    Lu, Huasong; Ruan, Lingwei; Xu, Xun

    2011-10-25

    WSSV interacts with integrin during infection of shrimps and modulate the focal adhesion kinase which is known as a regulator of several downstream signaling pathways. Viral protein kinases are thought to be important for virus infection by regulating the host signaling pathways. WSV083 is an immediate-early gene of white spot syndrome virus that contains a Ser/Thr protein kinase domain. So, does WSSV modulate FAK phosphorylation via the WSV083 molecule? In this study, co-transfection of WSV083 and MjFAK genes proceeded in insect cells revealed that the MjFAK phosphorylation and cell adhesion activity could be inhibited by the expression of WSV083. Kinase domain mutants of WSV083 lost its ability of inhibiting FAK phosphorylation. Moreover, silencing of FAK gene through RNAi accelerated the shrimp death rate upon WSSV challenge. These results demonstrate for the first time that modulation of FAK phosphorylation by WSV083 plays a critical role in the pathogenesis of WSSV infection.

  18. Structural Basis of Focal Adhesion Localization of LIM-only Adaptor PINCH by Integrin-linked Kinase

    SciTech Connect

    Yang, Yanwu; Wang, Xiaoxia; Hawkins, Cheryl A.; Chen, Kan; Vaynberg, Julia; Mao, Xian; Tu, Yizeng; Zuo, Xiaobing; Wang, Jinbu; Wang, Yun-xing; Wu, Chuanyue; Tjandra, Nico; Qin, Jun

    2010-11-22

    The LIM-only adaptor PINCH (the particularly interesting cysteine- and histidine-rich protein) plays a pivotal role in the assembly of focal adhesions (FAs), supramolecular complexes that transmit mechanical and biochemical information between extracellular matrix and actin cytoskeleton, regulating diverse cell adhesive processes such as cell migration, cell spreading, and survival. A key step for the PINCH function is its localization to FAs, which depends critically on the tight binding of PINCH to integrin-linked kinase (ILK). Here we report the solution NMR structure of the core ILK {center_dot} PINCH complex (28 kDa, K{sub D} {approx} 68 nm) involving the N-terminal ankyrin repeat domain (ARD) of ILK and the first LIM domain (LIM1) of PINCH. We show that the ILK ARD exhibits five sequentially stacked ankyrin repeat units, which provide a large concave surface to grip the two contiguous zinc fingers of the PINCH LIM1. The highly electrostatic interface is evolutionally conserved but differs drastically from those of known ARD and LIM bound to other types of protein domains. Consistently mutation of a hot spot in LIM1, which is not conserved in other LIM domains, disrupted the PINCH binding to ILK and abolished the PINCH targeting to FAs. These data provide atomic insight into a novel modular recognition and demonstrate how PINCH is specifically recruited by ILK to mediate the FA assembly and cell-extracellular matrix communication.

  19. New single-molecule speckle microscopy reveals modification of the retrograde actin flow by focal adhesions at nanometer scales

    PubMed Central

    Yamashiro, Sawako; Mizuno, Hiroaki; Smith, Matthew B.; Ryan, Gillian L.; Kiuchi, Tai; Vavylonis, Dimitrios; Watanabe, Naoki

    2014-01-01

    Speckle microscopy directly visualizes the retrograde actin flow, which is believed to promote cell-edge protrusion when linked to focal adhesions (FAs). However, it has been argued that, due to rapid actin turnover, the use of green fluorescent protein–actin, the lack of appropriate analysis algorithms, and technical difficulties, speckle microscopy does not necessarily report the flow velocities of entire actin populations. In this study, we developed a new, user-friendly single-molecule speckle (SiMS) microscopy using DyLight dye-labeled actin. Our new SiMS method enables in vivo nanometer-scale displacement analysis with a low localization error of ±8–8.5 nm, allowing accurate flow-velocity measurement for actin speckles with lifetime <5 s. In lamellipodia, both short- and long-lived F-actin molecules flow with the same speed, indicating they are part of a single actin network. These results do not support coexistence of F-actin populations with different flow speeds, which is referred to as the lamella hypothesis. Mature FAs, but not nascent adhesions, locally obstruct the retrograde flow. Interestingly, the actin flow in front of mature FAs is fast and biased toward FAs, suggesting that mature FAs attract the flow in front and actively remodel the local actin network. PMID:24501425

  20. Identification of Novel Crk-associated Substrate (p130Cas) Variants with Functionally Distinct Focal Adhesion Kinase Binding Activities*

    PubMed Central

    Kumbrink, Joerg; Soni, Shefali; Laumbacher, Barbara; Loesch, Barbara; Kirsch, Kathrin H.

    2015-01-01

    Elevated levels of p130Cas (Crk-associated substrate)/BCAR1 (breast cancer antiestrogen resistance 1 gene) are associated with aggressiveness of breast tumors. Following phosphorylation of its substrate domain, p130Cas promotes the integration of protein complexes involved in multiple signaling pathways and mediates cell proliferation, adhesion, and migration. In addition to the known BCAR1-1A (wild-type) and 1C variants, we identified four novel BCAR1 mRNA variants, generated by alternative first exon usage (1B, 1B1, 1D, and 1E). Exons 1A and 1C encode for four amino acids (aa), whereas 1D and 1E encode for 22 aa and 1B1 encodes for 50 aa. Exon 1B is non-coding, resulting in a truncated p130Cas protein (Cas1B). BCAR1-1A, 1B1, and variant 1C mRNAs were ubiquitously expressed in cell lines and a survey of human tissues, whereas 1B, 1D, and 1E expression was more restricted. Reconstitution of all isoforms except for 1B in p130Cas-deficient murine fibroblasts induced lamellipodia formation and membrane ruffling, which was unrelated to the substrate domain phosphorylation status. The longer isoforms exhibited increased binding to focal adhesion kinase (FAK), a molecule important for migration and adhesion. The shorter 1B isoform exhibited diminished FAK binding activity and significantly reduced migration and invasion. In contrast, the longest variant 1B1 established the most efficient FAK binding and greatly enhanced migration. Our results indicate that the p130Cas exon 1 variants display altered functional properties. The truncated variant 1B and the longer isoform 1B1 may contribute to the diverse effects of p130Cas on cell biology and therefore will be the target of future studies. PMID:25805500

  1. Identification of Novel Crk-associated Substrate (p130Cas) Variants with Functionally Distinct Focal Adhesion Kinase Binding Activities.

    PubMed

    Kumbrink, Joerg; Soni, Shefali; Laumbacher, Barbara; Loesch, Barbara; Kirsch, Kathrin H

    2015-05-08

    Elevated levels of p130(Cas) (Crk-associated substrate)/BCAR1 (breast cancer antiestrogen resistance 1 gene) are associated with aggressiveness of breast tumors. Following phosphorylation of its substrate domain, p130(Cas) promotes the integration of protein complexes involved in multiple signaling pathways and mediates cell proliferation, adhesion, and migration. In addition to the known BCAR1-1A (wild-type) and 1C variants, we identified four novel BCAR1 mRNA variants, generated by alternative first exon usage (1B, 1B1, 1D, and 1E). Exons 1A and 1C encode for four amino acids (aa), whereas 1D and 1E encode for 22 aa and 1B1 encodes for 50 aa. Exon 1B is non-coding, resulting in a truncated p130(Cas) protein (Cas1B). BCAR1-1A, 1B1, and variant 1C mRNAs were ubiquitously expressed in cell lines and a survey of human tissues, whereas 1B, 1D, and 1E expression was more restricted. Reconstitution of all isoforms except for 1B in p130(Cas)-deficient murine fibroblasts induced lamellipodia formation and membrane ruffling, which was unrelated to the substrate domain phosphorylation status. The longer isoforms exhibited increased binding to focal adhesion kinase (FAK), a molecule important for migration and adhesion. The shorter 1B isoform exhibited diminished FAK binding activity and significantly reduced migration and invasion. In contrast, the longest variant 1B1 established the most efficient FAK binding and greatly enhanced migration. Our results indicate that the p130(Cas) exon 1 variants display altered functional properties. The truncated variant 1B and the longer isoform 1B1 may contribute to the diverse effects of p130(Cas) on cell biology and therefore will be the target of future studies. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Primary arrest of circulating platelets on collagen involves phosphorylation of Syk, cortactin and focal adhesion kinase: studies under flow conditions.

    PubMed Central

    Arderiu, Gemma; Díaz-Ricart, Maribel; Buckley, Byron; Escolar, Ginés; Ordinas, Antonio

    2002-01-01

    After a vessel wall injury, platelets adhere to the subendothelium following a sequence of events: arrest of single platelets on the surface, progression to platelet spreading and final aggregation. Primary arrest of circulating platelets on subendothelial components occurs through platelet glycoprotein (GP) Ib and collagen receptors; then platelets spread and aggregate through a GPIIb-IIIa-dependent mechanism. A series of strategies were applied to analyse the tyrosine-phosphorylation mechanisms occurring at the different stages of platelet adhesion on subendothelial components under flow conditions, with special attention to primary arrest. To evaluate spread platelets, samples were exposed to acetylsalicylic acid, which blocks aggregate formation. To study single platelets in contact, a monoclonal antibody specific for GPIIb-IIIa was used to prevent platelet spreading and further aggregation. This experimental situation was also investigated using blood from two patients with Glanzmann's thrombasthenia (i.e. lacking GPIIb-IIIa). Results demonstrated that blockade of both spreading and aggregation results in significant changes in the tyrosine-phosphorylation patterns. Arrest of single platelets on collagen-rich surfaces resulted in phosphorylation of p125, identified as focal adhesion kinase (FAK), the 80/85 kDa doublet (cortactin), and p72, identified as Syk. Arrest of single platelets on von Willebrand factor as adhesive substrate showed that interaction through GPIb induces Syk phosphorylation, but not that of cortactin and FAK. Our data indicate that the initial arrest of platelets on subendothelial components involves Syk phosphorylation, which seems to be GPIb-dependent, and this is followed by activation and phosphorylation of cortactin and FAK. These processes seem to occur before GPIIb-IIIa becomes activated. PMID:11988077

  3. Labeling of primary human hepatocytes with micron-sized iron oxide particles in suspension culture suitable for large-scale preparation.

    PubMed

    Kammer, Nora N; Billecke, Nils; Morgul, Mehmet H; Adonopoulou, Michaela K; Mogl, Martina; Huang, Mao D; Florek, Stefan; Schmitt, Katharina R L; Raschzok, Nathanael; Sauer, Igor M

    2011-04-01

    Labeling of hepatocytes with micron-sized iron oxide particles (MPIOs) enables cell detection using clinical magnetic resonance equipment. For clinical applications, large numbers of cells must be labeled in a simple and rapid manner and have to be applied in suspension. However, all existing protocols are based on adhesion culture labeling with subsequent resuspension, only suitable for small experimental settings. The aim of this study was to investigate the feasibility of preparing MPIO-labeled primary human hepatocytes in a temporary suspension culture. Human hepatocytes were isolated from 16 donors and labeled with MPIOs in suspension, using the Rotary Cell Culture System. Particle incorporation was investigated by light and electron microscopy. Cells were compared with adhesion culture-labeled and subsequently enzymatically resuspended cells. During a period of 5 days, hepatocyte-specific parameters of cell damage (aspartate aminotransferase and alanine aminotransferase) and metabolic activity (urea and albumin) were analyzed (n=7). Suspension cultures showed a higher outcome in cell recovery compared with the conventional labeling method. When incubated with 180 particles/viable cell for 4 h, the mean particle uptake was 28.8 particles/cell at a labeling efficiency of 95.1%. Labeling in suspension had no adverse effects on cell integrity or metabolic activity. We conclude that labeling of human hepatocytes in suspension is feasible and simple and may serve future large-scale processing of cells. © 2011, Copyright the Authors. Artificial Organs © 2011, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  4. Locally Targeted Delivery of a Micron-Size Radiation Therapy Source Using Temperature-Sensitive Hydrogel

    SciTech Connect

    Kim, Yusung; Seol, Dong Rim; Mohapatra, Sucheta; Sunderland, John J.; Schultz, Michael K.; Domann, Frederick E.; Lim, Tae-Hong

    2014-04-01

    Purpose: To propose a novel radiation therapy (RT) delivery modality: locally targeted delivery of micron-size RT sources by using temperature-sensitive hydrogel (RT-GEL) as an injectable vehicle. Methods and Materials: Hydrogel is a water-like liquid at room temperature but gels at body temperature. Two US Food and Drug Administration-approved polymers were synthesized. Indium-111 (In-111) was used as the radioactive RT-GEL source. The release characteristics of In-111 from polymerized RT-GEL were evaluated. The injectability and efficacy of RT-GEL delivery to human breast tumor were tested using animal models with control datasets of RT-saline injection. As proof-of-concept studies, a total of 6 nude mice were tested by injecting 4 million tumor cells into their upper backs after a week of acclimatization. Three mice were injected with RT-GEL and 3 with RT-saline. Single-photon emission computed tomography (SPECT) and CT scans were performed on each mouse at 0, 24, and 48 h after injection. The efficacy of RT-GEL was determined by comparison with that of the control datasets by measuring kidney In-111 accumulation (mean nCi/cc), representing the distant diffusion of In-111. Results: RT-GEL was successfully injected into the tumor by using a 30-gauge needle. No difficulties due to polymerization of hydrogel during injection and intratumoral pressure were observed during RT-GEL injection. No back flow occurred for either RT-GEL or RT-saline. The residual tumor activities of In-111 were 49% at 24 h (44% at 48 h, respectively) for RT-GEL and 29% (22%, respectively) for RT-saline. Fused SPECT-CT images of RT-saline showed considerable kidney accumulation of In-111 (2886%, 261%, and 262% of RT-GEL at 0, 24, and 48 h, respectively). Conclusions: RT-GEL was successfully injected and showed much higher residual tumor activity: 170% (200%, respectively), than that of RT-saline at 24 h (48 h, respectively) after injection with a minimal accumulation of In-111 to the

  5. Raver1 Interactions with Vinculin and RNA Suggest a Feed-Forward Pathway in Directing mRNA to Focal Adhesions

    SciTech Connect

    Lee, Jun Hyuck; Rangarajan, Erumbi S.; Yogesha, S.D.; Izard, Tina; Scripps

    2009-09-11

    The translational machinery of the cell relocalizes to focal adhesions following the activation of integrin receptors. This response allows for rapid, local production of components needed for adhesion complex assembly and signaling. Vinculin links focal adhesions to the actin cytoskeleton following its activation by integrin signaling, which severs intramolecular interactions of vinculin's head and tail (Vt) domains. Our vinculin:raver1 crystal structures and binding studies show that activated Vt selectively interacts with one of the three RNA recognition motifs of raver1, that the vinculin:raver1 complex binds to F-actin, and that raver1 binds selectively to RNA, including a sequence found in vinculin mRNA. Further, mutation of residues that mediate interaction of raver1 with vinculin abolish their colocalization in cells. These findings suggest a feed-forward model where vinculin activation at focal adhesions provides a scaffold for recruitment of raver1 and its mRNA cargo to facilitate the production of components of adhesion complexes.

  6. MIEN1 drives breast tumor cell migration by regulating cytoskeletal-focal adhesion dynamics

    PubMed Central

    Van Treuren, Timothy; Vishwanatha, Jamboor K.

    2016-01-01

    Migration and invasion enhancer 1 (MIEN1) is an important regulator of cell migration and invasion. MIEN1 overexpression represents an oncogenic event that promotes tumor cell dissemination and metastasis. The underlying mechanism by which MIEN1 regulates migration and invasion has yet to be deciphered. Here, we demonstrate that MIEN1 acts as a cytoskeletal-signaling adapter protein to drive breast cancer cell migration. MIEN1 localization is concentrated underneath the actin-enriched protrusive structures of the migrating breast cancer cells. Depletion of MIEN1 led to the loss of actin-protrusive structures whereas the over-expression of MIEN1 resulted in rich and thick membrane extensions. Knockdown of MIEN1 also decreased the cell-substratum adhesion, suggesting a role for MIEN1 in actin cytoskeletal dynamics. Our results show that MIEN1 supports the transition of G-actin to F-actin polymerization and stabilizes F-actin polymers. Additionally, MIEN1 promotes cellular adhesion and actin dynamics by inducing phosphorylation of FAK at Tyr-925 and reducing phosphorylation of cofilin at Ser-3, which results in breast cancer cell migration. Collectively, our data show that MIEN1 plays an essential role in maintaining the plasticity of the dynamic membrane-associated actin cytoskeleton, which leads to an increase in cell motility. Hence, targeting MIEN1 might represent a promising means to prevent breast tumor metastasis. PMID:27462783

  7. PAK is regulated by PI3K, PIX, CDC42, and PP2Calpha and mediates focal adhesion turnover in the hyperosmotic stress-induced p38 pathway.

