Science.gov

Sample records for microphase separation induced

  1. Reticulated Nanoporous Polymers by Controlled Polymerization-Induced Microphase Separation

    SciTech Connect

    Seo, Myungeun; Hillmyer, Marc A.

    2013-04-08

    Materials with percolating mesopores are attractive for applications such as catalysis, nanotemplating, and separations. Polymeric frameworks are particularly appealing because the chemical composition and the surface chemistry are readily tunable. We report on the preparation of robust nanoporous polymers with percolating pores in the 4- to 8-nanometer range from a microphase-separated bicontinuous precursor. We combined polymerization-induced phase separation with in situ block polymer formation from a mixture of multifunctional monomers and a chemically etchable polymer containing a terminal chain transfer agent. This marriage results in microphase separation of the mixture into continuous domains of the etchable polymer and the emergent cross-linked polymer. Precise control over pore size distribution and mechanical integrity renders these materials particularly suited for various advanced applications.

  2. Anhydrous Proton Conducting Polymer Electrolyte Membranes via Polymerization-Induced Microphase Separation.

    PubMed

    Chopade, Sujay A; So, Soonyong; Hillmyer, Marc A; Lodge, Timothy P

    2016-03-01

    Solid-state polymer electrolyte membranes (PEMs) exhibiting high ionic conductivity coupled with mechanical robustness and high thermal stability are vital for the design of next-generation lithium-ion batteries and high-temperature fuel cells. We present the in situ preparation of nanostructured PEMs incorporating a protic ionic liquid (IL) into one of the domains of a microphase-separated block copolymer created via polymerization-induced microphase separation. This facile, one-pot synthetic strategy transforms a homogeneous liquid precursor consisting of a poly(ethylene oxide) (PEO) macro-chain-transfer agent, styrene and divinylbenzene monomers, and protic IL into a robust and transparent monolith. The resulting PEMs exhibit a bicontinuous morphology comprising PEO/protic IL conducting pathways and highly cross-linked polystyrene (PS) domains. The cross-linked PS mechanical scaffold imparts thermal and mechanical stability to the PEMs, with an elastic modulus approaching 10 MPa at 180 °C, without sacrificing the ionic conductivity of the system. Crucially, the long-range continuity of the PEO/protic IL conducting nanochannels results in an outstanding ionic conductivity of 14 mS/cm at 180 °C. We posit that proton conduction in the protic IL occurs via the vehicular mechanism and the PEMs exhibit an average proton transference number of 0.7. This approach is very promising for the development of high-temperature, robust PEMs with excellent proton conductivities. PMID:26927732

  3. Proton conducting, high modulus polymer electrolyte membranes by polymerization-induced microphase separation

    NASA Astrophysics Data System (ADS)

    Chopade, Sujay; Hillmyer, Marc; Lodge, Timothy

    Robust solid-state polymer electrolyte membranes (PEMs) are vital for designing next-generation lithium-ion batteries and high-temperature fuel cells. However, the performance of diblock polymer electrolytes is generally limited by poor mechanical stability and network defects in the conducting pathways. We present the in-situ preparation of robust cross-linked PEMs via polymerization-induced microphase separation, and incorporation of protic ionic liquid (IL) into one of the microphase separated domains. The facile design strategy involves a delicate balance between the controlled growth of polystyrene from a poly(ethylene oxide) macro-chain transfer agent (PEO-CTA) and simultaneous chemical cross-linking by divinylbenzene in the presence of IL. Small angle X-ray scattering and transmission electron microscopy confirmed the formation of a disordered structure with bicontinuous morphology and a characteristic domain size of order 20 nm. The long-range continuity of the PEO/protic IL conducting nanochannels and cross-linked polystyrene domains imparts high thermal and mechanical stability to the PEMs, with elastic modulus approaching 10 MPa and a high ionic conductivity of 15 mS/cm at 180 °C.

  4. Protonation-Induced Microphase Separation in Thin Films of a Polyelectrolyte-Hydrophilic Diblock Copolymer.

    PubMed

    Stewart-Sloan, Charlotte R; Olsen, Bradley D

    2014-05-20

    Block copolymers composed of poly(oligo ethylene glycol methyl ether methacrylate) and poly(2-vinylpyridine) are disordered in the neat state but can be induced to order by protonation of the P2VP block, demonstrating a tunable and responsive method for triggering assembly in thin films. Comparison of protonation with the addition of salts shows that microphase separation is due to selective protonation of the P2VP block. Increasing acid incorporation and increasing 2-vinylpyridine content for P2VP minority copolymers both promote increasingly phase-separated morphologies, consistent with protonation increasing the effective strength of segregation between the two blocks. The self-assembled nanostructures formed after casting from acidic solutions may be tuned based on the amount and type of acid incorporation as well as the annealing treatment applied after casting, where both aqueous and polar organic solvents are shown to be effective. Therefore, POEGMA-b-P2VP is a novel ion-containing block copolymer whose morphologies can be facilely tuned during casting and processing by controlling its exposure to acid. PMID:24910809

  5. Protonation-Induced Microphase Separation in Thin Films of a Polyelectrolyte-Hydrophilic Diblock Copolymer

    PubMed Central

    2015-01-01

    Block copolymers composed of poly(oligo ethylene glycol methyl ether methacrylate) and poly(2-vinylpyridine) are disordered in the neat state but can be induced to order by protonation of the P2VP block, demonstrating a tunable and responsive method for triggering assembly in thin films. Comparison of protonation with the addition of salts shows that microphase separation is due to selective protonation of the P2VP block. Increasing acid incorporation and increasing 2-vinylpyridine content for P2VP minority copolymers both promote increasingly phase-separated morphologies, consistent with protonation increasing the effective strength of segregation between the two blocks. The self-assembled nanostructures formed after casting from acidic solutions may be tuned based on the amount and type of acid incorporation as well as the annealing treatment applied after casting, where both aqueous and polar organic solvents are shown to be effective. Therefore, POEGMA-b-P2VP is a novel ion-containing block copolymer whose morphologies can be facilely tuned during casting and processing by controlling its exposure to acid. PMID:24910809

  6. Microphase separation induced in the melt of Pluronic copolymers by blending with a hydrogen bonding urea-urethane end-capped supramolecular polymer.

    PubMed

    Hermida-Merino, Daniel; Newby, Gemma E; Hamley, Ian W; Hayes, Wayne; Slark, Andrew

    2015-08-01

    Blending with a hydrogen-bonding supramolecular polymer is shown to be a successful novel strategy to induce microphase-separation in the melt of a Pluronic polyether block copolymer. The supramolecular polymer is a polybutadiene derivative with urea-urethane end caps. Microphase separation is analysed using small-angle X-ray scattering and its influence on the macroscopic rheological properties is analysed. FTIR spectroscopy provides a detailed picture of the inter-molecular interactions between the polymer chains that induces conformational changes leading to microphase separation. PMID:26151722

  7. Microphase separation of block copolymer thin films.

    PubMed

    Zhang, Jilin; Yu, Xinhong; Yang, Ping; Peng, Juan; Luo, Chunxia; Huang, Weihuan; Han, Yanchun

    2010-04-01

    Today, high-ordered micro- and nano-patterned surfaces are widely used in many areas, such as in the preparation of super-thin dielectric films, photonic crystals, antireflective films, super-non-wetting surfaces, bio-compatible surfaces and microelectric devices. Considering the critical fabrication conditions and the irreducible high cost of the photolithography technique in patterning nano-scale structures (<100 nm), the development of other micro- and nano-patterning techniques that can be used to fabricate long-range ordered features - especially nanoscale arrays - is a promising subject in surface science. In contrast to the traditional photolithography patterning technique, block copolymers can spontaneously phase separate into arrays of periodic patterns with length-scales of 10-50 nm, which provides an efficient pathway to pattern nanoscale features. Today, preparing long-range ordered arrays by block copolymer microphase separation is one of the most promising techniques for the fabrication of nanoscale arrays, not only being a simple process but also having a lower cost than traditional methods. In this feature article, we first summarize the many techniques developed to induce ordering in the microphase separation of the block copolymer thin films. Then, evolution, order-order transitions and reversible switching microdomains are considered, since they are very important in the ordered engineering of microphase separation of the block copolymer thin films. Finally, the outlook of this research area will be given.

  8. Protonation-induced microphase separation in thin films of a polyelectrolyte-hydrophilic diblock copolymer

    NASA Astrophysics Data System (ADS)

    Stewart-Sloan, Charlotte; Olsen, Bradley

    2014-03-01

    Materials with easily and controllably tuneable morphologies are of interest for many applications where the relevant properties depend upon the microstructure. Here, we present a novel double hydrophilic diblock copolymer whose solid state morphology is responsive to protonation. It contains one block which is neutral and hydrophilic at all values of pH, poly(oligoethylene glycol methyl ether methacrylate) (POEGMA), and one block which is neutral and hydrophobic above its pKa but positively charged and hydrophilic when protonated, poly(2-vinylpyridine) (P2 VP). This material is disordered when cast from acid-free solutions but displays increasing segregation between the two blocks with increasing protonation of the pyridine groups. The protonation-induced microphase separation is shown to be due to ionomer-like effects and not to the selective solubilzation of ions in one of the blocks. Order-disorder transitions occur between 1:0.28 and 1:0.55 pyridine group:acid content for thin films of a 50kg/mol POEGMA-30kg/mol P2VP diblock and between 1:0.8 and 1:0.9 pyridine group:acid content for thin films of a 43kg/mol POEGMA-13kg/mol P2VP diblock. The latter also displays an order-order transition between spheres and in-plane cylinders between 1:1 and 1:1.1 pyridine group:acid loading. These films can be annealed in aqueous as well as polar organic solvents, allowing for both traditional polymer processing and environmentally friendly water-based casting and annealing.

  9. Microphase Separation and Dynamics of Elastomeric Polyureas

    NASA Astrophysics Data System (ADS)

    Runt, James; Castagna, Alicia; Choi, Taeyi; Jeong, Youmi

    2012-02-01

    Polyureas, consisting of alternating polyether soft segments and urea-containing hard segments, are of interest for shock and other energy absorbing applications. The properties of these materials are strongly influenced by microphase separation of the hard and soft segments, which is rather incomplete. Bulk- and solution-polymerized polyureas based on oligomeric polytetramethylene oxide and methylene diphenyl diisocyanate were investigated, and the role of PTMO molecular weight was identified. The morphology was characterized using atomic force microscopy and quantitative degrees of phase separation were determined from small-angle X-ray scattering. Dielectric relaxation spectroscopy and dynamic mechanical analysis were used to probe the dynamics. Particular attention was paid to the segmental dynamics of the soft phase, which has been proposed to be a major contributor to shock energy absorption in these materials.

  10. An effective strategy to increase hydroxide-ion conductivity through microphase separation induced by hydrophobic-side chains

    NASA Astrophysics Data System (ADS)

    Zeng, L.; Zhao, T. S.

    2016-01-01

    A highly conductive and durable anion exchange membrane (AEM) is an essential component for alkaline electrochemical conversion and storage systems. Contrary to the conventional wisdom that the ionic conductivity can be improved by increasing the ion exchange capacity (IEC) through a cross-linking process, in this work, a new approach to improve the ionic conductivity by enhancing the ionic mobility is adopted. The microstructure of quaternary ammonia poly (2, 6-dimethyl-1, 4-phenylene oxide) (QAPPO) is manipulated through grafting with hydrophobic side chains, which will drive the well-established hydrophilic/hydrophobic domains and nano-phase separated, well-connected ionic channels. As a result, the local hydroxide concentration is enhanced by the novel microstructure, thereby improving the ionic conductivity of the as-prepared ionomers. The as-prepared ionomers, denoted as self-aggregated QAPPO-CF, with an intermediate IEC value achieved an ionic conductivity of 65 mS cm-1 at 80 °C, outperforming the QAPPO with an even higher IEC value. This result suggests that the microphase separation is an effective approach to enhance the ionic conductivity.

  11. Microdomain contraction in microphase-separated multiblock copolymers

    SciTech Connect

    Smith, S.D. ); Spontak, R.J. ); Satkowski, M.M.; Ashraf, A. ); Lin, J.S. )

    1993-06-01

    Linear multiblock copolymers, like their diblock analogs, undergo microphase separation and order into periodic morphologies when the blocks are sufficiently incompatible. To explore the conformations of such materials, four symmetric poly(styrene-[ital b]-isoprene)[sub [ital n

  12. Complex macrophase-separated nanostructure induced by microphase separation in binary blends of lamellar diblock copolymer thin films.

    PubMed

    Zhang, Jianqi; Posselt, Dorthe; Smilgies, Detlef-M; Perlich, Jan; Kyriakos, Konstantinos; Jaksch, Sebastian; Papadakis, Christine M

    2014-09-01

    The nanostructures of thin films spin-coated from binary blends of compositionally symmetric polystyrene-b-polybutadiene (PS-b-PB) diblock copolymer having different molar masses are investigated by means of atomic force microscopy (AFM) and grazing-incidence small-angle X-ray scattering (GISAXS) after spin-coating and after subsequent solvent vapor annealing (SVA). In thin films of the pure diblock copolymers having high or low molar mass, the lamellae are perpendicular or parallel to the substrate, respectively. The as-prepared binary blend thin films feature mainly perpendicular lamellae in a one-phase state, indicating that the higher molar mass diblock copolymer dominates the lamellar orientation. The lamellar thickness decreases linearly with increasing volume fraction of the low molar mass diblock copolymer. After SVA, well-defined macrophase-separated nanostructures appear, which feature parallel lamellae near the film surface and perpendicular ones in the bulk. PMID:25159458

  13. Patterned silica films using microphase separation of a block copolymer

    NASA Astrophysics Data System (ADS)

    Kataoka, Sho; Takeuchi, Yasutaka; Endo, Akira

    2014-11-01

    Block copolymers exhibit various nanoscale ordered morphologies induced by microphase separation. Here, we present a method for providing two types of patterned silica films on Si wafer substrates simply by shifting the phase equilibrium of a block copolymer, polystyrene-block-poly(4-vinylpyridine) (PS-P4VP). In this method, siloxane is adsorbed onto poly(4-vinylpyridine) blocks of PS-P4VP whose structure varies with solvent polarity and is calcined to remove the block copolymer. Siloxane is in a dispersed phase with toluene as a solvent resulting in silica nanoparticle arrays, while siloxane is in a continuous phase with N, N-dimethylformamide (DMF) resulting in silica films with ordered mesopores. Since the pore size of silica films prepared in DMF is approximately 20 nm, the film has the ability to serve as a support for enzymes such as laccase.

  14. Formation of ordered microphase-separated pattern during spin coating of ABC triblock copolymer

    NASA Astrophysics Data System (ADS)

    Huang, Weihuan; Luo, Chunxia; Zhang, Jilin; Han, Yanchun

    2007-03-01

    In this paper, the authors have systematically studied the microphase separation and crystallization during spin coating of an ABC triblock copolymer, polystyrene-b-poly(2-vinylpyridine)-b-poly(ethylene oxide) (PS-b-P2VP-b-PEO). The microphase separation of PS-b-P2VP-b-PEO and the crystallization of PEO blocks can be modulated by the types of the solvent and the substrate, the spinning speed, and the copolymer concentration. Ordered microphase-separated pattern, where PEO and P2VP blocks adsorbed to the substrate and PS blocks protrusions formed hexagonal dots above the P2VP domains, can only be obtained when PS-b-P2VP-b-PEO is dissolved in N,N-dimethylformamide and the films are spin coated onto the polar substrate, silicon wafers or mica. The mechanism of the formation of regular pattern by microphase separation is found to be mainly related to the inducement of the substrate (middle block P2VP wetting the polar substrate), the quick vanishment of the solvent during the early stage of the spin coating, and the slow evaporation of the remaining solvent during the subsequent stage. On the other hand, the probability of the crystallization of PEO blocks during spin coating decreases with the reduced film thickness. When the film thickness reaches a certain value (3.0nm), the extensive crystallization of PEO is effectively prohibited and ordered microphase-separated pattern over large areas can be routinely prepared. When the film thickness exceeds another definite value (12.0nm), the crystallization of PEO dominates the surface morphology. For films with thickness between these two values, microphase separation and crystallization can simultaneously occur.

  15. Microphase separation in graphite-adsorbed paraffin solid solutions

    SciTech Connect

    Gilbert, E.P.; Reynolds, P.A.; White, J.W.

    1996-11-14

    Using time-resolved small-angle neutron scattering (SANS), the time-dependent microphase separation occurring in metastable, quenched binary paraffin mixtures C{sub 30}H(D){sub 62}/C{sub 36}D(H){sub 74} doped into porous graphite has been observed. In the presence of graphite, microphase formation is enhanced compared to the bulk mixtures and the isotopic dependence of the demixing process reported for these systems when quenched to 20{degree}C is not apparent. We relate the enhanced microphase separation to an elevation of the eutectic temperature relative to the critical temperature, due to stabilization of the paraffins at the graphite basal plane. For 1:1 mixtures, the microphase forms an alternating lamellar structure, while the 1:4 and 4:1 mixtures exhibit an increase in scattering at lower angles associated with significantly longer repeat-spacings. An increase in quench temperature from 20 to 27{degree}C increases the strength of the microphase scattering over the time period studied, but quenching to 35{degree}C results in a significant reduction in this signal. On aging, additional weaker peaks are observed, which for 1:1 mixtures, are consistent with the formation of alternating lamellae. For all mixtures, except 1:4 C{sub 30}H{sub 62}/C{sub 36}D{sub 74}, there is a constant offset in Q between the strong and weak peaks. The scattering can be understood to rise from a mixed lamellar system in which incommensurate deviations from the mean structure occur. 56 refs., 14 figs., 9 tabs.

  16. Self-doped microphase separated block copolymer electrolyte

    DOEpatents

    Mayes, Anne M.; Sadoway, Donald R.; Banerjee, Pallab; Soo, Philip; Huang, Biying

    2002-01-01

    A polymer electrolyte includes a self-doped microphase separated block copolymer including at least one ionically conductive block and at least one second block that is immiscible in the ionically conductive block, an anion immobilized on the polymer electrolyte and a cationic species. The ionically conductive block provides a continuous ionically conductive pathway through the electrolyte. The electrolyte may be used as an electrolyte in an electrochemical cell.

  17. Structure and dynamics of microphase separated polymers containing strong associations

    NASA Astrophysics Data System (ADS)

    Colbert, Rachel Sarah

    The morphology and dynamics of microphase separated polymers containing strong associations (i.e., ionic associations and hydrogen bonding) are investigated in this dissertation. The microphase separated domains in these polymers act as physical crosslinks and are expected to strongly influence molecular dynamics. Small-angle X-ray scattering (SAXS) is utilized to quantify microphase separation characteristics and broadband dielectric relaxation spectroscopy reveals the sensitivity of polymer dynamics to the presence of microphase segregation in the polymers studied. A model ionomer, sulfonated polystyrene (SPS) is chosen to probe the effect of ionic aggregation. The microphase separation and dynamics in polyurethanes and polyureas, containing strongly hydrogen bonded hard domains, are also examined. The role of ion associations on aggregate morphology and polymer dynamics of SPS is investigated via the systematic variation of sulfonation level, neutralization, and ion type. Evidence of acid group aggregation was found at 3.5, 6.7 and 9.5 mol% sulfonation. Upon neutralization, spherical aggregates ˜2 nm in diameter are revealed from SAXS and scanning transmission electron microscopy. Aggregate size is found to be independent of degree of sulfonation and neutralization level, however, aggregate composition becomes increasingly ionic with increasing neutralization. The polymer segmental relaxation process is highly sensitive to changes in ion content, neutralization and ion type. The relaxation time of this process slows with increasing ion content as the number density of ionic aggregates increases, similar to the effect of chemical crosslinking. The breadth of this process is sensitive to the interaction strength of the neutralizing ion type. For SPS neutralized with Zn2+, two distinct segmental relaxations are observed, a matrix segmental relaxation and a slow segmental process, the strength of which correlates with an increase in volume fraction of the region of

  18. Macro- and microphase separation in multifunctional supramolecular polymer networks

    NASA Astrophysics Data System (ADS)

    Mester, Zoltan; Mohan, Aruna; Fredrickson, Glenn

    2011-03-01

    We develop a field-based model for a binary melt of multifunctional polymers that can reversibly bond to form copolymer networks. The mean-field phase separation behavior of several model networks with heterogeneous bonding is calculated via the random phase approximation (RPA). The extent of bonding between polymers is controlled by specified bond energies. The phase boundary calculated via RPA is the stability limit of the homogeneous disordered phase to coexisting homogeneous macrophases, for low bond strengths, and to microphases, for high bond strengths. An isotropic Lifshitz point separates these two regions along the spindodal boundary. It is demonstrated that higher functionality and higher bond strength suppresses macrophase separation due to greater connectivity between unlike species. Gelation first occurs at a bond strength higher than the Lifshitz point for tri- or higher functional polymer components.

  19. Theory of microphase separation in crosslinked polymer blends immersed in a θ-solvent.

    PubMed

    Benhamou, M; El Fazni, A; Bettachy, A; Derouiche, A

    2010-08-01

    The aim of this work is a theoretical study of the effects of the solvent quality on the microphase separation in crosslinked polymer blends, from a static and kinetics point of view. More precisely, we assume that the crosslinked mixture is trapped in a θ-solvent. The static microphase properties are studied through the static structure factor. The latter is computed using an extended blob model, where the crosslinked unlike chains can be viewed as sequences of blobs. We demonstrate that the presence of the θ-solvent simply leads to a multiplicative renormalization of these properties, and the renormalization factors are powers of the overall monomer volume fraction. Second, we investigate the early kinetics of the microphase separation, via the relaxation rate, τ(q), which is a function of the wave number q (at fixed temperature and monomer volume fraction). We first show that the kinetics is entirely controlled by local motions of Rouse type, since the slow motions are frozen out by the presence of crosslinks. Using the blob model, we find an explicit form for the growth rate Ω(q) = τ(q)⁻¹, which depends, in addition to the wave number q , on the overall monomer volume fraction, Φ. Also, we discuss the effect of initial entanglements that are trapped when the system is crosslinked. In fact, these play the role of true reticulation points, and then, they quantitatively contribute to the microseparation phenomenon. Finally, the results are compared to their homologous relatively to the molten state and to the good solvent case. The main conclusion is that the quality of the solvent induces drastic changes of the microphase properties.

  20. Crystallization and Microphase Separation in Chiral Block Copolymers

    NASA Astrophysics Data System (ADS)

    Ho, Rong-Ming

    2012-02-01

    Block copolymers composed of chiral entities, denoted as chiral block copolymers (BCP*s), were designed to fabricate helical architectures from self-assembly. A helical phase (denoted H*) was discovered in the self-assembly of poly(styrene)-b-poly(L-lactide) (PS-PLLA) BCPs*. To examine the phase behavior of the PS-PLLA, self-assembled superstructures resulting from the competition between crystallization and microphase separation of the PS-PLLA in solution were examined. A kinetically controlled process by changing non-solvent addition rate was utilized to control the BCP* self-assembly. Single-crystal lozenge lamellae were obtained by the slow self-assembly (i.e., slow non-solvent addition rate) of PS-PLLA whereas amorphous helical ribbon superstructures were obtained from the fast self-assembly (i.e., fast non-solvent addition rate). As a result, the formation of helical architectures from the self-assembly of the PS-PLLA reflects the impact of chirality on microphase separation, but the chiral effect might be overwhelmed by crystallization. Consequently, various crystalline PS-PLLA nanostructures in bulk were obtained by controlling the crystallization temperature of PLLA (Tc,PLLA) at which crystalline helices and crystalline cylinders occur while Tc,PLLA=x Tg,PS, respectively. Anisotropic arrangement of the PLLA crystallites grown within the microdomains was identified. The formation of this exclusive crystalline growth is attributed to the spatial confinement effect for crystallization. While Tc,PLLA=x Tg,PS, the preferential growth may modulate the curvature of microdomains by shifting the molecular chains to access the fast path for crystalline growth due to the increase in chain mobility. As a result, a spring-like behavior of the helical nanostructure

  1. Kinetics of microphase separation in interpenetrated polymer networks in solution.

    PubMed

    Derouiche, A; Benhamou, M; Bettachy, A

    2005-04-01

    We present here a theoretical study of the early kinetics of the microphase separation in crosslinked polymer blends, made of two incompatible polymers A and B, dissolved in a common good solvent. Use is made of an extended blob model used previously for the investigation of the static properties of such a transition. We are interested in the variation of the relaxation rate, tau(q), versus the wave number q, in the vicinity of the spinodal temperature. We first show that kinetics is entirely dominated by local motions, which are of Rouse type. Slow motions are absent, because of the permanent presence of crosslinks. Second, we find that the characteristic frequency, omega (q) = tau(q)(-1), increases with increasing wave number q according to a sixth power law, that is omega (q) approximately q6 phi(-9/4), where phi is the overall monomer volume fraction. Therefore, the swelling of strands due to the excluded-volume forces leads to a renormalization of the characteristic frequency by a multiplicative factor scaling as phi(-9/4). The main conclusion is that the presence of a good solvent necessitates relaxation rates less important than those relative to crosslinked mixtures in the molten state.

  2. Kinetics of Microphase Separation in Crosslinked Polymer Blend

    SciTech Connect

    Bettachy, A.; Benhamou, M.; Derouiche, A.; Fazni, A.

    2009-04-19

    The solvent effect on the early kinetics of the microphase separation (MPS) in binary crosslinked polymer was studied. In the presence of a good solvent, calculations were done using first the random phase approximation method and second an extended blob model, where a crosslinked chain is viewed as a sequence having blobs as new units. Kinetics were studied through the variation of the relaxation rate, {tau}{sub q}, upon the wave number, q, in the region around the spinodal temperature. When the temperature is changed from an initial value, T{sub i}, toward the final value, T{sub f}, very close to the critical point, the only motion allowed to the crosslinked chains is of Rouse type because of the presence of the crosslinks. The swelling effect on the MPS leads to a multiplicative renormalization of critical parameters of the molten state by factors as power of the overall monomer volume fraction, {phi}. The characteristic frequency, {omega}{sub (q)}, inverse of {tau}{sub q}, scales as {omega}(q) congruent with q{sup 6}{epsilon}{sup 3}, where {epsilon} stands for the traditional screening length. The study of kinetics of MPS is then extended in the presence of a theta solvent.

  3. Nanopatterning of Viruses and Proteins Using Microphase Separated Block Copolymers

    NASA Astrophysics Data System (ADS)

    Cresce, Arthur; Lewandowski, Angela; Bentley, William; Kofinas, Peter

    2006-03-01

    Diblock copolymers containing nickel ions have been prepared that are capable of selectively adsorbing histidine-tagged green fluorescent protein (hisGFP), and also binding tobacco mosaic virus (TMV). A block copolymer of norbornene and norbornene dicarboxylic acid was synthesized using ring-opening metathesis polymerization. A 400/50 block ratio achieved a spherical microphase-separated morphology with roughly 20 nm diameter dicarboxylic acid spheres. The spherical phase was exposed to nickel ions in solution, templating the formation of nickel nanoparticles. This process gave a nickel-loaded diblock copolymer film whose surface was used to chelate hisGFP. Fluorescence spectroscopy and TEM confirmed the presence of the protein on the polymer surface. A sulfonated triblock copolymer was loaded with nickel ions using a similar solution-doping procedure. The morphology of this copolymer was lamellar, and its sulfonated block was loaded with nickel ions. TEM studies revealed the presence of the virus on the surface of the copolymer and showed that the bond between the TMV and the polymer surface can withstand severe detergent washes.

  4. Microphase separation in thin films of lamellar forming polydisperse di-block copolymers

    SciTech Connect

    Kumar, Rajeev; Lokitz, Bradley S.; Sides, Scott W.; Chen, Jihua; Heller, William T.; Ankner, John F.; Browning, James F.; Kilbey, II, S. Michael; Sumpter, Bobby G.

    2015-02-03

    Despite the ubiquity of polydispersity in chain lengths of di-block copolymers, its effects on microphase separation in thin films have eluded a clear understanding. In this paper, we have studied effects of polydispersity on the microphase separation in thin films of lamellar forming di-block copolymers using self-consistent field theory (SCFT) and neutron reflectivity experiments. Di-block copolymers containing a polydisperse block of poly(glycidylmethacrylate) (PGMA) connected to a near-monodisperse block poly(2-vinyl-4,4-dimethyl-d6 azlactone) (PVDMA-d6) are considered in this work. Effects of chain length polydispersity, film thickness, substrate–monomer and monomer–monomer interactions on the microphase segregation are studied using SCFT. The theoretical study reveals that in comparison to a film created with monodisperse di-block copolymers, an increase in polydispersity tends to decrease the number of lamellar strata that can be packed in a film of given thickness. This is a direct consequence of an increase in lamellar domain spacing with an increase in polydispersity index. Furthermore, it is shown that polydispersity induces conformational asymmetry and an increase in the polydispersity index leads to an increase in the effective Kuhn segment length of the polydisperse blocks. It is shown that the conformational asymmetry effects, which are entropic in origin and of increasing importance as film thickness decreases, drive the polydisperse blocks to the middle of the films despite favorable substrate interactions. These predictions are verified by results from neutron reflectivity experiments on thin films made from moderately polydisperse PGMA-PVDMA-d6 di-block copolymer deposited on silicon substrates. In conclusion, results from SCFT are used to predict neutron reflectivity profiles, providing a facile and robust route to obtain useful physical insights into the structure of polydisperse diblock copolymers at

  5. Microphase separation in thin films of lamellar forming polydisperse di-block copolymers

    DOE PAGES

    Kumar, Rajeev; Lokitz, Bradley S.; Sides, Scott W.; Chen, Jihua; Heller, William T.; Ankner, John F.; Browning, James F.; Kilbey, II, S. Michael; Sumpter, Bobby G.

    2015-02-03

    Despite the ubiquity of polydispersity in chain lengths of di-block copolymers, its effects on microphase separation in thin films have eluded a clear understanding. In this paper, we have studied effects of polydispersity on the microphase separation in thin films of lamellar forming di-block copolymers using self-consistent field theory (SCFT) and neutron reflectivity experiments. Di-block copolymers containing a polydisperse block of poly(glycidylmethacrylate) (PGMA) connected to a near-monodisperse block poly(2-vinyl-4,4-dimethyl-d6 azlactone) (PVDMA-d6) are considered in this work. Effects of chain length polydispersity, film thickness, substrate–monomer and monomer–monomer interactions on the microphase segregation are studied using SCFT. The theoretical study reveals thatmore » in comparison to a film created with monodisperse di-block copolymers, an increase in polydispersity tends to decrease the number of lamellar strata that can be packed in a film of given thickness. This is a direct consequence of an increase in lamellar domain spacing with an increase in polydispersity index. Furthermore, it is shown that polydispersity induces conformational asymmetry and an increase in the polydispersity index leads to an increase in the effective Kuhn segment length of the polydisperse blocks. It is shown that the conformational asymmetry effects, which are entropic in origin and of increasing importance as film thickness decreases, drive the polydisperse blocks to the middle of the films despite favorable substrate interactions. These predictions are verified by results from neutron reflectivity experiments on thin films made from moderately polydisperse PGMA-PVDMA-d6 di-block copolymer deposited on silicon substrates. In conclusion, results from SCFT are used to predict neutron reflectivity profiles, providing a facile and robust route to obtain useful physical insights into the structure of polydisperse diblock copolymers at interfaces.« less

  6. Micro-phase Separation via Spinodal-like Decomposition in Hexamethylynediisocyanate (HDI)-polyurea

    SciTech Connect

    Kulkarni, Amit S.; Beaucage, Gregory; Wilkes, Garth L.; Das, Sudipto; Yilgor, Iskander

    2012-04-03

    We found that micro-phase separation in hexamethylynediisocyanate-polyurea was studied using small-angle X-ray scattering and infrared absorption. Moreover, it was found that phase separation in this system followed spinodal-like decomposition on a 3–4 nm size scale with phase separation occuring on a time scale of days.

  7. Equilibrium microphase separation in the two-leaflet model of lipid membranes

    NASA Astrophysics Data System (ADS)

    Reigada, Ramon; Mikhailov, Alexander S.

    2016-01-01

    Because of the coupling between local lipid composition and the thickness of the membrane, microphase separation in two-component lipid membranes can take place; such effects may underlie the formation of equilibrium nanoscale rafts. Using a kinetic description, this phenomenon is analytically and numerically investigated. The phase diagram is constructed through the stability analysis for linearized kinetic equations, and conditions for microphase separation are discussed. Simulations of the full kinetic model reveal the development of equilibrium membrane nanostructures with various morphologies from the initial uniform state.

  8. Cation-containing Polymers with Co-continuous Microphase-Separated Morphologies for Rapid Transport Membranes

    NASA Astrophysics Data System (ADS)

    Beyer, Frederick; Price, Samuel; Savage, Alice; Ren, Xiaoming; Pomerantz, Natalie; Zukas, Walter

    2015-03-01

    Cation-containing polymer membranes are the subject of renewed research for their potential to enable the use of alkaline fuel cells, and are also of interest for their water vapor transport properties. Charge and water vapor transport are both heavily dependent on membrane morphology and the development of hydrophilic channels throughout the material. Reaction induced phase separation has been shown to create such morphologies when used with uncharged copolymers and crosslinking monomers. Here we have applied this same technique but used ion-containing block copolymers of 4-vinylbenzyltrimethylammonium chloride and styrene to create a cation-containing polymer membrane having a microphase-separated, co-continuous morphology, as characterized by small-angle X-ray scattering (SAXS) and high-angle annular dark field scanning transmission electron microscopy (HAADF STEM). These materials show excellent charge transport behavior and water vapor transport properties, surpassing commercially available materials. These results and efforts to improve other important physical characteristics for membrane applications will be presented.

  9. Microphase separations of the fluids with spherically symmetric competing interactions.

    PubMed

    Kim, Soon-Chul; Suh, Soong-Hyuck; Seong, Baek-Seok

    2012-09-21

    A density functional perturbation theory has been developed for studying the phase behaviors of a competing system in the spherical pores. The pore size as well as the intensity of competing interactions exerts a strong influence on the vapor-liquid, vapor-cluster, and cluster-liquid transitions of a competing system. The microdomain spacing (D) of the cluster is commensurate with the periodicity of modulation in the particle density distributions of a competing system in a spherical pore with the pore radius (R). For the cluster phase, we find that the multi-vaporlike void is formed depending on the periodicity of modulation by finite-size artifacts. For R < D, the competing system only shows the vapor-liquid transition at a high amplitude. For R > D, the vapor-cluster and cluster-liquid transitions are found at a high amplitude, whereas at a low amplitude, the cluster-liquid transition only occurs. The competing system exhibits two tricritical points, which are joined to one another by the line of second-order transitions at the low and high densities. A comparison with the result of a slit pore shows that (i) the tricritical points in a spherical pore, which has the highest symmetry, occur at a low amplitude compared with that of a slit pore because of the geometrical properties of the pores, and that (ii) the slit pore relatively shows the wide vapor-cluster and cluster-liquid coexistence regions compared with that of a spherical pore: the geometrical symmetry of a pore results in a weaker tendency for phase separation. PMID:22998277

  10. Kinetics of microphase separation in block copolymers: A molecular-dynamics study

    NASA Astrophysics Data System (ADS)

    Singh, Awaneesh; Krishnan, Raishma; Puri, Sanjay

    2015-01-01

    We study the kinetics of microphase separation in block copolymers (BCPs) via molecular-dynamics (MD) simulations in d = 3. The BCPs consist of AnBm polymer chains. In the early stages, the BCP segregation is analogous to usual spinodal decomposition in fluid or polymer mixtures. At late times, the BCP evolution freezes into a micro-scale morphology dictated by the n : m ratio, e.g., lamellar, cylindrical, droplet, etc. We investigate the crossovers in a) the scaling forms of the correlation function and structure factor; and b) the domain growth law.

  11. Lamellar, micro-phase separated blends of methyl cellulose and dendritic polyethylene glycol, POSS-PEG.

    PubMed

    Chinnam, Parameswara Rao; Mantravadi, Ramya; Jimenez, Jayvic C; Dikin, Dmitriy A; Wunder, Stephanie L

    2016-01-20

    Blends of methyl cellulose (MC) and liquid pegylated polyoctahedralsilsesquioxane (POSS-PEG) were prepared from non-gelled, aqueous solutions at room temperature (RT), which was below their gel temperatures (Tm). Lamellar, fibrillated films (pure MC) and increasingly micro-porous morphologies with increasing POSS-PEG content were formed, which had RT moduli between 1 and 5GPa. Evidence of distinct micro-phase separated MC and POSS-PEG domains was indicated by the persistence of the MC and POSS-PEG (at 77K) crystal structures in the X-ray diffraction data, and scanning transmission electron images. Mixing of MC and POSS-PEG in the interface region was indicated by suppression of crystallinity in the POSS-PEG, and increases/decreases in the glass transition temperatures (Tg) of POSS-PEG/MC in the blends compared with the pure components. These interface interactions may serve as cross-link sites between the micro-phase separated domains that permit incorporation of high amounts of POSS-PEG in the blends, prevent macro-phase separation and result in rubbery material properties (at high POSS-PEG content). Above Tg/Tm of POSS-PEG, the moduli of the blends increase with MC content as expected. However, below Tg/Tm of POSS-PEG, the moduli are greater for blends with high POSS-PEG content, suggesting that it behaves like semi-crystalline polyethylene oxide reinforced with silica (SiO1.5).

  12. Microphase separation patterns in diblock copolymers on curved surfaces using a nonlocal Cahn-Hilliard equation.

    PubMed

    Jeong, Darae; Kim, Junseok

    2015-11-01

    We investigate microphase separation patterns on curved surfaces in three-dimensional space by numerically solving a nonlocal Cahn-Hilliard equation for diblock copolymers. In our model, a curved surface is implicitly represented as the zero level set of a signed distance function. We employ a discrete narrow band grid that neighbors the curved surface. Using the closest point method, we apply a pseudo-Neumann boundary at the boundary of the computational domain. The boundary treatment allows us to replace the Laplace-Beltrami operator by the standard Laplacian operator. In particular, we can apply standard finite difference schemes in order to approximate the nonlocal Cahn-Hilliard equation in the discrete narrow band domain. We employ a type of unconditionally stable scheme, which was introduced by Eyre, and use the Jacobi iterative to solve the resulting implicit discrete system of equations. In addition, we use the minimum number of grid points for the discrete narrow band domain. Therefore, the algorithm is simple and fast. Numerous computational experiments are provided to study microphase separation patterns for diblock copolymers on curved surfaces in three-dimensional space. PMID:26577816

  13. Stable domain size and conformational segregation of short and long blocks during microphase separation in random block copolymers

    NASA Astrophysics Data System (ADS)

    Markina, A.; Chertovich, A.

    2015-03-01

    In this Letter we use computer simulations and test microphase separation for AB-diblock copolymers with different block's statistics. We show that the domain size during microphase separation is stable only for the system with large enough polydispersity, namely with exponential (Flory-type) block length distribution. The reason for stable domain size is a conformational segregation of short and long blocks during the increase of the incompatibility in the system. While short blocks became elongated and occupy the surface of the interphase region, long blocks pushed out to the center of the domain and formed their compact conformations.

  14. Microphase separation in copolymers of hydrophilic PEG blocks and hydrophobic tyrosine-derived segments using simultaneous SAXS/WAXS/DSC

    SciTech Connect

    Murthy, N.S.; Wang, W.; Kohn, J.

    2010-10-22

    Hydration- and temperature-induced microphase separations were investigated by simultaneous small- and wide-angle X-ray scattering (SAXS and WAXS) and differential scanning calorimetry (DSC) in a family of copolymers in which hydrophilic poly(ethylene glycol) (PEG) blocks are inserted randomly into a hydrophobic polymer made of either desaminotyrosyl-tyrosine ethyl ester (DTE) or iodinated I{sub 2}DTE segments. Iodination of the tyrosine rings in I{sub 2}DTE increased the X-ray contrast between the hydrophobic and hydrophilic segments in addition to facilitating the study of the effect of iodination on microphase separation. The formation of phase-separated, hydrated PEG domains is of considerable significance as it profoundly affects the polymer properties. The copolymers of DTE (or I{sub 2}DTE) and PEG are a useful model system, and the findings presented here may be applicable to other PEG-containing random copolymers. In copolymers of PEG and DTE and I{sub 2}DTE, the presence of PEG depressed the glass transition temperature (T{sub g}) of the copolymer relative to the homopolymer, poly(DTE carbonate), and the DTE/I{sub 2}DTE segments hindered the crystallization of the PEG segments. In the dry state, at large PEG fractions (>70 vol%), the PEG domains self-assembled into an ordered structure with 14-18 nm distance between the domains. These domains gave rise to a SAXS peak at all temperatures in the iodinated polymers, but only above the T{sub g} in non-iodinated polymers, due to the unexpected contrast-match between the crystalline PEG domains and the glassy DTE segments. Irrespective of whether PEG was crystalline or not, immersion of these copolymers in water resulted in the formation of hydrated PEG domains that were 10-20 nm apart. Since both water and the polymer chains must be mobile for the phase separation to occur, the PEG domains disappeared when the water froze, and reappeared as the ice began to melt. This transformation was reversible, and showed

  15. Microphase Separation Controlled beta-Sheet Crystallization Kinetics in Fibrous Proteins

    SciTech Connect

    Hu, X.; Lu, Q; Kaplan, D; Cebe, P

    2009-01-01

    Silk is a naturally occurring fibrous protein with a multiblock chain architecture. As such, it has many similarities with synthetic block copolymers, including the possibility for e-sheet crystallization restricted within the crystallizable blocks. The mechanism of isothermal crystallization kinetics of e-sheet crystals in silk multiblock fibrous proteins is reported in this study. Kinetics theories, such as Avrami analysis which was established for studies of synthetic polymer crystal growth, are for the first time extended to investigate protein self-assembly in e-sheet rich Bombyx mori silk fibroin samples, using time-resolved Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and synchrotron real-time wide-angle X-ray scattering (WAXS). The Avrami exponent, n, was close to 2 for all methods and crystallization temperatures, indicating formation of e-sheet crystals in silk proteins is different from the 3-D spherulitic crystal growth found in synthetic polymers. Observations by scanning electron microscopy support the view that the protein structures vary during the different stages of crystal growth, and show a microphase separation pattern after chymotrypsin enzyme biodegradation. We present a model to explain the crystallization of the multiblock silk fibroin protein, by analogy to block copolymers: crystallization of e-sheets occurs under conditions of geometrical restriction caused by phase separation of the crystallizable and uncrystallizable blocks. This crystallization model could be widely applicable in other proteins with multiblock (i.e., crystallizable and noncrystallizable) domains.

  16. Microphase-Separated PE/PEO Thin Films Prepared by Plasma-Assisted Vapor Phase Deposition.

    PubMed

    Choukourov, Andrei; Gordeev, Ivan; Ponti, Jessica; Uboldi, Chiara; Melnichuk, Iurii; Vaidulych, Mykhailo; Kousal, Jaroslav; Nikitin, Daniil; Hanyková, Lenka; Krakovský, Ivan; Slavínská, Danka; Biederman, Hynek

    2016-03-01

    Immiscible polymer blends tend to undergo phase separation with the formation of nanoscale architecture which can be used in a variety of applications. Different wet-chemistry techniques already exist to fix the resultant polymeric structure in predictable manner. In this work, an all-dry and plasma-based strategy is proposed to fabricate thin films of microphase-separated polyolefin/polyether blends. This is achieved by directing (-CH2-)100 and (-CH2-CH2-O-)25 oligomer fluxes produced by vacuum thermal decomposition of poly(ethylene) and poly(ethylene oxide) onto silicon substrates through the zone of the glow discharge. The strategy enables mixing of thermodynamically incompatible macromolecules at the molecular level, whereas electron-impact-initiated radicals serve as cross-linkers to arrest the subsequent phase separation at the nanoscale. The mechanism of the phase separation as well as the morphology of the films is found to depend on the ratio between the oligomeric fluxes. For polyolefin-rich mixtures, polyether molecules self-organize by nucleation and growth into spherical domains with average height of 22 nm and average diameter of 170 nm. For equinumerous fluxes and for mixtures with the prevalence of polyethers, spinodal decomposition is detected that results in the formation of bicontinuous structures with the characteristic domain size and spacing ranging between 5 × 10(1) -7 × 10(1) nm and 3 × 10(2)-4 × 10(2) nm, respectively. The method is shown to produce films with tunable wettability and biologically nonfouling properties. PMID:26953817

  17. Microphase-Separated PE/PEO Thin Films Prepared by Plasma-Assisted Vapor Phase Deposition.

    PubMed

    Choukourov, Andrei; Gordeev, Ivan; Ponti, Jessica; Uboldi, Chiara; Melnichuk, Iurii; Vaidulych, Mykhailo; Kousal, Jaroslav; Nikitin, Daniil; Hanyková, Lenka; Krakovský, Ivan; Slavínská, Danka; Biederman, Hynek

    2016-03-01

    Immiscible polymer blends tend to undergo phase separation with the formation of nanoscale architecture which can be used in a variety of applications. Different wet-chemistry techniques already exist to fix the resultant polymeric structure in predictable manner. In this work, an all-dry and plasma-based strategy is proposed to fabricate thin films of microphase-separated polyolefin/polyether blends. This is achieved by directing (-CH2-)100 and (-CH2-CH2-O-)25 oligomer fluxes produced by vacuum thermal decomposition of poly(ethylene) and poly(ethylene oxide) onto silicon substrates through the zone of the glow discharge. The strategy enables mixing of thermodynamically incompatible macromolecules at the molecular level, whereas electron-impact-initiated radicals serve as cross-linkers to arrest the subsequent phase separation at the nanoscale. The mechanism of the phase separation as well as the morphology of the films is found to depend on the ratio between the oligomeric fluxes. For polyolefin-rich mixtures, polyether molecules self-organize by nucleation and growth into spherical domains with average height of 22 nm and average diameter of 170 nm. For equinumerous fluxes and for mixtures with the prevalence of polyethers, spinodal decomposition is detected that results in the formation of bicontinuous structures with the characteristic domain size and spacing ranging between 5 × 10(1) -7 × 10(1) nm and 3 × 10(2)-4 × 10(2) nm, respectively. The method is shown to produce films with tunable wettability and biologically nonfouling properties.

  18. Superhydrophobic film fabricated by controlled microphase separation of PEO-PLA mixture and its transparence property

    NASA Astrophysics Data System (ADS)

    Pi, Pihui; Mu, Wei; Fei, George; Deng, Yulin

    2013-05-01

    Instead of block copolymers that have been widely used in controlling thin film morphology, a mixture of two homopolymers has been used in this study to create desired nano- to microporous structure. By further modifying the nano-sized porous structured surface, a superhydrophobic surface was obtained. Experimentally, a chloroform solution containing a mixture of polylactic acid (PLA) and polyethylene oxide (PEO) was first coated on glass slides. Because of the dissimilarity of PLA and PEO, a microphase separation happened and the PEO formed microdomains in the coating layer during the film drying. Because PEO is water soluble but PLA is water-insoluble, the PEO microdomains could be washed out with water but PLA remained, resulted in a porous and rough PLA film. By two or three layer coating and washing, nano-sized roughness was obtained. A thin layer of fluorinated acrylic resin was further deposited on the rough surface. Because of the synergistic effect of surface roughness and hydrophobic, a superhydrophobicicity layer was obtained.

  19. Chemical Interactions and Their Role in the Microphase Separation of Block Copolymer Thin Films

    PubMed Central

    Farrell, Richard A.; Fitzgerald, Thomas G.; Borah, Dipu; Holmes, Justin D.; Morris, Michael A.

    2009-01-01

    The thermodynamics of self-assembling systems are discussed in terms of the chemical interactions and the intermolecular forces between species. It is clear that there are both theoretical and practical limitations on the dimensions and the structural regularity of these systems. These considerations are made with reference to the microphase separation that occurs in block copolymer (BCP) systems. BCP systems self-assemble via a thermodynamic driven process where chemical dis-affinity between the blocks driving them part is balanced by a restorative force deriving from the chemical bond between the blocks. These systems are attracting much interest because of their possible role in nanoelectronic fabrication. This form of self-assembly can obtain highly regular nanopatterns in certain circumstances where the orientation and alignment of chemically distinct blocks can be guided through molecular interactions between the polymer and the surrounding interfaces. However, for this to be possible, great care must be taken to properly engineer the interactions between the surfaces and the polymer blocks. The optimum methods of structure directing are chemical pre-patterning (defining regions on the substrate of different chemistry) and graphoepitaxy (topographical alignment) but both centre on generating alignment through favourable chemical interactions. As in all self-assembling systems, the problems of defect formation must be considered and the origin of defects in these systems is explored. It is argued that in these nanostructures equilibrium defects are relatively few and largely originate from kinetic effects arising during film growth. Many defects also arise from the confinement of the systems when they are ‘directed’ by topography. The potential applications of these materials in electronics are discussed. PMID:19865513

  20. Influence of Architecture on the Behavior of Microphase Separated Block Copolymers

    NASA Astrophysics Data System (ADS)

    Speetjens, Frank W., II

    The nanoscale self-assembly of block copolymers at the ˜10-100 nm length scale has exciting potential applications in next-generation nanolithography and nanotemplating, wherein the feature sizes are governed by the overall copolymer degree of polymerization, N. However, the thermodynamics of block copolymer microphase separation intrinsically limit the size of the smallest features accessible by this approach. This limitation stems from the fact that AB diblock copolymer self-assembly only occurs above a critical N that depends inversely on the magnitude of the effective interaction parameter Chi, which quantifies the energetic repulsions between the dissimilar monomer segments. In this dissertation, we first provide an overview of current routes to smaller periodicities in self-assembled block copolymers. While numerous reports have focused on developing "high Chi" AB diblocks that self-assemble at smaller values of N, the use of complex macromolecular architectures to stabilize ordered block copolymer nanostructures remains relatively unexplored. We report the melt-phase self-assembly behavior of block copolymer bottlebrushes derived from linking the block junctions of low molecular weight, symmetric poly(styrene-b-lactide) (PS-b-PLA) copolymers. These studies quantitatively demonstrate that increasing the bottlebrush backbone degree of polymerization (Nbackbone) reduces the critical PS-b-PLA copolymer arm degree of polymerization (Narm) required for self-assembly into lamellar mesophases by as much as 75%, thus reducing the nanoscale feature sizes accessible with this monomer chemistry. In studies of asymmetric block copolymer bottlebrushes, we observe a less significant reduction in the Narm required for self-assembly into a hexagonally-packed cylinders morphology. These results are rationalized in terms of how monomer concentration fluctuation effects manifest upon ordering a disordered copolymer into either a lamellar or cylindrical morphology. Finally, the

  1. Structural organization, micro-phase separation and polyamorphism of liquid MgSiO3 under compression

    NASA Astrophysics Data System (ADS)

    San, Luyen Thi; Van Hong, Nguyen; Iitaka, Toshiaki; Hung, Pham Khac

    2016-03-01

    The structure, structural change and micro-phase separation in liquid MgSiO3 under pressure are studied by molecular dynamics simulation with pair-wise potentials. Models consisting of 5000 atoms are constructed at 3500 K in the 0-30 GPa pressure range. The structural organization and structural phase transition under compression as well as network topology of liquid MgSiO3 are clarified through analysis and visualization of molecular dynamics simulation data. The short-range structure, intermediate-range structure and the degree of polymerization as well as structural, compositional and dynamical heterogeneities are also discussed in detail.

  2. Microphase separation in cross-linked polymer blends. Efficient replica RPA post-processing of simulation data for homopolymer networks.

    PubMed

    Klopper, A V; Svaneborg, Carsten; Everaers, Ralf

    2009-01-01

    We investigate the behaviour of randomly cross-linked (co)polymer blends using a combination of replica theory and large-scale molecular dynamics simulations. In particular, we derive the analogue of the random phase approximation for systems with quenched disorder and show how the required correlation functions can be calculated efficiently. By post-processing simulation data for homopolymer networks we are able to describe neutron scattering measurements in heterogeneous systems without resorting to microscopic detail and otherwise unphysical assumptions. We obtain structure function data which illustrate the expected microphase separation and contain system-specific information relating to the intrinsic length scales of our networks.

  3. Sporadic Nucleation and Growth in the Microphase Separation Process of an I2S Miktoarm Star Block Copolymer and its Blends with Homopolymer

    NASA Astrophysics Data System (ADS)

    Yang, Lizhang; Pochan, Darrin J.; Gido, Samuel P.; Pispas, Stergios; Hong, Kunlun; Mays, Jimmy W.

    2000-03-01

    A selective solvent and annealing study was done to investigate the morphology behavior of an I2S miktoarm star block copolymer and its blends with homopolyisoprene. Casting from cyclohexane, a selective solvent for polyisoprene, the neat star shaped I2S block copolymer only partially microphase separated, and formed a unique layered morphology inside a homogeneous media. During annealing, the layered phase and the homogeneous phase both transformed into a randomly oriented worm morphology. The path of this transformation is different depending on whether the starting state is layered or homogenous. The I2S/homopolyisoprene blend formed a mostly homogeneous phase after casting from cyclohexane. Annealing produced slow microphase separation which was observed at various stages by TEM. Based on these observations, a sporadic nucleation process of microphase separation is proposed.

  4. Microphase separated structures in the solid and molten states of double-crystal graft copolymers of polyethylene and poly(ethylene oxide)

    SciTech Connect

    Mark, P.R.; Murthy, N.S.; Weigand, S.; Breitenkamp, K.; Kade, M.; Emrick, T.

    2008-08-26

    Transitions from one microphase separated structure in the solid state to a different one in the molten state in polyethylene-graft-poly(ethylene oxide) copolymers, PE-g-PEO, were investigated by variable temperature X-ray scattering measurements and thermal analyses. Small-angle X-ray scattering patterns from polymers with PEO grafts with 25, 50 and 100 ethylene oxide (EO) units show that the polymer passes through three distinct structures at {approx}10 nm length scales with increase in temperature (T): lamellar structures of PE and PEO at T < T{sub m}{sup PEO}, PE lamellae surrounded by molten PEO at T{sub m}{sup PEO} < T < T{sub m}{sup PE}, and microphase separated structures at T > T{sub m}{sup PE} when both PE and PEO are molten (T{sub m} refers to the melting temperature). These phase transformations also occur during cooling but with hysteresis. Crystalline phases of PEO side chains and PE main chains could be identified in the wide-angle X-ray diffraction profiles indicating that the PE backbone and PEO grafts crystallize into separate domains, especially with longer grafted chains (50 and 100 units). At EO segment lengths >50, PEO shows the expected increase in melting and crystallization temperatures with the increase in the grafted chain length. PE does not affect T{sub m}{sup PEO} but does decrease the onset of crystallization upon cooling. PEO grafts result in fractionation of PE, decrease the melting point of PE and increase the undercooling for the onset of crystallization of PE.

  5. Formation of microphase-separated structure with half pitch less than 5.0nm formed by multiblock copolymers for nanolithographic application

    NASA Astrophysics Data System (ADS)

    Kosaka, T.; Kawaguchi, Y.; Himi, T.; Shimizu, T.; Hirahara, K.; Takano, A.; Matsushita, Y.

    2016-03-01

    In this study, we have successfully synthesized polystyrene-b-poly(4-hydroxystyrene) (SH) with molecular weight of 14k and with narrow molecular weight distribution by living anionic polymerization, and the obtained SH diblock copolymer has formed the definite alternative lamellar structure with the half pitch of 10.4nm. In order to achieve narrow half pitch pattern, diblock copolymer (XY) with stronger segregated polymer components with high chi (X and Y) was used, and it was confirmed that the high-chi XY diblock copolymer having molecular weight of 6k showed the clear lamellar structure with the half pitch of 5.5nm. Furthermore syntheses of multiblock copolymers with high chi such as YXY (where X is Si contained polymer) triblock and XYXY (where XYXY is Si contained high χ polymer) tetrablock copolymers were attempted to achieve the narrower half pitch pattern less than 5 nm, and the multiblock copolymers with aimed molecular weight and narrow molecular weight distribution have been successfully obtained. From the highchi multiblock copolymers, it was confirmed that the formation of the definite microphase-separated structure with the half pitch of 4.8nm was observed by TEM and SAXS measurements. Moreover we have developed a large-scale living anionic polymerization apparatus for the preparation of well-defined block copolymers scaled over 3kg.

  6. Ordered, microphase-separated, noncharged-charged diblock copolymers via the sequential ATRP of styrene and styrenic imidazolium monomers

    SciTech Connect

    Shi, ZX; Newell, BS; Bailey, TS; Gin, DL

    2014-12-15

    A series of imidazolium-based noncharged-charged diblock copolymers (1) was synthesized by the direct, sequential ATRP of styrene and styrenic imidazolium bis(trifluoromethyl)sulfonamide monomers with methyl, n-butyl, and n-decyl side-chains. Small-angle X-ray scattering studies on initial examples of 1 with a total of 50 repeat units and styrene:imidazolium-styrene repeat unit ratios of 25:25, 20:30, and 15:35 showed that their ability to form ordered nanostructures (i.e., sphere and cylinder phases) in their neat states depends on both the block ratio and the length of the alkyl side-chain on the imidazolium monomer. To our knowledge, the synthesis of imidazolium-based BCPs that form ordered, phase-separated nanostructures via direct ATRP of immiscible co-monomers is unprecedented. (C) 2014 Elsevier Ltd. All rights reserved.

  7. Microphase Separation in Thin Films of Block Copolymer Supramolecular Assemblies: Composition Dependent Morphological Transitions and Molecular Architecture Effect

    NASA Astrophysics Data System (ADS)

    Nandan, Bhanu; Stamm, Manfred

    2010-03-01

    Block copolymer based supramolecular assemblies (SMAs) recently have attracted lot of attention because of their potential application as nanotemplates. These SMAs are prepared by attaching small molecules selectively to one of the blocks of the copolymer through physical interactions. In the present study, the phase behavior of SMAs formed by polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) with 2-(4'-hydroxybenzeneazo)benzoic acid (HABA) was investigated with respect to the molar ratio (X) between HABA and 4VP monomer unit in bulk as well as in thin films. It will be shown that these SMAs show some interesting composition dependent and solvent induced pathway dependent phase transitions. Moreover, the orientation of cylindrical or lamellar microdomains of P4VP(HABA) depends on the selectivity of the solvent as well as on the degree of swelling of the thin film. Furthermore, it will be shown that the molecular architecture of the block copolymer influences the orientation and ordering of microdomains in the SMA. Hence, whereas, the cylindrical and lamellar microdomains of SMA composed of a P4VP-b-PS-b-P4VP triblock copolymer were perpendicular to the substrate, those composed from a PS-b-P4VP diblock of similar composition had in-plane orientation of the microdomains.

  8. Spontaneous formation of giant unilamellar vesicles from microdroplets of a polyion complex by thermally induced phase separation.

    PubMed

    Oana, Hidehiro; Kishimura, Akihiro; Yonehara, Kei; Yamasaki, Yuichi; Washizu, Masao; Kataoka, Kazunori

    2009-01-01

    Water pump: Polyion complex (PIC) vesicles are spontaneously formed from PIC microdroplets, which are formed by mixing cationic and anionic polymers (see picture). The formation process can be reversibly controlled by local heating with a focused infrared laser that triggers microphase separation and subsequent water influx. The size of the resulting giant unilamellar vesicles is determined by the initial size of the PIC droplets.

  9. Does dynamic vulcanization induce phase separation?

    PubMed

    Abolhasani, Mohammad Mahdi; Zarejousheghani, Fatemeh; Naebe, Minoo; Guo, Qipeng

    2014-08-14

    Immiscible and miscible blends of poly(vinylidene fluoride) (PVDF) and acrylic rubber (ACM) were subjected to dynamic vulcanization to investigate the effect of crosslinking on phase separation. As a result of different processability, mixing torque behavior of miscible and immiscible blends was significantly different from one another. Scanning electron microscopy (SEM) was used to investigate the morphology of the system. After dynamic vulcanization, submicron ACM droplets were observed in the samples near the binodal curve of the system under mixing conditions. Small angle X-ray scattering (SAXS) and differential scanning calorimetry (DSC) analysis were used to investigate the effect of dynamic vulcanization on the lamellar structure of the system. It was shown that for samples near the boundary of phase separation, increasing the crosslink density led to a decrease in the lamellar long period (L) as a sign of increment of crosslink density induced phase decomposition. Effects of shear rate on the final morphology of the system were investigated by changing the mixing temperature and by comparing the results of dynamic vulcanization at one phase and two phase regions. PMID:24957793

  10. Does dynamic vulcanization induce phase separation?

    PubMed

    Abolhasani, Mohammad Mahdi; Zarejousheghani, Fatemeh; Naebe, Minoo; Guo, Qipeng

    2014-08-14

    Immiscible and miscible blends of poly(vinylidene fluoride) (PVDF) and acrylic rubber (ACM) were subjected to dynamic vulcanization to investigate the effect of crosslinking on phase separation. As a result of different processability, mixing torque behavior of miscible and immiscible blends was significantly different from one another. Scanning electron microscopy (SEM) was used to investigate the morphology of the system. After dynamic vulcanization, submicron ACM droplets were observed in the samples near the binodal curve of the system under mixing conditions. Small angle X-ray scattering (SAXS) and differential scanning calorimetry (DSC) analysis were used to investigate the effect of dynamic vulcanization on the lamellar structure of the system. It was shown that for samples near the boundary of phase separation, increasing the crosslink density led to a decrease in the lamellar long period (L) as a sign of increment of crosslink density induced phase decomposition. Effects of shear rate on the final morphology of the system were investigated by changing the mixing temperature and by comparing the results of dynamic vulcanization at one phase and two phase regions.

  11. Microphase Ordering in Melts of Randomly Grafted Copolymers

    SciTech Connect

    Qi, S.; Chakraborty, A.K.; Wang, H.; Lefebvre, A.A.; Balsara, N.P.; Shakhnovich, E.I.; Xenidou, M.; Hadjichristidis, N.

    1999-04-01

    Using optical birefringence, small-angle neutron scattering, and field-theoretic methods, we study the effects of frustrating quenched randomness and connectivity on microphase ordering in copolymer melts. Our results show that randomly grafted copolymers are good model systems to examine these effects, and we find that these materials exhibit behavior different from that observed heretofore for other types of molten polymers. {copyright} {ital 1999} {ital The American Physical Society}

  12. Thermocapillary-Induced Phase Separation with Coalescence

    NASA Technical Reports Server (NTRS)

    Davis, Robert H.

    2003-01-01

    Research has been undertaken on interactions of two or more deformable drops (or bubbles) in a viscous fluid and subject to a temperature, gravitational, or flow field. An asymptotic theory for nearly spherical drops shows that small deformations reduce the coalescence and phase separation rates. Boundary-integral simulations for large deformations show that bubbles experience alignment and enhanced coalescence, whereas more viscous drops may break as a result of hydrodynamic interactions. Experiments for buoyancy motion confirm these observations. Simulations of the sedimentation of many drops show clustering phenomena due to deformations, which lead to enhanced phase separation rates, and simulations of sheared emulsions show that deformations cause a reduction in the effective viscosity.

  13. Microphase structure of poly(N-isopropylacrylamide) hydrogels as seen by small- and wide-angle X-ray scattering and pulsed field gradient NMR.

    PubMed

    László, Krisztina; Guillermo, Armel; Fluerasu, Andrei; Moussaïd, Abdellatif; Geissler, Erik

    2010-03-16

    Above the lower critical solution temperature T(c) (ca. 34 degrees C), poly(N-isopropylacrylamide) hydrogels become weakly hydrophobic and undergo microphase separation. Macroscopic deswelling, however, is extraordinarily slow, the out-of equilibrium state of the gel being conserved for many days. In this article the structure of the microphase-separated state above T(c) is probed by small-angle X-ray scattering and by pulsed field gradient NMR of the protons of water, both in the water phase and in the polymer-rich phase. Above T(c) the gel comprises two microphases, separated by smooth interfaces. The cavities occupied by the water phase form a connected network. The diffusion rate of the water molecules in this phase varies from one cavity to another and can be described by a Gaussian distribution. Water molecules belonging to the polymer-rich phase are also mobile, but their self-diffusion coefficient D is greatly diminished. Absence of compartmentalization of the water phase implies that the slow deswelling rate of the gel is not due to trapping of the water phase.

  14. Dual Phase Separation for Synthesis of Bimodal Meso/Macroporous Carbon Monoliths

    SciTech Connect

    Liang, Chengdu; Dai, Sheng

    2009-01-01

    Polymerization-induced spinodal decomposition was conducted in glycolic solutions of phloroglucinol/formaldehyde (PF) copolymer and poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) to synthesize bicontinuous macroporous morphologies with micro-domains from 0.5 to 6 microns. The polymeric materials were further carbonized at elevated temperature to yield bimodal meso/macroporous carbon monoliths after the thermal decomposition of the PEO-PPO-PEO template. The bimodal porous nature of the resultant carbon monoliths resulted from the dual phase separation, in which spinodal decomposition and microphase separation occurred simultaneously. We demonstrated the tunability of macropores without alteration of mesopore sizes.

  15. Charge-separated state in strain-induced quantum dots

    SciTech Connect

    Gu, Y.; Sturge, M.D.; Kash, K.; Watkins, N.; Van der Gaag, B.P.; Gozdz, A.S.; Florez, L.T.; Harbison, J.P.

    1997-03-01

    We have measured the time-resolved photoluminescence of strain-induced quantum dots. We show that a long-lived intermediate state is involved in the excitation transfer from the interstitial quantum well to the dot. This intermediate state has the properties expected of the charge separated state predicted by theory. {copyright} {ital 1997 American Institute of Physics.}

  16. Temperature Gradients Induce Phase Separation in a Miscible Polymer Solution

    NASA Astrophysics Data System (ADS)

    Kumaki, Jiro; Hashimoto, Takeji; Granick, Steve

    1996-09-01

    Phase separation occurred up to 20 °C above the coexistence temperature in a polymer solution (polystyrene-polybutadiene-dioctylphthalate) to which small temperature gradients ( ~2 °C) were applied. Before convection began, spinodal-like patterns with characteristic spacing that grew in proportion to time elapsed persisted for times up to hours. The cause appears to be thermally driven concentration gradients normal to the surface, large enough to induce phase separation parallel to the surface, although temperatures throughout the mixture exceeded the thermodynamic coexistence temperature.

  17. Separation of components in lipid membranes induced by shape transformation

    NASA Astrophysics Data System (ADS)

    Góźdź, W. T.; Bobrovska, N.; Ciach, A.

    2012-07-01

    Vesicles composed of a two component membrane with each component characterized by different spontaneous curvature are investigated by minimization of the free energy consisting of Helfrich elastic energy and entropy of mixing. The results show that mixing and demixing of membrane components can be induced by elongating a vesicle or changing its volume, if one of the components forms a complex with macromolecules on the outer monolayer. The influence of elastic coefficients on the separation of components is also examined.

  18. Nanoparticle-Mediated, Light-Induced Phase Separations.

    PubMed

    Neumann, Oara; Neumann, Albert D; Silva, Edgar; Ayala-Orozco, Ciceron; Tian, Shu; Nordlander, Peter; Halas, Naomi J

    2015-12-01

    Nanoparticles that both absorb and scatter light, when dispersed in a liquid, absorb optical energy and heat a reduced fluid volume due to the combination of multiple scattering and optical absorption. This can induce a localized liquid-vapor phase change within the reduced volume without the requirement of heating the entire fluid. For binary liquid mixtures, this process results in vaporization of the more volatile component of the mixture. When subsequently condensed, these two steps of vaporization and condensation constitute a distillation process mediated by nanoparticles and driven by optical illumination. Because it does not require the heating of a large volume of fluid, this process requires substantially less energy than traditional distillation using thermal sources. We investigated nanoparticle-mediated, light-induced distillation of ethanol-H2O and 1-propanol-H2O mixtures, using Au-SiO2 nanoshells as the absorber-scatterer nanoparticle and nanoparticle-resonant laser irradiation to drive the process. For ethanol-H2O mixtures, the mole fraction of ethanol obtained in the light-induced process is substantially higher than that obtained by conventional thermal distillation, essentially removing the ethanol-H2O azeotrope that limits conventional distillation. In contrast, for 1-propanol-H2O mixtures the distillate properties resulting from light-induced distillation were very similar to those obtained by thermal distillation. In the 1-propanol-H2O system, a nanoparticle-mediated, light-induced liquid-liquid phase separation was also observed. PMID:26535465

  19. Silk fibroin gelation via non-solvent induced phase separation.

    PubMed

    Kasoju, Naresh; Hawkins, Nicholas; Pop-Georgievski, Ognen; Kubies, Dana; Vollrath, Fritz

    2016-03-01

    Tissue engineering benefits from novel materials with precisely tunable physical, chemical and mechanical properties over a broad range. Here we report a practical approach to prepare Bombyx mori silk fibroin hydrogels using the principle of non-solvent induced phase separation (NIPS). A combination of reconstituted silk fibroin (RSF) and methanol (non-solvent), with a final concentration of 2.5% w/v and 12.5% v/v respectively, maintained at 22 °C temperature turned into a hydrogel within 10 hours. Freeze-drying of this gel gave a foam with a porosity of 88%, a water uptake capacity of 89% and a swelling index of 8.6. The gelation kinetics and the loss tangent of the gels were investigated by rheometry. The changes in the morphology of the porous foams were visualized by SEM. The changes in RSF chemical composition and the relative fraction of its secondary structural elements were analyzed by ATR-FTIR along with Fourier self-deconvolution. And, the changes in the glass transition temperature, specific heat capacity and the relative fraction of crystallinity of RSF were determined by TM-DSC. Data suggested that RSF-water-methanol behaved as a polymer-solvent-non-solvent ternary phase system, wherein the demixing of the water-methanol phases altered the thermodynamic equilibrium of RSF-water phases and resulted in the desolvation and eventual separation of the RSF phase. Systematic analysis revealed that both gelation time and the properties of hydrogels and porous foams could be controlled by the ratios of RSF and non-solvent concentration as well as by the type of non-solvent and incubation temperature. Due to the unique properties we envisage that the herein prepared NIPS induced RSF hydrogels and porous foams can possibly be used for the encapsulation of cells and/or for the controlled release of both hydrophilic and hydrophobic drugs. PMID:26730413

  20. An Optimized Nanoparticle Separator Enabled by Electron Beam Induced Deposition

    SciTech Connect

    Fowlkes, Jason Davidson; Doktycz, Mitchel John; Rack, P. D.

