Science.gov

Sample records for microporous silica prepared

  1. [Study on the preparation and properties of novel silica microporous antireflective coating by sol-gel process].

    PubMed

    Shang, Meng-Ying; Cao, Lin-Hong; Liu, Miao; Luo, Xuan; Ren, Hong-Bo; Ye, Xin; Tang, Yong-Jian; Jiang, Xiao-Dong

    2013-04-01

    Silica sol was prepared by acid catalyzed sol-gel process using tetraethylorthosilicate (TEOS) as precursor and dimethyldietoxysilane (DDS) as pore-forming agent. A novel kind of monolayer microporous silica anti-reflective (AR) coating was obtained on K9 glass substrate by dip-coating technique and then heat treated at 500 degrees C. The effects of different DDS/TEOS molar ratios on refractive index, transmittance and hardness were investigated. A positive correlation was found between the transmittance and the DDS/TEOS molar ratio due to the increasing porosity. The maximum transmittance can reach 99.7% with the molar ratio of DDS/TEOS rising to 1 : 1. Meanwhile, the refractive index was found quite close to the ideal value 1.22. Nevertheless, higher molar ratio will lead to a bad film-forming property. On the other hand, the hardness of the coatings decreased with the DDS increasing but still remained more than 2 h when the transmittance reached highest. Besides, these coatings exhibit a well abrasion-resistance and excellent adhesivity. The maximum transmittance was only dropped by 0.071% and 0.112% after abrasion for 500 and 1 000 times respectively. Accelerated corrosion tests indicated that the transmittance of traditional coatings rapidly fell down to the substrate level (-92%) after immersion for 5 min, while the transmittance of our novel coating almost linearly decreased and was kept 93.2% after 56 min. In other words, the environment-resistance of our novel silica AR coating is ten times higher than that of traditional ones. The promotions of the coating performances benefit from its micropore structure (-0. 4 nm) with which water molecule can be effectively prevented. With its high transmittance, good mechanical properties and high environment-resistance, this kind of novel coating has a potential application in the field of solar glass modification to improve its anti-reflective properties.

  2. Dual-Layer Asymmetric Microporous Silica Membranes

    SciTech Connect

    TSAI,CHUNG-YI; TAM,SIU-YUE; LU,YUNFENG; BRINKER,C. JEFFREY

    1999-11-19

    We report a novel sol-gel dip-coating process to form dual-layer microporous silica membranes with improved membrane performance and reproducibility. First, we deposit a surfactant-templated silica (STS) intermediate layer on top of a commercial {gamma}-alumina support both to improve its ''surface finish'' and to prevent a subsequently deposited microporous overlayer from penetrating into the support. Second, membranes are processed under clean room conditions to avoid dust contamination and, third, membranes are vacuum-calcined to promote further pore shrinkage and impart surface hydrophobicity. The resulting asymmetric membrane exhibits a gradual change in pore diameter from 50{angstrom} ({gamma}-alumina support layer) to 10-12{angstrom} (STS intermediate layer), and then to 3-4{angstrom} (30nm thick, ultramicroporous silica top-layer). Compared to a single-layer process using only the microporous overlayer, the dual-layer process improves both flux and selectivity. For the industrially important problem of natural gas purification, the combined CO{sub 2} flux [(3{approx} 0.5) x 10{sup {minus}4} cm{sup 3}(STP)/(s{center_dot}cm{sup 2}{center_dot}cm-Hg)] and CO{sub 2}/CH{sub 4} separation factors [200{approx}600] are superior to all previously reported values for separation of a 50/50 (v/v) CO{sub 2}/CH{sub 4} gas mixture. In addition, the membrane selectively separated hydrogen from a simulated reformate from partial oxidation of methanol as evidenced by a high concentration of hydrogen recovery.

  3. Synthesis of Pd particle-deposited microporous silica membranes via a vacuum-impregnation method and their gas permeation behavior.

    PubMed

    Lee, Dong-Wook; Yu, Chang-Yeol; Lee, Kew-Ho

    2008-09-15

    Pd particle-deposited microporous silica membranes were synthesized to improve hydrogen permselectivity of the microporous silica membrane and to overcome high cost of palladium and crack formation through hydrogen embrittlement. Pd particles below 400 nm in diameter were readily deposited on the microporous silica membrane via a vacuum-impregnation method by using a Pd(C(3)H(5))(C(5)H(5)) precursor. After deposition of Pd particles on the microporous silica membrane, hydrogen permselectivity over nitrogen considerably increased from 11-28 to 30-115 in a permeation temperature range of 25-350 degrees C due to plugging membrane defects and hydrogen adsorption diffusion through the interface between the Pd and silica layer. The activation energy of the Pd-deposited silica membrane (6.32 kJ mol(-1)) was higher than that of the microporous silica membrane (4.22 kJ mol(-1)). In addition, the Pd-particle deposition led to an increase in the permselectivity of He and CO(2) with little chemical affinity for the Pd particles, which indicates that Pd-particle deposition gives the effect of plugging defects such as pinholes or cracks, which could be formed during the membrane preparation. Therefore it is demonstrated that Pd-particle deposition on the silica membrane is effective for induction of the hydrogen adsorption diffusion and plugging membrane defects.

  4. Molecular imprinting of bulk, microporous silica

    NASA Astrophysics Data System (ADS)

    Katz, Alexander; Davis, Mark E.

    2000-01-01

    Molecular imprinting aims to create solid materials containing chemical functionalities that are spatially organized by covalent or non-covalent interactions with imprint (or template) molecules during the synthesis process. Subsequent removal of the imprint molecules leaves behind designed sites for the recognition of small molecules, making the material ideally suited for applications such as separations, chemical sensing and catalysis. Until now, the molecular imprinting of bulk polymers and polymer and silica surfaces has been reported, but the extension of these methods to a wider range of materials remains problematic. For example, the formation of substrate-specific cavities within bulk silica, while conceptually straightforward, has been difficult to accomplish experimentally. Here we describe the imprinting of bulk amorphous silicas with single aromatic rings carrying up to three 3-aminopropyltriethoxysilane side groups; this generates and occupies microporosity and attaches functional organic groups to the pore walls in a controlled fashion. The triethoxysilane part of the molecules' side groups is incorporated into the silica framework during sol-gel synthesis, and subsequent removal of the aromatic core creates a cavity with spatially organized aminopropyl groups covalently anchored to the pore walls. We find that the imprinted silicas act as shape-selective base catalysts. Our strategy can be extended to imprint other functional groups, which should give access to a wide range of functionalized materials.

  5. Temperature Influence of Benzene Adsorption by a Microporous Silica.

    PubMed

    Pendleton

    2000-07-01

    The theory for volume filling of micropores is used to describe benzene adsorption isotherms measured over a 25 K temperature range. The adsorption potential or molar work of adsorption for the isotherm at 298 K is derived and compared with Weibull, Gaussian, and gamma potential distribution functions. The Weibull function is fitted via a two-term Dubinin-Radushkevich (D-R) equation. The closest data fit occurs for the gamma distribution. The two-term D-R potentials are interpreted as indicating adsorption by primary micropores followed sequentially by secondary micropores. Analysis of the distribution of adsorption enthalpy for the porous solid compared with a nonporous standard suggests that the predominant pore width is 1.2 nm. The interpretation of the differential molar adsorption entropy at 298 K suggests that strongly localized adsorption occurs in the primary micropores and two-dimensional translational motion with rotation in the plane of the ring occurs in the secondary micropores. Copyright 2000 Academic Press.

  6. Counter-diffusion of isotopically labeled trichloroethylene in silica gel and geosorbent micropores: Model development

    SciTech Connect

    McMillan, S.A.; Werth, C.J.

    1999-07-01

    A new model was developed to determine if reduced uptake rates observed during isotope exchange experiments could plausibly be attributed to sterically hindered counter-diffusion in one-dimensional micropores. During exchange experiments, hydrogenated trichloroethylene ({sup 1}HTCE) was displaced with deuterated TCE (DTCE) in the slow-desorbing sites of a silica gel, a groundwater sediment, and a clay and silt fraction. To describe this process, the model accounts for co- and counter-diffusion of TCE isotopes in one-dimensional micropores, where each micropore type is defined by a single codiffusion rate constant and a single counter-diffusion rate constant. For silica gel, isotope exchange was simulated in a single micropore type. For geosorbents, isotope exchange was simulated in a distribution of micropore types characterized by a {gamma} distribution of diffusion rate constants. Simulation results indicate that (1) the proposed model accounts for the mechanisms controlling isotope exchange in the silica gel and the groundwater sediment and (2) the rate of counter-diffusion is up to 6 times slower than the rate of codiffusion. This suggests that steric hindrance between counter-diffusing sorbates can significantly affect mass transfer and, consequently, the transport of chemical mixtures in the subsurface.

  7. Blocked-micropores, surface functionalized, bio-compatible and silica-coated iron oxide nanocomposites as advanced MRI contrast agent

    NASA Astrophysics Data System (ADS)

    Darbandi, Masih; Laurent, Sophie; Busch, Martin; Li, Zi-An; Yuan, Ying; Krüger, Michael; Farle, Michael; Winterer, Markus; Vander Elst, Luce; Muller, Robert N.; Wende, Heiko

    2013-05-01

    Biocompatible magnetic nanoparticles have been found promising in several biomedical applications for tagging, imaging, sensing and separation in recent years. In this article, a systematic study of the design and development of surface-modification schemes for silica-coated iron oxide nanoparticles (IONP) via a one-pot, in situ method at room temperature is presented. Silica-coated IONP were prepared in a water-in-oil microemulsion, and subsequently the surface was modified via addition of organosilane reagents to the microemulsion system. The structure and the morphology of the as synthesized nanoparticles have been investigated by means of transmission electron microscopy (TEM) and measurement of N2 adsorption-desorption. Electron diffraction and high-resolution transmission electron microscopic (TEM) images of the nanoparticles showed the highly crystalline nature of the IONP structures. Nitrogen adsorption indicates microporous and blocked-microporous structures for the silica-coated and amine functionalized silica-coated IONP, respectively which could prove less cytotoxicity of the functionalized final product. Besides, the colloidal stability of the final product and the presence of the modified functional groups on top of surface layer have been proven by zeta-potential measurements. Owing to the benefit from the inner IONP core and the hydrophilic silica shell, the as-synthesized nanocomposites were exploited as an MRI contrast enhancement agent. Relaxometric results prove that the surface functionalized IONP have also signal enhancement properties. These surface functionalized nanocomposites are not only potential candidates for highly efficient contrast agents for MRI, but could also be used as ultrasensitive biological-magnetic labels, because they are in nanoscale size, having magnetic properties, blocked-microporous and are well dispersible in biological environment.

  8. Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas.

    PubMed

    Bao, Zhihao; Weatherspoon, Michael R; Shian, Samuel; Cai, Ye; Graham, Phillip D; Allan, Shawn M; Ahmad, Gul; Dickerson, Matthew B; Church, Benjamin C; Kang, Zhitao; Abernathy, Harry W; Summers, Christopher J; Liu, Meilin; Sandhage, Kenneth H

    2007-03-08

    The carbothermal reduction of silica into silicon requires the use of temperatures well above the silicon melting point (> or =2,000 degrees C). Solid silicon has recently been generated directly from silica at much lower temperatures (< or =850 degrees C) via electrochemical reduction in molten salts. However, the silicon products of such electrochemical reduction did not retain the microscale morphology of the starting silica reactants. Here we demonstrate a low-temperature (650 degrees C) magnesiothermic reduction process for converting three-dimensional nanostructured silica micro-assemblies into microporous nanocrystalline silicon replicas. The intricate nanostructured silica microshells (frustules) of diatoms (unicellular algae) were converted into co-continuous, nanocrystalline mixtures of silicon and magnesia by reaction with magnesium gas. Selective magnesia dissolution then yielded an interconnected network of silicon nanocrystals that retained the starting three-dimensional frustule morphology. The silicon replicas possessed a high specific surface area (>500 m(2) g(-1)), and contained a significant population of micropores (< or =20 A). The silicon replicas were photoluminescent, and exhibited rapid changes in impedance upon exposure to gaseous nitric oxide (suggesting a possible application in microscale gas sensing). This process enables the syntheses of microporous nanocrystalline silicon micro-assemblies with multifarious three-dimensional shapes inherited from biological or synthetic silica templates for sensor, electronic, optical or biomedical applications.

  9. Preparation of Microporous Membranes for Lithium ion battery

    NASA Astrophysics Data System (ADS)

    Ren, Xumei; Gu, Hui; Wu, Feng; Huang, Xuejie

    PVDF-HFP based microporous films were prepared by phase inverse process. PVDF-HFP copolymer powder was dissolved in a mixture of acetone and a PVDF non-solvent (glycerol). The proportion of non-solvent was low enough to allow the dissolution and high enough to allow the phase separation during evaporation. The ratio of PVDF/acetone/glycerol in weight was controlled to 10-15/85-75/5-10. The membrane exhibit a spongy structure without clearly outlined skin layers when wet method is used, while it has skin if dry method is applied. The effects of solution composition, exposure time prior to coagulation and temperature of the coagulation bath on the micro-structure of prepared membranes were investigated. The porosity increase with the content of non-solvent, and decrease with the concentration of PVDF.

  10. Transport of pure components in pervaporation through a microporous silica membrane.

    PubMed

    Bettens, Ben; Dekeyzer, Sofie; Van der Bruggen, Bart; Degrève, Jan; Vandecasteele, Carlo

    2005-03-24

    The pervaporation mechanism of pure components through a commercial microporous silica membrane was studied by performing experiments using water, methanol, ethanol, 2-propanol, and n-propanol in the 40-80 degrees C temperature range. Experimental fluxes were correlated to feed temperature and viscosity. It was found that the permeation mechanism obeys the adsorption-diffusion description, covering both the microscopic models based on configurational (micropore) diffusion and on activated surface diffusion. The contribution of convection was negligible. Size parameters for the permeating molecules such as molecular weight, kinetic diameter, and effective diameter, which are expected to have an influence on diffusion, did not correlate with the flux, thus strongly emphasizing the importance of sorption as the rate-determining step for transport in the pervaporation process. This was confirmed by correlating parameters reflecting polarity with flux: an exponential relation between the Hansen polarity (especially the hydrogen bonding component) and the flux was observed. A similar correlation was found between the dielectric constant and the flux. Furthermore, the flux increases in the same direction as the hydrophilicity of the pure components (log P). The effects of membrane surface tension and contact angles are less outspoken, but experiments performed on glass supported and silica supported membrane top layers suggest an important influence of the sublayers on the flux.

  11. Hybrid Mesoporous Silicas and Microporous POSS-Based Frameworks Incorporating Evaporation-Induced Self-Assembly

    PubMed Central

    Li, Jheng-Guang; Chu, Wei-Cheng; Kuo, Shiao-Wei

    2015-01-01

    We fabricated a series of mesoporous silicas and mesoporous organosilicates with hierarchical porosity through evaporation-induced self-assembly using Pluronic F127 as a template in this study. We could tailor the mesophase of each mesoporous silica sample by varying the weight ratio of its two silica sources: tetraethyl orthosilicate (TEOS) and triethoxysilane hydrosilylated octavinyl polyhedral oligomeric silsesquioxane (OV-POSS-SILY). The mesophases ranged from an ordered body-centered cubic (bcc) structure (TEOS alone) to ordered face-centered cubic (fcc) structure (10 and 20 wt.% of OV-POSS-SILY) and finally to disordered spherical pores (≥30 wt.% of OV-POSS-SILY). We used small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM) to study the transformations of these mesophases, while N2 isotherm sorption curves revealed the porosities of these mesoporous silicate samples. Moreover, 29Si CP/MAS solid state nuclear magnetic resonance spectroscopy allowed us to analyze the compositions of the POSS-containing silicate frameworks. Such functional mesoporous silica samples incorporating microporous POSS building units have potential applications in various systems, including optical and electronic devices.

  12. The hydrogen-storing microporous silica 'Microcluster' reduces acetaldehyde contained in a distilled spirit.

    PubMed

    Kato, Shinya; Miwa, Nobuhiko

    2016-12-01

    Acetaldehyde is a detrimental substance produced in alcoholic liquor aging. We assessed an ability of hydrogen-storing microporous silica 'Microcluster' (MC+) to reduce acetaldehyde, as compared with autoclave-dehydrogenated MC+ (MC-). Acetaldehyde was quantified spectrophotometrically by an enzymatic method. Authentic acetaldehyde was treated by MC+ for 20min, and decreased from 43.4ppm to 10.9ppm, but maintained at 49.3ppm by MC-. On the other hand, acetaldehyde contained in a distilled spirit was decreased from 29.5ppm to 3.1ppm at 20min by MC+, but not decreased by MC-. Addition of MC+ or MC- to distilled water without acetaldehyde showed no seeming effect on the quantification used. Accordingly acetaldehyde in a distilled spirit is reduced to ethanol by hydrogen contained in MC+, but not by the silica moiety of MC+. Hydrogen gas of 1.2mL was released for 20min from MC+ of 0.59g in water, resulting in dissolved hydrogen of 1.09ppm and an oxidation- reduction potential of -687.0mV indicative of a marked reducing ability. Thus, MC+ has an ability to reduce acetaldehyde in a distilled spirit due to dissolved hydrogen released from MC+.

  13. Process for preparing polymer reinforced silica aerogels

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B. (Inventor); Capadona, Lynn A. (Inventor)

    2011-01-01

    Process for preparing polymer-reinforced silica aerogels which comprises a one-pot reaction of at least one alkoxy silane in the presence of effective amounts of a polymer precursor to obtain a silica reaction product, the reaction product is gelled and subsequently subjected to conditions that promotes polymerization of the precursor and then supercritically dried to obtain the polymer-reinforced monolithic silica aerogels.

  14. An activated microporous carbon prepared from phenol-melamine-formaldehyde resin for lithium ion battery anode

    SciTech Connect

    Zhu, Yinhai; Xiang, Xiaoxia; Liu, Enhui; Wu, Yuhu; Xie, Hui; Wu, Zhilian; Tian, Yingying

    2012-08-15

    Highlights: ► Microporous carbon was prepared by chemical activation of phenol-melamine-formaldehyde resin. ► Activation leads to high surface area, well-developed micropores. ► Micropores lead to strong intercalation between carbon and lithium ion. ► Large surface area promotes to improve the lithium storage capacity. -- Abstract: Microporous carbon anode materials were prepared from phenol-melamine-formaldehyde resin by ZnCl{sub 2} and KOH activation. The physicochemical properties of the obtained carbon materials were characterized by scanning electron microscope, X-ray diffraction, Brunauer–Emmett–Teller, and elemental analysis. The electrochemical properties of the microporous carbon as anode materials in lithium ion secondary batteries were evaluated. At a current density of 100 mA g{sup −1}, the carbon without activation shows a first discharge capacity of 515 mAh g{sup −1}. After activation, the capacity improved obviously. The first discharge capacity of the carbon prepared by ZnCl{sub 2} and KOH activation was 1010 and 2085 mAh g{sup −1}, respectively. The reversible capacity of the carbon prepared by KOH activation was still as high as 717 mAh g{sup −1} after 20 cycles, which was much better than that activated by ZnCl{sub 2}. These results demonstrated that it may be a promising candidate as an anode material for lithium ion secondary batteries.

  15. Massive preparation of pitch-based organic microporous polymers for gas storage.

    PubMed

    Li, Wenqing; Zhang, Aijuan; Gao, Hui; Chen, Mingjie; Liu, Anhua; Bai, Hua; Li, Lei

    2016-02-14

    A general challenge for preparing organic microporous polymers (MOPs) is to use cheap and sustainable building blocks while retaining the advanced functions. We demonstrate a strategy to massively prepare pitch-based MOPs, which are thermally and chemically stable. A maximum BET surface area of 758 m(2) g(-1) and high gas storage capacity were achieved.

  16. Preparation and Characterization of Silica Aerogel Microspheres

    PubMed Central

    Chen, Qifeng; Wang, Hui; Sun, Luyi

    2017-01-01

    Silica aerogel microspheres based on alkali silica sol were synthesized using the emulsion method. The experimental results revealed that the silica aerogel microspheres (4–20 µm in diameter) were mesoporous solids with an average pore diameter ranging from 6 to 35 nm. The tapping densities and specific surface areas of the aerogel microspheres are in the range of 0.112–0.287 g/cm3 and 207.5–660.6 m2/g, respectively. The diameter of the silica aerogel microspheres could be tailored by varying the processing conditions including agitation rate, water/oil ratio, mass ratio of Span 80: Tween 80, and emulsifier concentration. The effects of these parameters on the morphology and textural properties of the synthesized silica aerogel microspheres were systematically investigated. Such silica aerogel microspheres can be used to prepare large-scale silica aerogels at an ambient pressure for applications in separation and high efficiency catalysis, which requires features of high porosity and easy fill and recovery. PMID:28772795

  17. Procedure to prepare transparent silica gels

    NASA Technical Reports Server (NTRS)

    Barber, Patrick G. (Inventor); Simpson, Norman R. (Inventor)

    1987-01-01

    This invention relates to the production of silica gels and in particular to a process for the preparation of silica gels which can be used as a crystal growth medium that simulates the convectionless environment of space to produce structurally perfect crystals. Modern utilizations of substances in electronics, such as radio transmitters and high frequency microphones, often require single crystals with controlled purity and structural perfection. The near convectionless environment of silica gel suppresses nucleation, thereby reducing the competitive nature of crystal growth. This competition limits the size and perfection of the crystal; and it is obviously desirable to suppress nucleation until, ideally, only one crystal grows in a predetermined location. A silica gel is not a completely convectionless environment like outer space, but is the closest known environment to that of outer space that can be created on Earth.

  18. Evaluation of a Cyclodextrin-silica Hybrid Microporous Composite for the Solid-phase Extraction of Polycyclic Aromatic Hydrocarbons.