    PubMed

    Chan, Perry M; Lim, Louis; Manser, Edward

    2008-09-05

    Fractionation of brain extracts and functional biochemical assays identified PP2Calpha, a serine/threonine phosphatase, as the major biochemical activity inhibiting PAK1. PP2Calpha dephosphorylated PAK1 and p38, both of which were activated upon hyperosmotic shock with the same kinetics. In comparison to growth factors, hyperosmolality was a more potent activator of PAK1. Therefore we characterize the PAK signaling pathway in the hyperosmotic shock response. Endogenous PAKs were recruited to the p38 kinase complex in a phosphorylation-dependent manner. Overexpression of a PAK inhibitory peptide or dominant negative Cdc42 revealed that p38 activation was dependent on PAK and Cdc42 activities. PAK mutants deficient in binding to Cdc42 or PAK-interacting exchange factor were not activated. Using a panel of kinase inhibitors, we identified PI3K acting upstream of PAK, which correlated with PAK repression by pTEN overexpression. RNA interference knockdown of PAK expression reduced stress-induced p38 activation and conversely, PP2Calpha knockdown increased its activation. Hyperosmotic stress-induced PAK translocation away from focal adhesions to the perinuclear compartment and resulted in disassembly of focal adhesions, which are hallmarks of PAK activation. Inhibition of PAK by overexpression of PP2Calpha or the kinase inhibitory domain prevented sorbitol-induced focal adhesion dissolution. Inhibition of MAPK pathways showed that MEK-ERK signaling but not p38 is required for full PAK activation and focal adhesion turnover. We conclude that 1) PAK plays a required role in hyperosmotic signaling through the PI3K/pTEN/Cdc42/PP2Calpha/p38 pathway, and 2) PAK and PP2Calpha modulate the effects of this pathway on focal adhesion dynamics.

  8. Mesostructural investigation of micron-sized glass particles during shear deformation - An experimental approach vs. DEM simulation

    NASA Astrophysics Data System (ADS)

    Torbahn, Lutz; Weuster, Alexander; Handl, Lisa; Schmidt, Volker; Kwade, Arno; Wolf, Dietrich E.

    2017-06-01

    The interdependency of structure and mechanical features of a cohesive powder packing is on current scientific focus and far from being well understood. Although the Discrete Element Method provides a well applicable and widely used tool to model powder behavior, non-trivial contact mechanics of micron-sized particles demand a sophisticated contact model. Here, a direct comparison between experiment and simulation on a particle level offers a proper approach for model validation. However, the simulation of a full scale shear-tester experiment with micron-sized particles, and hence, validating this simulation remains a challenge. We address this task by down scaling the experimental setup: A fully functional micro shear-tester was developed and implemented into an X-ray tomography device in order to visualize the sample on a bulk and particle level within small bulk volumes of the order of a few micro liter under well-defined consolidation. Using spherical micron-sized particles (30 μm), shear tests with a particle number accessible for simulations can be performed. Moreover, particle level analysis allows for a direct comparison of experimental and numerical results, e.g., regarding structural evolution. In this talk, we focus on density inhomogeneity and shear induced heterogeneity during compaction and shear deformation.

  9. Laboratory Measurements on Charging of Individual Micron-Size Apollo-11 Dust Grains by Secondary Electron Emissions

    NASA Technical Reports Server (NTRS)

    Tankosic, D.; Abbas, M. M.

    2012-01-01

    Observations made during Apollo missions, as well as theoretical models indicate that the lunar surface and dust grains are electrostatically charged, levitated and transported. Lunar dust grains are charged by UV photoelectric emissions on the lunar dayside and by the impact of the solar wind electrons on the nightside. The knowledge of charging properties of individual lunar dust grains is important for developing appropriate theoretical models and mitigating strategies. Currently, very limited experimental data are available for charging of individual micron-size size lunar dust grains in particular by low energy electron impact. However, experimental results based on extensive laboratory measurements on the charging of individual 0.2-13 micron size lunar dust grains by the secondary electron emissions (SEE) have been presented in a recent publication. The SEE process of charging of micron-size dust grains, however, is found to be very complex phenomena with strong particle size dependence. In this paper we present some examples of the complex nature of the SEE properties of positively charged individual lunar dust grains levitated in an electrodynamic balance (EDB), and show that they remain unaffected by the variation of the AC field employed in the above mentioned measurements.

  10. PRL-3 engages the focal adhesion pathway in triple-negative breast cancer cells to alter actin structure and substrate adhesion properties critical for cell migration and invasion.

    PubMed

    Gari, Hamid H; DeGala, Gregory D; Ray, Rahul; Lucia, M Scott; Lambert, James R

    2016-10-01

    Triple-negative breast cancers (TNBCs) are among the most aggressive cancers characterized by a high propensity to invade, metastasize and relapse. We previously reported that the TNBC-specific inhibitor, AMPI-109, significantly impairs the ability of TNBC cells to migrate and invade by reducing levels of the metastasis-promoting phosphatase, PRL-3. Here, we examined the mechanisms by which AMPI-109 and loss of PRL-3 impede cell migration and invasion. AMPI-109 treatment or knock down of PRL-3 expression were associated with deactivation of Src and ERK signaling and concomitant downregulation of RhoA and Rac1/2/3 GTPase protein levels. These cellular changes led to rearranged filamentous actin networks necessary for cell migration and invasion. Conversely, overexpression of PRL-3 promoted TNBC cell invasion by upregulating matrix metalloproteinase 10, which resulted in increased TNBC cell adherence to, and degradation of, the major basement membrane component laminin. Our data demonstrate that PRL-3 engages the focal adhesion pathway in TNBC cells as a key mechanism for promoting TNBC cell migration and invasion. Collectively, these data suggest that blocking PRL-3 activity may be an effective method for reducing the metastatic potential of TNBC cells. Copyright © 2016 The Author(s). Published by Elsevier Ireland Ltd.. All rights reserved.

  11. Mammary gland-specific ablation of focal adhesion kinase reduces the incidence of p53-mediated mammary tumour formation

    PubMed Central

    van Miltenburg, M H A M; van Nimwegen, M J; Tijdens, I; Lalai, R; Kuiper, R; Klarenbeek, S; Schouten, P C; de Vries, A; Jonkers, J; van de Water, B

    2014-01-01

    Background: Elevated expression of focal adhesion kinase (FAK) occurs in numerous human cancers including colon-, cervix- and breast cancer. Although several studies have implicated FAK in mammary tumour formation induced by ectopic oncogene expression, evidence supporting a role for FAK in spontaneous mammary tumour development caused by loss of tumour suppressor genes such as p53 is lacking. Alterations in the tumour suppressor gene p53 have been implicated in over 50% of human breast cancers. Given that elevated FAK expression highly correlates with p53 mutation status in human breast cancer, we set out to investigate the importance of FAK in p53-mediated spontaneous mammary tumour development. Methods: To directly assess the role of FAK, we generated mice with conditional inactivation of FAK and p53. We generated female p53lox/lox/FAK+/+/WapCre, p53lox/lox/FAKflox/+/WapCre and p53lox/lox/FAKflox/−/WapCre mice, and mice with WapCre-mediated conditional expression of p53R270H, the mouse equivalent of human p53R273H hot spot mutation, together with conditional deletion of FAK, P53R270H/+/FAKlox/+/WapCre and p53R270H/+/FAKflox/−/WapCre mice. All mice were subjected to one pregnancy to induce WapCre-mediated deletion of p53 or expression of p53 R270H, and Fak genes flanked by two loxP sites, and subsequently followed the development of mammary tumours. Results: Using this approach, we show that FAK is important for p53-induced mammary tumour development. In addition, mice with the mammary gland-specific conditional expression of p53 point mutation R270H, the mouse equivalent to human R273H, in combination with conditional deletion of Fak showed reduced incidence of p53R270H-induced mammary tumours. In both models these effects of FAK were related to reduced proliferation in preneoplastic lesions in the mammary gland ductal structures. Conclusions: Mammary gland-specific ablation of FAK hampers p53-regulated spontaneous mammary tumour formation. Focal adhesion

  12. STROBE-compliant integrin through focal adhesion involve in cancer stem cell and multidrug resistance of ovarian cancer

    PubMed Central

    Wei, Luwei; Yin, Fuqiang; Zhang, Wei; Li, Li

    2017-01-01

    Abstract Cancer stem cells (CSCs) are considered to be the root of carcinoma relapse and drug resistance in ovarian cancer. Hunting for the potential CSC genes and explain their functions would be a feasible strategy to meet the challenge of the drug resistance in ovarian cancer. In this study, we performed bioinformatic approaches such as biochip data extraction and pathway enrichment analyses to elucidate the mechanism of the CSC genes in regulation of drug resistance. Potential key genes, integrins, were identified to be related to CSC in addition to their associations with drug resistance and prognosis in ovarian cancer. A total of 36 ovarian CSC genes involved in regulation of drug resistance were summarized, and potential drug resistance-related CSC genes were identified based on 3 independent microarrays retrieved from the Gene Expression Omnibus (GEO) Profiles. Pathway enrichment of CSC genes associated with drug resistance in ovarian cancer indicated that focal adhesion signaling might play important roles in CSC genes-mediated drug resistance. Integrins are members of the adhesion molecules family, and integrin subunit alpha 1, integrin subunit alpha 5, and integrin subunit alpha 6 (ITGA6) were identified as central CSC genes and their expression in side population cells, cisplatin-resistant SKOV3 (SKOV3/DDP2) cells, and cisplatin-resistant A2780 (A2780/DDP) cells were dysregulated as measured by real-time quantitative polymerase chain reaction. The high expression of ITGA6 in 287 ovarian cancer patients of TCGA cohort was significantly associated with poorer progression-free survival. This study provide the basis for further understanding of CSC genes in regulation of drug resistance in ovarian cancer, and integrins could be a potential biomarker for prognosis of ovarian cancer. PMID:28328815

  13. The focal adhesion-associated proteins DOCK5 and GIT2 comprise a rheostat in control of epithelial invasion

    PubMed Central

    Frank, Scott R.; Köllmann, Clemens P.; van Lidth de Jeude, Jooske F.; Thiagarajah, Jay R.; Engelholm, Lars H.; Frödin, Morten; Hansen, Steen H.

    2016-01-01

    DOCK proteins are guanine nucleotide exchange factors for Rac and Cdc42 GTPases. DOCK1 is the founding member of the family and acts downstream of integrins via the canonical Crk-p130Cas complex to activate Rac GTPases in numerous contexts. In contrast, DOCK5, which possesses the greatest similarity to DOCK1, remains sparingly studied. Here we establish that DOCK5 plays a non-redundant role in regulating motile and invasive capacities of epithelial cells. DOCK1 is constitutively associated with sites of integrin attachment termed focal adhesions (FA). In contrast, we demonstrate that DOCK5 recruitment to FAs in Hela cells is restricted by GIT2, an established regulator of FA signaling. We determine that GIT2 is targeted to FAs in response to Rho-ROCK signaling and actomyosin contractility. Accordingly, inhibition of ROCK activity or MLC function promotes enrichment of DOCK5 in membrane protrusions and nascent cell-substratum adhesions. We further demonstrate that GIT2 inhibits the interaction of DOCK5 with Crk. Moreover, we show that depletion of GIT2 promotes DOCK5-dependent activation of the Crk-p130Cas signaling cascade to promote Rac1-mediated lamellipodial protrusion and FA turnover. The antagonism between GIT2 and DOCK5 extends to non-transformed MCF10A mammary epithelial cells, with DOCK5 “dialing-up” and GIT2 “dialing-down” invasiveness. Finally, we determine that DOCK5 inhibition attenuates invasion and metastasis of MDA-MB-231 cells and prolongs life span of mice injected with these cells. Collectively, our work identifies DOCK5 as a key regulator of epithelial invasion and metastasis, and demonstrates that suppression of DOCK5 by GIT2 represents a previously unappreciated mechanism for coordination of Rho and Rac GTPases. PMID:27669437

  14. Roles of focal adhesion kinase (FAK) in megakaryopoiesis and platelet function: studies using a megakaryocyte lineage–specific FAK knockout

    PubMed Central

    Hitchcock, Ian S.; Fox, Norma E.; Prévost, Nicolas; Sear, Katherine; Shattil, Sanford J.

    2008-01-01

    Focal adhesion kinase (FAK) plays a key role in mediating signaling downstream of integrins and growth factor receptors. In this study, we determined the roles of FAK in vivo by generating a megakaryocyte lineage–specific FAK-null mouse (Pf4-Cre/FAK-floxed). Megakaryocyte and platelet FAK expression was ablated in Pf4-Cre/FAK-floxed mice without affecting expression of the FAK homologue PYK2, although PYK2 phosphorylation was increased in FAK−/− megakaryocytes in response to fibrinogen. Megakaryopoiesis is greatly enhanced in Pf4-Cre/FAK-floxed mice, with significant increases in megakaryocytic progenitors (CFU-MK), mature megakaryocytes, megakaryocyte ploidy, and moderate increases in resting platelet number and platelet recovery following a thrombocytopenic stress. Thrombopoietin (Tpo)–mediated activation of Lyn kinase, a negative regulator of megakaryopoiesis, is severely attenuated in FAK-null megakaryocytes compared with wild-type controls. In contrast, Tpo-mediated activation of positive megakaryopoiesis regulators such as ERK1/2 and AKT is increased in FAK-null megakaryocytes, providing a plausible explanation for the observed increases in megakaryopoiesis in these mice. In Pf4-Cre/FAK-floxed mice, rebleeding times are significantly increased, and FAK-null platelets exhibit diminished spreading on immobilized fibrinogen. These studies establish clear roles for FAK in megakaryocyte growth and platelet function, setting the stage for manipulation of this component of the Tpo signaling apparatus for therapeutic benefit. PMID:17925492

  15. Vascular growth responses to chronic arterial occlusion are unaffected by myeloid specific focal adhesion kinase (FAK) deletion

    NASA Astrophysics Data System (ADS)

    Heuslein, Joshua L.; Murrell, Kelsey P.; Leiphart, Ryan J.; Llewellyn, Ryan A.; Meisner, Joshua K.; Price, Richard J.

    2016-05-01

    Arteriogenesis, or the lumenal expansion of pre-existing arterioles in the presence of an upstream occlusion, is a fundamental vascular growth response. Though alterations in shear stress stimulate arteriogenesis, the migration of monocytes into the perivascular space surrounding collateral arteries and their differentiation into macrophages is critical for this vascular growth response to occur. Focal adhesion kinase’s (FAK) role in regulating cell migration has recently been expanded to primary macrophages. We therefore investigated the effect of the myeloid-specific conditional deletion of FAK on vascular remodeling in the mouse femoral arterial ligation (FAL) model. Using laser Doppler perfusion imaging, whole mount imaging of vascular casted gracilis muscles, and immunostaining for CD31 in gastrocnemius muscles cross-sections, we found that there were no statistical differences in perfusion recovery, arteriogenesis, or angiogenesis 28 days after FAL. We therefore sought to determine FAK expression in different myeloid cell populations. We found that FAK is expressed at equally low levels in Ly6Chi and Ly6Clo blood monocytes, however expression is increased over 2-fold in bone marrow derived macrophages. Ultimately, these results suggest that FAK is not required for monocyte migration to the perivascular space and that vascular remodeling following arterial occlusion occurs independently of myeloid specific FAK.

  16. Heat shock protein 90β stabilizes focal adhesion kinase and enhances cell migration and invasion in breast cancer cells

    SciTech Connect

    Xiong, Xiangyang; Wang, Yao; Liu, Chengmei; Lu, Quqin; Liu, Tao; Chen, Guoan; Rao, Hai; Luo, Shiwen

    2014-08-01

    Focal adhesion kinase (FAK) acts as a regulator of cellular signaling and may promote cell spreading, motility, invasion and survival in malignancy. Elevated expression and activity of FAK frequently correlate with tumor cell metastasis and poor prognosis in breast cancer. However, the mechanisms by which the turnover of FAK is regulated remain elusive. Here we report that heat shock protein 90β (HSP90β) interacts with FAK and the middle domain (amino acids 233–620) of HSP90β is mainly responsible for this interaction. Furthermore, we found that HSP90β regulates FAK stability since HSP90β inhibitor 17-AAG triggers FAK ubiquitylation and subsequent proteasome-dependent degradation. Moreover, disrupted FAK-HSP90β interaction induced by 17-AAG contributes to attenuation of tumor cell growth, migration, and invasion. Together, our results reveal how HSP90β regulates FAK stability and identifies a potential therapeutic strategy to breast cancer. - Highlights: • HSP90β protects FAK from degradation by the ubiquitin-proteasome pathway. • Inhibition of HSP90β or FAK attenuates tumorigenesis of breast cancer cells. • Genetic repression of HSP90β or FAK inhibits tumor cell migration and proliferation. • Inhibition of HSP90β or FAK interferes cell invasion and cytoskeleton.

  17. Focal adhesion kinase overexpression: correlation with lymph node metastasis and shorter survival in oral squamous cell carcinoma.