    2010-01-01

    Size based separations technologies will inevitably benefit from advances in nanotechnology. Direct write nanofabrication provides a useful mechanism to deposit/etch nanoscale elements in environments otherwise inaccessible to conventional nanofabrication techniques. Here, electron beam induced deposition (EBID) was used to deposit an array of nanoscale features in a 3D environment with minimal material proximity effects outside the beam interaction region (BIR). Specifically, the membrane component of a nanoparticle separator was fabricated by depositing a linear array of sharply tipped nanopillars, with a singular pitch, designed for sub 50nm nanoparticle permeability. The nanopillar membrane was used in a dual capacity to control the flow of nanoparticles in the transaxial direction of the array while facilitating the sealing of the cellular sized compartment in the paraxial direction. An optimized growth recipe resulted which (1) maximized the growth efficiency of the membrane (which minimizes proximity effects), (2) preserved the fidelity of spacing between nanopillars (which maximizes the size based gating quality of the membrane) while (3) maintaining sharp nanopillar apexes for impaling an optically transparent polymeric lid critical for device sealing.

  1. Maternal Separation Induces Orofacial Mechanical Allodynia in Adulthood.

    PubMed

    Yasuda, M; Shinoda, M; Honda, K; Fujita, M; Kawata, A; Nagashima, H; Watanabe, M; Shoji, N; Takahashi, O; Kimoto, S; Iwata, K

    2016-09-01

    It is well known that exposure to maternal separation (MS) in early life causes plastic changes in the nervous system in adulthood, occasionally resulting in ubiquitous chronic pain. However, the pathogenic mechanisms of pain hypersensitivity remain unclear. Here, the authors examined the involvement of corticosterone in orofacial mechanical hypersensitivity induced by MS. To establish a rat model of MS, pups were placed in isolated cages 180 min/d and kept in a temperature-controlled environment at 22 ± 2 °C for 14 d. Mechanical allodynia in the whisker pad skin in adulthood was induced by MS and was significantly suppressed by successive postnatal subcutaneous administration of the glucocorticoid receptor antagonist mifepristone. Corticosterone levels were increased in the serum of MS rats, and successive postnatal administration of subcutaneous corticosterone to naive rats induced mechanical allodynia in the whisker pad skin. The number of P2X3 receptor-immunoreactive (P2X3R-IR) trigeminal ganglion (TG) neurons innervating the whisker pad skin was significantly increased in MS rats and decreased following subcutaneous administration of mifepristone. The number of P2X3R-IR TG neurons innervating the whisker pad skin was also significantly increased following successive postnatal administration of subcutaneous corticosterone in naive rats. Moreover, the mechanical allodynia was suppressed 30 min after administration of the P2X3R antagonist A317491 to the whisker pad skin in MS rats. These findings suggest that the increase in P2X3R-IR TG neurons innervating the whisker pad skin via enhanced neonatal corticosterone signaling by MS plays an important role in orofacial mechanical allodynia in adulthood.

  2. Maternal Separation Induces Orofacial Mechanical Allodynia in Adulthood.

    PubMed

    Yasuda, M; Shinoda, M; Honda, K; Fujita, M; Kawata, A; Nagashima, H; Watanabe, M; Shoji, N; Takahashi, O; Kimoto, S; Iwata, K

    2016-09-01

    It is well known that exposure to maternal separation (MS) in early life causes plastic changes in the nervous system in adulthood, occasionally resulting in ubiquitous chronic pain. However, the pathogenic mechanisms of pain hypersensitivity remain unclear. Here, the authors examined the involvement of corticosterone in orofacial mechanical hypersensitivity induced by MS. To establish a rat model of MS, pups were placed in isolated cages 180 min/d and kept in a temperature-controlled environment at 22 ± 2 °C for 14 d. Mechanical allodynia in the whisker pad skin in adulthood was induced by MS and was significantly suppressed by successive postnatal subcutaneous administration of the glucocorticoid receptor antagonist mifepristone. Corticosterone levels were increased in the serum of MS rats, and successive postnatal administration of subcutaneous corticosterone to naive rats induced mechanical allodynia in the whisker pad skin. The number of P2X3 receptor-immunoreactive (P2X3R-IR) trigeminal ganglion (TG) neurons innervating the whisker pad skin was significantly increased in MS rats and decreased following subcutaneous administration of mifepristone. The number of P2X3R-IR TG neurons innervating the whisker pad skin was also significantly increased following successive postnatal administration of subcutaneous corticosterone in naive rats. Moreover, the mechanical allodynia was suppressed 30 min after administration of the P2X3R antagonist A317491 to the whisker pad skin in MS rats. These findings suggest that the increase in P2X3R-IR TG neurons innervating the whisker pad skin via enhanced neonatal corticosterone signaling by MS plays an important role in orofacial mechanical allodynia in adulthood. PMID:27474258

  3. [Effect of biologically active compounds of divalent platinum on the properties of the liquid crystal "microphase" of DNA].

    PubMed

    Akimenko, N M; Kleinwächter, V; Evdokimov, Iu M

    1983-07-01

    The optical properties of the "microphases" modeling the state of the DNA molecule in the cell and formed of both the low molecular DNA and the DNA complexes with cis- and trans-isomers of dichlorodiamine platininum (II) were studied. It was shown that the intensive band characteristic of the circular dichroism spectrum of the initial DNA "microphase" was decreasing with binding of DNA to cis-Pt (II) or trans-Pt (II). The effect of cis-Pt (II) on the "microphase" optical properties was more significant than that of trans-Pt (II). The effect correlated with the biological activity of the cis- and trans-compounds of platinum. Possible causes of the decrease in the optical activity of the DNA "microphase" are discussed.

  4. Separating triggered and stress-change induced seismcity

    NASA Astrophysics Data System (ADS)

    Zhuang, J.

    2013-12-01

    Once a major earthquake occurs, it usually not only triggers a sequence of many aftershock, but also changes the tectonic stress field in the regions nearby. According to the rate and state law (Dieterich, 1994), such stress changes result in a permanent change of the seismicity rate, increment or decrement. However, since aftershock sequence lasts quite a long time before it decays off, it is hard tell whether the high level of seismicity after a big earthquake is the continuation of the aftershock activity or caused by the changes of stress due this big earthquake. In this study, by making use of the space-time ETAS model (Ogata, 1998) and the stochastic declustering method (Zhuang et al., 2002, 2004), I developed a method to separate the seismicity induced by stress-change from the aftershock activity in a probability manner. For example, it is found that the probabilities that Lushan earthquakes belong the background seismcity, aftershock of the Wenchuan earthquake, are stress-change induced seismcity are, respectively, 38% and 12%, 50%. References Dieterich, J.H. (1994) A constitutive law for rate of earthquake production and its application to earthquake clustering, J. Geophys. Res. , 99 , 2601-2618. Ogata, Y. (1998. Space-time point-process models for earthquake occur- rences, Ann. Inst. Stat. Math., 50, 379-402. Zhuang J., Ogata Y. and Vere-Jones D. (2004). Analyzing earthquake clustering features by using stochastic reconstruction. Journal of Geophysical Research, 109, No. B5, B05301, doi:10.1029/2003JB002879. Zhuang J., Ogata Y. and Vere-Jones D. (2002). Stochastic declustering of space-time earthquake occurrences. Journal of the American Statistical Association, 97: 369-380.

  5. Thermodynamics of the motility-induced phase separation

    NASA Astrophysics Data System (ADS)

    Solon, Alexandre; Stenhammar, Joachim; Cates, Michael; Tailleur, Julien

    Self-propelled particles are known to accumulate in regions of space where their velocity is lowered. In addition, if their velocity diminishes when the local density increases (for example due to crowding effects), a positive feedback loop leads to the now well-established motility-induced phase separation (MIPS) between a dense immotile phase and a dilute motile phase. Understanding the phase equilibrium of MIPS is still a matter of debate. Although, depending on the models used to study the transition, a chemical potential or a pressure can be defined, these quantities do not play their usual thermodynamic role. In particular, the usual common tangent or equal-area constructions fail in these systems. Indeed, we will show that describing the phase equilibrium of MIPS necessitates generalized thermodynamics that include non-equilibrium contributions. This approach allows us to predict correctly the phase diagram of MIPS and to gain insight into the thermodynamics of active systems. It also sheds light on the (in)equivalence of statistical ensembles for these systems, paving the way for more efficient computational studies.

  6. A Comparative Study of Microphase Separation of Polyurethane Multiblock Copolymers with Different Soft Segment Chemistries.

    NASA Astrophysics Data System (ADS)

    Hernandez, Rebeca; Choi, Taeyi; Weksler, Jadwiga; Padsalgikar, Ajay; Xu, Lichong; Siedlecki, Christopher; Runt, James

    2008-03-01

    We focus in this study on three series of chemically well-defined polyurethanes (PUs) with the same hard segments (MDI-BDO) but different soft segment chemistries of interest in biomedical applications: 1000 g/mol aliphatic polycarbonate, polytetramethylenoxide and a mixed macrodiol of polydimethylsiloxane (PDMS) and polyhexamethylenoxide. Using quantitative small-angle X-ray scattering we demonstrate that the degree of hard/soft segment demixing varies greatly between the materials. For example, the PDMS-based copolymers exhibit a three phase, core-shell morphology, while the other copolymers exhibit a typical two phase structure. Additional analysis was conducted with a number of experimental probes including FTIR to assess inter- and intracomponent hydrogen bonding, and tapping mode AFM to characterize the nanoscale morphology.

  7. Shape-induced separation of nanospheres and aligned nanorods.

    PubMed

    Ahmad, I; Zandvliet, H J W; Kooij, E S

    2014-07-15

    We studied the phase separation and spatial arrangement of gold nanorods and nanospheres after evaporative self-assembly from aqueous suspension. Depending on the position relative to the contact line of the drying droplet, spheres and rods separate into various liquid-crystalline phases. Nanorods exhibit a strong preference for side-by-side alignment, giving rise to smectic phases; spheres in solution are forced out of these regions and form close-packed arrays. We discuss this self-separation into nanorod- and sphere-rich phases in terms of various interactions, including electrostatic, van der Waals, and deplection interactions forces. The experimental results are compared to quantitative calculations of the colloidal interaction energies. We also describe and discuss the role of the surfactant on the different crystal facets of the nanorods on the assembly process.

  8. Injection Induced Mixing in Flows Separating From Smooth Surfaces

    NASA Technical Reports Server (NTRS)

    Adamczyk, John J. (Technical Monitor); Wundrow, David W.

    2004-01-01

    An analytic model for predicting the effect of unsteady local surface injection on the flow separating from a streamlined body at angle of attack is proposed. The model uses the premise that separation control results from enhanced mixing along the shear layer that develops between the main stream and the fluid in the underlying recirculation zone. High-Reynolds-number asymptotic methods are used to connect the unsteady surface injection to an instability wave propagating on the separating shear layer and then to the large-scale coherent structures that produce the increased mixing. The results is a tool that can guide the choice of fluid-actuator parameters to maximize flow-control effectiveness and may also facilitate computer-based numerical experiments.

  9. Apparatus for heat induced separation of hydrocarbon constituents from coal

    SciTech Connect

    Pine, M.; Johnson, J.R.; Moss, R.E.; Sandoval, R.A.

    1984-09-25

    A method and apparatus is provided for accomplishing thermal separation of various hydrocarbons and other compounds from coal, a hydrocarbon rendering module is provided for the continuous agitation and circulation of coal during the rendering period and utilizes thermal trays having stationary and revolving apparatus to improve heat transfer to coal particles and minimize rendering time. Portions of the rendered hydrocarbon products are recycled to the mechanism as an energy source for continuous operation.

  10. Activity induced phase separation in particles and (bio)polymers

    NASA Astrophysics Data System (ADS)

    Grosberg, Alexander

    It was recently shown that the non-equilibrium steady state of the mixture of two types of particles exposed to two different thermostats can phase separate (A.Y.Grosberg, J.-F.Joanny, PRE, v. 91, 032118, 2015). similar result is valid also in the case when particles in question are monomers of two different polymer chains, or blocks of a co-polymer. We discuss the implications of these results for the physics of chromatin.

  11. Light-induced charge separation across bio-inorganic interface.

    SciTech Connect

    Dimitrijevic, N. M.; Rajh, T.; De La Garza, L.; Valdosta State Univ.

    2009-01-01

    Rational design of hybrid biomolecule - nanoparticulate semiconductor conjugates enables coupling of functionality of biomolecules with the capability of semiconductors for solar energy capture, that can have potential application in energy conversion, sensing and catalysis. The particular challenge is to obtain efficient charge separation analogous to the natural photosynthesis process. The synthesis of axially anisotropic TiO{sub 2} nano-objects such as tubes, rods and bricks, as well as spherical and faceted nanoparticles has been developed in our laboratory. Depending on their size and shape, these nanostructures exhibit different domains of crystallinity, surface areas and aspect ratios. Moreover, in order to accommodate for high curvature in nanoscale regime, the surfaces of TiO{sub 2} nano-objects reconstructs resulting in changes in the coordination of surface Ti atoms from octahedral (D{sub 2d}) to square pyramidal structures (C{sub 4v}). The formation of these coordinatively unsaturated Ti atoms, thus depends strongly on the size and shape of nanocrystallites and affects trapping and reactivity of photogenerated charges. We have exploited these coordinatively unsaturated Ti atoms to coupe electron-donating (such as dopamine) and electron-accepting (pyrroloquinoline quinone) conductive linkers that allow wiring of biomolecules and proteins resulting in enhanced charge separation which increases the yield of ensuing chemical transformations.

  12. Deuterium separation by infrared-induced addition reaction

    DOEpatents

    Marling, John B.

    1977-01-01

    A method for deuterium enrichment by the infrared-induced addition reaction of a deuterium halide with an unsaturated aliphatic compound. A gaseous mixture of a hydrogen halide feedstock and an unsaturated aliphatic compound, particularly an olefin, is irradiated to selectively vibrationally excite the deuterium halide contained therein. The excited deuterium halide preferentially reacts with the unsaturated aliphatic compound to produce a deuterated addition product which is removed from the reaction mixture.

  13. Rheological monitoring of phase separation induced by chemical reaction in thermoplastic-modified epoxy

    SciTech Connect

    Vinh-Tung, C.; Lachenal, G.; Chabert, B.

    1996-12-31

    The phase separation induced by chemical reaction in blends of tetraglycidyl-diaminodiphenylmethane epoxy resin with an aromatic diamine hardener and a thermoplastic was monitored. Rheological measurements and morphologies are described.

  14. Weakly Charged Cationic Nanoparticles Induce DNA Bending and Strand Separation

    SciTech Connect

    Railsback, Justin; Singh, Abhishek; Pearce, Ryan; McKnight, Timothy E; Collazo, Ramon; Sitar, Zlatko; Yingling, Yaroslava; Melechko, Anatoli Vasilievich

    2012-01-01

    The understanding of interactions between double stranded (ds) DNA and charged nanoparticles will have a broad bearing on many important applications from drug delivery [ 1 4 ] to DNAtemplated metallization. [ 5 , 6 ] Cationic nanoparticles (NPs) can bind to DNA, a negatively charged molecule, through a combination of electrostatic attraction, groove binding, and intercalation. Such binding events induce changes in the conformation of a DNA strand. In nature, DNA wraps around a cylindrical protein assembly (diameter and height of 6 nm) [ 7 ] with an 220 positive charge, [ 8 ] creating the complex known as chromatin. Wrapping and bending of DNA has also been achieved in the laboratory through the binding of highly charged species such as molecular assemblies, [ 9 , 10 ] cationic dendrimers, [ 11 , 12 ] and nanoparticles. [ 13 15 ] The charge of a nanoparticle plays a crucial role in its ability to induce DNA structural changes. If a nanoparticle has a highly positive surface charge density, the DNA is likely to wrap and bend upon binding to the nanoparticle [ 13 ] (as in the case of chromatin). On the other hand, if a nanoparticle is weakly charged it will not induce dsDNA compaction. [ 9 , 10 , 15 ] Consequently, there is a transition zone from extended to compact DNA conformations which depends on the chemical nature of the nanoparticle and occurs for polycations with charges between 5 and 10. [ 9 ] While the interactions between highly charged NPs and DNA have been extensively studied, the processes that occur within the transition zone are less explored.

  15. Ethnic Variations in the Connection between Work-Induced Family Separation and Turnover Intent

    ERIC Educational Resources Information Center

    Behnke, Andrew O.; MacDermid, Shelley M.; Anderson, James C.; Weiss, Howard M.

    2010-01-01

    Using conservation of resources theory, this study examines the role of resources in the relationship between work-induced family separation and workers' intentions to leave their employment and how these relationships vary across ethnic groups. Analyses of a large representative sample of military members reveal that family separation is…

  16. Entropy-induced separation of star polymers in porous media

    SciTech Connect

    Blavats'ka, V.; Ferber, C. von; Holovatch, Yu.

    2006-09-15

    We present a quantitative picture of the separation of star polymers in a solution where part of the volume is influenced by a porous medium. To this end, we study the impact of long-range-correlated quenched disorder on the entropy and scaling properties of f-arm star polymers in a good solvent. We assume that the disorder is correlated on the polymer length scale with a power-law decay of the pair correlation function g(r){approx}r{sup -a}. Applying the field-theoretical renormalization group approach we show in a double expansion in {epsilon}=4-d and {delta}=4-a that there is a range of correlation strengths {delta} for which the disorder changes the scaling behavior of star polymers. In a second approach we calculate for fixed space dimension d=3 and different values of the correlation parameter a the corresponding scaling exponents {gamma}{sub f} that govern entropic effects. We find that {gamma}{sub f}-1, the deviation of {gamma}{sub f} from its mean field value is amplified by the disorder once we increase {delta} beyond a threshold. The consequences for a solution of diluted chain and star polymers of equal molecular weight inside a porous medium are that star polymers exert a higher osmotic pressure than chain polymers and in general higher branched star polymers are expelled more strongly from the correlated porous medium. Surprisingly, polymer chains will prefer a stronger correlated medium to a less or uncorrelated medium of the same density while the opposite is the case for star polymers.

  17. Short environmental enrichment in adulthood reverses anxiety and basolateral amygdala hypertrophy induced by maternal separation

    PubMed Central

    Koe, A S; Ashokan, A; Mitra, R

    2016-01-01

    Maternal separation during early childhood results in greater sensitivity to stressors later in adult life. This is reflected as greater propensity to develop stress-related disorders in humans and animal models, including anxiety and depression. Environmental enrichment (EE) reverses some of the damaging effects of maternal separation in rodent models when provided during peripubescent life, temporally proximal to the separation. It is presently unknown if EE provided outside this critical window can still rescue separation-induced anxiety and neural plasticity. In this report we use a rat model to demonstrate that a single short episode of EE in adulthood reduced anxiety-like behaviour in maternally separated rats. We further show that maternal separation resulted in hypertrophy of dendrites and increase in spine density of basolateral amygdala neurons in adulthood, long after initial stress treatment. This is congruent with prior observations showing centrality of basolateral amygdala hypertrophy in anxiety induced by stress during adulthood. In line with the ability of the adult enrichment to rescue stress-induced anxiety, we show that enrichment renormalized stress-induced structural expansion of the amygdala neurons. These observations argue that behavioural plasticity induced by early adversity can be rescued by environmental interventions much later in life, likely mediated by ameliorating effects of enrichment on basolateral amygdala plasticity. PMID:26836417

  18. Short environmental enrichment in adulthood reverses anxiety and basolateral amygdala hypertrophy induced by maternal separation.

    PubMed

    Koe, A S; Ashokan, A; Mitra, R

    2016-02-02

    Maternal separation during early childhood results in greater sensitivity to stressors later in adult life. This is reflected as greater propensity to develop stress-related disorders in humans and animal models, including anxiety and depression. Environmental enrichment (EE) reverses some of the damaging effects of maternal separation in rodent models when provided during peripubescent life, temporally proximal to the separation. It is presently unknown if EE provided outside this critical window can still rescue separation-induced anxiety and neural plasticity. In this report we use a rat model to demonstrate that a single short episode of EE in adulthood reduced anxiety-like behaviour in maternally separated rats. We further show that maternal separation resulted in hypertrophy of dendrites and increase in spine density of basolateral amygdala neurons in adulthood, long after initial stress treatment. This is congruent with prior observations showing centrality of basolateral amygdala hypertrophy in anxiety induced by stress during adulthood. In line with the ability of the adult enrichment to rescue stress-induced anxiety, we show that enrichment renormalized stress-induced structural expansion of the amygdala neurons. These observations argue that behavioural plasticity induced by early adversity can be rescued by environmental interventions much later in life, likely mediated by ameliorating effects of enrichment on basolateral amygdala plasticity.

  19. Injection slot location for boundary-layer control in shock-induced separation

    NASA Technical Reports Server (NTRS)

    Viswanath, P. R.; Sankaran, L.; Sagdeo, P. M.; Narasimha, R.; Prabhu, A.

    1978-01-01

    An experimental investigation of the effect of tangential air injection, when the injection slot is located inside of what would otherwise have been the dead air zone in a separated flow, in controlling shock-induced turbulent boundary layer separation is presented. The experiments were carried out at a free-stream Mach number of 2.5 in the separated flow induced by a compression corner with a 20 deg angle. The observations made were wall static pressures, pitot profiles, and schlieren visualizations of the flow. The results show that the present location for injection is more effective in suppressing boundary-layer separation than the more conventional one, where the slot is located upstream of where separation would occur in the absence of injection.

  20. Control of Shock-Induced Boundary Layer Separation by using Pulsed Plasma Jets

    NASA Astrophysics Data System (ADS)

    Greene, Benton R.; Clemens, Noel T.; Micka, Daniel

    2012-11-01

    Shock-induced turbulent boundary layer separation can have many detrimental effects in supersonic flow including flow instability, fatigue of structural panels, and unstart in supersonic inlets. Pulsed plasma jets (or ``spark jets''), which are characterized by high bandwidth and the ability to direct momentum into the flow, are one promising method of reducing shock-induced separation. The current study is focused on investigating the efficacy of plasma jets to reduce the separated flow induced by a compression ramp in a Mach 3 flow. Three different 3-jet actuator configurations are tested: 20° pitched, 45° pitched, and 22° pitched and 45° skewed. The jets are pulsed at frequencies between 2 kHz and 4 kHz with duty cycles between 5 and 15%. The shock wave is generated using a 20° compression ramp, and the location of the shock-induced separation is visualized using surface oil streak visualization as well as particle image velocimetry. The results of the study show that of the three configurations, the plasma jets pitched at 20° from the streamwise direction cause the greatest reduction in separation, and when pulsed at a frequency of 3.2 kHz and 12% duty cycle can reduce the size of the separation region by up to 40%. This work is supported by AFRL under SBIR contract.

  1. Microphase-contrast x-ray computed tomography for basic biomedical study at SPring-8

    NASA Astrophysics Data System (ADS)

    Wu, Jin; Takeda, Tohoru; Lwin, Thet-Thet; Koyama, Ichiro; Momose, Atsushi; Fujii, Akiko; Hamaishi, Yoshitaka; Kuroe, Taichi; Yuasa, Tetsuya; Suzuki, Yoshio; Akatsuka, Takao

    2004-10-01

    Micro-phase-contrast X-ray computed tomography with an X-ray interferometer (micro-phase-contrast CT) is in operation to obtain high spatial resolution images of less than 0.01 mm at the undulator beam-line 20XU of SPring-8, Japan, and we applied micro-phase-contrast CT to observe the organs of rats and hamsters. The excised kidney and spleen fixed by formalin were imaged. The fine inner-structures such as vessels, glomeruli of kidney and white and red pulps of spleen were visualized clearly about 0.01-mm spatial resolutions without using contrast agent or staining procedure. The results were very similar to those by optical microscopic images with 20-fold magnification. These results suggest that the micro-phase tomography might be a useful tool for various biomedical researches.

  2. Magnetic microphases in chrome-spinels from alpine-type ultramafic rocks, Central Urals

    NASA Astrophysics Data System (ADS)

    Sherendo, T. A.; Mitrofanov, V. Ya.; Martyshko, P. S.; Vazhenin, V. A.; Pamyatnykh, L. A.; Alekseev, A. V.

    2014-05-01

    The ore and accessory chrome-spinels from metamorphosed dunites of the Cr-bearing Klyuchevskoi alpine-type ultramafic massif are studied. As a result of use of thermomagnetic analysis in the range of 4-900 K, magnetic resonance spectroscopy, and magnetic-force microscopy, secondary magnetic Fe3+-enriched microphases chaotically distributed in the primary nonmagnetic mineral were revealed for the first time in accessory chrome-spinels. It was established that the metamorphosed accessory chrome-spinels produce the magnetic properties of the host rocks and the primary nonmagnetic chrome-spinels forming ore bodies remains almost unaltered. This originates the contrast of magnetic properties between the ore body and host rocks and provides the geomagnetic anomaly in the ore-hosting zone.

  3. An unconstrained DFT approach to microphase formation and application to binary Gaussian mixtures.

    PubMed

    Pini, Davide; Parola, Alberto; Reatto, Luciano

    2015-07-21

    The formation of microphases in systems of particles interacting by repulsive, bounded potentials is studied by means of density-functional theory (DFT) using a simple, mean-field-like form for the free energy which has already been proven accurate for this class of soft interactions. In an effort not to constrain the configurations available to the system, we do not make any assumption on the functional form of the density profile ρ(r), save for its being periodic. We sample ρ(r) at a large number of points in the unit cell and minimize the free energy with respect to both the values assumed by ρ(r) at these points and the lattice vectors which identify the Bravais lattice. After checking the accuracy of the method by applying it to a one-component generalized exponential model (GEM) fluid with pair potential ϵexp[ - (r/R)(4)], for which extensive DFT and simulation results are already available, we turn to a binary mixture of Gaussian particles which some time ago was shown to support microphase formation [A. J. Archer, C. N. Likos, and R. Evans, J. Phys.: Condens. Matter 16, L297 (2004)], but has not yet been investigated in detail. The phase diagram which we obtain, that supersedes the tentative one proposed by us in a former study [M. Carta, D. Pini, A. Parola, and L. Reatto, J. Phys.: Condens. Matter 24, 284106 (2012)], displays cluster, tubular, and bicontinuous phases similar to those observed in block copolymers or oil/water/surfactant mixtures. Remarkably, bicontinuous phases occupy a rather large portion of the phase diagram. We also find two non-cubic phases, in both of which one species is preferentially located inside the channels left available by the other, forming helices of alternating chirality. The features of cluster formation in this mixture and in GEM potentials are also compared. PMID:26203044

  4. Solidification Behavior of Polymer Solution during Membrane Preparation by Thermally Induced Phase Separation

    PubMed Central

    Ishigami, Toru; Nii, Yoko; Ohmukai, Yoshikage; Rajabzadeh, Saeid; Matsuyama, Hideto

    2014-01-01

    The solidification behavior of poly(vinylidene fluoride) (PVDF) solution during membrane preparation by thermally induced phase separation (TIPS) was investigated. Apparatus newly developed in our laboratory was used to quantitatively measure membrane stiffness during phase separation. In this apparatus, a cooling polymer solution, placed on a stage, is moved upwards and the surface of the polymer solution contacts a sphere attached to the tip of a needle. The displacement of a blade spring attached to the needle is then measured by a laser displacement sensor. Different phase separation modes, such as liquid-liquid (L-L) phase separation and solid-liquid (S-L) phase separation (polymer crystallization) were investigated. In the case of S-L phase separation, the stiffness of the solution surface began to increase significantly just before termination of crystallization. In contrast, L-L phase separation delayed solidification of the solution. This was because mutual contact of the spherulites was obstructed by droplets of polymer-lean phase formed during L-L phase separation. Thus, the solidification rate was slower for the L-L phase separation system than for the S-L phase separation system. PMID:24957124

  5. Solidification Behavior of Polymer Solution during Membrane Preparation by Thermally Induced Phase Separation.

    PubMed

    Ishigami, Toru; Nii, Yoko; Ohmukai, Yoshikage; Rajabzadeh, Saeid; Matsuyama, Hideto

    2014-01-01

    The solidification behavior of poly(vinylidene fluoride) (PVDF) solution during membrane preparation by thermally induced phase separation (TIPS) was investigated. Apparatus newly developed in our laboratory was used to quantitatively measure membrane stiffness during phase separation. In this apparatus, a cooling polymer solution, placed on a stage, is moved upwards and the surface of the polymer solution contacts a sphere attached to the tip of a needle. The displacement of a blade spring attached to the needle is then measured by a laser displacement sensor. Different phase separation modes, such as liquid-liquid (L-L) phase separation and solid-liquid (S-L) phase separation (polymer crystallization) were investigated. In the case of S-L phase separation, the stiffness of the solution surface began to increase significantly just before termination of crystallization. In contrast, L-L phase separation delayed solidification of the solution. This was because mutual contact of the spherulites was obstructed by droplets of polymer-lean phase formed during L-L phase separation. Thus, the solidification rate was slower for the L-L phase separation system than for the S-L phase separation system. PMID:24957124

  6. Separation shock motion in fin, cylinder, and compression ramp - Induced turbulent interactions

    NASA Technical Reports Server (NTRS)

    Dolling, D. S.; Brusniak, L.

    1989-01-01

    In conjunction with new experimental results at Mach 5, an examination has been made of published data on unsteadiness of shock-induced turbulent boundary-layer separation. The data are all wall pressure fluctuation measurements made under the unsteady separation shock and are from interactions induced by compression ramps, blunt and sharp fins, and circular cylinders. There is little evidence of a link between the separation shock zero-crossing frequency and characteristic frequency of the incoming boundary layer. The low shock frequencies and low shock speeds, and the trends with changes in model geometric parameters and incoming boundary layer, suggest that turbulent or global fluctuations at the upstream boundary of the separated flow drive the shock motion.

  7. Shock-induced separation of adiabatic turbulent boundary layers in supersonic axially symmetric internal flow

    NASA Technical Reports Server (NTRS)

    Page, R. J.; Childs, M. E.

    1974-01-01

    An experimental investigation at Mach 4 of shock-induced turbulent boundary layer separation at the walls of axially symmetric flow passages is discussed, with particular emphasis placed on determining the shock strengths required for incipient separation. The shock waves were produced by interchangeable sting-mounted cones placed on the axes of the flow passages and aligned with the freestream flow. The interactions under study simulate those encountered in axially symmetric engine inlets of supersonic aircraft. Knowledges of the shock strengths required for boundary layer separation in inlets is important since for shocks of somewhat greater strength rather drastic alterations in the inlet flow field may occur.

  8. Active Vector Separation Using Induced Charge Electro-osmosis with Polarizable Obstacle Arrays

    NASA Astrophysics Data System (ADS)

    Sugioka, Hideyuki

    2016-09-01

    Vector separation using obstacle post arrays is promising for various microfluidic applications. Here, we propose a novel active sieve using induced charge electro-osmosis (ICEO). By the multi-physics simulation technique based on the boundary element method combined with a thin electric double-layer approximation, we find that the active sieve having a polarizable post array shows excellent vector separation with dynamic size selectivity owing to the hydrodynamic interactions between the polarizable post array and the target particle. We consider that our separation device is useful for realizing innovative high-throughput biomedical systems with a simple structure.

  9. Photo-induced cataphoretic isotope separation. Final report, June 15, 1976-June 15, 1981

    SciTech Connect

    Carruthers, J A

    1981-03-01

    The original studies were undertaken to study the feasibility of radiation-induced cataphoretic separation. This part of the work is concerned with laser-induced cataphoretic separation in neon using a He-Ne 6328A laser. The basic concept of radiation-induced caphoretic isotope separation is based on the preferential excitation of one isotope with the result that one isotope is more readily ionized, and relatively more of its ions move toward the cathode in the dc discharge. For the later part of the work a second radiation source was added, a helical Ne/sup 20/ radiation lamp. Radiation-induced cataphoretic isotope separation has not been observed. Selective excitation has been achieved by both the He-Ne/sup 20/ 6328A laser and the Ne/sup 20/ helical radiation lamp in spite of the fact that the isotope shift is comprable with Doppler-broadened linewidths. Collisional excitation exchange between the Ne/sup 20/ and Ne/sup 22/ atoms does not appear to be a problem for the neon partial pressure range involved. The population of the 3S/sub 2/ and 2p/sub 4/ laser levels (6328A) are apparently too low to offer reasonable expectation of inducing observable cataphoretic isotope separation by means of the 6328A laser radiation, even with the high detection sensitivity of the scanning Fabry-Perot spectrometer sytem. The use of the additional radiation source in the form of a helical Ne/sup 20/ radiation lamp has not improved the effectiveness of the laser 6328A laser. It has become clear from these experiments, however, that for isotope separation in neon it is well to concentrate on using radiation sources that interact mainly with the ls population.

  10. A review of the use of vortex generators for mitigating shock-induced separation

    NASA Astrophysics Data System (ADS)

    Titchener, Neil; Babinsky, Holger

    2015-09-01

    This article reviews research into the potential of vortex generators to mitigate shock-induced separation. Studies ranging from those conducted in the early post-war era to those performed recently are discussed. On the basis of the investigations described in this report, it is clear that vortex generators can alleviate shock-induced boundary layer separation. Yet, it will be shown that their potential and efficiency varies considerably in practical applications. Much more success is reported in transonic test cases compared to separation induced in purely supersonic interactions. Under a variety of flow conditions, the best performance is achieved with vortex generators with a height of roughly half the boundary layer thickness and a shape similar to a swept vane. Notwithstanding this, vortex generator performance is not as consistent as it is in low-speed applications. Further work is required before vortex generators can be implemented into the design process for eliminating shock-induced separation on transonic wings and in supersonic inlets.

  11. Prednisolone-induced predisposition to femoral head separation and the accompanying plasma protein changes in chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Femoral head separation (FHS) is an idiopathic bone problem that causes lameness and production losses in commercial poultry. In a model of prednisolone induced susceptibility to FHS, the changes in plasma proteins and peptides were analyzed to find possible biomarkers. Plasma from control and FHS-s...

  12. Phase separation induced molecular fractionation of gum arabic--sugar beet pectin systems.

    PubMed

    Mao, Peng; Zhao, Meng; Zhang, Fan; Fang, Yapeng; Phillips, Glyn O; Nishinari, Katsuyoshi; Jiang, Fatang

    2013-10-15

    This paper investigates the phase separation and phase separation-induced fractionation of gum arabic (GA)/sugar beet pectin (SBP) mixed solutions. A phase diagram, including cloud and binodal curves, was established by visual observation and phase composition analysis. The deviation of the binodal curve from the cloud curve was a result of phase separation-induced fractionation of polydisperse GA and SBP molecules. Fractionation of GA increased the content of arabinogalactan-protein complex (AGP) from ca. 13% to 27%. The fractionated GA (FGA) showed improved emulsifying functionality, whereas the fractionated SBP (FSBP) had a reduced emulsifying functionality. The changes in emulsifying efficiency can be explained by interfacial adsorption behaviors at the oil-water interface as indicated by interfacial tension measurements.

  13. Laser-induced separation of hydrogen isotopes in the liquid phase

    DOEpatents

    Freund, Samuel M.; Maier, II, William B.; Beattie, Willard H.; Holland, Redus F.

    1980-01-01

    Hydrogen isotope separation is achieved by either (a) dissolving a hydrogen-bearing feedstock compound in a liquid solvent, or (b) liquefying a hydrogen-bearing feedstock compound, the liquid phase thus resulting being kept at a temperature at which spectral features of the feedstock relating to a particular hydrogen isotope are resolved, i.e., a clear-cut isotope shift is delineated, irradiating the liquid phase with monochromatic radiation of a wavelength which at least preferentially excites those molecules of the feedstock containing a first hydrogen isotope, inducing photochemical reaction in the excited molecules, and separating the reaction product containing the first isotope from the liquid phase.

  14. Aero-acoustics source separation with sparsity inducing priors in the frequency domain

    NASA Astrophysics Data System (ADS)

    Schwander, Olivier; Picheral, José; Gac, Nicolas; Mohammad-Djafari, Ali; Blacodon, Daniel

    2015-01-01

    The characterization of acoustic sources is of great interest in many industrial applications, in particular for the aeronautic or automotive industry for the development of new products. While localization of sources using observations from a wind tunnel is a well-known subject, the characterization and separation of the sources still needs to be explored. We present here a Bayesian approach for sources separation. Two prior modeling of the sources are considered: a sparsity inducing prior in the frequency domain and an autoregressive model in the time domain. The proposed methods are evaluated on synthetic data simulating noise sources emitting from an airfoil inside a wind tunnel.

  15. Maternal separation induced alterations of neurogenesis in the rat rostral migratory stream.

    PubMed

    Raceková, Eniko; Lievajová, Kamila; Danko, Ján; Martoncíková, Marcela; Flesárová, Slávka; Almasiová, Viera; Orendácová, Judita

    2009-09-01

    1. The aim of our study was to investigate the possibility that maternal separation, an experimental model for studies of early environmental influences, has an effect on postnatal neurogenesis in neurogenic pathway--the rostral migratory stream (RMS). 2. Rat pups were subjected to maternal separation daily for 3 h, starting from the first postnatal day (P1) till P14 or P21. In the first two groups, brains were analyzed at the age of P14 and P21, respectively. In the third group, after 3 weeks of maternal separation, 1 week of normal rearing was allowed, and the brains were analyzed at P28. The controls matched the age of maternally separated animals. Dividing cells were labeled by bromodeoxyuridine; dying cells were visualized by Fluoro-Jade C and nitric oxide (NO) producing cells by NADPH-diaphorase histochemistry. 3. Quantitative analysis of proliferating cells in the RMS showed that maternal separation decreased the number of dividing cells in all experimental groups. This decrease was most prominent in the caudal part of the RMS. The amount of dying cells was increased at the end of 3 weeks of maternal separation as well as 1 week later. The number of differentiated nitrergic cells in the RMS was increased at the end of 2 or 3 weeks of maternal separation, respectively. Besides quantitative changes, maternally separated animals showed an accelerated maturation of nitrergic cells. 4. Our results indicate that an exposure of rats to adverse environmental factors in early postnatal periods may induce acute site-specific changes in the RMS neurogenesis.

  16. Synthesis of semicrystalline nanocapsular structures obtained by Thermally Induced Phase Separation in nanoconfinement.

    PubMed

    Torino, Enza; Aruta, Rosaria; Sibillano, Teresa; Giannini, Cinzia; Netti, Paolo A

    2016-01-01

    Phase separation of a polymer solution exhibits a peculiar behavior when induced in a nanoconfinement. The energetic constraints introduce additional interactions between the polymer segments that reduce the number of available configurations. In our work, this effect is exploited in a one-step strategy called nanoconfined-Thermally Induced Phase Separation (nc-TIPS) to promote the crystallization of polymer chains into nanocapsular structures of controlled size and shell thickness. This is accomplished by performing a quench step of a low-concentrated PLLA-dioxane-water solution included in emulsions of mean droplet size <500 nm acting as nanodomains. The control of nanoconfinement conditions enables not only the production of nanocapsules with a minimum mean particle diameter of 70 nm but also the tunability of shell thickness and its crystallinity degree. The specific properties of the developed nanocapsular architectures have important implications on release mechanism and loading capability of hydrophilic and lipophilic payload compounds.

  17. Synthesis of semicrystalline nanocapsular structures obtained by Thermally Induced Phase Separation in nanoconfinement.

    PubMed

    Torino, Enza; Aruta, Rosaria; Sibillano, Teresa; Giannini, Cinzia; Netti, Paolo A

    2016-01-01

    Phase separation of a polymer solution exhibits a peculiar behavior when induced in a nanoconfinement. The energetic constraints introduce additional interactions between the polymer segments that reduce the number of available configurations. In our work, this effect is exploited in a one-step strategy called nanoconfined-Thermally Induced Phase Separation (nc-TIPS) to promote the crystallization of polymer chains into nanocapsular structures of controlled size and shell thickness. This is accomplished by performing a quench step of a low-concentrated PLLA-dioxane-water solution included in emulsions of mean droplet size <500 nm acting as nanodomains. The control of nanoconfinement conditions enables not only the production of nanocapsules with a minimum mean particle diameter of 70 nm but also the tunability of shell thickness and its crystallinity degree. The specific properties of the developed nanocapsular architectures have important implications on release mechanism and loading capability of hydrophilic and lipophilic payload compounds. PMID:27604818

  18. Synthesis of semicrystalline nanocapsular structures obtained by Thermally Induced Phase Separation in nanoconfinement

    PubMed Central

    Torino, Enza; Aruta, Rosaria; Sibillano, Teresa; Giannini, Cinzia; Netti, Paolo A.

    2016-01-01

    Phase separation of a polymer solution exhibits a peculiar behavior when induced in a nanoconfinement. The energetic constraints introduce additional interactions between the polymer segments that reduce the number of available configurations. In our work, this effect is exploited in a one-step strategy called nanoconfined-Thermally Induced Phase Separation (nc-TIPS) to promote the crystallization of polymer chains into nanocapsular structures of controlled size and shell thickness. This is accomplished by performing a quench step of a low-concentrated PLLA-dioxane-water solution included in emulsions of mean droplet size <500 nm acting as nanodomains. The control of nanoconfinement conditions enables not only the production of nanocapsules with a minimum mean particle diameter of 70 nm but also the tunability of shell thickness and its crystallinity degree. The specific properties of the developed nanocapsular architectures have important implications on release mechanism and loading capability of hydrophilic and lipophilic payload compounds. PMID:27604818

  19. Maternal separation increases methamphetamine-induced damage in the striatum in male, but not female rats.

    PubMed

    Hensleigh, Emily; Pritchard, Laurel M

    2015-12-15

    Methamphetamine abuse impacts the global economy through costs associated with drug enforcement, emergency room visits, and treatment. Previous research has demonstrated early life stress, such as childhood abuse, increases the likelihood of developing a substance abuse disorder. However, the effects of early life stress on neuronal damage induced by binge methamphetamine administration are unknown. We aimed to elucidate the effects of early life stress on methamphetamine induced dopamine damage in the striatum. Pups were separated from dams for 3h per day during the first two weeks of development or 15 min for control. In adulthood, rats received either subcutaneous 0.9% saline or 5.0mg/kg METH injections every 2h for a total of four injections. Rectal temperatures were taken before the first injection and 1h after each subsequent injection. Seven days after treatment, rats were euthanized and striatum was collected for quantification of tyrosine hydroxylase (TH) and dopamine transporters (DAT) content by Western blot. Methamphetamine significantly elevated core body temperature in males and decreased striatal DAT and TH content, and this effect was potentiated by early life stress. Females did not exhibit elevated core body temperatures or changes in DAT or TH in either condition. Results indicate maternal separation increases methamphetamine induced damage, and females are less susceptible to methamphetamine induced damage.

  20. Polymer-induced phase separation and crystallization in immunoglobulin G solutions.

    PubMed

    Li, Jianguo; Rajagopalan, Raj; Jiang, Jianwen

    2008-05-28

    We study the effects of the size of polymer additives and ionic strength on the phase behavior of a nonglobular protein-immunoglobulin G (IgG)-by using a simple four-site model to mimic the shape of IgG. The interaction potential between the protein molecules consists of a Derjaguin-Landau-Verwey-Overbeek-type colloidal potential and an Asakura-Oosawa depletion potential arising from the addition of polymer. Liquid-liquid equilibria and fluid-solid equilibria are calculated by using the Gibbs ensemble Monte Carlo technique and the Gibbs-Duhem integration (GDI) method, respectively. Absolute Helmholtz energy is also calculated to get an initial coexisting point as required by GDI. The results reveal a nonmonotonic dependence of the critical polymer concentration rho(PEG) (*) (i.e., the minimum polymer concentration needed to induce liquid-liquid phase separation) on the polymer-to-protein size ratio q (equivalently, the range of the polymer-induced depletion interaction potential). We have developed a simple equation for estimating the minimum amount of polymer needed to induce the liquid-liquid phase separation and show that rho(PEG) (*) approximately [q(1+q)(3)]. The results also show that the liquid-liquid phase separation is metastable for low-molecular weight polymers (q=0.2) but stable at large molecular weights (q=1.0), thereby indicating that small sizes of polymer are required for protein crystallization. The simulation results provide practical guidelines for the selection of polymer size and ionic strength for protein phase separation and crystallization.

  1. Milk thistle extract and silymarin inhibit lipopolysaccharide induced lamellar separation of hoof explants in vitro.

    PubMed

    Reisinger, Nicole; Schaumberger, Simone; Nagl, Veronika; Hessenberger, Sabine; Schatzmayr, Gerd

    2014-10-01

    The pathogenesis of laminitis is not completely identified and the role of endotoxins (lipopolysaccharides, LPS) in this process remains unclear. Phytogenic substances, like milk thistle (MT) and silymarin, are known for their anti-inflammatory and antioxidant properties and might therefore have the potential to counteract endotoxin induced effects on the hoof lamellar tissue. The aim of our study was to investigate the influence of endotoxins on lamellar tissue integrity and to test if MT and silymarin are capable of inhibiting LPS-induced effects in an in vitro/ex vivo model. In preliminary tests, LPS neutralization efficiency of these phytogenics was determined in an in vitro neutralization assay. Furthermore, tissue explants gained from hooves of slaughter horses were tested for lamellar separation after incubation with different concentrations of LPS. By combined incubation of explants with LPS and either Polymyxin B (PMB; positive control), MT or silymarin, the influence of these substances on LPS-induced effects was assessed. In the in vitro neutralization assay, MT and silymarin reduced LPS concentrations by 64% and 75%, respectively, in comparison PMB reduced 98% of the LPS concentration. In hoof explants, LPS led to a concentration dependent separation. Accordantly, separation force was significantly decreased by 10 µg/mL LPS. PMB, MT and silymarin could significantly improve tissue integrity of explants incubated with 10 µg/mL LPS. This study showed that LPS had a negative influence on the structure of hoof explants in vitro. MT and silymarin reduced endotoxin activity and inhibited LPS-induced effects on the lamellar tissue. Hence, MT and silymarin might be used to support the prevention of laminitis and should be further evaluated for this application.

  2. Milk thistle extract and silymarin inhibit lipopolysaccharide induced lamellar separation of hoof explants in vitro.

    PubMed

    Reisinger, Nicole; Schaumberger, Simone; Nagl, Veronika; Hessenberger, Sabine; Schatzmayr, Gerd

    2014-10-01

    The pathogenesis of laminitis is not completely identified and the role of endotoxins (lipopolysaccharides, LPS) in this process remains unclear. Phytogenic substances, like milk thistle (MT) and silymarin, are known for their anti-inflammatory and antioxidant properties and might therefore have the potential to counteract endotoxin induced effects on the hoof lamellar tissue. The aim of our study was to investigate the influence of endotoxins on lamellar tissue integrity and to test if MT and silymarin are capable of inhibiting LPS-induced effects in an in vitro/ex vivo model. In preliminary tests, LPS neutralization efficiency of these phytogenics was determined in an in vitro neutralization assay. Furthermore, tissue explants gained from hooves of slaughter horses were tested for lamellar separation after incubation with different concentrations of LPS. By combined incubation of explants with LPS and either Polymyxin B (PMB; positive control), MT or silymarin, the influence of these substances on LPS-induced effects was assessed. In the in vitro neutralization assay, MT and silymarin reduced LPS concentrations by 64% and 75%, respectively, in comparison PMB reduced 98% of the LPS concentration. In hoof explants, LPS led to a concentration dependent separation. Accordantly, separation force was significantly decreased by 10 µg/mL LPS. PMB, MT and silymarin could significantly improve tissue integrity of explants incubated with 10 µg/mL LPS. This study showed that LPS had a negative influence on the structure of hoof explants in vitro. MT and silymarin reduced endotoxin activity and inhibited LPS-induced effects on the lamellar tissue. Hence, MT and silymarin might be used to support the prevention of laminitis and should be further evaluated for this application. PMID:25290524

  3. Maternal separation fails to render animals more susceptible to methamphetamine-induced conditioned place preference.

    PubMed

    Faure, Jacqueline; Stein, Dan J; Daniels, William

    2009-12-01

    The maternal separation (MS) paradigm is an animal model that has been successfully used to study the long term effects of child abuse and neglect. Experiments showed that animals subjected to trauma and stress early in life display behavioural, endocrinological and growth factor abnormalities at a later stage in life, results that mirrored clinical conditions. It is apparent that adverse events early in life may affect the development and maturation of the brain negatively. The purpose of the present study was to investigate whether the abnormal brain development occurring in separated animals would also enhance the development of a preference for psychostimulant drug usage. Rats were subjected to maternal deprivation and further exposed to methamphetamine-induced conditioned place preference (CPP) which primarily measures drug reward (ventral striatum) learning and memory. Apomorphine-induced locomotor activity was also assessed to investigate the effects of methamphetamine on the dorsal (primarily locomotor activity) striatal dopaminergic system. We found that four consecutive injections of methamphetamine resulted in CPP behaviour 24 h after the 4th injection. A further four injections yielded similar CPP results and this effect lasted for at least 7 days until the third CPP assessment. These animals also had decreased ACTH and corticosterone secretions, but the prolactin levels were increased. Prior exposure to maternal separation did not have any effect on the CPP test. The ACTH and corticosterone secretions were also similarly reduced. However maternal separation decreased the release of prolactin and this reduction was not evident in the separated group that received methamphetamine. There was no significant difference in the apomorphine-induced locomotor activity of normally reared animals whether they received methamphetamine or saline. Interestingly there was a significant difference in locomotor activity between the two groups of animals that were

  4. Maternal separation fails to render animals more susceptible to methamphetamine-induced conditioned place preference.

    PubMed

    Faure, Jacqueline; Stein, Dan J; Daniels, William

    2009-12-01

    The maternal separation (MS) paradigm is an animal model that has been successfully used to study the long term effects of child abuse and neglect. Experiments showed that animals subjected to trauma and stress early in life display behavioural, endocrinological and growth factor abnormalities at a later stage in life, results that mirrored clinical conditions. It is apparent that adverse events early in life may affect the development and maturation of the brain negatively. The purpose of the present study was to investigate whether the abnormal brain development occurring in separated animals would also enhance the development of a preference for psychostimulant drug usage. Rats were subjected to maternal deprivation and further exposed to methamphetamine-induced conditioned place preference (CPP) which primarily measures drug reward (ventral striatum) learning and memory. Apomorphine-induced locomotor activity was also assessed to investigate the effects of methamphetamine on the dorsal (primarily locomotor activity) striatal dopaminergic system. We found that four consecutive injections of methamphetamine resulted in CPP behaviour 24 h after the 4th injection. A further four injections yielded similar CPP results and this effect lasted for at least 7 days until the third CPP assessment. These animals also had decreased ACTH and corticosterone secretions, but the prolactin levels were increased. Prior exposure to maternal separation did not have any effect on the CPP test. The ACTH and corticosterone secretions were also similarly reduced. However maternal separation decreased the release of prolactin and this reduction was not evident in the separated group that received methamphetamine. There was no significant difference in the apomorphine-induced locomotor activity of normally reared animals whether they received methamphetamine or saline. Interestingly there was a significant difference in locomotor activity between the two groups of animals that were

  5. Facile synthesis of gradient mesoporous carbon monolith based on polymerization-induced phase separation

    NASA Astrophysics Data System (ADS)

    Xu, Shunjian; Luo, Yufeng; Zhong, Wei; Xiao, Zonghu; Luo, Yongping; Ou, Hui; Zhao, Xing-Zhong

    2014-06-01

    In this paper, a gradient mesoporous carbon (GMC) monolith derived from the mixtures of phenolic resin (PF) and ethylene glycol (EG) was prepared by a facile route based on polymerization-induced phase separation under temperature gradient (TG). A graded biphasic structure of PF-rich and EG-rich phases was first formed in preform under a TG, and then the preform was pyrolyzed to obtain the GMC monolith. The TG is mainly induced by the thermal resistance of the preferential phase separation layer at high temperature region. The pore structure of the monolith changes gradually along the TG direction. When the TG varies from 58°C to 29°C, the pore size, apparent porosity and specific surface area of the monolith range respectively from 18 nm to 83 nm, from 32% to 39% and from 140.5 m2/g to 515.3 m2/g. The gradient porous structure of the monolith is inherited from that of the preform, which depends on phase separation under TG in the resin mixtures. The pyrolysis mainly brings about the contraction of the pore size and wall thickness as well as the transformation of polymerized PF into glassy carbon.

  6. Chiral separation of benzoporphyrin derivative mono- and diacids by laser induced fluorescence-capillary electrophoresis.

    PubMed

    Peng, Xuejun; Sternberg, Ethan; Dolphin, David

    2002-01-01

    A method for the separation of benzoporphyrin derivative mono- and diacid (BPDMA, BPDDA) enantiomers by laser induced fluorescence-capillary electrophoresis (LIF-CE) has been developed. By using 300 mM borate buffer, pH 9.2, 25 mM sodium cholate and 10% acetronitrile as electrolyte, +10 kV electrokinetic sampling injection of 2 s and an applied +20 kV voltage across the ends of a 37 cm capillary (30 cm to the detector, 50 microm ID), all six BPD stereoisomers were baseline-separated within 20 min. Formation constants, free electrophoretic and complexation mobilities with borate and cholate were determined based on dynamic complexation capillary electrophoresis theory. The BPD enantiomers can be quantitatively determined in the range of 10(-2)-10(-5) mg mL(-1). The correlation coefficients (r2) of the least-squares linear regression analysis of the BPD enantiomers are in the range of 0.9914-0.9997. Their limits of detection are 2.18-3.5 x 10(-3) mg mL(-1). The relative standard deviations for the separation were 2.90-4.64% (n = 10). In comparison with high-performance liquid chromatography (HPLC), CE has better resolution and efficiency. This separation method was successfully applied to the BPD enantiomers obtained from a matrix of bovine serum and from liposomally formulated material as well as from studies with rat, dog and human microsomes.

  7. Chiral separation of benzoporphyrin derivative mono- and diacids by laser induced fluorescence-capillary electrophoresis.

    PubMed

    Peng, Xuejun; Sternberg, Ethan; Dolphin, David

    2002-01-01

    A method for the separation of benzoporphyrin derivative mono- and diacid (BPDMA, BPDDA) enantiomers by laser induced fluorescence-capillary electrophoresis (LIF-CE) has been developed. By using 300 mM borate buffer, pH 9.2, 25 mM sodium cholate and 10% acetronitrile as electrolyte, +10 kV electrokinetic sampling injection of 2 s and an applied +20 kV voltage across the ends of a 37 cm capillary (30 cm to the detector, 50 microm ID), all six BPD stereoisomers were baseline-separated within 20 min. Formation constants, free electrophoretic and complexation mobilities with borate and cholate were determined based on dynamic complexation capillary electrophoresis theory. The BPD enantiomers can be quantitatively determined in the range of 10(-2)-10(-5) mg mL(-1). The correlation coefficients (r2) of the least-squares linear regression analysis of the BPD enantiomers are in the range of 0.9914-0.9997. Their limits of detection are 2.18-3.5 x 10(-3) mg mL(-1). The relative standard deviations for the separation were 2.90-4.64% (n = 10). In comparison with high-performance liquid chromatography (HPLC), CE has better resolution and efficiency. This separation method was successfully applied to the BPD enantiomers obtained from a matrix of bovine serum and from liposomally formulated material as well as from studies with rat, dog and human microsomes. PMID:11824627

  8. Separation of photo-induced radical pair in cryptochrome to a functionally critical distance

    NASA Astrophysics Data System (ADS)

    Solov'yov, Ilia A.; Domratcheva, Tatiana; Schulten, Klaus

    2014-01-01

    Cryptochrome is a blue light receptor that acts as a sensor for the geomagnetic field and assists many animals in long-range navigation. The magnetoreceptor function arises from light-induced formation of a radical pair through electron transfer between a flavin cofactor (FAD) and a triad of tryptophan residues. Here, this electron transfer is investigated by quantum chemical and classical molecular dynamics calculations. The results reveal how sequential electron transfer, assisted by rearrangement of polar side groups in the cryptochrome interior, can yield a FAD-Trp radical pair state with the FAD and Trp partners separated beyond a critical distance. The large radical pair separation reached establishes cryptochrome's sensitivity to the geomagnetic field through weakening of distance-dependent exchange and dipole-dipole interactions. It is estimated that the key secondary electron transfer step can overcome in speed both recombination (electron back-transfer) and proton transfer involving the radical pair reached after primary electron transfer.

  9. Transient isotachophoretic-electrophoretic separations of lanthanides with indirect laser-induced fluorescence detection.

    PubMed

    Church, M N; Spear, J D; Russo, R E; Klunder, G L; Grant, P M; Andresen, B D

    1998-07-01

    Indirect laser-induced fluorescence was used for the detection of several lanthanide species separated by capillary electrophoresis. Quinine sulfate was the fluorescent component of the background electrolyte, and α-hydroxyisobutyric acid was added as a complexing agent to enable the separation of analyte ions that have similar mobilities. The UV lines (333-364 nm) of an argon ion laser were used as the excitation source with a diode array detector for monitoring the fluorescent emission at 442 nm. Electrokinetic injections and transient isotachophoresis were implemented to stack the analyte ions into more concentrated zones. On-line preconcentration factors were determined to be ∼700 and resulted in limits of detection for La(3+), Ce(3+), Pr(3+), Nd(3+), Sm(3+), and Eu(3+) in the low-ppb range (6-11 nM).

  10. Chronic Exposure to Particulate Chromate Induces Premature Centrosome Separation and Centriole Disengagement in Human Lung Cells.

    PubMed

    Martino, Julieta; Holmes, Amie L; Xie, Hong; Wise, Sandra S; Wise, John Pierce

    2015-10-01

    Particulate hexavalent chromium (Cr(VI)) is a well-established human lung carcinogen. Lung tumors are characterized by structural and numerical chromosome instability. Centrosome amplification is a phenotype commonly found in solid tumors, including lung tumors, which strongly correlates with chromosome instability. Human lung cells exposed to Cr(VI) exhibit centrosome amplification but the underlying phenotypes and mechanisms remain unknown. In this study, we further characterize the phenotypes of Cr(VI)-induced centrosome abnormalities. We show that Cr(VI)-induced centrosome amplification correlates with numerical chromosome instability. We also show chronic exposure to particulate Cr(VI) induces centrosomes with supernumerary centrioles and acentriolar centrosomes in human lung cells. Moreover, chronic exposure to particulate Cr(VI) affects the timing of important centriolar events. Specifically, chronic exposure to particulate Cr(VI) causes premature centriole disengagement in S and G2 phase cells. It also induces premature centrosome separation in interphase. Altogether, our data suggest that chronic exposure to particulate Cr(VI) targets the protein linkers that hold centrioles together. These centriolar linkers are important for key events of the centrosome cycle and their premature disruption might underlie Cr(VI)-induced centrosome amplification. PMID:26293554

  11. Chronic Exposure to Particulate Chromate Induces Premature Centrosome Separation and Centriole Disengagement in Human Lung Cells.

    PubMed

    Martino, Julieta; Holmes, Amie L; Xie, Hong; Wise, Sandra S; Wise, John Pierce

    2015-10-01

    Particulate hexavalent chromium (Cr(VI)) is a well-established human lung carcinogen. Lung tumors are characterized by structural and numerical chromosome instability. Centrosome amplification is a phenotype commonly found in solid tumors, including lung tumors, which strongly correlates with chromosome instability. Human lung cells exposed to Cr(VI) exhibit centrosome amplification but the underlying phenotypes and mechanisms remain unknown. In this study, we further characterize the phenotypes of Cr(VI)-induced centrosome abnormalities. We show that Cr(VI)-induced centrosome amplification correlates with numerical chromosome instability. We also show chronic exposure to particulate Cr(VI) induces centrosomes with supernumerary centrioles and acentriolar centrosomes in human lung cells. Moreover, chronic exposure to particulate Cr(VI) affects the timing of important centriolar events. Specifically, chronic exposure to particulate Cr(VI) causes premature centriole disengagement in S and G2 phase cells. It also induces premature centrosome separation in interphase. Altogether, our data suggest that chronic exposure to particulate Cr(VI) targets the protein linkers that hold centrioles together. These centriolar linkers are important for key events of the centrosome cycle and their premature disruption might underlie Cr(VI)-induced centrosome amplification.

  12. Fabrication of triple layered vascular scaffolds by combining electrospinning, braiding, and thermally induced phase separation

    NASA Astrophysics Data System (ADS)

    Mi, Hao-Yang; Jing, Xin; Yu, Emily; McNulty, Jason; Turng, Lih-Sheng

    2015-12-01

    Triple layered small diameter vascular scaffolds, which consisted of thermoplastic polyurethane (TPU) and silk, were fabricated in this study for the first time by combining electrospinning, braiding, and thermally induced phase separation methods. These novel vascular scaffolds, which possess three layers of different structures (nanofibrous inner layer, woven silk filament middle layer, and porous outer layer) have a desired toe region in the tensile test and sufficient suture retention and burst pressure for vascular graft applications. The endothelia cell culture tests showed that a cell layer could form on the inner surface of a scaffold with high cell viability. Furthermore, the cells showed favorable morphology on the scaffold.

  13. Solid state photovoltaic cells based on localized surface plasmon-induced charge separation

    NASA Astrophysics Data System (ADS)

    Takahashi, Yukina; Tatsuma, Tetsu

    2011-10-01

    Charge separation induced by localized surface plasmon resonance (LSPR) of gold and silver nanoparticles (AuNPs and AgNPs) are applied to various devices and photoelectrochemical functionalities. Here, we develop all solid state In/TiO2/MNPs/ITO photovoltaic cells (MNP = AuNP or AgNP) by using two-dimensional MNP ensembles. Their quantum efficiencies are higher than those of previously reported solid state cells with hole-transport materials (HTMs) (ITO/TiO2/AuNPs/HTM/Au). The photoresponses from cells without HTMs suggest that the photovoltage generates at the TiO2-MNP interface.

  14. On the comparisons between dissipative particle dynamics simulations and self-consistent field calculations of diblock copolymer microphase separation

    NASA Astrophysics Data System (ADS)

    Sandhu, Paramvir; Zong, Jing; Yang, Delian; Wang, Qiang

    2013-05-01

    To highlight the importance of quantitative and parameter-fitting-free comparisons among different models/methods, we revisited the comparisons made by Groot and Madden [J. Chem. Phys. 108, 8713 (1998), 10.1063/1.476300] and Chen et al. [J. Chem. Phys. 122, 104907 (2005), 10.1063/1.1860351] between their dissipative particle dynamics (DPD) simulations of the DPD model and the self-consistent field (SCF) calculations of the "standard" model done by Matsen and Bates [Macromolecules 29, 1091 (1996), 10.1021/ma951138i] for diblock copolymer (DBC) A-B melts. The small values of the invariant degree of polymerization used in the DPD simulations do not justify the use of the fluctuation theory of Fredrickson and Helfand [J. Chem. Phys. 87, 697 (1987), 10.1063/1.453566] by Groot and Madden, and their fitting between the DPD interaction parameters and the Flory-Huggins χ parameter in the "standard" model also has no rigorous basis. Even with their use of the fluctuation theory and the parameter-fitting, we do not find the "quantitative match" for the order-disorder transition of symmetric DBC claimed by Groot and Madden. For lamellar and cylindrical structures, we find that the system fluctuations/correlations decrease the bulk period and greatly suppress the large depletion of the total segmental density at the A-B interfaces as well as its oscillations in A- and B-domains predicted by our SCF calculations of the DPD model. At all values of the A-block volume fractions in the copolymer f (which are integer multiples of 0.1), our SCF calculations give the same sequence of phase transitions with varying χN as the "standard" model, where N denotes the number of segments on each DBC chain. All phase boundaries, however, are shifted to higher χN due to the finite interaction range in the DPD model, except at f = 0.1 (and 0.9), where χN at the transition between the disordered phase and the spheres arranged on a body-centered cubic lattice is lower due to N = 10 in the DPD model. Finally, in 11 of the total 20 cases (f-χN combinations) studied in the DPD simulations, a morphology different from the SCF prediction was obtained due to the differences between these two methods.

  15. Ordered three- and five-ply nanocomposites from ABC block terpolymer microphase separation with niobia and aluminosilicate sols

    PubMed Central

    Stefik, Morgan; Mahajan, Surbhi; Sai, Hiroaki; Epps, Thomas H.; Bates, Frank S.; Gruner, Sol M; DiSalvo, Francis J.; Wiesner, Ulrich

    2009-01-01

    We report the first use of a non-frustrated block terpolymer for the synthesis of highly ordered oxide nanocomposites containing multiple plies. The morphological behavior of 15 ISO-oxide nanocomposites was investigated spanning a large range of compositions along the ƒI=ƒS isopleth using aluminosilicate and niobia sols. Morphologies were determined by TEM and SAXS measurements. Four morphologies were identified, including core-shell hexagonal, core-shell double gyroid, three-domain lamellae, and core-shell inverse-hexagonal, in order of increasing O+oxide vol fraction. All of the resulting nanocomposites had three- or five-ply morphologies containing domains that were continuous in one, two, or three dimensions. The five-ply core-shell double gyroid phase was only found to be stable when the O+oxide domain was a minority. Removal of the polymer enabled simple and direct synthesis of mesoporous oxide materials while retaining the ordered network structure. We believe that advances in the synthesis of multi-ply nanocomposites will lead to advanced materials and devices containing multiple plies of functional materials. PMID:20209023

  16. Design and characterization of materials with microphase-separated surface patterns for screening osteoblast response to adhesion

    NASA Astrophysics Data System (ADS)

    Wingkono, Gracy A.

    Combinatorial techniques have changed the paradigm of materials research by allowing efficient screening of complex materials problems with large, multidimensional parameter spaces. The focus of this thesis is to demonstrate combinatorial methods (CM) and high-throughput methods (HTM) applied to biomaterials design, characterization, and screening. In particular, this work focuses on screening the effects of biomaterial surface features on adherent bone cell cultures. Polymeric biomaterials were prepared on two-dimensional combinatorial libraries that systematically varied the size and shape of chemically-distinct microstructural patterns. These libraries were generated from blends of biodegradable polyurethanes and polyesters prepared with thickness, composition and temperature gradient techniques. Characterization and screening were performed with high-throughput optical and fluorescence microscopy. A unique advance of this work is the application of data mining techniques to identify the controlling structural features that affect cell behavior from among the myriad variety of metrics from the microscope images. Libraries were designed to exhibit chemically-distinct cell-adhesive versus non-adhesive microstructural domains that improve library performance compared to previous implementations that had employed only modest chemical differences. Improving adhesive contrast should minimize combination of effects of chemistry and physical structure, making data interpretation simpler. To accomplish this, a method of blending and crosslinking cell-non-adhesive poly(ethylene glycol) (PEG) with cell-adhesive poly(·-caprolactone) (PCL) was developed. The behavior of MC3T3-E1 osteoblast cells cultured on the PCL-PEG libraries were observed, equivalent to thousands of distinct chemistries and microstructures. Cell spreading area, shape, and density upon adhesion on surface patterns are observed in this study. Characterization of the surface library and screening of surface physical properties via HTM and PCA show that cell density is sensitive to the physical distribution, shape, solidity, and orientation of the PCL and PEG domains. Correlation is shown between surface pattern descriptors and the subsequent cellular adhesion responses. Certain spacing and shapes in surface pattern are preferred to others for distinct cellular states; circular pattern favors apoptotic cells, while elongated patterns favor viable cells---for both cases, cells preferred anchoring themselves to surface patterns. However, the effect of surface pattern's solidity and area did not show any conclusive trend in this dataset. This might be due to the existence of correlation between solidity and eccentricity as described in Chapter 1. Further improvement in the surface pattern library generation is necessary for future studies. The results from this study demonstrated the potentials of CM/HTS to be applied to exploratory studies involving complex systems in life sciences. This study accomplishes the goal to demonstrate the efficient screening and exploration of vast and complex dataset, extracting important and meaningful information to narrow down the future path of study in this field. Further study aimed to tuning cellular responses via signals from surface cues will be necessary to examine the causal relationships beyond the observed correlations shown in this exploratory study. It is recommended for further studies to narrow down the range for surface patterning around each of the three 'activation' ranges found in this study: apoptotic, viable, and one unknown state to be studied further. Different cellular-function staining methods will be necessary to be used in cellular imaging techniques in order to explore this unknown state further.