    PubMed

    Soler-Seguí, Salomé; Belenguer-Sapiña, Carolinakn-Aut-Sei; Amorós, Pedro; Mauri-Aucejo, Adela

    2016-01-01

    Solid-phase extraction (SPE) coupled with high-performance liquid chromatography (HPLC) with fluorescence detection were employed to determine trace polycyclic aromatic hydrocarbons in water samples. In this way, the use of cartridges containing cyclodextrin-silica hybrid microporous solid phases was proposed. The experimental results indicated that the method provided relative standard deviations of below 15% and detection limits recorded were 12, 1.2, 12, 38, 4, 6 and 4 ng L(-1) for benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[g,h,i]perylene, indeno[1,2,3]pyrene, benzo[a]pyrene, dibenzo[a,h]anthracene and benzo[a]anthracene, respectively. Moreover, the method was successfully applied for the determination of these organic compounds in water samples, where they were found to be in the 7 to 580 ng L(-1) range. It can be concluded that the major advantages of cyclodextrin-silica hybrid microporous solid phases are that they reduce the consumption and the toxicity of the solvent and the time consumption of the sample treatment step.

  19. Microporous structure with layered interstitial surface treatment, and method and apparatus for preparation thereof

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L. (Inventor)

    1994-01-01

    A microporous structure with layered interstitial surface treatments, and method and apparatus for preparation thereof is presented. The structure is prepared by sequentially subjecting a uniformly surface-treated structure to atomic oxygen treatment to remove an outer layer of surface treatment to a generally uniform depth, and then surface treating the so exposed layer with another surface treating agent. The atomic oxygen/surface treatment steps may optionally be repeated, each successive time to a lesser depth, to produce a microporous structure having multilayered surface treatments. The apparatus employs at least one side arm from a main atomic oxygen-containing chamber. The side arm has characteristic relaxation times such that a uniform atomic oxygen dose rate is delivered to a specimen positioned transversely in the side arm spaced from the main gas chamber.

  20. Microporous structure with layered interstitial surface treatment, and method and apparatus for preparation thereof

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L. (Inventor)

    1992-01-01

    A microporous structure with layered interstitial surface treatments, and the method and apparatus for its preparation are disclosed. The structure is prepared by sequentially subjecting a uniformly surface treated structure to atomic oxygen treatment to remove an outer layer of surface treatment to a generally uniform depth, and then surface treating the so exposed layer with another surface treating agent. The atomic oxygen/surface treatment steps may optionally be repeated, each successive time to a lesser depth, to produce a microporous structure having multilayered surface treatments. The apparatus employs at least one side arm from a main oxygen-containing chamber. The side arm has characteristic relaxation times such that a uniform atomic oxygen dose rate is delivered to a specimen positioned transversely in the side arm spaced from the main gas chamber.

  1. New approaches to prepare hydride silica.

    PubMed

    Gomez, Jorge E; Sandoval, Junior E

    2010-09-01

    Two synthetic schemes to produce a hydride-modified support that serves as an intermediate for the preparation of bonded phases for liquid chromatography (LC) and capillary electrophoresis (CE) are investigated. The strategies differ in the silane reagent utilized (trichlorosilane (TCS) or triethoxysilane (TES)) and the manner water is incorporated into the reaction. In the first approach, TCS in toluene reacts with a previously humidified silica substrate so that the reaction is confined to the silica surface. In the second approach, TES and a small amount of aqueous HCl are dissolved in THF, and this hydrolysate is diluted by a great factor in cyclohexane, prior to reaction with the silica substrate. Atomic force microscopy (AFM) images of the hydride film on wafers revealed that, unlike the traditional approach that produced a patchy coating, both new methods provided a homogeneous layer on the substrate's surface. IR and NMR spectra from porous silica particles clearly confirmed a successful surface modification. AFM and water contact angles (WCA) were used to examine the effect of dilution of the TES hydrolysate in cyclohexane on the trend of the film to polymerize on wafers and found that a dilution factor of at least 100 is required to attain a molecularly thin hydride layer. WCA and CE also revealed a strong susceptibility of the hydride silica intermediate to hydrolyze, even at low pH. Compared to TCS, the lower reactivity and volatility of TES resulted in a much more desirable experimental approach.

  2. Preparation and characterization of microporous fibers for sample preparation and LC-MS determination of drugs.

    PubMed

    Buszewski, Boguslaw; Nowaczyk, Jacek; Ligor, Tomasz; Olszowy, Pawel; Ligor, Magdalena; Wasiniak, Bartlomiej; Miekisch, Wolfram; Schubert, Jochen K; Amann, Anton

    2009-07-01

    The aim of this study was the preparation of polypyrrole (PPy) fibers for solid phase microextraction (SPME). PPy coatings were obtained during the electrochemical polymerization process. The utility of various metal wires (Fe, Cu, Ag, Cu/Ag, kanthal and medical stainless steel) as a support for polymers was compared. Various experimental conditions of the synthesis process such as scan rate, voltage limits and number of scans and deposition time were applied. The average polymer thickness was in the range of 7-125 microm and its weight was in the scope of 0.65-5.6 mg. Different techniques, mainly elemental analysis, Fourier transform infrared spectroscopy, microscopy, and chromatography were performed for the characterization of obtained fibers with microporous structure. The extraction efficiency of cardiovascular drugs (metoprolol, propranolol, oxprenolol, propafenone and mexiletine) by means of fibers was tested. The concentration of mentioned compounds in standard solution was in the span of 10-150 ng/mL. LC-MS was employed for determination of drugs in desorption solution. LODs varied from 0.013 to 1.51 ng/mL for metoprolol and mexiletine respectively. The repeatability of extraction was obtained with the RSD values lower than 10%.

  3. Preparation and characterization of microporous poly(D,L-lactic acid) film for tissue engineering scaffold.

    PubMed

    Shi, Shuai; Wang, Xiu Hong; Guo, Gang; Fan, Min; Huang, Mei Juan; Qian, Zhi Yong

    2010-11-24

    We prepared a series of microporous films based on poly(d,l-lactic acid) (PLA) via phase separation. According to scanning electron microscopy (SEM), a 3-dimensional foamy structure with multimicrometer scale pores on the air surface of film could be observed. As the morphology of PLA film could not be stabilized using solvent-nonsolvent phase separation, we investigated the effect of temperature, air movement, and concentration on the properties of microporous PLA films. The results show that when the temperature was 25°C in a vacuum, it was easy to prepare PLA film with micropores, and it was stable. As the relationship between the morphology and formation factors was clear and the morphology of the PLA film was controllable, we studied the PLA film's potential use for cell culture. SEM results showed that NIH3T3 cell could be adhered on the surface of film well after incubation for 2 days. Meanwhile, in vitro culture experiments revealed the great biocompatibility of the scaffold for adsorption and proliferation of fibroblasts.

  4. Phenomena affecting morphology of microporous poly(acrylonitrile) prepared via phase separation from solution

    SciTech Connect

    Legasse, R.R.; Weagley, R.J.; Leslie, P.K.; Schneider, D.A.

    1990-01-01

    This paper is concerned with controlling the morphology of microporous polymers prepared via thermal demixing of solutions. 2 wt % solutions of poly(acrylonitrile) in maleic anhydride, a poor solvent, are first cooled to produce separated polymer-rich and solvent-rich phases. Removing the solvent by freeze drying then produces a microporous material having a density of 33 mg/cm{sup 3}, a void fraction of 97%, and a pore size of about 10 {mu}m. We find that the morphology cannot be explained by existing models, which focus on phase diagrams and kinetics of phase transformations during cooling of the solution. In conflict with those models, we find that two radically different morphologies can be produced even when the polymer concentration and cooling path are held strictly constant. A hypothesis that polymer degradation causes the different morphologies is not supported by GPC, {sup 13}C NMR, and FTIR experiments. Instead, we offer evidence that the different microporous morphologies are caused by different polymer conformations in solutions having the same concentration and temperature. 11 refs., 3 figs.

  5. Modulation of microporous/mesoporous structures in self-templated cobalt-silica

    PubMed Central

    Martens, Dana L.; Wang, David K.; Motuzas, Julius; Smart, Simon; da Costa, João C. Diniz

    2015-01-01

    Finite control of pore size distributions is a highly desired attribute when producing porous materials. While many methodologies strive to produce such materials through one-pot strategies, oftentimes the pore structure requires post-treatment modification. In this study, modulation of pore size in cobalt-silica systems was investigated by a novel, non-destructive, self-templated method. These systems were produced from two cobalt-containing silica starting materials which differed by extent of condensation. These starting materials, sol (SG′) and xerogel (XG′), were mixed with pure silica sol to produce materials containing 5–40 mol% Co. The resultant SG-series materials exhibited typical attributes for cobalt-silica systems: mesoporous characteristics developed at high cobalt concentrations, coinciding with Co3O4 formation; whereas, in the XG-series materials, these mesoporous characteristics were extensively suppressed. Based on an examination of the resultant materials a mechanism describing the pore size formation and modulation of the two systems was proposed. Pore size modulation in the XG-series was caused, in part, by the cobalt source acting as an autogenous template for the condensation of the silica network. These domains could be modified when wetted, allowing for the infiltration and subsequent condensation of silica oligomers into the pre-formed, mesoporous cages, leading to a reduction in the mesoporous content of the final product. PMID:25609189

  6. Modeling of electro-osmosis of dilute electrolyte solutions in silica microporous media

    NASA Astrophysics Data System (ADS)

    Wang, Moran; Kang, Qinjun; Viswanathan, Hari; Robinson, Bruce A.

    2010-10-01

    Physicochemical transport due to electro-osmosis of dilute electrolyte solutions (<1 × 10-3 mol/L) through microporous media with granular random microstructures has been modeled in this work by our three-step numerical framework. First, the three-dimensional microstructures of porous media are reproduced by a random generation growth method. Second, the effects of chemical adsorption and electrical dissociation at the solid-liquid interfaces are modeled to determine the electrical boundary conditions, which vary with the ionic concentration, pH, and temperature. Finally, the nonlinear governing equations for electrokinetic transport are solved using a highly efficient lattice Poisson-Boltzmann algorithm. The simulation results indicate that the electro-osmotic permeability through the granular microporous media increases monotonically with the porosity, ionic concentration, pH, and temperature. When the surface electric potential is higher than about -50 mV, the electro-osmotic permeability exponentially increases with the electric potential. The electro-osmotic permeability increases with the bulk ionic concentration even though the surface zeta potential decreases correspondingly, which deviates from the conclusions based on the thin layer model. The electro-osmotic permeability increases exponentially with pH and linearly with temperature. The present modeling results improve our understanding of hydrodynamic and electrokinetic transport in geophysical systems and help guide the design of porous electrodes in microenergy systems.

  7. Preparation of microporous melamine-based polymer networks in an anhydrous high-temperature miniemulsion.

    PubMed

    Schwab, Matthias Georg; Crespy, Daniel; Feng, Xinliang; Landfester, Katharina; Müllen, Klaus

    2011-11-15

    We report the first example of a successful preparation of a microporous organic polymer within the droplet phase of an inverse non-aqueous miniemulsion. Stable nanoparticles with enhanced specific surface area could be obtained despite the harsh conditions regarding reaction temperature (180 °C) and time (72 h) needed for building melamine-based Schiff base networks. Our new flexible method can in principle be applied to other water-sensitive protocols suitable for the bulk synthesis of MOPs that are based on Friedel-Crafts, Sonogashira-Hagihara or Yamamoto chemistry.

  8. Phosphorylated silica nanotubes: preparation and characterization

    NASA Astrophysics Data System (ADS)

    Zhang, Yuqing; Xu, Yan; Lu, Yiren; Zhao, Lili; Song, Lixin

    2013-08-01

    Recently, the strategy of doping inorganic particles into polymer membranes to modify them has been studied intensively. However, these inorganic particles have a disadvantage without being in good compatibility with the polymers. To enhance the compatibility between inorganic particles and polymers, phosphorylated silica nanotubes (PSNTs) with specific high ratios of length to diameter are prepared. Silica nanotubes (SNTs) are prepared through the hydrolysis of tetraethyl orthosilicate in a mixture of aqueous ammonia and dl-tartaric acid, then PSNTs are obtained by silylation and phosphorylation modifications. The optimum synthesis conditions of PSNTs are explored; in addition, the as-prepared PSNTs are characterized by Fourier transform infrared, transmission electron microscope, BET, x-ray photoelectron spectroscopy analysis and thermogravimetric analysis. The results indicate that the ratio of length to diameter of the PSNTs is approximately 20, the thickness of the tube wall is 20 nm, the specific surface area of the PSNTs is 460.2 m2 g-1, the inner diameter of the PSNTs is 76 nm, many mesopores are distributed in the tube walls of the PSNTs, and the PSNTs have numerous hydroxyl active sites along their length direction. Therefore, PSNTs are desirable as suitable fillers of polymer membranes.

  9. Phosphorylated silica nanotubes: preparation and characterization.

    PubMed

    Zhang, Yuqing; Xu, Yan; Lu, Yiren; Zhao, Lili; Song, Lixin

    2013-08-09

    Recently, the strategy of doping inorganic particles into polymer membranes to modify them has been studied intensively. However, these inorganic particles have a disadvantage without being in good compatibility with the polymers. To enhance the compatibility between inorganic particles and polymers, phosphorylated silica nanotubes (PSNTs) with specific high ratios of length to diameter are prepared. Silica nanotubes (SNTs) are prepared through the hydrolysis of tetraethyl orthosilicate in a mixture of aqueous ammonia and dl-tartaric acid, then PSNTs are obtained by silylation and phosphorylation modifications. The optimum synthesis conditions of PSNTs are explored; in addition, the as-prepared PSNTs are characterized by Fourier transform infrared, transmission electron microscope, BET, x-ray photoelectron spectroscopy analysis and thermogravimetric analysis. The results indicate that the ratio of length to diameter of the PSNTs is approximately 20, the thickness of the tube wall is 20 nm, the specific surface area of the PSNTs is 460.2 m(2) g(-1), the inner diameter of the PSNTs is 76 nm, many mesopores are distributed in the tube walls of the PSNTs, and the PSNTs have numerous hydroxyl active sites along their length direction. Therefore, PSNTs are desirable as suitable fillers of polymer membranes.

  10. Comparison of the solid-phase extraction efficiency of a bounded and an included cyclodextrin-silica microporous composite for polycyclic aromatic hydrocarbons determination in water samples.

    PubMed

    Mauri-Aucejo, Adela; Amorós, Pedro; Moragues, Alaina; Guillem, Carmen; Belenguer-Sapiña, Carolina

    2016-08-15

    Solid-phase extraction is one of the most important techniques for sample purification and concentration. A wide variety of solid phases have been used for sample preparation over time. In this work, the efficiency of a new kind of solid-phase extraction adsorbent, which is a microporous material made from modified cyclodextrin bounded to a silica network, is evaluated through an analytical method which combines solid-phase extraction with high-performance liquid chromatography to determine polycyclic aromatic hydrocarbons in water samples. Several parameters that affected the analytes recovery, such as the amount of solid phase, the nature and volume of the eluent or the sample volume and concentration influence have been evaluated. The experimental results indicate that the material possesses adsorption ability to the tested polycyclic aromatic hydrocarbons. Under the optimum conditions, the quantification limits of the method were in the range of 0.09-2.4μgL(-1) and fine linear correlations between peak height and concentration were found around 1.3-70μgL(-1). The method has good repeatability and reproducibility, with coefficients of variation under 8%. Due to the concentration results, this material may represent an alternative for trace analysis of polycyclic aromatic hydrocarbons in water trough solid-phase extraction.

  11. Process for Preparing Epoxy-Reinforced Silica Aerogels

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B (Inventor)

    2016-01-01

    One-pot reaction process for preparing epoxy-reinforced monolithic silica aerogels comprising the reaction of at least one silicon compound selected from the group consisting of alkoxysilanes, orthosilicates and combination thereof in any ratio with effective amounts of an epoxy monomer and an aminoalkoxy silane to obtain an epoxy monomer-silica sol in solution, subsequently preparing an epoxy-monomer silica gel from said silica sol solution followed by initiating polymerization of the epoxy monomer to obtain the epoxy-reinforced monolithic silica aerogel.

  12. Charge transfer mechanism in titanium-doped microporous silica for photocatalytic water-splitting applications

    SciTech Connect

    Sapp, Wendi; Koodali, Ranjit; Kilin, Dmitri

    2016-02-29

    Solar energy conversion into chemical form is possible using artificial means. One example of a highly-efficient fuel is solar energy used to split water into oxygen and hydrogen. Efficient photocatalytic water-splitting remains an open challenge for researchers across the globe. Despite significant progress, several aspects of the reaction, including the charge transfer mechanism, are not fully clear. Density functional theory combined with density matrix equations of motion were used to identify and characterize the charge transfer mechanism involved in the dissociation of water. A simulated porous silica substrate, using periodic boundary conditions, with Ti4+ ions embedded on the inner pore wall was found to contain electron and hole trap states that could facilitate a chemical reaction. A trap state was located within the silica substrate that lengthened relaxation time, which may favor a chemical reaction. A chemical reaction would have to occur within the window of photoexcitation; therefore, the existence of a trapping state may encourage a chemical reaction. Furthermore, this provides evidence that the silica substrate plays an integral part in the electron/hole dynamics of the system, leading to the conclusion that both components (photoactive materials and support) of heterogeneous catalytic systems are important in optimization of catalytic efficiency.

  13. Charge transfer mechanism in titanium-doped microporous silica for photocatalytic water-splitting applications

    DOE PAGES

    Sapp, Wendi; Koodali, Ranjit; Kilin, Dmitri

    2016-02-29

    Solar energy conversion into chemical form is possible using artificial means. One example of a highly-efficient fuel is solar energy used to split water into oxygen and hydrogen. Efficient photocatalytic water-splitting remains an open challenge for researchers across the globe. Despite significant progress, several aspects of the reaction, including the charge transfer mechanism, are not fully clear. Density functional theory combined with density matrix equations of motion were used to identify and characterize the charge transfer mechanism involved in the dissociation of water. A simulated porous silica substrate, using periodic boundary conditions, with Ti4+ ions embedded on the inner poremore » wall was found to contain electron and hole trap states that could facilitate a chemical reaction. A trap state was located within the silica substrate that lengthened relaxation time, which may favor a chemical reaction. A chemical reaction would have to occur within the window of photoexcitation; therefore, the existence of a trapping state may encourage a chemical reaction. Furthermore, this provides evidence that the silica substrate plays an integral part in the electron/hole dynamics of the system, leading to the conclusion that both components (photoactive materials and support) of heterogeneous catalytic systems are important in optimization of catalytic efficiency.« less

  14. High surface area microporous activated carbons prepared from Fox nut (Euryale ferox) shell by zinc chloride activation

    NASA Astrophysics Data System (ADS)

    Kumar, Arvind; Mohan Jena, Hara

    2015-11-01

    High surface area microporous activated carbon has been prepared from Fox nutshell (Euryale ferox) by chemical activation with ZnCl2 as an activator. The process has been conducted at different impregnation (ZnCl2/Fox nutshell) ratios (1-2.5) and carbonization temperatures (500-700 °C). The thermal decomposition behavior of Fox nutshell and impregnated Fox nutshell has been carried out by thermogravimetric analysis. The pore properties including the BET surface area, micropore surface area, micropore volume, and pore size distribution of the activated carbons have been determined by nitrogen adsorption-desorption isotherms at -196 °C using the BET, t-plot method, DR, and BJH methods. The BET surface area, the microporous surface area, total pore volume, and micropore volume have been obtained as 2869 m2/g, 2124 m2/g, 1.96 cm3/g, and 1.68 cm3/g, respectively, and the microporosity percentage of the prepared activated carbon is 85.71%. The prepared activated carbons have been also characterized with instrumental methods such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and field emission scanning electron microscopy (FESEM).

  15. Adsorption of CO{sub 2} on microporous materials. 1: On activated carbon and silica gel

    SciTech Connect

    Berlier, K.; Frere, M.

    1997-05-01

    Adsorption isotherms of carbon dioxide (CO{sub 2}) at temperatures ranging from 278 K to 328 K (seven temperatures) and at pressures up to 3300 kPa on activated carbon and on silica gel are presented. These experimental results are useful as they allow one to broaden, the T, P domain of CO{sub 2} adsorption. These data, together with more classical ones (obtained at low temperature and low pressure (Berlier and Frere, 1996)), will make possible the test of theoretical developments for the prediction of adsorption isotherms in a range of temperature and pressure conditions never studied before.

  16. Electric double-layer capacitance of microporous carbon nano spheres prepared through precipitation of aromatic resin pitch

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Ick; Mitani, Satoshi; Park, Chul Wan; Yoon, Seong-Ho; Korai, Yozo; Mochida, Isao

    Microporous carbon nano sphere (MCNS) was successfully prepared through the precipitation method of an aromatic isotropic pitch in water without any activation. MCNS was composed of nano spheres with diameter ranging from 100 to 300 nm, which were interlinked together to form a three-dimensional network in a MCNS particle. There were a number of mesopores among the nano carbon spheres, while micropores were developed within a nanosphere. These structural features enabled MCNS to have high specific capacitance as high as 154 F g -1 by cyclic voltammetry (CV) and capacitance per surface area of 0.62 F m -2 as an electrode for the inorganic capacitor, respectively.

  17. Silica scintillating materials prepared by sol-gel methods

    SciTech Connect

    Werst, D.W.; Sauer, M.C. Jr.; Cromack, K.R.; Lin, Y.; Tartakovsky, E.A.; Trifunac, A.D.

    1993-12-31

    Silica was investigated as a rad-hard alternative to organic polymer hosts for organic scintillators. Silica sol-gels were prepared by hydrolysis of tetramethoxysilane in alcohol solutions. organic dyes were incorporated into the gels by dissolving in methanol at the sol stage of gel formation. The silica sol-gel matrix is very rad-hard. The radiation stability of silica scintillators prepared by this method is dye-limited. Transient radioluminescence was measured following excitation with 30 ps pulses of 20 MeV electrons.

  18. Preparation and Mechanism of Controllable Micropores on Bioceramic TiO2 Coatings by Plasma Electrolytic Oxidation

    NASA Astrophysics Data System (ADS)

    Wang, Hong-Yuan; Zhu, Rui-Fu; Lu, Yu-Peng; Xiao, Gui-Yong; Ma, Jie; Yuan, Y. F.