    PubMed

    de Vicente, Juan Carlos; Rosado, Pablo; Lequerica-Fernández, Paloma; Allonca, Eva; Villallaín, Lucas; Hernández-Vallejo, Gonzalo

    2013-06-01

    Focal adhesion kinase (FAK) has been identified as a key mediator in tumor progression. The objective of this study was to determine the role of FAK as a predictor of neck node metastasis and poor prognosis in oral squamous cell carcinomas (OSCCs). FAK expression in normal oral mucosa and in 69 OSCCs was examined by immunohistochemistry, and the percentage of stained cells was recorded. The correlation of these findings with clinicopathologic variables and survival was studied. FAK expression in OSCCs was heterogeneous: 33.3% of cases showed weak expression; 23.2%, moderate expression, and 33.3% cases showed high expression. FAK expression significantly correlated with tumor size (p = .010), neck node metastasis (p = .01), and local tumor recurrence (p = .01). FAK expression was an independent prognostic factor in the survival analysis (p = .017). Increased expression of FAK may play a role in invasiveness and metastasis of OSCCs, which contribute to poor prognosis and low survival. Copyright © 2012 Wiley Periodicals, Inc.

  18. Plant toxin β-ODAP activates integrin β1 and focal adhesion: A critical pathway to cause neurolathyrism

    PubMed Central

    Tan, Rui-Yue; Xing, Geng-Yan; Zhou, Guang-Ming; Li, Feng-Min; Hu, Wen-Tao; Lambein, Fernand; Xiong, Jun-Lan; Zhang, Sheng-Xiang; Kong, Hai-Yan; Zhu, Hao; Li, Zhi-Xiao; Xiong, You-Cai

    2017-01-01

    Neurolathyrism is a unique neurodegeneration disease caused by β-N-oxalyl-L-α, β- diaminopropionic (β-ODAP) present in grass pea seed (Lathyrus stativus L.) and its pathogenetic mechanism is unclear. This issue has become a critical restriction to take full advantage of drought-tolerant grass pea as an elite germplasm resource under climate change. We found that, in a human glioma cell line, β-ODAP treatment decreased mitochondrial membrane potential, leading to outside release and overfall of Ca2+ from mitochondria to cellular matrix. Increased Ca2+ in cellular matrix activated the pathway of ECM, and brought about the overexpression of β1 integrin on cytomembrane surface and the phosphorylation of focal adhesion kinase (FAK). The formation of high concentration of FA units on the cell microfilaments further induced overexpression of paxillin, and then inhibited cytoskeleton polymerization. This phenomenon turned to cause serious cell microfilaments distortion and ultimately cytoskeleton collapse. We also conducted qRT-PCR verification on RNA-sequence data using 8 randomly chosen genes of pathway enrichment, and confirmed that the data was statistically reliable. For the first time, we proposed a relatively complete signal pathway to neurolathyrism. This work would help open a new window to cure neurolathyrism, and fully utilize grass pea germplasm resource under climate change. PMID:28094806

  19. Focal adhesion kinase-promoted tumor glucose metabolism is associated with a shift of mitochondrial respiration to glycolysis.

    PubMed

    Zhang, J; Gao, Q; Zhou, Y; Dier, U; Hempel, N; Hochwald, S N

    2016-04-14

    Cancer cells often gains a growth advantage by taking up glucose at a high rate and undergoing aerobic glycolysis through intrinsic cellular factors that reprogram glucose metabolism. Focal adhesion kinase (FAK), a key transmitter of growth factor and anchorage stimulation, is aberrantly overexpressed or activated in most solid tumors, including pancreatic ductal adenocarcinomas (PDACs). We determined whether FAK can act as an intrinsic driver to promote aerobic glycolysis and tumorigenesis. FAK inhibition decreases and overexpression increases intracellular glucose levels during unfavorable conditions, including growth factor deficiency and cell detachment. Amplex glucose assay, fluorescence and carbon-13 tracing studies demonstrate that FAK promotes glucose consumption and glucose-to-lactate conversion. Extracellular flux analysis indicates that FAK enhances glycolysis and decreases mitochondrial respiration. FAK increases key glycolytic proteins, including enolase, pyruvate kinase M2 (PKM2), lactate dehydrogenase and monocarboxylate transporter. Furthermore, active/tyrosine-phosphorylated FAK directly binds to PKM2 and promotes PKM2-mediated glycolysis. On the other hand, FAK-decreased levels of mitochondrial complex I can result in reduced oxidative phosphorylation (OXPHOS). Attenuation of FAK-enhanced glycolysis re-sensitizes cancer cells to growth factor withdrawal, decreases cell viability and reduces growth of tumor xenografts. These observations, for the first time, establish a vital role of FAK in cancer glucose metabolism through alterations in the OXPHOS-to-glycolysis balance. Broadly targeting the common phenotype of aerobic glycolysis and more specifically FAK-reprogrammed glucose metabolism will disrupt the bioenergetic and biosynthetic supply for uncontrolled growth of tumors, particularly glycolytic PDAC.

  20. The small G-protein MglA connects to the MreB actin cytoskeleton at bacterial focal adhesions

    PubMed Central

    Treuner-Lange, Anke; Macia, Eric; Guzzo, Mathilde; Hot, Edina; Faure, Laura M.; Jakobczak, Beata; Espinosa, Leon; Alcor, Damien; Ducret, Adrien; Keilberg, Daniela; Castaing, Jean Philippe; Lacas Gervais, Sandra; Franco, Michel

    2015-01-01

    In Myxococcus xanthus the gliding motility machinery is assembled at the leading cell pole to form focal adhesions, translocated rearward to propel the cell, and disassembled at the lagging pole. We show that MglA, a Ras-like small G-protein, is an integral part of this machinery. In this function, MglA stimulates the assembly of the motility complex by directly connecting it to the MreB actin cytoskeleton. Because the nucleotide state of MglA is regulated spatially and MglA only binds MreB in the guanosine triphosphate–bound form, the motility complexes are assembled at the leading pole and dispersed at the lagging pole where the guanosine triphosphatase activating protein MglB disrupts the MglA–MreB interaction. Thus, MglA acts as a nucleotide-dependent molecular switch to regulate the motility machinery spatially. The function of MreB in motility is independent of its function in peptidoglycan synthesis, representing a coopted function. Our findings highlight a new function for the MreB cytoskeleton and suggest that G-protein–cytoskeleton interactions are a universally conserved feature. PMID:26169353

  1. Proto-Oncogenic Src Phosphorylates EB1 to Regulate the Microtubule-Focal Adhesion Crosstalk and Stimulate Cell Migration.

    PubMed

    Zhang, Yijun; Luo, Youguang; Lyu, Rui; Chen, Jie; Liu, Ruming; Li, Dengwen; Liu, Min; Zhou, Jun

    2016-01-01

    Cell migration, a complex process critical for tumor progression and metastasis, requires a dynamic crosstalk between microtubules (MTs) and focal adhesions (FAs). However, the molecular mechanisms underlying this event remain elusive. Herein we identify the proto-oncogenic protein Src as an important player in the regulation of the MT-FA crosstalk. Src interacts with and phosphorylates end-binding protein 1 (EB1), a member of MT plus end-tracking proteins (+TIPs), both in cells and in vitro. Systematic mutagenesis reveals that tyrosine-247 (Y247) is the primary residue of EB1 phosphorylated by Src. Interestingly, both constitutively activated Src and Y247-phosphorylated EB1 localize to the centrosome and FAs. Src-mediated EB1 phosphorylation diminishes its interactions with other +TIPs, including adenomatous polyposis coli (APC) and mitotic centromere associated kinesin (MCAK). In addition, EB1 phosphorylation at Y247 enhances the rate of MT catastrophe and significantly stimulates cell migration. These findings thus demonstrate that the Src-EB1 axis plays a crucial role in regulating the crosstalk between MTs and FAs to promote cell migration.

  2. Role of c-Src and focal adhesion kinase in progression and metastasis of estrogen receptor-positive breast cancer

    SciTech Connect

    Planas-Silva, Maricarmen D. . E-mail: mcplanas@psu.edu; Bruggeman, Richard D.; Grenko, Ronald T.; Stanley Smith, J.

    2006-03-03

    The non-receptor tyrosine kinases c-Src and focal adhesion kinase (Fak) mediate signal transduction pathways that regulate cell proliferation, survival, invasion, and metastasis. Here, we investigated whether c-Src and Fak are activated during progression of hormone-dependent breast cancer. Maximally active c-Src was overexpressed in a subset of tamoxifen-resistant variants and in metastases of recurrent hormone-treated breast cancer. Active Fak was also frequently observed in these tumors. We also show that estrogen receptor (ER) can bind to Fak and that estrogen can modulate Fak autophosphorylation supporting a cross-talk between these two pathways. Inhibition of c-Src activity blocked proliferation of all tamoxifen-resistant variants, suggesting that inhibitors of c-Src-Fak activity may delay or prevent progression and metastasis of ER-positive tumors. These studies also raise the possibility that fully active forms of c-Src and Fak in breast tumors may be biomarkers to predict tamoxifen resistance and/or risk of recurrence in ER-positive breast cancer.

  3. Focal Adhesion Kinase Regulates Fibroblast Migration via Integrin beta-1 and Plays a Central Role in Fibrosis.

    PubMed

    Zhao, Xue-Ke; Cheng, Yiju; Liang Cheng, Ming; Yu, Lei; Mu, Mao; Li, Hong; Liu, Yang; Zhang, Baofang; Yao, Yumei; Guo, Hui; Wang, Rong; Zhang, Quan

    2016-01-14

    Lung fibrosis is a major medical problem for the aging population worldwide. Fibroblast migration plays an important role in fibrosis. Focal Adhesion Kinase (FAK) senses the extracellular stimuli and initiates signaling cascades that promote cell migration. This study first examined the dose and time responses of FAK activation in human lung fibroblasts treated with platelet derived growth factor BB (PDGF-BB). The data indicate that FAK is directly recruited by integrin β1 and the subsequent FAK activation is required for fibroblast migration on fibronectin. In addition, the study has identified that α5β1 and α4β1 are the major integrins for FAK-mediated fibroblast migration on fibronect. In contrast, integrins αvβ3, αvβ6, and αvβ8 play a minor but distinct role in fibroblast migration on fibronectin. FAK inhibitor significantly reduces PDGF-BB stimulated fibroblast migration. Importantly, FAK inhibitor protects bleomycin-induced lung fibrosis in mice. FAK inhibitor blocks FAK activation and significantly reduces signaling cascade of fibroblast migration in bleomycin-challenged mice. Furthermore, FAK inhibitor decreases lung fibrotic score, collagen accumulation, fibronectin production, and myofibroblast differentiation in in bleomycin-challenged mice. These data demonstrate that FAK mediates fibroblast migration mainly via integrin β1. Furthermore, the findings suggest that targeting FAK signaling is an effective therapeutic strategy against fibrosis.

  4. Three-dimensional cell body shape dictates the onset of traction force generation and growth of focal adhesions

    PubMed Central

    Fouchard, Jonathan; Bimbard, Célian; Bufi, Nathalie; Durand-Smet, Pauline; Proag, Amsha; Richert, Alain; Cardoso, Olivier; Asnacios, Atef

    2014-01-01

    Cell shape affects proliferation and differentiation, which are processes known to depend on integrin-based focal adhesion (FA) signaling. Because shape results from force balance and FAs are mechanosensitive complexes transmitting tension from the cell structure to its mechanical environment, we investigated the interplay between 3D cell shape, traction forces generated through the cell body, and FA growth during early spreading. Combining measurements of cell-scale normal traction forces with FA monitoring, we show that the cell body contact angle controls the onset of force generation and, subsequently, the initiation of FA growth at the leading edge of the lamella. This suggests that, when the cell body switches from convex to concave, tension in the apical cortex is transmitted to the lamella where force-sensitive FAs start to grow. Along this line, increasing the stiffness resisting cell body contraction led to a decrease of the lag time between force generation and FA growth, indicating mechanical continuity of the cell structure and force transmission from the cell body to the leading edge. Remarkably, the overall normal force per unit area of FA increased with stiffness, and its values were similar to those reported for local tangential forces acting on individual FAs. These results reveal how the 3D cell shape feeds back on its internal organization and how it may control cell fate through FA-based signaling. PMID:25157134

  5. Three-dimensional cell body shape dictates the onset of traction force generation and growth of focal adhesions.

    PubMed

    Fouchard, Jonathan; Bimbard, Célian; Bufi, Nathalie; Durand-Smet, Pauline; Proag, Amsha; Richert, Alain; Cardoso, Olivier; Asnacios, Atef

    2014-09-09

    Cell shape affects proliferation and differentiation, which are processes known to depend on integrin-based focal adhesion (FA) signaling. Because shape results from force balance and FAs are mechanosensitive complexes transmitting tension from the cell structure to its mechanical environment, we investigated the interplay between 3D cell shape, traction forces generated through the cell body, and FA growth during early spreading. Combining measurements of cell-scale normal traction forces with FA monitoring, we show that the cell body contact angle controls the onset of force generation and, subsequently, the initiation of FA growth at the leading edge of the lamella. This suggests that, when the cell body switches from convex to concave, tension in the apical cortex is transmitted to the lamella where force-sensitive FAs start to grow. Along this line, increasing the stiffness resisting cell body contraction led to a decrease of the lag time between force generation and FA growth, indicating mechanical continuity of the cell structure and force transmission from the cell body to the leading edge. Remarkably, the overall normal force per unit area of FA increased with stiffness, and its values were similar to those reported for local tangential forces acting on individual FAs. These results reveal how the 3D cell shape feeds back on its internal organization and how it may control cell fate through FA-based signaling.

  6. Stonin1 mediates endocytosis of the proteoglycan NG2 and regulates focal adhesion dynamics and cell motility

    PubMed Central

    Feutlinske, Fabian; Browarski, Marietta; Ku, Min-Chi; Trnka, Philipp; Waiczies, Sonia; Niendorf, Thoralf; Stallcup, William B.; Glass, Rainer; Krause, Eberhard; Maritzen, Tanja

    2015-01-01

    Cellular functions, ranging from focal adhesion (FA) dynamics and cell motility to tumour growth, are orchestrated by signals cells receive from outside via cell surface receptors. Signalling is fine-tuned by the exo–endocytic cycling of these receptors to control cellular responses such as FA dynamics, which determine cell motility. How precisely endocytosis regulates turnover of the various cell surface receptors remains unclear. Here we identify Stonin1, an endocytic adaptor of unknown function, as a regulator of FA dynamics and cell motility, and demonstrate that it facilitates the internalization of the oncogenic proteoglycan NG2, a co-receptor of integrins and platelet-derived growth factor receptor. Embryonic fibroblasts obtained from Stonin1-deficient mice display a marked surface accumulation of NG2, increased cellular signalling and defective FA disassembly as well as altered cellular motility. These data establish Stonin1 as a specific adaptor for the endocytosis of NG2 and as an important factor for FA dynamics and cell migration. PMID:26437238

  7. Enteric glia promote intestinal mucosal healing via activation of focal adhesion kinase and release of proEGF

    PubMed Central

    Van Landeghem, Laurianne; Chevalier, Julien; Mahé, Maxime M.; Wedel, Thilo; Urvil, Petri; Derkinderen, Pascal; Savidge, Tor

    2011-01-01

    Wound healing of the gastrointestinal mucosa is essential for the maintenance of gut homeostasis and integrity. Enteric glial cells play a major role in regulating intestinal barrier function, but their role in mucosal barrier repair remains unknown. The impact of conditional ablation of enteric glia on dextran sodium sulfate (DSS)-induced mucosal damage and on healing of diclofenac-induced mucosal ulcerations was evaluated in vivo in GFAP-HSVtk transgenic mice. A mechanically induced model of intestinal wound healing was developed to study glial-induced epithelial restitution. Glial-epithelial signaling mechanisms were analyzed by using pharmacological inhibitors, neutralizing antibodies, and genetically engineered intestinal epithelial cells. Enteric glial cells were shown to be abundant in the gut mucosa, where they associate closely with intestinal epithelial cells as a distinct cell population from myofibroblasts. Conditional ablation of enteric glia worsened mucosal damage after DSS treatment and significantly delayed mucosal wound healing following diclofenac-induced small intestinal enteropathy in transgenic mice. Enteric glial cells enhanced epithelial restitution and cell spreading in vitro. These enhanced repair processes were reproduced by use of glial-conditioned media, and soluble proEGF was identified as a secreted glial mediator leading to consecutive activation of epidermal growth factor receptor and focal adhesion kinase signaling pathways in intestinal epithelial cells. Our study shows that enteric glia represent a functionally important cellular component of the intestinal epithelial barrier microenvironment and that the disruption of this cellular network attenuates the mucosal healing process. PMID:21350188

  8. Inhibition of osteopontin reduce the cardiac myofibrosis in dilated cardiomyopathy via focal adhesion kinase mediated signaling pathway

    PubMed Central

    Zhao, Hui; Wang, Wei; Zhang, Jie; Liang, Tuo; Fan, Guang-Pu; Wang, Zhi-Wei; Zhang, Pei-De; Wang, Xu; Zhang, Jing

    2016-01-01

    Background: Osteopontin (OPN) is a pleiotropic cytokine, which has been shown to a close relationship with cardiac fibrosis. Overexpression of OPN in cardiomyocytes induces dilated cardiomyopathy (DCM). This research is to study whether inhibition of OPN could reduce myocardial remodelling in DCM, and if this process is focal adhesion kinase (FAK) dependent, which is recently found an important signal molecule in fibrosis. Method: Eight-week-old cTnTR141W transgenic mouse of DCM were injected with OPN-shRNA in left ventricular free wall, which could inhibit the OPN expression. Six weeks later, echocardiographic examinations were performed to test left ventricle function and heart tissues were harvested to test the quality of FAK by western blot and severity of fibrosis by masson staining. Human cardiac fibroblast was administrated with OPN, and FAK inhibition by PP2 was treated 2 h before OPN was given. Expression of α-SMA and collagen-I were tested by western blot and real-time PCR assay. Results: OPN-shRNA group has a relatively high ejection fraction (EF), fractional shortening (FS), LV free wall thickness and a less sever cardiac fibrosis. In vitro, OPN could increase collagen-I and α-SMA expression, and this process can be inhibited by FAK inhibitor. Conclusion: Inhibition of OPN could reduce the LV remodeling and dysfunction in DCM mice, which may attribute to the suppression of collagen-I secretion in fibroblast through a FAK/Akt dependent pathway. PMID:27725847

  9. Cell nanomechanics and focal adhesions are regulated by retinol and conjugated linoleic acid in a dose-dependent manner

    NASA Astrophysics Data System (ADS)

    Silberberg, Yaron R.; Yakubov, Gleb E.; Horton, Michael A.; Pelling, Andrew E.