  17. Continuous particle separation using pressure-driven flow-induced miniaturizing free-flow electrophoresis (PDF-induced μ-FFE)

    PubMed Central

    Jeon, Hyungkook; Kim, Youngkyu; Lim, Geunbae

    2016-01-01

    In this paper, we introduce pressure-driven flow-induced miniaturizing free-flow electrophoresis (PDF-induced μ-FFE), a novel continuous separation method. In our separation system, the external flow and electric field are applied to particles, such that particle movement is affected by pressure-driven flow, electroosmosis, and electrophoresis. We then analyzed the hydrodynamic drag force and electrophoretic force applied to the particles in opposite directions. Based on this analysis, micro- and nano-sized particles were separated according to their electrophoretic mobilities with high separation efficiency. Because the separation can be achieved in a simple T-shaped microchannel, without the use of internal electrodes, it offers the advantages of low-cost, simple device fabrication and bubble-free operation, compared with conventional μ-FFE methods. Therefore, we expect the proposed separation method to have a wide range of filtering/separation applications in biochemical analysis. PMID:26819221

  18. Photon-induced phase transitions of individual electronic phase separated domains in manganites strips

    NASA Astrophysics Data System (ADS)

    Lin, Hanxuan; Zhang, Kai; Liu, Hao; Miao, Tian; Yu, Yang; Yin, Lifeng; Shen, Jian

    Effective photosensors should be built on materials whose properties depend sensitively on light. Manganites are one of the candidates, where light can trigger resistivity change by several orders of magnitude. Such dramatic change is often associated with photoinduced phase transitions of electronic phase separated (EPS) domains in manganites. Previous studies of the light effect all use macroscopic manganite samples, which consist of large numbers of EPS domains smearing out the photon-induced phase transitions. Here, we observe the signature of individual domains' photoinduced phase transition by macroscopic transport measurement of spatially confined manganites strips. Pronounced photon-induced resistivity jumps emerge in the warming process, which reveals the dynamics of the phase transitions of individual EPS domains upon interaction with light. Magnetic force microscope (MFM) has been used to investigate the mechanism of those resistivity jumps. Supervisor.

  19. Chemiluminescence from UVA-exposed skin: separating photo-induced chemiluminescence from photophysical light emission.

    PubMed

    Millington, Keith R; Jones, Leslie N; Sinclair, Rodney D

    2012-09-01

    Several previous studies have reported luminescence emission from skin following exposure to UVA radiation in air. We show that UVA irradiation of biomaterials and polymers in oxygen, including bovine stratum corneum, followed by photon counting results in a complex emission due to a combination of photophysical processes together with photo-induced chemiluminescence (PICL). The photophysical processes include fluorescence, phosphorescence and charge-recombination luminescence. By irradiating materials in an inert atmosphere such as nitrogen and allowing photophysical light emission to fully decay before admitting oxygen, the weak photo-induced chemiluminescence generated via free radical reactions with oxygen can be separated and analysed. PICL emission from bovine stratum corneum is weaker than for wool keratin and bovine skin collagen, probably due to its higher water content, and the presence of the natural antioxidants ascorbate and tocopherol.

  20. Evidence for photo-induced charge separation between dye molecules adsorbed to aluminium oxide surfaces

    NASA Astrophysics Data System (ADS)

    Cappel, Ute B.; Moia, Davide; Bruno, Annalisa; Vaissier, Valerie; Haque, Saif A.; Barnes, Piers R. F.

    2016-02-01

    Excited state dynamics and photo-induced charge transfer of dye molecules have been widely studied due to their relevance for organic and dye-sensitised solar cells. Herein, we present a femtosecond transient absorption spectroscopy study of the indolene dye D131 when adsorbed to inert Al2O3 substrates for different surface concentration of the dye. Surprisingly, we find that at high surface concentrations, the first singlet excited state of the dye is converted into a new state with an efficiency of about 80%. We assign the absorption features of this state to the oxidised dye and discuss the possibility of photo-induced charge separation between neighboring dye molecules. Our study is the first to show that this process can be highly efficient without the use of donor and acceptor molecules of different chemical structures.

  1. Evidence for photo-induced charge separation between dye molecules adsorbed to aluminium oxide surfaces

    PubMed Central

    Cappel, Ute B.; Moia, Davide; Bruno, Annalisa; Vaissier, Valerie; Haque, Saif A.; Barnes, Piers R. F.

    2016-01-01

    Excited state dynamics and photo-induced charge transfer of dye molecules have been widely studied due to their relevance for organic and dye-sensitised solar cells. Herein, we present a femtosecond transient absorption spectroscopy study of the indolene dye D131 when adsorbed to inert Al2O3 substrates for different surface concentration of the dye. Surprisingly, we find that at high surface concentrations, the first singlet excited state of the dye is converted into a new state with an efficiency of about 80%. We assign the absorption features of this state to the oxidised dye and discuss the possibility of photo-induced charge separation between neighboring dye molecules. Our study is the first to show that this process can be highly efficient without the use of donor and acceptor molecules of different chemical structures. PMID:26891851

  2. Pattern Polymerization-Induced Phase Separation in a Polymer-Dispersed Liquid Crystal System

    NASA Astrophysics Data System (ADS)

    Kyu, Thein

    2002-03-01

    Liquid crystal (LC)/polymer composite films have gained attention increasingly due to their applications in flat panel displays and shutters. Photopolymerization is a preferred method to produce LC/polymer composite films from mixtures of reactive monomers and LCs. On the basis of the combined Flory-Huggins free energy for isotropic mixing and Maier-Saupe free energy for nematic ordering along with the elastic free energy of the network, phase diagrams have been established by solving self-consistently. A theoretical simulation has been modeled by incorporating the kinetics of crosslinking reaction into the time-dependent Ginzburg-Landau (TDGL-model C) equations to elucidate the emergence of nematic domains during photopolymerization induced phase separation in electrically switchable holographic polymer-dispersed liquid crystals (H-PDLC). The simulated morphological patterns in the concentration and orientation order parameter fields show discrete layers of liquid crystal droplets alternating periodically with polymer network-rich layers. Furthermore, we recognized the potential for producing electrically tunable microlens from PDLC systems through pattern-photopolymerization-induced phase separation by means of the interference of two horizontal waves and two vertical waves. Our simulation revealed that the emerged LC microlens are of the order of a few hundred nanometers. These LC microlens are not only uniformed in size, but also form in regular arrays, reminiscence of the compound eyes found in flies, ants, and wasps. Supported by ALCOM, NSF DMR 99-03519, and OBR.

  3. Photopolymerization-induced crystallization and phase separation in poly(ethylene oxide)/triacrylate blends

    SciTech Connect

    Park, Soo Jeoung; Kyu, Thein

    2008-12-28

    The present article describes experimental and theoretical investigations of miscibility and crystallization behavior of blends of poly(ethylene oxide) (PEO) and triacrylate monomer (TA) using differential scanning calorimetry and optical microscopy. The PEO/TA blends manifested a single T{sub g} varying systematically with composition suggestive of a miscible character in their amorphous states. Moreover, there occurs melting point depression of PEO crystals with increasing TA. A phase diagram was subsequently established that exhibited a solid+liquid coexistence region bound by the liquidus and solidus lines, followed by an upper critical solution temperature (UCST) at a lower temperature. The emerging phase morphology was investigated to verify the coexistence regions. Upon photopolymerization in the isotropic melt above the melting point depression curve, both the UCST and the melting temperatures move upward and eventually surpass the reaction temperature, resulting in phase separation as well as crystallization of PEO driven by the changing supercooling, i.e., the thermodynamic driving force. Of particular interest is the interplay between photopolymerization-induced phase separation and crystallization, which eventually determines the final phase morphology of the PEO/TA blend such as crystalline lamellae, sheaf, or spherulites in isotropic liquid, phase separated domains, and viscous fingering liquids.

  4. Microbially induced separation of quartz from hematite using sulfate reducing bacteria.

    PubMed

    Prakasan, M R Sabari; Natarajan, K A

    2010-07-01

    Cells and metabolic products of Desulfovibrio desulfuricans were successfully used to separate quartz from hematite through environmentally benign microbially induced flotation. Bacterial metabolic products such as extracellular proteins and polysaccharides were isolated from both unadapted and mineral-adapted bacterial metabolite and their basic characteristics were studied in order to get insight into the changes brought about on bioreagents during adaptation. Interaction between bacterial cells and metabolites with minerals like hematite and quartz brought about significant surface-chemical changes on both the minerals. Quartz was rendered more hydrophobic, while hematite became more hydrophilic after biotreatment. The predominance of bacterial polysaccharides on interacted hematite and of proteins on quartz was responsible for the above surface-chemical changes, as attested through adsorption studies. Surface-chemical changes were also observed on bacterial cells after adaptation to the above minerals. Selective separation of quartz from hematite was achieved through interaction with quartz-adapted bacterial cells and metabolite. Mineral-specific proteins secreted by quartz-adapted cells were responsible for conferment of hydrophobicity on quartz resulting in enhanced separation from hematite through flotation.

  5. Photo Induced Membrane Separation for Water Purification and Desalination Using Azobenzene Modified Anodized Alumina Membranes.

    PubMed

    Fujiwara, Masahiro; Imura, Tatsuki

    2015-06-23

    Water purification and desalination to produce end-use water are important agendas in 21st century, because the global water shortage is becoming increasingly serious. Those processes using light energy, especially solar energy, without the consumption of fossil fuels are desired for creating sustainable society. For these earth-friendly water treatments, nanoporous materials and membranes are expected to provide new technologies. We have reported before that the repetitive photo isomerization of azobenzene groups between the trans and cis isomers induced by the simultaneous irradiation of UV and visible lights accelerates the molecular movement of nearby molecules in nanoporous materials. After further studies, we recently found that the permeation of water through azobenzene modified anodized alumina membranes as a photo responsive nanoporous membrane was achieved by the simultaneous irradiation of UV and visible lights, while no water penetration occurred under no light, only single UV or visible light. The photo induced permeation of water was promoted by the vaporization of water with the repetitive photo isomerization of azobenzene. This membrane permeation achieved the purification of water solutions, because dye molecules and a protein dissolved in aqueous solutions were not involved in the photo induced penetrated water. When 3.5% of sodium chloride solution as model seawater was employed for this membrane separation, the salt content of the permeated water was less than 0.01% to accomplish the complete desalination of seawater.

  6. Photo Induced Membrane Separation for Water Purification and Desalination Using Azobenzene Modified Anodized Alumina Membranes.

    PubMed

    Fujiwara, Masahiro; Imura, Tatsuki

    2015-06-23

    Water purification and desalination to produce end-use water are important agendas in 21st century, because the global water shortage is becoming increasingly serious. Those processes using light energy, especially solar energy, without the consumption of fossil fuels are desired for creating sustainable society. For these earth-friendly water treatments, nanoporous materials and membranes are expected to provide new technologies. We have reported before that the repetitive photo isomerization of azobenzene groups between the trans and cis isomers induced by the simultaneous irradiation of UV and visible lights accelerates the molecular movement of nearby molecules in nanoporous materials. After further studies, we recently found that the permeation of water through azobenzene modified anodized alumina membranes as a photo responsive nanoporous membrane was achieved by the simultaneous irradiation of UV and visible lights, while no water penetration occurred under no light, only single UV or visible light. The photo induced permeation of water was promoted by the vaporization of water with the repetitive photo isomerization of azobenzene. This membrane permeation achieved the purification of water solutions, because dye molecules and a protein dissolved in aqueous solutions were not involved in the photo induced penetrated water. When 3.5% of sodium chloride solution as model seawater was employed for this membrane separation, the salt content of the permeated water was less than 0.01% to accomplish the complete desalination of seawater. PMID:26005901

  7. Gamma-effects on 2-dimensional transonic aerodynamics. [specific heat ratio due to shock induced separation

    NASA Technical Reports Server (NTRS)

    Tuzla, K.; Russell, D. A.; Wai, J. C.

    1976-01-01

    Nonlifting 10% biconvex airfoils are mounted in a 30 x 40 cm Ludwieg-tube-driven transonic test-section and the flow field recorded with a holographic interferometer. Nitrogen, argon, and carbon dioxide are used as the principal test gases. Experiments are conducted with Reynolds number based on chord of (0.5-3.5) x 10 to the 6th with Mach numbers of 0.70, 0.75, and 0.80. Supporting calculations use inviscid transonic small-disturbance and full-potential computer codes coupled with simple integral boundary-layer modeling. Systematic studies show that significant gamma-effects can occur due to shock-induced separation.

  8. Biodegradable polymeric microcellular foams by modified thermally induced phase separation method.

    PubMed

    Nam, Y S; Park, T G

    1999-10-01

    Thermally induced phase separation (TIPS) for the fabrication of porous foams based on various biodegradable polymers of poly(L-lactic acid) and its copolymers with D-lactic acid and/or glycolic acid is presented. Diverse foam morphologies were obtained by systematically changing several parameters involved in the TIPS process, such as polymer type and concentration, coarsening conditions, solvent/nonsolvent composition, and the presence of an additive. The produced foams had microcellular structures with average pore diameters ranging from 1 to 30 microns depending on the process parameters, which were characterized by scanning electron microscopy (SEM) and mercury intrusion porosimetry. Additionally, Pluronic F127 was used as an additive porogen to control the pore geometry and size.

  9. Magnetic-field-induced nematic-nematic phase separation and droplet formation in colloidal goethite

    NASA Astrophysics Data System (ADS)

    van den Pol, E.; Verhoeff, A. A.; Lupascu, A.; Diaconeasa, M. A.; Davidson, P.; Dozov, I.; Kuipers, B. W. M.; Thies-Weesie, D. M. E.; Vroege, G. J.

    2011-05-01

    We demonstrate the suitability of polarization microscopy to study the recently discovered (parallel) nematic-(perpendicular) nematic phase separation. This novel type of phase transition is induced by applying an external magnetic field to a nematic liquid crystal of boardlike colloidal goethite and is due to an interplay between the intrinsic magnetic properties of goethite and the collective effect of liquid crystal formation. It is shown that the intense ochre colour of goethite does not preclude the use of polarization microscopy and interference colours, and that dichroism can give valuable qualitative information on the nature of the phases, their anchoring and their sedimentation and order parameter profiles. We also apply these techniques to study 'nematic-nematic tactoids': nematic droplets sedimenting within a nematic medium with mutually perpendicular orientations.

  10. Magnetic-field-induced nematic-nematic phase separation and droplet formation in colloidal goethite.

    PubMed

    van den Pol, E; Verhoeff, A A; Lupascu, A; Diaconeasa, M A; Davidson, P; Dozov, I; Kuipers, B W M; Thies-Weesie, D M E; Vroege, G J

    2011-05-18

    We demonstrate the suitability of polarization microscopy to study the recently discovered (parallel) nematic-(perpendicular) nematic phase separation. This novel type of phase transition is induced by applying an external magnetic field to a nematic liquid crystal of boardlike colloidal goethite and is due to an interplay between the intrinsic magnetic properties of goethite and the collective effect of liquid crystal formation. It is shown that the intense ochre colour of goethite does not preclude the use of polarization microscopy and interference colours, and that dichroism can give valuable qualitative information on the nature of the phases, their anchoring and their sedimentation and order parameter profiles. We also apply these techniques to study 'nematic-nematic tactoids': nematic droplets sedimenting within a nematic medium with mutually perpendicular orientations. PMID:21525548

  11. Escitalopram improves memory deficits induced by maternal separation in the rat.

    PubMed

    Couto, Frederico Simões do; Batalha, Vânia L; Valadas, Jorge S; Data-Franca, João; Ribeiro, Joaquim A; Lopes, Luísa V

    2012-11-15

    Maternal separation (MS) induces depressive-like behavior and long-term changes in cognition in rats. Escitalopram is an antidepressant drug shown to reverse the depressive-like features caused by this stress model. However, it is not known if it can ameliorate the affected cognition. We now characterized the effect of escitalopram on hippocampal-dependent memory in rats submitted to the MS protocol. Male Wistar rats were assigned either to control (CTR) or maternal separated (MS) group. MS were separated from their dams between 2-14 postnatal days (PND) for 180min daily. Escitalopram was given in food pellets (0.34g/kg/day first 2 weeks and 0.41g/kg/day the subsequent period, average dose 25mg/kg) from PND 43 onwards, during 1 month. Depressive behavior was assessed in the forced swimming test (FST), and memory performance in the Morris water maze (MWM). Escitalopram significantly improved the FST's latency to despair in the MS group (n=6), but did not change the immobility time. All groups showed a significant learning effect in the MWM over time, but no differences have been found upon treatment (n=6). However, escitalopram treatment significantly increased the time spent on the platform quadrant in the probe trial in the MS group. We report here that chronic treatment with escitalopram is able to improve hippocampal dependent memory in a chronic stress model, while not changing the learning ability. Moreover, this is accompanied by an amelioration of the depressive like behavior. These results support the use of escitalopram to tackle underlying cognitive deficits caused by stress in early-life.

  12. Pressure-induced electronic phase separation of magnetism and superconductivity in CrAs

    DOE PAGES

    Khasanov, Rustem; Guguchia, Zurab; Eremin, Ilya; Luetkens, Hubertus; Amato, Alex; Biswas, Pabitra K.; Ruegg, Christian; Susner, Michael A.; Sefat, Athena S.; Zhigadlo, Nikolai D.; et al

    2015-09-08

    We report that the recent discovery of pressure (p) induced superconductivity in the binary helimagnet CrAs has raised questions on how superconductivity emerges from the magnetic state and on the mechanism of the superconducting pairing. In the present work the suppression of magnetism and the occurrence of superconductivity in CrAs were studied by means of muon spin rotation. The magnetism remains bulk up to p ≃ 3.5 kbar while its volume fraction gradually decreases with increasing pressure until it vanishes at p ≃ 7 kbar. At 3.5 kbar superconductivity abruptly appears with its maximum Tc ≃ 1.2 K which decreasesmore » upon increasing the pressure. In the intermediate pressure region (3.5≲ p ≲ 7 kbar) the superconducting and the magnetic volume fractions are spatially phase separated and compete for phase volume. Our results indicate that the less conductive magnetic phase provides additional carriers (doping) to the superconducting parts of the CrAs sample thus leading to an increase of the transition temperature (Tc) and of the superfluid density (ρs). A scaling of ρs with Tc3.2 as well as the phase separation between magnetism and superconductivity point to a conventional mechanism of the Cooper-pairing in CrAs.« less

  13. Pressure-induced electronic phase separation of magnetism and superconductivity in CrAs.

    PubMed

    Khasanov, Rustem; Guguchia, Zurab; Eremin, Ilya; Luetkens, Hubertus; Amato, Alex; Biswas, Pabitra K; Rüegg, Christian; Susner, Michael A; Sefat, Athena S; Zhigadlo, Nikolai D; Morenzoni, Elvezio

    2015-01-01

    The recent discovery of pressure (p) induced superconductivity in the binary helimagnet CrAs has raised questions on how superconductivity emerges from the magnetic state and on the mechanism of the superconducting pairing. In the present work the suppression of magnetism and the occurrence of superconductivity in CrAs were studied by means of muon spin rotation. The magnetism remains bulk up to p ≃ 3.5 kbar while its volume fraction gradually decreases with increasing pressure until it vanishes at p ≃ 7 kbar. At 3.5 kbar superconductivity abruptly appears with its maximum Tc ≃ 1.2 K which decreases upon increasing the pressure. In the intermediate pressure region (3.5 < or ~  p < or ~ 7 kbar) the superconducting and the magnetic volume fractions are spatially phase separated and compete for phase volume. Our results indicate that the less conductive magnetic phase provides additional carriers (doping) to the superconducting parts of the CrAs sample thus leading to an increase of the transition temperature (Tc) and of the superfluid density (ρs). A scaling of ρs with Tc(3.2) as well as the phase separation between magnetism and superconductivity point to a conventional mechanism of the Cooper-pairing in CrAs. PMID:26346548

  14. Dehydration induced phase transitions in a microfluidic droplet array for the separation of biomolecules

    NASA Astrophysics Data System (ADS)

    Nelson, Chris; Anna, Shelley

    2013-11-01

    Droplet-based strategies for fluid manipulation have seen significant application in microfluidics due to their ability to compartmentalize solutions and facilitate highly parallelized reactions. Functioning as micro-scale reaction vessels, droplets have been used to study protein crystallization, enzyme kinetics, and to encapsulate whole cells. Recently, the mass transport out of droplets has been used to concentrate solutions and induce phase transitions. Here, we show that droplets trapped in a microfluidic array will spontaneously dehydrate over the course of several hours. By loading these devices with an initially dilute aqueous polymer solution, we use this slow dehydration to observe phase transitions and the evolution of droplet morphology in hundreds of droplets simultaneously. As an example, we trap and dehydrate droplets of a model aqueous two-phase system consisting of polyethylene glycol and dextran. Initially the drops are homogenous, then after some time the polymer concentration reaches a critical point and two phases form. As water continues to leave the system, the drops transition from a microemulsion of DEX in PEG to a core-shell configuration. Eventually, changes in interfacial tension, driven by dehydration, cause the DEX core to completely de-wet from the PEG shell. Since aqueous two phase systems are able to selectively separate a variety of biomolecules, this core shedding behavior has the potential to provide selective, on-chip separation and concentration.

  15. Gluten protein composition in several fractions obtained by shear induced separation of wheat flour.

    PubMed

    van der Zalm, Elizabeth E J; Grabowska, Katarzyna J; Strubel, Maurice; van der Goot, Atze J; Hamer, Rob J; Boom, Remko M

    2010-10-13

    Recently, it was found that applying curvilinear shear flow in a cone-cone shearing device to wheat flour dough induces separation, resulting in a gluten-enriched fraction in the apex of the cone and gluten-depleted fraction at the outer part. This article describes whether fractionation of the various proteineous components occurs during and after separation of Soissons wheat flour. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and size-exclusion high performance liquid chromatography (SE-HPLC) were found to be suitable techniques for this. It is concluded that all protein fractions migrate to the center of the cone as a result of which the composition of the gluten-enriched fraction remains rather similar to that in the original flour. However, the larger glutenin polymer fraction migrated faster, as a result of which the concentration of large polymers was increased with a factor 2.4 compared to that of Soissons flour. The concentration of monomers in the gluten-enriched fraction was decreased to 70% of the original concentration in the original wheat flour.

  16. Investigating the Three-dimensional Flow Separation Induced by a Model Vocal Fold Polyp

    PubMed Central

    Stewart, Kelley C.; Erath, Byron D.; Plesniak, Michael W.

    2014-01-01

    The fluid-structure energy exchange process for normal speech has been studied extensively, but it is not well understood for pathological conditions. Polyps and nodules, which are geometric abnormalities that form on the medial surface of the vocal folds, can disrupt vocal fold dynamics and thus can have devastating consequences on a patient's ability to communicate. Our laboratory has reported particle image velocimetry (PIV) measurements, within an investigation of a model polyp located on the medial surface of an in vitro driven vocal fold model, which show that such a geometric abnormality considerably disrupts the glottal jet behavior. This flow field adjustment is a likely reason for the severe degradation of the vocal quality in patients with polyps. A more complete understanding of the formation and propagation of vortical structures from a geometric protuberance, such as a vocal fold polyp, and the resulting influence on the aerodynamic loadings that drive the vocal fold dynamics, is necessary for advancing the treatment of this pathological condition. The present investigation concerns the three-dimensional flow separation induced by a wall-mounted prolate hemispheroid with a 2:1 aspect ratio in cross flow, i.e. a model vocal fold polyp, using an oil-film visualization technique. Unsteady, three-dimensional flow separation and its impact of the wall pressure loading are examined using skin friction line visualization and wall pressure measurements. PMID:24513707

  17. Pressure-induced electronic phase separation of magnetism and superconductivity in CrAs

    SciTech Connect

    Khasanov, Rustem; Guguchia, Zurab; Eremin, Ilya; Luetkens, Hubertus; Amato, Alex; Biswas, Pabitra K.; Ruegg, Christian; Susner, Michael A.; Sefat, Athena S.; Zhigadlo, Nikolai D.; Morenzoni, Elvezio

    2015-09-08

    We report that the recent discovery of pressure (p) induced superconductivity in the binary helimagnet CrAs has raised questions on how superconductivity emerges from the magnetic state and on the mechanism of the superconducting pairing. In the present work the suppression of magnetism and the occurrence of superconductivity in CrAs were studied by means of muon spin rotation. The magnetism remains bulk up to p ≃ 3.5 kbar while its volume fraction gradually decreases with increasing pressure until it vanishes at p ≃ 7 kbar. At 3.5 kbar superconductivity abruptly appears with its maximum Tc ≃ 1.2 K which decreases upon increasing the pressure. In the intermediate pressure region (3.5≲ p ≲ 7 kbar) the superconducting and the magnetic volume fractions are spatially phase separated and compete for phase volume. Our results indicate that the less conductive magnetic phase provides additional carriers (doping) to the superconducting parts of the CrAs sample thus leading to an increase of the transition temperature (Tc) and of the superfluid density (ρs). A scaling of ρs with Tc3.2 as well as the phase separation between magnetism and superconductivity point to a conventional mechanism of the Cooper-pairing in CrAs.

  18. Pressure-induced electronic phase separation of magnetism and superconductivity in CrAs

    PubMed Central

    Khasanov, Rustem; Guguchia, Zurab; Eremin, Ilya; Luetkens, Hubertus; Amato, Alex; Biswas, Pabitra K.; Rüegg, Christian; Susner, Michael A.; Sefat, Athena S.; Zhigadlo, Nikolai D.; Morenzoni, Elvezio

    2015-01-01

    The recent discovery of pressure (p) induced superconductivity in the binary helimagnet CrAs has raised questions on how superconductivity emerges from the magnetic state and on the mechanism of the superconducting pairing. In the present work the suppression of magnetism and the occurrence of superconductivity in CrAs were studied by means of muon spin rotation. The magnetism remains bulk up to p  3.5 kbar while its volume fraction gradually decreases with increasing pressure until it vanishes at p  7 kbar. At 3.5 kbar superconductivity abruptly appears with its maximum Tc  1.2 K which decreases upon increasing the pressure. In the intermediate pressure region (3.5  p  7 kbar) the superconducting and the magnetic volume fractions are spatially phase separated and compete for phase volume. Our results indicate that the less conductive magnetic phase provides additional carriers (doping) to the superconducting parts of the CrAs sample thus leading to an increase of the transition temperature (Tc) and of the superfluid density (ρs). A scaling of ρs with as well as the phase separation between magnetism and superconductivity point to a conventional mechanism of the Cooper-pairing in CrAs. PMID:26346548

  19. Pressure-induced electronic phase separation of magnetism and superconductivity in CrAs.

    PubMed

    Khasanov, Rustem; Guguchia, Zurab; Eremin, Ilya; Luetkens, Hubertus; Amato, Alex; Biswas, Pabitra K; Rüegg, Christian; Susner, Michael A; Sefat, Athena S; Zhigadlo, Nikolai D; Morenzoni, Elvezio

    2015-09-08

    The recent discovery of pressure (p) induced superconductivity in the binary helimagnet CrAs has raised questions on how superconductivity emerges from the magnetic state and on the mechanism of the superconducting pairing. In the present work the suppression of magnetism and the occurrence of superconductivity in CrAs were studied by means of muon spin rotation. The magnetism remains bulk up to p ≃ 3.5 kbar while its volume fraction gradually decreases with increasing pressure until it vanishes at p ≃ 7 kbar. At 3.5 kbar superconductivity abruptly appears with its maximum Tc ≃ 1.2 K which decreases upon increasing the pressure. In the intermediate pressure region (3.5 < or ~  p < or ~ 7 kbar) the superconducting and the magnetic volume fractions are spatially phase separated and compete for phase volume. Our results indicate that the less conductive magnetic phase provides additional carriers (doping) to the superconducting parts of the CrAs sample thus leading to an increase of the transition temperature (Tc) and of the superfluid density (ρs). A scaling of ρs with Tc(3.2) as well as the phase separation between magnetism and superconductivity point to a conventional mechanism of the Cooper-pairing in CrAs.

  20. Pressure-induced electronic phase separation of magnetism and superconductivity in CrAs

    NASA Astrophysics Data System (ADS)

    Khasanov, Rustem; Guguchia, Zurab; Eremin, Ilya; Luetkens, Hubertus; Amato, Alex; Biswas, Pabitra K.; Rüegg, Christian; Susner, Michael A.; Sefat, Athena S.; Zhigadlo, Nikolai D.; Morenzoni, Elvezio

    2015-09-01

    The recent discovery of pressure (p) induced superconductivity in the binary helimagnet CrAs has raised questions on how superconductivity emerges from the magnetic state and on the mechanism of the superconducting pairing. In the present work the suppression of magnetism and the occurrence of superconductivity in CrAs were studied by means of muon spin rotation. The magnetism remains bulk up to p  3.5 kbar while its volume fraction gradually decreases with increasing pressure until it vanishes at p  7 kbar. At 3.5 kbar superconductivity abruptly appears with its maximum Tc  1.2 K which decreases upon increasing the pressure. In the intermediate pressure region (3.5  p  7 kbar) the superconducting and the magnetic volume fractions are spatially phase separated and compete for phase volume. Our results indicate that the less conductive magnetic phase provides additional carriers (doping) to the superconducting parts of the CrAs sample thus leading to an increase of the transition temperature (Tc) and of the superfluid density (ρs). A scaling of ρs with as well as the phase separation between magnetism and superconductivity point to a conventional mechanism of the Cooper-pairing in CrAs.

  1. Three-Dimensional Flow Separation Induced by a Model Vocal Fold Polyp

    NASA Astrophysics Data System (ADS)

    Stewart, Kelley C.; Erath, Byron D.; Plesniak, Michael W.

    2012-11-01

    The fluid-structure energy exchange process for normal speech has been studied extensively, but it is not well understood for pathological conditions. Polyps and nodules, which are geometric abnormalities that form on the medial surface of the vocal folds, can disrupt vocal fold dynamics and thus can have devastating consequences on a patient's ability to communicate. A recent in-vitro investigation of a model polyp in a driven vocal fold apparatus demonstrated that such a geometric abnormality considerably disrupts the glottal jet behavior and that this flow field adjustment was a likely reason for the severe degradation of the vocal quality in patients. Understanding of the formation and propagation of vortical structures from a geometric protuberance, and their subsequent impact on the aerodynamic loadings that drive vocal fold dynamic, is a critical component in advancing the treatment of this pathological condition. The present investigation concerns the three-dimensional flow separation induced by a wall-mounted prolate hemispheroid with a 2:1 aspect ratio in cross flow, i.e. a model vocal fold polyp. Unsteady three-dimensional flow separation and its impact of the wall pressure loading are examined using skin friction line visualization and wall pressure measurements. Supported by the National Science Foundation, Grant No. CBET-1236351 and GW Center for Biomimetics and Bioinspired Engineering (COBRE).

  2. Charge-separated atmospheric neutrino-induced muons in the MINOS far detector

    SciTech Connect

    Adamson, P.; Andreopoulos, Constantinos V.; Arms, Kregg E.; Armstrong, Stephen Randolph; Auty, D.J.; Avvakumov, S.; Ayres, David S.; Baller, Bruce R.; Barish, Barry C.; Barnes, P.D., Jr.; Barr, Giles David; /Oxford U. /Western Washington U.

    2007-01-01

    We found 140 neutrino-induced muons in 854.24 live days in the MINOS far detector, which has an acceptance for neutrino-induced muons of 6.91 x 10{sup 6} cm{sup 2} sr. We looked for evidence of neutrino disappearance in this data set by computing the ratio of the number of low momentum muons to the sum of the number of high momentum and unknown momentum muons for both data and Monte Carlo expectation in the absence of neutrino oscillations. The ratio of data and Monte Carlo ratios, R, is R = 0.65{sub 0.12}{sup +0.15}(stat) {+-} 0.09(syst), a result that is consistent with an oscillation signal. A fit to the data for the oscillation parameters sin{sup 2} 2{theta}{sub 23} and {Delta}m{sub 23}{sup 2} excludes the null oscillation hypothesis at the 94% confidence level. We separated the muons into {mu}{sup -} and {mu}{sup +} in both the data and Monte Carlo events and found the ratio of the total number of {mu}{sup -} to {mu}{sup +} in both samples. The ratio of those ratios, {cflx R}{sub CPT}, is a test of CPT conservation. The result {cflx R}{sub CPT} = 0.72{sub -0.18}{sup +0.24}(stat){sub -0.04}{sup +0.08}(syst), is consistent with CPT conservation.

  3. Carbon nanotubes reinforced poly(L-lactide) scaffolds fabricated by thermally induced phase separation

    NASA Astrophysics Data System (ADS)

    Ma, Haiyun; Xue, Li

    2015-01-01

    In tissue engineering, porous nanocomposite scaffolds can potentially mimic aspects of the nanoscale architecture of the extra-cellular matrix, as well as enhance the mechanical properties required for successful weight-bearing implants. In this paper, we demonstrate that highly porous thermoplastic poly(L-lactide) nanocomposite scaffolds containing different types of functionalized multi-walled carbon nanotubes (CNTs). The nanocomposite scaffolds were manufactured by a thermally induced phase separation method. This experiment produced an uniform distribution of CNTs throughout the scaffold without obvious aggregations for funtionalized CNTs filled scaffolds by scanning electron microscope observation. The CNTs were frequently located on the pore surface, forming rough, hairy nano-textures. The pore size was reduced with the increasing of CNT loading. Parts of PLLA matrix was induced into nanofibrous structures from solid-walled state, which reduced the crystallinity of the PLLA characterized by DSC measurement. The CNT incorporation significantly improved the compression modulus of the nanocomposite scaffolds, especially the functionalized CNTs. The capacity of protein adsorption is significantly improved when the concentration of the CNTs was higher than 1.0 wt.% and the cell attachment was also enhanced by the addition of CNTs, especially N-CNT.

  4. Carbon nanotubes reinforced poly(L-lactide) scaffolds fabricated by thermally induced phase separation.

    PubMed

    Ma, Haiyun; Xue, Li

    2015-01-16

    In tissue engineering, porous nanocomposite scaffolds can potentially mimic aspects of the nanoscale architecture of the extra-cellular matrix, as well as enhance the mechanical properties required for successful weight-bearing implants. In this paper, we demonstrate that highly porous thermoplastic poly(L-lactide) nanocomposite scaffolds containing different types of functionalized multi-walled carbon nanotubes (CNTs). The nanocomposite scaffolds were manufactured by a thermally induced phase separation method. This experiment produced an uniform distribution of CNTs throughout the scaffold without obvious aggregations for funtionalized CNTs filled scaffolds by scanning electron microscope observation. The CNTs were frequently located on the pore surface, forming rough, hairy nano-textures. The pore size was reduced with the increasing of CNT loading. Parts of PLLA matrix was induced into nanofibrous structures from solid-walled state, which reduced the crystallinity of the PLLA characterized by DSC measurement. The CNT incorporation significantly improved the compression modulus of the nanocomposite scaffolds, especially the functionalized CNTs. The capacity of protein adsorption is significantly improved when the concentration of the CNTs was higher than 1.0 wt.% and the cell attachment was also enhanced by the addition of CNTs, especially N-CNT.

  5. Mass-Transfer-Induced Multistep Phase Separation in Emulsion Droplets: Toward Self-Assembly Multilayered Emulsions and Onionlike Microspheres.

    PubMed

    Liang, Shuaishuai; Li, Jiang; Man, Jia; Chen, Haosheng

    2016-08-01

    Mass-transfer-induced multistep phase separation was found in emulsion droplets. The agent system consists of a monomer (ethoxylated trimethylolpropane triacrylate, ETPTA), an oligomer (polyethylene glycol diacrylate, PEGDA 700), and water. The PEGDA in the separated layers offered partial miscibility of all the components throughout the multistep phase-separation procedure, which was terminated by the depletion of PEGDA in the outermost layer. The number of separated portions was determined by the initial PEGDA content, and the initial droplet size influenced the mass-transfer process and consequently determined the sizes of the separated layers. The resultant multilayered emulsions were demonstrated to offer an orderly temperature-responsive release of the inner cores. Moreover, the emulsion droplets can be readily solidified into onionlike microspheres by ultraviolet light curing, providing a new strategy in designing particle structures.

  6. Mass-Transfer-Induced Multistep Phase Separation in Emulsion Droplets: Toward Self-Assembly Multilayered Emulsions and Onionlike Microspheres.

    PubMed

    Liang, Shuaishuai; Li, Jiang; Man, Jia; Chen, Haosheng

    2016-08-01

    Mass-transfer-induced multistep phase separation was found in emulsion droplets. The agent system consists of a monomer (ethoxylated trimethylolpropane triacrylate, ETPTA), an oligomer (polyethylene glycol diacrylate, PEGDA 700), and water. The PEGDA in the separated layers offered partial miscibility of all the components throughout the multistep phase-separation procedure, which was terminated by the depletion of PEGDA in the outermost layer. The number of separated portions was determined by the initial PEGDA content, and the initial droplet size influenced the mass-transfer process and consequently determined the sizes of the separated layers. The resultant multilayered emulsions were demonstrated to offer an orderly temperature-responsive release of the inner cores. Moreover, the emulsion droplets can be readily solidified into onionlike microspheres by ultraviolet light curing, providing a new strategy in designing particle structures. PMID:27427849

  7. Preparation of porous microsphere-scaffolds by electrohydrodynamic forming and thermally induced phase separation.

    PubMed

    Ghanbar, Hanif; Luo, C J; Bakhshi, Poonam; Day, Richard; Edirisinghe, Mohan

    2013-07-01

    The availability of forming technologies able to mass produce porous polymeric microspheres with diameters ranging from 150 to 300 μm is significant for some biomedical applications where tissue augmentation is required. Moreover, appropriate assembly of microspheres into scaffolds is an important challenge to enable direct usage of the as-formed structures in treatments. This work reports the production of poly (glycolic-co-lactic acid) and poly (ε-caprolactone) microspheres under ambient conditions using one-step electrohydrodynamic jetting (traditionally known as atomisation) and thermally induced phase separation (TIPS). To ensure robust production for practical uses, this work presents 12 comprehensive parametric mode mappings of the diameter distribution profiles of the microspheres obtained over a broad range of key processing parameters and correlating of this with the material parameters of 5 different polymer solutions of various concentrations. Poly (glycolic-co-lactic acid) (PLGA) in Dimethyl carbonate (DMC), a low toxicity solvent with moderate conductivity and low dielectric constant, generated microspheres within the targeted diameter range of 150-300 μm. The fabrication of the microspheres suitable for formation of the scaffold structure is achieved by changing the collection method from distilled water to liquid nitrogen and lyophilisation in a freeze dryer. PMID:23623059

  8. The magnetic field induced phase separation in a model of a superconductor with local electron pairing.

    PubMed

    Kapcia, Konrad; Robaszkiewicz, Stanisław

    2013-02-13

    We have studied the extended Hubbard model with pair hopping in the atomic limit for arbitrary electron density and chemical potential and focus on paramagnetic effects of the external magnetic field. The Hamiltonian considered consists of (i) the effective on-site interaction U and (ii) the intersite charge exchange interactions I, determining the hopping of electron pairs between nearest-neighbour sites. The phase diagrams and thermodynamic properties of this model have been determined within the variational approach (VA), which treats the on-site interaction term exactly and the intersite interactions within the mean-field approximation. Our investigation of the general case shows that the system can exhibit not only the homogeneous phases-superconducting (SS) and non-ordered (NO)-but also the phase separated states (PS: SS-NO). Depending on the values of interaction parameters, the PS state can occur in higher fields than the SS phase (field induced PS). Some ground state results beyond the VA are also presented. PMID:23334285

  9. Effect of PEG-PLLA diblock copolymer on macroporous PLLA scaffolds by thermally induced phase separation.

    PubMed

    Kim, Hyun Do; Bae, Eun Hee; Kwon, Ick Chan; Pal, Ravindra Ramsurat; Nam, Jae Do; Lee, Doo Sung

    2004-05-01

    A regular and highly interconnected macroporous poly(L-lactic acid) (PLLA) scaffold was fabricated from a PLLA-dioxane-water ternary system with added polyethylene glycol (PEG)-PLLA diblock using thermally induced phase separation (TIPS). The morphology of the scaffold was investigated in detail by controlling the following TIPS parameters: quenching temperature, aging time, polymer concentration, molecular structure, and diblock concentration. The phase diagram was assessed visually on the basis of the turbidity. The cloud-point curve shifted to higher temperatures with increasing PEG content in the additives (PEG-PLLA diblocks), due to a stronger interaction between PEG and water in solution. The addition of diblock series (0.5 wt% in solution) stabilized interconnections of pores at a later stage without segregation or sedimentation. The pore size of the scaffold could be easily controlled in the range 50-300 microm. A macroporous PLLA scaffold was used to study an MC3T3-E1 cell (an osteoblast-like cell) culture. The cells successfully proliferated in the PLLA scaffold in the presence of added PEG-PLLA diblock for 4 weeks.

  10. Principles of laser-induced separation and transport of living cells.

    PubMed

    Horneffer, Verena; Linz, Norbert; Vogel, Alfred

    2007-01-01

    Separation and transport of defined populations of living cells grown on a thin membrane can be achieved by laser microdissection (LMD) of the sample of interest, followed by a laser-induced forward transport process [laser pressure "catapulting" (LPC)] of the dissected cell cluster. We investigate the dynamics of LMD and LPC with focused and defocused UV-A laser pulses by means of time-resolved photography. Catapulting is driven by plasma formation when tightly focused pulses are used, and by confined thermal ablation at the bottom of the sample for defocused catapulting. With both modalities, the initial specimen velocity amounts to about 50 to 60 ms. Time-resolved photography of live cell catapulting reveals that in defocused catapulting, strong shear forces arise when the sample is accelerated out of the culture medium covering the cells. By contrast, pulses focused at the periphery of the specimen cause a fast rotational movement that minimizes the flow of culture medium parallel to the sample surface, and thus the resulting shear stresses. Therefore, the recultivation rate of catapulted cells is much higher when focused pulses are used. Compared to collateral damage by mechanical forces, side effects by heat and UV exposure of the cells play only a minor role.

  11. USM3D Simulations of Saturn V Plume Induced Flow Separation

    NASA Technical Reports Server (NTRS)

    Deere, Karen; Elmlilgui, Alaa; Abdol-Hamid, K. S.

    2011-01-01

    The NASA Constellation Program included the Ares V heavy lift cargo vehicle. During the design stage, engineers questioned if the Plume Induced Flow Separation (PIFS) that occurred along Saturn V rocket during moon missions at some flight conditions, would also plague the newly proposed rocket. Computational fluid dynamics (CFD) was offered as a tool for initiating the investigation of PIFS along the Ares V rocket. However, CFD best practice guidelines were not available for such an investigation. In an effort to establish a CFD process and define guidelines for Ares V powered simulations, the Saturn V vehicle was used because PIFS flight data existed. The ideal gas, computational flow solver USM3D was evaluated for its viability in computing PIFS along the Saturn V vehicle with F-1 engines firing. Solutions were computed at supersonic freestream conditions, zero degree angle of attack, zero degree sideslip, and at flight Reynolds numbers. The effects of solution sensitivity to grid refinement, turbulence models, and the engine boundary conditions on the predicted PIFS distance along the Saturn V were discussed and compared to flight data from the Apollo 11 mission AS-506.

  12. The role of shock induced trailing-edge separation in limit cycle oscillations

    NASA Technical Reports Server (NTRS)

    Cunningham, Atlee M., Jr.

    1989-01-01

    The potential role of shock induced trailing edge separation (SITES) in limit cycle oscillations (LCO) was established. It was shown that the flip-flop characteristics of transition to and from SITES as well as its hysteresis could couple with wing modes with torsional motion and low damping. This connection led to the formulation of a very simple nonlinear math model using the linear equations of motion with a nonlinear step forcing function with hysteresis. A finite difference solution with time was developed and calculations were made for the F-111 TACT were used to determine the step forcing function due to SITES transition. Since no data were available for the hysteresis, a parameter study was conducted allowing the hysteresis effect to vary. Very small hysteresis effects, which were within expected bounds, were required to obtain reasonable response levels that essentially agreed with flight test results. Also in agreement with wind tunnel tests, LCO calculations for the 1/6 scale F-111 model showed that the model should have not experienced LCO.

  13. High-modulus, high-conductivity nanostructured polymer electrolyte membranes via polymerization-induced phase separation.

    PubMed

    Schulze, Morgan W; McIntosh, Lucas D; Hillmyer, Marc A; Lodge, Timothy P

    2014-01-01

    The primary challenge in solid-state polymer electrolyte membranes (PEMs) is to enhance properties, such as modulus, toughness, and high temperature stability, without sacrificing ionic conductivity. We report a remarkably facile one-pot synthetic strategy based on polymerization-induced phase separation (PIPS) to generate nanostructured PEMs that exhibit an unprecedented combination of high modulus and ionic conductivity. Simple heating of a poly(ethylene oxide) macromolecular chain transfer agent dissolved in a mixture of ionic liquid, styrene and divinylbenzene, leads to a bicontinuous PEM comprising interpenetrating nanodomains of highly cross-linked polystyrene and poly(ethylene oxide)/ionic liquid. Ionic conductivities higher than the 1 mS/cm benchmark were achieved in samples with an elastic modulus approaching 1 GPa at room temperature. Crucially, these samples are robust solids above 100 °C, where the conductivity is significantly higher. This strategy holds tremendous potential to advance lithium-ion battery technology by enabling the use of lithium metal anodes or to serve as membranes in high-temperature fuel cells.

  14. Female rats are resistant to developing the depressive phenotype induced by maternal separation stress.

    PubMed

    Dimatelis, J J; Vermeulen, I M; Bugarith, K; Stein, D J; Russell, V A

    2016-02-01

    Many stress-related psychiatric disorders are more common in women than in men. We aimed to determine how female rats respond to maternal separation (MS; removal of the dam from the litter for 3 h/day from postnatal day (P) 2-14)). A subset of MS females were also exposed to chronic constant light for 3 weeks during adolescence (P42-63) to investigate whether the antidepressant effect of light treatment, previously observed in male rats, could be seen in female rats. Ultrasonic vocalizations (22 kHz) were recorded and the forced swim test was conducted immediately after light exposure (P65-67) and 33 days later (P98-99) to determine depressive-like behaviour. Key proteins in the MAPK signal transduction pathway (MKP-1, phospho-ERK, total ERK) and a synaptosomal marker (synaptophysin) were measured in the ventral hippocampus. We found that MS decreased the duration of 22 kHz vocalizations at P65 which was reversed by subsequent light. Light exposure increased time spent in the inner zone of the open field and the number of 22 kHz calls in response to novelty at P98. MS decreased the time females spent immobile and increased time actively swimming in the forced swim test at P67 but not at P99. MKP-1 and synaptophysin levels remained unchanged while MS decreased phospho-ERK levels in the ventral hippocampus. In contrast to clinical findings, the results suggest that female rats may be resistant to MS-induced depression-like behaviour. The behavioural effects of MS and light treatment in female rats may involve the MAPK/ERK signal transduction pathway.

  15. Properties and Detection Limits of Planetary Caustic Perturbation Induced by a Wide-separation Planet

    NASA Astrophysics Data System (ADS)

    Ryu, Yoon-Hyun; Chung, Sun-Ju; Lee, Ki-Won; Kim, Han-Seek; Han, Du-Hwan

    2016-03-01

    Microlensing experiments are entering a next generation of survey types to monitor a wide field of view continuously with a frequent sampling. The theoretically predicted sensitivity of a planet detection on the lensing parameters can be used for the establishment of observational strategies for maximal planet detections. Hence, we investigate the detection condition of planetary signals caused by the planetary caustic. We calculate the deviation area induced by the planetary caustic for various lensing parameters and find that the deviation area generally increases according to the increase of the source radius. However, after the normalized source radius approaches a certain value the deviation area rapidly decreases and disappears at the same normalized source radius, regardless of the mass ratio and the separation between the planet and its host star. We find a simple relation between the normalized source radius and the deviation threshold for the largest and smallest deviation areas. From this relation we also find an analytic condition for the detection limit of the planetary signal as the function of the source radius and the deviation threshold. In addition, we compare the deviation areas and the light curves between the planetary caustic perturbation and a free-floating planet. We find that the planetary caustic perturbation can be approximated by the single-lensing light curve of the planet itself perturbed by the planetary caustic. Finally, we can expect to find a low-mass planet with the Earth’s mass or even that of the Earth's moon from the detection condition and conclude that our findings may help for maximal planet detections considering the source type and the photometric accuracy.

  16. Experimental Investigation of Plume-Induced Flow Separation on the National Launch System 1 1/2-Stage Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Springer, A.

    1994-01-01

    An experimental investigation of plume-induced flow separation on the National Launch System (NLS) 1 1/2-stage launch vehicle was done. This investigation resulted from concerns raised about the flow separation that was encountered on the Saturn 5. A large similarity exists between configurations and nominal trajectories. The study involved the use of solid plume simulators to simulate the base pressure encountered by the vehicle due to engine exhaust plumes at predetermined critical Mach numbers based on Saturn 5 flight plume effects. The solid plume was varied in location, resulting in a parametric study of base pressure effects on flow separation. In addition to the parametric study of arbitrary plume locations, the base pressure resulting from the nominal trajectory was tested. This analysis was accomplished through two wind tunnel tests run at NASA Marshall Space Flight Center's 14 x 14-inch Trisonic Wind Tunnel during 1992. The two tests were a static stability and a pressure test each using a 0.004-scale NLS 1 1/2-stage model. This study verified that flow separation is present at Mach 2.74 and 3.48 for predicted flight base pressures at nominal or higher levels. The flow separation at the predicted base pressure is only minor and should not be of great concern. It is not of the magnitude of the flow separation that was experienced on the Saturn 5. If the base pressure exceeds these nominal conditions, the flow separation can drastically increase, and is of concern.

  17. EGF-induced centrosome separation promotes mitotic progression and cell survival.

    PubMed

    Mardin, Balca R; Isokane, Mayumi; Cosenza, Marco R; Krämer, Alwin; Ellenberg, Jan; Fry, Andrew M; Schiebel, Elmar

    2013-05-13

    Timely and accurate assembly of the mitotic spindle is critical for the faithful segregation of chromosomes, and centrosome separation is a key step in this process. The timing of centrosome separation varies dramatically between cell types; however, the mechanisms responsible for these differences and its significance are unclear. Here, we show that activation of epidermal growth factor receptor (EGFR) signaling determines the timing of centrosome separation. Premature separation of centrosomes decreases the requirement for the major mitotic kinesin Eg5 for spindle assembly, accelerates mitosis, and decreases the rate of chromosome missegregation. Importantly, EGF stimulation impacts upon centrosome separation and mitotic progression to different degrees in different cell lines. Cells with high EGFR levels fail to arrest in mitosis upon Eg5 inhibition. This has important implications for cancer therapy because cells with high centrosomal response to EGF are more susceptible to combinatorial inhibition of EGFR and Eg5. PMID:23643362

  18. Modification of linear prepolymers to tailor heterogeneous network formation through photo-initiated Polymerization-Induced Phase Separation

    PubMed Central

    Szczepanski, Caroline R.; Stansbury, Jeffrey W.

    2015-01-01

    Polymerization-induced phase separation (PIPS) was studied in ambient photopolymerizations of triethylene glycol dimethacrylate (TEGDMA) modified by poly(methyl methacrylate) (PMMA). The molecular weight of PMMA and the rate of network formation (through incident UV-irradiation) were varied to influence both the promotion of phase separation through increases in overall free energy, as well as the extent to which phase development occurs during polymerization through diffusion prior to network gelation. The overall free energy of the polymerizing system increases with PMMA molecular weight, such that PIPS is promoted thermodynamically at low loading levels (5 wt%) of a higher molecular weight PMMA (120 kDa), while a higher loading level (20 wt%) is needed to induce PIPS with lower PMMA molecular weight (11 kDa), and phase separation was not promoted at any loading level tested of the lowest molecular weight PMMA (1 kDa). Due to these differences in overall free energy, systems modified by PMMA (11 kDa) underwent phase separation via Nucleation and Growth, and systems modified by PMMA (120 kDa), followed the Spinodal Decomposition mechanism. Despite differences in phase structure, all materials form a continuous phase rich in TEGDMA homopolymer. At high irradiation intensity (Io=20mW/cm2), the rate of network formation prohibited significant phase separation, even when thermodynamically preferred. A staged curing approach, which utilizes low intensity irradiation (Io=300µW/cm2) for the first ~50% of reaction to allow phase separation via diffusion, followed by a high intensity flood-cure to achieve a high degree of conversion, was employed to form phase-separated networks with reduced polymerization stress yet equivalent final conversion and modulus. PMID:26190865

  19. Monitoring aminopentamide urinary excretion by means of multiple 'microphase' extraction - a rapid method for the extraction and concentration of small amounts of lipophilic drugs from large volumes of biological fluids without distillation.

    PubMed

    Serfontein, W J; de Villiers, L S

    1976-01-01

    It has been demonstrated that low concentrations of basic lipophilic drugs in biological fluids may be extracted and concentrated 10(4)-10(6) times by a series of extraction procedures in which the ratio of the extracting solvent to that of the solution to be extracted is of the order of 1:100 (microphase extraction procedure). Typically, basic drugs (atropine, aminopentamide, hyoscine, chloroquine, pyrimethamine) were extracted and concentrated sufficiently for direct GC analysis from 24-hour urine samples by a procedure involving three simple consecutive extraction steps. Using this procedure, it was demonstrated that after administration of aminopentamide (300 micrograms) to patients in the form of anti-diarrhoeal tablets, measurable quantities of the free, unchanged drug can be demonstrated in 24-hour urine samples. The main advantages of the method are simplicity, rapidity and sensitivity due to the low background interference in the GC separations. The principle involved can be extended to the analysis of acidic drugs with suitable solubility properties.

  20. Selective Metal Deposition on a Phase-Separated Polymer Blend Surface

    NASA Astrophysics Data System (ADS)

    Tsujioka, Tsuyoshi; Yamaguchi, Koji

    2013-07-01

    We report selective metal deposition on a phase-separated polymer blend surface. A polymer blend film consisting of polystyrene (PS) and a polystyrene-block-polybutadiene copolymer (PS-BR) was annealed, and a micro-phase-separated film was obtained. Pb was evaporated onto the phase-separated surface without an evaporation mask and was selectively deposited on the PS phase but not on the PS-BR phase. We achieved fine metal patterns corresponding to the microphase separation. This result suggests a novel method of preparing fine metal patterns for electronics and photonics.

  1. Separation of porphyrin-based photosensitizer isomers by laser-induced fluorescence capillary electrophoresis.

    PubMed

    Peng, Xuejun; Sternberg, Ethan; Dolphin, David

    2005-10-01

    Methods for the separation of photosensitizer isomers, such as benzoporphyrin derivative monoacid, benzoporphyrin ethyl monoacid, 2-[1-hexyloxyethyl]-2-devinylpyropheophorbide-a, diethyleneglycol diester benzoporphyrin derivative, tin ethyl etiopurpurin, and phthalocyanine tetrasulfonate, have been systematically developed by CE. Detection was accomplished by UV absorption at 214 nm or by LIF with excitation at 442/488 nm and emission at 690 nm. The effects of three major experimental parameters of buffer types, organic solvents, and surfactant additives are described. The optimized separation conditions were determined so as to provide satisfactory separation efficiency and analysis time. The methods are shown to be suitable for the separation and determination of porphyrin and phthalocyanines regioisomers, diastereoisomers, and enantiomers.

  2. Separation of porphyrin-based photosensitizer isomers by laser-induced fluorescence capillary electrophoresis.

    PubMed

    Peng, Xuejun; Sternberg, Ethan; Dolphin, David

    2005-10-01

    Methods for the separation of photosensitizer isomers, such as benzoporphyrin derivative monoacid, benzoporphyrin ethyl monoacid, 2-[1-hexyloxyethyl]-2-devinylpyropheophorbide-a, diethyleneglycol diester benzoporphyrin derivative, tin ethyl etiopurpurin, and phthalocyanine tetrasulfonate, have been systematically developed by CE. Detection was accomplished by UV absorption at 214 nm or by LIF with excitation at 442/488 nm and emission at 690 nm. The effects of three major experimental parameters of buffer types, organic solvents, and surfactant additives are described. The optimized separation conditions were determined so as to provide satisfactory separation efficiency and analysis time. The methods are shown to be suitable for the separation and determination of porphyrin and phthalocyanines regioisomers, diastereoisomers, and enantiomers. PMID:16231398

  3. Phase separation between conductive and insulative materials induced by the electric field

    NASA Astrophysics Data System (ADS)

    Nagamine, Yuko

    2016-07-01

    To demonstrate that phase separation is a main mechanism of pattern formation for one of the spatiotemporal patterns emerging in the Ag and Sb electrodeposition system, I performed numerical simulations to model the mixed system of conductive and insulative materials under a steady electric field. For such a dissipative system, I derived the extended Cahn-Hilliard equation using Onsager's variational principle. My results demonstrate that conductive and insulative materials phase separate spatially under the constant-current mode.

  4. Phase separation between conductive and insulative materials induced by the electric field.

    PubMed

    Nagamine, Yuko

    2016-07-01

    To demonstrate that phase separation is a main mechanism of pattern formation for one of the spatiotemporal patterns emerging in the Ag and Sb electrodeposition system, I performed numerical simulations to model the mixed system of conductive and insulative materials under a steady electric field. For such a dissipative system, I derived the extended Cahn-Hilliard equation using Onsager's variational principle. My results demonstrate that conductive and insulative materials phase separate spatially under the constant-current mode. PMID:27575064

  5. Smart Fiber Membrane for pH-Induced Oil/Water Separation.

    PubMed

    Li, Jin-Jin; Zhou, Yin-Ning; Luo, Zheng-Hong

    2015-09-01

    Wastewater contaminated with oil or organic compounds poses threats to the environment and humans. Efficient separation of oil and water are highly desired yet still challenging. This paper reports the fabrication of a smart fiber membrane by depositing pH-responsive copolymer fibers on a stainless steel mesh through electrospinning. The cost-effective precursor material poly(methyl methacrylate)-block-poly(4-vinylpyridine) (PMMA-b-P4VP) was synthesized using copper(0)-mediated reversible-deactivation radical polymerization. The pH-responsive P4VP and the underwater oleophilic/hydrophilic PMMA confer the as-prepared membrane with switchable surface wettability toward water and oil. The three-dimensional network structure of the fibers considerably strengthens the oil/water wetting property of the membrane, which is highly desirable in the separation of oil and water mixtures. The as-prepared fiber membrane accomplishes gravity-driven pH-controllable oil/water separations. Oil selectively passes through the membrane, whereas water remains at the initial state; after the membrane is wetted with acidic water (pH 3), a reverse separation is realized. Both separations are highly efficient, and the membrane also exhibits switchable wettability after numerous cycles of the separation process. This cost-effective and easily mass-produced smart fiber membrane with excellent oil-fouling repellency has significant potential in practical applications, such as water purification and oil recovery. PMID:26293145

  6. Transient phenomena of shock-induced turbulent separation for a spikebody and stalling airfoil at transonic and supersonic speeds

    NASA Technical Reports Server (NTRS)

    Yoshikawa, K. K.

    1982-01-01

    The time-dependent, compressible, Reynolds-averaged, full Navier-Stokes equations are applied to solve an axisymmetric flow around a forward-facing stepbody (spikebody) at supersonic speeds and a stalling airfoil at transonic speeds. Important transient and unsteady phenomena, not yet well understood, are examined, and significant new findings of the present solution to the phenomena are discussed. The phenomena described in detail are as follows: The evolution of the shock wave pressure built up by the impact of the pressure waves, one from the trailing edge; the separation of the flow as influenced by the shock wave; the location of the reversed flow, the separation point, and the reattachment point; and the transient (or unsteady) phenomena of the flow pulsation, oscillation, and stalling of the body and airfoil wake flow. The numerical results show that the transient flow instability is caused by a supersonic jet induced in the separation bubble by the shock-bifurcation (lambda shock) mechanism between the separation shock and the reflected shock. Pulsation and stall phenomena are caused by a sudden increase in the leading-edge pressure due to the jet and the separation bubble interacting along the stagnation point flow.

  7. Maternal social separation of adolescent rats induces hyperactivity and anxiolytic behavior.

    PubMed

    Kwak, Hyong Ryol; Lee, Jae Won; Kwon, Kwang-Jun; Kang, Chang Don; Cheong, Il Young; Chun, Wanjoo; Kim, Sung-Soo; Lee, Hee Jae

    2009-04-01

    Exposure to early stressful adverse life events such as maternal and social separation plays an essential role in the development of the nervous system. Adolescent Sprague-Dawley rats that were separated on postnatal day 14 from their dam and litters (maternal social separation, MSS) showed hyperactivity and anxiolytic behavior in the open field test, elevated plus-maze test, and forced-swim test. Biologically, the number of astrocytes was significantly increased in the prefrontal cortex of MSS adolescent rats. The hyperactive and anxiolytic phenotype and biological alteration produced by this MSS protocol may provide a useful animal model for investigating the neurobiology of psychiatric disorders of childhood-onset diseases, such as attention deficient hyperactive disorder. PMID:19885001

  8. Numerical simulation of shock-induced separated flows in overexpanded rocket nozzles

    NASA Astrophysics Data System (ADS)

    Shams, A.; Girard, S.; Comte, P.

    2012-01-01

    Flow separation in rocket nozzles is undesirable because of its unsteady and nonsymmetric nature, which leads to dangerous side-loads. At the initial stages of start-up, when a thrust optimized contour (TOC) nozzle operates under overexpanded conditions, free shock separation (FSS) takes place. Under certain conditions, this free separated flow reattaches back to the nozzle wall and forms restricted shock separation (RSS). The appearance of restricted shock separated flow depends upon the nozzle contour in a well-defined range of nozzle pressure ratios (NPR) and is characterized by a cap-shock pattern. The flow transition process from FSS to RSS flow configurations is a complex phenomenon and has been an area of interest for a few decades now. In the present study, an attempt has been made to understand the formation of the cap-shock pattern and the RSS flow configuration in a thrust optimized contour (TOC) nozzle. The presented research work consists of two parts. In the first part of the paper, numerical investigation of flow transition (FSS→RSS) has been performed to understand the formation of the cap-shock pattern, which is believed to be the main cause for this flow transition from FSS to RSS. Axisymmetric numerical calculations on a wide range of NPRs (15 25) are performed to reproduce the forward transition process and are found to be in good agreement with the experiments. In the second part, some light has been shed on various aspects of RSS flow regime. Three-dimensional (3D) numerical simulations have been performed on a wide range of NPRs, i. e., 25.0, 30.0, 38.0, 41.0, and 46.0. Detailed analysis of these numerical results allows examining the evolution of the separation point and the cap-shock pattern with respect to the NPR. Furthermore, some insights based on the axial momentum along the nozzle axis and radial momentum distributions across the quadruple point are given.

  9. Induced shock loads during the separation of the Ariane 5 VEB structure

    NASA Astrophysics Data System (ADS)

    Huerta, C.; Gomezmolinero, V.; Alarcon, E.; Gomezlera, S.; Molina, J.

    1989-01-01

    Tests used to simulate the separation of the lower stage of the Ariane Vehicle Equipment Bay (VEB) were carried out on a flat full scale model. Theoretical studies carried out prior to testing are described. Three different mathematical methods, finite element, component element, and wave propagation, were used. Comparison of the predicted theoretical results with the actual test results is planned.

  10. A Classroom Demonstration of Water-Induced Phase Separation of Alcohol-Gasoline Biofuel Blends

    ERIC Educational Resources Information Center

    Mueller, Sherry A.; Anderson, James E.; Wallington, Timothy J.

    2009-01-01

    A significant issue associated with ethanol-gasoline blends is the phase separation that occurs with the addition of small volumes of water, producing an ethanol-deficient gasoline layer and an ethanol-rich aqueous layer. The gasoline layer may have a lower-than-desired octane rating due to the decrease in ethanol content, resulting in engine…

  11. Study of the instabilities induced near the separator plate in atomization processes

    NASA Astrophysics Data System (ADS)

    Fuster, Daniel; Zaleski, Stephane

    2008-11-01

    This work presents current advances in the simulation of the primary atomization zone, paying a special attention to the effect of the separator plate on the flow patterns observed downstream. Gerris, a CFD Open Source code, is used to perform the simulations. The methods implemented on it combining adaptive quad/octree spatial discretisation, geometrical Volume-Of-Fluid interface representation, balanced-force continuum-surface-force surface tension formulation and height-function curvature estimation, have allowed us to carry out accurate simulations near the separator plate. The inclusion of the separator plate in the analysis have been shown to have a capital importance on the instabilities generated just after it. The influence of some operational parameters like the momentum ratio, the gas and liquid Reynolds numbers based on the thickness of the boundary layer, the density and viscosity ratios or the thickness and angle of the separator plate are investigated. The analysis of these phenomena is aimed at shedding some new insight into the physical mechanisms controlling atomization processes and to provide better basis for future theoretical analysis.

  12. Traction–separation relationships for hydrogen induced grain boundary embrittlement in nickel via molecular dynamics simulations

    SciTech Connect

    Barrows, Wesley; Dingreville, Rémi; Spearot, Douglas

    2015-10-19

    A statistical approach combined with molecular dynamics simulations is used to study the influence of hydrogen on intergranular decohesion. This methodology is applied to a Ni Σ3(112)[11¯0] symmetric tilt grain boundary. Hydrogenated grain boundaries with different H concentrations are constructed using an energy minimization technique with initial H atom positions guided by Monte Carlo simulation results. Decohesion behavior is assessed through extraction of a traction–separation relationship during steady-state crack propagation in a statistically meaningful approach, building upon prior work employing atomistic cohesive zone volume elements (CZVEs). A sensitivity analysis is performed on the numerical approach used to extract the traction–separation relationships, clarifying the role of CZVE size, threshold parameters necessary to differentiate elastic and decohesion responses, and the numerical averaging technique. Results show that increasing H coverage at the Ni Σ3(112)[11¯0] grain boundary asymmetrically influences the crack tip velocity during propagation, leads to a general decrease in the work of separation required for crack propagation, and provides a reduction in the peak stress in the extracted traction–separation relationship. Furthermore the present framework offers a meaningful vehicle to pass atomistically derived interfacial behavior to higher length scale formulations for intergranular fracture.

  13. From matrix nano- and micro-phase tougheners to composite macro-properties.

    PubMed

    Kinloch, A J; Taylor, A C; Techapaitoon, M; Teo, W S; Sprenger, S

    2016-07-13

    In this paper, firstly, the morphology and toughness of a range of bulk epoxy polymers, which incorporate a second phase of well-dispersed silica nanoparticles and/or rubber microparticles, have been determined. Secondly, the macro-properties of natural-fibre reinforced-plastic (NFRP) composites based upon these epoxy polymers have been ascertained, using (i) unidirectional flax fibres or (ii) regenerated-cellulose fibres in the architecture of a plain-woven fabric. Thirdly, the toughening mechanisms which are induced in these materials by the presence of the silica nanoparticles, the rubber microparticles and the natural fibres have been identified. Finally, the values of the toughness of the bulk epoxy polymers and corresponding NFRPs have been quantitatively modelled. The increased toughness recorded for the bulk epoxy polymer due to the presence of the silica nanoparticles and/or rubber microparticles was indeed typically transferred to the NFRP composites when using such epoxies as the matrices for the fibres. Thus, the important role that may be played by modifications to the epoxy matrices in order to increase the toughness of the composites was very clearly demonstrated by these results. However, notwithstanding, the toughening mechanisms induced by the fibres were essentially responsible for the very high toughnesses of the NFRP composites, compared with the bulk epoxy polymers. The modelling studies successfully predicted the values of toughness of the bulk epoxy polymers and of the NFRP composites. These studies also quantified the extent to which each toughening mechanism, induced by the second-phase nano- and microparticles and the natural fibres, contributed to the overall values of toughness of the materials. This article is part of the themed issue 'Multiscale modelling of the structural integrity of composite materials'. PMID:27242298

  14. From matrix nano- and micro-phase tougheners to composite macro-properties.

    PubMed

    Kinloch, A J; Taylor, A C; Techapaitoon, M; Teo, W S; Sprenger, S

    2016-07-13

    In this paper, firstly, the morphology and toughness of a range of bulk epoxy polymers, which incorporate a second phase of well-dispersed silica nanoparticles and/or rubber microparticles, have been determined. Secondly, the macro-properties of natural-fibre reinforced-plastic (NFRP) composites based upon these epoxy polymers have been ascertained, using (i) unidirectional flax fibres or (ii) regenerated-cellulose fibres in the architecture of a plain-woven fabric. Thirdly, the toughening mechanisms which are induced in these materials by the presence of the silica nanoparticles, the rubber microparticles and the natural fibres have been identified. Finally, the values of the toughness of the bulk epoxy polymers and corresponding NFRPs have been quantitatively modelled. The increased toughness recorded for the bulk epoxy polymer due to the presence of the silica nanoparticles and/or rubber microparticles was indeed typically transferred to the NFRP composites when using such epoxies as the matrices for the fibres. Thus, the important role that may be played by modifications to the epoxy matrices in order to increase the toughness of the composites was very clearly demonstrated by these results. However, notwithstanding, the toughening mechanisms induced by the fibres were essentially responsible for the very high toughnesses of the NFRP composites, compared with the bulk epoxy polymers. The modelling studies successfully predicted the values of toughness of the bulk epoxy polymers and of the NFRP composites. These studies also quantified the extent to which each toughening mechanism, induced by the second-phase nano- and microparticles and the natural fibres, contributed to the overall values of toughness of the materials. This article is part of the themed issue 'Multiscale modelling of the structural integrity of composite materials'.

