Chain and mirophase-separated structures of ultrathin polyurethane films
NASA Astrophysics Data System (ADS)
Kojio, Ken; Uchiba, Yusuke; Yamamoto, Yasunori; Motokucho, Suguru; Furukawa, Mutsuhisa
2009-08-01
Measurements are presented how chain and microphase-separated structures of ultrathin polyurethane (PU) films are controlled by the thickness. The film thickness is varied by a solution concentration for spin coating. The systems are PUs prepared from commercial raw materials. Fourier-transform infrared spectroscopic measurement revealed that the degree of hydrogen bonding among hard segment chains decreased and increased with decreasing film thickness for strong and weak microphase separation systems, respectively. The microphase-separated structure, which is formed from hard segment domains and a surrounding soft segment matrix, were observed by atomic force microscopy. The size of hard segment domains decreased with decreasing film thickness, and possibility of specific orientation of the hard segment chains was exhibited for both systems. These results are due to decreasing space for the formation of the microphase-separated structure.
Connecting Molecular Dynamics Simulations and Fluids Density Functional Theory of Block Copolymers
NASA Astrophysics Data System (ADS)
Hall, Lisa
Increased understanding and precise control over the nanoscale structure and dynamics of microphase separated block copolymers would advance development of mechanically robust but conductive materials for battery electrolytes, among other applications. Both coarse-grained molecular dynamics (MD) simulations and fluids (classical) density functional theory (fDFT) can capture the microphase separation of block copolymers, using similar monomer-based chain models and including local packing effects. Equilibrium free energies of various microphases are readily accessible from fDFT, which allows us to efficiently determine the equilibrium nanostructure over a large parameter space. Meanwhile, MD allows us to visualize specific polymer conformations in 3D over time and to calculate dynamic properties. The fDFT density profiles are used to initialize the MD simulations; this ensures the MD proceeds in the appropriate microphase separated state rather than in a metastable structure (useful especially for nonlamellar structures). The simulations equilibrate more quickly than simulations initialized with a random state, which is significant especially for long chains. We apply these methods to study the interfacial behavior and microphase separated structure of diblock and tapered block copolymers. Tapered copolymers consist of pure A and B monomer blocks on the ends separated by a tapered region that smoothly varies from A to B (or from B to A for an inverse taper). Intuitively, tapering increases the segregation strength required for the material to microphase separate and increases the width of the interfacial region. Increasing normal taper length yields a lower domain spacing and increased polymer mobility, while larger inverse tapers correspond to even lower domain spacing but decreased mobility. Thus the changes in dynamics with tapering cannot be explained by mapping to a diblock system at an adjusted effective segregation strength. This material is based upon work supported by the National Science Foundation under Grant 1454343 and the Department of Energy under Grant DE-SC0014209.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arges, Christopher G.; Kambe, Yu; Dolejsi, Moshe
Block copolymer electrolytes (BCEs) represent an attractive choice as solid-state ionic conductors for electrochemical technologies used in energy storage and conversion, water treatment, sensors, and data storage and processing. Unlocking the maximum ionic conductivity of BCEs requires an intimate understanding as to how the microphase separated structure influences transport properties. However, elucidating such knowledge remains elusive due to the challenging task of precisely engineering BCEs with a defined structure in bulk materials. In this work, we examined BCEs in a thin film format because it was amenable to attaining BCEs with a desired nanostructure. Specifically, we systematically investigated anion-conducting BCEsmore » with different degrees of connectivity of the ionic domains. For the first time, we demonstrate that increasing terminal defects in the ionic domain from 1 terminal defect per mu m(2) to 20 terminal defects per mu m(2) ( a relatively small amount of defects) decreased ionic conductivity by 67% compared to the maximum value attained. Conversely, maximizing ionic domain connectivity increased the ionic conductivity by two-fold over a non-ordered BCE film. These experiments highlight that microphase separation alone was insufficient for ameliorating ionic conductivity in BCEs. Rather, microphase separation coupled with complete ionic domain connectivity realized BCEs with significantly enhanced ionic conductivity.« less
Microphase separation of comb copolymers with two different lengths of side chains
NASA Astrophysics Data System (ADS)
Aliev, M. A.; Kuzminyh, N. Yu.
2009-10-01
The phase behavior of the monodisperse AB comb copolymer melt contained the macromolecules of special architecture is discussed. Each macromolecule is assumed to be composed of two comb blocks which differ in numbers of side chains and numbers of monomer units in these chains. It is shown (by analysis of the structure factor of the melt) that microphase separation at two different length scales in the melt is possible. The large and small length scales correspond to separation between comb blocks and separation between monomer units in repeating fragments of blocks, respectively. The classification diagrams indicated which length scale is favored for a given parameters of chemical structure of macromolecules are constructed.
Chu, Wei-Cheng; Lin, Wei-Sheng; Kuo, Shiao-Wei
2016-01-01
In this study, we used diglycidyl ether bisphenol A (DGEBA) as a matrix, the ABA block copolymer poly(ethylene oxide–b–propylene oxide–b–ethylene oxide) (Pluronic F127) as an additive, and diphenyl diaminosulfone (DDS) as a curing agent to prepare flexible epoxy resins through reaction-induced microphase separation (RIMPS). Fourier transform infrared spectroscopy confirmed the existence of hydrogen bonding between the poly(ethylene oxide) segment of F127 and the OH groups of the DGEBA resin. Small-angle X-ray scattering, atomic force microscopy, and transmission electron microscopy all revealed evidence for the microphase separation of F127 within the epoxy resin. Glass transition temperature (Tg) phenomena and mechanical properties (modulus) were determined through differential scanning calorimetry and dynamic mechanical analysis, respectively, of samples at various blend compositions. The modulus data provided evidence for the formation of wormlike micelle structures, through a RIMPS mechanism, in the flexible epoxy resin upon blending with the F127 triblock copolymer. PMID:28773571
Formation of ordered microphase-separated pattern during spin coating of ABC triblock copolymer.
Huang, Weihuan; Luo, Chunxia; Zhang, Jilin; Han, Yanchun
2007-03-14
In this paper, the authors have systematically studied the microphase separation and crystallization during spin coating of an ABC triblock copolymer, polystyrene-b-poly(2-vinylpyridine)-b-poly(ethylene oxide) (PS-b-P2VP-b-PEO). The microphase separation of PS-b-P2VP-b-PEO and the crystallization of PEO blocks can be modulated by the types of the solvent and the substrate, the spinning speed, and the copolymer concentration. Ordered microphase-separated pattern, where PEO and P2VP blocks adsorbed to the substrate and PS blocks protrusions formed hexagonal dots above the P2VP domains, can only be obtained when PS-b-P2VP-b-PEO is dissolved in N,N-dimethylformamide and the films are spin coated onto the polar substrate, silicon wafers or mica. The mechanism of the formation of regular pattern by microphase separation is found to be mainly related to the inducement of the substrate (middle block P2VP wetting the polar substrate), the quick vanishment of the solvent during the early stage of the spin coating, and the slow evaporation of the remaining solvent during the subsequent stage. On the other hand, the probability of the crystallization of PEO blocks during spin coating decreases with the reduced film thickness. When the film thickness reaches a certain value (3.0 nm), the extensive crystallization of PEO is effectively prohibited and ordered microphase-separated pattern over large areas can be routinely prepared. When the film thickness exceeds another definite value (12.0 nm), the crystallization of PEO dominates the surface morphology. For films with thickness between these two values, microphase separation and crystallization can simultaneously occur.
Hydrogen Bond Induces Hierarchical Self-Assembly in Liquid-Crystalline Block Copolymers.
Huang, Shuai; Pang, Linlin; Chen, Yuxuan; Zhou, Liming; Fang, Shaoming; Yu, Haifeng
2018-03-01
Microphase-separated structures of block copolymers (BCs) with a size of sub-10 nm are usually obtained by hydrogen-bond-induced self-assembly of BCs through doping with small molecules as functional additives. Here, fabrication of hierarchically self-assembled sub-10 nm structures upon microphase separation of amphiphilic liquid-crystalline BCs (LCBCs) at the existence of hydrogen bonds but without any dopants is reported. The newly introduced urethane groups in the side chain of the hydrophobic block of LCBCs interact with the ether groups of the hydrophilic poly(ethylene oxide) (PEO) block, leading to imperfect crystallization of the PEO blocks. Both crystalline and amorphous domains coexist in the separated PEO phase, enabling a lamellar structure to appear inside the PEO nanocylinders. This provides an elegant method to fabricate controllable sub-10 nm microstructures in well-defined polymer systems without the introduction of any dopants. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, Tiancai; Fu, Chao; Yang, Yingzi; Qiu, Feng
2017-02-07
The phase behaviors of homopolymer-monotethered nanoparticles (HMNs) in melt are investigated via a theoretical method combining self-consistent field theory for polymers and density functional theory for hard spheres. An extremely asymmetric phase diagram is observed: (i) microphases are only possible for the volume fraction of the tethered polymer f A > 0.35; (ii) in addition to lamellar phase, the system can only self-assemble into various morphologies with a polymer-rich matrix, including gyroid phase, cylindrical phase, and spherical phase. In the frame of this theory, the critical point for HMNs' microphase separation is significantly lower than that of linear diblock copolymers. Furthermore, the characteristic length of microphase-separated structures of HMNs is much smaller than that of linear diblock copolymers with the same molecular weight. Our calculation results on morphologies and characteristic length agree well with recent simulations and experimental observations.
Sekine, Ryojun; Aoki, Hiroyuki; Ito, Shinzaburo
2009-10-01
The chain end distribution of a block copolymer in a two-dimensional microphase-separated structure was studied by scanning near-field optical microscopy (SNOM). In the monolayer of poly(octadecyl methacrylate)-block-poly(isobutyl methacrylate) (PODMA-b-PiBMA), the free end of the PiBMA subchain was directly observed by SNOM, and the spatial distributions of the whole block and the chain end are examined and compared with the convolution of the point spread function of the microscope and distribution function of the model structures. It was found that the chain end distribution of the block copolymer confined in two dimensions has a peak near the domain center, being concentrated in the narrower region, as compared with three-dimensional systems.
Yan, Derong; Huang, Haiying; He, Tianbai; Zhang, Fajun
2011-10-04
We have studied the coupling behavior of microphase separation and autophobic dewetting in weakly segregated poly(ε-caprolactone)-block-poly(L-lactide) (PCL-b-PLLA) diblock co-polymer ultrathin films on carbon-coated mica substrates. At temperatures higher than the melting point of the PLLA block, the co-polymer forms a lamellar structure in bulk with a long period of L ∼ 20 nm, as determined using small-angle X-ray scattering. The relaxation procedure of ultrathin films with an initial film thickness of h = 10 nm during annealing has been followed by atomic force microscopy (AFM). In the experimental temperature range (100-140 °C), the co-polymer dewets to an ultrathin film of itself at about 5 nm because of the strong attraction of both blocks with the substrate. Moreover, the dewetting velocity increases with decreasing annealing temperatures. This novel dewetting kinetics can be explained by a competition effect of the composition fluctuation driven by the microphase separation with the dominated dewetting process during the early stage of the annealing process. While dewetting dominates the relaxation procedure and leads to the rupture of the ultrathin films, the composition fluctuation induced by the microphase separation attempts to stabilize them because of the matching of h to the long period (h ∼ 1/2L). The temperature dependence of these two processes leads to this novel relaxation kinetics of co-polymer thin films. © 2011 American Chemical Society
Actuators based on polyurethanes with different types of polyol
NASA Astrophysics Data System (ADS)
Lim, Hyun-Ok; Bark, Geong-Mi; Jo, Nam-Ju
2007-07-01
This study dealt with the electrostrictive responses of polyurethane (PU) actuators with different microphase separation structure, which was a promising candidate for a material used in polymer actuators. In order to construct PUs with different higher-order structure, we synthesized PUs with different diols; poly(neopentyl glycol adipate) (PNAD), poly(tetramethylene glycol) (PTMG), and poly(dimethyl siloxnae) (PDMS). Synthesized PU was characterized by FT-IR spectroscopy and GPC. Thermal analysis and mechanical properties of PU films were carried out with DSC and UTM, respectively. And PU actuator was formed in a monomorph type which made by carbon black electrodes on the both surfaces of PU film by spin coating method. Actuation behavior was mainly influenced on microphase separation structure and mechanical property of PU. In result, PU actuator with PNAD, polyester urethane, had the largest field-induced displacement.
Ge, Xueping; Ye, Qiang; Song, Linyong; Misra, Anil; Spencer, Paulette
2015-04-01
The effects of polymerization kinetics and chemical miscibility on the crosslinking structure and mechanical properties of polymers cured by visible-light initiated free-radical/cationic ring-opening hybrid photopolymerization are determined. A three-component initiator system is used and the monomer system contains methacrylates and epoxides. The photopolymerization kinetics is monitored in situ by Fourier transform infrared-attenuated total reflectance. The crosslinking structure is studied by modulated differential scanning calorimetry and dynamic mechanical analysis. X-ray microcomputed tomography is used to evaluate microphase separation. The mechanical properties of polymers formed by hybrid formed by free-radical polymerization. These investigations mark the first time that the benefits of the chain transfer reaction between epoxy and hydroxyl groups of methacrylate, on the crosslinking network and microphase separation during hybrid visible-light initiated photopolymerization, have been determined.
Sekine, Ryojun; Aoki, Hiroyuki; Ito, Shinzaburo
2009-05-21
The localization and orientation of the symmetric diblock copolymer chain in a quasi-two-dimensional microphase-separated structure were studied by scanning near-field optical microscopy (SNOM). In the monolayer of poly(isobutyl methacrylate)-block-poly(octadecyl methacrylate) (PiBMA-b-PODMA), the individual PiBMA subchains were directly observed by SNOM, and the center of mass (CM) and orientational angle relative to the phase interface were examined at the single chain level. It was found that the position of the CM and the orientation of the PiBMA subchain in the lamellar structure were dependent on the curvature of the PiBMA/PODMA interface. As the interface was bent toward the objective chain, the block chain preferred the CM position closer to the domain center, and the conformation was strongly oriented perpendicularly to the domain interface. With increase of the curvature, the steric hindrance among the block chain increases, resulting in the stretched conformation.
Microphase separation in thin films of lamellar forming polydisperse di-block copolymers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Rajeev; Lokitz, Bradley S.; Sides, Scott W.
Despite the ubiquity of polydispersity in chain lengths of di-block copolymers, its effects on microphase separation in thin films have eluded a clear understanding. In this paper, we have studied effects of polydispersity on the microphase separation in thin films of lamellar forming di-block copolymers using self-consistent field theory (SCFT) and neutron reflectivity experiments. Di-block copolymers containing a polydisperse block of poly(glycidylmethacrylate) (PGMA) connected to a near-monodisperse block poly(2-vinyl-4,4-dimethyl-d 6 azlactone) (PVDMA-d 6) are considered in this work. Effects of chain length polydispersity, film thickness, substrate–monomer and monomer–monomer interactions on the microphase segregation are studied using SCFT. The theoretical studymore » reveals that in comparison to a film created with monodisperse di-block copolymers, an increase in polydispersity tends to decrease the number of lamellar strata that can be packed in a film of given thickness. This is a direct consequence of an increase in lamellar domain spacing with an increase in polydispersity index. Furthermore, it is shown that polydispersity induces conformational asymmetry and an increase in the polydispersity index leads to an increase in the effective Kuhn segment length of the polydisperse blocks. It is shown that the conformational asymmetry effects, which are entropic in origin and of increasing importance as film thickness decreases, drive the polydisperse blocks to the middle of the films despite favorable substrate interactions. These predictions are verified by results from neutron reflectivity experiments on thin films made from moderately polydisperse PGMA-PVDMA-d 6 di-block copolymer deposited on silicon substrates. In conclusion, results from SCFT are used to predict neutron reflectivity profiles, providing a facile and robust route to obtain useful physical insights into the structure of polydisperse diblock copolymers at interfaces.« less
Microphase separation in thin films of lamellar forming polydisperse di-block copolymers
Kumar, Rajeev; Lokitz, Bradley S.; Sides, Scott W.; ...
2015-02-03
Despite the ubiquity of polydispersity in chain lengths of di-block copolymers, its effects on microphase separation in thin films have eluded a clear understanding. In this paper, we have studied effects of polydispersity on the microphase separation in thin films of lamellar forming di-block copolymers using self-consistent field theory (SCFT) and neutron reflectivity experiments. Di-block copolymers containing a polydisperse block of poly(glycidylmethacrylate) (PGMA) connected to a near-monodisperse block poly(2-vinyl-4,4-dimethyl-d 6 azlactone) (PVDMA-d 6) are considered in this work. Effects of chain length polydispersity, film thickness, substrate–monomer and monomer–monomer interactions on the microphase segregation are studied using SCFT. The theoretical studymore » reveals that in comparison to a film created with monodisperse di-block copolymers, an increase in polydispersity tends to decrease the number of lamellar strata that can be packed in a film of given thickness. This is a direct consequence of an increase in lamellar domain spacing with an increase in polydispersity index. Furthermore, it is shown that polydispersity induces conformational asymmetry and an increase in the polydispersity index leads to an increase in the effective Kuhn segment length of the polydisperse blocks. It is shown that the conformational asymmetry effects, which are entropic in origin and of increasing importance as film thickness decreases, drive the polydisperse blocks to the middle of the films despite favorable substrate interactions. These predictions are verified by results from neutron reflectivity experiments on thin films made from moderately polydisperse PGMA-PVDMA-d 6 di-block copolymer deposited on silicon substrates. In conclusion, results from SCFT are used to predict neutron reflectivity profiles, providing a facile and robust route to obtain useful physical insights into the structure of polydisperse diblock copolymers at interfaces.« less
Microphase separation in thin films of lamellar forming polydisperse di-block copolymers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Rajeev; Lokitz, Bradley S.; Sides, Scott W.
Despite the ubiquity of polydispersity in chain lengths of di-block copolymers, its effects on microphase separation in thin films have eluded a clear understanding. In this work, we have studied effects of polydispersity on the microphase separation in thin films of lamellar forming di-block copolymers using self-consistent field theory (SCFT) and neutron reflectivity experiments. Di-block copolymers containing a polydisperse block of poly(glycidylmethacrylate) (PGMA) connected to a near-monodisperse block poly(2-vinyl-4,4-dimethyl-d6 azlactone) (PVDMA-d6) are considered in this work. Effects of chain length polydispersity, film thickness, substrate-monomer and monomer-monomer interactions on the microphase segregation are studied using SCFT. The theoretical study reveals thatmore » in comparison to a film created with monodisperse di-block copolymers, an increase in polydispersity tends to decrease the number of lamellar strata that can be packed in a film of given thickness. This is a direct consequence of an increase in lamellar domain spacing with an increase in polydispersity index. Furthermore, it is shown that polydispersity induces conformational asymmetry and an increase in the polydispersity index leads to an increase in the effective Kuhn segment length of the polydisperse blocks. It is shown that the conformational asymmetry effects, which are entropic in origin and of increasing importance as film thickness decreases, drive the polydisperse blocks to the middle of the films despite favorable substrate interactions. These predictions are verified by results from neutron reflectivity experiments on thin films made from moderately polydisperse PGMA-PVDMA-d6 di-block copolymer deposited on silicon substrates. Finally, results from SCFT are used to predict neutron reflectivity profiles, providing a facile and robust route to obtain useful physical insights into the structure of polydisperse diblock copolymers at interfaces.« less
Ion Conduction in Microphase-Separated Block Copolymer Electrolytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kambe, Yu; Arges, Christopher G.; Patel, Shrayesh
2017-01-01
Microphase separation of block copolymers provides a promising route towards engineering a mechanically robust ion conducting film for electrochemical devices. The separation into two different nano-domains enables the film to simultaneously exhibit both high ion conductivity and mechanical robustness, material properties inversely related in most homopolymer and random copolymer electrolytes. To exhibit the maximum conductivity and mechanical robustness, both domains would span across macroscopic length scales enabling uninterrupted ion conduction. One way to achieve this architecture is through external alignment fields that are applied during the microphase separation process. In this review, we present the progress and challenges for aligningmore » the ionic domains in block copolymer electrolytes. A survey of alignment and characterization is followed by a discussion of how the nanoscale architecture affects the bulk conductivity and how alignment may be improved to maximize the number of participating conduction domains.« less
Self-doped microphase separated block copolymer electrolyte
Mayes, Anne M.; Sadoway, Donald R.; Banerjee, Pallab; Soo, Philip; Huang, Biying
2002-01-01
A polymer electrolyte includes a self-doped microphase separated block copolymer including at least one ionically conductive block and at least one second block that is immiscible in the ionically conductive block, an anion immobilized on the polymer electrolyte and a cationic species. The ionically conductive block provides a continuous ionically conductive pathway through the electrolyte. The electrolyte may be used as an electrolyte in an electrochemical cell.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armstrong, Daniel P.; Mineart, Kenneth P.; Lee, Byeongdu
Since selectively swollen thermoplastic elastomer gels (TPEGs) afford a wide range of beneficial properties that open new doors to developing elastomer-based technologies, in this study we examine the unique structure-property behavior of TPEGs composed of olefinic block copolymers (OBCs). Unlike their styrenic counterparts typically possessing two chemically different blocks, this class of multiblock copolymers consists of linear polyethylene hard blocks and poly(ethylene-co-α-octene) soft blocks, in which case, microphase separation between the hard and the soft blocks is accompanied by crystallization of the hard blocks. We prepare olefinic TPEGs (OTPEGs) through the incorporation of a primarily aliphatic oil that selectively swellsmore » the soft block and investigate the resultant morphological features through the use of polarized light microscopy and small-/wideangle X-ray scattering. These features are correlated with thermal and mechanical property measurements from calorimetry, rheology, and extensiometry to elucidate the roles of crystallization and self-assembly on gel characteristics and establish useful structure-property relationships.« less
Armstrong, Daniel P.; Mineart, Kenneth P.; Lee, Byeongdu; ...
2016-11-01
Since selectively swollen thermoplastic elastomer gels (TPEGs) afford a wide range of beneficial properties that open new doors to developing elastomer-based technologies, in this study we examine the unique structure-property behavior of TPEGs composed of olefinic block copolymers (OBCs). Unlike their styrenic counterparts typically possessing two chemically different blocks, this class of multiblock copolymers consists of linear polyethylene hard blocks and poly(ethylene-co-α-octene) soft blocks, in which case, microphase separation between the hard and the soft blocks is accompanied by crystallization of the hard blocks. We prepare olefinic TPEGs (OTPEGs) through the incorporation of a primarily aliphatic oil that selectively swellsmore » the soft block and investigate the resultant morphological features through the use of polarized light microscopy and small-/wideangle X-ray scattering. These features are correlated with thermal and mechanical property measurements from calorimetry, rheology, and extensiometry to elucidate the roles of crystallization and self-assembly on gel characteristics and establish useful structure-property relationships.« less
Chinnam, Parameswara Rao; Mantravadi, Ramya; Jimenez, Jayvic C; Dikin, Dmitriy A; Wunder, Stephanie L
2016-01-20
Blends of methyl cellulose (MC) and liquid pegylated polyoctahedralsilsesquioxane (POSS-PEG) were prepared from non-gelled, aqueous solutions at room temperature (RT), which was below their gel temperatures (Tm). Lamellar, fibrillated films (pure MC) and increasingly micro-porous morphologies with increasing POSS-PEG content were formed, which had RT moduli between 1 and 5GPa. Evidence of distinct micro-phase separated MC and POSS-PEG domains was indicated by the persistence of the MC and POSS-PEG (at 77K) crystal structures in the X-ray diffraction data, and scanning transmission electron images. Mixing of MC and POSS-PEG in the interface region was indicated by suppression of crystallinity in the POSS-PEG, and increases/decreases in the glass transition temperatures (Tg) of POSS-PEG/MC in the blends compared with the pure components. These interface interactions may serve as cross-link sites between the micro-phase separated domains that permit incorporation of high amounts of POSS-PEG in the blends, prevent macro-phase separation and result in rubbery material properties (at high POSS-PEG content). Above Tg/Tm of POSS-PEG, the moduli of the blends increase with MC content as expected. However, below Tg/Tm of POSS-PEG, the moduli are greater for blends with high POSS-PEG content, suggesting that it behaves like semi-crystalline polyethylene oxide reinforced with silica (SiO1.5). Copyright © 2015 Elsevier Ltd. All rights reserved.
Ion Correlation Effects in Salt-Doped Block Copolymers
NASA Astrophysics Data System (ADS)
Brown, Jonathan R.; Seo, Youngmi; Hall, Lisa M.
2018-03-01
We apply classical density functional theory to study how salt changes the microphase morphology of diblock copolymers. Polymers are freely jointed and one monomer type favorably interacts with ions, to account for the selective solvation that arises from different dielectric constants of the microphases. By including correlations from liquid state theory of an unbound reference fluid, the theory can treat chain behavior, microphase separation, ion correlations, and preferential solvation, at the same coarse-grained level. We show good agreement with molecular dynamics simulations.
Block copolymer templated self-assembly of disk-shaped molecules
NASA Astrophysics Data System (ADS)
Aragones, J. L.; Alexander-Katz, A.
2017-08-01
Stacking of disk-shaped organic molecules is a promising strategy to develop electronic and photovoltaic devices. Here, we investigate the capability of a soft block copolymer matrix that microphase separates into a cylindrical phase to direct the self-assembly of disk-shaped molecules by means of molecular simulations. We show that two disk molecules confined in the cylinder domain experience a depletion force, induced by the polymer chains, which results in the formation of stacks of disks. This entropic interaction and the soft confinement provided by the matrix are both responsible for the structures that can be self-assembled, which include slanted or columnar stacks. In addition, we evidence the transmission of stresses between the different minority domains of the microphase, which results in the establishment of a long-ranged interaction between disk molecules embedded in different domains; this interaction is of the order of the microphase periodicity and may be exploited to direct assembly of disks at larger scales.
Jiang, Jing; Jacobs, Alan G; Wenning, Brandon; Liedel, Clemens; Thompson, Michael O; Ober, Christopher K
2017-09-20
Laser spike annealing was applied to PS-b-PDMS diblock copolymers to induce short-time (millisecond time scale), high-temperature (300 to 700 °C) microphase segregation and directed self-assembly of sub-10 nm features. Conditions were identified that enabled uniform microphase separation in the time frame of tens of milliseconds. Microphase ordering improved with increased temperature and annealing time, whereas phase separation contrast was lost for very short annealing times at high temperature. PMMA brush underlayers aided ordering under otherwise identical laser annealing conditions. Good long-range order for sub-10 nm cylinder morphology was achieved using graphoepitaxy coupled with a 20 ms dwell laser spike anneal above 440 °C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Minjee; Lee, Byeongdu; Leal, Cecilia
Here, we present new structures of soft-material thin films that augment the functionality of substrate-mediated delivery systems. A hybrid material composed of phospholipids and block copolymers adopts a multilayered membrane structure supported on a solid surface. The hybrid films comprise intentional intramembrane heterogeneities that register across multilayers. These stacked domains convey unprecedented enhancement and control of permeability of solutes across micrometer-thick films. Using grazing incidence X-ray scattering, phase contrast atomic force microscopy, and confocal microscopy, we observed that in each lamella, lipid and polymers partition unevenly within the membrane plane segregating into lipid- or polymer-rich domains. Interestingly, we found evidencemore » that like-domains align in registry across multilayers, thereby making phase separation three-dimensional. Phase boundaries exist over extended length scales to compensate the height mismatch between lipid and polymer molecules. We show that microphase separation in hybrid films can be exploited to augment the capability of drug-eluting substrates. Lipid–polymer hybrid films loaded with paclitaxel show synergistic permeability of drug compared to single-component counterparts. We present a thorough structural study of stacked lipid–polymer hybrid membranes and propose that the presence of registered domains and domain boundaries impart enhanced drug release functionality. This work offers new perspectives in designing thin films for controlled delivery applications« less
Kang, Minjee; Lee, Byeongdu; Leal, Cecilia
2017-10-20
Here, we present new structures of soft-material thin films that augment the functionality of substrate-mediated delivery systems. A hybrid material composed of phospholipids and block copolymers adopts a multilayered membrane structure supported on a solid surface. The hybrid films comprise intentional intramembrane heterogeneities that register across multilayers. These stacked domains convey unprecedented enhancement and control of permeability of solutes across micrometer-thick films. Using grazing incidence X-ray scattering, phase contrast atomic force microscopy, and confocal microscopy, we observed that in each lamella, lipid and polymers partition unevenly within the membrane plane segregating into lipid- or polymer-rich domains. Interestingly, we found evidencemore » that like-domains align in registry across multilayers, thereby making phase separation three-dimensional. Phase boundaries exist over extended length scales to compensate the height mismatch between lipid and polymer molecules. We show that microphase separation in hybrid films can be exploited to augment the capability of drug-eluting substrates. Lipid–polymer hybrid films loaded with paclitaxel show synergistic permeability of drug compared to single-component counterparts. We present a thorough structural study of stacked lipid–polymer hybrid membranes and propose that the presence of registered domains and domain boundaries impart enhanced drug release functionality. This work offers new perspectives in designing thin films for controlled delivery applications« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Misichronis, Konstantinos; Chen, Jihua; Imel, Adam
A series of linear diblock copolymers containing polystyrene (PS) and poly(1,3-cyclohexadiene) (PCHD) with high 1,4-microstructure (>87%) was synthesized by anionic polymerization and high vacuum techniques. Microphase separation in the bulk was examined in this paper by transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) and compared to computational analysis of the predicted morphological phase diagram for this system. Because of the high conformational asymmetry between PS and PCHD, these materials self-assemble into typical morphologies expected for linear diblock copolymer systems and atypical structures. Rheological measurements were conducted and revealed order–disorder transition temperatures (T ODT), for the first time formore » PS-b-PCHD copolymers, resulting in a working expression for the effective interaction parameter χ eff = 32/T – 0.016. Furthermore, we performed computational studies that coincide with the experimental results. Finally, these copolymers exhibit well-ordered structures even at high temperatures (~260 °C) therefore providing a better insight concerning their microphase separation at the nanoscale which is important for their potential use in nanotechnology and/or nanolithography applications.« less
Guiding nanocrystal organization within mesoscale lipid thin-film templates
NASA Astrophysics Data System (ADS)
Steer, Dylan; Zhai, You; Oh, Nuri; Shim, Moonsub; Leal, Cecilia
Recently a great deal of interest has been established in the cooperative intermolecular interactions in hard and soft meso-structured composite materials. Much of this research has focused on the effects of nanoparticle incorporation into block copolymers that otherwise self-assemble into periodic mesostructures through microphase separation. Through careful selection of the polymer components the nanoparticles can be directed to also microphase separate and therefore exhibit symmetry induced by the block copolymers. Such systems are promising for enabling the organization of nanoparticle superstructures. Although this is useful in many applications such as in bottom-up assembly of opti-electronic materials, most of these applications would benefit from interplay between structure and dynamics. Much like block-copolymers, lipids can self-assembly into a variety of structures with 1D lamellar, 2D Hexagonal, and 3D cubic symmetry. However, unlike block-copolymers phase stabilization and conversion from one geometry to another happens under a minute. We will show our recent efforts into using lipid thin films to guide the assembly of nanoparticle superstructures resembling those displayed by lipid polymorphs and how they distort lipid equilibrium phase behavior. Funding from the Office of Naval Research.
Communication: Microphase equilibrium and assembly dynamics.
Zhuang, Yuan; Charbonneau, Patrick
2017-09-07
Despite many attempts, ordered equilibrium microphases have yet to be obtained in experimental colloidal suspensions. The recent computation of the equilibrium phase diagram of a microscopic, particle-based microphase former [Zhuang et al., Phys. Rev. Lett. 116, 098301 (2016)] has nonetheless found such mesoscale assemblies to be thermodynamically stable. Here, we consider their equilibrium and assembly dynamics. At intermediate densities above the order-disorder transition, we identify four different dynamical regimes and the structural changes that underlie the dynamical crossovers from one disordered regime to the next. Below the order-disorder transition, we also find that periodic lamellae are the most dynamically accessible of the periodic microphases. Our analysis thus offers a comprehensive view of the dynamics of disordered microphases and a route to the assembly of periodic microphases in a putative well-controlled, experimental system.
Microphase Separation Controlled Beta Sheet Crystallization Kinetics in Silk Fibroin Protein.
NASA Astrophysics Data System (ADS)
Hu, Xiao; Lu, Qiang; Kaplan, David; Cebe, Peggy
2009-03-01
We investigate the mechanism of isothermal crystallization kinetics of beta-sheet crystals in silk multiblock fibrous proteins. The Avrami analysis kinetic theory, for studies of synthetic polymer crystal growth, is for the first time extended to investigate protein self-assembly in beta-sheet rich Bombyx mori silk fibroin samples, using time-resolved Fourier transform infrared spectroscopy, differential scanning calorimetry and synchrotron real-time wide-angle X-ray scattering. Results indicate formation of beta sheet crystals in silk proteins is different from the 3-D spherulitic crystal growth found in synthetic homopolymers. Observations by scanning electron microscopy support the view that the protein structures vary during the different stages of crystal growth, and show a microphase separation pattern after chymotrypsin enzyme biodegradation. We present a model to explain the crystallization of the multiblock silk fibroin protein, by analogy to synthetic block copolymers. This model could be widely applicable in other proteins with multiblock (i.e., crystallizable and non-crystallizable) domains.
NASA Astrophysics Data System (ADS)
Stopper, Daniel; Roth, Roland
2018-06-01
By means of classical density functional theory and its dynamical extension, we consider a colloidal fluid with spherically symmetric competing interactions, which are well known to exhibit a rich bulk phase behavior. This includes complex three-dimensional periodically ordered cluster phases such as lamellae, two-dimensional hexagonally packed cylinders, gyroid structures, or spherical micelles. While the bulk phase behavior has been studied extensively in earlier work, in this paper we focus on such structures confined between planar repulsive walls under shear flow. For sufficiently high shear rates, we observe that microphase separation can become fully suppressed. For lower shear rates, however, we find that, e.g., the gyroid structure undergoes a kinetic phase transition to a hexagonally packed cylindrical phase, which is found experimentally and theoretically in amphiphilic block copolymer systems. As such, besides the known similarities between the latter and colloidal systems regarding the equilibrium phase behavior, our work reveals further intriguing nonequilibrium relations between copolymer melts and colloidal fluids with competing interactions.
Misichronis, Konstantinos; Chen, Jihua; Imel, Adam; ...
2017-03-15
A series of linear diblock copolymers containing polystyrene (PS) and poly(1,3-cyclohexadiene) (PCHD) with high 1,4-microstructure (>87%) was synthesized by anionic polymerization and high vacuum techniques. Microphase separation in the bulk was examined in this paper by transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) and compared to computational analysis of the predicted morphological phase diagram for this system. Because of the high conformational asymmetry between PS and PCHD, these materials self-assemble into typical morphologies expected for linear diblock copolymer systems and atypical structures. Rheological measurements were conducted and revealed order–disorder transition temperatures (T ODT), for the first time formore » PS-b-PCHD copolymers, resulting in a working expression for the effective interaction parameter χ eff = 32/T – 0.016. Furthermore, we performed computational studies that coincide with the experimental results. Finally, these copolymers exhibit well-ordered structures even at high temperatures (~260 °C) therefore providing a better insight concerning their microphase separation at the nanoscale which is important for their potential use in nanotechnology and/or nanolithography applications.« less
NASA Astrophysics Data System (ADS)
Morita, Kazuyo; Yamamoto, Kimiko
2017-03-01
Xylan, one of hemicellulose family, block copolymer was newly developed for wide-range directed self-assembly lithography (DSA). Xylan is higher hydrophilic material because of having many hydroxy groups in one molecule. It means that xylan block copolymer has a possibility of high-chi block copolymer. Generally, DSA is focused on microphase separation for smaller size with high-chi block copolymer and not well known for larger size. In this study, xylan block copolymer was confirmed enabling wider range of patterning size, from smaller size to larger size. The key of xylan block copolymer is a new molecular structure of block copolymer and sugar chain control technology. Sugar content is the important parameter for not only micro-phase separation property but also line edge roughness (LER) and defects. Based on the sugar control technology, wide-range (hp 8.3nm to 26nm L/S and CD 10nm to 51nm hole) DSA patterning was demonstrated. Additionally it was confirmed that xylan block copolymer is suitable for sequential infiltration synthesis (SIS) process.
Microphase separation in random multiblock copolymers
NASA Astrophysics Data System (ADS)
Govorun, E. N.; Chertovich, A. V.
2017-01-01
Microphase separation in random multiblock copolymers is studied with the mean-field theory assuming that long blocks of a copolymer are strongly segregated, whereas short blocks are able to penetrate into "alien" domains and exchange between the domains and interfacial layer. A bidisperse copolymer with blocks of only two sizes (long and short) is considered as a model of multiblock copolymers with high polydispersity in the block size. Short blocks of the copolymer play an important role in the microphase separation. First, their penetration into the "alien" domains leads to the formation of joint long blocks in their own domains. Second, short blocks localized at the interface considerably change the interfacial tension. The possibility of penetration of short blocks into the "alien" domains is controlled by the product χ Nsh (χ is the Flory-Huggins interaction parameter and Nsh is the short block length). At not very large χ Nsh , the domain size is larger than that for a regular copolymer consisting of the same long blocks as in the considered random copolymer. At a fixed mean block size, the domain size grows with an increase in the block size dispersity, the rate of the growth being dependent of the more detailed parameters of the block size distribution.
NASA Astrophysics Data System (ADS)
Li, Liangbin; Meng, Fenghua; Zhong, Zhiyuan; Byelov, Dmytro; de Jeu, Wim H.; Feijen, Jan
2007-01-01
The morphology of a highly asymmetric double crystallizable poly(ɛ-caprolactone-b-ethylene oxide) (PCL-b-PEO) block copolymer has been studied with in situ simultaneously small and wide-angle x-ray scattering as well as atomic force microscopy. The molecular masses Mn of the PCL and PEO blocks are 24 000 and 5800, respectively. X-ray scattering and rheological measurements indicate that no microphase separation occurs in the melt. Decreasing the temperature simultaneously triggers off a crystallization of PCL and microphase separation between the PCL and PEO blocks. Coupling and competition between microphase separation and crystallization results in a morphology of PEO spheres surrounded by PCL partially crystallized in lamella. Further decreasing temperature induces the crystallization of PEO spheres, which have a preferred orientation due to the confinements from hard PCL crystalline lamella and from soft amorphous PCL segments in different sides. The final morphology of this highly asymmetric block copolymer is similar to the granular morphology reported for syndiotactic polypropylene and other (co-) polymers. This implies a similar underlying mechanism of coupling and competition of various phase transitions, which is worth further exploration.
Synthesis, morphology and dynamics of polyureas and their lithium ionomers
NASA Astrophysics Data System (ADS)
Chuayprakong, Sunanta
Electrolytes currently used in commercial lithium ion batteries have led to leakage and safety issues. Solvent-free solid polymer electrolytes (SPEs) offering high energy density are promising materials for lithium battery applications. SPEs require high modulus to separate the electrodes and suppress lithium dendrite growth. Microphase separation of the hard segments in amorphous polyureas (PUs) yields materials with higher moduli than typical low glass transition temperature (Tg) polymers. In this dissertation, several families of solution polymerized polyether-based PU ionomers were synthesized and their thermal, morphology and dynamic properties characterized as a function of chemical composition. In the initial phase of this investigation, polyethylene oxide (PEO) diamines (with molecular weights = 200, 600, 1050, 2000, 3000 and 6000 g/mol) were polymerized with 4,4' methylene diphenyl diisocyanate (MDI). PUs with 200 and 600 g/mol PEO soft segments are amorphous and single phase. The amorphous PU having 1050 g/mol PEO segments exhibits a small degree of phase separation, as demonstrated by X-ray scattering. PUs with 2000, 3000 and 6000 g/mol PEO soft segments are semicrystalline and their melting points and degrees of crystallinity are lower than those of the precursor PEO diamines due to their attachment to rigid hard segments. Even though polypropylene oxide (PPO) does not dissolve cations as efficiently as PEO, PPO is not crystallizable and was chosen to create a second family of amorphous PUs. PPO-containing diamines ((Jeff400 (MW = 400 g/mol) and Jeff2000 (MW = 2000 g/mol)) and MDI were chosen as the neutral soft segment and the hard segment, respectively. 2,5-diaminobenzene sulfonate was successfully synthesized and used for preparing ionomers. The amount of ionic species in these ionomers was varied and quantified using 1H-NMR. Single Tgs were observed and they increased with increasing ionic content. No X-ray scattering peaks corresponding to microphase separation of hard and soft segments were detected, nor were ordered hydrogen bonded carbonyl bands in FTIR spectra, demonstrating that the Jeff400 PUs are single phase. Using dielectric relaxation spectroscopy (DRS), segmental relaxation temperatures also increase with increasing ionic species content.. Increasing the number of ionic groups increases the hard segment content, which results in higher DSC Tgs and slower fmaxs for the segmental relaxation processes. For the non-ionic and all of the ionic Jeff2000 PU samples that contain some nonionic soft segments, low temperature Tgs were observed that arise from microphase separated soft phases. X-ray scattering peaks related to microphase separation and ordered hydrogen bonded carbonyl bands were observed, reinforcing the conclusion of hard/soft segment segregation. The DRS segmental relaxation is associated with soft phase relaxation, with some of the ion dipoles participating in this process for the ionic samples. The ionomers could not be dialyzed due to water insolubility, but were purified by multiple precipitation in deionize water. Nevertheless, the findings suggest that the observed conductivity primarily arises from ionic impurities. A third family of PU ionomers was synthesized using an amorphous polypropylene oxide-b- polyethylene oxide-b-polypropylene oxide diamine (ED900, MW = 900 g/mol, 68% EO) and 2,5-diaminobenzene sulfonate. Hexamethylene diisocyanate was utilized as the hard segment as its high packing efficiency is known to facilitate microphase separation. The non-ionic ED900 PU and its ionomers with various ion contents were successfully synthesized. Low Tgs due to segregation of soft segments, X-ray scattering peaks related to microphase separation between segments, and ordered hydrogen bonded carbonyl bands were detected. Tapping mode atomic force microscopy was also used to explore the morphology of these microphase separated materials. DRS segmental relaxations are associated with soft phase. These materials were extensively dialyzed and their low conductivities suggest that the lithium ions are primarily trapped in hard domains.
Recent Advances in the Theory and Simulation of Model Colloidal Microphase Formers.
Zhuang, Yuan; Charbonneau, Patrick
2016-08-18
This mini-review synthesizes our understanding of the equilibrium behavior of particle-based models with short-range attractive and long-range repulsive (SALR) interactions. These models, which can form stable periodic microphases, aim to reproduce the essence of colloidal suspensions with competing interparticle interactions. Ordered structures, however, have yet to be obtained in experiments. In order to better understand the hurdles to periodic microphase assembly, marked theoretical and simulation advances have been made over the past few years. Here, we present recent progress in the study of microphases in models with SALR interactions using liquid-state theory and density-functional theory as well as numerical simulations. Combining these various approaches provides a description of periodic microphases, and gives insights into the rich phenomenology of the surrounding disordered regime. Ongoing research directions in the thermodynamics of models with SALR interactions are also presented.
Nettesheim, Florian; Grillo, Isabelle; Lindner, Peter; Richtering, Walter
2004-05-11
We report on the influence of shear on a nonionic lamellar phase of tetraethyleneglycol monododecyl ether (C12E4) in D2O containing clay particles (Laponite RD). The system was studied by means of small-angle light scattering (SALS) and small-angle neutron scattering (SANS) under shear. The SANS experiments were conducted using a H2O/D2O mixture of the respective scattering length density to selectively match the clay scattering. The rheological properties show the familiar shear thickening regime associated with the formation of multilamellar vesicles (MLVs) and a shear thinning regime at higher stresses. The variation of viscosity is less pronounced as commonly observed. In the shear thinning regime, depolarized SALS reveals an unexpectedly strong variation of the MLV size. SANS experiments using the samples with lamellar contrast reveal a change in interlamellar spacing of up to 30% at stresses that lead to MLV formation. This change is much more pronounced than the change observed, when shear suppresses thermal bilayer undulations. Microphase separation occurs, and as a consequence, the lamellar spacing decreases drastically. The coincidence of the change in lamellar spacing and the onset of MLV formation is a strong indication for a morphology-driven microphase separation.
Chavis, Michelle A.; Smilgies, Detlef-M.; Wiesner, Ulrich B.; Ober, Christopher K.
2015-01-01
Thin films of block copolymers are extremely attractive for nanofabrication because of their ability to form uniform and periodic nanoscale structures by microphase separation. One shortcoming of this approach is that to date the design of a desired equilibrium structure requires synthesis of a block copolymer de novo within the corresponding volume ratio of the blocks. In this work, we investigated solvent vapor annealing in supported thin films of poly(2-hydroxyethyl methacrylate)-block-poly(methyl methacrylate) [PHEMA-b-PMMA] by means of grazing incidence small angle X–ray scattering (GISAXS). A spin-coated thin film of lamellar block copolymer was solvent vapor annealed to induce microphase separation and improve the long-range order of the self-assembled pattern. Annealing in a mixture of solvent vapors using a controlled volume ratio of solvents (methanol, MeOH, and tetrahydrofuran, THF), which are chosen to be preferential for each block, enabled selective formation of ordered lamellae, gyroid, hexagonal or spherical morphologies from a single block copolymer with a fixed volume fraction. The selected microstructure was then kinetically trapped in the dry film by rapid drying. To our knowledge, this paper describes the first reported case where in-situ methods are used to study the transition of block copolymer films from one initial disordered morphology to four different ordered morphologies, covering much of the theoretical diblock copolymer phase diagram. PMID:26819574
Clustering and assembly dynamics of a one-dimensional microphase former.
Hu, Yi; Charbonneau, Patrick
2018-05-23
Both ordered and disordered microphases ubiquitously form in suspensions of particles that interact through competing short-range attraction and long-range repulsion (SALR). While ordered microphases are more appealing materials targets, understanding the rich structural and dynamical properties of their disordered counterparts is essential to controlling their mesoscale assembly. Here, we study the disordered regime of a one-dimensional (1D) SALR model, whose simplicity enables detailed analysis by transfer matrices and Monte Carlo simulations. We first characterize the signature of the clustering process on macroscopic observables, and then assess the equilibration dynamics of various simulation algorithms. We notably find that cluster moves markedly accelerate the mixing time, but that event chains are of limited help in the clustering regime. These insights will inspire further study of three-dimensional microphase formers.
Morphological Characterization of Silicone Hydrogels
NASA Astrophysics Data System (ADS)
Gido, Samuel
2007-03-01
Silicone hydrogel materials are used in the latest generation of extended wear soft contact lenses. To ensure comfort and eye health, these materials must simultaneously exhibit high oxygen permeability and high water permeability / hydrophilicity. The materials achieve these opposing requirements based on bicontinuous composite of nanoscale domains of oxygen permeable (silicones) and hydrophilic (water soluble polymer) materials. The microphase separated morphology of silicone hydrogel contact lens materials was imaged using field emission gun scanning transmission electron microscopy (FEGSTEM), and atomic force microscopy (AFM). Additional morphological information was provided by small angle X-ray scattering (SAXS). These results all indicate a nanophase separated structure of silicone rich (oxygen permeable) and carbon rich (water soluble polymer) domains separated on a length scale of about 10 nm.
Microphase separation in solid lipid dosage forms as the cause of drug release instability.
Lopes, Diogo Gomes; Koutsamanis, Ioannis; Becker, Karin; Scheibelhofer, Otto; Laggner, Peter; Haack, Detlev; Stehr, Michael; Zimmer, Andreas; Salar-Behzadi, Sharareh
2017-01-30
Although lipid excipients are of increasing interest for development of taste-masked and modified release formulations, the drug release instability and the lack of mechanistic understanding in that regard still prevent their larger-scale application. In this work, we investigated the physical stability of a binary (tripalmitin/polysorbate 65) lipid coating formulation with a known stable polymorphism. The coating composition was characterized using DSC to construct the phase diagram of binary system and polarized light microscopy to display the microstructure organization. The water uptake and the erosion of slabs cast from the coating formulations were investigated post-production and after storage. Subsequently, N-acetylcysteine particles were coated with the selected formulations and the drug release stability was investigated. Additionally, microstructure characterization was performed via SEM and X-ray diffraction. The drug release instability was explained by polysorbate 65 and tripalmitin phase growth during storage, especially at 40°C, suggesting that polysorbate 65 can leak out of tripalmitin spherulitic structures, creating lipophilic and impermeable tripalmitin regions. The growth of polysorbate 65 phase leads to larger hydrophilic channels with reduced tortuosity. This work indicates that for obtaining stable drug release profiles from advanced lipid formulations, microphase separation should be prevented during storage. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Cong; Luo, Xiaolan; Li, Tao
2014-01-01
Environmentally friendly biopolyols have been produced with crude glycerol as the sole feedstock using a one-pot thermochemical conversion process without the addition of extra catalysts and reagents. Structural features of these biopolyols were characterized by rheology analysis. Rigid polyurethane (PU) foams were obtained from these crude glycerol-based biopolyols and the foaming mechanism was explored. Investigations revealed that partial carbonyl groups hydrogen-bonded with NeH were replaced by aromatic rings after the introduction of branched fatty acid ester chains in the “urea rich” phase, and that distinct microphases had formed in the foams. Studies showed that branched fatty acid ester chains inmore » the biopolyols played an important role in reducing the degree of microphase separation and stabilizing bubbles during foaming processes. PU foams with thermal conductivity comparable to commercial products made from petroleum-based polyols were obtained. These studies show the potential for development of PU foams based on crude glycerol, a renewable resource.« less
NASA Astrophysics Data System (ADS)
Chao, Chi-Yang
Block copolymers can self-assemble into highly regular, microphase-separated morphologies with dimensions at nanometer length scales. Potential applications such as optical wavelength photonic crystals, templates for nanolithographic patterning, or nanochannels for biomacromolecular separation take advantage of the well-ordered, controlled size microdomains of block copolymers. Side-chain liquid crystalline block copolymers (SCLCBCPs) are drawing increasing attention since the incorporation of liquid crystallinity turns their well-organized microstructures into dynamic functional materials. As a special type of block copolymer, hydrogen-bonded SCLCBCPs are unique, compositionally tunable materials with multiple dynamic functionalities that can readily respond to thermal, electrical and mechanical fields. Hydrogen-bonded SCLCBCPs were synthesized and assembled from host poly(styrene- b-acrylic acid) diblock copolymers with narrow molecular weight distributions as proton donors and guest imidazole functionalized mesogenic moieties as proton acceptors. In these studies non-covalent hydrogen bonding is employed to connect mesogenic side groups to a block copolymer backbone, both for its dynamic character as well as for facile materials preparation. The homogeneity and configuration of the hydrogen-bonded complexes were determined by both the molecular architecture of imidazolyl side groups and the process conditions. A one-dimensional photonic crystal composed of high molecular weight hydrogen-bonded SCLCBCP, with temperature dependent optical wavelength stop bands was successfully produced. The microstructures of hydrogen-bonded complexes could be rapidly aligned in an AC electric field at temperatures below the order-disorder transition but above their glass transitions. Remarkable dipolar properties of the mesogenic groups and thermal dissociation of hydrogen bonds are key elements to fast orientation switching. Studies of a wide range of mesogen and polymer combinations were carried out to investigate the interplay between morphology, mesophase behavior and blend composition (molar ratios of proton acceptors to proton donors). A critical composition for mesophase formation was identified and the characteristics of the H-bonded complexes below the critical blend ratios were very different than those above. Hydrogen bonding was also used to direct microphase separation of miscible poly(hydroxystyrene-b-methyl methacrylate) diblock copolymer by adopting imidazolyl additives able to hydrogen bond with poly(hydroxystyrene). The miscibility between PHS and PMMA segments was diminished significantly by introducing small quantities of H-binding additives. The critical blend ratio for microphase separation was determined more by the molecular structure of the additives than the number of hydrogen bonds formed between PHS and additives.
Bio-Organic Nanotechnology: Using Proteins and Synthetic Polymers for Nanoscale Devices
NASA Technical Reports Server (NTRS)
Molnar, Linda K.; Xu, Ting; Trent, Jonathan D.; Russell, Thomas P.
2003-01-01
While the ability of proteins to self-assemble makes them powerful tools in nanotechnology, in biological systems protein-based structures ultimately depend on the context in which they form. We combine the self-assembling properties of synthetic diblock copolymers and proteins to construct intricately ordered, three-dimensional polymer protein structures with the ultimate goal of forming nano-scale devices. This hybrid approach takes advantage of the capabilities of organic polymer chemistry to build ordered structures and the capabilities of genetic engineering to create proteins that are selective for inorganic or organic substrates. Here, microphase-separated block copolymers coupled with genetically engineered heat shock proteins are used to produce nano-scale patterning that maximizes the potential for both increased structural complexity and integrity.
NASA Astrophysics Data System (ADS)
You, Gexin; Liu, Xinsen; Chen, Xiri; Yang, Bo; Zhou, Xiuwen
2018-06-01
In this study, a two-element model consisting of a non-linear spring and a viscous dashpot was proposed to simulate tensile curve of polyurethane fibers. The results showed that the two-element model can simulate the tensile curve of the polyurethane fibers better with a simple and applicable feature compared to the existing three-element model and four-element model. The effects of isocyanate index (R) on the hydrogen bond (H-bond) and the micro-phase separation of polyurethane fibers were investigated by Fourier transform infrared spectroscopy and x-ray pyrometer, respectively. The degree of H-bond and micro-phase separation increased first and then decreased as the R value increased, and gain a maximum at the value of 1.76, which is in good agreement with parameters viscosity coefficient η and the initial modulus c in the model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahalik, Jyoti P.; Dugger, Jason W.; Sides, Scott W.
Mixtures of block copolymers and nanoparticles (block copolymer nanocomposites) are known to microphase separate into a plethora of microstructures, depending on the composition, length scale and nature of interactions among its different constituents. Theoretical and experimental works on this class of nanocomposites have already high-lighted intricate relations among chemical details of the polymers, nanoparticles, and various microstructures. Confining these nanocomposites in thin films yields an even larger array of structures, which are not normally observed in the bulk. In contrast to the bulk, exploring various microstructures in thin films by the experimental route remains a challenging task. Here in thismore » work, we construct a model for the thin films of lamellar forming diblock copolymers containing spherical nanoparticles based on a hybrid particle-field approach. The model is benchmarked by comparison with the depth profiles obtained from the neutron reflectivity experiments for symmetric poly(deuterated styrene-b-n butyl methacrylate) copolymers blended with spherical magnetite nanoparticles covered with hydrogenated poly(styrene) corona. We show that the model based on a hybrid particle-field approach provides details of the underlying microphase separation in the presence of the nanoparticles through a direct comparison to the neutron reflectivity data. This work benchmarks the application of the hybrid particle-field model to extract the interaction parameters for exploring different microstructures in thin films containing block copolymers and nanocomposites.« less
Mahalik, Jyoti P.; Dugger, Jason W.; Sides, Scott W.; ...
2018-04-10
Mixtures of block copolymers and nanoparticles (block copolymer nanocomposites) are known to microphase separate into a plethora of microstructures, depending on the composition, length scale and nature of interactions among its different constituents. Theoretical and experimental works on this class of nanocomposites have already high-lighted intricate relations among chemical details of the polymers, nanoparticles, and various microstructures. Confining these nanocomposites in thin films yields an even larger array of structures, which are not normally observed in the bulk. In contrast to the bulk, exploring various microstructures in thin films by the experimental route remains a challenging task. Here in thismore » work, we construct a model for the thin films of lamellar forming diblock copolymers containing spherical nanoparticles based on a hybrid particle-field approach. The model is benchmarked by comparison with the depth profiles obtained from the neutron reflectivity experiments for symmetric poly(deuterated styrene-b-n butyl methacrylate) copolymers blended with spherical magnetite nanoparticles covered with hydrogenated poly(styrene) corona. We show that the model based on a hybrid particle-field approach provides details of the underlying microphase separation in the presence of the nanoparticles through a direct comparison to the neutron reflectivity data. This work benchmarks the application of the hybrid particle-field model to extract the interaction parameters for exploring different microstructures in thin films containing block copolymers and nanocomposites.« less
Chopade, Sujay A; Anderson, Evan L; Schmidt, Peter W; Lodge, Timothy P; Hillmyer, Marc A; Bühlmann, Philippe
2017-10-27
Interfaces of ionic liquids and aqueous solutions exhibit stable electrical potentials over a wide range of aqueous electrolyte concentrations. This makes ionic liquids suitable as bridge materials that separate in electroanalytical measurements the reference electrode from samples with low and/or unknown ionic strengths. However, methods for the preparation of ionic liquid-based reference electrodes have not been explored widely. We have designed a convenient and reliable synthesis of ionic liquid-based reference electrodes by polymerization-induced microphase separation. This technique allows for a facile, single-pot synthesis of ready-to-use reference electrodes that incorporate ion conducting nanochannels filled with either 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide or 1-dodecyl-3-methylimidazolium bis(trifluoromethyl sulfonyl)imide as ionic liquid, supported by a mechanically robust cross-linked polystyrene phase. This synthesis procedure allows for the straightforward design of various reference electrode geometries. These reference electrodes exhibit a low resistance as well as good reference potential stability and reproducibility when immersed into aqueous solutions varying from deionized, purified water to 100 mM KCl, while requiring no correction for liquid junction potentials.
Molecular Dynamics Simulations of Ion-Doped Microphase Separated Diblock Copolymers
NASA Astrophysics Data System (ADS)
Seo, Youngmi; Brown, Jonathan R.; Hall, Lisa M.
The effects of ion doping on microphase separated block copolymers are crucial to understand for transport applications such as battery electrolytes or fuel cell membranes. Prior experiments and theories have observed interesting trends, e.g. ions generally increase effective χ, broaden the domain interface at high loadings, and significantly change the order-to-disorder transition point. To provide a molecular level understanding of these trends and further information about ion dynamics, in this study, we perform molecular dynamics (MD) simulations using a generic coarse-grained model. We capture the selective ion solvation in one polymer microphase by adding an 1/r4 term to the intermolecular potential to account for the charge induced dipole effect between cations and A monomers. The model was validated by comparing with experimental domain spacing and density profile results. We find that as ions are added, the lamellar interface becomes sharper at first, then broadens with further ion loading, and finally forms a cylindrical morphology. We also observe that the interfacial broadening is retarded as the associative interaction between cations and A monomers or the ion-ion interaction strength is increased. These observations are compared to the results from fluids density functional theory (fDFT) which uses a similar model. We analyze ion dynamics in the model systems and discuss the impacts of ion selectivity and other variables on transport. This material is based upon work supported by the National Science Foundation under Grant 1454343.
Chemical Interactions and Their Role in the Microphase Separation of Block Copolymer Thin Films
Farrell, Richard A.; Fitzgerald, Thomas G.; Borah, Dipu; Holmes, Justin D.; Morris, Michael A.
2009-01-01
The thermodynamics of self-assembling systems are discussed in terms of the chemical interactions and the intermolecular forces between species. It is clear that there are both theoretical and practical limitations on the dimensions and the structural regularity of these systems. These considerations are made with reference to the microphase separation that occurs in block copolymer (BCP) systems. BCP systems self-assemble via a thermodynamic driven process where chemical dis-affinity between the blocks driving them part is balanced by a restorative force deriving from the chemical bond between the blocks. These systems are attracting much interest because of their possible role in nanoelectronic fabrication. This form of self-assembly can obtain highly regular nanopatterns in certain circumstances where the orientation and alignment of chemically distinct blocks can be guided through molecular interactions between the polymer and the surrounding interfaces. However, for this to be possible, great care must be taken to properly engineer the interactions between the surfaces and the polymer blocks. The optimum methods of structure directing are chemical pre-patterning (defining regions on the substrate of different chemistry) and graphoepitaxy (topographical alignment) but both centre on generating alignment through favourable chemical interactions. As in all self-assembling systems, the problems of defect formation must be considered and the origin of defects in these systems is explored. It is argued that in these nanostructures equilibrium defects are relatively few and largely originate from kinetic effects arising during film growth. Many defects also arise from the confinement of the systems when they are ‘directed’ by topography. The potential applications of these materials in electronics are discussed. PMID:19865513
Rasappa, Sozaraj; Borah, Dipu; Senthamaraikannan, Ramsankar; Faulkner, Colm C; Holmes, Justin D; Morris, Michael A
2014-07-01
The need for materials for high energy storage has led to very significant research in supercapacitor systems. These can exhibit electrical double layer phenomena and capacitances up to hundreds of F/g. Here, we demonstrate a new supercapacitor fabrication methodology based around the microphase separation of PS-b-PMMA which has been used to prepare copper nanoelectrodes of dimension -13 nm. These structures provide excellent capacitive performance with a maximum specific capacitance of -836 F/g for a current density of 8.06 A/g at a discharge current as high as 75 mA. The excellent performance is due to a high surface area: volume ratio. We suggest that this highly novel, easily fabricated structure might have a number of important applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chopade, Sujay A.; Anderson, Evan L.; Schmidt, Peter W.
Interfaces of ionic liquids and aqueous solutions exhibit stable electrical potentials over a wide range of aqueous electrolyte concentrations. This makes ionic liquids suitable as bridge materials that separate in electroanalytical measurements the reference electrode from samples with low and/or unknown ionic strengths. However, methods for the preparation of ionic liquid-based reference electrodes have not been explored widely. We have designed a convenient and reliable synthesis of ionic liquid-based reference electrodes by polymerization-induced microphase separation. This technique allows for a facile, single-pot synthesis of ready-to-use reference electrodes that incorporate ion conducting nanochannels filled with either 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide or 1-dodecyl-3-methylimidazolium bis(trifluoromethylmore » sulfonyl)imide as ionic liquid, supported by a mechanically robust cross-linked polystyrene phase. This synthesis procedure allows for the straightforward design of various reference electrode geometries. These reference electrodes exhibit a low resistance as well as good reference potential stability and reproducibility when immersed into aqueous solutions varying from deionized, purified water to 100 mM KCl, while requiring no correction for liquid junction potentials.« less
Amplifying (Im)perfection: The Impact of Crystallinity in Discrete and Disperse Block Co-oligomers
2017-01-01
Crystallinity is seldomly utilized as part of the microphase segregation process in ultralow-molecular-weight block copolymers. Here, we show the preparation of two types of discrete, semicrystalline block co-oligomers, comprising an amorphous oligodimethylsiloxane block and a crystalline oligo-l-lactic acid or oligomethylene block. The self-assembly of these discrete materials results in lamellar structures with unforeseen uniformity in the domain spacing. A systematic introduction of dispersity reveals the extreme sensitivity of the microphase segregation process toward chain length dispersity in the crystalline block. PMID:28994585
Amplifying (Im)perfection: The Impact of Crystallinity in Discrete and Disperse Block Co-oligomers.
van Genabeek, Bas; Lamers, Brigitte A G; de Waal, Bas F M; van Son, Martin H C; Palmans, Anja R A; Meijer, E W
2017-10-25
Crystallinity is seldomly utilized as part of the microphase segregation process in ultralow-molecular-weight block copolymers. Here, we show the preparation of two types of discrete, semicrystalline block co-oligomers, comprising an amorphous oligodimethylsiloxane block and a crystalline oligo-l-lactic acid or oligomethylene block. The self-assembly of these discrete materials results in lamellar structures with unforeseen uniformity in the domain spacing. A systematic introduction of dispersity reveals the extreme sensitivity of the microphase segregation process toward chain length dispersity in the crystalline block.
Equilibrium Phase Behavior of the Square-Well Linear Microphase-Forming Model.
Zhuang, Yuan; Charbonneau, Patrick
2016-07-07
We have recently developed a simulation approach to calculate the equilibrium phase diagram of particle-based microphase formers. Here, this approach is used to calculate the phase behavior of the square-well linear model for different strengths and ranges of the linear long-range repulsive component. The results are compared with various theoretical predictions for microphase formation. The analysis further allows us to better understand the mechanism for microphase formation in colloidal suspensions.
Chu, Wei-Cheng; Chiang, Shih-Fan; Li, Jheng-Guang; Kuo, Shiao-Wei
2013-01-01
After blending the triblock copolymer, poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) (PEO-b-PPO-b-PEO) with novolac-type phenolic resin, Fourier transform infrared spectroscopy revealed that the ether groups of the PEO block were stronger hydrogen bond acceptors for the OH groups of phenolic resin than were the ether groups of the PPO block. Thermal curing with hexamethylenetetramine as the curing agent resulted in the triblock copolymer being incorporated into the phenolic resin, forming a nanostructure through a mechanism involving reaction-induced microphase separation. Mild pyrolysis conditions led to the removal of the PEO-b-PPO-b-PEO triblock copolymer and formation of mesoporous phenolic resin. This approach provided a variety of composition-dependent nanostructures, including disordered wormlike, body-centered-cubic spherical and disorder micelles. The regular mesoporous novolac-type phenolic resin was formed only at a phenolic content of 40–60 wt %, the result of an intriguing balance of hydrogen bonding interactions among the phenolic resin and the PEO and PPO segments of the triblock copolymer. PMID:28788378
Misichronis, Konstantinos; Chen, Jihua; Kahk, Jong K.; ...
2016-03-29
Here, the synthesis and molecular characterization of a series of conformationally asymmetric polystyrene-block-poly(1,3-cyclohexadiene) (PS- b-PCHD) diblock copolymers (PCHD: ~90% 1,4 and ~10% 1,2), by sequential anionic copolymerization high vacuum techniques, is reported. A wide range of volume fractions (0.27 ≤ Φ PS ≤ 0.91) was studied by transmission electron microscopy and small-angle X-ray scattering in order to explore in detail the microphase separation behavior of these flexible/semiflexible diblock copolymers. Unusual morphologies, consisting of PCHD core(PCHD-1,4)–shell(PCHD-1,2) cylinders in PS matrix and three-phase (PS, PCHD-1,4, PCHD-1,2) four-layer lamellae, were observed suggesting that the chain stiffness of the PCHD block and the strongmore » dependence of the interaction parameter χ on the PCHD microstructures are important factors for the formation of this unusual microphase separation behavior in PS- b-PCHD diblock copolymers. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016, 54, 1564–1572« less
NASA Technical Reports Server (NTRS)
Xue, Chen-Chen; Meador, Mary Ann B.; Eby, R. K.; Cheng, Stephen Z. D.; Ge, Jason J.; Cubon, Valerie A.
2002-01-01
Rod-coil molecules have been introduced as a novel type of block copolymers with unique microstructure due to their ability to self-assemble to various ordered morphologies on a nanometer length scale. These molecules, comprised two homo polymers joined together at one end, microphase separate into ordered, periodic arrays of spheres, cylinders in the bulk state and or solution. To get ordered structure in a reasonable scale, additional force field are applied, such as mechanical shearing, electric field and magnetic field. Recently, progress has made it a possible to develop a new class of polyimides (PI)-Polyethylene oxide (PEO) that are soluble in polar organic solvents. The solvent-soluble PI-PEO has a wide variety of applications in microelectronics, since these PI-PEO films exhibit a high degree of thermal and chemical stability. In this paper, we report the self-assembled ordered structure of PI-PEO molecules formed from concentrate solution.
Ahn, Suk-kyun; Carrillo, Jan-Michael Y.; Keum, Jong K.; ...
2017-04-07
The ability to widely tune the design of macromolecular bottlebrushes provides access to self-assembled nanostructures formed by microphase segregation in melt, thin film and solution that depart from structures adopted by simple linear copolymers. A series of random bottlebrush copolymers containing poly(3-hexylthiophene) (P3HT) and poly(D,L-lactide) (PLA) side chains grafted on a poly(norbornene) backbone were synthesized via ring-opening metathesis polymerization (ROMP) using the grafting through approach. P3HT side chains induce a physical aggregation of the bottlebrush copolymers upon solvent removal by vacuum drying, primarily driven by attractive π–π interactions; however, the amount of aggregation can be controlled by adjusting side chainmore » composition or by adding linear P3HT chains to the bottlebrush copolymers. Coarse-grained molecular dynamics simulations reveal that linear P3HT chains preferentially associate with P3HT side chains of bottlebrush copolymers, which tends to reduce the aggregation. The nanoscale morphology of microphase segregated thin films created by casting P3HT–PLA random bottlebrush copolymers is highly dependent on the composition of P3HT and PLA side chains, while domain spacing of nanostructures is mainly determined by the length of the side chains. The selective removal of PLA side chains under alkaline conditions generates nanoporous P3HT structures that can be tuned by manipulating molecular design of the bottlebrush scaffold, which is affected by molecular weight and grafting density of the side chains, and their sequence. Furthermore, the ability to exploit the unusual architecture of bottlebrushes to fabricate tunable nanoporous P3HT thin film structures may be a useful way to design templates for optoelectronic applications or membranes for separations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, Suk-kyun; Carrillo, Jan-Michael Y.; Keum, Jong K.
The ability to widely tune the design of macromolecular bottlebrushes provides access to self-assembled nanostructures formed by microphase segregation in melt, thin film and solution that depart from structures adopted by simple linear copolymers. A series of random bottlebrush copolymers containing poly(3-hexylthiophene) (P3HT) and poly(D,L-lactide) (PLA) side chains grafted on a poly(norbornene) backbone were synthesized via ring-opening metathesis polymerization (ROMP) using the grafting through approach. P3HT side chains induce a physical aggregation of the bottlebrush copolymers upon solvent removal by vacuum drying, primarily driven by attractive π–π interactions; however, the amount of aggregation can be controlled by adjusting side chainmore » composition or by adding linear P3HT chains to the bottlebrush copolymers. Coarse-grained molecular dynamics simulations reveal that linear P3HT chains preferentially associate with P3HT side chains of bottlebrush copolymers, which tends to reduce the aggregation. The nanoscale morphology of microphase segregated thin films created by casting P3HT–PLA random bottlebrush copolymers is highly dependent on the composition of P3HT and PLA side chains, while domain spacing of nanostructures is mainly determined by the length of the side chains. The selective removal of PLA side chains under alkaline conditions generates nanoporous P3HT structures that can be tuned by manipulating molecular design of the bottlebrush scaffold, which is affected by molecular weight and grafting density of the side chains, and their sequence. Furthermore, the ability to exploit the unusual architecture of bottlebrushes to fabricate tunable nanoporous P3HT thin film structures may be a useful way to design templates for optoelectronic applications or membranes for separations.« less
Crystallization and Microphase Separation in Chiral Block Copolymers
NASA Astrophysics Data System (ADS)
Ho, Rong-Ming
2012-02-01
Block copolymers composed of chiral entities, denoted as chiral block copolymers (BCP*s), were designed to fabricate helical architectures from self-assembly. A helical phase (denoted H*) was discovered in the self-assembly of poly(styrene)-b-poly(L-lactide) (PS-PLLA) BCPs*. To examine the phase behavior of the PS-PLLA, self-assembled superstructures resulting from the competition between crystallization and microphase separation of the PS-PLLA in solution were examined. A kinetically controlled process by changing non-solvent addition rate was utilized to control the BCP* self-assembly. Single-crystal lozenge lamellae were obtained by the slow self-assembly (i.e., slow non-solvent addition rate) of PS-PLLA whereas amorphous helical ribbon superstructures were obtained from the fast self-assembly (i.e., fast non-solvent addition rate). As a result, the formation of helical architectures from the self-assembly of the PS-PLLA reflects the impact of chirality on microphase separation, but the chiral effect might be overwhelmed by crystallization. Consequently, various crystalline PS-PLLA nanostructures in bulk were obtained by controlling the crystallization temperature of PLLA (Tc,PLLA) at which crystalline helices and crystalline cylinders occur while Tc,PLLA
Sikder, Md. Kabir Uddin; Stone, Kyle A.; Kumar, P. B. Sunil; Laradji, Mohamed
2014-01-01
We investigate the combined effects of transmembrane proteins and the subjacent cytoskeleton on the dynamics of phase separation in multicomponent lipid bilayers using computer simulations of a particle-based implicit solvent model for lipid membranes with soft-core interactions. We find that microphase separation can be achieved by the protein confinement by the cytoskeleton. Our results have relevance to the finite size of lipid rafts in the plasma membrane of mammalian cells. PMID:25106608
Microphase Separation in Oil-Water Mixtures Containing Hydrophilic and Hydrophobic Ions
NASA Astrophysics Data System (ADS)
Tasios, Nikos; Samin, Sela; van Roij, René; Dijkstra, Marjolein
2017-11-01
We develop a lattice-based Monte Carlo simulation method for charged mixtures capable of treating dielectric heterogeneities. Using this method, we study oil-water mixtures containing an antagonistic salt, with hydrophilic cations and hydrophobic anions. Our simulations reveal several phases with a spatially modulated solvent composition, in which the ions partition between water-rich and water-poor regions according to their affinity. In addition to the recently observed lamellar phase, we find tubular and droplet phases, reminiscent of those found in block copolymers and surfactant systems. Interestingly, these structures stem from ion-mediated interactions, which allows for tuning of the phase behavior via the concentrations, the ionic properties, and the temperature.