    2009-07-01

    Retinol and conjugated linoleic acid (CLA) have previously been shown to have an important role in gene expression and various cellular processes, including differentiation, proliferation and cell death. In this study we have investigated the effect of retinol and CLA, both individually and in combination, on the intracellular cytoskeleton, focal adhesions (FAs) and the nanomechanical properties of 3T3 fibroblasts. We observed a dose-dependent decrease in the formation of FAs following treatment with either compound, which was directly correlated to an increase in cell height (>30%) and a decrease in the measured Young's modulus (~28%). Furthermore, treatments with both compounds demonstrated an increased effect and led to a reduction of>70% in the average number of FAs per cell and a decrease of >50% in average cell stiffness. These data reveal that retinol and CLA disrupt FA formation, leading to an increase in cell height and a significant decrease in stiffness. These results may broaden our understanding of the interplay between cell nanomechanics and cellular contact with the external microenvironment, and help to shed light on the important role of retinoids and CLA in health and disease.

  10. Transcriptomic profile reveals molecular events associated to focal adhesion and invasion in canine mammary gland tumour cell lines.

    PubMed

    Cordeiro, Y G; Xavier, P L P; Rochetti, A L; Alexandre, P A; Mori, C M C; Strefezzi, R F; Fukumasu, H

    2017-08-18

    The prevalence of cancer in animals has increased significantly over the years. Mammary tumours are the most common neoplasia in dogs, in which around 50% are presented in the malignant form. Hence, the development and characterization of in vitro models for the study of canine tumours are important for the improvement of cancer diagnosis and treatment. Thus, the aim of this study was to characterize cell lines derived from canine mammary gland neoplasias which could be further used for basic and applied oncology research. Samples of canine mammary carcinomas were taken for cell culture and 2 cell lines were established and characterized in terms of cell morphology, tumourigenicity and global gene expression. Both cell lines presented spindle-shape morphology and shown common malignant features as in vitro invasion potential and expression of epithelial and mesenchymal proteins. Also, we found gene expression patterns between the 2 cell cultures in comparison to the normal mammary gland tissue. Cells from M25 culture showed a higher invasion and in vivo tumourigenic potential, associated to the overexpression of genes involved in focal adhesion and extracellular matrix communication, such as FN1, ITGA8 and THBS2. The phenotypic characterization of these cells along with their global gene expression profile potentially determine new therapeutic targets for mammary tumours. © 2017 John Wiley & Sons Ltd.

  11. Expression, purification and crystallization of a BH domain from the GTPase regulatory protein associated with focal adhesion kinase.

    PubMed

    Sheffield, P J; Derewenda, U; Taylor, J; Parsons, T J; Derewenda, Z S

    1999-01-01

    Signaling by small GTPases is down-regulated by GTPase activating proteins (GAPs) which enhance the rate of GTP hydrolysis. The activity of GAPs specific for Rho GTPases resides in the BH domain, many homologues of which are found in any mammalian genome. One of them was identified in the GTPase regulator associated with focal-adhesion kinase (GRAF). It shares approximately 20% sequence identity with p50RhoGAP. This GAP activates RhoA and Cdc42Hs, but not Rac. In order to dissect the molecular basis of this specificity, a 231-residue-long fragment corresponding to the BH domain of GRAF has been expressed, purified and crystallized. Trigonal crystals, of space group P3(1)21 or P3(2)21, with unit-cell dimensions a = b = 63.5, c = 90.38 A were grown from solutions of PEG 6000. Data to 2.15 A were collected from a flash-frozen sample on an R-AXIS IV imaging-plate detector mounted on a rotating anode X-ray generator.

  12. Protective influence of hyaluronic acid on focal adhesion kinase activity in human skin fibroblasts exposed to ethanol.

    PubMed

    Donejko, Magdalena; Rysiak, Edyta; Galicka, Elżbieta; Terlikowski, Robert; Głażewska, Edyta Katarzyna; Przylipiak, Andrzej

    2017-01-01

    The aim of this study was to evaluate the effect of ethanol and hyaluronic acid (HA) on cell survival and apoptosis in cultured human skin fibroblasts. Regarding the mechanism of ethanol action on human skin fibroblasts, we investigated cell viability and apoptosis, expression of focal adhesion kinase (FAK), and the influence of HA on those processes. Studies were conducted in confluent human skin fibroblast cultures that were treated with 25 mM, 50 mM, and 100 mM ethanol or with ethanol and 500 µg/mL HA. Cell viability was examined using methyl thiazolyl tetrazolium (MTT) assay and NC-300 Nucleo-Counter. Imaging of the cells using a fluorescence microscope Pathway 855 was performed to measure FAK expression. Depending on the dosage, ethanol decreased cell viability and activated the process of apoptosis in human skin fibroblasts. HA prevented the negative influence of ethanol on cell viability and prevented apoptosis. The analysis of fluorescence imaging using BD Pathway 855 High-Content Bioimager showed the inhibition of FAK migration to the cell nucleus, depending on the increasing concentration of ethanol. This study proves that downregulation of signaling pathway of FAK is involved in ethanol-induced apoptosis in human skin fibroblasts. The work also indicates a protective influence of HA on FAK activity in human skin fibroblasts exposed to ethanol.

  13. Exploring the interaction between human focal adhesion kinase and inhibitors: a molecular dynamic simulation and free energy calculations.

    PubMed

    Zhan, Jiu-Yu; Zhang, Ji-Long; Wang, Yan; Li, Ye; Zhang, Hong-Xing; Zheng, Qing-Chuan

    2016-11-01

    Focal adhesion kinase is an important target for the treatment of many kinds of cancers. Inhibitors of FAK are proposed to be the anticancer agents for multiple tumors. The interaction characteristic between FAK and its inhibitors is crucial to develop new inhibitors. In the present article, we used Molecular Dynamic (MD) simulation method to explore the characteristic of interaction between FAK and three inhibitors (PHM16, TAE226, and ligand3). The MD simulation results together with MM-GB/SA calculations show that the combinations are enthalpy-driven process. Cys502 and Asp564 are both essential residues due to the hydrogen bond interactions with inhibitors, which was in good agreement with experimental data. Glu500 can form a non-classical hydrogen bond with each inhibitor. Arg426 can form electrostatic interactions with PHM16 and ligand3, while weaker with TAE226. The electronic static potential was employed, and we found that the ortho-position methoxy of TAE226 has a weaker negative charge than the meta-position one in PHM16 or ligand3. Ile428, Val436, Ala452, Val484, Leu501, Glu505, Glu506, Leu553, Gly563 Leu567, Ser568 are all crucial residues in hydrophobic interactions. The key residues in this work will be available for further inhibitor design of FAK and also give assistance to further research of cancer.

  14. Focal Adhesion Kinase-mediated Phosphorylation of Beclin1 Protein Suppresses Cardiomyocyte Autophagy and Initiates Hypertrophic Growth*♦

    PubMed Central

    Cheng, Zhaokang; Zhu, Qiang; Dee, Rachel; Opheim, Zachary; Mack, Christopher P.; Cyr, Douglas M.; Taylor, Joan M.

    2017-01-01

    Autophagy is an evolutionarily conserved intracellular degradation/recycling system that is essential for cellular homeostasis but is dysregulated in a number of diseases, including myocardial hypertrophy. Although it is clear that limiting or accelerating autophagic flux can result in pathological cardiac remodeling, the physiological signaling pathways that fine-tune cardiac autophagy are poorly understood. Herein, we demonstrated that stimulation of cardiomyocytes with phenylephrine (PE), a well known hypertrophic agonist, suppresses autophagy and that activation of focal adhesion kinase (FAK) is necessary for PE-stimulated autophagy suppression and subsequent initiation of hypertrophic growth. Mechanistically, we showed that FAK phosphorylates Beclin1, a core autophagy protein, on Tyr-233 and that this post-translational modification limits Beclin1 association with Atg14L and reduces Beclin1-dependent autophagosome formation. Remarkably, although ectopic expression of wild-type Beclin1 promoted cardiomyocyte atrophy, expression of a Y233E phosphomimetic variant of Beclin1 failed to affect cardiomyocyte size. Moreover, genetic depletion of Beclin1 attenuated PE-mediated/FAK-dependent initiation of myocyte hypertrophy in vivo. Collectively, these findings identify FAK as a novel negative regulator of Beclin1-mediated autophagy and indicate that this pathway can facilitate the promotion of compensatory hypertrophic growth. This novel mechanism to limit Beclin1 activity has important implications for treating a variety of pathologies associated with altered autophagic flux. PMID:27994061

  15. Focal adhesion kinase is involved in type III group B streptococcal invasion of human brain microvascular endothelial cells.

    PubMed

    Shin, Sooan; Paul-Satyaseela, Maneesh; Maneesh, Paul-Satyaseela; Lee, Jong-Seok; Romer, Lewis H; Kim, Kwang Sik

    2006-01-01

    Group B streptococcus (GBS), the leading cause of neonatal meningitis, has been shown to invade human brain microvascular endothelial cells (HBMEC), which constitute the blood-brain barrier. GBS invasion of HBMEC has been shown to require the host cell actin cytoskeleton rearrangements. The present study examined the mechanisms underlying actin cytoskeleton rearrangements that are involved in type III GBS invasion of HBMEC. We showed that type III GBS invasion was inhibited by genistein, a general tyrosine kinase inhibitor (mean 54% invasion decrease at 100 microM), and LY294002, a phosphatidylinositol 3 (PI3) kinase inhibitor (mean 70% invasion decrease at 50 microM), but not by PP2, an inhibitor of the Src family tyrosine kinases. We subsequently showed that the focal adhesion kinase (FAK) was the one of the host proteins tyrosine phosphorylated by type III GBS. Over-expression of a dominant negative form of the FAK C-terminal domain significantly decreased type III GBS invasion of HBMEC (mean 51% invasion decrease). In addition, we showed that FAK phosphorylation correlated with its association of paxillin, an adapter protein of actin filament, and PI3-kinase subunit p85. This is the first demonstration that FAK phosphorylation and its association with paxillin and PI3 kinase play a key role in type III GBS invasion of HBMEC.

  16. The conserved LIM domain-containing focal adhesion protein ZYX-1 regulates synapse maintenance in Caenorhabditis elegans

    PubMed Central

    Luo, Shuo; Schaefer, Anneliese M.; Dour, Scott; Nonet, Michael L.

    2014-01-01

    We describe the identification of zyxin as a regulator of synapse maintenance in mechanosensory neurons in C. elegans. zyx-1 mutants lacked PLM mechanosensory synapses as adult animals. However, most PLM synapses initially formed during development but were subsequently lost as the animals developed. Vertebrate zyxin regulates cytoskeletal responses to mechanical stress in culture. Our work provides in vivo evidence in support of such a role for zyxin. In particular, zyx-1 mutant synaptogenesis phenotypes were suppressed by disrupting locomotion of the mutant animals, suggesting that zyx-1 protects mechanosensory synapses from locomotion-induced forces. In cultured cells, zyxin is recruited to focal adhesions and stress fibers via C-terminal LIM domains and modulates cytoskeletal organization via the N-terminal domain. The synapse-stabilizing activity was mediated by a short isoform of ZYX-1 containing only the LIM domains. Consistent with this notion, PLM synaptogenesis was independent of α-actinin and ENA-VASP, both of which bind to the N-terminal domain of zyxin. Our results demonstrate that the LIM domain moiety of zyxin functions autonomously to mediate responses to mechanical stress and provide in vivo evidence for a role of zyxin in neuronal development. PMID:25252943

  17. Protective influence of hyaluronic acid on focal adhesion kinase activity in human skin fibroblasts exposed to ethanol

    PubMed Central

    Donejko, Magdalena; Rysiak, Edyta; Galicka, Elżbieta; Terlikowski, Robert; Głażewska, Edyta Katarzyna; Przylipiak, Andrzej

    2017-01-01

    Aim The aim of this study was to evaluate the effect of ethanol and hyaluronic acid (HA) on cell survival and apoptosis in cultured human skin fibroblasts. Regarding the mechanism of ethanol action on human skin fibroblasts, we investigated cell viability and apoptosis, expression of focal adhesion kinase (FAK), and the influence of HA on those processes. Materials and methods Studies were conducted in confluent human skin fibroblast cultures that were treated with 25 mM, 50 mM, and 100 mM ethanol or with ethanol and 500 µg/mL HA. Cell viability was examined using methyl thiazolyl tetrazolium (MTT) assay and NC-300 Nucleo-Counter. Imaging of the cells using a fluorescence microscope Pathway 855 was performed to measure FAK expression. Results Depending on the dosage, ethanol decreased cell viability and activated the process of apoptosis in human skin fibroblasts. HA prevented the negative influence of ethanol on cell viability and prevented apoptosis. The analysis of fluorescence imaging using BD Pathway 855 High-Content Bioimager showed the inhibition of FAK migration to the cell nucleus, depending on the increasing concentration of ethanol. Conclusion This study proves that downregulation of signaling pathway of FAK is involved in ethanol-induced apoptosis in human skin fibroblasts. The work also indicates a protective influence of HA on FAK activity in human skin fibroblasts exposed to ethanol. PMID:28293103

  18. Roles for focal adhesion kinase (FAK) in blastomere abscission and vesicle trafficking during cleavage in the sea urchin embryo

    PubMed Central

    Schumpert, Brenda; García, María Guadalupe; Wessel, Gary M.; Wordeman, Linda; Hille, Merrill B.

    2014-01-01

    Is focal adhesion kinase (FAK) needed for embryonic cleavage? FAK is expressed during early cleavage divisions of sea urchin embryos as determined by polyclonal antibodies to the Lytechinus variegatus protein. FAK is absent in eggs and zygotes and then cycles in abundance during the first cleavages after fertilization, and is maximal at anaphase. Such cycling is consistent with the occurrence of a destruction box in the N-terminal sequence of L. variegatus FAK and the behavior of cyclins in sea urchin eggs. To investigate whether FAK is needed during early cleavage, we interfered with its function by microinjecting eggs with FAK antisense morpholino oligonucleotides or with anti-FAK antibodies. Both treatments led to regression of the cleavage furrow. FAK knockdown with morpholino oligonucleotides or antibodies also resulted in an over-accumulation of endocytic vesicles. Thus, FAK could be restricting endocytosis or increasing exocytosis in localized areas important for abscission. FAK appears to be necessary for successful cleavage. These results are the first to document a functional role for FAK during embryonic cleavage. PMID:23313141

  19. Conditional knockout of focal adhesion kinase in endothelial cells reveals its role in angiogenesis and vascular development in late embryogenesis

    PubMed Central

    Shen, Tang-Long; Park, Ann Y.-J.; Alcaraz, Ana; Peng, Xu; Jang, Ihnkyung; Koni, Pandelakis; Flavell, Richard A.; Gu, Hua; Guan, Jun-Lin

    2005-01-01

    Focal adhesion kinase (FAK) is a critical mediator of signal transduction by integrins and growth factor receptors in a variety of cells including endothelial cells (ECs). Here, we describe EC-specific knockout of FAK using a Cre-loxP approach. In contrast to the total FAK knockout, deletion of FAK specifically in ECs did not affect early embryonic development including normal vasculogenesis. However, in late embryogenesis, FAK deletion in the ECs led to defective angiogenesis in the embryos, yolk sac, and placenta, impaired vasculature and associated hemorrhage, edema, and developmental delay, and late embryonic lethal phenotype. Histologically, ECs and blood vessels in the mutant embryos present a disorganized, detached, and apoptotic appearance. Consistent with these phenotypes, deletion of FAK in ECs isolated from the floxed FAK mice led to reduced tubulogenesis, cell survival, proliferation, and migration in vitro. Together, these results strongly suggest a role of FAK in angiogenesis and vascular development due to its essential function in the regulation of multiple EC activities. PMID:15967814

  20. Survival motor neuron protein deficiency impairs myotube formation by altering myogenic gene expression and focal adhesion dynamics.