  15. A new approach to network heterogeneity: Polymerization Induced Phase Separation in photo-initiated, free-radical methacrylic systems.

    PubMed

    Szczepanski, Caroline R; Pfeifer, Carmem S; Stansbury, Jeffrey W

    2012-09-28

    Non-reactive, thermoplastic prepolymers (poly- methyl, ethyl and butyl methacrylate) were added to a model homopolymer matrix composed of triethylene glycol dimethacrylate (TEGDMA) to form heterogeneous networks via polymerization induced phase separation (PIPS). PIPS creates networks with distinct phase structure that can partially compensate for volumetric shrinkage during polymerization through localized internal volume expansion. This investigation utilizes purely photo-initiated, free-radical systems, broadening the scope of applications for PIPS since these processing conditions have not been studied previously.The introduction of prepolymer into TEGDMA monomer resulted in stable, homogeneous monomer formulations, most of which underwent PIPS upon photo-irradiation, creating heterogeneous networks. During polymerization the presence of prepolymer enhanced autoacceleration, allowing for a more extensive ambient cure of the material. Phase separation, as characterized by dynamic changes in sample turbidity, was monitored simultaneously with monomer conversion and either preceded or was coincident with network gelation. Dynamic mechanical analysis shows a broadening of the tan delta peak and secondary peak formation, characteristic of phase-separated materials, indicating one phase rich in prepolymer and another depleted form upon phase separation. In certain cases, PIPS leads to an enhanced physical reduction of volumetric shrinkage, which is attractive for many applications including dental composite materials. PMID:23109733

  16. Shear-induced crystallization in phase-separated blend of isotactic polypropylene and poly (ethylene-co-octene).

    PubMed

    Meng, Kun; Dong, Xia; Hong, Song; Wang, Xin; Cheng, He; Han, Charles C

    2008-01-14

    Isothermal crystallization after shear in a blend of isotactic polypropylene (iPP) and poly (ethylene-co-octene) (PEOc) was investigated by in situ optical microscopy and shear hot stage under various thermal and shear histories. Crystalline cylindrites during growth were observed in phase-separated iPPPEOc blends for the first time. According to our results, the very long cylindrites are formed which are much longer than the dimensions of the liquid-liquid phase-separated domains under shear, and the cylindrites appear to grow through noncrystallizable domains, as well as through crystallizable ones. Obviously, the nuclei ("shish") come from the oriented and entangled network strands instead of pulled-out long chains. The number of cylindrites and the distortion and breakup of the cylindrites are related to the shear rate and shear time. On the other hand, the number of spherulites increases not only with shear rate but also with liquid-liquid phase separation time. Spherulites always form with longer induction time than cylindrites due to the different nucleation mechanism. The shish is nucleated through the shear-induced mechanism, and most of the spherulites are nucleated through liquid-liquid spinodal decomposition and crossover after the cessation of shear. During the process of experiments, we also found three kinds of shish-kebab structures, which provide further physical insights into the mechanism of the shish formation in polymer blend after liquid-liquid phase separation under shear. PMID:18205474

  17. Ramsey's method of separated oscillating fields and its application to gravitationally induced quantum phase shifts

    SciTech Connect

    Abele, H.; Jenke, T.; Leeb, H.; Schmiedmayer, J.

    2010-03-15

    We propose to apply Ramsey's method of separated oscillating fields to the spectroscopy of the quantum states in the gravity potential above a horizontal mirror. This method allows a precise measurement of quantum mechanical phaseshifts of a Schroedinger wave packet bouncing off a hard surface in the gravitational field of the Earth. Measurements with ultracold neutrons will offer a sensitivity to Newton's law or hypothetical short-ranged interactions, which is about 21 orders of magnitude below the energy scale of electromagnetism.

  18. Embryonic left-right separation mechanism allows confinement of mutation-induced phenotypes to one lateral body half of bilaterians.

    PubMed

    Ma, Kun

    2013-12-01

    A fundamental question in developmental biology is how a chimeric animal such as a bilateral gynandromorphic animal can have different phenotypes confined to different lateral body halves, and how mutation-induced phenotypes, such as genetic diseases, can be confined to one lateral body half in patients. Here, I propose that embryos of many, if not all, bilaterian animals are divided into left and right halves at a very early stage (which may vary among different types of animals), after which the descendants of the left-sided and right-sided cells will almost exclusively remain on their original sides, respectively, throughout the remaining development. This embryonic left-right separation mechanism allows (1) mutations and the mutation-induced phenotypes to be strictly confined to one lateral body half in animals and humans; (2) mothers with bilateral hereditary primary breast cancer to transmit their disease to their offspring at twofold of the rate compared to mothers with unilateral hereditary breast cancer; and (3) a mosaic embryo carrying genetic or epigenetic mutations to develop into either an individual with the mutation-induced phenotype confined unilaterally, or a pair of twins displaying complete, partial, or mirror-image discordance for the phenotype. Further, this left-right separation mechanism predicts that the two lateral halves of a patient carrying a unilateral genetic disease can each serve as a case and an internal control, respectively, for genetic and epigenetic comparative studies to identify the disease causations.

  19. Traction–separation relationships for hydrogen induced grain boundary embrittlement in nickel via molecular dynamics simulations

    DOE PAGES

    Barrows, Wesley; Dingreville, Rémi; Spearot, Douglas

    2015-10-19

    A statistical approach combined with molecular dynamics simulations is used to study the influence of hydrogen on intergranular decohesion. This methodology is applied to a Ni Σ3(112)[11¯0] symmetric tilt grain boundary. Hydrogenated grain boundaries with different H concentrations are constructed using an energy minimization technique with initial H atom positions guided by Monte Carlo simulation results. Decohesion behavior is assessed through extraction of a traction–separation relationship during steady-state crack propagation in a statistically meaningful approach, building upon prior work employing atomistic cohesive zone volume elements (CZVEs). A sensitivity analysis is performed on the numerical approach used to extract the traction–separationmore » relationships, clarifying the role of CZVE size, threshold parameters necessary to differentiate elastic and decohesion responses, and the numerical averaging technique. Results show that increasing H coverage at the Ni Σ3(112)[11¯0] grain boundary asymmetrically influences the crack tip velocity during propagation, leads to a general decrease in the work of separation required for crack propagation, and provides a reduction in the peak stress in the extracted traction–separation relationship. Furthermore the present framework offers a meaningful vehicle to pass atomistically derived interfacial behavior to higher length scale formulations for intergranular fracture.« less

  20. Maternal separation induces neuroinflammation and long-lasting emotional alterations in mice.

    PubMed

    Gracia-Rubio, Irene; Moscoso-Castro, Maria; Pozo, Oscar J; Marcos, Josep; Nadal, Roser; Valverde, Olga

    2016-02-01

    Early life experiences play a key role in brain function and behaviour. Adverse events during childhood are therefore a risk factor for psychiatric disease during adulthood, such as mood disorders. Maternal separation is a validated mouse model for maternal neglect, producing negative early life experiences that result in subsequent emotional alteration. Mood disorders have been found to be associated with neurochemical changes and neurotransmitter deficits such as reduced availability of monoamines in discrete brain areas. Emotional alterations like depression result in reduced serotonin availability and enhanced kynurenine metabolism through the action of indoleamine 2, 3-dioxygenase in response to neuroinflammatory factors. This mechanism involves regulation of the neurotransmitter system by neuroinflammatory agents, linking mood regulation to neuroinmunological reactions. In this context, the aim of this study was to investigate the effects of maternal separation with early weaning on emotional behaviour in mice. We investigated neuroinflammatory responses and the state of the tryptophan-kynurenine metabolic pathway in discrete brain areas following maternal separation. We show that adverse events during early life increase risk of long-lasting emotional alterations during adolescence and adulthood. These emotional alterations are particularly severe in females. Behavioural impairments were associated with microglia activation and disturbed tryptophan-kynurenine metabolism in brain areas related to emotional control. This finding supports the preeminent role of neuroinflammation in emotional disorders.

  1. Vortex generators for control of shock-induced separation. Part 3: Examples of applications of vortex generators to aircraft

    NASA Astrophysics Data System (ADS)

    1993-12-01

    ESDU 93026 illustrates by case studies the use of the information in Parts 1 and 2 on the use of vortex generators to control shock-induced separation. The examples are the control of internal noise by the application of vortex generators on the forward cabin roof of a business aircraft (Gulfstream III), the control of separation associated with a three-shock pattern near the tip of a highly swept and tapered model wing in a wind-tunnel, and the improvement of the buffet maneuver boundary on a straight wing interceptor aircraft of the fifties. In each case the geometric details of the arrays of vortex generators tested are provided, the results obtained are described, and the aerodynamic principles involved that influence those results are assessed.

  2. Polymer induced flocculation and separation of particulates from extracts of lignocellulosic materials.

    PubMed

    Duarte, G V; Ramarao, B V; Amidon, T E

    2010-11-01

    Biofuels from lignocellulosic materials like wood are renewable and sustainable alternatives to petroleum and other fossil fuels. Wood can be grown and harvested without adding to the carbon load of the atmosphere and thus can be part of the solution to the problem posed by global climate changes. Recently much interest has developed on the concept of the forest product biorefinery, where wood is hydrolyzed prior to conventional pulping and papermaking processes and the hydrolyzate consisting of hemicellulose sugars are to be used as a feedstock for biofuels or bioplastics. The purification of the hydrolyzate stream and the separation of fermentable sugars from it thus constitutes an important step in biorefinery processes. The separation of particulate material from wood hydrolyzates is considered in this paper. Sugar maple hardwood was extracted with hot water at 160 degrees C. The extracts contain hemicelluloses (primarily xylooligomers, xylose and xylan), acetic acid and smaller amounts of lignin. The colloidal stability of the extracts plays a critical role in the separation and purification of the wood extracts. Here, we report the size and charge of the particles in the extract measured using standard instruments based on light scattering and microelectrophoresis. Particles were found to be in the size range from approximately 220nm to 270nm. Zeta potential measurements showed them to be negatively charged. By treating the extracts with a cationic flocculating agent poly-DADMAC, it was possible to preferentially precipitate out the colloidal fraction containing lignin and lignin derived compounds. Upon the addition of poly-DADMAC the turbidity of the suspension reduced from 920 NTU to 4 NTU in a 24 h period and particulates sedimented from the extract. The lignin concentration was reduced in the supernatant, while the sugar content remained unchanged. The addition of an indifferent electrolyte hindered the effectiveness of the polyelectrolyte. The optimum p

  3. Laser-induced shockwave chromatography: a separation and analysis method for nanometer-sized particles and molecules.

    PubMed

    Nagahara, Tetsuhiko; Ichinose, Nobuyuki; Nakamura, Shinpei

    2011-04-01

    A microscopic chromatography has been developed where nanometer-size molecules or particles are separated according to their size by the laser-induced shockwave in a water-filled capillary. As the shockwave passed through the mixture of molecules/particles in solution, they move to the direction of the propagation of the shockwave. The distance from the point of shockwave generation depends on the particle size or molecular weight. This technique has some advantages compared to conventional chromatography, in terms of quick analysis of molecular weight and applicability to sticky and adsorbing polymers. Experimental results obtained for proteins, their aggregates, and inorganic nanoparticles are presented.

  4. Oxidation Ability of Plasmon-Induced Charge Separation Evaluated on the Basis of Surface Hydroxylation of Gold Nanoparticles.

    PubMed

    Nishi, Hiroyasu; Tatsuma, Tetsu

    2016-08-26

    The oxidation ability of plasmonic photocatalysts, which has its origins in plasmon-induced charge separation and has not yet been studied quantitatively and systematically, is important for designing practical photocatalytic systems. Oxidation ability was investigated on the basis of surface hydroxylation of Au nanoparticles on TiO2 at various irradiation wavelengths and electrolyte pH values. The reaction proceeds only when the sum of the flat band potential of TiO2 and the irradiated photon energy is close to, or more positive than, the theoretical potential for the reaction. PMID:27505255

  5. Continuous-flow Electrophoretic Separation of Particles with Dissimilar Charge-to-Mass Ratios via the Wall-induced Non-inertial Lift

    NASA Astrophysics Data System (ADS)

    Thomas, Cory; Todd, Andrew; Lu, Xinyu; Xuan, Xiangchun

    2015-11-01

    Traditional electrophoresis separates particles with dissimilar charge-to-mass ratios along the channel length direction in a batchwise mode. We present in this talk a continuous-flow electrophoretic separation of particles in the transverse direction of a straight microchannel. This separation stems from the particle property-dependent lateral migration due to the wall-induced non-inertial electrical lift force. It is demonstrated through both a binary and a ternary separation of polymer particles based on surface charge and size. A numerical model is also developed to understand this separation and to study the parametric effects.

  6. Current-induced magnetization dynamics in two magnetic insulators separated by a normal metal

    NASA Astrophysics Data System (ADS)

    Skarsvâg, Hans; Bauer, Gerrit E. W.; Brataas, Arne

    2014-08-01

    We study the dynamics of spin valves consisting of two layers of magnetic insulators separated by a normal metal in the macrospin model. A current through the spacer generates a spin Hall current that can actuate the magnetization via the spin-transfer torque. We derive expressions for the effective Gilbert damping and the critical currents for the onset of magnetization dynamics including the effects of spin pumping that can be tested by ferromagnetic resonance experiments. The current generates an amplitude asymmetry between the in-phase and out-of-phase modes. We discuss superlattices of stacked films of metals and magnetic insulators.

  7. Liquid filament instability due to stretch-induced phase separation in polymer solutions

    NASA Astrophysics Data System (ADS)

    Arinstein, Arkadii; Kulichikhin, Valery; Malkin, Alexander; Technion-Israel Institute of Technology Collaboration; Institute of Petrochemical Synthesis, Russian Academy of Sciences Team

    2015-03-01

    The instability in a jet of a viscoelastic semi-dilute entangled polymer solution under high stretching is discussed. Initially, the variation in osmotic pressure can compensate for decrease in the capillary force, and the jet is stable. The further evolution of the polymer solution along the jet results in formation of a filament in the jet center and of a near-surface solvent layer. Such a redistribution of polymer seems like a ``phase separation'', but it is related to stretching of the jet. The viscous liquid shell demonstrates Raleigh-type instability resulting in the formation of individual droplets on the oriented filament. Experimental observations showed that this separation is starting during few first seconds, and continues of about 10 -15 seconds. The modeling shows that a jet stretching results in a radial gradient in the polymer distribution: the polymer is concentrated in the jet center, whereas the solvent is remaining near the surface. The key point of this model is that a large longitudinal stretching of a polymer network results in its lateral contraction, so a solvent is pressed out of this polymer network because of the decrease in its volume. V.K. and A.M. acknowledge the financial support of the Russian Scientific Foundation (Grant 4-23-00003).

  8. Interaction Mechanisms of Cavitation Bubbles Induced by Spatially and Temporally Separated fs-Laser Pulses

    PubMed Central

    Tinne, Nadine; Kaune, Brigitte; Krüger, Alexander; Ripken, Tammo

    2014-01-01

    The emerging use of femtosecond lasers with high repetition rates in the MHz regime together with limited scan speed implies possible mutual optical and dynamical interaction effects of the individual cutting spots. In order to get more insight into the dynamics a time-resolved photographic analysis of the interaction of cavitation bubbles is presented. Particularly, we investigated the influence of fs-laser pulses and their resulting bubble dynamics with various spatial as well as temporal separations. Different time courses of characteristic interaction effects between the cavitation bubbles were observed depending on pulse energy and spatio-temporal pulse separation. These ranged from merely no interaction to the phenomena of strong water jet formation. Afterwards, the mechanisms are discussed regarding their impact on the medical application of effective tissue cutting lateral to the laser beam direction with best possible axial precision: the mechanical forces of photodisruption as well as the occurring water jet should have low axial extend and a preferably lateral priority. Furthermore, the overall efficiency of energy conversion into controlled mechanical impact should be maximized compared to the transmitted pulse energy and unwanted long range mechanical side effects, e.g. shock waves, axial jet components. In conclusion, these experimental results are of great importance for the prospective optimization of the ophthalmic surgical process with high-repetition rate fs-lasers. PMID:25502697

  9. Interaction mechanisms of cavitation bubbles induced by spatially and temporally separated fs-laser pulses.

    PubMed

    Tinne, Nadine; Kaune, Brigitte; Krüger, Alexander; Ripken, Tammo

    2014-01-01

    The emerging use of femtosecond lasers with high repetition rates in the MHz regime together with limited scan speed implies possible mutual optical and dynamical interaction effects of the individual cutting spots. In order to get more insight into the dynamics a time-resolved photographic analysis of the interaction of cavitation bubbles is presented. Particularly, we investigated the influence of fs-laser pulses and their resulting bubble dynamics with various spatial as well as temporal separations. Different time courses of characteristic interaction effects between the cavitation bubbles were observed depending on pulse energy and spatio-temporal pulse separation. These ranged from merely no interaction to the phenomena of strong water jet formation. Afterwards, the mechanisms are discussed regarding their impact on the medical application of effective tissue cutting lateral to the laser beam direction with best possible axial precision: the mechanical forces of photodisruption as well as the occurring water jet should have low axial extend and a preferably lateral priority. Furthermore, the overall efficiency of energy conversion into controlled mechanical impact should be maximized compared to the transmitted pulse energy and unwanted long range mechanical side effects, e.g. shock waves, axial jet components. In conclusion, these experimental results are of great importance for the prospective optimization of the ophthalmic surgical process with high-repetition rate fs-lasers.

  10. Hepatitis C Virus E1 and E2 Proteins Used as Separate Immunogens Induce Neutralizing Antibodies with Additive Properties

    PubMed Central

    Beaumont, Elodie; Roch, Emmanuelle; Chopin, Lucie; Roingeard, Philippe

    2016-01-01

    Various strategies involving the use of hepatitis C virus (HCV) E1 and E2 envelope glycoproteins as immunogens have been developed for prophylactic vaccination against HCV. However, the ideal mode of processing and presenting these immunogens for effective vaccination has yet to be determined. We used our recently described vaccine candidate based on full-length HCV E1 or E2 glycoproteins fused to the heterologous hepatitis B virus S envelope protein to compare the use of the E1 and E2 proteins as separate immunogens with their use as the E1E2 heterodimer, in terms of immunogenetic potential and the capacity to induce neutralizing antibodies. The specific anti-E1 and anti-E2 antibody responses induced in animals immunized with vaccine particles harboring the heterodimer were profoundly impaired with respect to those in animals immunized with particles harboring E1 and E2 separately. Moreover, the anti-E1 and anti-E2 antibodies had additive neutralizing properties that increase the cross-neutralization of heterologous strains of various HCV genotypes, highlighting the importance of including both E1 and E2 in the vaccine for an effective vaccination strategy. Our study has important implications for the optimization of HCV vaccination strategies based on HCV envelope proteins, regardless of the platform used to present these proteins to the immune system. PMID:26966906

  11. Hepatitis C Virus E1 and E2 Proteins Used as Separate Immunogens Induce Neutralizing Antibodies with Additive Properties.

    PubMed

    Beaumont, Elodie; Roch, Emmanuelle; Chopin, Lucie; Roingeard, Philippe

    2016-01-01

    Various strategies involving the use of hepatitis C virus (HCV) E1 and E2 envelope glycoproteins as immunogens have been developed for prophylactic vaccination against HCV. However, the ideal mode of processing and presenting these immunogens for effective vaccination has yet to be determined. We used our recently described vaccine candidate based on full-length HCV E1 or E2 glycoproteins fused to the heterologous hepatitis B virus S envelope protein to compare the use of the E1 and E2 proteins as separate immunogens with their use as the E1E2 heterodimer, in terms of immunogenetic potential and the capacity to induce neutralizing antibodies. The specific anti-E1 and anti-E2 antibody responses induced in animals immunized with vaccine particles harboring the heterodimer were profoundly impaired with respect to those in animals immunized with particles harboring E1 and E2 separately. Moreover, the anti-E1 and anti-E2 antibodies had additive neutralizing properties that increase the cross-neutralization of heterologous strains of various HCV genotypes, highlighting the importance of including both E1 and E2 in the vaccine for an effective vaccination strategy. Our study has important implications for the optimization of HCV vaccination strategies based on HCV envelope proteins, regardless of the platform used to present these proteins to the immune system.

  12. Influence of acid-induced conformational variability on protein separation in reversed phase high performance liquid chromatography.

    PubMed

    Bobály, Balázs; Tóth, Eszter; Drahos, László; Zsila, Ferenc; Visy, Júlia; Fekete, Jenő; Vékey, Károly

    2014-01-17

    Influence of acid concentration in the mobile phase on protein separation was studied in a wide concentration range using trifluoroacetic acid (TFA) and formic acid (FA). At low, 0.001-0.01 (v/v%) TFA concentration and appropriate solvent strength proteins elute before the column's dead time. This is explained by the proteins having a structured, but relatively extended conformation in the eluent; and are excluded from the pores of the stationary phase. Above ca. 0.01-0.05 (v/v%) TFA concentration proteins undergo further conformational change, leading to a compact, molten globule-like structure, likely stabilized by ion pairing. Proteins in this conformation enter the pores and are retained on the column. The results suggest a pore exclusion induced separation related to protein conformation. This effect is influenced by the pH and type of acid used, and is likely to involve ion-pair formation. The TFA concentration needed to result in protein folding (and therefore to observe retention on the column) depends on the protein; and therefore can be utilized to improve chromatographic performance. Conformation change was monitored by circular dichroism spectroscopy and mass spectrometry; and it was shown that not only TFA but FA can also induce molten globule formation. PMID:24373532

  13. A Transient Model of Induced Natural Circulation Thermal Cycling for Hydrogen Isotope Separation

    SciTech Connect

    SHADDAY, MARTIN

    2005-07-12

    The property of selective temperature dependence of adsorption and desorption of hydrogen isotopes by palladium is used for isotope separation. A proposal to use natural circulation of nitrogen to alternately heat and cool a packed bed of palladium coated beads is under active investigation, and a device consisting of two interlocking natural convection loops is being designed. A transient numerical model of the device has been developed to aid the design process. It is a one-dimensional finite-difference model, using the Boussinesq approximation. The thermal inertia of the pipe walls and other heat structures as well as the heater control logic is included in the model. Two system configurations were modeled and results are compared.

  14. Shock tunnel measurements of surface pressures in shock induced separated flow field using MEMS sensor array

    NASA Astrophysics Data System (ADS)

    Sriram, R.; Ram, S. N.; Hegde, G. M.; Nayak, M. M.; Jagadeesh, G.

    2015-09-01

    Characterized not just by high Mach numbers, but also high flow total enthalpies—often accompanied by dissociation and ionization of flowing gas itself—the experimental simulation of hypersonic flows requires impulse facilities like shock tunnels. However, shock tunnel simulation imposes challenges and restrictions on the flow diagnostics, not just because of the possible extreme flow conditions, but also the short run times—typically around 1 ms. The development, calibration and application of fast response MEMS sensors for surface pressure measurements in IISc hypersonic shock tunnel HST-2, with a typical test time of 600 μs, for the complex flow field of strong (impinging) shock boundary layer interaction with separation close to the leading edge, is delineated in this paper. For Mach numbers 5.96 (total enthalpy 1.3 MJ kg-1) and 8.67 (total enthalpy 1.6 MJ kg-1), surface pressures ranging from around 200 Pa to 50 000 Pa, in various regions of the flow field, are measured using the MEMS sensors. The measurements are found to compare well with the measurements using commercial sensors. It was possible to resolve important regions of the flow field involving significant spatial gradients of pressure, with a resolution of 5 data points within 12 mm in each MEMS array, which cannot be achieved with the other commercial sensors. In particular, MEMS sensors enabled the measurement of separation pressure (at Mach 8.67) near the leading edge and the sharply varying pressure in the reattachment zone.

  15. Structure of salts solution in polar dielectric liquids and electrically induced separation of solvated ions

    NASA Astrophysics Data System (ADS)

    Shamanin, Igor V.; Kazaryan, Mishik A.; Sachkov, Victor I.

    2015-12-01

    The aim of study is to demonstrate that separation of solvated ions in solution of mix of salts under the action of external periodic electric field happens because of around ions there are formed clusters consisting of molecules of solvent and the sizes of such clusters have dimensions ~ 0.1 μm. In investigations the sizes of clusters theoretically were defined and experimentally value of frequency of external electric field which action excites the effect of separation of the solvated ions was defined. Experiments were done in the Technical Physics Chair of the National Research Tomsk Polytechnic University. At theoretical determination of the dimensions of clusters Poisson's equation was solved and was considered that polar molecules of solvent are oriented under the action of electric field of an ion. The chemical composition of samples of solutions was determined by means of the spectrophotometry and he X-ray excited fluorescent radiation analysis method. Theoretical estimates and results of experiments confirmed the assumption that clusters which are formed around ions in solutions have the dimensions ~ 0.1 μm. Results of investigation testify that placing of volume distributed electric charge of ion in dielectric liquid is accompanied by formation of the supramolecular particles, which we called "clusters", linear sizes of which is significantly more than first and second radiuses of solvation (~ 1 Angstrom) and reach size ~ 0.1 μm. At such sizes inertial properties of clusters and their natural frequencies give the chance to operate their movement by means of action of external electric field on solution.

  16. Initial Droplet Size Impacts pH-Induced Structural Changes in Phase-Separated Polymer Dispersions.

    PubMed

    Thongkaew, Chutima; Zeeb, Benjamin; Gibis, Monika; Hinrichs, Jörg; Weiss, Jochen

    2016-05-01

    The effect of pH change on the morphology of whey protein isolate (WPI)-pectin dispersions obtained from phase-separated systems after mild shear was studied. The purpose of this study was to examine the impact of mixing speed on the initial particle size of biopolymer complexes and their structure morphology after sequentially changing the pH. Therefore, solutions of WPI and pectin were combined at pH 6.1, allowed to phase separate and were then mildly homogenized at 50, 100, and 150 rpm, respectively, to form a dispersion containing differently sized WPI droplets in a surrounding pectin-rich phase. Each dispersion was then subjected to a pH change, such as 6.1 to 5.2 and 3.2, by slowly adding hydrochloric acid. The systems morphology, size, appearance, rheology, and storage stability was then characterized by optical microscopy, static light scattering, visual inspections, and steady shear rheometry to gain insights into the structural rearrangements. Results indicated substantial changes in the structure of the dispersion when the pH was changed. Formation of core-shell structures from the WPI droplets was observed at an intermediate pH. There, initial droplet size was found to affect structures formed, that is, core-shell type particles would only form if droplets were large (>1.5 μm) prior to pH change. Insights gained may be of importance to food manufacturers intending to create new structures from mixtures of proteins and carbohydrates. PMID:27061600

  17. Poly(ethylene glycol)-induced and temperature-dependent phase separation in fluid binary phospholipid membranes.

    PubMed Central

    Lehtonen, J. Y.; Kinnunen, P. K.

    1995-01-01

    Exclusion of the strongly hygroscopic polymer, poly(ethylene glycol) (PEG), from the surface of phosphatidylcholine liposomes results in an osmotic imbalance between the hydration layer of the liposome surface and the bulk polymer solution, thus causing a partial dehydration of the phospholipid polar headgroups. PEG (average molecular weight of 6000 and in concentrations ranging from 5 to 20%, w/w) was added to the outside of large unilamellar liposomes (LUVs). This leads to, in addition to the dehydration of the outer monolayer, an osmotically driven water outflow and shrinkage of liposomes. Under these conditions phase separation of the fluorescent lipid 1-palmitoyl-2[6-(pyren-1-yl)]decanoyl-sn-glycero-3-phosphocholine (PPDPC) embedded in various phosphatidylcholine matrices was observed, evident as an increase in the excimer-to-monomer fluorescence intensity ratio (IE/IM). Enhanced segregation of the fluorescent lipid was seen upon increasing and equal concentrations of PEG both inside and outside of the LUVs, revealing that osmotic gradient across the membrane is not required, and phase separation results from the dehydration of the lipid. Importantly, phase separation of PPDPC could be induced by PEG also in binary mixtures with 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC), and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), for which temperature-induced phase segregation of the fluorescent lipid below Tm was otherwise not achieved. In the different lipid matrices the segregation of PPDPC caused by PEG was abolished above characteristic temperatures T0 well above their respective main phase transition temperatures Tm. For 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), DMPC, SOPC, and POPC, T0 was observed at approximately 50, 32, 24, and 20 degrees C, respectively. Notably, the observed phase separation of PPDPC cannot be accounted for the 1 degree C increase in Tm for DMPC or for the

  18. Order-Disorder Transition and Phase Separation in the MgB2 Metallic Sublattice Induced by Al Doping.

    PubMed

    Brutti, S; Gigli, G

    2009-07-14

    MgB2 is a superconductor constituted by alternating Mg and B planar layers: doping of both the sublattices has been observed experimentally to destroy the outstanding superconductive properties of this simple material. In this study we present the investigation by first principles methods at atomistic scale of the phase separation induced by aluminum doping in the MgB2 lattice. The calculations were performed by Density Functional Theory in generalized gradient approximation and pseudopotentials. Orthorhombic oP36 supercells derived by the primitive hR3 MgB2 cell were built in order to simulate the aluminum-magnesium substitution in the 0-50% composition range. The computational results explained the occurrence of a phase separation in the Mg1-xAlxB2 system. The miscibility gap is predicted to be induced by an order-disorder transition in the metallic sublattice at high Al concentration. Indeed at 1000 K aluminum substitution takes place on random Mg sites for concentration up to 17% of the total metallic sites, whereas at Al content larger than 31% the substitution is energetically more favorable on alternated metallic layers (Mg undoped planes alternate with Mg-Al layers). The formation of this Al-rich phase lead at 50% doping to the formation of the double omega Mg1/2Al1/2B2 ordered lattice. From 17 to 31% the two phases, the disordered Mg1-xAlxB2 (x < 0.17) and the ordered Mg1/2+yAl1/2-yB2 (y < 0.19) lattices, coexist. This phase separation is driven by the balance of the enthalpy and entropy contributions to the Gibbs energy. Present DFT-GGA calculations indicate that this thermodynamically predicted suppression of the Al doping disorder in the metallic sublattice of MgB2 occurs in parallel with the collapse of the superconductive properties of the material.

  19. Protective Effects of Diallyl Sulfide and Curcumin Separately against Thallium-Induced Toxicity in Rats.

    PubMed

    Abdel-Daim, Mohamed M; Abdou, Rania H

    2015-01-01

    Thallium acetate (TI) is a cumulative poison intimately accompanied by an increase in reactive oxygen species (ROS) formation that represents an important risk factor for tissue injury and malfunction. This study aims to determine the possible hepatoprotective and antioxidant effects of diallyl sulfide (DAS) from garlic and curcumin from turmeric against TI-induced liver injury and oxidative stress (OS) in rats. This in vivo animal study divided rats into six groups of 8 rats per group. The first group received saline and served as the control group. The second and third groups received DAS or curcumin only at a dose of 200 mg/kg. The fourth group received TI at a dose of 6.4 mg/kg for 5 consecutive days. The fifth and sixth groups received DAS or curcumin orally 1 hour before TI intoxication at the same dose as the second and third groups. Liver integrity serum enzymes aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), and γ-glutamyltransferase (γ-GT) were evaluated. Serum and liver tissue homogenate lipid peroxidation and OS biomarkers were measured. The data were analyzed by one-way ANOVA followed by Duncan's multiple range test for post hoc analysis using SPSS version 16. TI induced marked oxidative liver damage as shown by significantly (P≤0.05) elevated serum AST, ALT, ALP, LDH and γ-GT levels. There were significant (P≤0.05) increases in serum and hepatic malondialdehyde (MDA) and serum nitric oxide (NO) as well as decreased hepatic glutathione (GSH) and catalase (CAT) activities. There were significantly (P≤0.05) less serum and hepatic superoxide dismutase (SOD) and total antioxidant capacity (TAC). Pre-treatment with DAS or curcumin ameliorated the changes in most studied biochemical parameters. DAS and curcumin effectively reduced TI-induced liver toxicity. PMID:26199917

  20. Sex determination in honeybees: two separate mechanisms induce and maintain the female pathway.

    PubMed

    Gempe, Tanja; Hasselmann, Martin; Schiøtt, Morten; Hause, Gerd; Otte, Marianne; Beye, Martin

    2009-10-01

    Organisms have evolved a bewildering diversity of mechanisms to generate the two sexes. The honeybee (Apis mellifera) employs an interesting system in which sex is determined by heterozygosity at a single locus (the Sex Determination Locus) harbouring the complementary sex determiner (csd) gene. Bees heterozygous at Sex Determination Locus are females, whereas bees homozygous or hemizygous are males. Little is known, however, about the regulation that links sex determination to sexual differentiation. To investigate the control of sexual development in honeybees, we analyzed the functions and the regulatory interactions of genes involved in the sex determination pathway. We show that heterozygous csd is only required to induce the female pathway, while the feminizer (fem) gene maintains this decision throughout development. By RNAi induced knockdown we show that the fem gene is essential for entire female development and that the csd gene exclusively processes the heterozygous state. Fem activity is also required to maintain the female determined pathway throughout development, which we show by mosaic structures in fem-repressed intersexuals. We use expression of Fem protein in males to demonstrate that the female maintenance mechanism is controlled by a positive feedback splicing loop in which Fem proteins mediate their own synthesis by directing female fem mRNA splicing. The csd gene is only necessary to induce this positive feedback loop in early embryogenesis by directing splicing of fem mRNAs. Finally, fem also controls the splicing of Am-doublesex transcripts encoding conserved male- and female-specific transcription factors involved in sexual differentiation. Our findings reveal how the sex determination process is realized in honeybees differing from Drosophila melanogaster.

  1. Protective Effects of Diallyl Sulfide and Curcumin Separately against Thallium-Induced Toxicity in Rats

    PubMed Central

    Abdel-Daim, Mohamed M.; Abdou, Rania H.

    2015-01-01

    Thallium acetate (TI) is a cumulative poison intimately accompanied by an increase in reactive oxygen species (ROS) formation that represents an important risk factor for tissue injury and malfunction. This study aims to determine the possible hepatoprotective and antioxidant effects of diallyl sulfide (DAS) from garlic and curcumin from turmeric against TI-induced liver injury and oxidative stress (OS) in rats. This in vivo animal study divided rats into six groups of 8 rats per group. The first group received saline and served as the control group. The second and third groups received DAS or curcumin only at a dose of 200 mg/kg. The fourth group received TI at a dose of 6.4 mg/kg for 5 consecutive days. The fifth and sixth groups received DAS or curcumin orally 1 hour before TI intoxication at the same dose as the second and third groups. Liver integrity serum enzymes aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), and γ-glutamyltransferase (γ-GT) were evaluated. Serum and liver tissue homogenate lipid peroxidation and OS biomarkers were measured. The data were analyzed by one-way ANOVA followed by Duncan’s multiple range test for post hoc analysis using SPSS version 16. TI induced marked oxidative liver damage as shown by significantly (P≤0.05) elevated serum AST, ALT, ALP, LDH and γ-GT levels. There were significant (P≤0.05) increases in serum and hepatic malondialdehyde (MDA) and serum nitric oxide (NO) as well as decreased hepatic glutathione (GSH) and catalase (CAT) activities. There were significantly (P≤0.05) less serum and hepatic superoxide dismutase (SOD) and total antioxidant capacity (TAC). Pre-treatment with DAS or curcumin ameliorated the changes in most studied biochemical parameters. DAS and curcumin effectively reduced TI-induced liver toxicity. PMID:26199917

  2. Maternal separation enhances object location memory and prevents exercise-induced MAPK/ERK signalling in adult Sprague–Dawley rats

    PubMed Central

    Bugarith, Kishor; Russell, Vivienne A

    2012-01-01

    Early life stress increases the risk of developing psychopathology accompanied by reduced cognitive function in later life. Maternal separation induces anxiety-like behaviours and is associated with impaired memory. On the other hand, exercise has been shown to diminish anxiety-like behaviours and improve cognitive function. The effects of maternal separation and exercise on anxiety, memory and hippocampal proteins were investigated in male Sprague–Dawley rats. Maternal separation produced anxiety-like behaviours which were reversed by exercise. Maternal separation also enhanced object location memory which was not affected by exercise. Exercise did, however, increase synaptophysin and phospho-extracellular signal-regulated kinase (p-ERK) in the hippocampus of non-separated rats and this effect was not observed in maternally separated rats. These findings show that maternal separation selectively enhanced n memory and prevented activation of the MAPK/ERK signalling pathway in the adult rat hippocampus. PMID:22476924

  3. Maternal separation enhances object location memory and prevents exercise-induced MAPK/ERK signalling in adult Sprague-Dawley rats.

    PubMed

    Makena, Nokuthula; Bugarith, Kishor; Russell, Vivienne A

    2012-09-01

    Early life stress increases the risk of developing psychopathology accompanied by reduced cognitive function in later life. Maternal separation induces anxiety-like behaviours and is associated with impaired memory. On the other hand, exercise has been shown to diminish anxiety-like behaviours and improve cognitive function. The effects of maternal separation and exercise on anxiety, memory and hippocampal proteins were investigated in male Sprague-Dawley rats. Maternal separation produced anxiety-like behaviours which were reversed by exercise. Maternal separation also enhanced object location memory which was not affected by exercise. Exercise did, however, increase synaptophysin and phospho-extracellular signal-regulated kinase (p-ERK) in the hippocampus of non-separated rats and this effect was not observed in maternally separated rats. These findings show that maternal separation selectively enhanced n memory and prevented activation of the MAPK/ERK signalling pathway in the adult rat hippocampus.

  4. A Photo-induced Nanoparticle Separation in Microchannels via pH-sensitive Surface Traps

    PubMed Central

    Ebara, Mitsuhiro; Hoffman, John M.; Hoffman, Allan S.; Stayton, Patrick S.; Lai, James J.

    2013-01-01

    A microfluidic surface trap was developed for capturing pH-sensitive nanoparticles via a photoinitiated proton-releasing reaction of o-nitrobenzaldehyde (o-NBA) that reduces the solution pH in microchannels. The surface trap and nanoparticles were both modified with a pH-responsive polymer—poly(N-isorpopylacylamide-co-propylacrylic acid), P(NIPAAm-co-PAA). The o-NBA-coated microchannel walls demonstrated rapid proton release upon UV light irradiation, allowing the buffered solution pH in the microchannel to decrease from 7.4 to 4.5 in 60 seconds. The low solution pH switched the polymer-modified surfaces to be more hydrophobic, which enabled the capture of the pH-sensitive nanobeads onto the trap. When a photo-mask was utilized to limit the UV irradiation to a specific channel region, we were able to restrict the particle separation to only the exposed region. By controlling UV irradiation, this technique enables not only prompt pH changes within the channel, but also the capture of target molecules at specific channel locations. PMID:23581256

  5. Hydration-Induced Phase Separation in Amphiphilic Polymer Matrices and its Influence on Voclosporin Release

    SciTech Connect

    Khan, I. John; Murthy, N. Sanjeeva; Kohn, Joachim

    2015-10-30

    Voclosporin is a highly potent, new cyclosporine -- a derivative that is currently in Phase 3 clinical trials in the USA as a potential treatment for inflammatory diseases of the eye. Voclosporin represents a number of very sparingly soluble drugs that are difficult to administer. It was selected as a model drug that is dispersed within amphiphilic polymer matrices, and investigated the changing morphology of the matrices using neutron and x-ray scattering during voclosporin release and polymer resorption. The hydrophobic segments of the amphiphilic polymer chain are comprised of desaminotyrosyl-tyrosine ethyl ester (DTE) and desaminotyrosyl-tyrosine (DT), and the hydrophilic component is poly(ethylene glycol) (PEG). Water uptake in these matrices resulted in the phase separation of hydrophobic and hydrophilic domains that are a few hundred Angstroms apart. These water-driven morphological changes influenced the release profile of voclosporin and facilitated a burst-free release from the polymer. No such morphological reorganization was observed in poly(lactide-co-glycolide) (PLGA), which exhibits an extended lag period, followed by a burst-like release of voclosporin when the polymer was degraded. An understanding of the effect of polymer composition on the hydration behavior is central to understanding and controlling the phase behavior and resorption characteristics of the matrix for achieving long-term controlled release of hydrophobic drugs such as voclosporin.

  6. Calculations on Isotope Separation by Laser Induced Photodissociation of Polyatomic Molecules. Final Report

    DOE R&D Accomplishments Database

    Lamb, W. E. Jr.

    1978-11-01

    This report describes research on the theory of isotope separation produced by the illumination of polyatomic molecules by intense infrared laser radiation. Newton`s equations of motion were integrated for the atoms of the SF{sub 6} molecule including the laser field interaction. The first year`s work has been largely dedicated to obtaining a suitable interatomic potential valid for arbitrary configurations of the seven particles. This potential gives the correct symmetry of the molecule, the equilibrium configuration, the frequencies of the six distinct normal modes of oscillation and the correct (or assumed) value of the total potential energy of the molecule. Other conditions can easily be imposed in order to obtain a more refined potential energy function, for example, by making allowance for anharmonicity data. A suitable expression was also obtained for the interaction energy between a laser field and the polyatomic molecule. The electromagnetic field is treated classically, and it would be easily possible to treat the cases of time dependent pulses, frequency modulation and noise.

  7. Haloing in bimodal magnetic colloids: the role of field-induced phase separation.

    PubMed

    Magnet, C; Kuzhir, P; Bossis, G; Meunier, A; Suloeva, L; Zubarev, A

    2012-07-01

    If a suspension of magnetic micrometer-sized and nanosized particles is subjected to a homogeneous magnetic field, the nanoparticles are attracted to the microparticles and form thick anisotropic halos (clouds) around them. Such clouds can hinder the approach of microparticles and result in effective repulsion between them [M. T. López-López, A. Yu. Zubarev, and G. Bossis, Soft Matter 6, 4346 (2010)]. In this paper, we present detailed experimental and theoretical studies of nanoparticle concentration profiles and of the equilibrium shapes of nanoparticle clouds around a single magnetized microsphere, taking into account interactions between nanoparticles. We show that at a strong enough magnetic field, the ensemble of nanoparticles experiences a gas-liquid phase transition such that a dense liquid phase is condensed around the magnetic poles of a microsphere while a dilute gas phase occupies the rest of the suspension volume. Nanoparticle accumulation around a microsphere is governed by two dimensionless parameters--the initial nanoparticle concentration (φ(0)) and the magnetic-to-thermal energy ratio (α)--and the three accumulation regimes are mapped onto a α-φ(0) phase diagram. Our local thermodynamic equilibrium approach gives a semiquantitative agreement with the experiments on the equilibrium shapes of nanoparticle clouds. The results of this work could be useful for the development of the bimodal magnetorheological fluids and of the magnetic separation technologies used in bioanalysis and water purification systems.

  8. Haloing in bimodal magnetic colloids: The role of field-induced phase separation

    NASA Astrophysics Data System (ADS)

    Magnet, C.; Kuzhir, P.; Bossis, G.; Meunier, A.; Suloeva, L.; Zubarev, A.

    2012-07-01

    If a suspension of magnetic micrometer-sized and nanosized particles is subjected to a homogeneous magnetic field, the nanoparticles are attracted to the microparticles and form thick anisotropic halos (clouds) around them. Such clouds can hinder the approach of microparticles and result in effective repulsion between them [M. T. López-López, A. Yu. Zubarev, and G. Bossis, Soft Matter10.1039/c0sm00261e 6, 4346 (2010)]. In this paper, we present detailed experimental and theoretical studies of nanoparticle concentration profiles and of the equilibrium shapes of nanoparticle clouds around a single magnetized microsphere, taking into account interactions between nanoparticles. We show that at a strong enough magnetic field, the ensemble of nanoparticles experiences a gas-liquid phase transition such that a dense liquid phase is condensed around the magnetic poles of a microsphere while a dilute gas phase occupies the rest of the suspension volume. Nanoparticle accumulation around a microsphere is governed by two dimensionless parameters—the initial nanoparticle concentration (φ0) and the magnetic-to-thermal energy ratio (α)—and the three accumulation regimes are mapped onto a α-φ0 phase diagram. Our local thermodynamic equilibrium approach gives a semiquantitative agreement with the experiments on the equilibrium shapes of nanoparticle clouds. The results of this work could be useful for the development of the bimodal magnetorheological fluids and of the magnetic separation technologies used in bioanalysis and water purification systems.

  9. Hydration-Induced Phase Separation in Amphiphilic Polymer Matrices and its Influence on Voclosporin Release

    PubMed Central

    Khan, I. John; Murthy, N. Sanjeeva; Kohn, Joachim

    2012-01-01

    Voclosporin is a highly potent, new cyclosporine-A derivative that is currently in Phase 3 clinical trials in the USA as a potential treatment for inflammatory diseases of the eye. Voclosporin represents a number of very sparingly soluble drugs that are difficult to administer. We therefore selected it as a model drug that is dispersed within amphiphilic polymer matrices, and investigated the changing morphology of the matrices using neutron and x-ray scattering during voclosporin release and polymer resorption. The hydrophobic segments of the amphiphilic polymer chain are comprised of desaminotyrosyl-tyrosine ethyl ester (DTE) and desaminotyrosyl-tyrosine (DT), and the hydrophilic component is poly(ethylene glycol) (PEG). Water uptake in these matrices resulted in the phase separation of hydrophobic and hydrophilic domains that are a few hundred Angstroms apart. These water-driven morphological changes influenced the release profile of voclosporin and facilitated a burst-free release from the polymer. No such morphological reorganization was observed in poly(lactide-co-glycolide) (PLGA), which exhibits an extended lag period, followed by a burst-like release of voclosporin when the polymer was degraded. An understanding of the effect of polymer composition on the hydration behavior is central to understanding and controlling the phase behavior and resorption characteristics of the matrix for achieving long-term controlled release of hydrophobic drugs such as voclosporin. PMID:24955746

  10. Fumonisin B₁ (FB₁) Induces Lamellar Separation and Alters Sphingolipid Metabolism of In Vitro Cultured Hoof Explants.

    PubMed

    Reisinger, Nicole; Dohnal, Ilse; Nagl, Veronika; Schaumberger, Simone; Schatzmayr, Gerd; Mayer, Elisabeth

    2016-04-01

    One of the most important hoof diseases is laminitis. Yet, the pathology of laminitis is not fully understood. Different bacterial toxins, e.g. endotoxins or exotoxins, seem to play an important role. Additionally, ingestion of mycotoxins, toxic secondary metabolites of fungi, might contribute to the onset of laminitis. In this respect, fumonsins are of special interest since horses are regarded as species most susceptible to this group of mycotoxins. The aim of our study was to investigate the influence of fumonisin B₁ (FB₁) on primary isolated epidermal and dermal hoof cells, as well as on the lamellar tissue integrity and sphingolipid metabolism of hoof explants in vitro. There was no effect of FB₁ at any concentration on dermal or epidermal cells. However, FB₁ significantly reduced the separation force of explants after 24 h of incubation. The Sa/So ratio was significantly increased in supernatants of explants incubated with FB₁ (2.5-10 µg/mL) after 24 h. Observed effects on Sa/So ratio were linked to significantly increased sphinganine concentrations. Our study showed that FB₁ impairs the sphingolipid metabolism of explants and reduces lamellar integrity at non-cytotoxic concentrations. FB₁ might, therefore, affect hoof health. Further in vitro and in vivo studies are necessary to elucidate the effects of FB₁ on the equine hoof in more detail. PMID:27023602

  11. Fumonisin B₁ (FB₁) Induces Lamellar Separation and Alters Sphingolipid Metabolism of In Vitro Cultured Hoof Explants.

    PubMed

    Reisinger, Nicole; Dohnal, Ilse; Nagl, Veronika; Schaumberger, Simone; Schatzmayr, Gerd; Mayer, Elisabeth

    2016-03-24

    One of the most important hoof diseases is laminitis. Yet, the pathology of laminitis is not fully understood. Different bacterial toxins, e.g. endotoxins or exotoxins, seem to play an important role. Additionally, ingestion of mycotoxins, toxic secondary metabolites of fungi, might contribute to the onset of laminitis. In this respect, fumonsins are of special interest since horses are regarded as species most susceptible to this group of mycotoxins. The aim of our study was to investigate the influence of fumonisin B₁ (FB₁) on primary isolated epidermal and dermal hoof cells, as well as on the lamellar tissue integrity and sphingolipid metabolism of hoof explants in vitro. There was no effect of FB₁ at any concentration on dermal or epidermal cells. However, FB₁ significantly reduced the separation force of explants after 24 h of incubation. The Sa/So ratio was significantly increased in supernatants of explants incubated with FB₁ (2.5-10 µg/mL) after 24 h. Observed effects on Sa/So ratio were linked to significantly increased sphinganine concentrations. Our study showed that FB₁ impairs the sphingolipid metabolism of explants and reduces lamellar integrity at non-cytotoxic concentrations. FB₁ might, therefore, affect hoof health. Further in vitro and in vivo studies are necessary to elucidate the effects of FB₁ on the equine hoof in more detail.

  12. Pulse laser-induced particle separation from polymethyl methacrylate: a mechanistic study

    NASA Astrophysics Data System (ADS)

    Arif, S.; Armbruster, O.; Kautek, W.

    2013-04-01

    The separation mechanism of opaque and transparent model micro-particles, graphite and polystyrene copolymer spheres, respectively, from polymethyl methacrylate (PMMA) substrates were investigated employing a ns-pulse laser radiating at 532 nm. The particles transparent in the visible wavelength range could be removed from PMMA efficiently in a very narrow fluence range between 1 and 2 J/cm2 according to a simple 1D thermal expansion model. Above this fluence region, with single pulses, the transparent microspheres caused local ablation of the PMMA substrate in the optical microlens nearfield. This process led to removal of the particles themselves due to the expansion of the ablation plasma. The irregularly shaped graphite particles shaded the underlying substrate from the incoming radiation so that no optical nearfield damage mechanism could be observed. Therefore, a substantial cleaning window between 0.5 and more than 16 J/cm2 was provided. The graphite data suggest an ablation mechanism of the particulates themselves due to a high optical absorption coefficient.

  13. Shock-induced flow separation and the orbiter thermal protection system

    NASA Astrophysics Data System (ADS)

    Waiter, S.-A.

    The Space Shuttle orbiter's thermal protection system (TPS) is composed of reusable tiles separated by narrow gaps that accommodate the contraction and expansion of the aluminum structure that the tiles protect. When local pressure gradients exist, air flows through the tile gaps and releases heat energy by convection. The gaps represent a heat short to the structure, strain isolator pad (SIP), and filler bar. A typical problem is the pressure gradient created during entry by body flap deflection. After a brief description of how this problem affects the Space Shuttle orbiter, a theoretical and experimental review of the major parameters involved in gap heating are analyzed. Then, a review of well-known classical methods to resolve the gap aeroheating problem in the presence of a pressure gradient is presented, and a few solutions are illustrated to assess the sensitivity of each one. The following section starts with a basic relationship (called "eyeball" because of its simplicity) and follows the results up through the most modern engineering approach available in the literature. It shows that in all cases calculated significant areas of overtemperature were predicted. However, none of these methods could be correlated by experimental data. Lastly, the paper presents the solution obtained by using the most sophisticated method, based upon the Navier-Stokes equations. This approach shows excellent correlation with wind tunnel data. The application to four trajectory time points shows less severe results than the other methods. This can be explained by the introduction of a certain amount of conservatism to account for uncertainties inherent in the previous analyses. No correlation of this "exact solution" with the simple preestablished relationships has been found, indicating that more parameters than expected could be involved. However, an after-the-fact, semi-empirical engineering solution that fits the Navier-Stokes solution with good agreement was established.

  14. Separation of factors responsible for change in breathing pattern induced by instrumentation.

    PubMed

    Perez, W; Tobin, M J

    1985-11-01

    Employment of mouthpiece and noseclips (MP + NC) has repeatedly been shown to increase tidal volume (VT), but its effect on respiratory frequency (f) and its subsets is controversial. The mechanisms accounting for this alteration in breathing pattern are poorly understood and may include stimulation of oral or nasal sensory receptors or alteration in the route of breathing. In this study we demonstrated that use of a MP + NC, compared with nonobtrusive measurement with a calibrated respiratory inductive plethysmograph, alters the majority of the volume and time indexes of breathing pattern, with increases in minute ventilation (P less than 0.01), VT (P less than 0.001), inspiratory time (TI, P less than 0.05), expiratory time (TE, P less than 0.05), mean inspiratory flow (P less than 0.05), and mean expiratory flow (P less than 0.05) and a decrease in f(P less than 0.05). Separating the potential mechanisms we found that when the respiratory route was not altered, independent oral stimulation (using an occluded MP) or nasal stimulation (by applying paper clips to the alae nasi) did not change the breathing pattern. In contrast, obligatory oral breathing without additional stimulation of the oral or nasal sensory receptors caused increases in VT (P less than 0.05), TI (P less than 0.05), and TE (P less than 0.01) and a fall in f(P less than 0.05). Heating and humidifying the inspired air did not prevent the alteration in breathing pattern with a MP. Thus change in the respiratory route is the major determinant of the alteration in breathing pattern with a MP + NC.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Vascular Endothelial Growth Factor and Semaphorin Induce Neuropilin-1 Endocytosis via Separate Pathways

    PubMed Central

    Salikhova, Anna; Wang, Ling; Lanahan, Anthony A.; Liu, Miaoliang; Simons, Michael; Leenders, William P. J.; Mukhopadhyay, Debabrata; Horowitz, Arie

    2009-01-01

    The neuropilin (Nrp)1 receptor is essential for both nervous and vascular system development. Nrp1 is unusually versatile, because it transmits both chemoattractive and repulsive signals in response to vascular endothelial growth factor (VEGF)-A and class 3 semaphorins, respectively. Both Nrp1 and VEGF receptor 2 undergo ligand-dependent endocytosis. We sought to establish the endocytic pathway of Nrp1 and to determine whether uptake is required for its signaling. Whereas Nrp1 underwent clathrin-dependent endocytosis in response to VEGFA165 treatment, semaphorin 3C (sema3C) induced lipid raft–dependent endocytosis. The myosin VI PDZ (postsynaptic density 95, Disk large, Zona occludens-1) adaptor protein synectin was essential for Nrp1 trafficking. Sema3C failed to inhibit migration of synectin−/− endothelial cells, mirroring the lower migratory response of these cells to VEGFA165. These results show that the endocytic pathway of Nrp1 is determined by its ligand and that the trafficking of Nrp1 is essential for its signaling. PMID:18723443

  16. Genetic and Anatomical Basis of the Barrier Separating Wakefulness and Anesthetic-Induced Unresponsiveness

    PubMed Central

    Hung, Hsiao-Tung; Koh, Kyunghee; Sowcik, Mallory; Sehgal, Amita; Kelz, Max B.

    2013-01-01

    A robust, bistable switch regulates the fluctuations between wakefulness and natural sleep as well as those between wakefulness and anesthetic-induced unresponsiveness. We previously provided experimental evidence for the existence of a behavioral barrier to transitions between these states of arousal, which we call neural inertia. Here we show that neural inertia is controlled by processes that contribute to sleep homeostasis and requires four genes involved in electrical excitability: Sh, sss, na and unc79. Although loss of function mutations in these genes can increase or decrease sensitivity to anesthesia induction, surprisingly, they all collapse neural inertia. These effects are genetically selective: neural inertia is not perturbed by loss-of-function mutations in all genes required for the sleep/wake cycle. These effects are also anatomically selective: sss acts in different neurons to influence arousal-promoting and arousal-suppressing processes underlying neural inertia. Supporting the idea that anesthesia and sleep share some, but not all, genetic and anatomical arousal-regulating pathways, we demonstrate that increasing homeostatic sleep drive widens the neural inertial barrier. We propose that processes selectively contributing to sleep homeostasis and neural inertia may be impaired in pathophysiological conditions such as coma and persistent vegetative states. PMID:24039590

  17. Effects of swimming exercise on morphine-induced reward and behavioral sensitization in maternally-separated rat pups in the conditioned place preference procedure.

    PubMed

    Abad, Atiyeh Taghavi-Khalil; Miladi-Gorji, Hossein; Bigdeli, Imanollah

    2016-09-19

    This study was designed to examine the effects of swimming exercise during adolescence on morphine-induced conditioned place preference (CPP) and behavioral sensitization in maternally separated male and female rat pups. Male Wistar rats were allowed to mate with female virgin Wistar rats. Pups were separated from the dam daily for 180min during postnatal days 2-14. All pups were weaned on day 21.The exercising pups were allowed to swim (60min/d, five days per a week, for 30days) during adolescence. Then, rat pups were tested for behavioral sensitization and the CPP induced by morphine. Maternal separation produced a significant increase in morphine-induced CPP in both sexes, behavioral sensitization in male pups and tolerance to morphine-induced motor activity in female pups. Swimmer pups separated from the dam exhibited a decrease in morphine-induced CPP in both sexes and behavioral sensitization in male pups than those of their control pups. The present results have shown that swimming exercise during adolescence may exert a protective effect against morphine-induced reward and behavioral sensitization in adult male and female rats following maternal separation. PMID:27519931

  18. Susceptibility to ozone-induced inflammation. II. Separate loci control responses to acute and subacute exposures

    SciTech Connect

    Kleeberger, S.R.; Levitt, R.C.; Zhang, L.Y. )

    1993-01-01

    We demonstrated previously that inbred strains of mice are differentially susceptible to acute (3 h) and subacute (48 h) exposures to 2 parts per million (ppm) ozone (O3) and 0.30 ppm O3, respectively. Genetic studies with O3-resistant C3H/HeJ and O3-susceptible C57BL/6J strains have indicated that susceptibility to each of these O3 exposures is under Mendelian (single gene) control. In the present study, we hypothesized that the same gene controls susceptibility to the airway inflammatory responses to 2 ppm and 0.30 ppm O3 exposures. To test this hypothesis, airway inflammation was induced in 10 BXH and 16 BXD recombinant inbred (RI) strains of mice by acute as well as subacute O3 exposures. Airway inflammation was assessed by counting the number of polymorphonuclear leukocytes (PMNs) in bronchoalveolar lavage (BAL) returns obtained immediately after 48-h subacute exposure to 0.30 ppm O3, or 6 h after 3 h acute exposure to 2 ppm O3. Each RI strain was classified as susceptible or resistant to each exposure, based on a comparison of mean numbers of PMNs with those of the respective progenitor strains. For each RI set, a phenotypic strain distribution pattern (SDP) was thus derived for each exposure regimen, and the SDPs were then compared for concordance. Among the BXH RI strains, 4 of 10 responded discordantly to the two exposures: 3 were susceptible to acute exposure and resistant to subacute exposure, whereas 1 was conversely susceptible. Among the BXD RI strains, 4 of 16 were discordant: 1 was susceptible to acute exposure, and resistant to subacute exposure, whereas 3 were conversely susceptible.

  19. Poly lactic acid based foams prepared via thermally induced phase separation (TIPS): A method to tune the crystallinity

    NASA Astrophysics Data System (ADS)

    Pavia, Francesco Carfı; La Carrubba, Vincenzo; Brucato, Valerio

    2012-07-01

    Blends of Poly-L-Lactic Acid (PLLA) with two Poly-Lactic Acid (PLA) in different proportions (90/10 and 70/30) were utilized in order to produce biodegradable and biocompatible scaffolds for soft tissue engineering applications. The scaffolds were produced via thermally induced phase separation (TIPS) starting from ternary systems where dioxane was the solvent and water the non-solvent. Morphology was evaluated by Scanning Electron Microscopy (average pore size and interconnection). Moreover a DSC analysis was carried out on the as-obtained scaffold in order to obtain information about theirs thermal properties (enthalpy of melt and crystallization). The results showed that is possible to prepare scaffolds of PLLA/PLA via TIPS. Moreover, the PLA seems to influences the TIPS process in terms of demixing temperatures. The data confirm that the morphology and the mechanical properties of the scaffold can be tuned, starting from PLLA blends and using PLA with different molecular weights.

  20. Cd(II)-coordination framework: synthesis, anion-induced structural transformation, anion-responsive luminescence, and anion separation.

    PubMed

    Hou, Shan; Liu, Qi-Kui; Ma, Jian-Ping; Dong, Yu-Bin

    2013-03-18

    A series of Cd(II) coordination frameworks that are constructed from a new oxadiazole-bridged ligand 3,5-bis(3-pyridyl-3-(3'-methylphenyl)-1,3,4-oxadiazole (L) and CdX2 (X = NO3(-), Cl(-), Br(-), I(-), N3(-), and SCN(-)) were synthesized. The NO3(-) anion of the solid CdL2(NO3)2·2THF (1) is able to be quantitatively exchanged with Cl(-), Br(-), I(-), SCN(-), and N3(-) in the solid state. For Cl(-) and Br(-), the anion exchange resulted in a anion-induced structural transformation to form the structures of 2 and 3, respectively. In addition, the Cd(II) structure herein exhibits the anion-responsive photoluminescence, which could be a useful method to monitor the anion-exchange process. Notably, compound 1 can recognize and completely separate SCN(-)/N3(-) with similar geometry.

  1. Quantum Incompressibility of a Falling Rydberg Atom, and a Gravitationally-Induced Charge Separation Effect in Superconducting Systems

    NASA Astrophysics Data System (ADS)

    Chiao, R. Y.; Minter, S. J.; Wegter-McNelly, K.; Martinez, L. A.

    2012-01-01

    Freely falling point-like objects converge toward the center of the Earth. Hence the gravitational field of the Earth is inhomogeneous, and possesses a tidal component. The free fall of an extended quantum mechanical object such as a hydrogen atom prepared in a high principal-quantum-number state, i.e. a circular Rydberg atom, is predicted to fall more slowly than a classical point-like object, when both objects are dropped from the same height above the Earth's surface. This indicates that, apart from transitions between quantum states, the atom exhibits a kind of quantum mechanical incompressibility during free fall in inhomogeneous, tidal gravitational fields like those of the Earth. A superconducting ring-like system with a persistent current circulating around it behaves like the circular Rydberg atom during free fall. Like the electronic wavefunction of the freely falling atom, the Cooper-pair wavefunction is quantum mechanically incompressible. The ions in the lattice of the superconductor, however, are not incompressible, since they do not possess a globally coherent quantum phase. The resulting difference during free fall in the response of the nonlocalizable Cooper pairs of electrons and the localizable ions to inhomogeneous gravitational fields is predicted to lead to a charge separation effect, which in turn leads to a large Coulomb force that opposes the convergence caused by the tidal gravitational force on the superconducting system. A "Cavendish-like" experiment is proposed for observing the charge separation effect induced by inhomogeneous gravitational fields in a superconducting circuit. The charge separation effect is determined to be limited by a pair-breaking process that occurs when low frequency gravitational perturbations are present.

  2. Effect of low-level laser therapy on dental pain induced by separator force in orthodontic treatment

    PubMed Central

    Abtahi, Seyed Mostafa; Mousavi, Seyed Amir; Shafaee, Hooman; Tanbakuchi, Behrad

    2013-01-01

    Background: Patients undergoing orthodontic treatment experience varying degrees of pain with separator insertion. A survey of patients’ attitude towards orthodontic treatment revealed that pain was the most discouraging factor related to their treatment. Moreover, it was the highest ranking reason for wanting to discontinue care. The purpose of this study was to determine the effect of low-level laser irradiation on dental pain induced by forces from separators in orthodontic treatment. Materials and Methods: This study was an experimental clinical trial. Twenty-nine patients were recruited for this research. Low-level laser irradiation was applied on one half of the maxillary and mandibular arches for 5 days. The opposite half of the arches was considered the control group. Laser irradiation was applied for 30 seconds in the alveolar bone between the second premolars, first molars, and second molars. Pain perception was evaluated with a standardized questionnaire that was answered by patients before and after laser irradiation. Data was analyzed by Wilcoxon and Friedman test. P value ≤0.05 was considered significant. Results: The highest pain level was reported at day 1 following separator placement and decreased gradually until day 5. At day 4 and 5, the pain intensity was lower in the laser group than in the control group; however, this finding was not statistically significant. At day 1 and 3, the pain intensity was higher in the laser group than in the control group; however, it was not statistically significant. At day 2, the pain intensity was lower in the laser group than in the control group and was statistically significant. Conclusion: Our findings suggest that there is no statistically significant difference in pain by using low-level laser irradiation. PMID:24348624

  3. Giant Electric-Field-Induced Strain in PVDF-Based Battery Separator Membranes Probed by Electrochemical Strain Microscopy.

    PubMed

    Romanyuk, Konstantin; Costa, Carlos M; Luchkin, Sergey Yu; Kholkin, Andrei L; Lanceros-Méndez, Senentxu

    2016-05-31

    Efficiency of lithium-ion batteries largely relies on the performance of battery separator membrane as it controls the mobility and concentration of Li-ions between the anode and cathode electrodes. Recent advances in electrochemical strain microscopy (ESM) prompted the study of Li diffusion and transport at the nanoscale via electromechanical strain developed under an application of inhomogeneous electric field applied via the sharp ESM tip. In this work, we observed unexpectedly high electromechanical strain developed in polymer membranes based on porous poly(vinylidene fluoride) (PVDF) and poly(vinylidene fluoride-co-chlorotrifluoroethylene) (PVDF-CTFE) and, using it, could study a dynamics of electroosmotic flow of electrolyte inside the pores. We show that, independently of the separator membrane, electric field-induced deformation observed by ESM on wetted membrane surfaces can reach up to 10 nm under a moderate bias of 1 V (i.e., more than an order of magnitude higher than that in best piezoceramics). Such a high strain is explained by the electroosmotic flow in a porous media composed of PVDF. It is shown that the strain-based ESM method can be used to extract valuable information such as average pore size, porosity, elasticity of membrane in electrolyte solvent, and membrane-electrolyte affinity expressed in terms of zeta potential. Besides, such systems can, in principle, serve as actuators even in the absence of apparent piezoelectricity in amorphous PVDF.

  4. EphrinB/EphB Signaling Controls Embryonic Germ Layer Separation by Contact-Induced Cell Detachment

    PubMed Central

    Rohani, Nazanin; Canty, Laura; Luu, Olivia

    2011-01-01

    Background The primordial organization of the metazoan body is achieved during gastrulation by the establishment of the germ layers. Adhesion differences between ectoderm, mesoderm, and endoderm cells could in principle be sufficient to maintain germ layer integrity and prevent intermixing. However, in organisms as diverse as fly, fish, or amphibian, the ectoderm-mesoderm boundary not only keeps these germ layers separated, but the ectoderm also serves as substratum for mesoderm migration, and the boundary must be compatible with repeated cell attachment and detachment. Principal Findings We show that localized detachment resulting from contact-induced signals at the boundary is at the core of ectoderm-mesoderm segregation. Cells alternate between adhesion and detachment, and detachment requires ephrinB/EphB signaling. Multiple ephrinB ligands and EphB receptors are expressed on each side of the boundary, and tissue separation depends on forward signaling across the boundary in both directions, involving partially redundant ligands and receptors and activation of Rac and RhoA. Conclusion This mechanism differs from a simple differential adhesion process of germ layer formation. Instead, it involves localized responses to signals exchanged at the tissue boundary and an attachment/detachment cycle which allows for cell migration across a cellular substratum. PMID:21390298

  5. Separation and quantitation of phycobiliproteins using phytic acid in capillary electrophoresis with laser-induced fluorescence detection.