    2013-09-01

    Porous titania coatings with Ca and P elements were synthesized by plasma electrolytic oxidation (PEO). The treatment was carried out in an electrolyte containing calcium acetate monohydrate and disodium phosphate dodecahydrate (Ca/P = 5), and 4-20 μm micropores were prepared on the coatings by applied pulse frequencies of 200-1000 Hz. The surface structure, chemical composition of the TiO2 coatings, and time-dependent variation of electric currents were studied. The result revealed that the coating micropores, which could be controlled in size, increased with higher frequency, and the coatings mainly consisted of anatase and rutile phases with varying fractions. Based on our experiment, the formation mechanism of micropores and phases of the PEO coatings was further discussed in details.

  19. Spontaneous waveguide Raman spectroscopy of self-assembled monolayers in silica micropores.

    PubMed

    Calkins, Jacob A; Peacock, Anna C; Sazio, Pier J A; Allara, David L; Badding, John V

    2011-01-18

    Advances in nanoscience are critically dependent on the ability to control and probe chemical and physical phenomena in confined geometries. A key challenge is to identify confinement structures with high surface area to volume ratios and controlled surface boundaries that can be probed quantitatively at the molecular level. Herein we report an approach for probing molecular structures within nano- to microscale pores by the application of spontaneous Raman spectroscopy. We demonstrate the method by characterization of the structural features of picomole quantities of well-organized octadecyltrichlorosilane (OTS) monolayers self-assembled on the interior pore surfaces of high aspect ratio (1 μm diameter × 1-10 cm length), near-atomically smooth silica microstructured optical fibers (MOFs). The simple Raman backscattering collection geometry employed is well suited for a wide variety of diagnostic applications as demonstrated by tracking the combustion of the hydrocarbon chains of the OTS self-assembled monolayer (SAM) and spectral confirmation of the formation of an adsorbed monolayer of human serum albumin (HSA) protein. Using this MOF Raman approach, molecular processes in precisely defined, highly confined geometries can be probed at high pressures and temperatures, with a wide range of excitation wavelengths from the visible to the near-IR, and under other external perturbations such as electric and magnetic fields.

  20. Photoluminescence decay dynamics of transparent silica glass prepared from nanometer-sized silica particles

    SciTech Connect

    Yamada, Tomoko; Uchino, Takashi

    2005-08-22

    The time-resolved photoluminescence (PL) decays are measured for transparent amorphous silica prepared from solid-phase sintering of nanometer-sized silica particles, which has recently been shown to exhibit a unique white PL emission under ultraviolet excitation [T. Uchino and T. Yamada, Appl. Phys. Lett. 85, 1164 (2004)]. Unlike usual PL processes observed in normal silica glass, it is shown that the present PL results from trapping-controlled migration of photoexcited carriers and their radiative recombination.

  1. Photoluminescence decay dynamics of transparent silica glass prepared from nanometer-sized silica particles

    NASA Astrophysics Data System (ADS)

    Yamada, Tomoko; Uchino, Takashi

    2005-08-01

    The time-resolved photoluminescence (PL) decays are measured for transparent amorphous silica prepared from solid-phase sintering of nanometer-sized silica particles, which has recently been shown to exhibit a unique white PL emission under ultraviolet excitation [T. Uchino and T. Yamada, Appl. Phys. Lett. 85, 1164 (2004)]. Unlike usual PL processes observed in normal silica glass, it is shown that the present PL results from trapping-controlled migration of photoexcited carriers and their radiative recombination.

  2. Microporous Organic Polymers Based on Hyper-Crosslinked Coal Tar: Preparation and Application for Gas Adsorption.

    PubMed

    Gao, Hui; Ding, Lei; Bai, Hua; Li, Lei

    2017-02-08

    Hyper-crosslinked polymers (HCPs) are promising materials for gas capture and storage, but high cost and complicated preparation limit their practical application. In this paper, a new type of HCPs (CTHPs) was synthesized through a one-step mild Friedel-Crafts reaction with low-cost coal tar as the starting material. Chloroform was utilized as both solvent and crosslinker to generate a three-dimensional crosslinked network with abundant micropores. The maximum BET surface area of the prepared CTHPs could reach up to 929 m(2)  g(-1) . Owing to the high affinity between the heteroatoms on the coal-tar building blocks and the CO2 molecules, the adsorption capacity of CTHPs towards CO2 reached up to 14.2 wt % (1.0 bar, 273 K) with a high selectivity (CO2 /N2 =32.3). Furthermore, the obtained CTHPs could adsorb 1.27 wt % H2 at 1.0 bar and 77.3 K, and also showed capacity for the capture of high organic vapors at room temperature. In comparison with other reported porous organic polymers, CTHPs have the advantages of low-cost, easy preparation, and high gas-adsorption performance, making them suitable for mass production and practical use in the future.

  3. Preparation and Characterization of Colloidal Silica Particles under Mild Conditions

    ERIC Educational Resources Information Center

    Neville, Frances; Zin, Azrinawati Mohd.; Jameson, Graeme J.; Wanless, Erica J.

    2012-01-01

    A microscale laboratory experiment for the preparation and characterization of silica particles at neutral pH and ambient temperature conditions is described. Students first employ experimental fabrication methods to make spherical submicrometer silica particles via the condensation of an alkoxysilane and polyethyleneimine, which act to catalyze…

  4. Preparation and Characterization of Colloidal Silica Particles under Mild Conditions

    ERIC Educational Resources Information Center

    Neville, Frances; Zin, Azrinawati Mohd.; Jameson, Graeme J.; Wanless, Erica J.

    2012-01-01

    A microscale laboratory experiment for the preparation and characterization of silica particles at neutral pH and ambient temperature conditions is described. Students first employ experimental fabrication methods to make spherical submicrometer silica particles via the condensation of an alkoxysilane and polyethyleneimine, which act to catalyze…

  5. Preparation and supercapacitive behaviors of the ordered mesoporous/microporous chromium carbide-derived carbons

    NASA Astrophysics Data System (ADS)

    Wu, Chun; Gao, Jiao; Zhao, Qinglan; Zhang, Youwei; Bai, Yansong; Wang, Xingyan; Wang, Xianyou

    2014-12-01

    A series of ordered mesoporous/microporous carbon materials derived from chromium carbide-derived carbons (CDCs) are prepared by nanocasting the chromic acetate and furfuryl alcohol precursor into SBA-15 and subsequent chlorination. The structure and morphology of the CDCs are characterized by N2 adsorption/desorption isotherm, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that all of the synthesized CDCs present large specific surface area and pore volume. Especially, the CDCs-2 prepared at the mass ratio of 1/1 (chromic acetate/furfuryl alcohol) exhibits the chain-like morphology with high surface area (1236 m2 g-1), large pore volume (0.76 cm3 g-1), and the good mesopore size centered at 3.43 nm. The electrochemical properties of all the CDCs are studied by cyclic voltammetry, constant current charge/discharge, electrochemical impedance spectroscopy and cycle life measurements in 6 M KOH electrolyte. The results display that the sample CDCs-2 exhibits a high capacitance of 242.7 F g-1 at the current density of 1 A g-1 and good cycling stability with coulombic efficiency of 100% over 10000 cycles.

  6. Preparation of micro-porous bioceramic containing silicon-substituted hydroxyapatite and beta-tricalcium phosphate.

    PubMed

    Fuh, Lih-Jyh; Huang, Ya-Jing; Chen, Wen-Cheng; Lin, Dan-Jae

    2017-06-01

    Dimensional instability caused by sintering shrinkage is an inevitable drawback for conventional processing of hydroxyapatite (HA). A new preparation method for biphasic calcium phosphates was developed to increase micro pores and biodegradation without significant dimensional change. Powder pressed HA discs, under 100MPa, were immersed in a colloidal mixture of tetraethoxysilane (TEOS) and ammonium hydroxide for 10min, followed by drying, and then were sintered at 900°C, 1050°C, and 1200°C, respectively. Comparing with pure HA discs, the newly prepared product sintered up to 1200°C contained silicon substituted HA, beta-tricalcium phosphate, and calcium silicate with better micro-porosity, high specific surface area, less sintering shrinkage and the strength maintained. The cytocompatibility test demonstrated a better viability for D1 mice stem cells cultured on TEOS treated HA for 14days compared to the pure HA. This simple TEOS sol-gel pretreatment has the potential to be applied to any existing manufacturing process of HA scaffold for better control of sintering shrinkage, create micropores, and increase biodegradation. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Compressible and monolithic microporous polymer sponges prepared via one-pot synthesis

    PubMed Central

    Lim, Yoonbin; Cha, Min Chul; Chang, Ji Young

    2015-01-01

    Compressible and monolithic microporous polymers (MPs) are reported. MPs were prepared as monoliths via a Sonogashira–Hagihara coupling reaction of 1,3,5-triethynylbenzene (TEB) with the bis(bromothiophene) monomer (PBT-Br). The polymers were reversibly compressible, and were easily cut into any form using a knife. Microscopy studies on the MPs revealed that the polymers had tubular microstructures, resembling those often found in marine sponges. Under compression, elastic buckling of the tube bundles was observed using an optical microscope. MP-0.8, which was synthesized using a 0.8:1 molar ratio of PBT-Br to TEB, showed microporosity with a BET surface area as high as 463 m2g–1. The polymer was very hydrophobic, with a water contact angle of 145° and absorbed 7–17 times its own weight of organic liquids. The absorbates were released by simple compression, allowing recyclable use of the polymer. MPs are potential precursors of structured carbon materials; for example, a partially graphitic material was obtained by pyrolysis of MP-0.8, which showed a similar tubular structure to that of MP-0.8. PMID:26534834

  8. Compressible and monolithic microporous polymer sponges prepared via one-pot synthesis

    NASA Astrophysics Data System (ADS)

    Lim, Yoonbin; Cha, Min Chul; Chang, Ji Young

    2015-11-01

    Compressible and monolithic microporous polymers (MPs) are reported. MPs were prepared as monoliths via a Sonogashira-Hagihara coupling reaction of 1,3,5-triethynylbenzene (TEB) with the bis(bromothiophene) monomer (PBT-Br). The polymers were reversibly compressible, and were easily cut into any form using a knife. Microscopy studies on the MPs revealed that the polymers had tubular microstructures, resembling those often found in marine sponges. Under compression, elastic buckling of the tube bundles was observed using an optical microscope. MP-0.8, which was synthesized using a 0.8:1 molar ratio of PBT-Br to TEB, showed microporosity with a BET surface area as high as 463 m2g-1. The polymer was very hydrophobic, with a water contact angle of 145° and absorbed 7-17 times its own weight of organic liquids. The absorbates were released by simple compression, allowing recyclable use of the polymer. MPs are potential precursors of structured carbon materials; for example, a partially graphitic material was obtained by pyrolysis of MP-0.8, which showed a similar tubular structure to that of MP-0.8.

  9. Preparation of stable ultrahydrophobic and superoleophobic silica-based coating.

    PubMed

    Nimittrakoolchai, On-Uma; Supothina, Sitthisuntorn

    2012-06-01

    Silica-Based coatings having excellent water- and oil-repellent properties and good weathering stability have been deposited onto glass surface by a simple one-step dip coating technique. To achieve ultra water repellency and super oil repellency, the chemical composition of SiO2 nanoparticle employed as surface roughness enhancer and trichloro(1H,1H,2H,2H-perfluorooctyl)silane employed as surface-energy reducing substance was varied. At the optimum synthesis condition, the coating exhibited very high contact angles of 173.2, 146.7 and 147.6 degrees for water, ethylene glycol and seed oil, respectively. The achievement of excellent water- and oil-repellency is also described based on the presence of air trapped in micropore of the coating in addition to its high surface roughness and low surface free energy. The coatings have good weathering stability based on natural and accelerated weathering tests indicating feasibility for practical use.

  10. Preparation and characterization of silymarin synchronized-release microporous osmotic pump tablets

    PubMed Central

    Zeng, Qi-ping; Liu, Zhi-hong; Huang, Ai-wen; Zhang, Jing; Song, Hong-tao

    2016-01-01

    The pharmacological activity of herbal medicine is an overall action of each component in accordance with their original proportion. An efficient, sustained, and controlled-release drug delivery system of herbal medicine should ensure the synchronized drug release of each active component during the entire release procedure. In this study, silymarin (SM), a poorly soluble herbal medicine, was selected as a model drug to develop a synchronized-release drug delivery system: an SM microporous osmotic pump (MPOP) tablet. The SM was conjugated with phospholipid (SM phytosome complex, SM-PC) to improve the solubility, and the difference in the apparent octanol–water partition coefficient between the two components was significantly reduced. The dissolution rate of SM-PC was significantly higher than SM active pharmaceutical ingredients and was the same as that of the commercial SM capsule. The SM-PC was used to generate the MPOP tablet. SM was mixed with poly(ethylene) oxide and sodium chloride (an osmotic agent) to form the MPOP core, followed by coating with cellulose acetate and poly(ethylene) oxide to generate the SM MPOP. The results demonstrated that SM MPOP could synchronically and sustainably release the five active components within 12 hours (the similar coefficient f2 between two components was >65), and the average cumulative release rate was 85%. Fitting of the drug-release curve showed a zero-order release profile for SM MPOP. Our study showed that the phytosome complex technique combined with the MPOP system will achieve synchronized release of the various active components of herbal medicine and have potential applications in developing sustained release preparations in herbal medicine. PMID:26889080

  11. Solid State Electrolytes Prepared from PEO (360) Silanated Silica

    NASA Technical Reports Server (NTRS)

    Maitra, P.; Ding, J.; Liu, B.; Wunder, S. L.; Lin, H.-P.; Chua, D.; Salomon, M.

    2002-01-01

    All solid state composite electrolytes were prepared using fumed silica (SiO2) silanated with an oligomeric polyethylene oxide (PEO) silane containing 6-9 ethylene oxide repeat units, a PEO matrix and LiClO4 (8/1 O/Li). The PEO-silane covalently attached to the silica was amorphous, with a T(sub g) that increased from -90 C to -53 C after attachment. The conductivity of films prepared using the PEO-silanated silica increased to approx. 6 x 10(exp -5) S/cm at RT compared with approx. 1 x 10(-5) S/cm for films prepared with unsilanated SiO2.

  12. Drug silica nanocomposite: preparation, characterization and skin permeation studies.

    PubMed

    Pilloni, Martina; Ennas, Guido; Casu, Mariano; Fadda, Anna Maria; Frongia, Francesca; Marongiu, Francesca; Sanna, Roberta; Scano, Alessandra; Valenti, Donatella; Sinico, Chiara

    2013-01-01

    The aim of this work was to evaluate silica nanocomposites as topical drug delivery systems for the model drug, caffeine. Preparation, characterization, and skin permeation properties of caffeine-silica nanocomposites are described. Caffeine was loaded into the nanocomposites by grinding the drug with mesoporous silica in a ball mill up to 10 h and the efficiency of the process was studied by XRPD. Formulations were characterized by several methods that include FTIR, XRPD, SEM and TEM. The successful loading of caffeine was demonstrated by XRPD and FTIR. Morphology was studied by SEM that showed particle size reduction while TEM demonstrated formation of both core-shell and multilayered caffeine-silica structures. Solid-state NMR spectra excluded chemical interactions between caffeine and silica matrix, thus confirming that no solid state reactions occurred during the grinding process. Influence of drug inclusion in silica nanocomposite on the in vitro caffeine diffusion into and through the skin was investigated in comparison with a caffeine gel formulation (reference), using newborn pig skin and vertical Franz diffusion cells. Results from the in vitro skin permeation experiments showed that inclusion into the nanocomposite reduced and delayed caffeine permeation from the silica nanocomposite in comparison with the reference, independently from the amount of the tested formulation.

  13. Ion channel mimetic membranes and silica nanotubes prepared from porous aluminum oxide templates

    NASA Astrophysics Data System (ADS)

    Mitchell, David Tanner

    Chapter 1 provides background information on the template synthesis of nanomaterials. The template synthesis method is examined with special attention to the use of membranes containing monodisperse cylindrical pores as templates. Several examples of the utility of template-synthesized nanomaterials are given. The production of one type of template membrane, nanopore alumina, is reviewed. Reviews of sol-gel and silane chemistry are also provided. In Chapter 2, a sol-gel template synthesis process is used to produce silica nanotubes within the pores of alumina templates. The nanotubes can be modified using a variety of chemistries, typically via a silanization process. Because the nanotubes are formed in a template, the interior and exterior surface can be modified independently. Modified nanotubes can be used for drug detoxification or as extractants for the removal of metal ions. The nanotube surface can also be biotinylated, which causes binding to avidinated surfaces. Composite microtubes of silica and various polymers are also prepared. Additionally, Au nanowires are shown to assemble with colloidal Au particles using dithiols as linkers. Chapter 3 describes the attachment of proteins onto template-synthesized silica nanotubes. The proteins are covalently linked via an aldehyde silane bridge that binds to pendant primary amino moieties on the protein. Protein-modified nanotubes function as highly specific extractants. Avidin-modified nanotubes extract biotin-coated Au nanoparticles from solution with high extraction efficiency. Immunoprotein-modified nanotubes extract the corresponding antibody from solution with high specificity. Antibody-modified nanotubes extract one enantiomer from a racemic mix. Enzymes, including drug detoxification enzymes, were also attached to the nanotubes and were shown to retain their catalytic activity. Immunoproteins on the outside of nanotubes can be used to direct nanotube binding, creating specific labeling agents. Chapter 4

  14. Solar-grade silicon prepared by carbothermic reduction of silica

    NASA Technical Reports Server (NTRS)

    Aulich, H. A.; Schulze, F. W.; Urbach, H. P.; Lerchenberger, A.

    1986-01-01

    An advanced carbothermic reduction (ACR) process was developed to produce solar grade (SC) silicon from high purity silica and carbon. Preparation of starting materials and operation of the arc furnace to product high purity silicon is described. Solar cells prepared from single crystal SG-Si had efficiencies of up to 12.3% practically identical to cells made from electronic grade silicon. The ACR process is not in the pilot stage for further evaluation.

  15. Preparation of microporous films with sub nanometer pores and their characterization using stress and FTIR measurements

    SciTech Connect

    Samuel, J.; Hurd, A.J.; Swoll, F. van; Frink, L.J.D.; Contakes, S.C.; Brinker, C.J. |

    1996-06-01

    The authors have used a novel technique, measurement of stress isotherms in microporous thin films, as a means of characterizing porosity. The stress measurement was carried out by applying sol-gel thin films on a thin silicon substrate and monitoring the curvature of the substrate under a controlled atmosphere of various vapors. The magnitude of macroscopic bending stress developed in microporous films depends on the relative pressure and molar volume of the adsorbate and reaches a value of 180 MPa for a relative vapor pressure, P/Po = 0.001, of methanol. By using a series of molecules, and observing both the magnitude and the kinetics of stress development while changing the relative pressure, they have determined the pore size of microporous thin films. FTIR measurements were used to acquire adsorption isotherms and to compare pore emptying to stress development, about 80% of the change in stress takes place with no measurable change in the amount adsorbed. The authors show that for sol-gel films, pore diameters can be controlled in the range of 5--8 {angstrom} by ``solvent templating``.

  16. Preparation of EPR/silica filler by a co-irradiation method forming PP/EPR/silica nanocomposites

    NASA Astrophysics Data System (ADS)

    Qian, Jun; Dang, Shuaiying; Huang, Zhijuan; Xu, Yongshen

    2012-01-01

    This paper presents a novel approach to prepare ethylene-propylene rubber (EPR)/silica filler by co-irradiation method forming polypropylene (PP)/EPR/silica nanocomposites. The grafting of maleic anhydride (MAH) on EPR was first studied by co-irradiation in the micro-suspension without any chemical initiator, and the effects of MAH concentration and the total co-irradiation dose on the graft degree of MAH were investigated. Then PP/EPR/silica nanocomposites were successfully prepared by blending of PP matrix and EPR/silica filler, which was obtained by co-irradiation using a mixture of EPR/MAH microsuspension in xylene and tetraethoxysilane/KH560 sol in formic acid. FTIR and SEM results showed that the reactions between MAH on EPR chains and KH560 surrounding silica particles were adopted to form the EPR/silica filler with strong bonding and well silica dispersion. Mechanical properties of PP/EPR/silica nanocomposites with different silica contents and the comparisons with PP, PP/EPR and PP/silica films were studied. The rigid silica particles were trapped in EPR shell and well dispersed in PP/EPR/silica nanocomposites with good compatibility and strong interfacial adhesion, achieving overall improvements in stiffness, strength and toughness compared with pure PP.

  17. Preparation of stable silica surfaces for surface forces measurement

    NASA Astrophysics Data System (ADS)

    Ren, Huai-Yin; Mizukami, Masashi; Kurihara, Kazue

    2017-09-01

    A surface forces apparatus (SFA) measures the forces between two surfaces as a function of the surface separation distance. It is regarded as an essential tool for studying the interactions between two surfaces. However, sample surfaces used for the conventional SFA measurements have been mostly limited to thin (ca. 2-3 μm) micas, which are coated with silver layers (ca. 50 nm) on their back, due to the requirement of the distance determination by transmission mode optical interferometry called FECO (fringes of equal chromatic order). The FECO method has the advantage of determining the absolute distance, so it should be important to increase the availability of samples other than mica, which is chemically nonreactive and also requires significant efforts for cleaving. Recently, silica sheets have been occasionally used in place of mica, which increases the possibility of surface modification. However, in this case, the silver layer side of the sheet is glued on a cylindrical quartz disc using epoxy resin, which is not stable in organic solvents and can be easily swollen or dissolved. The preparation of substrates more stable under severe conditions, such as in organic solvents, is necessary for extending application of the measurement. In this study, we report an easy method for preparing stable silica layers of ca. 2 μm in thickness deposited on gold layers (41 nm)/silica discs by sputtering, then annealed to enhance the stability. The obtained silica layers were stable and showed no swelling in organic solvents such as ethanol and toluene.