    PubMed

    Bricceno, Katherine V; Martinez, Tara; Leikina, Evgenia; Duguez, Stephanie; Partridge, Terence A; Chernomordik, Leonid V; Fischbeck, Kenneth H; Sumner, Charlotte J; Burnett, Barrington G

    2014-09-15

    While spinal muscular atrophy (SMA) is characterized by motor neuron degeneration, it is unclear whether and how much survival motor neuron (SMN) protein deficiency in muscle contributes to the pathophysiology of the disease. There is increasing evidence from patients and SMA model organisms that SMN deficiency causes intrinsic muscle defects. Here we investigated the role of SMN in muscle development using muscle cell lines and primary myoblasts. Formation of multinucleate myotubes by SMN-deficient muscle cells is inhibited at a stage preceding plasma membrane fusion. We found increased expression and reduced induction of key muscle development factors, such as MyoD and myogenin, with differentiation of SMN-deficient cells. In addition, SMN-deficient muscle cells had impaired cell migration and altered organization of focal adhesions and the actin cytoskeleton. Partially restoring SMN inhibited the premature expression of muscle differentiation markers, corrected the cytoskeletal abnormalities and improved myoblast fusion. These findings are consistent with a role for SMN in myotube formation through effects on muscle differentiation and cell motility. Published by Oxford University Press 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  1. The conserved LIM domain-containing focal adhesion protein ZYX-1 regulates synapse maintenance in Caenorhabditis elegans.

    PubMed

    Luo, Shuo; Schaefer, Anneliese M; Dour, Scott; Nonet, Michael L

    2014-10-01

    We describe the identification of zyxin as a regulator of synapse maintenance in mechanosensory neurons in C. elegans. zyx-1 mutants lacked PLM mechanosensory synapses as adult animals. However, most PLM synapses initially formed during development but were subsequently lost as the animals developed. Vertebrate zyxin regulates cytoskeletal responses to mechanical stress in culture. Our work provides in vivo evidence in support of such a role for zyxin. In particular, zyx-1 mutant synaptogenesis phenotypes were suppressed by disrupting locomotion of the mutant animals, suggesting that zyx-1 protects mechanosensory synapses from locomotion-induced forces. In cultured cells, zyxin is recruited to focal adhesions and stress fibers via C-terminal LIM domains and modulates cytoskeletal organization via the N-terminal domain. The synapse-stabilizing activity was mediated by a short isoform of ZYX-1 containing only the LIM domains. Consistent with this notion, PLM synaptogenesis was independent of α-actinin and ENA-VASP, both of which bind to the N-terminal domain of zyxin. Our results demonstrate that the LIM domain moiety of zyxin functions autonomously to mediate responses to mechanical stress and provide in vivo evidence for a role of zyxin in neuronal development.

  2. Annexin A6 contributes to the invasiveness of breast carcinoma cells by influencing the organization and localization of functional focal adhesions

    SciTech Connect

    Sakwe, Amos M.; Koumangoye, Rainelli; Guillory, Bobby; Ochieng, Josiah

    2011-04-01

    The interaction of annexin A6 (AnxA6) with membrane phospholipids and either specific extracellular matrix (ECM) components or F-actin suggests that it may influence cellular processes associated with rapid plasma membrane reorganization such as cell adhesion and motility. Here, we examined the putative roles of AnxA6 in adhesion-related cellular processes that contribute to breast cancer progression. We show that breast cancer cells secrete annexins via the exosomal pathway and that the secreted annexins are predominantly cell surface-associated. Depletion of AnxA6 in the invasive BT-549 breast cancer cells is accompanied by enhanced anchorage-independent cell growth but cell-cell cohesion, cell adhesion/spreading onto collagen type IV or fetuin-A, cell motility and invasiveness were strongly inhibited. To explain the loss in adhesion/motility, we show that vinculin-based focal adhesions in the AnxA6-depleted BT-549 cells are elongated and randomly distributed. These focal contacts are also functionally defective because the activation of focal adhesion kinase and the phosphoinositide-3 kinase/Akt pathway were strongly inhibited while the MAP kinase pathway remained constitutively active. Compared with normal human breast tissues, reduced AnxA6 expression in breast carcinoma tissues correlates with enhanced cell proliferation. Together this suggests that reduced AnxA6 expression contributes to breast cancer progression by promoting the loss of functional cell-cell and/or cell-ECM contacts and anchorage-independent cell proliferation.

  3. Research into the process, materials and tool interaction for large area flexible electronics with micron sized features

    NASA Astrophysics Data System (ADS)

    Zhang, Hao

    By taking the advantage of the flexible nature of flexible substrates, roll-to-roll (R2R) flexible electronics manufacturing will eventually lead to continuous production of high quality and flexible thin film devices with a significant cost reduction. In this work, research has been conducted into the interaction of tooling, material and process for large area flexible electronics with micron sized features. Part one presents the study of precision overlay alignment of micron sized features on unsupported and R2R processed plastic. Azores R2R photolithography tool with dependent materials and processes has been applied to establish the fabrication, registration and overlay on unsupported plastic in pieces and carried by a web. Enabling the use of unsupported plastic film is the first step in understanding the R2R process. Test verniers with up to 0.1 micron measurement precision were used to read the overlay offsets. Micro-sized features with one micron overlay accuracy have been achieved on photoresist coated unsupported 5 mil thick Dupont MelinexRTM ST507 polyethylene terephthalate (PET) substrate. Based on experimental results, a vector model is initially designed to investigate and map the substrate deformation and overlay alignment in R2R photolithography process. The vector model quantifies the significance of elastic deformation caused distortion offsets in the overlay process on R2R based substrates. Part two presents the fabrication and reliability study of flexible chemical sensors with nanoparticle-structured sensing materials. The substrates of flexible chemical sensor with micron-sized features are fabricated in this work. The mechanical reliability of the flexible chemical sensors is initially investigated to test the functionality of the sensors under different working environments. The Accelerate Thermal Cycling (ATC) test, the Deep Thermal Storage (DTS) test and the Immersion test are conducted on the flexible nanoparticle coated sensors.

  4. The Src homology 2 protein Shb promotes cell cycle progression in murine hematopoietic stem cells by regulation of focal adhesion kinase activity

    SciTech Connect

    Gustafsson, Karin; Heffner, Garrett; Wenzel, Pamela L.; Curran, Matthew; Grawé, Jan; McKinney-Freeman, Shannon L.; Daley, George Q.; Welsh, Michael

    2013-07-15

    The widely expressed adaptor protein Shb has previously been reported to contribute to T cell function due to its association with the T cell receptor and furthermore, several of Shb's known interaction partners are established regulators of blood cell development and function. In addition, Shb deficient embryonic stem cells displayed reduced blood cell colony formation upon differentiation in vitro. The aim of the current study was therefore to explore hematopoietic stem and progenitor cell function in the Shb knockout mouse. Shb deficient bone marrow contained reduced relative numbers of long-term hematopoietic stem cells (LT-HSCs) that exhibited lower proliferation rates. Despite this, Shb knockout LT-HSCs responded promptly by entering the cell cycle in response to genotoxic stress by 5-fluorouracil treatment. In competitive LT-HSC transplantations, Shb null cells initially engrafted as well as the wild-type cells but provided less myeloid expansion over time. Moreover, Shb knockout bone marrow cells exhibited elevated basal activities of focal adhesion kinase/Rac1/p21-activated kinase signaling and reduced responsiveness to Stem Cell Factor stimulation. Consequently, treatment with a focal adhesion kinase inhibitor increased Shb knockout LT-HSC proliferation. The altered signaling characteristics thus provide a plausible mechanistic explanation for the changes in LT-HSC proliferation since these signaling intermediates have all been shown to participate in LT-HSC cell cycle control. In summary, the loss of Shb dependent signaling in bone marrow cells, resulting in elevated focal adhesion kinase activity and reduced proliferative responses in LT-HSCs under steady state hematopoiesis, confers a disadvantage to the maintenance of LT-HSCs over time. -- Highlights: • Shb is an adaptor protein operating downstream of tyrosine kinase receptors. • Shb deficiency reduces hematopoietic stem cell proliferation. • The proliferative effect of Shb occurs via increased

  5. A novel type 3 secretion system effector, YspI of Yersinia enterocolitica, induces cell paralysis by reducing total focal adhesion kinase.

    PubMed

    LeGrand, Karen; Matsumoto, Hiroyuki; Young, Glenn M

    2015-05-01

    Some of the world's most important diseases are caused by bacterial pathogens that deliver toxic effector proteins directly into eukaryotic cells using type III secretion systems. The myriad of pathological outcomes caused by these pathogens is determined, in part, by the manipulation of host cell physiology due to the specific activities of individual effectors among the unique suite each pathogen employs. YspI was found to be an effector, delivered by Yersinia enterocolitica Biovar 1B, that inhibits host cell motility. The action of YspI comes about through its specific interaction with focal adhesion kinase, FAK, which is a fulcrum of focal adhesion complexes for controlling cellular motility. The interaction was defined by a specific domain of YspI that bound to the FAK kinase domain. Further examination revealed that YspI-FAK interaction leads to a reduction of FAK steady-state levels without altering its phosphorylation state. This collection of observations and results showed YspI displays unique functionality by targeting the key regulator of focal adhesion complexes to inhibit cellular movement.

  6. Periostin promotes migration and invasion of renal cell carcinoma through the integrin/focal adhesion kinase/c-Jun N-terminal kinase pathway.

    PubMed

    Chuanyu, Sun; Yuqing, Zhu; Chong, Xu; Guowei, Xia; Xiaojun, Zhao

    2017-04-01

    Periostin (POSTN) is an extracellular matrix protein which is overexpressed in a variety of cancers and has been related to tumorigenesis of renal cell carcinoma. However, the involvement of POSTN in renal cell carcinoma migration, invasion, and their underlying mechanisms has not been established. In this study, renal cell carcinoma cell lines stably overexpressing POSTN were established using a lentiviral vector, and the effects of POSTN on renal cell carcinoma cell migration and invasion were investigated. POSTN overexpression increased the migration and invasion capabilities of renal cell carcinoma cell lines as well as activity of matrix metalloproteinase-2 and matrix metalloproteinase-9. Integrin αvβ3 and αvβ5 antibodies inhibited POSTN overexpression or recombinant POSTN-induced focal adhesion kinase activation, cell migration, and invasion. Furthermore, lentivirus-mediated focal adhesion kinase knockdown and c-Jun N-terminal kinase inhibitor reduced POSTN-enhanced phosphorylation of c-Jun N-terminal kinase, matrix metalloproteinase-9 and matrix metalloproteinase-2 expressions, cell migration, and invasion. Our research thus indicates that POSTN promotes renal cell carcinoma cell migration and invasion through interaction with integrins αvβ3 and αvβ5 and subsequent activation of the focal adhesion kinase/c-Jun N-terminal kinase pathway. These results suggest that POSTN plays a critical role in renal cell carcinoma metastasis and may represent a potential target for novel therapeutic approaches against renal cell carcinoma.

  7. Loss of keratinocyte focal adhesion kinase stimulates dermal proteolysis through upregulation of MMP9 in wound healing.

    PubMed

    Wong, Victor W; Garg, Ravi K; Sorkin, Michael; Rustad, Kristine C; Akaishi, Satoshi; Levi, Kemal; Nelson, Emily R; Tran, Misha; Rennert, Robert; Liu, Wei; Longaker, Michael T; Dauskardt, Reinhold H; Gurtner, Geoffrey C

    2014-12-01

    To investigate how epithelial mechanotransduction pathways impact wound repair. Mechanical forces are increasingly recognized to influence tissue repair, but their role in chronic wound pathophysiology remains unknown. Studies have shown that chronic wounds exhibit high levels of matrix metalloproteinase 9 (MMP9), a key proteolytic enzyme that regulates wound remodeling. We hypothesized that epithelial mechanosensory pathways regulated by keratinocyte-specific focal adhesion kinase (FAK) control dermal remodeling via MMP9. A standard wound model was applied to keratinocyte-specific FAK knockout (KO) and control mice. Rates of wound healing were measured and tissue was obtained for histologic and molecular analyses. Transcriptional and immunoblot assays were used to assess the activation of FAK, intracellular kinases, and MMP9 in vitro. A cell suspension model was designed to validate the importance of FAK mechanosensing, p38, and MMP9 secretion in human cells. Biomechanical testing was utilized to evaluate matrix tensile properties in FAK KO and control wounds. Wound healing in FAK KO mice was significantly delayed compared with controls (closure at 15 days compared with 20 days, P = 0.0003). FAK KO wounds demonstrated decreased dermal thickness and collagen density. FAK KO keratinocytes exhibited overactive p38 and MMP9 signaling in vitro, findings recapitulated in human keratinocytes via the deactivation of FAK in the cell suspension model. Functionally, FAK KO wounds were significantly weaker and more brittle than control wounds, results consistent with the histologic and molecular analyses. Keratinocyte FAK is highly responsive to mechanical cues and may play a critical role in matrix remodeling via regulation of p38 and MMP9. These findings suggest that aberrant epithelial mechanosensory pathways may contribute to pathologic dermal proteolysis and wound chronicity.

  8. Fenretinide Perturbs Focal Adhesion Kinase in Premalignant and Malignant Human Oral Keratinocytes. Fenretinide's Chemopreventive Mechanisms Include ECM Interactions.

    PubMed

    Han, Byungdo B; Li, Suyang; Tong, Meng; Holpuch, Andrew S; Spinney, Richard; Wang, Daren; Border, Michael B; Liu, Zhongfa; Sarode, Sachin; Pei, Ping; Schwendeman, Steven P; Mallery, Susan R

    2015-05-01

    The membrane-associated protein, focal adhesion kinase (FAK), modulates cell-extracellular matrix interactions and also conveys prosurvival and proliferative signals. Notably, increased intraepithelial FAK levels accompany transformation of premalignant oral intraepithelial neoplasia (OIN) to oral squamous cell carcinoma (OSCC). OIN chemoprevention is a patient-centric, optimal strategy to prevent OSCC's comorbidities and mortality. The cancer chemopreventive and synthetic vitamin A derivative, fenretinide, has demonstrated protein-binding capacities, for example, mTOR- and retinol-binding protein interactions. These studies used a continuum of human oral keratinocytes (normal-HPV E6/E7-transduced-OSCC) to assess potential fenretinide-FAK drug protein interactions and functional consequences on cellular growth regulation and motility. Molecular modeling studies demonstrated that fenretinide has approximately 200-fold greater binding affinity relative to the natural ligand (ATP) at FAK's kinase domain. Fenretinide also shows intermediate binding at FAK's FERM domain and interacts at the ATP-binding site of the closest FAK analogue, PYK2. Fenretinide significantly suppressed proliferation via induction of apoptosis and G2-M cell-cycle blockade. Fenretinide-treated cells also demonstrated F-actin disruption, significant inhibition of both directed migration and invasion of a synthetic basement membrane, and decreased phosphorylation of growth-promoting kinases. A commercially available FAK inhibitor did not suppress cell invasion. Notably, although FAK's FERM domain directs cell invasion, FAK inhibitors target the kinase domain. In addition, FAK-specific siRNA-treated cells showed an intermediate cell migration capacity; data which suggest cocontribution of the established migrating-enhancing PYK2. Our data imply that fenretinide is uniquely capable of disrupting FAK's and PYK2's prosurvival and mobility-enhancing effects and further extend fenretinide

  9. Focal adhesion kinase-promoted tumor glucose metabolism is associated with a shift of mitochondrial respiration to glycolysis

    PubMed Central

    Zhang, Jianliang; Gao, Qile; Zhou, Ying; Dier, Usawadee; Hempel, Nadine; Hochwald, Steven N.