Equilibrium Phase Behavior of a Continuous-Space Microphase Former.
Zhuang, Yuan; Zhang, Kai; Charbonneau, Patrick
2016-03-04
Periodic microphases universally emerge in systems for which short-range interparticle attraction is frustrated by long-range repulsion. The morphological richness of these phases makes them desirable material targets, but our relatively coarse understanding of even simple models hinders controlling their assembly. We report here the solution of the equilibrium phase behavior of a microscopic microphase former through specialized Monte Carlo simulations. The results for cluster crystal, cylindrical, double gyroid, and lamellar ordering qualitatively agree with a Landau-type free energy description and reveal the nontrivial interplay between cluster, gel, and microphase formation.
NASA Astrophysics Data System (ADS)
Sievert, James D.; Watkins, James J.; Russell, Thomas P.
2006-03-01
Well aligned, microphase-separated structures of styrene-2-vinylpyridine block copolymers are being used as templates for macromolecule-metal nanocomposites. These composites are either prepared as thin films or confined in nanoporous aluminum oxide membranes. Under optimal conditions, templates are prepared as thin films or confined nanorods and metallized without disturbing the ordered structure. We have developed a procedure that deposits metal within the polymer using supercritical carbon dioxide-soluble metal precursors. The use of supercritical carbon dioxide allows for selective metallization of the polymer at or below the glass transition, without disrupting the morphology. In addition, similar procedures have been investigated using metal salts and acids. Using these techniques, metals and metal-sulfides including silver, gold, platinum and zinc sulfide have been selectively deposited.
Schlegel, Ralf; Williams, Katherine; Voyloy, Dimitry; ...
2016-03-30
We present the synthesis and characterization of a new class of high temperature thermoplastic elastomers composed of polybenzofulvene–polyisoprene–polybenzofulvene (FIF) triblock copolymers. All copolymers were prepared by living anionic polymerization in benzene at room temperature. Homopolymerization and effects of additives on the glass transition temperature (T g) of polybenzofulvene (PBF) were also investigated. Among all triblock copolymers studied, FIF with 14 vol % of PBF exhibited a maximum stress of 14.3 ± 1.3 MPa and strain at break of 1390 ± 66% from tensile tests. The stress–strain curves of FIF-10 and 14 were analyzed by a statistical molecular approach using amore » nonaffine tube model to estimate the thermoplastic elastomer behavior. Dynamic mechanical analysis showed that the softening temperature of PBF in FIF was 145 °C, much higher than that of thermoplastic elastomers with polystyrene hard blocks. Microphase separation of FIF triblock copolymers was observed by small-angle X-ray scattering, even though long-range order was not achieved under the annealing conditions employed. Additionally, the microphase separation of the resulting triblock copolymers was examined by atomic force microscopy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schlegel, Ralf; Williams, Katherine; Voyloy, Dimitry
We present the synthesis and characterization of a new class of high temperature thermoplastic elastomers composed of polybenzofulvene–polyisoprene–polybenzofulvene (FIF) triblock copolymers. All copolymers were prepared by living anionic polymerization in benzene at room temperature. Homopolymerization and effects of additives on the glass transition temperature (T g) of polybenzofulvene (PBF) were also investigated. Among all triblock copolymers studied, FIF with 14 vol % of PBF exhibited a maximum stress of 14.3 ± 1.3 MPa and strain at break of 1390 ± 66% from tensile tests. The stress–strain curves of FIF-10 and 14 were analyzed by a statistical molecular approach using amore » nonaffine tube model to estimate the thermoplastic elastomer behavior. Dynamic mechanical analysis showed that the softening temperature of PBF in FIF was 145 °C, much higher than that of thermoplastic elastomers with polystyrene hard blocks. Microphase separation of FIF triblock copolymers was observed by small-angle X-ray scattering, even though long-range order was not achieved under the annealing conditions employed. Additionally, the microphase separation of the resulting triblock copolymers was examined by atomic force microscopy.« less
Tough and Sustainable Graft Block Copolymer Thermoplastics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jiuyang; Li, Tuoqi; Mannion, Alexander M.
Fully sustainable poly[HPMC-g-(PMVL-b-PLLA)] graft block copolymer thermoplastics were prepared from hydroxypropyl methylcellulose (HPMC), β-methyl-δ-valerolactone (MVL), and l-lactide (LLA) using a facile two-step sequential addition approach. In these materials, rubbery PMVL functions as a bridge between the semirigid HPMC backbone and the hard PLLA end blocks. This specific arrangement facilitates PLLA crystallization, which induces microphase separation and physical cross-linking. By changing the backbone molar mass or side chain composition, these thermoplastic materials can be easily tailored to access either plastic or elastomeric behavior. Moreover, the graft block architecture can be utilized to overcome the processing limitations inherent to linear block polymers.more » Good control over molar mass and composition enables the deliberate design of HPMC-g-(PMVL-b-PLLA) samples that are incapable of microphase separation in the melt state. These materials are characterized by relatively low zero shear viscosities in the melt state, an indication of easy processability. The simple and scalable synthetic procedure, use of inexpensive and renewable precursors, and exceptional rheological and mechanical properties make HPMC-g-(PMVL-b-PLLA) polymers attractive for a broad range of applications.« less
Chintapalli, Mahati; Timachova, Ksenia; Olson, Kevin R; Banaszak, Michał; Thelen, Jacob L; Mecham, Sue J; DeSimone, Joseph M; Balsara, Nitash P
2017-06-07
Incipient microphase separation is observed by wide angle X-ray scattering (WAXS) in short chain multiblock copolymers consisting of perfluoropolyether (PFPE) and poly(ethylene oxide) (PEO) segments. Two PFPE-PEO block copolymers were studied; one with dihydroxyl end groups and one with dimethyl carbonate end groups. Despite having a low degree of polymerization (N ∼ 10), these materials exhibited significant scattering intensity, due to disordered concentration fluctuations between their PFPE-rich and PEO-rich domains. The disordered scattering intensity was fit to a model based on a multicomponent random phase approximation to determine the value of the interaction parameter, χ, and the radius of gyration, R g . Over the temperature range 30-90 °C, the values of χ were determined to be very large (∼2-2.5), indicating a high degree of immiscibility between the PFPE and PEO blocks. In PFPE-PEO, due to the large electron density contrast between the fluorinated and non-fluorinated block and the high value of χ, disordered scattering was detected at intermediate scattering angles, (q ∼ 2 nm -1 ) for relatively small polymer chains. Our ability to detect concentration fluctuations was enabled by both a relatively large value of χ and significant scattering contrast.
Molecular Dynamics Study of Polystyrene-b-poly(ethylene oxide) Asymmetric Diblock Copolymer Systems.
Dobies, M; Makrocka-Rydzyk, M; Jenczyk, J; Jarek, M; Spontak, R J; Jurga, S
2017-09-12
Two polystyrene-b-poly(ethylene oxide) (PS-b-PEO) diblock copolymers differing in molecular mass (49 and 78 kDa) but possessing the same PEO cylindrical morphology are examined to elucidate their molecular dynamics. Of particular interest here is the molecular motion of the PEO blocks involved in the rigid amorphous fraction (RAF). An analysis of complementary thermal calorimetry and X-ray scattering data confirms the presence of microphase-separated morphology as well as semicrystalline structure in each copolymer. Molecular motion within the copolymer systems is monitored by dielectric and nuclear magnetic resonance spectroscopies. The results reported herein reveal the existence of two local Arrhenius-type processes attributed to the noncooperative local motion of PEO segments involved in fully amorphous and rigid amorphous PEO microphases. In both systems, two structural relaxations governed by glass-transition phenomena are identified and assigned to cooperative segmental motion in the fully amorphous phase (the α process) and the RAF (the α c process). We measure the temperature dependence of the dynamics associated with all of the processes mentioned above and propose that these local processes are associated with corresponding cooperative segmental motion in both copolymer systems. In marked contrast to the thermal activation of the α process as discerned in both copolymers, the α c process appears to be a sensitive probe of the copolymer nanostructure. That is, the copolymer with shorter PEO blocks exhibits more highly restricted cooperative dynamics of PEO segments in the RAF, which can be explained in terms of the greater constraint imposed by the glassy PS matrix on the PEO blocks comprising smaller cylindrical microdomains.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Y Hu; D Samanta; S Parelkar
Controlled free radical polymerization chemistry is used to graft polymer chains to the corona of horse spleen ferritin (HSF) nanocages. Specifically, poly(methacryloyloxyethyl phosphorylcholine) (polyMPC) and poly(PEG methacrylate) (polyPEGMA) chains are grafted onto the nanocages by atom transfer radical polymerization (ATRP), in which the molecular weight of the polymer grafts is controlled by the monomer-to-initiator feed ratio. PolyMPC and polyPEGMA-grafted ferritin show a generally suppressed inclusion into diblock copolymer films relative to native ferritin, and the polymer coating is seen to mask the ferritin nanocages from antibody recognition. The solubility of polyPEGMA-coated ferritin in organic solvents enables its processing with polystyrene-block-poly(ethylenemore » oxide) copolymers, and selective integration into the PEO domains of microphase-separated copolymer structures.« less
Ordered CdSe nanoparticles within self-assembled block copolymer domains on surfaces.
Zou, Shan; Hong, Rui; Emrick, Todd; Walker, Gilbert C
2007-02-13
Hierarchical, high-density, ordered patterns were fabricated on Si substrates by self-assembly of CdSe nanoparticles within approximately 20-nm-thick diblock copolymer films in a controlled manner. Surface-modified CdSe nanoparticles formed well-defined structures within microphase-separated polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) domains. Trioctylphosphine oxide (TOPO)-coated CdSe nanoparticles were incorporated into PS domains and polyethylene glycol-coated CdSe nanoparticles were located primarily in the P2VP domains. Nearly close-packed CdSe nanoparticles were clearly identified within the highly ordered patterns on Si substrates by scanning electron microscopy (SEM). Contact angle measurements together with SEM results indicate that TOPO-CdSe nanoparticles were partially placed at the air/copolymer interface.
Functional and Multifunctional Polymers: Materials for Smart Structures
NASA Technical Reports Server (NTRS)
Arnold, S.; Pratt, L. M.; Li, J.; Wuagaman, M.; Khan, I. M.
1996-01-01
The ultimate goal of the research in smart structures and smart materials is the development of a new generation of products/devices which will perform better than products/devices built from passive materials. There are a few examples of multilayer polymer systems which function as smart structures, e.g. a synthetic muscle which is a multilayer assembly of a poly(ethylene) layer, a gold layer, and a poly(pyrrole) layer immersed in a liquid electrolyte. Oxidation and reductions of the active pyrrole layer causes the assembly to reversibly deflect and mimic biological muscles. The drawback of such a setup is slow response times and the use of a liquid electrolyte. We have developed multifunctional polymers which will eliminate the use of a liquid electrolyte, and also because the functionalities of the polymers are within a few hundred angstroms, an improved response time to changes in the external field should be possible. Such multifunctional polymers may be classified as the futuristic 'smart materials.' These materials are composed of a number of different functionalities which work in a synergistic fashion to function as a device. The device performs on the application of an external field and such multifunctional polymers may be scientifically labeled as 'field responsive polymers.' Our group has undertaken a systematic approach to develop functional and multifunctional polymers capable of functioning as field responsive polymers. Our approach utilizes multicomponent polymer systems (block copolymers and graft copolymers), the strategy involves the preparation of block or graft copolymers where the functionalities are limited to different phases in a microphase separated system. Depending on the weight (or volume) fractions of each of the components, different microstructures are possible. And, because of the intimate contact between the functional components, an increase in the synergism between the functionalities may be observed. In this presentation, three examples of multifunctional polymers developed in our labs will be reported. The first class of multifunctional polymers are the microphase separated mixed (ionic and electronic) conducting or MIEC block copolymers. The second class being developed in our labs are the biocompatible conductive materials and the conductive fluids. The final class may be considered microwave active smart polymers.
A Laterally-Mobile Mixed Polymer/Polyelectrolyte Brush Undergoes a Macroscopic Phase Separation
NASA Astrophysics Data System (ADS)
Lee, Hoyoung; Park, Hae-Woong; Tsouris, Vasilios; Choi, Je; Mustafa, Rafid; Lim, Yunho; Meron, Mati; Lin, Binhua; Won, You-Yeon
2013-03-01
We studied mixed PEO and PDMAEMA brushes. The question we attempted to answer was: When the chain grafting points are laterally mobile, how will this lateral mobility influence the structure and phase behavior of the mixed brush? Two different model mixed PEO/PDMAEMA brush systems were prepared: a mobile mixed brush by spreading a mixture of two diblock copolymers, PEO-PnBA and PDMAEMA-PnBA, onto the air-water interface, and an inseparable mixed brush using a PEO-PnBA-PDMAEMA triblock copolymer having respective brush molecular weights matched to those of the diblock copolymers. These two systems were investigated by surface pressure-area isotherm, X-ray reflectivity and AFM imaging measurements. The results suggest that the mobile mixed brush undergoes a lateral macroscopic phase separation at high chain grafting densities, whereas the inseparable system is only microscopically phase separated under comparable brush density conditions. We also conducted an SCF analysis of the phase behavior of the mixed brush system. This analysis further supported the experimental findings. The macroscopic phase separation observed in the mobile system is in contrast to the microphase separation behavior commonly observed in two-dimensional laterally-mobile small molecule mixtures.
Incorporating fluorinated moieties in fully conjugated donor-acceptor block copolymers
NASA Astrophysics Data System (ADS)
Lee, Youngmin; Wang, Qing; Gomez, Enrique D.
Fully conjugated donor-acceptor block copolymers are promising candidates for photovoltaics due to their ability to microphase separate at length scales commensurate with exciton diffusion lengths. These materials can also serve as model systems to study the relationship between molecular structure, microstructure, and optoelectronic properties of conjugated polymers. The development of new donor-acceptor block copolymers relies on the manipulation of the chemical structure to fine tune properties and improve overall performance when employed in photovoltaic devices. To this end, we have demonstrated the incorporation of fluorinated moieties in conjugated block copolymers. The introduction of fluorine, a strong electron withdrawing element, is known to influence phase separation and the bandgap, and as a result, optoelectronic properties. Fluorine was introduced to the acceptor block of poly(3-hexylthiophene-2,5-diyl)-block-poly((9,9-bis(2-octyl)fluorene-2,7-diyl)-alt-(4,7-di(thiophene-2-yl)-2,1,3-benzothiadiazole)-5 ',5?-diyl) (P3HT- b-PFTBT). PFTBTs were prepared with di-fluorinated and mono-fluorinated TBT. We find that fluorination impacts the bandgap, morphology and performance in devices.
Development of mass production technology for block copolymer lithographic materials
NASA Astrophysics Data System (ADS)
Himi, Toshiyuki; Matsuki, Ryota; Kosaka, Terumasa; Ogaki, Ryosuke; Kawaguchi, Yukio; Shimizu, Tetsuo
2017-03-01
We have successfully synthesized various and over wide range molecular weight block copolymers (BCPs): these are polystyrene(PS)-polymethylmethacrylate(PMMA) as general components and poly(4-trimethylsilylstyrene)(PTMSS)- poly(4-hydroxystyrene)(PHS) system as very strong segregated components (high chi) and multiblock type of those copolymers which form the microphase-separated structure pattern using living anionic polymerizing method by which the size of polymer can be precisely controlled. In addition, we were able to observe alternating lamellar and cylinder structures which were formed by our various BCPs using small angle X-ray scattering (SAXS). Moreover, we have successfully developed new apparatus for high volume manufacturing including our original technologies such as purification of monomer, improvement of wetted surface, and mechanical technology for high vacuum. And we have successfully synthesized all the BCPs with narrow molecular weight distribution (PDI <1.1) with large-scale apparatus.
A New Supramolecular Route for Using Rod-Coil Block Copolymers in Photovoltaic Applications
NASA Astrophysics Data System (ADS)
Mezzenga, Raffaele; Sary, Nicolas; Richard, Fanny; Brochon, Cyril; Leclerc, Nicolas; Leveque, Patrick; Audinot, Jean Nicolas; Heiser, Thomas; Hadziioannou, Georges; Berson, Solenn
2010-03-01
We propose a new supramolecular strategy to blend together rod-coil poly(3-hexylthiophene)-poly(4-vinylpyridine) (P3HTP4VP) block copolymers and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). The P4VP and PCBM are mixed together by weak supramolecular interactions, and the resulting materials exhibit microphase separated morphologies of electron-donor and electron-acceptor rich domains. The microphase segregated P3HT-rod domains act as electron-donating species and the homogeneous P4VP block:PCBM blend acts as the electron-acceptor domain. We describe the photovoltaic performance of standard and inverted devices whose active layer is composed thereof and show the effect of finely engineering the interfacial properties of the active layer to obtain competitive photovoltaic performance with superior thermal stability. (1) N. Sary, F. Richard, C. Brochon, N. Leclerc, P. Leveque, JN Audinot, S. Berson, T. Heiser, G. Hadziioannou, R. Mezzenga, Adv. Mater. in Press (2010)
Krishnan, Mohan Raj; Lu, Kai-Yuan; Chiu, Wen-Yu; Chen, I-Chen; Lin, Jheng-Wei; Lo, Ting-Ya; Georgopanos, Prokopios; Avgeropoulos, Apostolos; Lee, Ming-Chang; Ho, Rong-Ming
2018-04-01
Exploring the ordering mechanism and dynamics of self-assembled block copolymer (BCP) thin films under confined conditions are highly essential in the application of BCP lithography. In this study, it is aimed to examine the self-assembling mechanism and kinetics of silicon-containing 3-arm star-block copolymer composed of polystyrene (PS) and poly(dimethylsiloxane) blocks as nanostructured thin films with perpendicular cylinders and controlled lateral ordering by directed self-assembly using topographically patterned substrates. The ordering process of the star-block copolymer within fabricated topographic patterns with PS-functionalized sidewall can be carried out through the type of secondary (i.e., heterogeneous) nucleation for microphase separation initiated from the edge and/or corner of the topographic patterns, and directed to grow as well-ordered hexagonally packed perpendicular cylinders. The growth rate for the confined microphase separation is highly dependent upon the dimension and also the geometric texture of the preformed pattern. Fast self-assembly for ordering of BCP thin film can be achieved by lowering the confinement dimension and also increasing the concern number of the preformed pattern, providing a new strategy for the design of BCP lithography from the integration of top-down and bottom-up approaches. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Lee, Jang-Woo; Hong, Soon Man; Koo, Chong Min
2014-08-01
High-bendable, air-operable ionic polymer-metal composite (IPMC) actuators composed of electroactive nanostructured middle-block sulfonated styrenic pentablock copolymer (SSPB)/sulfonated montmorillonite (s-MMT) nanocomposite electrolyte membranes with bulky imidazolium ionic liquids (ILs) incorporated were fabricated and their bending actuation performances were evaluated. The SSPB-based IPMC actuators showed larger air-operable bending displacements, higher displacement rates, and higher energy efficiency of actuations without conventional IPMC bottlenecks, including back relaxation and actuation instability during actuation in air, than the Nafion counterpart. Incorporation of s-MMT into the SSPB matrix further enhanced the actuation performance of the IPMC actuators in terms of displacement, displacement rate, and energy efficiency. The remarkably high performance of the SSPB/s-MMT/IL IPMCs was considered to be due to the microphase-separated large ionic domains of the SSPB (the average diameter of the ionic domain: ca. 20 nm) and the role of s-MMT as an ionic bridge between the ionic domains, and the ion pumping effect of the bulky imidazolium cations of the ILs as well. The microphase-separated nanostructure of the composite membranes caused a high dimensional stability upon swelling in the presence of ILs, which effectively preserved the original electrode resistance against swelling, leading to a high actuation performance of IPMC.
Chameleon-like elastomers with molecularly encoded strain-adaptive stiffening and coloration
NASA Astrophysics Data System (ADS)
Vatankhah-Varnosfaderani, Mohammad; Keith, Andrew N.; Cong, Yidan; Liang, Heyi; Rosenthal, Martin; Sztucki, Michael; Clair, Charles; Magonov, Sergei; Ivanov, Dimitri A.; Dobrynin, Andrey V.; Sheiko, Sergei S.
2018-03-01
Active camouflage is widely recognized as a soft-tissue feature, and yet the ability to integrate adaptive coloration and tissuelike mechanical properties into synthetic materials remains elusive. We provide a solution to this problem by uniting these functions in moldable elastomers through the self-assembly of linear-bottlebrush-linear triblock copolymers. Microphase separation of the architecturally distinct blocks results in physically cross-linked networks that display vibrant color, extreme softness, and intense strain stiffening on par with that of skin tissue. Each of these functional properties is regulated by the structure of one macromolecule, without the need for chemical cross-linking or additives. These materials remain stable under conditions characteristic of internal bodily environments and under ambient conditions, neither swelling in bodily fluids nor drying when exposed to air.
NMR study on the network structure of a mixed gel of kappa and iota carrageenans.
Hu, Bingjie; Du, Lei; Matsukawa, Shingo
2016-10-05
The temperature dependencies of the (1)H T2 and diffusion coefficient (D) of a mixed solution of kappa-carrageenan and iota-carrageenan were measured by NMR. Rheological and NMR measurements suggested an exponential formation of rigid aggregates of kappa-carrageenan and a gradual formation of fine aggregates of iota-carrageenan during two step increases of G'. The results also suggested that longer carrageenan chains are preferentially involved in aggregation, thus resulting in a decrease in the average Mw of solute carrageenans. The results of diffusion measurements for poly(ethylene oxide) (PEO) suggested that kappa-carrageenan formed thick aggregates that decreased hindrance to PEO diffusion by decreasing the solute kappa-carrageenan concentration in the voids of the aggregated chains, and that iota-carrageenan formed fine aggregates that decreased the solute iota-carrageenan concentration less. DPEO in a mixed solution of kappa-carrageenan and iota-carrageenan suggested two possibilities for the microscopic network structure: an interpenetrating network structure, or micro-phase separation. Copyright © 2016. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Hoyoung; Tsouris, Vasilios; Lim, Yunho
We studied mixed poly(ethylene oxide) (PEO) and poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) brushes. The question we attempted to answer was: when the chain grafting points are laterally mobile, how will this lateral mobility influence the structure and phase behavior of the mixed brush? Three different model mixed PEO/PDMAEMA brush systems were prepared: (1) a laterally mobile mixed brush by spreading onto the air–water interface a mixture of poly(ethylene oxide)–poly(n-butyl acrylate) (PEO–PnBA) and poly(2-(dimethylamino)ethyl methacrylate)–poly(n-butyl acrylate) (PDMAEMA–PnBA) diblock copolymers (the specific diblock copolymers used will be denoted as PEO 113–PnBA 100 and PDMAEMA 118–PnBA 100, where the subscripts refer to the number-average degreesmore » of polymerization of the individual blocks), (2) a mobility-restricted (inseparable) version of the above mixed brush prepared using a PEO–PnBA–PDMAEMA triblock copolymer (denoted as PEO 113–PnBA 89–PDMAEMA 120) having respective brush molecular weights matched with those of the diblock copolymers, and (3) a different laterally mobile mixed PEO and PDMAEMA brush prepared from a PEO 113–PnBA 100 and PDMAEMA 200–PnBA 103 diblock copolymer combination, which represents a further more height-mismatched mixed brush situation than described in (1). These three mixed brush systems were investigated by surface pressure–area isotherm and X-ray (XR) reflectivity measurements. These experimental data were analyzed within the theoretical framework of a continuum self-consistent field (SCF) polymer brush model. The combined experimental and theoretical results suggest that the mobile mixed brush derived using the PEO 113–PnBA 100 and PDMAEMA 118–PnBA 100 combination (i.e., mixed brush System #1) undergoes a lateral macroscopic phase separation at high chain grafting densities, whereas the more height-mismatched system (System #3) is only microscopically phase separated under comparable brush density conditions even though the lateral mobility of the grafted chains is unrestricted. The macroscopic phase separation observed in the laterally mobile mixed brush system is in contrast with the microphase separation behavior commonly observed in two-dimensional laterally mobile charged small molecule mixtures. Further study is needed to determine the detailed morphologies of the macro- and microphase-separated mixed PEO/PDMAEMA brushes.« less
Thomas, V; Jayabalan, M
2001-07-01
The effect of virtual crosslinking on the hydrolytic stability of completely aliphatic novel poly(urethane ureas), HFL9-PU1 (hard-segment content 57.5%) and HFL13-PU2 (hard-segment content 67.9%) based on 4,4'-methylene bis(cyclohexyl isocyanate) (H(12)MDI)-hydroxy-terminated polybutadiene-1,6-hexamethylene diamine, was studied. Fourier transform infrared-attenuated total reflectance and wide-angle X-ray diffraction studies revealed hydrogen-bonding interaction and microphase separation and formation of crystallites by short- and long-range ordering in hard-segment domains. Three-dimensional networks from hydrogen bonding in the present polymers lead to virtually crosslinking and insolubility. These polymers were noncytotoxic to L929 fibroblast cells. The hemolytic potential is below the accepted limit. The studies on in vitro biostability in Ringer's solution, phosphate buffered saline, and papain enzyme revealed no weight loss. The infrared spectral studies revealed changes in the surface, especially on HFL9-PU1 aged in Ringer's solution and phosphate buffered saline, and no changes when aged in papain. The marginal changes noticed in tensile properties were attributed to the changes in degree of hydrogen bonding and associated rearrangement of molecular structure in the bulk. The results revealed that the lesser the crosslinking in virgin polymer, the higher the crosslinking in aged polymer and vice versa. Increased crosslinking during aging provided increased tensile properties in the aged polymer over the virgin polymer and vice versa. For comparison, an aliphatic polyetherurethane urea (HFL16-PU3) was also synthesized using poly(oxy tetra methylene glycol) in addition to the above reactants. Though both HFL9-PU1 and HFL16-PU3 contained the same hard-segment content, the aged sample of the latter showed decreased tensile properties with increased crosslinking during aging in contrast to the former. This was attributed to less microphase separation in the virgin HFL16-PU3 polymer.
Discovery of a Frank-Kasper [sigma] Phase in Sphere-Forming Block Copolymer Melts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sangwoo; Bluemle, Michael J.; Bates, Frank S.
Sphere-forming block copolymers are known to self-assemble into body-centered cubic crystals near the order-disorder transition temperature. Small-angle x-ray scattering and transmission electron microscopy experiments on diblock and tetrablock copolymer melts have revealed an equilibrium phase characterized by a large tetragonal unit cell containing 30 microphase-separated spheres. This structure, referred to as the sigma ({sigma}) phase by Frank and Kasper more than 50 years ago, nucleates and grows from the body-centered cubic phase similar to its occurrence in metal alloys and is a crystal approximant to dodecagonal quasicrystals. Formation of the {sigma} phase in undiluted linear block copolymers (and certain branchedmore » dendrimers) appears to be mediated by macromolecular packing frustration, an entropic contribution to the interparticle interactions that control the sphere-packing geometry.« less
Cummins, Cian; Mokarian-Tabari, Parvaneh; Andreazza, Pascal; Sinturel, Christophe; Morris, Michael A
2016-03-01
Solvothermal vapor annealing (STVA) was employed to induce microphase separation in a lamellar forming block copolymer (BCP) thin film containing a readily degradable block. Directed self-assembly of poly(styrene)-block-poly(d,l-lactide) (PS-b-PLA) BCP films using topographically patterned silicon nitride was demonstrated with alignment over macroscopic areas. Interestingly, we observed lamellar patterns aligned parallel as well as perpendicular (perpendicular microdomains to substrate in both cases) to the topography of the graphoepitaxial guiding patterns. PS-b-PLA BCP microphase separated with a high degree of order in an atmosphere of tetrahydrofuran (THF) at an elevated vapor pressure (at approximately 40-60 °C). Grazing incidence small-angle X-ray scattering (GISAXS) measurements of PS-b-PLA films reveal the through-film uniformity of perpendicular microdomains after STVA. Perpendicular lamellar orientation was observed on both hydrophilic and relatively hydrophobic surfaces with a domain spacing (L0) of ∼32.5 nm. The rapid removal of the PLA microdomains is demonstrated using a mild basic solution for the development of a well-defined PS mask template. GISAXS data reveal the through-film uniformity is retained following wet etching. The experimental results in this article demonstrate highly oriented PS-b-PLA microdomains after a short annealing period and facile PLA removal to form porous on-chip etch masks for nanolithography application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larsen, Michael B.; Van Horn, J. David; Wu, Fei
The synthesis of microporous polymers generally requires postpolymerization modification via hyper-cross-linking to trap the polymeric network in a state with high void volume. An alternative approach utilizes rigid, sterically demanding monomers to inhibit efficient packing, thus leading to a high degree of free volume between polymer side groups and main chains. Herein we combine polymers of intrinsic microporosity with polymerization-induced microphase separation (PIMS), a versatile methodology for the synthesis of nanostructured materials that can be rendered mesoporous. Copolymerization of various styrenic monomers with divinylbenzene in the presence of a poly(lactide) terminated with a chain-transfer agent (PLA-CTA) results in kinetic trappingmore » of a microphase-separated state. Subsequent etching of PLA provides a bicontinuous mesoporous network. Using equilibrium and kinetic nitrogen sorption experiments as well as positron annihilation lifetime spectroscopy (PALS), we demonstrate that variations in the steric characteristics of the styrenic monomer impart the network with microporosity, resulting in hierarchically (meso and micro) porous materials. Additionally, structure–property relationships of the styrenic monomer with total surface area and pore volume indicate that the glass transition temperature (Tg) of the corresponding styrenic homopolymers provides a reasonable measure of the steric interactions and resultant microporosity in these systems. Finally, PALS provides insight into micro- and mesoscopic void volume differences between porous monoliths containing either tert-butyl or TMS-modified styrenic monomers compared to the parent, unmodified styrene.« less
Balazs, Anna [University of Pittsburgh, Pittsburgh, Pennsylvania, United States
2017-12-09
Computer simulations reveal how photo-induced chemical reactions can be exploited to create long-range order in binary and ternary polymeric materials. The process is initiated by shining a spatially uniform light over a photosensitive AB binary blend, which undergoes both a reversible chemical reaction and phase separation. We then introduce a well-collimated, higher-intensity light source. Rastering this secondary light over the sample locally increases the reaction rate and causes formation of defect-free, spatially periodic structures. These binary structures resemble either the lamellar or hexagonal phases of microphase-separated di-block copolymers. We measure the regularity of the ordered structures as a function of the relative reaction rates for different values of the rastering speed and determine the optimal conditions for creating defect-free structures in the binary systems. We then add a non-reactive homo-polymer C, which is immiscible with both A and B. We show that this component migrates to regions that are illuminated by the secondary, higher-intensity light, allowing us to effectively write a pattern of C onto the AB film. Rastering over the ternary blend with this collimated light now leads to hierarchically ordered patterns of A, B, and C. The findings point to a facile, non-intrusive process for manufacturing high-quality polymeric devices in a low-cost, efficient manner.
NASA Astrophysics Data System (ADS)
Wu, Yi-Bo; Li, Kang; Xiang, Dong; Zhang, Min; Yang, Dan; Zhang, Jin-Han; Mao, Jing; Wang, Hao; Guo, Wen-Li
2018-07-01
Polyisobutylene-based thermoplastic elastomer (TPE) is a new soft biomaterial. Hydroxyl functional dendritic polyisobutylene-based TPEs (arb-SIBS-OH), which satisfy the design requirements for small-diameter vascular substitutes, were synthesized by controlled carbocationic polymerization. Creep property, which is the destructive weakness of polyisobutylene-based TPEs, was significantly improved with the formation of a "double network" promoted by branched structure and microphase separation. Compatibility of arb-SIBS-OH with rabbit blood was markedly enhanced by modifying heparin grafted from these hydroxyl functional groups. Application of "click chemistry" to immobilize heparin on arb-SIBS-OH surface was apparently effective in enhancing the bioactivity of heparin. Immobilized heparin, which directly bonded by ester bonds, was more likely to form multi-point binding on arb-SIBS-OH surface. This process hindered the accessibility of the heparin active sequence to antithrombin.
NASA Astrophysics Data System (ADS)
Gavvalapalli, Nagarjuna
All-polymer solar cells (APSC) are a class of organic solar cells in which hole and electron transporting phases are made of conjugated polymers. Unlike polymer/fullerene solar cell, photoactive material of APSC can be designed to have hole and electron transporting polymers with complementary absorption range and proper frontier energy level offset. However, the highest reported PCE of APSC is 5 times less than that of polymer/fullerene solar cell. The low PCE of APSC is mainly due to: i) low charge separation efficiency; and ii) lack of optimal morphology to facilitate charge transfer and transport; and iii) lack of control over the exciton and charge transport in each phase. My research work is focused towards addressing these issues. The charge separation efficiency of APSC can be enhanced by designing novel electron transporting polymers with: i) broad absorption range; ii) high electron mobility; and iii) high dielectric constant. In addition to with the above parameters chemical and electronic structure of the repeating unit of conjugated polymer also plays a role in charge separation efficiency. So far only three classes of electron transporting polymers, CN substituted PPV, 2,1,3-benzothiadiazole derived polymers and rylene diimide derived polymers, are used in APSC. Thus to enhance the charge separation efficiency new classes of electron transporting polymers with the above characteristics need to be synthesized. I have developed a new straightforward synthetic strategy to rapidly generate new classes of electron transporting polymers with different chemical and electronic structure, broad absorption range, and high electron mobility from readily available electron deficient monomers. In APSCs due to low entropy of mixing, polymers tend to micro-phase segregate rather than forming the more useful nano-phase segregation. Optimizing the polymer blend morphology to obtain nano-phase segregation is specific to the system under study, time consuming, and not trivial. Thus to avoid micro-phase segregation, nanoparticles of hole and electron transporters are synthesized and blended. But the PCE of nanoparticle blends are far less than those of polymer blends. This is mainly due to the: i) lack of optimal assembly of nanoparticles to facilitate charge transfer and transport processes; and ii) lack of control over the exciton and charge transport properties within the nanoparticles. Polymer packing within the nanoparticle controls the optoelectronic and charge transport properties of the nanoparticle. In this work I have shown that the solvent used to synthesize nanoparticles plays a crucial role in determining the assembly of polymer chains inside the nanoparticle there by affecting its exciton and charge transport processes. To obtain the optimal morphology for better charge transfer and transport, we have also synthesized nanoparticles of different radius with surfactants of opposite charge. We propose that depending on the radius and/or Coulombic interactions these nanoparticles can be assembled into mineral structure-types that are useful for photovoltaic devices.
NASA Astrophysics Data System (ADS)
Chu, Elza
Phase separation in soft matter has been the crucial element in generating hybrid materials, such as polymer blends and mixed polymer brushes. This dissertation discusses two methods of developing self-assembled nanoscale templates via microphase separation induced by polymer brush synthesis. This work introduces a novel soft substrate approach with renewable grafting sites where polyacrylamide is "grafted through" chitosan soft substrates. The mechanism of grafting leads to ordered arrays of filament-like nanostructures spanning the chitosan-air interface. Additionally, the chemical composition of the filaments allows for post-chemical modification to change the physical properties of the filaments, and subsequently tailor surfaces for specific application. Unlike traditional materials, multi-functional or "smart" materials, such as binary polymer brushes (BPB) are capable of spontaneously changing the spatial distribution of functional groups and morphology at the surface upon external stimuli. Although promising in principle, the limited range of available complementary polymers with common non-selective solvents confines the diversity of usable materials and restricts any further advancement in the field. This dissertation also covers the fabrication and characterization of responsive nanoscale polystyrene templates or "mosaic" brushes that are capable of changing interfacial composition upon exposure to varying solvent qualities. Using a "mosaic" brush template is a unique approach that allows the fabrication of strongly immiscible polymer BPB without the need for a common solvent. The synthesis of such BPB is exemplified by two strongly immiscible polymers, i.e. polystyrene (polar) and polyacrylamide (non-polar), where polyacrylamide brush is "graft through" a Si-substrate modified with the polystyrene collapsed "mosaic" brush. The surface exhibits solvent-triggered responses, as well as application potential for anti-biofouling.
Binary Polymer Brushes of Strongly Immiscible Polymers.
Chu, Elza; Babar, Tashnia; Bruist, Michael F; Sidorenko, Alexander
2015-06-17
The phenomenon of microphase separation is an example of self-assembly in soft matter and has been observed in block copolymers (BCPs) and similar materials (i.e., supramolecular assemblies (SMAs) and homo/block copolymer blends (HBCs)). In this study, we use microphase separation to construct responsive polymer brushes that collapse to generate periodic surfaces. This is achieved by a chemical reaction between the minor block (10%, poly(4-vinylpyridine)) of the block copolymer and a substrate. The major block of polystyrene (PS) forms mosaic-like arrays of grafted patches that are 10-20 nm in size. Depending on the nature of the assembly (SMA, HBC, or neat BCP) and annealing method (exposure to vapors of different solvents or heating above the glass transition temperature), a range of "mosaic" brushes with different parameters can be obtained. Successive grafting of a secondary polymer (polyacrylamide, PAAm) results in the fabrication of binary polymer brushes (BPBs). Upon being exposed to specific selective solvents, BPBs may adopt different conformations. The surface tension and adhesion of the binary brush are governed by the polymer occupying the top stratum. The "mosaic" brush approach allows for a combination of strongly immiscible polymers in one brush. This facilitates substantial contrast in the surface properties upon switching, previously only possible for substrates composed of predetermined nanostructures. We also demonstrate a possible application of such PS/PAAm brushes in a tunable bioadhesion-bioadhesive (PS on top) or nonbioadhesive (PAAm on top) surface as revealed by Escherichia coli bacterial seeding.
Equilibrium water and solute uptake in silicone hydrogels.
Liu, D E; Dursch, T J; Oh, Y; Bregante, D T; Chan, S Y; Radke, C J
2015-05-01
Equilibrium water content of and solute partitioning in silicone hydrogels (SiHys) are investigated using gravimetric analysis, fluorescence confocal laser-scanning microscopy (FCLSM), and back extraction with UV/Vis-absorption spectrophotometry. Synthesized silicone hydrogels consist of silicone monomer, hydrophilic monomer, cross-linking agent, and triblock-copolymer macromer used as an amphiphilic compatibilizer to prevent macrophase separation. In all cases, immiscibility of the silicone and hydrophilic polymers results in microphase-separated morphologies. To investigate solute uptake in each of the SiHy microphases, equilibrium partition coefficients are obtained for two hydrophilic solutes (i.e., theophylline and caffeine dissolved in aqueous phosphate-buffered saline) and two oleophilic solutes (i.e., Nile Red and Bodipy Green dissolved in silicone oil), respectively. Measured water contents and aqueous-solute partition coefficients increase linearly with increasing solvent-free hydrophilic-polymer volume fraction. Conversely, oleophilic-solute partition coefficients decrease linearly with rising solvent-free hydrophilic-polymer volume fraction (i.e., decreasing hydrophobic silicone-polymer fraction). We quantitatively predict equilibrium SiHy water and solute uptake assuming that water and aqueous solutes reside only in hydrophilic microdomains, whereas oleophilic solutes partition predominately into silicone microdomains. Predicted water contents and solute partition coefficients are in excellent agreement with experiment. Our new procedure permits a priori estimation of SiHy water contents and solute partition coefficients based solely on properties of silicone and hydrophilic homopolymer hydrogels, eliminating the need for further mixed-polymer-hydrogel experiments. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Polymer compositions based on PXE
Yang, Jin; Eitouni, Hany Basam; Singh, Mohit
2015-09-15
New polymer compositions based on poly(2,6-dimethyl-1,4-phenylene oxide) and other high-softening-temperature polymers are disclosed. These materials have a microphase domain structure that has an ionically-conductive phase and a phase with good mechanical strength and a high softening temperature. In one arrangement, the structural block has a softening temperature of about 210.degree. C. These materials can be made with either homopolymers or with block copolymers.
Phase Separation During the Curing of a Cyanate Ester Oligomer
NASA Astrophysics Data System (ADS)
Gurov, D. A.; Novikov, G. F.
2018-07-01
It is found during the curing of a cyanate ester oligomer that there are such features as a step and a maximum in the frequency dependences (in a range of 10-2-105 Hz) of the real parts of the complex electric conductivity and loss tangent, respectively. In the frequency range where these features are observed, the diagrams of complex electric modulus are semicircles with centers near the abscissas. Subsequent analysis shows these features are due to the formation of the microphase of the intermediate product, carbamate.
ABC Triblock Copolymer Vesicles with Mesh-like Morphology
NASA Astrophysics Data System (ADS)
Zhao, Wei; Russell, Thomas; Grason, Gregory
2010-03-01
Polymer vesicles can be made from poly(isoprene-b-styrene-b-2-vinylpyridene) (PI-b-PS-b-P2VP) triblock copolymer under the confinement of anodic aluminum oxide (AAO) membrane. It was found that these vesicles have well-defined, nanoscopic size and a microphase-separated hydrophobic core, comprised of PS and PI blocks. Vesicle formation was tracked using both transmission and scanning electron microscopy. A mesh-like morphology formed in the core at a well-defined composition of three blocks. Confinement played an important role in generating these vesicles with such an unusual morphology.
Main-chain supramolecular block copolymers.
Yang, Si Kyung; Ambade, Ashootosh V; Weck, Marcus
2011-01-01
Block copolymers are key building blocks for a variety of applications ranging from electronic devices to drug delivery. The material properties of block copolymers can be tuned and potentially improved by introducing noncovalent interactions in place of covalent linkages between polymeric blocks resulting in the formation of supramolecular block copolymers. Such materials combine the microphase separation behavior inherent to block copolymers with the responsiveness of supramolecular materials thereby affording dynamic and reversible materials. This tutorial review covers recent advances in main-chain supramolecular block copolymers and describes the design principles, synthetic approaches, advantages, and potential applications.
Block Copolymers: Synthesis and Applications in Nanotechnology
NASA Astrophysics Data System (ADS)
Lou, Qin
This study is focused on the synthesis and study of (block) copolymers using reversible deactivation radical polymerizations (RDRPs), including atom transfer radical polymerization (ATRP) and reversible addition-fragmentation chain transfer (RAFT) polymerization. In particular, two primary areas of study are undertaken: (1) a proof-of-concept application of lithographic block copolymers, and (2) the mechanistic study of the deposition of titania into block copolymer templates for the production of well-ordered titania nanostructures. Block copolymers have the ability to undergo microphase separation, with an average size of each microphase ranging from tens to hundreds of nanometers. As such, block copolymers have been widely considered for nanotechnological applications over the past two decades. The development of materials for various nanotechnologies has become an increasingly studied area as improvements in many applications, such as those found in the semiconductor and photovoltaic industries are constantly being sought. Significant growth in developments of new synthetic methods ( i.e. RDRPs) has allowed the production of block copolymers with molecular (and sometimes atomic) definition. In turn, this has greatly expanded the use of block copolymers in nanotechnology. Herein, we describe the synthesis of statistical and block copolymers of 193 nm photolithography methacrylate and acrylate resist monomers with norbornyl and adamantyl moieties using RAFT polymerization.. For these resist (block) copolymers, the phase separation behaviors were examined by atomic force microscopy (AFM). End groups were removed from the polymers to avoid complications during the photolithography since RAFT end groups absorb visible light. Poly(glycidyl methacrylate-block-polystyrene) (PGMA-b-PS) was synthesize by ATRP and demonstrated that this block copolymer acts as both a lithographic UV (365 nm) photoresist and a self-assembly material. The PGMA segments can undergo cationic ring-opening crosslinking and can act as a negative-tone photoresist. The PGMA-b-PS thin films were also studied for phase separation with ˜25 nm patterns using transmission electron microscopy (TEM). Poly(styrene-block-4-vinyl pyridine) (PS-b-P4VP) block copolymer thin films are shown to form perpendicular cylinder phase separated structures, and these may be used to template the formation of ordered titania nanostructures with sub-50 nm diameters on either silicon or indium tin oxide (ITO) substrates. A study of the mechanism of TiO2 formation within the P4VP cylinder phase was developed and tested. It was found that the titania nanostructure morphology is affected by pH and deposition temperatures, and successful deposition required the cross-linking of the P4VP phase in order to obtain individual nanostructures.
Dynamic and structural evidence of mesoscopic aggregation in phosphonium ionic liquids
NASA Astrophysics Data System (ADS)
Cosby, T.; Vicars, Z.; Heres, M.; Tsunashima, K.; Sangoro, J.
2018-05-01
Mesoscopic aggregation in aprotic ionic liquids due to the microphase separation of polar and non-polar components is expected to correlate strongly with the physicochemical properties of ionic liquids and therefore their potential applications. The most commonly cited experimental evidence of such aggregation is the observation of a low-q pre-peak in the x-ray and neutron scattering profiles, attributed to the polarity alternation of polar and apolar phases. In this work, a homologous series of phosphonium ionic liquids with the bis(trifluoromethylsulfonyl)imide anion and systematically varying alkyl chain lengths on the phosphonium cation are investigated by small and wide-angle x-ray scattering, dynamic-mechanical spectroscopy, and broadband dielectric spectroscopy. A comparison of the real space correlation distance corresponding to the pre-peak and the presence or absence of the slow sub-α dielectric relaxation previously associated with the motion of mesoscale aggregates reveals a disruption of mesoscale aggregates with increasing symmetry of the quaternary phosphonium cation. These findings contribute to the broader understanding of the interplay of molecular structures, mesoscale aggregation, and physicochemical properties in aprotic ionic liquids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, He-Lou; Li, Xiao; Ren, Jiaxing
Controlling the macroscopic orientation of nanoscale periodic structures of amphiphilic liquid crystalline block copolymers (LC BCPs) is important to a variety of technical applications (e.g., lithium conducting polymer electrolytes). To study LC BCP domain orientation, a series of LC BCPs containing a poly(ethylene oxide) (PEO) block as a conventional hydrophilic coil block and LC blocks containing azobenzene mesogens is designed and synthesized. LC ordering in thin films of the BCP leads to the formation of highly ordered, microphase-separated nanostructures, with hexagonally arranged PEO cylinders. Substitution on the tail of the azobenzene mesogen is shown to control the orientation of themore » PEO cylinders. When the substitution on the mesogenic tails is an alkyl chain, the PEO cylinders have a perpendicular orientation to the substrate surface, provided the thin film is above a critical thickness value. In contrast, when the substitution on the mesogenic tails has an ether group the PEO cylinders assemble parallel to the substrate surface regardless of the film thickness value.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Jongmin; Saba, Stacey A.; Hillmyer, Marc A.
We report on the phase separation behaviors of polymerization mixtures containing a polylactide macro-chain transfer agent (PLA-CTA), styrene, divinylbenzene, hydroxyl-terminated PLA (PLA-OH), and a molecular chain transfer agent which enable the ability to tune the pore size of a cross-linked polymer monolith in a facile manner. Cross-linked monoliths were produced from the mixtures via reversible addition-fragmentation chain transfer (RAFT) polymerization and converted into cross-linked porous polymers by selective removal of PLA while retaining the parent morphology. We demonstrate that pore sizes are tunable over a wide range of length scales from the meso- to macroporous regimes by adjusting the ratiomore » of PLA-CTA to PLA-OH in the reaction mixture which causes the phase separation mechanism to change from polymerization-induced microphase separation to polymerization-induced phase separation. The possibility of increasing porosity and inducing simultaneous micro- and macrophase separation was also realized by adjustments in the molar mass of PLA which enabled the synthesis of hierarchically meso- and macroporous polymers.« less
Metal Ion-Loaded Nanofibre Matrices for Calcification Inhibition in Polyurethane Implants
Singh, Charanpreet; Wang, Xungai
2017-01-01
Pathologic calcification leads to structural deterioration of implant materials via stiffening, stress cracking, and other structural disintegration mechanisms, and the effect can be critical for implants intended for long-term or permanent implantation. This study demonstrates the potential of using specific metal ions (MI)s for inhibiting pathological calcification in polyurethane (PU) implants. The hypothesis of using MIs as anti-calcification agents was based on the natural calcium-antagonist role of Mg2+ ions in human body, and the anti-calcification effect of Fe3+ ions in bio-prosthetic heart valves has previously been confirmed. In vitro calcification results indicated that a protective covering mesh of MI-doped PU can prevent calcification by preventing hydroxyapatite crystal growth. However, microstructure and mechanical characterisation revealed oxidative degradation effects from Fe3+ ions on the mechanical properties of the PU matrix. Therefore, from both a mechanical and anti-calcification effects point of view, Mg2+ ions are more promising candidates than Fe3+ ions. The in vitro MI release experiments demonstrated that PU microphase separation and the structural design of PU-MI matrices were important determinants of release kinetics. Increased phase separation in doped PU assisted in consistent long-term release of dissolved MIs from both hard and soft segments of the PU. The use of a composite-sandwich mesh design prevented an initial burst release which improved the late (>20 days) release rate of MIs from the matrix. PMID:28644382
NASA Astrophysics Data System (ADS)
Burke, Christopher; Reddy, Abhiram; Prasad, Ishan; Grason, Gregory
Block copolymer (BCP) melts form a number of symmetric microphases, e.g. columnar or double gyroid phases. BCPs with a block composed of chiral monomers are observed to form bulk phases with broken chiral symmetry e.g. a phase of hexagonally ordered helical mesodomains. Other new structures may be possible, e.g. double gyroid with preferred chirality which has potential photonic applications. One approach to understanding chirality transfer from monomer to the bulk is to use self consistent field theory (SCFT) and incorporate an orientational order parameter with a preference for handed twist in chiral block segments, much like the texture of cholesteric liquid crystal. Polymer chains in achiral BCPs exhibit orientational ordering which couples to the microphase geometry; a spontaneous preference for ordering may have an effect on the geometry. The influence of a preference for chiral polar (vectorial) segment order has been studied to some extent, though the influence of coupling to chiral tensorial (nematic) order has not yet been developed. We present a computational approach using SCFT with vector and tensor order which employs well developed pseudo-spectral methods. Using this we explore how tensor order influences which structures form, and if it can promote chiral phases.
Thermoset nanocomposites from two-component waterborne polyurethanes and cellulose whiskers.
Wu, Guo-min; Chen, Jian; Huo, Shu-ping; Liu, Gui-feng; Kong, Zhen-wu
2014-05-25
We prepared thermoset nancomposites from biomass-based two-component waterborne polyurethane (2K-WPU) and cellulose namowhiskers (CNWs). Due to the formation of hydrogen bonds, the viscosity of 2K-WPU dispersion was found to be increased with the addition of CNWs. SEM images showed "sea-island structure" corresponding to the microphase separation between CNWs nano-filler and the 2K-WPU matrix. The α-relaxation temperature (Tα) and glass transition temperature (Tg) increased with the increase of CNWs content, which was due to the formation of a rigid CNWs nano-phase acting as crosslinking points in the 2K-WPU matrix. Mechanical properties from tensile test showed Young's modulus and tensile strength of 2K-WPU/CNWs nanocomposites were reinforced by the addition of CNWs. Thermo-stability of 2K-WPU/CNWs nanocomposites decreased slightly with the increase of CNWs content, which could be attributed to the increased thermal conductivity of the material after adding CNWs. Copyright © 2014 Elsevier Ltd. All rights reserved.
Block Copolymer-Templated Approach to Nanopatterned Metal-Organic Framework Films.
Zhou, Meimei; Wu, Yi-Nan; Wu, Baozhen; Yin, Xianpeng; Gao, Ning; Li, Fengting; Li, Guangtao
2017-08-17
The fabrication of patterned metal-organic framework (MOF) films with precisely controlled nanoscale resolution has been a fundamental challenge in nanoscience and nanotechnology. In this study, nanopatterned MOF films were fabricated using a layer-by-layer (LBL) growth method on functional templates (such as a bicontinuous nanoporous membrane or a structure with highly long-range-ordered nanoscopic channels parallel to the underlying substrate) generated by the microphase separation of polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) block copolymers. HKUST-1 can be directly deposited on the templates without any chemical modification because the pyridine groups in P2VP interact with metal ions via metal-BCP complexes. As a result, nanopatterned HKUST-1 films with feature sizes below 50 nm and controllable thicknesses can be fabricated by controlling the number of LBL growth cycles. The proposed fabrication method further extends the applications of MOFs in various fields. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hermann, Stefanie; Wessig, Martin; Kollofrath, Dennis; Gerigk, Melanie; Hagedorn, Kay; Odendal, James A; Hagner, Matthias; Drechsler, Markus; Erler, Philipp; Fonin, Mikhail; Maret, Georg; Polarz, Sebastian
2017-05-08
Gaining external control over self-organization is of vital importance for future smart materials. Surfactants are extremely valuable for the synthesis of diverse nanomaterials. Their self-assembly is dictated by microphase separation, the hydrophobic effect, and head-group repulsion. It is desirable to supplement surfactants with an added mode of long-range and directional interaction. Magnetic forces are ideal, as they are not shielded in water. We report on surfactants with heads containing tightly bound transition-metal centers. The magnetic moment of the head was varied systematically while keeping shape and charge constant. Changes in the magnetic moment of the head led to notable differences in surface tension, aggregate size, and contact angle, which could also be altered by an external magnetic field. The most astonishing result was that the use of magnetic surfactants as structure-directing agents enabled the formation of porous solids with 12-fold rotational symmetry. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Conjugated block copolymers as model materials to examine charge transfer in donor-acceptor systems
NASA Astrophysics Data System (ADS)
Gomez, Enrique; Aplan, Melissa; Lee, Youngmin
Weak intermolecular interactions and disorder at junctions of different organic materials limit the performance and stability of organic interfaces and hence the applicability of organic semiconductors to electronic devices. The lack of control of interfacial structure has also prevented studies of how driving forces promote charge photogeneration, leading to conflicting hypotheses in the organic photovoltaic literature. Our approach has focused on utilizing block copolymer architectures -where critical interfaces are controlled and stabilized by covalent bonds- to provide the hierarchical structure needed for high-performance organic electronics from self-assembled soft materials. For example, we have demonstrated control of donor-acceptor heterojunctions through microphase-separated conjugated block copolymers to achieve 3% power conversion efficiencies in non-fullerene photovoltaics. Furthermore, incorporating the donor-acceptor interface within the molecular structure facilitates studies of charge transfer processes. Conjugated block copolymers enable studies of the driving force needed for exciton dissociation to charge transfer states, which must be large to maximize charge photogeneration but must be minimized to prevent losses in photovoltage in solar cell devices. Our work has systematically varied the chemical structure, energetics, and dielectric constant to perturb charge transfer. As a consequence, we predict a minimum dielectric constant needed to minimize the driving force and therefore simultaneously maximize photocurrent and photovoltage in organic photovoltaic devices.
New time-resolved micro-photoluminescence spectroscopy of natural and synthetic analogue minerals
NASA Astrophysics Data System (ADS)
Panczer, G.; Ollier, N.; Champagnon, B.; Gaft, M.
2003-04-01
Minerals as well as geomaterials often present light emissions under UV or visible excitations. This property called photoluminescence is due to low concentration impurities such as the rare earths, the transition elements and the lanthanides. The induced color is used for ore prospection but only spectroscopic analyses indicate the nature of the emitted centers. However natural samples contained numerous luminescent centers simultaneously and with regular steady-state measurements (such as in cathodoluminescence) all the emissions are often over lapping. In order to record the contributions of each separate center, it is possible to use time-resolved measurements based on the decay time of the emissions and using pulsed laser excitation. Some characteristic examples will be presented on apatites, zircons as well as gemstones. Geomaterials present as well micro scale heterogeneities (growth zoning, inclusions, devitrification, microphases...). Precise identification and optical effects of such heterogeneities have to be taken into account. To reach the microscale using photo luminescence studies, a microscope has be modified to allowed pulsed laser injection (from UV to visible), beam focus with micro scale resolution on the sample (<10 μm), as well as time resolved collection of micro fluorescence. Such equipment allows now undertaking time-resolved measurements of microphases. Applications on geomaterials will be presented.
Polyacylurethanes as Novel Degradable Cell Carrier Materials for Tissue Engineering
Jovanovic, Danijela; Roukes, Frans V.; Löber, Andrea; Engels, Gerwin E.; van Oeveren, Willem; van Seijen, Xavier J. Gallego; van Luyn, Marja J.A.; Harmsen, Martin C.; Schouten, Arend Jan
2011-01-01
Polycaprolactone (PCL) polyester and segmented aliphatic polyester urethanes based on PCL soft segment have been thoroughly investigated as biodegradable scaffolds for tissue engineering. Although proven beneficial as long term implants, these materials degrade very slowly and are therefore not suitable in applications in which scaffold support is needed for a shorter time. A recently developed class of polyacylurethanes (PAUs) is expected to fulfill such requirements. Our aim was to assess in vitro the degradation of PAUs and evaluate their suitability as temporary scaffold materials to support soft tissue repair. With both a mass loss of 2.5–3.0% and a decrease in molar mass of approx. 35% over a period of 80 days, PAUs were shown to degrade via both bulk and surface erosion mechanisms. Fourier Transform Infra Red (FTIR) spectroscopy was successfully applied to study the extent of PAUs microphase separation during in vitro degradation. The microphase separated morphology of PAU1000 (molar mass of the oligocaprolactone soft segment = 1000 g/mol) provided this polymer with mechano-physical characteristics that would render it a suitable material for constructs and devices. PAU1000 exhibited excellent haemocompatibility in vitro. In addition, PAU1000 supported both adhesion and proliferation of vascular endothelial cells and this could be further enhanced by pre-coating of PAU1000 with fibronectin (Fn). The contact angle of PAU1000 decreased both with in vitro degradation and by incubation in biological fluids. In endothelial cell culture medium the contact angle reached 60°, which is optimal for cell adhesion. Taken together, these results support the application of PAU1000 in the field of soft tissue repair as a temporary degradable scaffold. PMID:28824103
Ghoshal, Tandra; Holmes, Justin D; Morris, Michael A
2018-05-08
In an effort to develop block copolymer lithography to create high aspect vertical pore arrangements in a substrate surface we have used a microphase separated poly(ethylene oxide) -b- polystyrene (PEO-b-PS) block copolymer (BCP) thin film where (and most unusually) PS not PEO is the cylinder forming phase and PEO is the majority block. Compared to previous work, we can amplify etch contrast by inclusion of hard mask material into the matrix block allowing the cylinder polymer to be removed and the exposed substrate subject to deep etching thereby generating uniform, arranged, sub-25 nm cylindrical nanopore arrays. Briefly, selective metal ion inclusion into the PEO matrix and subsequent processing (etch/modification) was applied for creating iron oxide nanohole arrays. The oxide nanoholes (22 nm diameter) were cylindrical, uniform diameter and mimics the original BCP nanopatterns. The oxide nanohole network is demonstrated as a resistant mask to fabricate ultra dense, well ordered, good sidewall profile silicon nanopore arrays on substrate surface through the pattern transfer approach. The Si nanopores have uniform diameter and smooth sidewalls throughout their depth. The depth of the porous structure can be controlled via the etch process.
NASA Astrophysics Data System (ADS)
Yang, Yunyun; Kong, Weibo; Yuan, Ye; Zhou, Changlin; Cai, Xufu
2018-04-01
Novel poly(carbonate-co-amide) (PCA) block copolymers are prepared with polycarbonate diol (PCD) as soft segments, polyamide-6 (PA6) as hard segments and 4,4'-diphenylmethane diisocyanate (MDI) as coupling agent through reactive processing. The reactive processing strategy is eco-friendly and resolve the incompatibility between polyamide segments and PCD segments in preparation processing. The chemical structure, crystalline properties, thermal properties, mechanical properties and water resistance were extensively studied by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Differential scanning calorimetry (DSC), Thermal gravity analysis (TGA), Dynamic mechanical analysis (DMA), tensile testing, water contact angle and water absorption, respectively. The as-prepared PCAs exhibit obvious microphase separation between the crystalline hard PA6 phase and amorphous PCD soft segments. Meanwhile, PCAs showed outstanding mechanical with the maximum tensile strength of 46.3 MPa and elongation at break of 909%. The contact angle and water absorption results indicate that PCAs demonstrate outstanding water resistance even though possess the hydrophilic surfaces. The TGA measurements prove that the thermal stability of PCA can satisfy the requirement of multiple-processing without decomposition.
Fluids density functional theory and initializing molecular dynamics simulations of block copolymers
NASA Astrophysics Data System (ADS)
Brown, Jonathan R.; Seo, Youngmi; Maula, Tiara Ann D.; Hall, Lisa M.
2016-03-01
Classical, fluids density functional theory (fDFT), which can predict the equilibrium density profiles of polymeric systems, and coarse-grained molecular dynamics (MD) simulations, which are often used to show both structure and dynamics of soft materials, can be implemented using very similar bead-based polymer models. We aim to use fDFT and MD in tandem to examine the same system from these two points of view and take advantage of the different features of each methodology. Additionally, the density profiles resulting from fDFT calculations can be used to initialize the MD simulations in a close to equilibrated structure, speeding up the simulations. Here, we show how this method can be applied to study microphase separated states of both typical diblock and tapered diblock copolymers in which there is a region with a gradient in composition placed between the pure blocks. Both methods, applied at constant pressure, predict a decrease in total density as segregation strength or the length of the tapered region is increased. The predictions for the density profiles from fDFT and MD are similar across materials with a wide range of interfacial widths.
Hu, Michael Z.; Lai, Peng
2015-09-22
Nanoporous silica wires of various wire diameters were developed by space-confined molecular self-assembly of triblock copolymer ethylene/propylene/ethylene (P123) and silica alkoxide precursor (tetraethylorthosilicate, TEOS). Two distinctive hard-templating substrates, anodized aluminum oxide (AAO) and track-etched polycarbonate (EPC), with channel diameters in the range between 10 nm and 200 nm were employed for space-confinement of soft molecular self-assembly driven by the block-copolymer microphase separation. It was observed in the scanning and transmission electron microscope (STEM) studies that the substrate geometry and material characteristics had pronounced effects on the structure and morphology of the silica nanowires. A substrate wall effect was proposed tomore » explain the ordering and orientation of the intra-wire mesostructure. Circular and spiral nanostructures were found only in wires formed in AAO substrate, not in EPC. Pore-size differences and distinctive wall morphologies of the nanowires relating to the substrates were discussed. It was shown that the material and channel wall characteristics of different substrates play key roles in the ordering and morphology of the intra-wire nanostructures.« less
Understanding ion association states and molecular dynamics using infrared spectroscopy
NASA Astrophysics Data System (ADS)
Masser, Hanqing
A molecular level understanding of the ion transport mechanism within polymer electrolytes is crucial to the further development for advanced energy storage applications. This can be achieved by the identification and quantitative measurement of different ion species in the system and further relating them to the ion conductivity. In the first part of this thesis, research is presented towards understanding the ion association states (free ions, ion pairs and ion aggregates) in ionomer systems, and the correlation of ion association states, ion conduction, polymer dynamics, and morphology. Ion conductivity in ionomers can be improved by lowering glass transition temperature, increasing polymer ion solvation ability, and adjusting ionomer structural variables such as ion content, cation type and side chain structure. These effects are studied in three ionomer systems respectively, using a combination of characterization methods. Fourier Transform Infrared Spectroscopy (FTIR) identifies and quantifies the ion association states. Dielectric Spectroscopy (DRS) characterizes ion conductivity and polymer and ion dynamics. X-ray scattering reveals changes in morphology. The influence of a cation solvating plasticizer on a polyester ionomer is systematically investigated with respect to ion association states, ion and polymer dynamics and morphology. A decrease in the number ratio of ion aggregates with increased plasticizer content and a slight increase at elevated temperature are observed in FTIR. Similar results are also detected by X-ray scattering. As determined from dielectric spectroscopy, ion conductivity increases with plasticizer content, in accordance with the decrease in glass transition temperature. Research on copolymer of poly(ethylene oxide) (PEO) and poly(tetramethylene oxide) (PTMO) based ionomers further develops an understanding of the trade-off between ion solvation and segmental dynamics. Upon the incorporation of PTMO, the majority of the PTMO microphase separates from the PEO-rich microphase, and ionic groups are preferentially solvated by PEO chains and reside in the PEO-rich microphase. As the ratio of PTMO increases, the fraction of aggregates increases, resulting in more highly coordinated aggregation states. Results on ion association states are in good agreement with previous results on ion conductivity, polymer dynamics and morphology. The effects of ion content, cation type and ionic side chain structure on ion association states are systemically studied in a series of ionomers with short ethylene oxide and ionic sulfonated styrene side chains, and then correlated to the ion and polymer dynamic characterization. It is found that ionomers with modest ion content, large cation and styrene ionic side chain have the most "free ions" and ion pairs, and highest ion conductivity. Ion conduction in ionomers is optimized by systematically changing their chemical structures. In addition to knowledge of ion association states, a IR band shape also contains information on molecular dynamics. In companion investigation, the vibrational relaxation and dynamic transitions of conformationally insensitive normal modes in two different polymer systems (atactic polystyrene and deuterated poly(methyl methacrylate)) are studied. The information on vibrational relaxations is resolved by conducting precisely controlled FTIR experiments, applying specialized curve resolving data analysis, and calculating time correlation functions through numerical Fourier transformation. The vibrational relaxations of these modes can be described by a two process model: a fast process on the time scale of 0.01 ps, which is inhomogeneously broadened by a slow process on the time scale of picoseconds.
Sun, Zhiwei; Chen, Zhenbin; Zhang, Wenxu; Choi, Jaewon; Huang, Caili; Jeong, Gajin; Coughlin, E Bryan; Hsu, Yautzong; Yang, XiaoMin; Lee, Kim Y; Kuo, David S; Xiao, Shuaigang; Russell, Thomas P
2015-08-05
Low molecular weight P2VP-b-PS-b-P2VP triblock copolymer (poly(2-vinlypyridine)-block-polystyrene-block-poly(2-vinylpyridine)] is doped with copper chloride and microphase separated into lamellar line patterns with ultrahigh area density. Salt-doped P2VP-b-PS-b-P2VP triblock copolymer is self-assembled on the top of the nanoimprinted photoresist template, and metallic nanowires with long-range ordering are prepared with platinum-salt infiltration and plasma etching. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Macroscopic Modeling of A3B15A3 Triblock Copolymers in B Solvent
2010-11-01
matrix composed of the midblock (2). Some examples of TPEs are poly[styrene-butadiene-styrene] (SBS), poly[styrene- isoprene -styrene] (SIS), poly[styrene...92. 19. Hadziioannou, G.; Skoulios, A. Molecular Weight Dependence of Lamellar Structure in Styrene Isoprene Two- and Three-block Copolymers...Microphase Seperation in Styrene- Isoprene Block Copolymers. Macromolecules 1994, 27. 42. Mckay, K. W.; Gros, W. A.; Diehl, C. F. The Influence of
DNA-nanoparticle assemblies go organic: macroscopic polymeric materials with nanosized features.
Mentovich, Elad D; Livanov, Konstantin; Prusty, Deepak K; Sowwan, Mukules; Richter, Shachar
2012-05-30
One of the goals in the field of structural DNA nanotechnology is the use of DNA to build up 2- and 3-D nanostructures. The research in this field is motivated by the remarkable structural features of DNA as well as by its unique and reversible recognition properties. Nucleic acids can be used alone as the skeleton of a broad range of periodic nanopatterns and nanoobjects and in addition, DNA can serve as a linker or template to form DNA-hybrid structures with other materials. This approach can be used for the development of new detection strategies as well as nanoelectronic structures and devices. Here we present a new method for the generation of unprecedented all-organic conjugated-polymer nanoparticle networks guided by DNA, based on a hierarchical self-assembly process. First, microphase separation of amphiphilic block copolymers induced the formation of spherical nanoobjects. As a second ordering concept, DNA base pairing has been employed for the controlled spatial definition of the conjugated-polymer particles within the bulk material. These networks offer the flexibility and the diversity of soft polymeric materials. Thus, simple chemical methodologies could be applied in order to tune the network's electrical, optical and mechanical properties. One- two- and three-dimensional networks have been successfully formed. Common to all morphologies is the integrity of the micelles consisting of DNA block copolymer (DBC), which creates an all-organic engineered network.
Yu, Yaping; Wu, Yang; Zhang, Andong; Li, Cheng; Tang, Zheng; Ma, Wei; Wu, Yonggang; Li, Weiwei
2016-11-09
Conjugated polymers consisting of diketopyrrolopyrrole (DPP) units have been successfully applied in field-effect transistors (FETs) and polymer solar cells (PSCs), while most of the DPP polymers were designed as symmetric structures containing identical aromatic linkers. In this manuscript, we design a new asymmetric DPP polymer with varied aromatic linkers in the backbone for application in FETs and PSCs. The designation provides the chance to finely adjust the energy levels of conjugated polymers so as to influence the device performance. The asymmetric polymer exhibits highly crystalline properties, high hole mobilities of 3.05 cm 2 V -1 s -1 in FETs, and a high efficiency of 5.9% in PSCs with spectra response from 300 to 850 nm. Morphology investigation demonstrates that the asymmetric polymer has a large crystal domain in blended thin films, indicating that the solar cell performance can be further enhanced by optimizing the microphase separation. The study reveals that the asymmetric design via adjusting the aromatic linkers in DPP polymers is a useful route toward flexible electronic devices.
Rheological Design of Sustainable Block Copolymers
NASA Astrophysics Data System (ADS)
Mannion, Alexander M.
Block copolymers are extremely versatile materials that microphase separate to give rise to a rich array of complex behavior, making them the ideal platform for the development of rheologically sophisticated soft matter. In line with growing environmental concerns of conventional plastics from petroleum feedstocks, this work focuses on the rheological design of sustainable block copolymers--those derived from renewable sources and are degradable--based on poly(lactide). Although commercially viable, poly(lactide) has a number of inherent deficiencies that result in a host of challenges that require both creative and practical solutions that are cost-effective and amenable to large-scale production. Specifically, this dissertation looks at applications in which both shear and extensional rheology dictate performance attributes, namely chewing gum, pressure-sensitive adhesives, and polymers for blown film extrusion. Structure-property relationships in the context of block polymer architecture, polymer composition, morphology, and branching are explored in depth. The basic principles and fundamental findings presented in this thesis are applicable to a broader range of substances that incorporate block copolymers for which rheology plays a pivotal role.
Stefik, Morgan; Mahajan, Surbhi; Sai, Hiroaki; Epps, Thomas H.; Bates, Frank S.; Gruner, Sol M; DiSalvo, Francis J.; Wiesner, Ulrich
2009-01-01
We report the first use of a non-frustrated block terpolymer for the synthesis of highly ordered oxide nanocomposites containing multiple plies. The morphological behavior of 15 ISO-oxide nanocomposites was investigated spanning a large range of compositions along the ƒI=ƒS isopleth using aluminosilicate and niobia sols. Morphologies were determined by TEM and SAXS measurements. Four morphologies were identified, including core-shell hexagonal, core-shell double gyroid, three-domain lamellae, and core-shell inverse-hexagonal, in order of increasing O+oxide vol fraction. All of the resulting nanocomposites had three- or five-ply morphologies containing domains that were continuous in one, two, or three dimensions. The five-ply core-shell double gyroid phase was only found to be stable when the O+oxide domain was a minority. Removal of the polymer enabled simple and direct synthesis of mesoporous oxide materials while retaining the ordered network structure. We believe that advances in the synthesis of multi-ply nanocomposites will lead to advanced materials and devices containing multiple plies of functional materials. PMID:20209023
Stefik, Morgan; Mahajan, Surbhi; Sai, Hiroaki; Epps, Thomas H; Bates, Frank S; Gruner, Sol M; Disalvo, Francis J; Wiesner, Ulrich
2009-11-24
We report the first use of a non-frustrated block terpolymer for the synthesis of highly ordered oxide nanocomposites containing multiple plies. The morphological behavior of 15 ISO-oxide nanocomposites was investigated spanning a large range of compositions along the ƒ(I)=ƒ(S) isopleth using aluminosilicate and niobia sols. Morphologies were determined by TEM and SAXS measurements. Four morphologies were identified, including core-shell hexagonal, core-shell double gyroid, three-domain lamellae, and core-shell inverse-hexagonal, in order of increasing O+oxide vol fraction. All of the resulting nanocomposites had three- or five-ply morphologies containing domains that were continuous in one, two, or three dimensions. The five-ply core-shell double gyroid phase was only found to be stable when the O+oxide domain was a minority. Removal of the polymer enabled simple and direct synthesis of mesoporous oxide materials while retaining the ordered network structure. We believe that advances in the synthesis of multi-ply nanocomposites will lead to advanced materials and devices containing multiple plies of functional materials.
Effect of rod length on the morphology of block copolymer/magnetic nanorod composites.
Lo, Chieh-Tsung; Lin, Wei-Ting
2013-05-02
The organization of magnetic nanorods in microphase-separated diblock copolymers composed of poly(styrene-b-2-vinylpyridine) (PS-PVP) as a function of rod length and rod concentration was investigated using both transmission electron microscopy and small-angle X-ray scattering. Our results reveal that the nanorods were sequestered into the PVP domains, which is attributed to the preferential interaction between pyridine-tethered nanorods and PVP. Meanwhile, the addition of nanorods in PS-PVP caused chain stretching. To minimize the energy penalty, nanorods tended to align parallel to the interface between PS and PVP to increase the conformational entropy. As the length of nanorods increased, the increasing van der Waals interaction and magnetic interaction caused extensive rod aggregation, which suppressed the domain size of PVP and amplified the local compositional fluctuations. This creates conditions to induce disorder in the polymer morphology and nanorods undergo macrophase separation.