  18. Preparation of stable silica surfaces for surface forces measurement.

    PubMed

    Ren, Huai-Yin; Mizukami, Masashi; Kurihara, Kazue

    2017-09-01

    A surface forces apparatus (SFA) measures the forces between two surfaces as a function of the surface separation distance. It is regarded as an essential tool for studying the interactions between two surfaces. However, sample surfaces used for the conventional SFA measurements have been mostly limited to thin (ca. 2-3 μm) micas, which are coated with silver layers (ca. 50 nm) on their back, due to the requirement of the distance determination by transmission mode optical interferometry called FECO (fringes of equal chromatic order). The FECO method has the advantage of determining the absolute distance, so it should be important to increase the availability of samples other than mica, which is chemically nonreactive and also requires significant efforts for cleaving. Recently, silica sheets have been occasionally used in place of mica, which increases the possibility of surface modification. However, in this case, the silver layer side of the sheet is glued on a cylindrical quartz disc using epoxy resin, which is not stable in organic solvents and can be easily swollen or dissolved. The preparation of substrates more stable under severe conditions, such as in organic solvents, is necessary for extending application of the measurement. In this study, we report an easy method for preparing stable silica layers of ca. 2 μm in thickness deposited on gold layers (41 nm)/silica discs by sputtering, then annealed to enhance the stability. The obtained silica layers were stable and showed no swelling in organic solvents such as ethanol and toluene.

  19. Preparation of a new micro-porous poly(methyl methacrylate)-grafted polyethylene separator for high performance Li secondary battery

    NASA Astrophysics Data System (ADS)

    Gwon, Sung-Jin; Choi, Jae-Hak; Sohn, Joon-Yong; Ihm, Young-Eon; Nho, Young-Chang

    2009-10-01

    In this study, micro-porous poly(methyl methacrylate)-grafted polyethylene separators (PE-g-PMMA) were prepared by a radiation-induced graft polymerization of methyl methacrylate onto a conventional PE separator followed by a phase inversion. After the phase inversion, the micro-pores were generated in the grafted PMMA layer. The prepared micro-porous PE-g-PMMA separators showed an improved electrolyte uptake and ionic conductivity due to their improved affinity with a liquid electrolyte and the presence of pores in the grafted PMMA layer. The PE-g-PMMA separators exhibited a lower thermal shrinkage compared to the original PE separator. The PE-g-PMMA separators showed a better oxidation stability up to 5.0 V when compared to the original PE separator (4.5 V).

  20. Nitrogen-containing microporous conjugated polymers via carbazole-based oxidative coupling polymerization: preparation, porosity, and gas uptake.

    PubMed

    Chen, Qi; Liu, De-Peng; Luo, Min; Feng, Li-Juan; Zhao, Yan-Chao; Han, Bao-Hang

    2014-01-29

    Facile preparation of microporous conjugated polycarbazoles via carbazole-based oxidative coupling polymerization is reported. The process to form the polymer network has cost-effective advantages such as using a cheap catalyst, mild reaction conditions, and requiring a single monomer. Because no other functional groups such as halo groups, boric acid, and alkyne are required for coupling polymerization, properties derived from monomers are likely to be fully retained and structures of final polymers are easier to characterize. A series of microporous conjugated polycarbazoles (CPOP-2-7) with permanent porosity are synthesized using versatile carbazolyl-bearing 2D and 3D conjugated core structures with non-planar rigid conformation as building units. The Brunauer-Emmett-Teller specific surface area values for these porous materials vary between 510 and 1430 m(2) g(-1) . The dominant pore sizes of the polymers based on the different building blocks are located between 0.59 and 0.66 nm. Gas (H2 and CO2 ) adsorption isotherms show that CPOP-7 exhibits the best uptake capacity for hydrogen (1.51 wt% at 1.0 bar and 77 K) and carbon dioxide (13.2 wt% at 1.0 bar and 273 K) among the obtained polymers. Furthermore, its high CH4 /N2 and CO2 /N2 adsorption selectivity gives polymer CPOP-7 potential application in gas separation.

  1. Preparation of a unique microporous structure via two step phase separation in the course of drying a ternary polymer solution.

    PubMed

    Kim, Jae-Kyung; Taki, Kentaro; Ohshima, Masahiro

    2007-11-20

    A unique porous polymeric film was prepared by drying a ternary polymer solution: a polystyrene (PS), polyethylene glycol (PEG), and toluene solution. Highly ordered micropores, ranging from 5 to 12 mum in diameter, were formed on the film surface, and the rim of each micropore was surrounded by a ring of PEG. The effects of the weight ratio of the polymer blend and molecular weight of the polymer (PEG) on the porous structure were investigated. Based on in situ visual observation and light scattering measurements, the formation mechanism of the porous structure was speculated to be a two step phase separation: the phase separation into PEG-rich and PEG-poor (i.e., PS-rich) phases occurred first at the surface area of the ternary solutions, where polymers were condensed due to solvent evaporation. The PEG-rich phase became droplets and had an ordered structure on the surface. The PEG-poor phase became a matrix where PS and solvent coexisted as a single phase solution. Secondary phase separation then followed in the PEG droplets, which was induced by further solvent evaporation, and formed into solvent-rich and PEG-rich domains within the droplets. Solvent evaporation and secondary phase separation created a cavity structure in each PEG droplet structured on the film surface.

  2. Preparation of nitrogen-doped cotton stalk microporous activated carbon fiber electrodes with different surface area from hexamethylenetetramine-modified cotton stalk for electrochemical degradation of methylene blue

    NASA Astrophysics Data System (ADS)

    Li, Kunquan; Rong, Zhang; Li, Ye; Li, Cheng; Zheng, Zheng

    Cotton-stalk activated carbon fibers (CSCFs) with controllable micropore area and nitrogen content were prepared as an efficient electrode from hexamethylenetetramine-modified cotton stalk by steam/ammonia activation. The influence of microporous area, nitrogen content, voltage and initial concentration on the electrical degradation efficiency of methylene blue (MB) was evaluated by using CSCFs as anode. Results showed that the CSCF electrodes exhibited excellent MB electrochemical degradation ability including decolorization and COD removal. Increasing micropore surface area and nitrogen content of CSCF anode leaded to a corresponding increase in MB removal. The prepared CSCF-800-15-N, which has highest N content but lowest microporous area, attained the best degradation effect with 97% MB decolorization ratio for 5 mg/L MB at 12 V in 4 h, implying the doped nitrogen played a prominent role in improving the electrochemical degradation ability. The electrical degradation reaction was well described by first-order kinetics model. Overall, the aforesaid findings suggested that the nitrogen-doped CSCFs were potential electrode materials, and their electrical degradation abilities could be effectively enhanced by controlling the nitrogen content and micropore surface area.

  3. Polydisperse spherical colloidal silica particles: Preparation and application

    NASA Astrophysics Data System (ADS)

    Kong, Hui; Huo, Junchao; Liang, Chenliang; Li, Shasha; Liu, Weili; Song, Zhitang

    2016-11-01

    A new industrial method has been developed to produce polydisperse spherical colloidal silica particles with a very broad particle size, ranging from 20-95 nm. The process uses a reactor in which the original seed solution is heated to 100°C, and then active silicic acid and the seed solution are titrated to the reactor continuously with a constant rate. The original seeds and the titrated seeds in the reactor will go through different particle growth cycles to form different particle sizes. Both the particles’ size distribution and morphology have been characterized by dynamic light scattering (DLS) and the focus ion beam (FIB) system. In addition, the as-prepared polydisperse colloidal silica particle in the application of sapphire wafer’s chemical mechanical polishing (CMP) process has been tested. The material removal rate (MRR) of this kind of abrasive has been tested and verified to be much faster than traditional monodisperse silica particles. Finally, the mechanism of sapphire CMP process by this kind of polydisperse silica particles has been investigated to explore the reasons for the high polishing rate. Project supported by the National Major Scientific and Technological Special Project during the Twelfth Five-year Plan Period of China (Grant No. 2009ZX02030-1), the National Natural Science Foundation of China (Grant No. 51205387), the Science and Technology Commission of Shanghai, China (Grant No. 11nm0500300), and the Science and Technology Commission of Shanghai, China (Grant No. 14XD1425300).

  4. Facilitating mass transport in gas diffusion layer of PEMFC by fabricating micro-porous layer with dry layer preparation

    NASA Astrophysics Data System (ADS)

    Chen, Jian; Xu, Haifeng; Zhang, Huamin; Yi, Baolian

    For a proton exchange membrane fuel cell (PEMFC), dry layer preparation was optimized and applied to fabricate a micro-porous layer (MPL) for a gas diffusion layer (GDL). The MPLs fabricated by dry layer preparation and the conventional wet layer preparation were compared by physical and electrochemical methods. The PEMFC using dry layer MPLs showed better performance than that using wet layer MPLs, especially when the cells were operated under conditions of high oxygen utilization rate and high humidification temperature of air. The mass transport properties of the GDLs with the dry layer MPLs were also better than with the wet layer MPLs, and were found to be related to the pore size distribution in GDLs. The differences in surface morphology and pore size distribution for the GDLs with the dry layer and wet layer MPLs were investigated and analyzed. The dry layer preparation for MPLs was found to be more beneficial for forming meso-pores (pore size in the range of 0.5-15 μm), which are important and advantageous for facilitating gas transport in the GDLs. Moreover, the GDLs with the dry layer MPLs exhibited better electronic conductivity and more stable hydrophobicity than those with the wet layer MPLs. The reproducibility of the dry layer preparation for MPLs was also satisfying.

  5. [Preparation and evaluation of silica xerogel monolithic column].

    PubMed

    Yan, Fengchuan; Chen, Bo

    2011-05-01

    Using potassium silicate as silicon source, formamide as catalyst, a series of silica xerogel monolithic columns with different consistencies were prepared. The column bed would not rupture and collapse during drying at high temperatures. This is the biggest advantage compared with the inorganic monolithic columns using alkoxy silane as precursor. The effect of the modulus of potassium silicate on the physical structure of the monolithic column was investigated. The monolithic silica columns were characterized by scanning electron micrograph (SEM) and nitrogen adsorption. The relationship between column pressure and flow rate was evaluated. The column efficiency for anthracene was tested. The breakthrough curve for toluene was studied. The results showed that the column bed could maintain good stability at high temperatures, high column pressures, and high flow rates. The column efficiency of 41,400 plates/m was achieved for anthracene. The column capacity for toluene was 61 ng.

  6. Preparation and in vitro evaluation of porous silica gels.

    PubMed

    Gallardo, Janet; Galliano, Pablo G; Porto López, J M

    2002-11-01

    Porous silica gels with high surface areas were prepared from tetraethylothosilicate and polyacrylic acid (PAA) of high molecular weight in acidic media by a sol-gel method. PAA content and ageing temperatures were varied in order to obtain different microstructures. Samples were sintered at temperatures up to 400 degrees C, and subjected to in vitro evaluation by soaking them in acellular inorganic solutions at 37 degrees C and pH 7.3. Surface precipitation of carbonate-apatite on some of the gels was observed by FTIR spectroscopy, scanning electron microscopy and EPMA. Silica dissolution and re-precipitation phenomena were also observed. The relationship between both phenomena during the in vitro test is discussed mainly in terms of structural and microstructural features of the gel.

  7. Preparation of antibacterial silver-doped silica glass microspheres.

    PubMed

    Kawashita, Masakazu; Toda, Shogo; Kim, Hyun-Min; Kokubo, Tadashi; Masuda, Noriaki

    2003-08-01

    Various types of inorganic substances doped with silver ions have been developed as antibacterial materials, and some have already been commercialized. Colorless and chemically durable materials that slowly release silver ions are, however, still need to be developed. The present authors have previously shown that when a silica glass doped with silver and aluminium ions is prepared using the sol-gel method, the resultant product is colorless, chemically durable, and slowly releases silver ions into water over a long period. The doped silica glass takes a form of microspheres <1 microm in diameter, it is easily mixed with organic polymers, and the mixture can be formed into a thin film or fine fibers, etc. We report on the preparation of silver doped silica glass microspheres having a diameter =1 microm, using the sol-gel method. Initially, tetraethoxysilane was partially prehydrolyzed by water in ethanol, and then aluminium triisopropoxide was added to the solution to form Si-O-Al bonds. Finally, an ammonia solution containing silver nitrate was added to form silica microspheres doped with silver ion together with aluminium ions. The results show monodispersed microspheres 0.4-0.6 microm in diameter were obtained with nominal compositions of Si/Al/Ag = 1/0.01-0.03/0.003-0.03, with a molar ratio of Al/Ag = 1-3.3. The microspheres were colorless, showed a high chemical durability, and slowly released silver ions into water at 37 degrees C. Microspheres with the composition Si/Al/Ag = 1/0.01/0.01 showed excellent antibacterial activity against Escherichia coli. The minimum inhibitory concentration (MIC) of the microspheres was 400, which is less than the MIC value (800) of commercial antibacterial materials.

  8. Preparing two-dimensional microporous carbon from Pistachio nutshell with high areal capacitance as supercapacitor materials

    PubMed Central

    Xu, Jiandong; Gao, Qiuming; Zhang, Yunlu; Tan, Yanli; Tian, Weiqian; Zhu, Lihua; Jiang, Lei

    2014-01-01

    Two-dimensional (2D) porous carbon AC-SPN-3 possessing of amazing high micropore volume ratio of 83% and large surface area of about 1069 m2 g−1 is high-yield obtained by pyrolysis of natural waste Pistachio nutshells with KOH activation. The AC-SPN-3 has a curved 2D lamellar morphology with the thickness of each slice about 200 nm. The porous carbon is consists of highly interconnected uniform pores with the median pore diameter of about 0.76 nm, which could potentially improve the performance by maximizing the electrode surface area accessible to the typical electrolyte ions (such as TEA+, diameter = ~0.68 nm). Electrochemical analyses show that AC-SPN-3 has significantly large areal capacitance of 29.3/20.1 μF cm−2 and high energy density of 10/39 Wh kg−1 at power of 52/286 kW kg−1 in 6 M KOH aqueous electrolyte and 1 M TEABF4 in EC-DEC (1:1) organic electrolyte system, respectively. PMID:24986670

  9. Preparing two-dimensional microporous carbon from Pistachio nutshell with high areal capacitance as supercapacitor materials

    NASA Astrophysics Data System (ADS)

    Xu, Jiandong; Gao, Qiuming; Zhang, Yunlu; Tan, Yanli; Tian, Weiqian; Zhu, Lihua; Jiang, Lei

    2014-07-01

    Two-dimensional (2D) porous carbon AC-SPN-3 possessing of amazing high micropore volume ratio of 83% and large surface area of about 1069 m2 g-1 is high-yield obtained by pyrolysis of natural waste Pistachio nutshells with KOH activation. The AC-SPN-3 has a curved 2D lamellar morphology with the thickness of each slice about 200 nm. The porous carbon is consists of highly interconnected uniform pores with the median pore diameter of about 0.76 nm, which could potentially improve the performance by maximizing the electrode surface area accessible to the typical electrolyte ions (such as TEA+, diameter = ~0.68 nm). Electrochemical analyses show that AC-SPN-3 has significantly large areal capacitance of 29.3/20.1 μF cm-2 and high energy density of 10/39 Wh kg-1 at power of 52/286 kW kg-1 in 6 M KOH aqueous electrolyte and 1 M TEABF4 in EC-DEC (1:1) organic electrolyte system, respectively.

  10. Preparing Silica Aerogel Monoliths via a Rapid Supercritical Extraction Method

    PubMed Central

    Gorka, Caroline A.

    2014-01-01

    A procedure for the fabrication of monolithic silica aerogels in eight hours or less via a rapid supercritical extraction process is described. The procedure requires 15-20 min of preparation time, during which a liquid precursor mixture is prepared and poured into wells of a metal mold that is placed between the platens of a hydraulic hot press, followed by several hours of processing within the hot press. The precursor solution consists of a 1.0:12.0:3.6:3.5 x 10-3 molar ratio of tetramethylorthosilicate (TMOS):methanol:water:ammonia. In each well of the mold, a porous silica sol-gel matrix forms. As the temperature of the mold and its contents is increased, the pressure within the mold rises. After the temperature/pressure conditions surpass the supercritical point for the solvent within the pores of the matrix (in this case, a methanol/water mixture), the supercritical fluid is released, and monolithic aerogel remains within the wells of the mold. With the mold used in this procedure, cylindrical monoliths of 2.2 cm diameter and 1.9 cm height are produced. Aerogels formed by this rapid method have comparable properties (low bulk and skeletal density, high surface area, mesoporous morphology) to those prepared by other methods that involve either additional reaction steps or solvent extractions (lengthier processes that generate more chemical waste).The rapid supercritical extraction method can also be applied to the fabrication of aerogels based on other precursor recipes. PMID:24637334

  11. Preparing silica aerogel monoliths via a rapid supercritical extraction method.

    PubMed

    Carroll, Mary K; Anderson, Ann M; Gorka, Caroline A

    2014-02-28

    A procedure for the fabrication of monolithic silica aerogels in eight hours or less via a rapid supercritical extraction process is described. The procedure requires 15-20 min of preparation time, during which a liquid precursor mixture is prepared and poured into wells of a metal mold that is placed between the platens of a hydraulic hot press, followed by several hours of processing within the hot press. The precursor solution consists of a 1.0:12.0:3.6:3.5 x 10(-3) molar ratio of tetramethylorthosilicate (TMOS):methanol:water:ammonia. In each well of the mold, a porous silica sol-gel matrix forms. As the temperature of the mold and its contents is increased, the pressure within the mold rises. After the temperature/pressure conditions surpass the supercritical point for the solvent within the pores of the matrix (in this case, a methanol/water mixture), the supercritical fluid is released, and monolithic aerogel remains within the wells of the mold. With the mold used in this procedure, cylindrical monoliths of 2.2 cm diameter and 1.9 cm height are produced. Aerogels formed by this rapid method have comparable properties (low bulk and skeletal density, high surface area, mesoporous morphology) to those prepared by other methods that involve either additional reaction steps or solvent extractions (lengthier processes that generate more chemical waste).The rapid supercritical extraction method can also be applied to the fabrication of aerogels based on other precursor recipes.

  12. [Comparison of different preparation methods of tanshinoneporous silica solid dispersion].

    PubMed

    Jiang, Yan-Rong; Zhang, Zhen-Hai; Ding, Dong-Mei; Chen, Xiao-Yun; Su, E; Jia, Xiao-Bin

    2013-10-01

    Porous silica was used as a carrier to prepare tanshinone solid dispersions (SDs). sThe effect of the spray drying method or the solvent method on the drug dissolution of SD was studied. The structure characteristics of SDs was analyzed by SEM, DSC,XPRD and FTIR. And in vitro dissolution was also investigated. The results showed that drugs were highly dispersed into SDs prepared by spray drying method and the solvent method in amorphous form. In addition, the results of the dissolution tested in vitro exhibited that the tanshinone I and tanshinone II A, accumulated dissolutions of SDs prepared using solvent achieved 80. 9% ,84. 6% and 86. 2% ,88. 7% within 45,60 min, respectively. And SDs prepared using spray-drying method were 92.7% ,95. 3% and 95. 8%, 97. 1% within 45,60 min, respectively. The tanshinone SDs were prepared successfully by spray drying method and solvent method. The SDs prepared by spray drying method was more conducive to improving the dissolution.

  13. Emergence of Zeolite Analogs and other Microporous Crystals in an Atomic Lattice Model of Silica and Related Materials.

    PubMed

    Jin, Lin; Auerbach, Scott M; Monson, Peter A

    2012-03-15

    The potential of tailored nanopores to transform technologies such as drug delivery, biofuel production, and optical-electronic devices depends on fundamental knowledge of the self-assembly of ordered nanoporous solids. Atomic-level geometries of critical nuclei that lead to such solids have remained hidden in the nanoscale blind spot between local (<0.5 nm) and collective (>5 nm) probes of structure. Heroic efforts at molecular simulation of nanopore formation have provided massive libraries of hypothetical structures; (1-5) however, to date no statistical simulation has generated a crystallization pathway from random initial condition to ordered nanoporous solid, until now. In this work, we show that a recently developed atomic lattice model of silica and related materials can form ordered nanoporous solids with a rich variety of structures including known chalcogenides, zeolite analogs, and layered materials. We find that whereas canonical Monte Carlo simulations of the model consistently produce the amorphous solids studied in our previous work, parallel tempering Monte Carlo gives rise to ordered nanoporous solids. The utility of parallel tempering highlights the existence of barriers between amorphous and crystalline phases of our model. Moreover, the self-assembly or nanoporous crystalline phases in the model open the door to detailed understanding of nanopore nucleation.

  14. Microporous alumina ceramic membranes

    DOEpatents

    Anderson, Marc A.; Sheng, Guangyao

    1993-01-01

    Several methods are disclosed for the preparation microporous alumina ceramic membranes. For the first time, porous alumina membranes are made which have mean pore sizes less than 100 Angstroms and substantially no pores larger than that size. The methods are based on improved sol-gel techniques.

  15. Microporous alumina ceramic membranes

    DOEpatents

    Anderson, M.A.; Guangyao Sheng.

    1993-05-04

    Several methods are disclosed for the preparation microporous alumina ceramic membranes. For the first time, porous alumina membranes are made which have mean pore sizes less than 100 Angstroms and substantially no pores larger than that size. The methods are based on improved sol-gel techniques.

  16. Preparation of silica or alumina pillared crystalline titanates

    SciTech Connect

    Udomsak, S.; Nge, R.; Dufner, D.C.; Anthony, R.G.; Lott, S.E.

    1994-05-01

    Layered crystalline titanates (CT) [Anthony and Dosch, US Patent 5 177 045 (1993)] are pillared with tetraethyl orthosilicate, 3-aminopropyltrimethoxysilane, and aluminum acetylacetonate to prepare porous and high surface area supports for sulfided NiMo catalyst. Tetra-ethyl orthosilicate or aluminum acetylacetonate intercalated CT are prepared by stepwise intercalation. First, the basal distance is increased by n-alkylammonium ions prior to intercalation with inorganic compounds. However, an aqueous solution of 3-aminopropyltrimethoxysilane could directly pillar CT without first swelling the titanate with n-alkylamine. The catalytic activities for hydrogenation of pyrene of sulfided NiMo supported silica or alumina pillared CT were higher than those of commercial catalysts (Shell324 and Amocat1C). The silicon and aluminum contents of the pillared CT, used as supports, have a considerable effect on the catalytic activities and physical properties of the supports.