    2015-01-01

    Cancer cells often gains a growth advantage by taking up glucose at a high rate and undergoing aerobic glycolysis through intrinsic cellular factors that reprogram glucose metabolism. Focal adhesion kinase (FAK), a key transmitter of growth factor and anchorage stimulation, is aberrantly overexpressed or activated in most solid tumors including pancreatic ductal adenocarcinomas (PDACs). We determined whether FAK can act as an intrinsic driver to promote aerobic glycolysis and tumorigenesis. FAK inhibition decreases and overexpression increases intracellular glucose levels during unfavorable conditions including growth factor deficiency and cell detachment. Amplex glucose assay, fluorescence and carbon-13 tracing studies demonstrate that FAK promotes glucose consumption and glucose-to-lactate conversion. Extracellular flux analysis indicates that FAK enhances glycolysis and decreases mitochondrial respiration. FAK increases key glycolytic proteins including enolase, pyruvate kinase M2 (PKM2), lactate dehydrogenase and monocarboxylate transporter. Furthermore, active/tyrosine-phosphorylated FAK directly binds to PKM2 and promotes PKM2-mediated glycolysis. On the other hand, FAK-decreased levels of mitochondrial complex I can result in reduced oxidative phosphorylation (OXPHOS). Attenuation of FAK-enhanced glycolysis re-sensitizes cancer cells to growth factor withdrawal, decreases cell viability, and reduces growth of tumor xenografts. These observations, for the first time, establish a vital role of FAK in cancer glucose metabolism through alterations in the OXPHOS-to-glycolysis balance. Broadly targeting the common phenotype of aerobic glycolysis and more specifically FAK-reprogrammed glucose metabolism will disrupt the bioenergetic and biosynthetic supply for uncontrolled growth of tumors, particularly glycolytic PDAC. PMID:26119934

  10. Role of Focal Adhesion Kinase in Regulating YB–1–Mediated Paclitaxel Resistance in Ovarian Cancer

    PubMed Central

    2013-01-01

    Background We previously found focal adhesion kinase (FAK) inhibition sensitizes ovarian cancer to taxanes; however, the mechanisms are not well understood. Methods We characterized the biologic response of taxane-resistant and taxane-sensitive ovarian cancer models to a novel FAK inhibitor (VS-6063). We used reverse-phase protein arrays (RPPA) to identify novel downstream targets in taxane-resistant cell lines. Furthermore, we correlated clinical and pathological data with nuclear and cytoplasmic expression of FAK and YB-1 in 105 ovarian cancer samples. Statistical tests were two-sided, and P values were calculated with Student t test or Fisher exact test. Results We found that VS-6063 inhibited FAK phosphorylation at the Tyr397 site in a time- and dose-dependent manner. The combination of VS-6063 and paclitaxel markedly decreased proliferation and increased apoptosis, which resulted in 92.7% to 97.9% reductions in tumor weight. RPPA data showed that VS-6063 reduced levels of AKT and YB-1 in taxane-resistant cell lines. FAK inhibition enhanced chemosensitivity in taxane-resistant cells by decreasing YB-1 phosphorylation and subsequently CD44 in an AKT-dependent manner. In human ovarian cancer samples, nuclear FAK expression was associated with increased nuclear YB-1 expression (χ 2 = 37.7; P < .001). Coexpression of nuclear FAK and YB-1 was associated with statistically significantly worse median overall survival (24.9 vs 67.3 months; hazard ratio = 2.64; 95% confidence interval = 1.38 to 5.05; P = .006). Conclusions We have identified a novel pathway whereby FAK inhibition with VS-6063 overcomes YB-1–mediated paclitaxel resistance by an AKT-dependent pathway. These findings have implications for clinical trials aimed at targeting FAK. PMID:24062525

  11. Progesterone promotes focal adhesion formation and migration in breast cancer cells through induction of protease-activated receptor-1.

    PubMed

    Diaz, Jorge; Aranda, Evelyn; Henriquez, Soledad; Quezada, Marisol; Espinoza, Estefanía; Bravo, Maria Loreto; Oliva, Bárbara; Lange, Soledad; Villalon, Manuel; Jones, Marius; Brosens, Jan J; Kato, Sumie; Cuello, Mauricio A; Knutson, Todd P; Lange, Carol A; Leyton, Lisette; Owen, Gareth I

    2012-08-01

    Progesterone and progestins have been demonstrated to enhance breast cancer cell migration, although the mechanisms are still not fully understood. The protease-activated receptors (PARs) are a family of membrane receptors that are activated by serine proteases in the blood coagulation cascade. PAR1 (F2R) has been reported to be involved in cancer cell migration and overexpressed in breast cancer. We herein demonstrate that PAR1 mRNA and protein are upregulated by progesterone treatment of the breast cancer cell lines ZR-75 and T47D. This regulation is dependent on the progesterone receptor (PR) but does not require PR phosphorylation at serine 294 or the PR proline-rich region mPRO. The increase in PAR1 mRNA was transient, being present at 3  h and returning to basal levels at 18  h. The addition of a PAR1-activating peptide (aPAR1) to cells treated with progesterone resulted in an increase in focal adhesion (FA) formation as measured by the cellular levels of phosphorylated FA kinase. The combined but not individual treatment of progesterone and aPAR1 also markedly increased stress fiber formation and the migratory capacity of breast cancer cells. In agreement with in vitro findings, data mining from the Oncomine platform revealed that PAR1 expression was significantly upregulated in PR-positive breast tumors. Our observation that PAR1 expression and signal transduction are modulated by progesterone provides new insight into how the progestin component in hormone therapies increases the risk of breast cancer in postmenopausal women.

  12. Effect of sonication conditions: solvent, time, temperature and reactor type on the preparation of micron sized vermiculite particles.

    PubMed

    Ali, Farman; Reinert, Laurence; Levêque, Jean-Marc; Duclaux, Laurent; Muller, Fabrice; Saeed, Shaukat; Shah, Syed Sakhawat

    2014-05-01

    The effects of temperature, time, solvent and sonication conditions under air and Argon are described for the preparation of micron and sub-micron sized vermiculite particles in a double-jacketed Rosett-type or cylindrical reactor. The resulting materials were characterized via X-ray powder diffraction (XRD), Field Emission Scanning Electron Microscopy (FE-SEM), Fourier Transform Infrared (FTIR) Spectroscopy, BET surface area analysis, chemical analysis (elemental analysis), Thermogravimetry analysis (TGA) and Laser Granulometry. The sonicated vermiculites displayed modified particle morphologies and reduced sizes (observed by scanning electron microscopy and laser granulometry). Under the conditions used in this work, sub-micron sized particles were obtained after 5h of sonication, whereas longer times promoted aggregation again. Laser granulometry data revealed also that the smallest particles were obtained at high temperature while it is generally accepted that the mechanical effects of ultrasound are optimum at low temperatures according to physical/chemical properties of the used solvent. X-ray diffraction results indicated a reduction of the crystallite size along the basal direction [001]; but structural changes were not observed. Sonication at different conditions also led to surface modifications of the vermiculite particles brought out by BET surface measurements and Infrared Spectroscopy. The results indicated clearly that the efficiency of ultrasound irradiation was significantly affected by different parameters such as temperature, solvent, type of gas and reactor type.

  13. Utilizing the micron sized non-thermal atmospheric pressure plasma inside the animal body for the tumor treatment application

    NASA Astrophysics Data System (ADS)

    Mirpour, Shahriar; Piroozmand, Somayeh; Soleimani, Neda; Jalali Faharani, Neda; Ghomi, Hamidreza; Fotovat Eskandari, Hoda; Sharifi, Ali Mohammad; Mirpour, Sahar; Eftekhari, Mohammad; Nikkhah, Maryam

    2016-07-01

    This study aimed to evaluate the effects of micron sized non-thermal atmospheric pressure plasma inside the animal body on breast cancer tumor. The μ-plasma jet consists of micron sized hollow tube in which pure helium gas is ionized by high voltage (4 kV) and high frequency (6 kHz). The efficiency of the plasma treatment in killing cancer cells was first investigated by cell viability measurements of treated 4T1 cells using flow cytometry and cell cycle analysis. For exploration of the in vivo effects of the plasma treatment, the BALB/c mice inoculated by 4T1 cell lines were exposed subcutaneously to plasma for 3 minutes. In addition, H&E staining, TUNEL and Western blotting assays were performed in order to observed the effects of the non-thermal plasma on the tumor cells. The results showed that the efficiency of the plasma in suppression of the tumor growth is comparable to that of a typical chemotherapy drug. Moreover, the results indicated that the plasma induces apoptosis in the tumor tissue and increases the ratio of the apoptotic to anti-apoptotic protein expression. We believe that these findings presented herein may extend our knowledge of the mechanisms by which the plasma exerts its promising anti-cancer effects.

  14. The roles of lithium-philic giant nitrogen-doped graphene in protecting micron-sized silicon anode from fading

    PubMed Central

    Liu, Xiaoxu; Chao, Dongliang; Zhang, Qiang; Liu, Hai; Hu, Hailong; Zhao, Jiupeng; Li, Yao; Huang, Yizhong; Lin, Jianyi; Shen, Ze Xiang

    2015-01-01

    A stable Si-based anode with a high initial coulombic efficiency (ICE) for lithium-ion batteries (LIB) is critical for energy storage. In the present paper, a new scalable method is adopted in combination with giant nitrogen-doped graphene and micron-size electrode materials. We first synthesize a new type of freestanding LIB anode composed of micron-sized Si (mSi) particles wrapped by giant nitrogen-doped graphene (mSi@GNG) film. High ICE (>85%) and long cycle life (more than 80 cycles) are obtained. In the mSi@GNG composite, preferential formation of a stable solid electrolyte interphase (SEI) on the surface of graphene sheets is achieved. The formation and components of SEI are identified for the first time by using UV-resonance Raman spectroscopy and Raman mapping, which will revive the study of formation and evolution of SEI by Raman. New mechanism is proposed that the giant graphene sheets protect the mSi particles from over-lithiation and fracture. Such a simple and scalable method may also be applied to other anode systems to boost their energy and power densities for LIB. PMID:26497729

  15. The roles of lithium-philic giant nitrogen-doped graphene in protecting micron-sized silicon anode from fading

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoxu; Chao, Dongliang; Zhang, Qiang; Liu, Hai; Hu, Hailong; Zhao, Jiupeng; Li, Yao; Huang, Yizhong; Lin, Jianyi; Shen, Ze Xiang

    2015-10-01

    A stable Si-based anode with a high initial coulombic efficiency (ICE) for lithium-ion batteries (LIB) is critical for energy storage. In the present paper, a new scalable method is adopted in combination with giant nitrogen-doped graphene and micron-size electrode materials. We first synthesize a new type of freestanding LIB anode composed of micron-sized Si (mSi) particles wrapped by giant nitrogen-doped graphene (mSi@GNG) film. High ICE (>85%) and long cycle life (more than 80 cycles) are obtained. In the mSi@GNG composite, preferential formation of a stable solid electrolyte interphase (SEI) on the surface of graphene sheets is achieved. The formation and components of SEI are identified for the first time by using UV-resonance Raman spectroscopy and Raman mapping, which will revive the study of formation and evolution of SEI by Raman. New mechanism is proposed that the giant graphene sheets protect the mSi particles from over-lithiation and fracture. Such a simple and scalable method may also be applied to other anode systems to boost their energy and power densities for LIB.

  16. Utilizing the micron sized non-thermal atmospheric pressure plasma inside the animal body for the tumor treatment application

    PubMed Central

    Mirpour, Shahriar; Piroozmand, Somayeh; Soleimani, Neda; Jalali Faharani, Neda; Ghomi, Hamidreza; Fotovat Eskandari, Hoda; Sharifi, Ali Mohammad; Mirpour, Sahar; Eftekhari, Mohammad; Nikkhah, Maryam

    2016-01-01

    This study aimed to evaluate the effects of micron sized non-thermal atmospheric pressure plasma inside the animal body on breast cancer tumor. The μ-plasma jet consists of micron sized hollow tube in which pure helium gas is ionized by high voltage (4 kV) and high frequency (6 kHz). The efficiency of the plasma treatment in killing cancer cells was first investigated by cell viability measurements of treated 4T1 cells using flow cytometry and cell cycle analysis. For exploration of the in vivo effects of the plasma treatment, the BALB/c mice inoculated by 4T1 cell lines were exposed subcutaneously to plasma for 3 minutes. In addition, H&E staining, TUNEL and Western blotting assays were performed in order to observed the effects of the non-thermal plasma on the tumor cells. The results showed that the efficiency of the plasma in suppression of the tumor growth is comparable to that of a typical chemotherapy drug. Moreover, the results indicated that the plasma induces apoptosis in the tumor tissue and increases the ratio of the apoptotic to anti-apoptotic protein expression. We believe that these findings presented herein may extend our knowledge of the mechanisms by which the plasma exerts its promising anti-cancer effects. PMID:27383714

  17. Utilizing the micron sized non-thermal atmospheric pressure plasma inside the animal body for the tumor treatment application.

    PubMed

    Mirpour, Shahriar; Piroozmand, Somayeh; Soleimani, Neda; Jalali Faharani, Neda; Ghomi, Hamidreza; Fotovat Eskandari, Hoda; Sharifi, Ali Mohammad; Mirpour, Sahar; Eftekhari, Mohammad; Nikkhah, Maryam

    2016-07-07

    This study aimed to evaluate the effects of micron sized non-thermal atmospheric pressure plasma inside the animal body on breast cancer tumor. The μ-plasma jet consists of micron sized hollow tube in which pure helium gas is ionized by high voltage (4 kV) and high frequency (6 kHz). The efficiency of the plasma treatment in killing cancer cells was first investigated by cell viability measurements of treated 4T1 cells using flow cytometry and cell cycle analysis. For exploration of the in vivo effects of the plasma treatment, the BALB/c mice inoculated by 4T1 cell lines were exposed subcutaneously to plasma for 3 minutes. In addition, H&E staining, TUNEL and Western blotting assays were performed in order to observed the effects of the non-thermal plasma on the tumor cells. The results showed that the efficiency of the plasma in suppression of the tumor growth is comparable to that of a typical chemotherapy drug. Moreover, the results indicated that the plasma induces apoptosis in the tumor tissue and increases the ratio of the apoptotic to anti-apoptotic protein expression. We believe that these findings presented herein may extend our knowledge of the mechanisms by which the plasma exerts its promising anti-cancer effects.

  18. Infrared spectral challenges of individual, respirable, micron-sized dust particles: Strong phonons and their distorted lineshapes

    NASA Astrophysics Data System (ADS)

    Coe, James

    2015-03-01

    Consideration of cluster properties as they grow through the nanosize regime and into the micron-sized regime, leads to expectations of bulk-like trends which are well understood. However, individual micron-sized particles are of comparable size to the wavelength of probing infrared (IR) light, so vibrational spectra will be dominated by scattering effects and lineshapes will have dispersion and saturation distortions. Airborne dust particles of ~ 4 micron widths are of particular health interest because they get past the nose, throat, and thorax and can be inhaled into people's lungs. This talk will describe the use of plasmonic metal mesh to obtain scatter-free, IR absorption spectra of single, ~ 4 micron respirable particles. A dust library of single particle IR spectra is being compiled to chemically characterize respirable dust and a Mie-Bruggeman model has been created to predict the IR spectra of collections of mixed-composition dust particles. Having dealt with scattering effects, the remaining difficulty involves the effect of strong phonons. Many of the most common mineral components of dust have strong phonons with intensity cross sections comparable to the size of the particle which leads to severe and interesting lineshape distortions. NSF CHE 1213293.

  19. Adhesion

    MedlinePlus

    ... the intestines, adhesions can cause partial or complete bowel obstruction . Adhesions inside the uterine cavity, called Asherman syndrome , ... 1. Read More Appendicitis Asherman syndrome Glaucoma Infertility Intestinal obstruction Review Date 4/5/2016 Updated by: Irina ...

  20. Adhesions

    MedlinePlus

    Adhesions are bands of scar-like tissue. Normally, internal tissues and organs have slippery surfaces so they can shift easily as the body moves. Adhesions cause tissues and organs to stick together. They ...

  1. The Abl and Arg non-receptor tyrosine kinases regulate different zones of stress fiber, focal adhesion, and contractile network localization in spreading fibroblasts.

    PubMed

    Peacock, Justin G; Couch, Brian A; Koleske, Anthony J

    2010-10-01

    Directed cell migration requires precise spatial control of F-actin-based leading edge protrusion, focal adhesion (FA) dynamics, and actomyosin contractility. In spreading fibroblasts, the Abl family kinases, Abl and Arg, primarily localize to the nucleus and cell periphery, respectively. Here we provide evidence that Abl and Arg exert different spatial regulation on cellular contractile and adhesive structures. Loss of Abl function reduces FA, F-actin, and phosphorylated myosin light chain (pMLC) staining at the cell periphery, shifting the distribution of these elements more to the center of the cell than in wild-type (WT) and arg(-/-) cells. Conversely, loss of Arg function shifts the distribution of these contractile and adhesion elements more to the cell periphery relative to WT and abl(-/-) cells. Abl/Arg-dependent phosphorylation of p190RhoGAP (p190) promotes its binding to p120RasGAP (p120) to form a functional RhoA GTPase inhibitory complex, which attenuates RhoA activity and downstream pMLC and FA formation. p120 and p190 colocalize both in the central region and at the cell periphery in WT cells. This p120:p190 colocalization redistributes to a more peripheral distribution in abl(-/-) cells and to a more centralized distribution in arg(-/-) cells, and these altered distributions can be restored to WT patterns via re-expression of Abl or Arg, respectively. Thus, the altered p120:p190 distribution in the mutant cells correlates inversely with the redistribution in adhesions, actin, and pMLC staining in these cells. Our studies suggest that Abl and Arg exert different spatial regulation on actomyosin contractility and focal adhesions within cells.