    PubMed

    Viskari, Pertti J; Colyer, Christa L

    2002-10-01

    The similar electrophoretic mobilities and sizes of several of the phycobiliproteins, which are derived from the photosynthetic apparatus of cyanobacteria and eukaryotic algae, render their separation and quantitation a challenging problem. However, we have developed a suitable capillary electrophoresis (CE) method that employs a phytic acid-boric acid buffer and laser-induced fluorescence (LIF) detection with a single 594 nm He-Ne laser. This method takes advantage of the remarkably high quantum yields of these naturally fluorescent proteins, which can be attributed to their linear tetrapyrrole chromophores covalently bound to cysteinyl residues. As such, limits of detection of 1.18 x 10(-14), 5.26 x 10(-15), and 2.38 x 10(-15) mol/l were obtained for R-phycoerythrin, C-phycocyanin, and allophycocyanin proteins, respectively, with a linear dynamic range of eight orders of magnitude in each case. Unlike previously published CE-LIF methods, this work describes the separation of all three major classes of phycobiliproteins in under 5 min. Very good recoveries, ranging from 93.2 to 105.5%, were obtained for a standard mixture of the phycobiliproteins, based on seven-point calibration curves for both peak height and peak area. It is believed that this development will prove useful for the determination of phycobiliprotein content in naturally occurring cyanobacteria populations, thus providing a useful tool for understanding biological and chemical oceanographic processes.

  6. Giant Electric-Field-Induced Strain in PVDF-Based Battery Separator Membranes Probed by Electrochemical Strain Microscopy.

    PubMed

    Romanyuk, Konstantin; Costa, Carlos M; Luchkin, Sergey Yu; Kholkin, Andrei L; Lanceros-Méndez, Senentxu

    2016-05-31

    Efficiency of lithium-ion batteries largely relies on the performance of battery separator membrane as it controls the mobility and concentration of Li-ions between the anode and cathode electrodes. Recent advances in electrochemical strain microscopy (ESM) prompted the study of Li diffusion and transport at the nanoscale via electromechanical strain developed under an application of inhomogeneous electric field applied via the sharp ESM tip. In this work, we observed unexpectedly high electromechanical strain developed in polymer membranes based on porous poly(vinylidene fluoride) (PVDF) and poly(vinylidene fluoride-co-chlorotrifluoroethylene) (PVDF-CTFE) and, using it, could study a dynamics of electroosmotic flow of electrolyte inside the pores. We show that, independently of the separator membrane, electric field-induced deformation observed by ESM on wetted membrane surfaces can reach up to 10 nm under a moderate bias of 1 V (i.e., more than an order of magnitude higher than that in best piezoceramics). Such a high strain is explained by the electroosmotic flow in a porous media composed of PVDF. It is shown that the strain-based ESM method can be used to extract valuable information such as average pore size, porosity, elasticity of membrane in electrolyte solvent, and membrane-electrolyte affinity expressed in terms of zeta potential. Besides, such systems can, in principle, serve as actuators even in the absence of apparent piezoelectricity in amorphous PVDF. PMID:27142946

  7. Polymer composites and porous materials prepared by thermally induced phase separation and polymer-metal hybrid methods

    NASA Astrophysics Data System (ADS)

    Yoon, Joonsung

    The primary objective of this research is to investigate the morphological and mechanical properties of composite materials and porous materials prepared by thermally induced phase separation. High melting crystallizable diluents were mixed with polymers so that the phase separation would be induced by the solidification of the diluents upon cooling. Theoretical phase diagrams were calculated using Flory-Huggins solution thermodynamics which show good agreement with the experimental results. Porous materials were prepared by the extraction of the crystallized diluents after cooling the mixtures (hexamethylbenzene/polyethylene and pyrene/polyethylene). Anisotropic structures show strong dependence on the identity of the diluents and the composition of the mixtures. Anisotropic crystal growth of the diluents was studied in terms of thermodynamics and kinetics using DSC, optical microscopy and SEM. Microstructures of the porous materials were explained in terms of supercooling and dendritic solidification. Dual functionality of the crystallizable diluents for composite materials was evaluated using isotactic polypropylene (iPP) and compatible diluents that crystallize upon cooling. The selected diluents form homogeneous mixtures with iPP at high temperature and lower the viscosity (improved processability), which undergo phase separation upon cooling to form solid particles that function as a toughening agent at room temperature. Tensile properties and morphology of the composites showed that organic crystalline particles have the similar effect as rigid particles to increase toughness; de-wetting between the particle and iPP matrix occurs at the early stage of deformation, followed by unhindered plastic flow that consumes significant amount of fracture energy. The effect of the diluents, however, strongly depends on the identity of the diluents that interact with the iPP during solidification step, which was demonstrated by comparing tetrabromobisphenol-A and

  8. Characterization of induced struvite formation from source-separated urine using seawater and brine as magnesium sources.

    PubMed

    Liu, Bianxia; Giannis, Apostolos; Zhang, Jiefeng; Chang, Victor W-C; Wang, Jing-Yuan

    2013-11-01

    Struvite (MgNH4PO4·6H2O) precipitation is widely used for nutrient recovery from source-separated urine in view of limited natural resources. Spontaneous struvite formation depletes the magnesium in hydrolyzed urine so that additional magnesium source is required to produce induced struvite for P-recovery. The present study investigated the morphology and purity of induced struvite crystals obtained from hydrolyzed urine by using seawater and desalination brine as low cost magnesium sources. The results demonstrated that both seawater and brine were effective magnesium sources to recover phosphorus from hydrolyzed urine. Crystals obtained from synthetic and real urine were revealed that the morphology was feather and coffin shape, respectively. Structural characterization of the precipitates confirmed that crystallized struvite was the main product. However, co-precipitates magnesium calcite and calcite were observed when seawater was added into synthetic and real urine, respectively. It was found that the presence of calcium in the magnesium sources could compromise struvite purity. Higher struvite purity could be obtained with higher Mg/Ca ratio in the magnesium source. Comparative analysis indicated that seawater and brine had similar effect on the crystallized struvite purity.

  9. Wave-induced boundary-layer separation: A case study comparing airborne observations and results from a mesoscale model

    NASA Astrophysics Data System (ADS)

    Strauss, L.; Serafin, S.; Grubišić, V.

    2012-04-01

    Wave-induced boundary-layer separation (BLS) results from the adverse-pressure gradient forces that are exerted on the atmospheric boundary-layer by internal gravity waves in flow over orography. BLS has received significant attention in recent years, particularly so, because it is a key ingredient in the formation of atmospheric rotors. Traditionally depicted as horizontal eddies in the lee of mountain ranges, rotors originate from the interaction between internal gravity waves and the atmospheric boundary-layer. Our study focuses on the first observationally documented case of wave-induced BLS, which occurred on 26 Jan 2006 in the lee of the Medicine Bow Mountains in SE Wyoming (USA). Observations from the University of Wyoming King Air (UWKA) aircraft, in particular, the remote sensing measurements with the Wyoming Cloud Radar (WCR), reveal strong wave activity, downslope winds in excess of 30 m/s, and near-surface flow reversal in the lee of the mountain range. The fine resolution of WCR data (on the order of 40x40 m2 for two-dimensional velocity fields) exhibits fine-scale vortical structures ("subrotors") which are embedded within the main rotor zone. Our case study intends to complete the characterisation of the observed boundary-layer separation event. Modelling of the event with the mesoscale Weather Research and Forecast Model (WRF) provides insight into the mesoscale triggers of wave-induced BLS and turbulence generation. Indeed, the mesoscale model underpins the expected concurrence of the essential processes (gravity waves, wave breaking, downslope windstorms, etc.) leading to BLS. To exploit the recorded in situ and radar data to their full extent, a quantitative evaluation of the structure and intensity of turbulence is conducted by means of a power spectral analysis of the vertical wind component, measured along the flight track. An intercomparison of observational and modelling results serves the purpose of model verification and can shed some more

  10. Multiscale analysis of the effect of micro-phase separation on the charge transfer at the PEDOT:PSS and P3HT:PCBM layer interface

    NASA Astrophysics Data System (ADS)

    Huang, Min

    2015-09-01

    The influence of micro phase behavior on the charge transfer at the interface between PEDOT:PSS and P3HT:PCBM layers was studied using multiscale analysis. Calculated Flory- Huggins parameters indicated that the PEDOT attracts P3HT and repulses PCBM that agrees well with the experimental observation of the development of P3HT rich interface during the BHJ layer formation. Based on the calculated Flory-Huggins parameters, mesoscale DPD simulations were conducted for PEDOT:PSS and P3HT:PCBM layers. Results were mapped to the CG (coarse grained) and then atomistic scales where atomistic details of the interface were studied. The density of nonbonding close contacts including that from reorientation between PEDOT and P3HT was quantified, vibronic coupling and carrier transfer efficiency were discussed.

  11. Effect of CMC Molecular Weight on Acid-Induced Gelation of Heated WPI-CMC Soluble Complex.

    PubMed

    Huan, Yan; Zhang, Sha; Vardhanabhuti, Bongkosh

    2016-02-01

    Acid-induced gelation properties of heated whey protein isolate (WPI) and carboxymethylcellulose (CMC) soluble complex were investigated as a function of CMC molecular weight (270, 680, and 750 kDa) and concentrations (0% to 0.125%). Heated WPI-CMC soluble complex with 6% protein was made by heating biopolymers together at pH 7.0 and 85 °C for 30 min and diluted to 5% protein before acid-induced gelation. Acid-induced gel formed from heated WPI-CMC complexes exhibited increased hardness and decreased water holding capacity with increasing CMC concentrations but gel strength decreased at higher CMC content. The highest gel strength was observed with CMC 750 k at 0.05%. Gels with low CMC concentration showed homogenous microstructure which was independent of CMC molecular weight, while increasing CMC concentration led to microphase separation with higher CMC molecular weight showing more extensive phase separation. When heated WPI-CMC complexes were prepared at 9% protein the acid gels showed improved gel hardness and water holding capacity, which was supported by the more interconnected protein network with less porosity when compared to complexes heated at 6% protein. It is concluded that protein concentration and biopolymer ratio during complex formation are the major factors affecting gel properties while the effect of CMC molecular weight was less significant.

  12. Enzymatic hydrolysis of penicillin and in situ product separation in thermally induced reversible phase-separation of ionic liquids/water mixture.

    PubMed

    Mai, Ngoc Lan; Koo, Yoon-Mo

    2014-09-01

    Enzymatic hydrolysis of penicillin G to produce 6-aminopenicillanic acid, key intermediate for the production of semisynthetic β-lactam antibiotics, is one of the most relevant example of industrial implementation of biocatalysts. The hydrolysis reaction is traditionally carried out in aqueous buffer at pH 7.5-8. However, the aqueous rout exhibits several drawbacks in enzyme stability and product recovery. In this study, several ionic liquids (ILs) have been used as media for enzymatic hydrolysis of penicillin G. The results indicated that hydrophobic ILs/water two-phase system were good media for the reaction. In addition, a novel aqueous two-phase system based on the lower critical solution temperature type phase changes of amino acid based ILs/water mixture was developed for in situ penicillin G hydrolysis and product separation. For instance, hydrolysis yield of 87.13% was obtained in system containing 30 wt% [TBP][Tf-ILe] with pH control (pH 7.6). Since the phase-separation of this medium system can be reversible switched from single to two phases by slightly changing the solution temperature, enzymatic hydrolytic reaction and product recovery were more efficient than those of aqueous system. In addition, the ILs could be reused for at least 5 cycles without significant loss in hydrolysis efficiency. PMID:25039057

  13. Enzymatic hydrolysis of penicillin and in situ product separation in thermally induced reversible phase-separation of ionic liquids/water mixture.

    PubMed

    Mai, Ngoc Lan; Koo, Yoon-Mo

    2014-09-01

    Enzymatic hydrolysis of penicillin G to produce 6-aminopenicillanic acid, key intermediate for the production of semisynthetic β-lactam antibiotics, is one of the most relevant example of industrial implementation of biocatalysts. The hydrolysis reaction is traditionally carried out in aqueous buffer at pH 7.5-8. However, the aqueous rout exhibits several drawbacks in enzyme stability and product recovery. In this study, several ionic liquids (ILs) have been used as media for enzymatic hydrolysis of penicillin G. The results indicated that hydrophobic ILs/water two-phase system were good media for the reaction. In addition, a novel aqueous two-phase system based on the lower critical solution temperature type phase changes of amino acid based ILs/water mixture was developed for in situ penicillin G hydrolysis and product separation. For instance, hydrolysis yield of 87.13% was obtained in system containing 30 wt% [TBP][Tf-ILe] with pH control (pH 7.6). Since the phase-separation of this medium system can be reversible switched from single to two phases by slightly changing the solution temperature, enzymatic hydrolytic reaction and product recovery were more efficient than those of aqueous system. In addition, the ILs could be reused for at least 5 cycles without significant loss in hydrolysis efficiency.

  14. An injectable, low-toxicity phospholipid-based phase separation gel that induces strong and persistent immune responses in mice.

    PubMed

    Han, Lu; Xue, Jiao; Wang, Luyao; Peng, Ke; Zhang, Zhirong; Gong, Tao; Sun, Xun

    2016-10-01

    Sustained antigen delivery using incomplete Freund's adjuvant (IFA) can induce strong, long-term immune response, but it can also cause severe side effects. Here we describe an injectable, phospholipid-based phase separation gel (PPSG) that readily transforms in situ into a drug depot. PPSG loaded with the model antigen ovalbumin (OVA) supported sustained OVA release in mice that lasted nearly one month. Immunizing mice with a single injection of PPSG/OVA elicited a strong and persistent increase in titers of OVA-specific IgG, IgG1 and IgG2a. Co-administering CpG-ODN further increased antibody titers. Such co-administration recruited dendritic cells to injection sites and activated dendritic cells in the draining lymph nodes. Moreover, immunization with PPSG/OVA/CpG resulted in potent memory antibody responses and high frequency of memory T cells. Remarkably, PPSG/OVA/CpG was associated with much lower toxicity at injection sites than IFA/OVA/CpG, and it showed no systemic toxicity such as to lymph nodes or spleen. These findings illustrate the potential of injectable PPSG for sustained, minimally toxic delivery of antigens and adjuvants. PMID:27522253

  15. Mechanistic comparison of pulse laser induced phase separation of particulates from cellulose paper at 213 nm and 532 nm

    NASA Astrophysics Data System (ADS)

    Arif, S.; Forster, M.; Bushuk, S.; Kouzmouk, A.; Tatur, H.; Batishche, S.; Kautek, W.

    2013-02-01

    The laser-induced phase separation of charcoal particles on additive-free cotton linters cellulose paper was investigated by electron and optical microscopy, colorimetry, and diffuse reflectance FT-IR. The fibre bundles were vaporised in depth of several 10 μm above destruction fluence thresholds using visible 532 nm radiation. This is in contrast to mid-ultraviolet 213 nm radiation, where only the top fibre bundles were modified and partially evaporated. The colorimetric lightness results generally represented the cleaning status, whereas the colorimetric yellowing data represented irreversible chemical and/or photochemical changes. Charcoal-contaminated paper treated with visible and mid-ultraviolet radiation exhibited yellowing, whereas uncontaminated did not. This suggests that the electron-rich plasma generated by the evaporation of the particles heats the adjacent substrate and also excludes oxygen. Mid-ultraviolet, in contrast to visible radiation, shows particle removal always accompanied by paper destruction. IR spectroscopy results suggest cross-linking by ether bonds near the destruction threshold, but do not prove the formation of oxidation products and double bonds as the basis of the yellowing. A "cleaning window" between the cleaning threshold (0.1 J/cm2) and the paper destruction threshold (2.9 J/cm2) with a pulse number of 2 is provided by visible 532 nm laser treatment.

  16. Theoretical-computational modeling of photo-induced charge separation spectra and charge recombination kinetics in solution.

    PubMed

    Piacente, Giovanni; Amadei, Andrea; D'Abramo, Marco; Daidone, Isabella; Aschi, Massimiliano

    2014-10-14

    In this study we propose a theoretical-computational method, essentially based on molecular dynamics simulations and quantum-chemical calculations, for modelling the photo-induced charge separation (CS) and the subsequent charge recombination (CR) processes in solution. In particular we have reproduced the low-energy UV-Vis spectra of systems composed by an aromatic species (Ar = benzene or indene) and tetracyanoethylene (TCNE) in chloroform solution, dominated by the formation of the Ar(+)-TCNE(-) ion pair (IP) complex. The kinetics of the charge recombination process leading to the regeneration of Ar and TCNE has also been modelled. In both the cases the agreement with the experimental data is satisfactory. Although the presence of systematic deficiencies makes our approach unable to address some key aspects of the above processes (e.g. the ultrafast internal vibrational redistribution), it appears to be a rather promising tool for modelling the CS-CR process for atomic-molecular systems of very high complexity. The involvement of the triplet IP complex has also been discussed. PMID:25157909

  17. Separation and identification of candidate protein elicitors from the cultivation medium of Leptosphaeria maculans inducing resistance in Brassica napus.

    PubMed

    Nováková, Miroslava; Kim, Phuong Dinh; Šašek, Vladimír; Burketová, Lenka; Jindřichová, Barbora; Šantrůček, Jiří; Valentová, Olga

    2016-07-01

    The Dothideomycete Leptosphaeria maculans, a worldwide fungal pathogen of oilseed rape (Brassica napus), secretes a broad spectrum of molecules into the cultivation medium during growth in vitro. Here, candidate elicitor molecules, which induce resistance in B. napus to L. maculans, were identified in the cultivation medium. The elicitation activity was indicated by increased transcription of pathogenesis-related gene 1 (PR1) and enhanced resistance of B. napus plants to the invasion of L. maculans. The elicitation activity was significantly lowered when the cultivation medium was heated to 80°C. Active components were further characterized by specific cleavage with the proteolytic enzymes trypsin and proteinase K and with glycosidases α-amylase and β-glucanase. The elicitor activity was eliminated by proteolytic digestion while glycosidases had no effect. The filtered medium was fractionated by either ion-exchange chromatography or isoelectric focusing. Mass spectrometry analysis of the most active fractions obtained by both separation procedures revealed predominantly enzymes that can be involved in the degradation of plant cell wall polysaccharides. This is the first study searching for L. maculans-specific secreted elicitors with a potential to be used as defense-activating agents in the protection of B. napus against L. maculans in agriculture. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:918-928, 2016. PMID:27009514

  18. Variations of boundary reaction rate and particle size on the diffusion-induced stress in a phase separating electrode

    SciTech Connect

    Zhang, Lei; He, Linghui; Ni, Yong; Song, Yicheng

    2014-10-14

    In contrast to the case of single-phase delithiation wherein faster discharging leads to higher diffusion-induced stress (DIS), this paper reports nonmonotonous dependency of the boundary reaction rate on the DIS in nanosized spherical electrode accompanying phase separation. It is attributed to a transition from two-phase to single-phase delithiation driven by increase of the boundary reaction rate leading to narrowing and vanishing of the miscibility gap in a range of the particle size. The profiles of lithium concentration and the DIS are identified during the transition based on a continuum model. The resultant maximum DIS first decreases in the region of two-phase delithiation and later returns to increase in the region of single-phase delithiation with the increase of the boundary reaction rate. A map for the failure behavior in the spherical electrode particle is constructed based on the Tresca failure criterion. These results indicate that the failure caused by the DIS can be avoided by appropriate selection of the said parameters in such electrodes.

  19. Structure and properties of PVDF membrane with PES-C addition via thermally induced phase separation process

    NASA Astrophysics Data System (ADS)

    Wu, Lishun; Sun, Junfen

    2014-12-01

    Polyvinylidene fluoride (PVDF) membrane and PVDF membrane with phenolphthalein polyethersulfone (PES-C) addition were prepared via thermally induced phase separation (TIPS) method by using diphenyl carbonate (DPC) and dimethyl acetamide (DMAc) as mixed diluents. The effects of coagulation temperature and pre-evaporation time on structure and properties of membranes were studied. The changes of sewage flux in MBR and the attenuation coefficient of sewage flux were investigated. The resistance distributions of PVDF and PVDF/PES-C membranes were compared by resistance analysis. Membrane composition and structure were characterized by ATR-FTIR, TGA, SEM and AFM. The foulant on membranes was analyzed by FTIR. The contact angle of PVDF/PES-C membrane was lower than that of PVDF membrane. A thinner skin layer and a porous cellular support layer formed in PVDF/PES-C membrane and resulted in a higher porosity and pure water flux. The pure water flux and porosity of PVDF/PES-C membrane increased with rising coagulation temperature and decreased with extending pre-evaporation time. The flux attenuation coefficient, the cake layer resistance and internal fouling resistance of PVDF/PES-C membrane in MBR were smaller than those of PVDF membrane in MBR. The FTIR spectrum of foulant on membrane indicated that the foulant on PVDF/PES-C membrane was mostly composed of protein and polysaccharide, while the foulant on pure PVDF membrane included biopolymer clusters besides protein and polysaccharide.

  20. Complexation-induced phase separation: preparation of composite membranes with a nanometer-thin dense skin loaded with metal ions.

    PubMed

    Villalobos, Luis Francisco; Karunakaran, Madhavan; Peinemann, Klaus-Viktor

    2015-05-13

    We present the development of a facile phase-inversion method for forming asymmetric membranes with a precise high metal ion loading capacity in only the dense layer. The approach combines the use of macromolecule-metal intermolecular complexes to form the dense layer of asymmetric membranes with nonsolvent-induced phase separation to form the porous support. This allows the independent optimization of both the dense layer and porous support while maintaining the simplicity of a phase-inversion process. Moreover, it facilitates control over (i) the thickness of the dense layer throughout several orders of magnitude from less than 15 nm to more than 6 μm, (ii) the type and amount of metal ions loaded in the dense layer, (iii) the morphology of the membrane surface, and (iv) the porosity and structure of the support. This simple and scalable process provides a new platform for building multifunctional membranes with a high loading of well-dispersed metal ions in the dense layer.

  1. Continuous On-Chip Cell Separation Based on Conductivity-Induced Dielectrophoresis with 3D Self-Assembled Ionic Liquid Electrodes.

    PubMed

    Sun, Mingrui; Agarwal, Pranay; Zhao, Shuting; Zhao, Yi; Lu, Xiongbin; He, Xiaoming

    2016-08-16

    Dielectrophoresis (DEP) has been widely explored to separate cells for various applications. However, existing DEP devices are limited by the high cost associated with the use of noble metal electrodes, the need of high-voltage electric field, and/or discontinuous separation (particularly for devices without metal electrodes). We developed a DEP device with liquid electrodes, which can be used to continuously separate different types of cells or particles based on positive DEP. The device is made of polydimethylsiloxane (PDMS), and ionic liquid is used to form the liquid electrodes, which has the advantages of low cost and easy fabrication. Moreover, the conductivity gradient is utilized to achieve the DEP-based on-chip cell separation. The device was used to separate polystyrene microbeads and PC-3 human prostate cancer cells with 94.7 and 1.2% of the cells and microbeads being deflected, respectively. This device is also capable of separating live and dead PC-3 cancer cells with 89.8 and 13.2% of the live and dead cells being deflected, respectively. Moreover, MDA-MB-231 human breast cancer cells could be separated from human adipose-derived stem cells (ADSCs) using this device with high purity (81.8 and 82.5% for the ADSCs and MDA-MB-231 cells, respectively). Our data suggest the great potential of cell separation based on conductivity-induced DEP using affordable microfluidic devices with easy operation.

  2. Polymer scaffolds with no skin-effect for tissue engineering applications fabricated by thermally induced phase separation.

    PubMed

    Kasoju, Naresh; Kubies, Dana; Sedlačík, Tomáš; Janoušková, Olga; Koubková, Jana; Kumorek, Marta M; Rypáček, František

    2016-01-11

    Thermally induced phase separation (TIPS) based methods are widely used for the fabrication of porous scaffolds for tissue engineering and related applications. However, formation of a less-/non-porous layer at the scaffold's outer surface at the air-liquid interface, often known as the skin-effect, restricts the cell infiltration inside the scaffold and therefore limits its efficacy. To this end, we demonstrate a TIPS-based process involving the exposure of the just quenched poly(lactide-co-caprolactone):dioxane phases to the pure dioxane for a short time while still being under the quenching strength, herein after termed as the second quenching (2Q). Scanning electron microscopy, mercury intrusion porosimetry and contact angle analysis revealed a direct correlation between the time of 2Q and the gradual disappearance of the skin, followed by the widening of the outer pores and the formation of the fibrous filaments over the surface, with no effect on the internal pore architecture and the overall porosity of scaffolds. The experiments at various quenching temperatures and polymer concentrations revealed the versatility of 2Q in removing the skin. In addition, the in vitro cell culture studies with the human primary fibroblasts showed that the scaffolds prepared by the TIPS based 2Q process, with the optimal exposure time, resulted in a higher cell seeding and viability in contrast to the scaffolds prepared by the regular TIPS. Thus, TIPS including the 2Q step is a facile, versatile and innovative approach to fabricate the polymer scaffolds with a skin-free and fully open porous surface morphology for achieving a better cell response in tissue engineering and related applications.

  3. Separation of experimental 2D IR frequency-frequency correlation functions into structural and reorientation-induced contributions

    NASA Astrophysics Data System (ADS)

    Kramer, Patrick L.; Nishida, Jun; Fayer, Michael D.

    2015-09-01

    A vibrational transition frequency can couple to its environment through a directional vector interaction. In such cases, reorientation of the vibrational transition dipole (molecular orientational relaxation) and its frequency fluctuations can be strongly coupled. It was recently shown [Kramer et al., J. Chem. Phys. 142, 184505 (2015)] that differing frequency-frequency correlation function (FFCF) decays, due to reorientation-induced spectral diffusion (RISD), are observed with different two-dimensional infrared polarization configurations when such strong coupling is present. The FFC functional forms were derived for the situation in which all spectral diffusion is due to reorientational motion. We extend the previous theory to include vibrational frequency evolution (spectral diffusion) caused by structural fluctuations of the medium. Model systems with diffusive reorientation and several regimes of structural spectral diffusion rates are analyzed for first order Stark effect interactions. Additionally, the transition dipole reorientational motion in complex environments is frequently not completely diffusive. Several periods of restricted angular motion (wobbling-in-a-cone) may precede the final diffusive orientational randomization. The polarization-weighted FFCF decays are presented in this case of restricted transition dipole wobbling. With these extensions to the polarization-dependent FFCF expressions, the structural spectral diffusion dynamics of methanol in the room temperature ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate can be separated quantitatively from RISD using the experimental center line slope data. In addition, prior results on the spectral diffusion of water, methanol, and ethanol in 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide are re-examined to elucidate the influence of reorientation on the data, which were interpreted in terms of structural fluctuations.

  4. Exploiting Photo-induced Reactions in Polymer Blends to Create Hierarchically Ordered, Defect-free Materials

    ScienceCinema

    Balazs, Anna [University of Pittsburgh, Pittsburgh, Pennsylvania, United States

    2016-07-12

    Computer simulations reveal how photo-induced chemical reactions can be exploited to create long-range order in binary and ternary polymeric materials. The process is initiated by shining a spatially uniform light over a photosensitive AB binary blend, which undergoes both a reversible chemical reaction and phase separation. We then introduce a well-collimated, higher-intensity light source. Rastering this secondary light over the sample locally increases the reaction rate and causes formation of defect-free, spatially periodic structures. These binary structures resemble either the lamellar or hexagonal phases of microphase-separated di-block copolymers. We measure the regularity of the ordered structures as a function of the relative reaction rates for different values of the rastering speed and determine the optimal conditions for creating defect-free structures in the binary systems. We then add a non-reactive homo-polymer C, which is immiscible with both A and B. We show that this component migrates to regions that are illuminated by the secondary, higher-intensity light, allowing us to effectively write a pattern of C onto the AB film. Rastering over the ternary blend with this collimated light now leads to hierarchically ordered patterns of A, B, and C. The findings point to a facile, non-intrusive process for manufacturing high-quality polymeric devices in a low-cost, efficient manner.

  5. Fabrication of Pd/Pd-Alloy Films by Surfactant Induced Electroless Plating for Hydrogen Separation from Advanced Coal Gasification Processes

    SciTech Connect

    Ilias, Shamsuddin; Kumar, Dhananjay

    2012-07-31

    Dense Pd, Pd-Cu and Pd-Ag composite membranes on microporous stainless steel substrate (MPSS) were fabricated by a novel electroless plating (EP) process. In the conventional Pd-EP process, the oxidation-reduction reactions between Pd-complex and hydrazine result in an evolution of NH{sub 3} and N{sub 2} gas bubbles. When adhered to the substrate surface and in the pores, these gas bubbles hinder uniform Pd-film deposition which results in dendrite growth leading to poor film formation. This problem was addressed by introducing cationic surfactant in the electroless plating process known as surfactant induced electroless plating (SIEP). The unique features of this innovation provide control of Pd-deposition rate, and Pd-grain size distribution. The surfactant molecules play an important role in the EP process by tailoring grain size and the process of agglomeration by removing tiny gas bubbles through adsorption at the gas-liquid interface. As a result surfactant can tailor a nanocrystalline Pd, Cu and Ag deposition in the film resulting in reduced membrane film thickness. Also, it produces a uniform, agglomerated film structure. The Pd-Cu and Pd-Ag membranes on MPSS support were fabricated by sequential deposition using SIEP method. The pre- and post-annealing characterizations of these membranes (Pd, Pd-Cu and Pd-Ag on MPSS substrate) were carried out by SEM, EDX, XRD, and AFM studies. The SEM images show significant improvement of the membrane surface morphology, in terms of metal grain structures and grain agglomeration compared to the membranes fabricated by conventional EP process. The SEM images and helium gas-tightness studies indicate that dense and thinner films of Pd, Pd-Cu and Pd-Ag membranes can be produced with shorter deposition time using surfactant. H{sub 2} Flux through the membranes fabricated by SIEP shows large improvement compared to those by CEP with comparable permselectivity. Pd-MPSS composite membrane was subjected to test for long term

  6. Evidence that lipid lateral phase separation induces functionally significant structural changes in the Ca+2ATPase of the sarcoplasmic reticulum.

    PubMed Central

    Asturias, F J; Pascolini, D; Blasie, J K

    1990-01-01

    We have studied lipid lateral phase separation (LPS) in the intact sarcoplasmic reticulum (SR) membrane and in bilayers of isolated SR membrane lipids as a function of temperature, [Mg+2], and degree of hydration. Lipid LPS was observed in both the intact membrane and in the bilayers of isolated SR lipids, and the LPS behavior of both systems was found to be qualitatively similar. Namely, lipid LPS occurs only at relatively low temperature and water content, independently of the [Mg+2], and the upper characteristic temperature (th) for lipid LPS for both the membrane and bilayers of its isolated lipids coincide to within a few degrees. However, at similar temperatures, isolated lipids show more LPS than the lipids in the intact membrane. Lipid LPS in the intact membrane and in bilayers of the isolated lipids is fully reversible, and more extensive for samples partially dehydrated at temperatures below th. Our previous x-ray diffraction studies established the existence of a temperature-induced transition in the profile structure of the sarcoplasmic reticulum Ca+2ATPase which occurs at a temperature corresponding to the [Mg+2]-dependent upper characteristic temperature for lipid LPS in the SR membrane. Furthermore, the functionality of the ATPase, and in particular the lifetime of the first phosphorylated enzyme conformation (E1 approximately P) in the Ca+2 transport cycle, were also found to be linked to the occurrence of this structural transition. The hysterisis observed in lipid LPS behavior as a function of temperature and water content provides a possible explanation for the more efficient transient trapping of the enzyme in the E1 approximately P conformation observed in SR membranes partially dehydrated at temperatures below th. The observation that LPS behavior for the intact SR membrane and bilayers of isolated SR lipids (no protein present) are qualitatively similar strongly suggests that the LPS behavior of the SR membrane lipids is responsible for the

  7. Insights on the isotropic-to-smectic A transition in ionic liquid crystals from coarse-grained molecular dynamics simulations: the role of microphase segregation.

    PubMed

    Saielli, Giacomo; Bagno, Alessandro; Wang, Yanting

    2015-03-01

    We have investigated the role of microphase segregation as the driving force in the stabilization of thermotropic ionic liquid crystals of smectic type. To this end we have applied the heterogeneity order parameter, initially proposed for ionic liquids, to the coarse-grained molecular dynamics simulation results for a model system of an imidazolium nitrate ionic liquid crystal, [C16mim][NO3], whose phase diagram was recently studied. We have found that the heterogeneity order parameters become larger when the system goes through the transition from the isotropic phase to the smectic A phase as the temperature decreases. This can be understood by considering that, in the smectic A phase, the layered structure allows the tail groups to have a degree of aggregation larger than that in the isotropic phase. Our results highlight the role of microsegregation in the stabilization of ionic liquid crystals, which cannot be revealed by the commonly used translational and orientational order parameters used to describe liquid crystal phases.

  8. Three-dimensional boundary-layer instability and separation induced by small-amplitude streamwise vorticity in the upstream flow

    NASA Technical Reports Server (NTRS)

    Goldstein, M. E.; Leib, S. J.

    1993-01-01

    We consider the effects of a small-amplitude, steady, streamwise vorticity field on the flow over an infinitely thin flat plate in an otherwise uniform stream. We show how the initially linear perturbation, ultimately leads to a small-amplitude but nonlinear cross flow far downstream from the leading edge. This motion is imposed on the boundary-layer flow and eventually causes the boundary layer to separate. The streamwise velocity profiles within the boundary layer become inflexional in localized spanwise regions just upstream of the separation point. The flow in these regions is therefore susceptible to rapidly growing inviscid instabilities.

  9. Separation and detection of VX and its methylphosphonic acid degradation products on a microchip using indirect laser-induced fluorescence.

    PubMed

    Heleg-Shabtai, Vered; Gratziany, Natzach; Liron, Zvi

    2006-05-01

    The application of indirect LIF (IDLIF) technique for on-chip electrophoretic separation and detection of the nerve agent O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothiolate (VX) and its major phosphonic degradation products, ethyl methylphosphonic acid (EMPA) and methylphosphonic acid (MPA) was demonstrated. Separation and detection of MPA degradation products of VX and the nerve agent isopropyl methylphosphonofluoridate (GB) are presented. The negatively charged dye eosin was found to be a good fluorescent marker for both the negatively charged phosphonic acids and the positively charged VX, and was chosen as the IDLIF visualization fluorescent dye. Separation and detection of VX, EMPA, and MPA in a simple-cross microchip were completed within less than a minute, and consumed only a 50 pL sample volume. A characteristic system peak that appeared in all IDLIF electropherograms served as an internal standard that increased the reliability of peak identification. The negative peak of both VX and the MPAs is in agreement with indirect detection theory and with previous reports in the literature. The LOD of VX and EMPA by IDLIF was 30 and 37 microM, respectively. Despite the fact that the detection sensitivity is relatively low, the rapid simultaneous on-chip analysis of both VX and its degradation products as well as the separation and detection of the MPA degradation products of both VX and GB, increases detection reliability and may present a choice when sensitivity is not critical compared with speed and simplicity of the assay. PMID:16703628

  10. Separation and detection of VX and its methylphosphonic acid degradation products on a microchip using indirect laser-induced fluorescence.

    PubMed

    Heleg-Shabtai, Vered; Gratziany, Natzach; Liron, Zvi

    2006-05-01

    The application of indirect LIF (IDLIF) technique for on-chip electrophoretic separation and detection of the nerve agent O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothiolate (VX) and its major phosphonic degradation products, ethyl methylphosphonic acid (EMPA) and methylphosphonic acid (MPA) was demonstrated. Separation and detection of MPA degradation products of VX and the nerve agent isopropyl methylphosphonofluoridate (GB) are presented. The negatively charged dye eosin was found to be a good fluorescent marker for both the negatively charged phosphonic acids and the positively charged VX, and was chosen as the IDLIF visualization fluorescent dye. Separation and detection of VX, EMPA, and MPA in a simple-cross microchip were completed within less than a minute, and consumed only a 50 pL sample volume. A characteristic system peak that appeared in all IDLIF electropherograms served as an internal standard that increased the reliability of peak identification. The negative peak of both VX and the MPAs is in agreement with indirect detection theory and with previous reports in the literature. The LOD of VX and EMPA by IDLIF was 30 and 37 microM, respectively. Despite the fact that the detection sensitivity is relatively low, the rapid simultaneous on-chip analysis of both VX and its degradation products as well as the separation and detection of the MPA degradation products of both VX and GB, increases detection reliability and may present a choice when sensitivity is not critical compared with speed and simplicity of the assay.

  11. Accumulative charge separation for solar fuels production: coupling light-induced single electron transfer to multielectron catalysis.

    PubMed

    Hammarström, Leif

    2015-03-17

    The conversion and storage of solar energy into a fuel holds promise to provide a significant part of the future renewable energy demand of our societies. Solar energy technologies today generate heat or electricity, while the large majority of our energy is used in the form of fuels. Direct conversion of solar energy to a fuel would satisfy our needs for storable energy on a large scale. Solar fuels can be generated by absorbing light and converting its energy to chemical energy by electron transfer leading to separation of electrons and holes. The electrons are used in the catalytic reduction of a cheap substrate with low energy content into a high-energy fuel. The holes are filled by oxidation of water, which is the only electron source available for large scale solar fuel production. Absorption of a single photon typically leads to separation of a single electron-hole pair. In contrast, fuel production and water oxidation are multielectron, multiproton reactions. Therefore, a system for direct solar fuel production must be able to accumulate the electrons and holes provided by the sequential absorption of several photons in order to complete the catalytic reactions. In this Account, the process is termed accumulative charge separation. This is considerably more complicated than charge separation on a single electron level and needs particular attention. Semiconductor materials and molecular dyes have for a long time been optimized for use in photovoltaic devices. Efforts are made to develop new systems for light harvesting and charge separation that are better optimized for solar fuel production than those used in the early devices presented so far. Significant progress has recently been made in the discovery and design of better homogeneous and heterogeneous catalysts for solar fuels and water oxidation. While the heterogeneous ones perform better today, molecular catalysts based on transition metal complexes offer much greater tunability of electronic and

  12. Understanding the influence of solvent field and fluctuations on the stability of photo-induced charge-separated state in molecular triad

    NASA Astrophysics Data System (ADS)

    Balamurugan, D.; Aquino, Adelia; Lischka, Hans; Dios, Francis; Flores, Lionel; Cheung, Margaret

    2013-03-01

    Molecular triad composed of fullerene, porphyrin, and carotene is an artificial analogue of natural photosynthetic system and is considered for applications in solar energy conversion because of its ability to produce long-lived photo-induced charge separated state. The goal of the present multiscale simulation is to understand how the stability of photo-induced charge-separated state in molecular triad is influenced by a polar organic solvent, namely tetrahydrofuran (THF). The multiscale approach is based on combined quantum, classical molecular dynamics, and statistical physics calculations. The quantum chemical calculations were performed on the triad using the second order algebraic diagrammatic perturbation and time-dependent density functional theory. Molecular dynamics simulations were performed on triad in a box of THF solvent with the replica exchange method. The two methods on different length and time scales are bridged through an important sampling technique. We have analyzed the free energy landscape, structural fluctuations, and the long- range electrostatic interactions between triad and solvent molecules. The results suggest that the polarity and re-organization of the solvent is critical in stabilization of charge-separated state in triad. Supported by DOE (DE-FG02-10ER16175)

  13. Area postrema ablations in cats: Evidence for separate neural routes for motion- and xylazine-induced CTA and emesis

    NASA Technical Reports Server (NTRS)

    Corcoran, Meryl Lee; Fox, Robert A.; Brizzee, Kenneth R.; Crampton, G.; Daunton, Nancy G.

    1991-01-01

    Previous studies on the role of the area postrema (AP) in vomiting induced in the cat by motion and drugs have shown that the AP is not essential for motion-induced vomiting, but is necessary for vomiting to apomorphine and xylazine. To confirm these findings and to determine the role of the AP in the formation of Conditioned Taste Aversion (CTA), the AP was ablated bilaterally in 10 adult female cats. With one exception, the ablated cats continued to vomit to the same motion that elicited emesis before the ablation. Doses of xylazine and apomorphine that elicit emesis in intact cats, failed to induce emesis in the ablated cats. Histological examination indicated that 8 cats had complete lesions and 2 had partial lesions. Investigations of effects of AP ablations on CTA revealed that cats with complete lesions did not form CTA to flavored milk paired with xylazine-induced CTA. Seven of the eigth completely lesioned cats developed motion-induced CTA, even though emesis was not consistently elicited by motion. These results suggest that there are multiple routes for inducing CTA and the emetic reflex, that CTA can form without eliciting emesis, and that CTA may be a sensitive measure of sub-emetic motion sickness.

  14. Development of experiment and theory to detect and predict ligand phase separation on silver nanoparticles.

    PubMed

    Farrell, Zachary; Merz, Steve; Seager, Jon; Dunn, Caroline; Egorov, Sergei; Green, David L

    2015-05-26

    MALDI mass-spectrometry measurements are combined with self-consistent mean-field (SCF) calculations to detect and predict ligand phase separation on Ag nanoparticles. The experimental and theoretical techniques complement each other by enabling quantification of the nearest-neighbor distribution of a ligand mixture in a monolayer shell. By tracking a characteristic metallic fragment family, analysis of a MALDI spectrum produces a frequency distribution corresponding to specific ligand patterning. Inherent to the SCF calculation is the enumeration of local interactions that dictate ligand assembly. Interweaving MALDI and SCF facilitates a comparison between the experimentally and theoretically derived frequency distributions as well as their deviation from a well-mixed state. Thus, we combine these techniques to detect and predict phase separation in monolayers that mix uniformly or experience varying degrees of de-mixing, including microphase separation and stripe formation. Definition of MALDI removed as this is a commonly recognized technique. PMID:25882701

  15. Thermally induced vertical phase separation and photovoltaic characteristics of polymer solar cells for P3HT/PCBM composites

    NASA Astrophysics Data System (ADS)

    Nagai, Masaru; Wei, Huang; Yoshida, Yuji

    2016-06-01

    The occurrence of vertical phase separation has been reported for various spin-cast polymer films, including bulk-heterojunction films of polymer solar cells (PSCs). Focusing on real-space analysis, we conducted a study on the relationship between the morphology and processing conditions of PSCs for typical poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) cells. Our results demonstrated that spin-casting caused a localized reduction in the P3HT concentration in the bulk center. Thermal annealing after cathode formation enhanced the unevenness in concentration and created a multilayered vertical phase-separated morphology in which the P3HT domains were gathered near the electrodes, leaving only PCBM domains at the center of the film. Cells with this morphology had good power conversion efficiency (∼3%).

  16. Separating water-potential induced swelling and shrinking from measured radial stem variations reveals a cambial growth and osmotic concentration signal.

    PubMed

    Chan, Tommy; Hölttä, Teemu; Berninger, Frank; Mäkinen, Harri; Nöjd, Pekka; Mencuccini, Maurizio; Nikinmaa, Eero

    2016-02-01

    The quantification of cambial growth over short time periods has been hampered by problems to discern between growth and the swelling and shrinking of a tree stem. This paper presents a model, which separates cambial growth and reversible water-potential induced diurnal changes from simultaneously measured whole stem and xylem radial variations, from field-measured Scots pine trees in Finland. The modelled growth, which includes osmotic concentration changes, was compared with (direct) dendrometer measurements and microcore samples. In addition, the relationship of modelled growth and dendrometer measurements to environmental factors was analysed. The results showed that the water-potential induced changes of tree radius were successfully separated from stem growth. Daily growth predicted by the model exhibited a high correlation with the modelled daily changes of osmotic concentration in phloem, and a temperature dependency in early summer. Late-summer growth saw higher dependency on water availability and temperature. Evaluation of the model against dendrometer measurements showed that the latter masked a true environmental signal in stem growth due to water-potential induced changes. The model provides better understanding of radial growth physiology and offers potential to examine growth dynamics and changes due to osmotic concentration, and how the environment affects growth.

  17. Separating water-potential induced swelling and shrinking from measured radial stem variations reveals a cambial growth and osmotic concentration signal.

    PubMed

    Chan, Tommy; Hölttä, Teemu; Berninger, Frank; Mäkinen, Harri; Nöjd, Pekka; Mencuccini, Maurizio; Nikinmaa, Eero

    2016-02-01

    The quantification of cambial growth over short time periods has been hampered by problems to discern between growth and the swelling and shrinking of a tree stem. This paper presents a model, which separates cambial growth and reversible water-potential induced diurnal changes from simultaneously measured whole stem and xylem radial variations, from field-measured Scots pine trees in Finland. The modelled growth, which includes osmotic concentration changes, was compared with (direct) dendrometer measurements and microcore samples. In addition, the relationship of modelled growth and dendrometer measurements to environmental factors was analysed. The results showed that the water-potential induced changes of tree radius were successfully separated from stem growth. Daily growth predicted by the model exhibited a high correlation with the modelled daily changes of osmotic concentration in phloem, and a temperature dependency in early summer. Late-summer growth saw higher dependency on water availability and temperature. Evaluation of the model against dendrometer measurements showed that the latter masked a true environmental signal in stem growth due to water-potential induced changes. The model provides better understanding of radial growth physiology and offers potential to examine growth dynamics and changes due to osmotic concentration, and how the environment affects growth. PMID:25808847

  18. Demonstration of the amphiphilic character of hormone-sensitive lipase by temperature-induced phase separation in Triton X-114 and charge-shift electrophoresis.

    PubMed

    Holm, C; Fredrikson, G; Belfrage, P

    1986-11-25

    Temperature-induced phase separation in Triton X-114 (Bordier, C. (1981) J. Biol. Chem. 256, 1604-1607) and charge-shift electrophoresis (Helenius, A., and Simons, K. (1977) Proc. Natl. Acad. Sci. U. S. A. 74, 529-532) were used to examine the amphiphilic character of hormone-sensitive lipase, purified from rat adipose tissue. In contrast to ATP-citrate lyase, a reference hydrophilic protein, the lipase was shown to partition predominantly (approximately 80%) into the detergent-rich phase upon phase separation in Triton X-114. Furthermore, its electrophoretic mobility was markedly shifted anodally and cathodally upon charge-shift electrophoresis in the presence of sodium taurodeoxycholate and cetyltrimethylammonium bromide, respectively. The results demonstrate that hormone-sensitive lipase possesses detergent-binding hydrophobic domain(s) and exhibits the same amphiphilicity as typical intrinsic membrane proteins.

  19. Low-temperature baroplastic processing of graphene-based polymer composites by pressure-induced flow

    NASA Astrophysics Data System (ADS)

    Tang, Wei; He, Cheng-en; Wang, Yuanzhen; Yang, Yingkui; Pong Tsui, Chi

    2014-08-01

    Two-stage emulsion polymerization was employed to synthesize nanoparticles consisting of a low glass transition temperature core of poly(n-butyl acrylate) (PBA) and a glassy poly(methyl methylacrylate) (PMMA) shell. Incorporation of graphene oxide (GO) into the PBA-PMMA latex produced GO/PBA-PMMA composites after demulsification and graphene/PBA-PMMA composites after chemical reduction of GO. The as-prepared powdery materials were processed into thin films by compression molding at room temperature as the result of a pressure-induced mixing mechanism of microphase-separated baroplastics. The presence of oxygen-containing groups for GO sheets contributed to better dispersion and stronger interface with the matrix, thereby showing greater reinforcement efficiency toward polymers compared to graphene sheets. In addition, both Young's modulus and yield strength for all materials increased with applied pressure and processing time due to better flowability, processability and cohesion at higher pressure and longer time. Low-temperature processing under pressure is of significance for energy conservation, recyclability and environmental protection during plastic processing.

  20. Cation-Deficient Perovskite-Related (Ba,La) nTi n- δO 3 n ( n≥4 δ) Microphases in the La 4Ti 3O 12-BaTiO 3 System: An HRTEM Approach

    NASA Astrophysics Data System (ADS)

    Trolliard, G.; Harre, N.; Mercurio, D.; Frit, B.

    1999-07-01

    The large nonstoichiometric domain, observed in the La4Ti3O12-rich part of the La4Ti3O12-BaTiO3 system, has been shown to correspond to a continuous series of cation-deficient perovskite-related (Ba,La)nTin-δO3n (n≥4δ) microphases. The crystal structures of these microphases have been analyzed by electron diffraction and high-resolution electron microscopy. They can be described as coherent intergrowths of P-perovskite-like blocks La4Ti3O12 and Q-perovskite-like blocks BaLa4Ti4O15, respectively, constitutive of the simple basic terms n=4 and n=5 of the previously identified (Ba,La)nTin-1O3n series. The corresponding BaQLa4(P+Q)Ti3P+4QO12P+15Q microphases can thus be denoted by 4P5Q in a compact form. In fact, only the 4P51 intergrowth sequences have been observed. Eight of these are clearly shown by direct imaging. No intergrowth terms were observed for compositions ranging from BaLa4Ti4O15 (n=5) to Ba2La4Ti5O18 (n=6). The ability of the system to develop coherent intergrowths has been discussed in the light of information provided by an accurate analysis of crystal structures of the basic members of the series: La4Ti3O12 (n=4), BaLa4Ti4O15 (n=5), and Ba2La4Ti5O18 (n=6).

  1. Separation and identification of phosphatidylcholine regioisomers by combining liquid chromatography with a fusion of collision-and ozone-induced dissociation.

    PubMed

    Mitchell, Todd; Blanksby, Stephen; Kozlowskia, Rachel

    2015-01-01

    The differentiation of closely related lipid isomers is increasingly important to our evolving understanding of lipid biochemistry but it is equally challenging to contemporary chromatographic and mass spectral analyses. Recently, we described a novel ion-activation approach based on combining collision- with ozone-induced dissociation (CID/OzID) for the identification of the relative acyl chain substitution positions in glycerophospholipids. Here we demonstrate, for the first time, that CID/OzID can be effectively combined with reversed-phase chromatography to enable the separation and unambiguous identification of regioisomeric pairs of phosphatidylcholines that differ only in the arrangement of acyl chains on the glycerol backbone. PMID:26307699

  2. Electrically Tunable Microlens via Photopolymerization-Induced Phase Separation of Liquid Crystal/Monomer Mixtures Based on Four-Wave Mixing

    NASA Astrophysics Data System (ADS)

    Kyu, Thein; Nwabunma, Domasius

    2001-03-01

    We introduce a new method of fabricating electrically tunable liquid crystal (LC) microlens via photopolymerization-induced phase separation of LC/monomer mixtures using four-wave mixing technique, i.e., interference of two horizontal and two vertical waves. The microlens forming process was simulated based on a spatially modulated photopolymerization reaction coupled with the time-dependent Ginzburg-Landau (TDGL) Model C equations, which incorporate free energy densities due to isotropic mixing, LC ordering, and polymer network elasticity. Our simulation revealed that the calculated LC microlens are similar to the compound eyes found in the eyes of insects such as flies, ants, and wasps.

  3. Ultracapacitor separator

    DOEpatents

    Wei, Chang; Jerabek, Elihu Calvin; LeBlanc, Jr., Oliver Harris

    2001-03-06

    An ultracapacitor includes two solid, nonporous current collectors, two porous electrodes separating the collectors, a porous separator between the electrodes and an electrolyte occupying the pores in the electrodes and separator. The electrolyte is a polar aprotic organic solvent and a salt. The porous separator comprises a wet laid cellulosic material.

  4. Heparin use in a rat hemorrhagic shock model induces biologic activity in mesenteric lymph separate from shock.

    PubMed

    Qin, Yong; Prescott, Lauriston M; Deitch, Edwin A; Kaiser, Vicki L

    2011-04-01

    Experimental data have shown that mesenteric lymph from rats subjected to trauma-hemorrhagic shock (THS) but not trauma-sham shock induces neutrophil activation, cytotoxicity, decreased red blood cell (RBC) deformability, and bone marrow colony growth suppression. These data have led to the hypothesis that gut factors produced from THS enter the systemic circulation via the mesenteric lymphatics and contribute to the progression of multiple organ failure after THS. Ongoing studies designed to identify bioactive lymph agents implicated factors associated with the heparin use in the THS procedure. We investigated if heparin itself was responsible for reported toxicity to human umbilical vein endothelial cells (HUVECs). Human umbilical vein endothelial cell toxicity was not induced by lymph when alternate anticoagulants (citrate and EDTA) were used in THS. Human umbilical vein endothelial cell toxicity was induced by lymph after heparin but not saline or citrate injection into trauma-sham shock and naive animals and was dose dependent. Activities of both heparin-releasable lipases (lipoprotein and hepatic) were detected in the plasma and lymph from THS and naive animals receiving heparin but not citrate or saline. Lymph-induced HUVEC toxicity correlated with lymph lipase activities. Finally, incubation of HUVECs with purified lipoprotein lipase added to naive lymph-induced toxicity in vitro. These data show that heparin, not THS, is responsible for the reported lymph-mediated HUVEC toxicity through its release of lipases into the lymph. These findings can provide alternative explanations for several of the THS effects reported in the literature using heparin models, thus necessitating a review of previous work in this field.

  5. Salinity induced physiological and biochemical changes in the freshly separated cyanobionts of Azolla microphylla and Azolla caroliniana.

    PubMed

    Yadav, Ravindra Kumar; Tripathi, Keshawanand; Ramteke, Pramod Wasudeo; Varghese, Eldho; Abraham, Gerard

    2016-09-01

    Freshly separated cyanobionts of Azolla microphylla and Azolla caroliniana plants exposed to salinity showed decline in the cellular constituents such as chlorophyll (23.1 and 38.9%) and protein (12.9 and 19.3%). However, an increase in the carotenoid and sugar content was observed. Exposure to salinity stress reduced the heterocyst frequency (35.4 and 57.2%) and nitrogenase activity (37.7 and 46.3%) of the cyanobionts. Increase in the activity of antioxidant enzymes such as super oxide dismutase (50.6 and 11.5%), ascorbate peroxidase (63.7 and 57.9%), catalase (94.2 and 22.5%) as well as non-enzymatic antioxidant proline (18.8 and 13.3%) was also observed in response to salinity. The cyanobionts exhibited significant increase in the intracellular Na(+) level and reduced intracellular K(+)/Na(+) and Ca(2+)/Na(+) ratio in response to salinity. The results demonstrate the adverse impact of salinity on the freshly separated cyanobionts as similar to free living cyanobacteria. These results may be helpful in the critical evaluation of salinity tolerance mechanism of the cyanobiont and its interaction with the host. PMID:27135817

  6. Determination of mercury in biological samples by cold vapor atomic absorption spectrometry following cloud point extraction with salt-induced phase separation.

    PubMed

    Dittert, Ingrid M; Maranhão, Tatiane A; Borges, Daniel L G; Vieira, Mariana A; Welz, Bernhard; Curtius, Adilson J

    2007-07-31

    Method development for the pre-concentration of mercury in human hair, dogfish liver and dogfish muscle samples using cloud-point extraction and cold vapor atomic absorption spectrometry is demonstrated. Before the extraction, the samples were submitted to microwave-assisted digestion in a mixture of H(2)O(2) and HNO(3). Cloud point extraction was carried out using 0.5% (m/v) ammonium O,O-diethyldithiophosphate (DDTP) as the chelating agent and 0.3% (m/v) Triton X-114 as the non-ionic surfactant. Phase separation was induced after the addition of Na(2)SO(4) to a final concentration of 0.2 mol L(-1). Aliquots of the final extract were transferred to PTFE tubes and NaBH(4) and HCl were added. The mercury vapor was driven to a non-heated quartz tube for measuring the absorbance. The results obtained with salt-induced phase separation were in good agreement with the certified values at a 95% confidence level. An enrichment factor of 10 allowed a detection limit of 0.4 ng g(-1) to be obtained, which demonstrates the high sensitivity of the proposed procedure for the determination of mercury at trace levels.

  7. Repeated Three-Hour Maternal Separation Induces Depression-Like Behavior and Affects the Expression of Hippocampal Plasticity-Related Proteins in C57BL/6N Mice

    PubMed Central

    Bian, Yaoyao; Yang, Lili; Wang, Zhongli; Wang, Qing; Zeng, Li; Xu, Guihua

    2015-01-01

    Adverse early life experiences can negatively affect behaviors later in life. Maternal separation (MS) has been extensively investigated in animal models in the adult phase of MS. The study aimed to explore the mechanism by which MS negatively affects C57BL/6N mice, especially the effects caused by MS in the early phase. Early life adversity especially can alter plasticity functions. To determine whether adverse early life experiences induce changes in plasticity in the brain hippocampus, we established an MS paradigm. In this research, the mice were treated with mild (15 min, MS15) or prolonged (180 min, MS180) maternal separation from postnatal day 2 to postnatal day 21. The mice underwent a forced swimming test, a tail suspension test, and an open field test, respectively. Afterward, the mice were sacrificed on postnatal day 31 to determine the effects of MS on early life stages. Results implied that MS induces depression-like behavior and the effects may be mediated partly by interfering with the hippocampal GSK-3β-CREB signaling pathway and by reducing the levels of some plasticity-related proteins. PMID:26798520

  8. Autonomous oscillation/separation of cell density artificially induced by optical interlink feedback as designed interaction between two isolated microalgae chips

    NASA Astrophysics Data System (ADS)

    Ozasa, Kazunari; Won, June; Song, Simon; Maeda, Mizuo

    2016-04-01

    We demonstrate a designed interaction between two isolated cell populations of Euglena gracilis and Chlamydomonas reinhardtii, separately confined in two 25-square micro-aquariums of lab-on-chip size. The interaction was realized by interlinking two identical optical feedback systems, which measured the cell distribution. To analyze the cell populations, we measured the cell distribution in the 25 squares and irradiated the cells with a blue light pattern as an external stimulus. The cell distribution dataset was exchanged between the two systems. Governed by a designed interaction algorithm, the feedback systems produced a dynamic blue light illumination pattern that evoked the photophobic responses of both species. We also induced autonomous cell density oscillation and cell distribution separation and clustering, and analyzed how the types and diversities of the photophobic responses affected the oscillation period and separation and clustering. We conclude that artificial interlink feedback is a promising method for investigating diverse cell–cell interactions in ecological communities, and for developing soft-computing applications with living cells.

  9. Genome-wide identification of cassava R2R3 MYB family genes related to abscission zone separation after environmental-stress-induced abscission.

    PubMed

    Liao, Wenbin; Yang, Yiling; Li, Yayun; Wang, Gan; Peng, Ming

    2016-01-01

    Cassava plants (Manihot esculenta Crantz) resist environmental stresses by shedding leaves in leaf pulvinus abscission zones (AZs), thus leading to adaptation to new environmental conditions. Little is known about the roles of cassava R2R3 MYB factors in regulating AZ separation. Herein, 166 cassava R2R3 MYB genes were identified. Evolutionary analysis indicated that the 166 R2R3 MYB genes could be divided into 11 subfamilies. Transcriptome analysis indicated that 26 R2R3 MYB genes were expressed in AZs across six time points during both ethylene- and water-deficit stress-induced leaf abscission. Comparative expression profile analysis of similar SOTA (Self Organizing Tree Algorithm) clusters demonstrated that 10 R2R3 MYB genes had similar expression patterns at six time points in response to both treatments. GO (Gene Ontology) annotation confirmed that all 10 R2R3 MYB genes participated in the responses to stress and ethylene and auxin stimuli. Analysis of the putative 10 R2R3 MYB promoter regions showed that those genes primarily contained ethylene- and stress-related cis-elements. The expression profiles of the genes acting downstream of the selected MYBs were confirmed to be involved in cassava abscission zone separation. All these results indicated that R2R3 MYB plays an important regulatory role in AZ separation. PMID:27573926

  10. Autonomous oscillation/separation of cell density artificially induced by optical interlink feedback as designed interaction between two isolated microalgae chips

    PubMed Central

    Ozasa, Kazunari; Won, June; Song, Simon; Maeda, Mizuo

    2016-01-01

    We demonstrate a designed interaction between two isolated cell populations of Euglena gracilis and Chlamydomonas reinhardtii, separately confined in two 25-square micro-aquariums of lab-on-chip size. The interaction was realized by interlinking two identical optical feedback systems, which measured the cell distribution. To analyze the cell populations, we measured the cell distribution in the 25 squares and irradiated the cells with a blue light pattern as an external stimulus. The cell distribution dataset was exchanged between the two systems. Governed by a designed interaction algorithm, the feedback systems produced a dynamic blue light illumination pattern that evoked the photophobic responses of both species. We also induced autonomous cell density oscillation and cell distribution separation and clustering, and analyzed how the types and diversities of the photophobic responses affected the oscillation period and separation and clustering. We conclude that artificial interlink feedback is a promising method for investigating diverse cell–cell interactions in ecological communities, and for developing soft-computing applications with living cells. PMID:27098710

  11. The essential role of hippocampal alpha6 subunit-containing GABAA receptors in maternal separation stress-induced adolescent depressive behaviors.

    PubMed

    Yang, Linjie; Xu, Ting; Zhang, Ke; Wei, Zhisheng; Li, Xuran; Huang, Mingfa; Rose, Gregory M; Cai, Xiang

    2016-10-15

    Exposure to early stressful adverse life events such as maternal separation severely impacts the development of the nervous system. Using immunohistochemistry, quantitative PCR and Western blot approaches, we found that alpha6 subunit-containing GABAA receptors (Gabra6-containing GABAA Rs) were expressed on hippocampal interneurons of adolescent rats. Maternal separation stress (MS) from postnatal day 2 to15 significantly reduced Gabra6 expression and provoked depressive behaviors such as anhedonia. Furosemide, the selective antagonist of Gabra6-containing GABAARs, strongly increased peak amplitude of evoked IPSCs at CA3-CA1 synapses and the frequency of miniature IPSPs recorded from CA1 pyramidal cells in naive control animals, and this effect was occluded in MS animals. Knockdown of Gabra6 expression in hippocampus mimicked furosemide's effect and was sufficient to produce similar depressive symptoms that were observed in MS animals. These results indicate that the Gabra6-containing GABAA R is a key modulator of hippocampal synaptic transmission and likely plays a crucial role in the pathophysiology of maternal separation-induced depression. PMID:27388150

  12. Autonomous oscillation/separation of cell density artificially induced by optical interlink feedback as designed interaction between two isolated microalgae chips.

    PubMed

    Ozasa, Kazunari; Won, June; Song, Simon; Maeda, Mizuo

    2016-01-01

    We demonstrate a designed interaction between two isolated cell populations of Euglena gracilis and Chlamydomonas reinhardtii, separately confined in two 25-square micro-aquariums of lab-on-chip size. The interaction was realized by interlinking two identical optical feedback systems, which measured the cell distribution. To analyze the cell populations, we measured the cell distribution in the 25 squares and irradiated the cells with a blue light pattern as an external stimulus. The cell distribution dataset was exchanged between the two systems. Governed by a designed interaction algorithm, the feedback systems produced a dynamic blue light illumination pattern that evoked the photophobic responses of both species. We also induced autonomous cell density oscillation and cell distribution separation and clustering, and analyzed how the types and diversities of the photophobic responses affected the oscillation period and separation and clustering. We conclude that artificial interlink feedback is a promising method for investigating diverse cell-cell interactions in ecological communities, and for developing soft-computing applications with living cells. PMID:27098710

  13. Genome-wide identification of cassava R2R3 MYB family genes related to abscission zone separation after environmental-stress-induced abscission.

    PubMed

    Liao, Wenbin; Yang, Yiling; Li, Yayun; Wang, Gan; Peng, Ming

    2016-08-30

    Cassava plants (Manihot esculenta Crantz) resist environmental stresses by shedding leaves in leaf pulvinus abscission zones (AZs), thus leading to adaptation to new environmental conditions. Little is known about the roles of cassava R2R3 MYB factors in regulating AZ separation. Herein, 166 cassava R2R3 MYB genes were identified. Evolutionary analysis indicated that the 166 R2R3 MYB genes could be divided into 11 subfamilies. Transcriptome analysis indicated that 26 R2R3 MYB genes were expressed in AZs across six time points during both ethylene- and water-deficit stress-induced leaf abscission. Comparative expression profile analysis of similar SOTA (Self Organizing Tree Algorithm) clusters demonstrated that 10 R2R3 MYB genes had similar expression patterns at six time points in response to both treatments. GO (Gene Ontology) annotation confirmed that all 10 R2R3 MYB genes participated in the responses to stress and ethylene and auxin stimuli. Analysis of the putative 10 R2R3 MYB promoter regions showed that those genes primarily contained ethylene- and stress-related cis-elements. The expression profiles of the genes acting downstream of the selected MYBs were confirmed to be involved in cassava abscission zone separation. All these results indicated that R2R3 MYB plays an important regulatory role in AZ separation.

  14. Genome-wide identification of cassava R2R3 MYB family genes related to abscission zone separation after environmental-stress-induced abscission

    PubMed Central

    Liao, Wenbin; Yang, Yiling; Li, Yayun; Wang, Gan; Peng, Ming

    2016-01-01

    Cassava plants (Manihot esculenta Crantz) resist environmental stresses by shedding leaves in leaf pulvinus abscission zones (AZs), thus leading to adaptation to new environmental conditions. Little is known about the roles of cassava R2R3 MYB factors in regulating AZ separation. Herein, 166 cassava R2R3 MYB genes were identified. Evolutionary analysis indicated that the 166 R2R3 MYB genes could be divided into 11 subfamilies. Transcriptome analysis indicated that 26 R2R3 MYB genes were expressed in AZs across six time points during both ethylene- and water-deficit stress-induced leaf abscission. Comparative expression profile analysis of similar SOTA (Self Organizing Tree Algorithm) clusters demonstrated that 10 R2R3 MYB genes had similar expression patterns at six time points in response to both treatments. GO (Gene Ontology) annotation confirmed that all 10 R2R3 MYB genes participated in the responses to stress and ethylene and auxin stimuli. Analysis of the putative 10 R2R3 MYB promoter regions showed that those genes primarily contained ethylene- and stress-related cis-elements. The expression profiles of the genes acting downstream of the selected MYBs were confirmed to be involved in cassava abscission zone separation. All these results indicated that R2R3 MYB plays an important regulatory role in AZ separation. PMID:27573926

  15. Novel procedure for extraction of a latent grape polyphenoloxidase using temperature-induced phase separation in triton x-114.

    PubMed

    Sánchez-Ferrer, A; Bru, R; Garcia-Carmona, F

    1989-12-01

    Polyphenoloxidase from grape berries is extracted only by nonionic detergents with a hydrophilic-lipophilic balance between 12.4 and 13.5. The enzyme was partially purified in latent form, free of phenolics and chlorophylls, by using temperature phase partitioning in a solution of Triton X-114. This method permits the purification of the enzyme with the same fold purification as the commonly used method, but with a yield three times higher and a 90% reduction in time needed. The latent enzyme can be activated by different treatments, including trypsin and cationic and anionic detergents. Cetyltrimethylamonium bromide was found to be the most effective detergent activator, followed by sodium dodecyl sulfate. Polyphenoloxidase in grape berries, in spite of being an integral membrane protein, had an anomalous interaction with Triton X-114, remaining in the detergent-poor phase after phase separation. This could be explained by its having a short hydrophobic tail that anchors it to the membrane.

  16. Periodic porous stripe patterning in a polymer blend film induced by phase separation during spin-casting.

    PubMed

    Kim, Jae-Kyung; Taki, Kentaro; Nagamine, Shinsuke; Ohshima, Masahiro

    2008-08-19

    A periodic striping pattern with microscale pore size is observed on the surface of thin films prepared by spin-casting from a polystyrene (PS) and polyethylene glycol (PEG) blend solution. The pattern is created by the convection generated by thermal gradients in the solution between the substrate and film solution during solvent evaporation, the radial flow of the spin-coated solution, and the primary and secondary phase separation of the PS and PEG solutions. The formation mechanism of the periodic porous stripe pattern is discussed, wherein the effects of the polymer blend weight ratio, polymer concentration, and drying rate on the formation of the periodic porous striping pattern are investigated using scanning electron and atomic force microscopy.

  17. Metastatic choriocarcinoma induced separate simultaneous intracerebral haemorrhages: a very rare occurrence and its novel association with Klinefelter syndrome.

    PubMed

    Joret, Maximilian Olavi; Starke, Robert M; Scotter, John; Heppner, Peter

    2015-01-01

    Non-traumatic separate simultaneous intracerebral haemorrhages (SSIHs) are rare. Relevant aetiologies are diverse and their diagnosis challenging. We report a unique case of SSIH in an 18-year-old male with a background of previously undiagnosed testicular choriocarcinoma and Klinefelter syndrome. The patient was admitted to Auckland City Hospital with headaches, drowsiness and vomiting. A CT scan revealed SSIH in a background of tumorous lesions. His β human chorionic gonadotropin titre was elevated at 355 000 IU/L. The SSIH and the associated tumorous lesions were acutely surgically resected and the patient started on bleomycin, etoposide and cisplatin combination chemotherapy with excellent results. In this article, we underline choriocarcinoma as a rare aetiology of SSIH and present an example of the clinical presentation, investigation and management of this very rare pathological entity. PMID:26564116

  18. Selective Breeding for Infant Rat Separation-Induced Ultrasonic Vocalizations: Developmental Precursors of Passive and Active Coping Styles

    PubMed Central

    Brunelli, Susan A.; Hofer, Myron A.