  17. Preparation of aqueous core/silica shell microcapsules.

    PubMed

    Bean, Keith; Black, Camilla F; Govan, Norman; Reynolds, Paul; Sambrook, Mark R

    2012-01-15

    Water core/silica shell microcapsules are prepared via the hydrolysis and subsequent polycondensation of tetraethoxysilane in a surfactant stabilised water-in-oil emulsion. The relationship between preparative conditions, including pH and silane concentration, has been related to final particle structure. Furthermore, the nature of the catalyst has been found to affect the mechanism by which the shells are formed, with an interfacial polymerisation proposed for ammonium hydroxide catalysed synthesis in agreement with previous reports and a new colloidosome assembly process for sodium hydroxide catalysis. In both cases shell aging processes are observed to continue beyond initial shell formation suggesting that trans-shell diffusion of reactants may be feasible, or that rapid hydrolysis is required in order to load high concentrations of the reactants into the internal phase before significant shell formation.

  18. Nanosized microporous crystals: emerging applications.

    PubMed

    Mintova, Svetlana; Jaber, Maguy; Valtchev, Valentin

    2015-10-21

    This review highlights recent developments in the synthesis and unconventional applications of nanosized microporous crystals including framework (zeolites) and layered (clays) type materials. Owing to their microporous nature nanosized zeolites and clays exhibit novel properties, different from those of bulk materials. The factors controlling the formation of nanosized microporous crystals are first revised. The most promising approaches from the viewpoint of large-scale production of nanosized zeolites and clays are discussed in depth. The preparation and advanced applications of nanosized zeolites and clays in free (suspension and powder forms) and fixed (films) forms are summarized. Further the review emphasises the non-conventional applications of new porous materials. A comprehensive analysis of the emerging applications of microporous nanosized crystals in the field of semiconductor industry, optical materials, chemical sensors, medicine, cosmetics, and food industry is presented. Finally, the future needs and perspectives of nanosized microporous materials (zeolites and clays) are addressed.

  19. Preparation, characterization, and silanization of 3D microporous PDMS structure with properly sized pores for endothelial cell culture.

    PubMed

    Zargar, Reyhaneh; Nourmohammadi, Jhamak; Amoabediny, Ghassem

    2016-01-01

    Nowadays, application of porous polydimethylsiloxane (PDMS) structure in biomedical is becoming widespread, and many methods have been established to create such structure. Although the pores created through these methods are mostly developed on the outer surface of PDMS membrane, this study offers a simple and cost-efficient technique for creating three-dimensional (3D) microporous PDMS structure with appropriate pore size for endothelial cell culture. In this study, combination of gas foaming and particulate leaching methods, with NaHCO3 as effervescent salt and NaCl as progen are used to form a 3D PDMS sponge. The in situ chemical reaction between NaHCO3 and HCl resulted in the formation of small pores and channels. Moreover, soaking the samples in HCl solution temporarily improved the hydrophilicity of PDMS, which then facilitated the penetration of water for further leaching of NaCl. The surface chemical modification process was performed by (3-aminopropyl)triethoxysilane to culture endothelial cells on porous PDMS matrix. The results are an indication of positive response of endothelial cells to the fabricated PDMS sponge. Because of simplicity and practicality of this method for preparing PDMS sponge with appropriate pore size and biological properties, the fabricated matrix can perfectly be applied to future studies in blood-contacting devices. © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  20. Preparation of monodisperse porous silica particles using poly(glycidyl methacrylate) microspheres as a template.

    PubMed

    Grama, S; Horák, D

    2015-01-01

    Monodisperse macroporous poly(glycidyl methacrylate) (PGMA) microspheres were used as a template for preparing porous silica particles. The starting polymer microspheres that were 9.3 microm in size were synthesized by multistep swelling polymerization using a modified Ugelstad technique. Subsequently, silica (SiO2) was deposited on the surface and inside the PGMA microspheres to produce poly(glycidyl methacrylate)-silica hybrid particles (PGMA-SiO2). Upon calcination of the PGMA-SiO2 microspheres, porous silica particles were formed. The morphology, particle size, polydispersity and inner structure of the silica microspheres were investigated by scanning and transmission electron microscopy. Thermogravimetric analysis and dynamic adsorption of nitrogen determined the amount of silica formed and its specific surface area. Compared with the starting PGMA microspheres, the size of the porous silica particles decreased by up to 30%. These porous silica microspheres are promising for chromatography and biomedical applications.

  1. Preparation and Application of Hollow Silica/magnetic Nanocomposite Particle

    NASA Astrophysics Data System (ADS)

    Wang, Cheng-Chien; Lin, Jing-Mo; Lin, Chun-Rong; Wang, Sheng-Chang

    The hollow silica/cobalt ferrite (CoFe2O4) magnetic microsphere with amino-groups were successfully prepared via several steps, including preparing the chelating copolymer microparticles as template by soap-free emulsion polymerization, manufacturing the hollow cobalt ferrite magnetic microsphere by in-situ chemical co-precipitation following calcinations, and surface modifying of the hollow magnetic microsphere by 3-aminopropyltrime- thoxysilane via the sol-gel method. The average diameter of polymer microspheres was ca. 200 nm from transmission electron microscope (TEM) measurement. The structure of the hollow magnetic microsphere was characterized by using TEM and scanning electron microscope (SEM). The spinel-type lattice of CoFe2O4 shell layer was identified by using XRD measurement. The diameter of CoFe2O4 crystalline grains ranged from 54.1 nm to 8.5 nm which was estimated by Scherrer's equation. Additionally, the hollow silica/cobalt ferrite microsphere possesses superparamagnetic property after VSM measurement. The result of BET measurement reveals the hollow magnetic microsphere which has large surface areas (123.4m2/g). After glutaraldehyde modified, the maximum value of BSA immobilization capacity of the hollow magnetic microsphere was 33.8 mg/g at pH 5.0 buffer solution. For microwave absorption, when the hollow magnetic microsphere was compounded within epoxy resin, the maximum reflection loss of epoxy resins could reach -35dB at 5.4 GHz with 1.9 mm thickness.

  2. Preparation, characterization, and catalytic activity of zirconocene bridged on surface of silica gel

    NASA Astrophysics Data System (ADS)

    El Majdoub, Lotfia; Shi, Yasai; Yuan, Yuan; Zhou, Annan; Abutartour, Abubaker; Xu, Qinghong

    2015-10-01

    Zirconocene catalyst supported on silica gel was prepared for olefin polymerization by surface modification of calcined silica with SiCl4, and the reaction between the modified silica and cyclopentadienyl sodium and ZrCl4. The catalyst was characterized by using Fourier-transform infrared (FT-IR) spectrometer, thermogravimetric (TG), and differential scanning calorimetric (DSC) analytic spectrometer. It was found that the metallocene structure could be formed and connected on silica surface by chemical bond. Initial catalytic tests showed that the supported metallocene was catalytically active (methylaluminoxane as a cocatalyst), producing polymer with higher molecular weight than the metallocene just immobilized on the surface of silica gel.

  3. Dielectric properties of mixed composites prepared from nanodisperse silica and triglycine sulfate

    NASA Astrophysics Data System (ADS)

    Milovidova, S. D.; Rogazinskaya, O. V.; Sidorkin, A. S.; Vorotnikov, E. V.; Nguen, Kh. T.; Lazarev, A. P.

    2015-03-01

    The dielectric properties of mixed composites prepared from the nanodisperse silica and ferroelectrics triglycine sulfate have been studied. The performed investigations have demonstrated that, for the composites containing silica in the hydrosol state, the temperature shift of the maximum dielectric permeability is more significant in the case of composites with smaller silica nanoparticles. There is another maximum at lower temperatures in the temperature dependence of the dielectric permeability of the composite containing silica in the gel state, in addition to the maximum detected in the sol-based composite, which is attributed to ordering of the silica particles in the gels in cross-linked structures.

  4. Effect of preparation parameters on the microporous structure of Ni/SiO{sub 2} catalysts

    SciTech Connect

    Castillon, F.F.; Bodganchikova, N.; Fuentes, S.; Avalos, M.

    1996-12-31

    In this work the authors report the synthesis of Ni/SiO{sub 2} catalysts promoted by group 2 (IIA) cations (calcium and barium) which are currently used as hydrogenation catalysts. The effect of the preparation parameters-aging, base agent, and type of cation, on the surface area of catalysts--is evaluated. Catalysts were prepared by precipitation of the precursor silicic acid, along with nickel nitrate and calcium and barium carbonates, with NaOH, NH{sub 4}OH and Na{sub 2}CO{sub 3} as precipitating agents. Catalysts were characterized by diffuse reflectance spectra (DRS) and by BET-surface area measurements. Results are discussed in terms of sol-gel chemistry.

  5. Preparation and Characterization of Single Ion Conductors from High Surface Area Fumed Silica

    NASA Technical Reports Server (NTRS)

    Zhang, H.; Maitra, P.; Liu, B.; Wunder, S. L.; Lin, H.-P.; Salomon, M.; Hagedorn, Norman H. (Technical Monitor)

    2002-01-01

    Anions that can form dissociative salts with Li(+) have been prepared and covalently attached to high surface area fumed silica. When blended with polyethylene oxide (PEO), the functionalized fumed silica suppresses the crystallization of the PEO, provides dimensional stability, and serves as a single ion conductor. Since functionalized fumed silica is easily dispersed in common polar solvents, it can be incorporated in both the polymer electrolyte and the electrodes.

  6. Microporous Ni@NiO nanoparticles prepared by chemically dealloying Al3Ni2@Al nanoparticles as a high microwave absorption material

    NASA Astrophysics Data System (ADS)

    Pang, Yu; Xie, Xiubo; Li, Da; Chou, Wusheng; Liu, Tong

    2017-03-01

    The Al3Ni2@Al nanoparticles (NPs) were prepared from Ni45Al55 master alloy by hydrogen plasma-metal reaction method, and were subsequently dealloyed to produce porous Ni@NiO NPs of 36 nm. The pore size ranges from 0.7 to 1.6 nm, leading to large specific surface area of 69.5 m2/g and big pore volume of 0.507 cc/g. The saturation magnetization (MS) and coercivity (HC) of the microporous Ni@NiO NPs are 11.5 emu/g and 5.2 Oe. They exhibit high microwave absorption performance with a minimum reflection coefficient (RC) of -86.9 dB and an absorption bandwidth of 2.6 GHz (RC≤-10 dB) at thickness of 4.5 mm. The enhanced microwave absorption properties are attributed to the synergistic effect of the magnetic Ni core and dielectric NiO shell, and the micropore architecture. The NPs with micropore morphology and core/shell structure open a new way to modify the microwave absorption performance.

  7. Preparation and characterization of titania-deposited silica composite hollow fiber membranes with high hydrothermal stability.

    PubMed

    Kwon, Young-Nam; Kim, In-Chul

    2013-11-01

    Hydrothermal stability of a porous nickel-supported silica membrane was successfully improved by deposition of titania multilayers on colloidal silica particles embedded in the porous nickel fiber support. Porous nickel-supported silica membranes were prepared by means of a dipping-freezing-fast drying (DFF) method. The titania layers were deposited on colloidal silica particles by repeating hydrolysis and condensation reactions of titanium isopropoxide on the silica particle surfaces. The deposition of thin titania layers on the nickel-supported silica membrane was verified by various analytical tools. The water flux and the solute rejection of the porous Ni fiber-supported silica membranes did not change after titania layer deposition, indicating that thickness of titania layers deposited on silica surface is enough thin not to affect the membrane performance. Moreover, improvement of the hydrothermal stability in the titania-deposited silica membranes was confirmed by stability tests, indicating that thin titania layers deposited on silica surface played an important role as a diffusion barrier against 90 degrees C water into silica particles.

  8. Preparation of silica coatings heavily doped with spiropyran using perhydropolysilazane as the silica source and their photochromic properties.

    PubMed

    Yamano, Akihiro; Kozuka, Hiromitsu

    2009-04-30

    Silica coatings doped with spiropyran (SP) were prepared using xylene solutions of perhydropolysilazane (PHPS) as the silica source, where the SP-doped PHPS coatings were prepared by spin-coating and the PHPS-to-silica conversion was achieved by exposing the coatings to the vapor from aqueous ammonia at room temperature. The films could be heavily doped with SP at SP/(SP + PHPS) mass ratio as high as 0.2. The as-deposited SP-doped PHPS films were transparent and light-yellow, which turned to red as the PHPS-to-silica conversion proceeded, where the absorbance at 500 nm increased. When the films were stored in air in the dark for 73 h after the exposure treatment, the absorbance at 500 nm further increased, where the film turned from red to dark red. The SP-doped silica coatings thus obtained showed reversible photochromic reaction, where the absorbance at 500 nm decreased and increased when the films were irradiated with visible and ultraviolet light, respectively. The pencil hardness of the films was higher than 9H at a load of 1 kg, while significant amount of SP was leached out when the films were soaked in xylene.

  9. [Preparation of porous silica microspheres with high porosity using base-dissolving method].

    PubMed

    Zhao, Rui; Li, Xinhui; Liu, Guoquan

    2005-11-01

    A novel method was proposed and studied for the preparation of porous silica with high porosity using base-dissolving technology. The relationships between the removal of silica and the base concentration, the reaction temperature as well as the reaction time were evaluated. The amount of silica removed from silica spheres was increased and silica-dissolving rate was also accelerated along with the increase of NaOH concentration. This was due to the damage of some inner walls of the porous silica and the dissolution of small fragments into the base solution. The amount of silica removed was in direct proportion to the reaction temperature and reaction time. Moreover, the specific pore volumes were linearly increased along with the increase of the amount of silica removed. The treated silica particles remained as homogeneous spheres and the changes of the particle diameter were not observed. Under the optimized conditions with the NaOH solution of 1.25 mol/L, the reaction temperature of 25 degrees C and the reaction time of 3.0 h, the original silica spheres with the diameter of 4 - 5 microm, the pore size of 8 nm and the specific pore volume (V(p)) of 1.4 cm3/g were modified to the high-porosity silica with the diameter of 4 - 5 microm, the pore size of 14 nm and the V(p) of 3.2 cm3/g. The porosity of the silica microspheres was changed from 75% to 88%. This high-porosity silica was suitable for the preparation of high performance gel filtration packings.

  10. Preparation and characterization of microporous layers on titanium by anodization in sulfuric acid with and without hydrogen charging.

    PubMed

    Tanaka, Shin-ichi; Fukushima, Yuriko; Nakamura, Isao; Tanaki, Toshiyuki; Jerkiewicz, Gregory

    2013-04-24

    The formation of microporous oxide layers on titanium (Ti) by anodization in sulfuric acid (H2SO4) solution and the influence of prior hydrogen charging on their properties are examined using electrochemical techniques, scanning electron microscopy, grazing incident X-ray diffraction, and X-ray photoelectron spectroscopy. When Ti is anodized in 1 M aqueous H2SO4 solution at a high direct current (DC) potential (>150 V) for 1 min, a porous surface layer develops, and the process takes place with spark-discharge. Under these conditions, oxygen evolution at the Ti electrode proceeds vigorously and concurrently with the formation of anodic oxide. The oxygen gas layer adjacent to the Ti surface acts as an insulator and triggers spark-discharge; the latter stimulates the development of pores. In the absence of spark-discharge, the oxide layer has extended surface roughness but low porosity. A porous oxide layer can be prepared by applying a lower DC voltage (130 V) and without spark-discharge, but Ti requires prior hydrogen charging by cathodic polarization in 1 M aqueous H2SO4 solution. Mott-Schottky measurements indicate that the oxide layers are n-type semiconductors and that the charge carrier density in the anodic oxide layer on the hydrogen-charged Ti is lower than in the case of untreated Ti. The hydrogen charging also affects the flat band potential of the anodic oxide layers on Ti by increasing its value. The reduced charge carrier density brought about by hydrogen charging decreases the oxide layer conductivity and creates favorable conditions for its electrical breakdown that stimulates the development of pores. The porous layer on the hydrogen-charged Ti consists of anatase and rutile phases of TiO2; it has the same chemical composition as the porous layer obtained on untreated Ti. X-ray photoelectron spectroscopy measurements show that prior hydrogen charging does not affect the thickness of anodic oxides on Ti. The porous oxide layer on Ti enables the

  11. Effect of vinyl-modified silica and raw silica particles on the properties of as-prepared polymer-silica nanocomposite foams.

    PubMed

    Yeh, Jui-Ming; Chang, Kung-Chin; Peng, Chih-Wei; Chiou, Sheng-Che; Hwang, Shyh-Shin; Yang, Jen-Chang; Lin, Hong-Ru

    2008-12-01

    In this study, the first comparative studies for the effect of vinyl-modified silica (VMS) and raw silica (RS) particles on the physical properties of as-prepared polymer-silica nanocomposite (PSN) foams are presented. First of all, the VMS particles were synthesized by performing conventional acid-catalyzed sol-gel reactions of TEOS in the presence/absence of MSMA molecules. The as-prepared VMS particles were then characterized through Fourier Transform Infrared (FTIR), solid-state 13C-nuclear magnetic resonance (13C-NMR) and 29Si-NMR spectroscopy. Subsequently, a series of PSN materials have been prepared through bulk polymerization of MMA monomers in the presence of VMS and RS particles with BPO as initiator. The dispersion capability of silica particles in polymer matrix was further observed by transmission electron microscopy (TEM) studies. The PSN foams can be further obtained by performing batch-foaming process on as-prepared bulky PSN materials with N2 as foaming agent. The cell structure analysis of the PSN foams was subsequently examined by the scanning electron microscopy (SEM) images. Gel permeation chromatography (GPC) was used to determine the molecular weights of as-prepared samples. It should be noted that the incorporated VMS and RS particles served as heterogeneous nucleation agent in polymer matrix under foaming process to reduce the cell size and increase the cell density of the PSN foams. Furthermore, the VMS particles exhibited a better dispersion capability of silica particles in PMMA matrix as compared to that of RS particles, leading to the PSN foams with smaller cell size and higher cell density. Effect of material composition on the thermal transport properties, thermal stability and mechanical strength of PSN foams were investigated by transient plane source (TPS) technique, thermal gravimetric analysis (TGA) and dynamic mechanical analysis (DMA), respectively.

  12. Hollow Microporous Organic Capsules

    PubMed Central

    Li, Buyi; Yang, Xinjia; Xia, Lingling; Majeed, Muhammad Irfan; Tan, Bien

    2013-01-01

    Fabrication of hollow microporous organic capsules (HMOCs) could be very useful because of their hollow and porous morphology, which combines the advantages of both microporous organic polymers and non-porous nanocapsules. They can be used as storage materials or reaction chambers while supplying the necessary path for the design of controlled uptake/release systems. Herein, the synthesis of HMOCs with high surface area through facile emulsion polymerization and hypercrosslinking reactions, is described. Due to their tailored porous structure, these capsules possessed high drug loading efficiency, zero-order drug release kinetics and are also demonstrated to be used as nanoscale reactors for the prepareation of nanoparticles (NPs) without any external stabilizer. Moreover, owing to their intrinsic biocompatibility and fluorescence, these capsules exhibit promising prospect for biomedical applications. PMID:23820511

  13. Preparation and processing of monodisperse colloidal silica-cadmium sulfide nanocomposites

    SciTech Connect

    Chang, S.Y.; Liu, L.; Asher, S.A.

    1994-12-31

    A novel synthetic methodology has been developed for preparing monodisperse colloidal silica-cadmium sulfide nanocomposite spheres in the 50--300 nm size regime. This methodology uses water-in-oil microemulsions as the reaction medium. Monosize silica colloids are first produced by the controlled hydrolysis of tetraethyl orthosilicate in the micro water droplets of the microemulsion. Cadmium sulfide quantum dots are incorporated into the silica colloids during synthesis by the introductions of Cd{sup 2+} and S{sup 2{minus}} microemulsions. Various morphologies of the nanocomposite are fabricated by controlling the heterogeneous coagulation of CdS and SiO{sub 2}. Unique high surface area silica particles can be prepared when nitric acid etches out the CdS and leaves behind topologically defined voids. The CdS nanocomposites are new materials useful for non-linear optics, while the high surface area silica particles should have novel applications in areas such as catalysis.

  14. The preparation of core-shell magnetic silica nanospheres for enhancing magnetism and fluorescence intensity.

    PubMed

    Yoo, Jeong Ha; Kim, Jong Sung

    2013-11-01

    Recently, magnetic and luminescent composite silica with structure of micro- and nanospheres containing both magnetic (Fe3O4) nanoparticles (MPs) and quantum dots (QDs) has attracted great interests. In this study, we have prepared core-shell structure of silica spheres in which magnets are incorporated into silica core and QDs into a mesoporous silica shell by using C18-TMS (octade-cyltrimethoxysilane). MPs were synthesized by a co-precipitation method from ferrous and ferric solutions with a molecular ratio of 2:3. Monodisperse magnetic silica cores have been prepared via sol-gel reaction of TEOS (tetraethoxysilane) and water using base catalyst. The size of magnetic silica nanospheres was confirmed by dynamic laser light scattering system (DLS) and scanning electoron microscope (SEM). The pore volume and surface area were calculated by using BET after calcination. The core-shell structure plays an important role in providing more domains for MPs in silica Core and QDs in silica shell. QDs were incorporated into the mesoporous shell by hydrophobic interactions. Magnetic characterization was performed using a superconducting quantum interference device (SQUID). The optical properties of the particles were characterized with UV/Vis spectrometer, PL spectrometer, and fluorescence microscope.

  15. Preparation and performance of nano silica/Nafion composite membrane for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Wang, Keping; McDermid, Scott; Li, Jing; Kremliakova, Natalia; Kozak, Paul; Song, Chaojie; Tang, Yanghua; Zhang, Jianlu; Zhang, Jiujun

    Composite membranes made from Nafion ionomer with nano phosphonic acid-functionalised silica and colloidal silica were prepared and evaluated for proton exchange membrane fuel cells (PEMFCs) operating at elevated temperature and low relative humidity (RH). The phosphonic acid-functionalised silica additive obtained from a sol-gel process was well incorporated into Nafion membrane. The particle size determined using transmission electron microscope (TEM) had a narrow distribution with an average value of approximately 11 nm and a standard deviation of ±4 nm. The phosphonic acid-functionalised silica additive enhanced proton conductivity and water retention by introducing both acidic groups and porous silica. The proton conductivity of the composite membrane with the acid-functionalised silica was 0.026 S cm -1, 24% higher than that of the unmodified Nafion membrane at 85 °C and 50% RH. Compared with the Nafion membrane, the phosphonic acid-functionalised silica (10% loading level) composite membrane exhibited 60 mV higher fuel cell performance at 1 A cm -2, 95 °C and 35% RH, and 80 mV higher at 0.8 A cm -2, 120 °C and 35% RH. The fuel cell performance of composite membrane made with 6% colloidal silica without acidic group was also higher than unmodified Nafion membrane, however, its performance was lower than the acid-functionalised silica additive composite membrane.