  2. The Abl and Arg non-receptor tyrosine kinases regulate different zones of stress fiber, focal adhesion, and contractile network localization in spreading fibroblasts

    PubMed Central

    Peacock, Justin G.; Couch, Brian A.; Koleske, Anthony J.

    2010-01-01

    Directed cell migration requires precise spatial control of F-actin-based leading edge protrusion, focal adhesion (FA) dynamics, and actomyosin contractility. In spreading fibroblasts, the Abl family kinases, Abl and Arg, primarily localize to the nucleus and cell periphery, respectively. Here we provide evidence that Abl and Arg exert different spatial regulation on cellular contractile and adhesive structures. Loss of Abl function reduces FA, F-actin, and phosphorylated myosin light chain (pMLC) staining at the cell periphery, shifting the distribution of these elements more to the center of the cell than in wild-type (WT) and arg—/— cells. Conversely, loss of Arg function shifts the distribution of these contractile and adhesion elements more to the cell periphery relative to WT and abl—/— cells. Abl/Arg-dependent phosphorylation of p190RhoGAP (p190) promotes its binding to p120RasGAP (p120) to form a functional RhoA GTPase inhibitory complex, which attenuates RhoA activity and downstream pMLC and FA formation. p120 and p190 colocalize both in the central region and at the cell periphery in WT cells. This p120:p190 colocalization redistributes to a more peripheral distribution in abl—/— cells and to a more centralized distribution in arg—/— cells, and these altered distributions can be restored to WT patterns via re-expression of Abl or Arg, respectively. Thus, the altered p120:p190 distribution in the mutant cells correlates inversely with the redistribution in adhesions, actin, and pMLC staining in these cells. Our studies suggest that Abl and Arg exert different spatial regulation on actomyosin contractility and focal adhesions within cells. PMID:20737438

  3. In situ TEM studies of micron-sized all-solid-state fluoride ion batteries: Preparation, prospects, and challenges.

    PubMed

    Hammad Fawey, Mohammed; Chakravadhanula, Venkata Sai Kiran; Reddy, Munnangi Anji; Rongeat, Carine; Scherer, Torsten; Hahn, Horst; Fichtner, Maximilian; Kübel, Christian

    2016-07-01

    Trustworthy preparation and contacting of micron-sized batteries is an essential task to enable reliable in situ TEM studies during electrochemical biasing. Some of the challenges and solutions for the preparation of all-solid-state batteries for in situ TEM electrochemical studies are discussed using an optimized focused ion beam (FIB) approach. In particular redeposition, resistivity, porosity of the electrodes/electrolyte and leakage current are addressed. Overcoming these challenges, an all-solid-state fluoride ion battery has been prepared as a model system for in situ TEM electrochemical biasing studies and first results on a Bi/La0.9 Ba0.1 F2.9 half-cell are presented. Microsc. Res. Tech. 79:615-624, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Comet C2012 S1 (ISON)s Carbon-rich and Micron-size-dominated Coma Dust

    NASA Technical Reports Server (NTRS)

    Wooden, D.; De Buizer, J.; Kelley, M.; Sitko, M.; Woodward, C.; Harker, D.; Reach, W.; Russell, R.; Kim, D.; Yanamadra-Fisher, P.; Lisse, C.; de Pater, I.; Gehrz, R.; Kolokolova, L.

    2014-01-01

    Comet C/2012 S1 (ISON) was unique in that it was a dynamically new comet derived from the Nearly Isotropic Oort cloud reservoir of comets with a sun-grazing orbit. We present thermal models for comet ISON (rh approx.1.15 AU, 2013-Oct-25 11:30 UT) that reveal comet ISON's dust was carbon-rich and dominated by a narrow size distribution dominated by approx. micron-sized grains. We constrained the models by our SOFIA FORCAST photometry at 11.1, 19.7 and 31.5 microns and by a silicate feature strength of approx.1.1 and an 8-13microns continuum greybody color temperature of approx. 275-280 K (using Tbb ? r-0.5 h and Tbb approx. 260-265 K from Subaru COMICS, 2013-Oct-19 UT)[1,2]. N-band spectra of comet ISON with the BASS instrument on the NASA IRTF (2013-Nov-11-12 UT) show a silicate feature strength of approx. 1.1 and an 11.2microns forsterite peak.[3] Our thermal models yield constraints the dust composition as well as grain size distribution parameters: slope, peak grain size, porosity. Specifically, ISON's dust has a low silicate-to- amorphous carbon ratio (approx. 1:9), and the coma size distribution has a steep slope (N4.5) such that the coma is dominated by micron-sized, moderately porous, carbon-rich dust grains. The N-band continuum color temperature implies submicronto micron-size grains and the steep fall off of the SOFIA far-IR photometry requires the size distribution to have fewer relative numbers of larger and cooler grains compared to smaller and hotter grains. A proxy for the dust production rate is f? approx.1500 cm, akin to Af?. ISON has a moderate-to-low dust-to-gas ratio. Comet ISON's dust grain size distribution does not appear similar to the few well-studied long-period Nearly Isotropic Comets (NICs), namely C/1995 O1 (Hale-Bopp) and C/2001 Q4 (NEAT) that had smaller and/or more highly porous grains and larger sizes, or C/2007 N4 (Lulin) and C/2006 P1 (McNaught) that had large and/or compact grains. Radial transport to comet-forming disk distances

  5. Bending amplitude - a new quantitative assay of C. elegans locomotion: identification of phenotypes for mutants in genes encoding muscle focal adhesion components.

    PubMed

    Nahabedian, John F; Qadota, Hiroshi; Stirman, Jeffrey N; Lu, Hang; Benian, Guy M

    2012-01-01

    The nematode Caenorhabditis elegans uses striated muscle in its body wall for locomotion. The myofilament lattice is organized such that all the thin filament attachment structures (dense bodies, analogous to Z-disks) and thick filament organizing centers (M-lines) are attached to the muscle cell membrane. Thus, the force of muscle contraction is transmitted through these structures and allows locomotion of the worm. Dense bodies and M-lines are compositionally similar to focal adhesions and costameres, and are based on integrin and associated proteins. Null mutants for many of the newly discovered dense body and M-line proteins do not have obvious locomotion defects when observed casually, or when assayed by counting the number of times a worm moves back and forth in liquid. We hypothesized that many of these proteins, located as they are in muscle focal adhesions, function in force transmission, but we had not used an appropriate or sufficiently sensitive assay to reveal this function. Recently, we have developed a new quantitative assay of C. elegans locomotion that measures the maximum bending amplitude of an adult worm as it moves backwards. The assay had been used to reveal locomotion defects for null mutants of genes encoding ATN-1 (α-actinin) and PKN-1 (protein kinase N). Here, we describe the details of this method, and apply it to 21 loss of function mutants in 17 additional genes, most of which encode components of muscle attachment structures. As compared to wild type, mutants in 11 genes were found to have less ability to bend, and mutants in one gene were found to have greater ability to bend. Loss of function mutants for eight proteins had been reported to have normal locomotion (ZYX-1 (zyxin), ALP-1 (Enigma), DIM-1, SCPL-1), or locomotion that was not previously investigated (FRG-1 (FRG1), KIN-32 (focal adhesion kinase), LIM-8), or had only slightly decreased locomotion (PFN-3 (profilin)).

  6. Short Term Exposure of Beta Cells to Low Concentrations of Interleukin-1β Improves Insulin Secretion through Focal Adhesion and Actin Remodeling and Regulation of Gene Expression*

    PubMed Central

    Arous, Caroline; Ferreira, Pedro G.; Dermitzakis, Emmanouil T.; Halban, Philippe A.

    2015-01-01

    Type 2 diabetes involves defective insulin secretion with islet inflammation governed in part by IL-1β. Prolonged exposure of islets to high concentrations of IL-1β (>24 h, 20 ng/ml) impairs beta cell function and survival. Conversely, exposure to lower concentrations of IL-1β for >24 h improves these same parameters. The impact on insulin secretion of shorter exposure times to IL-1β and the underlying molecular mechanisms are poorly understood and were the focus of this study. Treatment of rat primary beta cells, as well as rat or human whole islets, with 0.1 ng/ml IL-1β for 2 h increased glucose-stimulated (but not basal) insulin secretion, whereas 20 ng/ml was without effect. Similar differential effects of IL-1β depending on concentration were observed after 15 min of KCl stimulation but were prevented by diazoxide. Studies on sorted rat beta cells indicated that the enhancement of stimulated secretion by 0.1 ng/ml IL-1β was mediated by the NF-κB pathway and c-JUN/JNK pathway acting in parallel to elicit focal adhesion remodeling and the phosphorylation of paxillin independently of upstream regulation by focal adhesion kinase. Because the beneficial effect of IL-1β was dependent in part upon transcription, gene expression was analyzed by RNAseq. There were 18 genes regulated uniquely by 0.1 but not 20 ng/ml IL-1β, which are mostly involved in transcription and apoptosis. These results indicate that 2 h of exposure of beta cells to a low but not a high concentration of IL-1β enhances glucose-stimulated insulin secretion through focal adhesion and actin remodeling, as well as modulation of gene expression. PMID:25586177

  7. Integrating focal adhesion dynamics, cytoskeleton remodeling, and actin motor activity for predicting cell migration on 3D curved surfaces of the extracellular matrix.

    PubMed

    Kim, Min-Cheol; Kim, Choong; Wood, Levi; Neal, Devin; Kamm, Roger D; Asada, H Harry

    2012-11-01

    An integrative cell migration model incorporating focal adhesion (FA) dynamics, cytoskeleton and nucleus remodeling and actin motor activity is developed for predicting cell migration behaviors on 3-dimensional curved surfaces, such as cylindrical lumens in the 3-D extracellular matrix (ECM). The work is motivated by 3-D microfluidic migration experiments suggesting that the migration speed and direction may vary depending on the cross sectional shape of the lumen along which the cell migrates. In this paper, the mechanical structure of the cell is modeled as double elastic membranes of cell and nucleus. The two elastic membranes are connected by stress fibers, which are extended from focal adhesions on the cell surface to the nuclear membrane. The cell deforms and gains traction as transmembrane integrins distributed over the outer cell membrane bind to ligands on the ECM, form focal adhesions, and activate stress fibers. Probabilities at which integrin ligand-receptor bonds are formed as well as ruptures are affected by the surface geometry, resulting in diverse migration behaviors that depend on the curvature of the surface. Monte Carlo simulations of the integrative model reveal that (a) the cell migration speed is dependent on the cross sectional area of the lumen with a maximum speed at a particular diameter or width, (b) as the lumen diameter increases, the cell tends to spread and migrate around the circumference of the lumen, while it moves in the longitudinal direction as the lumen diameter narrows, (c) once the cell moves in one direction, it tends to stay migrating in the same direction despite the stochastic nature of migration. The relationship between the cell migration speed and the lumen width agrees with microfluidic experimental data for cancer cell migration.

  8. Enterolobium contortisiliquum Trypsin Inhibitor (EcTI), a Plant Proteinase Inhibitor, Decreases in Vitro Cell Adhesion and Invasion by Inhibition of Src Protein-Focal Adhesion Kinase (FAK) Signaling Pathways*

    PubMed Central

    de Paula, Cláudia Alessandra Andrade; Coulson-Thomas, Vivien Jane; Ferreira, Joana Gasperazzo; Maza, Paloma Korehisa; Suzuki, Erika; Nakahata, Adriana Miti; Nader, Helena Bonciani; Sampaio, Misako Uemura; Oliva, Maria Luiza V.

    2012-01-01

    Tumor cell invasion is vital for cancer progression and metastasis. Adhesion, migration, and degradation of the extracellular matrix are important events involved in the establishment of cancer cells at a new site, and therefore molecular targets are sought to inhibit such processes. The effect of a plant proteinase inhibitor, Enterolobium contortisiliquum trypsin inhibitor (EcTI), on the adhesion, migration, and invasion of gastric cancer cells was the focus of this study. EcTI showed no effect on the proliferation of gastric cancer cells or fibroblasts but inhibited the adhesion, migration, and cell invasion of gastric cancer cells; however, EcTI had no effect upon the adhesion of fibroblasts. EcTI was shown to decrease the expression and disrupt the cellular organization of molecules involved in the formation and maturation of invadopodia, such as integrin β1, cortactin, neuronal Wiskott-Aldrich syndrome protein, membrane type 1 metalloprotease, and metalloproteinase-2. Moreover, gastric cancer cells treated with EcTI presented a significant decrease in intracellular phosphorylated Src and focal adhesion kinase, integrin-dependent cell signaling components. Together, these results indicate that EcTI inhibits the invasion of gastric cancer cells through alterations in integrin-dependent cell signaling pathways. PMID:22039045

  9. Enterolobium contortisiliquum trypsin inhibitor (EcTI), a plant proteinase inhibitor, decreases in vitro cell adhesion and invasion by inhibition of Src protein-focal adhesion kinase (FAK) signaling pathways.

    PubMed

    de Paula, Cláudia Alessandra Andrade; Coulson-Thomas, Vivien Jane; Ferreira, Joana Gasperazzo; Maza, Paloma Korehisa; Suzuki, Erika; Nakahata, Adriana Miti; Nader, Helena Bonciani; Sampaio, Misako Uemura; Oliva, Maria Luiza V

    2012-01-02

    Tumor cell invasion is vital for cancer progression and metastasis. Adhesion, migration, and degradation of the extracellular matrix are important events involved in the establishment of cancer cells at a new site, and therefore molecular targets are sought to inhibit such processes. The effect of a plant proteinase inhibitor, Enterolobium contortisiliquum trypsin inhibitor (EcTI), on the adhesion, migration, and invasion of gastric cancer cells was the focus of this study. EcTI showed no effect on the proliferation of gastric cancer cells or fibroblasts but inhibited the adhesion, migration, and cell invasion of gastric cancer cells; however, EcTI had no effect upon the adhesion of fibroblasts. EcTI was shown to decrease the expression and disrupt the cellular organization of molecules involved in the formation and maturation of invadopodia, such as integrin β1, cortactin, neuronal Wiskott-Aldrich syndrome protein, membrane type 1 metalloprotease, and metalloproteinase-2. Moreover, gastric cancer cells treated with EcTI presented a significant decrease in intracellular phosphorylated Src and focal adhesion kinase, integrin-dependent cell signaling components. Together, these results indicate that EcTI inhibits the invasion of gastric cancer cells through alterations in integrin-dependent cell signaling pathways.

  10. Cigarette smoke causes lung vascular barrier dysfunction via oxidative stress-mediated inhibition of RhoA and focal adhesion kinase

    PubMed Central

    Sakhatskyy, Pavlo; Grinnell, Katie; Newton, Julie; Ortiz, Melanie; Wang, Yulian; Sanchez-Esteban, Juan; Harrington, Elizabeth O.; Rounds, Sharon

    2011-01-01

    Cigarette smoke (CS) is a major cause of chronic lung and cardiovascular diseases. Recent studies indicate that tobacco use is also a risk factor for acute lung injury (ALI) associated with blunt trauma. Increased endothelial cell (EC) permeability is a hallmark of ALI. CS increases EC permeability in vitro and in vivo; however, the underlying mechanism is not well understood. In this study, we found that only 6 h of exposure to CS impaired endothelial barrier function in vivo, an effect associated with increased oxidative stress in the lungs and attenuated by the antioxidant N-acetylcysteine (NAC). CS also exacerbated lipopolysaccharide (LPS)-induced increase in vascular permeability in vivo. Similar additive effects were also seen in cultured lung EC exposed to cigarette smoke extract (CSE) and LPS. We further demonstrated that CSE caused disruption of focal adhesion complexes (FAC), F-actin fibers, and adherens junctions (AJ) and decreased activities of RhoA and focal adhesion kinase (FAK) in cultured lung EC. CSE-induced inhibition of RhoA and FAK, endothelial barrier dysfunction, and disassembly of FAC, F-actin, and AJ were prevented by NAC. In addition, the deleterious effects of CSE on FAC, F-actin fibers, and AJ were blunted by overexpression of constitutively active RhoA and of FAK. Our data indicate that CS causes endothelial barrier dysfunction via oxidative stress-mediated inhibition of RhoA and FAK. PMID:21984567

  11. PI(3,4)P2 plays critical roles in the regulation of focal adhesion dynamics of MDA-MB-231 breast cancer cells.

    PubMed

    Fukumoto, Miki; Ijuin, Takeshi; Takenawa, Tadaomi

    2017-03-01

    Phosphoinositides play pivotal roles in the regulation of cancer cell phenotypes. Among them, phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2 ) localizes to the invadopodia, and positively regulates tumor cell invasion. In this study, we examined the effect of PI(3,4)P2 on focal adhesion dynamics in MDA-MB-231 basal breast cancer cells. Knockdown of SHIP2, a phosphatidylinositol 3,4,5-trisphosphatase (PIP3 ) 5-phosphatase that generates PI(3,4)P2 , in MDA-MB-231 breast cancer cells, induced the development of focal adhesions and cell spreading, leading to the suppression of invasion. In contrast, knockdown of PTEN, a 3-phosphatase that de-phosphorylates PIP3 and PI(3,4)P2 , induced cell shrinkage and increased cell invasion. Interestingly, additional knockdown of SHIP2 rescued these phenotypes. Overexpression of the TAPP1 PH domain, which binds to PI(3,4)P2 , and knockdown of Lpd, a downstream effector of PI(3,4)P2 , resulted in similar phenotypes to those induced by SHIP2 knockdown. Taken together, our results suggest that inhibition of PI(3,4)P2 generation and/or downstream signaling could be useful for inhibiting breast cancer metastasis. This article is protected by copyright. All rights reserved.