Flow-enhanced solution printing of all-polymer solar cells
Diao, Ying; Zhou, Yan; Kurosawa, Tadanori; ...
2015-08-12
Morphology control of solution coated solar cell materials presents a key challenge limiting their device performance and commercial viability. Here we present a new concept for controlling phase separation during solution printing using an all-polymer bulk heterojunction solar cell as a model system. The key aspect of our method lies in the design of fluid flow using a microstructured printing blade, on the basis of the hypothesis of flow-induced polymer crystallization. Our flow design resulted in a similar to 90% increase in the donor thin film crystallinity and reduced microphase separated donor and acceptor domain sizes. The improved morphology enhancedmore » all metrics of solar cell device performance across various printing conditions, specifically leading to higher short-circuit current, fill factor, open circuit voltage and significantly reduced device-to-device variation. However, we expect our design concept to have broad applications beyond all-polymer solar cells because of its simplicity and versatility.« less
Flow-enhanced solution printing of all-polymer solar cells
Diao, Ying; Zhou, Yan; Kurosawa, Tadanori; Shaw, Leo; Wang, Cheng; Park, Steve; Guo, Yikun; Reinspach, Julia A.; Gu, Kevin; Gu, Xiaodan; Tee, Benjamin C. K.; Pang, Changhyun; Yan, Hongping; Zhao, Dahui; Toney, Michael F.; Mannsfeld, Stefan C. B.; Bao, Zhenan
2015-01-01
Morphology control of solution coated solar cell materials presents a key challenge limiting their device performance and commercial viability. Here we present a new concept for controlling phase separation during solution printing using an all-polymer bulk heterojunction solar cell as a model system. The key aspect of our method lies in the design of fluid flow using a microstructured printing blade, on the basis of the hypothesis of flow-induced polymer crystallization. Our flow design resulted in a ∼90% increase in the donor thin film crystallinity and reduced microphase separated donor and acceptor domain sizes. The improved morphology enhanced all metrics of solar cell device performance across various printing conditions, specifically leading to higher short-circuit current, fill factor, open circuit voltage and significantly reduced device-to-device variation. We expect our design concept to have broad applications beyond all-polymer solar cells because of its simplicity and versatility. PMID:26264528
NASA Astrophysics Data System (ADS)
Moussaid, A.; Schosseler, F.; Munch, J. P.; Candau, S. J.
1993-04-01
The intensity scattered from polyacrylic acid and polymethacrylic acid solutions has been measured by small angle neutron scattering experiemnts. The influence of polymer concentration, ionization degree, temperature and salt content has been investigated. Results are in qualitative agreement with a model which predicts the existence of microphases in the unstable region of the phase diagram. Quantitative comparison with the theory is performed by fitting the theoretical structure factor to the experimental data. For a narrow range of ionizaiton degrees nearly quantitative agreement with the theory is found for the polyacrylic acide system.
Raman study of local ordering processes of solid n-alkanes
NASA Astrophysics Data System (ADS)
Hacura, A.; Zimnicka, B.; Wrzalik, R.
2016-02-01
The microphase separation of n-alkanes with different chain length was investigated by Raman spectroscopy for binary mixture rapidly quenched from the melt. The process was observed as a function of time. The first several minutes after solidification were crucial for the demixing process. For a few weeks old sample the orientational order parameters
Minimum free-energy paths for the self-organization of polymer brushes.
Gleria, Ignacio; Mocskos, Esteban; Tagliazucchi, Mario
2017-03-22
A methodology to calculate minimum free-energy paths based on the combination of a molecular theory and the improved string method is introduced and applied to study the self-organization of polymer brushes under poor solvent conditions. Polymer brushes in a poor solvent cannot undergo macroscopic phase separation due to the physical constraint imposed by the grafting points; therefore, they microphase separate forming aggregates. Under some conditions, the theory predicts that the homogeneous brush and the aggregates can exist as two different minima of the free energy. The theoretical methodology introduced in this work allows us to predict the minimum free-energy path connecting these two minima as well as the morphology of the system along the path. It is shown that the transition between the homogeneous brush and the aggregates may involve a free-energy barrier or be barrierless depending on the relative stability of the two morphologies and the chain length and grafting density of the polymer. In the case where a free-energy barrier exists, one of the morphologies is a metastable structure and, therefore, the properties of the brush as the quality of the solvent is cycled are expected to display hysteresis. The theory is also applied to study the adhesion/deadhesion transition between two opposing surfaces modified by identical polymer brushes and it is shown that this process may also require surpassing a free-energy barrier.
NASA Astrophysics Data System (ADS)
Hahm, J.; Sibener, S. J.
2001-03-01
Time-sequenced atomic force microscopy (AFM) studies of ultrathin films of cylinder-forming polystyrene-block-polymethylmethacrylate (PS-b-PMMA) copolymer are presented which delineate thin film mobility kinetics and the morphological changes which occur in microphase-separated films as a function of annealing temperature. Of particular interest are defect mobilities in the single layer (L thick) region, as well as the interfacial morphological changes which occur between L thick and adjacent 3L/2 thick layers, i.e., structural changes which occur during multilayer evolution. These measurements have revealed the dominant pathways by which disclinations and dislocations transform, annihilate, and topologically evolve during thermal annealing of such films. Mathematical combining equations are given to better explain such defect transformations and show the topological outcomes which result from defect-defect encounters. We also report a collective, Arrhenius-type flow of defects in localized L thick regions of the film; these are characterized by an activation energy of 377 kJ/mol. These measurements represent the first direct investigation of time-lapse interfacial morphological changes including associated defect evolution pathways for polymeric ultrathin films. Such observations will facilitate a more thorough and predictive understanding of diblock copolymer thin film dynamics, which in turn will further enable the utilization of these nanoscale phase-separated materials in a range of physical and chemical applications.
Molecular mobility, morphology, and ion conduction in ionomers for electroactive devices
NASA Astrophysics Data System (ADS)
Tudryn, Gregory J.
A sequential study of ion-containing polymers capable of ion solvation with varied ion content, dielectric constant, and counterions is presented in this dissertation in order to compare ion transport properties in ionomers with various ionic interactions. Structure-property relationships in these ion containing polymers are defined using x-ray scattering, rheology and dielectric spectroscopy, enabling the quantification of ion transport dynamics. Poly(ethylene oxide), (PEO) based ionomers are investigated in order to probe the relation between ion conduction and segmental relaxation, and copolymers of PEO and Poly(tetramethylene oxide), (PTMO) further develop an understanding of the trade-off between ion solvation and segmental dynamics. Ionomers with ionic liquid counterions probe diffuse charge interactions and steric effects on ion transport, and incorporation of ionic liquids into ionomer membranes such as Nafion provides desirable thermal and ion conducting properties which extend the use of such membranes for electroactive devices. PEO ionomers exhibit a strong relation between ionic conductivity and segmental dynamics, providing insight that the glass transition temperature, Tg, dominates the ion conduction mechanism. Increasing temperature induces aggregation of ionic groups as evidenced by the static dielectric constant and X-ray scattering as a function of temperature, revealing the contribution of ionic dipoles in the measured dielectric constant. The trade-off between ion solvation and fast polymer segmental dynamics are quantified in copolymer ionomers of PEO and lower Tg PTMO. While conducting ion content remains nearly unchanged, conductivity is lowered upon incorporation of PTMO, because the vast majority of the PTMO microphase separates from the PEO-rich microdomain that remains continuous and contributes most of the ion conduction. Dielectric constants and X-ray scattering show consistent changes with temperature that suggest a cascading aggregation process in Na ionomers as ionic dipoles thermally randomize and lower the measured dielectric constant of the medium, leading to further aggregation. We observe amplified microphase-separation through ionic groups preferentially solvated by PEO chains, as seen in block copolymers with added salt. Even at 25%PEO / 75%PTMO the ionomers have VFT temperature dependence of conducting ion mobility, meaning that the 25% PEO/ion microphase is still continuous A model is developed to describe the frequency dependent storage and loss modulus and the delay in Rouse motion due to ion association lifetime, as functions of ion content and molecular weight for our low molecular weight ionomers. The ion rearrangement relaxation in dielectric spectroscopy is clearly the ion association lifetime that controls terminal dynamics in linear viscoelasticity, allowing a simple sticky Rouse model, using the most-probable distribution based on NMR Mn, to fully describe master curves of the frequency dependent storage and loss modulus. Using insight from ionic interaction strength, ionic liquids are used as counterions, effectively plasticizing the ionomers without added solvent. Ionic interactions were weakened with increasing counterion size, and with modification of cations using ether-oxygen, promoting self-solvation, which increases conducting ion density by an order of magnitude. Room temperature ionic liquids were subsequently used in combination with NafionRTM membranes as electroactive substrates to correlate ion transport to morphology as a function of volume fraction of ionic liquid. This study illuminated the critical volume uptake of ionic liquid in Nafion, identifying percolation of ionic pathways and a significant increase in dielectric constant at low frequencies, indicating an increase in the number density of ions capable of polarizing at the electrode surface. Consequently, the fundamental information obtained about the structure-property relations of ionomers can be used to predict and design advanced ion-containing polymers to be used in battery membranes and a variety of electroactive devices, including actuators and electromechanical sensors.
DNA-nanoparticle assemblies go organic: Macroscopic polymeric materials with nanosized features
2012-01-01
Background One of the goals in the field of structural DNA nanotechnology is the use of DNA to build up 2- and 3-D nanostructures. The research in this field is motivated by the remarkable structural features of DNA as well as by its unique and reversible recognition properties. Nucleic acids can be used alone as the skeleton of a broad range of periodic nanopatterns and nanoobjects and in addition, DNA can serve as a linker or template to form DNA-hybrid structures with other materials. This approach can be used for the development of new detection strategies as well as nanoelectronic structures and devices. Method Here we present a new method for the generation of unprecedented all-organic conjugated-polymer nanoparticle networks guided by DNA, based on a hierarchical self-assembly process. First, microphase separation of amphiphilic block copolymers induced the formation of spherical nanoobjects. As a second ordering concept, DNA base pairing has been employed for the controlled spatial definition of the conjugated-polymer particles within the bulk material. These networks offer the flexibility and the diversity of soft polymeric materials. Thus, simple chemical methodologies could be applied in order to tune the network's electrical, optical and mechanical properties. Results and conclusions One- two- and three-dimensional networks have been successfully formed. Common to all morphologies is the integrity of the micelles consisting of DNA block copolymer (DBC), which creates an all-organic engineered network. PMID:22646980
Lee, Yi-Huan; Chen, Wei-Chih; Yang, Yi-Lung; Chiang, Chi-Ju; Yokozawa, Tsutomu; Dai, Chi-An
2014-05-21
Driven by molecular affinity and balance in the crystallization kinetics, the ability to co-crystallize dissimilar yet self-crystallizable blocks of a block copolymer (BCP) into a uniform domain may strongly affect its phase diagram. In this study, we synthesize a new series of crystalline and monodisperse all-π-conjugated poly(2,5-dihexyloxy-p-phenylene)-b-poly(3-(2-ethylhexyl)thiophene) (PPP-P3EHT) BCPs and investigate this multi-crystallization effect. Despite vastly different side-chain and main-chain structures, PPP and P3EHT blocks are able to co-crystallize into a single uniform domain comprising PPP and P3EHT main-chains with mutually interdigitated side-chains spaced in-between. With increasing P3EHT fraction, PPP-P3EHTs undergo sequential phase transitions and form hierarchical superstructures including predominately PPP nanofibrils, co-crystalline nanofibrils, a bilayer co-crystalline/pure P3EHT lamellar structure, a microphase-separated bilayer PPP-P3EHT lamellar structure, and finally P3EHT nanofibrils. In particular, the presence of the new co-crystalline lamellar structure is the manifestation of the interaction balance between self-crystallization and co-crystallization of the dissimilar polymers on the resulting nanostructure of the BCP. The current study demonstrates the co-crystallization nature of all-conjugated BCPs with different main-chain moieties and may provide new guidelines for the organization of π-conjugated BCPs for future optoelectronic applications.
High temperature lithium cells with solid polymer electrolytes
Yang, Jin; Eitouni, Hany Basam; Singh, Mohit
2017-03-07
Electrochemical cells that use electrolytes made from new polymer compositions based on poly(2,6-dimethyl-1,4-phenylene oxide) and other high-softening-temperature polymers are disclosed. These materials have a microphase domain structure that has an ionically-conductive phase and a phase with good mechanical strength and a high softening temperature. In one arrangement, the structural block has a softening temperature of about 210.degree. C. These materials can be made with either homopolymers or with block copolymers. Such electrochemical cells can operate safely at higher temperatures than have been possible before, especially in lithium cells. The ionic conductivity of the electrolytes increases with increasing temperature.
ABC triblock copolymer vesicles with mesh-like morphology.
Zhao, Wei; Chen, Dian; Hu, Yunxia; Grason, Gregory M; Russell, Thomas P
2011-01-25
Polymer vesicles made from poly(isoprene-b-styrene-b-2-vinyl pyridine) (PI-b-PS-b-P2VP) triblock copolymer confined within the nanopores of an anodic aluminum oxide (AAO) membrane are studied. It was found that these vesicles have well-defined, nanoscopic size, and complex microphase-separated hydrophobic membranes, comprised of the PS and PI blocks, while the coronas are formed by the P2VP block. Vesicle formation was tracked using both transmission and scanning electron microscopy. A mesh-like morphology formed in the membrane at a well-defined composition of the three blocks that can be tuned by changing the copolymer composition. The nanoscale confinement, copolymer composition, and subtle molecular interactions contribute to the generation of these vesicles with such unusual morphologies.
Raschke, Markus B; Molina, Leopoldo; Elsaesser, Thomas; Kim, Dong Ha; Knoll, Wolfgang; Hinrichs, Karsten
2005-10-14
Nanodomains formed by microphase separation in thin films of the diblock copolymers poly(styrene-b-2-vinylpyridine) (PS-b-P2VP) and poly(styrene-b-ethyleneoxide) (PS-b-PEO) were imaged by means of infrared scattering-type near-field microscopy. When probing at 3.39 mum (2950 cm(-1)), contrast is obtained due to spectral differences between the C--H stretching vibrational resonances of the respective polymer constituents. An all-optical spatial resolution better than 10 nm was achieved, which corresponds to a sensitivity of just several thousand C--H groups facilitated by the local-field enhancement at the sharp metallic probe tips. The results demonstrate that infrared spectroscopy with access to intramolecular dimensions is within reach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Wenwen; Wang, Weiyu; Li, Hui
In this study, high molecular weight “comb-shaped” graft copolymers, poly(isoprene-g-styrene), with polyisoprene as the backbone and polystyrene as side chains, were synthesized via free radical emulsion polymerization by copolymerization of isoprene with a polystyrene macromonomer synthesized using anionic polymerization. A small amount of toluene was used in order to successfully disperse the macromonomer. Both a redox and thermal initiation system were used in the emulsion polymerization, and the latex particle size and distribution were investigated by dynamic light scattering. The structural characteristics of the macromonomer and comb graft copolymers were investigated through use of size exclusion chromatography, spectroscopy, microscopy, thermalmore » analysis, and rheology. While the macromonomer was successfully copolymerized to obtain the desired multigraft copolymers, small amounts of unreacted macromonomer remained in the products, reflecting its reduced reactivity due to steric effects. Nevertheless, the multigraft copolymers obtained were very high in molecular weight (5–12 × 10 5 g/mol) and up to 10 branches per chain, on average, could be incorporated. A material incorporating 29 wt% polystyrene exhibits a disordered microphase separated morphology and elastomeric properties. As a result, these materials show promise as new, highly tunable, and potentially low cost thermoplastic elastomers.« less
Phase behavior and transitions of self-assembling nano-structured materials
NASA Astrophysics Data System (ADS)
Duan, Hu
Homologous series of supramolecular nanostructures have been investigated by a combination of transmission electron microscopy (TEM), electron diffraction (ED), thermal polarized optical microscopy and X-ray diffraction (XRD). Materials include amphiphilic oligomers and polymer such as charged complexes, dipeptide dendrons semi-fluorinated dendron and polyethyleneimines. Upon microphase separation, they self-assemble into either cylindrical or spherical shapes, which co-organize into a 2D P6mm hexagonal columnar phase or 3D Pm 3¯ n and Im 3¯ m cubic phases. Correlation between the phase selection and molecular architecture is established accordingly. The order-disorder transition (ODT) is explored by rheometry and rheo-optical microscopy in a model polymeric compound poly(N-[3,4-bis(n-dodecan-1-yloxy)benzoyl]ethyleneimine). Shear alignment of the hexagonal columnar liquid crystalline phase along the velocity direction at low temperature and shear disordering in the vicinity of the ODT were observed. After cessation of shear, transformation back to the stable columnar phase follows a row-nucleation mechanism. The order-order transition process is explored in a monodendron that exhibits a hexagonal columnar and a weakly birefringent mesophase. Polarized DIC microscopy strongly supports an epitaxial relationship between them.
Cell adhesion on nanotopography
NASA Astrophysics Data System (ADS)
Tsai, Irene; Kimura, Masahiro; Stockton, Rebecca; Jacobson, Bruce; Russell, Thomas
2003-03-01
Cell adhesion, a key element in understanding the cell-biomaterial interactions, underpins proper cell growth, function and survival. Understanding the parameters influencing cell adhesion is critical for applications in biosensors, implants and bioreactors. A gradient surface is used to study the effect of the surface topography on cell adhesion. A gradient surface is generated by block copolymer and homopolymer blends. The two homopolymers will phase separate on the micron scale and gradually decrease to nano-scale by the microphase separation of the diblock. Gradient surfaces offer a unique opportunity to probe lateral variations in the topography and interactions. Using thin films of mixtures of diblock copolymers of PS-b-MMA with PS and PMMA homopolymers, where the concentration of the PS-b-MMA varies across the surface, a gradient in the size scale of the morphology, from the nanoscopic to microscopic, was produced. By UV exposure, the variation in morphology translated into a variation in topography. The extent of cell spreading and cytoskeleton formation was investigated and marked dependence on the length scale of the surface topography was found.
A Study on the Kinetics of a Disorder-to-Order Transition Induced by Alkyne/Azide Click Reaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
X Wei; L Li; J Kalish
2011-12-31
The kinetics of binary blends of poly(ethylene oxide)-block-poly(n-butyl methacrylate-random-propargyl methacrylate) (PEO-b-P(nBMA-r-PgMA)) diblock copolymer and Rhodamine B azide was investigated during a disorder-to-order transition induced by alkyne/azide click reaction. The change in the domain spacing and conversion of reactants as a function of annealing time were investigated by in situ small-angle X-ray scattering (SAXS) and infrared spectroscopy (IR), suggesting several kinetic processes with different time scales during thermal annealing. While a higher conversion can be realized by extending the annealing time, the microphase-separated morphology is independent of the annealing conditions, as long as both the reagents and final products have enoughmore » mobility.« less
NASA Astrophysics Data System (ADS)
Thelen, Jacob Lloyd
One of the major barriers to expanding the capacity of large-scale electrochemical energy storage within batteries is the threat of a catastrophic failure. Catastrophic battery pack failure can be initiated by a defect within a single battery cell. If the failure of a defective battery cell is not contained, the damage can spread and subsequently compromise the integrity of the entire battery back, as well as the safety of those in its surroundings. Replacing the volatile, flammable liquid electrolyte components found in most current lithium ion batteries with a solid polymer electrolyte (SPE) would significantly improve the cell-level safety of batteries; however, poor ionic conductivity and restricted operating temperatures compared to liquid electrolytes have plagued the practical application of SPEs. Rather than competing with the performance of liquid electrolytes directly, our approach to developing SPEs relies on increasing electrolyte functionality through the use of block copolymer architectures. Block copolymers, wherein two or more chemically dissimilar polymer chains are covalently bound, have a propensity to microphase separate into nanoscale domains that have physical properties similar to those of each of the different polymer chains. For instance, the block copolymer, polystyrene-b-poly(ethylene oxide) (SEO), has often been employed as a solid polymer electrolyte because the nanoscale domains of polystyrene (PS) can provide mechanical reinforcement, while the poly(ethylene oxide) microphases can solvate and conduct lithium ions. Block copolymer electrolytes (BCEs) formed from SEO/salt mixtures result in a material with the bulk mechanical properties of a solid, but with the ion conducting properties of a viscoelastic fluid. The efficacy SEO-based BCEs has been demonstrated; the enhanced mechanical functionality provided by the PS domains resist the propagation of dendritic lithium structures during battery operation, thus enabling the use of a lithium metal anode. The increase in the specific energy of a battery upon replacing a graphite anode with lithium metal can offset the losses in performance due to the poor ion conduction of SPEs. However, BCEs that enable the use of a lithium anode and have improved performance would represent a major breakthrough for the development of high capacity batteries. The electrochemical performance of BCEs has a complex relationship with the nature of the microphase separated domains, which is not well-understood. The objective of this dissertation is to provide fundamental insight into the nature of microphase separation and self-assembly of block copolymer electrolytes. Specifically, I will focus on how the ion-polymer interactions within a diverse set of BCEs dictate nanostructure. Combining such insight with knowledge of how nanostructure influences ion motion will enable the rational design of new BCEs with enhanced performance and functionality. In order to facilitate the study of BCE nanostructure, synchrotron-based X-ray scattering techniques were used to study samples over a wide range of length-scales under conditions relevant to the battery environment. The development of the experimental aspects of the X-ray scattering techniques, as well as an improved treatment of scattering data, played a pivotal role in the success of this work. The dissemination of those developments will be the focus of the first section. The thermodynamic impact of adding salt to a neutral diblock copolymer was studied in a model BCE composed of a low molecular weight SEO diblock copolymer mixed with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), a common salt used in lithium batteries. In neutral block copolymers (BCPs), self-assembly is a thermodynamically driven process governed by a balance between unfavorable monomer contacts and the entropy of mixing. When the enthalpic and entropic contributions to free energy are similar in magnitude, a block copolymer can undergo a thermally reversible phase transition from an ordered to a disordered nanostructure. We used temperature-dependent small angle X-ray scattering (SAXS) to observe this transition in the model SEO/LiTFSI system. Unlike neutral BCPs, which to a first approximation are single component systems, the SEO/LiTFSI system demonstrated the thermodynamically stable coexistence phases of ordered lamellae and disordered polymer over a finite temperature window. Analysis of the lamellar domains revealed an increase in salt concentration during the ODT, indicating local salt partitioning due to the presence of nanostructure. The performance of BCEs can also be improved by chemically functionalizing one of the polymer blocks by covalently attaching the salt anion. Since the cation is the only mobile species, these materials are coined single-ion conducting block copolymers. Single ion conduction can improve the efficiency of battery operation. In order for cation motion to occur in single-ion conducting block copolymers, it must dissociate from the backbone of the anion-containing polymer block. This direct coupling of ion dissociation (and hence conduction) and nanostructure has interesting implications for BCE performance. (Abstract shortened by ProQuest.).
NASA Astrophysics Data System (ADS)
Bowman, Michelle Kathleen
Block copolymers exhibit a wealth of morphologies that continue to find ubiquitous use in a diverse variety of mature and emergent (nano)technologies, such as photonic crystals, integrated circuits, pharmaceutical encapsulents, fuel cells and separation membranes. While numerous studies have explored the effects of molecular confinement on such copolymers, relatively few have examined the sub-microdomain structure that develops upon modification of copolymer molecular architecture or physical incorporation of nanoscale objects. This work will address two relevant topics in this vein: (i) bidisperse brushes formed by single block copolymer molecules and (ii) copolymer nanocomposites formed by addition of molecular or nanoscale additives. In the first case, an isomorphic series of asymmetric poly(styrene-b -isoprene-b-styrene) (S1IS2) triblock copolymers of systematically varied chain length has been synthesized from a parent SI diblock copolymer. Small-angle x-ray scattering, coupled with dynamic rheology and self-consistent field theory (SCFT), reveals that the progressively grown S2 block initially resides in the I-rich matrix and effectively reduces the copolymer incompatibility until a critical length is reached. At this length, the S2 block co-locates with the S1 block so that the two blocks generate a bidisperse brush (insofar as the S1 and S2 lengths differ). This single-molecule analog to binary block copolymer blends affords unique opportunities for materials design at sub-microdomain length scales and provides insight into the transition from diblock to triblock copolymer (and thermoplastic elastomeric nature). In the second case, I explore the distribution of molecular and nanoscale additives in microphase-ordered block copolymers and demonstrate via SCFT that an interfacial excess, which depends strongly on additive concentration, selectivity and relative size, develops. These predictions are in agreement with experimental findings. Moreover, using a poly(styrene-b-methyl methacrylate) (SM) diblock copolymer with an order-disorder transition temperature (TODT) of 186°C, we find that the addition of clustered and discrete nanoparticles of varying size and surface selectivity can cause T ODT to generally decrease, but occasionally increase. Also experimenting with a poly(styrene-b-isoprene) (SI) diblock copolymer with an TODT of 116°C, we find that the addition of smaller nanoparticles at small volume fractions effect the TODT more profoundly. The latter unexpected results are likewise predicted by SCFT and provide a unique strategy by which to improve the nanostructure stability of block copolymers by physical means.
Ion transport mechanisms in lamellar phases of salt-doped PS-PEO block copolymer electrolytes.
Sethuraman, Vaidyanathan; Mogurampelly, Santosh; Ganesan, Venkat
2017-11-01
We use a multiscale simulation strategy to elucidate, at an atomistic level, the mechanisms underlying ion transport in the lamellar phase of polystyrene-polyethylene oxide (PS-PEO) block copolymer (BCP) electrolytes doped with LiPF 6 salts. Explicitly, we compare the results obtained for ion transport in the microphase separated block copolymer melts to those for salt-doped PEO homopolymer melts. In addition, we also present results for dynamics of the ions individually in the PEO and PS domains of the BCP melt, and locally as a function of the distance from the lamellar interfaces. When compared to the PEO homopolymer melt, ions were found to exhibit slower dynamics in both the block copolymer (overall) and in the PEO phase of the BCP melt. Such results are shown to arise from the effects of slower polymer segmental dynamics in the BCP melt and the coordination characteristics of the ions. Polymer backbone-ion residence times analyzed as a function of distance from the interface indicate that ions have a larger residence time near the interface compared to that near the bulk of lamella, and demonstrates the influence of the glassy PS blocks and microphase segregation on the ion transport properties. Ion transport mechanisms in BCP melts reveal that there exist five distinct mechanisms for ion transport along the backbone of the chain and exhibit qualitative differences from the behavior in homopolymer melts. We also present results as a function of salt concentration which show that the mean-squared displacements of the ions decrease with increasing salt concentration, and that the ion residence times near the polymer backbone increase with increasing salt concentration.
Surface morphology diagram for cylinder-forming block copolymer thin films.
Zhang, Xiaohua; Berry, Brian C; Yager, Kevin G; Kim, Sangcheol; Jones, Ronald L; Satija, Sushil; Pickel, Deanna L; Douglas, Jack F; Karim, Alamgir
2008-11-25
We investigate the effect of the ordering temperature (T) and film thickness (h(f)) on the surface morphology of flow-coated block copolymer (BCP) films of asymmetric poly(styrene-block-methyl methacrylate). Morphology transitions observed on the ordered film surface by atomic force microscopy (AFM) are associated with a perpendicular to a parallel cylinder BCP microphase orientation transition with respect to the substrate with increasing h(f). "Hybrid" surface patterns for intermediate h(f) between these limiting morphologies are correspondingly interpreted by a coexistence of these two BCP microphase orientations so that two "transitional" h(f) exist for each T. This explanation of our surface patterns is supported by both neutron reflectivity and rotational SANS measurements. The transitional h(f) values as a function of T define upper and lower surface morphology transition lines, h(fu) (T) and h(fl) (T), respectively, and a surface morphology diagram that should be useful in materials fabrication. Surprisingly, the BCP film surface morphology depends on the method of film formation (flow-coated versus spun-cast films) so that nonequilibrium effects are evidently operative. This morphological variability is attributed primarily to the trapping of residual solvent (toluene) within the film (quantified by neutron reflectivity) due to film vitrification while drying. This effect has significant implications for controlling film structure in nanomanufacturing applications based on BCP templates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, X.; Gu, W.; Chen, W.
2012-01-01
We investigated thin film morphologies of binary blends of alkyne-functionalized diblock copolymer poly(ethylene oxide)-block-poly(n-butyl methacrylate-random-propargyl methacrylate) (PEO-b-P(nBMA-r-PgMA)) and Rhodamine B azide, where the thermal alkyne/azide click reaction between the two components induced a disorder-to-order transition (DOT) of the copolymer. By controlling the composition of the neat copolymers and the mole ratio between the alkyne and azide groups, different microphase separated morphologies were achieved. At higher azide loading ratios, a perpendicular orientation of the microdomains was observed with wide accessible film thickness window. As less azide was incorporated, the microdomains have a stronger tendency to be parallel to the substrate, andmore » the film thickness window for perpendicular orientation also became narrower.« less
Electrostatic Interactions and Self-Assembly in Polymeric Systems
NASA Astrophysics Data System (ADS)
Dobrynin, Andrey
Electrostatic interactions between macroions play an important role in different areas ranging from materials science to biophysics. They are main driving forces behind layer-by-layer assembly technique that allows self-assembly of multilayer films from synthetic polyelectrolytes, DNA, proteins and nanoparticles. They are responsible for complexation and reversible gelation between polyelectrolytes and proteins. In this talk, using results of the molecular dynamics simulations and analytical calculations, I will demonstrate what effect electrostatic interactions, counterion condensation and polymer solvent affinity have on a collapse of polyelectrolyte chain in a poor solvent conditions for the polymer backbone, on complexations and reversible gelation between polyelectrolytes and polyamholytes (unstructured proteins), on microphase separation transitions in spherical and planar charged brushes, and on a layer-by-layer assembly of charged nanoparticles and linear polyelectrolytes on charged surfaces. NSF DMR-1004576 DMR-1409710.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goodwin, Andrew; Wang, Weiyu; Kang, Nam -Goo
We present in this paper the synthesis of poly(n-butyl acrylate)-g-poly(methyl methacrylate) (PnBA-g-PMMA) multigraft copolymers via a grafting-through (macromonomer) approach. The synthesis was performed using two controlled polymerization techniques. The PMMA macromonomer was obtained by high-vacuum anionic polymerization followed by the copolymerization of n-butyl acrylate and PMMA macromonomer using reversible addition–fragmentation chain transfer (RAFT) polymerization to yield the desired all-acrylic multigraft structures. The PnBA-g-PMMA multigraft structures exhibit randomly spaced branch points with various PMMA contents, ranging from 15 to 40 vol %, allowing an investigation into how physical properties vary with differences in the number of branch points and molecular weightmore » of grafted side chains. The determination of molecular weight and polydispersity indices of both the PMMA macromonomer and the graft copolymers was carried out using size exclusion chromatography with triple detection, and the structural characteristics of both the macromonomer and PnBA-g-PMMA graft materials were characterized by 1H and 13C NMR. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was employed for monitoring the macromonomer synthesis. Thermal characteristics of the materials were analyzed using differential scanning calorimetry and thermogravimetric analysis. The mechanical performance of the graft materials was characterized by rheology and dynamic mechanical analysis, revealing that samples with PMMA content of 25–40 vol % exhibit superior elastomeric properties as compared to materials containing short PMMA side chains or <25 vol % PMMA. In conclusion, atomic force microscopy showed a varying degree of microphase separation between the glassy and rubbery components that is strongly dependent on PMMA side chain molecular weight.« less
NASA Astrophysics Data System (ADS)
Jiang, Ying; Chen, Jeff Z. Y.
2013-10-01
This paper concerns establishing a theoretical basis and numerical scheme for studying the phase behavior of AB diblock copolymers made of wormlike chains. The general idea of a self-consistent field theory is the combination of the mean-field approach together with a statistical weight that describes the configurational properties of a polymer chain. In recent years, this approach has been extensively used for structural prediction of block copolymers, based on the Gaussian-model description of a polymer chain. The wormlike-chain model has played an important role in the description of polymer systems, covering the semiflexible-to-rod crossover of the polymer properties and the highly stretching regime, which the Gaussian-chain model has difficulties to describe. Although the idea of developing a self-consistent field theory for wormlike chains could be traced back to early development in polymer physics, the solution of such a theory has been limited due to technical difficulties. In particular, a challenge has been to develop a numerical algorithm enabling the calculation of the phase diagram containing three-dimensional structures for wormlike AB diblock copolymers. This paper describes a computational algorithm that combines a number of numerical tricks, which can be used for such a calculation. A phase diagram covering major parameter areas was constructed for the wormlike-chain system and reported by us, where the ratio between the total length and the persistence length of a constituent polymer is suggested as another tuning parameter for the microphase-separated structures; all detailed technical issues are carefully addressed in the current paper.
Self-Assembling Block Copolymer Resist Mixtures towards Lithographic Resists for Sub-10 nm Features
NASA Astrophysics Data System (ADS)
Chandler, Curran; Daga, Vikram; Watkins, James
2009-03-01
Significant improvements in 193 nm photolithography have enabled the extension of device feature sizes beyond the 45 nm and 32 nm nodes, yet uncertainty lies beyond 22 nm features as no single replacement has emerged. Here we show that low molecular weight, nonionic block copolymer surfactant blends are capable of self-assembling into highly ordered domains with feature sizes on the order of 5 nm. These surfactants, most of which lack the required χN for microphase separation on their own, exhibit strong segregation and long-range order upon addition of a component capable of multi-point hydrogen bonding that is specific for one of the blocks in the copolymer. This has been demonstrated by our SAXS data for several Pluronic (PEO-b-PPO-b-PEO) and Brij (PEO-b-[CH2]nCH3) surfactants of various molecular weights and PEO volume fractions. Furthermore, we employ these highly-ordered systems as thin film, nanolithographic etch masks for the transfer of sub-10 nm patterns into silicon-based substrates. Small molecule, hydrogen bonding additives containing aromatic or silsesquioxane structure are also used to tune etch contrast between the blocks which is important for reducing line edge roughness (LER) of such small features.
Wang, Wenwen; Wang, Weiyu; Li, Hui; ...
2015-01-14
In this study, high molecular weight “comb-shaped” graft copolymers, poly(isoprene-g-styrene), with polyisoprene as the backbone and polystyrene as side chains, were synthesized via free radical emulsion polymerization by copolymerization of isoprene with a polystyrene macromonomer synthesized using anionic polymerization. A small amount of toluene was used in order to successfully disperse the macromonomer. Both a redox and thermal initiation system were used in the emulsion polymerization, and the latex particle size and distribution were investigated by dynamic light scattering. The structural characteristics of the macromonomer and comb graft copolymers were investigated through use of size exclusion chromatography, spectroscopy, microscopy, thermalmore » analysis, and rheology. While the macromonomer was successfully copolymerized to obtain the desired multigraft copolymers, small amounts of unreacted macromonomer remained in the products, reflecting its reduced reactivity due to steric effects. Nevertheless, the multigraft copolymers obtained were very high in molecular weight (5–12 × 10 5 g/mol) and up to 10 branches per chain, on average, could be incorporated. A material incorporating 29 wt% polystyrene exhibits a disordered microphase separated morphology and elastomeric properties. As a result, these materials show promise as new, highly tunable, and potentially low cost thermoplastic elastomers.« less
Nguyen, Bach T; Balakrishnan, Gireeshkumar; Jacquette, Boris; Nicolai, Taco; Chassenieux, Christophe; Schmitt, Christophe; Bovetto, Lionel
2016-11-14
Heat-induced aggregation and gelation of aqueous solutions of whey protein isolate (WPI) in the presence of sodium caseinate (SC) and CaCl 2 was studied at pH 6.6. The effect of adding SC (0-100 g/L) on the structure of the aggregates and the gels was investigated by light scattering and confocal laser scanning microscopy at different CaCl 2 concentration ([CaCl 2 ] = 0-30 mM). The gelation process was studied by oscillatory shear rheology. At the whey protein concentrations studied here (34 and 60 g/L), no gels were formed in the absence of CaCl 2 and SC. However, WPI solutions gelled above a critical CaCl 2 concentration that increased with increasing SC concentration. In the absence of CaCl 2 , WPI gels were formed only above a critical SC concentration. The critical SC concentration needed to induce WPI gelation decreased weakly when CaCl 2 was added. In an intermediate range of CaCl 2 concentrations, gels were formed both at low and high SC concentrations, but not at intermediate SC concentrations. Finally, at high CaCl 2 concentrations gels were formed at all SC concentrations. The gelation rate and the gel structure of the gels formed at low and high casein concentrations were very different. The effect of SC on the thermal gelation of WPI was interpreted by competition for Ca 2+ , a chaperon effect, and microphase separation.
NASA Astrophysics Data System (ADS)
Hall, Lisa; Schweizer, Kenneth
2010-03-01
The microscopic Polymer Reference Interaction Site Model theory has been applied to spherical and rodlike fillers dissolved in three types of chemically heterogeneous polymer melts: alternating AB copolymer, random AB copolymers, and an equimolar blend of two homopolymers. In each case, one monomer species adsorbs more strongly on the filler mimicking a specific attraction, while all inter-monomer potentials are hard core which precludes macrophase or microphase separation. Qualitative differences in the filler potential-of-mean force are predicted relative to the homopolymer case. The adsorbed bound layer for alternating copolymers exhibits a spatial moduluation or layering effect but is otherwise similar to that of the homopolymer system. Random copolymers and the polymer blend mediate a novel strong, long-range bridging interaction between fillers at moderate to high adsorption strengths. The bridging strength is a non-monotonic function of random copolymer composition, reflecting subtle competing enthalpic and entropic considerations.
Response of cells on surface-induced nanopatterns: fibroblasts and mesenchymal progenitor cells.
Khor, Hwei Ling; Kuan, Yujun; Kukula, Hildegard; Tamada, Kaoru; Knoll, Wolfgang; Moeller, Martin; Hutmacher, Dietmar W
2007-05-01
Ultrathin films of a poly(styrene)-block-poly(2-vinylpyrindine) diblock copolymer (PS-b-P2VP) and poly(styrene)-block-poly(4-vinylpyrindine) diblock copolymer (PS-b-P4VP) were used to form surface-induced nanopattern (SINPAT) on mica. Surface interaction controlled microphase separation led to the formation of chemically heterogeneous surface nanopatterns on dry ultrathin films. Two distinct nanopatterned surfaces, namely, wormlike and dotlike patterns, were used to investigate the influence of topography in the nanometer range on cell adhesion, proliferation, and migration. Atomic force microscopy was used to confirm that SINPAT was stable under cell culture conditions. Fibroblasts and mesenchymal progenitor cells were cultured on the nanopatterned surfaces. Phase contrast and confocal laser microscopy showed that fibroblasts and mesenchymal progenitor cells preferred the densely spaced wormlike patterns. Atomic force microscopy showed that the cells remodelled the extracellular matrix differently as they migrate over the two distinctly different nanopatterns.
Kojio, Ken; Furukawa, Mutsuhisa; Nonaka, Yoshiteru; Nakamura, Sadaharu
2010-01-01
Mechanical properties of thermoplastic polyurethane elastomers based on either polyether or polycarbonate (PC)-glycols, 4,4’-dipheylmethane diisocyanate (1,1’-methylenebis(4-isocyanatobenzene)), 1,4-butanediol, were controlled by restriction of crystallization of polymer glycols. For the polyether glycol based-polyurethane elastomers (PUEs), poly(oxytetramethylene) glycol (PTMG), and PTMG incorporating dimethyl groups (PTG-X) and methyl side groups (PTG-L) were employed as a polymer glycol. For the PC-glycol, the randomly copolymerized PC-glycols with hexamethylene (C6) and tetramethylene (C4) units between carbonate groups with various composition ratios (C4/C6 = 0/100, 50/50, 70/30 and 90/10) were employed. The degree of microphase separation and mechanical properties of both the PUEs were investigated using differential scanning calorimetry, dynamic viscoelastic property measurements and tensile testing. Mechanical properties could be controlled by changing the molar ratio of two different monomer components. PMID:28883371
Goodwin, Andrew; Wang, Weiyu; Kang, Nam -Goo; ...
2015-08-21
We present in this paper the synthesis of poly(n-butyl acrylate)-g-poly(methyl methacrylate) (PnBA-g-PMMA) multigraft copolymers via a grafting-through (macromonomer) approach. The synthesis was performed using two controlled polymerization techniques. The PMMA macromonomer was obtained by high-vacuum anionic polymerization followed by the copolymerization of n-butyl acrylate and PMMA macromonomer using reversible addition–fragmentation chain transfer (RAFT) polymerization to yield the desired all-acrylic multigraft structures. The PnBA-g-PMMA multigraft structures exhibit randomly spaced branch points with various PMMA contents, ranging from 15 to 40 vol %, allowing an investigation into how physical properties vary with differences in the number of branch points and molecular weightmore » of grafted side chains. The determination of molecular weight and polydispersity indices of both the PMMA macromonomer and the graft copolymers was carried out using size exclusion chromatography with triple detection, and the structural characteristics of both the macromonomer and PnBA-g-PMMA graft materials were characterized by 1H and 13C NMR. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was employed for monitoring the macromonomer synthesis. Thermal characteristics of the materials were analyzed using differential scanning calorimetry and thermogravimetric analysis. The mechanical performance of the graft materials was characterized by rheology and dynamic mechanical analysis, revealing that samples with PMMA content of 25–40 vol % exhibit superior elastomeric properties as compared to materials containing short PMMA side chains or <25 vol % PMMA. In conclusion, atomic force microscopy showed a varying degree of microphase separation between the glassy and rubbery components that is strongly dependent on PMMA side chain molecular weight.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mickiewicz, Rafal A.; Ntoukas, Eleftherios; Avgeropoulos, Apostolos
2009-08-26
Binary blends of four different high molecular weight poly(styrene-b-isoprene) (SI) diblock copolymers with a lower molecular weight poly(styrene-b-isoprene-b-styrene) (SIS) triblock copolymer were prepared, and their morphology was characterized by transmission electron microscopy and ultra-small-angle X-ray scattering. All the neat block copolymers have nearly symmetric composition and exhibit the lamellar morphology. The SI diblock copolymers had number-average molecular weights, Mn, in the range 4.4 x 10{sup 5}--1.3 x 10{sup 6} g/mol and volume fractions of poly(styrene), {Phi}{sub PS}, in the range 0.43--0.49, and the SIS triblock had a molecular weight of Mn 6.2 x 10{sup 4} g/mol with {Phi}{sub PS} =more » 0.41. The high molecular weight diblock copolymers are very strongly segregating, with interaction parameter values, {chi}N, in the range 470--1410. A morphological phase diagram in the parameter space of molecular weight ratio (R = M{sub n}{sup diblock}/1/2M{sub n}{sup triblock}) and blend composition was constructed, with R values in the range between 14 and 43, which are higher than previously reported. The phase diagram revealed a large miscibility gap for the blends, with macrophase separation into two distinct types of microphase-separated domains for weight fractions of SI, w{sub SI} < 0.9, implying virtually no solubility of the much higher molecular weight diblocks in the lower molecular weight triblock. For certain blend compositions, above R 30, morphological transitions from the lamellar to cylindrical and bicontinuous structures were also observed.« less
New approach for producing chemical templates over large area by Molecular Transfer Printing
NASA Astrophysics Data System (ADS)
Inoue, Takejiro; Janes, Dustin; Ren, Jiaxing; Willson, Grant; Ellison, Christopher; Nealey, Paul
2014-03-01
Fabrication of well-defined chemically patterned surfaces is crucially important to the development of next generation microprocessors, hard disk memory devices, photonic/plasmonic devices, separation membranes, and biological microarrays. One promising patterning method in these fields is Molecular Transfer Printing (MTP), which replicates chemical patterns with feature dimensions of the order of 10nm utilizing a master template defined by the microphase separated domains of a block copolymer thin film. The total transfer printing area achievable by MTP has so far been limited by the contact area between two rigid substrates. Therefore, strategies to make conformal contact between substrates could be practically useful because a single lithographically-defined starting pattern could be used to fabricate many replicates by a low-cost process. Here we show a new approach that utilizes a chemically deposited SiN layer and a liquid conformal layer to enable transfer printing of chemical patterns upon thermal annealing over large, continuous areas. We anticipate that our process could be integrated into Step and Flash Imprint Lithography (SFIL) tools to achieve conformal layer thicknesses thin and uniform enough to permit pattern transfer through a dry-etch protocol.
Unraveling Structure-Property Relationships in Polymer Blends for Intelligent Materials Design
NASA Astrophysics Data System (ADS)
Irwin, Matthew Tyler
Block polymers provide an accessible route to structured, composite materials by combining two or more components with disparate mechanical, chemical, and electrical properties into a single bulk material with nanoscale domains. However, the characteristic lengthscale of these systems is limited, and the choice of components is restricted to those that are able to undergo microstructural ordering at accessible temperatures. This thesis details routes to overcoming these limitations through the addition of a lithium salt, a blend of homopolymers, or both. Chapter 2 describes a study wherein complex sphere phases such as the Frank-Kasper sigma phase can be observed in otherwise disordered asymmetric block polymers through the addition of a lithium salt. Chapter 3 discusses the development and characterization of a ternary polymer blend of an AB diblock copolymer and A and B homopolymers doped with a lithium salt. Detailed characterization showed that doping blends that are otherwise disordered with lithium salt induced microstructural ordering and largely recovers the phase behavior of traditional ternary polymer blends. A systematic study of the ionic conductivity of the blends at a fixed salt concentration demonstrates that, at a given composition, disordered, yet highly structured blends consistently exhibit better conductivity than polycrystalline morphologies with long range order. Chapter 4 extends the methodology of Chapter 3 and details a systematic study of the effects of cross-linker concentration on the performance of polymer electrolyte membranes produced via polymerization-induced microphase separation that exhibit a highly structured, globally disordered microstructure. Finally, Chapter 5 details efforts to develop a water filtration membrane using a polyethylene template derived from a polymeric bicontinuous microemulsion. Throughout all of this work, the goal is to better understand structure-property relationships at the molecular level in order to ultimately inform design criteria for materials where simultaneous control over morphology and mechanical, chemical, or electrical properties is important.
He, Gui-Li; Merlitz, Holger; Sommer, Jens-Uwe
2014-03-14
Molecular dynamics simulations are applied to investigate salt-free planar polyelectrolyte brushes under poor solvent conditions. Starting above the Θ-point with a homogeneous brush and then gradually reducing the temperature, the polymers initially display a lateral structure formation, forming vertical bundles of chains. A further reduction of the temperature (or solvent quality) leads to a vertical collapse of the brush. By varying the size and selectivity of the counterions, we show that lateral structure formation persists and therefore demonstrate that the entropy of counterions being the dominant factor for the formation of the bundle phase. By applying an external compression force on the brush we calculate the minimal work done on the polymer phase only and prove that the entropy gain of counterions in the bundle state, as compared to the homogeneously collapsed state at the same temperature, is responsible for the lateral microphase segregation. As a consequence, the observed lateral structure formation has to be regarded universal for osmotic polymer brushes below the Θ-point.
NASA Astrophysics Data System (ADS)
Hong, K.; Zhang, X.
2005-03-01
Polyelectrolyte block copolymer was used to form an ordered domain of ionic block as a ``nanoreactor'' due to its ability to bind oppositely charged metal ion, Zn^2+, Fe^2+ etc. The purpose of our research is to investigate the controllability of the size and morphology of domains (inorganic nano particles) by changing backbone stiffness, the charge density and the volume fraction of ionic block. Poly(styrene sulfonate) (PSS), which backbone is flexible, and poly(cyclohexadiene sulfonate) (PCHDS), which backbone is ``semiflexible'', were used as ionic blocks. We synthesized PtBS-PSS and PS-PCHDS with various degree of sulfonation and the volume fraction. Zinc oxide (ZnO) nano particles successfully formed in the ionic domain of microphase separated block copolymers. We used SANS to characterize the morphology of block copolymers and TEM for block copolymer containing ZnO nano particles. Our experimental results show that the chemistry of ``sulfonation'' of block copolymers can be successfully used to synthesize nano composite materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ertem, S. Piril; Caire, Benjamin R.; Tsai, Tsung-Han
Anion exchange membranes (AEMs) are a promising class of materials for applications that require selective ion transport, such as fuel cells, water purification, and electrolysis devices. Studies of structure–morphology–property relationships of ion-exchange membranes revealed that block copolymers exhibit improved ion conductivity and mechanical properties due to their microphase-separated morphologies with well-defined ionic domains. While most studies focused on symmetric diblock or triblock copolymers, here, the first example of a midblock quaternized pentablock AEM is presented. A symmetric ABCBA pentablock copolymer was functionalized to obtain a midblock brominated polymer. Solution cast films were then quaternized to obtain AEMs with resulting ionmore » exchange capacities (IEC) ranging from 0.4 to 0.9 mmol/g. Despite the relatively low IEC, the polymers were highly conductive (up to 60 mS/cm Br2 at 90 8C and 95%RH) with low water absorption (<25 wt %) and maintained adequate mechanical properties in both dry and hydrated conditions. Xray scattering and transmission electron microscopy (TEM) revealed formation of cylindrical non-ionic domains in a connected ionic phase.« less
Morphology and conductivity of PEO-based polymers having various end functional groups
NASA Astrophysics Data System (ADS)
Jung, Ha Young; Mandal, Prithwiraj; Park, Moon Jeong
Poly(ethylene oxide) (PEO)-based polymers have been considered most promising candidates of polymer electrolytes for lithium batteries owing to the high ionic conductivity of PEO/lithium salt complexes. This positive aspect prompted researchers to investigate PEO-containing block copolymers prepared by linking mechanically robust block to PEO covalently. Given that the microphase separation of block copolymers can affect both mechanical properties and ion transport properties, various strategies have been reported to tune the morphology of PEO-containing block copolymers. In the present study, we describe a simple means for modulating the morphologies of PEO-based block copolymers with an aim to improve ion transport properties. By varying terminal groups of PEO in block copolymers, the disordered morphology can be readily transformed into ordered lamellae or gyroid phases, depending on the type and number density of end group. In particular, the existence of terminal groups resulted in a large reduction in crystallinity of PEO chains and thereby increasing room temperature ionic conductivity.
Molecular and morphological characterization of midblock-sulfonated styrenic triblock copolymers
Mineart, Kenneth P.; Ryan, Justin J.; Lee, Byeongdu; ...
2017-01-11
Midblock-sulfonated triblock copolymers afford a desirable opportunity to generate network-forming amphiphilic materials that are suitable for use in a wide range of emerging technologies as fuel-cell, water-desalination, ion-exchange, photovoltaic, or electroactive membranes. Employing a previously reported synthetic strategy wherein poly( p- tert-butylstyrene) remains unreactive, we have selectively sulfonated the styrenic midblock of a poly( p- tert-butylstyrene- b-styrene- b- p- tert- butylstyrene) (TST) triblock copolymer to different extents. Comparison of the resulting sulfonated copolymers with results from our prior study provides favorable quantitative agreement and suggests that a shortened reaction time is advantageous. An ongoing challenge regarding the morphological development ofmore » charged block copolymers is the competition between microphase separation of the incompatible blocks and physical cross-linking of ionic clusters, with the latter often hindering the former. Here, we expose the sulfonated TST copolymers to solvent-vapor annealing to promote nanostructural refinement. Furthermore, the effect of such annealing on morphological characteristics, as well as on molecular free volume, is explored.« less
Dynamics of aqueous binary glass-formers confined in MCM-41.
Elamin, Khalid; Jansson, Helén; Swenson, Jan
2015-05-21
Dielectric permittivity measurements were performed on water solutions of propylene glycol (PG) and propylene glycol monomethyl ether (PGME) confined in 21 Å pores of the silica matrix MCM-41 C10 in wide frequency (10(-2)-10(6) Hz) and temperature (130-250 K) ranges. The aim was to elucidate how the formation of large hydrogen bonded structural entities, found in bulk solutions of PGME, was affected by the confined geometry, and to make comparisons with the dynamic behavior of the PG-water system. For all solutions the measurements revealed four almost concentration independent relaxation processes. The intensity of the fastest process is low compared to the other relaxation processes and might be caused by both hydroxyl groups of the pore surfaces and by local motions of water and solute molecules. The second fastest process contains contributions from both the main water relaxation as well as the intrinsic β-relaxation of the solute molecules. The third fastest process is the viscosity related α-relaxation. Its concentration independency is very different compared to the findings for the corresponding bulk systems, particularly for the PGME-water system. The experimental data suggests that the surface interactions induce a micro-phase separation of the two liquids, resulting in a full molecular layer of water molecules coordinating to the hydrophilic hydroxyl groups on the surfaces of the silica pores. This, in turn, increases the geometrical confinement effect for the remaining solution even more and prevents the building up of the same type of larger structural entities in the PGME-water system as in the corresponding bulk solutions. The slowest process is mainly hidden in the high conductivity contribution at low frequencies, but its temperature dependence can be extracted for the PGME-water system. However, its origin is not fully clear, as will be discussed.
Fluids Density Functional Theory of Salt-Doped Block Copolymers
NASA Astrophysics Data System (ADS)
Brown, Jonathan R.; Hall, Lisa M.
Block copolymers have attracted a great deal of recent interest as potential non-flammable, solid-state, electrolyte materials for batteries or other charge carrying applications. The microphase separation in block copolymers combines the properties of a conductive (though mechanically soft) polymer with a mechanically robust (though non-conductive) polymer. We use fluids density functional theory (fDFT) to study the phase behavior of salt-doped block copolymers. Because the salt prefers to preferentially solvate into the conductive phase, salt doping effectively enhances the segregation strength between the two polymer types. We consider the effects of this preferential solvation and of charge correlations by separately modeling the ion-rich phase, without bonding, using the Ornstein-Zernike equation and the hypernetted-chain closure. We use the correlations from this subsystem in the inhomogeneous fDFT calculations. Initial addition of salt increases the domain spacing and sharpens the interfacial region, but for high salt loadings the interface can broaden. Addition of salt can also drive a system with a low copolymer segregation strength to order by first passing through a two phase regime with a salt-rich ordered phase and a salt-poor disordered phase. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Award Number DE-SC0014209.
Sato, Eriko; Matsumoto, Akikazu
2009-01-01
We have developed a facile synthesis of degradable polyperoxides by the radical alternating copolymerization of 1,3-diene monomers with molecular oxygen at an atmospheric pressure. In this review, the synthesis, the degradation behavior, and the applications of functional polyperoxides are summarized. The alkyl sorbates as the conjugated 1,3-dienes gave a regiospecific alternating copolymer by exclusive 5,4-addition during polymerization and the resulting polyperoxides decomposed by the homolysis of a peroxy linkage followed by successive beta-scissions. The preference of 5,4-addition was well rationalized by theoretical calculations. The degradation of the polyperoxides occurred with various stimuli, such as heating, UV irradiation, a redox reaction with amines, and an enzyme reaction. The various functional polyperoxides were synthesized by following two methods, one is the direct copolymerization of functional 1,3-dienes, and the other is the functionalization of the precursor polyperoxides. Water soluble polyperoxides were also prepared, and the LCST behavior and the application to a drug carrier in the drug delivery system were investigated. In order to design various types of degradable polymers and gels we developed a method for the introduction of dienyl groups into the precursor polymers. The resulting dienyl-functionalized polymers were used for the degradable gels. The degradable branched copolymers showed a microphase-separated structure, which changed owing to the degradation of the polyperoxide segments. Copyright 2009 The Japan Chemical Journal Forum and Wiley Periodicals, Inc.
Mammalian Cell Interactions with Nanophase Materials
2005-01-01
alumina , titania and hydroxylapatite) as well as on composites of these ceramics with either poly(L-lactic) acid or poly(methyl) methacrylate. Most...osteoblasts on flat, nanophase (versus microphase/conventional) ceramics ( alumina , titania and hydroxylapatite) as a function of decreasing ceramic grain size...acid (PLA) and nanophase (but not on polymer/conventional) ceramics ( alumina , titania and hydroxylapatite) composites [4]. Specifically, osteoblast
NASA Astrophysics Data System (ADS)
Gu, Xiaodan; Zhou, Yan; Gu, Kevin; Kurosawa, Tadanori; Yan, Hongping; Wang, Cheng; Toney, Micheal; Bao, Zhenan
The challenge of continuous printing in high efficiency large-area organic solar cells is a key limiting factor for their widespread adoption. We present a materials design concept for achieving large-area, solution coated all-polymer bulk heterojunction (BHJ) solar cells with stable phase separation morphology between the donor and acceptor. The key concept lies in inhibiting strong crystallization of donor and acceptor polymers, thus forming intermixed, low crystallinity and mostly amorphous blends. Based on experiments using donors and acceptors with different degree of crystallinity, our results showed that microphase separated donor and acceptor domain sizes are inversely proportional to the crystallinity of the conjugated polymers. This methodology of using low crystallinity donors and acceptors has the added benefit of forming a consistent and robust morphology that is insensitive to different processing conditions, allowing one to easily scale up the printing process from a small scale solution shearing coater to a large-scale continuous roll-to-roll (R2R) printer. We were able to continuously roll-to-roll slot die print large area all-polymer solar cells with power conversion efficiencies of 5%, with combined cell area up to 10 cm2. This is among the highest efficiencies realized with R2R coated active layer organic materials on flexible substrate. DOE BRIDGE sunshot program. Office of Naval Research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Xiaodan; Zhou, Yan; Gu, Kevin
The challenge of continuous printing in high-efficiency large-area organic solar cells is a key limiting factor for their widespread adoption. We present a materials design concept for achieving large-area, solution-coated all-polymer bulk heterojunction solar cells with stable phase separation morphology between the donor and acceptor. The key concept lies in inhibiting strong crystallization of donor and acceptor polymers, thus forming intermixed, low crystallinity, and mostly amorphous blends. Based on experiments using donors and acceptors with different degree of crystallinity, the results show that microphase separated donor and acceptor domain sizes are inversely proportional to the crystallinity of the conjugated polymers.more » This particular methodology of using low crystallinity donors and acceptors has the added benefit of forming a consistent and robust morphology that is insensitive to different processing conditions, allowing one to easily scale up the printing process from a small-scale solution shearing coater to a large-scale continuous roll-to-roll (R2R) printer. Large-area all-polymer solar cells are continuously roll-to-roll slot die printed with power conversion efficiencies of 5%, with combined cell area up to 10 cm 2. This is among the highest efficiencies realized with R2R-coated active layer organic materials on flexible substrate.« less
Gu, Xiaodan; Zhou, Yan; Gu, Kevin; ...
2017-03-07
The challenge of continuous printing in high-efficiency large-area organic solar cells is a key limiting factor for their widespread adoption. We present a materials design concept for achieving large-area, solution-coated all-polymer bulk heterojunction solar cells with stable phase separation morphology between the donor and acceptor. The key concept lies in inhibiting strong crystallization of donor and acceptor polymers, thus forming intermixed, low crystallinity, and mostly amorphous blends. Based on experiments using donors and acceptors with different degree of crystallinity, the results show that microphase separated donor and acceptor domain sizes are inversely proportional to the crystallinity of the conjugated polymers.more » This particular methodology of using low crystallinity donors and acceptors has the added benefit of forming a consistent and robust morphology that is insensitive to different processing conditions, allowing one to easily scale up the printing process from a small-scale solution shearing coater to a large-scale continuous roll-to-roll (R2R) printer. Large-area all-polymer solar cells are continuously roll-to-roll slot die printed with power conversion efficiencies of 5%, with combined cell area up to 10 cm 2. This is among the highest efficiencies realized with R2R-coated active layer organic materials on flexible substrate.« less
Effect of CMC Molecular Weight on Acid-Induced Gelation of Heated WPI-CMC Soluble Complex.
Huan, Yan; Zhang, Sha; Vardhanabhuti, Bongkosh
2016-02-01
Acid-induced gelation properties of heated whey protein isolate (WPI) and carboxymethylcellulose (CMC) soluble complex were investigated as a function of CMC molecular weight (270, 680, and 750 kDa) and concentrations (0% to 0.125%). Heated WPI-CMC soluble complex with 6% protein was made by heating biopolymers together at pH 7.0 and 85 °C for 30 min and diluted to 5% protein before acid-induced gelation. Acid-induced gel formed from heated WPI-CMC complexes exhibited increased hardness and decreased water holding capacity with increasing CMC concentrations but gel strength decreased at higher CMC content. The highest gel strength was observed with CMC 750 k at 0.05%. Gels with low CMC concentration showed homogenous microstructure which was independent of CMC molecular weight, while increasing CMC concentration led to microphase separation with higher CMC molecular weight showing more extensive phase separation. When heated WPI-CMC complexes were prepared at 9% protein the acid gels showed improved gel hardness and water holding capacity, which was supported by the more interconnected protein network with less porosity when compared to complexes heated at 6% protein. It is concluded that protein concentration and biopolymer ratio during complex formation are the major factors affecting gel properties while the effect of CMC molecular weight was less significant. © 2016 Institute of Food Technologists®
A New Strategy to Prepare Polymer-based Shape Memory Elastomers.
Song, Shijie; Feng, Jiachun; Wu, Peiyi
2011-10-04
A new strategy that utilizes the microphase separation of block copolymer and phase transition of small molecules for preparing polymer-based shape memory elastomer has been proposed. According to this strategy, a novel kind of shape memory elastomer comprising styrene-b-(ethylene-co-butylene)-b-styrene (SEBS) and paraffin has been prepared. Because paraffins are midblock-selective molecules for SEBS, they will preferentially enter and swell EB blocks supporting paraffins as an excellent switch phase for shape memory effect. Microstructures of SEBS/paraffin composites have been characterized by transmission electron microscopy, polarized light microscopy, and differential scanning calorimetry. The composites demonstrate various phase morphologies with regard to different paraffin loading. It has been found that under low paraffin loading, all the paraffins precisely embed in and swell EB-rich domains. While under higher loading, part of the paraffins become free and a larger-scaled phase separation has been observed. However, within wide paraffin loadings, all composites show good shape fixing, shape recovery performances, and improved tensile properties. Compared to the reported methods for shape memory elastomers preparation, this method not only simplifies the fabrication procedure from raw materials to processing but also offers a controllable approach for the optimization of shape memory properties as well as balancing the rigidity and softness of the material. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Highly Loaded Mesoporous Silica/Nanoparticle Composites and Patterned Mesoporous Silica Films
NASA Astrophysics Data System (ADS)
Kothari, Rohit; Hendricks, Nicholas R.; Wang, Xinyu; Watkins, James J.
2014-03-01
Novel approaches for the preparation of highly filled mesoporous silica/nanoparticle (MS/NP) composites and for the fabrication of patterned MS films are described. The incorporation of iron platinum NPs within the walls of MS is achieved at high NP loadings by doping amphiphilic poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) (Pluronic®) copolymer templates via selective hydrogen bonding between the pre-synthesized NPs and the hydrophilic portion of the block copolymer. The MS is then synthesized by means of phase selective condensation of tetraethylorthosilicate (TEOS) within the NP loaded block copolymer templates dilated with supercritical carbon dioxide (scCO2) followed by calcination. For patterned films, microphase separated block copolymer/small molecule additive blends are patterned using UV-assisted nanoimprint lithography. Infusion and condensation of a TEOS within template films using ScCO2 as a processing medium followed by calcination yields the patterned MS films. Scanning electron microscopy is used characterize pattern fidelity and transmission electron microscopy analysis confirms the presence of the mesopores. Long range order in nanocomposites is confirmed by low angle x-ray diffraction.
Thermoset nanocomposites from waterborne bio-based epoxy resin and cellulose nanowhiskers.
Wu, Guo-min; Liu, Di; Liu, Gui-feng; Chen, Jian; Huo, Shu-ping; Kong, Zhen-wu
2015-01-01
Thermoset nanocomposites were prepared from a waterborne terpene-maleic ester type epoxy resin (WTME) and cellulose nanowhiskers (CNWs). The curing behaviors of WTME/CNWs nanocomposites were measured with rotational rheometer. The results show that the storage modulus (G') of WTME/CNWs nanocomposites increased with the increase of CNWs content. Observations by scanning electron microscopy (SEM) demonstrate that the incorporation of CNWs in WTME matrix caused microphase separation and destroyed the compactness of the matrix. This effect leads to the glass transition temperatures (Tg) of WTME/CNWs nanocomposites slightly decrease with the increase of CNWs content, which were confirmed by both DSC and DMA tests. The mechanical properties of WTME/CNWs nanocomposites were investigated by tensile testing. The Yong's modulus (E) and tensile strength (σb) of the nanocomposites were significantly reinforced by the addition of CNWs. These results indicate that CNWs exhibit excellent reinforcement effect on WTME matrix, due to the formation and increase of interfacial interaction by hydrogen bonds between CNWs nano-filler and the WTME matrix. Copyright © 2015 Elsevier Ltd. All rights reserved.
Li, Xue; Lau, King Hang Aaron; Kim, Dong Ha; Knoll, Wolfgang
2005-05-24
Highly dense arrays of titania nanoparticles were fabricated using surface micellar films of poly(styrene-block-2-vinylpyridine) diblock copolymers (PS-b-P2VP) as reaction scaffolds. Titania could be introduced selectively within P2VP nanodomains in PS-b-P2VP films through the binary reaction between water molecules trapped in the P2VP domains and the TiCl(4) vapor precursors. Subsequent UV exposure or oxygen plasma treatment removed the organic matrix, leading to titania nanoparticle arrays on the substrate surface. The diameter of the titania domains and the interparticle distance were defined by the lateral scale present in the microphase-separated morphology of the initial PS-b-P2VP films. The typical diameter of titania nanoparticles obtained by oxygen plasma treatment was of the order of approximately 23 nm. Photoluminescence (PL) properties were investigated for films before and after plasma treatment. Both samples showed PL properties with major physical origin due to self-trapped excitons, indicating that the local environment of the titanium atoms is similar.
Distinct Tensile Response of Model Semi-flexible Elastomer Networks
NASA Astrophysics Data System (ADS)
Aguilera-Mercado, Bernardo M.; Cohen, Claude; Escobedo, Fernando A.
2011-03-01
Through coarse-grained molecular modeling, we study how the elastic response strongly depends upon nanostructural heterogeneities in model networks made of semi-flexible chains exhibiting both regular and realistic connectivity. Idealized regular polymer networks have been shown to display a peculiar elastic response similar to that of super-tough natural materials (e.g., organic adhesives inside abalone shells). We investigate the impact of chain stiffness, and the effect of including tri-block copolymer chains, on the network's topology and elastic response. We find in some systems a dual tensile response: a liquid-like behavior at small deformations, and a distinct saw-tooth shaped stress-strain curve at moderate to large deformations. Additionally, stiffer regular networks exhibit a marked hysteresis over loading-unloading cycles that can be deleted by heating-cooling cycles or by performing deformations along different axes. Furthermore, small variations of chain stiffness may entirely change the nature of the network's tensile response from an entropic to an enthalpic elastic regime, and micro-phase separation of different blocks within elastomer networks may significantly enhance their mechanical strength. This work was supported by the American Chemical Society.
NASA Astrophysics Data System (ADS)
Weyman, Alexander; Bier, Markus; Holm, Christian; Smiatek, Jens
2018-05-01
We study generic properties of poly(ionic liquid)s (PILs) via coarse-grained molecular dynamics simulations in bulk solution and under confinement. The influence of different side chain lengths on the spatial properties of the PIL systems and on the ionic transport mechanism is investigated in detail. Our results reveal the formation of apolar and polar nanodomains with increasing side chain length in good agreement with previous results for molecular ionic liquids. The ion transport numbers are unaffected by the occurrence of these domains, and the corresponding values highlight the potential role of PILs as single-ion conductors in electrochemical devices. In contrast to bulk behavior, a pronounced formation of ion conductivity channels in confined systems is initiated in close vicinity to the boundaries. We observe higher ion conductivities in these channels for increasing PIL side chain lengths in comparison with bulk values and provide an explanation for this effect. The appearance of these domains points to an improved application of PILs in modern polymer electrolyte batteries.
Wang, Lu; Pan, Mingwang; Song, Shaofeng; Zhu, Lei; Yuan, Jinfeng; Liu, Gang
2016-08-09
Herein, we demonstrate a facile approach to prepare anisotropic poly(tert-butyl acrylate)/polystyrene (PtBA/PS) composite particles with controllable morphologies by soap-free seeded emulsion polymerization (SSEP). In the first step, noncrosslinked PtBA seeds with self-stabilizing polar functional groups (e.g., ester groups and radicals) are synthesized by soap-free emulsion polymerization. During the subsequent SSEP of styrene (St), PS bulges are nucleated on the PtBA seeds due to the microphase separation confined in the latex particles. The morphology evolution of PtBA/PS composite particles is tailored by varying the monomer/seed feed ratio, polymerization time, and polymerization temperature. Many intriguing morphologies, including hamburger-like, litchi-like, mushroom-like, strawberry-like, bowl-like, and snowman-like, have been acquired for PtBA/PS composite particles. The polar groups on the PtBA seed surface greatly influence the formation and further merging of PS/St bulges during the polymerization. A possible formation mechanism is proposed on the basis of experimental results. These complex composite particles are promising for applications in superhydrophobic coatings.
Charge segregation in weakly ionized microgels
Hyatt, John S.; Douglas, Alison M.; Stanley, Chris; ...
2017-01-19
Here we investigate microgels synthesized from N-isopropylacrylamide (NIPAM) copolymerized with a large mol% of acrylic acid, finding that when the acid groups are partially ionized at high temperatures, competition between ion-induced swelling and hydrophobic deswelling of poly(NIPAM) chains results in microphase separation. In cross-linked microgels, this manifests as a dramatic decrease in the ratio between the radius of gyration and the hydrodynamic radius to ~0.2, indicating that almost all the mass of the microgel is concentrated near the particle center. We also observe a concurrent decrease of the polymer network length scale via small-angle neutron scattering, confirming the presence ofmore » a dense, deswollen core surrounded by a diffuse, charged periphery. We compare these results to those obtained for a system of charged ultralow-cross-linked microgels; the form factor shows a distinct peak at high q when the temperature exceeds a threshold value. Lastly, we successfully fit the form factor to theory developed to describe scattering from weakly charged gels in poor solvents, and we tie this behavior to charge segregation in the case of the cross-linked microgels.« less
Ordering transition in salt-doped diblock copolymers
Qin, Jian; de Pablo, Juan J.
2016-04-26
Lithium salt-doped block copolymers offer promise for applications as solid electrolytes in lithium ion batteries. Control of the conductivity and mechanical properties of these materials, for membrane applications relies critically on the ability to predict and manipulate their microphase separation temperature. Past attempts to predict the so-called "order-disorder transition temperature" of copolymer electrolytes have relied on approximate treatments of electrostatic interactions. In this work, we introduce a coarse-grained simulation model that treats Coulomb interactions explicitly, and we use it to investigate the ordering transition of charged block copolymers. The order-disorder transition temperature is determined from the ordering free energy, whichmore » we calculate with a high level of precision using a density-of-states approach. Our calculations allow us to discern a delicate competition between two physical effects: ion association, which raises the transition temperature, and solvent dilution, which lowers the transition temperature. Lastly, in the intermediate salt concentration regime, our results predict that the order-disorder transition temperature increases with salt content, in agreement with available experimental data.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashraf, Arman R.; Ryan, Justin J.; Satkowski, Michael M.
Block copolymers have been extensively studied due to their ability to spontaneously self-organize into a wide variety of morphologies that are valuable in energy-, medical- and conservation-related (nano)technologies. While the phase behavior of bicomponent diblock and triblock copolymers is conventionally governed by temperature and individual block masses, we demonstrate that their phase behavior can alternatively be controlled through the use of blocks with random monomer sequencing. Block random copolymers (BRCs), i.e., diblock copolymers wherein one or both blocks is a random copolymer comprised of A and B repeat units, have been synthesized, and their phase behavior, expressed in terms ofmore » the order-disorder transition (ODT), has been investigated. Our results establish that, depending on the block composition contrast and molecular weight, BRCs can microphase-separate. We also report that the predicted ODT can be generated at relatively constant molecular weight and temperature with these new soft materials. This sequence-controlled synthetic strategy is extended to thermoplastic elastomeric triblock copolymers differing in chemistry and possessing a random-copolymer midblock.« less
Sano, Masami; Shan, Feng; Hara, Mitsuo; Nagano, Shusaku; Shinohara, Yuya; Amemiya, Yoshiyuki; Seki, Takahiro
2015-08-07
A series of block copolymers composed of an amorphous poly(butyl methacrylate) (PBMA) block connected with an azobenzene (Az)-containing liquid crystalline (PAz) block were synthesized by changing the chain length and polymer architecture. With these block copolymer films, the dynamic realignment process of microphase separated (MPS) cylinder arrays of PBMA in the PAz matrix induced by irradiation with linearly polarized light was studied by UV-visible absorption spectroscopy, and time-resolved grazing incidence small angle X-ray scattering (GI-SAXS) measurements using a synchrotron beam. Unexpectedly, the change in the chain length hardly affected the realignment rate. In contrast, the architecture of the AB-type diblock or the ABA-type triblock essentially altered the realignment feature. The strongly cooperative motion with an induction period before realignment was characteristic only for the diblock copolymer series, and the LPL-induced alignment change immediately started for triblock copolymers and the PAz homopolymer. Additionally, a marked acceleration in the photoinduced dynamic motions was unveiled in comparison with a thermal randomization process.