  16. Analysis of silica hydride and surface hydrosilation reactions by solid-state NMR in the preparation of p-chlorobenzamide bonded silica phase.

    PubMed

    Lynch, B; Müller, G H; Healy, L O; Glennon, J D; Pursch, M; Albert, K

    2003-11-01

    29Si and (13)C CP-MAS NMR spectroscopy was used to follow the conversion of native silica to a p-chlorobenzamide bonded silica material. The benzamide bonded phase was prepared via a hydrosilation reaction of a hydride silica intermediate with p-chloro- N-allylbenzamide. Solid-state NMR was used to show the disappearance of reactive surface hydride species (M(H)) and to identify newly formed bonded chemical species on the silica surface. DRIFT spectroscopy, elemental analysis, and specific surface-area determinations (BET) of the prepared phases are also reported.

  17. Synthesis of vinyl polymer-silica colloidal nanocomposites prepared using commercial alcoholic silica sols.

    PubMed

    Percy, M J; Amalvy, J I; Randall, D P; Armes, S P; Greaves, S J; Watts, J F

    2004-03-16

    The surfactant-free synthesis of vinyl polymer-silica nanocomposite particles has been achieved in aqueous alcoholic media at ambient temperature in the absence of auxiliary comonomers. Styrene, methyl methacrylate, methyl acrylate, n-butyl acrylate, and 2-hydroxypropyl methacrylate were homopolymerized in turn in the presence of three commercially available ultrafine alcoholic silica sols. Stable colloidal dispersions with reasonably narrow size distributions were obtained, with silica contents of up to 58% by mass indicated by thermogravimetric analysis. Particle size distributions were assessed using both dynamic light scattering and disk centrifuge photosedimentometry. The former technique indicated that the particle size increased for the first 1-2 h at 25 degrees C and thereafter remained constant. Particle morphologies were studied using electron microscopy. Most of the colloidal nanocomposites comprised approximately spherical particles with relatively narrow size distributions, but in some cases more polydisperse or nonspherical particles were obtained. Selected acrylate-based nanocomposites were examined in terms of their film formation behavior. Scanning electron microscopy studies indicated relatively smooth films were obtained on drying at 20 degrees C, with complete loss of the original particle morphology. The optical clarity of solution-cast 10 microm nanocomposite films was assessed using visible absorption spectrophotometry, with 93-98% transmission being obtained from 400 to 800 nm; the effect of long-term immersion of such films in aqueous solutions was also examined. X-ray photoelectron spectroscopy studies indicated that the surface compositions of these nanocomposite particles are invariably silica-rich, which is consistent with their long-term colloidal stability and also with aqueous electrophoresis measurements. FT-IR studies suggested that in the case of the poly(methyl methacrylate)-silica nanocomposite particles, the carbonyl ester

  18. Preparation of multilayered gold-silica-polystyrene core-shell particles by seeded polymerization.

    PubMed

    Gu, Shunchao; Onishi, Junya; Mine, Eiichi; Kobayashi, Yoshio; Konno, Mikio

    2004-11-01

    A preparation method for multilayered gold-silica-polystyrene core-shell composite particles is proposed. The gold-silica core-shell particles of 192-nm-sized, synthesized by coating the 18-nm-sized gold particles with silica by a seeded growth technique, were used as cores for succeeding polystyrene coating. After surface modification of gold-silica composite particles by methacryloxypropyltrimethoxysilane (MPTMS), polymerizations of styrene (0.16-0.4 M) were conducted with 8 x 10(-3) M of potassium persulfate initiator in the presence of 1 x 10(-3) M of sodium p-styrenesulfonate anionic monomer. Multilayered core-shell gold-silica-polystyrene particles that contained a single core could be obtained. The coefficient of variation of size distribution (CV) of the composite particles was less than 7%, and polystyrene shell thickness was in a range of 193 to 281 nm.

  19. A hydrothermal peroxo method for preparation of highly crystalline silica-titania photocatalysts.

    PubMed

    Krivtsov, Igor; Ilkaeva, Marina; Avdin, Viacheslav; Khainakov, Sergei; Garcìa, Jose R; Ordòñez, Salvador; Dìaz, Eva; Faba, Laura

    2015-04-15

    A new completely inorganic method of preparation of silica-titania photocatalyst has been described. It has been established that the addition of silica promotes crystallinity of TiO2 anatase phase. Relative crystallinity and TiO2 crystal size in the silica-titania particles increase with the silica content until SiO2/TiO2 molar ratio of 0.9, but at higher molar ratios they start to decrease. The single-source precursor containing peroxo titanic (PTA) and silicic acids has been proved to be responsible for high crystallinity of TiO2 encapsulated into amorphous silica. It has been proposed that peroxo groups enhance rapid formation of crystalline titania seeds, while silica controls their growth. It has been concluded from the TEM that the most morphologically uniform anatase crystallites covered with SiO2 particles are prepared at SiO2/TiO2 molar ratio of 0.4. This sample, according to (29)Si NMR, also shows the high content of hydroxylated silica Q(3) and Q(2) groups, and it is the most photocatalytically active in UV-assisted decomposition of methylene blue among the tested materials. It has been determined that the increase in the amount of the condensed Q(4) silica in the mixed oxides leads to the decrease in photocatalytic performance of the material, despite its better crystallinity. High crystallinity, low degree of incorporation of Ti atoms in SiO2 in the mixed oxide and adsorption of methylene blue in the vicinity of photoactive sites on the hydroxylated silica have been considered as the main factors determining the high degradation degree of methylene blue in the presence of silica-titania. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Preparation, purification, and characterization of aminopropyl-functionalized silica sol.

    PubMed

    Pálmai, Marcell; Nagy, Lívia Naszályi; Mihály, Judith; Varga, Zoltán; Tárkányi, Gábor; Mizsei, Réka; Szigyártó, Imola Csilla; Kiss, Teréz; Kremmer, Tibor; Bóta, Attila

    2013-01-15

    A new, simple, and "green" method was developed for the surface modification of 20 nm diameter Stöber silica particles with 3-aminopropyl(diethoxy)methylsilane in ethanol. The bulk polycondensation of the reagent was inhibited and the stability of the sol preserved by adding a small amount of glacial acetic acid after appropriate reaction time. Centrifugation, ultrafiltration, and dialysis were compared in order to choose a convenient purification technique that allows the separation of unreacted silylating agent from the nanoparticles without destabilizing the sol. The exchange of the solvent to acidic water during the purification yielded a stable colloid, as well. Structural and morphological analysis of the obtained aminopropyl silica was performed using transmission electron microscopy (TEM), dynamic light scattering (DLS) and zeta potential measurements, Fourier-transform infrared (FTIR), (13)C and (29)Si MAS nuclear magnetic resonance (NMR) spectroscopies, as well as small angle X-ray scattering (SAXS). Our investigations revealed that the silica nanoparticle surfaces were partially covered with aminopropyl groups, and multilayer adsorption followed by polycondensation of the silylating reagent was successfully avoided. The resulting stable aminopropyl silica sol (ethanolic or aqueous) is suitable for biomedical uses due to its purity. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. High-temperature chlorination-reduction sequence for the preparation of silicon hydride modified silica surfaces.

    PubMed

    Plumeré, Nicolas; Speiser, Bernd; Mayer, Hermann A; Joosten, Dominik; Wesemann, Lars

    2009-01-01

    A general method for the functionalization of silica surfaces with silicon hydride (Si-H) groups is described for four different preparations of silica. The silica surface is reduced in a two-step chlorination-reduction procedure within a simple gas-flow system at high temperatures. After initial dehydroxylation of the silica surface, silicon chloride groups are formed by the reaction with thionyl chloride. The chlorination activates otherwise inaccessible surface siloxane moieties. A high silicon-hydride surface concentration results from the subsequent reduction of the chlorinated surface with hydrogen. The physical properties of the resulting silica are analyzed using scanning electron microscopy, as well as dynamic light scattering and Brunauer-Emmet-Teller measurements. The chlorination-reduction sequence has no significant impact on the structure, surface area and mesopore size of the silica materials used. The surface of the materials is characterized by diffuse reflectance infrared Fourier transform (DRIFT) and (29)Si CP/MAS NMR spectroscopy. The silicon-hydride groups are mostly of the ${{\\rm T}{{3\\hfill \\atop {\\rm H}\\hfill}}}$-type. The use of high temperatures (>800 degrees C) results in the condensation of internal and surface silanol groups. Therefore, materials with both a fully condensed silica matrix as well as a surface free of silanol groups are obtained. The materials are ideal precursors for further molecular silica surface modification, as demonstrated with a ferrocene derivative.

  2. Electrochemically induced maskless metal deposition on micropore wall.

    PubMed

    Liu, Jie; Hébert, Clément; Pham, Pascale; Sauter-Starace, Fabien; Haguet, Vincent; Livache, Thierry; Mailley, Pascal

    2012-05-07

    By applying an external electric field across a micropore via an electrolyte, metal ions in the electrolyte can be reduced locally onto the inner wall of the micropore, which was fabricated in a silica-covered silicon membrane. This maskless metal deposition on the silica surface is a result of the pore membrane polarization in the electric field. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. [Preparation and enantioseparation performance of β-cyclodextrin-silica hybrid chiral stationary phases].

    PubMed

    Wang, Litao; Dong, Shuqing; Zhang Zhixin; Wang, Yangjun; Zhang, Xiaoli; Zhang, Xia; Zhang, Pengyun; Zhao, Liang

    2016-01-01

    A simple preparation method for β-cyclodextrin-silica hybrid chiral stationary phases was developed. Firstly, the β-cyclodextrin-silica derivative was synthesized by the reaction of 3-aminopropyltriethoxysilane and monochlorotriazinyl β-cyclodextrin under weak base condition. Spherical β-cyclodextrin-silica hybrid materials with β-cyclodextrin in the surface of pores by covalent bonding were prepared using 1,2-bis(triethoxysilyl) ethane and the β-cyclodextrin-silica derivative under the alkaline condition by one-step polymerization reaction. The β-Cyclodextrin-silica hybrid chiral stationary phases could be directly used as high performance liquid chromatographic packings after the template removal. The hybrid materials prepared in this paper possessed regular spherical morphology, good monodispersion, high specific surface area, good mechanical property, high chemical stability and simple preparation process. It combined the chiral recognition performance of β-cyclodextrin and the outstanding performance of organic-inorganic hybrid material. The effect of the composition, ratio and pH of mobile phase on chiral separation was investigated, and the best chiral separation conditions had been optimized. The baseline chiral separations for five chiral compounds were obtained under the optimal conditions. The results of enantioseparation showed that the hybrid chiral stationary phases had favorable chiral recognition ability. Compared with the traditional preparation process of chiral stationary phases, a new thought for new type of chiral stationary phase is provided by the present method in this paper.

  4. Hydrothermal preparation of hybrid carbon/silica monolithic capillary column for liquid chromatography.

    PubMed

    Yang, Peiling; Wang, Wentao; Xiao, Xing; Jia, Li

    2014-08-01

    A simple, easy and economical approach for the preparation of a hybrid carbon/silica monolithic capillary column was described for the first time by using silica monolith as framework in combination with hydrothermal carbonization at 180°C. During the preparation process, formamide was introduced to the reaction solutions to reduce the dissolution rate of monolithic silica skeleton and its optimal concentration was 1.5 M. Fourier transform infrared spectrometry, scanning electron microscopy, energy dispersive X-ray spectrometry, and inverse size exclusion chromatography were carried out to characterize the as-prepared column. The results demonstrated that carbon spheres ranging from 150 to 1000 nm were successfully attached to the surface of silica skeleton. The prepared hybrid carbon/silica column had a permeability of 4.4 × 10(-14) m(2). Chromatographic performance of the column was evaluated by separation of various compounds including alkylbenzenes, nucleosides and bases, and aromatic acids. The column exhibited an efficiency of 75,000 plates/m for butylbenzene at the optimal linear velocity of 0.23 mm/s. The successful separation of these compounds and the study on mechanism indicated that the column can be applied in mixed-mode chromatography.

  5. Facile preparation of mesoporous carbon-silica-coated graphene for the selective enrichment of endogenous peptides.

    PubMed

    Zhang, Quanqing; Zhang, Qinghe; Xiong, Zhichao; Wan, Hao; Chen, Xiaoting; Li, Hongmei; Zou, Hanfa

    2016-01-01

    A sandwich-like composite composed of ordered mesoporous carbon-silica shell-coated graphene (denoted as graphene@mSiO2-C) was prepared by an in-situ carbonation strategy. A mesoporous silica shell was synthesized by a sol-gel method, and cetyltrimethyl ammonium bromide inside the mesopores were in-situ carbonized as a carbon source to obtain a carbon-silica shell. The resulting mesoporous carbon-silica material with a sandwich structure possesses a high surface area (600 m(2) g(-1)), large pore volume (0.587 cm(3) g(-1)), highly ordered mesoporous pore (3 nm), and high carbon content (30%). This material shows not only high hydrophobicity of graphene and mesoporous carbon but also a hydrophilic silica framework that ensures excellent dispersibility in aqueous solution. The material can capture many more peptides from bovine serum albumin tryptic digests than mesoporous silica shell-coated graphene, demonstrating great enrichment efficiency for peptides. Furthermore, the prepared composite was applied to the enrichment of low-abundance endogenous peptides in human serum. Based on Matrix-Assisted Laser Desorption/ Ionization Time of Flight Mass Spectrometry identification, the graphene@mSiO2-C could efficiently size-exclude proteins and enriches the low-abundant peptides on the graphene and mesoporous carbon. And based on the LC-MS/MS results, 892 endogenous peptides were obtained by graphene@mSiO2-C, hinting at its great potential in peptides analysis.

  6. Preparation of agglomeration-free hematite particles coated with silica and their reduction behavior in hydrogen.

    PubMed

    Iijima, Motoyuki; Yonemochi, Yuichi; Kimata, Mitsumasa; Hasegawa, Masahiro; Tsukada, Mayumi; Kamiya, Hidehiro

    2005-07-15

    To prepare silica-coated hematite particles without agglomeration, the effects of solid fraction, ion content in solution, and designed layer thickness on agglomeration and dispersion behavior after silica coating were examined. Since the ion concentration remained high in suspension after the hematite particles were prepared, these particles formed aggregates by the compression of an electric double layer on the hematite and silica layer produced a solid bridge between primary hematite particles. Silica bridge formation and agglomeration were almost completely prevented by decreasing the ion concentration and solid fraction of the hematite particles. Furthermore, the effects of the silica-layer thickness and structure on the reduction of hematite to iron under hydrogen gas flow and the iron core stability under air were discussed. When the solid fraction was low in suspension to prevent agglomeration during coating, a densely packed structure of nanoparticles formed by heterogeneous nucleation was observed on the silica-layer surface. Since this structure could not completely prevent oxide diffusion, the layer thickness was increased to 40 nm to obtain a stable iron core under air. Although a dense uniform layer was produced at a high solid fraction during coating, its thickness was reduced to 20 nm to completely reduce hematite to iron.

  7. Self-immobilization and/or thermal treatment for preparing silica-poly(methyloctylsiloxane) stationary phases.

    PubMed

    Bottoli, Carla B G; Vigna, Camila R M; Fischer, Gerd; Albert, Klaus; Collins, Kenneth E; Collins, Carol H

    2004-03-19

    Batches of poly(methyloctylsiloxane) (PMOS)-loaded silica were prepared by the deposition of PMOS, into the pores of HPLC silica. Portions of PMOS-loaded silica were allowed to remain at ambient temperature, without further treatment for 2, 9, 20, 31, 51, 105 and 184 days after preparation to undergo self-immobilization (irreversible adsorption of a layer of polymer on silica at ambient temperature in the absence of initiators). Other portions were subjected to a thermal treatment (100 degrees C for 4h) after 1, 2, 5, 7, 9, 15, 20, 25, 70, 111 and 184 days. Self-immobilized and thermally treated samples were characterized by % C, 29Si cross-polarization magic angle spinning (CP/MAS) NMR spectroscopy and reversed-phase column performance. The results show that thermal immobilization accelerates the distribution and rearrangement of the polymer on the silica surface. However, from the time that a monolayer has been formed by self-immobilization (approximately 100 days for PMOS on Kromasil silica), the thermal treatment does not alter this configuration and, thus, does not change the resulting chromatographic parameters.

  8. The preparation and properties of monodisperse core-shell silica magnetic microspheres.

    PubMed

    Lou, Min-yi; Jia, Qiu-ling; Wang, De-ping; Liu, Bing; Huang, Wen-hai

    2008-01-01

    The monodisperse core-shell silica magnetic microspheres (MMS) were synthesized by sol-gel method gelling in the emulsion. Optical microscope (OM), field emission scanning electron microscope (FESEM), nitrogen adsorption and desorption Brunauer Emmett Teller Procedure (BET) isotherms and Barrett-Joyner-Halenda (BJH) pore size distribution measurements, X-ray diffraction (XRD), energy dispersive spectrometer (EDS) and vibrating sample magnetometer (VSM) were used to characterize the appearance, size distribution, phase, specific surface area, chemical composition and magnetic property of silica MMS. The results showed that silica MMS prepared through sol-gel method with acid-alkali two-step catalyze and gelling in emulsion exhibited the superior core-shell structure and size distribution of the microspheres concentrated in about 20 mum. The main phase of microspheres was amorphous silica and spinel ferroferric oxide. Meanwhile, the microspheres remained the superparamagnetic behavior and could be used as biomaterials.

  9. In vitro efficacies of oils, silicas and plant preparations against the poultry red mite Dermanyssus gallinae.

    PubMed

    Maurer, Veronika; Perler, Erika; Heckendorn, Felix

    2009-06-01

    The aim of this study was to test the effectiveness of physically acting substances (oils and silicas) and plant preparations for the control of the poultry red mite Dermanyssus gallinae (De Geer 1778). Reproduction and survival of fed D. gallinae females were evaluated in vitro for a total of 168 h using the "area under the survival curve" (AUC) to compare survival of the mites between treatments. Four oils (two plant oils, one petroleum spray oil and diesel), one soap, three silicas (one synthetic amorphous silica, one diatomaceous earth (DE) and one DE with 2% pyrethrum extract) and seven plant preparations (derived from Chrysanthemum cineariaefolium, Allium sativum, Tanacetum vulgare, Yucca schidigera, Quillaja saponaria, Dryopteris filix-mas, and Thuja occidentalis) were tested at various concentrations. All the oils, diesel and soap significantly reduced D. gallinae survival. All silicas tested inhibited reproduction. DE significantly reduced mite survival, but amorphous silica was less effective in vitro. Except for pure A. sativum juice and the highest concentration of C. cineariaefolium extract, the plant preparations tested resulted in statistically insignificant control of D. gallinae.

  10. Preparation and photoluminescence properties of amorphous silica nanowires

    NASA Astrophysics Data System (ADS)

    Wu, X. C.; Song, W. H.; Wang, K. Y.; Hu, T.; Zhao, B.; Sun, Y. P.; Du, J. J.

    2001-03-01

    Bulk-quantity amorphous silica nanowires (SiONWs) have been synthesized by carbothermal reduction reaction between silicon dioxide and active carbons. Transmission electron microscopy (TEM) image shows the formation of the nanowires at a diameter of 60-110 nm and a length up to hundreds micrometers. Besides most smooth-surface polyp-shaped nanowires, two other forms of nanowires, named amoeba-shaped and frog-egg-shaped nanowires, have also been observed. The nanowires can emit stable and high brightness blue light at 435 nm (2.85 eV) under excitation at 260 nm (4.77 eV). The formation of the nanowires into different shapes may be explained by the vapor-liquid-solid (VLS) mechanism.

  11. [Response surface method optimize of nano-silica solid dispersion technology assistant enzymatic hydrolysis preparation genistein].

    PubMed

    Jin, Xin; Zhang, Zhen-Hai; Zhu, Jing; Sun, E; Yu, Dan-Hong; Chen, Xiao-Yun; Liu, Qi-Yuan; Ning, Qing; Jia, Xiao-Bin

    2012-04-01

    This article reports that nano-silica solid dispersion technology was used to raise genistein efficiency through increasing the enzymatic hydrolysis rate. Firstly, genistin-nano-silica solid dispersion was prepared by solvent method. And differential scanning calorimetry (DSC) and transmission electron microscopy (TEM) were used to verify the formation of solid dispersion, then enzymatic hydrolysis of solid dispersion was done by snailase to get genistein. With the conversion of genistein as criteria, single factor experiments were used to study the different factors affecting enzymatic hydrolysis of genistin and its solid dispersion. And then, response surface method was used to optimize of nano-silica solid dispersion technology assistant enzymatic hydrolysis. The optimum condition to get genistein through enzymatic hydrolysis of genistin-nano-silica solid dispersion was pH 7.1, temperature 52.2 degrees C, enzyme concentration 5.0 mg x mL(-1) and reaction time 7 h. Under this condition, the conversion of genistein was (93.47 +/- 2.40)%. Comparing with that without forming the genistin-nano-silica solid dispersion, the conversion increased 2.62 fold. At the same time, the product of hydrolysis was purified to get pure genistein. The method of enzymatic hydrolysis of genistin-nano-silica solid dispersion by snailase to obtain genistein is simple, efficiency and suitable for the modern scale production.

  12. Highly ordered poly(thiophene)s prepared in mesoporous silica nanoparticles.

    PubMed

    Seo, Seogjae; Kim, Jeonghun; Kim, Byeonggwan; Vinu, Ajayan; Kim, Eunkyoung

    2011-05-01

    Nanostructured PEDOT was synthesized using mesoporous silica as a nano-template. The polymerization of thiophene monomers was performed with an oxidant and mesoporous silica nanoparticles. The silica particles took essential role in absorbing monomers and oxidant molecules, and growth of polymers inside their pores. As prepared polymer/silica composite was treated with HF solution to remove silica template to result in 1D wire structure and mesh type porous 3D structures from SBA-15 and KIT-6 template, respectively. The average size of the poly(thiophene) wires was 10 15 nm, which was matched well to the pores size of the silica templates, as determined from an electron microscopy. At optimized condition, the room temperature electrical conductivities of the PEDOT grown from SBA-15 and KIT-6 template were similar as 1.1 and 1.0 S/cm, respectively. However, the evolution of the PEDOT conductivity versus temperature was different depending on the templates. These results gave a unique chance to tailor made 3 dimensional structure as well as properties of conductive polymer.