    2009-01-01

    Human depression and anxiety disorders show inherited biases across generations, as do antisocial disorders characterized by aggression. Each condition is preceded in children by behavioral inhibition or aggressive behavior, respectively, and both are characterized by separation anxiety disorders. In affected families, adults and children exhibit different forms of altered autonomic nervous system regulation and hypothalamic-pituitary-adrenal activity in response to stress. Because it is difficult to determine mechanisms accounting for these associations, animal studies are useful for studying the fundamental relationships between biological and behavioral traits. Pharmacologic and behavioral studies suggest that infant rat ultrasonic vocalizations (USV) are a measure of an early anxiety-like state related to separation anxiety. However, it was not known whether or not early ultrasound emissions in infant rats are markers for genetic risk for anxiety states later in life. To address these questions, we selectively bred two lines of rats based on high and low rates of USV to isolation at postnatal (P) 10 days of age. To our knowledge, ours is the only laboratory that has ever selectively bred on the basis of an infantile trait related to anxiety. The High and Low USV lines show two distinct sets of patterns of behavior, physiology and neurochemistry from infancy through adulthood. As adults High line rats demonstrate “anxious”/“depressed” phenotypes in behavior and autonomic nervous system (ANS) regulation to standard laboratory tests. In Lows, on the other hand, behavior and autonomic regulation are consistent with an “aggressive” phenotype. The High and Low USV lines are the first genetic animal models implicating long-term associations of contrasting “coping styles” with early attachment responses. They thus present a potentially powerful model for examining gene-environment interactions in the development of life-long affective regulation. PMID

  19. Use of response surface methodology to optimize the simultaneous separation of eight polycyclic aromatic hydrocarbons by capillary zone electrophoresis with laser-induced fluorescence detection.

    PubMed

    Ferey, Ludivine; Delaunay, Nathalie; Rutledge, Douglas N; Huertas, Alain; Raoul, Yann; Gareil, Pierre; Vial, Jérôme

    2013-08-01

    Polycyclic aromatic hydrocarbons (PAHs) are among the most targeted contaminants by international regulatory institutions. There is thus a need for fast, selective and sensitive analytical methods to quantify these compounds at trace levels in complex samples. This article focuses on the optimization by means of an experimental design of a CE method with laser-induced fluorescence detection for the fast simultaneous separation of 8 heavy PAHs among food and environmental priority pollutants: benzo(a)pyrene, benzo(a)anthracene, chrysene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene, benzo(k)fluoranthene, and benzo(ghi)perylene. In this method, capillary zone electrophoresis with a mixture of an anionic sulfobutyl ether-β-cyclodextrin (SBE-β-CD) and a neutral methyl-β-cyclodextrin (Me-β-CD) was used to separate PAHs, on the basis of their differential distribution between the two CDs. First, the factors most affecting PAH electrophoretic behavior were identified: SBE-β-CD and Me-β-CD concentrations and percentage of methanol added to the background electrolyte. Then, a response surface strategy using a central composite design was carried out to model the effects of the selected factors on the normalized migration times. To optimize the separation, desirability functions were applied on modeled responses: normalized migration time differences between peak end and peak start of two consecutive peaks, and overall analysis time. From the model, predicted optimum conditions were experimentally validated and full resolution of all 8 PAHs was achieved in less than 7min using a borate buffer composed of 5.3mM SBE-β-CD, 21.5mM Me-β-CD and 10.3% MeOH. This CE separation method was successfully applied to real edible oil analysis. PMID:23831002

  20. Analysis of traffic-induced vibration and damage detection by blind source separation with application to bridge monitoring

    NASA Astrophysics Data System (ADS)

    Chen, Sheng-Fu; Hung, Tzu-Yun; Loh, Chin-Hsiung

    2015-03-01

    The objective of this study is to demonstrate the application of two different system identification methods on the structural health monitoring of a bridge. The numerical simulation of bridge-vehicle interaction with road surface roughness is considered in this study for system identification. To identify the bridge dynamic characteristics Covariance-driven Stochastic Subspace Identification method (SSI-COV) in cooperated with Wavelet Packet Transform (WPT) decomposition are used to extract the natural frequencies and mode shapes of the system. For comparison, a popular blind source separation technique called Second Order Blind Identification (SOBI) is also used. Comparison between these two different identification methods is discussed. It was demonstrated that the bridge natural frequencies can be identified by the proposed two system identification techniques. Besides, the SOBI algorithm can avoid the difficulty of determining of parameters by using SSI-COV algorithm, such as system order, row of Hankel matrix, etc. Finally, a damage scenario of the bridge structure is provided and damage detection algorithms are also proposed to quantify and locate the damage.

  1. Room-temperature electric polarization induced by phase separation in multiferroic GdMn2O5

    NASA Astrophysics Data System (ADS)

    Khannanov, B. Kh.; Sanina, V. A.; Golovenchits, E. I.; Scheglov, M. P.

    2016-02-01

    It was generally accepted until recently that multiferroics RMn2O5 crystallized in the centrosymmetric space group Pbam and ferroelectricity in them could exist only at low temperatures due to the magnetic exchange striction. Recent comprehensive structural studies [V. Baledent et al., Phys. Rev. Lett. 114, 117601 (2015)] have shown that the actual symmetry of RMn2O5 at room temperature is a noncentrosymmetric monoclinic space group Pm, which allows room temperature ferroelectricity to exist. However, such a polarization has not yet been found. Our electric polarization loop studies of GdMn2O5 have revealed that a polarization does exist up to room temperature. This polarization occurs mainly in restricted polar domains that arise in the initial GdMn2O5 matrix due to phase separation and charge carrier self-organization. These domains are selfconsistent with the matrix, which leads to the noncentrosymmetricity of the entire crystal. The polarization is controlled by a magnetic field, thereby demonstrating the presence of magnetoelectric coupling. The lowtemperature ferroelectricity enhances the restricted polar domain polarization along the b axis.

  2. Fumonisin B1 (FB1) Induces Lamellar Separation and Alters Sphingolipid Metabolism of In Vitro Cultured Hoof Explants

    PubMed Central

    Reisinger, Nicole; Dohnal, Ilse; Nagl, Veronika; Schaumberger, Simone; Schatzmayr, Gerd; Mayer, Elisabeth

    2016-01-01

    One of the most important hoof diseases is laminitis. Yet, the pathology of laminitis is not fully understood. Different bacterial toxins, e.g. endotoxins or exotoxins, seem to play an important role. Additionally, ingestion of mycotoxins, toxic secondary metabolites of fungi, might contribute to the onset of laminitis. In this respect, fumonsins are of special interest since horses are regarded as species most susceptible to this group of mycotoxins. The aim of our study was to investigate the influence of fumonisin B1 (FB1) on primary isolated epidermal and dermal hoof cells, as well as on the lamellar tissue integrity and sphingolipid metabolism of hoof explants in vitro. There was no effect of FB1 at any concentration on dermal or epidermal cells. However, FB1 significantly reduced the separation force of explants after 24 h of incubation. The Sa/So ratio was significantly increased in supernatants of explants incubated with FB1 (2.5–10 µg/mL) after 24 h. Observed effects on Sa/So ratio were linked to significantly increased sphinganine concentrations. Our study showed that FB1 impairs the sphingolipid metabolism of explants and reduces lamellar integrity at non-cytotoxic concentrations. FB1 might, therefore, affect hoof health. Further in vitro and in vivo studies are necessary to elucidate the effects of FB1 on the equine hoof in more detail. PMID:27023602

  3. Experimental investigation of the effect of small-obstacle-induced vortex sheet on the separated flow in cavity

    NASA Astrophysics Data System (ADS)

    D'yachenko, A. Yu.; Terekhov, V. I.; Yarygina, N. I.

    2014-12-01

    In the present paper, we report results of an experimental study of the influence which a vortex-generating element installed upstream of the main obstacle has on the separated flow and heat transfer in a cross-flow cavitytrench. The element was a small cross-flow rib whose height was an order of magnitude smaller than the depth of the cavity. In the experiments, the variable parameters were the angle of inclination of the frontal and rear walls of the cavity, the rib height, and the rib-to-cavity distance. It is shown that the introduction of additional vortical perturbations into the recirculation zone leads to a substantial modification of both the vortex production process and the distributions of pressure and heat-transfer coefficients. Optimal height of the mini-turbulizer and its optimal location are defined by the fall of the re-attachment point of mini-rib-generated flow onto the rear wall of cavity. In the latter situation, the maximal value of the heat-transfer coefficient increases as compared to the case with no vortex generator used, the increase amounting to 30 %.

  4. Novel Procedure for Extraction of a Latent Grape Polyphenoloxidase Using Temperature-Induced Phase Separation in Triton X-114 1

    PubMed Central

    Sánchez-Ferrer, Alvaro; Bru, Roque; Garcia-Carmona, Francisco

    1989-01-01

    Polyphenoloxidase from grape berries is extracted only by nonionic detergents with a hydrophilic-lipophilic balance between 12.4 and 13.5. The enzyme was partially purified in latent form, free of phenolics and chlorophylls, by using temperature phase partitioning in a solution of Triton X-114. This method permits the purification of the enzyme with the same fold purification as the commonly used method, but with a yield three times higher and a 90% reduction in time needed. The latent enzyme can be activated by different treatments, including trypsin and cationic and anionic detergents. Cetyltrimethylamonium bromide was found to be the most effective detergent activator, followed by sodium dodecyl sulfate. Polyphenoloxidase in grape berries, in spite of being an integral membrane protein, had an anomalous interaction with Triton X-114, remaining in the detergent-poor phase after phase separation. This could be explained by its having a short hydrophobic tail that anchors it to the membrane. Images Figure 1 Figure 3 PMID:16667205

  5. Separating climate-induced mass transfers and instrumental effects from tectonic signal in repeated absolute gravity measurements

    NASA Astrophysics Data System (ADS)

    Van Camp, M.; Viron, O.; Avouac, J. P.

    2016-05-01

    We estimate the signature of the climate-induced mass transfers in repeated absolute gravity measurements based on satellite gravimetric measurements from the Gravity Recovery and Climate Experiment (GRACE) mission. We show results at the globe scale and compare them with repeated absolute gravity (AG) time behavior in three zones where AG surveys have been published: Northwestern Europe, Canada, and Tibet. For 10 yearly campaigns, the uncertainties affecting the determination of a linear gravity rate of change range 3-4 nm/s2/a in most cases, in the absence of instrumental artifacts. The results are consistent with what is observed for long-term repeated campaigns. We also discuss the possible artifact that can result from using short AG survey to determine the tectonic effects in a zone of high hydrological variability. We call into question the tectonic interpretation of several gravity changes reported from stations in Tibet, in particular the variation observed prior to the 2015 Gorkha earthquake.

  6. High-resolution spectrometer using combined dispersive and interferometric wavelength separation for raman and laser-induced breakdown spectroscopy (LIBS).

    PubMed

    Riebe, Daniel; Beitz, Toralf; Dosche, Carsten; Löhmannsröben, Hans-Gerd; Raab, Volker; Raab, Corinna; Unverzagt, Matthias

    2014-01-01

    In this paper the concept of a compact high-resolution spectrometer based on the combination of dispersive and interferometric elements is presented. Dispersive elements are used to spectrally resolve the light in one direction with coarse resolution (Δλ < 0.5 nm), while perpendicular to that direction an etalon provides high spectral resolution (Δλ < 50 pm). This concept for two-dimensional spectroscopy has been implemented for the wavelength range λ = 350-650 nm. Appropriate algorithms for reconstructing spectra from the two-dimensional raw data and for wavelength calibration were established in an analysis software. Potential applications for this new spectrometer are Raman and laser-induced breakdown spectroscopy (LIBS). Resolutions down to 28 pm (routinely 54 pm) could be realized for these applications.

  7. Constitutively active Notch1 induces growth arrest of HPV-positive cervical cancer cells via separate signaling pathways

    SciTech Connect

    Talora, Claudio; Cialfi, Samantha; Segatto, Oreste; Morrone, Stefania; Kim Choi, John; Frati, Luigi; Paolo Dotto, Gian; Gulino, Alberto; Screpanti, Isabella . E-mail: isabella.screpanti@uniroma1.it

    2005-05-01

    Notch signaling plays a key role in cell-fate determination and differentiation in different organisms and cell types. Several reports suggest that Notch signaling may be involved in neoplastic transformation. However, in primary keratinocytes, Notch1 can function as a tumor suppressor. Similarly, in HPV-positive cervical cancer cells, constitutively active Notch1 signaling was found to cause growth suppression. Activated Notch1 in these cells represses viral E6/E7 expression through AP-1 down-modulation, resulting in increased p53 expression and a block of pRb hyperphosphorylation. Here we show that in cervical cancer cell lines in which Notch1 ability to repress AP-1 activity is impaired, Notch1-enforced expression elicits an alternative pathway leading to growth arrest. Indeed, activated Notch1 signaling suppresses activity of the helix-loop-helix transcription factor E47, via ERK1/2 activation, resulting in inhibition of cell cycle progression. Moreover, we found that RBP-J{kappa}-dependent Notch signaling is specifically repressed in cervical cancer cells and this repression could provide one such mechanism that needs to be activated for cervical carcinogenesis. Finally, we show that inhibition of endogenous Notch1 signaling, although results in a proliferative advantage, sensitizes cervical cancer cell lines to drug-induced apoptosis. Together, our results provide novel molecular insights into Notch1-dependent growth inhibitory effects, counteracting the transforming potential of HPV.

  8. Antigen-induced exclusion from follicles and anergy are separate and complementary processes that influence peripheral B cell fate.

    PubMed

    Cyster, J G; Goodnow, C C

    1995-12-01

    Anergic self-reactive B cells competing within a polyclonal B cell repertoire fail to migrate into primary follicles and die after 1-3 days residence in T cell zones. Transfer of anergic HEL-specific B cells to recipients lacking HEL autoantigen and continuous bromodeoxyuridine labeling in mixed bone marrow chimeras confirms that follicular exclusion and cell death in 1-3 days is not an intrinsic characteristic of anergic cells but results from competition with B cells bearing other specificities together with continued binding of autoantigen. When naive (nontolerant) HEL-specific B cells were transferred into mice expressing HEL autoantigen, they were also excluded from follicles and their lifespan was dramatically shortened, although they became activated to express CD86 (B7-2/B70). In the presence of helper T cells, activated B cells but not anergic B cells were rescued from death and formed large extrafollicular foci to autoantibody-secreting cells. Antigen-induced exclusion from follicles is therefore an independent process from anergy that prevents self-reactive B cells from recirculating in the long-lived repertoire and may foster interactions with T cells during immune responses. By contrast, anergy prevents self-reactive B cells from collaborating with helper T cells and secreting autoantibody while trapped in the T zone.

  9. Differences in Motor Evoked Potentials Induced in Rats by Transcranial Magnetic Stimulation under Two Separate Anesthetics: Implications for Plasticity Studies

    PubMed Central

    Sykes, Matthew; Matheson, Natalie A.; Brownjohn, Philip W.; Tang, Alexander D.; Rodger, Jennifer; Shemmell, Jonathan B. H.; Reynolds, John N. J.

    2016-01-01

    Repetitive transcranial magnetic stimulation (rTMS) is primarily used in humans to change the state of corticospinal excitability. To assess the efficacy of different rTMS stimulation protocols, motor evoked potentials (MEPs) are used as a readout due to their non-invasive nature. Stimulation of the motor cortex produces a response in a targeted muscle, and the amplitude of this twitch provides an indirect measure of the current state of the cortex. When applied to the motor cortex, rTMS can alter MEP amplitude, however, results are variable between participants and across studies. In addition, the mechanisms underlying any change and its locus are poorly understood. In order to better understand these effects, MEPs have been investigated in vivo in animal models, primarily in rats. One major difference in protocols between rats and humans is the use of general anesthesia in animal experiments. Anesthetics are known to affect plasticity-like mechanisms and so may contaminate the effects of an rTMS protocol. In the present study, we explored the effect of anesthetic on MEP amplitude, recorded before and after intermittent theta burst stimulation (iTBS), a patterned rTMS protocol with reported facilitatory effects. MEPs were assessed in the brachioradialis muscle of the upper forelimb under two anesthetics: a xylazine/zoletil combination and urethane. We found MEPs could be induced under both anesthetics, with no differences in the resting motor threshold or the average baseline amplitudes. However, MEPs were highly variable between animals under both anesthetics, with the xylazine/zoletil combination showing higher variability and most prominently a rise in amplitude across the baseline recording period. Interestingly, application of iTBS did not facilitate MEP amplitude under either anesthetic condition. Although it is important to underpin human application of TMS with mechanistic examination of effects in animals, caution must be taken when selecting an

  10. Plasmon-induced charge separation at two-dimensional gold semishell arrays on SiO{sub 2}@TiO{sub 2} colloidal crystals

    SciTech Connect

    Wu, Ling; Nishi, Hiroyasu; Tatsuma, Tetsu

    2015-10-01

    Photoelectrodes based on plasmonic Au semishell (or halfshell) arrays are developed. A colloidal crystal consisting of SiO{sub 2}@TiO{sub 2} core-shell particles is prepared on a TiO{sub 2}-coated transparent electrode. A Au semishell (or halfshell) array is deposited by sputtering or evaporation on the colloidal crystal. An electrode with the semishell (or halfshell) array exhibits negative photopotential shifts and anodic photocurrents under visible light at 500-800 nm wavelengths in an aqueous electrolyte containing an electron donor. In particular, hydroquinone and ethanol are good electron donors. The photocurrents can be explained in terms of plasmon-induced charge separation at the Au-TiO{sub 2} interface.

  11. Pharmacological and methodological aspects of the separation-induced vocalization test in guinea pig pups; a systematic review and meta-analysis.

    PubMed

    Groenink, Lucianne; Verdouw, P Monika; Bakker, Brenda; Wever, Kimberley E

    2015-04-15

    The separation-induced vocalization test in guinea pig pups is one of many that has been used to screen for anxiolytic-like properties of drugs. The test is based on the cross-species phenomenon that infants emit distress calls when placed in social isolation. Here we report a systematic review and meta-analysis of pharmacological intervention in the separation-induced vocalization test in guinea pig pups. Electronic databases were searched for original research articles, yielding 32 studies that met inclusion criteria. We extracted data on pharmacological intervention, animal and methodological characteristics, and study quality indicators. Meta-analysis showed that the different drug classes in clinical use for the treatment of anxiety disorders, have comparable effects on vocalization behaviour, irrespective of their mechanism of action. Of the experimental drugs, nociception (NOP) receptor agonists proved very effective in this test. Analysis further indicated that the commonly used read-outs total number and total duration of vocalizations are equally valid. With regard to methodological characteristics, repeated testing of pups as well as selecting pups with moderate or high levels of vocalization were associated with larger treatment effects. Finally, reporting of study methodology, randomization and blinding was poor and Egger's test for small study effects showed that publication bias likely occurred. This review illustrates the value of systematic reviews and meta-analyses in improving translational value and methodological aspects of animal models. It further shows the urgent need to implement existing publication guidelines to maximize the output and impact of experimental animal studies.

  12. A phase separation method for analyses of fluoroquinones in meats based on ultrasound-assisted salt-induced liquid-liquid microextraction and a new integrated device.

    PubMed

    Wang, Huili; Gao, Ming; Xu, Youqu; Wang, Wenwei; Zheng, Lian; Dahlgren, Randy A; Wang, Xuedong

    2015-08-01

    Herein, we developed a novel integrated device to perform phase separation based on ultrasound-assisted, salt-induced, liquid-liquid microextraction for determination of five fluoroquinones in meats by HPLC analysis. The novel integrated device consisted of three simple HDPE (high density polyethylene) parts that were used to separate the solvent from the aqueous solution prior to retrieving the extractant. The extraction parameters were optimized using the response surface method based on central composite design: 589μL of acetone solvent, pH2.1, 4.1min extraction time and 3.5g of Na2SO4. The limits of detection were 0.056-0.64 μgkg(-1) and recoveries were 87.2-110.6% for the five fluoroquinones in muscle tissue from fish, chicken, pork and beef. This method is easily constructed from inexpensive materials, extraction efficiency is high, and the approach is compatible with HPLC analysis. Thus, it has excellent prospects for sample pre-treatment and analysis of fluoroquinones in meat samples. PMID:25885797

  13. Optimization of a phase separation based magnetic-stirring salt-induced liquid-liquid microextraction method for determination of fluoroquinolones in food.

    PubMed

    Gao, Ming; Wang, Huili; Ma, Meiping; Zhang, Yuna; Yin, Xiaohan; Dahlgren, Randy A; Du, Dongli; Wang, Xuedong

    2015-05-15

    Herein, we developed a novel integrated apparatus to perform phase separation based on magnetic-stirring, salt-induced, liquid-liquid microextraction for determination of five fluoroquinolones in animal-based foods by HPLC analysis. The novel integrated apparatus consisted of three simple HDPE (high density polyethylene) parts that were used to separate the solvent from the aqueous solution prior to retrieving the extractant. The extraction parameters were optimized using the response surface method based on central composite design: 791 μL of acetone solvent, 2.5 g of Na2SO4, pH 1.7, 3.0 min of stir time, and 5.5 min centrifugation. The limits of detection were 0.07-0.53 μg kg(-1) and recoveries were 91.6-105.0% for the five fluoroquinolones from milk, eggs and honey. This method is easily constructed from inexpensive materials, extraction efficiency is high, and the approach is compatible with HPLC analysis. Thus, it has excellent prospects for sample pre-treatment and analysis of fluoroquinolones in animal-based foods. PMID:25577068

  14. Integration of phase separation with ultrasound-assisted salt-induced liquid-liquid microextraction for analyzing the fluoroquinones in human body fluids by liquid chromatography.

    PubMed

    Wang, Huili; Gao, Ming; Wang, Mei; Zhang, Rongbo; Wang, Wenwei; Dahlgren, Randy A; Wang, Xuedong

    2015-03-15

    Herein, we developed a novel integrated device to perform phase separation based on ultrasound-assisted salt-induced liquid-liquid microextraction for determination of five fluoroquinones (FQs) in human body fluids. The integrated device consisted of three simple HDPE components used to separate the extraction solvent from the aqueous phase prior to retrieving the extractant. A series of extraction parameters were optimized using the response surface method based on central composite design. Optimal conditions consisted of 945μL acetone extraction solvent, pH 2.1, 4.1min stir time, 5.9g Na2SO4, and 4.0min centrifugation. Under optimized conditions, the limits of detection (at S/N=3) were 0.12-0.66μgL(-1), the linear range was 0.5-500μgL(-1) and recoveries were 92.6-110.9% for the five FQs extracted from plasma and urine. The proposed method has several advantages, such as easy construction from inexpensive materials, high extraction efficiency, short extraction time, and compatibility with HPLC analysis. Thus, this method shows excellent prospects for sample pretreatment and analysis of FQs in human body fluids. PMID:25660716

  15. Effects of exposure time on variations in the structure and hydrophobicity of polyvinylidene fluoride membranes prepared via vapor-induced phase separation

    NASA Astrophysics Data System (ADS)

    Peng, Yuelian; Fan, Hongwei; Dong, Yajun; Song, Yanna; Han, Hua

    2012-08-01

    The present investigation revealed how the surface morphology and hydrophobicity of polyvinylidene fluoride (PVDF) membranes, which were prepared via a vapor-induced phase separation (VIPS) method, were affected by the exposure time. The mass variation of the cast film was recorded. Membrane morphologies were observed by scanning electron microscopy (SEM) and thermal behaviors of membranes were examined by differential scanning calorimetry (DSC). Wide angle X-ray diffraction (WAXD) was employed to analyze the crystalline structures of the overall membranes and the surface layers. The results showed that different membrane morphologies and hydrophobicities could be obtained by changing the exposure time. A long exposure time facilitated the crystallization process, resulting in the formation of a porous skin and particle morphology, which increased the hydrophobicity of the surface. A short exposure time favored the formation of a digitate macrovoid and dense skin resulting from liquid-liquid phase separation in the immersion process, which reduced surface hydrophobicity. The water permeate flux in vacuum membrane distillation was greatly affected by the membrane porosity and surface hydrophobicity.

  16. Bifunctional magnetic nanobeads for sensitive detection of avian influenza A (H7N9) virus based on immunomagnetic separation and enzyme-induced metallization.

    PubMed

    Wu, Zhen; Zhou, Chuan-Hua; Chen, Jian-Jun; Xiong, Chaochao; Chen, Ze; Pang, Dai-Wen; Zhang, Zhi-Ling

    2015-06-15

    Bifunctional magnetic nanobeads (bi-MBs) were fabricated by co-immobilizing target recognition molecules and signal molecules on a magnetic nanobead surface, which were used as both separation and enrichment carriers and signal carriers. The bi-MBs could capture and separate avian influenza A (H7N9) virus (H7N9 AIV) from complex samples efficiently based on the specific reaction between antigen-antibody and their good magnetic response, which simplified sample pretreatment and saved the detection time. Taking advantages of their high surface to volume ratio and rich surface functional groups, multiple alkaline phosphatase (ALP) signal molecules were tethered on the surface of bi-MBs which greatly amplified the detection signal. As an efficient signal amplification strategy, enzyme-induced metallization had been integrated with bi-MBs and anodic stripping voltammetry to construct an ultrasensitive electrochemical immunosensor for H7N9 AIV detection. Under the optimal conditions, the introduction of bi-MBs could amplify the detection signal in about four times compared with the same immunoassay without MBs, and the method showed a wide linear range of 0.01-20 ng/mL with a detection limit of 6.8 pg/mL. The electrochemical immunosensor provides a simple and reliable platform with high sensitivity and selectivity which shows great potential in early diagnosis of diseases.

  17. Integration of phase separation with ultrasound-assisted salt-induced liquid-liquid microextraction for analyzing the fluoroquinones in human body fluids by liquid chromatography.

    PubMed

    Wang, Huili; Gao, Ming; Wang, Mei; Zhang, Rongbo; Wang, Wenwei; Dahlgren, Randy A; Wang, Xuedong

    2015-03-15

    Herein, we developed a novel integrated device to perform phase separation based on ultrasound-assisted salt-induced liquid-liquid microextraction for determination of five fluoroquinones (FQs) in human body fluids. The integrated device consisted of three simple HDPE components used to separate the extraction solvent from the aqueous phase prior to retrieving the extractant. A series of extraction parameters were optimized using the response surface method based on central composite design. Optimal conditions consisted of 945μL acetone extraction solvent, pH 2.1, 4.1min stir time, 5.9g Na2SO4, and 4.0min centrifugation. Under optimized conditions, the limits of detection (at S/N=3) were 0.12-0.66μgL(-1), the linear range was 0.5-500μgL(-1) and recoveries were 92.6-110.9% for the five FQs extracted from plasma and urine. The proposed method has several advantages, such as easy construction from inexpensive materials, high extraction efficiency, short extraction time, and compatibility with HPLC analysis. Thus, this method shows excellent prospects for sample pretreatment and analysis of FQs in human body fluids.

  18. Salt-induced fabrication of superhydrophilic and underwater superoleophobic PAA-g-PVDF membranes for effective separation of oil-in-water emulsions.

    PubMed

    Zhang, Wenbin; Zhu, Yuzhang; Liu, Xia; Wang, Dong; Li, Jingye; Jiang, Lei; Jin, Jian

    2014-01-13

    Conventional polymer membranes suffer from low flux and serious fouling when used for treating emulsified oil/water mixtures. Reported herein is the fabrication of a novel superhydrophilic and underwater superoleophobic poly(acrylic acid)-grafted PVDF filtration membrane using a salt-induced phase-inversion approach. A hierarchical micro/nanoscale structure is constructed on the membrane surface and endows it with a superhydrophilic/underwater superoleophobic property. The membrane separates both surfactant-free and surfactant-stabilized oil-in-water emulsions under either a small applied pressure (<0.3 bar) or gravity, with high separation efficiency and high flux, which is one to two orders of magnitude higher than those of commercial filtration membranes having a similar permeation property. The membrane exhibits an excellent antifouling property and is easily recycled for long-term use. The outstanding performance of the membrane and the efficient, energy and cost-effective preparation process highlight its potential for practical applications. PMID:24307602

  19. Optimization of a phase separation based magnetic-stirring salt-induced liquid-liquid microextraction method for determination of fluoroquinolones in food.

    PubMed

    Gao, Ming; Wang, Huili; Ma, Meiping; Zhang, Yuna; Yin, Xiaohan; Dahlgren, Randy A; Du, Dongli; Wang, Xuedong

    2015-05-15

    Herein, we developed a novel integrated apparatus to perform phase separation based on magnetic-stirring, salt-induced, liquid-liquid microextraction for determination of five fluoroquinolones in animal-based foods by HPLC analysis. The novel integrated apparatus consisted of three simple HDPE (high density polyethylene) parts that were used to separate the solvent from the aqueous solution prior to retrieving the extractant. The extraction parameters were optimized using the response surface method based on central composite design: 791 μL of acetone solvent, 2.5 g of Na2SO4, pH 1.7, 3.0 min of stir time, and 5.5 min centrifugation. The limits of detection were 0.07-0.53 μg kg(-1) and recoveries were 91.6-105.0% for the five fluoroquinolones from milk, eggs and honey. This method is easily constructed from inexpensive materials, extraction efficiency is high, and the approach is compatible with HPLC analysis. Thus, it has excellent prospects for sample pre-treatment and analysis of fluoroquinolones in animal-based foods.

  20. Agonist-induced desensitization of dopamine D1 receptor-stimulated adenylyl cyclase activity is temporally and biochemically separated from D1 receptor internalization.

    PubMed Central

    Ng, G Y; Trogadis, J; Stevens, J; Bouvier, M; O'Dowd, B F; George, S R

    1995-01-01

    The regulation of the dopamine D1 receptor was investigated by using c-myc epitope-tagged D1 receptors expressed in Sf9 (fall armyworm ovary) cells. Treatment of D1 receptors with 10 microM dopamine for 15 min led to a loss of the dopamine-detected high-affinity state of the receptor accompanying a 40% reduction in the ability of the receptor to mediate maximal dopamine stimulation of adenylyl cyclase activity. After 60 min of agonist exposure, 45 min after the occurrence of desensitization, 28% of the cell surface receptors were internalized into an intracellular light vesicular membrane fraction as determined by radioligand binding and supported by photoaffinity labeling, immunocytochemical staining, and immunoblot analysis. Pretreatment of cells with concanavalin A or sucrose completely blocked agonist-induced D1 receptor internalization without preventing agonist-induced desensitization, indicating a biochemical separation of these processes. Collectively, these findings indicate that the desensitization of D1 receptor-coupled adenylyl cyclase activity and D1 receptor internalization are temporarily and biochemically distinct mechanisms regulating D1 receptor function following agonist activation. Images Fig. 2 Fig. 3 PMID:7479745

  1. Method for separating boron isotopes

    DOEpatents

    Rockwood, Stephen D.

    1978-01-01

    A method of separating boron isotopes .sup.10 B and .sup.11 B by laser-induced selective excitation and photodissociation of BCl.sub.3 molecules containing a particular boron isotope. The photodissociation products react with an appropriate chemical scavenger and the reaction products may readily be separated from undissociated BCl.sub.3, thus effecting the desired separation of the boron isotopes.

  2. Separation of land-use change induced signals from noise by means of evaluating perturbed RCM ensembles: Assessing the potential impacts of urbanization and deforestation in Central Vietnam

    NASA Astrophysics Data System (ADS)

    Laux, Patrick; Nguyen, Phuong N. B.; Cullmann, Johannes; Kunstmann, Harald

    2016-04-01

    Regional climate models (RCMs) comprise both terrestrial and atmospheric compartments and thereby allowing to study land atmosphere feedbacks, and in particular the land-use and climate change impacts. In this study, a methodological framework is developed to separate the land use change induced signals in RCM simulations from noise caused by perturbed initial boundary conditions. The framework is applied for two different case studies in SE Asia, i.e. an urbanization and a deforestation scenario, which are implemented into the Weather Research and Forecasting (WRF) model. The urbanization scenario is produced for Da Nang, one of the fastest growing cities in Central Vietnam, by converting the land-use in a 20 km, 14 km, and 9 km radius around the Da Nang meteorological station systematically from cropland to urban. Likewise, three deforestation scenarios are derived for Nong Son (Central Vietnam). Based on WRF ensemble simulations with perturbed initial conditions for 2010, the signal to-noise ratio (SNR) is calculated to identify areas with pronounced signals induced by LULCC. While clear and significant signals are found for air temperature, latent and sensible heat flux in the urbanization scenario (SNR values up to 24), the signals are not pronounced for deforestation (SNR values < 1). Albeit statistically significant signals are found for precipitation, low SNR values hinder scientifically sound inferences for climate change adaptation options. It is demonstrated that ensemble simulations with more than at least 5 ensemble members are required to derive robust LULCC adaptation strategies, particularly if precipitation is considered. This is rarely done in practice, thus potentially leading to erroneous estimates of the LULCC induced signals of water and energy fluxes, which are propagated through the regional climate - hydrological model modeling chains, and finally leading to unfavorable decision support.

  3. Char separator

    DOEpatents

    Matthews, Francis T.

    1979-01-01

    Particulates removed from the flue gases produced in a fluidized-bed furnace are separated into high-and low-density portions. The low-density portion is predominantly char, and it is returned to the furnace or burned in a separate carbon burnup cell. The high-density portion, which is predominantly limestone products and ash, is discarded or reprocessed. According to another version, the material drained from the bed is separated, the resulting high-and low-density portions being treated in a manner similar to that in which the flue-gas particulates are treated.

  4. CENTRIFUGAL SEPARATORS

    DOEpatents

    Skarstrom, C.

    1959-03-10

    A centrifugal separator is described for separating gaseous mixtures where the temperature gradients both longitudinally and radially of the centrifuge may be controlled effectively to produce a maximum separation of the process gases flowing through. Tbe invention provides for the balancing of increases and decreases in temperature in various zones of the centrifuge chamber as the result of compression and expansions respectively, of process gases and may be employed effectively both to neutralize harmful temperature gradients and to utilize beneficial temperaturc gradients within the centrifuge.

  5. Glycosyl-phosphatidylinositol-anchored membrane proteins can be distinguished from transmembrane polypeptide-anchored proteins by differential solubilization and temperature-induced phase separation in Triton X-114.

    PubMed

    Hooper, N M; Bashir, A

    1991-12-15

    Treatment of kidney microvillar membranes with the non-ionic detergent Triton X-114 at 0 degrees C, followed by low-speed centrifugation, generated a detergent-insoluble pellet and a detergent-soluble supernatant. The supernatant was further fractionated by phase separation at 30 degrees C into a detergent-rich phase and a detergent-depleted or aqueous phase. Those ectoenzymes with a covalently attached glycosyl-phosphatidylinositol (G-PI) membrane anchor were recovered predominantly (greater than 73%) in the detergent-insoluble pellet. In contrast, those ectoenzymes anchored by a single membrane-spanning polypeptide were recovered predominantly (greater than 62%) in the detergent-rich phase. Removal of the hydrophobic membrane-anchoring domain from either class of ectoenzyme resulted in the proteins being recovered predominantly (greater than 70%) in the aqueous phase. This technique was also applied to other membrane types, including pig and human erythrocyte ghosts, where, in both cases, the G-PI-anchored acetylcholinesterase partitioned predominantly (greater than 69%) into the detergent-insoluble pellet. When the microvillar membranes were subjected only to differential solubilization with Triton X-114 at 0 degrees C, the G-PI-anchored ectoenzymes were recovered predominantly (greater than 63%) in the detergent-insoluble pellet, whereas the transmembrane-polypeptide-anchored ectoenzymes were recovered predominantly (greater than 95%) in the detergent-solubilized supernatant. Thus differential solubilization and temperature-induced phase separation in Triton X-114 distinguished between G-PI-anchored membrane proteins, transmembrane-polypeptide-anchored proteins and soluble, hydrophilic proteins. This technique may be more useful and reliable than susceptibility to release by phospholipases as a means of identifying a G-PI anchor on an unpurified membrane protein.

  6. Glycosyl-phosphatidylinositol-anchored membrane proteins can be distinguished from transmembrane polypeptide-anchored proteins by differential solubilization and temperature-induced phase separation in Triton X-114.

    PubMed Central

    Hooper, N M; Bashir, A

    1991-01-01

    Treatment of kidney microvillar membranes with the non-ionic detergent Triton X-114 at 0 degrees C, followed by low-speed centrifugation, generated a detergent-insoluble pellet and a detergent-soluble supernatant. The supernatant was further fractionated by phase separation at 30 degrees C into a detergent-rich phase and a detergent-depleted or aqueous phase. Those ectoenzymes with a covalently attached glycosyl-phosphatidylinositol (G-PI) membrane anchor were recovered predominantly (greater than 73%) in the detergent-insoluble pellet. In contrast, those ectoenzymes anchored by a single membrane-spanning polypeptide were recovered predominantly (greater than 62%) in the detergent-rich phase. Removal of the hydrophobic membrane-anchoring domain from either class of ectoenzyme resulted in the proteins being recovered predominantly (greater than 70%) in the aqueous phase. This technique was also applied to other membrane types, including pig and human erythrocyte ghosts, where, in both cases, the G-PI-anchored acetylcholinesterase partitioned predominantly (greater than 69%) into the detergent-insoluble pellet. When the microvillar membranes were subjected only to differential solubilization with Triton X-114 at 0 degrees C, the G-PI-anchored ectoenzymes were recovered predominantly (greater than 63%) in the detergent-insoluble pellet, whereas the transmembrane-polypeptide-anchored ectoenzymes were recovered predominantly (greater than 95%) in the detergent-solubilized supernatant. Thus differential solubilization and temperature-induced phase separation in Triton X-114 distinguished between G-PI-anchored membrane proteins, transmembrane-polypeptide-anchored proteins and soluble, hydrophilic proteins. This technique may be more useful and reliable than susceptibility to release by phospholipases as a means of identifying a G-PI anchor on an unpurified membrane protein. PMID:1837216

  7. Stereoisomers Separation

    NASA Astrophysics Data System (ADS)

    Wieczorek, Piotr

    The use of capillary electrophoresis for enantiomer separation and optical purity determination is presented. The contents start with basic information about the nature of stereoizomers and the mechanism of enantioseparation using capillary electrophoresis techniques. The molecules to be separated show identical chemical structure and electrochemical behavior. Therefore, the chiral recognition of enantiomers is possible only by bonding to chiral selector and the separation based on very small differences in complexation energies of diastereomer complexes formed. This method is useful for this purpose due to the fact that different compounds can be used as chiral selectors. The mostly used chiral selectors like cyclodextrins, crown ethers, chiral surfactants, macrocyclic antibiotics, transition metal complexes, natural, and synthetic polymers and their application for this purpose is also discussed. Finally, examples of practical applications of electromigration techniques for enantiomers separation and determination are presented.

  8. Surfactant free fabrication and improved charge carrier separation induced enhanced photocatalytic activity of {001} facet exposed unique octagonal BiOCl nanosheets.

    PubMed

    Haider, Zeeshan; Zheng, Jin You; Kang, Young Soo

    2016-07-20

    Unique octagonal shaped BiOCl nanosheets (NS) dominantly exposed with high energy {001} crystal facets have been fabricated via a simple hydrothermal route without using organic surfactants. The dynamics of photogenerated charge carriers have been studied by time-resolved photoluminescence spectroscopy. The fitting parameters of the decay kinetics were used to calculate both the intensity weighted average lifetime (〈τ〉int.), as well as the amplitude weighted average lifetime (〈τ〉amp.) of the photogenerated charge carriers. The 〈τ〉int. and 〈τ〉amp. values for {001} BiOCl NS, i.e., 17.23 ns and 1.94 ns, respectively, were observed to be significantly higher than the corresponding values obtained for pristine BiOCl such as 2.52 ns and 1.07 ns, respectively. Significant quenching of the PL emission intensity of {001} BiOCl NS reflected the enhanced separation of the photogenerated charge carriers. Reduced thickness and in situ iodine doping was favorable to minimize the recombination tendency. The photocatalytic activity was monitored via the photodegradation of RhB under visible light illumination (λ > 400 nm). {001} BiOCl NS exhibited superior performance when compared to pristine BiOCl in terms of the rapid degradation kinetics and higher photonic efficiency. The photocatalytic efficiency of {001} BiOCl NS was 2.8 times higher than pristine BiOCl. Iodine doping induced extended the optical absorption in the visible region and improved the separation of the photogenerated charge carriers, which played an important role to enhance the photocatalytic activity. The photodegradation mechanism was systematically studied using various radical quenchers and it was revealed that photogenerated holes (h(+)) and superoxide radicals (˙O(2-)) actively participated whereas hydroxyl (OH˙) radicals had a negligible contribution in the photodegradation of RhB. {001} BiOCl NS has shown a higher photocurrent density and lower charge transfer resistance analyzed

  9. Surfactant free fabrication and improved charge carrier separation induced enhanced photocatalytic activity of {001} facet exposed unique octagonal BiOCl nanosheets.

    PubMed

    Haider, Zeeshan; Zheng, Jin You; Kang, Young Soo

    2016-07-20

    Unique octagonal shaped BiOCl nanosheets (NS) dominantly exposed with high energy {001} crystal facets have been fabricated via a simple hydrothermal route without using organic surfactants. The dynamics of photogenerated charge carriers have been studied by time-resolved photoluminescence spectroscopy. The fitting parameters of the decay kinetics were used to calculate both the intensity weighted average lifetime (〈τ〉int.), as well as the amplitude weighted average lifetime (〈τ〉amp.) of the photogenerated charge carriers. The 〈τ〉int. and 〈τ〉amp. values for {001} BiOCl NS, i.e., 17.23 ns and 1.94 ns, respectively, were observed to be significantly higher than the corresponding values obtained for pristine BiOCl such as 2.52 ns and 1.07 ns, respectively. Significant quenching of the PL emission intensity of {001} BiOCl NS reflected the enhanced separation of the photogenerated charge carriers. Reduced thickness and in situ iodine doping was favorable to minimize the recombination tendency. The photocatalytic activity was monitored via the photodegradation of RhB under visible light illumination (λ > 400 nm). {001} BiOCl NS exhibited superior performance when compared to pristine BiOCl in terms of the rapid degradation kinetics and higher photonic efficiency. The photocatalytic efficiency of {001} BiOCl NS was 2.8 times higher than pristine BiOCl. Iodine doping induced extended the optical absorption in the visible region and improved the separation of the photogenerated charge carriers, which played an important role to enhance the photocatalytic activity. The photodegradation mechanism was systematically studied using various radical quenchers and it was revealed that photogenerated holes (h(+)) and superoxide radicals (˙O(2-)) actively participated whereas hydroxyl (OH˙) radicals had a negligible contribution in the photodegradation of RhB. {001} BiOCl NS has shown a higher photocurrent density and lower charge transfer resistance analyzed

  10. Product separator

    DOEpatents

    Welsh, Robert A.; Deurbrouck, Albert W.

    1976-01-20

    A secondary light sensitive photoelectric product separator for use with a primary product separator that concentrates a material so that it is visually distinguishable from adjacent materials. The concentrate separation is accomplished first by feeding the material onto a vibratory inclined surface with a liquid flow, such as a wet concentrating table. Vibrations generally perpendicular to the stream direction of flow cause the concentrate to separate from its mixture according to its color. When the concentrate and its surrounding stream reach the recovery end of the table, a detecting device notes the line of color demarcation and triggers a signal if it differs from a normal condition. If no difference is noted nothing moves on the second separator. However, if a difference is detected in the constant monitoring of the color line's location, a product splitter and recovery unit normally positioned near the color line at the recovery end, moves to a new position. In this manner the selected separated concentrate is recovered at a maximum rate regardless of variations in the flow stream or other conditions present.

  11. The possible protective effect of simvastatin and pioglitazone separately and in combination on bleomycin-induced changes in mice thin skin.

    PubMed

    Kandeel, Samah; Balaha, Mohamed

    2015-04-01

    Bleomycin is a chemotherapeutic agent with side effects especially on skin. Simvastatin is a cholesterol-lowering drug with immunomodulatory, anti-inflammatory, and antifibrotic effects. Pioglitazone is a peroxisome proliferator-activated receptor-γ antidiabetic agent with antiproliferative effects on smooth muscle cells (SMCs), and antioxidant and anti-inflammatory actions. The aim of this study was to investigate the anti-inflammatory and antifibrotic efficiencies of simvastatin and pioglitazone separately and in combination against bleomycin-induced changes in mice thin skin using histological, immunohistochemical, and biochemical techniques. In this study, the mice were divided into seven groups, with each group undergoing treatment for 3 weeks: the control group, group 1 was administered 100 μl of bleomycin, group 2 was administered simvastatin (5mg/kg/day), group 3 received pioglitazone (10mg/kg/day), group 4 received simvastatin (5mg/kg/day) 1h before bleomycin, group 5 received pioglitazone (10mg/kg/day) 1h before bleomycin, and group 6 was administered simvastatin (5mg/kg/day) and pioglitazone (10mg/kg/day) 1h before bleomycin. In group 2, dermal thickening, subcutaneous fat atrophy, degeneration of hair follicles, and thickening of cutaneous vessel walls were observed in addition to a significant increase in caspase-3 reaction, transforming growth factor beta 1 (TGF-β1) expression, and hydroxyproline content. A reversal of the previous findings was markedly observed in group 6 compared with groups 4 and 5. We conclude that the concurrent administration of pioglitazone and simvastatin enhanced their beneficial effects in the reversal of bleomycin-induced changes in mice thin skin.

  12. Capillary electrophoresis investigations of pET3aPAI-1 DNA involving optimized restriction digestion, laser-induced fluorescence detection, and micropreparative separation

    NASA Astrophysics Data System (ADS)

    Sepaniak, Michael J.; Stebbins, Michael; Todd, April; Gibson, Timothy; Peterson, Cynthia; Diack, Moustopha

    1998-05-01

    This work centers around developing methodologies to isolate the PAI-1 coding sequence of the DNA plasmid pET3a-PAI-1. Size Selective Capillary Electrophoresis (SSCE), using entangled polymer filled small i.d. capillaries, is used to develop digestion conditions (time and enzyme concentration) that provide single cuts (at variable positions) of the plasmid using BstYI restriction enzyme. After obtaining optimum partial digest conditions for this enzyme, digestion with Ndel will produce a mixture of fragments that includes the fragment (1354 bp) which contains the intact region of interest. Sensitive detection is achieved via laser induced fluorescence using running buffers containing intercalating dye. Using small i.d. capillary conditions as a starting point, the SSCE system is increased to the micro-preparative scale using various larger i.d. capillaries. The effects of capillary diameter, applied voltage, injection amount, and sample buffer concentration on separation performance are studied. Subsequently, single or limited numbers of injections of the single cut sample using a relatively large i.d. capillary should prove adequate material for digestion with Ndel prior to PCR amplification of the 1354 bp fragment.

  13. A study of the effects of Reynolds number and Mach number on constant pressure coefficient jump for shock-induced trailing-edge separation

    NASA Technical Reports Server (NTRS)

    Cunningham, Atlee M., Jr.; Spragle, Gregory S.

    1987-01-01

    The influence of Mach and Reynolds numbers as well as airfoil and planform geometry on the phenomenon of constant shock jump pressure coefficient for conditions of shock induced trailing edge separation (SITES) was studied. It was demonstrated that the phenomenon does exist for a wide variety of two and three dimensional flow cases and that the influence of free stream Mach number was not significant. The influence of Reynolds number was found to be important but was not strong. Airfoil and planform geometric characteristics were found to be very important where the pressure coefficient jump was shown to vary with the sum of: (1) airfoil curvature at the upper surface crest, and (2) camber surface slope at the trailing edge. It was also determined that the onset of SITES could be defined as a function of airfoil geometric parameters and Mach number normal to the leading edge. This onset prediction was shown to predict the angle of onset to within + or - 1 deg accuracy or better for about 90% of the cases studied.

  14. Female-dependent impaired fear memory of adult rats induced by maternal separation, and screening of possible related genes in the hippocampal CA1.

    PubMed

    Sun, Xiu-Min; Tu, Wen-Qiang; Shi, Yan-Wei; Xue, Li; Zhao, Hu

    2014-07-01

    Early life stress is one of the major susceptible factors for stress-related pathologies like posttraumatic stress disorder (PTSD). Recent studies in rats suggest that rather than being overall unfavorable, early life stress may prepare the organism to perform optimally to stressful environments later in life. In this study, severely adverse early life stress was conducted by six consecutive hours of maternal separation (MS), from PND1 to PND21, and contextual fear conditioning model was used on PND90 to mimic the second stress in adulthood and the re-experiencing symptom of PTSD. It was observed that in this investigation pups experienced MS showed decreased sensibility to contextual fear conditioning in adulthood, and there sex plays an important role. For example, female rats suffered MS had much lower freezing than males and controls. Meanwhile, Morris water maze test indicated that MS did not impair rat's performance of spatial learning and memory. Furthermore, suppression subtractive hybridization (SSH) was used to screen the related genes of fear memory, by examining the changes of mRNA expression in CA1 area between female MS and control rats after contextual fear conditioning. Finally, nine up-regulated and one down-regulated genes, including β2-MG, MAF, Nd1-L, TorsinA and MACF1 gene were found in this study. It is assumed that the TorsinA, MACF1 and Nd1-L gene may contribute to the decreased sensitivity of PTSD induced by MS. PMID:24667363

  15. Investigation of microstructure, mechanical properties and cellular viability of poly(L-lactic acid) tissue engineering scaffolds prepared by different thermally induced phase separation protocols.

    PubMed

    Molladavoodi, Sara; Gorbet, Maud; Medley, John; Kwon, Hyock Ju

    2013-01-01

    Two thermally induced phase separation (TIPS) methods have been used to fabricate biodegradable poly(L-lactic acid) (PLLA) tissue engineering scaffolds each with fibrous (F-TIPS) and porous (P-TIPS) microstructures. Three levels of PLLA concentration (3, 5 and 7 wt%) were employed in each fabrication method and both wet and dry specimens were studied. Simple compression testing revealed that an elastic-plastic representation of the mechanical behavior was possible for all specimens. Both elastic and plastic moduli were higher for the P-TIPS, for higher polymer concentration, and might be somewhat higher for dry as opposed to wet specimens. For F-TIPS specimens, permanent deformation occurred successively during cyclic deformation but a "memory effect" simplified the behavior. Although F-TIPS microstructure better resembled the natural extracellular matrix, human osteosarcoma fibroblast cells showed more consistent viability in the P-TIPS scaffolds under our unloaded test protocols. Biodegradation in cell culture medium resulted in a decreased elastic moduli for F-TIPS specimens. Information presented regarding the microstructure, mechanical properties and cell viability of these PLLA scaffolds that should help reduce the number of iterations involved in developing tissue engineering products.

  16. A Novel Method for Differentiation of Human Mesenchymal Stem Cells into Smooth Muscle-Like Cells on Clinically Deliverable Thermally Induced Phase Separation Microspheres

    PubMed Central

    Parmar, Nina; Ahmadi, Raheleh

    2015-01-01

    Muscle degeneration is a prevalent disease, particularly in aging societies where it has a huge impact on quality of life and incurs colossal health costs. Suitable donor sources of smooth muscle cells are limited and minimally invasive therapeutic approaches are sought that will augment muscle volume by delivering cells to damaged or degenerated areas of muscle. For the first time, we report the use of highly porous microcarriers produced using thermally induced phase separation (TIPS) to expand and differentiate adipose-derived mesenchymal stem cells (AdMSCs) into smooth muscle-like cells in a format that requires minimal manipulation before clinical delivery. AdMSCs readily attached to the surface of TIPS microcarriers and proliferated while maintained in suspension culture for 12 days. Switching the incubation medium to a differentiation medium containing 2 ng/mL transforming growth factor beta-1 resulted in a significant increase in both the mRNA and protein expression of cell contractile apparatus components caldesmon, calponin, and myosin heavy chains, indicative of a smooth muscle cell-like phenotype. Growth of smooth muscle cells on the surface of the microcarriers caused no change to the integrity of the polymer microspheres making them suitable for a cell-delivery vehicle. Our results indicate that TIPS microspheres provide an ideal substrate for the expansion and differentiation of AdMSCs into smooth muscle-like cells as well as a microcarrier delivery vehicle for the attached cells ready for therapeutic applications. PMID:25205072

  17. Map Separates

    USGS Publications Warehouse

    ,

    2001-01-01

    U.S. Geological Survey (USGS) topographic maps are printed using up to six colors (black, blue, green, red, brown, and purple). To prepare your own maps or artwork based on maps, you can order separate black-and-white film positives or negatives for any color printed on a USGS topographic map, or for one or more of the groups of related features printed in the same color on the map (such as drainage and drainage names from the blue plate.) In this document, examples are shown with appropriate ink color to illustrate the various separates. When purchased, separates are black-and-white film negatives or positives. After you receive a film separate or composite from the USGS, you can crop, enlarge or reduce, and edit to add or remove details to suit your special needs. For example, you can adapt the separates for making regional and local planning maps or for doing many kinds of studies or promotions by using the features you select and then printing them in colors of your choice.

  18. Isotope separation

    DOEpatents

    Bartlett, Rodney J.; Morrey, John R.

    1978-01-01

    A method and apparatus is described for separating gas molecules containing one isotope of an element from gas molecules containing other isotopes of the same element in which all of the molecules of the gas are at the same electronic state in their ground state. Gas molecules in a gas stream containing one of the isotopes are selectively excited to a different electronic state while leaving the other gas molecules in their original ground state. Gas molecules containing one of the isotopes are then deflected from the other gas molecules in the stream and thus physically separated.

  19. ISOTOPE SEPARATORS

    DOEpatents

    Bacon, C.G.

    1958-08-26

    An improvement is presented in the structure of an isotope separation apparatus and, in particular, is concerned with a magnetically operated shutter associated with a window which is provided for the purpose of enabling the operator to view the processes going on within the interior of the apparatus. The shutier is mounted to close under the force of gravity in the absence of any other force. By closing an electrical circuit to a coil mouated on the shutter the magnetic field of the isotope separating apparatus coacts with the magnetic field of the coil to force the shutter to the open position.

  20. SEPARATION PROCESS

    DOEpatents

    Stoughton, R.W.

    1961-10-24

    A process for separating tetravalent plutonium from aqueous solutions and from niobium and zirconium by precipitation on lanthanum oxalate is described. The oxalate ions of the precipitate may be decomposed by heating in the presence of an oxidizing agent, forming a plutonium compound readily soluble in acid. (AEC)

  1. Plasma separation

    NASA Technical Reports Server (NTRS)

    Steurer, Wolfgang

    1992-01-01

    This process employs a thermal plasma for the separation and production of oxygen and metals. It is a continuous process that requires no consumables and relies entirely on space resources. The almost complete absence of waste renders it relatively clean. It can be turned on or off without any undesirable side effects or residues. The prime disadvantage is its high power consumption.

  2. Gas separating

    DOEpatents

    Gollan, Arye

    1988-01-01

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing.

  3. Gas separating

    DOEpatents

    Gollan, Arye Z. [Newton, MA

    1990-12-25

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing.

  4. Separation system

    DOEpatents

    Rubin, Leslie S.

    1986-01-01

    A separation system for dewatering radioactive waste materials includes a disposal container, drive structure for receiving the container, and means for releasably attaching the container to the drive structure. Separation structure disposed in the container adjacent the inner surface of the side wall structure retains solids while allowing passage of liquids. Inlet port structure in the container top wall is normally closed by first valve structure that is centrifugally actuated to open the inlet port and discharge port structure at the container periphery receives liquid that passes through the separation structure and is normally closed by second valve structure that is centrifugally actuated to open the discharge ports. The container also includes coupling structure for releasable engagement with the centrifugal drive structure. Centrifugal force produced when the container is driven in rotation by the drive structure opens the valve structures, and radioactive waste material introduced into the container through the open inlet port is dewatered, and the waste is compacted. The ports are automatically closed by the valves when the container drum is not subjected to centrifugal force such that containment effectiveness is enhanced and exposure of personnel to radioactive materials is minimized.

  5. Component separations.

    PubMed

    Heller, Lior; McNichols, Colton H; Ramirez, Oscar M

    2012-02-01

    Component separation is a technique used to provide adequate coverage for midline abdominal wall defects such as a large ventral hernia. This surgical technique is based on subcutaneous lateral dissection, fasciotomy lateral to the rectus abdominis muscle, and dissection on the plane between external and internal oblique muscles with medial advancement of the block that includes the rectus muscle and its fascia. This release allows for medial advancement of the fascia and closure of up to 20-cm wide defects in the midline area. Since its original description, components separation technique underwent multiple modifications with the ultimate goal to decrease the morbidity associated with the traditional procedure. The extensive subcutaneous lateral dissection had been associated with ischemia of the midline skin edges, wound dehiscence, infection, and seroma. Although the current trend is to proceed with minimally invasive component separation and to reinforce the fascia with mesh, the basic principles of the techniques as described by Ramirez et al in 1990 have not changed over the years. Surgeons who deal with the management of abdominal wall defects are highly encouraged to include this technique in their collection of treatment options.

  6. Characterization of micro- and nanophase separation of dentin bonding agents by stereoscopy and atomic force microscopy.

    PubMed

    Toledano, Manuel; Yamauti, Monica; Osorio, Estrella; Monticelli, Francesca; Osorio, Raquel

    2012-04-01

    The aim was to study the effect of solvents on the phase separation of four commercial dental adhesives. Four materials were tested: Clearfil™ SE Bond (CSE), Clearfil Protect Bond (CPB), Clearfil S3 Bond (CS3), and One-Up Bond F Plus (OUB). Distilled water or ethanol was used as a solvent (30 vol%) for microphase separation studies, by stereoscopy. For nanophase images, the mixtures were formulated with two different solvent concentrations (2.5 versus 5 vol%) and observed by atomic force microscopy. Images were analyzed by using MacBiophotonics ImageJ to measure the area of bright domains. Macrophase separations, identified as a loss of clarity, were only observed after mixing the adhesives with water. Nanophase separations were detected with all adhesive combinations. The area of bright domains ranged from 132 to 1,145 nm² for CSE, from 15 to 285 nm² for CPB, from 149 to 380 nm² for CS3, and from 26 to 157 nm² for OUB. In water-resins mixtures, CPB was the most homogeneous and OUB showed the most heterogeneous phase formation. In ethanol-resin mixtures, CSE attained the most homogeneous structure and OUB showed the most heterogeneous phase. Addition of 5 vol% ethanol to resins decreased the nanophase separation when compared with the control materials.

  7. Gas separating

    DOEpatents

    Gollan, A.

    1988-03-29

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

  8. Gas separating

    DOEpatents

    Gollan, A.Z.

    1990-12-25

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

  9. Comprehensive two-dimensional separation system by coupling capillary reverse-phase liquid chromatography to capillary isoelectric focusing for peptide and protein mapping with laser-induced fluorescence detection.

    PubMed

    Mao, Yu; Zhang, Xiangmin

    2003-09-01

    A comprehensive two-dimensional (2-D) separation system, coupling capillary reverse-phase liquid chromatography (cRPLC) to capillary isoelectric focusing (CIEF), is described for protein and peptide mapping. cRPLC, the first dimension, provided high-resolution separations for salt-free proteins. CIEF, the second dimension with an orthogonal mechanism to cRPLC afforded excellent resolution capability for proteins with efficient protein enrichment. Since all sample fractions in cRPLC effluents could be transferred to the CIEF dimensions, the combination of the two high-efficiency separations resulted in maximal separation capabilities of each dimension. Separation effectiveness of this approach was demonstrated using complex protein/peptide samples, such as yeast cytosol and a BSA tryptic digest. A peak capacity of more than 10 000 had been achieved. A laser-induced fluorescence (LIF) detector, developed for this system, allowed for high-sensitive detection, with a fmol level of peptide detection for the BSA digest. FITC and BODIPY maleimide were used to tag the proteins, and the latter was found better both for separation and detection in our 2-D system.

  10. Particle separation

    NASA Technical Reports Server (NTRS)

    Moosmuller, Hans (Inventor); Chakrabarty, Rajan K. (Inventor); Arnott, W. Patrick (Inventor)

    2011-01-01

    Embodiments of a method for selecting particles, such as based on their morphology, is disclosed. In a particular example, the particles are charged and acquire different amounts of charge, or have different charge distributions, based on their morphology. The particles are then sorted based on their flow properties. In a specific example, the particles are sorted using a differential mobility analyzer, which sorts particles, at least in part, based on their electrical mobility. Given a population of particles with similar electrical mobilities, the disclosed process can be used to sort particles based on the net charge carried by the particle, and thus, given the relationship between charge and morphology, separate the particles based on their morphology.

  11. Particle separation

    DOEpatents

    Moosmuller, Hans; Chakrabarty, Rajan K.; Arnott, W. Patrick

    2011-04-26

    Embodiments of a method for selecting particles, such as based on their morphology, is disclosed. In a particular example, the particles are charged and acquire different amounts of charge, or have different charge distributions, based on their morphology. The particles are then sorted based on their flow properties. In a specific example, the particles are sorted using a differential mobility analyzer, which sorts particles, at least in part, based on their electrical mobility. Given a population of particles with similar electrical mobilities, the disclosed process can be used to sort particles based on the net charge carried by the particle, and thus, given the relationship between charge and morphology, separate the particles based on their morphology.

  12. Evaporation-induced self-assembled silica colloidal particle-assisted nanoporous structural evolution of poly(ethylene terephthalate) nonwoven composite separators for high-safety/high-rate lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Lee, Jung-Ran; Won, Ji-Hye; Kim, Jong Hun; Kim, Ki Jae; Lee, Sang-Young

    2012-10-01

    A facile approach to the fabrication of nanoporous structure-tuned nonwoven composite separators is demonstrated for application in high-safety/high-rate lithium-ion batteries. This strategy is based on the construction of silica (SiO2) colloidal particle-assisted nanoporous structure in a poly(ethylene terephthalate) (PET) nonwoven substrate. The nanoparticle arrangement arising from evaporation-induced self-assembly of SiO2 colloidal particles allows the evolution of the unusual nanoporous structure, i.e. well-connected interstitial voids formed between close-packed SiO2 particles adhered by styrene-butadiene rubber (SBR) binders. Meanwhile, the PET nonwoven serves as a mechanical support that contributes to suppressing thermal shrinkage of the nonwoven composite separator. The aforementioned structural novelty of the nonwoven composite separator plays a key role in providing the separator with advantageous characteristics (specifically, good electrolyte wettability, high ionic conductivity, and benign compatibility with electrodes), which leads to the better cell performance than a commercialized polyethylene (PE) separator.

  13. Mid-scale free-flow electrophoresis with gravity-induced uniform flow of background buffer in chamber for the separation of cells and proteins.

    PubMed

    Dong, Yu-Chao; Shao, Jing; Yin, Xiao-Yang; Fan, Liu-yin; Cao, Cheng-Xi

    2011-07-01

    A large-scale free-flow electrophoresis (LS-FFE) is often too large for cell separation of lab scale, whereas micro-FFE (μFFE) has great difficulty in cell isolation due to easy blockage by cell accumulation in μFFE. In this study, a mid-scale FFE (MS-FFE) is developed for cell and protein separations. The volume of the separation chamber (70×40×0.1-0.8 mm) is from 280 μL to 2.24 mL, much lower than that in an LS-FFE but higher than that in a μFFE. Gravity is used for uniform flow of the background buffer only via a single pump with 16 channels and the sample is injected via an adjuster originally used for clinical intravenous injection. The experiments reveal that the hydrodynamic and electrohydrodynamic flows are much stable, and the Joule heat can be effectively dispersed without obvious positive or negative deviation as shown by the omega plots. By the device, Escherichia coli and Staphylococcus aureus, which easily accumulate to block μFFE and are separated with difficulty due to their same negative charges carried, can be well isolated under the conditions of 4.5 mM pH 8.5 Tris-boric buffer (4.5 mM Tris, 4.5 mM boric acid) with 0.10 mM ethylene diamine tetraacetic acid and 5% m/v sucrose, 200 μL/min, 800 V, and sample injection via inlet 4. The mid-scale FFE device could also be used for the separation of three model proteins of horse heart cytochrome c, myoglobin and bovine serum albumin. The device has clear significance for mid-scale separation of cells and proteins.

  14. Pseudo-stationary separation materials for highly parallel separations.

    SciTech Connect

    Singh, Anup K.; Palmer, Christopher

    2005-05-01

    Goal of this study was to develop and characterize novel polymeric materials as pseudostationary phases in electrokinetic chromatography. Fundamental studies have characterized the chromatographic selectivity of the materials as a function of chemical structure and molecular conformation. The selectivities of the polymers has been studied extensively, resulting in a large body of fundamental knowledge regarding the performance and selectivity of polymeric pseudostationary phases. Two polymers have also been used for amino acid and peptide separations, and with laser induced fluorescence detection. The polymers performed well for the separation of derivatized amino acids, and provided some significant differences in selectivity relative to a commonly used micellar pseudostationary phase. The polymers did not perform well for peptide separations. The polymers were compatible with laser induced fluorescence detection, indicating that they should also be compatible with chip-based separations.

  15. Laser isotope separation

    DOEpatents

    Robinson, C. Paul; Jensen, Reed J.; Cotter, Theodore P.; Boyer, Keith; Greiner, Norman R.

    1988-01-01

    A process and apparatus for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photolysis, photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photolysis, photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium.

  16. Photochemical isotope separation

    DOEpatents

    Robinson, C. Paul; Jensen, Reed J.; Cotter, Theodore P.; Greiner, Norman R.; Boyer, Keith

    1987-01-01

    A process for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium and plutonium.

  17. Photochemical isotope separation

    DOEpatents

    Robinson, C.P.; Jensen, R.J.; Cotter, T.P.; Greiner, N.R.; Boyer, K.

    1987-04-28

    A process is described for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium and plutonium. 8 figs.

  18. Laser isotope separation

    DOEpatents

    Robinson, C.P.; Reed, J.J.; Cotter, T.P.; Boyer, K.; Greiner, N.R.

    1975-11-26

    A process and apparatus for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light is described. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photolysis, photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photolysis, photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium.

  19. Maternal Separation during Breastfeeding Induces Gender-Dependent Changes in Anxiety and the GABA-A Receptor Alpha-Subunit in Adult Wistar Rats

    PubMed Central

    León Rodríguez, Diego Armando; Dueñas, Zulma

    2013-01-01

    Different models of rodent maternal separation (MS) have been used to investigate long-term neurobiological and behavioral changes, associated with early stress. However, few studies have involved the analysis of sex-related differences in central anxiety modulation. This study investigated whether MS during breastfeeding affected adult males and females in terms of anxiety and brain GABA-A receptor-alpha-subunit immunoreactivity. The brain areas analyzed were the amygdale (AM), hippocampus (HP), medial prefrontal cortex (mPFC), medial preoptic area (POA) and paraventricular nucleus (PVN). Rats were housed under a reversed light/dark cycle (lights off at 7∶00 h) with access to water and food ad libitum. Animals underwent MS twice daily during the dark cycle from postnatal day 1 to postnatal day 21. Behavior was tested when rats were 65–70 days old using the elevated plus maze and after brains were treated for immunohistochemistry. We found that separated females spent more time in the open arms and showed more head dipping behavior compared with controls. The separated males spent more time in the center of the maze and engaged in more stretching behavior than the controls. Immunohistochemistry showed that separated females had less immunostained cells in the HP, mPFC, PVN and POA, while separated males had fewer immunolabeled cells in the PFC, PVN and AM. These results could indicate that MS has gender-specific effects on anxiety behaviors and that these effects are likely related to developmental alterations involving GABA-A neurotransmission. PMID:23826356

  20. Baseline separation of amino acid biomarkers of hepatocellular carcinoma by polyvinylpyrrolidone-filled capillary electrophoresis with light-emitting diode-induced fluorescence in the presence of mixed micelles.

    PubMed

    Chen, Yen-Chu; Chang, Po-Ling

    2015-02-01

    Physiological amino acids (AAs) are important indices for monitoring various diseases, including cancer. This study proposes a polymer-based separation method in the presence of mixed micelles for the determination of AAs by capillary electrophoresis with light-emitting diode-induced fluorescence. The separation of 18 amino acid-cyano[f]benzoisoindoles (AA-CBIs) was successfully achieved using a solution of polyvinylpyrrolidone (PVP, 5% w/v, Mavg 1,300,000 Da). In addition, we demonstrated that mixed micelles composed of sodium dodecyl sulfate and isopropanol may affect the migration order of the AA-CBIs and greatly improve the speed of separation. With the exception of proline, 21 plasma AA-CBIs, including high isoelectric point AAs (lysine, ornithine, and arginine), were identified by using optimized separation conditions with minimal matrix effects. The results of this study demonstrated the distinct advantages of the proposed method, such as simplicity, high efficiency, and cost-effectiveness. This method has great potential for the diagnosis of several important diseases, including carcinomas, aminoacidopathies, and neurotransmission disorders.

  1. Hydrogen isotope separation from water

    DOEpatents

    Jensen, R.J.

    1975-09-01

    A process for separating tritium from tritium-containing water or deuterium enrichment from water is described. The process involves selective, laser-induced two-photon excitation and photodissociation of those water molecules containing deuterium or tritium followed by immediate reaction of the photodissociation products with a scavenger gas which does not substantially absorb the laser light. The reaction products are then separated from the undissociated water. (auth)

  2. Cyclone separator having boundary layer turbulence control

    DOEpatents

    Krishna, Coimbatore R.; Milau, Julius S.