Wang, Wenwen; Wang, Weiyu; Lu, Xinyi; ...
2014-10-23
For this study, comb and centipede multigraft copolymers, poly(n-butyl acrylate)-g-polystyrene (PnBA-g-PS) with PnBA backbones and PS side chains, were synthesized via high-vacuum anionic polymerization and miniemulsion polymerization. Single-tailed and double-tailed PS macromonomers were synthesized by anionic polymerization and Steglich esterification. Subsequently, the copolymerization of each macromonomer and nBA was carried out in miniemulsion, and multigraft copolymers were obtained. The latex particles of multigraft copolymers were characterized using dynamic light scattering. The molecular weights of macromonomers and multigraft copolymers were analyzed by size exclusion chromatography. Moreover, the molecular weights and structures of macromonomers were investigated by matrix-assisted laser desorption/ionization time-of-flight massmore » spectrometry and 1H nuclear magnetic resonance spectroscopy. The weight contents of PS in comb and centipede multigraft copolymers were calculated by 1H nuclear magnetic resonance spectroscopy. The thermal properties of multigraft copolymers were characterized by thermogravimetric analysis and differential scanning calorimetry. The microphase separation of multigraft copolymers was observed by atomic force microscopy and transmission electronic microscopy. Rheological measurements showed that comb and centipede multigraft copolymers have elastic properties when the weight content of PS side chains is 26–32 wt %. Centipede multigraft copolymers possess better elastic properties than comb multigraft copolymers with the similar weight content of PS. In conclusion, these findings are similar to previous results on poly(isoprene-g-polystyrene) comb and centipede copolymers made by anionic polymerization.« less
Crystallization features of normal alkanes in confined geometry.
Su, Yunlan; Liu, Guoming; Xie, Baoquan; Fu, Dongsheng; Wang, Dujin
2014-01-21
How polymers crystallize can greatly affect their thermal and mechanical properties, which influence the practical applications of these materials. Polymeric materials, such as block copolymers, graft polymers, and polymer blends, have complex molecular structures. Due to the multiple hierarchical structures and different size domains in polymer systems, confined hard environments for polymer crystallization exist widely in these materials. The confined geometry is closely related to both the phase metastability and lifetime of polymer. This affects the phase miscibility, microphase separation, and crystallization behaviors and determines both the performance of polymer materials and how easily these materials can be processed. Furthermore, the size effect of metastable states needs to be clarified in polymers. However, scientists find it difficult to propose a quantitative formula to describe the transition dynamics of metastable states in these complex systems. Normal alkanes [CnH2n+2, n-alkanes], especially linear saturated hydrocarbons, can provide a well-defined model system for studying the complex crystallization behaviors of polymer materials, surfactants, and lipids. Therefore, a deeper investigation of normal alkane phase behavior in confinement will help scientists to understand the crystalline phase transition and ultimate properties of many polymeric materials, especially polyolefins. In this Account, we provide an in-depth look at the research concerning the confined crystallization behavior of n-alkanes and binary mixtures in microcapsules by our laboratory and others. Since 2006, our group has developed a technique for synthesizing nearly monodispersed n-alkane containing microcapsules with controllable size and surface porous morphology. We applied an in situ polymerization method, using melamine-formaldehyde resin as shell material and nonionic surfactants as emulsifiers. The solid shell of microcapsules can provide a stable three-dimensional (3-D) confining environment. We have studied multiple parameters of these microencapsulated n-alkanes, including surface freezing, metastability of the rotator phase, and the phase separation behaviors of n-alkane mixtures using differential scanning calorimetry (DSC), temperature-dependent X-ray diffraction (XRD), and variable-temperature solid-state nuclear magnetic resonance (NMR). Our investigations revealed new direct evidence for the existence of surface freezing in microencapsulated n-alkanes. By examining the differences among chain packing and nucleation kinetics between bulk alkane solid solutions and their microencapsulated counterparts, we also discovered a mechanism responsible for the formation of a new metastable bulk phase. In addition, we found that confinement suppresses lamellar ordering and longitudinal diffusion, which play an important role in stabilizing the binary n-alkane solid solution in microcapsules. Our work also provided new insights into the phase separation of other mixed system, such as waxes, lipids, and polymer blends in confined geometry. These works provide a profound understanding of the relationship between molecular structure and material properties in the context of crystallization and therefore advance our ability to improve applications incorporating polymeric and molecular materials.
ERIC Educational Resources Information Center
Young, Edmond W. K.; Simmons, Craig A.
2009-01-01
We describe a simple, low-cost laboratory session to demonstrate the Fahraeus-Lindqvist effect, a microphase flow phenomenon that occurs in small blood vessels and alters the effective rheological properties of blood. The experiments are performed by flowing cells through microchannels fabricated by soft lithography and characterization of cell…
Solid-Liquid Electrolyte as a Nanoion Modulator for Dendrite-Free Lithium Anodes.
Wen, Kaihua; Wang, Yanlei; Chen, Shimou; Wang, Xi; Zhang, Suojiang; Archer, Lynden A
2018-06-20
Rechargeable lithium (Li) metal batteries are considered the most promising of Li-based energy storage technologies. However, tree-like dendrite produced by irregular Li + electrodeposition restricts it wide applications. Herein, based on a cation-microphase-regulation strategy, we create solid-liquid electrolytes (SLEs) by absorbing commercial liquid electrolytes into polyethylene glycol (PEG) engineered nanoporous Al 2 O 3 ceramic membranes. By means of molecular dynamics simulations and comprehensive experiments, we show that Li ions are regulated and promoted in the two microphases, the channel phase and nonchannel phase, respectively. The channel phase can achieve homogeneous Li + flux distribution by multiple mechanisms, including its uniform array of nanochannels and ability to suppress lateral dendrite growth by its high modulus. In the nonchannel phase, PEG chains swollen by electrolyte facilitate desolvation and fast conduction of Li + . As a result, the studied SLEs exhibit high ionic conductivity, low interfacial resistance, and the unique ability to stabilize deposition at the Li anode. By means of galvanostatic cycling studies in symmetric Li cells and Li/Li 4 Ti 5 O 12 cells, we further show that the materials open a path to Li metal batteries with excellent cycling performance.
NASA Astrophysics Data System (ADS)
Ermolaeva, V. N.; Chukanov, N. V.; Pekov, I. V.; Kogarko, L. N.
2009-12-01
Solid bituminous substances (SBS) are common components of the late hydrothermal mineral assemblages of peralkaline pegmatites. SBS are formed in a reductive setting as a result of progressive sorption of minor carbon-bearing molecules (CO, CO2, CH4, C2H6, C2H4, etc.), their polymerization, transformation into aromatic compounds (reformation), and selective oxidation on microporous zeolite-like Ti-, Nb-, and Zrsilicates serving as sorbents and catalysts. The oxygen-bearing aromatic compounds with hydrophile functional groups (-OH, -C=O, -COOH, -COO) act as complexing agents with respect to Th, REE, U, Zr, Ti, Nb, Ba, Sr, Ca, resulting in transfer of these bitumenophile elements under low-temperature hydrothermal conditions in the form of water-soluble macroassociates of the micelle type. Th, REE, and to a lesser extent, U, Zr, Ti, and Nb concentrate at the late stage of the hydrothermal process as microphases impregnating SBS or macroscopic segregations of Th and REE minerals. At the final stage, homogeneous SBS break down into organic (partly together with Ca, Sr, Ba, and Pb) and mineral (with Th, Ln, Y, Ti, Nb, Ca, Na, K, Si) microphases.
Zhang, Hanjun; Kulkarni, Sunil; Wunder, Stephanie L
2007-04-12
Solid polymer electrolyte blends were prepared with POSS-PEO(n=4)8 (3K), poly(ethylene oxide) (PEO(600K)), and LiClO4 at different salt concentrations (O/Li = 8/1, 12/1, and 16/1). POSS-PEO(n=4)8/LiClO4 is amorphous at all O/Li investigated, whereas PEO(600K) is amorphous only for O/Li = 8/1 and semicrystalline for O/Li = 12/1 and 16/1. The tendency of PEO(600K) to crystallize limited the amount of POSS-PEO(n=4)(8) that could be incorporated into the blends, so that the greatest incorporation of POSS-PEO(n=4)(8) occurred for O/Li = 8/1. Blends of POSS-PEO(n=4)(8)/PEO(600K)/LiClO4 (O/Li = 8/1 and 12/1) microphase separated into two amorphous phases, a low T(g) phase of composition 85% POSS-PEO(n=4)(8)/15% PEO(600K) and a high T(g) phase of composition 29% POSS-PEO(n=4)(8)/71% PEO(600K). For O/Li = 16/1, the blends contained crystalline (pure PEO(600K)), and two amorphous phases, one rich in POSS-PEO(n=4)(8) and one rich in PEO(600K). Microphase, rather than macrophase separation was believed to occur as a result of Li(+)/ether oxygen cross-link sites. The conductivity of the blends depended on their composition. As expected, crystallinity decreased the conductivity of the blends. For the amorphous blends, when the low T(g) (80/20) phase was the continuous phase, the conductivity was intermediate between that of pure PEO(600K) and POSS-PEO(n=4)(8). When the high T(g) (70/30, 50/50, 30/70, and 20/80) phase was the continuous phase, the conductivity of the blend and PEO(600K) were identical, and lower than that for the POSS-PEO(n=4)(8) over the whole temperature range (10-90 degrees C). This suggests that the motions of the POSS-PEO(n=4)(8) were slowed down by the dynamics of the long chain PEO(600K) and that the minor, low Tg phase was not interconnected and thus did not contribute to enhanced conductivity. At temperatures above T(m) of PEO(600K), addition of the POSS-PEO(n=4)(8) did not result in conductivity improvement. The highest RT conductivity, 8 x 10(-6) S/cm, was obtained for a 60% POSS-PEO(n=4)(8)/40% PEO(600K)/LiClO4 (O/Li = 12/1) blend.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takagi, H., E-mail: takagih@post.kek.jp; Igarashi, N.; Mori, T.
If small angle X-ray scattering (SAXS) utilizing the soft X-ray region is available, advanced and unique experiments, which differ from traditional SAXS methods, can be realized. For example, grazing-incidence small angle X-ray scattering (GISAXS) using hard X-ray is a powerful tool for understanding the nanostructure in both vertical and lateral directions of thin films, while GISAXS utilizing the tender X-ray region (SX-GISAXS) enables depth-resolved analysis as well as a standard GISAXS analysis in thin films. Thus, at BL-15A2 at the Photon Factory, a dedicated diffractometer for SX-GISAXS (above 2.1 keV) was constructed. This diffractometer is composed of four vacuum chambers andmore » can be converted into the vacuum state from the sample chamber in front of the detector surface. Diffractions are clearly observed until 12th peak when measuring collagen by SAXS with an X-ray energy of 2.40 keV and a camera length of 825 mm. Additionally, we conducted the model experiment using SX-GISAXS with an X-ray energy of 2.40 keV to confirm that a poly(methyl methacrylate)-poly(n-butyl acrylate) block copolymer thin film has a microphase-separated structure in the thin film, which is composed of lamellae aligned both parallel and perpendicular to the substrate surface. Similarly, in a polystyrene-poly(methyl methacrylate) block copolymer thin film, SX-GISAXS with 3.60 keV and 5.73 keV revealed that hexagonally packed cylinders are aligned parallel to the substrate surface. The incident angle dependence of the first order peak position of the q{sub z} direction obtained from experiments at various incident X-ray energies agrees very well with the theoretical one calculated from the distorted wave Born approximation.« less
Wang, Rong; Tang, Ping; Qiu, Feng; Yang, Yuliang
2005-09-15
The complex microstructures of amphiphilic ABC linear triblock copolymers in which one of the end blocks is relatively short and hydrophilic, and the other two blocks B and C are hydrophobic in a dilute solution, have been investigated by the real-space implementation of self-consistent field theory (SCFT) in two dimensions (2D). In contrast to diblock copolymers in solution, the aggregation of triblock copolymers are more complicated due to the presence of the second hydrophobic blocks and, hence, big ranges of parameter space controlling the morphology. By tailoring the hydrophobic degree and its difference between the blocks B and C, the various shapes of vesicles, circlelike and linelike micelles possibly corresponding to spherelike, and rodlike micelles in 3D, and especially, peanutlike micelles not found in diblock copolymers are observed. The transition from vesicles to circlelike micelles occurs with increasing the hydrophobicity of the blocks B and C, while the transition from circlelike micelles to linelike micelles or from the mixture of micelles and vesicles to the long linelike micelles takes place when the repulsive interaction of the end hydrophobic block C is stronger than that of the middle hydrophobic block B. Furthermore, it is favorable for dispersion of the block copolymer in the solvent into aggregates when the repulsion of the solvent to the end hydrophobic block is larger than that of the solvent to the middle hydrophobic block. Especially when the bulk block copolymers are in a weak segregation regime, the competition between the microphase separation and macrophase separation exists and the large compound micelle-like aggregates are found due to the macrophase separation with increasing the hydrophobic degree of blocks B and C, which is absent in diblock copolymer solution. The simulation results successfully reproduce the existing experimental ones.
NASA Astrophysics Data System (ADS)
Wu, Jie; Li, Xin; Wu, Yang; Liao, Guoxing; Johnston, Priscilla; Topham, Paul D.; Wang, Linge
2017-11-01
An inherent problem that restricts the practical application of superhydrophobic materials is that the superhydrophobic property is not sustainable; it can be diminished, or even lost, when the surface is physically damaged. In this work, we present an efficient approach for the fabrication of superhydrophobic fibrous fabrics with great rinse-resistance where a block copolymer has been electrospun into a nanofibrous mesh while micro-sized beads have been subsequently electrosprayed to give a morphologically composite material. The intricate nano- and microstructure of the composite was then fixed by thermally annealing the block copolymer to induce self-assembly and interdigitation of the microphase separated domains. To demonstrate this approach, a polystyrene-b-poly(ethylene-co-butylene)-b-polystyrene (SEBS) nanofibrous scaffold was produced by electrospinning before SEBS beads were electrosprayed into this mesh to form a hierarchical micro/nanostructure of beads and fibers. The effects of type and density of SEBS beads on the surface morphology and wetting properties of composite membranes were studied extensively. Compared with a neat SEBS fibrous mesh, the composite membrane had enhanced hydrophobic properties. The static water contact angle increased from 139° (±3°) to 156° (±1°), while the sliding angle decreased to 8° (±1°) from nearly 90°. In order to increase the rinse-resistance of the composite membrane, a thermal annealing step was applied to physically bind the fibers and beads. Importantly, after 200 h of water flushing, the hierarchical surface structure and superhydrophobicity of the composite membrane were well retained. This work provides a new route for the creation of superhydrophobic fabrics with potential in self-cleaning applications.
Zhang, Ben; DeBartolo, Janae E.; Song, Jie
2017-01-26
Maintaining adequate or enhancing mechanical properties of shape memory polymers (SMPs) after shape recovery in an aqueous environment are greatly desired for biomedical applications of SMPs as self-fitting tissue scaffolds or minimally invasive surgical implants. Here we report stable temporary shape fixing and facile shape recovery of biodegradable triblock amphiphilic SMPs containing a poly(ethylene glycol) (PEG) center block and flanking poly(lactic acid) or poly(lactic-co-glycolic acid) blocks in warm water, accompanied with concomitant enhanced mechanical strengths. Differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WXRD) and small-angle X-ray scattering (SAXS) analyses revealed that the unique stiffening of the amphiphilic SMPs upon hydrationmore » was due to hydration-driven microphase separation and PEG crystallization. We further demonstrated that the chemical composition of degradable blocks in these SMPs could be tailored to affect the persistence of hydration-induced stiffening upon subsequent dehydration. These properties combined open new horizons for these amphiphilic SMPs for smart weight-bearing in vivo applications (e.g. as self-fitting intervertebral discs). In conclusion, this study also provides a new material design strategy to strengthen polymers in aqueous environment in general.« less
Tough stimuli-responsive supramolecular hydrogels with hydrogen-bonding network junctions.
Guo, Mingyu; Pitet, Louis M; Wyss, Hans M; Vos, Matthijn; Dankers, Patricia Y W; Meijer, E W
2014-05-14
Hydrogels were prepared with physical cross-links comprising 2-ureido-4[1H]-pyrimidinone (UPy) hydrogen-bonding units within the backbone of segmented amphiphilic macromolecules having hydrophilic poly(ethylene glycol) (PEG). The bulk materials adopt nanoscopic physical cross-links composed of UPy-UPy dimers embedded in segregated hydrophobic domains dispersed within the PEG matrix as comfirmed by cryo-electron microscopy. The amphiphilic network was swollen with high weight fractions of water (w(H2O) ≈ 0.8) owing to the high PEG weight fraction within the pristine polymers (w(PEG) ≈ 0.9). Two different PEG chain lengths were investigated and illustrate the corresponding consequences of cross-link density on mechanical properties. The resulting hydrogels exhibited high strength and resilience upon deformation, consistent with a microphase separated network, in which the UPy-UPy interactions were adequately shielded within hydrophobic nanoscale pockets that maintain the network despite extensive water content. The cumulative result is a series of tough hydrogels with tunable mechanical properties and tractable synthetic preparation and processing. Furthermore, the melting transition of PEG in the dry polymer was shown to be an effective stimulus for shape memory behavior.
NASA Astrophysics Data System (ADS)
Thomas, Carla; Xu, Liza; Olsen, Bradley
2013-03-01
Self-assembly of globular protein-polymer block copolymers into well-defined nanostructures provides a route towards the manufacture of protein-based materials which maintains protein fold and function. The model material mCherry-b-poly(N-isopropyl acrylamide) forms self-assembled nanostructures from aqueous solutions via solvent evaporation. To improve retention of protein functionality when dehydrated, small molecules such as trehalose and glycerol are added in solution prior to solvent removal. With as little as 10 wt% additive, improvements in retained functionality of 20-60% are observed in the solid-state as compared to samples in which no additive is present. Higher additive levels (up to 50%) continue to show improvement until approximately 100% of the protein function is retained. These large gains are hypothesized to originate from the ability of the additives to replace hydrogen bonds normally fulfilled by water. The addition of trehalose in the bulk material also improves the thermal stability of the protein by 15-20 °C, while glycerol decreases the thermal stability. Materials containing up to 50% additives remain microphase separated, and, upon incorporation of additives, nanostructure domain spacing tends to increase, accompanied by order-order transitions.
Dynamics and order-disorder transitions in bidisperse diblock copolymer blends
NASA Astrophysics Data System (ADS)
Wang, Yueqiang; Li, Xuan; Tang, Ping; Yang, Yuliang
2011-03-01
We employ the dynamic extension of self-consistent field theory (DSCFT) to study dynamics and order-disorder transitions (ODT) in AB diblock copolymer binary mixtures of two different monodisperse chain lengths by imitating the dynamic storage modulus G‧ corresponding to any given morphology in the oscillatory shear measurements. The different polydispersity index (PDI) is introduced by binary blending AB diblock copolymers with variations in chain lengths and chain number fractions. The simulation results show that the increase of polydispersity in the minority or symmetric block introduces a decrease in the segregation strength at the ODT, ( χN) ODT, whereas the increase of polydispersity in the majority block results in a decrease, then increase and final decrease again in ( χN) ODT. To the best of our knowledge, our DSCFT simulations, for the first time, predict an increase in ( χN) ODT with the PDI in the majority block, which produces the experimental results. The simulations by previous SCFT, which generally speaking, is capable of describing equilibrium morphologies, however, contradict the experimental data. The polydispersity acquired by properly tuning the chain lengths and number fractions of binary diblock copolymer blends should be a convenient and efficient way to control the microphase separation strength at the ODT.
Self assembly and shear induced morphologies of asymmetric block copolymers with spherical domains
NASA Astrophysics Data System (ADS)
Mandare, Prashant N.
2007-12-01
Microphase separated block copolymers have been subject of investigation for past two decades. While most of the work is focused on classical phases of lamellae or cylinders, spherical phases have received less attention. The present study deals with the self-assembly in spherical phases of block copolymers that results into formation of a three-dimensional cubic lattice. A model triblock copolymer with several transition temperatures is chosen. Solidification in this model system results from either the arrangement of nanospheres of minor block on a BCC lattice or by formation of physical network where the nanospheres act as crosslinks. The solid-like behavior is characterized by extremely slow relaxation modes. Long time stress relaxation of the model material was examined to distinguish between the solid and liquid behavior. Stress relaxation data from a conventional rheometer was extended to very long times by using a newly built instrument, Relaxometer. The BCC lattice structure of the material behaves as liquid over long time except at low temperatures where an equilibrium modulus is observed. This long time behavior was extended to low shear rate behavior using steady shear rheology. The zero shear viscosity observed at extremely low shear rates has a very high value that is close to the viscosity calculated from stress relaxation experiments. The steady shear viscosity decreases by several orders of magnitude over a small range of shear rates. SAXS experiments on samples sheared even at very low rates indicated loss of the BCC order that was present in the annealed samples before shearing. In the second part, response of the BCC microstructure to large stress was explored. Shearing at constant rate and with LAOS at low frequencies lead to destruction of BCC lattice. The structure recovers upon cessation of the shear with kinetics similar to the one following thermal quench. Under certain conditions, LAOS leads to formation of monodomain textures. At low frequencies, there exists an upper and lower bound on strain amplitude where mono-domain textures can be obtained. Upon alignment, the modulus drops by about 30%. Measurement of rheological properties offers an indirect method to distinguish between polycrystalline structure and monodomain texture.
Molecular-level Simulations of Shock Generation and Propagation in Polyurea
2011-01-26
homepage: www.e lsev ier .com/ locate /msea Molecular-level simulations of shock generation and propagation in polyurea M. Grujicica,∗, B. Pandurangana... Polyurea Shock-wave generation and propagation Molecular-level calculations a b s t r a c t A non-equilibrium molecular dynamics method is employed in order...to study various phenomena accompanying the generation and propagation of shock waves in polyurea (a micro-phase segregated elastomer). Several
NASA Astrophysics Data System (ADS)
Dixit, Dhairya J.
The semiconductor industry continues to drive patterning solutions that enable devices with higher memory storage capacity, faster computing performance, lower cost per transistors, and higher transistor density. These developments in the field of semiconductor manufacturing along with the overall minimization of the size of transistors require cutting-edge metrology tools for characterization. Directed self-assembly (DSA) patterning process can be used to fabricate nanoscale line-space patterns and contact holes via thermodynamically driven micro-phase separation of block copolymer (BCP) films with boundary constraints from guiding templates. Its main advantages are high pattern resolution (~10 nm), high throughput, no requirement of a high-resolution mask, and compatibility with standard fab-equipment and processes. Although research into DSA patterning has demonstrated a high potential as a nanoscale patterning process, there are critical challenges that must be overcome before transferring DSA into high volume manufacturing, including achievement of low defect density and high process stability. For this, advances in critical dimension (CD) and overlay measurement as well as rapid defect characterization are required. Both scatterometry and critical dimension-scanning electron microscopy (CD-SEM) are routinely used for inline dimensional metrology. CD-SEM inspection is limited, as it does not easily provide detailed line-shape information, whereas scatterometry has the capability of measuring important feature dimensions including: line-width, line-shape, sidewall-angle, and thickness of the patterned samples quickly and non-destructively. The present work describes the application of Mueller matrix spectroscopic ellipsometry (MMSE) based scatterometry to optically characterize DSA patterned line- space grating and contact hole structures fabricated with phase-separated polystyrene-b-polymethylmethacrylate (PS-b-PMMA) at various integration steps of BCP DSA based patterning process. This work focuses on understanding the efficacy of MMSE base scatterometry for characterizing complex DSA structures. For example, the use of symmetry-antisymmetry properties associated with Mueller matrix (MM) elements to understand the topography of the periodic nanostructures and measure defectivity. Simulations (the forward problem approach of scatterometry) are used to investigate MM elements' sensitivity to changes in DSA structure such as one vs. two contact hole patterns and predict sensitivity to dimensional changes. A regression-based approach is used to extract feature shape parameters of the DSA structures by fitting simulated optical spectra to experimental optical spectra. Detection of the DSA defects is a key to reducing defect density for eventual manufacturability and production use of DSA process. Simulations of optical models of structures containing defects are used to evaluate the sensitivity of MM elements to DSA defects. This study describes the application of MMSE to determine the DSA pattern defectivity via spectral comparisons based on optical anisotropy and depolarization. The use of depolarization and optical anisotropy for characterization of experimental MMSE data is a very recent development in scatterometry. In addition, reconstructed scatterometry models are used to calculate line edge roughness in 28 nm pitch Si fins fabricated using DSA patterning process.
Orientational order in smectic liquid-crystalline phases of amphiphilic diols
NASA Astrophysics Data System (ADS)
Giesselmann, Frank; Germer, Roland; Saipa, Alexander
2005-07-01
The thermotropic smectic phases of amphiphilic 2-(trans-4-n-alkylcyclohexyl)-propane-1,3-diols were investigated by means of small- and wide-angle x-ray scattering and values of the smectic (bi-)layer spacing, the orientational order parameters ⟨P2⟩ and ⟨P4⟩, the orientational distribution function as well as the intralayer correlation length were extracted from the scattering profiles. The results for the octyl homolog indicate that these smectic phases combine a very high degree of smectic one-dimensional-translational order with remarkably low orientational order, the order parameter of which (⟨P2⟩≈0.56) is far below those values typically found in nonamphiphilic smectics. This combination, quite exceptional in thermotropic smectics, most likely originates from the intermolecular hydrogen bonding between the terminal diol groups which seems to be the specific driving force in the formation of the thermotropic smectic structure in these amphiphiles and leads to a type of microphase segregation. Even in the absence of a solvent, the liquid-crystalline ordering of the amphiphilic mesogens comes close to the structure of the so-called neat soaps, found in lyotropic liquid crystals.
Coarse-Grained Molecular Monte Carlo Simulations of Liquid Crystal-Nanoparticle Mixtures
NASA Astrophysics Data System (ADS)
Neufeld, Ryan; Kimaev, Grigoriy; Fu, Fred; Abukhdeir, Nasser M.
Coarse-grained intermolecular potentials have proven capable of capturing essential details of interactions between complex molecules, while substantially reducing the number of degrees of freedom of the system under study. In the domain of liquid crystals, the Gay-Berne (GB) potential has been successfully used to model the behavior of rod-like and disk-like mesogens. However, only ellipsoid-like interaction potentials can be described with GB, making it a poor fit for many real-world mesogens. In this work, the results of Monte Carlo simulations of liquid crystal domains using the Zewdie-Corner (ZC) potential are presented. The ZC potential is constructed from an orthogonal series of basis functions, allowing for potentials of essentially arbitrary shapes to be modeled. We also present simulations of mixtures of liquid crystalline mesogens with nanoparticles. Experimentally these mixtures have been observed to exhibit microphase separation and formation of long-range networks under some conditions. This highlights the need for a coarse-grained approach which can capture salient details on the molecular scale while simulating sufficiently large domains to observe these phenomena. We compare the phase behavior of our simulations with that of a recently presented continuum theory. This work was made possible by the Natural Sciences and Engineering Research Council of Canada and Compute Ontario.
Controlling the Pore Size of Mesoporous Carbon Thin Films through Thermal and Solvent Annealing.
Zhou, Zhengping; Liu, Guoliang
2017-04-01
Herein an approach to controlling the pore size of mesoporous carbon thin films from metal-free polyacrylonitrile-containing block copolymers is described. A high-molecular-weight poly(acrylonitrile-block-methyl methacrylate) (PAN-b-PMMA) is synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. The authors systematically investigate the self-assembly behavior of PAN-b-PMMA thin films during thermal and solvent annealing, as well as the pore size of mesoporous carbon thin films after pyrolysis. The as-spin-coated PAN-b-PMMA is microphase-separated into uniformly spaced globular nanostructures, and these globular nanostructures evolve into various morphologies after thermal or solvent annealing. Surprisingly, through thermal annealing and subsequent pyrolysis of PAN-b-PMMA into mesoporous carbon thin films, the pore size and center-to-center spacing increase significantly with thermal annealing temperature, different from most block copolymers. In addition, the choice of solvent in solvent annealing strongly influences the block copolymer nanostructure and the pore size of mesoporous carbon thin films. The discoveries herein provide a simple strategy to control the pore size of mesoporous carbon thin films by tuning thermal or solvent annealing conditions, instead of synthesizing a series of block copolymers of various molecular weights and compositions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Wei; Wang, Yangyang; Wang, Weiyu
All acrylic-based thermoplastic elastomers (TPEs) offer potential alternatives to the widely-used styrenic TPEs. However, the high entanglement molecular weight ( M e) of polyacrylates, as compared to polydienes, leads to “disappointing” mechanical performance as compared to styrenic TPEs. In this study, triblock copolymers composed of alkyl acrylates with different pendant groups and different glass transition temperatures ( T gs), i.e. 1-adamatyl acrylate (AdA) and tetrahydrofurfuryl acrylate (THFA), were synthesized via reversible addition–fragmentation chain transfer (RAFT) polymerization. Thermal characterization of the resulting polymers was performed using differential scanning calorimetry (DSC), and the T gs of both segments were observed for themore » block copolymers. This indication of microphase separation behavior was further demonstrated using atomic-force microscopy (AFM) and small angle X-ray scattering (SAXS). Dynamic mechanical analysis (DMA) showed that the softening temperature of the PAdA domains is 123 °C, which is higher than that of both styrenic TPEs and commercial acrylic based TPEs with poly(methyl methacrylate) (PMMA) hard block. Here, the resulting triblock copolymers also exhibited stress–strain behavior superior to that of conventional all acrylic-based TPEs composed of PMMA and poly( n-butyl acrylate) (PBA) made by controlled radical processes, while the tensile strength was lower than for products made by living anionic polymerization.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khaira, Gurdaman; Doxastakis, Manolis; Bowen, Alec
There is considerable interest in developing multimodal characterization frameworks capable of probing critical properties of complex materials by relying on distinct, complementary methods or tools. Any such framework should maximize the amount of information that is extracted from any given experiment and should be sufficiently powerful and efficient to enable on-the-fly analysis of multiple measurements in a self-consistent manner. Such a framework is demonstrated in this work in the context of self-assembling polymeric materials, where theory and simulations provide the language to seamlessly mesh experimental data from two different scattering measurements. Specifically, the samples considered here consist of diblock copolymersmore » (BCP) that are self-assembled on chemically nanopatterned surfaces. The copolymers microphase separate into ordered lamellae with characteristic dimensions on the scale of tens of nanometers that are perfectly aligned by the substrate over macroscopic areas. These aligned lamellar samples provide ideal standards with which to develop the formalism introduced in this work and, more generally, the concept of high-information-content, multimodal experimentation. The outcomes of the proposed analysis are then compared to images generated by 3D scanning electron microscopy tomography, serving to validate the merit of the framework and ideas proposed here.« less
High-Tg Polynorbornene-Based Block and Random Copolymers for Butanol Pervaporation Membranes
NASA Astrophysics Data System (ADS)
Register, Richard A.; Kim, Dong-Gyun; Takigawa, Tamami; Kashino, Tomomasa; Burtovyy, Oleksandr; Bell, Andrew
Vinyl addition polymers of substituted norbornene (NB) monomers possess desirably high glass transition temperatures (Tg); however, until very recently, the lack of an applicable living polymerization chemistry has precluded the synthesis of such polymers with controlled architecture, or copolymers with controlled sequence distribution. We have recently synthesized block and random copolymers of NB monomers bearing hydroxyhexafluoroisopropyl and n-butyl substituents (HFANB and BuNB) via living vinyl addition polymerization with Pd-based catalysts. Both series of polymers were cast into the selective skin layers of thin film composite (TFC) membranes, and these organophilic membranes investigated for the isolation of n-butanol from dilute aqueous solution (model fermentation broth) via pervaporation. The block copolymers show well-defined microphase-separated morphologies, both in bulk and as the selective skin layers on TFC membranes, while the random copolymers are homogeneous. Both block and random vinyl addition copolymers are effective as n-butanol pervaporation membranes, with the block copolymers showing a better flux-selectivity balance. While polyHFANB has much higher permeability and n-butanol selectivity than polyBuNB, incorporating BuNB units into the polymer (in either a block or random sequence) limits the swelling of the polyHFANB and thereby improves the n-butanol pervaporation selectivity.
Liu, Xiaolong; Xia, Yiran; Liu, Lulu; Zhang, Dongmei; Hou, Zhaosheng
2018-05-01
The purpose of this study is to offer a novel kind of polyurethane with improved surface blood compatibility for long-term implant biomaterials. In this work, the aliphatic poly(ester-urethane) (PEU) with uniform-size hard segments was prepared and the PEU surface was grafted with hydrophilic poly(ethylene glycol) (PEG). The PEU was obtained by chain-extension of poly(ɛ-caprolactone) (PCL) with isocyanate-terminated urethane triblock. Free amino groups were introduced onto the surface of PEU film via aminolysis with hexamethylenediamine, and then the NH 2 -grafted PEU surfaces (PEU-NH 2 ) were reacted with isocyanate-terminated monomethoxyl PEG (MPEG-NCO) to obtain the PEG-grafted PEU surfaces (PEU-PEG). Analysis by nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, and gel permeation chromatography were performed to confirm the chemical structures of the chain extender, PCL, PEU, and PEU-PEG. Additionally, the influence of aminolysis on the physical-mechanical properties of PEU films was investigated. Two glass transition temperatures and a broad endothermic peak were observed in the differential scanning calorimetry curves of PEU, which demonstrated a microphase-separated and semicrystalline structure, respectively. The PEU-PEG film exhibited excellent mechanical properties with an ultimate stress of ∼39 MPa and an elongation at break of ∼1190%, which was slightly lower than that of PEU, indicating that the aminolysis has little influence on the tensile properties. Evaluation of the blood compatibility of the films by bovine serum albumin adsorption and the platelet adhesion test revealed that the PEG-grafted surface had improved resistance to protein adsorption and excellent resistance to platelet adhesion. In vitro degradation tests showed that the PEU-PEG film could maintain its mechanical properties for more than six months and only lost ∼25% weight after 18 months. Due to the excellent mechanical properties, good blood compatibility and slow degradability, this novel kind of polyurethane hold significant promise for long-term implant biomaterials, especially soft tissue augmentation and regeneration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Irwin, Matthew T.; Hickey, Robert J.; Xie, Shuyi
2016-11-21
We examine the relationship between structure and ionic conductivity in salt-containing ternary polymer blends that exhibit various microstructured morphologies, including lamellae, a hexagonal phase, and a bicontinuous microemulsion, as well as the disordered phase. These blends consist of polystyrene (PS, M n ≈ 600 g/mol) and poly(ethylene oxide) (PEO, M n ≈ 400 g/mol) homopolymers, a nearly symmetric PS–PEO block copolymer (M n ≈ 4700 g/mol), and lithium bis(trifluoromethane)sulfonamide (LiTFSI). These pseudoternary blends exhibit phase behavior that parallels that of well-studied ternary polymer blends consisting of A and B homopolymers compatibilized by an AB diblock copolymer. The utility of thismore » framework is that all blends have nominally the same number of ethylene oxide, styrene, Li +, and TFSI– units, yet can exhibit a variety of microstructures depending on the relative ratio of the homopolymers to the block copolymer. For the systems studied, the ratio r = [Li +]/[EO] is maintained at 0.06, and the volume fraction of PS homopolymer is kept equal to that of PEO homopolymer plus salt. The total volume fraction of homopolymer is varied from 0 to 0.70. When heated through the order–disorder transition, all blends exhibit an abrupt increase in conductivity. However, analysis of small-angle X-ray scattering data indicates significant structure even in the disordered state for several blend compositions. By comparing the nature and structure of the disordered states with their corresponding ordered states, we find that this increase in conductivity through the order–disorder transition is most likely due to the elimination of grain boundaries. In either disordered or ordered states, the conductivity decreases as the total amount of homopolymer is increased, an unanticipated observation. This trend with increasing homopolymer loading is hypothesized to result from an increased density of “dead ends” in the conducting channel due to poor continuity across grain boundaries in the ordered state and the formation of concave interfaces in the disordered state. The results demonstrate that disordered, microphase-separated morphologies provide better transport properties than compositionally equivalent polycrystalline systems with long-range order, an important criterion when optimizing the design of polymer electrolytes.« less
Berezkin, Anatoly V; Kudryavtsev, Yaroslav V; Gorkunov, Maxim V; Osipov, Mikhail A
2017-04-14
Local distribution and orientation of anisotropic nanoparticles in microphase-separated symmetric diblock copolymers has been simulated using dissipative particle dynamics and analyzed with a molecular theory. It has been demonstrated that nanoparticles are characterized by a non-trivial orientational ordering in the lamellar phase due to their anisotropic interactions with isotropic monomer units. In the simulations, the maximum concentration and degree of ordering are attained for non-selective nanorods near the domain boundary. In this case, the nanorods have a certain tendency to align parallel to the interface in the boundary region and perpendicular to it inside the domains. Similar orientation ordering of nanoparticles located at the lamellar interface is predicted by the molecular theory which takes into account that the nanoparticles interact with monomer units via both isotropic and anisotropic potentials. Computer simulations enable one to study the effects of the nanorod concentration, length, stiffness, and selectivity of their interactions with the copolymer components on the phase stability and orientational order of nanoparticles. If the volume fraction of the nanorods is lower than 0.1, they have no effect on the copolymer transition from the disordered state into a lamellar microstructure. Increasing nanorod concentration or nanorod length results in clustering of the nanorods and eventually leads to a macrophase separation, whereas the copolymer preserves its lamellar morphology. Segregated nanorods of length close to the width of the diblock copolymer domains are stacked side by side into smectic layers that fill the domain space. Thus, spontaneous organization and orientation of nanorods leads to a spatial modulation of anisotropic composite properties which may be important for various applications.
NASA Astrophysics Data System (ADS)
Berezkin, Anatoly V.; Kudryavtsev, Yaroslav V.; Gorkunov, Maxim V.; Osipov, Mikhail A.
2017-04-01
Local distribution and orientation of anisotropic nanoparticles in microphase-separated symmetric diblock copolymers has been simulated using dissipative particle dynamics and analyzed with a molecular theory. It has been demonstrated that nanoparticles are characterized by a non-trivial orientational ordering in the lamellar phase due to their anisotropic interactions with isotropic monomer units. In the simulations, the maximum concentration and degree of ordering are attained for non-selective nanorods near the domain boundary. In this case, the nanorods have a certain tendency to align parallel to the interface in the boundary region and perpendicular to it inside the domains. Similar orientation ordering of nanoparticles located at the lamellar interface is predicted by the molecular theory which takes into account that the nanoparticles interact with monomer units via both isotropic and anisotropic potentials. Computer simulations enable one to study the effects of the nanorod concentration, length, stiffness, and selectivity of their interactions with the copolymer components on the phase stability and orientational order of nanoparticles. If the volume fraction of the nanorods is lower than 0.1, they have no effect on the copolymer transition from the disordered state into a lamellar microstructure. Increasing nanorod concentration or nanorod length results in clustering of the nanorods and eventually leads to a macrophase separation, whereas the copolymer preserves its lamellar morphology. Segregated nanorods of length close to the width of the diblock copolymer domains are stacked side by side into smectic layers that fill the domain space. Thus, spontaneous organization and orientation of nanorods leads to a spatial modulation of anisotropic composite properties which may be important for various applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samant, Saumil; Strzalka, Joseph; Yager, Kevin G.
Dynamic thermal gradient-based processes for directed self-assembly of block copolymer (BCP) thin films such as cold zone annealing (CZA) have demonstrated much potential for rapidly fabricating highly ordered patterns of BCP domains with facile orientation control. As a demonstration, hexagonally packed predominantly vertical cylindrical morphology, technologically relevant for applications such as membranes and lithography, was achieved in 1 μm thick cylinder-forming PS-b-PMMA (cBCP) films by applying sharp thermal gradients (CZA-Sharp) at optimum sample sweep rates. A thorough understanding of the molecular level mechanisms and pathways of the BCP ordering that occur during this CZA-S process is presented, useful to fullymore » exploit the potential of CZA-S for large-scale BCP-based device fabrication. To that end, we developed a customized CZA-S assembly to probe the dynamic structure evolution and ordering of the PS-b-PMMA cBCP film in situ as it undergoes the CZA-S process using the grazing incidence small-angle X-ray scattering (GISAXS) technique. Four distinct regimes of BCP ordering were observed within the gradient that include microphase separation from an “as cast” unordered state (Regime I), evolution of vertical cylinders under a thermally imposed strain gradient (Regime II), reorientation of a fraction of cylinders due to preferential substrate interactions (Regime III), and finally grain-coarsening on the cooling edge (Regime IV). The ordering pathway in the different regimes is further described within the framework of an energy landscape. A novel aspect of this study is the identification of a grain-coarsening regime on the cooling edge of the gradient, previously obscure in zone annealing studies of BCPs. Furthermore, such insights into the development of highly ordered BCP nanostructures under template-free thermal gradient fields can potentially have important ramifications in the field of BCP-directed self-assembly and self-assembling polymer systems more broadly.« less
Wang, Baolong; Hong, Lihua; Li, Yunfeng; Zhao, Liang; Zhao, Chengji; Na, Hui
2017-09-20
Nafion/SNPAEK-x composite membranes were prepared by blending raw Nafion and synthesized side-chain-type naphthalene-based sulfonated poly(arylene ether ketone) with a sulfonation degree of 1.35 (SNPAEK-1.35). The incorporation of SNPAEK-1.35 polymer with ion exchange capacity (IEC) of 2.01 mequiv·g -1 into a Nafion matrix has the property enhancement effects, such as increasing IECs, improving proton conductivity, enhancing mechanical properties, reducing methanol crossover, and improving single cell performance of Nafion. Morphology studies show that Nafion/SNPAEK-x composite membranes exhibit a well-defined microphase separation structure depending on the contents of SNPAEK-1.35 polymer. Among them, Nafion/SNPAEK-7.5% with a bicontinuous morphology exhibits the best comprehensive properties. For example, it shows the highest proton conductivities of 0.092 S cm -1 at 25 °C and 0.163 S cm -1 at 80 °C, which are higher than those of recast Nafion with 0.073 S cm -1 at 25 °C and 0.133 S cm -1 at 80 °C, respectively. Nafion/SNPAEK-5.0% and Nafion/SNPAEK-7.5% membranes display an open circuit voltage of 0.77 V and a maximum power density of 47 mW cm -2 at 80 °C, which are much higher than those of recast Nafion of 0.63 V and 24 mW cm -2 under the same conditions. Nafion/SNPAEK-5.0% membrane also has comparable tensile strength (12.7 MPa) to recast Nafion (13.7 MPa), and higher Young's modulus (330 MPa) than that of recast Nafion (240 MPa). By combining their high proton conductivities, comparable mechanical properties, and good single cell performance, Nafion/SNPAEK-x composite membranes have the potential to be polymer electrolyte materials for direct methanol fuel cell applications.
NASA Astrophysics Data System (ADS)
Swenson, Jan; Elamin, Khalid; Chen, Guo; Lohstroh, Wiebke; Sakai, Victoria Garcia
2014-12-01
The molecular dynamics of solutions of di-propylene glycol methylether (2PGME) and H2O (or D2O) confined in 28 Å pores of MCM-41 have been studied by quasielastic neutron scattering and differential scanning calorimetry over the concentration range 0-90 wt.% water. This system is of particular interest due to its pronounced non-monotonic concentration dependent dynamics of 2PGME in the corresponding bulk system, showing the important role of hydrogen bonding for the dynamics. In this study we have elucidated how this non-monotonic concentration dependence is affected by the confined geometry. The results show that this behaviour is maintained in the confinement, but the slowest diffusive dynamics of 2PGME is now observed at a considerably higher water concentration; at 75 wt.% water in MCM-41 compared to 30 wt.% water in the corresponding bulk system. This difference can be explained by an improper mixing of the two confined liquids. The results suggest that water up to a concentration of about 20 wt.% is used to hydrate the hydrophilic hydroxyl surface groups of the silica pores, and that it is only at higher water contents the water becomes partly mixed with 2PGME. Hence, due to this partial micro-phase separation of the two liquids larger, and thereby slower relaxing, structural entities of hydrogen bonded water and 2PGME molecules can only be formed at higher water contents than in the bulk system. However, the Q-dependence is unchanged with confinement, showing that the nature of the molecular motions is preserved. Thus, there is no indication of localization of the dynamics at length scales of less than 20 Å. The dynamics of both water and 2PGME is strongly dominated by translational diffusion at a temperature of 280 K.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swenson, Jan, E-mail: jan.swenson@chalmers.se; Elamin, Khalid; Chen, Guo
2014-12-07
The molecular dynamics of solutions of di-propylene glycol methylether (2PGME) and H{sub 2}O (or D{sub 2}O) confined in 28 Å pores of MCM-41 have been studied by quasielastic neutron scattering and differential scanning calorimetry over the concentration range 0–90 wt.% water. This system is of particular interest due to its pronounced non-monotonic concentration dependent dynamics of 2PGME in the corresponding bulk system, showing the important role of hydrogen bonding for the dynamics. In this study we have elucidated how this non-monotonic concentration dependence is affected by the confined geometry. The results show that this behaviour is maintained in the confinement,more » but the slowest diffusive dynamics of 2PGME is now observed at a considerably higher water concentration; at 75 wt.% water in MCM-41 compared to 30 wt.% water in the corresponding bulk system. This difference can be explained by an improper mixing of the two confined liquids. The results suggest that water up to a concentration of about 20 wt.% is used to hydrate the hydrophilic hydroxyl surface groups of the silica pores, and that it is only at higher water contents the water becomes partly mixed with 2PGME. Hence, due to this partial micro-phase separation of the two liquids larger, and thereby slower relaxing, structural entities of hydrogen bonded water and 2PGME molecules can only be formed at higher water contents than in the bulk system. However, the Q-dependence is unchanged with confinement, showing that the nature of the molecular motions is preserved. Thus, there is no indication of localization of the dynamics at length scales of less than 20 Å. The dynamics of both water and 2PGME is strongly dominated by translational diffusion at a temperature of 280 K.« less
Ordering pathway of block copolymers under dynamic thermal gradients studied by in situ GISAXS
Samant, Saumil; Strzalka, Joseph; Yager, Kevin G.; ...
2016-10-31
Dynamic thermal gradient-based processes for directed self-assembly of block copolymer (BCP) thin films such as cold zone annealing (CZA) have demonstrated much potential for rapidly fabricating highly ordered patterns of BCP domains with facile orientation control. As a demonstration, hexagonally packed predominantly vertical cylindrical morphology, technologically relevant for applications such as membranes and lithography, was achieved in 1 μm thick cylinder-forming PS-b-PMMA (cBCP) films by applying sharp thermal gradients (CZA-Sharp) at optimum sample sweep rates. A thorough understanding of the molecular level mechanisms and pathways of the BCP ordering that occur during this CZA-S process is presented, useful to fullymore » exploit the potential of CZA-S for large-scale BCP-based device fabrication. To that end, we developed a customized CZA-S assembly to probe the dynamic structure evolution and ordering of the PS-b-PMMA cBCP film in situ as it undergoes the CZA-S process using the grazing incidence small-angle X-ray scattering (GISAXS) technique. Four distinct regimes of BCP ordering were observed within the gradient that include microphase separation from an “as cast” unordered state (Regime I), evolution of vertical cylinders under a thermally imposed strain gradient (Regime II), reorientation of a fraction of cylinders due to preferential substrate interactions (Regime III), and finally grain-coarsening on the cooling edge (Regime IV). The ordering pathway in the different regimes is further described within the framework of an energy landscape. A novel aspect of this study is the identification of a grain-coarsening regime on the cooling edge of the gradient, previously obscure in zone annealing studies of BCPs. Furthermore, such insights into the development of highly ordered BCP nanostructures under template-free thermal gradient fields can potentially have important ramifications in the field of BCP-directed self-assembly and self-assembling polymer systems more broadly.« less
Self-oscillating AB diblock copolymer developed by post modification strategy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ueki, Takeshi, E-mail: ueki@cross.t.u-tokyo.ac.jp, E-mail: ryo@cross.t.u-tokyo.ac.jp; Onoda, Michika; Tamate, Ryota
We prepared AB diblock copolymer composed of hydrophilic poly(ethylene oxide) segment and self-oscillating polymer segment. In the latter segment, ruthenium tris(2,2′-bipyridine) (Ru(bpy){sub 3}), a catalyst of the Belousov-Zhabotinsky reaction, is introduced into the polymer architecture based on N-isopropylacrylamide (NIPAAm). The Ru(bpy){sub 3} was introduced into the polymer segment by two methods; (i) direct random copolymerization (DP) of NIPAAm and Ru(bpy){sub 3} vinyl monomer and (ii) post modification (PM) of Ru(bpy){sub 3} with random copolymer of NIPAAm and N-3-aminopropylmethacrylamide. For both the diblock copolymers, a bistable temperature region (the temperature range; ΔT{sub m}), where the block copolymer self-assembles into micelle atmore » reduced Ru(bpy){sub 3}{sup 2+} state whereas it breaks-up into individual polymer chain at oxidized Ru(bpy){sub 3}{sup 3+} state, monotonically extends as the composition of the Ru(bpy){sub 3} increases. The ΔT{sub m} of the block copolymer prepared by PM is larger than that by DP. The difference in ΔT{sub m} is rationalized from the statistical analysis of the arrangement of the Ru(bpy){sub 3} moiety along the self-oscillating segments. By using the PM method, the well-defined AB diblock copolymer having ΔT{sub m} (ca. 25 °C) large enough to cause stable self-oscillation can be prepared. The periodic structural transition of the diblock copolymer in a dilute solution ([Polymer] = 0.1 wt. %) is closely investigated in terms of the time-resolved dynamic light scattering technique at constant temperature in the bistable region. A macroscopic viscosity oscillation of a concentrated polymer solution (15 wt. %) coupled with the periodic microphase separation is also demonstrated.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmitt, Adam K.; Mahanthappa, Mahesh K.
Using a combination of small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM), we document the composition-dependent morphologies of 39 new poly(lactide-block-1,4-butadiene-block-lactide) (LBL) block polymers, comprising a broad dispersity B segment (Mn = 4.5–17.7 kg/mol;more » $$\\def\\eth{{\\specialfont\\char238}}$$ = Mw/Mn = 1.72–1.88) and narrow dispersity L end blocks (Mn = 0.6–15.3 kg/mol; $$\\def\\eth{{\\specialfont\\char238}}$$ = 1.10–1.21) with volume fractions 0.26 ≤ fB ≤ 0.95. A subset of these samples undergo melt self-assembly into cylindrical, lamellar, and apparently bicontinuous morphologies. By assessing the states of order and disorder in these triblock polymer melts using temperature-dependent SAXS, we find that broad B segment dispersity increases the minimum segregation strength χN ≳ 27 required for LBL triblock self-assembly relative to the self-consistent mean-field theory prediction χN ≥ 17.9 for narrow dispersity analogues. While B segment dispersity has previously been shown to thermodynamically stabilize the self-assembled morphologies of low χ/high N ABA triblocks, the present study indicates that broad B block dispersity in related high χ/low N systems destabilizes the microphase-separated melt. These observations are rationalized in terms of recent theories that suggest that broad segmental dispersity substantially enhances fluctuation effects at low N, thus disfavoring melt segregation.« less
Wei, Kun; Li, Lei; Zheng, Sixun; Wang, Ge; Liang, Qi
2014-01-14
In this contribution, we report the synthesis of organic-inorganic random polymers from methacrylate-terminated poly(ethylene oxide) (MAPEO) (Mn = 950) and 3-methacryloxypropylheptaphenyl polyhedral oligomeric silsesquioxane (MAPOSS) macromers via reversible addition-fragmentation chain transfer (RAFT) polymerization with 4-cyano-4-(thiobenzoylthio) valeric acid (CTBTVA) as the chain transfer agent. The organic-inorganic random copolymers were characterized by means of (1)H NMR spectroscopy, gel permeation chromatography (GPC) and differential scanning calorimetry (DSC). The results of GPC indicate that the polymerizations were carried out in a controlled fashion. Transmission electron microscopy (TEM) showed that the organic-inorganic random copolymers in bulk were microphase-separated and the POSS microdomains were formed via POSS-POSS interactions. In aqueous solutions the organic-inorganic random copolymers were capable of self-assembling into spherical nanoobjects as evidenced by transmission electron microscopy (TEM) and dynamic laser scattering (DLS). The self-assembly behavior of the organic-inorganic random copolymers was also found to occur in the mixtures with the precursors of epoxy. The nanostructures were further fixed via subsequent curing reaction and thus the organic-inorganic nanocomposites were obtained. The formation of nanophases in epoxy thermosets was confirmed by transmission electron microscopy (TEM) and dynamic mechanical thermal analysis (DMTA). The organic-inorganic nanocomposites displayed the enhanced surface hydrophobicity as evidenced by surface contact angle measurements.
Lu, Wei; Wang, Yangyang; Wang, Weiyu; ...
2017-08-25
All acrylic-based thermoplastic elastomers (TPEs) offer potential alternatives to the widely-used styrenic TPEs. However, the high entanglement molecular weight ( M e) of polyacrylates, as compared to polydienes, leads to “disappointing” mechanical performance as compared to styrenic TPEs. In this study, triblock copolymers composed of alkyl acrylates with different pendant groups and different glass transition temperatures ( T gs), i.e. 1-adamatyl acrylate (AdA) and tetrahydrofurfuryl acrylate (THFA), were synthesized via reversible addition–fragmentation chain transfer (RAFT) polymerization. Thermal characterization of the resulting polymers was performed using differential scanning calorimetry (DSC), and the T gs of both segments were observed for themore » block copolymers. This indication of microphase separation behavior was further demonstrated using atomic-force microscopy (AFM) and small angle X-ray scattering (SAXS). Dynamic mechanical analysis (DMA) showed that the softening temperature of the PAdA domains is 123 °C, which is higher than that of both styrenic TPEs and commercial acrylic based TPEs with poly(methyl methacrylate) (PMMA) hard block. Here, the resulting triblock copolymers also exhibited stress–strain behavior superior to that of conventional all acrylic-based TPEs composed of PMMA and poly( n-butyl acrylate) (PBA) made by controlled radical processes, while the tensile strength was lower than for products made by living anionic polymerization.« less
Manipulating polymers and composites from the nanoscopic to microscopic length scales
NASA Astrophysics Data System (ADS)
Gupta, Suresh
2008-10-01
This thesis focuses on the manipulation of polymers and composites on length scales ranging from the nanoscopic to microscopic. In particular, on the microscopic length scale electric fields were used to produce instabilities at the air surface and at polymer interfaces that lead to novel three dimensional structures and patterns. On the nanoscopic length scale, the interaction of ligands attached to nanoparticles and polymer matrix were used to induce self-assembly processes that, in turn, lead to systems that self-heal, self-corral, or are patterned. For manipulation at the micron length scale, electrohydrodynamic instabilities were used in trilayer system composed of a layer of poly(methyl methacrylate) (PMMA), a second layer of polystyrene (PS) and a third layer of air. Dewetting of the polymer at the substrate at the polymer/polymer interface under an applied electric field was used to generate novel three dimensional structures. Also, electrohydrodynamic instabilities were used to pattern thin polymer films in conjunction with ultrasonic vibrations and patterned upper electrodes. Self-assembly processes involving polymers and nanoparticles offer a unique means of generating pattern materials or materials that self heal. Simple polymer/nanoparticle composites were investigated. Here, in the absence of interactions between the poly(ethylene oxide) ligands attached to the nanoparticles and PMMA polymer matrix, the opportunity to generate self-healing systems was opened. The size of the nanoparticle was varied and the effect on diffusion of nanoparticle in the polymer matrix was studied. CdSe nanorods were also assembled on a substrate templated with or guided by microphase separated diblock copolymers. The nanorods were incorporated in the diblock copolymer thin films by spin coating the co-solution of nanorods and polymer, surface adsorption of nanorods on to the patterned diblock copolymer films and surface reconstruction of PS/PMMA diblock copolymer thin film. Further, the interactions between the PMMA polymer matrix and the tri n-octyl phosphine oxide ligands attached to an anisotropic nanoparticle, i.e. nanorods, were used to influence the dispersion of the nanorods in the polymer. This led to a novel assembly, termed self-corralling where under an applied electric field highly oriented, highly ordered arrays of nanorods form. Further, self corralling of nanorods was directed by chemically patterned substrates.
NASA Astrophysics Data System (ADS)
Khalfan, Amish N.
This dissertation investigates the structural and dynamical properties of polymer electrolyte materials for applications to lithium-ion batteries and fuel cells. The nuclear magnetic resonance (NMR) technique was used to characterize these materials. NMR aids in understanding the local environments of nuclei and the mobility of a molecular/ionic species. Five research projects were carried out, and they have been outlined in this work. NASA has developed rod-coil block copolymers for use as electrolytes in lithium-ion batteries. The copolymers exhibit a microphase separation within their structure leading to the formation of ionically conducting channels. We studied ion transport properties of the copolymers, and determined the predominant mechanism for transport to occur in the amorphous phase. Seven gel polymer electrolytes, each containing a mixture of LiBETI salt and organic solvents, were studied. Two of them incorporated BMI (1-n-butyl-3-methylimidazolium) ionic liquid. Ionic liquids are room temperature molten salts. BMI had been thought to enhance ion mobility. However, the BMI component was observed to restrict ion mobility. Gel polymer electrolytes containing LiTFSI salt and P13TFSI ionic liquid with or without the inclusion of ethylene carbonate (EC) were studied for application to lithium metal/air batteries, which have high theoretical energy densities. The addition of EC was found to improve lithium ion transport. The gels with EC therefore prove to be favorable for use as electrolytes in lithium metal/air batteries. Highly sulfonated poly(arylenethioethersulfone) (SPTES) membranes were examined for use in direct methanol fuel cells (DMFCs) as an alternative to the Nafion membrane. DMFCs use methanol as a fuel instead of reformed hydrogen as in conventional proton exchange membrane fuel cells. Compared to Nafion, the SPTES membranes were shown to retain water better at high temperatures and yield lower methanol diffusion. SPTES membranes with the addition of fluorine groups (6F-SPTES) were also studied, and these membranes had been thought to show an improvement in water transport properties over SPTES. However, water diffusion studies of the 6F-SPTES membranes revealed the fluorinated membranes to be unfavorable. The morphology of the FSPTES is suspected to be more susceptible to the loss of bound water at higher temperatures than SPTES.
NASA Astrophysics Data System (ADS)
Ambati, Jyothirmai
This dissertation presents studies of the synthetic processes and applications of siloxane-based materials. Kinetic investigations of bridged organoalkoxysilanes that are precursors to organic-inorganic hybrid polysilsesquioxanes are a primary focus. Quick gelation despite extensive cyclization is found during the polymerization of bridged silane precursors except for silanes with certain short bridges. This work is an attempt to characterize and understand some of the distinct features of bridged silanes using experimental characterization, kinetic modeling and simulation. In addition to this, the dissertation shows how the properties of siloxane-materials can be engineered for drug delivery and adsorption. The phase behavior of polymerizing mixtures is first investigated to identify the solutions that favor kinetic characterization. Microphase separation is found to cause gradual loss of NMR signal for certain initial compositions. Distortionless Enhancement by Polarization Transfer 29Si NMR is employed to identify the products of polymerization of some short-bridged silanes under no signal loss conditions. This technique requires knowing indirect 29Si-1H scalar coupling constants which sometimes cannot be measured due to second-order effects. However, the B3LYP density functional method with 6-31G basis set is found to predict accurate 29Si- 1H coupling constants of organoalkoxysilanes and siloxanes. The scalar coupling constants thus estimated are employed to resolve non-trivial coupled NMR spectra and quantitative kinetic modeling is performed using the DEPT Si NMR transients. In order to investigate the role of the organic bridging group, the structural evolution of bridged and non-bridged silanes are compared using Monte Carlo simulations. Kinetic and simulation models suggest that cyclization plays a key role right from the onset of polymerization for bridged silanes even more than in non-bridged silanes. The simulations indicate that the carbosiloxane rings formed from short-bridged precursors slow down but do not prevent gelation. The tuning of siloxane-based materials for adsorption technologies are also discussed here. In the first example, antioxidant enzyme loading is investigated as a means to reduce oxidative stress generated by silica nanoparticle drug carriers. Materials are engineered for promising enzyme loading and protection from proteolysis. Second, the potential of copper sulfate impregnation to enhance adsorption of ammonia by silica is explored by molecular simulation. KEYWORDS: Sol-gel Polymerization, Kinetic Investigation, Si NMR, Bridged Silanes, DFT Calculations.
Dispersions of polymer ionomers: I.
Capek, Ignác
2004-12-31
The principal subject discussed in the current paper is the effect of ionic functional groups in polymers on the formation of nontraditional polymer materials, polymer blends or polymer dispersions. Ionomers are polymers that have a small amount of ionic groups distributed along a nonionic hydrocarbon chain. Specific interactions between components in a polymer blend can induce miscibility of two or more otherwise immiscible polymers. Such interactions include hydrogen bonding, ion-dipole interactions, acid-base interactions or transition metal complexation. Ion-containing polymers provide a means of modifying properties of polymer dispersions by controlling molecular structure through the utilization of ionic interactions. Ionomers having a relatively small number of ionic groups distributed usually along nonionic organic backbone chains can agglomerate into the following structures: (1) multiplets, consisting of a small number of tightly packed ion pairs; and (2) ionic clusters, larger aggregates than multiplets. Ionomers exhibit unique solid-state properties as a result of strong associations among ionic groups attached to the polymer chains. An important potential application of ionomers is in the area of thermoplastic elastomers, where the associations constitute thermally reversible cross-links. The ionic (anionic, cationic or polar) groups are spaced more or less randomly along the polymer chain. Because in this type of ionomer an anionic group falls along the interior of the chain, it trails two hydrocarbon chain segments, and these must be accommodated sterically within any domain structure into which the ionic group enters. The primary effects of ionic functionalization of a polymer are to increase the glass transition temperature, the melt viscosity and the characteristic relaxation times. The polymer microstructure is also affected, and it is generally agreed that in most ionomers, microphase-separated, ion-rich aggregates form as a result of strong ion-dipole attractions. As a consequence of this new phase, additional relaxation processes are often observed in the viscoelastic behavior of ionomers. Light functionalization of polymers can increase the glass transition temperature and gives rise to two new features in viscoelastic behavior: (1) a rubbery plateau above T(g) and (2) a second loss process at elevated temperatures. The rubbery plateau was due to the formation of a physical network. The major effect of the ionic aggregate was to increase the longer time relaxation processes. This in turn increases the melt viscosity and is responsible for the network-like behavior of ionomers above the glass transition temperature. Ionomers rich in polar groups can fulfill the criteria for the self-assembly formation. The reported phenomenon of surface micelle formation has been found to be very general for these materials.
Structural Interplay - Tuning Mechanics in Peptide-Polyurea Hybrids
NASA Astrophysics Data System (ADS)
Korley, Lashanda
Utilizing cues from natural materials, we have been inspired to explore the hierarchical arrangement critical to energy absorption and mechanical enhancement in synthetic systems. Of particular interest is the soft domain ordering proposed as a contributing element to the observed toughness in spider silk. Multiblock copolymers, are ideal and dynamic systems in which to explore this approach via variations in secondary structure of nature's building blocks - peptides. We have designed a new class of polyurea hybrids that incorporate peptidic copolymers as the soft segment. The impact of hierarchical ordering on the thermal, mechanical, and morphological behavior of these bio-inspired polyurethanes with a siloxane-based, peptide soft segment was investigated. These peptide-polyurethane/urea hybrids were microphase segregated, and the beta-sheet secondary structure of the soft segment was preserved during polymerization and film casting. Toughness enhancement at low strains was achieved, but the overall extensibility of the peptide-incorporated systems was reduced due to the unique hard domain organization. To decouple the secondary structure influence in the siloxane-peptide soft segment from mechanics dominated by the hard domain, we also developed non-chain extended peptide-polyurea hybrids in which the secondary structure (beta sheet vs. alpha helix) was tuned via choice of peptide and peptide length. It was shown that this structural approach allowed tailoring of extensibility, toughness, and modulus. The sheet-dominant hybrid materials were typically tougher and more elastic due to intermolecular H-bonding facilitating load distribution, while the helical-prevalent systems generally exhibited higher stiffness. Recently, we have explored the impact of a molecular design strategy that overlays a covalent and physically crosslinked architecture in these peptide-polyurea hybrids, demonstrating that physical constraints in the network hybrids influences peptide hydrogen bonding and morphology. These structural features correlated well with systematic changes in modulus, extensibility, and hysteresis. Complementary to this effort is the design of PEG-based peptide-polyurea hybrids with tunable and responsive as structural and injectable hydrogels. The authors acknowledge funding support from the National Science Foundation (CAREER DMR-0953236).
Synthesis and characterization of ion containing polymers
NASA Astrophysics Data System (ADS)
Dou, Shichen
Two types of ion-containing polymers are included in this dissertation. The first was focused on the rheology, solvation, and correlation length of polyelectrolyte solutions in terms of charge density, solvent dielectric constant, and solvent quality. The second was focused on the PEO-based polyester ionomers as single ion conductors. A series of polyelectrolytes with varied charge density (0.03 < alpha < 0.6) and counterions (Cl- and I-) were investigated in good solvent (EG, NMF, and GC) and poor solvent (DW and F). The concentration dependence of the specific viscosity and relaxation time of polyelectrolytes in solution agrees with Dobrynin's theoretical predictions at c < c**. Effective charge density greatly impacts the viscosity of polyelectrolyte semidilute solutions, while residual salt significantly reduces the viscosity of polyelectrolyte solutions at concentrations c < 2cs/f. For polyelectrolyte solutions with less condensed counterions, the correlation length obtained from SAXS and rheology perfectly matches and agrees with de Gennes prediction. Dobrynin scaling model successfully predicts the rheology of polyelectrolyte solutions in all cases: without salt, with low residual salt, and with high residual salt concentration. PEO-based polyester ionomers were synthesized by melt polycondensation. Mn was determined using the 1H NMR of ionomers. No ion-cluster was observed from the DSC, SAXS, and rheology measurements. Ionic conductivity greatly depends on the Tg, T-T g and ion content of the ionomers. PEG600-PTMO650 (z)-Li copolyester ionomers show microphase separation and much lower ionic conductivity, compared to that of PE600-Li. PTMO650-Li shows nonconductor behavior.
Theory of domain patterns in systems with long-range interactions of Coulomb type.
Muratov, C B
2002-12-01
We develop a theory of the domain patterns in systems with competing short-range attractive interactions and long-range repulsive Coulomb interactions. We take an energetic approach, in which patterns are considered as critical points of a mean-field free energy functional. Close to the microphase separation transition, this functional takes on a universal form, allowing us to treat a number of diverse physical situations within a unified framework. We use asymptotic analysis to study domain patterns with sharp interfaces. We derive an interfacial representation of the pattern's free energy which remains valid in the fluctuating system, with a suitable renormalization of the Coulomb interaction's coupling constant. We also derive integro-differential equations describing stationary domain patterns of arbitrary shapes and their thermodynamic stability, coming from the first and second variations of the interfacial free energy. We show that the length scale of a stable domain pattern must obey a certain scaling law with the strength of the Coulomb interaction. We analyzed the existence and stability of localized (spots, stripes, annuli) and periodic (lamellar, hexagonal) patterns in two dimensions. We show that these patterns are metastable in certain ranges of the parameters and that they can undergo morphological instabilities leading to the formation of more complex patterns. We discuss nucleation of the domain patterns by thermal fluctuations and pattern formation scenarios for various thermal quenches. We argue that self-induced disorder is an intrinsic property of the domain patterns in the systems under consideration.
Bulpett, Jennifer M; Snow, Tim; Quignon, Benoit; Beddoes, Charlotte M; Tang, T-Y D; Mann, Stephen; Shebanova, Olga; Pizzey, Claire L; Terrill, Nicholas J; Davis, Sean A; Briscoe, Wuge H
2015-12-07
This study focuses on how the mesophase transition behaviour of the phospholipid dioleoyl phosphatidylethanolamine (DOPE) is altered by the presence of 10 nm hydrophobic and 14 nm hydrophilic silica nanoparticles (NPs) at different concentrations. The lamellar to inverted hexagonal phase transition (Lα-HII) of phospholipids is energetically analogous to the membrane fusion process, therefore understanding the Lα-HII transition with nanoparticulate additives is relevant to how membrane fusion may be affected by these additives, in this case the silica NPs. The overriding observation is that the HII/Lα boundaries in the DOPE p-T phase diagram were shifted by the presence of NPs: the hydrophobic NPs enlarged the HII phase region and thus encouraged the inverted hexagonal (HII) phase to occur at lower temperatures, whilst hydrophilic NPs appeared to stabilise the Lα phase region. This effect was also NP-concentration dependent, with a more pronounced effect for higher concentration of the hydrophobic NPs, but the trend was less clear cut for the hydrophilic NPs. There was no evidence that the NPs were intercalated into the mesophases, and as such it was likely that they might have undergone microphase separation and resided at the mesophase domain boundaries. Whilst the loci and exact roles of the NPs invite further investigation, we tentatively discuss these results in terms of both the surface chemistry of the NPs and the effect of their curvature on the elastic bending energy considerations during the mesophase transition.
Photoinitiated Bottom-Up Click Synthesis of Ion-Containing Networks as Hydroxide Exchange Membranes
NASA Astrophysics Data System (ADS)
Tibbits, Andrew Charles
Fuel cells are energy conversion devices which directly convert chemical energy into electrical energy and environmentally friendly byproducts (i.e., water) with potential versatility for transportation and portable applications. Hydroxide exchange membrane fuel cells (HEMFCs) have the potential to decrease the overall fuel cell cost through the utilization of non-precious metal catalysts such as nickel and silver as opposed to platinum which is used by the current standard technology, proton exchange membrane fuel cells (PEMFCs). However, substantial improvements in thermal and alkaline stability, hydroxide conductivity, mechanical flexibility, and processing are needed to create a competitive membrane for HEMFC applications. Regardless of the type of membrane, the high water uptake that is typically associated with increased ionic conductivity is problematic and can result in the dissolution of the membrane during fuel cell operation. Covalent crosslinking of the membrane is an approach which has been effectively applied to reduce water uptake without a significant compromise of the hydroxide conductivity. The synthesis and processing of membrane materials is vastly simplified by using click polymerization schemes. Click chemistry is a collection of organic chemical reactions that are rapid, selective, and high yielding. One of the most versatile and facile click reactions is the thiol-ene reaction, which is the radical-mediated addition reaction between a thiol (an -SH group) and an 'ene' (an electron rich vinyl group, C=C) in the presence of a photoinitiator and light. The click attributes of the thiol-ene reaction enables potential of "bottom-up" design of ion-containing polymers via a single step photoinitiated crosslinking reaction with precise control over structure and physicochemical properties not only for fuel cell membranes but also for a range of other applications including separations, sensors, flexible electronics, and coatings. However, a fundamental understanding of the formation and properties of ion-containing thiol-ene materials and their implementation as hydroxide exchange membranes is largely absent from the current literature. The work described herein will highlight the versatility of click reactions, primarily the thiol-ene reaction, for fabrication of ion-containing networks with tunable properties based on the rational design and synthesis of photopolymerizable ionic liquid comonomers with an emphasis on applicability for HEMFC applications. The role of ionic liquid monomer structure on the kinetics and mechanism of thiol-ene ionic network formation and the subsequent properties (i.e., ion conductive, thermomechanical, and structural) will be elucidated to establish a guided framework for click ionic material development. This framework will be directed onto the development of alkaline stable hydroxide-conductive membranes for fuel cell applications as well as the incorporation of catalytic nanoparticles into a photocrosslinkable formulation as a self-standing catalyst layer. Finally, novel approaches to membrane fabrication will be implemented to build on the foundational studies that will simultaneously enhance the ionic conductivity and mechanical properties of the ion-containing polymer materials: these approaches include the synthesis and crosslinking of photopolymerizable cationic surfactants for microphase separated membranes as well as the first "bottom-up" ion-containing polymer synthesized from the photoinitiated copper-catalyzed azide-alkyne cycloaddition (photo-CuAAC) reaction which exhibits enhanced processability and hydroxide conductivity (>50 mS/cm).