  13. Preparation, Characterization and Performance of Templated Silica Membranes in Non-Osmotic Desalination.

    PubMed

    Ladewig, Bradley P; Tan, Ying Han; Lin, Chun Xiang C; Ladewig, Katharina; Diniz da Costa, João C; Smart, Simon

    2011-05-02

    In this work we investigate the potential of a polyethylene glycol-polypropylene glycol-polyethylene glycol, tri-block copolymer as a template for a hybrid carbon/silica membrane for use in the non-osmotic desalination of seawater. Silica samples were loaded with varying amounts of tri-block copolymer and calcined in a vacuum to carbonize the template and trap it within the silica matrix. The resultant xerogels were analyzed with FTIR, Thermogravimetric analysis (TGA) and N₂ sorption techniques, wherein it was determined that template loadings of 10 and 20% produced silica networks with enhanced pore volumes and appropriately sized pores for desalination. Membranes were created via two different routes and tested with feed concentrations of 3, 10 and 35 ppk of NaCl at room temperature employing a transmembrane pressure drop of 85% (in most cases >95%) and fluxes higher than 1.6 kg m(-2) h(-1). Furthermore, the carbonized templated membranes displayed equal or improved performance compared to similarly prepared non-templated silica membranes, with the best results of a flux of 3.7 kg m(-2) h(-1) with 98.5% salt rejection capacity, exceeding previous literature reports. In addition, the templated silica membranes exhibited superior hydrostability demonstrating their potential for long-term operation.

  14. Preparation, Characterization and Performance of Templated Silica Membranes in Non-Osmotic Desalination

    PubMed Central

    Ladewig, Bradley P.; Tan, Ying Han; Lin, Chun Xiang C.; Ladewig, Katharina; Diniz da Costa, João C.; Smart, Simon

    2011-01-01

    In this work we investigate the potential of a polyethylene glycol-polypropylene glycol-polyethylene glycol, tri-block copolymer as a template for a hybrid carbon/silica membrane for use in the non-osmotic desalination of seawater. Silica samples were loaded with varying amounts of tri-block copolymer and calcined in a vacuum to carbonize the template and trap it within the silica matrix. The resultant xerogels were analyzed with FTIR, Thermogravimetric analysis (TGA) and N2 sorption techniques, wherein it was determined that template loadings of 10 and 20% produced silica networks with enhanced pore volumes and appropriately sized pores for desalination. Membranes were created via two different routes and tested with feed concentrations of 3, 10 and 35 ppk of NaCl at room temperature employing a transmembrane pressure drop of <1 atm. All membranes demonstrated a salt rejection capacity of >85% (in most cases >95%) and fluxes higher than 1.6 kg m−2 h−1. Furthermore, the carbonized templated membranes displayed equal or improved performance compared to similarly prepared non-templated silica membranes, with the best results of a flux of 3.7 kg m−2 h−1 with 98.5% salt rejection capacity, exceeding previous literature reports. In addition, the templated silica membranes exhibited superior hydrostability demonstrating their potential for long-term operation. PMID:28879954

  15. Moisture Transport in Silica Gel Particle Beds: I. Theoretical Study

    SciTech Connect

    Pesaran, A. A.; Mills, A. F.

    1986-08-01

    Diffusion mechanisms of moisture within silica gel particles are investigated. It is found that for microporous silica gel surface diffusion is the dominant mechanism of moisture transport, while for macroporous silica gel both Knudsen and surface diffusion are important.

  16. Progress of the Application of Mesoporous Silica-Supported Heteropolyacids in Heterogeneous Catalysis and Preparation of Nanostructured Metal Oxides

    PubMed Central

    Ren, Yuanhang; Yue, Bin; Gu, Min; He, Heyong

    2010-01-01

    Mesoporous silica molecular sieves are a kind of unique catalyst support due to their large pore size and high surface area. Several methods have been developed to immobilize heteropolyacids (HPAs) inside the channels of these mesoporous silicas. The mesoporous silica-supported HPA materials have been widely used as recyclable catalysts in heterogeneous systems. They have shown high catalytic activities and shape selectivities in some reactions, compared to the parent HPAs in homogeneous systems. This review summarizes recent progress in the field of mesoporous silica-supported HPAs applied in the heterogeneous catalysis area and preparation of nanostructured metal oxides using HPAs as precursors and mesoporous silicas as hard templates.

  17. Fabrication of Hollow Microporous Carbon Spheres from Hyper-Crosslinked Microporous Polymers.

    PubMed

    Wang, Kewei; Huang, Liang; Razzaque, Shumaila; Jin, Shangbin; Tan, Bien

    2016-06-01

    Porous carbon materials prepared from the porous organic polymers are currently the subject of extensive investigation. On the basis of their interesting applications, it is highly desirable to develop new synthetic methodologies to obtain carbon materials with controllable pore size and morphology. Herein, a facile synthesis of hollow microporous carbon spheres (HCSs) from hollow microporous organic capsules (HMOCs) with a good control over the pore morphology, hollow cavity, and the shell thickness is reported. The highly porous hollow carbon spheres are prepared by the pyrolysis of HMOCs-based microporous polymers. The synthetic parameters, such as hypercrosslinking and pyrolysis conditions, are optimized to modify the porous structures and the properties. The morphology and porosity as well as energy storage applications of the microporous structures HCSs, derived through a combination of divinylbenzene-crosslinking and micropore-generating hypercrosslinking, are discussed. These findings provide a new benchmark for fabricating well-defined HCSs with great promise for various applications.

  18. Effect of various structure directing agents on the physicochemical properties of the silica aerogels prepared at an ambient pressure

    NASA Astrophysics Data System (ADS)

    Sarawade, Pradip B.; Shao, Godlisten N.; Quang, Dang Viet; Kim, Hee Taik

    2013-12-01

    We studied the effects of various surfactants on the textural properties (BET surface area, pore size, and pore volume) of the silica aerogels prepared at an ambient pressure. A simple surface modification of silica gel prepared at an ambient pressure through hydrolysis and polycondensation of TEOS as a silica precursor was conducted using various structure directing agents. The treatment was found to induce a significant difference in the porosity of the silica aerogel. Highly porous silica aerogels with bimodal porous structures were prepared by modifying the surface of the silica wet-gel (alcogel) with trimethylchlorosilane (TMCS) in order to preserve its porosity. The samples were analyzed by small-angle X-ray scattering and nitrogen adsorption. In this work, a possible new type of highly porous hydrophobic silica aerogel with a bimodal porous structure is presented. A hydrophilic extremely porous (high surface area and large pore volume) silica aerogel was obtained by heating the as-synthesized hydrophobic silica aerogel at 400 °C for 1 h. There was a significant effect of structure directing agent on the textural properties, such as specific surface area, pore size distribution and cumulative pore volume of the silica aerogels.

  19. Preparation of monolithic silica-chitin composite under extreme biomimetic conditions.

    PubMed

    Bazhenov, Vasilii V; Wysokowski, Marcin; Petrenko, Iaroslav; Stawski, Dawid; Sapozhnikov, Philipp; Born, René; Stelling, Allison L; Kaiser, Sabine; Jesionowski, Teofil

    2015-05-01

    Chitin is a widespread renewable biopolymer that is extensively distributed in the natural world. The high thermal stability of chitin provides an opportunity to develop novel inorganic-organic composites under hydrothermal synthesis conditions in vitro. For the first time, in this work we prepared monolithic silica-chitin composite under extreme biomimetic conditions (80°C and pH 1.5) using three dimensional chitinous matrices isolated from the marine sponge Aplysina cauliformis. The resulting material was studied using light and fluorescence microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy. A mechanism for the silica-chitin interaction after exposure to these hydrothermal conditions is proposed and discussed.

  20. Ionic liquid-templated preparation of mesoporous silica embedded with nanocrystalline sulfated zirconia

    NASA Astrophysics Data System (ADS)

    Ward, Antony J.; Pujari, Ajit A.; Costanzo, Lorenzo; Masters, Anthony F.; Maschmeyer, Thomas

    2011-12-01

    A series of mesoporous silicas impregnated with nanocrystalline sulphated zirconia was prepared by a sol-gel process using an ionic liquid-templated route. The physicochemical properties of the mesoporous sulphated zirconia materials were studied using characterisation techniques such as inductively coupled optical emission spectroscopy, X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray microanalysis, elemental analysis and X-ray photoelectron spectroscopy. Analysis of the new silicas indicates isomorphous substitution of silicon with zirconium and reveals the presence of extremely small (< 10 nm) polydispersed zirconia nanoparticles in the materials with zirconium loadings from 27.77 to 41.4 wt.%.

  1. Biodegradable Starch/Copolyesters Film Reinforced with Silica Nanoparticles: Preparation and Characterization

    NASA Astrophysics Data System (ADS)

    Lima, Roberta A.; Oliveira, Rene R.; Wataya, Célio H.; Moura, Esperidiana A. B.

    Biodegradable starch/copolyesters/silica nanocomposite films were prepared by melt extrusion, using a twin screw extruder machine and blown extrusion process. The influence of the silica nanoparticle addition on mechanical and thermal properties of nanocomposite films was investigated by tensile tests; X-rays diffraction (XRD), differential scanning calorimetry (DSC) and Scanning electron microscopy (SEM) analysis and the correlation between properties was discussed. The results showed that incorporation of 2 % (wt %) of SiO2 nanoparticle in the blend matrix of PBAT/Starch, resulted in a gain of mechanical properties of blend.

  2. Silica coating of luminescent quantum dots prepared in aqueous media for cellular labeling

    SciTech Connect

    Ma, Yunfei; Li, Yan Zhong, Xinhua

    2014-12-15

    Graphical abstract: A facile route based on modified Stöber method was used for the synthesis of silica coated QDs (QD@SiO{sub 2}) starting from aqueously prepared CdTe/CdS QDs. The resultant QD@SiO{sub 2} exhibited a significant increase in emission efficiency compared with that of the initial QDs, along with a small size (∼5 nm in diameter), great stability and low cytotoxicity, which makes it a good candidate as robust biomarker. - Highlights: • We present a facile modified Stöber method to prepare highly luminescent QD@SiO{sub 2}. • The PL efficiency of QDs increases significantly after silica coating. • QD@SiO{sub 2} exhibits small size (∼5 nm) and great dispersibility in aqueous solution. • QD@SiO{sub 2} presents extraordinary photo and colloidal stability. • The silica shell eliminates QD cytotoxicity, providing the access of bioconjugation. - Abstract: Silica coating is an effective approach for rendering luminescent quantum dots (QDs) with water dispersibility and biocompatibility. However, it is still challenging to prepare silica-coated QDs (QD@SiO{sub 2}) with high emission efficiency, small size and great stability in favor for bioapplication. Herein, we reported a modified Stöber method for silica coating of aqueously-prepared CdTe/CdS QDs. With the coexistence of Cd{sup 2+} and thioglycolic acid (TGA), a thin silica shell was formed around QDs by the hydrolysis of tetraethyl orthosilicate (TEOS). The resultant QD@SiO{sub 2} with a small size (∼5 nm in diameter) exhibits significantly higher emission efficiencies than that of the initial QDs. Also, QD@SiO{sub 2} has extraordinary photo and colloidal stability (pH range of 5–13, 4.0 M NaCl solution). Protected by the silica shell, the cytotoxicity of QDs could be reduced. Moreover, the QD@SiO{sub 2} conjugated with folic acid (FA) presents high specific binding toward receptor-positive HeLa cells over receptor-negative A549 cells.

  3. Ionic liquid-templated preparation of mesoporous silica embedded with nanocrystalline sulfated zirconia

    PubMed Central

    2011-01-01

    A series of mesoporous silicas impregnated with nanocrystalline sulphated zirconia was prepared by a sol-gel process using an ionic liquid-templated route. The physicochemical properties of the mesoporous sulphated zirconia materials were studied using characterisation techniques such as inductively coupled optical emission spectroscopy, X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray microanalysis, elemental analysis and X-ray photoelectron spectroscopy. Analysis of the new silicas indicates isomorphous substitution of silicon with zirconium and reveals the presence of extremely small (< 10 nm) polydispersed zirconia nanoparticles in the materials with zirconium loadings from 27.77 to 41.4 wt.%. PMID:21711725

  4. Preparation of Metalloporphyrin-Bound Superparamagnetic Silica Particles via "Click" Reaction.

    PubMed

    Hollingsworth, Javoris V; Bhupathiraju, N V S Dinesh K; Sun, Jirun; Lochner, Eric; Vicente, M Graça H; Russo, Paul S

    2016-01-13

    A facile approach using click chemistry is demonstrated for immobilization of metalloporphyrins onto the surface of silica-coated iron oxide particles. Oleic-acid stabilized iron oxide nanocrystals were prepared by thermal decomposition of iron(III) acetylacetonate. Their crystallinity, morphology, and superparamagnetism were determined using X-ray diffraction, transmission electron microscopy, and a superconducting quantum interference device. Monodisperse core-shell particles were produced in the silica-coating of iron oxide via microemulsion synthesis. Surface modification of these particles was performed in two steps, which included the reaction of silica-coated iron oxide particles with 3-bromopropyltrichlorosilane, followed by azido-functionalization with sodium azide. Monoalkylated porphyrins were prepared using the Williamson ether synthesis of commercially available tetra(4-hydroxyphenyl) porphyrin with propargyl bromide in the presence of a base. (1)H NMR and matrix-assisted laser desorption ionization confirmed the identity of the compounds. The prepared monoalkyne porphyrins were zinc-metalated prior to their introduction to azide-functionalized, silica-coated iron oxide particles in the click reaction. X-ray photoelectron spectroscopy, thermogravimetric analysis, and Fourier transform infrared spectroscopy were used to characterize the surface chemistry after each step in the reaction. In addition, particle size was determined using dynamic light scattering and microscopy. The presented methodology is versatile and can be extended to other photoreactive systems, such as phthalocyanines and boron-dipyrromethane, which may lead to new materials for optical, photonic, and biological applications.

  5. Biomimetic Silica Nanoparticles Prepared by a Combination of Solid-Phase Imprinting and Ostwald Ripening.

    PubMed

    Piletska, Elena; Yawer, Heersh; Canfarotta, Francesco; Moczko, Ewa; Smolinska-Kempisty, Katarzyna; Piletsky, Stanislav S; Guerreiro, Antonio; Whitcombe, Michael J; Piletsky, Sergey A

    2017-09-14

    Herein we describe the preparation of molecularly imprinted silica nanoparticles by Ostwald ripening in the presence of molecular templates immobilised on glass beads (the solid-phase). To achieve this, a seed material (12 nm diameter silica nanoparticles) was incubated in phosphate buffer in the presence of the solid-phase. Phosphate ions act as a catalyst in the ripening process which is driven by differences in surface energy between particles of different size, leading to the preferential growth of larger particles. Material deposited in the vicinity of template molecules results in the formation of sol-gel molecular imprints after around 2 hours. Selective washing and elution allows the higher affinity nanoparticles to be isolated. Unlike other strategies commonly used to prepare imprinted silica nanoparticles this approach is extremely simple in nature and can be performed under physiological conditions, making it suitable for imprinting whole proteins and other biomacromolecules in their native conformations. We have demonstrated the generic nature of this method by preparing imprinted silica nanoparticles against targets of varying molecular mass (melamine, vancomycin and trypsin). Binding to the imprinted particles was demonstrated in an immunoassay (ELISA) format in buffer and complex media (milk or blood plasma) with sub-nM detection ability.

  6. Preparation of resveratrol-loaded nanoporous silica materials with different structures

    NASA Astrophysics Data System (ADS)

    Popova, Margarita; Szegedi, Agnes; Mavrodinova, Vesselina; Novak Tušar, Natasa; Mihály, Judith; Klébert, Szilvia; Benbassat, Niko; Yoncheva, Krassimira

    2014-11-01

    Solid, nanoporous silica-based spherical mesoporous MCM-41 and KIL-2 with interparticle mesoporosity as well as nanosized zeolite BEA materials differing in morphology and pore size distribution, were used as carriers for the preparation of resveratrol-loaded delivery systems. Two preparation methods have been applied: (i) loading by mixing of resveratrol and mesoporous carrier in solid state and (ii) deposition in ethanol solution. The parent and the resveratrol loaded carriers were characterized by XRD, TEM, N2 physisorption, thermal analysis, and FT-IR spectroscopy. The influence of the support structure on the adsorption capacity and the release kinetics of this poorly soluble compound were investigated. Our results indicated that the chosen nanoporous silica supports are suitable for stabilization of trans-resveratrol and reveal controlled release and ability to protect the supported compound against degradation regardless of loading method. The solid-state dry mixing appears very effective for preparation of drug formulations composed of poorly soluble compound.

  7. Preparation of bifunctional mesoporous silica nanoparticles by orthogonal click reactions and their application in cooperative catalysis.

    PubMed

    Dickschat, Arne T; Behrends, Frederik; Bühner, Martin; Ren, Jinjun; Weiss, Mark; Eckert, Hellmut; Studer, Armido

    2012-12-21

    The synthesis of bifunctional mesoporous silica nanoparticles is described. Two chemically orthogonal functionalities are incorporated into mesoporous silica by co-condensation of tetraethoxysilane with two orthogonally functionalized triethoxyalkylsilanes. Post-functionalization is achieved by orthogonal surface chemistry. A thiol-ene reaction, Cu-catalyzed 1,3-dipolar alkyne/azide cycloaddition, and a radical nitroxide exchange reaction are used as orthogonal processes to install two functionalities at the surface that differ in reactivity. Preparation of mesoporous silica nanoparticles bearing acidic and basic sites by this approach is discussed. Particles are analyzed by solid state NMR spectroscopy, elemental analysis, infrared-spectroscopy, and scanning electron microscopy. As a first application, these particles are successfully used as cooperative catalysts in the Henry reaction.

  8. Preparation of polyimide-silica hybrid materials by high pressure-thermal polymerization

    SciTech Connect

    Gaw, K.; Suzuki, Hironori; Jikei, Mitsutoshi; Kakimoto, Masaaki; Imai, Yoshio

    1996-12-31

    Polyimide-silica hybrid materials were prepared via a modified sol-gel, high pressure-thermal polymerization procedure. Precursor monomer salts were made from ethanol soluble 2,5-diethoxycarboxyl terephthalic acid (p-PME) and either a disiloxanediamine, an aliphatic diamine (1,9 diaminononane) or combinations of the two. Solutions of tetramethoxysilane (TMOS) and monomer salt were transformed into a gel, dehydrated, and the resulting powders were subjected to high pressure and thermal polymerization and transformed into a polyimide-silica composite. By varying the TMOS content, and/or the siloxane to aliphatic diamine ratio, composites of 0 to 100 wt% SiO{sub 2} were made. The silica morphology changed significantly with siloxane/aliphatic PI ratio. Reaction mechanisms, thermal and physical properties and composite morphologies are discussed.

  9. A simple method for preparation of transparent hydrophobic silica-based coatings on different substrates

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Wang, Xiufang; Xie, Anjian; Shen, Yuhua; Duan, Wei; Zhang, Ye; Li, Jialin

    2012-01-01

    A facile, inexpensive, and general approach is explored for the fabrication of transparent silica/organic silicon hybrid sol, which could form transparent hydrophobic coatings on different substrates conveniently. The sol was prepared by using hexamethyldisilazane (HMDS) as a surface-modifying agent and the source of base catalyst required for the hydrolysis of tetraethoxysilane (TEOS). The resulting silica-based coatings on glass slide have shown an optical transmission over the visible range up to 89% (in reference to 100% transmission defined by a plain glass substrate) and high thermal stability. The water contact angle of the film reached 152○. Hydrophobic coatings with excellent optical transmittance were also successfully formed on writing paper and aluminum foils. The transparent hydrophobic silica-based hybrid sol will have potential applications in creating outdoor building glass, protecting paper files from moisture and preventing metals from corrosion.

  10. Preparation and characterization of hydrophobic silica aerogel sphere products by co-precursor method

    NASA Astrophysics Data System (ADS)

    Yu, Huijun; Liang, Xiaofeng; Wang, Junxia; Wang, Minmin; Yang, Shiyuan

    2015-10-01

    In the present paper, silica aerogel balls were prepared using methyltriethoxysilane (MTES) and tetraethoxysilane (TEOS) co-precursor with different MTES/TEOS molar ratio (I) by two-step acid-base catalyzed sol-gel process and molding technology followed by the carbon dioxide supercritical drying. The physical properties of various silica aerogels whose I varied from 0 to 1.0 were studied by BET and SEM. Approving aerogel ball was obtained by using acetone as exchanging solvent at I of 0.8. Better properties are less crack, little shrinking percentage (17%), low apparent density (0.103 g/cm3), large surface area (996.35 m2/g) and high pore volume (3.32 cm3/g). Characterized by contact angle measurements and thermal stability, the characterizations of aerogel spheres were strongly affected by the MTES/TEOS molar ratio. Hydrophobic property increased with the increase in I value, and silica aerogels at I = 0.8 and 1.0 have a superhydrophobic characterization with the highest contact angle (152°). The TG-DTA analysis shows that the silica aerogel spheres transform hydrophobic to hydrophilic at around 450 °C, which is due to oxidation of Si-CH3 to Si-OH groups. The surface chemical modification was confirmed by FT-IR spectrums, which demonstrated that Si-CH3 groups be beneficial to molding of silica aerogels.