    1985-01-01

    A cyclone separator including boundary layer turbulence control that is operable to prevent undue build-up of particulate material at selected critical areas on the separator walls, by selectively varying the fluid pressure at those areas to maintain the momentum of the vortex, thereby preventing particulate material from inducing turbulence in the boundary layer of the vortical fluid flow through the separator.

  3. Cationic polyelectrolyte induced separation of some inorganic contaminants and their mixture (zirconium silicate, kaolin, K-feldspar, zinc oxide) as well as of the paraffin oil from water.

    PubMed

    Ghimici, Luminita

    2016-03-15

    The flocculation efficiency of a cationic polyelectrolyte with quaternary ammonium salt groups in the backbone, namely PCA5 was evaluated on zirconium silicate (kreutzonit), kaolin, K- feldspar and zinc oxide (ZnO) suspensions prepared either with each pollutant or with their mixture. The effect of several parameters such as settling time, polymer dose and the pollutant type on the separation efficacy was evaluated and followed by optical density and zeta potential measurements. Except for ZnO, the interactions between PCA5 and suspended particles led to low residual turbidity values (around 4% for kreutzonit, 5% for kaolin and 8% for K-feldspar) as well as to the reduction of flocs settling time (from 1200 min to 30 min and 120 min in case of kaolinit and K-feldspar, respectively), that meant a high efficiency in their separation. The negative value of the zeta potential and flocs size measurements, at the optimum polymer dose, point to contribution from charge patch mechanism for the particles flocculation. A good efficiency of PCA5 in separation of paraffin oil (a minimum residual turbidity of 9.8%) has been also found. PMID:26716571

  4. RECOVERY OF THE CANDIDATE PROTOPLANET HD 100546 b WITH GEMINI/NICI AND DETECTION OF ADDITIONAL (PLANET-INDUCED?) DISK STRUCTURE AT SMALL SEPARATIONS

    SciTech Connect

    Currie, Thayne; Kudo, Tomoyuki; Muto, Takayuki; Honda, Mitsuhiko; Brandt, Timothy D.; Grady, Carol; Fukagawa, Misato; Burrows, Adam; Janson, Markus; Kuzuhara, Masayuki; McElwain, Michael W.; Follette, Katherine; Hashimoto, Jun; Henning, Thomas; Kandori, Ryo; Kusakabe, Nobuhiko; Morino, Jun-ichi; Nishikawa, Jun; Kwon, Jungmi; Mede, Kyle; and others

    2014-12-01

    We report the first independent, second epoch (re-)detection of a directly imaged protoplanet candidate. Using L' high-contrast imaging of HD 100546 taken with the Near-Infrared Coronagraph and Imager on Gemini South, we recover ''HD 100546 b'' with a position and brightness consistent with the original Very Large Telescope/NAos-COnica detection from Quanz et al., although data obtained after 2013 will be required to decisively demonstrate common proper motion. HD 100546 b may be spatially resolved, up to ≈12-13 AU in diameter, and is embedded in a finger of thermal IR-bright, polarized emission extending inward to at least 0.''3. Standard hot-start models imply a mass of ≈15 M{sub J} . However, if HD 100546 b is newly formed or made visible by a circumplanetary disk, both of which are plausible, its mass is significantly lower (e.g., 1-7 M{sub J} ). Additionally, we discover a thermal IR-bright disk feature, possibly a spiral density wave, at roughly the same angular separation as HD 100546 b but 90° away. Our interpretation of this feature as a spiral arm is not decisive, but modeling analyses using spiral density wave theory implies a wave launching point exterior to ≈0.''45 embedded within the visible disk structure: plausibly evidence for a second, hitherto unseen, wide-separation planet. With one confirmed protoplanet candidate and evidence for one to two others, HD 100546 is an important evolutionary precursor to intermediate-mass stars with multiple super-Jovian planets at moderate/wide separations like HR 8799.

  5. Recovery of the Candidate Protoplanet HD 100546 b with Gemini/NICI and Detection of Additional (Planet-induced?) Disk Structure at Small Separations

    NASA Astrophysics Data System (ADS)

    Currie, Thayne; Muto, Takayuki; Kudo, Tomoyuki; Honda, Mitsuhiko; Brandt, Timothy D.; Grady, Carol; Fukagawa, Misato; Burrows, Adam; Janson, Markus; Kuzuhara, Masayuki; McElwain, Michael W.; Follette, Katherine; Hashimoto, Jun; Henning, Thomas; Kandori, Ryo; Kusakabe, Nobuhiko; Kwon, Jungmi; Mede, Kyle; Morino, Jun-ichi; Nishikawa, Jun; Pyo, Tae-Soo; Serabyn, Gene; Suenaga, Takuya; Takahashi, Yasuhiro; Wisniewski, John; Tamura, Motohide

    2014-12-01

    We report the first independent, second epoch (re-)detection of a directly imaged protoplanet candidate. Using L' high-contrast imaging of HD 100546 taken with the Near-Infrared Coronagraph and Imager on Gemini South, we recover "HD 100546 b" with a position and brightness consistent with the original Very Large Telescope/NAos-COnica detection from Quanz et al., although data obtained after 2013 will be required to decisively demonstrate common proper motion. HD 100546 b may be spatially resolved, up to ≈12-13 AU in diameter, and is embedded in a finger of thermal IR-bright, polarized emission extending inward to at least 0.''3. Standard hot-start models imply a mass of ≈15 MJ . However, if HD 100546 b is newly formed or made visible by a circumplanetary disk, both of which are plausible, its mass is significantly lower (e.g., 1-7 MJ ). Additionally, we discover a thermal IR-bright disk feature, possibly a spiral density wave, at roughly the same angular separation as HD 100546 b but 90° away. Our interpretation of this feature as a spiral arm is not decisive, but modeling analyses using spiral density wave theory implies a wave launching point exterior to ≈0.''45 embedded within the visible disk structure: plausibly evidence for a second, hitherto unseen, wide-separation planet. With one confirmed protoplanet candidate and evidence for one to two others, HD 100546 is an important evolutionary precursor to intermediate-mass stars with multiple super-Jovian planets at moderate/wide separations like HR 8799.

  6. Separation of copper ions from iron ions using PVA-g-(acrylic acid/N-vinyl imidazole) membranes prepared by radiation-induced grafting.

    PubMed

    Ajji, Zaki; Ali, Ali M

    2010-01-15

    Acrylic acid (AAc), N-vinyl imidazole (Azol) and their binary mixtures were graft copolymerized onto poly(vinyl alcohol) membranes using gamma irradiation. The ability of the grafted membranes to separate Cu ions from Fe ions was investigated with respect to the grafting yield and the pH of the feed solution. The data showed that the diffusion of copper ions from the feed compartment to the receiver compartment depends on the grafting yield of the membranes and the pH of the feed solution. To the contrary, iron ions did not diffuse through the membranes of all grafting yields. However, a limited amount of iron ions diffused in strong acidic medium. This study shows that the prepared membranes could be considered for the separation of copper ions from iron ions. The temperature of thermal decomposition of pure PVA-g-AAc/Azol membrane, PVA-g-AAc/Azol membrane containing copper ions, and PVA-g-AAc/Azol membrane containing iron ions were determined using TGA analyzer. It was shown that the presence of Cu and Fe ions increases the decomposition temperature, and the membranes bonded with iron ions are more stable than those containing copper ions. PMID:19836882

  7. Activation of the HPA axis and depression of feeding behavior induced by restraint stress are separately regulated by PACAPergic neurotransmission in the mouse.

    PubMed

    Jiang, Sunny Zhihong; Eiden, Lee E

    2016-07-01

    We measured serum CORT elevation in wild-type and PACAP-deficient C57BL/6N male mice after acute (1 h) or prolonged (2-3 h) daily restraint stress for 7 d. The PACAP dependence of CORT elevation was compared to that of stress-induced hypophagia. Daily restraint induced unhabituated peak CORT elevation, and hypophagia/weight loss, of similar magnitude for 1, 2, and 3 h of daily restraint, in wild-type mice. Peak CORT elevation, and hypophagia, were both attenuated in PACAP-deficient mice for 2 and 3 h daily restraint. Hypophagia induced by 1-h daily restraint was also greatly reduced in PACAP-deficient mice, however CORT elevation, both peak and during recovery from stress, was unaffected. Thus, hypothalamic PACAPergic neurotransmission appears to affect CRH gene transcription and peptide production, but not CRH release, in response to psychogenic stress. A single exposure to restraint sufficed to trigger hypophagia over the following 24 h. PACAP deficiency attenuated HPA axis response (CORT elevation) to prolonged (3 h) but not acute (1 h) single-exposure restraint stress, while hypophagia induced by either a single 1 h or a single 3 h restraint were both abolished in PACAP-deficient mice. These results suggest that PACAP's actions to promote suppression of food intake following an episode of psychogenic stress is unrelated to the release of CRH into the portal circulation to activate the pituitary-adrenal axis. Furthermore, demonstration of suppressed food intake after a single 1-h restraint stress provides a convenient assay for investigating the location of the synapses and circuits mediating the effects of PACAP on the behavioral sequelae of psychogenic stress.

  8. Separation of intact proteins on γ-ray-induced polymethacrylate monolithic columns: A highly permeable stationary phase with high peak capacity for capillary high-performance liquid chromatography with high-resolution mass spectrometry.

    PubMed

    Simone, Patrizia; Pierri, Giuseppe; Foglia, Patrizia; Gasparrini, Francesca; Mazzoccanti, Giulia; Capriotti, Anna Laura; Ursini, Ornella; Ciogli, Alessia; Laganà, Aldo

    2016-01-01

    Polymethacrylate-based monolithic capillary columns, prepared by γ-radiation-induced polymerization, were used to optimize the experimental conditions (nature of the organic modifiers, the content of trifluoroacetic acid and the column temperature) in the separation of nine standard proteins with different hydrophobicities and a wide range of molecular weights. Because of the excellent permeability of the monolithic columns, an ion-pair reversed-phase capillary liquid chromatography with high-resolution mass spectrometry method has been developed by coupling the column directly to the mass spectrometer without a flow-split and using a standard electrospray interface. Additionally, the high working flow and concomitant high efficiency of these columns allowed us to employ a longer column (up to 50 cm) and achieve a peak capacity value superior to 1000. This work is motivated by the need to develop new materials for high-resolution chromatographic separation that combine chemical stability at elevated temperatures (up to 75°C) and a broad pH range, with a high peak capacity value. The advantage of the γ-ray-induced monolithic column lies in the batch-to-batch reproducibility and long-term high-temperature stability. Their proven high loading capacity, recovery, good selectivity and high permeability, moreover, compared well with that of a commercially available poly(styrene-divinylbenzene) monolithic column, which confirms that such monolithic supports might facilitate analysis in proteomics.

  9. Generation, Characterization, and Application of Hierarchically Structured Self-Assembly Induced by the Combined Effect of Self-Emulsification and Phase Separation.

    PubMed

    Wang, Xiuyu; Hou, Yi; Yao, Li; Gao, Mingyuan; Ge, Maofa

    2016-02-24

    Hierarchically structured magnetic single-hole hollow spheres (MSHS) have been successfully obtained via a facile self-assembly strategy. This methodology allows the double emulsions generated via the combined effect of self-emulsification and phase separation to provide confinement for directing the self-assembly of magnetic nanoparticles (MNPs). The resulting MSHS fully capitalize on both the multifunctional properties of MNPs and container features of single-hole hollow spheres. Moreover, the magnetic properties showed obvious improvement and can be tuned by modulating the assembled structure. Thus, MSHS can be used as a smart platform with multiple functionalities including image contrast enhancement, selective encapsulation for biomacromolecules, on-demand release, and magnetically guided transport. This strategy is very promising in the design of hierarchically structured assemblies for desired applications in biomedicine and other fields. PMID:26835545

  10. Phase-separation-induced single-crystal morphology in poly(L-lactic acid) blended with poly(1,4-butylene adipate) at specific composition.

    PubMed

    Nurkhamidah, Siti; Woo, E M

    2011-11-17

    The single-crystal morphology of poly(L-lactic acid) (PLLA) in blending with poly(butylene adipate) (PBA) in PLLA/PBA blends was for the first time reported in melt crystallization. At crystallization temperature (T(c)) = 110 °C, by adding 30 wt % PBA into PLLA, the lamellae exhibit six-stalk dendrites with single-crystal packing. Phase separation and crystallization took place simultaneously at T(c) = 110 °C in PLLA/PBA (70/30) blend, leading to discrete PBA domains and continuous PLLA domains. For PLLA/PBA (70/30) blend, all PBA were rejected from the growth front of PLLA crystals, expelled, and crystallized at ambient temperature as ring-banded PBA spherulites inside the discrete domains only, resulting in a favorable environment for formation of PLLA single crystals in the continuous domain. Atomic force microscopy (AFM) observation on individual crystallites reveals that lozenge-shaped single crystals were packed with a clockwise spiral pattern, stacked in 1-3 layers, and these lozenge-shaped crystals are aligned six hexasected directions into hexastalk dendrites with occasional side branches that are also aligned at 60° to main branches. The monolamellar thickness of lozenge-shaped single crystals was measured to be about 13-34 nm, and the dimension is about 0.8-3 μm along the short axis and 1.6-5 μm along the long axis. Typically, three layers of single crystals are stacked one on another; the lozenge crystals on the bottom layer are about twice as large as those on the top layer, forming a pyramid shape in the depth direction. Formation mechanisms of single crystals in melt-crystallized PLLA/PBA blend from 700 nm film thickness are discussed in correlation with exact phase separation at 30 wt % PBA. PMID:21962158

  11. On separate universes

    SciTech Connect

    Dai, Liang; Pajer, Enrico; Schmidt, Fabian E-mail: enrico.pajer@gmail.com

    2015-10-01

    The separate universe conjecture states that in General Relativity a density perturbation behaves locally (i.e. on scales much smaller than the wavelength of the mode) as a separate universe with different background density and curvature. We prove this conjecture for a spherical compensated tophat density perturbation of arbitrary amplitude and radius in ΛCDM. We then use Conformal Fermi Coordinates to generalize this result to scalar perturbations of arbitrary configuration and scale in a general cosmology with a mixture of fluids, but to linear order in perturbations. In this case, the separate universe conjecture holds for the isotropic part of the perturbations. The anisotropic part on the other hand is exactly captured by a tidal field in the Newtonian form. We show that the separate universe picture is restricted to scales larger than the sound horizons of all fluid components. We then derive an expression for the locally measured matter bispectrum induced by a long-wavelength mode of arbitrary wavelength, a new result which in standard perturbation theory is equivalent to a relativistic second-order calculation. We show that nonlinear gravitational dynamics does not generate observable contributions that scale like local-type non-Gaussianity f{sup loc}{sub NL}, and hence does not contribute to a scale-dependent galaxy bias Δ b ∝ k{sup −2} on large scales; rather, the locally measurable long-short mode coupling assumes a form essentially identical to subhorizon perturbation theory results, once the long-mode density perturbation is replaced by the synchronous-comoving gauge density perturbation. Apparent f{sup loc}{sub NL}-type contributions arise through projection effects on photon propagation, which depend on the specific large-scale structure tracer and observable considered, and are in principle distinguishable from the local mode coupling induced by gravity. We conclude that any observation of f{sup loc}{sub NL} beyond these projection effects

  12. Ferrofluid separator for nonferrous scrap separation

    NASA Technical Reports Server (NTRS)

    Kaiser, R.; Mir, L.

    1974-01-01

    Behavior of nonmagnetic objects within separator is essentially function of density, and independent of size or shape of objects. Results show close agreement between density of object and apparent density of ferrofluid required to float it. Results also demonstrate that very high separation rates are achievable by ferrofluid sink-float separation.

  13. Anxiogenic role of vasopressin during the early postnatal period: maternal separation-induced ultrasound vocalization in vasopressin-deficient Brattleboro rats.

    PubMed

    Varga, János; Fodor, Anna; Klausz, Barbara; Zelena, Dóra

    2015-11-01

    Both animal and human studies suggest that in adulthood, plasma vasopressin level correlates well with anxiety. Little is known about the mood regulation during the perinatal period. Here, we aim to investigate the influence of vasopressin on anxiety during the early postnatal age. As a sign of distress, rat pups emit ultrasonic vocalizations (USVs) when they are separated from their mother. This USV was detected in 7- to 8-day-old vasopressin-deficient Brattleboro pups, and they were compared to their heterozygote littermates and wild-type pups. The results were confirmed by V1b antagonist treatment (SSR149415 10 mg/kg ip 30 min before test) in wild-types. Chlordiazepoxide (3 mg/kg ip 30 min before test)-an anxiolytic-was used to test the interaction with the GABAergic system. At the end of the test, stress-hormone levels were measured by radioimmunoassay. Vasopressin-deficient pups vocalized substantially less than non-deficient counterparts. Treatment with V1b antagonist resulted in similar effect. Chlordiazepoxide reduced the frequency and duration of the vocalization only in wild-types. Reduced vocalization was accompanied by smaller adrenocorticotropin levels but the level of corticosterone was variable. Our results indicate that the anxiolytic effect of vasopressin deficiency (both genetic and pharmacological) exists already during the early postnatal age. Vasopressin interacts with the GABAergic system. As mood regulation does not go parallel with glucocorticoid levels, we suggest that vasopressin might have a direct effect on special brain areas.

  14. Comparison of microbial communities associated with phase-separation-induced hydrothermal fluids at the Yonaguni Knoll IV hydrothermal field, the Southern Okinawa Trough.

    PubMed

    Nunoura, Takuro; Takai, Ken

    2009-03-01

    Microbial communities associated with a variety of hydrothermal emissions at the Yonaguni Knoll IV hydrothermal field, the southernmost Okinawa Trough, were analyzed by culture-dependent and -independent techniques. In this hydrothermal field, dozens of vent sites hosting physically and chemically distinct hydrothermal fluids were observed. Variability in the gas content and formation in the hydrothermal fluids was observed and could be controlled by the potential subseafloor phase-separation and -partition processes. The hydrogen concentration in the hydrothermal fluids was also variable (0.8-3.6 mmol kg(-1)) among the chimney sites, but was unusually high as compared with those in other Okinawa Trough hydrothermal fields. Despite the physical and chemical variabilities of the hydrothermal fluids, the microbial communities were relatively similar among the habitats. Based on both culture-dependent and -independent analyses of the microbial community structures, members of Thermococcales, Methanococcales and Desulfurococcales likely represent the predominant archaeal components, while members of Nautiliaceae and Thioreductoraceae are considered to dominate the bacterial population. Most of the abundant microbial components appear to be chemolithotrophs sustained by hydrogen oxidation. The relatively consistent microbial communities found in this study could have been because of the sufficient input of hydrogen from the hydrothermal fluids rather than other chemical properties.

  15. Oligothiophene/graphene supramolecular ensembles managing light induced processes: preparation, characterization, and femtosecond transient absorption studies leading to charge-separation

    NASA Astrophysics Data System (ADS)

    Stergiou, A.; Gobeze, H. B.; Petsalakis, I. D.; Zhao, S.; Shinohara, H.; D'Souza, F.; Tagmatarchis, N.

    2015-09-01

    Advances in organic synthetic chemistry combined with the exceptional electronic properties of carbon allotropes, particularly graphene, is the basis used to design and fabricate novel electron donor-acceptor ensembles with desired properties for technological applications. Thiophene-based materials, which are mainly thiophene-containing polymers, are known for their notable electronic properties. In this frame moving from polymer to oligomer forms, new fundamental information would help for a better understanding of their electrochemical and photophysical properties. Furthermore, a successful combination of their electronic properties with those of graphene is a challenging goal. In this study, two oligothiophene compounds, which consist of three and nine thiophene-rings and are abbreviated 3T and 9T, respectively, were synthesized and noncovalently associated with liquid phase exfoliated few-layered graphene sheets (abbreviated eG), thus forming donor-acceptor 3T/eG and 9T/eG nanoensembes. Markedly, intra-ensemble electronic interactions between the two components in the ground and excited states were evaluated with the aid of UV-Vis and photoluminescence spectroscopy. Furthermore, redox assays revealed the one-electron oxidation of 3T accompanied by one-electron reduction due to eG in 3T/eG, whereas there were two reversible one-electron oxidations of 9T accompanied by one-electron reduction of eG9T/eG. The electrochemical band gap for the 3T/eG and 9T/eG ensembles were calculated and verified, in which the negative free-energy change for the charge-separated state of 3T/eG and 9T/eGvia the singlet excited state of 3T and 9T, respectively, were thermodynamically favorable. Finally, the results of transient pump-probe spectroscopy studies at the femtosecond time scale were supportive of charge transfer type interactions in the 3T/eG and 9T/eG ensembles. The estimated rates for intra-ensemble charge separation were found to be 9.52 × 109 s-1 and 2.2 × 1011 s-1

  16. Oligothiophene/graphene supramolecular ensembles managing light induced processes: preparation, characterization, and femtosecond transient absorption studies leading to charge-separation

    NASA Astrophysics Data System (ADS)

    Stergiou, A.; Gobeze, H. B.; Petsalakis, I. D.; Zhao, S.; Shinohara, H.; D'Souza, F.; Tagmatarchis, N.

    2015-09-01

    Advances in organic synthetic chemistry combined with the exceptional electronic properties of carbon allotropes, particularly graphene, is the basis used to design and fabricate novel electron donor-acceptor ensembles with desired properties for technological applications. Thiophene-based materials, which are mainly thiophene-containing polymers, are known for their notable electronic properties. In this frame moving from polymer to oligomer forms, new fundamental information would help for a better understanding of their electrochemical and photophysical properties. Furthermore, a successful combination of their electronic properties with those of graphene is a challenging goal. In this study, two oligothiophene compounds, which consist of three and nine thiophene-rings and are abbreviated 3T and 9T, respectively, were synthesized and noncovalently associated with liquid phase exfoliated few-layered graphene sheets (abbreviated eG), thus forming donor-acceptor 3T/eG and 9T/eG nanoensembes. Markedly, intra-ensemble electronic interactions between the two components in the ground and excited states were evaluated with the aid of UV-Vis and photoluminescence spectroscopy. Furthermore, redox assays revealed the one-electron oxidation of 3T accompanied by one-electron reduction due to eG in 3T/eG, whereas there were two reversible one-electron oxidations of 9T accompanied by one-electron reduction of eG9T/eG. The electrochemical band gap for the 3T/eG and 9T/eG ensembles were calculated and verified, in which the negative free-energy change for the charge-separated state of 3T/eG and 9T/eGvia the singlet excited state of 3T and 9T, respectively, were thermodynamically favorable. Finally, the results of transient pump-probe spectroscopy studies at the femtosecond time scale were supportive of charge transfer type interactions in the 3T/eG and 9T/eG ensembles. The estimated rates for intra-ensemble charge separation were found to be 9.52 × 109 s-1 and 2.2 × 1011 s-1

  17. Manipulating Migration Behavior of Magnetic Graphene Oxide via Magnetic Field Induced Casting and Phase Separation toward High-Performance Hybrid Ultrafiltration Membranes.

    PubMed

    Xu, Zhiwei; Wu, Tengfei; Shi, Jie; Wang, Wei; Teng, Kunyue; Qian, Xiaoming; Shan, Mingjing; Deng, Hui; Tian, Xu; Li, Cuiyu; Li, Fengyan

    2016-07-20

    Hybrid membranes blended with nanomaterials such as graphene oxide (GO) have great opportunities in water applications due to their multiple functionalities, but they suffer from low modification efficiency of nanomaterials due to the fact that plenty of the nanomaterials are embedded within the polymer matrix during the blending process. Herein, a novel Fe3O4/GO-poly(vinylidene fluoride) (Fe3O4/GO-PVDF) hybrid ultrafiltration membrane was developed via the combination of magnetic field induced casting and a phase inversion technique, during which the Fe3O4/GO nanocomposites could migrate toward the membrane top surface due to magnetic attraction and thereby render the surface highly hydrophilic with robust resistance to fouling. The blended Fe3O4/GO nanocomposites migrated to the membrane surface with the magnetic field induced casting, as verified by X-ray photoelectron spectroscopy, elemental analysis, and energy dispersive X-ray spectroscopy. As a result, the novel membranes exhibited significantly improved hydrophilicity (with a contact angle of 55.0°) and water flux (up to 595.39 L m(-2) h(-1)), which were improved by 26% and 206%, 12% and 49%, 25% and 154%, and 11% and 33% compared with those of pristine PVDF membranes and PVDF hybrid membranes blended with GO, Fe3O4, and Fe3O4/GO without the assistance of magnetic field during membrane casting, respectively. Besides, the novel membranes showed high rejection of bovine serum albumin (>92%) and high flux recovery ratio (up to 86.4%). Therefore, this study presents a novel strategy for developing high-performance hybrid membranes via manipulating the migration of nanomaterials to the membrane surface rather than embedding them in the membrane matrix. PMID:27355273

  18. Maternal separation activates microglial cells and induces an inflammatory response in the hippocampus of male rat pups, independently of hypothalamic and peripheral cytokine levels.

    PubMed

    Roque, Angélica; Ochoa-Zarzosa, Alejandra; Torner, Luz

    2016-07-01

    Adult animals subjected to chronic stress show an inflammatory response in the hippocampus which has been related to cognitive dysfunction and psychopathology. However the immediate consequences of early life stress on hippocampal glial cells have not been studied. Here we analyzed the effects of maternal separation (MS) on astrocyte and microglial cell morphology in the hippocampal hilus, compared the expression of cytokines in the hippocampus and hypothalamus, and the peripheral response of cytokines, on postnatal day (PD) 15. Male rat pups of MS (3h/day, PD1-PD14) and Control (CONT) pups showed similar microglial cell densities in the hilus, but MS pups presented more activated microglia. MS decreased astrocyte density and the number of processes in the hilus. Cytokine mRNA expression (qPCR) was analyzed in MS and CONT groups, sacrificed (i) under basal (B) conditions or (ii) after a single stress event (SS) at PN15. In hippocampal extracts, MS increased IL-1β mRNA, under B and SS conditions while IL-6 and TNF-α did not change. In hypothalamic tissue, MS increased TNF-α and IL-6 mRNA, but not IL-1b, after SS. Peripheral concentrations of IL-1β were decreased under B and SS conditions in MS; IL-6 concentration increased after SS in MS pups, and TNF-α concentration was unchanged. In conclusion, MS activates microglial cells and decreases astrocyte density in the hippocampus. A differential cytokine expression is observed in the hippocampus and the hypothalamus after MS, and after SS. Also, MS triggers an independent response of peripheral cytokines. These specific responses together could contribute to decrease hippocampal neurogenesis and alter the neuroendocrine axis.

  19. Shoulder separation - aftercare

    MedlinePlus

    Separated shoulder - aftercare; Acromioclavicular joint separation - aftercare; A/C separation - aftercare ... slower if you have: Arthritis in your shoulder joint Damaged cartilage (cushioning tissue) between your collarbone and ...

  20. Separation Anxiety (For Parents)

    MedlinePlus

    ... 5 Things to Know About Zika & Pregnancy Separation Anxiety KidsHealth > For Parents > Separation Anxiety Print A A ... both of you get through it. How Separation Anxiety Develops Babies adapt pretty well to other caregivers. ...

  1. Computational Investigation of Block Copolymer Surfactants for Stabilizing Fluctuation-Induced Polymeric Microemulsions

    NASA Astrophysics Data System (ADS)

    Delaney, Kris; Fredrickson, Glenn

    2013-03-01

    High molecular weight diblock copolymers introduced into a blend of immiscible homopolymers can act as a surfactant to suppress macroscopic two-fluid phase separation. With variation of block copolymer composition, the crossover between low-temperature ordering into microphase or macrophase separated states is marked by a mean-field isotropic Lifshitz multi-critical point. Strong fluctuations close to the Lifshitz point are observed to suppress the low-temperature ordering; a microemulsion state emerges, with large, co-continuous domains of segregated fluid lacking any long-range order. We study this phenomenon with fully fluctuating field-theoretic simulations based on complex Langevin sampling, and we attempt to design new block polymer surfactants that can produce the microemulsion state with a wider composition tolerance.

  2. A new direct laser photo-induced fluorescence method coupled on-line with liquid chromatographic separation for the simultaneous determination of anilides pesticides.

    PubMed

    Mbaye, O M A; Maroto, A; Gaye-Seye, M D; Stephan, L; Deschamps, L; Aaron, J J; Giamarchi, P

    2015-01-01

    A new direct laser photo-induced fluorescence high performance liquid chromatography (DL-PIF-HPLC) method is developed for the simultaneous determination of three anilide pesticides, namely carboxin, monalide and propanil. DL-PIF-HPLC uses a tunable Nd:YAG-OPO laser to obtain fluorescent photoproduct(s) and to simultaneously analyze their fluorescence in a short acquisition time with an intensified CCD camera, which improves the selectivity (by choosing the suitable excitation wavelength), increases the sensitivity (due to the high energy of the laser beam) and reduces the time of analysis, relative to the classical PIF methods. However, one of the main drawbacks of PIF methods is the presence of interferences with other compounds, such as other pesticides from the same group yielding similar fluorescent photoproducts, which reduces their selectivity. The analytical interest of DL-PIF-HPLC to avoid these interferences is demonstrated. The DL-PIF spectra, chromatographic conditions and analytical performances of DL-PIF-HPLC are presented for the simultaneous determination of three anilide pesticides. The calibration curves are linear over one order of magnitude and the limits of detection are in the ng mL(-1) range. The new DL-PIF-HPLC system has the advantage to combine the performances of both techniques, DL-PIF and liquid chromatography, and to improve the analysis selectivity. PMID:25476396

  3. Anti-inflammatory Agents Attenuate the Passive Responses of Guinea Pig Pups: Evidence for Stress-Induced Sickness Behavior during Maternal Separation

    PubMed Central

    Hennessy, Michael B.; Schiml-Webb, Patricia A.; Miller, Emily E.; Maken, Deborah S.; Bullinger, Katie L.; Deak, Terrence

    2007-01-01

    A previous study found that intracerebroventricular (ICV) infusion of 25 μg of α-MSH reduced the passive responses (crouched stance, eye-closing, piloerection) of guinea pig pups during a 3-hr isolation in a novel environment. Because α-MSH has broad anti-inflammatory properties, the results suggested that proinflammatory factors play a role in mediating the behavior of isolated infants. The present study further investigated this possibility. In Experiment 1, injection of lipopolysacchride (LPS) increased the number of 60-s intervals in which pups expressed the same three responses during a 1-hr test, and ICV infusion of α-MSH significantly reduced the effect of LPS on crouching and piloerection. In Experiment 2, the prostaglandin synthesis inhibitor indomethacin (10mg/kg) reduced the number of 60-s intervals in which pups exhibited both crouching and the full suite of passive responses during a 3-hr isolation in a novel environment. Together these results provide further support for the hypothesis that the passive behaviors exhibited during prolonged isolation are “stress-induced sickness behaviors” mediated by proinflammatory factors. PMID:17462831

  4. A new direct laser photo-induced fluorescence method coupled on-line with liquid chromatographic separation for the simultaneous determination of anilides pesticides.

    PubMed

    Mbaye, O M A; Maroto, A; Gaye-Seye, M D; Stephan, L; Deschamps, L; Aaron, J J; Giamarchi, P

    2015-01-01

    A new direct laser photo-induced fluorescence high performance liquid chromatography (DL-PIF-HPLC) method is developed for the simultaneous determination of three anilide pesticides, namely carboxin, monalide and propanil. DL-PIF-HPLC uses a tunable Nd:YAG-OPO laser to obtain fluorescent photoproduct(s) and to simultaneously analyze their fluorescence in a short acquisition time with an intensified CCD camera, which improves the selectivity (by choosing the suitable excitation wavelength), increases the sensitivity (due to the high energy of the laser beam) and reduces the time of analysis, relative to the classical PIF methods. However, one of the main drawbacks of PIF methods is the presence of interferences with other compounds, such as other pesticides from the same group yielding similar fluorescent photoproducts, which reduces their selectivity. The analytical interest of DL-PIF-HPLC to avoid these interferences is demonstrated. The DL-PIF spectra, chromatographic conditions and analytical performances of DL-PIF-HPLC are presented for the simultaneous determination of three anilide pesticides. The calibration curves are linear over one order of magnitude and the limits of detection are in the ng mL(-1) range. The new DL-PIF-HPLC system has the advantage to combine the performances of both techniques, DL-PIF and liquid chromatography, and to improve the analysis selectivity.

  5. Spacecraft -- Capsule Separation (Animation)

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Click on the image for Spacecraft -- Capsule Separation animation

    This animation shows the return capsule separating from the Stardust spacecraft.

  6. Effect of ionic strength on surface-selective patch binding-induced phase separation and coacervation in similarly charged gelatin-agar molecular systems.

    PubMed

    Boral, Shilpi; Bohidar, H B

    2010-09-23

    Coacervate is defined as a polymer-rich dense phase, which remains in thermodynamic equilibrium with its low concentrated phase called the supernatant. The effect of ionic strength (I = 0-0.1 M NaCl) on the mechanism of surface patch binding-induced protein-polysaccharide interaction leading to complex coacervation, between agar (a polyanionic polysaccharide) and gelatin B (a polyampholyte protein), both having similar net charge, at a particular mixing ratio, [gelatin]/[agar] = 1, was studied at various temperatures (20-40 °C). The coacervation transition was probed by turbidity and zeta-potential measurements. The intermolecular association had the signature of surface-selective binding, and a model calculation could explain the potential energy of interactions operative in such processes. The thermo-mechanical features of the coacervates were found to be strongly dependent on ionic strength, which has been interpreted as originating from formation of salt-bridges between the biopolymers. The microstructure of the coacervate materials was analyzed using rheology and small angle neutron scattering (SANS) techniques, which probed the heterogeneity prevailing in the system that had characteristic length in the range 1.3-2.0 nm, and the same data yielded the correlation length of concentration fluctuations, which was estimated to lay in the range 2.4-4 nm. It is concluded that the coacervation transition driven by surface-selective binding is not influenced by the ionic strength of the solution, but the mobile ions participate in the structural organization of the interacting polyions in the coacervate.

  7. Evidence of exercise-induced cardiac dysfunction and elevated cTnT in separate cohorts competing in an ultra-endurance mountain marathon race.

    PubMed

    Shave, R E; Dawson, E; Whyte, G; George, K; Ball, D; Gaze, D C; Collinson, P O

    2002-10-01

    Cardiac damage has recently been implicated in the aetiology of "exercise induced cardiac dysfunction". The humoral markers of cardiac damage that have been utilised to date are not sufficiently cardio-specific to investigate this hypothesis. The aim of the present study was to examine cardiac function following prolonged exercise, and investigate the contention of cardiac damage utilising a new highly cardio-specific marker. Thirty-seven competitors in the 2-day Lowe Alpine Mountain Marathon 2000 volunteered for the study. Competitors were sub-divided into 2 groups. Group 1 (n = 11) were examined using echocardiography pre and post the event, examining left ventricular diastolic and systolic function. Group 2 (n = 26) had venous blood samples drawn prior to the event and immediately following day-1 and day-2. Blood samples were analysed for total creatine kinase activity (CK), creatine kinase isoenzyme MB(mass) (CK-MB(mass)), and cardiac troponin T. Echocardiographic results indicated left ventricular diastolic and systolic dysfunction following cessation of exercise. CK and CK-MB(mass) were both elevated following day-1, and immediately following race completion. Cardiac troponin T levels were below the 99th percentile (0.01 microg/L) in all subjects prior to the event, following day-1 cTnT was elevated above 0.01 microg/L in 13 subjects, but returned to below 0.01 microg/L following race completion on day-2. However, no individual data reached clinical cut-off levels for acute myocardial infarction (AMI) (0.1 microg/L). Two days arduous exercise over mountainous terrain resulted in cardiac dysfunction, and significant skeletal muscular degradation. The elevation of cTnT above the 99th percentile in the present study is suggestive of minimal myocardial damage. The clinical significance of and exact mechanism responsible for such damage remains to be elucidated.

  8. Production of sulfate radical from peroxymonosulfate induced by a magnetically separable CuFe2O4 spinel in water: efficiency, stability, and mechanism.

    PubMed

    Zhang, Tao; Zhu, Haibo; Croué, Jean-Philippe

    2013-03-19

    A simple, nonhazardous, efficient and low energy-consuming process is desirable to generate powerful radicals from peroxymonosulfate (PMS) for recalcitrant pollutant removal. In this work, the production of radical species from PMS induced by a magnetic CuFe(2)O(4) spinel was studied. Iopromide, a recalcitrant model pollutant, was used to investigate the efficiency of this process. CuFe(2)O(4) showed higher activity and 30 times lower Cu(2+) leaching (1.5 μg L(-1) per 100 mg L(-1)) than a well-crystallized CuO at the same dosage. CuFe(2)O(4) maintained its activity and crystallinity during repeated batch experiments. In comparison, the activity of CuO declined significantly, which was ascribed to the deterioration in its degree of crystallinity. The efficiency of the PMS/CuFe(2)O(4) was highest at neutral pH and decreased at acidic and alkaline pHs. Sulfate radical was the primary radical species responsible for the iopromide degradation. On the basis of the stoichiometry of oxalate degradation in the PMS/CuFe(2)O(4), the radical production yield from PMS was determined to be near 1 mol/mol. The PMS decomposition involved an inner-sphere complexation with the oxide's surface Cu(II) sites. In situ characterization of the oxide surface with ATR-FTIR and Raman during the PMS decomposition suggested that surface Cu(II)-Cu(III)-Cu(II) redox cycle was responsible for the efficient sulfate radical generation from PMS.

  9. Production of sulfate radical from peroxymonosulfate induced by a magnetically separable CuFe2O4 spinel in water: efficiency, stability, and mechanism.

    PubMed

    Zhang, Tao; Zhu, Haibo; Croué, Jean-Philippe

    2013-03-19

    A simple, nonhazardous, efficient and low energy-consuming process is desirable to generate powerful radicals from peroxymonosulfate (PMS) for recalcitrant pollutant removal. In this work, the production of radical species from PMS induced by a magnetic CuFe(2)O(4) spinel was studied. Iopromide, a recalcitrant model pollutant, was used to investigate the efficiency of this process. CuFe(2)O(4) showed higher activity and 30 times lower Cu(2+) leaching (1.5 μg L(-1) per 100 mg L(-1)) than a well-crystallized CuO at the same dosage. CuFe(2)O(4) maintained its activity and crystallinity during repeated batch experiments. In comparison, the activity of CuO declined significantly, which was ascribed to the deterioration in its degree of crystallinity. The efficiency of the PMS/CuFe(2)O(4) was highest at neutral pH and decreased at acidic and alkaline pHs. Sulfate radical was the primary radical species responsible for the iopromide degradation. On the basis of the stoichiometry of oxalate degradation in the PMS/CuFe(2)O(4), the radical production yield from PMS was determined to be near 1 mol/mol. The PMS decomposition involved an inner-sphere complexation with the oxide's surface Cu(II) sites. In situ characterization of the oxide surface with ATR-FTIR and Raman during the PMS decomposition suggested that surface Cu(II)-Cu(III)-Cu(II) redox cycle was responsible for the efficient sulfate radical generation from PMS. PMID:23439015

  10. Prediction of Separation Performance of Dry High Intensity Magnetic Separator for Processing of Para-Magnetic Minerals

    NASA Astrophysics Data System (ADS)

    Tripathy, Sunil Kumar; Singh, Veerendra; Suresh, Nikkam

    2015-10-01

    High intensity dry magnetic separators are gaining popularity for the separation of para-magnetic minerals due to the cost economic factor. Induced roll magnetic separator is found to be an effective dry separator for the separation of fine particles. Separation efficiency of this separator depends on mineral characteristics and the design features of equipment along with the optimization of process variables. Present investigation focuses on the prediction and validation of separation performance of minerals while treating in induced roll magnetic separator. Prediction of the separation is expressed in terms of separation angle at which a particle leaves the rotor surface by using a modified particle flow model derived by Cakir. The validation of the model is carried by capturing the particle trajectory using an image analyzer. It is found that Cakir's mathematical model produces reliable results and a new model is proposed to increase the reliability of separation angle prediction by including the particle shape factor.

  11. Simultaneous separation of five major ribonucleic acids by capillary electrophoresis with laser-induced fluorescence in the presence of electroosmotic flow: application to the rapid screening of 5S rRNA from ovarian cancer cells.

    PubMed

    Shih, Ya-Chu; Liao, Ching-Ru; Chung, I-Che; Chang, Yu-Sun; Chang, Po-Ling

    2014-10-17

    RNA integrity is important in RNA studies because poor RNA quality may impact downstream methodologies. This study proposes a rapid and cost-effective method for the determination of RNA integrity based on CE-LIF in the presence of electroosmotic flow. The proposed method uses poly(ethylene) oxide (Mavg=4,000,000 Da) as a sieving matrix for total RNA separation. Ethidium bromide (μg mL(-1)) was dissolved in a polymer solution as an interchelating dye for on-column fluorescent labeling. The 28S rRNA, 18S rRNA, 5.8S rRNA, 5S rRNA and tRNA from the total human RNA extracted from the cells were fully separated using the proposed method. The lowest detectable concentration of total RNA achieved was 100 pg μL(-1) with a 6 min sample injection followed by on-column concentration. In addition, the temperature-induced degradation of total RNA was observed by CE-LIF. The electropherograms revealed more fragmentation of 28S and 18S rRNAs by temperature-induced hydrolysis compared with the 5.8S rRNA, 5S rRNA and tRNA. Therefore, the results indicated that RNA degradation should be considered for long-term, high-temperature incubations in RNA-related experiments involving RNA hybridization. The proposed method is furthermore, applied to the determination of 5S rRNA overexpressed in ovarian cancer cells as compared to the cervical cancer cells. Overall, CE-LIF is highly promising for rapid screening of ovarian cancers without tedious pre-amplification steps. PMID:25261903

  12. Simultaneous separation of five major ribonucleic acids by capillary electrophoresis with laser-induced fluorescence in the presence of electroosmotic flow: application to the rapid screening of 5S rRNA from ovarian cancer cells.

    PubMed

    Shih, Ya-Chu; Liao, Ching-Ru; Chung, I-Che; Chang, Yu-Sun; Chang, Po-Ling

    2014-10-17

    RNA integrity is important in RNA studies because poor RNA quality may impact downstream methodologies. This study proposes a rapid and cost-effective method for the determination of RNA integrity based on CE-LIF in the presence of electroosmotic flow. The proposed method uses poly(ethylene) oxide (Mavg=4,000,000 Da) as a sieving matrix for total RNA separation. Ethidium bromide (μg mL(-1)) was dissolved in a polymer solution as an interchelating dye for on-column fluorescent labeling. The 28S rRNA, 18S rRNA, 5.8S rRNA, 5S rRNA and tRNA from the total human RNA extracted from the cells were fully separated using the proposed method. The lowest detectable concentration of total RNA achieved was 100 pg μL(-1) with a 6 min sample injection followed by on-column concentration. In addition, the temperature-induced degradation of total RNA was observed by CE-LIF. The electropherograms revealed more fragmentation of 28S and 18S rRNAs by temperature-induced hydrolysis compared with the 5.8S rRNA, 5S rRNA and tRNA. Therefore, the results indicated that RNA degradation should be considered for long-term, high-temperature incubations in RNA-related experiments involving RNA hybridization. The proposed method is furthermore, applied to the determination of 5S rRNA overexpressed in ovarian cancer cells as compared to the cervical cancer cells. Overall, CE-LIF is highly promising for rapid screening of ovarian cancers without tedious pre-amplification steps.

  13. In situ control of electronic phase separation in La1/8 Pr4/8Ca3/8MnO3/PNM-PT thin films using ferroelectric-poling-induced strain

    NASA Astrophysics Data System (ADS)

    Zhang, T.; Wei, Q.; Zheng, R. K.; Wang, X. P.; Fang, Q. F.

    2013-01-01

    The effects of ferroelectric-poling-induced strain on the transport and magnetic properties of the phase separated La1/8Pr4/8Ca3/8MnO3 (LPCMO) thin films epitaxially grown on the ferroelectric 0.67Pb(Mg1/3Nb2/3)O3-0.33PbTiO3 (PMN-PT) single-crystal substrates were investigated. The ferroelectric poling reduces the in-plane tensile strain and enhances the out-of plane tensile strain of LPCMO film, which decreases the resistance and the charge ordering transition temperature but raises the low-field-magnetization of film. These results can be explained by the strain induced change in the volume fraction of coexisting phases, i.e., ferromagnetic, antiferromagnetic, and paramagnetic phases, demonstrating that the charge ordering phase transition of manganites film grown on the ferroelectric PMN-PT substrate can be controlled by modifying the poling state of single crystal substrate.

  14. Fluid dynamics of unsteady separated flow. I - Bodies of revolution

    NASA Technical Reports Server (NTRS)

    Ericsson, L. E.; Reding, J. P.

    1986-01-01

    An analytic method is described that uses static experimental data to predict the separated flow effect on rigid and elastic aerospace-vehicle dynamics. Spike-induced flow separation, nose-induced flow separation, shock-induced flow separation, and base flow effects are studied. It is observed that the time lag occurring before a change of flow conditions causes a statically stabilizing load to produce negative aerodynanamic damping and an unstabilizing load causes a positive aerodynamic damping. The time-lagged quasi-steady theory predictions are compared with dynamic experimental results and good correlation exists for a large variety of vehicle geometries and types of flow separation.

  15. Magnetic separation of algae

    DOEpatents

    Nath, Pulak; Twary, Scott N.

    2016-04-26

    Described herein are methods and systems for harvesting, collecting, separating and/or dewatering algae using iron based salts combined with a magnetic field gradient to separate algae from an aqueous solution.

  16. Separation in Binary Alloys

    NASA Technical Reports Server (NTRS)

    Frazier, D. O.; Facemire, B. R.; Kaukler, W. F.; Witherow, W. K.; Fanning, U.

    1986-01-01

    Studies of monotectic alloys and alloy analogs reviewed. Report surveys research on liquid/liquid and solid/liquid separation in binary monotectic alloys. Emphasizes separation processes in low gravity, such as in outer space or in free fall in drop towers. Advances in methods of controlling separation in experiments highlighted.

  17. Meniscus Membranes For Separation

    DOEpatents

    Dye, Robert C.; Jorgensen, Betty; Pesiri, David R.

    2005-09-20

    Gas separation membranes, especially meniscus-shaped membranes for gas separations are disclosed together with the use of such meniscus-shaped membranes for applications such as thermal gas valves, pre-concentration of a gas stream, and selective pre-screening of a gas stream. In addition, a rapid screening system for simultaneously screening polymer materials for effectiveness in gas separation is provided.

  18. Space shuttle separation mechanisms

    NASA Technical Reports Server (NTRS)

    Rogers, W. F.

    1978-01-01

    The development of space shuttle separation devices is reviewed to illustrate the mechanisms involved in separating the Orbiter from the Boeing 747 carrier aircraft and from the externally mounted propellant tank. Other aspects of the separation device development discussed include design evolution, operational experience during the orbiter approach and landing tests, and the work required to produce an operational system.

  19. Space Shuttle separation mechanisms

    NASA Technical Reports Server (NTRS)

    Rogers, W. F.

    1979-01-01

    The development of space shuttle separation devices is reviewed to illustrate the mechanisms involved in separating the orbiter from the Boeing 747 carrier aircraft and from the externally mounted propellant tank. Other aspects of the separation device development discussed include design evolution, operational experience during the orbiter approach and landing tests, and the work to be accomplished before an operational system becomes a reality.

  20. Meniscus membranes for separations

    DOEpatents

    Dye, Robert C.; Jorgensen, Betty; Pesiri, David R.

    2004-01-27

    Gas separation membranes, especially meniscus-shaped membranes for gas separations are disclosed together with the use of such meniscus-shaped membranes for applications such as thermal gas valves, pre-concentration of a gas stream, and selective pre-screening of a gas stream. In addition, a rapid screening system for simultaneously screening polymer materials for effectiveness in gas separation is provided.

  1. Safety shutdown separators

    SciTech Connect

    Carlson, Steven Allen; Anakor, Ifenna Kingsley; Farrell, Greg Robert

    2015-06-30

    The present invention pertains to electrochemical cells which comprise (a) an anode; (b) a cathode; (c) a solid porous separator, such as a polyolefin, xerogel, or inorganic oxide separator; and (d) a nonaqueous electrolyte, wherein the separator comprises a porous membrane having a microporous coating comprising polymer particles which have not coalesced to form a continuous film. This microporous coating on the separator acts as a safety shutdown layer that rapidly increases the internal resistivity and shuts the cell down upon heating to an elevated temperature, such as 110.degree. C. Also provided are methods for increasing the safety of an electrochemical cell by utilizing such separators with a safety shutdown layer.

  2. Aptamers in Affinity Separations: Stationary Separation

    NASA Astrophysics Data System (ADS)

    Ravelet, Corinne; Peyrin, Eric

    The use of DNA or RNA aptamers as tools in analytical chemistry is a very promising field of research because of their capabilities to bind specifically the target molecules with an affinity similar to that of antibodies. Notably, they appear to be of great interest as target-specific ligands for the separation and capture of various analytes in affinity chromatography and related affinity-based methods such as magnetic bead technology. In this chapter, the recent developments of these aptamer-based separation/capture approaches are addressed.

  3. Unsteady flow separation in a turbine diffuser

    NASA Astrophysics Data System (ADS)

    Duquesne, Pierre; Maciel, Yvan; Deschênes, Claire

    2015-08-01

    A three-dimensional unsteady flow separation in the straight diffuser of a model bulb turbine is investigated with planar two-component PIV measurements near the wall. The turbine is operated in two selected conditions that give rise to separation zones of different size and shape. The blockage effect induced by separation leads to a sudden drop in turbine efficiency and power extraction. The separation front fluctuates significantly both in location and in shape with no periodicity. From conditionally averaged results, it is deduced that the mean separation front is tilted azimuthally and that the mean separation skin friction line is composed of a saddle point on the diffuser side with one of its branches running along the diffuser bottom. Vortices and separation front critical points are analysed with POD-reconstructed instantaneous velocity fields. Separation surface vortices are generally bigger and stronger than turbulent vortices within or outside the separation zone, which suggests that different roll-up mechanisms are involved. The separation surface is irregular and is populated near the wall by a succession of foci and saddle points.

  4. Isotope separation by laser means

    DOEpatents

    Robinson, C. Paul; Jensen, Reed J.; Cotter, Theodore P.; Greiner, Norman R.; Boyer, Keith

    1982-06-15

    A process for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium and plutonium.

  5. Isotope separation by photochromatography

    DOEpatents

    Suslick, K.S.

    1975-10-03

    A photochromatographic method for isotope separation is described. An isotopically mixed molecular species is adsorbed on an adsorptive surface, and the adsorbed molecules are irradiated with radiation of a predetermined wavelength which will selectively excite desired isotopic species. Sufficient energy is transferred to the excited molecules to desorb them from the surface and thus separate them from the undesired isotopic species. The method is particularly applicable to the separation of hydrogen isotopes. (BLM)

  6. [Separation anxiety. Theoretical considerations].

    PubMed

    Blandin, N; Parquet, P J; Bailly, D

    1994-01-01

    The interest in separation anxiety is nowadays increasing: this disorder appearing during childhood may predispose to the occurrence of anxiety disorders (such as panic disorder and agoraphobia) and major depression into adulthood. Psychoanalytic theories differ on the nature of separation anxiety and its place in child development. For some authors, separation anxiety must be understood as resulting from the unconscious internal conflicts inherent in the individuation process and gradual attainment of autonomy. From this point of view, the fear of loss of mother by separation is not regarded as resulting from a real danger. However, Freud considers the primary experience of separation from protecting mother as the prototype situation of anxiety and compares the situations generating fear to separation experiences. For him, anxiety originates from two factors: the physiological fact is initiated at the time of birth but the primary traumatic situation is the separation from mother. This point of view may be compared with behavioral theories. Behavioral theories suggest that separation anxiety may be conditioned or learned from innate fears. In Freud's theory, the primary situation of anxiety resulting from the separation from mother plays a role comparable to innate fears. Grappling with the problem of separation anxiety, Bowlby emphasizes then the importance of the child's attachment to one person (mother or primary caregiver) and the fact that this attachment is instinctive. This point of view, based on the watch of infants, is akin to ethological theories on behaviour of non human primates. Bowlby especially shows that the reactions of infant separated from mother evolve on three stages: the phase of protestation which may constitute the prototype of adulthood anxiety, the phase of desperation which may be the prototype of depression, and the phase of detachment. He emphasizes so the role of early separations in the development of vulnerability to depression

  7. Isotope separation by photochromatography

    DOEpatents

    Suslick, Kenneth S.

    1977-01-01

    An isotope separation method which comprises physically adsorbing an isotopically mixed molecular species on an adsorptive surface and irradiating the adsorbed molecules with radiation of a predetermined wavelength which will selectively excite a desired isotopic species. Sufficient energy is transferred to the excited molecules to desorb them from the surface and thereby separate them from the unexcited undesired isotopic species. The method is particularly applicable to the separation of hydrogen isotopes.

  8. The ADvanced SEParation (ADSEP)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The ADvanced SEParation (ADSEP) commercial payload is making use of major advances in separation technology: The Phase Partitioning Experiment (PPE); the Micorencapsulation experiment; and the Hemoglobin Separation Experiment (HSE). Using ADSEP, commercial researchers will attempt to determine the partition coefficients for model particles in a two-phase system. With this information, researchers can develop a higher resolution, more effective cell isolation procedure that can be used for many different types of research and for improved health care. The advanced separation technology is already being made available for use in ground-based laboratories.

  9. The separation of adult separation anxiety disorder.

    PubMed

    Baldwin, David S; Gordon, Robert; Abelli, Marianna; Pini, Stefano

    2016-08-01

    The Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) categorization of mental disorders places "separation anxiety disorder" within the broad group of anxiety disorders, and its diagnosis no longer rests on establishing an onset during childhood or adolescence. In previous editions of DSM, it was included within the disorders usually first diagnosed in infancy, childhood, or adolescence, with the requirement for an onset of symptoms before the age of 18 years: symptomatic adults could only receive a retrospective diagnosis, based on establishing this early onset. The new position of separation anxiety disorder is based upon the findings of epidemiological studies that revealed the unexpectedly high prevalence of the condition in adults, often in individuals with an onset of symptoms after the teenage years; its prominent place within the DSM-5 group of anxiety disorders should encourage further research into its epidemiology, etiology, and treatment. This review examines the clinical features and boundaries of the condition, and offers guidance on how it can be distinguished from other anxiety disorders and other mental disorders in which "separation anxiety" may be apparent.

  10. The separation of adult separation anxiety disorder.

    PubMed

    Baldwin, David S; Gordon, Robert; Abelli, Marianna; Pini, Stefano

    2016-08-01

    The Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) categorization of mental disorders places "separation anxiety disorder" within the broad group of anxiety disorders, and its diagnosis no longer rests on establishing an onset during childhood or adolescence. In previous editions of DSM, it was included within the disorders usually first diagnosed in infancy, childhood, or adolescence, with the requirement for an onset of symptoms before the age of 18 years: symptomatic adults could only receive a retrospective diagnosis, based on establishing this early onset. The new position of separation anxiety disorder is based upon the findings of epidemiological studies that revealed the unexpectedly high prevalence of the condition in adults, often in individuals with an onset of symptoms after the teenage years; its prominent place within the DSM-5 group of anxiety disorders should encourage further research into its epidemiology, etiology, and treatment. This review examines the clinical features and boundaries of the condition, and offers guidance on how it can be distinguished from other anxiety disorders and other mental disorders in which "separation anxiety" may be apparent. PMID:27503572

  11. Successive Administration of Streptococcus Type 5 Group A Antigens and S. typhimurium Antigenic Complex Corrects Elevation of Serum Cytokine Concentration and Number of Bone Marrow Stromal Pluripotent Cells in CBA Mice Induced by Each Antigen Separately.

    PubMed

    Gorskaya, Yu F; Danilova, T A; Grabko, V I; Nesterenko, V G

    2015-12-01

    Administration of bacterial antigens to CBA mice induced an increase in serum concentration of virtually all cytokines with a peak in 4 h after administration of S. typhimurium antigens and in 7 h after administration of streptococcus antigens. In 20 h, cytokine concentrations returned to the control level or were slightly below it. In 4 h after administration of S. typhimurium antigens preceded 3 h before by administration of streptococcus antigens, we observed a significant decrease in serum concentrations of IFN-γ, IL-10, GM-CSF, IL-12, and TNF-α, in comparison with injection S. typhimurium antigens alone and IL-5, IL-10, GM-CSF, and TNF-α in comparison with injection of streptococcus antigens alone; the concentrations of IL-2 and IFN-γ, in contrast, increased by 1.5 times in this case. In 20 h after administration of S. typhimurium antigens, the number of multipotential stromal cells (MSC) in the bone marrow and their cloning efficiency (ECF-MSC) increased by 4.8 and 4.4 times, respectively, in comparison with the control, while after administration of streptococcus antigens by 2.6 and 2.4 times, respectively. In 20 h after administration of S. typhimurium antigens preceded 3 h before by administration of streptococcus antigens, these parameters increased by 3.2 and 2.9 times, respectively, in comparison with the control, i.e. the observed increase in the level of MSC count and ECF-MSC is more consistent with the response of the stromal tissue to streptococcus antigens. Thus, successive administration of two bacterial antigens corrected both serum cytokine profiles and MSC response to administration of each antigen separately, which indicates changeability of the stromal tissue in response to changes in the immune response.

  12. Social Separation in Monkeys.

    ERIC Educational Resources Information Center

    Mineka, Susan; Suomi, Stephen J.

    1978-01-01

    Reviews phenomena associated with social separation from attachment objects in nonhuman primates. Evaluates four theoretical treatments of separation in light of existing data: Bowlby's attachment-object-loss theory, Kaufman's conservation-withdrawal theory, Seligman's learned helplessness theory, and Solomon and Corbit's opponent-process theory.…

  13. Fragment Separator ACCULINNA-2

    SciTech Connect

    Krupko, S. A.; Fomichev, A. S.; Chudoba, V.; Daniel, A. V.; Golovkov, M. S.; Gorshkov, V. A.; Oganessian, Yu. Ts.; Sidorchuk, S. I.; Slepnev, R. S.; Stepantsov, S. V.; Ter-Akopian, G. M.; Wolski, R.; Grigorenko, L. V.; Tarasov, O. B.; Ershov, S. N.; Lukyanov, V. K.; Danilin, B. V.; Korsheninnikov, A. A.; Goldberg, V. Z.; Mukha, I. G.

    2010-04-30

    Project of a new in-flight fragment separator is proposed as a part of the third generation DRIBs facilities in Dubna. As compared to the existing separator ACCULINNA, beam intensity should be increased by a factor 10-15, the beam quality improved and the RIB assortment should broaden considerably at ACCULINNA-2. Research program and structure are outlined for the new instrument.

  14. Method for separating isotopes

    DOEpatents

    Jepson, B.E.

    1975-10-21

    Isotopes are separated by contacting a feed solution containing the isotopes with a cyclic polyether wherein a complex of one isotope is formed with the cyclic polyether, the cyclic polyether complex is extracted from the feed solution, and the isotope is thereafter separated from the cyclic polyether.

  15. Separators for flywheel rotors

    DOEpatents

    Bender, D.A.; Kuklo, T.C.

    1998-07-07

    A separator forms a connection between the rotors of a concentric rotor assembly. This separator allows for the relatively free expansion of outer rotors away from inner rotors while providing a connection between the rotors that is strong enough to prevent disassembly. The rotor assembly includes at least two rotors referred to as inner and outer flywheel rings or rotors. This combination of inner flywheel ring, separator, and outer flywheel ring may be nested to include an arbitrary number of concentric rings. The separator may be a segmented or continuous ring that abuts the ends of the inner rotor and the inner bore of the outer rotor. It is supported against centrifugal loads by the outer rotor and is affixed to the outer rotor. The separator is allowed to slide with respect to the inner rotor. It is made of a material that has a modulus of elasticity that is lower than that of the rotors. 10 figs.

  16. Substituted polyacetylene separation membrane

    DOEpatents

    Pinnau, I.; Morisato, Atsushi

    1998-01-13

    A separation membrane is described which is useful for gas separation, particularly separation of C{sub 2+} hydrocarbons from natural gas. The invention encompasses the membrane itself, methods of making it and processes for using it. The membrane comprises a polymer having repeating units of a hydrocarbon-based, disubstituted polyacetylene, having the general formula shown in the accompanying diagram, wherein R{sub 1} is chosen from the group consisting of C{sub 1}-C{sub 4} alkyl and phenyl, and wherein R{sub 2} is chosen from the group consisting of hydrogen and phenyl. In the most preferred embodiment, the membrane comprises poly(4-methyl-2-pentyne) [PMP]. The membrane exhibits good chemical resistance and has super-glassy properties with regard to separating certain large, condensable permeant species from smaller, less-condensable permeant species. The membranes may also be useful in other fluid separations. 4 figs.

  17. Substituted polyacetylene separation membrane

    DOEpatents

    Pinnau, Ingo; Morisato, Atsushi

    1998-01-13

    A separation membrane useful for gas separation, particularly separation of C.sub.2+ hydrocarbons from natural gas. The invention encompasses the membrane itself, methods of making it and processes for using it. The membrane comprises a polymer having repeating units of a hydrocarbon-based, disubstituted polyacetylene, having the general formula: ##STR1## wherein R.sub.1 is chosen from the group consisting of C.sub.1 -C.sub.4 alkyl and phenyl, and wherein R.sub.2 is chosen from the group consisting of hydrogen and phenyl. In the most preferred embodiment, the membrane comprises poly(4-methyl-2-pentyne) ›PMP!. The membrane exhibits good chemical resistance and has super-glassy properties with regard to separating certain large, condensable permeant species from smaller, less-condensable permeant species. The membranes may also be useful in other fluid separations.

  18. Separators for flywheel rotors

    DOEpatents

    Bender, Donald A.; Kuklo, Thomas C.

    1998-01-01

    A separator forms a connection between the rotors of a concentric rotor assembly. This separator allows for the relatively free expansion of outer rotors away from inner rotors while providing a connection between the rotors that is strong enough to prevent disassembly. The rotor assembly includes at least two rotors referred to as inner and outer flywheel rings or rotors. This combination of inner flywheel ring, separator, and outer flywheel ring may be nested to include an arbitrary number of concentric rings. The separator may be a segmented or continuous ring that abuts the ends of the inner rotor and the inner bore of the outer rotor. It is supported against centrifugal loads by the outer rotor and is affixed to the outer rotor. The separator is allowed to slide with respect to the inner rotor. It is made of a material that has a modulus of elasticity that is lower than that of the rotors.

  19. Isothermal separation processes

    NASA Technical Reports Server (NTRS)

    England, C.

    1982-01-01

    The isothermal processes of membrane separation, supercritical extraction and chromatography were examined using availability analysis. The general approach was to derive equations that identified where energy is consumed in these processes and how they compare with conventional separation methods. These separation methods are characterized by pure work inputs, chiefly in the form of a pressure drop which supplies the required energy. Equations were derived for the energy requirement in terms of regular solution theory. This approach is believed to accurately predict the work of separation in terms of the heat of solution and the entropy of mixing. It can form the basis of a convenient calculation method for optimizing membrane and solvent properties for particular applications. Calculations were made on the energy requirements for a membrane process separating air into its components.

  20. Gas separation using ultrasound and light absorption

    DOEpatents

    Sinha, Dipen N.

    2012-07-31

    An apparatus and method for separating a chosen gas from a mixture of gases having no moving parts and utilizing no chemical processing is described. The separation of particulates from fluid carriers thereof has been observed using ultrasound. In a similar manner, molecular species may be separated from carrier species. It is also known that light-induced drift may separate light-absorbing species from carrier species. Therefore, the combination of temporally pulsed absorption of light with ultrasonic concentration is expected to significantly increase the efficiency of separation by ultrasonic concentration alone. Additionally, breaking the spatial symmetry of a cylindrical acoustic concentrator decreases the spatial distribution of the concentrated particles, and increases the concentration efficiency.

  1. Method of separating thorium from plutonium

    DOEpatents

    Clifton, D.G.; Blum, T.W.

    1984-07-10

    A method is described for chemically separating plutonium from thorium. Plutonium and thorium to be separated are dissolved in an aqueous feed solution, preferably as the nitrate salts. The feed solution is acidified and sodium nitrite is added to the solution to adjust the valence of the plutonium to the +4 state. A chloride salt, preferably sodium chloride, is then added to the solution to induce formation of an anionic plutonium chloride complex. The anionic plutonium chloride complex and the thorium in solution are then separated by ion exchange on a strong base anion exchange column.

  2. Method of separating thorium from plutonium

    DOEpatents

    Clifton, David G.; Blum, Thomas W.

    1984-01-01

    A method of chemically separating plutonium from thorium. Plutonium and thorium to be separated are dissolved in an aqueous feed solution, preferably as the nitrate salts. The feed solution is acidified and sodium nitrite is added to the solution to adjust the valence of the plutonium to the +4 state. A chloride salt, preferably sodium chloride, is then added to the solution to induce formation of an anionic plutonium chloride complex. The anionic plutonium chloride complex and the thorium in solution are then separated by ion exchange on a strong base anion exchange column.

  3. Method of separating thorium from plutonium

    DOEpatents

    Clifton, D.G.; Blum, T.W.

    A method of chemically separating plutonium from thorium is claimed. Plutonium and thorium to be separated are dissolved in an aqueous feed solution, preferably as the nitrate salts. The feed solution is acidified and sodium nitrite is added to the solution to adjust the valence of the plutonium to the +4 state. A chloride salt, preferably sodium chloride, is then added to the solution to induce formation of an anionic plutonium chloride complex. The anionic plutonium chloride complex and the thorium in solution are then separated by ion exchange on a strong base anion exchange column.

  4. Novel Separation of Actinides

    SciTech Connect

    Mariella, R

    2011-02-17

    The separation of actinides and other elements of interest for nuclear forensics and threat reduction is currently performed using decades-old chemistries and ion-exchange columns. We propose to determine the technical feasibility of a novel method for separating actinide ions in solution. This method is based upon isotachophoresis (ITP), which has been applied in the purification of pharmaceuticals and other biochemical applications. This technique has the potential to separate inorganic ions more effectively than existing methods, which is key to analyzing very small samples. We will perform a quantitative assessment of the effectiveness of specific isotachophoretic approaches including predicting the physical and chemical properties, such as ion mobility, of inorganic ions under specific solvent conditions using a combination of ab initio calculations and semi-empirical methods. We expect to obtain a thorough understanding of the analytical systems parameters under which ITP is most effective for the separation of inorganic samples, including the influence of the double layer surrounding actinide ions, the Debye length for different ions and ion complexes, and Debye-Hueckel limits. Inorganic separations are key to nuclear forensics for countering terrorism and nuclear proliferation. If found to be feasible and potentially superior to currently used separation approaches, ITP could provide the conceptual basis for an improved means to separate samples of nuclear explosion debris for nuclear forensic analysis, in support of the Laboratory's missions in homeland and national security.

  5. Entanglement reactivation in separable environments

    NASA Astrophysics Data System (ADS)

    Pirandola, Stefano

    2013-11-01

    Combining two entanglement-breaking channels into a correlated-noise environment restores the distribution of entanglement. Surprisingly, this reactivation can be induced by the injection of separable correlations from the composite environment. In any dimension (finite or infinite), we can construct classically correlated ‘twirling’ environments which are entanglement-breaking in the transmission of single systems but entanglement-preserving when two systems are transmitted. Here entanglement is simply preserved by the existence of decoherence-free subspaces. Remarkably, even when such subspaces do not exist, a fraction of the input entanglement can still be distributed. This is found in separable Gaussian environments, where distillable entanglement is able to survive the two-mode transmission, despite being broken in any single-mode transmission by the strong thermal noise. In the Gaussian setting, entanglement restoration is a threshold process, occurring only after a critical amount of correlations has been injected. Such findings suggest new perspectives for distributing entanglement in realistic environments with extreme decoherence, identifying separable correlations and classical memory effects as physical resources for ‘breaking entanglement-breaking’.

  6. LISA Propulsion Module Separation Study

    NASA Technical Reports Server (NTRS)

    Merkowitz, Stephen

    2004-01-01

    The Laser Interferometer Space Antenna (LISA) mission is a space-borne gravitational wave detector consisting of three spacecraft in heliocentric orbit. Each spacecraft is delivered to it operational orbit by a propulsion module. Because of the strict thermal and mass balancing requirements of LISA, the baseline mission concept requires that the propulsion module separate from the sciencecraft after delivery. The only propulsion system currently baselined for the sciencecraft are micronewton level thrusters, such as FEEP or colloid thrusters, that are used to balance the 30-40 microN of solar radiation pressure and provide the drag-free and attitude control of the spacecraft. Due to these thrusters limited authority, the separation of the propulsion module from the sciencecraft must be well controlled to not induce a large tip-off rotation of the sciencecraft. We present here the results of a design study of the propulsion module separation system that is shown to safely deliver the LISA sciencecraft to its final operational orbit.