Komarov, Pavel V; Khalatur, Pavel G; Khokhlov, Alexei R
2013-01-01
Atomistic and first-principles molecular dynamics simulations are employed to investigate the structure formation in a hydrated Nafion membrane and the solvation and transport of protons in the water channel of the membrane. For the water/Nafion systems containing more than 4 million atoms, it is found that the observed microphase-segregated morphology can be classified as bicontinuous: both majority (hydrophobic) and minority (hydrophilic) subphases are 3D continuous and organized in an irregular ordered pattern, which is largely similar to that known for a bicontinuous double-diamond structure. The characteristic size of the connected hydrophilic channels is about 25-50 Å, depending on the water content. A thermodynamic decomposition of the potential of mean force and the calculated spectral densities of the hindered translational motions of cations reveal that ion association observed with decreasing temperature is largely an entropic effect related to the loss of low-frequency modes. Based on the results from the atomistic simulation of the morphology of Nafion, we developed a realistic model of ion-conducting hydrophilic channel within the Nafion membrane and studied it with quantum molecular dynamics. The extensive 120 ps-long density functional theory (DFT)-based simulations of charge migration in the 1200-atom model of the nanochannel consisting of Nafion chains and water molecules allowed us to observe the bimodality of the van Hove autocorrelation function, which provides the direct evidence of the Grotthuss bond-exchange (hopping) mechanism as a significant contributor to the proton conductivity.
Cumurcu, Aysegul; Diaz, Jordi; Lindsay, Ian D; de Beer, Sissi; Duvigneau, Joost; Schön, Peter; Julius Vancso, G
2015-03-01
Tip-enhanced nanoscale optical imaging techniques such as apertureless scanning near-field optical microscopy (a-SNOM) and scanning near-field ellipsometric microscopy (SNEM) applications can suffer from a steady degradation in performance due to adhesion of atmospheric contaminants to the metal coated tip. Here, we demonstrate that a self-assembled monolayer (SAM) of ethanethiol (EtSH) is an effective means of protecting gold-coated atomic force microscopy (AFM) probe tips from accumulation of surface contaminants during prolonged exposure to ambient air. The period over which they yield consistent and reproducible results for scanning near-field ellipsometric microscopy (SNEM) imaging is thus extended. SNEM optical images of a microphase separated polystyrene-block-poly (methylmethacrylate) (PS-b-PMMA) diblock copolymer film, which were captured with bare and SAM-protected gold-coated AFM probes, both immediately after coating and following five days of storage in ambient air, were compared. During this period the intensity of the optical signals from the untreated gold tip fell by 66%, while those from the SAM protected tip fell by 14%. Additionally, gold coated AFM probe tips were modified with various lengths of alkanethiols to measure the change in intensity variation in the optical images with SAM layer thickness. The experimental results were compared to point dipole model calculations. While a SAM of 1-dodecanethiol (DoSH) was found to strongly suppress field enhancement we find that it can be locally removed from the tip apex by deforming the molecules under load, restoring SNEM image contrast. Copyright © 2014 Elsevier B.V. All rights reserved.
Thermal crystallization mechanism of silk fibroin protein
NASA Astrophysics Data System (ADS)
Hu, Xiao
In this thesis, the thermal crystallization mechanism of silk fibroin protein from Bombyx mori silkworm, was treated as a model for the general study of protein based materials, combining theories from both biophysics and polymer physics fields. A systematic and scientific path way to model the dynamic beta-sheet crystallization process of silk fibroin protein was presented in the following sequence: (1) The crystallinity, fractions of secondary structures, and phase compositions in silk fibroin proteins at any transition stage were determined. Two experimental methods, Fourier transform infrared spectroscopy (FTIR) with Fourier self-deconvolution, and specific reversing heat capacity, were used together for the first time for modeling the static structures and phases in the silk fibroin proteins. The protein secondary structure fractions during the crystallization were quantitatively determined. The possibility of existence of a "rigid amorphous phase" in silk protein was also discussed. (2) The function of bound water during the crystallization process of silk fibroin was studied using heat capacity, and used to build a silk-water dynamic crystallization model. The fundamental concepts and thermal properties of silk fibroin with/without bound water were discussed. Results show that intermolecular bound water molecules, acting as a plasticizer, will cause silk to display a water-induced glass transition around 80°C. During heating, water is lost, and the change of the microenvironment in the silk fibroin chains induces a mesophase prior to thermal crystallization. Real time FTIR during heating and isothermal holding above Tg show the tyrosine side chain changes only during the former process, while beta sheet crystallization occurs only during the latter process. Analogy is made between the crystallization of synthetic polymers according to the four-state scheme of Strobl, and the crystallization process of silk fibroin, which includes an intermediate precursor stage before crystallization. (3) The beta-sheet crystallization kinetics in silk fibroin protein were measured using X-ray, FTIR and heat flow, and the structure reveals the formation mechanism of the silk crystal network. Avrami kinetics theories, which were established for studies of synthetic polymer crystal growth, were for the first time extended to investigate protein self-assembly in multiblock silk fibroin samples. The Avrami exponent, n, was close to two for all methods, indicating formation of beta sheet crystals in silk proteins is different from the 3-D spherulitic crystal growth found in most synthetic homopolymers. A microphase separation pattern after chymotrypsin enzyme biodegradation was shown in the protein structures using scanning electron microscopy. A model was then used to explain the crystallization of silk fibroin protein by analogy to block copolymers. (4) The effects of metal ions during the crystallization of silk fibroin was investigated using thermal analysis. Advanced thermal analysis methods were used to analyze the thermal protein-metallic ion interactions in silk fibroin proteins. Results show that K+ and Ca2+ metallic salts play different roles in silk fibroin proteins, which either reduce (K+) or increase (Ca2+ ) the glass transition (Tg) of pure silk protein and affect the thermal stability of this structure.
Morphologies of precise polyethylene-based acid copolymers and ionomers
NASA Astrophysics Data System (ADS)
Buitrago, C. Francisco
Acid copolymers and ionomers are polymers that contain a small fraction of covalently bound acidic or ionic groups, respectively. For the specific case of polyethylene (PE), acid and ionic pendants enhance many of the physical properties such as toughness, adhesion and rheological properties. These improved properties result from microphase separated aggregates of the polar pendants in the non-polar PE matrix. Despite the widespread industrial use of these materials, rigorous chemical structure---morphology---property relationships remain elusive due to the inevitable structural heterogeneities in the historically-available acid copolymers and ionomers. Recently, precise acid copolymers and ionomers were successfully synthesized by acyclic diene metathesis (ADMET) polymerization. These precise materials are linear, high molecular weight PEs with pendant acid or ionic functional groups separated by a precisely controlled number of carbon atoms. The morphologies of nine precise acid copolymers and eleven precise ionomers were investigated by X-ray scattering, solid-state 13C nuclear magnetic resonance (NMR) and differential scanning calorimetry (DSC). For comparison, the morphologies of linear PEs with pseudo-random placement of the pendant groups were also studied. Previous studies of precise copolymers with acrylic acid (AA) found that the microstructural precision produces a new morphology in which PE crystals drive the acid aggregates into layers perpendicular to the chain axes and presumably at the interface between crystalline and amorphous phases. In this dissertation, a second new morphology for acid copolymers is identified in which the aggregates arrange on cubic lattices. The fist report of a cubic morphology was observed at room and elevated temperatures for a copolymer functionalized with two phosphonic acid (PA) groups on every 21st carbon atom. The cubic lattice has been identified as face-centered cubic (FCC). Overall, three morphology types have been identified for precise acid copolymers and ionomers at room temperature: (1) liquid-like order of aggregates dispersed throughout an amorphous PE matrix, (2) one-dimensional long-range order of aggregates in layers coexisting with PE crystals, and (3) three-dimensional periodicity of aggregates in cubic lattices in a PE matrix featuring defective packing. The liquid-like morphology is a result of high content of acid or ionic substituents deterring PE crystallinity due to steric hindrance. The layered morphology occurs when the content of pendants is low and the PE segments are long enough to crystallize. The cubic morphologies occur in precise copolymers with geminal substitution of phosphonic acid (PA) groups and long, flexible PE segments. At temperatures above the thermal transitions of the PE matrix, all but one material present a liquid-like morphology. Those conditions are ideal to study the evolution of the interaggregate spacing (d*) in X-ray scattering as a function of PE segment length between pendants, pendant type and pendant architecture (specifically, mono or geminal substitution). Also at elevated temperatures, the morphologies of precise acrylic acid (AA) copolymers and ionomers were investigated further via atomistic molecular dynamics (MD) simulations. The simulations complement X-ray scattering by providing real space visualization of the aggregates, demonstrating the occurrence of isolated, string-like and even percolated aggregate structures. This is the first dissertation completely devoted to the morphology of precise acid copolymers and precise ionomers. The complete analysis of the morphologies in these novel materials provides new insights into the shapes of aggregates in acid copolymers and ionomers in general. A key aspect of this thesis is the complementary use of experimental and simulation methods to unlock a wealth of new understanding.
Komarov, Pavel V; Khokhlov, Alexei R
2013-01-01
Summary Atomistic and first-principles molecular dynamics simulations are employed to investigate the structure formation in a hydrated Nafion membrane and the solvation and transport of protons in the water channel of the membrane. For the water/Nafion systems containing more than 4 million atoms, it is found that the observed microphase-segregated morphology can be classified as bicontinuous: both majority (hydrophobic) and minority (hydrophilic) subphases are 3D continuous and organized in an irregular ordered pattern, which is largely similar to that known for a bicontinuous double-diamond structure. The characteristic size of the connected hydrophilic channels is about 25–50 Å, depending on the water content. A thermodynamic decomposition of the potential of mean force and the calculated spectral densities of the hindered translational motions of cations reveal that ion association observed with decreasing temperature is largely an entropic effect related to the loss of low-frequency modes. Based on the results from the atomistic simulation of the morphology of Nafion, we developed a realistic model of ion-conducting hydrophilic channel within the Nafion membrane and studied it with quantum molecular dynamics. The extensive 120 ps-long density functional theory (DFT)-based simulations of charge migration in the 1200-atom model of the nanochannel consisting of Nafion chains and water molecules allowed us to observe the bimodality of the van Hove autocorrelation function, which provides the direct evidence of the Grotthuss bond-exchange (hopping) mechanism as a significant contributor to the proton conductivity. PMID:24205452
Synthesis and characterizations of novel polymer electrolytes
NASA Astrophysics Data System (ADS)
Chanthad, Chalathorn
Polymer electrolytes are an important component of many electrochemical devices. The ability to control the structures, properties, and functions of polymer electrolytes remains a key subject for the development of next generation functional polymers. Taking advantage of synthetic strategies is a promising approach to achieve the desired chemical structures, morphologies, thermal, mechanical, and electrochemical properties. Therefore, the major goal of this thesis is to develop synthetic methods for of novel proton exchange membranes and ion conductive membranes. In Chapter 2, new classes of fluorinated polymer- polysilsesquioxane nanocomposites have been designed and synthesized. The synthetic method employed includes radical polymerization using the functional benzoyl peroxide initiator for the telechelic fluorinated polymers with perfluorosulfonic acids in the side chains and a subsequent in-situ sol-gel condensation of the prepared triethoxylsilane-terminated fluorinated polymers with alkoxide precursors. The properties of the composite membranes have been studied as a function of the content and structure of the fillers. The proton conductivity of the prepared membranes increases steadily with the addition of small amounts of the polysilsesquioxane fillers. In particular, the sulfopropylated polysilsesquioxane based nanocomposites display proton conductivities greater than Nafion. This is attributed to the presence of pendant sulfonic acids in the fillers, which increases ion-exchange capacity and offers continuous proton transport channels between the fillers and the polymer matrix. The methanol permeability of the prepared membranes has also been examined. Lower methanol permeability and higher electrochemical selectivity than those of Nafion have been demonstrated in the polysilsesquioxane based nanocomposites. In Chapter 3, the synthesis of a new class of ionic liquid-containing triblock copolymers with fluoropolymer mid-block and imidazolium methacrylate end-blocks is described for the first time. The synthetic strategy involves the preparation of the telechelic fluoropolymers using a functional benzoyl peroxide initiator as the macro-chain transfer agent for subsequent RAFT polymerization of the imidazolium methacrylate monomer. As revealed in DSC, SAXS and dielectric relaxation spectroscopy (DRS) measurements, there was no microphase separation in the triblock copolymers, likely due to solubility of ionic liquid moieties in the fluoropolymer matrix. The anionic counterion has direct impact on the thermal properties, ionic conductivity and segmental dynamics of the polymers. The temperature dependence of the ionic conductivity is well described by the Vogel-Tamman-Fulcher model, suggesting that ion motion is closely coupled to segmental motion. In Chapter 4 and 5, new solid electrolytes for lithium cations have been synthesized by catalyzed hydrosilylation reaction involving hydrogen atoms of polysiloxane and polyhedral oligomeric silsesquioxane (POSS) and double bonds of vinyl tris17-bromo-3,6,9,12,15- pentaoxaheptadecan-1-ol silane. The obtained structures are based on branched or dendritic with ionic liquid-ethylene oxide oligomer. High room temperature ionic conductivities have been obtained in the range of 10-4-10-5 can be regarded as solid electrolytes. This is attributed to the high concentration of ions from ionic liquid moieties in the tripodand molecule, high segmental mobility, and high ion dissociation from ethylene oxide spacers. The influence of anion structures and lithium salts and concentration has been investigated.
Kim, Kris S; Gunari, Nikhil; MacNeil, Drew; Finlay, John; Callow, Maureen; Callow, James; Walker, Gilbert C
2016-08-10
The ability to fabricate nanostructured films by exploiting the phenomenon of microphase separation has made block copolymers an invaluable tool for a wide array of coating applications. Standard approaches to engineering nanodomains commonly involve the application of organic solvents, either through dissolution or annealing protocols, resulting in the release of volatile organic compounds (VOCs). In this paper, an aqueous-based method of fabricating low-VOC nanostructured block copolymer films is presented. The reported procedure allows for the phase transfer of water insoluble triblock copolymer, poly(styrene-block-2 vinylpyridine-block-ethylene oxide) (PS-b-P2VP-b-PEO), from a water immiscible phase to an aqueous environment with the assistance of a diblock copolymeric phase transfer agent, poly(styrene-block-ethylene oxide) (PS-b-PEO). Phase transfer into the aqueous phase results in self-assembly of PS-b-P2VP-b-PEO into core-shell-corona micelles, which are characterized by dynamic light scattering techniques. The films that result from coating the micellar solution onto Si/SiO2 surfaces exhibit nanoscale features that disrupt the ability of a model foulant, a zoospore of Ulva linza, to settle. The multilayered architecture consists of a pH-responsive P2VP-"shell" which can be stimulated to control the size of these features. The ability of these nanostructured thin films to resist protein adsorption and serve as potential marine antifouling coatings is supported through atomic force microscopy (AFM) and analysis of the settlement of Ulva linza zoospore. Field trials of the surfaces in a natural environment show the inhibition of macrofoulants for 1 month.
NASA Astrophysics Data System (ADS)
Sandhu, Paramvir; Zong, Jing; Yang, Delian; Wang, Qiang
2013-05-01
To highlight the importance of quantitative and parameter-fitting-free comparisons among different models/methods, we revisited the comparisons made by Groot and Madden [J. Chem. Phys. 108, 8713 (1998), 10.1063/1.476300] and Chen et al. [J. Chem. Phys. 122, 104907 (2005), 10.1063/1.1860351] between their dissipative particle dynamics (DPD) simulations of the DPD model and the self-consistent field (SCF) calculations of the "standard" model done by Matsen and Bates [Macromolecules 29, 1091 (1996), 10.1021/ma951138i] for diblock copolymer (DBC) A-B melts. The small values of the invariant degree of polymerization used in the DPD simulations do not justify the use of the fluctuation theory of Fredrickson and Helfand [J. Chem. Phys. 87, 697 (1987), 10.1063/1.453566] by Groot and Madden, and their fitting between the DPD interaction parameters and the Flory-Huggins χ parameter in the "standard" model also has no rigorous basis. Even with their use of the fluctuation theory and the parameter-fitting, we do not find the "quantitative match" for the order-disorder transition of symmetric DBC claimed by Groot and Madden. For lamellar and cylindrical structures, we find that the system fluctuations/correlations decrease the bulk period and greatly suppress the large depletion of the total segmental density at the A-B interfaces as well as its oscillations in A- and B-domains predicted by our SCF calculations of the DPD model. At all values of the A-block volume fractions in the copolymer f (which are integer multiples of 0.1), our SCF calculations give the same sequence of phase transitions with varying χN as the "standard" model, where N denotes the number of segments on each DBC chain. All phase boundaries, however, are shifted to higher χN due to the finite interaction range in the DPD model, except at f = 0.1 (and 0.9), where χN at the transition between the disordered phase and the spheres arranged on a body-centered cubic lattice is lower due to N = 10 in the DPD model. Finally, in 11 of the total 20 cases (f-χN combinations) studied in the DPD simulations, a morphology different from the SCF prediction was obtained due to the differences between these two methods.
Scintillating Cocktail Mixtures and the Role of Water on the Optophysical Properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cordaro, Joseph Gabriel; Feng, Patrick L.; Mengesha, Wondwosen
2015-10-01
Two types of water - containing liquid scinti llation mixtures were prepared in the present work. In the first, m ixtures of 2 - phenylethanol, water, diphenyl phosphate, sodium phenyl phosphate dibasic dihydrate, and the dye 2,5 - diphenyloxazole (PPO) have been investigated as liquid scintillators. In th e second system, nonionic and mixed surfactant systems were investigated in conjunction with water and small amounts of toluene. In both cases, increasing amounts of water led to reductions in the scintillation light yield. Understanding what factors contr ibute to this phenomenon is the focus of this report. Changes in the solutionmore » microphase structure, diminishing aromatic content of the cocktail mixtures, and inefficient energy transfer to the dye a ppear to be responsible for the decreased light yield as more water is added . In the 2 - phenylethanol system, the observed experimental results are consistent with the formation of a bicontinuous microemulsion at higher water concentrations, which incorporates PPO and shields it from the quenching effects of the increasing polar matrix. Evidence for this proposed phase chan ge c ome s from light scattering data, photo - and x - ray luminescence measurements, and optical transparency measurements . In the surfactant - based system, the quenching effect of water was found to be less than both commercially - available dioxane - naphthalene mixtures used for scintillation counting as well as the 2 - phenylethanol mixtures described above. The effect of different surfactant mixtures and concentrations were studied, revealing a benefic ial effect upon the scintillation light yield for mixed surfactant mixtures. These results are interpreted in the context of r eactive radical species formation following water ionization , which leads to light - yield quenching in aqueous systems . The presenc e of surfactant(s) in these mixtures enables the formation of organic - rich regions that are spatially separated from the reactive radicals. This hypothesis is consistent with subsequent experiments that showed reduced light - yield quenching in the presence of radical - trapping additives. A notable result from these surfactant studies was the preparation of an aqueous scintillator that was transparent and showed neutron/gamma pulse - shape discrimination. Section II below provides background information on the s ignificance of this finding. The combined work described herein has implications on other efforts to make water - based solution scintillators -- without aromatic content an efficient mechanism for ionizing radiation to sensitize emission from a dye is limited.« less
Long Range In-Plane Order of Oriented Diblock Copolymer Thin Films by Graphoepitaxy
NASA Astrophysics Data System (ADS)
Fontana, Scott; Dadmun, Mark; Lowndes, Douglas
2003-03-01
Previous work by Russell and coworkers has demonstrated that controlling the interfacial energies and wetting behavior of an asymmetric diblock copolymer enables the control of the orientation of its microphases. In particular the cylindrical phase can be readily aligned perpendicular to a substrate when it is placed on a surface that is neutral to both components of the copolymer. The minor phase, PMMA may then be removed using UV radiation leaving a nanoporous template. In this work, we will report long range, in-plane ordering of the hexagonally packed nanopores that is achieved using graphoepitaxy. The long range ordered and vertically aligned diblock copolymer film can be used to produce arrays of catalytic nickel dots, which grow vertically aligned carbon nano-fibers (VACNF), resulting in a well ordered array of VACNFs.
NASA Astrophysics Data System (ADS)
Wu, Yu; Yi, Shi-He; He, Lin; Chen, Zhi; Zhu, Yang-Zhu
2014-11-01
Experimental studies which focus on flow visualization and the velocity field of a supersonic laminar/turbulent flow over a compression ramp were carried out in a Mach 3.0 wind tunnel. Fine flow structures and velocity field structures were obtained via NPLS (nanoparticle-tracer planar laser scattering) and PIV (particle image velocimetry) techniques, time-averaged flow structures were researched, and spatiotemporal evolutions of transient flow structures were analyzed. The flow visualization results indicated that when the ramp angles were 25°, a typical separation occurred in the laminar flow, some typical flow structures such as shock induced by the boundary layer, separation shock, reversed flow and reattachment shock were visible clearly. While a certain extent separation occurred in turbulent flow, the separation region was much smaller. When the ramp angles were 28°, laminar flow separated further, and the separation region expanded evidently, flow structures in the separation region were complex. While a typical separation occurred in turbulent flow, reversed flow structures were significant, flow structures in the separation region were relatively simple. The experimental results of velocity field were corresponding to flow visualization, and the velocity field structures of both compression ramp flows agreed with the flow structures well. There were three layered structures in the U component velocity, and the V component velocity appeared like an oblique “v”. Some differences between these two compression ramp flows can be observed in the velocity profiles of the shear layer and the shearing intensity.
NASA Astrophysics Data System (ADS)
Nykaza, Jacob Richard
In this study, polymerized ionic liquid (PIL) diblock copolymers were explored as solid-state polymer separators as an anion exchange membrane (AEM) for alkaline fuel cells AFCs and as a solid polymer electrolyte (SPE) for lithium-ion batteries. Polymerized ionic liquid (PIL) block copolymers are a distinct set of block copolymers that combine the properties of both ionic liquids (e.g., high conductivity, high electrochemical stability) and block copolymers (e.g., self-assembly into various nanostructures), which provides the opportunity to design highly conductive robust solid-state electrolytes that can be tuned for various applications including AFCs and lithium-ion batteries via simple anion exchange. A series of bromide conducting PIL diblock copolymers with an undecyl alkyl side chain between the polymer backbone and the imidazolium moiety were first synthesized at various compositions comprising of a PIL component and a non-ionic component. Synthesis was achieved by post-functionalization from its non-ionic precursor PIL diblock copolymer, which was synthesized via the reverse addition fragmentation chain transfer (RAFT) technique. This PIL diblock copolymer with long alkyl side chains resulted in flexible, transparent films with high mechanical strength and high bromide ion conductivity. The conductivity of the PIL diblock copolymer was three times higher than its analogous PIL homopolymer and an order of magnitude higher than a similar PIL diblock copolymer with shorter alkyl side chain length, which was due to the microphase separated morphology, more specifically, water/ion clusters within the PIL microdomains in the hydrated state. Due to the high conductivity and mechanical robustness of this novel PIL block copolymer, its application as both the ionomer and AEM in an AFC was investigated via anion exchange to hydroxide (OH-), where a maximum power density of 29.3 mW cm-1 (60 °C with H2/O2 at 25 psig (172 kPa) backpressure) was achieved. Rotating disk electrode (RDE) experiments determined the interfacial resistance imposed during cell assembly between the AEM, catalyst, and ionomer was a factor in fuel cell performance. Further RDE studies investigated the electrochemical stability of the PIL block copolymer ionomer under applied potentials, where it was determined that potential cycling increased the degradation compared to constant voltage or open circuit voltage studies. The PIL diblock copolymer was then anion exchanged to the bis(trifluoromethane)sulfonamide (TFSI-) anion form and imbibed with a lithium salt and ionic liquid solution for use as a SPE in lithium-ion batteries resulting in a maximum discharge capacity of 112 mAh g-1 at 0.1 C with a Coulombic efficiency greater than 94% over 100 cycles. PIL block copolymers have promising mechanical properties and transport properties (i.e., ion conductivity) in both the hydrated (hydrophilic anions; Br-, OH-) and dry (hydrophobic anions; TFSI-) states resulting in highly conductive, chemically/thermally stable, and mechanically robust solid-state polymer separators for use as AEMs in AFCs and as SPEs in lithium-ion batteries.
Engineering topochemical polymerizations using block copolymer templates.
Zhu, Liangliang; Tran, Helen; Beyer, Frederick L; Walck, Scott D; Li, Xin; Agren, Hans; Killops, Kato L; Campos, Luis M
2014-09-24
With the aim to achieve rapid and efficient topochemical polymerizations in the solid state, via solution-based processing of thin films, we report the integration of a diphenyldiacetylene monomer and a poly(styrene-b-acrylic acid) block copolymer template for the generation of supramolecular architectural photopolymerizable materials. This strategy takes advantage of non-covalent interactions to template a topochemical photopolymerization that yields a polydiphenyldiacetylene (PDPDA) derivative. In thin films, it was found that hierarchical self-assembly of the diacetylene monomers by microphase segregation of the block copolymer template enhances the topochemical photopolymerization, which is complete within a 20 s exposure to UV light. Moreover, UV-active cross-linkable groups were incorporated within the block copolymer template to create micropatterns of PDPDA by photolithography, in the same step as the polymerization reaction. The materials design and processing may find potential uses in the microfabrication of sensors and other important areas that benefit from solution-based processing of flexible conjugated materials.
Fuel cell system with separating structure bonded to electrolyte
Bourgeois, Richard Scott; Gudlavalleti, Sauri; Quek, Shu Ching; Hasz, Wayne Charles; Powers, James Daniel
2010-09-28
A fuel cell assembly comprises a separating structure configured for separating a first reactant and a second reactant wherein the separating structure has an opening therein. The fuel cell assembly further comprises a fuel cell comprising a first electrode, a second electrode, and an electrolyte interposed between the first and second electrodes, and a passage configured to introduce the second reactant to the second electrode. The electrolyte is bonded to the separating structure with the first electrode being situated within the opening, and the second electrode being situated within the passage.
Study on Separation of Structural Isomer with Magneto-Archimedes method
NASA Astrophysics Data System (ADS)
Kobayashi, T.; Mori, T.; Akiyama, Y.; Mishima, F.; Nishijima, S.
2017-09-01
Organic compounds are refined by separating their structural isomers, however each separation method has some problems. For example, distillation consumes large energy. In order to solve these problems, new separation method is needed. Considering organic compounds are diamagnetic, we focused on magneto-Archimedes method. With this method, particle mixture dispersed in a paramagnetic medium can be separated in a magnetic field due to the difference of the density and magnetic susceptibility of the particles. In this study, we succeeded in separating isomers of phthalic acid as an example of structural isomer using MnCl2 solution as the paramagnetic medium. In order to use magneto-Archimedes method for separating materials for food or medicine, we proposed harmless medium using oxygen and fluorocarbon instead of MnCl2 aqueous solution. As a result, the possibility of separating every structural isomer was shown.
Flow-Directed Crystallization for Printed Electronics.
Qu, Ge; Kwok, Justin J; Diao, Ying
2016-12-20
The solution printability of organic semiconductors (OSCs) represents a distinct advantage for materials processing, enabling low-cost, high-throughput, and energy-efficient manufacturing with new form factors that are flexible, stretchable, and transparent. While the electronic performance of OSCs is not comparable to that of crystalline silicon, the solution processability of OSCs allows them to complement silicon by tackling challenging aspects for conventional photolithography, such as large-area electronics manufacturing. Despite this, controlling the highly nonequilibrium morphology evolution during OSC printing remains a challenge, hindering the achievement of high electronic device performance and the elucidation of structure-property relationships. Many elegant morphological control methodologies have been developed in recent years including molecular design and novel processing approaches, but few have utilized fluid flow to control morphology in OSC thin films. In this Account, we discuss flow-directed crystallization as an effective strategy for controlling the crystallization kinetics during printing of small molecule and polymer semiconductors. Introducing the concept of flow-directed crystallization to the field of printed electronics is inspired by recent advances in pharmaceutical manufacturing and flow processing of flexible-chain polymers. Although flow-induced crystallization is well studied in these areas, previous findings may not apply directly to the field of printed electronics where the molecular structures (i.e., rigid π-conjugated backbone decorated with flexible side chains) and the intermolecular interactions (i.e., π-π interactions, quadrupole interactions) of OSCs differ substantially from those of pharmaceuticals or flexible-chain polymers. Another critical difference is the important role of solvent evaporation in open systems, which defines the flow characteristics and determines the crystallization kinetics and pathways. In other words, flow-induced crystallization is intimately coupled with the mass transport processes driven by solvent evaporation during printing. In this Account, we will highlight these distinctions of flow-directed crystallization for printed electronics. In the context of solution printing of OSCs, the key issue that flow-directed crystallization addresses is the kinetics mismatch between crystallization and various transport processes during printing. We show that engineering fluid flows can tune the kinetics of OSC crystallization by expediting the nucleation and crystal growth processes, significantly enhancing thin film morphology and device performance. For small molecule semiconductors, nucleation can be enhanced and patterned by directing the evaporative flux via contact line engineering, and defective crystal growth can be alleviated by enhancing mass transport to yield significantly improved coherence length and reduced grain boundaries. For conjugated polymers, extensional and shear flow can expedite nucleation through flow-induced conformation change, facilitating the control of microphase separation, degree of crystallinity, domain alignment, and percolation. Although the nascent concept of flow-directed solution printing has not yet been widely adopted in the field of printed electronics, we anticipate that it can serve as a platform technology in the near future for improving device performance and for systematically tuning thin film morphology to construct structure-property relationships. From a fundamental perspective, it is imperative to develop a better understanding of the effects of fluid flow and mass transport on OSC crystallization as these processes are ubiquitous across all solution processing techniques and can critically impact charge transport properties.
2013-09-01
Structural Composite Supercapacitors : Electrical and Mechanical Impact of Separators and Processing Conditions by Edwin B. Gienger, James F...Proving Ground, MD 21005-5066 ARL-TR-6624 September 2013 Structural Composite Supercapacitors : Electrical and Mechanical Impact of...2012 4. TITLE AND SUBTITLE Structural Composite Supercapacitors : Electrical and Mechanical Impact of Separators and Processing Conditions 5a
Vega, Sebastián L; Arvind, Varun; Mishra, Prakhar; Kohn, Joachim; Sanjeeva Murthy, N; Moghe, Prabhas V
2018-06-12
Stem cells are adherent cells whose multipotency and differentiation can be regulated by numerous microenvironmental signals including soluble growth factors and surface topography. This study describes a simple method for creating distinct micropatterns via microphase separation resulting from polymer demixing of poly(desaminotyrosyl-tyrosine carbonate) (PDTEC) and polystyrene (PS). Substrates with co-continuous (ribbons) or discontinuous (islands and pits) PDTEC regions were obtained by varying the ratio of PDTEC and sacrificial PS. Human mesenchymal stem cells (MSCs) cultured on co-continuous PDTEC substrates for 3 days in bipotential adipogenic/osteogenic (AD/OS) induction medium showed no change in cell morphology but exhibited increased anisotropic cytoskeletal organization and larger focal adhesions when compared to MSCs cultured on discontinuous micropatterns. After 14 days in bipotential AD/OS induction medium, MSCs cultured on co-continuous micropatterns exhibited increased expression of osteogenic markers, whereas MSCs on discontinuous PDTEC substrates showed a low expression of adipogenic and osteogenic differentiation markers. Substrates with graded micropatterns were able to reproduce the influence of local underlying topography on MSC differentiation, thus demonstrating their potential for high throughput analysis. This work presents polymer demixing as a simple, non-lithographic technique to produce a wide range of micropatterns on surfaces with complex geometries to influence cellular and tissue regenerative responses. Gaining a better understanding of how engineered microenvironments influence stem cell differentiation is integral to increasing the use of stem cells and materials in a wide range of tissue engineering applications. In this study, we show the range of topography obtained by polymer demixing is sufficient for investigating how surface topography affects stem cell morphology and differentiation. Our findings show that co-continuous topographies favor early (3-day) cytoskeletal anisotropy and focal adhesion maturation as well as long-term (14-day) expression of osteogenic differentiation markers. Taken together, this study presents a simple approach to pattern topographies that induce divergent responses in stem cell morphology and differentiation. Copyright © 2018. Published by Elsevier Ltd.
1. U.S. Route 250 grade separation structure. This reinforced concrete, ...
1. U.S. Route 250 grade separation structure. This reinforced concrete, rigid frame structure was built in 1941. Its relatively flat arch provided maximum useful clearance in a short span and the physics of the design eliminated the need for extensive abutments to contain the thrust of traditional arches, making it ideally suited as a grade separation structure. BLRI designers made extensive use of theses bridges for crossing small streams and creeks, and grade separation structures, ornamenting them with a rustic stone facade. View is of the south-southeast elevation. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC
Alves, S P C; Pinheiro, J P; Farinha, J P S; Leermakers, F A M
2014-03-20
We have synthesized anionic multistimuli responsive core-shell polymer nanoparticles with low size dispersity composed of glassy poly(methyl methacrylate) (PMMA) cores of ca. 40 nm radius and poly(N-isopropylacrylamide) (PNIPAM) anionic brush-like shells with methacrylic acid comonomers. Using dynamic light scattering, we observed a volume phase transition upon an increase in temperature and this response was pH and ionic strength dependent. Already at room temperature we observed a pronounced polyelectrolyte effect, that is, a shift of the apparent pKa extracted from the degree of dissociation of the acids as a function of the pH. The multiresponsive behavior of the hydrophobic polyelectrolyte brush has been modeled using the Scheutjens-Fleer self-consistent field (SF-SCF) approach. Using a phenomenological relation between the Flory-Huggins χ parameter and the temperature, we confront the predicted change in the brush height with the observed change of the hydrodynamic radius and degree of dissociation and obtain estimates for the average chain lengths (number of Kuhn segments) of the corona chains, the grafting density and charge density distributions. The theory reveals a rich internal structure of the hydrophobic polyelectrolyte brush, especially near the collapse transition, where we find a microphase segregated structure. Considering this complexity, it is fair to state that the theoretical predictions follow the experimental data semiquantitatively, and it is attractive to attribute the observed disparity between theory and experiments to the unknown polydispersity of the chains, the unknown distribution of the charges, or other experimental complications. More likely, however, the deviations point to significant problems of the mean field theory, which focuses solely on the radial distributions and ignores the possibility of the formation of lateral (local) inhomogeneities in partially collapsed polyelectrolyte brushes. We argue that the PNIPAM brush at room temperature is already behaving nonideally.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mou, Q.; Benmore, C. J.; Yarger, J. L.
2015-06-01
XISF is a MATLAB program developed to separate intermolecular structure factors from total X-ray scattering structure factors for molecular liquids and amorphous solids. The program is built on a trust-region-reflective optimization routine with the r.m.s. deviations of atoms physically constrained. XISF has been optimized for performance and can separate intermolecular structure factors of complex molecules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mou, Q.; Benmore, C. J.; Yarger, J. L.
2015-05-09
XISFis a MATLAB program developed to separate intermolecular structure factors from total X-ray scattering structure factors for molecular liquids and amorphous solids. The program is built on a trust-region-reflective optimization routine with the r.m.s. deviations of atoms physically constrained.XISFhas been optimized for performance and can separate intermolecular structure factors of complex molecules.
Separator plate for a fuel cell
Petri, R.J.; Meek, J.; Bachta, R.P.; Marianowski, L.G.
1996-04-02
A separator plate is described for a fuel cell comprising an anode current collector, a cathode current collector and a main plate, the main plate disposed between the anode current collector and the cathode current collector. The anode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the anode side of the separator plate and the cathode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the cathode side of the separator plate. In this manner, the number of components required to manufacture and assemble a fuel cell stack is reduced. 9 figs.
Separator plate for a fuel cell
Petri, Randy J.; Meek, John; Bachta, Robert P.; Marianowski, Leonard G.
1996-01-01
A separator plate for a fuel cell comprising an anode current collector, a cathode current collector and a main plate, the main plate disposed between the anode current collector and the cathode current collector. The anode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the anode side of the separator plate and the cathode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the cathode side of the separator plate. In this manner, the number of components required to manufacture and assemble a fuel cell stack is reduced.
The flow separation delay in the boundary layer by induced vortices.
Chaudhry, Ishtiaq A; Sultan, Tipu; Siddiqui, Farrukh A; Farhan, M; Asim, M
2017-01-01
A series of experiments involving the particle image velocimetry technique are carried out to analyse the quantitative effectiveness of the synthesized vortical structures towards actual flow separation control. The streamwise vortices are synthesized from the synthetic jet actuator and introduced into the attached and separating boundary layer developed on the flat plate surface. Two types of actuators with different geometrical set-ups are used to analyse the evolution of vortical structures in the near wall region and their impact towards achieving separation delay in the boundary layer. First, a single circular jet is synthesized by varying actuator operating parameters and issued into the boundary layer to evaluate the dynamics of the interaction between the vortical structures and the near wall low momentum fluid in the separated region. Second, an array of jets has been issued into the artificially separated region to assess the effectiveness of various vortical structures towards achieving the reattachment of the separated flow in the streamwise direction.
2016-01-01
Nitric oxide (NO) releasing polymers are promising in improving the biocompatibility of medical devices. Polyurethanes are commonly used to prepare/fabricate many devices (e.g., catheters); however, the transport properties of NO within different polyurethanes are less studied, creating a gap in the rational design of new NO releasing devices involving polyurethane materials. Herein, we study the diffusion and partitioning of NO in different biomedical polyurethanes via the time-lag method. The diffusion of NO is positively correlated with the PDMS content within the polyurethanes, which can be rationalized by effective media theory considering various microphase morphologies. Using catheters as a model device, the effect of these transport properties on the NO release profiles and the distribution around an asymmetric dual lumen catheter are simulated using finite element analysis and validated experimentally. This method can be readily applied in studying other NO release medical devices with different configurations. PMID:27660819
Microstructure and growth model for rice-hull-derived SiC whiskers
NASA Technical Reports Server (NTRS)
Nutt, Steven R.
1988-01-01
The microstructure of silicon carbide whiskers grown from rice hulls has been studied using methods of high-resolution analytical electron microscopy. Small, partially crystalline inclusions (about 10 nm) containing calcium, manganese, and oxygen are concentrated in whisker core regions, while peripheral regions are generally inclusion free. The distinct microphase distribution is evidence of a two-stage growth process in which the core region grows first, followed by normal growth toward whisker sides. Partial dislocations extend radially from the core region to the surface and tend to be paired in V-shaped configurations. Whisker surfaces exhibit microroughness due to a tendency to develop small facets on close-packed planes. The microstructural data obtained from TEM observations are used as a basis for discussion of the mechanisms involved in whisker growth, and a model of the growth process is proposed. The model includes a two-dimensional growth mechanism involving vapor, liquid, and solid phases, although it is significantly different from the classical vapor-liquid-solid (VLS) process of whisker growth.
Lam, HiuFung; Gong, Xiangjun; Wu, Chi
2007-02-22
A poly(ethylene oxide)-b-poly(epsilon-caprolactone) (PEO-b-PCL) diblock copolymer was micronized into small micelle-like particles (approximately 80 nm) via dialysis-induced microphase inversion. The enzymatic biodegradation of the PCL portion of these particles in water was in situ investigated inside a recently developed novel differential refractometer. Using this refractometry method, we were able to monitor the real-time biodegradation via the refractive index change (Deltan) of the dispersion because Deltan is directly proportional to the particle mass concentration. We found that the degradation rate is proportional to either the polymer or enzyme concentration. Our results directly support previous speculation on the basis of the light-scattering data that the biodegradation follows the first-order kinetics for a given enzyme concentration. This study not only leads to a better understanding of the enzymatic biodegradation of PCL, but also demonstrates a novel, rapid, noninvasive, and convenient way to test the degradability of polymers.
NASA Astrophysics Data System (ADS)
Yang, Yang; Li, Xiukun
2016-06-01
Separation of the components of rigid acoustic scattering by underwater objects is essential in obtaining the structural characteristics of such objects. To overcome the problem of rigid structures appearing to have the same spectral structure in the time domain, time-frequency Blind Source Separation (BSS) can be used in combination with image morphology to separate the rigid scattering components of different objects. Based on a highlight model, the separation of the rigid scattering structure of objects with time-frequency distribution is deduced. Using a morphological filter, different characteristics in a Wigner-Ville Distribution (WVD) observed for single auto term and cross terms can be simplified to remove any cross-term interference. By selecting time and frequency points of the auto terms signal, the accuracy of BSS can be improved. An experimental simulation has been used, with changes in the pulse width of the transmitted signal, the relative amplitude and the time delay parameter, in order to analyzing the feasibility of this new method. Simulation results show that the new method is not only able to separate rigid scattering components, but can also separate the components when elastic scattering and rigid scattering exist at the same time. Experimental results confirm that the new method can be used in separating the rigid scattering structure of underwater objects.
Recent progress on the structure separation of single-wall carbon nanotubes
NASA Astrophysics Data System (ADS)
Cui, Jiaming; Yang, Dehua; Zeng, Xiang; Zhou, Naigen; Liu, Huaping
2017-11-01
The mass production of single-structure, single-wall carbon nanotubes (SWCNTs) with identical properties is critical for their basic research and technical applications in the fields of electronics, optics and optoelectronics. Great efforts have been made to control the structures of SWCNTs since their discovery. Recently, the structure separation of SWCNTs has been making great progress. Various solution-sorting methods have been developed to achieve not only the separation of metallic and semiconducting species, but also the sorting of distinct (n, m) single-chirality species and even their enantiomers. This progress would dramatically accelerate the application of SWCNTs in the next-generation electronic devices. Here, we review the recent progress in the structure sorting of SWCNTs and outline the challenges and prospects of the structure separation of SWCNTs.
Rubin, Leslie S.
1986-01-01
A separation system for dewatering radioactive waste materials includes a disposal container, drive structure for receiving the container, and means for releasably attaching the container to the drive structure. Separation structure disposed in the container adjacent the inner surface of the side wall structure retains solids while allowing passage of liquids. Inlet port structure in the container top wall is normally closed by first valve structure that is centrifugally actuated to open the inlet port and discharge port structure at the container periphery receives liquid that passes through the separation structure and is normally closed by second valve structure that is centrifugally actuated to open the discharge ports. The container also includes coupling structure for releasable engagement with the centrifugal drive structure. Centrifugal force produced when the container is driven in rotation by the drive structure opens the valve structures, and radioactive waste material introduced into the container through the open inlet port is dewatered, and the waste is compacted. The ports are automatically closed by the valves when the container drum is not subjected to centrifugal force such that containment effectiveness is enhanced and exposure of personnel to radioactive materials is minimized.
Effects of Stiffener/Rib Separation on Damage Growth and Residual Strength
DOT National Transportation Integrated Search
1996-05-01
Two existing composite aircraft structures were used to evaluate the effects of skin/stiffener separation on the residual strength of the structures. These structures are basically compression dominated upper wing structures designed to comply with t...
Experiments on an unsteady, three-dimensional separation
NASA Technical Reports Server (NTRS)
Henk, R. W.; Reynolds, W. C.; Reed, H. L.
1992-01-01
Unsteady, three-dimensional flow separation occurs in a variety of technical situations including turbomachinery and low-speed aircraft. An experimental program at Stanford in unsteady, three-dimensional, pressure-driven laminar separation has investigated the structure and time-scaling of these flows; of particular interest is the development, washout, and control of flow separation. Results reveal that a two-dimensional, laminar boundary layer passes through several stages on its way to a quasi-steady three-dimensional separation. The quasi-steady state of the separation embodies a complex, unsteady, vortical structure.
Reconstruction and separation of vibratory field using structural holography
NASA Astrophysics Data System (ADS)
Chesnais, C.; Totaro, N.; Thomas, J.-H.; Guyader, J.-L.
2017-02-01
A method for reconstructing and separating vibratory field on a plate-like structure is presented. The method, called "Structural Holography" is derived from classical Near-field Acoustic Holography (NAH) but in the vibratory domain. In this case, the plate displacement is measured on one-dimensional lines (the holograms) and used to reconstruct the entire two-dimensional displacement field. As a consequence, remote measurements on non directly accessible zones are possible with Structural Holography. Moreover, as it is based on the decomposition of the field into forth and back waves, Structural Holography permits to separate forces in the case of multi-sources excitation. The theoretical background of the Structural Holography method is described first. Then, to illustrate the process and the possibilities of Structural Holography, the academic test case of an infinite plate excited by few point forces is presented. With the principle of vibratory field separation, the displacement fields produced by each point force separately is reconstructed. However, the displacement field is not always meaningful and some additional treatments are mandatory to localize the position of point forces for example. From the simple example of an infinite plate, a post-processing based on the reconstruction of the structural intensity field is thus proposed. Finally, Structural Holography is generalized to finite plates and applied to real experimental measurements
Measurement and Structural Model Class Separation in Mixture CFA: ML/EM versus MCMC
ERIC Educational Resources Information Center
Depaoli, Sarah
2012-01-01
Parameter recovery was assessed within mixture confirmatory factor analysis across multiple estimator conditions under different simulated levels of mixture class separation. Mixture class separation was defined in the measurement model (through factor loadings) and the structural model (through factor variances). Maximum likelihood (ML) via the…
NASA Astrophysics Data System (ADS)
Shuai, Xintao; Wei, Min; Probeni, Francis; Bullions, Todd A.; Shin, I. Daniel; Tonelli, Alan E.
2002-03-01
A well-defined biodegradable block copolymer of poly(epsilon caprolactone) (PCL) and poly(L-lactic acid) (PLLA) was synthesized and characterized and then included as a guest in an inclusion compound (IC) formed with the host alpha-cyclodextrin (CD). The PCL-b-PLLA block copolymer was subsequently coalesced from it's CD-IC crystals by either treatment with hot water (50 C) or an aqueous amylase solution at 25 C. The coalesced PCL-b-PLLA was examined by FTIR, DSC, TGA, and WAXD and was found to be much more homogeneosly organized, with much less segregation and crystallinity of the PCL and PLLA microphases. The morpholgy, crystallization kinetics, thermal behavior, and biodegradability of the coalesced PCL-b-PLLA block copolymer was studied by comparison to similar observations made on as-synthesized PCL-b-PLLA, PCL and PLLA homopolymers, and their solution-cast blend. The PCL and PLLA blocks are found to be more intimately mixed, with less phase segregation, in the coalesced diblock copolymer, and this leads to homogeneous bulk crystallization, which is not observed for the as-synthesized diblock copolymer. The coalesced PCL-b-PLLA was also found to be more quickly biodegraded (lipase from Rhizopus arrhizus)than the as-synthesized PCL-b-PLLA or the physical blend of PCL and PLLA homopolymers. Overall, the coalescence of the inherently phase segregated diblock copolymer PCL-b-PLLA results in a small amount of compact, chain-extended PCL and PLLA crystals embedded in an amorphous phase, largely consisting of well-mixed PCL and PLLA blocks. Thus, we have demonstrated that it is possible to control the morpholgy of a biodegradable diblock copolymer, thereby significantly modifying it's properties, by coalescence from it's CD-IC crystals.
NASA Astrophysics Data System (ADS)
Blewett, David T.; Vaughan, William M.; Xiao, Zhiyong; Chabot, Nancy L.; Denevi, Brett W.; Ernst, Carolyn M.; Helbert, JöRn; D'Amore, Mario; Maturilli, Alessandro; Head, James W.; Solomon, Sean C.
2013-05-01
unique to Mercury, hollows are shallow, flat-floored irregular depressions notable for their relatively high reflectance and characteristic color. Here we document the range of geological settings in which hollows occur. Most are associated with impact structures (simple bowl-shaped craters to multiring basins, and ranging from Kuiperian to Calorian in age). Hollows are found in the low-reflectance material global color unit and in low-reflectance blue plains, but they appear to be absent from high-reflectance red plains. Hollows may occur preferentially on equator- or hot-pole-facing slopes, implying that their formation is linked to solar heating. Evidence suggests that hollows form because of loss of volatile material. We describe hypotheses for the origin of the volatiles and for how such loss proceeds. Intense space weathering and solar heating are likely contributors to the loss of volatiles; contact heating by melts could promote the formation of hollows in some locations. Lunar Ina-type depressions differ from hollows on Mercury in a number of characteristics, so it is unclear if they represent a good analog. We also use MESSENGER multispectral images to characterize a variety of surfaces on Mercury, including hollows, within a framework defined by laboratory spectra for analog minerals and lunar samples. Data from MESSENGER's X-Ray Spectrometer indicate that the planet's surface contains up to 4% sulfur. We conclude that nanophase or microphase sulfide minerals could contribute to the low reflectance of the low-reflectance material relative to average surface material. Hollows may owe their relatively high reflectance to destruction of the darkening agent (sulfides), the presence of alteration minerals, and/or physical differences in particle size, texture, or scattering behavior.
NASA Astrophysics Data System (ADS)
Jermy, B. Rabindran; Acharya, Sadananda; Ravinayagam, Vijaya; Alghamdi, Hajer Saleh; Akhtar, Sultan; Basuwaidan, Rehab S.
2018-04-01
Hierarchically structured zeolitic ZSM-5 and meso MCM-41 interlinked domain had an impeccable use as catalysis in many applications. The aim of the study was to develop a new drug delivery nanoformulation, specifically, cisplatin/mesosilicalite using top-down approach for cancer therapy. Hierarchical mesosilicalite with variable porosity was synthesized using alkaline molar solution (0.2 and 0.7 M NaOH) and was loaded with cisplatin through equilibrium adsorption technique. Physico-chemical properties of the nanoformulation (IAUM-56—Imam Abdulrahman Bin Faisal University Mesosilicalite-56) were characterized using X-ray diffraction, surface area analysis (BET), Fourier transformed infrared spectroscopy (FT-IR), diffuse reflectance UV-Vis spectroscopy, and transmission electron microscopy. Drug release study and anticancer activity were assayed on HeLa and MCF7 cancer cells using MTT assay. X-ray diffraction pattern showed interrelated meso- and microphases, while BET analysis revealed considerable mesoporosity formation with a remodulation of isotherm hysteresis indicating the presence of hierarchical pores. FT-IR showed the presence of nanozeolitic subunits into mesostructure with a band at about 550 cm-1. IAUM-56 demonstrated high cytotoxic activity against HeLa cancer cells with an LC50 of 0.02 mg/ml, MCF7 cancer cells with an LC50 of 0.05 mg/ml, and less toxic to normal fibroblast cells with an LC50 of approximately ten times higher at 0.5 mg/ml. Overall, IAUM-56 showed a high rate of sustained release of cisplatin imparting target specific cytotoxic effect against tumor cells with at least tenfold lower toxicity on normal fibroblast cells. Our nanoformulation has the potential use in cancer therapy as a targeted drug delivery system.
Self-assembled structural color in nature
NASA Astrophysics Data System (ADS)
Parnell, Andrew
The vibrancy and variety of structural color found in nature has long been well-known; what has only recently been discovered is the sophistication of the physics that underlies these effects. In the talk I will discuss some of our recent studies of the structures responsible for color in bird feathers and beetle elytra, based on structural characterization using small angle x-ray scattering, x-ray tomography and optical modeling. These have enabled us to study a large number of structural color exhibiting materials and look for trends in the structures nature uses to provide these optical effects. In terms of creating the optical structure responsible for the color of the Eurasian Jay feathers (Garrulus glandarius) the nanostructure is produced by a phase-separation process that is arrested at a late stage; mastery of the color is achieved by control over the duration of this phase-separation process. Our analysis shows that nanostructure in single bird feather barbs can be varied continuously by controlling the time the keratin network is allowed to phase separate before mobility in the system is arrested. Dynamic scaling analysis of the single barb scattering data implies that the phase separation arrest mechanism is rapid and also distinct from the spinodal phase separation mechanism i.e. it is not gelation or intermolecular re-association. Any growing lengthscale using this spinodal phase separation approach must first traverse the UV and blue wavelength regions, growing the structure by coarsening, resulting in a broad distribution of domain sizes. AJP acknowledges financial support via the APS/DPOLY exchange lectureship 2017.
ERIC Educational Resources Information Center
Tokar, David M.; Withrow, Jason R.; Hall, Rosalie J.; Moradi, Bonnie
2003-01-01
Structural equation modeling was used to test theoretically based models in which psychological separation and attachment security variables were related to career indecision and those relations were mediated through vocational self-concept crystallization. Results indicated that some components of separation and attachment security did relate to…
NASA Astrophysics Data System (ADS)
Tseng, Yu-Chien; Li, Hsiao-Ling; Huang, Chun
2017-01-01
The surface hydrophilic activation of a polyethylene membrane separator was achieved using an atmospheric-pressure plasma jet. The surface of the atmospheric-pressure-plasma-treated membrane separator was found to be highly hydrophilic realized by adjusting the plasma power input. The variations in membrane separator chemical structure were confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Chemical analysis showed newly formed carbonyl-containing groups and high surface concentrations of oxygen-containing species on the atmospheric-pressure-plasma-treated polymeric separator surface. It also showed that surface hydrophilicity primarily increased from the polar component after atmospheric-pressure plasma treatment. The surface and pore structures of the polyethylene membrane separator were examined by scanning electron microscopy, revealing a slight alteration in the pore structure. As a result of the incorporation of polar functionalities by atmospheric-pressure plasma activation, the electrolyte uptake and electrochemical impedance of the atmospheric-pressure-plasma-treated membrane separator improved. The investigational results show that the separator surface can be controlled by atmospheric-pressure plasma surface treatment to tailor the hydrophilicity and enhance the electrochemical performance of lithium ion batteries.
Integrated main rail, feed rail, and current collector
Petri, Randy J.; Meek, John; Bachta, Robert P.; Marianowski, Leonard G.
1994-01-01
A separator plate for a fuel cell comprising an anode current collector, a cathode current collector and a main plate, the main plate disposed between the anode current collector and the cathode current collector. The anode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the anode side of the separator plate and the cathode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the cathode side of the separator plate. In this manner, the number of components required to manufacture and assemble a fuel cell stack is reduced.
Interaction of viscous and inviscid instability modes in separation-bubble transition
NASA Astrophysics Data System (ADS)
Brinkerhoff, Joshua R.; Yaras, Metin I.
2011-12-01
This paper describes numerical simulations that are used to examine the interaction of viscous and inviscid instability modes in laminar-to-turbulent transition in a separation bubble. The results of a direct numerical simulation are presented in which separation of a laminar boundary-layer occurs in the presence of an adverse streamwise pressure gradient. The simulation is performed at low freestream-turbulence levels and at a flow Reynolds number and pressure distribution approximating those typically encountered on the suction side of low-pressure turbine blades in a gas-turbine engine. The simulation results reveal the development of a viscous instability upstream of the point of separation which produces streamwise-oriented vortices in the attached laminar boundary layer. These vortices remain embedded in the flow downstream of separation and are carried into the separated shear layer, where they are amplified by the local adverse pressure-gradient and contribute to the formation of coherent hairpin-like vortices. A strong interaction is observed between these vortices and the inviscid instability that typically dominates the shear layer in the separated zone. The interaction is noted to determine the spanwise extent of the vortical flow structures that periodically shed from the downstream end of the separated shear layer. The structure of the shed vortical flow structures is examined and compared with the coherent structures typically observed within turbulent boundary layers.
Porous Structure Design of Polymeric Membranes for Gas Separation
Zhang, Jinshui; Schott, Jennifer Ann; Mahurin, Shannon Mark; ...
2017-04-04
High-performance polymeric membranes for gas separation are of interest for molecular-level separations in industrial-scale chemical, energy and environmental processes. To overcome the inherent trade-off relationship between permeability and selectivity, the creation of permanent microporosity in polymeric matrices is highly desirable because the porous structures can provide a high fractional free volume to facilitate gas transport through the dense layer. In this feature article, recent developments in the formation of porous polymeric membranes and potential strategies for pore structure design are reviewed.
Apparatus and method for stripping tritium from molten salt
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holcomb, David E.; Wilson, Dane F.
A method of stripping tritium from flowing stream of molten salt includes providing a tritium-separating membrane structure having a porous support, a nanoporous structural metal-ion diffusion barrier layer, and a gas-tight, nonporous palladium-bearing separative layer, directing the flowing stream of molten salt into contact with the palladium-bearing layer so that tritium contained within the molten salt is transported through the tritium-separating membrane structure, and contacting a sweep gas with the porous support for collecting the tritium.
36 CFR 67.11 - Fees for processing rehabilitation certification requests.
Code of Federal Regulations, 2010 CFR
2010-07-01
... building projects where there is no historic functional relationship among the structures and which are... certified historic structure as provided by the owner in the Historic Preservation Certification Application... rehabilitation of a separate certified historic structure will be considered a separate project for purposes of...
Suppression of turbulent energy cascade due to phase separation in homogenous binary mixture fluid
NASA Astrophysics Data System (ADS)
Takagi, Youhei; Okamoto, Sachiya
2015-11-01
When a multi-component fluid mixture becomes themophysically unstable state by quenching from well-melting condition, phase separation due to spinodal decomposition occurs, and a self-organized structure is formed. During phase separation, free energy is consumed for the structure formation. In our previous report, the phase separation in homogenous turbulence was numerically simulated and the coarsening process of phase separation was discussed. In this study, we extended our numerical model to a high Schmidt number fluid corresponding to actual polymer solution. The governing equations were continuity, Navier-Stokes, and Chan-Hiliard equations as same as our previous report. The flow filed was an isotropic homogenous turbulence, and the dimensionless parameters in the Chan-Hilliard equation were estimated based on the thermophysical condition of binary mixture. From the numerical results, it was found that turbulent energy cascade was drastically suppressed in the inertial subrange by phase separation for the high Schmidt number flow. By using the identification of turbulent and phase separation structure, we discussed the relation between total energy balance and the structures formation processes. This study is financially supported by the Grand-in-Aid for Young Scientists (B) (No. T26820045) from the Ministry of Education, Cul-ture, Sports, Science and Technology of Japan.
Air cathode structure manufacture
Momyer, William R.; Littauer, Ernest L.
1985-01-01
An improved air cathode structure for use in primary batteries and the like. The cathode structure includes a matrix active layer, a current collector grid on one face of the matrix active layer, and a porous, nonelectrically conductive separator on the opposite face of the matrix active layer, the collector grid and separator being permanently bonded to the matrix active layer. The separator has a preselected porosity providing low IR losses and high resistance to air flow through the matrix active layer to maintain high bubble pressure during operation of the battery. In the illustrated embodiment, the separator was formed of porous polypropylene. A thin hydrophobic film is provided, in the preferred embodiment, on the current collecting metal grid.
Sustainable Separations of C4 -Hydrocarbons by Using Microporous Materials.
Gehre, Mascha; Guo, Zhiyong; Rothenberg, Gadi; Tanase, Stefania
2017-10-23
Petrochemical refineries must separate hydrocarbon mixtures on a large scale for the production of fuels and chemicals. Typically, these hydrocarbons are separated by distillation, which is extremely energy intensive. This high energy cost can be mitigated by developing materials that can enable efficient adsorptive separation. In this critical review, the principles of adsorptive separation are outlined, and then the case for C 4 separations by using zeolites and metal-organic frameworks (MOFs) is examined. By analyzing both experimental and theoretical studies, the challenges and opportunities in C 4 separation are outlined, with a focus on the separation mechanisms and structure-selectivity correlations. Zeolites are commonly used as adsorbents and, in some cases, can separate C 4 mixtures well. The pore sizes of eight-membered-ring zeolites, for example, are in the order of the kinetic diameters of C 4 isomers. Although zeolites have the advantage of a rigid and highly stable structure, this is often difficult to functionalize. MOFs are attractive candidates for hydrocarbon separation because their pores can be tailored to optimize the adsorbate-adsorbent interactions. MOF-5 and ZIF-7 show promising results in separating all C 4 isomers, but breakthrough experiments under industrial conditions are needed to confirm these results. Moreover, the flexibility of the MOF structures could hamper their application under industrial conditions. Adsorptive separation is a promising viable alternative and it is likely to play an increasingly important role in tomorrow's refineries. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rotary adsorbers for continuous bulk separations
Baker, Frederick S [Oak Ridge, TN
2011-11-08
A rotary adsorber for continuous bulk separations is disclosed. The rotary adsorber includes an adsorption zone in fluid communication with an influent adsorption fluid stream, and a desorption zone in fluid communication with a desorption fluid stream. The fluid streams may be gas streams or liquid streams. The rotary adsorber includes one or more adsorption blocks including adsorbent structure(s). The adsorbent structure adsorbs the target species that is to be separated from the influent fluid stream. The apparatus includes a rotary wheel for moving each adsorption block through the adsorption zone and the desorption zone. A desorption circuit passes an electrical current through the adsorbent structure in the desorption zone to desorb the species from the adsorbent structure. The adsorbent structure may include porous activated carbon fibers aligned with their longitudinal axis essentially parallel to the flow direction of the desorption fluid stream. The adsorbent structure may be an inherently electrically-conductive honeycomb structure.
Integrated main rail, feed rail, and current collector
Petri, R.J.; Meek, J.; Bachta, R.P.; Marianowski, L.G.
1994-11-08
A separator plate is described for a fuel cell comprising an anode current collector, a cathode current collector and a main plate, the main plate disposed between the anode current collector and the cathode current collector. The anode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the anode side of the separator plate and the cathode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the cathode side of the separator plate. In this manner, the number of components required to manufacture and assemble a fuel cell stack is reduced. 9 figs.
Li, Heng; Wu, Dabei; Wu, Jin; Dong, Li-Ying; Zhu, Ying-Jie; Hu, Xianluo
2017-11-01
Separators play a pivotal role in the electrochemical performance and safety of lithium-ion batteries (LIBs). The commercial microporous polyolefin-based separators often suffer from inferior electrolyte wettability, low thermal stability, and severe safety concerns. Herein, a novel kind of highly flexible and porous separator based on hydroxyapatite nanowires (HAP NWs) with excellent thermal stability, fire resistance, and superior electrolyte wettability is reported. A hierarchical cross-linked network structure forms between HAP NWs and cellulose fibers (CFs) via hybridization, which endows the separator with high flexibility and robust mechanical strength. The high thermal stability of HAP NW networks enables the separator to preserve its structural integrity at temperatures as high as 700 °C, and the fire-resistant property of HAP NWs ensures high safety of the battery. In particular, benefiting from its unique composition and highly porous structure, the as-prepared HAP/CF separator exhibits near zero contact angle with the liquid electrolyte and high electrolyte uptake of 253%, indicating superior electrolyte wettability compared with the commercial polyolefin separator. The as-prepared HAP/CF separator has unique advantages of superior electrolyte wettability, mechanical robustness, high thermal stability, and fire resistance, thus, is promising as a new kind of separator for advanced LIBs with enhanced performance and high safety. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
55. Virginia Route 688 grade separation structure. This structure, built ...
55. Virginia Route 688 grade separation structure. This structure, built in 1960, is an example of several concrete box culverts built primarily in the late 1950's and early 1960's. They are simply plain concrete with now ornamentation. These structures were used only on lesser used secondary paved roads or dirt roads. View is looking south. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC
Bioinspired Non-iridescent Structural Color from Polymer Blend Thin Films
NASA Astrophysics Data System (ADS)
Nallapaneni, Asritha; Shawkey, Matthew; Karim, Alamgir
Colors exhibited in biological species are either due to natural pigments, sub-micron structural variation or both. Structural colors thus exhibited can be iridescent (ID) or non-iridescent (NID) in nature. NID colors originate due to interference and coherent scattering of light with quasi-ordered micro- and nano- structures. Specifically, in Eastern Bluebird (Sialia sialis) these nanostructures develop as a result of phase separation of β-keratin from cytoplasm present in cells. We replicate these structures via spinodal blend phase separation of PS-PMMA thin films. Colors of films vary from ultraviolet to blue. Scattering of UV-visible light from selectively leeched phase separated blends are studied in terms of varying domain spacing (200nm to 2 μm) of film. We control these parameters by tuning annealing time and temperature. Angle-resolved spectroscopy studies suggest that the films are weakly iridescent and scattering from phase-separated films is more diffused when compared to well-mixed films. This study offers solutions to several color-based application in paints and coatings industry.
Recent Developments of Graphene Oxide-Based Membranes: A Review
Ma, Jinxia; Ping, Dan; Dong, Xinfa
2017-01-01
Membrane-based separation technology has attracted great interest in many separation fields due to its advantages of easy-operation, energy-efficiency, easy scale-up, and environmental friendliness. The development of novel membrane materials and membrane structures is an urgent demand to promote membrane-based separation technology. Graphene oxide (GO), as an emerging star nano-building material, has showed great potential in the membrane-based separation field. In this review paper, the latest research progress in GO-based membranes focused on adjusting membrane structure and enhancing their mechanical strength as well as structural stability in aqueous environment is highlighted and discussed in detail. First, we briefly reviewed the preparation and characterization of GO. Then, the preparation method, characterization, and type of GO-based membrane are summarized. Finally, the advancements of GO-based membrane in adjusting membrane structure and enhancing their mechanical strength, as well as structural stability in aqueous environment, are particularly discussed. This review hopefully provides a new avenue for the innovative developments of GO-based membrane in various membrane applications. PMID:28895877
Recent Developments of Graphene Oxide-Based Membranes: A Review.
Ma, Jinxia; Ping, Dan; Dong, Xinfa
2017-09-12
Membrane-based separation technology has attracted great interest in many separation fields due to its advantages of easy-operation, energy-efficiency, easy scale-up, and environmental friendliness. The development of novel membrane materials and membrane structures is an urgent demand to promote membrane-based separation technology. Graphene oxide (GO), as an emerging star nano-building material, has showed great potential in the membrane-based separation field. In this review paper, the latest research progress in GO-based membranes focused on adjusting membrane structure and enhancing their mechanical strength as well as structural stability in aqueous environment is highlighted and discussed in detail. First, we briefly reviewed the preparation and characterization of GO. Then, the preparation method, characterization, and type of GO-based membrane are summarized. Finally, the advancements of GO-based membrane in adjusting membrane structure and enhancing their mechanical strength, as well as structural stability in aqueous environment, are particularly discussed. This review hopefully provides a new avenue for the innovative developments of GO-based membrane in various membrane applications.
206. Big Witch Road grade separation structure. This concrete box ...
206. Big Witch Road grade separation structure. This concrete box culvert, built in 1950, is unusual in that the culvert's concrete bottom extends beyond the structure to the ends of its perpendicular wing walls. Facing northeast. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC
High performance hybrid magnetic structure for biotechnology applications
Humphries, David E [El Cerrito, CA; Pollard, Martin J [El Cerrito, CA; Elkin, Christopher J [San Ramon, CA
2009-02-03
The present disclosure provides a high performance hybrid magnetic structure made from a combination of permanent magnets and ferromagnetic pole materials which are assembled in a predetermined array. The hybrid magnetic structure provides means for separation and other biotechnology applications involving holding, manipulation, or separation of magnetic or magnetizable molecular structures and targets. Also disclosed are further improvements to aspects of the hybrid magnetic structure, including additional elements and for adapting the use of the hybrid magnetic structure for use in biotechnology and high throughput processes.
Hierarchical multiscale hyperporous block copolymer membranes via tunable dual-phase separation
Yoo, Seungmin; Kim, Jung-Hwan; Shin, Myoungsoo; Park, Hyungmin; Kim, Jeong-Hoon; Lee, Sang-Young; Park, Soojin
2015-01-01
The rational design and realization of revolutionary porous structures have been long-standing challenges in membrane science. We demonstrate a new class of amphiphilic polystyrene-block-poly(4-vinylpyridine) block copolymer (BCP)–based porous membranes featuring hierarchical multiscale hyperporous structures. The introduction of surface energy–modifying agents and the control of major phase separation parameters (such as nonsolvent polarity and solvent drying time) enable tunable dual-phase separation of BCPs, eventually leading to macro/nanoscale porous structures and chemical functionalities far beyond those accessible with conventional approaches. Application of this BCP membrane to a lithium-ion battery separator affords exceptional improvement in electrochemical performance. The dual-phase separation–driven macro/nanopore construction strategy, owing to its simplicity and tunability, is expected to be readily applicable to a rich variety of membrane fields including molecular separation, water purification, and energy-related devices. PMID:26601212
NASA Astrophysics Data System (ADS)
Tao, Y.; Liu, W. D.; Fan, X. Q.; Zhao, Y. L.
2017-07-01
For a better understanding of the local unstart of supersonic/hypersonic inlet, a series of experiments has been conducted to investigate the shock-induced boundary layer separation extended to the leading edge. Using the nanoparticle-based planar laser scattering, we recorded the fine structures of these interactions under different conditions and paid more attention to their structural characteristics. According to their features, these interactions could be divided into four types. Specifically, Type A wave pattern is similar to the classic shock wave/turbulent boundary layer interaction, and Type B wave configuration consists of an overall Mach reflection above the large scale separation bubble. Due to the gradual decrease in the size of the separation bubble, the separation bubble was replaced by several vortices (Type C wave pattern). Besides, for Type D wave configuration which exists in the local unstart inlet, there appears to be some flow spillage around the leading edge.
UV Grafting Modification of Polyethylene Separator for Liion Battery
NASA Astrophysics Data System (ADS)
Lv, Xiaoyuan; Li, Hua; Zhang, Zhiqiang; Chang, Hiunam; Jiang, Li; Liu, Hezhou
Polyethylene (PE) separator was modified by UV grafting methyl acrylate (MA) and nano-SiO2 composite layer. The structure of functional group and morphology of the separator were analyzed by Fourier transform infrared spectrum (FT-IR) and scanning electron microscope (SEM). The wetting behavior and the heat resistance of the separator were also investigated by contact angle test and thermal shrinkage test respectively. The results show that MA/nano-SiO2 composite layer is successfully grafted onto the PE separator, and the addition of the DI water and butanol can make the nano-SiO2 dispersed better and lead to a microporous structure of the grafting layer. The grafted separator has a better wettability and heat resistance than the pristine one.
NASA Astrophysics Data System (ADS)
Jeong, Hyun-Seok; Kim, Dong-Won; Jeong, Yeon Uk; Lee, Sang-Young
To improve the thermal shrinkage of the separators that are essential to securing the electrical isolation between electrodes in lithium-ion batteries, we develop a new separator based on a ceramic composite membrane. Introduction of microporous, ceramic coating layers onto both sides of a polyethylene (PE) separator allows such a progress. The ceramic coating layers consist of nano-sized alumina (Al 2O 3) powders and polymeric binders (PVdF-HFP). The microporous structure of the ceramic coating layers is observed to be crucial to governing the thermal shrinkage as well as the ionic transport of the ceramic composite separators. This microporous structure is determined by controlling the phase inversion, more specifically, nonsolvent (water) contents in the coating solutions. To provide a theoretical basis for this approach, a pre-investigation on the phase diagram for a ternary mixture comprising PVdF-HFP, acetone, and water is conducted. On the basis of this observation, the effect of phase inversion on the morphology and air permeability (i.e. Gurley value) of ceramic coating layers is systematically discussed. In addition, to explore the application of ceramic composite separators to lithium-ion batteries, the influence of the structural change in the coating layers on the thermal shrinkage and electrochemical performance of the separators is quantitatively identified.
Using resolvent analysis for the design of separation control on a NACA 0012 airfoil
NASA Astrophysics Data System (ADS)
Yeh, Chi-An; Taira, Kunihiko
2017-11-01
A combined effort based on large-eddy simulation and resolvent analysis on the separated flow over a NACA 0012 airfoil is conducted to design active flow control for suppression of separation. This study considers the the airfoil at 6 deg. angle-of-attack and Reynolds number of 23000. The response mode obtained from the resolvent analysis about the baseline turbulent mean flow reveals modal structures that can be categorized into three families when sweeping through the resonant frequency: (1) von Karman wake structure for low frequency; (2) Kelvin-Helmholtz structure in the separation bubble for high frequency; (3) blended structure of (1) and (2) for the intermediate frequency. Leveraging the insights from resolvent analysis, unsteady thermal actuation is introduced to the flow near the leading-edge to examine the use of the frequencies from three families for separation control in LES. As indicated by the resolvent response modes, we find that the use of intermediate frequencies are most effective in suppressing the flow separation, since the shear layer over the separation bubble and the wake are both receptive to the perturbation at the these frequencies. The resolvent-analysis-based control strategy achieves 35% drag reduction and 9% lift increase with effective frequency. This work was supported by Office of Naval Research (N00014-15-R-FO13) and Army Research Office (W911NF-14-1-0224).
Controlling the intermediate structure of an ionic liquid for f-block element separations
Abney, Carter W.; Do, Changwoo; Luo, Huimin; ...
2017-04-19
Recent research has revealed molecular structure beyond the inner coordination sphere is essential in defining the performance of separations processes, but nevertheless remains largely unexplored. Here we apply small angle neutron scattering (SANS) and x-ray absorption fine structure (XAFS) spectroscopy to investigate the structure of an ionic liquid system studied for f-block element separations. SANS data reveal dramatic changes in the ionic liquid microstructure (~150 Å) which we demonstrate can be controlled by judicious selection of counter ion. Mesoscale structural features (> 500 Å) are also observed as a function of metal concentration. XAFS analysis supports formation of extended aggregatemore » structures, similar to those observed in traditional solvent extraction processes, and suggest additional parallels may be drawn from further study. As a result, achieving precise tunability over the intermediate features is an important development in controlling mesoscale structure and realizing advanced new forms of soft matter.« less
Laser-structured Janus wire mesh for efficient oil-water separation.