  12. CEACAM6 cross-linking induces caveolin-1-dependent, Src-mediated focal adhesion kinase phosphorylation in BxPC3 pancreatic adenocarcinoma cells.

    PubMed

    Duxbury, Mark S; Ito, Hiromichi; Ashley, Stanley W; Whang, Edward E

    2004-05-28

    Despite lacking transmembrane or intracellular domains, glycosylphosphatidylinositol-anchored proteins can modulate intracellular signaling events, in many cases through aggregation within membrane "lipid raft" microdomains. CEACAM6 is a glycosylphosphatidylinositol-linked cell surface protein of importance in the anchorage-independent survival and metastasis of pancreatic adenocarcinoma cells. We examined the effects of antibody-mediated cross-linking of CEACAM6 on intracellular signaling events and anchorage-independent survival of the CEACAM6-overexpressing pancreatic ductal adenocarcinoma cell line, BxPC3. CEACAM6 cross-linking increased c-Src activation and induced tyrosine phosphorylation of p125(FAK) focal adhesion kinase. Focal adhesion kinase phosphorylation was dependent on c-Src kinase activation, for which caveolin-1 was required. CEACAM6 cross-linking induced a significant increase in cellular resistance to anoikis. These observations represent the first characterization of the mechanism through which this important cell surface oncoprotein influences intracellular signaling events and hence malignant cellular behavior.

  13. In Vivo Role of Focal Adhesion Kinase in Regulating Pancreatic β-Cell Mass and Function Through Insulin Signaling, Actin Dynamics, and Granule Trafficking

    PubMed Central

    Cai, Erica P.; Casimir, Marina; Schroer, Stephanie A.; Luk, Cynthia T.; Shi, Sally Yu; Choi, Diana; Dai, Xiao Qing; Hajmrle, Catherine; Spigelman, Aliya F.; Zhu, Dan; Gaisano, Herbert Y.; MacDonald, Patrick E.; Woo, Minna

    2012-01-01

    Focal adhesion kinase (FAK) acts as an adaptor at the focal contacts serving as a junction between the extracellular matrix and actin cytoskeleton. Actin dynamics is known as a determinant step in insulin secretion. Additionally, FAK has been shown to regulate insulin signaling. To investigate the essential physiological role of FAK in pancreatic β-cells in vivo, we generated a transgenic mouse model using rat insulin promoter (RIP)–driven Cre-loxP recombination system to specifically delete FAK in pancreatic β-cells. These RIPcre+fakfl/fl mice exhibited glucose intolerance without changes in insulin sensitivity. Reduced β-cell viability and proliferation resulting in decreased β-cell mass was observed in these mice, which was associated with attenuated insulin/Akt (also known as protein kinase B) and extracellular signal–related kinase 1/2 signaling and increased caspase 3 activation. FAK-deficient β-cells exhibited impaired insulin secretion with normal glucose sensing and preserved Ca2+ influx in response to glucose, but a reduced number of docked insulin granules and insulin exocytosis were found, which was associated with a decrease in focal proteins, paxillin and talin, and an impairment in actin depolymerization. This study is the first to show in vivo that FAK is critical for pancreatic β-cell viability and function through regulation in insulin signaling, actin dynamics, and granule trafficking. PMID:22498697

  14. Cellular adhesome screen identifies critical modulators of focal adhesion dynamics, cellular traction forces and cell migration behaviour.

    PubMed

    Fokkelman, Michiel; Balcıoğlu, Hayri E; Klip, Janna E; Yan, Kuan; Verbeek, Fons J; Danen, Erik H J; van de Water, Bob

    2016-08-17

    Cancer cells migrate from the primary tumour into surrounding tissue in order to form metastasis. Cell migration is a highly complex process, which requires continuous remodelling and re-organization of the cytoskeleton and cell-matrix adhesions. Here, we aimed to identify genes controlling aspects of tumour cell migration, including the dynamic organization of cell-matrix adhesions and cellular traction forces. In a siRNA screen targeting most cell adhesion-related genes we identified 200+ genes that regulate size and/or dynamics of cell-matrix adhesions in MCF7 breast cancer cells. In a subsequent secondary screen, the 64 most effective genes were evaluated for growth factor-induced cell migration and validated by tertiary RNAi pool deconvolution experiments. Four validated hits showed significantly enlarged adhesions accompanied by reduced cell migration upon siRNA-mediated knockdown. Furthermore, loss of PPP1R12B, HIPK3 or RAC2 caused cells to exert higher traction forces, as determined by traction force microscopy with elastomeric micropillar post arrays, and led to considerably reduced force turnover. Altogether, we identified genes that co-regulate cell-matrix adhesion dynamics and traction force turnover, thereby modulating overall motility behaviour.

  15. Cellular adhesome screen identifies critical modulators of focal adhesion dynamics, cellular traction forces and cell migration behaviour

    PubMed Central

    Fokkelman, Michiel; Balcıoğlu, Hayri E.; Klip, Janna E.; Yan, Kuan; Verbeek, Fons J.; Danen, Erik H. J.; van de Water, Bob

    2016-01-01

    Cancer cells migrate from the primary tumour into surrounding tissue in order to form metastasis. Cell migration is a highly complex process, which requires continuous remodelling and re-organization of the cytoskeleton and cell-matrix adhesions. Here, we aimed to identify genes controlling aspects of tumour cell migration, including the dynamic organization of cell-matrix adhesions and cellular traction forces. In a siRNA screen targeting most cell adhesion-related genes we identified 200+ genes that regulate size and/or dynamics of cell-matrix adhesions in MCF7 breast cancer cells. In a subsequent secondary screen, the 64 most effective genes were evaluated for growth factor-induced cell migration and validated by tertiary RNAi pool deconvolution experiments. Four validated hits showed significantly enlarged adhesions accompanied by reduced cell migration upon siRNA-mediated knockdown. Furthermore, loss of PPP1R12B, HIPK3 or RAC2 caused cells to exert higher traction forces, as determined by traction force microscopy with elastomeric micropillar post arrays, and led to considerably reduced force turnover. Altogether, we identified genes that co-regulate cell-matrix adhesion dynamics and traction force turnover, thereby modulating overall motility behaviour. PMID:27531518

  16. The effect of an on-orbit near encounter on the number flux density of micron sized particles

    NASA Technical Reports Server (NTRS)

    Maag, Carl R.; Tanner, William G.; Stevenson, Tim J.; Borg, Janet; Bibring, Jean-Pierre; Alexander, W. Merle; Maag, Andrew J.

    1993-01-01

    Many materials and techniques have been developed by the authors to sample the flux of particles in Low Earth Orbit (LEO), and through regular insitu sampling of the flux in LEO, the materials and techniques have produced data which complement the data now being amassed by the Long Duration Exposure Facility (LDEF) research activities. Recent flight experiments on STS-32, STS-44, STS-46, and STS-52 have been conducted to develop an understanding of the spatial density as a function of size (mass) for particle sizes 1x10(exp -6) cm and larger. In addition to the enumeration of particle impacts, it was also the intent of these experiments that hypervelocity particles be captured and returned intact. Measurements were performed post-flight to determine the flux density, diameters, and subsequent effects on various optical, thermal control, and structural materials. During the course of the STS-44 mission, the Space Shuttle corrected its altitude by 26 km to evade a spent upper stage. The results of this near encounter suggests that a cloud of micron sized particles exist in the vicinity of the object. Data also suggest that the flux density is nearly two (2) orders of magnitude higher than background flux. A comparison of the number flux density along with microphotographs of the captured particles will be presented for the referenced shuttle flights.

  17. Formation of sub-micron size carbon structures by plasma jets emitted from a pulsed capillary discharge

    NASA Astrophysics Data System (ADS)

    Bhuyan, H.; Favre, M.; Valderrama, E.; Avaria, G.; Wyndham, E.; Chuaqui, H.; Baier, J.; Kelly, H.; Grondona, D.; Marquez, A.

    2009-01-01

    We have performed an experimental investigation of the potential use of intense plasma jets produced in a repetitive pulsed capillary discharge (PCD) operating in methane gas, to irradiate Si (1 0 0) substrates. The surface modifications induced by the plasma jet using two different material inserts at the capillary end, graphite and titanium, are characterized using standard surface science diagnostic tools, such as scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) analysis and Raman spectroscopy (RS). It has been found that the application of methane plasma jet results in the formation of sub-micron size carbon structures. It is observed that the resulting plasma irradiated surface morphologies are different, depending on the different material inserts used at the capillary end, at otherwise identical operational conditions. To investigate the species responsible for the observed surface changes in different material inserts to the capillary, optical-emission spectroscopy (OES) was recorded using a 300-1000 nm spectrometer. The OES results show the presence of H, CH and C 2 Swan band in the discharge plasma, which play a significant role in the formation of the carbon structures.

  18. Micron-sized droplets irradiated with a pulsed carbon dioxide laser: Measurement of explosion and breakdown thresholds

    NASA Astrophysics Data System (ADS)

    Armstrong, R. L.; Biswas, A.; Pinnick, R. G.; Pendleton, J. D.

    1995-03-01

    We present the results of measurements of explosive vaporization and plasma breakdown thresholds of micron-sized droplets irradiated by a pulsed CO2 laser operating at 10.6 microns. Well-defined explosion and breakdown patterns are observed when the incident laser intensity exceeds the threshold value. In the infrared region, the breakdown threshold is larger than the vaporization threshold by a factor of approximately 10(exp 2). Although, to the authors knowledge, no analogous measurements of vaporization and breakdown thresholds of individual aerosol particles exist in the microwave region, scaling of our infrared measurements to deduce the corresponding microwave properties is possible using available theoretical models. When this scaling is performed, it suggests that a dramatic reversal of explosion and breakdown thresholds occurs in the microwave region. In this region, the microwave vaporization threshold is larger than the corresponding breakdown threshold by a factor of greater than 10(exp 4). Recent measurements of breakdown thresholds in aerosol-laden air provide indirect evidence that this reversal has, in fact, taken place.

  19. The effect of an on-orbit near encounter on the number flux density of micron sized particles

    NASA Astrophysics Data System (ADS)

    Maag, Carl R.; Tanner, William G.; Stevenson, Tim J.; Borg, Janet; Bibring, Jean-Pierre; Alexander, W. Merle; Maag, Andrew J.

    1993-03-01

    Many materials and techniques have been developed by the authors to sample the flux of particles in Low Earth Orbit (LEO), and through regular insitu sampling of the flux in LEO, the materials and techniques have produced data which complement the data now being amassed by the Long Duration Exposure Facility (LDEF) research activities. Recent flight experiments on STS-32, STS-44, STS-46, and STS-52 have been conducted to develop an understanding of the spatial density as a function of size (mass) for particle sizes 1x10(exp -6) cm and larger. In addition to the enumeration of particle impacts, it was also the intent of these experiments that hypervelocity particles be captured and returned intact. Measurements were performed post-flight to determine the flux density, diameters, and subsequent effects on various optical, thermal control, and structural materials. During the course of the STS-44 mission, the Space Shuttle corrected its altitude by 26 km to evade a spent upper stage. The results of this near encounter suggests that a cloud of micron sized particles exist in the vicinity of the object. Data also suggest that the flux density is nearly two (2) orders of magnitude higher than background flux. A comparison of the number flux density along with microphotographs of the captured particles will be presented for the referenced shuttle flights.

  20. Role of nano and micron-sized inclusions on the oxygen controlled preform optimized infiltration growth processed YBCO superconductors

    NASA Astrophysics Data System (ADS)

    Pavan Kumar Naik, S.; Bai, V. Seshu

    2017-02-01

    In the present work, with the aim of improving the local flux pinning at the unit cell level in the YBa2Cu3O7-δ (YBCO) bulk superconductors, 20 wt% of nanoscale Sm2O3 and micron sized (Nd, Sm, Gd)2BaCuO5 secondary phase particles were added to YBCO and processed in oxygen controlled preform optimized infiltration growth process. Nano Dispersive Sol Casting method is employed to homogeneously distribute the nano Sm2O3 particles of 30-50 nm without any agglomeration in the precursor powder. Microstructural investigations on doped samples show the chemical fluctuations as annuli cores in the 211 phase particles. The introduction of mixed rare earth elements at Y-site resulted in compositional fluctuations in the superconducting matrix. The associated lattice mismatch defects have provided flux pinning up to large magnetic fields. Magnetic field dependence of current density (Jc(H)) at different temperatures revealed that the dominant pinning mechanism is caused by spatial variations of critical temperatures, due to the spatial fluctuations in the matrix composition. As the number of rare earth elements increased in the YBCO, the peak field position in the scaling of the normalized pinning force density (Fp/Fp max) significantly gets shifted towards the higher fields. The curves of Jc(H) and Fp/Fp max at different temperatures clearly indicate the LRE substitution for LRE' or Ba-sites for δTc pinning.

  1. Magnetic-field tunability of the vortex translational mode in micron-sized permalloy ellipses: Experiment and micromagnetic modeling

    NASA Astrophysics Data System (ADS)

    Buchanan, K. S.; Roy, P. E.; Grimsditch, M.; Fradin, F. Y.; Guslienko, K. Yu.; Bader, S. D.; Novosad, V.

    2006-08-01

    A magnetic vortex confined in a magnetically soft ferromagnet with micron-sized dimensions possesses a characteristic dynamic excitation known as a translational mode that corresponds to spiral-like precession of the vortex core around its equilibrium position. We report micromagnetic modeling and experimental detection using a microwave reflection technique of the magnetic field tunability of this mode in 40nm thick, 3×1.5μm2 and 2×1μm2 permalloy ellipses. At remanence the translational modes are detected at 77 and 118MHz . The frequency shows a strongly anisotropic dependence on magnetic field applied in the plane of the ellipse. The frequencies more than double when a static field is applied along the hard (short) axis, whereas they are almost field-independent when the field is aligned with the easy (long) axis. Micromagnetic calculations reveal that the observed behavior is governed by the shape of the energy potential well that is influenced mainly by magnetostatic and Zeeman energies.

  2. Laser clad Ni-base alloy added nano- and micron-size CeO 2 composites

    NASA Astrophysics Data System (ADS)

    Zhang, Shi Hong; Li, Ming Xi; Cho, Tong Yul; Yoon, Jae Hong; Lee, Chan Gyu; He, Yi Zhu

    2008-07-01

    Micron-size Ni-base alloy (NBA) powders are mixed with both 1.5 wt% (%) micron-CeO 2 (m-CeO 2) and also 1.0-3.0% nano-CeO 2 (n-CeO 2) powders. These mixtures are coated on low carbon steel (Q235) by 2.0 kW CO 2 laser cladding. The effects on microstructures, microhardness and wear resistance of the coating by the addition of m- and n-CeO 2 powders to NBA (m- and n-CeO 2/NBA) have been investigated. Addition to the primary phases of γ-Ni, Cr 23C 6 and Ni 3B of NBA coating, CeNi 3 shows up both in m- and n-CeO 2/NBA coatings and CeNi 5 appears only in n-CeO 2/NBA coating. Directional dendrite and coarse equiaxed dendrite are grown in m-CeO 2/NBA coating from interface to central zone, whereas multi-oriented dendrite and fine equiaxed dendrite growth by addition of n-CeO 2. The microhardness and wear resistance of coatings are greatly improved by CeO 2 powder addition, and compared to the addition of 1.0% and 3.0%, 1.5% n-CeO 2/NBA is the best. Hardness and wear resistance of the coating improves with decreasing CeO 2 size from micron to nano.

  3. Substrate Elastic Modulus Regulates the Morphology, Focal