  7. Chromatographic hydrogen isotope separation

    DOEpatents

    Aldridge, F.T.

    Intermetallic compounds with the CaCu/sub 5/ type of crystal structure, particularly LaNiCo/sub 4/ and CaNi/sub 5/, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation column. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale multi-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen cn produce large quantities of heavy water at an effective cost for use in heavy water reactors.

  8. Chromatographic hydrogen isotope separation

    DOEpatents

    Aldridge, Frederick T.

    1981-01-01

    Intermetallic compounds with the CaCu.sub.5 type of crystal structure, particularly LaNiCo.sub.4 and CaNi.sub.5, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation colum. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale mutli-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen can produce large quantities of heavy water at an effective cost for use in heavy water reactors.

  9. Materials separation by dielectrophoresis

    NASA Technical Reports Server (NTRS)

    Sagar, A. D.; Rose, R. M.

    1988-01-01

    The feasibility of vacuum dielectrophoresis as a method for particulate materials separation in a microgravity environment was investigated. Particle separations were performed in a specially constructed miniature drop-tower with a residence time of about 0.3 sec. Particle motion in such a system is independent of size and based only on density and dielectric constant, for a given electric field. The observed separations and deflections exceeded the theoretical predictions, probably due to multiparticle effects. In any case, this approach should work well in microgravity for many classes of materials, with relatively simple apparatus and low weight and power requirements.

  10. Rotary drum separator system

    NASA Technical Reports Server (NTRS)

    Barone, Michael R. (Inventor); Murdoch, Karen (Inventor); Scull, Timothy D. (Inventor); Fort, James H. (Inventor)

    2009-01-01

    A rotary phase separator system generally includes a step-shaped rotary drum separator (RDS) and a motor assembly. The aspect ratio of the stepped drum minimizes power for both the accumulating and pumping functions. The accumulator section of the RDS has a relatively small diameter to minimize power losses within an axial length to define significant volume for accumulation. The pumping section of the RDS has a larger diameter to increase pumping head but has a shorter axial length to minimize power losses. The motor assembly drives the RDS at a low speed for separating and accumulating and a higher speed for pumping.

  11. Particle separation by dielectrophoresis

    PubMed Central

    Gascoyne, Peter R. C.; Vykoukal, Jody

    2009-01-01

    The application of dielectrophoresis to particle discrimination, separation, and fractionation is reviewed, some advantages and disadvantages of currently available approaches are considered, and some caveats are noted. PMID:12210248

  12. Inorganic separator technology program

    NASA Technical Reports Server (NTRS)

    Smatko, J. S.; Weaver, R. D.; Kalhammer, F. R.

    1973-01-01

    Testing and failure analyses of silver zinc cells with largely inorganic separators were performed. The results showed that the wet stand and cycle life objective of the silver-zinc cell development program were essentially accomplished and led to recommendations for cell composition, design, and operation that should yield further improvement in wet and cycle life. A series of advanced inorganic materials was successfully developed and formulated into rigid and semiflexible separator samples. Suitable screening tests for evaluation of largely inorganic separators were selected and modified for application to the separator materials. The results showed that many of these formulations are potentially superior to previously used materials and permitted selection of three promising materials for further evaluation in silver-zinc cells.

  13. Gas-separation process

    DOEpatents

    Toy, Lora G.; Pinnau, Ingo; Baker, Richard W.

    1994-01-01

    A process for separating condensable organic components from gas streams. The process makes use of a membrane made from a polymer material that is glassy and that has an unusually high free volume within the polymer material.

  14. Plasma isotope separation methods

    SciTech Connect

    Grossman, M.W. ); Shepp, T.A. )

    1991-12-01

    Isotope separation has many important industrial, medical, and research applications. Large-scale processes have typically utilized complex cascade systems; for example, the gas centrifuge. Alternatively, high single-stage enrichment processes (as in the case of the calutron) are very energy intensive. Plasma-based methods being developed for the past 15 to 20 years have attempted to overcome these two drawbacks. In this review, six major types of isotope separation methods which involve plasma phenomena are discussed. These methods are: plasma centrifuge, AVLIS (atomic vapor laser isotope separation), ion wave, ICR (ion-cyclotron resonance), calutron, and gas discharge. The emphasis of this paper is to describe the plasma phenomena in these major categories. An attempt was made to include enough references so that more detailed study or evaluation of a particular method could readily be pursued. A brief discussion of isotope separation using mass balance concepts is also carried out.

  15. Separation by solvent extraction

    DOEpatents

    Holt, Jr., Charles H.

    1976-04-06

    17. A process for separating fission product values from uranium and plutonium values contained in an aqueous solution, comprising adding an oxidizing agent to said solution to secure uranium and plutonium in their hexavalent state; contacting said aqueous solution with a substantially water-immiscible organic solvent while agitating and maintaining the temperature at from -1.degree. to -2.degree. C. until the major part of the water present is frozen; continuously separating a solid ice phase as it is formed; separating a remaining aqueous liquid phase containing fission product values and a solvent phase containing plutonium and uranium values from each other; melting at least the last obtained part of said ice phase and adding it to said separated liquid phase; and treating the resulting liquid with a new supply of solvent whereby it is practically depleted of uranium and plutonium.

  16. Laser-Beam Separator

    NASA Technical Reports Server (NTRS)

    Mcdermid, I. S.

    1984-01-01

    Train of prisms and optical stop separate fundamental beam of laser from second and higher order harmonics of beam produced in certain crystals and by stimulated Raman scattering in gases and liquids.

  17. Microsystem capillary separations

    DOEpatents

    TeGrotenhuis, Ward E [Kennewick, WA; Wegeng, Robert S [Richland, WA; Whyatt, Greg A [West Richland, WA; Stenkamp, Victoria S [Richland, WA; Gauglitz, Phillip A [Richland, WA

    2003-12-23

    Laminated, multiphase separators and contactors having wicking structures and gas flow channels are described. Some preferred embodiments are combined with microchannel heat exchange. Integrated systems containing these components are also part of the present invention.

  18. Separator for alkaline batteries

    NASA Technical Reports Server (NTRS)

    Hoyt, H. W.; Pfluger, H. L.

    1968-01-01

    Separator compositions have been tested as components of three-plate silver-zinc oxide cells in a standard cycling test. Six materials meet imposed requirements, giving cycling performance superior to cellophane.

  19. Galvanic cell separator

    SciTech Connect

    Fujiwara, K.; Osawa, K.; Takeda, Y.; Yabumoto, T.

    1981-07-07

    A galvanic cell separator is disclosed that is composed of polyvinyl alcohol having a crystallinity of 0.4 or more to be used with a galvanic cell containing alkaline electrolyte, and a method of manufacturing the same.

  20. Acoustic particle separation

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Stoneburner, J. D.; Jacobi, N.; Wang, T. (Inventor)

    1985-01-01

    A method is described which uses acoustic energy to separate particles of different sizes, densities, or the like. The method includes applying acoustic energy resonant to a chamber containing a liquid of gaseous medium to set up a standing wave pattern that includes a force potential well wherein particles within the well are urged towards the center, or position of minimum force potential. A group of particles to be separated is placed in the chamber, while a non-acoustic force such as gravity is applied, so that the particles separate with the larger or denser particles moving away from the center of the well to a position near its edge and progressively smaller lighter particles moving progressively closer to the center of the well. Particles are removed from different positions within the well, so that particles are separated according to the positions they occupy in the well.

  1. Separable Arrowhead Microneedles

    PubMed Central

    Chu, Leonard Y.; Prausnitz, Mark R.

    2010-01-01

    Hypodermic needles cause pain and bleeding, produce biohazardous sharp waste and require trained personnel. To address these issues, we introduce separable arrowhead microneedles that rapidly and painlessly deliver drugs and vaccines to the skin. These needles are featured by micron-size sharp tips mounted on blunt shafts. Upon insertion in the skin, the sharp-tipped polymer arrowheads encapsulating drug separate from their metal shafts and remain embedded in the skin for subsequent dissolution and drug release. The blunt metal shafts can then be discarded. Due to rapid separation of the arrowhead tips from the shafts within seconds, administration using arrowhead microneedles can be carried out rapidly, while drug release kinetics can be independently controlled based on separable arrowhead formulation. Thus, drug and vaccine delivery using arrowhead microneedles are designed to offer a quick, convenient, safe and potentially self-administered method of drug delivery as an alternative to hypodermic needles. PMID:21047538

  2. Monitored separation device

    NASA Technical Reports Server (NTRS)

    Jackson, George William (Inventor); Willson, Richard Coale (Inventor); Fox, George Edward (Inventor)

    2011-01-01

    A device for separating and purifying useful quantities of particles comprises: a. an anolyte reservoir connected to an anode, the anolyte reservoir containing an electrophoresis buffer; b. a catholyte reservoir connected to a cathode, the catholyte reservoir also containing the electrophoresis buffer; c. a power supply connected to the anode and to the cathode; d. a column having a first end inserted into the anolyte reservoir, a second end inserted into the catholyte reservoir, and containing a separation medium; e. a light source; f. a first optical fiber having a first fiber end inserted into the separation medium, and having a second fiber end connected to the light source; g. a photo detector; h. a second optical fiber having a third fiber end inserted into the separation medium, and having a fourth fiber end connected to the photo detector; and i. an ion-exchange membrane in the anolyte reservoir.

  3. Molten salt electrolyte separator

    DOEpatents

    Kaun, Thomas D.

    1996-01-01

    A molten salt electrolyte/separator for battery and related electrochemical systems including a molten electrolyte composition and an electrically insulating solid salt dispersed therein, to provide improved performance at higher current densities and alternate designs through ease of fabrication.

  4. SEPARATIONS BY ELECTRODIALYSIS

    DOEpatents

    Webb, W.H.; Vie, J.D.

    1962-06-12

    A method is given for separating cesium, cerium, zirconium, and uranyl ions frora a common solution by electrodialysis. An anion exchange membrane and a cation exchange membrane are placed on either side of the feed solution compartment; the former is in electrolytic contact with an anode and the latter with cathode. On acidification of the feed solution to a critical value of 0.5 N and passage of a current from the anode to the cathode, the desired separations tske place. (AEC)

  5. Interactive separating streak surfaces.

    PubMed

    Ferstl, Florian; Bürger, Kai; Theisel, Holger; Westermann, Rüdiger

    2010-01-01

    Streak surfaces are among the most important features to support 3D unsteady flow exploration, but they are also among the computationally most demanding. Furthermore, to enable a feature driven analysis of the flow, one is mainly interested in streak surfaces that show separation profiles and thus detect unstable manifolds in the flow. The computation of such separation surfaces requires to place seeding structures at the separation locations and to let the structures move correspondingly to these locations in the unsteady flow. Since only little knowledge exists about the time evolution of separating streak surfaces, at this time, an automated exploration of 3D unsteady flows using such surfaces is not feasible. Therefore, in this paper we present an interactive approach for the visual analysis of separating streak surfaces. Our method draws upon recent work on the extraction of Lagrangian coherent structures (LCS) and the real-time visualization of streak surfaces on the GPU. We propose an interactive technique for computing ridges in the finite time Lyapunov exponent (FTLE) field at each time step, and we use these ridges as seeding structures to track streak surfaces in the time-varying flow. By showing separation surfaces in combination with particle trajectories, and by letting the user interactively change seeding parameters such as particle density and position, visually guided exploration of separation profiles in 3D is provided. To the best of our knowledge, this is the first time that the reconstruction and display of semantic separable surfaces in 3D unsteady flows can be performed interactively, giving rise to new possibilities for gaining insight into complex flow phenomena.

  6. Separator performance evaluation

    SciTech Connect

    Barker, W.F.

    1982-01-01

    Retrograde condensates and various contaminants are normally trapped and removed from high-pressure transmission lines by means of inline drips, siphon drips, impingement drips, and gas-liquid separators. These mechanical devices can be vertical, horizontal, or spherical. The horizontal design gives the most efficient operation at high pressures for the initial investment cost. Removal of particulates smaller than 10 micrometers in diameter requires special separators such as a filter coalescing device designed specifically for mists, oil fogs, rust, and dust.

  7. Hydrogen separation process

    DOEpatents

    Mundschau, Michael; Xie, Xiaobing; Evenson, IV, Carl; Grimmer, Paul; Wright, Harold

    2011-05-24

    A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to a hydrogen separation membrane system comprising a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to an integrated water gas shift/hydrogen separation membrane system wherein the hydrogen separation membrane system comprises a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for pretreating a membrane, comprising: heating the membrane to a desired operating temperature and desired feed pressure in a flow of inert gas for a sufficient time to cause the membrane to mechanically deform; decreasing the feed pressure to approximately ambient pressure; and optionally, flowing an oxidizing agent across the membrane before, during, or after deformation of the membrane. A method of supporting a hydrogen separation membrane system comprising selecting a hydrogen separation membrane system comprising one or more catalyst outer layers deposited on a hydrogen transport membrane layer and sealing the hydrogen separation membrane system to a porous support.

  8. Distal humeral epiphyseal separation.

    PubMed

    Moucha, Calin S; Mason, Dan E

    2003-10-01

    Distal humeral epiphyseal separation is an uncommon injury that is often misdiagnosed upon initial presentation. To make a timely, correct diagnosis, the treating physician must have a thorough understanding of basic anatomical relationships and an awareness of the existence of this injury. This is a case of a child who sustained a separation of the distal humeral epiphysis, as well as multiple other bony injuries, secondary to child abuse.

  9. Passive gas separator and accumulator device

    DOEpatents

    Choe, Hwang; Fallas, Thomas T.

    1994-01-01

    A separation device employing a gas separation filter and swirler vanes for separating gas from a gasliquid mixture is provided. The cylindrical filter utilizes the principle that surface tension in the pores of the filter prevents gas bubbles from passing through. As a result, the gas collects in the interior region of the filter and coalesces to form larger bubbles in the center of the device. The device is particularly suited for use in microgravity conditions since the swirlers induce a centrifugal force which causes liquid to move from the inner region of the filter, pass the pores, and flow through the outlet of the device while the entrained gas is trapped by the filter. The device includes a cylindrical gas storage screen which is enclosed by the cylindrical gas separation filter. The screen has pores that are larger than those of the filters. The screen prevents larger bubbles that have been formed from reaching and interfering with the pores of the gas separation filter. The device is initially filled with a gas other than that which is to be separated. This technique results in separation of the gas even before gas bubbles are present in the mixture. Initially filling the device with the dissimilar gas and preventing the gas from escaping before operation can be accomplished by sealing the dissimilar gas in the inner region of the separation device with a ruptured disc which can be ruptured when the device is activated for use.

  10. Passive gas separator and accumulator device

    DOEpatents

    Choe, H.; Fallas, T.T.

    1994-08-02

    A separation device employing a gas separation filter and swirler vanes for separating gas from a gas-liquid mixture is provided. The cylindrical filter utilizes the principle that surface tension in the pores of the filter prevents gas bubbles from passing through. As a result, the gas collects in the interior region of the filter and coalesces to form larger bubbles in the center of the device. The device is particularly suited for use in microgravity conditions since the swirlers induce a centrifugal force which causes liquid to move from the inner region of the filter, pass the pores, and flow through the outlet of the device while the entrained gas is trapped by the filter. The device includes a cylindrical gas storage screen which is enclosed by the cylindrical gas separation filter. The screen has pores that are larger than those of the filters. The screen prevents larger bubbles that have been formed from reaching and interfering with the pores of the gas separation filter. The device is initially filled with a gas other than that which is to be separated. This technique results in separation of the gas even before gas bubbles are present in the mixture. Initially filling the device with the dissimilar gas and preventing the gas from escaping before operation can be accomplished by sealing the dissimilar gas in the inner region of the separation device with a ruptured disc which can be ruptured when the device is activated for use. 3 figs.

  11. Atomic-vapor-laser isotope separation

    SciTech Connect

    Davis, J.I.

    1982-10-01

    This paper gives a brief history of the scientific considerations leading to the development of laser isotope separation (LIS) processes. The close relationship of LIS to the broader field of laser-induced chemical processes is evaluated in terms of physical criteria to achieve an efficient production process. Atomic-vapor LIS processes under development at Livermore are reviwed. 8 figures.

  12. Organic Separation Test Results

    SciTech Connect

    Russell, Renee L.; Rinehart, Donald E.; Peterson, Reid A.

    2014-09-22

    Separable organics have been defined as “those organic compounds of very limited solubility in the bulk waste and that can form a separate liquid phase or layer” (Smalley and Nguyen 2013), and result from three main solvent extraction processes: U Plant Uranium Recovery Process, B Plant Waste Fractionation Process, and Plutonium Uranium Extraction (PUREX) Process. The primary organic solvents associated with tank solids are TBP, D2EHPA, and NPH. There is concern that, while this organic material is bound to the sludge particles as it is stored in the tanks, waste feed delivery activities, specifically transfer pump and mixer pump operations, could cause the organics to form a separated layer in the tank farms feed tank. Therefore, Washington River Protection Solutions (WRPS) is experimentally evaluating the potential of organic solvents separating from the tank solids (sludge) during waste feed delivery activities, specifically the waste mixing and transfer processes. Given the Hanford Tank Waste Treatment and Immobilization Plant (WTP) waste acceptance criteria per the Waste Feed Acceptance Criteria document (24590-WTP-RPT-MGT-11-014) that there is to be “no visible layer” of separable organics in the waste feed, this would result in the batch being unacceptable to transfer to WTP. This study is of particular importance to WRPS because of these WTP requirements.

  13. Membrane separation of hydrocarbons

    DOEpatents

    Chang, Y. Alice; Kulkarni, Sudhir S.; Funk, Edward W.

    1986-01-01

    Mixtures of heavy oils and light hydrocarbons may be separated by passing the mixture through a polymeric membrane. The membrane which is utilized to effect the separation comprises a polymer which is capable of maintaining its integrity in the presence of hydrocarbon compounds and which has been modified by being subjected to the action of a sulfonating agent. Sulfonating agents which may be employed will include fuming sulfuric acid, chlorosulfonic acid, sulfur trioxide, etc., the surface or bulk modified polymer will contain a degree of sulfonation ranging from about 15 to about 50%. The separation process is effected at temperatures ranging from about ambient to about 100.degree. C. and pressures ranging from about 50 to about 1000 psig.

  14. Mass Separation by Metamaterials

    PubMed Central

    Restrepo-Flórez, Juan Manuel; Maldovan, Martin

    2016-01-01

    Being able to manipulate mass flow is critically important in a variety of physical processes in chemical and biomolecular science. For example, separation and catalytic systems, which requires precise control of mass diffusion, are crucial in the manufacturing of chemicals, crystal growth of semiconductors, waste recovery of biological solutes or chemicals, and production of artificial kidneys. Coordinate transformations and metamaterials are powerful methods to achieve precise manipulation of molecular diffusion. Here, we introduce a novel approach to obtain mass separation based on metamaterials that can sort chemical and biomolecular species by cloaking one compound while concentrating the other. A design strategy to realize such metamaterial using homogeneous isotropic materials is proposed. We present a practical case where a mixture of oxygen and nitrogen is manipulated using a metamaterial that cloaks nitrogen and concentrates oxygen. This work lays the foundation for molecular mass separation in biophysical and chemical systems through metamaterial devices. PMID:26912419

  15. Mass Separation by Metamaterials

    NASA Astrophysics Data System (ADS)

    Restrepo-Flórez, Juan Manuel; Maldovan, Martin

    2016-02-01

    Being able to manipulate mass flow is critically important in a variety of physical processes in chemical and biomolecular science. For example, separation and catalytic systems, which requires precise control of mass diffusion, are crucial in the manufacturing of chemicals, crystal growth of semiconductors, waste recovery of biological solutes or chemicals, and production of artificial kidneys. Coordinate transformations and metamaterials are powerful methods to achieve precise manipulation of molecular diffusion. Here, we introduce a novel approach to obtain mass separation based on metamaterials that can sort chemical and biomolecular species by cloaking one compound while concentrating the other. A design strategy to realize such metamaterial using homogeneous isotropic materials is proposed. We present a practical case where a mixture of oxygen and nitrogen is manipulated using a metamaterial that cloaks nitrogen and concentrates oxygen. This work lays the foundation for molecular mass separation in biophysical and chemical systems through metamaterial devices.

  16. Mass Separation by Metamaterials.

    PubMed

    Restrepo-Flórez, Juan Manuel; Maldovan, Martin

    2016-01-01

    Being able to manipulate mass flow is critically important in a variety of physical processes in chemical and biomolecular science. For example, separation and catalytic systems, which requires precise control of mass diffusion, are crucial in the manufacturing of chemicals, crystal growth of semiconductors, waste recovery of biological solutes or chemicals, and production of artificial kidneys. Coordinate transformations and metamaterials are powerful methods to achieve precise manipulation of molecular diffusion. Here, we introduce a novel approach to obtain mass separation based on metamaterials that can sort chemical and biomolecular species by cloaking one compound while concentrating the other. A design strategy to realize such metamaterial using homogeneous isotropic materials is proposed. We present a practical case where a mixture of oxygen and nitrogen is manipulated using a metamaterial that cloaks nitrogen and concentrates oxygen. This work lays the foundation for molecular mass separation in biophysical and chemical systems through metamaterial devices. PMID:26912419

  17. Flow separation detector

    NASA Technical Reports Server (NTRS)

    Mateer, G. C.; Brosh, A. (Inventor)

    1977-01-01

    An arrangement for sensing the fluid separation along a surface which employs a thermally insulating element having a continuous surface blending into and forming a part of the fluid flow surface is described. A sudden decrease in the temperature of the downstream sensor conductor and concomitant increase in the temperature of the upstream sensor conductor is an indication of the separation. When the temperatures are returned to the state achieved during normal flow, the indicator thereby indicates the normal, attached fluid flow. The conductors may be, for example, wires or thin films, and should be within the viscous sub-layer of the expected fluid flow. A single heater and several pairs of sensors and corresponding sensor conductors may be used to detect not only the fluid flow and the separation, but the direction of the fluid flow, over the fluid flow surface.

  18. Mass Separation by Metamaterials.

    PubMed

    Restrepo-Flórez, Juan Manuel; Maldovan, Martin

    2016-02-25

    Being able to manipulate mass flow is critically important in a variety of physical processes in chemical and biomolecular science. For example, separation and catalytic systems, which requires precise control of mass diffusion, are crucial in the manufacturing of chemicals, crystal growth of semiconductors, waste recovery of biological solutes or chemicals, and production of artificial kidneys. Coordinate transformations and metamaterials are powerful methods to achieve precise manipulation of molecular diffusion. Here, we introduce a novel approach to obtain mass separation based on metamaterials that can sort chemical and biomolecular species by cloaking one compound while concentrating the other. A design strategy to realize such metamaterial using homogeneous isotropic materials is proposed. We present a practical case where a mixture of oxygen and nitrogen is manipulated using a metamaterial that cloaks nitrogen and concentrates oxygen. This work lays the foundation for molecular mass separation in biophysical and chemical systems through metamaterial devices.

  19. SULFIDE METHOD PLUTONIUM SEPARATION

    DOEpatents

    Duffield, R.B.

    1958-08-12

    A process is described for the recovery of plutonium from neutron irradiated uranium solutions. Such a solution is first treated with a soluble sullide, causing precipitation of the plutoniunn and uraniunn values present, along with those impurities which form insoluble sulfides. The precipitate is then treated with a solution of carbonate ions, which will dissolve the uranium and plutonium present while the fission product sulfides remain unaffected. After separation from the residue, this solution may then be treated by any of the usual methods, such as formation of a lanthanum fluoride precipitate, to effect separation of plutoniunn from uranium.

  20. Gas separation membranes

    DOEpatents

    Schell, William J.

    1979-01-01

    A dry, fabric supported, polymeric gas separation membrane, such as cellulose acetate, is prepared by casting a solution of the polymer onto a shrinkable fabric preferably formed of synthetic polymers such as polyester or polyamide filaments before washing, stretching or calendering (so called griege goods). The supported membrane is then subjected to gelling, annealing, and drying by solvent exchange. During the processing steps, both the fabric support and the membrane shrink a preselected, controlled amount which prevents curling, wrinkling or cracking of the membrane in flat form or when spirally wound into a gas separation element.

  1. Multistage Electrophoretic Separators

    NASA Technical Reports Server (NTRS)

    Thomas, Nathan; Doyle, John F.; Kurk, Andy; Vellinger, John C.; Todd, Paul

    2006-01-01

    A multistage electrophoresis apparatus has been invented for use in the separation of cells, protein molecules, and other particles and solutes in concentrated aqueous solutions and suspensions. The design exploits free electrophoresis but overcomes the deficiencies of prior free-electrophoretic separators by incorporating a combination of published advances in mathematical modeling of convection, sedimentation, electro-osmotic flow, and the sedimentation and aggregation of droplets. In comparison with other electrophoretic separators, these apparatuses are easier to use and are better suited to separation in relatively large quantities characterized in the art as preparative (in contradistinction to smaller quantities characterized in the art as analytical). In a multistage electrophoretic separator according to the invention, an applied vertical steady electric field draws the electrically charged particles of interest from within a cuvette to within a collection cavity that has been moved into position of the cuvette. There are multiple collection cavities arranged in a circle; each is aligned with the cuvette for a prescribed short time. The multistage, short-migration-path character of the invention solves, possibly for the first time, the fluid-instability problems associated with free electrophoresis. The figure shows a prototype multistage electrophoretic separator that includes four sample stations and five collection stages per sample. At each sample station, an aqueous solution or suspension containing charged species to be separated is loaded into a cuvette, which is machined into a top plate. The apparatus includes a lower plate, into which 20 collection cavities have been milled. Each cavity is filled with an electrophoresis buffer solution. For the collection of an electrophoretic fraction, the lower plate is rotated to move a designated collection cavity into alignment with the opening of the cuvette. An electric field is then applied between a non

  2. WET FLUORIDE SEPARATION METHOD

    DOEpatents

    Seaborg, G.T.; Gofman, J.W.; Stoughton, R.W.

    1958-11-25

    The separation of U/sup 233/ from thorium, protactinium, and fission products present in neutron-irradiated thorium is accomplished by dissolving the irradiated materials in aqueous nitric acid, adding either a soluble fluoride, iodate, phosphate, or oxalate to precipltate the thorium, separating the precipltate from the solution, and then precipitating uranlum and protactinium by alkalizing the solution. The uranium and protactinium precipitate is removcd from the solution and dissolved in nitric acid. The uranyl nitrate may then be extracted from the acid solution by means of ether, and the protactinium recovered from the aqueous phase.

  3. Separators for electrochemical cells

    SciTech Connect

    Carlson, Steven Allen; Anakor, Ifenna Kingsley

    2014-11-11

    Provided are separators for use in an electrochemical cell comprising (a) an inorganic oxide and (b) an organic polymer, wherein the inorganic oxide comprises organic substituents. Preferably, the inorganic oxide comprises an hydrated aluminum oxide of the formula Al.sub.2O.sub.3.xH.sub.2O, wherein x is less than 1.0, and wherein the hydrated aluminum oxide comprises organic substituents, preferably comprising a reaction product of a multifunctional monomer and/or organic carbonate with an aluminum oxide, such as pseudo-boehmite and an aluminum oxide. Also provided are electrochemical cells comprising such separators.

  4. Spiral fluid separator

    NASA Technical Reports Server (NTRS)

    Robertson, Glen A. (Inventor)

    1993-01-01

    A fluid separator for separating particulate matter such as contaminates is provided which includes a series of spiral tubes of progressively decreasing cross sectional area connected in series. Each tube has an outlet on the outer curvature of the spiral. As fluid spirals down a tube, centrifugal force acts to force the heavier particulate matter to the outer wall of the tube, where it exits through the outlet. The remaining, and now cleaner, fluid reaches the next tube, which is smaller in cross sectional area, where the process is repeated. The fluid which comes out the final tube is diminished of particulate matter.

  5. Separation membrane development

    SciTech Connect

    Lee, M.W.

    1998-08-01

    A ceramic membrane has been developed to separate hydrogen from other gases. The method used is a sol-gel process. A thin layer of dense ceramic material is coated on a coarse ceramic filter substrate. The pore size distribution in the thin layer is controlled by a densification of the coating materials by heat treatment. The membrane has been tested by permeation measurement of the hydrogen and other gases. Selectivity of the membrane has been achieved to separate hydrogen from carbon monoxide. The permeation rate of hydrogen through the ceramic membrane was about 20 times larger than Pd-Ag membrane.

  6. SEPARATION OF FLUID MIXTURES

    DOEpatents

    Lipscomb, R.; Craig, A.; Labrow, S.; Dunn, J.F.

    1958-10-28

    An apparatus is presented for separating gaseous mixtures by selectively freezing a constituent of the mixture and subsequently separating the frozen gas. The gas mixture is passed through a cylinder fltted with a cooling jacket, causing one gas to freeze on the walls of the cylinder. A set of scraper blades are provided in the interior of the cyllnder, and as the blades oscillate, the frozen gas is scraped to the bottom of the cylinder. Means are provided for the frozen material to pass into a heating chamber where it is vaporized and the product gas collected.

  7. Influence of magnetic nanoparticle size on the particle dispersion and phase separation in an ABA triblock copolymer.

    PubMed

    Wu, Jinrong; Li, Hui; Wu, Siduo; Huang, Guangsu; Xing, Wang; Tang, Maozhu; Fu, Qiang

    2014-02-27

    Oleic acid modified iron oxide nanoparticles (IONs) with different sizes were synthesized and mixed with styrene-butadiene-styrene block copolymer (SBS) with a lamellar structure. The octadecene segments on the oleic acid molecules have chemical affinity with the polybutadiene (PB) blocks, which makes IONs tend to be selectively confined in the microphase-separated PB domains. However, the dispersion state strongly depends on the ratio of the particle diameter (d) to the lamellar thickness (l) of the PB domains, which further changes the phase separation of SBS. When d/l ∼0.5, most of IONs are concentrated in the middle of the PB layers at low particle loading. Upon increasing the particle loading, part of IONs contact each other to form long strings due to their strong magnetic interactions. Away from the strings, IONs are either selectively dispersed in the middle and at the interfaces of the PB domains, or randomly distributed at some regions in which the phase separation of SBS is suppressed. The phase separation of SBS transforms from the lamellar structure to a cylinder structure when the IONs loading is higher than 16.7 wt %. As d is comparable to l, IONs aggregate to form clusters of 100 to 300 nm in size, but within the clusters IONs are still selectively dispersed in the PB domains instead of forming macroscopic phase separation. It is interpreted in terms of the relatively small conformational entropy of the middle blocks of SBS; thus, incorporation of nanoparticles does not lead to much loss of conformational entropy. Although incorporation of IONs with d/l ∼1 significantly increases the interfacial curvature and roughness, it has less influence on the phase separation structure of SBS due to the inhomogeneous dispersion. When d is larger than l, IONs are macroscopically separated from the SBS matrix to form clusters of hundreds of nanometers to several micrometers. More interestingly, the phase separation of SBS transforms from the lamellar

  8. Gas-separation process

    DOEpatents

    Toy, L.G.; Pinnau, I.; Baker, R.W.

    1994-01-25

    A process is described for separating condensable organic components from gas streams. The process makes use of a membrane made from a polymer material that is glassy and that has an unusually high free volume within the polymer material. 6 figures.

  9. NEAMS safeguards and separations

    SciTech Connect

    Sadasivan, Pratap; De Paoli, David W

    2011-01-25

    This presentation provides a program management update on the Safeguards and Separations Integrated Performance and Safety Code (IPSC) program in the DOE Nuclear Energy Advanced Modeling and Simulation (NEAMS). It provides an overview of FY11 work packages at multiple DOE Labs and includes material on challenge problem definitions for the IPSC effort.

  10. Separated Fringe Packet Binaries

    NASA Astrophysics Data System (ADS)

    Bagnuolo, W. G.; Taylor, S. F.; McAlister, H. A.; ten Brummelaar, T.; Sturmann, L.; Sturmann, J.; Turner, N. H.; Berger, D.; Ridgway, S. T.; CenterHigh Angular Resolution Astronomy (CHARA)

    2004-12-01

    Individually resolved packets are produced by scans from the CHARA Interferometer Array for binary stars with separations from 10 to 100 milli-arcsec (mas) in the K' band. We have used this data for astrometry of the binary with the goal of improving the visual orbits for these systems. About 12 data sets of 400 scans each can be collected for a star within an hour. The intrinsic accuracy with simple linear/quadratic fits to the time-separation curve yields accuracies of 0.15 mas. But, for systems with separations less than 80 mas, the measured separation is modulated periodically by the secondary star's packet riding over the sidelobes of the primary which provides a phase reference. This "sidelobe verniering" can improve the precision to better than 50 micro-arcsec. These techniques, represents 1-2 orders of magnitude improvement in astrometic accuracy over speckle interferometry techniques. Visual orbits can then be refined via a maximum liklihood technique, which leads to revisions in the stellar masses. We present the results for several binaries that have been observed at the CHARA Array, starting in 2001.

  11. Impedances of Tevatron separators

    SciTech Connect

    K. Y. Ng

    2003-05-28

    The impedances of the Tevatron separators are revisited and are found to be negligibly small in the few hundred MHz region, except for resonances at 22.5 MHz. The later are contributions from the power cables which may drive head-tail instabilities if the bunch is long enough.

  12. Alkaline battery, separator therefore

    NASA Technical Reports Server (NTRS)

    Schmidt, George F. (Inventor)

    1980-01-01

    An improved battery separator for alkaline battery cells has low resistance to electrolyte ion transfer and high resistance to electrode ion transfer. The separator is formed by applying an improved coating to an electrolyte absorber. The absorber, preferably, is a flexible, fibrous, and porous substrate that is resistant to strong alkali and oxidation. The coating composition includes an admixture of a polymeric binder, a hydrolyzable polymeric ester and inert fillers. The coating composition is substantially free of reactive fillers and plasticizers commonly employed as porosity promoting agents in separator coatings. When the separator is immersed in electrolyte, the polymeric ester of the film coating reacts with the electrolyte forming a salt and an alcohol. The alcohol goes into solution with the electrolyte while the salt imbibes electrolyte into the coating composition. When the salt is formed, it expands the polymeric chains of the binder to provide a film coating substantially permeable to electrolyte ion transfer but relatively impermeable to electrode ion transfer during use.

  13. Hydrogen isotope separation

    DOEpatents

    Bartlit, J.R.; Denton, W.H.; Sherman, R.H.

    Disclosed is a system of four cryogenic fractional distillation columns interlinked with two equilibrators for separating a DT and hydrogen feed stream into four product streams, consisting of a stream of high purity D/sub 2/, DT, T/sub 2/, and a tritium-free stream of HD for waste disposal.

  14. Hydrogen isotope separation

    DOEpatents

    Bartlit, John R.; Denton, William H.; Sherman, Robert H.

    1982-01-01

    A system of four cryogenic fractional distillation columns interlinked with two equilibrators for separating a DT and hydrogen feed stream into four product streams, consisting of a stream of high purity D.sub.2, DT, T.sub.2, and a tritium-free stream of HD for waste disposal.

  15. Separation and Attachment

    ERIC Educational Resources Information Center

    Honig, Alice Sterling

    2005-01-01

    Developing secure attachments with babies gives them a very special gift--the foundation for good infant mental health! In this article, the author discusses how to develop secure attachments with babies. Babies who are in the care of others during the day often suffer from separations from their special adults. Thirteen "tips" to ensure that…

  16. Polymide gas separation membranes

    DOEpatents

    Ding, Yong; Bikson, Benjamin; Nelson, Joyce Katz

    2004-09-14

    Soluble polyamic acid salt (PAAS) precursors comprised of tertiary and quaternary amines, ammonium cations, sulfonium cations, or phosphonium cations, are prepared and fabricated into membranes that are subsequently imidized and converted into rigid-rod polyimide articles, such as membranes with desirable gas separation properties. A method of enhancing solubility of PAAS polymers in alcohols is also disclosed.

  17. Separation of Powers.

    ERIC Educational Resources Information Center

    Bill of Rights in Action, 1987

    1987-01-01

    The dimensions of the separation of powers principle are explored through three lessons in the subject areas of U.S. history, U.S. government, and world history. In 1748, a French nobleman, Baron de Montesquieu, wrote a book called "The Spirit of the Laws," in which he argued that there could be no liberty when all government power was held by one…

  18. METHOD OF SEPARATING NEPTUNIUM

    DOEpatents

    Seaborg, G.T.

    1961-10-24

    plutonium in an aqueous solution containing sulfate ions. The process consists of contacting the solution with an alkali metal bromate, digesting the resulting mixture at 15 to 25 deg C for a period of time not more than that required to oxidize the neptunium, adding lanthanum ions and fluoride ions, and separating the plutonium-containing precipitate thus formed from the supernatant solution. (AEC)

  19. Separation, Separatism and Diversity.

    ERIC Educational Resources Information Center

    Hasegawa, Maya

    1991-01-01

    In the United States, once legal integration was achieved and the White male culture was challenged for real power, minority groups began to question the wisdom of cultural and social integration and celebrate diversity. An acceptable line between healthy separation and unhealthy separatism must be found. (MSE)

  20. Fathering After Marital Separation

    ERIC Educational Resources Information Center

    Keshet, Harry Finkelstein; Rosenthal, Kristine M.

    1978-01-01

    Deals with experiences of a group of separated or divorced fathers who chose to remain fully involved in the upbringing of their children. As they underwent transition from married parenthood to single fatherhood, these men learned that meeting demands of child care contributed to personal stability and growth. (Author)

  1. SEPARATION BY ADSORPTION

    DOEpatents

    Lowe, C.S.

    1959-06-16

    Separation of Pu from fission products by adsorption on hydrous aluminum silicate is described. The Pu in a HNO/sub 3/ solution is oxidized to the hexavalent state and contacted with the silicate which adsorbs fission products. (T.R.H.)

  2. Chemotactic separation of enzymes.

    PubMed

    Dey, Krishna Kanti; Das, Sambeeta; Poyton, Matthew F; Sengupta, Samudra; Butler, Peter J; Cremer, Paul S; Sen, Ayusman

    2014-12-23

    We demonstrate a procedure for the separation of enzymes based on their chemotactic response toward an imposed substrate concentration gradient. The separation is observed within a two-inlet, five-outlet microfluidic network, designed to allow mixtures of active (ones that catalyze substrate turnover) and inactive (ones that do not catalyze substrate turnover) enzymes, labeled with different fluorophores, to flow through one of the inlets. Substrate solution prepared in phosphate buffer was introduced through the other inlet of the device at the same flow rate. The steady-state concentration profiles of the enzymes were obtained at specific positions within the outlets of the microchannel using fluorescence microscopy. In the presence of a substrate concentration gradient, active enzyme molecules migrated preferentially toward the substrate channel. The excess migration of the active enzyme molecules was quantified in terms of an enrichment coefficient. Experiments were carried out with different pairs of enzymes. Coupling the physics of laminar flow of liquid and molecular diffusion, multiphysics simulations were carried out to estimate the extent of the chemotactic separation. Our results show that, with appropriate microfluidic arrangement, molecular chemotaxis leads to spontaneous separation of active enzyme molecules from their inactive counterparts of similar charge and size.

  3. Molten salt electrolyte separator

    DOEpatents

    Kaun, T.D.

    1996-07-09

    The patent describes a molten salt electrolyte/separator for battery and related electrochemical systems including a molten electrolyte composition and an electrically insulating solid salt dispersed therein, to provide improved performance at higher current densities and alternate designs through ease of fabrication. 5 figs.

  4. Lunar Soil Particle Separator

    NASA Technical Reports Server (NTRS)

    Berggren, Mark

    2010-01-01

    The Lunar Soil Particle Separator (LSPS) beneficiates soil prior to in situ resource utilization (ISRU). It can improve ISRU oxygen yield by boosting the concentration of ilmenite, or other iron-oxide-bearing materials found in lunar soils, which can substantially reduce hydrogen reduction reactor size, as well as drastically decreasing the power input required for soil heating

  5. CO{sub 2} separation

    SciTech Connect

    Hakuta, Toshikatu

    1993-12-31

    The climate change induced by CO{sub 2} and other greenhouse gases is probably the most serious environmental threat that mankind has ever experienced. Nowadays fossil fuels occupy the majority of the world commercial energy supply. Most nations will be dependent on fossil fuels even in the first half of the next century. Around 30 % of CO{sub 2} in the world is emitted from thermal power plants. Recovering CO{sub 2} from energy conversion processes and storing it outside the atmosphere is a promising option for the mitigation of global warming. CO{sub 2} fixation and storage include CO{sub 2} disposal into oceans and underground, and utilization of CO{sub 2}. CO{sub 2} separation process will be used in any CO{sub 2} storage system, and is estimated to consume almost half the energy of the total system. Research and development of highly efficient CO{sub 2} separation process is most important from the viewpoint of practical application of CO{sub 2} fixation system.

  6. Cell separation using electric fields

    NASA Technical Reports Server (NTRS)

    Mangano, Joseph (Inventor); Eppich, Henry (Inventor)

    2009-01-01

    The present invention involves methods and devices which enable discrete objects having a conducting inner core, surrounded by a dielectric membrane to be selectively inactivated by electric fields via irreversible breakdown of their dielectric membrane. One important application of the invention is in the selection, purification, and/or purging of desired or undesired biological cells from cell suspensions. According to the invention, electric fields can be utilized to selectively inactivate and render non-viable particular subpopulations of cells in a suspension, while not adversely affecting other desired subpopulations. According to the inventive methods, the cells can be selected on the basis of intrinsic or induced differences in a characteristic electroporation threshold, which can depend, for example, on a difference in cell size and/or critical dielectric membrane breakdown voltage. The invention enables effective cell separation without the need to employ undesirable exogenous agents, such as toxins or antibodies. The inventive method also enables relatively rapid cell separation involving a relatively low degree of trauma or modification to the selected, desired cells. The inventive method has a variety of potential applications in clinical medicine, research, etc., with two of the more important foreseeable applications being stem cell enrichment/isolation, and cancer cell purging.

  7. Cell separation using electric fields

    NASA Technical Reports Server (NTRS)

    Mangano, Joseph A. (Inventor); Eppich, Henry M. (Inventor)

    2003-01-01

    The present invention involves methods and devices which enable discrete objects having a conducting inner core, surrounded by a dielectric membrane to be selectively inactivated by electric fields via irreversible breakdown of their dielectric membrane. One important application of the invention is in the selection, purification, and/or purging of desired or undesired biological cells from cell suspensions. According to the invention, electric fields can be utilized to selectively inactivate and render non-viable particular subpopulations of cells in a suspension, while not adversely affecting other desired subpopulations. According to the inventive methods, the cells can be selected on the basis of intrinsic or induced differences in a characteristic electroporation threshold, which can depend, for example, on a difference in cell size and/or critical dielectric membrane breakdown voltage. The invention enables effective cell separation without the need to employ undesirable exogenous agents, such as toxins or antibodies. The inventive method also enables relatively rapid cell separation involving a relatively low degree of trauma or modification to the selected, desired cells. The inventive method has a variety of potential applications in clinical medicine, research, etc., with two of the more important foreseeable applications being stem cell enrichment/isolation, and cancer cell purging.

  8. Ultracentrifuge for separating fluid mixtures

    DOEpatents

    Lowry, Ralph A.

    1976-01-01

    1. A centrifuge for the separation of fluid mixtures having light and heavy fractions comprising a cylindrical rotor, disc type end-plugs closing the ends of the rotor, means for mounting said rotor for rotation about its cylindrical axis, a housing member enclosing the rotor, a vacuum chamber in said housing about the central portion of the rotor, a collection chamber at each end of the housing, the innermost side of which is substantially formed by the outer face of the end-plug, means for preventing flow of the fluid from the collection chambers to said vacuum chamber, at least one of said end-plugs having a plurality of holes therethrough communicating between the collection chamber adjacent thereto and the inside of the rotor to induce countercurrent flow of the fluid in the centrifuge, means for feeding fluid to be processed into the centrifuge, means communicating with the collection chambers to extract the light and heavy separated fractions of the fluid, and means for rotating the rotor.

  9. Separation science and technology

    SciTech Connect

    Smith, B.F.; Sauer, N.; Chamberlin, R.M.; Gottesfeld, S.; Mattes, B.R.; Li, D.Q.; Swanson, B.

    1998-12-31

    The focus of this project is the demonstration and advancement of membrane-based separation and destruction technologies. The authors are exploring development of membrane systems for gas separations, selective metal ion recovery, and for separation or destruction of hazardous organics. They evaluated existing polymers and polymer formulations for recovery of toxic oxyanionic metals such as chromate and arsenate from selected waste streams and developed second-generation water-soluble polymeric systems for highly selective oxyanion removal and recovery. They optimized the simultaneous removal of radioactive strontium and cesium from aqueous solutions using the new nonhazardous separations agents, and developed recyclable, redox-active extractants that permitted recovery of the radioactive ions into a minimal waste volume. They produced hollow fibers and fabricated prototype hollow-fiber membrane modules for applications to gas separations and the liquid-liquid extraction and recovery of actinides and nuclear materials from process streams. They developed and fabricated cyclodextrin-based microporous materials that selectively absorb organic compounds in an aqueous environment; the resultant products gave pure water with organics at less than 0.05 parts per billion. They developed new, more efficient, membrane-based electrochemical reactors for use in organic destruction in process waste treatment. They addressed the need for advanced oxidation technologies based on molecular-level materials designs that selectively remove or destroy target species. They prepared and characterized surface-modified TiO{sub 2} thin films using different linking approaches to attach ruthenium photosensitizers, and they started the measurement of the photo-degradation products generated using surface modified TiO{sub 2} films in reaction with chlorophenol.

  10. Rapid Protein Separations in Microfluidic Devices

    NASA Technical Reports Server (NTRS)

    Fan, Z. H.; Das, Champak; Xia, Zheng; Stoyanov, Alexander V.; Fredrickson, Carl K.

    2004-01-01

    This paper describes fabrication of glass and plastic microfluidic devices for protein separations. Although the long-term goal is to develop a microfluidic device for two-dimensional gel electrophoresis, this paper focuses on the first dimension-isoelectric focusing (IEF). A laser-induced fluorescence (LIF) imaging system has been built for imaging an entire channel in an IEF device. The whole-channel imaging eliminates the need to migrate focused protein bands, which is required if a single-point detector is used. Using the devices and the imaging system, we are able to perform IEF separations of proteins within minutes rather than hours in traditional bench-top instruments.

  11. Nylon separators. [thermal degradation

    NASA Technical Reports Server (NTRS)

    Lim, H. S.

    1977-01-01

    A nylon separator was placed in a flooded condition in K0H solution and heated at various high temperatures ranging from 60 C to 110 C. The weight decrease was measured and the molecular weight and decomposition product were analyzed to determine: (1) the effect of K0H concentration on the hydrolysis rate; (2) the effect of K0H concentration on nylon degradation; (3) the activation energy at different K0H concentrations; and (4) the effect of oxygen on nylon degradation. The nylon hydrolysis rate is shown to increase as K0H concentration is decreased 34%, giving a maximum rate at about 16%. Separator hydrolysis is confirmed by molecular weight decrease in age of the batteries, and the reaction of nylon with molecular oxygen is probably negligible, compared to hydrolysis. The extrapolated rate value from the high temperature experiment correlates well with experimental values at 35 degrees.

  12. Separation of Climate Signals

    SciTech Connect

    Kamath, C; Fodor, I

    2002-11-13

    Understanding changes in global climate is a challenging scientific problem. Simulated and observed data include signals from many sources, and untangling their respective effects is difficult. In order to make meaningful comparisons between different models, and to understand human effects on global climate, we need to isolate the effects of different sources. Recent eruptions of the El Chichon and Mt. Pinatubo volcanoes coincided with large El Nino and Southern Oscillation (ENSO) events, which complicates the separation of their contributions on global temperatures. Current approaches for separating volcano and ENSO signals in global mean data involve parametric models and iterative techniques [3]. We investigate alternative methods based on principal component analysis (PCA) [2] and independent component analysis (ICA) [1]. Our goal is to determine if such techniques can automatically identify the signals corresponding to the different sources, without relying on parametric models.

  13. Steam separator latch assembly

    DOEpatents

    Challberg, R.C.; Kobsa, I.R.

    1994-02-01

    A latch assembly removably joins a steam separator assembly to a support flange disposed at a top end of a tubular shroud in a nuclear reactor pressure vessel. The assembly includes an annular head having a central portion for supporting the steam separator assembly thereon, and an annular head flange extending around a perimeter thereof for supporting the head to the support flange. A plurality of latches are circumferentially spaced apart around the head flange with each latch having a top end, a latch hook at a bottom end thereof, and a pivot support disposed at an intermediate portion therebetween and pivotally joined to the head flange. The latches are pivoted about the pivot supports for selectively engaging and disengaging the latch hooks with the support flange for fixedly joining the head to the shroud or for allowing removal thereof. 12 figures.

  14. Steam separator latch assembly

    DOEpatents

    Challberg, Roy C.; Kobsa, Irvin R.

    1994-01-01

    A latch assembly removably joins a steam separator assembly to a support flange disposed at a top end of a tubular shroud in a nuclear reactor pressure vessel. The assembly includes an annular head having a central portion for supporting the steam separator assembly thereon, and an annular head flange extending around a perimeter thereof for supporting the head to the support flange. A plurality of latches are circumferentially spaced apart around the head flange with each latch having a top end, a latch hook at a bottom end thereof, and a pivot support disposed at an intermediate portion therebetween and pivotally joined to the head flange. The latches are pivoted about the pivot supports for selectively engaging and disengaging the latch hooks with the support flange for fixedly joining the head to the shroud or for allowing removal thereof.

  15. Composite battery separator

    NASA Technical Reports Server (NTRS)

    Edwards, Dean B. (Inventor); Rippel, Wally E. (Inventor)

    1987-01-01

    A composite battery separator comprises a support element (10) having an open pore structure such as a ribbed lattice and at least one liquid permeable sheet (20,22) to distribute the compressive force evenly onto the surfaces of the layers (24, 26) of negative active material and positive active material. In a non-flooded battery cell the compressible, porous material (18), such as a glass mat which absorbs the electrolyte, is compressed into a major portion of the pores or openings (16) in the support element. The unfilled pores in the material (18) form a gas diffusion path as the channels (41) formed between adjacent ribs in the lattice element (30,36). Facing two lattice elements (30, 31) with acute angled cross-ribs (34, 38) facing each other prevents the elements from interlocking and distorting a porous, separator (42) disposed between the lattice elements.

  16. Acoustophoresis separation method

    NASA Technical Reports Server (NTRS)

    Heyman, Joseph S. (Inventor)

    1993-01-01

    A method and apparatus are provided for acoustophoresis, i.e., the separation of species via acoustic waves. An ultrasonic transducer applies an acoustic wave to one end of a sample container containing at least two species having different acoustic absorptions. The wave has a frequency tuned to or harmonized with the point of resonance of the species to be separated. This wave causes the species to be driven to an opposite end of the sample container for removal. A second ultrasonic transducer may be provided to apply a second, oppositely directed acoustic wave to prevent undesired streaming. In addition, a radio frequency tuned to the mechanical resonance and coupled with a magnetic field can serve to identify a species in a medium comprising species with similar absorption coefficients, whereby an acoustic wave having a frequency corresponding to this gyrational rate can then be applied to sweep the identified species to one end of the container for removal.

  17. Membrane separation of hydrocarbons

    DOEpatents

    Funk, Edward W.; Kulkarni, Sudhir S.; Chang, Y. Alice

    1986-01-01

    Mixtures of heavy oils and light hydrocarbons may be separated by passing the mixture over a polymeric membrane which comprises a polymer capable of maintaining its integrity in the presence of hydrocarbon compounds at temperature ranging from about ambient to about 100.degree. C. and pressures ranging from about 50 to about 1000 psi. The membranes which possess pore sizes ranging from about 10 to about 500 Angstroms are cast from a solvent solution and recovered.

  18. SEPARATION OF PLUTONYL IONS

    DOEpatents

    Connick, R.E.; McVey, Wm.H.

    1958-07-15

    A process is described for separating plutonyl ions from the acetate ions with which they are associated in certaln carrier precipitation methods of concentrating plutonium. The method consists in adding alkaline earth metal ions and subsequently alkalizing the solution, causing formation of an alkaltne earth plutonate precipitate. Barium hydroxide is used in a preferred embodiment since it provides alkaline earth metal ion and alkalizes the solution in one step forming insoluble barium platonate.

  19. ISOTOPE SEPARATING APPARATUS CONTROL

    DOEpatents

    Barnes, S.W.

    1959-08-25

    An improved isotope separating apparatus of the electromagnetic type, commonly referred to as a calutron, is described. Improvements in detecting and maintaining optimum position and focus of the ion beam are given. The calutron collector is provided with an additional electrode insulated from and positioned between the collecting pockets. The ion beams are properly positioned and focused until the deionizing current which flows from ground to this additional electrode ts a minimum.

  20. Color separation gratings

    NASA Technical Reports Server (NTRS)

    Farn, Michael W.; Knowlden, Robert E.

    1993-01-01

    In this paper, we describe the theory, fabrication and test of a binary optics 'echelon'. The echelon is a grating structure which separates electromagnetic radiation of different wavelengths, but it does so according to diffraction order rather than by dispersion within one diffraction order, as is the case with conventional gratings. A prototype echelon, designed for the visible spectrum, is fabricated using the binary optics process. Tests of the prototype show good agreement with theoretical predictions.

  1. URANIUM SEPARATION PROCESS

    DOEpatents

    Lyon, W.L.

    1962-04-17

    A method of separating uranium oxides from PuO/sub 2/, ThO/sub 2/, and other actinide oxides is described. The oxide mixture is suspended in a fused salt melt and a chlorinating agent such as chlorine gas or phosgene is sparged through the suspension. Uranium oxides are selectively chlorinated and dissolve in the melt, which may then be filtered to remove the unchlorinated oxides of the other actinides. (AEC)

  2. METHOD OF SEPARATING PLUTONIUM

    DOEpatents

    Heal, H.G.

    1960-02-16

    BS>A method of separating plutonium from aqueous nitrate solutions of plutonium, uranium. and high beta activity fission products is given. The pH of the aqueous solution is adjusted between 3.0 to 6.0 with ammonium acetate, ferric nitrate is added, and the solution is heated to 80 to 100 deg C to selectively form a basic ferric plutonium-carrying precipitate.

  3. Apparatus for electrophoresis separation

    DOEpatents

    Anderson, Norman L.

    1978-01-01

    An apparatus is disclosed for simultaneously performing electrophoresis separations on a plurality of slab gels containing samples of protein, protein subunits or nucleic acids. A reservoir of buffer solution is divided into three compartments by two parallel partitions having vertical slots spaced along their length. A sheet of flexible, electrically insulative material is attached to each partition and is provided with vertical slits aligned with the slots. Slab-gel holders are received within the slots with the flexible material folded outwardly as flaps from the slits to overlay portions of the holder surfaces and thereby act as electrical and liquid seals. An elongated, spaghetti-like gel containing a sample of specimen that was previously separated by isoelectric focusing techniques is vertically positioned along a marginal edge portion of the slab gel. On application of an electrical potential between the two outer chambers of buffer solution, a second dimensional electrophoresis separation in accordance with molecular weight occurs as the specimen molecules migrate across the slab gel.

  4. Separation of sulfur isotopes

    DOEpatents

    DeWitt, Robert; Jepson, Bernhart E.; Schwind, Roger A.

    1976-06-22

    Sulfur isotopes are continuously separated and enriched using a closed loop reflux system wherein sulfur dioxide (SO.sub.2) is reacted with sodium hydroxide (NaOH) or the like to form sodium hydrogen sulfite (NaHSO.sub.3). Heavier sulfur isotopes are preferentially attracted to the NaHSO.sub.3, and subsequently reacted with sulfuric acid (H.sub.2 SO.sub.4) forming sodium hydrogen sulfate (NaHSO.sub.4) and SO.sub.2 gas which contains increased concentrations of the heavier sulfur isotopes. This heavy isotope enriched SO.sub.2 gas is subsequently separated and the NaHSO.sub.4 is reacted with NaOH to form sodium sulfate (Na.sub.2 SO.sub.4) which is subsequently decomposed in an electrodialysis unit to form the NaOH and H.sub.2 SO.sub.4 components which are used in the aforesaid reactions thereby effecting sulfur isotope separation and enrichment without objectionable loss of feed materials.

  5. Innovative Separations Technologies

    SciTech Connect

    J. Tripp; N. Soelberg; R. Wigeland

    2011-05-01

    Reprocessing used nuclear fuel (UNF) is a multi-faceted problem involving chemistry, material properties, and engineering. Technology options are available to meet a variety of processing goals. A decision about which reprocessing method is best depends significantly on the process attributes considered to be a priority. New methods of reprocessing that could provide advantages over the aqueous Plutonium Uranium Reduction Extraction (PUREX) and Uranium Extraction + (UREX+) processes, electrochemical, and other approaches are under investigation in the Fuel Cycle Research and Development (FCR&D) Separations Campaign. In an attempt to develop a revolutionary approach to UNF recycle that may have more favorable characteristics than existing technologies, five innovative separations projects have been initiated. These include: (1) Nitrogen Trifluoride for UNF Processing; (2) Reactive Fluoride Gas (SF6) for UNF Processing; (3) Dry Head-end Nitration Processing; (4) Chlorination Processing of UNF; and (5) Enhanced Oxidation/Chlorination Processing of UNF. This report provides a description of the proposed processes, explores how they fit into the Modified Open Cycle (MOC) and Full Recycle (FR) fuel cycles, and identifies performance differences when compared to 'reference' advanced aqueous and fluoride volatility separations cases. To be able to highlight the key changes to the reference case, general background on advanced aqueous solvent extraction, advanced oxidative processes (e.g., volumetric oxidation, or 'voloxidation,' which is high temperature reaction of oxide UNF with oxygen, or modified using other oxidizing and reducing gases), and fluorination and chlorination processes is provided.

  6. Airborne rotary separator study

    NASA Technical Reports Server (NTRS)

    Drnevich, R. F.; Nowobilski, J. J.

    1992-01-01

    Several air breathing propulsion concepts for future earth-to-orbit transport vehicles utilize air collection and enrichment, and subsequent storage of liquid oxygen for later use in the vehicle mission. Work performed during the 1960's established the feasibility of substantially reducing weight and volume of a distillation type air separator system by operating the distillation elements in high 'g' fields obtained by rotating the separator assembly. The purpose of this study was to evaluate various fuels and fuel combinations with the objective of minimizing the weight and increase the ready alert capability of the plane. Fuels will be used to provide energy as well as act as heat sinks for the on-board heat rejection system. Fuel energy was used to provide power for air separation as well as to produce refrigeration for liquefaction of oxygen enriched air, besides its primary purpose of vehicle propulsion. The heat generated in the cycle was rejected to the fuel and water which is also carried on board the vehicle.The fuels that were evaluated include JP4, methane, and hydrogen. Hydrogen served as a comparison to the JP4 and methane cases.

  7. Polymer solution phase separation: Microgravity simulation

    NASA Technical Reports Server (NTRS)

    Cerny, Lawrence C.; Sutter, James K.

    1989-01-01

    In many multicomponent systems, a transition from a single phase of uniform composition to a multiphase state with separated regions of different composition can be induced by changes in temperature and shear. The density difference between the phase and thermal and/or shear gradients within the system results in buoyancy driven convection. These differences affect kinetics of the phase separation if the system has a sufficiently low viscosity. This investigation presents more preliminary developments of a theoretical model in order to describe effects of the buoyancy driven convection in phase separation kinetics. Polymer solutions were employed as model systems because of the ease with which density differences can be systematically varied and because of the importance of phase separation in the processing and properties of polymeric materials. The results indicate that the kinetics of the phase separation can be performed viscometrically using laser light scattering as a principle means of following the process quantitatively. Isopycnic polymer solutions were used to determine the viscosity and density difference limits for polymer phase separation.

  8. Enhancing Centrifugal Separation With Electrophoresis

    NASA Technical Reports Server (NTRS)

    Herrmann, F. T.

    1986-01-01

    Separation of biological cells by coil-planet centrifuge enhanced by electrophoresis. By itself, coil-planet centrifuge offers relatively gentle method of separating cells under low centrifugal force in physiological medium that keeps cells alive. With addition of voltage gradient to separation column of centrifuge, separation still gentle but faster and more complete. Since separation apparatus contains no rotary seal, probability of leakage, contamination, corrosion, and short circuits reduced.

  9. Joule Heating Induced Nonlinear Behavior in the Phase-Separated System (La0.73Bi0.27)0.67Ca0.33MnO3

    NASA Astrophysics Data System (ADS)

    Wu, Yuying; Li, Haina; Xia, Zhengcai; Zhang, Gufei; Vanacken, Johan; Moshchalkov, Victor V.

    2011-05-01

    A conduction mechanism has been investigated in the phase-separated compound (La0.73Bi0.27)0.67Ca0.33MnO3 at various temperatures below and above the ferromagnetic-paramagnetic (FM-PM) transition temperature T c . When a high current density applied, a strong nonlinear behavior with negative differential resistance (NDR) was observed. The application of an external magnetic field inhibits the appearance of NDR. Usually, the experiments strongly suggest that the electric field has an important effect on the nonlinear conduction behavior of the sample. However, our experiment shows that, instead of the electric field effect (that is electroresistance), the observed nonlinear behavior results mainly from the Joule heating effect. Thus, we should exercise extreme caution when interpreting the nonlinear conduction behavior of the phase-separated system.

  10. SEPARATING HAFNIUM FROM ZIRCONIUM

    DOEpatents

    Lister, B.A.J.; Duncan, J.F.; Hutcheon, J.M.

    1956-08-21

    Substantially complete separation of zirconium from hafnium may be obtained by elution of ion exchange material, on which compounds of the elements are adsorbed, with an approximately normal solution of sulfuric acid. Preferably the acid concentration is between 0.8 N amd 1.2 N, amd should not exceed 1.5 N;. Increasing the concentration of sulfate ion in the eluting solution by addition of a soluble sulfate, such as sodium sulfate, has been found to be advantageous. The preferred ion exchange materials are sulfonated polystyrene resins such as Dowex 50,'' and are preferably arranged in a column through which the solutions are passed.

  11. NIOBIUM-TANTALUM SEPARATION

    DOEpatents

    Wilhelm, H.A.; Foos, R.A.

    1959-01-27

    The usual method for the separation of tantalum and niobium consists of a selective solvent extraction from an aqueous hydrofluoric acid solution of the metals. A difficulty encountered in this process is the fact that the corrosion problems associated with hydrofluoric acid are serious. It has been found that the corrosion caused by the hydrofluoric acid may be substantially reduced by adding to the acidic solution an amine, such as phenyl diethanolamine or aniline, and adjusting pH value to between 4 and 6.

  12. SEPARATION OF PLUTONIUM

    DOEpatents

    Maddock, A.G.; Smith, F.

    1959-08-25

    A method is described for separating plutonium from uranium and fission products by treating a nitrate solution of fission products, uranium, and hexavalent plutonium with a relatively water-insoluble fluoride to adsorb fission products on the fluoride, treating the residual solution with a reducing agent for plutonium to reduce its valence to four and less, treating the reduced plutonium solution with a relatively insoluble fluoride to adsorb the plutonium on the fluoride, removing the solution, and subsequently treating the fluoride with its adsorbed plutonium with a concentrated aqueous solution of at least one of a group consisting of aluminum nitrate, ferric nitrate, and manganous nitrate to remove the plutonium from the fluoride.

  13. Membrane separation processes

    SciTech Connect

    Rautenbach, R.; Albrecht, R.

    1989-01-01

    The success of two membrane processes, reverse osmosis and ultrafiltration, has helped make membrane processes a central technique in solving separation problems for fluid systems. This book discusses the various applications and developments in membrane technology and shows how accurate membrane processes can be designed. Starting with the local transport phenomena, the behavior of individual elements such as tube or plate membrane and the behavior of the technical unit - the module - are discussed in detail. The book goes on to demonstrate the most effective ways of arranging modules for forming an optimal plant.

  14. Processes to separate enantiomers.

    PubMed

    Lorenz, Heike; Seidel-Morgenstern, Andreas

    2014-01-27

    The provision of pure enantiomers is of increasing importance not only for the pharmaceutical industry but also for agrochemistry and biotechnology. In general, there are two rival approaches to provide pure enantiomers. The "chiral" approach is based on developing an asymmetric synthesis of just one of the enantiomers, while the "racemic" approach is based on separating mixtures of the two enantiomers. In the last few years remarkable progress has been achieved in the latter area. This Review focuses in particular on enantioselective crystallization processes and preparative chromatography, including hybrid processes and the incorporation of racemization steps. Several examples from our research are used for illustration purposes.

  15. Cyclic membrane separation process

    DOEpatents

    Nemser, Stuart M.

    2005-05-03

    A cyclic process for controlling environmental emissions of volatile organic compounds (VOC) from vapor recovery in storage and dispensing operations of liquids maintains a vacuum in the storage tank ullage. In the first part of a two-part cyclic process ullage vapor is discharged through a vapor recovery system in which VOC are stripped from vented gas with a selectively gas permeable membrane. In the second part, the membrane is inoperative while gas pressure rises in the ullage. In one aspect of this invention, a vacuum is drawn in the membrane separation unit thus reducing overall VOC emissions.

  16. PLUTONIUM SEPARATION METHOD

    DOEpatents

    Beaufait, L.J. Jr.; Stevenson, F.R.; Rollefson, G.K.

    1958-11-18

    The recovery of plutonium ions from neutron irradiated uranium can be accomplished by bufferlng an aqueous solutlon of the irradiated materials containing tetravalent plutonium to a pH of 4 to 7, adding sufficient acetate to the solution to complex the uranyl present, adding ferric nitrate to form a colloid of ferric hydroxide, plutonlum, and associated fission products, removing and dissolving the colloid in aqueous nitric acid, oxldizlng the plutonium to the hexavalent state by adding permanganate or dichromate, treating the resultant solution with ferric nitrate to form a colloid of ferric hydroxide and associated fission products, and separating the colloid from the plutonlum left in solution.

  17. POLONIUM SEPARATION PROCESS

    DOEpatents

    Karraker, D.G.

    1959-07-14

    A liquid-liquid extraction process is presented for the recovery of polonium from lead and bismuth. According to the invention an acidic aqueous chloride phase containing the polonium, lead, and bismuth values is contacted with a tributyl phosphate ether phase. The polonium preferentially enters the organic phase which is then separated and washed with an aqueous hydrochloric solution to remove any lead or bismuth which may also have been extracted. The now highly purified polonium in the organic phase may be transferred to an aqueous solution by extraction with aqueous nitric acid.

  18. URANIUM SEPARATION PROCESS

    DOEpatents

    Hyde, E.K.; Katzin, L.I.; Wolf, M.J.

    1959-07-14

    The separation of uranium from a mixture of uranium and thorium by organic solvent extraction from an aqueous solution is described. The uranium is separrted from an aqueous mixture of uranium and thorium nitrates 3 N in nitric acid and containing salting out agents such as ammonium nitrate, so as to bring ihe total nitrate ion concentration to a maximum of about 8 N by contacting the mixture with an immiscible aliphatic oxygen containing organic solvent such as diethyl carbinol, hexone, n-amyl acetate and the like. The uranium values may be recovered from the organic phase by back extraction with water.

  19. Protein separation using an electrically tunable membrane

    NASA Astrophysics Data System (ADS)

    Jou, Ining; Melnikov, Dmitriy; Gracheva, Maria

    Separation of small proteins by charge with a solid-state porous membrane requires control over the protein's movement. Semiconductor membrane has this ability due to the electrically tunable electric potential profile inside the nanopore. In this work we investigate the possibility to separate the solution of two similar sized proteins by charge. As an example, we consider two small globular proteins abundant in humans: insulin (negatively charged) and ubiquitin (neutral). We find that the localized electric field inside the pore either attracts or repels the charged protein to or from the pore wall which affects the delay time before a successful translocation of the protein through the nanopore. However, the motion of the uncharged ubiquitin is unaffected. The difference in the delay time (and hence the separation) can be further increased by the application of the electrolyte bias which induces an electroosmotic flow in the pore. NSF DMR and CBET Grant No. 1352218.

  20. Apparatus for diffusion separation

    DOEpatents

    Nierenberg, William A.

    1976-08-10

    1. A diffuser separator apparatus which comprises a plurality of flow channels in a single stage, each of said channels having an inlet port and an outlet port and a constant cross sectional area between said ports, at least a portion of the defining surface of each of said channels being a diffusion separation membrane, and each of said channels having a different cross sectional area, means for connecting said channels in series so that each successive channel of said series has a smaller cross sectional area than the previous channel of said series, a source of gaseous mixture, individual means for flowing said gaseous mixture to the inlet port of each of said channels, gas receiving and analyzing means, individual means for flowing gas passing from each of said outlet ports and means for flowing gas passing through said membranes to said receiving and analyzing means, and individual means for connecting the outlet port of each channel with the inlet port of the channel having the next smaller cross sectional area.