Liu, Yu-Qing; Han, Dong-Dong; Jiao, Zhi-Zhen; Liu, Yan; Jiang, Hao-Bo; Wu, Xuan-Hang; Ding, Hong; Zhang, Yong-Lai; Sun, Hong-Bo
2017-11-23
We report here the fabrication of a Janus wire mesh by a combined process of laser structuring and fluorosilane/graphene oxide (GO) modification of the two sides of the mesh, respectively, toward its applications in efficient oil/water separation. Femtosecond laser processing has been employed to make different laser-induced periodic surface structures (LIPSS) on each side of the mesh. Surface modification with fluorosilane on one side and GO on the other side endows the two sides of the Janus mesh with distinct wettability. Thus, one side is superhydrophobic and superoleophilic in air, and the other side is superhydrophilic in air and superoleophobic under water. As a proof of concept, we demonstrated the separation of light/heavy oil and water mixtures using this Janus mesh. To realize an efficient separation, the intrusion pressure that is dominated by the wire mesh framework and the wettability should be taken into account. Our strategy may open up a new way to design and fabricate Janus structures with distinct wettability; and the resultant Janus mesh may find broad applications in the separation of oil contaminants from water.
DSSTOX MASTER STRUCTURE-INDEX FILE: SDF FILE AND ...
The DSSTox Master Structure-Index File serves to consolidate, manage, and ensure quality and uniformity of the chemical and substance information spanning all DSSTox Structure Data Files, including those in development but not yet published separately on this website. The DSSTox Master Structure-Index File serves to consolidate, manage, and ensure quality and uniformity of the chemical and substance information spanning all DSSTox Structure Data Files, including those in development but not yet published separately on this website.
Conceptual design of distillation-based hybrid separation processes.
Skiborowski, Mirko; Harwardt, Andreas; Marquardt, Wolfgang
2013-01-01
Hybrid separation processes combine different separation principles and constitute a promising design option for the separation of complex mixtures. Particularly, the integration of distillation with other unit operations can significantly improve the separation of close-boiling or azeotropic mixtures. Although the design of single-unit operations is well understood and supported by computational methods, the optimal design of flowsheets of hybrid separation processes is still a challenging task. The large number of operational and design degrees of freedom requires a systematic and optimization-based design approach. To this end, a structured approach, the so-called process synthesis framework, is proposed. This article reviews available computational methods for the conceptual design of distillation-based hybrid processes for the separation of liquid mixtures. Open problems are identified that must be addressed to finally establish a structured process synthesis framework for such processes.
Methods for separating a fluid, and devices capable of separating a fluid
TeGrotenhuis, Ward E; Humble, Paul H; Caldwell, Dustin D
2013-05-14
Methods and apparatus for separating fluids are disclosed. We have discovered that, surprisingly, providing an open pore structure between a wick and an open flow channel resulted in superior separation performance. A novel and compact integrated device components for conducting separations are also described.
92. Interstate 77 grade separation structure. This 377 four span ...
92. Interstate 77 grade separation structure. This 377 four span structure, built in 1974, is typical of most interstate bridges built in America in recent years, except for its curving alignment which helps control the visual experience of the parkway motorist. Facing west. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC
Liang, George [Palm City, FL
2011-01-18
An airfoil is provided for a gas turbine comprising an outer structure comprising a first wall, an inner structure comprising a second wall spaced relative to the first wall such that a cooling gap is defined between at least portions of the first and second walls, and seal structure provided within the cooling gap between the first and second walls for separating the cooling gap into first and second cooling fluid impingement gaps. An inner surface of the second wall may define an inner cavity. The inner structure may further comprise a separating member for separating the inner cavity of the inner structure into a cooling fluid supply cavity and a cooling fluid collector cavity. The second wall may comprise at least one first impingement passage, at least one second impingement passage, and at least one bleed passage.
Characterization of Nanofluidic Entropic Trap Array for DNA Separation
NASA Astrophysics Data System (ADS)
Han, Jongyoon
2003-03-01
Micromachined nanoscale fluidic structures can provide new opportunities in biomolecule manipulation and sorting, because their chemical and physical properties can be controlled easily unlike random nanoporous materials. As an example of regular nanostructures used for biomolecule manipulation and sorting, a nanofluidic entropic trap array for DNA separation is presented. Nanofluidic channels as thin as 75nm were used as a molecular sieve instead of agarose gel for DNA separation. The interaction between DNA molecules and the nanofluidic structure determines the DNA migration speed, which was used to separate DNA molecules in a dc electrophoresis. Separation of long DNA (up to 200kbp) has been achieved within 30 minutes, using less than a picogram quantities of DNA, with only 1.5cm long channels.[1] In addition to the efficiency improvement, nanofluidic DNA entropic traps have a regular structure that can be easily modeled theoretically. The theoretical model could be the basis for improving the system performance for further optimization in separation size range and resolution. The process of DNA moving out of the entropic trap was theoretically modeled, and the prediction of the theoretical model was compared with the experimental data.[2] The selectivity, resolution, and the separation range of DNA for a given entropic trap separation system was discussed in terms of the number of entropic traps, various structural parameters of the system, and the electric field. It is expected that this system could be used for analyzing a small amount of ultra-long DNA molecules. (1) Han, J.; Craighead, H. G. Science 2000, 288, 1026-1029. (2) Han, J.; Craighead, H. G. Anal. Chem. 2002, 74, 394-401.
NASA Astrophysics Data System (ADS)
Huang, Xiaosong
2014-06-01
Porous separator functions to electrically insulate the negative and positive electrodes yet communicate lithium ions between the two electrodes when infiltrated with a liquid electrolyte. The separator must fulfill numerous requirements (e.g. permeability, wettability, and thermal stability) in order to optimize the abuse tolerance and electrochemical performance of a battery. Non-woven mat separators have advantages such as high porosity and heat resistance. However, their applications in lithium ion batteries are very limited as their inadequate pore structures could cause accelerated battery performance degradation and even internal short. This work features the development of thermally stable non-woven composite separators using a low cost paper-making process. The composite separators offer significantly improved thermal dimensional stability and exhibit superior wettability by the liquid electrolyte compared to a conventional polypropylene separator. The open porous structures of the non-woven composite separators also resulted in high effective ionic conductivities. The electrochemical performance of the composite separators was tested in coin cells. Stable cycle performances and improved rate capabilities have been observed for the coin cells with these composite separators.
NASA Astrophysics Data System (ADS)
Wu, Zhiguo; Cui, Zhenyu; Li, Tianyu; Qin, Shuhao; He, Benqiao; Han, Na; Li, Jianxin
2017-10-01
A simple strategy of thermally induced phase separation followed by non-solvent induced phase separation (TIPS-NIPS) is reported to fabricate poly (vinylidene fluoride) (PVDF)-based blend membrane. The dissolved poly (styrene-co-maleic anhydride) (SMA) in diluent prevents the crystallization of PVDF during the cooling process and deposites on the established PVDF matrix in the later extraction. Compared with traditional coating technique, this one-step TIPS-NIPS method can not only fabricate a supporting layer with an interconnected network structure even via solid-liquid phase separation of TIPS, but also form a uniform SMA skin layer approximately as thin as 200 nm via surface deposition of NIPS. Besides the better hydrophilicity, what's interesting is that the BSA rejection ratio increases from 48% to 94% with the increase of SMA, which indicates that the separation performance has improved. This strategy can be conveniently extended to the creation of firmly thin layer, surface functionalization and structure controllability of the membrane.
Enhancing Bottom-up and Top-down Proteomic Measurements with Ion Mobility Separations
Baker, Erin Shammel; Burnum-Johnson, Kristin E.; Ibrahim, Yehia M.; ...
2015-07-03
Proteomic measurements with greater throughput, sensitivity and additional structural information enhance the in-depth characterization of complex mixtures and targeted studies with additional information and higher confidence. While liquid chromatography separation coupled with mass spectrometry (LC-MS) measurements have provided information on thousands of proteins in different sample types, the additional of another rapid separation stage providing structural information has many benefits for analyses. Technical advances in ion funnels and multiplexing have enabled ion mobility separations to be easily and effectively coupled with LC-MS proteomics to enhance the information content of measurements. Finally, herein, we report on applications illustrating increased sensitivity, throughput,more » and structural information by utilizing IMS-MS and LC-IMS-MS measurements for both bottom-up and top-down proteomics measurements.« less
Wu, Jifeng; Zhang, Qin'e; Zhou, An'an; Huang, Zhifeng; Bai, Hua; Li, Lei
2016-12-01
Polyaniline/graphene hydrogel composites with a macroscopically phase-separated structure are prepared. The composites show high specific capacitance and excellent rate performance. Further investigation demonstrates that polyaniline inside the graphene hydrogel has low rate performance, thus a phase-separated structure, in which polyaniline is mainly outside the graphene hydrogel matrix, can enhance the rate performance of the composites. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darling, Jeremy, E-mail: jdarling@colorado.edu
Objects and structures gravitationally decoupled from the Hubble expansion will appear to shrink in angular size as the universe expands. Observations of extragalactic proper motions can thus directly reveal the cosmic expansion. Relatively static structures such as galaxies or galaxy clusters can potentially be used to measure the Hubble constant, and test masses in large scale structures can measure the overdensity. Since recession velocities and angular separations can be precisely measured, apparent proper motions can also provide geometric distance measurements to static structures. The apparent fractional angular compression of static objects is 15 μas yr{sup –1} in the local universe;more » this motion is modulated by the overdensity in dynamic expansion-decoupled structures. We use the Titov et al. quasar proper motion catalog to examine the pairwise proper motion of a sparse network of test masses. Small-separation pairs (<200 Mpc comoving) are too few to measure the expected effect, yielding an inconclusive 8.3 ± 14.9 μas yr{sup –1}. Large-separation pairs (200-1500 Mpc) show no net convergence or divergence for z < 1, –2.7 ± 3.7 μas yr{sup –1}, consistent with pure Hubble expansion and significantly inconsistent with static structures, as expected. For all pairs a 'null test' gives –0.36 ± 0.62 μas yr{sup –1}, consistent with Hubble expansion and excludes a static locus at ∼5-10σ significance for z ≅ 0.5-2.0. The observed large-separation pairs provide a reference frame for small-separation pairs that will significantly deviate from the Hubble flow. The current limitation is the number of small-separation objects with precise astrometry, but Gaia will address this and will likely detect the cosmic recession.« less
Molecular separations using nanostructured porous thin films fabricated by glancing angle deposition
NASA Astrophysics Data System (ADS)
Bezuidenhout, Louis Wentzel
Biomolecular separation techniques are an enabling technology that indirectly in.uence many aspects of our lives. Advances have led to faster analyses, reduced costs, higher specificity, and new analytical techniques, impacting areas such as health care, environmental monitoring, polymer sciences, agriculture, and nutrition. Further development of separations technology is anticipated to follow the path of computing technology such that miniaturization through the development of microfluidics technology, lab-on-a-chip systems, and other integrative, multi-component systems will further extend our analysis capabilities. Creation of new and improvement of existing separation technologies is an integral part of the pathway to miniaturized systems. the work of this thesis investigates molecular separations using porous nanostructured films fabricated by the thin film process glancing angle deposition (GLAD). Structural architecture, pore size and shape, and film density can be finely controlled to produce high-surface area thin films with engineered morphology. The characteristic size scales and structural control of GLAD films are well-suited to biomolecules and separation techniques, motivating investigation into the utility and performance of GLAD films for biomolecular separations. This project consisted of three phases. First, chromatographic separation of dye molecules on silica GLAD films was demonstrated by thin layer chromatography Direct control of film nanostructure altered the separation characteristics; most strikingly, anisotropic structures provided two-dimensional analyte migration. Second, nanostructures made with GLAD were integrated in PDMS microfluidic channels using a sacrificial etching process; DNA molecules (10/48 kbp and 6/10/20 kbp mixtures) were electrophoretically separated on a microfluidic chip using a porous bed of SiO2 vertical posts. Third, mass spectrometry of proteins and drugs in the mass range of 100-1300 m/z was performed using laser desorption/ionization (LDI) on silicon GLAD films, and the influence of film thickness, porosity, structure, and substrate on performance was characterized. The application of GLAD nanostructured thin films to biomolecular separations is demonstrated and validated in this thesis. Chromatographic separation of dye molecules, electrophoretic separation of DNA molecules, and mass spectrometric isolation of small proteins and drug molecules by laser desorption ionization were demonstrated using GLAD films. All three methods yielded promising results and establish GLAD as a potential technology for biomolecular separations.
Stripe-like nanoscale structural phase separation in superconducting BaPb 1-xBi xO 3
Giraldo-Gallo, P.; Zhang, Y.; Parra, C.; ...
2015-09-16
The phase diagram of BaPb 1-xBi xO 3 exhibits a superconducting “dome” in the proximity of a charge density wave phase. For the superconducting compositions, the material coexists as two structural polymorphs. Here we show, via high resolution transmission electron microscopy, that the structural dimorphism is accommodated in the form of partially disordered nanoscale stripes. Identification of the morphology of the nanoscale structural phase separation enables determination of the associated length scales, which we compare to the Ginzburg-Landau coherence length. Thus, we find that the maximum T c occurs when the superconducting coherence length matches the width of the partiallymore » disordered stripes, implying a connection between the structural phase separation and the shape of the superconducting dome.« less
Introduction of structural affinity handles as a tool in selective nucleic acid separations
NASA Technical Reports Server (NTRS)
Willson, III, Richard Coale (Inventor); Cano, Luis Antonio (Inventor)
2011-01-01
The method is used for separating nucleic acids and other similar constructs. It involves selective introduction, enhancement, or stabilization of affinity handles such as single-strandedness in the undesired (or desired) nucleic acids as compared to the usual structure (e.g., double-strandedness) of the desired (or undesired) nucleic acids. The undesired (or desired) nucleic acids are separated from the desired (or undesired) nucleic acids due to capture by methods including but not limited to immobilized metal affinity chromatography, immobilized single-stranded DNA binding (SSB) protein, and immobilized oligonucleotides. The invention is useful to: remove contaminating genomic DNA from plasmid DNA; remove genomic DNA from plasmids, BACs, and similar constructs; selectively separate oligonucleotides and similar DNA fragments from their partner strands; purification of aptamers, (deoxy)-ribozymes and other highly structured nucleic acids; Separation of restriction fragments without using agarose gels; manufacture recombinant Taq polymerase or similar products that are sensitive to host genomic DNA contamination; and other applications.
Spatially modulated structural colour in bird feathers.
Parnell, Andrew J; Washington, Adam L; Mykhaylyk, Oleksandr O; Hill, Christopher J; Bianco, Antonino; Burg, Stephanie L; Dennison, Andrew J C; Snape, Mary; Cadby, Ashley J; Smith, Andrew; Prevost, Sylvain; Whittaker, David M; Jones, Richard A L; Fairclough, J Patrick A; Parker, Andrew R
2015-12-21
Eurasian Jay (Garrulus glandarius) feathers display periodic variations in the reflected colour from white through light blue, dark blue and black. We find the structures responsible for the colour are continuous in their size and spatially controlled by the degree of spinodal phase separation in the corresponding region of the feather barb. Blue structures have a well-defined broadband ultra-violet (UV) to blue wavelength distribution; the corresponding nanostructure has characteristic spinodal morphology with a lengthscale of order 150 nm. White regions have a larger 200 nm nanostructure, consistent with a spinodal process that has coarsened further, yielding broader wavelength white reflectance. Our analysis shows that nanostructure in single bird feather barbs can be varied continuously by controlling the time the keratin network is allowed to phase separate before mobility in the system is arrested. Dynamic scaling analysis of the single barb scattering data implies that the phase separation arrest mechanism is rapid and also distinct from the spinodal phase separation mechanism i.e. it is not gelation or intermolecular re-association. Any growing lengthscale using this spinodal phase separation approach must first traverse the UV and blue wavelength regions, growing the structure by coarsening, resulting in a broad distribution of domain sizes.
Wang, Hao; Dong, Xinglong; Lin, Junzhong; ...
2018-05-01
As an alternative technology to energy intensive distillations, adsorptive separation by porous solids offers lower energy cost and higher efficiency. Herein we report a topology-directed design and synthesis of a series of Zr-based metal-organic frameworks with optimized pore structure for efficient separation of C6 alkane isomers, a critical step in the petroleum refining process to produce gasoline with high octane rating. Zr 6O 4(OH) 4(bptc) 3 adsorbs a large amount of n-hexane but excluding branched isomers. The n-hexane uptake is ~70% higher than that of a benchmark adsorbent, zeolite-5A. A derivative structure, Zr 6O 4(OH) 8(H 2O) 4(abtc) 2, ismore » capable of discriminating all three C6 isomers and yielding a high separation factor for 3-methylpentane over 2,3-dimethylbutane. This property is critical for producing gasoline with further improved quality. Multicomponent breakthrough experiments provide a quantitative measure of the capability of these materials for separation of C6 alkane isomers. A detailed structural analysis reveals the unique topology, connectivity and relationship of these compounds.« less
Spatially modulated structural colour in bird feathers
Parnell, Andrew J.; Washington, Adam L.; Mykhaylyk, Oleksandr O.; Hill, Christopher J.; Bianco, Antonino; Burg, Stephanie L.; Dennison, Andrew J. C.; Snape, Mary; Cadby, Ashley J.; Smith, Andrew; Prevost, Sylvain; Whittaker, David M.; Jones, Richard A. L.; Fairclough, J. Patrick. A.; Parker, Andrew R.
2015-01-01
Eurasian Jay (Garrulus glandarius) feathers display periodic variations in the reflected colour from white through light blue, dark blue and black. We find the structures responsible for the colour are continuous in their size and spatially controlled by the degree of spinodal phase separation in the corresponding region of the feather barb. Blue structures have a well-defined broadband ultra-violet (UV) to blue wavelength distribution; the corresponding nanostructure has characteristic spinodal morphology with a lengthscale of order 150 nm. White regions have a larger 200 nm nanostructure, consistent with a spinodal process that has coarsened further, yielding broader wavelength white reflectance. Our analysis shows that nanostructure in single bird feather barbs can be varied continuously by controlling the time the keratin network is allowed to phase separate before mobility in the system is arrested. Dynamic scaling analysis of the single barb scattering data implies that the phase separation arrest mechanism is rapid and also distinct from the spinodal phase separation mechanism i.e. it is not gelation or intermolecular re-association. Any growing lengthscale using this spinodal phase separation approach must first traverse the UV and blue wavelength regions, growing the structure by coarsening, resulting in a broad distribution of domain sizes. PMID:26686280
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hao; Dong, Xinglong; Lin, Junzhong
As an alternative technology to energy intensive distillations, adsorptive separation by porous solids offers lower energy cost and higher efficiency. Herein we report a topology-directed design and synthesis of a series of Zr-based metal-organic frameworks with optimized pore structure for efficient separation of C6 alkane isomers, a critical step in the petroleum refining process to produce gasoline with high octane rating. Zr 6O 4(OH) 4(bptc) 3 adsorbs a large amount of n-hexane but excluding branched isomers. The n-hexane uptake is ~70% higher than that of a benchmark adsorbent, zeolite-5A. A derivative structure, Zr 6O 4(OH) 8(H 2O) 4(abtc) 2, ismore » capable of discriminating all three C6 isomers and yielding a high separation factor for 3-methylpentane over 2,3-dimethylbutane. This property is critical for producing gasoline with further improved quality. Multicomponent breakthrough experiments provide a quantitative measure of the capability of these materials for separation of C6 alkane isomers. A detailed structural analysis reveals the unique topology, connectivity and relationship of these compounds.« less
9 CFR 305.1 - Official numbers; subsidiaries and tenants.
Code of Federal Regulations, 2010 CFR
2010-01-01
... AGRICULTURE AGENCY ORGANIZATION AND TERMINOLOGY; MANDATORY MEAT AND POULTRY PRODUCTS INSPECTION AND VOLUNTARY... separate entities in the same building or structure may operate separate establishments therein only under... or structure shall be responsible for compliance with the Act and regulations in their own...
Selecting a Separable Parametric Spatiotemporal Covariance Structure for Longitudinal Imaging Data
George, Brandon; Aban, Inmaculada
2014-01-01
Longitudinal imaging studies allow great insight into how the structure and function of a subject’s internal anatomy changes over time. Unfortunately, the analysis of longitudinal imaging data is complicated by inherent spatial and temporal correlation: the temporal from the repeated measures, and the spatial from the outcomes of interest being observed at multiple points in a patients body. We propose the use of a linear model with a separable parametric spatiotemporal error structure for the analysis of repeated imaging data. The model makes use of spatial (exponential, spherical, and Matérn) and temporal (compound symmetric, autoregressive-1, Toeplitz, and unstructured) parametric correlation functions. A simulation study, inspired by a longitudinal cardiac imaging study on mitral regurgitation patients, compared different information criteria for selecting a particular separable parametric spatiotemporal correlation structure as well as the effects on Type I and II error rates for inference on fixed effects when the specified model is incorrect. Information criteria were found to be highly accurate at choosing between separable parametric spatiotemporal correlation structures. Misspecification of the covariance structure was found to have the ability to inflate the Type I error or have an overly conservative test size, which corresponded to decreased power. An example with clinical data is given illustrating how the covariance structure procedure can be done in practice, as well as how covariance structure choice can change inferences about fixed effects. PMID:25293361
Pi-Pi contacts are an overlooked protein feature relevant to phase separation
Vernon, Robert McCoy; Chong, Paul Andrew; Tsang, Brian; Kim, Tae Hun; Bah, Alaji; Farber, Patrick; Lin, Hong
2018-01-01
Protein phase separation is implicated in formation of membraneless organelles, signaling puncta and the nuclear pore. Multivalent interactions of modular binding domains and their target motifs can drive phase separation. However, forces promoting the more common phase separation of intrinsically disordered regions are less understood, with suggested roles for multivalent cation-pi, pi-pi, and charge interactions and the hydrophobic effect. Known phase-separating proteins are enriched in pi-orbital containing residues and thus we analyzed pi-interactions in folded proteins. We found that pi-pi interactions involving non-aromatic groups are widespread, underestimated by force-fields used in structure calculations and correlated with solvation and lack of regular secondary structure, properties associated with disordered regions. We present a phase separation predictive algorithm based on pi interaction frequency, highlighting proteins involved in biomaterials and RNA processing. PMID:29424691
Biomimetic membranes and methods of making biomimetic membranes
Rempe, Susan; Brinker, Jeffrey C.; Rogers, David Michael; Jiang, Ying-Bing; Yang, Shaorong
2016-11-08
The present disclosure is directed to biomimetic membranes and methods of manufacturing such membranes that include structural features that mimic the structures of cellular membrane channels and produce membrane designs capable of high selectivity and high permeability or adsorptivity. The membrane structure, material and chemistry can be selected to perform liquid separations, gas separation and capture, ion transport and adsorption for a variety of applications.
NASA Astrophysics Data System (ADS)
Kosztowny, Cyrus Joseph Robert
Use of carbon fiber textiles in complex manufacturing methods creates new implementations of structural components by increasing performance, lowering manufacturing costs, and making composites overall more attractive across industry. Advantages of textile composites include high area output, ease of handling during the manufacturing process, lower production costs per material used resulting from automation, and provide post-manufacturing assembly mainstreaming because significantly more complex geometries such as stiffened shell structures can be manufactured with fewer pieces. One significant challenge with using stiffened composite structures is stiffener separation under compression. Axial compression loading conditions have frequently observed catastrophic structural failure due to stiffeners separating from the shell skin. Characterizing stiffener separation behavior is often costly computationally and experimentally. The objectives of this research are to demonstrate unitized stiffened textile composite panels can be manufactured to produce quality test specimens, that existing characterization techniques applied to state-of-the-art high-performance composites provide valuable information in modeling such structures, that the unitized structure concept successfully removes stiffener separation as a primary structural failure mode, and that modeling textile material failure modes are sufficient to accurately capture postbuckling and final failure responses of the stiffened structures. The stiffened panels in this study have taken the integrally stiffened concept to an extent such that the stiffeners and skin are manufactured at the same time, as one single piece, and from the same composite textile layers. Stiffener separation is shown to be removed as a primary structural failure mode for unitized stiffened composite textile panels loaded under axial compression well into the postbuckling regime. Instead of stiffener separation, a material damaging and failure model effectively captures local post-peak material response via incorporating a mesoscale model using a multiscaling framework with a smeared crack element-based failure model in the macroscale stiffened panel. Material damage behavior is characterized by simple experimental tests and incorporated into the post-peak stiffness degradation law in the smeared crack implementation. Computational modeling results are in overall excellent agreement compared to the experimental responses.
Pyrotechnic shock at the orbiter/external tank forward attachment
NASA Technical Reports Server (NTRS)
Rogers, W. F.; Grissom, D. S.; Rhodes, L. R.
1980-01-01
During the initial certification test of the forward structural attachment of the space shuttle orbiter to the external tank, pyrotechnic shock from actuation of the separation device resulted in structural failure of the thermal protection tiles surrounding the attachment. Because of the high shock associated with the separation bolt, the development of alternative low shock separation designs was initiated. Two concepts that incorporate a 5.08 centimeter frangible nut as the release device were developed and tested.
NASA Astrophysics Data System (ADS)
Lee, Dennis T.; Chung, Jong Won; Park, Geonhee; Kim, Yun-Tae; Lee, Chang Young; Cho, Yeonchoo; Yoo, Pil J.; Han, Jae-Hee; Shin, Hyeon-Jin; Kim, Woo-Jae
2018-01-01
Semiconducting single-walled carbon nanotubes (SWNTs) show promise as core materials for next-generation solar cells and nanoelectronic devices. However, most commercial SWNT production methods generate mixtures of metallic SWNTs (m-SWNTs) and semiconducting SWNT (sc-SWNTs). Therefore, sc-SWNTs must be separated from their original mixtures before use. In this study, we investigated a polymer-based, noncovalent sc-SWNT separation approach, which is simple to perform and does not disrupt the electrical properties of the SWNTs, thus improving the performance of the corresponding sc-SWNT-based applications. By systematically investigating the effect that different structural features of the semiconductor polymer have on the separation of sc-SWNTs, we discovered that the length and configuration of the alkyl side chains and the rigidity of the backbone structure exert significant effects on the efficiency of sc-SWNT separation. We also found that electron transfer between the semiconductor polymers and sc-SWNTs is strongly affected by their energy-level alignment, which can be tailored by controlling the donor-acceptor configuration in the polymer backbone structures. Among the polymers investigated, the highly planar P8T2Z-C12 semiconductor polymer showed the best sc-SWNT separation efficiency and unprecedentedly strong electronic interaction with the sc-SWNTs, which is important for improving their performance in applications.
The separation between the 5'-3' ends in long RNA molecules is short and nearly constant.
Leija-Martínez, Nehemías; Casas-Flores, Sergio; Cadena-Nava, Rubén D; Roca, Joan A; Mendez-Cabañas, José A; Gomez, Eduardo; Ruiz-Garcia, Jaime
2014-12-16
RNA molecules play different roles in coding, decoding and gene expression regulation. Such roles are often associated to the RNA secondary or tertiary structures. The folding dynamics lead to multiple secondary structures of long RNA molecules, since an RNA molecule might fold into multiple distinct native states. Despite an ensemble of different structures, it has been theoretically proposed that the separation between the 5' and 3' ends of long single-stranded RNA molecules (ssRNA) remains constant, independent of their base content and length. Here, we present the first experimental measurements of the end-to-end separation in long ssRNA molecules. To determine this separation, we use single molecule Fluorescence Resonance Energy Transfer of fluorescently end-labeled ssRNA molecules ranging from 500 to 5500 nucleotides in length, obtained from two viruses and a fungus. We found that the end-to-end separation is indeed short, within 5-9 nm. It is remarkable that the separation of the ends of all RNA molecules studied remains small and similar, despite the origin, length and differences in their secondary structure. This implies that the ssRNA molecules are 'effectively circularized' something that might be a general feature of RNAs, and could result in fine-tuning for translation and gene expression regulation. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Ethanol-assisted gel chromatography for single-chirality separation of carbon nanotubes
NASA Astrophysics Data System (ADS)
Zeng, Xiang; Hu, Jinwen; Zhang, Xiao; Zhou, Naigen; Zhou, Weiya; Liu, Huaping; Xie, Sishen
2015-10-01
Surfactants or polymers are usually used for the liquid processing of carbon nanotubes for their structure separation. However, they are difficult to remove after separation, affecting the intrinsic properties and applications of the separated species. Here, we report an ethanol-assisted gel chromatography for the chirality separation of single-walled carbon nanotubes (SWCNTs), in which ethanol is employed to finely tune the density/coverage of sodium dodecyl sulfate (SDS) on nanotubes, and thus the interactions between SWCNTs and an allyl dextran-based gel. Incrementally increasing the ethanol content in a low-concentration SDS eluent leads to successive desorption of the different structure SWCNTs adsorbed on the gel, and to achieve multiple distinct (n, m) single-chirality species. The use of ethanol enables the working concentration of SDS to be reduced dramatically and also avoids the introduction of other surfactants or chemical reagents. More importantly, ethanol can be easily removed after separation. The ability of ethanol to tune the interactions between SWCNTs and the gel also gives a deeper insight into the separation mechanism of SWCNTs using gel chromatography.Surfactants or polymers are usually used for the liquid processing of carbon nanotubes for their structure separation. However, they are difficult to remove after separation, affecting the intrinsic properties and applications of the separated species. Here, we report an ethanol-assisted gel chromatography for the chirality separation of single-walled carbon nanotubes (SWCNTs), in which ethanol is employed to finely tune the density/coverage of sodium dodecyl sulfate (SDS) on nanotubes, and thus the interactions between SWCNTs and an allyl dextran-based gel. Incrementally increasing the ethanol content in a low-concentration SDS eluent leads to successive desorption of the different structure SWCNTs adsorbed on the gel, and to achieve multiple distinct (n, m) single-chirality species. The use of ethanol enables the working concentration of SDS to be reduced dramatically and also avoids the introduction of other surfactants or chemical reagents. More importantly, ethanol can be easily removed after separation. The ability of ethanol to tune the interactions between SWCNTs and the gel also gives a deeper insight into the separation mechanism of SWCNTs using gel chromatography. Electronic supplementary information (ESI) available: Fig. S1-S13, additional discussion and experimental details. See DOI: 10.1039/c5nr04116c
The Case of Effort Variables in Student Performance.
ERIC Educational Resources Information Center
Borg, Mary O.; And Others
1989-01-01
Tests the existence of a structural shift between above- and below-average students in the econometric models that explain students' grades in principles of economics classes. Identifies a structural shift and estimates separate models for above- and below-average students. Concludes that separate models as well as educational policies are…
77 FR 46699 - Honey From the People's Republic of China: Preliminary Results of Review
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-06
... quantity and value, its separate rate status, structure and affiliations, sales process, accounting and... quantity and value, separate rate status, structure and affiliations, sales process, accounting and... (CIT August 10, 2009) (''Commerce may, of course, begin its total AFA selection process by defaulting...
Simulations to Predict the Phase Behavior and Structure of Multipolar Colloidal Particles
NASA Astrophysics Data System (ADS)
Rutkowski, David Matthew
Colloidal particles with anisotropic charge distributions can assemble into a number of interesting structures including chains, lattices and micelles that could be useful in biotechnology, optics and electronics. The goal of this work is to understand how the properties of the colloidal particles, such as their charge distribution or shape, affect the selfassembly and phase behavior of collections of such particles. The specific aim of this work is to understand how the separation between a pair of oppositely signed charges affects the phase behavior and structure of assemblies of colloidal particles. To examine these particles, we have used both discontinuous molecular dynamics (DMD) and Monte Carlo (MC) simulation techniques. In our first study of colloidal particles with finite charge separation, we simulate systems of 2-D colloidal rods with four possible charge separations. Our simulations show that the charge separation does indeed have a large effect on the phase behavior as can be seen in the phase diagrams we construct for these four systems in the area fraction-reduced temperature plane. The phase diagrams delineate the boundaries between isotropic fluid, string-fluid and percolated fluid for all systems considered. In particular, we find that coarse gel-like structures tend to form at large charge separations while denser aggregates form at small charge separations, suggesting a route to forming low volume gels by focusing on systems with large charge separations. Next we examine systems of circular particles with four embedded charges of alternating sign fixed to a triangular lattice. This system is found to form a limit periodic structure, a theoretical structure with an infinite number of phase transitions, under specific conditions. The limit-periodic structure only forms when the rotation of the particles in the system is restricted to increments of pi/3. When the rotation is restricted to increments of th/6 or the rotation is continuous, related structures form including a striped phase and a phase with nematic order. Neither the distance from the point charges to the center of the particle nor the angle between the charges influences whether the system forms a limit-periodic structure, suggesting that point quadrupoles may also be able to form limit-periodic structures. Results from these simulations will likely aid in the quest to find an experimental realization of a limit-periodic structure. Next we examine the effect of charge separation on the self-assembly of systems of 2-D colloidal particles with off-center extended dipoles. We simulate systems with both small and large charge separations for a set of displacements of the dipole from the particle center. Upon cooling, these particles self-assemble into closed, cyclic structures at large displacements including dimers, triangular shapes and square shapes, and chain-like structures at small displacements. At extremely low temperatures, the cyclic structures form interesting lattices with particles of similar chirality grouped together. Results from this work could aid in the experimental construction of open lattice-like structures that could find use in photonic applications. Finally, we present work in collaboration with Drs. Bhuvnesh Bharti and Orlin Velev in which we investigate how the surface coverage affects the self-assembly of systems of Janus particles coated with both an iron oxide and fatty acid chain layer. We model these particles by decorating a sphere with evenly dispersed points that interact with points on other spheres through square-well interactions. The interactions are designed to mimic specific coverage values for the iron oxide/fatty acid chain layer. Structures similar to those found in experiment form readily in the simulations. The number of clusters formed as a function of surface coverage agrees well with experiment. The aggregation behavior of these novel particles can therefore, be described by a relatively simple model.
NASA Astrophysics Data System (ADS)
Gao, Ji; Zhang, Haijiang
2018-05-01
Cross-gradient joint inversion that enforces structural similarity between different models has been widely utilized in jointly inverting different geophysical data types. However, it is a challenge to combine different geophysical inversion systems with the cross-gradient structural constraint into one joint inversion system because they may differ greatly in the model representation, forward modelling and inversion algorithm. Here we propose a new joint inversion strategy that can avoid this issue. Different models are separately inverted using the existing inversion packages and model structure similarity is only enforced through cross-gradient minimization between two models after each iteration. Although the data fitting and structural similarity enforcing processes are decoupled, our proposed strategy is still able to choose appropriate models to balance the trade-off between geophysical data fitting and structural similarity. This is realized by using model perturbations from separate data inversions to constrain the cross-gradient minimization process. We have tested this new strategy on 2-D cross borehole synthetic seismic traveltime and DC resistivity data sets. Compared to separate geophysical inversions, our proposed joint inversion strategy fits the separate data sets at comparable levels while at the same time resulting in a higher structural similarity between the velocity and resistivity models.
Pi-Pi contacts are an overlooked protein feature relevant to phase separation.
Vernon, Robert McCoy; Chong, Paul Andrew; Tsang, Brian; Kim, Tae Hun; Bah, Alaji; Farber, Patrick; Lin, Hong; Forman-Kay, Julie Deborah
2018-02-09
Protein phase separation is implicated in formation of membraneless organelles, signaling puncta and the nuclear pore. Multivalent interactions of modular binding domains and their target motifs can drive phase separation. However, forces promoting the more common phase separation of intrinsically disordered regions are less understood, with suggested roles for multivalent cation-pi, pi-pi, and charge interactions and the hydrophobic effect. Known phase-separating proteins are enriched in pi-orbital containing residues and thus we analyzed pi-interactions in folded proteins. We found that pi-pi interactions involving non-aromatic groups are widespread, underestimated by force-fields used in structure calculations and correlated with solvation and lack of regular secondary structure, properties associated with disordered regions. We present a phase separation predictive algorithm based on pi interaction frequency, highlighting proteins involved in biomaterials and RNA processing. © 2018, Vernon et al.
On the Lagrangian description of unsteady boundary-layer separation. II - The spinning sphere
NASA Technical Reports Server (NTRS)
Van Dommelen, Leon L.
1990-01-01
A theory to explain the initial stages of unsteady separation was proposed by Van Dommelen and Cowley (1989). This theory is verified for the separation process that occurs at the equatorial plane of a sphere or a spheroid which is impulsively spun around an axis of symmetry. A Lagrangian numerical scheme is developed which gives results in good agreement with Eulerian computations, but which is significantly more accurate. This increased accuracy, and a simpler structure to the solution, also allows verification of the Eulerian structure, including the presence of logarithmic terms. Further, while the Eulerian computations broke down at the first occurrence of separation, it is found that the Lagrangian computation can be continued. It is argued that this separated solution does provide useful insight into the further evolution of the separated flow. A remarkable conclusion is that an unseparated vorticity layer at the wall, a familiar feature in unsteady separation processes, disappears in finite time.
NASA Astrophysics Data System (ADS)
Tvaskis, V.; Tvaskis, A.; Niculescu, I.; Abbott, D.; Adams, G. S.; Afanasev, A.; Ahmidouch, A.; Angelescu, T.; Arrington, J.; Asaturyan, R.; Avery, S.; Baker, O. K.; Benmouna, N.; Berman, B. L.; Biselli, A.; Blok, H. P.; Boeglin, W. U.; Bosted, P. E.; Brash, E.; Breuer, H.; Chang, G.; Chant, N.; Christy, M. E.; Connell, S. H.; Dalton, M. M.; Danagoulian, S.; Day, D.; Dodario, T.; Dunne, J. A.; Dutta, D.; El Khayari, N.; Ent, R.; Fenker, H. C.; Frolov, V. V.; Gaskell, D.; Garrow, K.; Gilman, R.; Gueye, P.; Hafidi, K.; Hinton, W.; Holt, R. J.; Horn, T.; Huber, G. M.; Jackson, H.; Jiang, X.; Jones, M. K.; Joo, K.; Kelly, J. J.; Keppel, C. E.; Kuhn, J.; Kinney, E.; Klein, A.; Kubarovsky, V.; Liang, Y.; Lolos, G.; Lung, A.; Mack, D.; Malace, S.; Markowitz, P.; Mbianda, G.; McGrath, E.; Mckee, D.; Meekins, D. G.; Mkrtchyan, H.; Napolitano, J.; Navasardyan, T.; Niculescu, G.; Nozar, M.; Ostapenko, T.; Papandreou, Z.; Potterveld, D.; Reimer, P. E.; Reinhold, J.; Roche, J.; Rock, S. E.; Schulte, E.; Segbefia, E.; Smith, C.; Smith, G. R.; Stoler, P.; Tadevosyan, V.; Tang, L.; Telfeyan, J.; Todor, L.; Ungaro, M.; Uzzle, A.; Vidakovic, S.; Villano, A.; Vulcan, W. F.; Warren, G.; Wesselmann, F.; Wojtsekhowski, B.; Wood, S. A.; Yan, C.; Zihlmann, B.
2018-04-01
Structure functions, as measured in lepton-nucleon scattering, have proven to be very useful in studying the partonic dynamics within the nucleon. However, it is experimentally difficult to separately determine the longitudinal and transverse structure functions, and consequently there are substantially less data available in particular for the longitudinal structure function. Here, we present separated structure functions for hydrogen and deuterium at low four-momentum transfer squared, Q2<1 GeV2 , and compare them with parton distribution parametrization and kT factorization approaches. While differences are found, the parametrizations generally agree with the data, even at the very low-Q2 scale of the data. The deuterium data show a smaller longitudinal structure function and a smaller ratio of longitudinal to transverse cross section, R , than the proton. This suggests either an unexpected difference in R for the proton and the neutron or a suppression of the gluonic distribution in nuclei.
Tvaskis, V.; Tvaskis, A.; Niculescu, I.; ...
2018-04-26
Structure functions, as measured in lepton-nucleon scattering, have proven to be very useful in studying the partonic dynamics within the nucleon. Furthermore, it is experimentally difficult to separately determine the longitudinal and transverse structure functions, and consequently there are substantially less data available in particular for the longitudinal structure function. Here, we present separated structure functions for hydrogen and deuterium at low four-momentum transfer squared, Q 2 < 1 GeV 2, and compare them with parton distribution parametrization and k T factorization approaches. While differences are found, the parametrizations generally agree with the data, even at the very low-Q 2more » scale of the data. The deuterium data show a smaller longitudinal structure function and a smaller ratio of longitudinal to transverse cross section, R, than the proton. This suggests either an unexpected difference in R for the proton and the neutron or a suppression of the gluonic distribution in nuclei.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tvaskis, V.; Tvaskis, A.; Niculescu, I.
Structure functions, as measured in lepton-nucleon scattering, have proven to be very useful in studying the partonic dynamics within the nucleon. Furthermore, it is experimentally difficult to separately determine the longitudinal and transverse structure functions, and consequently there are substantially less data available in particular for the longitudinal structure function. Here, we present separated structure functions for hydrogen and deuterium at low four-momentum transfer squared, Q 2 < 1 GeV 2, and compare them with parton distribution parametrization and k T factorization approaches. While differences are found, the parametrizations generally agree with the data, even at the very low-Q 2more » scale of the data. The deuterium data show a smaller longitudinal structure function and a smaller ratio of longitudinal to transverse cross section, R, than the proton. This suggests either an unexpected difference in R for the proton and the neutron or a suppression of the gluonic distribution in nuclei.« less
Experimental measurements of unsteady turbulent boundary layers near separation
NASA Technical Reports Server (NTRS)
Simpson, R. L.
1982-01-01
Investigations conducted to document the behavior of turbulent boundary layers on flat surfaces that separate due to adverse pressure gradients are reported. Laser and hot wire anemometers measured turbulence and flow structure of a steady free stream separating turbulent boundary layer produced on the flow of a wind tunnel section. The effects of sinusoidal and unsteadiness of the free stream velocity on this separating turbulent boundary layer at a reduced frequency were determined. A friction gage and a thermal tuft were developed and used to measure the surface skin friction and the near wall fraction of time the flow moves downstream for several cases. Abstracts are provided of several articles which discuss the effects of the periodic free stream unsteadiness on the structure or separating turbulent boundary layers.
Fu, Qianqian; Zhu, Biting; Ge, Jianping
2017-02-16
A SiO 2 colloidal photonic crystal film with a hierarchical porous structure is fabricated to demonstrate an integrated separation and colorimetric detection of chemical species for the first time. This new photonic crystal based thin layer chromatography process requires no dyeing, developing and UV irradiation compared to the traditional TLC. The assembling of mesoporous SiO 2 particles via a supersaturation-induced-precipitation process forms uniform and hierarchical photonic crystals with micron-scale cracks and mesopores, which accelerate the diffusion of developers and intensify the adsorption/desorption between the analytes and silica for efficient separation. Meanwhile, the chemical substances infiltrated to the voids of photonic crystals cause an increase of the refractive index and a large contrast of structural colors towards the unloaded part, so that the sample spots can be directly recognized with the naked eye before and after separation.
NASA Astrophysics Data System (ADS)
Finegan, Donal P.; Cooper, Samuel J.; Tjaden, Bernhard; Taiwo, Oluwadamilola O.; Gelb, Jeff; Hinds, Gareth; Brett, Dan J. L.; Shearing, Paul R.
2016-11-01
Separators are an integral component for optimising performance and safety of lithium-ion batteries; therefore, a clear understanding of how their microstructure affects cell performance and safety is crucial. Phase contrast X-ray microscopy is used here to capture the microstructures of commercial monolayer, tri-layer, and ceramic-coated lithium-ion battery polymer separators. Spatial variations in key structural parameters, including porosity, tortuosity factor and pore size distribution, are determined through the application of 3D quantification techniques and stereology. The architectures of individual layers in multi-layer membranes are characterised, revealing anisotropy in porosity, tortuosity factor and mean pore size of the three types of separator. Detailed structural properties of the individual layers of multi-layered membranes are then related with their expected effect on safety and rate capability of cells.
He, Liping; Sato, Kae; Abo, Mitsuru; Okubo, Akira; Yamazaki, Sunao
2003-03-01
Saccharides including mono- and disaccharides were quantitatively derivatized with 2-aminobenzoic acid (2-AA). These derivatives were then separated by capillary zone electrophoresis with UV detection using 50mM sodium phosphate buffer as the running electrolyte solution. In particular, the saccharide derivatives with the same molecular weight as 2-AA aldohexoses (mannose and glucose) and 2-AA aldopentoses (ribose and xylose) were well separated. The underlying reasons for separation were explored by studying their structural data using 1H and 13C NMR. It was found that the configurational difference between their hydroxyl group at C2 or C3 could cause the difference in Stokes' radii between their molecules and thus lead to different electrophoretic mobilities. The correlation between the electrophoretic behavior of these carbohydrate derivatives and their structures was studied utilizing the calculated molecular models of the 2-AA-labeled mannose, glucose, ribose, and xylose.
Molecular Mobility in Phase Segregated Bottlebrush Block Copolymer Melts
NASA Astrophysics Data System (ADS)
Yavitt, Benjamin; Gai, Yue; Song, Dongpo; Winter, H. Henning; Watkins, James
We investigate the linear viscoelastic behavior of poly(styrene)-block-poly(ethylene oxide) (PS-b-PEO) brush block copolymer (BBCP) materials over a range of vol. fractions and with side chain lengths below the entanglement molecular weights. The high chain mobility of the brush architecture results in rapid micro-phase segregation of the brush copolymer segments, which occurs during thermal annealing at mild temperatures. Master curves of the dynamic moduli were obtained by time-temperature superposition. The reduced degree of chain entanglements leads to a unique liquid-like rheology similar to that of bottlebrush homopolymers, even in the phase segregated state. We also explore the alignment of phase segregated domains at exceptionally low strain amplitudes (γ = 0.01) and mild processing temperatures using small angle X-ray scattering (SAXS). Domain orientation occurred readily at strains within the linear viscoelastic regime without noticeable effect on the moduli. This interplay of high molecular mobility and rapid phase segregation that are exhibited simultaneously in BBCPs is in contrast to the behavior of conventional linear block copolymer (LBCP) analogs and opens up new possibilities for processing BBCP materials for a wide range of nanotechnology applications. NSF Center for Hierarchical Manufacturing at the University of Massachusetts, Amherst (CMMI-1025020).
Space Weathering Trends (UV and NIR) at Lunar Magnetic Anomalies
NASA Astrophysics Data System (ADS)
Blewett, D. T.; Denevi, B. W.; Cahill, J. T.; Klima, R. L.
2017-12-01
Areas of magnetized crustal rocks on the Moon, known as magnetic anomalies, affect the flux of solar-wind ions that bombard the lunar surface. Hence, magnetically shielded areas could experience a space weathering regime different from the lunar norm. The unusual, high-albedo markings called lunar swirls are collocated with magnetic anomalies. The high albedo in the near-ultraviolet through near-infrared is consistent with the presence of material that is less weathered than that found in mature, non-shielded areas. We have undertaken an analysis of spectral trends associated with swirls in order to gain further insight into the nature and origin of these features. We examine swirls in the near-ultraviolet (Lunar Reconnaissance Orbiter LROC-WAC) and near-infrared (Chandrayaan Moon Mineralogy Mapper and Kaguya Spectral Profiler). We find that relative to the normal weathering trend, the swirls have a steeper NIR continuum slope (i.e., the continuum is redder than expected for their albedo) and steeper UV slope (i.e., greater UV drop-off than expected for their albedo). These trends can be understood in terms of differing relative abundances of microphase and nanophase metallic iron weathering products.
Enhanced gel formation in binary mixtures of nanocolloids with short-range attraction
NASA Astrophysics Data System (ADS)
Harden, James L.; Guo, Hongyu; Bertrand, Martine; Shendruk, Tyler N.; Ramakrishnan, Subramanian; Leheny, Robert L.
2018-01-01
Colloidal suspensions transform between fluid and disordered solid states as parameters such as the colloid volume fraction and the strength and nature of the colloidal interactions are varied. Seemingly subtle changes in the characteristics of the colloids can markedly alter the mechanical rigidity and flow behavior of these soft composite materials. This sensitivity creates both a scientific challenge and an opportunity for designing suspensions for specific applications. In this paper, we report a novel mechanism of gel formation in mixtures of weakly attractive nanocolloids with modest size ratio. Employing a combination of x-ray photon correlation spectroscopy, rheometry, and molecular dynamics simulations, we find that gels are stable at remarkably weaker attraction in mixtures with size ratio near two than in the corresponding monodisperse suspensions. In contrast with depletion-driven gelation at larger size ratio, gel formation in the mixtures is triggered by microphase demixing of the species into dense regions of immobile smaller colloids surrounded by clusters of mobile larger colloids that is not predicted by mean-field thermodynamic considerations. These results point to a new route for tailoring nanostructured colloidal solids through judicious combination of interparticle interaction and size distribution.
Selecting a separable parametric spatiotemporal covariance structure for longitudinal imaging data.
George, Brandon; Aban, Inmaculada
2015-01-15
Longitudinal imaging studies allow great insight into how the structure and function of a subject's internal anatomy changes over time. Unfortunately, the analysis of longitudinal imaging data is complicated by inherent spatial and temporal correlation: the temporal from the repeated measures and the spatial from the outcomes of interest being observed at multiple points in a patient's body. We propose the use of a linear model with a separable parametric spatiotemporal error structure for the analysis of repeated imaging data. The model makes use of spatial (exponential, spherical, and Matérn) and temporal (compound symmetric, autoregressive-1, Toeplitz, and unstructured) parametric correlation functions. A simulation study, inspired by a longitudinal cardiac imaging study on mitral regurgitation patients, compared different information criteria for selecting a particular separable parametric spatiotemporal correlation structure as well as the effects on types I and II error rates for inference on fixed effects when the specified model is incorrect. Information criteria were found to be highly accurate at choosing between separable parametric spatiotemporal correlation structures. Misspecification of the covariance structure was found to have the ability to inflate the type I error or have an overly conservative test size, which corresponded to decreased power. An example with clinical data is given illustrating how the covariance structure procedure can be performed in practice, as well as how covariance structure choice can change inferences about fixed effects. Copyright © 2014 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Z.; Cocke, D.L.
Dicarboxylic acids are important in environmental chemistry because they are intermediates in oxidative processes involved in natural remediation and waste management processes such as oxidative detoxification and advanced oxidation. Capillary electrophoresis (CE), a promising technique for separating and analyzing these intermediates, has been used to examine a series of dibasic acids of different structures and conformations. This series includes malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, maleic acid, fumaric acid, phthalic acid, and trans, trans-muconic acid. The CE parameters as well as structural variations (molecular structure and molecular isomers, buffer composition, pH, applied voltage, injection mode, current,more » temperature, and detection wavelength) that affect the separations and analytical results have been examined in this study. Those factors that affect the separation have been delineated. Among these parameters, the pH has been found to be the most important, which affects the double-layer of the capillary wall, the electro-osmotic flow and analyte mobility. The optimum pH for separating these dibasic acids, as well as the other parameters are discussed in detail and related to the development of methods for analyzing oxidation intermediates in oxidative waste management procedures.« less
NASA Astrophysics Data System (ADS)
Kim, Tom; Chien, Chih-Chun
2018-03-01
Experimental realizations of a variety of atomic binary Bose-Fermi mixtures have brought opportunities for studying composite quantum systems with different spin statistics. The binary atomic mixtures can exhibit a structural transition from a mixture into phase separation as the boson-fermion interaction increases. By using a path-integral formalism to evaluate the grand partition function and the thermodynamic grand potential, we obtain the effective potential of binary Bose-Fermi mixtures. Thermodynamic quantities in a broad range of temperatures and interactions are also derived. The structural transition can be identified as a loop of the effective potential curve, and the volume fraction of phase separation can be determined by the lever rule. For 6Li-7Li and 6Li-41K mixtures, we present the phase diagrams of the mixtures in a box potential at zero and finite temperatures. Due to the flexible densities of atomic gases, the construction of phase separation is more complicated when compared to conventional liquid or solid mixtures where the individual densities are fixed. For harmonically trapped mixtures, we use the local density approximation to map out the finite-temperature density profiles and present typical trap structures, including the mixture, partially separated phases, and fully separated phases.
High performance hybrid magnetic structure for biotechnology applications
Humphries, David E; Pollard, Martin J; Elkin, Christopher J
2005-10-11
The present disclosure provides a high performance hybrid magnetic structure made from a combination of permanent magnets and ferromagnetic pole materials which are assembled in a predetermined array. The hybrid magnetic structure provides means for separation and other biotechnology applications involving holding, manipulation, or separation of magnetizable molecular structures and targets. Also disclosed are: a method of assembling the hybrid magnetic plates, a high throughput protocol featuring the hybrid magnetic structure, and other embodiments of the ferromagnetic pole shape, attachment and adapter interfaces for adapting the use of the hybrid magnetic structure for use with liquid handling and other robots for use in high throughput processes.
High performance hybrid magnetic structure for biotechnology applications
Humphries, David E.; Pollard, Martin J.; Elkin, Christopher J.
2006-12-12
The present disclosure provides a high performance hybrid magnetic structure made from a combination of permanent magnets and ferromagnetic pole materials which are assembled in a predetermined array. The hybrid magnetic structure provides for separation and other biotechnology applications involving holding, manipulation, or separation of magnetic or magnetizable molecular structures and targets. Also disclosed are: a method of assembling the hybrid magnetic plates, a high throughput protocol featuring the hybrid magnetic structure, and other embodiments of the ferromagnetic pole shape, attachment and adapter interfaces for adapting the use of the hybrid magnetic structure for use with liquid handling and other robots for use in high throughput processes.
Apparatus and method for electrochemical modification of liquids
James, Patrick I
2015-04-21
An apparatus for electrochemical modification of liquid streams employing an electrolytic cell which includes an anode compartment defined by an anode structure where oxidation is effected, containing a liquid electrolyte anolyte, and a cathode compartment defined by a cathode structure where reduction is effected containing a liquid electrolyte catholyte. In addition, the electrolytic cell includes at least one additional compartment arranged at least partially between the anode compartment and the cathode compartment and separated from the anode compartment and the cathode compartment by a separator structure arranged to supports ionic conduction of current between the anode structure and the cathode structure.
Adil, Karim; Belmabkhout, Youssef; Pillai, Renjith S; Cadiau, Amandine; Bhatt, Prashant M; Assen, Ayalew H; Maurin, Guillaume; Eddaoudi, Mohamed
2017-06-06
The separation of related molecules with similar physical/chemical properties is of prime industrial importance and practically entails a substantial energy penalty, typically necessitating the operation of energy-demanding low temperature fractional distillation techniques. Certainly research efforts, in academia and industry alike, are ongoing with the main aim to develop advanced functional porous materials to be adopted as adsorbents for the effective and energy-efficient separation of various important commodities. Of special interest is the subclass of metal-organic frameworks (MOFs) with pore aperture sizes below 5-7 Å, namely ultra-microporous MOFs, which in contrast to conventional zeolites and activated carbons show great prospects for addressing key challenges in separations pertaining to energy and environmental sustainability, specifically materials for carbon capture and separation of olefin/paraffin, acetylene/ethylene, linear/branched alkanes, xenon/krypton, etc. In this tutorial review we discuss the latest developments in ultra-microporous MOF adsorbents and their use as separating agents via thermodynamics and/or kinetics and molecular sieving. Appreciably, we provide insights into the distinct microscopic mechanisms governing the resultant separation performances, and suggest a plausible correlation between the inherent structural features/topology of MOFs and the associated gas/vapour separation performance.
Factor Structure and Scale Reliabilities of the Adjective Check List Across Time
ERIC Educational Resources Information Center
Miller, Stephen H.; And Others
1978-01-01
Investigated factor structure and scale reliabilities of Gough's Adjective Check List (ACL) and their stability over time. Employees in a community mental health center completed the ACL twice, separated by a one-year interval. After each administration, separate factor analyses were computed. All scales had highly significant test-retest…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, L.H., E-mail: Luhui.Han@tum.de; Hu, X.Y., E-mail: Xiangyu.Hu@tum.de; Adams, N.A., E-mail: Nikolaus.Adams@tum.de
In this paper we present a scale separation approach for multi-scale modeling of free-surface and two-phase flows with complex interface evolution. By performing a stimulus-response operation on the level-set function representing the interface, separation of resolvable and non-resolvable interface scales is achieved efficiently. Uniform positive and negative shifts of the level-set function are used to determine non-resolvable interface structures. Non-resolved interface structures are separated from the resolved ones and can be treated by a mixing model or a Lagrangian-particle model in order to preserve mass. Resolved interface structures are treated by the conservative sharp-interface model. Since the proposed scale separationmore » approach does not rely on topological information, unlike in previous work, it can be implemented in a straightforward fashion into a given level set based interface model. A number of two- and three-dimensional numerical tests demonstrate that the proposed method is able to cope with complex interface variations accurately and significantly increases robustness against underresolved interface structures.« less
Ordering-separation phase transitions in a Co3V alloy
NASA Astrophysics Data System (ADS)
Ustinovshchikov, Yu. I.
2017-01-01
The microstructure of the Co3V alloy formed by heat treatment at various temperatures is studied by transmission electron microscopy. Two ordering-separation phase transitions are revealed at temperatures of 400-450 and 800°C. At the high-temperature phase separation, the microstructure consists of bcc vanadium particles and an fcc solid solution; at the low-temperature phase separation, the microstructure is cellular. In the ordering range, the microstructure consists of chemical compound Co3V particles chaotically arranged in the solid solution. The structure of the Co3V alloy is shown not to correspond to the structures indicated in the Co-V phase diagram at any temperatures.
Makowiecki, D.M.
1996-04-09
A complex modulated structure is described for reactive elements that have the capability of considerably more heat than organic explosives while generating a working fluid or gas. The explosive and method of fabricating same involves a plurality of very thin, stacked, multilayer structures, each composed of reactive components, such as aluminum, separated from a less reactive element, such as copper oxide, by a separator material, such as carbon. The separator material not only separates the reactive materials, but it reacts therewith when detonated to generate higher temperatures. The various layers of material, thickness of 10 to 10,000 angstroms, can be deposited by magnetron sputter deposition. The explosive detonates and combusts a high velocity generating a gas, such as CO, and high temperatures. 2 figs.
NASA Astrophysics Data System (ADS)
Yu, Peng; Lian, Zhongxu; Xu, Jinkai; Yu, Zhanjiang; Ren, Wanfei; Yu, Huadong
2018-04-01
In this paper, a lot of micron-sized sand granular structures were formed on the substrate of the stainless steel mesh (SSM) by laser treatment. The rough surface with sand granular structures showed superhydrophilic in air and superoleophobic under water. With its special wettability, the SSM by laser treatment could achieve the separation of the oil/water mixture, showing good durability and high separation efficiency, which was very useful in the practical application of large-scale oil/water separation facility for reducing the impacts of oil leaked on the environment. In addition, it showed that the laser-treated SSM had a very high separation rate. The development of the laser-treated SSM is a simple, environmental, economical and high-efficiency method, which provides a new approach to the production of high efficiency facilities for oil/water separation.
[Influence of mobile phase composition on chiral separation of organic selenium racemates].
Han, Xiao-qian; Qi, Bang-feng; Dun, Hui-juan; Zhu, Xin-yi; Na, Peng-jun; Jiang, Sheng-xiang; Chen, Li-ren
2002-05-01
The chiral separation of some chiral compounds with similar structure on the cellulose tris (3,5-dimethylphenylcarbamate) chiral stationary phase prepared by us was obtained. Ternary mobile phases influencing chiral recognition were investigated. A mode of interaction between the structural character of samples and chiral stationary phase is discussed. The results indicated that the retention and chiral separation of the analytes had a bigger change with minute addition of alcohols or acetonitrile as modifier in n-hexane/2-propanol (80/20, volume ratio) binary mobile phase.
Tabani, Hadi; Fakhari, Ali Reza; Nojavan, Saeed
2014-10-01
Prediction of chiral separation for a compound using a chiral selector is an interesting and debatable work. For this purpose, in this study 23 chiral basic drugs with different chemical structures were selected as model solutes and the influence of their chemical structures on the enantioseparation in the presence of maltodextrin (MD) as chiral selector was investigated. For chiral separation, a 100-mM phosphate buffer solution (pH 3.0) containing 10% (w/v) MD with dextrose equivalent (DE) of 4-7 as chiral selector at the temperature of 25°C and voltage of 20 kV was used. Under this condition, baseline separation was achieved for nine chiral compounds and partial separation was obtained for another six chiral compounds while no enantioseparation was obtained for the remaining eight compounds. The results showed that the existence of at least two aromatic rings or cycloalkanes and an oxygen or nitrogen atom or -CN group directly bonded to the chiral center are necessary for baseline separation. With the obtained results in this study, chiral separation of a chiral compound can be estimated with MD-modified capillary electrophoresis before analysis. This prediction will minimize the number of preliminary experiments required to resolve enantiomers and will save time and cost. © 2014 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Long, J.; New, T. H.
2016-07-01
Vortical structures and dynamics of a Re h = 2100 elliptic jet impinging upon a flat plate were studied at H/ d h = 1, 2 and 4 jet-to-plate separation distances. Flow investigations were conducted along both its major and minor planes using laser-induced fluorescence and digital particle image velocimetry techniques. Results show that the impingement process along the major plane largely consists of primary jet ring-vortex and wall-separated secondary vortex formations, where they subsequently separate from the flat plate at smaller H/ d h = 1 and 2 separation distances. Key vortex formation locations occur closer to the impingement point as the separation distance increases. Interestingly, braid vortices and rib structures begin to take part in the impingement process at H/ d h = 4 and wave instabilities dominate the flow field. In contrast, significantly more coherent primary and secondary vortices with physically larger vortex core sizes and higher vortex strengths are observed along the minor plane, with no signs of braid vortices and rib structures. Lastly, influences of these different flow dynamics on the major and minor plane instantaneous and mean skin friction coefficient levels are investigated to shed light on the effects of separation distance on the wall shear stress distributions.
Separator assembly for use in spent nuclear fuel shipping cask
Bucholz, James A.
1983-01-01
A separator assembly for use in a spent nuclear fuel shipping cask has a honeycomb-type wall structure defining parallel cavities for holding nuclear fuel assemblies. Tubes formed of an effective neutron-absorbing material are embedded in the wall structure around each of the cavities and provide neutron flux traps when filled with water.
Numerical investigation of separated nozzle flows
NASA Technical Reports Server (NTRS)
Chen, C. L.; Chakravarthy, S. R.; Hung, C. M.
1994-01-01
A numerical study of axisymmetric overexpanded nozzle is presented. The flow structure of the startup and throttle-down processes are examined. During the impulsive startup process, observed flow features include the Mach disk, separation shock, Mach stem, vortex core, contact surface, slip stream, initial shock front, and shocklet. Also the movement of the Mach disk is not monotonical in the downstream direction. For a range of pressure ratios, hysteresis phenomenon occurs; different solutions were obtained depending on different processes. Three types of flow structures were observed. The location of separation point and the lower end turning point of hysteresis are closely predicted. A high peak of pressure is associated with the nozzle flow reattachment. The reversed vortical structure and affects engine performance.
Brumboiu, Iulia Emilia; Prokopiou, Georgia; Kronik, Leeor; Brena, Barbara
2017-07-28
We analyse the valence electronic structure of cobalt phthalocyanine (CoPc) by means of optimally tuning a range-separated hybrid functional. The tuning is performed by modifying both the amount of short-range exact exchange (α) included in the hybrid functional and the range-separation parameter (γ), with two strategies employed for finding the optimal γ for each α. The influence of these two parameters on the structural, electronic, and magnetic properties of CoPc is thoroughly investigated. The electronic structure is found to be very sensitive to the amount and range in which the exact exchange is included. The electronic structure obtained using the optimal parameters is compared to gas-phase photo-electron data and GW calculations, with the unoccupied states additionally compared with inverse photo-electron spectroscopy measurements. The calculated spectrum with tuned γ, determined for the optimal value of α = 0.1, yields a very good agreement with both experimental results and with GW calculations that well-reproduce the experimental data.
Line-of-sight structure toward strong lensing galaxy clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bayliss, Matthew B.; Johnson, Traci; Sharon, Keren
2014-03-01
We present an analysis of the line-of-sight structure toward a sample of 10 strong lensing cluster cores. Structure is traced by groups that are identified spectroscopically in the redshift range, 0.1 ≤ z ≤ 0.9, and we measure the projected angular and comoving separations between each group and the primary strong lensing clusters in each corresponding line of sight. From these data we measure the distribution of projected angular separations between the primary strong lensing clusters and uncorrelated large-scale structure as traced by groups. We then compare the observed distribution of angular separations for our strong lensing selected lines ofmore » sight against the distribution of groups that is predicted for clusters lying along random lines of sight. There is clear evidence for an excess of structure along the line of sight at small angular separations (θ ≤ 6') along the strong lensing selected lines of sight, indicating that uncorrelated structure is a significant systematic that contributes to producing galaxy clusters with large cross sections for strong lensing. The prevalence of line-of-sight structure is one of several biases in strong lensing clusters that can potentially be folded into cosmological measurements using galaxy cluster samples. These results also have implications for current and future studies—such as the Hubble Space Telescope Frontier Fields—that make use of massive galaxy cluster lenses as precision cosmological telescopes; it is essential that the contribution of line-of-sight structure be carefully accounted for in the strong lens modeling of the cluster lenses.« less
Yan, Xia; Wang, Li-Juan; Wu, Zhen; Wu, Yun-Long; Liu, Xiu-Xiu; Chang, Fang-Rong; Fang, Mei-Juan; Qiu, Ying-Kun
2016-10-15
Microbial metabolites represent an important source of bioactive natural products, but always exhibit diverse of chemical structures or complicated chemical composition with low active ingredients content. Traditional separation methods rely mainly on off-line combination of open-column chromatography and preparative high performance liquid chromatography (HPLC). However, the multi-step and prolonged separation procedure might lead to exposure to oxygen and structural transformation of metabolites. In the present work, a new two-dimensional separation workflow for fast isolation and analysis of microbial metabolites from Chaetomium globosum SNSHI-5, a cytotoxic fungus derived from extreme environment. The advantage of this analytical comprehensive two-dimensional liquid chromatography (2D-LC) lies on its ability to analyze the composition of the metabolites, and to optimize the separation conditions for the preparative 2D-LC. Furthermore, gram scale preparative 2D-LC separation of the crude fungus extract could be performed on a medium-pressure liquid chromatograph×preparative high-performance liquid chromatography system, under the optimized condition. Interestingly, 12 cytochalasan derivatives, including two new compounds named cytoglobosin Ab (3) and isochaetoglobosin Db (8), were successfully obtained with high purity in a short period of time. The structures of the isolated metabolites were comprehensively characterized by HR ESI-MS and NMR. To be highlighted, this is the first report on the combination of analytical and preparative 2D-LC for the separation of microbial metabolites. The new workflow exhibited apparent advantages in separation efficiency and sample treatment capacity compared with conventional methods. Copyright © 2016 Elsevier B.V. All rights reserved.
Ethanol-assisted gel chromatography for single-chirality separation of carbon nanotubes.
Zeng, Xiang; Hu, Jinwen; Zhang, Xiao; Zhou, Naigen; Zhou, Weiya; Liu, Huaping; Xie, Sishen
2015-10-21
Surfactants or polymers are usually used for the liquid processing of carbon nanotubes for their structure separation. However, they are difficult to remove after separation, affecting the intrinsic properties and applications of the separated species. Here, we report an ethanol-assisted gel chromatography for the chirality separation of single-walled carbon nanotubes (SWCNTs), in which ethanol is employed to finely tune the density/coverage of sodium dodecyl sulfate (SDS) on nanotubes, and thus the interactions between SWCNTs and an allyl dextran-based gel. Incrementally increasing the ethanol content in a low-concentration SDS eluent leads to successive desorption of the different structure SWCNTs adsorbed on the gel, and to achieve multiple distinct (n, m) single-chirality species. The use of ethanol enables the working concentration of SDS to be reduced dramatically and also avoids the introduction of other surfactants or chemical reagents. More importantly, ethanol can be easily removed after separation. The ability of ethanol to tune the interactions between SWCNTs and the gel also gives a deeper insight into the separation mechanism of SWCNTs using gel chromatography.
Method for sequencing DNA base pairs
Sessler, Andrew M.; Dawson, John
1993-01-01
The base pairs of a DNA structure are sequenced with the use of a scanning tunneling microscope (STM). The DNA structure is scanned by the STM probe tip, and, as it is being scanned, the DNA structure is separately subjected to a sequence of infrared radiation from four different sources, each source being selected to preferentially excite one of the four different bases in the DNA structure. Each particular base being scanned is subjected to such sequence of infrared radiation from the four different sources as that particular base is being scanned. The DNA structure as a whole is separately imaged for each subjection thereof to radiation from one only of each source.
NASA Astrophysics Data System (ADS)
Arahman, Nasrul; Maimun, Teuku; Mukramah, Syawaliah
2017-01-01
The composition of polymer solution and the methods of membrane preparation determine the solidification process of membrane. The formation of membrane structure prepared via non-solvent induced phase separation (NIPS) method is mostly determined by phase separation process between polymer, solvent, and non-solvent. This paper discusses the phase separation process of polymer solution containing Polyethersulfone (PES), N-methylpirrolidone (NMP), and surfactant Tetronic 1307 (Tet). Cloud point experiment is conducted to determine the amount of non-solvent needed on induced phase separation. Amount of water required as a non-solvent decreases by the addition of surfactant Tet. Kinetics of phase separation for such system is studied by the light scattering measurement. With the addition of Tet., the delayed phase separation is observed and the structure growth rate decreases. Moreover, the morphology of fabricated membrane from those polymer systems is analyzed by scanning electron microscopy (SEM). The images of both systems show the formation of finger-like macrovoids through the cross-section.
Environmental Enforcement of Federal Agencies: A Struggle for Power under the ’New Federalism’
1990-01-01
Separation of Powers Dillemma ............ . 55 III. Establishment of Goals...federal power. Currently that countervailing federal 54 power does not exist because of the restraints imposed on EPA. 16 d. Separation of Powers Dilemma...structure and implies a necessary separation of powers . In Federalist 48 Madison discussed the connections necessary to maintain a proper separation of powers :
Xiaojun, Yan; Dawei, Huang; Xiaoyong, Zhang; Ying, Liu; Qiaolong, Yang
2015-12-01
This paper proposes a SMA (shape memory alloy) wire-based separation actuator with high-load capacity and simple structure. The novel actuator is based on a one-stage locking mechanism, which means that the separation is directly driven by the SMA wire. To release a large preload, a group of anti-friction rollers are adopted to reduce the force for triggering. In addition, two SMA wires are used redundantly to ensure a high reliability. After separation, the actuator can be reset automatically without any auxiliary tool or manual operation. Three prototypes of the separation actuator are fabricated and tested. According to the performance test results, the actuator can release a maximum preload of 40 kN. The separation time tends to decrease as the operation current increases and it can be as short as 0.5 s under a 7.5 A (the voltage is 5.8 V) current. Lifetime test indicates that the actuator has a lifetime of more than 50 cycles. The environmental tests demonstrate that the actuator can endure the typical thermal and vibration environment tests without unexpected separation or structure damage, and separate normally after these environment tests.
Sustainable Separations of C4‐Hydrocarbons by Using Microporous Materials
Gehre, Mascha; Guo, Zhiyong; Rothenberg, Gadi
2017-01-01
Abstract Petrochemical refineries must separate hydrocarbon mixtures on a large scale for the production of fuels and chemicals. Typically, these hydrocarbons are separated by distillation, which is extremely energy intensive. This high energy cost can be mitigated by developing materials that can enable efficient adsorptive separation. In this critical review, the principles of adsorptive separation are outlined, and then the case for C4 separations by using zeolites and metal–organic frameworks (MOFs) is examined. By analyzing both experimental and theoretical studies, the challenges and opportunities in C4 separation are outlined, with a focus on the separation mechanisms and structure–selectivity correlations. Zeolites are commonly used as adsorbents and, in some cases, can separate C4 mixtures well. The pore sizes of eight‐membered‐ring zeolites, for example, are in the order of the kinetic diameters of C4 isomers. Although zeolites have the advantage of a rigid and highly stable structure, this is often difficult to functionalize. MOFs are attractive candidates for hydrocarbon separation because their pores can be tailored to optimize the adsorbate–adsorbent interactions. MOF‐5 and ZIF‐7 show promising results in separating all C4 isomers, but breakthrough experiments under industrial conditions are needed to confirm these results. Moreover, the flexibility of the MOF structures could hamper their application under industrial conditions. Adsorptive separation is a promising viable alternative and it is likely to play an increasingly important role in tomorrow's refineries. PMID:28621064
Filipiak, Katarzyna; Klein, Daniel; Roy, Anuradha
2017-01-01
The problem of testing the separability of a covariance matrix against an unstructured variance-covariance matrix is studied in the context of multivariate repeated measures data using Rao's score test (RST). The RST statistic is developed with the first component of the separable structure as a first-order autoregressive (AR(1)) correlation matrix or an unstructured (UN) covariance matrix under the assumption of multivariate normality. It is shown that the distribution of the RST statistic under the null hypothesis of any separability does not depend on the true values of the mean or the unstructured components of the separable structure. A significant advantage of the RST is that it can be performed for small samples, even smaller than the dimension of the data, where the likelihood ratio test (LRT) cannot be used, and it outperforms the standard LRT in a number of contexts. Monte Carlo simulations are then used to study the comparative behavior of the null distribution of the RST statistic, as well as that of the LRT statistic, in terms of sample size considerations, and for the estimation of the empirical percentiles. Our findings are compared with existing results where the first component of the separable structure is a compound symmetry (CS) correlation matrix. It is also shown by simulations that the empirical null distribution of the RST statistic converges faster than the empirical null distribution of the LRT statistic to the limiting χ 2 distribution. The tests are implemented on a real dataset from medical studies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The effect of glycosylation on the transferrin structure: A molecular dynamic simulation analysis.
Ghanbari, Z; Housaindokht, M R; Bozorgmehr, M R; Izadyar, M
2016-09-07
Transferrins have been defined by the highly cooperative binding of iron and a carbonate anion to form a Fe-CO3-Tf ternary complex. As such, the layout of the binding site residues affects transferrin function significantly; In contrast to N-lobe, C-lobe binding site of the transferrin structure has been less characterized and little research which surveyed the interaction of carbonate with transferrin in the C-lobe binding site has been found. In the present work, molecular dynamic simulation was employed to gain access into the molecular level understanding of carbonate binding site and their interactions in each lobe. Residues responsible for carbonate binding of transferrin structure were pointed out. In addition, native human transferrin is a glycoprotein that two N-linked complex glycan chains located in the C-lobe. Usually, in the molecular dynamic simulation for simplifying, glycan is removed from the protein structure. Here, we explore the effect of glycosylation on the transferrin structure. Glycosylation appears to have an effect on the layout of the binding site residue and transferrin structure. On the other hand, sometimes the entire transferrin formed by separated lobes that it allows the results to be interpreted in a straightforward manner rather than more parameters required for full length protein. But, it should be noted that there are differences between the separated lobe and full length transferrin, hence, a comparative analysis by the molecular dynamic simulation was performed to investigate such structural variations. Results revealed that separation in C-lobe caused a significant structural variation in comparison to N-lobe. Consequently, the separated lobes and the full length one are different, showing the importance of the interlobe communication and the impact of the lobes on each other in the transferrin structure. Copyright © 2016 Elsevier Ltd. All rights reserved.
Evidence for the interaction of large scale magnetic structures in solar flares
NASA Technical Reports Server (NTRS)
Mandrini, C. H.; Demoulin, P.; Henoux, J. C.; Machado, M. E.
1991-01-01
By modeling the observed vertical magnetic field of an active region AR 2372 by the potential field of an ensemble of magnetic dipoles, the likely location of the separatrices, surfaces that separates cells of different field line connectivities, and of the separator which is the intersection of the separatrices, is derived. Four of the five off-band H-alpha kernels of a flare that occurred less than 20 minutes before obtaining the magnetogram are shown to have taken place near or at the separatrices. These H-alpha kernels are connected by field lines that pass near the separator. This indicates that the flare may have resulted from the interaction in the separator region of large scale magnetic structures.
2016-03-01
separate but adjoining structures that have a common cockloft (attic). d. Type 4 Construction—Heavy Timber Heavy timber construction has masonry...such as in separate but adjoining structures that have a common cockloft (attic). Type 4 Construction—Heavy Timber Heavy timber construction has...information would be of some use to the FS as a whole. A secondary purpose for this thesis is that by documenting the basic structure of the FDNY CTDP
Selective Adsorption of Ethane over Ethylene in PCN-245: Impacts of Interpenetrated Adsorbent.
Lv, Daofei; Shi, Renfeng; Chen, Yongwei; Wu, Ying; Wu, Houxiao; Xi, Hongxia; Xia, Qibin; Li, Zhong
2018-03-07
The separation of ethane from ethylene using cryogenic distillation is an energy-intensive process in the industry. With lower energetic consumption, the adsorption technology provides the opportunities for developing the industry with economic sustainability. We report an iron-based metal-organic framework PCN-245 with interpenetrated structures as an ethane-selective adsorbent for ethylene/ethane separation. The material maintains stability up to 625 K, even after exposure to 80% humid atmosphere for 20 days. Adsorptive separation experiments on PCN-245 at 100 kPa and 298 K indicated that ethane and ethylene uptakes of PCN-245 were 3.27 and 2.39 mmol, respectively, and the selectivity of ethane over ethylene was up to 1.9. Metropolis Monte Carlo calculations suggested that the interpenetrated structure of PCN-245 created greater interaction affinity for ethane than ethylene through the crossing organic linkers, which is consistent with the experimental results. This work highlights the potential application of adsorbents with the interpenetrated structure for ethane separation from ethylene.
Collision Cross Sections and Ion Mobility Separation of Fragment Ions from Complex N-Glycans.
Harvey, David J; Watanabe, Yasunori; Allen, Joel D; Rudd, Pauline; Pagel, Kevin; Crispin, Max; Struwe, Weston B
2018-06-01
Ion mobility mass spectrometry (IM-MS) holds great potential for structural glycobiology, in particular in its ability to resolve glycan isomers. Generally, IM-MS has largely been applied to intact glycoconjugate ions with reports focusing on the separation of different adduct types. Here, we explore IM separation and report the collision cross section (CCS) of complex type N-glycans and their fragments in negative ion mode following collision-induced dissociation (CID). CCSs of isomeric fragment ions were found, in some cases, to reveal structural details that were not present in CID spectra themselves. Many fragment ions were confirmed as possessing multiple structure, details of which could be obtained by comparing their drift time profiles to different glycans. By using fragmentation both before and after mobility separation, information was gathered on the fragmentation pathways producing some of the ions. These results help demonstrate the utility of IM and will contribute to the growing use of IM-MS for glycomics. Graphical Abstract ᅟ.
Collision Cross Sections and Ion Mobility Separation of Fragment Ions from Complex N-Glycans
NASA Astrophysics Data System (ADS)
Harvey, David J.; Watanabe, Yasunori; Allen, Joel D.; Rudd, Pauline; Pagel, Kevin; Crispin, Max; Struwe, Weston B.
2018-04-01
Ion mobility mass spectrometry (IM-MS) holds great potential for structural glycobiology, in particular in its ability to resolve glycan isomers. Generally, IM-MS has largely been applied to intact glycoconjugate ions with reports focusing on the separation of different adduct types. Here, we explore IM separation and report the collision cross section (CCS) of complex type N-glycans and their fragments in negative ion mode following collision-induced dissociation (CID). CCSs of isomeric fragment ions were found, in some cases, to reveal structural details that were not present in CID spectra themselves. Many fragment ions were confirmed as possessing multiple structure, details of which could be obtained by comparing their drift time profiles to different glycans. By using fragmentation both before and after mobility separation, information was gathered on the fragmentation pathways producing some of the ions. These results help demonstrate the utility of IM and will contribute to the growing use of IM-MS for glycomics. [Figure not available: see fulltext.
Seo, Youjin; Andaya, Armann; Leary, Julie A.
2012-01-01
Heparin is a linear sulfated polysaccharide widely used in medicine because of its anticoagulant properties. The various sulfation and/or acetylation patterns on heparin impart different degrees of conformational change around the glycosidic bonds and subsequently alter its function as an anticoagulant, anticancer, or antiviral drug. Characterization of these structures is important for eventual elucidation of its function but presents itself as an analytical challenge due to the inherent heterogeneity of the carbohydrates. Heparin octasaccharide structural isomers of various sulfation patterns were investigated using ion mobility mass spectrometry (IMMS). In addition to distinguishing the isomers, we report the preparation and tandem mass spectrometry analysis for multiple sulfated or acetylated oligosaccharides. Herein, our data indicate that heparin octasaccharide isomers were separated based on their structural conformations in the ion mobility cell. Subsequent to this separation, isomers were further distinguished using product ions resulting from tandem mass spectrometry. Overall, IMMS analysis was used to successfully characterize and separate individual isomers and subsequently measure their conformations. PMID:22283665
NASA Astrophysics Data System (ADS)
Shi, Junli; Xia, Yonggao; Yuan, Zhizhang; Hu, Huasheng; Li, Xianfeng; Zhang, Huamin; Liu, Zhaoping
2015-02-01
Separators with high reliability and security are in urgent demand for the advancement of high performance lithium ion batteries. Here, we present a new and practical porous membrane with three-dimension (3D) heat-resistant skeleton and high curvature pore structure as a promising separator candidate to facilitate advances in battery safety and performances beyond those obtained from the conventional separators. The unique material properties combining with the well-developed structural characteristics enable the 3D porous skeleton to own several favorable properties, including superior thermal stability, good wettability with liquid electrolyte, high ion conductivity and internal short-circuit protection function, etc. which give rise to acceptable battery performances. Considering the simply and cost-effective preparation process, the porous membrane is deemed to be an interesting direction for the future lithium ion battery separator.
NASA Astrophysics Data System (ADS)
Li, Hao; Niu, Dong-Hui; Zhou, Hui; Chao, Chun-Ying; Wu, Li-Jun; Han, Pei-Lin
2018-05-01
Hydroxyl-terminated polybutadiene grafted methoxyl polyethylene glycol (HTPB-g-MPEG) with different arm length were synthesized by grafting methoxyl poly(ethylene glycol)s (MPEGs, Mn = 350, 750, 1900 and 5000, respectively) to the hydroxyl-terminated polybutadiene (HTPB) molecule using isophorone diisocyanate (IPDI) as the coupling agent, and blended with PVDF to fabricate porous separators via phase inversion process. By measuring the composition, morphology and ion conductivity etc., the influence of HTPB-g-MPEG on structure and property of blend separators were discussed. Compared with pure PVDF separator with comparable porous structure, the adoption of HTPB-g-MPEG could not only decrease the crystallinity, but also enhance the stability of entrapped liquid electrolyte and corresponding ion conductivity. The cells assembled with such separators showed good initial discharge capacity and cyclic stability.
Shi, Junli; Xia, Yonggao; Yuan, Zhizhang; Hu, Huasheng; Li, Xianfeng; Zhang, Huamin; Liu, Zhaoping
2015-01-01
Separators with high reliability and security are in urgent demand for the advancement of high performance lithium ion batteries. Here, we present a new and practical porous membrane with three-dimension (3D) heat-resistant skeleton and high curvature pore structure as a promising separator candidate to facilitate advances in battery safety and performances beyond those obtained from the conventional separators. The unique material properties combining with the well-developed structural characteristics enable the 3D porous skeleton to own several favorable properties, including superior thermal stability, good wettability with liquid electrolyte, high ion conductivity and internal short-circuit protection function, etc. which give rise to acceptable battery performances. Considering the simply and cost-effective preparation process, the porous membrane is deemed to be an interesting direction for the future lithium ion battery separator. PMID:25653104
Shi, Junli; Xia, Yonggao; Yuan, Zhizhang; Hu, Huasheng; Li, Xianfeng; Zhang, Huamin; Liu, Zhaoping
2015-02-05
Separators with high reliability and security are in urgent demand for the advancement of high performance lithium ion batteries. Here, we present a new and practical porous membrane with three-dimension (3D) heat-resistant skeleton and high curvature pore structure as a promising separator candidate to facilitate advances in battery safety and performances beyond those obtained from the conventional separators. The unique material properties combining with the well-developed structural characteristics enable the 3D porous skeleton to own several favorable properties, including superior thermal stability, good wettability with liquid electrolyte, high ion conductivity and internal short-circuit protection function, etc. which give rise to acceptable battery performances. Considering the simply and cost-effective preparation process, the porous membrane is deemed to be an interesting direction for the future lithium ion battery separator.
Few, Sheridan; Chia, Cleaven; Teo, Daniel; Kirkpatrick, James; Nelson, Jenny
2017-07-19
Electronic polarisation contributes to the electronic landscape as seen by separating charges in organic materials. The nature of electronic polarisation depends on the polarisability, density, and arrangement of polarisable molecules. In this paper, we introduce a microscopic, coarse-grained model in which we treat each molecule as a polarisable site, and use an array of such polarisable dipoles to calculate the electric field and associated energy of any arrangement of charges in the medium. The model incorporates chemical structure via the molecular polarisability and molecular packing patterns via the structure of the array. We use this model to calculate energies of charge pairs undergoing separation in finite fullerene lattices of different chemical and crystal structures. The effective dielectric constants that we estimate from this approach are in good quantitative agreement with those measured experimentally in C 60 and phenyl-C 61 -butyric acid methyl ester (PCBM) films, but we find significant differences in dielectric constant depending on packing and on direction of separation, which we rationalise in terms of density of polarisable fullerene cages in regions of high field. In general, we find lattices containing molecules of more isotropic polarisability tensors exhibit higher dielectric constants. By exploring several model systems we conclude that differences in molecular polarisability (and therefore, chemical structure) appear to be less important than differences in molecular packing and separation direction in determining the energetic landscape for charge separation. We note that the results are relevant for finite lattices, but not necessarily for infinite systems. We propose that the model could be used to design molecular systems for effective electronic screening.
Unique surface adsorption behaviors of serum proteins on chemically uniform and alternating surfaces
NASA Astrophysics Data System (ADS)
Song, Sheng
With increasing interests of studying proteins adsorption on the surfaces with nanoscale features in biomedical field, it is crucial to have fundamental understandings on how the proteins are adsorbed on such a surface and what factors contribute to the driving forces of adsorption. Besides, exploring more available nanoscale templates would greatly offer more possibilities one could design surface bio-detection methods with favorable protein-surface interactions. Thus, to fulfill the purpose, the work in this dissertation has been made into three major sections. First, to probe the intermediate states which possibly exist between stable and unstable phases described in mean-field theory diagram, a solvent vapor annealing method is chosen to slowly induce the copolymer polystyrene-block-polyvinylpyridine (PS-b-PVP)'s both blocks undergoing micro-phase separations from initial spherical nanodomains into terminal cylindrical nanodomains. During this process, real time atomic force microscopy (AFM) has been conducted to capture other six intermediate states with different morphologies on the polymeric film surfaces. Secondly, upon recognizing each intermediate state, the solution of immunoglobulin gamma (IgG) proteins has been deposited on the surface and been rinsed off with buffer solution before the protein-bounded surface is imaged by AFM. It has been found IgG showing a strong adsorption preference on PS over P4VP block. Among all the six intermediate states, the proteins are almost exclusively adsorbed on PS nanodomains regardless the concentration and deposition time. Thirdly, a trinodular shape protein fibrinogen (Fg) is selected for investigating how geometry and surface charge of proteins would interplay with cylindrical nanodomains on a surface developed from Polystyrene -block-Poly-(methyl methacrylate) PS-b-PMMA. Also, Fg adsorptions on chemically homogeneous surfaces are included here to have a better contrast of showing how much difference it can make by using it on a nanoscale surface. Interestingly, higher concentration of protein solution promotes the occurrences of single phase packed Fg on the PS domain. The densely packed network has formed where each Fg keeps its main body in PS domain and leaves its two alpha C chains on nearby PMMA domain. We believe this conformation and orientation would maximize both the hydrophobic and electrostatic interactions between Fg and the underlying surface.
Formation of porous crystals via viscoelastic phase separation
NASA Astrophysics Data System (ADS)
Tsurusawa, Hideyo; Russo, John; Leocmach, Mathieu; Tanaka, Hajime
2017-10-01
Viscoelastic phase separation of colloidal suspensions can be interrupted to form gels either by glass transition or by crystallization. With a new confocal microscopy protocol, we follow the entire kinetics of phase separation, from homogeneous phase to different arrested states. For the first time in experiments, our results unveil a novel crystallization pathway to sponge-like porous crystal structures. In the early stages, we show that nucleation requires a structural reorganization of the liquid phase, called stress-driven ageing. Once nucleation starts, we observe that crystallization follows three different routes: direct crystallization of the liquid phase, the Bergeron process, and Ostwald ripening. Nucleation starts inside the reorganized network, but crystals grow past it by direct condensation of the gas phase on their surface, driving liquid evaporation, and producing a network structure different from the original phase separation pattern. We argue that similar crystal-gel states can be formed in monatomic and molecular systems if the liquid phase is slow enough to induce viscoelastic phase separation, but fast enough to prevent immediate vitrification. This provides a novel pathway to form nanoporous crystals of metals and semiconductors without dealloying, which may be important for catalytic, optical, sensing, and filtration applications.
A new submarine oil-water separation system
NASA Astrophysics Data System (ADS)
Cai, Wen-Bin; Liu, Bo-Hong
2017-12-01
In order to solve the oil field losses of environmental problems and economic benefit caused by the separation of lifting production liquid to offshore platforms in the current offshore oil production, from the most basic separation principle, a new oil-water separation system has been processed of adsorption and desorption on related materials, achieving high efficiency and separation of oil and water phases. And the submarine oil-water separation device has been designed. The main structure of the device consists of gas-solid phase separation device, period separating device and adsorption device that completed high efficiency separation of oil, gas and water under the adsorption and desorption principle, and the processing capacity of the device is calculated.
Main devices design of submarine oil-water separation system
NASA Astrophysics Data System (ADS)
Cai, Wen-Bin; Liu, Bo-Hong
2017-11-01
In the process of offshore oil production, in order to thoroughly separate oil from produced fluid, solve the environment problem caused by oily sewage, and improve the economic benefit of offshore drilling, from the perspective of new oil-water separation, a set of submarine oil-water separation devices were designed through adsorption and desorption mechanism of the polymer materials for crude oil in this paper. The paper introduces the basic structure of gas-solid separation device, periodic separation device and adsorption device, and proves the rationality and feasibility of this device.
Three Types of Flower Structures in a Divergent-Wrench Fault Zone
NASA Astrophysics Data System (ADS)
Huang, Lei; Liu, Chi-yang
2017-12-01
Flower structures are typical features of wrench fault zones. In conventional studies, two distinct kinds of flower structures have been identified based on differences in their internal structural architecture: (1) negative flower structures characterized by synforms and normal separations and (2) positive flower structures characterized by antiforms and reverse separations. In addition to negative and positive flower structures, in this study, a third kind of flower structure was identified in a divergent-wrench fault zone, a hybrid characterized by both antiforms and normal separations. Negative flower structures widely occur in divergent-wrench fault zones, and their presence indicates the combined effects of extensional and strike-slip motion. In contrast, positive and hybrid flower structures occur only in fault restraining bends and step overs. A hybrid flower structure can be considered as product of a kind of structural deformation typical of divergent-wrench zones; it is the result of the combined effects of extensional, compressional, and strike-slip strains under a locally appropriate compressional environment. The strain situation in it represents the transition stage that in between positive and negative flower structures. Kinematic and dynamic characteristics of the hybrid flower structures indicate the salient features of structural deformation in restraining bends and step overs along divergent-wrench faults, including the coexistence of three kinds of strains (i.e., compression, extension, and strike-slip) and synchronous presence of compressional (i.e., typical fault-bend fold) and extensional (normal faults) deformation in the same place. Hybrid flower structures are also favorable for the accumulation of hydrocarbons because of their special structural configuration in divergent-wrench fault zones.
{ital D}({ital e},{ital e}`{ital p}) longitudinal-transverse separation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jordan, D.; Alarcon, R.; Beck, R.
1995-05-10
A Rosenbluth separation of the longitudinal and transverse structure functions in the {ital D}({ital e},{ital e}`{ital p}) reaction has been performed in parallel kinematics at {vert_bar}{ital {rvec q}}{vert_bar}=400 MeV/{ital c} and initial proton momentum centered at 50 MeV/{ital c}. The data are compared to a nonrelativistic calculation which includes effects due to final state interactions, meson exchange currents, and isobar configurations. The data are also compared to the results of two previous structure function separations. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.
Focusing particle concentrator with application to ultrafine particles
Hering, Susanne; Lewis, Gregory; Spielman, Steven R.
2013-06-11
Technology is presented for the high efficiency concentration of fine and ultrafine airborne particles into a small fraction of the sampled airflow by condensational enlargement, aerodynamic focusing and flow separation. A nozzle concentrator structure including an acceleration nozzle with a flow extraction structure may be coupled to a containment vessel. The containment vessel may include a water condensation growth tube to facilitate the concentration of ultrafine particles. The containment vessel may further include a separate carrier flow introduced at the center of the sampled flow, upstream of the acceleration nozzle of the nozzle concentrator to facilitate the separation of particle and vapor constituents.
NASA Astrophysics Data System (ADS)
Gou, Jun; Niu, Qingchen; Liang, Kai; Wang, Jun; Jiang, Yadong
2018-03-01
Antenna-coupled micro-bridge structure is proven to be a good solution to extend infrared micro-bolometer technology for THz application. Spiral-type antennas are proposed in 25 μm × 25 μm micro-bridge structure with a single separate linear antenna, two separate linear antennas, or two connected linear antennas on the bridge legs, in addition to traditional spiral-type antenna on the support layer. The effects of structural parameters of each antenna on THz absorption of micro-bridge structure are discussed for optimized absorption of 2.52 THz wave radiated by far infrared CO2 lasers. The design of spiral-type antenna with two separate linear antennas for wide absorption peak and spiral-type antenna with two connected linear antennas for relatively stable absorption are good candidates for high absorption at low absorption frequency with a rotation angle of 360* n ( n = 1.6). Spiral-type antenna with extended legs also provides a highly integrated micro-bridge structure with fast response and a highly compatible, process-simplified way to realize the structure. This research demonstrates the design of several spiral-type antenna-coupled micro-bridge structures and provides preferred schemes for potential device applications in room temperature sensing and real-time imaging.
Gou, Jun; Niu, Qingchen; Liang, Kai; Wang, Jun; Jiang, Yadong
2018-03-05
Antenna-coupled micro-bridge structure is proven to be a good solution to extend infrared micro-bolometer technology for THz application. Spiral-type antennas are proposed in 25 μm × 25 μm micro-bridge structure with a single separate linear antenna, two separate linear antennas, or two connected linear antennas on the bridge legs, in addition to traditional spiral-type antenna on the support layer. The effects of structural parameters of each antenna on THz absorption of micro-bridge structure are discussed for optimized absorption of 2.52 THz wave radiated by far infrared CO 2 lasers. The design of spiral-type antenna with two separate linear antennas for wide absorption peak and spiral-type antenna with two connected linear antennas for relatively stable absorption are good candidates for high absorption at low absorption frequency with a rotation angle of 360*n (n = 1.6). Spiral-type antenna with extended legs also provides a highly integrated micro-bridge structure with fast response and a highly compatible, process-simplified way to realize the structure. This research demonstrates the design of several spiral-type antenna-coupled micro-bridge structures and provides preferred schemes for potential device applications in room temperature sensing and real-time imaging.
Method for sequencing DNA base pairs
Sessler, A.M.; Dawson, J.
1993-12-14
The base pairs of a DNA structure are sequenced with the use of a scanning tunneling microscope (STM). The DNA structure is scanned by the STM probe tip, and, as it is being scanned, the DNA structure is separately subjected to a sequence of infrared radiation from four different sources, each source being selected to preferentially excite one of the four different bases in the DNA structure. Each particular base being scanned is subjected to such sequence of infrared radiation from the four different sources as that particular base is being scanned. The DNA structure as a whole is separately imaged for each subjection thereof to radiation from one only of each source. 6 figures.
Corman, Gregory Scot
2003-04-15
A coating is applied to reinforcing fibers arranged into a tow by coaxially aligning the tow with an adjacent separation layer and winding or wrapping the tow and separation layer onto a support structure in an interleaved manner so that the separation layer separates a wrap of the tow from an adjacent wrap of the tow. A coating can then be uniformly applied to the reinforcing fibers without defects caused by fiber tow to fiber tow contact. The separation layer can be a carbon fiber veil.
Discrete-continuous duality of protein structure space.
Sadreyev, Ruslan I; Kim, Bong-Hyun; Grishin, Nick V
2009-06-01
Recently, the nature of protein structure space has been widely discussed in the literature. The traditional discrete view of protein universe as a set of separate folds has been criticized in the light of growing evidence that almost any arrangement of secondary structures is possible and the whole protein space can be traversed through a path of similar structures. Here we argue that the discrete and continuous descriptions are not mutually exclusive, but complementary: the space is largely discrete in evolutionary sense, but continuous geometrically when purely structural similarities are quantified. Evolutionary connections are mainly confined to separate structural prototypes corresponding to folds as islands of structural stability, with few remaining traceable links between the islands. However, for a geometric similarity measure, it is usually possible to find a reasonable cutoff that yields paths connecting any two structures through intermediates.
[Sesquiterpenoids of Coniogramme maxima].
Chen, Yunfei; Liu, Shoujin; Wang, Fei
2012-04-01
To study sesquiterpenoids of Coniogramme maxima. Chemical constituents were separated by chromatography and their structures were identified according to physicochemical property and spectrum data. Fifteen compounds were separated by chromatography technique. Their structures were determined by spectral data, including 10 sesquiterpenoids as (3S)-pteroside D (1), epi-pterosin L (2), pterosin D (3), onitin (4), pterosin Z (5), onitisin (6), onitisin-glucopyranoside (7), onitin-15-O-beta-D-glucopyranoside (8), (2S,3R)-pterosin-L-2'-O-beta-D-glucopyranoside (9) and (3R)-peterosin D-3-O-beta-D-glucopyranoside (10). The other compounds were uracil (11), 3,4-dihydroxybenzaldehyde (12), 5-hydroxymethyl-2-furancarboxaldehyde (13), beta-sitosterol (14) and daucosterol (15). The above 15 compounds are separated from C. maxima for the first time, including 9 compounds being first separated from genus Coniogramme.
Smith, Kirk P.
2002-01-01
Best management practices (BMPs) near highways are designed to reduce the amount of suspended sediment and associated constituents, including debris and litter, discharged from the roadway surface. The effectiveness of a deep-sumped hooded catch basin, three 2-chambered 1,500-gallon oil-grit separators, and mechanized street sweeping in reducing sediment and associated constituents was examined along the Southeast Expressway (Interstate Route 93) in Boston, Massachusetts. Repeated observations of the volume and distribution of bottom material in the oil-grit separators, including data on particle-size distributions, were compared to data from bottom material deposited during the initial 3 years of operation. The performance of catch-basin hoods and the oil-grit separators in reducing floating debris was assessed by examining the quantity of material retained by each structural BMP compared to the quantity of material retained by and discharged from the oil-grit separators, which received flow from the catch basins. The ability of each structural BMP to reduce suspended-sediment loads was assessed by examining (a) the difference in the concentrations of suspended sediment in samples collected simultaneously from the inlet and outlet of each BMP, and (b) the difference between inlet loads and outlet loads during a 14-month monitoring period for the catch basin and one separator, and a 10-month monitoring period for the second separator. The third separator was not monitored continuously; instead, samples were collected from it during three visits separated in time by several months. Suspended-sediment loads for the entire study area were estimated on the basis of the long-term average annual precipitation and the estimated inlet and outlet loads of two of the separators. The effects of mechanized street sweeping were assessed by evaluating the differences between suspended-sediment loads before and after street sweeping, relative to storm precipitation totals, and by comparing the particle-size distributions of sediment samples collected from the sweepers to bottom-material samples collected from the structural BMPs. A mass-balance calculation was used to quantify the accuracy of the estimated sediment-removal efficiency for each structural BMP. The ability of each structural BMP to reduce concentrations of inorganic and organic constituents was assessed by determining the differences in concentrations between the inlets and outlets of the BMPs for four storms. The inlet flows of the separators were sampled during five storms for analysis of fecal-indicator bacteria. The particle-size distribution of bottom material found in the first and second chambers of the separators was similar for all three separators. Consistent collection of floatable debris at the outlet of one separator during 12 storms suggests that floatable debris were not indefinitely retained.Concentrations of suspended sediment in discrete samples of runoff collected from the inlets of the two separators ranged from 8.5 to 7,110 mg/L. Concentrations of suspended sediment in discrete samples of runoff collected from the outlets of the separators ranged from 5 to 2,170 mg/L. The 14-month sediment-removal efficiency was 35 percent for one separator, and 28 percent for the second separator. In the combined-treatment system in this study, where catch basins provided primary suspended-sediment treatment, the separators reduced the mass of the suspended sediment from the pavement by about an additional 18 percent. The concentrations of suspended sediment in discrete samples of runoff collected from the inlet of the catch basin ranged from 32 to 13,600 mg/L. Concentrations of suspended sediment in discrete samples of runoff collected from the outlet of the catch basin ranged from 25.7 to 7,030 mg/L. The sediment-removal efficiency for individual storms during the 14-month monitoring period for the deep-sumped hooded catch basin was 39 percent.The concentrations of 29 in
NASA Astrophysics Data System (ADS)
Gao, Qingxue; Liu, Rong; Xiao, Hongdi; Cao, Dezhong; Liu, Jianqiang; Ma, Jin
2016-11-01
A strong phase-separated InGaN/GaN layer, which consists of multiple quantum wells (MQW) and superlattices (SL) layers and can produce a blue wavelength spectrum, has been grown on n-GaN thin film, and then fabricated into nanoporous structures by electrochemical etching method in oxalic acid. Scanning electron microscopy (SEM) technique reveals that the etching voltage of 8 V leads to a vertically aligned nanoporous structure, whereas the films etched at 15 V show branching pores within the n-GaN layer. Due to the low doping concentration of barriers (GaN layers) in the InGaN/GaN layer, we observed a record-low rate of etching (<100 nm/min) and nanopores which are mainly originated from the V-pits in the phase-separated layer. In addition, there exists a horizontal nanoporous structure at the interface between the phase-separated layer and the n-GaN layer, presumably resulting from the high transition of electrons between the barrier and the well (InGaN layer) at the interface. As compared to the as-grown MQW structure, the etched MQW structure exhibits a photoluminescence (PL) enhancement with a partial relaxation of compressive stress due to the increased light-extracting surface area and light-guiding effect. Such a compressive stress relaxation can be further confirmed by Raman spectra.
Justification of rapid prototyping in the development cycle of thermoplastic-based lab-on-a-chip.
Preywisch, Regina; Ritzi-Lehnert, Marion; Drese, Klaus S; Röser, Tina
2011-11-01
During the developmental cycle of lab-on-a-chip devices, various microstructuring techniques are required. While in the designing and assay implementation phase direct structuring or so-called rapid-prototyping methods such as milling or laser ablation are applied, replication methods like hot embossing or injection moulding are favourable for large quantity manufacturing. This work investigated the applicability of rapid-prototyping techniques for thermoplastic chip development in general, and the reproducibility of performances in dependency of the structuring technique. A previously published chip for prenatal diagnosis that preconcentrates DNA via electrokinetic trapping and field-amplified-sample-stacking and afterwards separates it in CGE was chosen as a model. The impact of structuring, sealing, and the integration of membranes on the mobility of the EOF, DNA preconcentration, and DNA separation was studied. Structuring methods were found to significantly change the location where preconcentration of DNA occurs. However, effects on the mobility of the EOF and the separation quality of DNA were not observed. Exchange of the membrane has no effect on the chip performance, whereas the sealing method impairs the separation of DNA within the chip. The overall assay performance is not significantly influenced by different structuring methods; thus, the application of rapid-prototyping methods during a chip development cycle is well justified. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Attentional Bias in Human Category Learning: The Case of Deep Learning.
Hanson, Catherine; Caglar, Leyla Roskan; Hanson, Stephen José
2018-01-01
Category learning performance is influenced by both the nature of the category's structure and the way category features are processed during learning. Shepard (1964, 1987) showed that stimuli can have structures with features that are statistically uncorrelated (separable) or statistically correlated (integral) within categories. Humans find it much easier to learn categories having separable features, especially when attention to only a subset of relevant features is required, and harder to learn categories having integral features, which require consideration of all of the available features and integration of all the relevant category features satisfying the category rule (Garner, 1974). In contrast to humans, a single hidden layer backpropagation (BP) neural network has been shown to learn both separable and integral categories equally easily, independent of the category rule (Kruschke, 1993). This "failure" to replicate human category performance appeared to be strong evidence that connectionist networks were incapable of modeling human attentional bias. We tested the presumed limitations of attentional bias in networks in two ways: (1) by having networks learn categories with exemplars that have high feature complexity in contrast to the low dimensional stimuli previously used, and (2) by investigating whether a Deep Learning (DL) network, which has demonstrated humanlike performance in many different kinds of tasks (language translation, autonomous driving, etc.), would display human-like attentional bias during category learning. We were able to show a number of interesting results. First, we replicated the failure of BP to differentially process integral and separable category structures when low dimensional stimuli are used (Garner, 1974; Kruschke, 1993). Second, we show that using the same low dimensional stimuli, Deep Learning (DL), unlike BP but similar to humans, learns separable category structures more quickly than integral category structures. Third, we show that even BP can exhibit human like learning differences between integral and separable category structures when high dimensional stimuli (face exemplars) are used. We conclude, after visualizing the hidden unit representations, that DL appears to extend initial learning due to feature development thereby reducing destructive feature competition by incrementally refining feature detectors throughout later layers until a tipping point (in terms of error) is reached resulting in rapid asymptotic learning.
Liquid-liquid phase separation of freely falling undercooled ternary Fe-Cu-Sn alloy
NASA Astrophysics Data System (ADS)
Wang, W. L.; Wu, Y. H.; Li, L. H.; Zhai, W.; Zhang, X. M.; Wei, B.
2015-11-01
The active modulation and control of the liquid phase separation for high-temperature metallic systems are still challenging the development of advanced immiscible alloys. Here we present an attempt to manipulate the dynamic process of liquid-liquid phase separation for ternary Fe47.5Cu47.5Sn5 alloy. It was firstly dispersed into numerous droplets with 66 ~ 810 μm diameters and then highly undercooled and rapidly solidified under the containerless microgravity condition inside drop tube. 3-D phase field simulation was performed to explore the kinetic evolution of liquid phase separation. Through regulating the combined effects of undercooling level, phase separation time and Marangoni migration, three types of separation patterns were yielded: monotectic cell, core shell and dispersive structures. The two-layer core-shell morphology proved to be the most stable separation configuration owing to its lowest chemical potential. Whereas the monotectic cell and dispersive microstructures were both thermodynamically metastable transition states because of their highly active energy. The Sn solute partition profiles of Fe-rich core and Cu-rich shell in core-shell structures varied only slightly with cooling rate.
Resistance heating releases structural adhesive
NASA Technical Reports Server (NTRS)
Glemser, N. N.
1967-01-01
Composite adhesive package bonds components together for testing and enables separation when testing is completed. The composite of adhesives, insulation and a heating element separate easily when an electrical current is applied.
Children at Risk: Vulnerability/Resiliency to Psychopathology after Parental Separation/Divorce.
ERIC Educational Resources Information Center
McPhee, Jeffrey Thomas
This study explored factors within a child's social, familial, and intrapsychic system that mediate the effects on the child of parental separation/divorce. Using a sample of 52 children and 28 parents involved in contested divorce cases, structured interviews lasting 1.5 to 3 hours were conducted. Information about the separation, parental…
ERIC Educational Resources Information Center
Mattanah, Jonathan F.; Hancock, Gregory R.; Brand, Bethany L.
2004-01-01
Secure parental attachment and healthy levels of separation-individuation have been consistently linked to greater college student adjustment. The present study proposes that the relation between parental attachment and college adjustment is mediated by healthy separation-individuation. The authors gathered data on maternal and paternal…
Investigation of failure to separate an Inconel 718 frangible nut
NASA Technical Reports Server (NTRS)
Hoffman, William C., III; Hohmann, Carl
1994-01-01
The 2.5-inch frangible nut is used in two places to attach the Space Shuttle Orbiter to the External Tank. It must be capable of sustaining structural loads and must also separate into two pieces upon command. Structural load capability is verified by proof loading each flight nut, while ability to separate is verified on a sample of a production lot. Production lots of frangible nuts beginning in 1987 experienced an inability to reliably separate using one of two redundant explosive boosters. The problems were identified in lot acceptance tests, and the cause of failure has been attributed to differences in the response of the Inconel 718. Subsequent tests performed on the frangible nuts resulted in design modifications to the nuts along with redesign of the explosive booster to reliably separate the frangible nut. The problem history along with the design modifications to both the explosive booster and frangible nut are discussed in this paper. Implications of this failure experience impact any pyrotechnic separation system involving fracture of materials with respect to design margin control and lot acceptance testing.
NASA Astrophysics Data System (ADS)
Wang, Heping; Li, Xiaoguang; Lin, Kejun; Geng, Xingguo
2018-05-01
This paper explores the effect of the shear frequency and Prandtl number ( Pr) on the procedure and pattern formation of phase separation in symmetric and asymmetric systems. For the symmetric system, the periodic shear significantly prolongs the spinodal decomposition stage and enlarges the separated domain in domain growth stage. By adjusting the Pr and shear frequency, the number and orientation of separated steady layer structures can be controlled during domain stretch stage. The numerical results indicate that the increase in Pr and decrease in the shear frequency can significantly increase in the layer number of the lamellar structure, which relates to the decrease in domain size. Furthermore, the lamellar orientation parallel to the shear direction is altered into that perpendicular to the shear direction by further increasing the shear frequency, and also similar results for larger systems. For asymmetric system, the quantitative analysis shows that the decrease in the shear frequency enlarges the size of separated minority phases. These numerical results provide guidance for setting the optimum condition for the phase separation under periodic shear and slow cooling.
Wang, Yuanfeng; Lai, Chuilin; Wang, Xiaowen; Liu, Yang; Hu, Huawen; Guo, Yujuan; Ma, Kaikai; Fei, Bin; Xin, John H
2016-09-28
It is challenging to explore a unified solution for the treatment of oily wastewater from complex sources. Thus, membrane materials with flexible separation schemes are highly desired. Herein, we fabricated a smart membrane by electrospinning TiO2 doped polyvinylidene fluoride (PVDF) nanofibers. The as-formed beads-on-string structure and hierarchical roughness of the nanofibers contribute to its superwetting/resisting property to liquids, which is desirable in oil/water separation. Switched simply by UV (or sunlight) irradiation and heating treatment, the smart membrane can realize reversible separation of oil/water mixtures by selectively allowing water or oil to pass through alone. Most importantly, the as-prepared nanofiber membrane possesses outstanding antifouling and self-cleaning performance resulting from the photocatalytic property of TiO2, which has practical significance in saving solvents and recycling materials. This work provides a route for fabricating cost-effective, easily scaled up, and recyclable membranes for on-demand oil/water separation in versatile situations, which can be of great usage in the new green separation technology.
Flow control of micro-ramps on supersonic forward-facing step flow
NASA Astrophysics Data System (ADS)
Qing-Hu, Zhang; Tao, Zhu; Shihe, Yi; Anping, Wu
2016-05-01
The effects of the micro-ramps on supersonic turbulent flow over a forward-facing step (FFS) was experimentally investigated in a supersonic low-noise wind tunnel at Mach number 3 using nano-tracer planar laser scattering (NPLS) and particle image velocimetry (PIV) techniques. High spatiotemporal resolution images and velocity fields of supersonic flow over the testing model were captured. The fine structures and their spatial evolutionary characteristics without and with the micro-ramps were revealed and compared. The large-scale structures generated by the micro-ramps can survive the downstream FFS flowfield. The micro-ramps control on the flow separation and the separation shock unsteadiness was investigated by PIV results. With the micro-ramps, the reduction in the range of the reversal flow zone in streamwise direction is 50% and the turbulence intensity is also reduced. Moreover, the reduction in the average separated region and in separation shock unsteadiness are 47% and 26%, respectively. The results indicate that the micro-ramps are effective in reducing the flow separation and the separation shock unsteadiness. Project supported by the National Natural Science Foundation of China (Grant Nos. 11172326 and 11502280).
Salgado, Antonio; Chankvetadze, Bezhan
2016-10-07
This review deals with the applications of nuclear magnetic resonance (NMR) spectroscopy to understand the mechanisms of chiral separation in capillary electrophoresis (CE). It is accepted that changes observed in the separation process, including the reversal of enantiomer migration order (EMO), can be caused by subtle modifications in the molecular recognition mechanisms between enantiomer and chiral selector. These modifications may imply minor structural differences in those selector-selectand complexes that arise from the above mentioned interactions. Therefore, it is mandatory to understand the fine intermolecular interactions between analytes and chiral selectors. In other words, it is necessary to know in detail the structures of the complexes formed by the enantiomer (selectand) and the selector. Any differences in the structures of these complexes arising from either enantiomer should be detected, so that enantiomeric bias in the separation process could be explained. As to the nature of these interactions, those have been extensively reviewed, and it is not intended to be discussed here. These interactions contemplate ionic, ion-dipole and dipole-dipole interactions, hydrogen bonding, van der Waals forces, π-π stacking, steric and hydrophobic interactions. The main subject of this review is to describe how NMR spectroscopy helps to gain insight into the non-covalent intermolecular interactions between selector and selectand that lead to enantiomer separation by CE. Examples in which diastereomeric species are created by covalent (irreversible) derivatization will not be considered here. This review is structured upon the different structural classes of chiral selectors employed in CE, in which NMR spectroscopy has made substantial contributions to rationalize the observed enantioseparations. Cases in which other techniques complement NMR spectroscopic data are also mentioned. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Bauschlicher. Charles W., Jr.; Langhoff, Stephen R. (Technical Monitor)
1995-01-01
The self-consistent-field (SCF) approach and density functional theory, using the B3LYP hybrid functional, yield three low-lying structures for Li7(-). The relative separations differ for the SCF and B3LYP approaches, however the B3LYP results are in good agreement with the coupled cluster results. For K7(-), only an octahedron with one face capped is found to be a minimum; this the second most stable structure for Li7(-). A comparison of the computed separations between the low-lying states of K7 and the photoelectron detachment spectra does not allow an unambiguous assignment of the structure of K7(-).
NASA Astrophysics Data System (ADS)
Han, Qing; Zhang, Chi; Xu, Bo; Chen, Jiangping
2013-07-01
The hydrodynamic flow behavior, effects of geometry and working conditions of a gas-liquid cylindrical cyclone separator with a new structure are investigated by computational fluid dynamic and experiment. Gas liquid cylindrical cyclone separator is widely used in oil industry, refrigeration system because of its simple structure, high separating efficiency, little maintenance and no moving parts nor internal devices. In this work, a gas liquid cylindrical cyclone separator with new structure used before evaporator in refrigeration system can remove the vapor from the mixture and make evaporator compact by improving its heat exchange efficiency with the lower inlet quality. It also decreases evaporator pressure drop and reduces compressor work. The two pipes are placed symmetrically which makes each of them can be treated as inlet. It means when the fluids flow reverse, the separator performance will not be influence. Four samples with different geometry parameters are tested by experiment with different inlet quality (0.18-0.33), inlet mass flow rate (65-100kg/h). Compared with the experimental data, CFD simulation results show a good agreement. Eulerian multiphase model and Reynolds Stress Turbulence model are applied in the CFD simulation and obtained the inner flow field such as phase path lines, tangential velocity profiles and pressure and volume of fraction distribution contours. The separator body diameter (24, 36, 48mm) and inlet diameter (3.84, 4.8, 5.76mm) decide the maximum tangential velocity which results in the centrifugal force. The tangential velocity profiles are simulated and compared among different models. The higher tangential velocity makes higher quality of gas outlet but high pressure drop at the same time. Decreasing the inlet diameter increases quality of gas outlet pipe and pressure drop. High gas outlet quality is cost at high pressure drop. Increasing of separator diameter makes gas outlet quality increase first and then decrease but the pressure drop decreases all the way. The offset (0, 2.4, 3.6mm) of gas outlet is an insensitive factor which influences the quality and pressure drop little.
NASA Astrophysics Data System (ADS)
Bai, Peng; Jeon, Mi Young; Ren, Limin; Knight, Chris; Deem, Michael W.; Tsapatsis, Michael; Siepmann, J. Ilja
2015-01-01
Zeolites play numerous important roles in modern petroleum refineries and have the potential to advance the production of fuels and chemical feedstocks from renewable resources. The performance of a zeolite as separation medium and catalyst depends on its framework structure. To date, 213 framework types have been synthesized and >330,000 thermodynamically accessible zeolite structures have been predicted. Hence, identification of optimal zeolites for a given application from the large pool of candidate structures is attractive for accelerating the pace of materials discovery. Here we identify, through a large-scale, multi-step computational screening process, promising zeolite structures for two energy-related applications: the purification of ethanol from fermentation broths and the hydroisomerization of alkanes with 18-30 carbon atoms encountered in petroleum refining. These results demonstrate that predictive modelling and data-driven science can now be applied to solve some of the most challenging separation problems involving highly non-ideal mixtures and highly articulated compounds.
Wojcik, Roza; Webb, Ian K.; Deng, Liulin; ...
2017-01-18
Understanding the biological mechanisms related to lipids and glycolipids is challenging due to the vast number of possible isomers. Mass spectrometry (MS) measurements are currently the dominant approach for studying and providing detailed information on lipid and glycolipid structures. However, difficulties in distinguishing many structural isomers (e.g. distinct acyl chain positions, double bond locations, as well as glycan isomers) inhibit the understanding of their biological roles. Here we utilized ultra-high resolution ion mobility spectrometry (IMS) separations based upon the use of traveling waves in a serpentine long path length multi-pass Structures for Lossless Manipulations (SLIM) to enhance isomer resolution. Themore » multi-pass arrangement allowed separations ranging from ~16 m (1 pass) to ~470 m (32 passes) to be investigated for the distinction of lipids and glycolipids with extremely small structural differences. Lastly, these ultra-high resolution SLIM IMS-MS analyses provide a foundation for exploring and better understanding isomer specific biological and disease processes.« less
NASA Astrophysics Data System (ADS)
Simon, Joseph R.; Carroll, Nick J.; Rubinstein, Michael; Chilkoti, Ashutosh; López, Gabriel P.
2017-06-01
Dynamic protein-rich intracellular structures that contain phase-separated intrinsically disordered proteins (IDPs) composed of sequences of low complexity (SLC) have been shown to serve a variety of important cellular functions, which include signalling, compartmentalization and stabilization. However, our understanding of these structures and our ability to synthesize models of them have been limited. We present design rules for IDPs possessing SLCs that phase separate into diverse assemblies within droplet microenvironments. Using theoretical analyses, we interpret the phase behaviour of archetypal IDP sequences and demonstrate the rational design of a vast library of multicomponent protein-rich structures that ranges from uniform nano-, meso- and microscale puncta (distinct protein droplets) to multilayered orthogonally phase-separated granular structures. The ability to predict and program IDP-rich assemblies in this fashion offers new insights into (1) genetic-to-molecular-to-macroscale relationships that encode hierarchical IDP assemblies, (2) design rules of such assemblies in cell biology and (3) molecular-level engineering of self-assembled recombinant IDP-rich materials.
Toward quantum plasmonic networks
Holtfrerich, M. W.; Dowran, M.; Davidson, R.; ...
2016-08-30
Here, we demonstrate the transduction of macroscopic quantum entanglement by independent, distant plasmonic structures embedded in separate thin silver films. In particular, we show that the plasmon-mediated transmission through each film conserves spatially dependent, entangled quantum images, opening the door for the implementation of parallel quantum protocols, super-resolution imaging, and quantum plasmonic sensing geometries at the nanoscale level. The conservation of quantum information by the transduction process shows that continuous variable multi-mode entanglement is momentarily transferred from entangled beams of light to the space-like separated, completely independent plasmonic structures, thus providing a first important step toward establishing a multichannel quantummore » network across separate solid-state substrates.« less
Polymer separations by liquid interaction chromatography: principles - prospects - limitations.
Radke, Wolfgang
2014-03-28
Most heterogeneities of polymers with respect to different structural features cannot be resolved by only size exclusion chromatography (SEC), the most frequently applied mode of polymer chromatography. Instead, methods of interaction chromatography became increasingly important. However, despite the increasing applications the principles and potential of polymer interaction chromatography are still often unknown to a large number of polymer scientists. The present review will explain the principles of the different modes of polymer chromatography. Based on selected examples it will be shown which separation techniques can be successfully applied for separations with respect to the different structural features of polymers. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Park, Seoung-Hwan; Ahn, Doyeol
2018-05-01
Ultraviolet light emission characteristics of lattice-matched BxAlyGa1-x-y N/AlN quantum well (QW) structures with double AlGaN delta layers were investigated theoretically. In contrast to conventional single dip-shaped QW structure where the reduction effect of the spatial separation between electron and hole wave functions is negligible, proposed double dip-shaped QW shows significant enhancement of the ultraviolet light emission intensity from a BAlGaN/AlN QW structure due to the reduced spatial separation between electron and hole wave functions. The emission peak of the double dip-shaped QW structure is expected to be about three times larger than that of the conventional rectangular AlGaN/AlN QW structure.
ANALYSIS OF GLYCANS DERIVED FROM GLYCOCONJUGATES BY CAPILLARY ELECTROPHORESIS-MASS SPECTROMETRY
Mechref, Yehia
2012-01-01
The high structural variation of glycan derived from glycoconjugates, which substantially increases with the molecular size of a protein, contributes to the complexity of glycosylation patterns commonly associated with glycoconjugates. In the case of glycoproteins, such variation originates from the multiple glycosylation sites of proteins and the number of glycan structures associated with each site (microheterogeneity). The ability to comprehensively characterize highly complex mixture of glycans has been analytically stimulating and challenging. Although the most powerful mass spectrometric (MS) and tandem MS techniques are capable of providing a wealth of structural information, they are still not able to readily identify isomeric glycan structures without high order tandem MS (MSn). The analysis of isomeric glycan structures has been attained using several separation methods, including high-pH anion exchange chromatography (HPAEC), hydrophilic interaction chromatography (HILIC) and gas chromatography (GC). However, capillary electrophoresis (CE) and microfluidics capillary electrophoresis (MCE) offer high separation efficiency and resolutions, allowing the separation of closely related glycan structures. Therefore, interfacing CE and MCE to MS is a powerful analytical approach, allowing potentially comprehensive and sensitive analysis of complex glycan samples. This review describes and discusses the utility of different CE and MCE approaches in the structural characterization of glycoproteins and the feasibility of interfacing these approaches to mass spectrometry. PMID:22180203
High-throughput Molecular Simulations of MOFs for CO2 Separation: Opportunities and Challenges
NASA Astrophysics Data System (ADS)
Erucar, Ilknur; Keskin, Seda
2018-02-01
Metal organic frameworks (MOFs) have emerged as great alternatives to traditional nanoporous materials for CO2 separation applications. MOFs are porous materials that are formed by self-assembly of transition metals and organic ligands. The most important advantage of MOFs over well-known porous materials is the possibility to generate multiple materials with varying structural properties and chemical functionalities by changing the combination of metal centers and organic linkers during the synthesis. This leads to a large diversity of materials with various pore sizes and shapes that can be efficiently used for CO2 separations. Since the number of synthesized MOFs has already reached to several thousand, experimental investigation of each MOF at the lab-scale is not practical. High-throughput computational screening of MOFs is a great opportunity to identify the best materials for CO2 separation and to gain molecular-level insights into the structure-performance relationships. This type of knowledge can be used to design new materials with the desired structural features that can lead to extraordinarily high CO2 selectivities. In this mini-review, we focused on developments in high-throughput molecular simulations of MOFs for CO2 separations. After reviewing the current studies on this topic, we discussed the opportunities and challenges in the field and addressed the potential future developments.
NASA Astrophysics Data System (ADS)
Rawal, Amit; Rao, P. V. Kameswara; Kumar, Vijay
2018-04-01
Absorptive glass mat (AGM) separator is a vital technical component in valve regulated lead acid (VRLA) batteries that can be tailored for a desired application. To selectively design and tailor the AGM separator, the intricate three-dimensional (3D) structure needs to be unraveled. Herein, a toolkit of 3D analytical models of pore size distribution and electrolyte uptake expressed via wicking characteristics of AGM separators under unconfined and confined states is presented. 3D data of fiber orientation distributions obtained previously through X-ray micro-computed tomography (microCT) analysis are used as key set of input parameters. The predictive ability of pore size distribution model is assessed through the commonly used experimental set-up that usually apply high level of compressive stresses. Further, the existing analytical model of wicking characteristics of AGM separators has been extended to account for 3D characteristics, and subsequently, compared with the experimental results. A good agreement between the theory and experiments pave the way to simulate the realistic charge-discharge modes of the battery by applying cyclic loading condition. A threshold criterion describing the invariant behavior of pore size and wicking characteristics in terms of maximum permissible limit of key structural parameters during charge-discharge mode of the battery has also been proposed.
Ding, Junfeng; Lin, Zhipeng; Wu, Jianchun; Dong, Zhili; Wu, Tom
2015-02-04
Materials with mesoscopic structural and electronic phase separation, either inherent from synthesis or created via external means, are known to exhibit functionalities absent in the homogeneous counterparts. One of the most notable examples is the colossal magnetoresistance discovered in mixed-valence manganites, where the coexistence of nano- to micrometer-sized phase-separated domains dictates the magnetotransport. However, it remains challenging to pattern and process such materials into predesigned structures and devices. In this work, a direct laser interference irradiation (LII) method is employed to produce periodic stripes in thin films of a prototypical phase-separated manganite Pr0.65 (Ca0.75 Sr0.25 )0.35 MnO3 (PCSMO). LII induces selective structural amorphization within the crystalline PCSMO matrix, forming arrays with dimensions commensurate with the laser wavelength. Furthermore, because the length scale of LII modification is compatible to that of phase separation in PCSMO, three orders of magnitude of increase in magnetoresistance and significant in-plane transport anisotropy are observed in treated PCSMO thin films. Our results show that LII is a rapid, cost-effective and contamination-free technique to tailor and improve the physical properties of manganite thin films, and it is promising to be generalized to other functional materials. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liang, Zhenwei; Li, Yaoming; Zhao, Zhan; Xu, Lizhang
2015-01-01
Grain separation losses is a key parameter to weigh the performance of combine harvesters, and also a dominant factor for automatically adjusting their major working parameters. The traditional separation losses monitoring method mainly rely on manual efforts, which require a high labor intensity. With recent advancements in sensor technology, electronics and computational processing power, this paper presents an indirect method for monitoring grain separation losses in tangential-axial combine harvesters in real-time. Firstly, we developed a mathematical monitoring model based on detailed comparative data analysis of different feeding quantities. Then, we developed a grain impact piezoelectric sensor utilizing a YT-5 piezoelectric ceramic as the sensing element, and a signal process circuit designed according to differences in voltage amplitude and rise time of collision signals. To improve the sensor performance, theoretical analysis was performed from a structural vibration point of view, and the optimal sensor structural has been selected. Grain collide experiments have shown that the sensor performance was greatly improved. Finally, we installed the sensor on a tangential-longitudinal axial combine harvester, and grain separation losses monitoring experiments were carried out in North China, which results have shown that the monitoring method was feasible, and the biggest measurement relative error was 4.63% when harvesting rice. PMID:25594592
Liang, Zhenwei; Li, Yaoming; Zhao, Zhan; Xu, Lizhang
2015-01-14
Grain separation losses is a key parameter to weigh the performance of combine harvesters, and also a dominant factor for automatically adjusting their major working parameters. The traditional separation losses monitoring method mainly rely on manual efforts, which require a high labor intensity. With recent advancements in sensor technology, electronics and computational processing power, this paper presents an indirect method for monitoring grain separation losses in tangential-axial combine harvesters in real-time. Firstly, we developed a mathematical monitoring model based on detailed comparative data analysis of different feeding quantities. Then, we developed a grain impact piezoelectric sensor utilizing a YT-5 piezoelectric ceramic as the sensing element, and a signal process circuit designed according to differences in voltage amplitude and rise time of collision signals. To improve the sensor performance, theoretical analysis was performed from a structural vibration point of view, and the optimal sensor structural has been selected. Grain collide experiments have shown that the sensor performance was greatly improved. Finally, we installed the sensor on a tangential-longitudinal axial combine harvester, and grain separation losses monitoring experiments were carried out in North China, which results have shown that the monitoring method was feasible, and the biggest measurement relative error was 4.63% when harvesting rice.
NASA Astrophysics Data System (ADS)
Altabet, Y. Elia; Debenedetti, Pablo G.
2017-12-01
Liquid water confined between nanoscale hydrophobic objects can become metastable with respect to its vapor at nanoscale separations. While the separations are only several molecular diameters, macroscopic theories are often invoked to interpret the thermodynamics and kinetics of water under confinement. We perform detailed rate and free energy calculations via molecular simulations in order to assess the dependence of the rate of evaporation, free energy barriers, and free energy differences between confined liquid and vapor upon object separation and compare them to the relevant macroscopic theories. At small enough separations, the rate of evaporation appears to deviate significantly from the predictions of classical nucleation theory, and we attribute such deviations to changes in the structure of the confined liquid film. However, the free energy difference between the confined liquid and vapor phases agrees quantitatively with macroscopic theory, and the free energy barrier to condensation displays qualitative agreement. Overall, the present work suggests that theories attempting to capture the kinetic behavior of nanoscale systems should incorporate structural details rather than treating it as a continuum.
Mahut, Marek; Lindner, Wolfgang; Lämmerhofer, Michael
2012-01-18
We recently discovered the molecular recognition capability of a quinine carbamate ligand attached to silica as a powerful chemoaffinity material for the chromatographic separation of circular plasmid topoisomers of different linking numbers. In this paper we develop structure-selectivity relationship studies to figure out the essential structural features for topoisomer recognition. By varying different moieties of the original cinchonan-derived selector, it was shown that intercalation by the quinoline moiety of the ligand as assumed initially as the working hypothesis is not an essential feature for topoisomer recognition during chromatography. We found that the key elements for topoisomer selectivity are the presence of a rigid weak anion-exchange site and a H-donor site separated from each other in a defined distance by a 4-atom spacer. Additionally, incorporation of the weak anion-exchange site into a cyclic ring structure provides greater rigidity of the ligand molecule and turned out to be advantageous, if not mandatory, for (close to) baseline separation. © 2011 American Chemical Society
NASA Astrophysics Data System (ADS)
Siepmann, J. Ilja; Bai, Peng; Tsapatsis, Michael; Knight, Chris; Deem, Michael W.
2015-03-01
Zeolites play numerous important roles in modern petroleum refineries and have the potential to advance the production of fuels and chemical feedstocks from renewable resources. The performance of a zeolite as separation medium and catalyst depends on its framework structure and the type or location of active sites. To date, 213 framework types have been synthesized and >330000 thermodynamically accessible zeolite structures have been predicted. Hence, identification of optimal zeolites for a given application from the large pool of candidate structures is attractive for accelerating the pace of materials discovery. Here we identify, through a large-scale, multi-step computational screening process, promising zeolite structures for two energy-related applications: the purification of ethanol beyond the ethanol/water azeotropic concentration in a single separation step from fermentation broths and the hydroisomerization of alkanes with 18-30 carbon atoms encountered in petroleum refining. These results demonstrate that predictive modeling and data-driven science can now be applied to solve some of the most challenging separation problems involving highly non-ideal mixtures and highly articulated compounds. Financial support from the Department of Energy Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Award DE-FG02-12ER16362 is gratefully acknowledged.
NASA Astrophysics Data System (ADS)
Steiner, Matthias; Houze, Robert A., Jr.; Yuter, Sandra E.
1995-09-01
Three algorithms extract information on precipitation type, structure, and amount from operational radar and rain gauge data. Tests on one month of data from one site show that the algorithms perform accurately and provide products that characterize the essential features of the precipitation climatology. Input to the algorithms are the operationally executed volume scans of a radar and the data from a surrounding rain gauge network. The algorithms separate the radar echoes into convective and stratiform regions, statistically summarize the vertical structure of the radar echoes, and determine precipitation rates and amounts on high spatial resolution.The convective and stratiform regions are separated on the basis of the intensity and sharpness of the peaks of echo intensity. The peaks indicate the centers of the convective region. Precipitation not identified as convective is stratiform. This method avoids the problem of underestimating the stratiform precipitation. The separation criteria are applied in exactly the same way throughout the observational domain and the product generated by the algorithm can be compared directly to model output. An independent test of the algorithm on data for which high-resolution dual-Doppler observations are available shows that the convective stratiform separation algorithm is consistent with the physical definitions of convective and stratiform precipitation.The vertical structure algorithm presents the frequency distribution of radar reflectivity as a function of height and thus summarizes in a single plot the vertical structure of all the radar echoes observed during a month (or any other time period). Separate plots reveal the essential differences in structure between the convective and stratiform echoes.Tests yield similar results (within less than 10%) for monthly rain statistics regardless of the technique used for estimating the precipitation, as long as the radar reflectivity values are adjusted to agree with monthly rain gauge data. It makes little difference whether the adjustment is by monthly mean rates or percentiles. Further tests show that 1-h sampling is sufficient to obtain an accurate estimate of monthly rain statistics.
NASA Astrophysics Data System (ADS)
Luo, H.; Zhang, H.; Gao, J.
2016-12-01
Seismic and magnetotelluric (MT) imaging methods are generally used to characterize subsurface structures at various scales. The two methods are complementary to each other and the integration of them is helpful for more reliably determining the resistivity and velocity models of the target region. Because of the difficulty in finding empirical relationship between resistivity and velocity parameters, Gallardo and Meju [2003] proposed a joint inversion method enforcing resistivity and velocity models consistent in structure, which is realized by minimizing cross gradients between two models. However, it is extremely challenging to combine two different inversion systems together along with the cross gradient constraints. For this reason, Gallardo [2007] proposed a joint inversion scheme that decouples the seismic and MT inversion systems by iteratively performing seismic and MT inversions as well as cross gradient minimization separately. This scheme avoids the complexity of combining two different systems together but it suffers the issue of balancing between data fitting and structure constraint. In this study, we have developed a new joint inversion scheme that avoids the problem encountered by the scheme of Gallardo [2007]. In the new scheme, seismic and MT inversions are still separately performed but the cross gradient minimization is also constrained by model perturbations from separate inversions. In this way, the new scheme still avoids the complexity of combining two different systems together and at the same time the balance between data fitting and structure consistency constraint can be enforced. We have tested our joint inversion algorithm for both 2D and 3D cases. Synthetic tests show that joint inversion better reconstructed the velocity and resistivity models than separate inversions. Compared to separate inversions, joint inversion can remove artifacts in the resistivity model and can improve the resolution for deeper resistivity structures. We will also show results applying the new joint seismic and MT inversion scheme to southwest China, where several MT profiles are available and earthquakes are very active.
Zuin, Vânia G; Budarin, Vitaliy L; De Bruyn, Mario; Shuttleworth, Peter S; Hunt, Andrew J; Pluciennik, Camille; Borisova, Aleksandra; Dodson, Jennifer; Parker, Helen L; Clark, James H
2017-09-21
The recovery and separation of high value and low volume extractives are a considerable challenge for the commercial realisation of zero-waste biorefineries. Using solid-phase extractions (SPE) based on sustainable sorbents is a promising method to enable efficient, green and selective separation of these complex extractive mixtures. Mesoporous carbonaceous solids derived from renewable polysaccharides are ideal stationary phases due to their tuneable functionality and surface structure. In this study, the structure-separation relationships of thirteen polysaccharide-derived mesoporous materials and two modified types as sorbents for ten naturally-occurring bioactive phenolic compounds were investigated. For the first time, a comprehensive statistical analysis of the key molecular and surface properties influencing the recovery of these species was carried out. The obtained results show the possibility of developing tailored materials for purification, separation or extraction, depending on the molecular composition of the analyte. The wide versatility and application span of these polysaccharide-derived mesoporous materials offer new sustainable and inexpensive alternatives to traditional silica-based stationary phases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jia
Biorefineries convert biomass into many useful intermediates. For bio-based products to be used for fuel, energy, chemical, and many other applications, water needs to be removed from these aqueous products. Membrane separation technologies can significantly reduce separation energy consumption compared with conventional separation processes such as distillation. Nanoporous inorganic membranes have superior pervaporation performance with excellent organic fouling resistance. However, their commercial applications are limited due to high membrane costs and poor production reproducibility. A novel cost-effective inorganic membrane fabrication technology has been developed with low cost materials and using an advanced membrane fabrication technology. Low cost precursor material formulationmore » was successfully developed with desired material properties for membrane fabrication. An advanced membrane fabrication process was developed using the novel membrane materials to enable the fabrication of separation membranes of various geometries. The structural robustness and separation performance of the low cost inorganic membranes were evaluated. The novel inorganic membranes demonstrated high structural integrity and were effective in pervaporation removal of water.« less
Formation and Maturation of Phase Separated Liquid Droplets by RNA Binding Proteins
Lin, Yuan; Protter, David S. W.; Rosen, Michael K.; Parker, Roy
2015-01-01
Eukaryotic cells possess numerous dynamic membrane-less organelles, RNP granules, enriched in RNA and RNA binding proteins containing disordered regions. We demonstrate that the disordered regions of key RNP granule components, and the full-length granule protein hnRNPA1, can phase separate in vitro, producing dynamic liquid droplets. Phase separation is promoted by low salt concentrations or RNA. Over time, the droplets mature to more stable states, as assessed by slowed fluorescence recovery after photobleaching and resistance to salt. Maturation often coincides with formation of fibrous structures. Different disordered domains can co-assemble into phase-separated droplets. These biophysical properties demonstrate a plausible mechanism by which interactions between disordered regions, coupled with RNA binding, could contribute to RNP granule assembly in vivo through promoting phase separation. Progression from dynamic liquids to stable fibers may be regulated to produce cellular structures with diverse physiochemical properties and functions. Misregulation could contribute to diseases involving aberrant RNA granules. PMID:26412307
49 CFR 1242.06 - Instructions for separation.
Code of Federal Regulations, 2010 CFR
2010-10-01
... expenses for Way and Structures administration functions: 11—Salaries and wages, 21—Materials, tools... be individually applied to the separation rules in § 1242.10. In each case, the independent accounts...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Neil J.; Dehaudt, Jeremy; Bryantsev, Vyacheslav S.
Bis-triazine phenanthrolines have shown great promise for f-block metal separations, attributable to their highly preorganized structure, nitrogen donors, and more enhanced covalent bonding with actinides over lanthanides. However, their limited solubility in traditional solvents remains a technological bottleneck. Here in this paper we report our recent work using a simple 2,9-bis(triazine)-1,10-phenanthroline (Me-BTPhen) dissolved in an ionic liquid (IL), demonstrating the efficacy of IL extraction systems for the selective separation of americium from europium, achieving separation factors in excess of 7500 and selectively removing up to 99% of the americium. Characterization of the coordination environment was performed using a combination ofmore » X-ray absorption fine structure spectroscopy (XAFS) and density functional theory (DFT) calculations.« less
Williams, Neil J.; Dehaudt, Jeremy; Bryantsev, Vyacheslav S.; ...
2017-02-10
Bis-triazine phenanthrolines have shown great promise for f-block metal separations, attributable to their highly preorganized structure, nitrogen donors, and more enhanced covalent bonding with actinides over lanthanides. However, their limited solubility in traditional solvents remains a technological bottleneck. Here in this paper we report our recent work using a simple 2,9-bis(triazine)-1,10-phenanthroline (Me-BTPhen) dissolved in an ionic liquid (IL), demonstrating the efficacy of IL extraction systems for the selective separation of americium from europium, achieving separation factors in excess of 7500 and selectively removing up to 99% of the americium. Characterization of the coordination environment was performed using a combination ofmore » X-ray absorption fine structure spectroscopy (XAFS) and density functional theory (DFT) calculations.« less
Enhanced Imaging of Corrosion in Aircraft Structures with Reverse Geometry X-ray(registered tm)
NASA Technical Reports Server (NTRS)
Winfree, William P.; Cmar-Mascis, Noreen A.; Parker, F. Raymond
2000-01-01
The application of Reverse Geometry X-ray to the detection and characterization of corrosion in aircraft structures is presented. Reverse Geometry X-ray is a unique system that utilizes an electronically scanned x-ray source and a discrete detector for real time radiographic imaging of a structure. The scanned source system has several advantages when compared to conventional radiography. First, the discrete x-ray detector can be miniaturized and easily positioned inside a complex structure (such as an aircraft wing) enabling images of each surface of the structure to be obtained separately. Second, using a measurement configuration with multiple detectors enables the simultaneous acquisition of data from several different perspectives without moving the structure or the measurement system. This provides a means for locating the position of flaws and enhances separation of features at the surface from features inside the structure. Data is presented on aircraft specimens with corrosion in the lap joint. Advanced laminographic imaging techniques utilizing data from multiple detectors are demonstrated to be capable of separating surface features from corrosion in the lap joint and locating the corrosion in multilayer structures. Results of this technique are compared to computed tomography cross sections obtained from a microfocus x-ray tomography system. A method is presented for calibration of the detectors of the Reverse Geometry X-ray system to enable quantification of the corrosion to within 2%.
Chow, Chi-Kin; Allan, Barrett W; Chai, Qing; Atwell, Shane; Lu, Jirong
2016-03-07
Antibodies at high concentrations often reveal unanticipated biophysical properties suboptimal for therapeutic development. The purpose of this work was to explore the use of point mutations based on crystal structure information to improve antibody physical properties such as viscosity and phase separation (LLPS) at high concentrations. An IgG4 monoclonal antibody (Mab4) that exhibited high viscosity and phase separation at high concentration was used as a model system. Guided by the crystal structure, four CDR point mutants were made to evaluate the role of hydrophobic and charge interactions on solution behavior. Surprisingly and unpredictably, two of the charge mutants, R33G and N35E, showed a reduction in viscosity and a lower propensity to form LLPS at high concentration compared to the wild-type (WT), while a third charge mutant S28K showed an increased propensity to form LLPS compared to the WT. A fourth mutant, F102H, had reduced hydrophobicity, but unchanged viscosity and phase separation behavior. We further evaluated the correlation of various biophysical measurements including second virial coefficient (A2), interaction parameter (kD), weight-average molecular weight (WAMW), and hydrodynamic diameters (DH), at relatively low protein concentration (4 to 15 mg/mL) to physical properties, such as viscosity and liquid-liquid phase separation (LLPS), at high concentration. Surprisingly, kD measured using dynamic light scattering (DLS) at low antibody concentration correlated better with viscosity and phase separation than did A2 for Mab4. Our results suggest that the high viscosity and phase separation observed at high concentration for Mab4 are mainly driven by charge and not hydrophobicity.
Herget, Philipp; O'Sullivan, Eugene J.; Romankiw, Lubomyr T.; Wang, Naigang; Webb, Bucknell C.
2016-07-05
A mechanism is provided for an integrated laminated magnetic device. A substrate and a multilayer stack structure form the device. The multilayer stack structure includes alternating magnetic layers and diode structures formed on the substrate. Each magnetic layer in the multilayer stack structure is separated from another magnetic layer in the multilayer stack structure by a diode structure.
Herget, Philipp; O'Sullivan, Eugene J.; Romankiw, Lubomyr T.; Wang, Naigang; Webb, Bucknell C.
2017-03-21
A mechanism is provided for an integrated laminated magnetic device. A substrate and a multilayer stack structure form the device. The multilayer stack structure includes alternating magnetic layers and diode structures formed on the substrate. Each magnetic layer in the multilayer stack structure is separated from another magnetic layer in the multilayer stack structure by a diode structure.
Nanomechanical modeling of interfaces of polyvinyl alcohol (PVA)/clay nanocomposite
NASA Astrophysics Data System (ADS)
Paliwal, Bhasker; Lawrimore, William B.; Chandler, Mei Q.; Horstemeyer, Mark F.
2017-05-01
We study interfacial debonding of several representative structures of polyvinyl alcohol (PVA)/pyrophillite-clay systems - both gallery-interface (polymer/clay interface in the interlayer region containing polymer between clay layers stacked parallel to each other) and matrix-interphase (polymer/clay interphase-region when individual clay layers are well separated and dispersed in the polymer matrix) - using molecular dynamics simulations, while explicitly accounting for shearing/sliding (i.e. Mode-II) deformation mode. Ten nanocomposite geometries (five 2-D periodic structures for tension and five 1-D periodic structures for shearing) were constructed to quantify the structure-property relations by varying the number density of polymer chains, length of polymer chains and model dimensions related to the interface deformation. The results were subsequently mapped into a cohesive traction-separation law, including evaluation of peak traction and work of separation that are used to characterise the interface load transfer for larger length scale micromechanical models. Results suggest that under a crack nucleation opening mode (i.e. Mode-I), the matrix-interphase exhibits noticeably greater strength and a greater work of separation compared to the gallery-interface; however, they were similar under the shearing/sliding mode of deformation. When compared to shearing/sliding, the tensile peak opening mode stresses were considerably greater but the displacement at the peak stress, the displacement at the final failure and the work of separation were considerably lower. Results also suggest that PVA/clay nanocomposites with higher degree of exfoliation compared with nanocomposites with higher clay-intercalation can potentially display higher strength under tension-dominated loading for a given clay volume fraction.
NASA Astrophysics Data System (ADS)
Carman, D. S.; Park, K.; Raue, B. A.; Adhikari, K. P.; Adikaram, D.; Aghasyan, M.; Amaryan, M. J.; Anderson, M. D.; Anefalos Pereira, S.; Anghinolfi, M.; Avakian, H.; Baghdasaryan, H.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A. S.; Bono, J.; Boiarinov, S.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Celentano, A.; Chandavar, S.; Charles, G.; Cole, P. L.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Doughty, D.; Dupre, R.; El Alaoui, A.; El Fassi, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Fersch, R.; Fleming, J. A.; Fradi, A.; Gabrielyan, M. Y.; Gevorgyan, N.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Gothe, R. W.; Griffioen, K. A.; Guegan, B.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Heddle, D.; Hicks, K.; Ho, D.; Holtrop, M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Khetarpal, P.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Koirala, S.; Kubarovsky, A.; Kubarovsky, V.; Kuleshov, S. V.; Kvaltine, N. D.; Lewis, S.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Mao, Y.; Martinez, D.; Mayer, M.; McKinnon, B.; Mestayer, M. D.; Meyer, C. A.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Moutarde, H.; Munevar, E.; Munoz Camacho, C.; Nadel-Turonski, P.; Nasseripour, R.; Nepali, C. S.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Pappalardo, L. L.; Paremuzyan, R.; Park, S.; Pasyuk, E.; Phelps, E.; Phillips, J. J.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Ricco, G.; Rimal, D.; Ripani, M.; Rosner, G.; Rossi, P.; Sabatié, F.; Saini, M. S.; Salgado, C.; Saylor, N. A.; Schott, D.; Schumacher, R. A.; Seder, E.; Seraydaryan, H.; Sharabian, Y. G.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Stepanyan, S. S.; Stepanyan, S.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Tang, W.; Taylor, C. E.; Tian, Y.; Tkachenko, S.; Trivedi, A.; Ungaro, M.; Vernarsky, B.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D.; Weinstein, L. B.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.
2013-02-01
We report measurements of the exclusive electroproduction of K+Λ and K+Σ0 final states from an unpolarized proton target using the CLAS detector at the Thomas Jefferson National Accelerator Facility. The separated structure functions σU, σLT, σTT, and σLT' were extracted from the Φ-dependent differential cross sections acquired with a longitudinally polarized 5.499 GeV electron beam. The data span a broad range of momentum transfers Q2 from 1.4 to 3.9 GeV2, invariant energy W from threshold to 2.6 GeV, and nearly the full center-of-mass angular range of the kaon. The separated structure functions provide an unprecedented data sample, which, in conjunction with other meson photo- and electroproduction data, will help to constrain the higher-level analyses being performed to search for missing baryon resonances.
Formation of structural steady states in lamellar/sponge phase-separating fluids under shear flow
NASA Astrophysics Data System (ADS)
Panizza, P.; Courbin, L.; Cristobal, G.; Rouch, J.; Narayanan, T.
2003-05-01
We investigate the effect of shear flow on a lamellar-sponge phase-separating fluid when subjected to shear flow. We show the existence of two different steady states (droplets and ribbons structures) whose nature does not depend on the way to reach the two-phase unstable region of the phase diagram (temperature quench or stirring). The transition between ribbons and droplets is shear thickening and its nature strongly depends on what dynamical variable is imposed. If the stress is fixed, flow visualization shows the existence of shear bands at the transition, characteristic of coexistence in the cell between ribbons and droplets. In this shear-banding region, the viscosity oscillates. When the shear rate is fixed, no shear bands are observed. Instead, the transition exhibits a hysteretic behavior leading to a structural bi-stability of the phase-separating fluid under flow.
Recent developments in separation of low molecular weight heparin anticoagulants.
Sadowski, Radosław; Gadzała-Kopciuch, Renata; Buszewski, Bogusław
2017-10-05
The general function of anticoagulants is to prevent blood clotting and growing of the existing clots in blood vessels. In recent years, there has been a significant improvement in developing methods of prevention as well as pharmacologic and surgical treatment of thrombosis. For over the last two decades, low molecular weight heparins (LMWHs) have found their application in the antithrombotic diseases treatment. These types of drugs are widely used in clinical therapy. Despite the biological and medical importance of LMWHs, they have not been completely characterized in terms of their chemical structure. Due to both, the structural complexity of these anticoagulants and the presence of impurities, their structural characterization requires the employment of advanced analytical techniques. Since separation techniques play the key role in these endeavors, this review will focus on the presentation of recent developments in the separation of LMWH anticoagulants. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Formation metrology and control for large separated optics space telescopes
NASA Technical Reports Server (NTRS)
Mettler, E.; Quadrelli, M.; Breckenridge, W.
2002-01-01
In this paper we present formation flying performance analysis initial results for a representative large space telescope composed of separated optical elements [Mett 02]. A virtual-structure construct (an equivalent rigid body) is created by unique metrology and control that combines both centralized and decentralized methods. The formation may be in orbit at GEO for super-resolution Earth observation, as in the case of Figure 1, or it may be in an Earth-trailing orbit for astrophysics, Figure 2. Extended applications are envisioned for exo-solar planet interferometric imaging by a formation of very large separated optics telescopes, Figure 3. Space telescopes, with such large apertures and f/10 to f/100 optics, are not feasible if connected by massive metering structures. Instead, the new virtual-structure paradigm of information and control connectivity between the formation elements provides the necessary spatial rigidity and alignment precision for the telescope.
Optically active single-walled carbon nanotubes
NASA Astrophysics Data System (ADS)
Peng, Xiaobin; Komatsu, Naoki; Bhattacharya, Sumanta; Shimawaki, Takanori; Aonuma, Shuji; Kimura, Takahide; Osuka, Atsuhiro
2007-06-01
The optical, electrical and mechanical properties of single-walled carbon nanotubes (SWNTs) are largely determined by their structures, and bulk availability of uniform materials is vital for extending their technological applications. Since they were first prepared, much effort has been directed toward selective synthesis and separation of SWNTs with specific structures. As-prepared samples of chiral SWNTs contain equal amounts of left- and right-handed helical structures, but little attention has been paid to the separation of these non-superimposable mirror image forms, known as optical isomers. Here, we show that optically active SWNT samples can be obtained by preferentially extracting either right- or left-handed SWNTs from a commercial sample. Chiral `gable-type' diporphyrin molecules bind with different affinities to the left- and right-handed helical nanotube isomers to form complexes with unequal stabilities that can be readily separated. Significantly, the diporphyrins can be liberated from the complexes afterwards, to provide optically enriched SWNTs.
Flat H Redundant Frangible Joint Development
NASA Technical Reports Server (NTRS)
Brown, Chris
2016-01-01
Orion and Commercial Crew Program (CCP) Partners have chosen to use frangible joints for certain separation events. The joints currently available are zero failure tolerant and will be used in mission safety applications. The goal is to further develop a NASA designed redundant frangible joint that will lower flight risk and increase reliability. FY16 testing revealed a successful design in subscale straight test specimens that gained efficiency and supports Orion load requirements. Approach / Innovation A design constraint is that the redundant joint must fit within the current Orion architecture, without the need for additional vehicle modification. This limitation required a design that changed the orientation of the expanding tube assemblies (XTAs), by rotating them 90deg from the standard joint configuration. The change is not trivial and affects the fracture mechanism and structural load paths. To address these changes, the design incorporates cantilevered arms on the break plate. The shock transmission and expansion of the XTA applies force to these arms and creates a prying motion to push the plate walls outward to the point of structural failure at the notched section. The 2014 test design revealed that parts could slip during functioning wasting valuable energy needed to separate the structure with only a single XTA functioning. Dual XTA functioning fully separated the assembly showing a discrepancy can be backed up with redundancy. Work on other fully redundant systems outside NASA is limited to a few patents that have not been subjected to functionality testing Design changes to prevent unwanted slippage (with ICA funding in 2015) showed success with a single XTA. The main goal for FY 2016 was to send the new Flat H RFJ to WSTF where single XTA test failures occurred back in 2014. The plan was to gain efficiency in this design by separating the Flat H RFJ with thicker ligaments with dimensions baselined in 2014. Other modifications included geometry changes to better disperse loads paths and to minimize air gaps. The design additionally added more structural strength to enhance the structural limits in static loads testing. The design also implemented a smoother load line through the assembly. Results / Knowledge Gained The new Flat H RFJ successfully fractured at WSTF with thicker ligaments and lower cord size. Where failure to separate occurred earlier, there is now excessive energy available for structural separation. The new challenge to provide some structural support to prevent secondary fracturing of the break plate remains to be completed. This future work is being funded by the JSC Engineering Directorate in 2017 to elevate the TRL on curved Flat H RFJs that configure with the Orion Service Panel Separation. Additional funding from JSC Engineering will provide new design testing to avoid secondary fracturing.
NASA Astrophysics Data System (ADS)
Kameswara Rao, P. V.; Rawal, Amit; Kumar, Vijay; Rajput, Krishn Gopal
2017-10-01
Absorptive glass mat (AGM) separators play a key role in enhancing the cycle life of the valve regulated lead acid (VRLA) batteries by maintaining the elastic characteristics under a defined level of compression force with the plates of the electrodes. Inevitably, there are inherent challenges to maintain the required level of compression characteristics of AGM separators during the charge and discharge of the battery. Herein, we report a three-dimensional (3D) analytical model for predicting the compression-recovery behavior of AGM separators by formulating a direct relationship with the constituent fiber and structural parameters. The analytical model of compression-recovery behavior of AGM separators has successfully included the fiber slippage criterion and internal friction losses. The presented work uses, for the first time, 3D data of fiber orientation from X-ray micro-computed tomography, for predicting the compression-recovery behavior of AGM separators. A comparison has been made between the theoretical and experimental results of compression-recovery behavior of AGM samples with defined fiber orientation characteristics. In general, the theory agreed reasonably well with the experimental results of AGM samples in both dry and wet states. Through theoretical modeling, fiber volume fraction was established as one of the key structural parameters that modulates the compression hysteresis of an AGM separator.
Mikolai, Júlia; Kulu, Hill
2018-02-01
This study investigates the effect of marital and nonmarital separation on individuals' residential and housing trajectories. Using rich data from the British Household Panel Survey (BHPS) and applying multilevel competing-risks event history models, we analyze the risk of a move of single, married, cohabiting, and separated men and women to different housing types. We distinguish moves due to separation from moves of separated people and account for unobserved codeterminants of moving and separation risks. Our analysis shows that many individuals move due to separation, as expected, but that the likelihood of moving is also relatively high among separated individuals. We find that separation has a long-term effect on individuals' residential careers. Separated women exhibit high moving risks regardless of whether they moved out of the joint home upon separation, whereas separated men who did not move out upon separation are less likely to move. Interestingly, separated women are most likely to move to terraced houses, whereas separated men are equally likely to move to flats (apartments) and terraced (row) houses, suggesting that family structure shapes moving patterns of separated individuals.
STEM-EELS analysis of multipole surface plasmon modes in symmetry-broken AuAg nanowire dimers
NASA Astrophysics Data System (ADS)
Schubert, Ina; Sigle, Wilfried; van Aken, Peter A.; Trautmann, Christina; Toimil-Molares, Maria Eugenia
2015-03-01
Surface plasmon coupling in nanowires separated by small gaps generates high field enhancements at the position of the gap and is thus of great interest for sensing applications. It is known that the nanowire dimensions and in particular the symmetry of the structures has strong influence on the plasmonic properties of the dimer structure. Here, we report on multipole surface plasmon coupling in symmetry-broken AuAg nanowire dimers. Our dimers, consisting of two nanowires with different lengths and separated by gaps of only 10 to 30 nm, were synthesized by pulsed electrochemical deposition in ion track-etched polymer templates. Electron energy-loss spectroscopy in scanning transmission electron microscopy allows us to resolve up to nine multipole order surface plasmon modes of these dimers spectrally separated from each other. The spectra evidence plasmon coupling between resonances of different multipole order, resulting in the generation of additional plasmonic modes. Since such complex structures require elaborated synthesis techniques, dimer structures with complex composition, morphology and shape are created. We demonstrate that finite element simulations on pure Au dimers can predict the generated resonances in the fabricated structures. The excellent agreement of our experiment on AuAg dimers with finite integration simulations using CST microwave studio manifests great potential to design complex structures for sensing applications.
Fire containment in wood construction doesn’t just happen
Robert H. White; Kuma Sumathipala
2007-01-01
Regardless of the type of construction, structures capable of containing a fully developed fire do not just happen. Fire walls or area separation walls play an important role in the building codes in that they allow each portion of a building separated by such walls to be treated as a separate building. Attention to construction details is critical to maximizing the...
Multimodal statewide transportation planning : a survey of state practices.
DOT National Transportation Integrated Search
2005-01-01
Within the structure of state government, some amount of transportation planning is usually performed within separate modal administrations, which may include aviation, bus, highway, ports, and rail, as well as separate toll agencies. Some states coo...
ERIC Educational Resources Information Center
John, Phillip
1982-01-01
Selected infrared laser chemistry topics are discussed including carbon dioxide lasers, infrared quanta and molecules, laser-induced chemistry, structural isomerization (laser purification, sensitized reactions, and dielectric breakdown), and fundamental principles of laser isotope separation, focusing on uranium isotope separation. (JN)
Gerald, II, Rex E; Ruscic, Katarina J; Sears, Devin N; Smith, Luis J; Klinger, Robert J; Rathke, Jerome W
2013-11-26
The invention relates to a unique battery having a physicochemically active membrane separator/electrolyte-electrode monolith and method of making the same. The Applicant's invented battery employs a physicochemically active membrane separator/electrolyte-electrode that acts as a separator, electrolyte, and electrode, within the same monolithic structure. The chemical composition, physical arrangement of molecules, and physical geometry of the pores play a role in the sequestration and conduction of ions. In one preferred embodiment, ions are transported via the ion-hoping mechanism where the oxygens of the Al.sub.2O.sub.3 wall are available for positive ion coordination (i.e. Li.sup.+). This active membrane-electrode composite can be adjusted to a desired level of ion conductivity by manipulating the chemical composition and structure of the pore wall to either increase or decrease ion conduction.
Gerald II, Rex E.; Ruscic, Katarina J.; Sears, Devin N.; Smith, Luis J.; Klingler, Robert J.; Rathke, Jerome W.
2012-07-24
The invention relates to a unique battery having a physicochemically active membrane separator/electrolyte-electrode monolith and method of making the same. The Applicant's invented battery employs a physicochemically active membrane separator/electrolyte-electrode that acts as a separator, electrolyte, and electrode, within the same monolithic structure. The chemical composition, physical arrangement of molecules, and physical geometry of the pores play a role in the sequestration and conduction of ions. In one preferred embodiment, ions are transported via the ion-hoping mechanism where the oxygens of the Al2O3 wall are available for positive ion coordination (i.e. Li+). This active membrane-electrode composite can be adjusted to a desired level of ion conductivity by manipulating the chemical composition and structure of the pore wall to either increase or decrease ion conduction.
NASA Astrophysics Data System (ADS)
Wu, Xiuling; Wu, Yilin; Dong, Hongjun; Zhao, Juan; Wang, Chen; Zhou, Shi; Lu, Jian; Yan, Yongsheng; Li, He
2018-01-01
A novel system for harvesting molecularly imprinted nanocomposite membranes (MINcMs) with Au-modified polyaniline (Au@polyaniline) nanocomposite structure was developed for selective enrichment and separation of ibuprofen. This unique nanocomposite structure obviously enhanced the adsorption capacity, perm-selectivity performance, and regeneration ability of MINcMs. The as-prepared MINcMs showed outstanding adsorption capacity (22.02 mg g-1) of ibuprofen, which was four times higher than that of non-imprinted nanocomposite membranes (NINcMs). Furthermore, the selectivity factor of MINcMs for ibuprofen reached up to 4.67 and the perm-selectivity factor β was about 8.74, which indicated MINcMs had a good selective separation performance of ibuprofen. We envision that this novel synthesis method will open a new direction to manipulation of molecularly imprinted membrane materials and provide a simple yet convenient way to selective separation of ibuprofen.
NASA Astrophysics Data System (ADS)
Takahara, Atsushi; Kawahara, Seiichi
2009-09-01
Applications of Synchrotron Radiation and Neutron Beam to Soft Matter Science (Symposium X of IUMRS-ICA2008) Toshiji Kanaya, Kohji Tashiro, Kazuo Sakura Keiji Tanaka, Sono Sasaki, Naoya Torikai, Moonhor Ree, Kookheon Char, Charles C Han, Atsushi Takahara This volume contains peer-reviewed invited and contributed papers that were presented in Symposium X 'Applications of Synchrotron Radiation and Neutron Beam to Soft Matter Science' at the IUMRS International Conference in Asia 2008 (IUMRS-ICA 2008), which was held on 9-13 December 2008, at Nagoya Congress Center, Nagoya, Japan. Structure analyses of soft materials based on synchrotron radiation (SR) and neutron beam have been developed steadily. Small-angle scattering and wide-angle diffraction techniques clarified the higher-order structure as well as time dependence of structure development such as crystallization and microphase-separation. On the other hand, reflectivity, grazing-incidence scattering and diffraction techniques revealed the surface and interface structural features of soft materials. From the viewpoint of strong interests on the development of SR and neutron beam techniques for soft materials, the objective of this symposium is to provide an interdisciplinary forum for the discussion of recent advances in research, development, and applications of SR and neutron beams to soft matter science. In this symposium, 21 oral papers containing 16 invited papers and 14 poster papers from China, India, Korea, Taiwan, and Japan were presented during the three-day symposium. As a result of the review of poster and oral presentations of young scientists by symposium chairs, Dr Kummetha Raghunatha Reddy (Toyota Technological Institute) received the IUMRS-ICA 2008 Young Researcher Award. We are grateful to all invited speakers and many participants for valuable contributions and active discussions. Organizing committee of Symposium (IUMRS-ICA 2008) Professor Toshiji Kanaya (Kyoto University) Professor Kohji Tashiro (Toyota Technological Institute) Professor Kazuo Sakurai(Kitakyushu University) Professor Keiji Tanaka (Kyushu University) Dr Sono Sasaki (JASRI/Spring-8) Professor Naoya Torikai (KENS) Professor Moonhor Ree (POSTECH) Professor Kookheon Char (Seoul National University) Professor Charles C Han (CAS) Professor Atsushi Takahara(Kyushu University) Frontier of Polymeric Nano-Soft-Materials, Precision Polymer Synthesis, Self-assembling and Their Functionalization (Symposium Y of IUMRS-ICA2008) Seiichi Kawahara, Rong-Ming Ho, Hiroshi Jinnai, Masami Kamigaito, Takashi Miyata, Hiroshi Morita, Hideyuki Otsuka, Daewon Sohn, Keiji Tanaka It is our great pleasure and honor to publish peer-reviewed papers, presented in Symposium Y 'Frontier of Polymeric Nano-Soft-Materials Precision Polymer Synthesis, Self-assembling and Their Functionalization' at the International Union of Materials Research Societies International Conference in Asia 2008 (IUMRS-ICA2008), which was held on 9-13 December 2008, at Nagoya Congress Center, Nagoya, Japan. 'Polymeric nano-soft-materials' are novel outcomes based on a recent innovative evolution in polymer science, i.e. precision polymer synthesis, self-assembling and functionalization of multi-component systems. The materials are expected to exhibit specific functions and unique properties due to their hierarchic morphologies brought either by naturally-generated ordering or by artificial manipulation of the systems, e.g., crystallization and phase-separation. The emerging precision synthesis has brought out new types of polymers with well-controlled primary structures. Furthermore, the surface and interface of the material are recognized to play an important role in the outstanding mechanical, electrical and optical properties, which are required for medical and engineering applications. In order to understand structure-property relationships in the nano-soft-materials, it is indispensable to develop novel characterization techniques. Symposium Y aimed to provide recent advances in polymer synthesis, self-assembling processes and morphologies, and functionalization of nano-soft-materials in order to initiate mutual and collaborative research interest that is essential to develop revolutionarily new nano-soft-materials in the decades ahead. Four Keynote lectures, 15 invited talks and 30 posters presented important new discoveries in polymeric nano-soft-materials, precision polymer synthesis, self-assembling and their functionalization. As for the precision polymer synthesis, the latest results were provided for studies on synthesis of polyrotaxane with movable graft chains, organic-inorganic hybridization of polymers, supra-molecular coordination assembly of conjugated polymers, precision polymerization of adamantane-containing monomers, production of high density polymer brush and synthesis of rod coil type polymer. The state-of-the-art results were introduced for the formation of nano-helical-structure of block copolymer containing asymmetric carbon atoms, self-assembling of block copolymers under the electric field, self-assembling of liquid crystalline elastomers, preparation of nano cylinder template films and mesoscopic simulation of phase transition of polymers and so forth. Moreover, recent advantages of three-dimensional electron microtomography and scanning force microscopy were proposed for analyses of nano-structures and properties of polymeric multi-component systems. Syntheses, properties and functions of slide-ring-gel, organic-inorganic hybrid hydrogels, hydrogel nano-particles, liquid-crystalline gels, the self-oscillating gels, and double network gels attracted participants' attention. Modifications of naturally occurring polymeric materials with supercritical carbon dioxide were introduced as a novel technology. Some of the attractive topics are presented in this issue. We are grateful to all the speakers and participants for valuable contributions and active discussions. Organizing committee of Symposium Y (IUMRS-ICA 2008) Chair Seiichi Kawahara (Nagaoka University of Technology, Japan) Vice Chairs Rong-Ming Ho (National Tsing Hua University, Taiwan) Hiroshi Jinnai (Kyoto Institute of Technology, Japan) Masami Kamigaito (Nagoya University, Japan) Takashi Miyata (Kansai University, Japan) Hiroshi Morita (National Institute of Advanced Industrial Science and Technology, Japan) Hideyuki Otsuka (Kyushu University, Japan) Daewon Sohn (Hanyang University, Korea) Keiji Tanaka (Kyushu University, Japan)
Arslan, Osman; Aytac, Zeynep; Uyar, Tamer
2016-08-03
Electrospun cellulose acetate nanofibers (CA-NF) have been modified with perfluoro alkoxysilanes (FS/CA-NF) for tailoring their chemical and physical features aiming oil-water separation purposes. Strikingly, hybrid FS/CA-NF showed that perfluoro groups are rigidly positioned on the outer surface of the nanofibers providing superhydrophobic characteristic with a water contact angle of ∼155°. Detailed analysis showed that hydrolysis/condensation reactions led to the modification of the acetylated β(1 → 4) linked d-glucose chains of CA transforming it into a superhydrophobic nanofibrous mat. Analytical data have revealed that CA-NF surfaces can be selectively controlled for fabricating the durable, robust and water resistant hybrid electrospun nanofibrous mat. The -OH groups available on the CA structure allowed the basic sol-gel reactions started by the reactive FS hybrid precursor system which can be monitored by spectroscopic analysis. Since alkoxysilane groups on the perfluoro silane compound are capable of reacting for condensation together with the CA, superhydrophobic nanofibrous mat is obtained via electrospinning. This structural modification led to the facile fabrication of the novel oil/water nanofibrous separator which functions effectively demonstrated by hexane/oil and water separation experiments. Perfluoro groups consequently modified the hydrophilic CA nanofibers into superhydrophobic character and therefore FS/CA-NF could be quite practical for future applications like water/oil separators, as well as self-cleaning or water resistant nanofibrous structures.
Samlan, Robin A.; Story, Brad H.
2011-01-01
Purpose To relate vocal fold structure and kinematics to two acoustic measures: cepstral peak prominence (CPP) and the amplitude of the first harmonic relative to the second (H1-H2). Method A computational, kinematic model of the medial surfaces of the vocal folds was used to specify features of vocal fold structure and vibration in a manner consistent with breathy voice. Four model parameters were altered: degree of vocal fold adduction, surface bulging, vibratory nodal point, and supraglottal constriction. CPP and H1-H2 were measured from simulated glottal area, glottal flow and acoustic waveforms and related to the underlying vocal fold kinematics. Results CPP decreased with increased separation of the vocal processes, whereas the nodal point location had little effect. H1-H2 increased as a function of separation of the vocal processes in the range of 1–1.5 mm and decreased with separation > 1.5 mm. Conclusions CPP is generally a function of vocal process separation. H1*-H2* will increase or decrease with vocal process separation based on vocal fold shape, pivot point for the rotational mode, and supraglottal vocal tract shape, limiting its utility as an indicator of breathy voice. Future work will relate the perception of breathiness to vocal fold kinematics and acoustic measures. PMID:21498582
Hansen, Maj; Armour, Cherie; Elklit, Ask
2012-01-01
Background Since the introduction of Acute Stress Disorder (ASD) into the 4th edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) research has focused on the ability of ASD to predict PTSD rather than focusing on addressing ASD's underlying latent structure. The few existing confirmatory factor analytic (CFA) studies of ASD have failed to reach a clear consensus regarding ASD's underlying dimensionality. Although, the discrepancy in the results may be due to varying ASD prevalence rates, it remains possible that the model capturing the latent structure of ASD has not yet been put forward. One such model may be a replication of a new five-factor model of PTSD, which separates the arousal symptom cluster into Dysphoric and Anxious Arousal. Given the pending DSM-5, uncovering ASD's latent structure is more pertinent than ever. Objective Using CFA, four different models of the latent structure of ASD were specified and tested: the proposed DSM-5 model, the DSM-IV model, a three factor model, and a five factor model separating the arousal symptom cluster. Method The analyses were based on a combined sample of rape and bank robbery victims, who all met the diagnostic criteria for ASD (N = 404) using the Acute Stress Disorder Scale. Results The results showed that the five factor model provided the best fit to the data. Conclusions The results of the present study suggest that the dimensionality of ASD may be best characterized as a five factor structure which separates dysphoric and anxious arousal items into two separate factors, akin to recent research on PTSD's latent structure. Thus, the current study adds to the debate about how ASD should be conceptualized in the pending DSM-5. PMID:22893845
Hansen, Maj; Armour, Cherie; Elklit, Ask
2012-01-01
Since the introduction of Acute Stress Disorder (ASD) into the 4th edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) research has focused on the ability of ASD to predict PTSD rather than focusing on addressing ASD's underlying latent structure. The few existing confirmatory factor analytic (CFA) studies of ASD have failed to reach a clear consensus regarding ASD's underlying dimensionality. Although, the discrepancy in the results may be due to varying ASD prevalence rates, it remains possible that the model capturing the latent structure of ASD has not yet been put forward. One such model may be a replication of a new five-factor model of PTSD, which separates the arousal symptom cluster into Dysphoric and Anxious Arousal. Given the pending DSM-5, uncovering ASD's latent structure is more pertinent than ever. USING CFA, FOUR DIFFERENT MODELS OF THE LATENT STRUCTURE OF ASD WERE SPECIFIED AND TESTED: the proposed DSM-5 model, the DSM-IV model, a three factor model, and a five factor model separating the arousal symptom cluster. The analyses were based on a combined sample of rape and bank robbery victims, who all met the diagnostic criteria for ASD (N = 404) using the Acute Stress Disorder Scale. The results showed that the five factor model provided the best fit to the data. The results of the present study suggest that the dimensionality of ASD may be best characterized as a five factor structure which separates dysphoric and anxious arousal items into two separate factors, akin to recent research on PTSD's latent structure. Thus, the current study adds to the debate about how ASD should be conceptualized in the pending DSM-5.
Nano-phase separation and structural ordering in silica-rich mixed network former glasses.
Liu, Hao; Youngman, Randall E; Kapoor, Saurabh; Jensen, Lars R; Smedskjaer, Morten M; Yue, Yuanzheng
2018-06-13
We investigate the structure, phase separation, glass transition, and crystallization in a mixed network former glass series, i.e., B2O3-Al2O3-SiO2-P2O5 glasses with varying SiO2/B2O3 molar ratio. All the studied glasses exhibit two separate glassy phases: droplet phase (G1) with the size of 50-100 nm and matrix phase (G2), corresponding to a lower calorimetric glass transition temperature (Tg1) and a higher one (Tg2), respectively. Both Tg values decrease linearly with the substitution of B2O3 for SiO2, but the magnitude of the decrease is larger for Tg1. Based on nuclear magnetic resonance and Raman spectroscopy results, we infer that the G1 phase is rich in boroxol rings, while the G2 phase mainly involves the B-O-Si network. Both phases contain BPO4- and AlPO4-like units. Ordered domains occur in G2 upon isothermal and dynamic heating, driven by the structural heterogeneity in the as-prepared glasses. The structural ordering lowers the activation energy of crystal growth, thus promoting partial crystallization of G2. These findings are useful for understanding glass formation and phase separation in mixed network former oxide systems, and for tailoring their properties.
Scharfman, Helen E; Myers, Catherine E
2016-03-01
The dentate gyrus (DG) and area CA3 of the hippocampus are highly organized lamellar structures which have been implicated in specific cognitive functions such as pattern separation and pattern completion. Here we describe how the anatomical organization and physiology of the DG and CA3 are consistent with structures that perform pattern separation and completion. We then raise a new idea related to the complex circuitry of the DG and CA3 where CA3 pyramidal cell 'backprojections' play a potentially important role in the sparse firing of granule cells (GCs), considered important in pattern separation. We also propose that GC axons, the mossy fibers, already known for their highly specialized structure, have a dynamic function that imparts variance--'mossy fiber variance'--which is important to pattern separation and completion. Computational modeling is used to show that when a subset of GCs become 'dominant,' one consequence is loss of variance in the activity of mossy fiber axons and a reduction in pattern separation and completion in the model. Empirical data are then provided using an example of 'dominant' GCs--subsets of GCs that develop abnormally and have increased excitability. Notably, these abnormal GCs have been identified in animal models of disease where DG-dependent behaviors are impaired. Together these data provide insight into pattern separation and completion, and suggest that behavioral impairment could arise from dominance of a subset of GCs in the DG-CA3 network. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Deng, Nanping; Wang, Yan; Yan, Jing; Ju, Jingge; Li, Zongjie; Fan, Lanlan; Zhao, Huijuan; Kang, Weimin; Cheng, Bowen
2017-09-01
In this study, F-doped tree-like nanofiber structural poly-m-phenyleneisophthalamide (PMIA) membranes are prepared via one-step electrospinning approach and their application performance as separators for lithium-sulfur batteries are discussed. The F-doped PMIA membrane can be regarded as matrix to form gel polymer electrolyte. The F doping endows the PMIA membranes with extraordinary high electrolyte uptake, excellent ability of preserving the liquid electrolyte and forceful chemisorption to polysulfides. And the tree-like structure effectively blocks polysulfides by the physical confinement. The lithium-sulfur cell with the F-doped PMIA separator exhibits high first-cycle discharge capacity of 1222.5 mAh g-1 and excellent cycling stability with good capacity retention of 745.7 mAh g-1 and coulombic efficiency of 97.97% after 800 cycles. The remarkable performance can be ascribed to the suppressed shuttle effects through both the physical trapping of polysulfides by the gel polymer electrolyte based on matrix with F-doped PMIA membrane and the tree-like structure in a working cell.
NASA Astrophysics Data System (ADS)
Andrews, Stephen K.; Kelvin, Lee S.; Driver, Simon P.; Robotham, Aaron S. G.
2014-01-01
The 2MASS, UKIDSS-LAS, and VISTA VIKING surveys have all now observed the GAMA 9hr region in the Ks band. Here we compare the detection rates, photometry, basic size measurements, and single-component GALFIT structural measurements for a sample of 37 591 galaxies. We explore the sensitivity limits where the data agree for a variety of issues including: detection, star-galaxy separation, photometric measurements, size and ellipticity measurements, and Sérsic measurements. We find that 2MASS fails to detect at least 20% of the galaxy population within all magnitude bins, however for those that are detected we find photometry is robust (± 0.2 mag) to 14.7 AB mag and star-galaxy separation to 14.8 AB mag. For UKIDSS-LAS we find incompleteness starts to enter at a flux limit of 18.9 AB mag, star-galaxy separation is robust to 16.3 AB mag, and structural measurements are robust to 17.7 AB mag. VISTA VIKING data are complete to approximately 20.0 AB mag and structural measurements appear robust to 18.8 AB mag.
Chen, Jyh-Herng; Le, Thi Tuyet Mai; Hsu, Kai-Chung
2018-01-01
The structural characteristics of membrane support directly affect the performance of carrier facilitated transport membrane. A highly porous PolyHIPE impregnated with Aliquat 336 is proposed for Cr(VI) separation. PolyHIPE consisting of poly(styrene-co-2-ethylhexyl acrylate) copolymer crosslinked with divinylbenzene has the pore structure characteristic of large pore spaces interconnected with small window throats. The unique pore structure provides the membrane with high flux and stability. The experimental results indicate that the effective diffusion coefficient D* of Cr(VI) through Aliquat 336/PolyHIPE membrane is as high as 1.75 × 10−11 m2 s−1. Transport study shows that the diffusion of Cr(VI) through Aliquat 336/PolyHIPE membrane can be attributed to the jumping transport mechanism. The hydraulic stability experiment shows that the membrane is quite stable, with recovery rates remaining at 95%, even after 10 consecutive cycles of operation. The separation study demonstrates the potential application of this new type of membrane for Cr(VI) recovery. PMID:29498709
Chen, Jyh-Herng; Le, Thi Tuyet Mai; Hsu, Kai-Chung
2018-03-02
The structural characteristics of membrane support directly affect the performance of carrier facilitated transport membrane. A highly porous PolyHIPE impregnated with Aliquat 336 is proposed for Cr(VI) separation. PolyHIPE consisting of poly(styrene- co -2-ethylhexyl acrylate) copolymer crosslinked with divinylbenzene has the pore structure characteristic of large pore spaces interconnected with small window throats. The unique pore structure provides the membrane with high flux and stability. The experimental results indicate that the effective diffusion coefficient D* of Cr(VI) through Aliquat 336/PolyHIPE membrane is as high as 1.75 × 10 -11 m² s -1 . Transport study shows that the diffusion of Cr(VI) through Aliquat 336/PolyHIPE membrane can be attributed to the jumping transport mechanism. The hydraulic stability experiment shows that the membrane is quite stable, with recovery rates remaining at 95%, even after 10 consecutive cycles of operation. The separation study demonstrates the potential application of this new type of membrane for Cr(VI) recovery.
Adjustable microscopic measurement of nanogap waveguide and plasmonic structures.
Shen, Mengqi; Learkthanakhachon, Supannee; Pechprasarn, Suejit; Zhang, Yaping; Somekh, Michael G
2018-05-01
We investigate the performance of surface plasmon and Fabry-Perot modes formed between two closely spaced layers. The motivation for this study is twofold: first, to look for modes that may be excited at lower incident angles compared to the usual Kretschmann configuration with similar or superior refractive index responsivity and, second, to develop a simple and applicable method to study these structures over a wide range of separations without recourse to the construction of ad hoc structures. Using back focal plane observation and appropriate signal processing, we show results for the Otto configuration at visible wavelengths at a range of separations not reported hitherto. Moreover, we investigate a hybrid structure we call the Kretschmann-Otto configuration that gives modes that change continuously from a hybridized surface plasmon mode to a zero-order Fabry-Perot mode. The ability to change the separation to small gap distances enables us to examine the Fabry-Perot modes where we show that it has superior refractive index responsivity, by more than an order of magnitude, compared to the Kretschmann configuration.
Szczepanski, Caroline R.; Stansbury, Jeffrey W.
2014-01-01
A mechanism for polymerization shrinkage and stress reduction was developed for heterogeneous networks formed via ambient, photo-initiated polymerization-induced phase separation (PIPS). The material system used consists of a bulk homopolymer matrix of triethylene glycol dimethacrylate (TEGDMA) modified with one of three non-reactive, linear prepolymers (poly-methyl, ethyl and butyl methacrylate). At higher prepolymer loading levels (10–20 wt%) an enhanced reduction in both shrinkage and polymerization stress is observed. The onset of gelation in these materials is delayed to a higher degree of methacrylate conversion (~15–25%), providing more time for phase structure evolution by thermodynamically driven monomer diffusion between immiscible phases prior to network macro-gelation. The resulting phase structure was probed by introducing a fluorescently tagged prepolymer into the matrix. The phase structure evolves from a dispersion of prepolymer at low loading levels to a fully co-continuous heterogeneous network at higher loadings. The bulk modulus in phase separated networks is equivalent or greater than that of poly(TEGDMA), despite a reduced polymerization rate and cross-link density in the prepolymer-rich domains. PMID:25418999
Fujisawa, Tomotsumi; Creelman, Mark; Mathies, Richard A
2012-09-06
Femtosecond stimulated Raman spectroscopy is used to examine the structural dynamics of photoinduced charge transfer within a noncovalent electron acceptor/donor complex of pyromellitic dianhydride (PMDA, electron acceptor) and hexamethylbenzene (HMB, electron donor) in ethylacetate and acetonitrile. The evolution of the vibrational spectrum reveals the ultrafast structural changes that occur during the charge separation (Franck-Condon excited state complex → contact ion pair) and the subsequent charge recombination (contact ion pair → ground state complex). The Franck-Condon excited state is shown to have significant charge-separated character because its vibrational spectrum is similar to that of the ion pair. The charge separation rate (2.5 ps in ethylacetate and ∼0.5 ps in acetonitrile) is comparable to solvation dynamics and is unaffected by the perdeuteration of HMB, supporting the dominant role of solvent rearrangement in charge separation. On the other hand, the charge recombination slows by a factor of ∼1.4 when using perdeuterated HMB, indicating that methyl hydrogen motions of HMB mediate the charge recombination process. Resonance Raman enhancement of the HMB vibrations in the complex reveals that the ring stretches of HMB, and especially the C-CH(3) deformations are the primary acceptor modes promoting charge recombination.
Code of Federal Regulations, 2012 CFR
2012-04-01
... contracts, including, but not limited to, premium rate structure and premium processing, insurance... discrete cash values that may vary in amount in accordance with the investment experience of the separate...
Code of Federal Regulations, 2010 CFR
2010-04-01
... contracts, including, but not limited to, premium rate structure and premium processing, insurance... discrete cash values that may vary in amount in accordance with the investment experience of the separate...
Code of Federal Regulations, 2014 CFR
2014-04-01
... contracts, including, but not limited to, premium rate structure and premium processing, insurance... discrete cash values that may vary in amount in accordance with the investment experience of the separate...
Code of Federal Regulations, 2013 CFR
2013-04-01
... contracts, including, but not limited to, premium rate structure and premium processing, insurance... discrete cash values that may vary in amount in accordance with the investment experience of the separate...
Code of Federal Regulations, 2011 CFR
2011-04-01
... contracts, including, but not limited to, premium rate structure and premium processing, insurance... discrete cash values that may vary in amount in accordance with the investment experience of the separate...
Air cooled turbine component having an internal filtration system
Beeck, Alexander R [Orlando, FL
2012-05-15
A centrifugal particle separator is provided for removing particles such as microscopic dirt or dust particles from the compressed cooling air prior to reaching and cooling the turbine blades or turbine vanes of a turbine engine. The centrifugal particle separator structure has a substantially cylindrical body with an inlet arranged on a periphery of the substantially cylindrical body. Cooling air enters centrifugal particle separator through the separator inlet port having a linear velocity. When the cooling air impinges the substantially cylindrical body, the linear velocity is transformed into a rotational velocity, separating microscopic particles from the cooling air. Microscopic dust particles exit the centrifugal particle separator through a conical outlet and returned to a working medium.
Method and apparatus for ion mobility spectrometry with alignment of dipole direction (IMS-ADD)
Shvartsburg, Alexandre A [Richland, WA; Tang, Keqi [Richland, WA; Smith, Richard D [Richland, WA
2007-01-30
Techniques and instrumentation are described for analyses of substances, including complex samples/mixtures that require separation prior to characterization of individual components. A method is disclosed for separation of ion mixtures and identification of ions, including protein and other macromolecular ions and their different structural isomers. Analyte ions are not free to rotate during the separation, but are substantially oriented with respect to the drift direction. Alignment is achieved by applying, at a particular angle to the drift field, a much stronger alternating electric field that "locks" the ion dipoles with moments exceeding a certain value. That value depends on the buffer gas composition, pressure, and temperature, but may be as low as .about.3 Debye under certain conditions. The presently disclosed method measures the direction-specific cross-sections that provide the structural information complementing that obtained from known methods, and, when coupled to those methods, increases the total peak capacity and specificity of gas-phase separations. Simultaneous 2-D separations by direction-specific cross sections along and orthogonally to the ion dipole direction are also possible.
The Azimuth Structure of Nuclear Collisions — I
NASA Astrophysics Data System (ADS)
Trainor, Thomas A.; Kettler, David T.
We describe azimuth structure commonly associated with elliptic and directed flow in the context of 2D angular autocorrelations for the purpose of precise separation of so-called nonflow (mainly minijets) from flow. We extend the Fourier-transform description of azimuth structure to include power spectra and autocorrelations related by the Wiener-Khintchine theorem. We analyze several examples of conventional flow analysis in that context and question the relevance of reaction plane estimation to flow analysis. We introduce the 2D angular autocorrelation with examples from data analysis and describe a simulation exercise which demonstrates precise separation of flow and nonflow using the 2D autocorrelation method. We show that an alternative correlation measure based on Pearson's normalized covariance provides a more intuitive measure of azimuth structure.
Laser isotope separation of erbium and other isotopes
Haynam, Christopher A.; Worden, Earl F.
1995-01-01
Laser isotope separation is accomplished using at least two photoionization pathways of an isotope simultaneously, where each pathway comprises two or more transition steps. This separation method has been applied to the selective photoionization of erbium isotopes, particularly for the enrichment of .sup.167 Er. The hyperfine structure of .sup.167 Er was used to find two three-step photoionization pathways having a common upper energy level.
Kaun, Thomas D.
1992-01-01
A bipolar battery having a plurality of cells. The bipolar battery includes: a negative electrode; a positive electrode and a separator element disposed between the negative electrode and the positive electrode, the separator element electrically insulating the electrodes from one another; an electrolyte disposed within at least one of the negative electrode, the positive electrode and the separator element; and an electrode containment structure including a cup-like electrode holder.
Min, Yi; Jiang, Bo; Wu, Ci; Xia, Simin; Zhang, Xiaodan; Liang, Zhen; Zhang, Lihua; Zhang, Yukui
2014-08-22
In this work, 1.9 μm reversed-phase packing materials with superficially porous structure were prepared to achieve the rapid and high efficient separation of peptides and proteins. The silica particles were synthesized via three steps, nonporous silica particle preparation by a modified seeded growth method, mesoporous shell formation by a one pot templated dissolution and redeposition strategy, and pore size expansion via acid-refluxing. By such a method, 1.9 μm superficially porous materials with 0.18 μm shell thickness and tailored pore diameter (10 nm, 15 nm) were obtained. After pore enlargement, the formerly dense arrays of mesoporous structure changed, the radially oriented pores dominated the superficially porous structure. The chromatographic performance of such particles was investigated after C18 derivatization. For packing materials with 1.9 μm diameter and 10 nm pore size, the column efficiency could reach 211,300 plates per m for naphthalene. To achieve the high resolution separation of peptides and proteins, particles with pore diameter of 15 nm were tailored, by which the baseline separation of 5 peptides and 5 intact proteins could be respectively achieved within 1 min, demonstrating the superiority in the high efficiency and high throughput analysis of biomolecules. Furthermore, BSA digests were well separated with peak capacity of 120 in 30 min on a 15 cm-long column. Finally, we compared our columns with a 1.7 μm Kinetex C18 column under the same conditions, our particles with 10nm pore size demonstrated similar performance for separation of the large intact proteins. Moreover, the particles with 15 nm pore size showed more symmetrical peaks for the separation of large proteins (BSA, OVA and IgG) and provided rapid separation of protein extracts from Escherichia coli in 5 min. All these results indicated that the synthesized 1.9 μm superficially porous silica packing materials would be promising in the ultra-fast and high-resolution separation of biomolecules. Copyright © 2014 Elsevier B.V. All rights reserved.
Composite separators and redox flow batteries based on porous separators
Li, Bin; Wei, Xiaoliang; Luo, Qingtao; Nie, Zimin; Wang, Wei; Sprenkle, Vincent L.
2016-01-12
Composite separators having a porous structure and including acid-stable, hydrophilic, inorganic particles enmeshed in a substantially fully fluorinated polyolefin matrix can be utilized in a number of applications. The inorganic particles can provide hydrophilic characteristics. The pores of the separator result in good selectivity and electrical conductivity. The fluorinated polymeric backbone can result in high chemical stability. Accordingly, one application of the composite separators is in redox flow batteries as low cost membranes. In such applications, the composite separator can also enable additional property-enhancing features compared to ion-exchange membranes. For example, simple capacity control can be achieved through hydraulic pressure by balancing the volumes of electrolyte on each side of the separator. While a porous separator can also allow for volume and pressure regulation, in RFBs that utilize corrosive and/or oxidizing compounds, the composite separators described herein are preferable for their robustness in the presence of such compounds.
Multiblock thermoplastic polyurethanes for biomedical and shape memory applications
NASA Astrophysics Data System (ADS)
Gu, Xinzhu
Polyurethanes are a class of polymers that are capable of tailoring the overall polymer structure and thus final properties by many factors. The great potential in tailoring polymer structures imparts PUs unique mechanical properties and good cytocompatibility, which make them good candidates for many biomedical devices. In this dissertation, three families of multiblock thermoplastic polyurethanes are synthesized and characterized for biomedical and shape memory applications. In the first case described in Chapters 2, 3 and 4, a novel family of multiblock thermoplastic polyurethanes consisting of poly(ɛ-caprolactone) (PCL) and poly(ethylene glycol) (PEG) are presented. These materials were discovered to be very durable, with strain-to-break higher than 1200%. Heat-triggered reversible plasticity shape memory (RPSM) was observed, where the highly deformed samples completely recovered their as-cast shape within one minute when heating above the transition temperature. Instead of conventional "hard" blocks, entanglements, which result from high molecular weight, served as the physical crosslinks in this system, engendering shape recovery and preventing flow. Moreover, water-triggered shape memory effect of PCL-PEG TPUs is explored, wherein water permeated into the initially oriented PEG domains, causing rapid shape recovery toward the equilibrium shape upon contact with liquid water. The recovery behavior is found to be dependent on PEG weight percentage in the copolymers. By changing the material from bulk film to electrospun fibrous mat, recovery speed was greatly accelerated. The rate of water recovery was manipulated through structural variables, including thickness of bulk film and diameter of e-spun webs. A new, yet simple shape memory cycle, "wet-fixing" is also reported, where both the fixing and recovery ratios can be greatly improved. A detailed microstructural study on one particular composition is presented, revealing the evolution of microphase morphology during the shape memory cycle. Then, in Chapter 5, the role of Polyhedral oligosilsesquioxane (POSS) in suppressing enzymatic degradation of PCL-PEG TPUs is investigated. In vitro enzymatic hydrolytic biodegradation revealed that POSS incorporation significantly suppressed degradation of PCL-PEG TPUs. All TPUs were surface-eroded by enzymatic attack in which the chemical composition and the bulk mechanical properties exhibited little changes. A surface passivation mechanism is proposed to explain the protection of POSS-containing TPUs from enzymatic degradation. Finally, Chapter 6 presents another POSS-based TPUs system with PLA-based polyol as the glassy soft block. Manipulation of the final thermal and mechanical properties is discussed in terms of different polyols and POSS used. The free recovery and the constrained recovery responses of the polymer films were demonstrated as a function of the prior "fixing" deformation temperature. In addition, this family of materials was capable of memorizing their T g., where optimal recovery breadth and recovery stress were achieved when pre-deformation occurred right at Tg.
Gondal, Mohammed A; Sadullah, Muhammad S; Dastageer, Mohamed A; McKinley, Gareth H; Panchanathan, Divya; Varanasi, Kripa K
2014-08-27
Surfaces which possess extraordinary water attraction or repellency depend on surface energy, surface chemistry, and nano- and microscale surface roughness. Synergistic superhydrophilic-underwater superoleophobic surfaces were fabricated by spray deposition of nanostructured TiO2 on stainless steel mesh substrates. The coated meshes were then used to study gravity driven oil-water separation, where only the water from the oil-water mixture is allowed to permeate through the mesh. Oil-water separation efficiencies of up to 99% could be achieved through the coated mesh of pore sizes 50 and 100 μm, compared to no separation at all, that was observed in the case of uncoated meshes of the same material and pore sizes. An adsorbed water on the TiO2 coated surface, formation of a water-film between the wires that form the mesh and the underwater superoleophobicity of the structured surface are the key factors that contribute to the enhanced efficiency observed in oil-water separation. The nature of the oil-water separation process using this coated mesh (in which the mesh allows water to pass through the porous structure but resists wetting by the oil phase) minimizes the fouling of mesh so that the need for frequent replacement of the separating medium is reduced. The fabrication approach presented here can be applied for coating large surface areas and to develop a large-scale oil-water separation facility for oil-field applications and petroleum industries.
Ion Transport in Nanostructured Block Copolymer/Ionic Liquid Membranes
NASA Astrophysics Data System (ADS)
Hoarfrost, Megan Lane
Incorporating an ionic liquid into one block copolymer microphase provides a platform for combining the outstanding electrochemical properties of ionic liquids with a number of favorable attributes provided by block copolymers. In particular, block copolymers thermodynamically self-assemble into well-ordered nanostructures, which can be engineered to provide a durable mechanical scaffold and template the ionic liquid into continuous ion-conducting nanochannels. Understanding how the addition of an ionic liquid affects the thermodynamic self-assembly of block copolymers, and how the confinement of ionic liquids to block copolymer nanodomains affects their ion-conducting properties is essential for predictable structure-property control. The lyotropic phase behavior of block copolymer/ionic liquid mixtures is shown to be reminiscent of mixtures of block copolymers with selective molecular solvents. A variety of ordered microstructures corresponding to lamellae, hexagonally close-packed cylinders, body-centered cubic, and face-centered cubic oriented micelles are observed in a model system composed of mixtures of imidazolium bis(trifluoromethylsulfonyl)imide ([Im][TFSI]) and poly(styrene-
Monolithic integrated high-T.sub.c superconductor-semiconductor structure
NASA Technical Reports Server (NTRS)
Barfknecht, Andrew T. (Inventor); Garcia, Graham A. (Inventor); Russell, Stephen D. (Inventor); Burns, Michael J. (Inventor); de la Houssaye, Paul R. (Inventor); Clayton, Stanley R. (Inventor)
2000-01-01
A method for the fabrication of active semiconductor and high-temperature superconducting device of the same substrate to form a monolithically integrated semiconductor-superconductor (MISS) structure is disclosed. A common insulating substrate, preferably sapphire or yttria-stabilized zirconia, is used for deposition of semiconductor and high-temperature superconductor substructures. Both substructures are capable of operation at a common temperature of at least 77 K. The separate semiconductor and superconductive regions may be electrically interconnected by normal metals, refractory metal silicides, or superconductors. Circuits and devices formed in the resulting MISS structures display operating characteristics which are equivalent to those of circuits and devices prepared on separate substrates.
Separated flows receptivity for external disturbances
NASA Astrophysics Data System (ADS)
Zanin, B. Yu.
2017-10-01
Results of experimental investigations of the flow over a straight-wing model in a low-turbulence wind tunnel are reported. The influence of a turbulent wake due to a thin filament on the structure of boundary layer on the model surface was examined. Also the fishing line was installed in the test section of the wind tunnel and the effect of line on the boundary-layer flow structure is considered. Flow visualization in boundary layer and hot-wire measurements were performed. The wake and the grid substantially modified the boundary layer flow pattern: the separation disappeared from the wing surface, and the formation of longitudinal structures was observed.
Activated carbon fiber composite material and method of making
Burchell, Timothy D.; Weaver, Charles E.; Chilcoat, Bill R.; Derbyshire, Frank; Jagtoyen, Marit
2000-01-01
An activated carbon fiber composite for separation and purification, or catalytic processing of fluids is described. The activated composite comprises carbon fibers rigidly bonded to form an open, permeable, rigid monolith capable of being formed to near-net-shape. Separation and purification of gases are effected by means of a controlled pore structure that is developed in the carbon fibers contained in the composite. The open, permeable structure allows the free flow of gases through the monolith accompanied by high rates of adsorption. By modification of the pore structure and bulk density the composite can be rendered suitable for applications such as gas storage, catalysis, and liquid phase processing.
Activated carbon fiber composite material and method of making
Burchell, Timothy D.; Weaver, Charles E.; Chilcoat, Bill R.; Derbyshire, Frank; Jagtoyen, Marit
2001-01-01
An activated carbon fiber composite for separation and purification, or catalytic processing of fluids is described. The activated composite comprises carbon fibers rigidly bonded to form an open, permeable, rigid monolith capable of being formed to near-net-shape. Separation and purification of gases are effected by means of a controlled pore structure that is developed in the carbon fibers contained in the composite. The open, permeable structure allows the free flow of gases through the monolith accompanied by high rates of adsorption. By modification of the pore structure and bulk density the composite can be rendered suitable for applications such as gas storage, catalysis, and liquid phase processing.
SLIM: A Big Turn for Ion Separation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Dick; Ibrahim, Yehia
Researchers at PNNL have drastically increased the speed and separation of ions by tackling one problem: turning ions around a corner. Their technology, Structures for Lossless Ion Manipulations, or SLIM, could take the form of new instruments for doctors and other applications.
Excited state electron transfer in systems with a well-defined geometry. [cyclophane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaufmann, K.J.
1980-12-01
The effect of temperature, dielectric strength and ligand on the structure of the mesopyropheophorbide cyclophanes will be studied. ESR, NMR, emission and absorption spectroscopy, as well as circular dichroism will be used. The changes in structure will be correlated with changes in the photochemical activity. Electron acceptors such as benzoquinone will be utilized to stabilize the charge separation. Charge separation in porphyrin quinone dimers will also be studied. It was found that electron transfer in the cyclophane system is relatively slow. This is presumably due to an orientation requirement for fast electron transfer. Solvent dielectric also is important in producingmore » a charge separation. Decreasing the temperature effects the yield of charge transfer, but not the kinetics.« less
Matz, Laura M; Hill, Herbert H; Beegle, Luther W; Kanik, Isik
2002-04-01
Recent studies in electrospray ionization (ESI)/ion mobility spectrometry (IMS) have focussed on employing different drift gases to alter separation efficiency for some molecules. This study investigates four structurally similar classes of molecules (cocaine and metabolites, amphetamines, benzodiazepines, and small peptides) to determine the effect of structure on relative mobility changes in four drift gases (helium, nitrogen, argon, carbon dioxide). Collision cross sections were plotted against drift gas polarizability and a linear relationship was found for the nineteen compounds evaluated in the study. Based on the reduced mobility database, all nineteen compounds could be separated in one of the four drift gases, however, the drift gas that provided optimal separation was specific for the two compounds.
High-performance liquid-chromatographic separation of subcomponents of antimycin-A
Abidi, S.L.
1988-01-01
Using a reversed-phase high-performance liquid chromatographic (HPLC) technique, a mixture of antimycins A was separated into eight hitherto unreported subcomponents, Ala, Alb, A2a, A2b, A3a, A3b, A4a, and A4b. Although a base-line resolution of the known four major antimycins Al, A2, A3, and A4 was readily achieved with mobile phases containing acetate buffers, the separation of the new antibiotic subcomponents was highly sensitive to variation in mobile phase conditions. The type and composition of organic modifiers, the nature of buffer salts, and the concentration of added electrolytes had profound effects on capacity factors, separation factors, and peak resolution values. Of the numerous chromatographic systems examined, a mobile phase consisting of methanol-water (70:30) and 0.005 M tetrabutylammonium phosphate at pH 3.0 yielded the most satisfactory results for the separation of the subcomponents. Reversed-phase gradient HPLC separation of the dansylated or methylated antibiotic compounds produced superior chromatographic characteristics and the presence of added electrolytes was not a critical factor for achieving separation. Differences in the chromatographic outcome between homologous and structural isomers were interpretated based on a differential solvophobic interaction rationale. Preparative reversed-phase HPLC under optimal conditions enabled isolation of pure samples of the methylated antimycin subcomponents for use in structural studies.
Lawrence, E.O.
1958-09-16
This patent relates to calutron devices and has for its object the arrangement of several independent ion separating mechanisms, i.e., ion source and ion receiver, within a single vacuum tank to econnmize on space and reduce the duplication of magnetic structure. In each of the two described embodiments the ion separating mechanisms are removably supported within the tank. In addition, the magnetic field is produced in the tank by coaxial coils supported outside the tank and magnetic structure is arranged to confine and provide a uniform field within the tank.
Enzymatically active high-flux selectively gas-permeable membranes
Jiang, Ying-Bing; Cecchi, Joseph L.; Rempe, Susan; FU, Yaqin; Brinker, C. Jeffrey
2016-01-26
An ultra-thin, catalyzed liquid transport medium-based membrane structure fabricated with a porous supporting substrate may be used for separating an object species such as a carbon dioxide object species. Carbon dioxide flux through this membrane structures may be several orders of magnitude higher than traditional polymer membranes with a high selectivity to carbon dioxide. Other gases such as molecular oxygen, molecular hydrogen, and other species including non-gaseous species, for example ionic materials, may be separated using variations to the membrane discussed.
Ribbon phase in a phase-separated lyotropic lamellar-sponge mixture under shear flow
NASA Astrophysics Data System (ADS)
Cristobal, G.; Rouch, J.; Panizza, P.; Narayanan, T.
2001-07-01
We report the effect of shear flow on a phase-separated system composed of lyotropic lamellar (Lα) and sponge (L3) phases in a mixture of brine, surfactant, and cosurfactant. Optical microscopy, small-angle light, and x-ray scattering measurements are consistent with the existence of a steady state made of multilamellar ribbonlike structures aligned in the flow direction. At high shear rates, these ribbonlike structures become unstable and break up into monodisperse droplets resulting in a shear-thickening transition.
Stationary and oscillatory convection of binary fluids in a porous medium.
Augustin, M; Umla, R; Huke, B; Lücke, M
2010-11-01
We investigate numerically stationary convection and traveling wave structures of binary fluid mixtures with negative separation ratio in the Rayleigh-Bénard system filled with a porous medium. The bifurcation behavior of these roll structures is elucidated as well as the properties of the velocity, temperature, and concentration fields. Moreover, we discuss lateral averaged currents of temperature and concentration. Finally, we investigate the influence of the Lewis number, of the separation ratio, and of the normalized porosity on the bifurcation branches.
In situ self cross-linking of polyvinyl alcohol battery separators
NASA Technical Reports Server (NTRS)
Philipp, W. H.; Hsu, L. C.; Sheibley, D. W. (Inventor)
1979-01-01
A battery separator was produced from a polyvinyl alcohol sheet structure which was subjected to an in situ, self crosslinking process by selective oxidation of the 1,2 diol units present in the polyvinyl alcohol sheet structure. The 1,2 diol units were cleaved to form aldehyde end groups which subsequently crosslink through acetalization of the 1,3 diol units of the polyvinyl alcohol. Selective oxidation was achieved using a solution of a suitable oxidizing agent such as periodic acid or lead tetraacetate.
DOT National Transportation Integrated Search
1999-05-01
The Federal Aviation Administration (FAA) has a continuing program to collect data and develop predictive methods for aircraft flight loads. Some of the most severe and potentially catastrophic flight loads are produced by separated flows. Structural...
Data processing for water monitoring system
NASA Technical Reports Server (NTRS)
Monford, L.; Linton, A. T.
1978-01-01
Water monitoring data acquisition system is structured about central computer that controls sampling and sensor operation, and analyzes and displays data in real time. Unit is essentially separated into two systems: computer system, and hard wire backup system which may function separately or with computer.
Emitter signal separation method based on multi-level digital channelization
NASA Astrophysics Data System (ADS)
Han, Xun; Ping, Yifan; Wang, Sujun; Feng, Ying; Kuang, Yin; Yang, Xinquan
2018-02-01
To solve the problem of emitter separation under complex electromagnetic environment, a signal separation method based on multi-level digital channelization is proposed in this paper. A two-level structure which can divide signal into different channel is designed first, after that, the peaks of different channels are tracked using the track filter and the coincident signals in time domain are separated in time-frequency domain. Finally, the time domain waveforms of different signals are acquired by reverse transformation. The validness of the proposed method is proved by experiment.
Single Wall Nanotube Type-Specific Functionalization and Separation
NASA Technical Reports Server (NTRS)
Boul, Peter; Nikolaev, Pavel; Sosa, Edward; Arepalli, Sivaram; Yowell, Leonard
2008-01-01
Metallic single-wall carbon nanotubes were selectively solubilized in THF and separated from semiconducting nanotubes. Once separated, the functionalized metallic tubes were de-functionalized to restore their metallic band structure. Absorption and Raman spectroscopy of the enriched samples support conclusions of the enrichment of nanotube samples by metallic type. A scalable method for enriching nanotube conductive type has been developed. Raman and UV-Vis data indicate SWCNT reaction with dodecylbenzenediazonium results in metallic enrichment. It is expected that further refinement of this techniques will lead to more dramatic separations of types and diameters.
Laser isotope separation of erbium and other isotopes
Haynam, C.A.; Worden, E.F.
1995-08-22
Laser isotope separation is accomplished using at least two photoionization pathways of an isotope simultaneously, where each pathway comprises two or more transition steps. This separation method has been applied to the selective photoionization of erbium isotopes, particularly for the enrichment of {sup 167}Er. The hyperfine structure of {sup 167}Er was used to find two three-step photoionization pathways having a common upper energy level. 3 figs.
Ternary Phase-Separation Investigation of Sol-Gel Derived Silica from Ethyl Silicate 40
Wang, Shengnan; Wang, David K.; Smart, Simon; Diniz da Costa, João C.
2015-01-01
A ternary phase-separation investigation of the ethyl silicate 40 (ES40) sol-gel process was conducted using ethanol and water as the solvent and hydrolysing agent, respectively. This oligomeric silica precursor underwent various degrees of phase separation behaviour in solution during the sol-gel reactions as a function of temperature and H2O/Si ratios. The solution composition within the immiscible region of the ES40 phase-separated system shows that the hydrolysis and condensation reactions decreased with decreasing reaction temperature. A mesoporous structure was obtained at low temperature due to weak drying forces from slow solvent evaporation on one hand and formation of unreacted ES40 cages in the other, which reduced network shrinkage and produced larger pores. This was attributed to the concentration of the reactive sites around the phase-separated interface, which enhanced the condensation and crosslinking. Contrary to dense silica structures obtained from sol-gel reactions in the miscible region, higher microporosity was produced via a phase-separated sol-gel system by using high H2O/Si ratios. This tailoring process facilitated further condensation reactions and crosslinking of silica chains, which coupled with stiffening of the network, made it more resistant to compression and densification. PMID:26411484
You, Jichun; Zhang, Shuangshuang; Huang, Gang; Shi, Tongfei; Li, Yongjin
2013-06-28
The competition between "dewetting" and "phase separation" behaviors in polymer blend films attracts significant attention in the last decade. The simultaneous phase separation and dewetting in PMMA∕SAN [poly(methyl methacrylate) and poly(styrene-ran-acrylonitrile)] blend ultrathin films upon solvent annealing have been observed for the first time in our previous work. In this work, film thickness and annealing solvent dependence of phase behaviors in this system has been investigated using atomic force microscopy and grazing incidence small-angle X-ray scattering (GISAXS). On one hand, both vertical phase separation and dewetting take place upon selective solvent vapor annealing, leading to the formation of droplet∕mimic-film structures with various sizes (depending on original film thickness). On the other hand, the whole blend film dewets the substrate and produces dispersed droplets on the silicon oxide upon common solvent annealing. GISAXS results demonstrate the phase separation in the big dewetted droplets resulted from the thicker film (39.8 nm). In contrast, no period structure is detected in small droplets from the thinner film (5.1 nm and 9.7 nm). This investigation indicates that dewetting and phase separation in PMMA∕SAN blend film upon solvent annealing depend crucially on the film thickness and the atmosphere during annealing.
Deng, Wanshun; Long, Mengying; Zhou, Qiannan; Wen, Ni; Deng, Wenli
2018-02-01
Superhydrophobic membranes with opposite wettability toward water and oil are able to separate water-in-oil emulsions. By constructing porous and hierarchal-structured superhydrophobic coating on filter paper, we hope a quick separation process could be achieved due to the acceleration of both demulsification and penetration process. Here, superhydrophobic coatings were prepared by simply spraying environmental and cost-effective acrylonitrile-butadiene-styrene copolymer (ABS) colloid in dichloromethane onto filter paper. The morphologies and wettability of the obtained coatings were carefully studied. Moreover, the separation performances in dealing with various surfactant-stabilized water-in-oil emulsions (SSWOE) were also investigated to verify our hypothesis. The morphologies of the ABS coatings varied with its weight concentration in dichloromethane and they changed from porous and plain surface into porous and hierarchal-structured surface. Besides, the hydrophobicity of the above coatings varied form hydrophobic to superhydrophobic. Moreover, the resulted superhydrophobic membranes show great separation capability in separating various span 80-stabilized water-in-oil emulsions with oil filtrate purities larger than 99.90% and huge penetration fluxes whose maximum is over 13,000L/(m 2 h). Thus, we envision that such membrane can be a practical candidate in dealing with water-in-oil emulsions to obtain pure oils. Copyright © 2017 Elsevier Inc. All rights reserved.
Selective Separation of Metal Ions via Monolayer Nanoporous Graphene with Carboxyl Groups.
Li, Zhan; Liu, Yanqi; Zhao, Yang; Zhang, Xin; Qian, Lijuan; Tian, Longlong; Bai, Jing; Qi, Wei; Yao, Huijun; Gao, Bin; Liu, Jie; Wu, Wangsuo; Qiu, Hongdeng
2016-10-18
Graphene-coated plastic substrates, such as polyethylene terephthalate (PET), are regularly used in flexible electronic devices. Here we demonstrate a new application of the graphene-coated nanoporous PET membrane for the selective separation of metal ions in an ion exchange manner. Irradiation with swift heavy ions is used to perforate graphene and PET substrate. This process could create graphene nanopores with carboxyl groups, thus forming conical holes in the PET after chemical etching to support graphene nanopores. Therefore, a monolayer nanoporous graphene membrane with a PET substrate is constructed successfully to investigate its ionic selective separation. We find that the permeation ratio of ions strongly depends on the temperature and H + concentration in the driving solution. An electric field can increase the permeation ratio of ions through the graphene nanopores, but it inhibits the ion selective separation. Moreover, the structure of the graphene nanopore with carboxyl groups is resolved at the density functional theory level. The results show the asymmetric structure of the nanopore with carboxyl groups, and the analysis indicates that the ionic permeation can be attributed to the ion exchange between metal ions and protons on the two sides of graphene nanopores. These results would be beneficial to the design of membrane separation materials made from graphene with efficient online and offline bulk separation.
Silicon Graphics' IRIS InSight: An SGML Success Story.
ERIC Educational Resources Information Center
Glushko, Robert J.; Kershner, Ken
1993-01-01
Offers a case history of the development of the Silicon Graphics "IRIS InSight" system, a system for viewing on-line documentation using Standard Generalized Markup Language. Notes that SGML's explicit encoding of structure and separation of structure and presentation make possible structure-based search, alternative structural views of…
Miyamoto, Manabu; Ono, Shumpei; Kusukami, Kodai; Oumi, Yasunori; Uemiya, Shigeyuki
2018-06-11
Dehumidification in CO 2 adsorptive separation processes is an important issue, owing to its high energy consumption. However, available adsorbents such as low-silica zeolites show a significant decrease in CO 2 adsorption capacity when water vapor is present. A core-shell-structured MFI-type zeolite with a hydrophilic ZSM-5 coated with a hydrophobic silicalite-1 shell layer was applied in CO 2 adsorptive separation under wet conditions. This hybrid material demonstrated remarkably high water tolerance with stable CO 2 adsorption performance without additional thermal treatment for regeneration, whereas a significant decrease in the CO 2 adsorption amount because of water vapor was observed on the parent ZSM-5. The core-shell structure of zeolites with high pore volumes, such as LTA or CHA, could also be suitable candidates for high CO 2 adsorption capacity and high water tolerance for practical applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Directional radiation pattern in structural-acoustic coupled system
NASA Astrophysics Data System (ADS)
Seo, Hee-Seon; Kim, Yang-Hann
2005-07-01
In this paper we demonstrate the possibility of designing a radiator using structural-acoustic interaction by predicting the pressure distribution and radiation pattern of a structural-acoustic coupling system that is composed by a wall and two spaces. If a wall separates spaces, then the wall's role in transporting the acoustic characteristics of the spaces is important. The spaces can be categorized as bounded finite space and unbounded infinite space. The wall considered in this study composes two plates and an opening, and the wall separates one space that is highly reverberant and the other that is unbounded without any reflection. This rather hypothetical circumstance is selected to study the general coupling problem between the finite and infinite acoustic domains. We developed an equation that predicts the energy distribution and energy flow in the two spaces separated by a wall, and its computational examples are presented. Three typical radiation patterns that include steered, focused, and omnidirected are presented. A designed radiation pattern is also presented by using the optimal design algorithm.
Vortex shedding within laminar separation bubbles forming over an airfoil
NASA Astrophysics Data System (ADS)
Kirk, Thomas M.; Yarusevych, Serhiy
2017-05-01
Vortex shedding within laminar separation bubbles forming over the suction side of a NACA 0018 airfoil is studied through a combination of high-speed flow visualization and boundary layer measurements. Wind tunnel experiments are performed at a chord-based Reynolds number of 100,000 and four angles of attack. The high-speed flow visualization is complemented by quantitative velocity and surface pressure measurements. The structures are shown to originate from the natural amplification of small-amplitude disturbances, and the shear layer roll-up is found to occur coherently across the span. However, significant cycle-to-cycle variations are observed in vortex characteristics, including shedding period and roll-up location. The formation of the roll-up vortices precedes the later stages of transition, during which these structures undergo significant deformations and breakdown to smaller scales. During this stage of flow development, vortex merging is also observed. The results provide new insight into the development of coherent structures in separation bubbles and their relation to the overall bubble dynamics and mean bubble topology.
Cross-linked polymeric membranes for carbon dioxide separation
Hong, Tao; Chatterjee, Sabornie; Mahurin, Shannon Mark; Long, Brian Keith; Jiang, De-en; Mays, Jimmy Wayne; Sokolov, Alexei P.; Saito, Tomonori
2018-01-23
A membrane useful in gas separation, the membrane comprising a cross-linked polysiloxane structure having a cross-link density of about 0.1.times.10.sup.-5 mol/cm.sup.3 to about 6.times.10.sup.-5 mol/cm.sup.3, where, in particular embodiments, the cross-linked polysiloxane structure has the following general structure: ##STR00001## wherein R.sup.1, R.sup.2, R.sup.3, R.sup.4, R.sup.5, and R.sup.6 are independently selected from hydrocarbon groups having at least 1 and up to 6 carbon atoms; A.sup.1 and A.sup.2 are independently selected from cyclic hydrocarbon groups; L.sup.1 and L.sup.2 are linking groups or covalent bonds; n is an integer of at least 1; r and s are independently selected from integers of at least 1; and p is an integer of at least 10. The invention also includes methods for making and using the above-described membranes for gas separation.
NASA Astrophysics Data System (ADS)
Lee, Moon Joo; Hwang, Jun-Ki; Kim, Ji Hoon; Lim, Hyung-Seok; Sun, Yang-Kook; Suh, Kyung-Do; Lee, Young Moo
2016-02-01
Shape-tunable hydroxyl copolyimide (HPI) nanoparticles are fabricated by a re-precipitation method and are coated onto electrospun HPI membranes, followed by heat treatment to prepare thermally rearranged polybenzoxazole (TR-PBO) composite membranes. The morphology of HPI nanoparticles consisted of sphere and sea-squirt structures, which is controlled by changing the concentration of the stabilizer. The morphological characteristics of TR-PBO nanoparticles convert from HPI nanoparticles by heat treatment and their composite membranes is confirmed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), infrared spectroscopy (ATR-IR), thermogravimetric analysis (TGA) analysis, and contact angle measurements. TGA and DSC measurements confirm the excellent thermal stability compared to Celgard, a commercial PP separator for lithium-ion batteries (LIBs). Further, TR-PBO nano-composite membranes used in coin-cell type LIBs as a separator show excellent high power density performance as compared to Celgard. This is due to the fact that sea-squirt structured nanoparticles have better electrochemical properties than sphere structured nanoparticles at high temperature.
Binding Affinity Effects on Physical Characteristics of a Model Phase-Separated Protein Droplet
NASA Astrophysics Data System (ADS)
Chuang, Sara; Banani, Salman; Rosen, Michael; Brangwynne, Clifford
2015-03-01
Non-membrane bound organelles are associated with a range of biological functions. Several of these structures exhibit liquid-like properties, and may represent droplets of phase-separated RNA and/or proteins. These structures are often enriched in multi-valent molecules, however little is known about the interactions driving the assembly, properties, and function. Here, we address this question using a model multi-valent protein system consisting of repeats of Small Ubiquitin-like Modifier (SUMO) protein and a SUMO-interacting motif (SIM). These proteins undergo phase separation into liquid-like droplets. We combine microrheology and quantitative microscopy to determine affect of binding affinity on the viscosity, density and surface tension of these droplets. We also use fluorescence recovery after photobleaching (FRAP), fluorescence correlation spectroscopy (FCS) and partitioning experiments to probe the structure and dynamics within these droplets. Our results shed light on how inter-molecular interactions manifests in droplet properties, and lay the groundwork for a comprehensive biophysical picture of intracellular RNA/protein organelles.