  11. Preparation of silver nanoparticle containing silica micro beads and investigation of their antibacterial activity

    NASA Astrophysics Data System (ADS)

    Quang, Dang Viet; Sarawade, Pradip B.; Hilonga, Askwar; Kim, Jong-Kil; Chai, Young Gyu; Kim, Sang Hoon; Ryu, Jae-Yong; Kim, Hee Taik

    2011-05-01

    Silver nanoparticle containing silica micro beads (Ag-NPBs) were successfully prepared by using sodium silicate, a cheap precursor, involving chemical reductive method. First, silica gel was synthesized and crushed into micro beads which have sizes ranging from 0.5 to 1 mm. Silica micro beads were then modified with 3-aminopropyltriethoxysilane to graft amino functional groups onto their surface. Silver ions were loaded onto the surface of the modified silica and reduced to silver crystal by adding NaBH 4. The presence of silver nanoparticles as well as structure of materials was characterized with FT-IR, XRD, BET, FE-SEM, TEM, UV-vis spectrophotometer, and optical microscope. Silver nanoparticles with an average size about 5 nm were found in the pore and on the surface of amino functionalized silica beads. Ag-NPBs samples were tested for their antibacterial activity against Escherichia coli ( E. coli). The antibacterial activity was examined by both zone inhibition and test tube test method. Biological results indicated that the synthesized materials have an excellent antibacterial performance against E. coli which was completely inhibited after 5 min contact with Ag-NPBs.

  12. Preparation, characterization, and in vivo evaluation of tanshinone IIA solid dispersions with silica nanoparticles

    PubMed Central

    Jiang, Yan-rong; Zhang, Zhen-hai; Liu, Qi-yuan; Hu, Shao-ying; Chen, Xiao-yun; Jia, Xiao-bin

    2013-01-01

    We prepared solid dispersions (SDs) of tanshinone IIA (TSIIA) with silica nanoparticles, which function as dispersing carriers, using a spray-drying method and evaluated their in vitro dissolution and in vivo performance. The extent of TSIIA dissolution in the silica nanoparticles/TSIIA system (weight ratio, 5:1) was approximately 92% higher than that of the pure drug after 60 minutes. However, increasing the content of silica nanoparticles from 5:1 to 7:1 in this system did not significantly increase the rate or extent of TSIIA dissolution. The physicochemical properties of SDs were investigated using scanning electron microscopy, differential scanning calorimetry, X-ray powder diffraction, and Fourier transforms infrared spectroscopy. Studying the stability of the SDs of TSIIA revealed that the drug content of the formulation and dissolution behavior was unchanged under the applied storage conditions. In vivo tests showed that SDs of the silica nanoparticles/TSIIA had a significantly larger area under the concentration-time curve, which was 1.27 times more than that of TSIIA (P < 0.01). Additionally, the values of maximum plasma concentration and the time to reach maximum plasma concentration of the SDs were higher than those of TSIIA and the physical mixing system. Based on these results, we conclude that the silica nanoparticle based SDs achieved complete dissolution, increased absorption rate, maintained drug stability, and showed improved oral bioavailability compared to TSIIA alone. PMID:23836971

  13. Preparation, characterization, and release behavior of aspirin-loaded poly(2-hydroxyethyl acrylate)/silica hydrogels.

    PubMed

    Lin, Mei; Xu, Peng; Zhong, Wei

    2012-05-01

    Poly(2-hydroxyethyl acrylate) (PHEA) is a polymer hydrogel that can be used as a biomaterial. In this study, PHEA/silica composites containing aspirin as a model drug were prepared, and their drug release behaviors were tested. 2-Hydroxyethyl acrylate (HEA) was first copolymerized with 3-(trimethoxysilyl) propyl methacrylate (MSMA) in the presence of ammonium persulphate and then condensed with silicic acid oligomer. The composites were characterized with Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). In addition, water uptake and matrix erosion of PHEA/silica of different weight ratios were also investigated. The results indicated that the silica particles were well dispersed in PHEA hydrogels. The in vitro drug release test revealed that the release rate of aspirin decreased with the increasing content of silica. The drug release behaviors were analyzed by employing the power law, which showed that the release profiles were governed either by Case II diffusion or by anomalous diffusion. The 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay of rabbit chondrocytes revealed that adding silica can improve the biocompatibility of PHEA to some extent. Copyright © 2012 Wiley Periodicals, Inc.

  14. Silica nano-spheres prepared by modified Stober process for colloidal crystal growth

    NASA Astrophysics Data System (ADS)

    Ajina, C.; Fathima Shabana, M. A.; Krishnendu, P. S.; Thomas, Sheenu

    2017-06-01

    Colloidal crystals are closely related to photonic crystals as both of them can be considered as composite materials with a spatial distribution of building blocks. The first step in fabricating such a crystal is the development of highly monodisperse spherical nanomaterials. In this work silica nanoparticles with fine spherical shapes were prepared by following a seeded growth method. The effect of different fabrication conditions on the shape and monodispersity of the prepared spheres were analyzed with the help of scanning electron microscopy and dynamic light scattering systems. The use of the prepared sample for colloidal crystal growth is analyzed using UV-Vis spectra.

  15. Preparing hydrophobic nanocellulose-silica film by a facile one-pot method.

    PubMed

    Le, Duy; Kongparakul, Suwadee; Samart, Chanatip; Phanthong, Patchiya; Karnjanakom, Surachai; Abudula, Abuliti; Guan, Guoqing

    2016-11-20

    Hydrophobic nanocellulose-silica film was successfully prepared by a facile one-pot method using tetraethoxysilane (TEOS) and dodecyl triethoxylsilane (DTES). Morphological characterization of the hydrophobic nanocellulose-silica (NC-SiO2-DTES) film showed well self-assembled DTES modified silica spherical nanoparticles with the particle sizes in the range of 88-126nm over the nanocellulose film. The hydrophobicity of the NC-SiO2-DTES film was achieved owing to the improvement of roughness of the nanocellulose film by coating dodecyl- terminated silica nanoparticles. An increase in DTES loading amount and reaction time increased the hydrophobicity of the film, and the optimum condition for NC-SiO2-DTES film preparation was achieved at DTES/TEOS molar ratio of 2.0 for 8h reaction time. Besides, the NC-SiO2-DTES film performed superoleophilic property with octane and hexadecane contact angles of 0°. It also showed an excellent hydrophobic property over all pH values ranged from 1 to 14.

  16. Preparation of antibacterial composite material of natural rubber particles coated with silica and titania

    NASA Astrophysics Data System (ADS)

    Wisutiratanamanee, Apisit; Poompradub, Sirilux; Poochinda, Kunakorn

    2014-06-01

    Silica coating, followed by titania coating, was performed over spray-dried natural rubber (NR) compound for physical and anti-bacterial characterizations. Titania has a strong photo-oxidative catalytic property, which can disinfect bacteria, but may degrade NR. Therefore, silica coating was intended to form a barrier between NR and titania. First, NR particles were prepared by spray-drying of NR compound latex, formulated for household glove products, mixed with sodium dodecyl sulfate (SDS) to reduce particle agglomeration. The factorial experimental design was employed to investigate the effects of nozzle flow rate (500-700 Lh-1), inlet air temperature (110-150 °C), SDS content (35-55 phr) and mass flow rate (1.2-1.7 g rubber/min) on NR yield and moisture content. Then, the NR compound particles prepared at the optimum condition were coated with silica, using tetraethoxysilane (TEOS) as the precursor, by chemical vapor deposition (CVD) at 60 °C for 2-48 hours. Next, the particles were coated with titania using titanium tetrafluoride (TiF4) by liquid phase deposition (LPD) at 60 ºC for 4-8 hours. The NR composites were characterized for surface morphology by SEM, silica and titania content by TGA and EDX. The NR composites were found to cause more than 99% reduction of Escherichia coli and Staphylococcus aureus under 1-hour exposure to natural light.

  17. Preparation of resveratrol-loaded nanoporous silica materials with different structures

    SciTech Connect

    Popova, Margarita; Szegedi, Agnes; Mavrodinova, Vesselina; Novak Tušar, Natasa; Mihály, Judith; Klébert, Szilvia; Benbassat, Niko; Yoncheva, Krassimira

    2014-11-15

    Solid, nanoporous silica-based spherical mesoporous MCM-41 and KIL-2 with interparticle mesoporosity as well as nanosized zeolite BEA materials differing in morphology and pore size distribution, were used as carriers for the preparation of resveratrol-loaded delivery systems. Two preparation methods have been applied: (i) loading by mixing of resveratrol and mesoporous carrier in solid state and (ii) deposition in ethanol solution. The parent and the resveratrol loaded carriers were characterized by XRD, TEM, N2 physisorption, thermal analysis, and FT-IR spectroscopy. The influence of the support structure on the adsorption capacity and the release kinetics of this poorly soluble compound were investigated. Our results indicated that the chosen nanoporous silica supports are suitable for stabilization of trans-resveratrol and reveal controlled release and ability to protect the supported compound against degradation regardless of loading method. The solid-state dry mixing appears very effective for preparation of drug formulations composed of poorly soluble compound. - Graphical abstract: trans-Resveratrol was stabilized in the pores of BEA zeolite, MCM-41and KIL2 mesoporous silicas. - Highlights: • BEA, KIL-2 and MCM-41 materials were used as carriers for resveratrol loading. • Resveratrol encapsulation in ethanol solution and solid state procedure were applied. • The solid-state preparation appears very effective for stabilization of trans-resveratrol.

  18. Sol-gel preparation of silica and titania thin films

    NASA Astrophysics Data System (ADS)

    Thoř, Tomáš; Václavík, Jan

    2016-11-01

    Thin films of silicon dioxide (SiO2) and titanium dioxide (TiO2) for application in precision optics prepared via the solgel route are being investigated in this paper. The sol-gel process presents a low cost approach, which is capable of tailoring thin films of various materials in optical grade quality. Both SiO2 and TiO2 are materials well known for their application in the field of anti-reflective and also highly reflective optical coatings. For precision optics purposes, thickness control and high quality of such coatings are of utmost importance. In this work, thin films were deposited on microscope glass slides substrates using the dip-coating technique from a solution based on alkoxide precursors of tetraethyl orthosilicate (TEOS) and titanium isopropoxide (TIP) for SiO2 and TiO2, respectively. As-deposited films were studied using spectroscopic ellipsometry to determine their thickness and refractive index. Using a semi-empirical equation, a relationship between the coating speed and the heat-treated film thickness was described for both SiO2 and TiO2 thin films. This allows us to control the final heat-treated thin film thickness by simply adjusting the coating speed. Furthermore, films' surface was studied using the white-light interferometry. As-prepared films exhibited low surface roughness with the area roughness parameter Sq being on average of 0.799 nm and 0.33 nm for SiO2 and TiO2, respectively.

  19. Saccharide-derived microporous spherical biochar prepared from hydrothermal carbonization and different pyrolysis temperatures: synthesis, characterization, and application in water treatment.

    PubMed

    Tran, Hai Nguyen; Lee, Chung-Kung; Nguyen, Tien Vinh; Chao, Huan-Ping

    2017-08-24

    Three saccharides (glucose, sucrose, and xylose) were used as pure precursors for synthesizing spherical biochars (GB, SB, and XB), respectively. The two-stage synthesis process comprised: (1) the hydrothermal carbonization of saccharides to produce spherical hydrochar' and (2) pyrolysis of the hydrochar at different temperatures from 300°C to 1200°C. The results demonstrated that the pyrolysis temperatures insignificantly affected the spherical morphology and surface chemistry of biochar. The biochar' isoelectric point ranged from 2.64 to 3.90 (abundant oxygen-containing functionalities). The Brunauer-Emmett-Teller (BET)-specific surface areas (SBET) and total pore volumes (Vtotal) of biochar increased with the increasing pyrolysis temperatures. The highest SBET and Vtotal were obtained at a pyrolysis temperature of 900°C for GB (775 m(2)/g and 0.392 cm(3)/g), 500°C for SB (410 m(2)/g and 0.212 cm(3)/g), and 600°C for XB (426 m(2)/g and 0.225 cm(3)/g), respectively. The spherical biochar was a microporous material with approximately 71-98% micropore volume. X-ray diffraction results indicated that the biochar' structure was predominantly amorphous. The spherical biochar possessed the graphite structure when the pyrolysis temperature was higher than 600°C. The adsorption capacity of GB depended strongly on the pyrolysis temperature. The maximum Langmuir adsorption capacities ([Formula: see text]) of 900GB exhibited the following selective order: phenol (2.332 mmol/g) > Pb(2+) (1.052 mmol/g) > Cu(2+) (0.825 mmol/g) > methylene green 5 (0.426 mmol/g) > acid red 1 (0.076 mmol/g). This study provides a simple method to prepare spherical biochar - a new and potential adsorbent for adsorbing heavy metals and aromatic contaminants.

  20. Using Silica Sol as a Nanoglue to Prepare Nanoscale Mesoporous Composite Gel and Aerogels

    DTIC Science & Technology

    2000-03-31

    entitled: "USING SILICA SOL AS A NANOGLUE TO PREPARE NANOSCALE MESOPOROUS COMPOSITE GEL AND AEROGELS" Request for release for publication. REF...L. Anderson, Karen E. Swider Lyons, Ceha I. Merzbacher, Joseph V. Ryan and Veronica M. Cepak 3 MESOPOROUS COMPOSITE GELS AND AEROGELS 4 5 6 1...to mesoporous composite gels and aerogels and their various uses. 9 10 2. Description of the Background Art 11 Xerogels and aerogels

  1. Incorporation of anti-inflammatory agent into mesoporous silica

    NASA Astrophysics Data System (ADS)

    Rodrigues Braz, Wilson; Lamec Rocha, Natállia; de Faria, Emerson H.; Silva, Márcio L. A. e.; Ciuffi, Katia J.; Tavares, Denise C.; Furtado, Ricardo Andrade; Rocha, Lucas A.; Nassar, Eduardo J.

    2016-09-01

    The unique properties of macroporous, mesoporous, and microporous systems, including their ability to accommodate molecules of different sizes inside their pores and to act as drug delivery systems, have been the object of extensive studies. In this work, mesoporous silica with hexagonal structure was obtained by template synthesis via the sol-gel process. The resulting material was used as support to accommodate the anti-inflammatory agent indomethacin. The alkaline route was used to prepare the mesoporous silica; cetyltrimethylammonium bromide was employed as porogenic agent. The silica particles were functionalized with 3-aminopropyltriethoxysilane alkoxide (APTES) by the sol-gel post-synthesis method. Indomethacin was incorporated into the silica functionalized with APTES and into non-functionalized silica. The resulting systems were characterized by x-ray diffraction (XRD), specific area, infrared spectroscopy, and thermal analyses (TGA). XRD attested to formation of mesoporous silica with hexagonal structure. This structure remained after silica functionalization with APTES and incorporation of indomethacin. Typical infrared spectroscopy vibrations and organic material decomposition during TGA confirmed silica functionalization and drug incorporation. The specific surface area and pore volume of the functionalized material incorporated with indomethacin decreased as compared with the specific surface area and pore volume of the non-functionalized silica containing no drug, suggesting both the functionalizing agent and the drug were present in the silica. Cytotoxicity tests conducted on normal fibroblasts (GM0479A) cells attested that the silica matrix containing indomethacin was less toxic than the free drug.

  2. Incorporation of anti-inflammatory agent into mesoporous silica.

    PubMed

    Braz, Wilson Rodrigues; Rocha, Natállia Lamec; de Faria, Emerson H; Silva, Márcio L A E; Ciuffi, Katia J; Tavares, Denise C; Furtado, Ricardo Andrade; Rocha, Lucas A; Nassar, Eduardo J

    2016-09-23

    The unique properties of macroporous, mesoporous, and microporous systems, including their ability to accommodate molecules of different sizes inside their pores and to act as drug delivery systems, have been the object of extensive studies. In this work, mesoporous silica with hexagonal structure was obtained by template synthesis via the sol-gel process. The resulting material was used as support to accommodate the anti-inflammatory agent indomethacin. The alkaline route was used to prepare the mesoporous silica; cetyltrimethylammonium bromide was employed as porogenic agent. The silica particles were functionalized with 3-aminopropyltriethoxysilane alkoxide (APTES) by the sol-gel post-synthesis method. Indomethacin was incorporated into the silica functionalized with APTES and into non-functionalized silica. The resulting systems were characterized by x-ray diffraction (XRD), specific area, infrared spectroscopy, and thermal analyses (TGA). XRD attested to formation of mesoporous silica with hexagonal structure. This structure remained after silica functionalization with APTES and incorporation of indomethacin. Typical infrared spectroscopy vibrations and organic material decomposition during TGA confirmed silica functionalization and drug incorporation. The specific surface area and pore volume of the functionalized material incorporated with indomethacin decreased as compared with the specific surface area and pore volume of the non-functionalized silica containing no drug, suggesting both the functionalizing agent and the drug were present in the silica. Cytotoxicity tests conducted on normal fibroblasts (GM0479A) cells attested that the silica matrix containing indomethacin was less toxic than the free drug.

  3. A new generation of more pH stable reversed phases prepared by silanization of zirconized silica.

    PubMed

    Silva, César R; Airoldi, Claudio; Collins, Kenneth E; Collins, Carol H

    2008-05-16

    To further extend our studies in the search for reversed phases with enhanced durability at high pH, zirconized silica has now been explored as an alternative support. The synthesis of the new stationary phases involves silanization of a zirconium-modified silica support with a C(18) trifunctional silane, followed by endcapping. The chromatographic properties of the C(18) phases based on zirconized silica are similar to their titanized silica counterparts. Accelerated high pH stability tests, using phosphate mobile phases and elevated temperature, have shown that the zirconized silica phases have promising advantages not only over similarly prepared non-metalized phases but also over titanized silica C(18) phases.

  4. Preparation of silica-on-titania patterns with a wettability contrast.

    PubMed

    Kanta, A; Sedev, R; Ralston, J

    2005-06-21

    The preparation of patterned inorganic surfaces consisting of silica (SiO2) and titania (TiO2) is described. The approach is based on a combination of standard photolithography and plasma-enhanced chemical vapor deposition. Silicon wafers coated with a titania layer (40 nm) were patterned by use of a positive photoresist and then a thin silica layer (10-40 nm) was plasma-deposited. The photoresist was removed by decomposition at 800 degrees C. The inorganic patterned surfaces possessed excellent high-temperature resistance. Since the silica patches were effectively dehydroxylated during the thermal treatment, the patterns consisted of moderately hydrophobic (silica) and hydrophilic (titania) domains with a significant wettability contrast (40 degrees for water). The surface was further hydrophobized with a self-assembled monolayer of fluoroalkylsilane (FAS) and exposed to UV light. The FAS layer was locally oxidized on the TiO2 patches and the wettability contrast was maximized to 120 degrees (the highest possible value on smooth surfaces).

  5. Preparation and characterization of kasuga-silica-conjugated nanospheres for sustained antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Ding, Guanglong; Li, Deguang; Liu, Yao; Guo, Mingcheng; Duan, Yongheng; Li, Jianqiang; Cao, Yongsong

    2014-11-01

    Controlled release formulation of pesticides is highly desirable for attaining the most effective utilization of the pesticide as well as reducing environmental pollution. Nano-sized controlled release formulations can provide better penetration through cuticle and deliver the active ingredients efficiently to the targeted tissue. In this study, a novel strategy for the preparation of a nanoconjugate derived from kasugamycin with amino-modified silica was developed. The kasugamycin was connected with amino-modified silica matrix by an amide bond, which could avoid the initial burst release effectively and prolong the duration remarkably. The results showed the kasuga-silica can protect kasugamycin against photo-degradation effectively and the release rate of the active ingredient of nanoconjugate was related to the temperature, pH value, and the particle size (52.5-315.4 nm). With reduced particle size as well as increased temperature and acidity, the release of the active ingredient was faster. This amide linkage of kasuga-silica could be degraded by amidase effectively. This nanoconjugate displayed a better and a sustained bactericidal efficacy against E. coli than kasugamycin technical, which makes it a potential candidate as a controlled release conjugate for kasugamycin in the future.

  6. The Preparation of Magnetic Silica Nanospheres and Incorporation of CdSe/ZnS Quantum Dots-DNA Probe.

    PubMed

    Do, Youngjin; Kim, Jongsung

    2016-03-01

    Silica nanospheres containing magnetic particles were prepared, and CdSe/ZnS QDs functionalized with carboxyl group were incorporated into the silica nanospheres by EDC/NHS coupling reaction. The silica nanospheres were prepared by a co-precipitation of ferrous and ferric solutions followed by the sol-gel reaction of TEOS (tetraethoxysilane) and APTES (3-aminopropyltriethoxysilane) using base catalyst. The size of magnetic silica nanospheres was confirmed by Transmission electron microscope (TEM). Thiol group modified single stranded oligonucleotides were immobilized on the surface of QDs and fluorescence quenching by intercalation dye (TOTO-3) after hybridization with target oligonucleotide was observed. The fluorescence from QDs could be quenched by intercalating dye (TOTO-3) after hybridization of target DNA to probe DNA. This shows that the magnetic silica-QD-DNA probe can be used to detect specific DNA.

  7. Aging Time Effect on Porous Characteristics of Natural Mud-based Silica Prepared by Hydrothermal-Coprecipitation Route

    NASA Astrophysics Data System (ADS)

    Ubaid, A.; Hidayat, N.; Munasir

    2017-05-01

    In this present study, we report the influence of aging time on porous characteristics and chemical bonding within structurally related silicates of silica. The silica was well prepared by using a combination of hydrothermal and coprecipitation methods. Local natural mud from Sidoarjo, Indonesia was preferred as a starting material, rather than the expensive commercial ones. The aging time was set at 20, 24, 28, and 32 hours. The X-ray fluorescence (XRF) test revealed that the produced porous silica has a purity of 98.9%. The Fourier Transform of Infra-Red (FTIR) analysis showed that ≡Si-OH and ≡Si-O -Si≡ functional groups were found in the samples. The pores of the silica, after Brunauer-Emmett-Teller (BET) measurement, found to be macropore and mesopore. The prepared silica with different porous characteristics were strongly influenced by the chemical activities during the synthesis, known as syneresis and Ostwald processes.

  8. Preparation and properties of aqueous castor oil-based polyurethane-silica nanocomposite dispersions through a sol-gel process.

    PubMed

    Xia, Ying; Larock, Richard C

    2011-09-01

    Waterborne castor oil-based polyurethane-silica nanocomposites with the polymer matrix and silica nanoparticles chemically bonded have been successfully prepared through a sol-gel process. The formation of silica nanoparticles in water not only reinforces the resulting coatings, but also increases the crosslink density of the nanocomposites. The (29)Si solid state NMR spectrum indicates the formation of silica and the TEM indicates that the nanoparticles are embedded in the polymers, resembling a core-shell structure. The silica nanoparticles in the polymer matrix play an important role in improving both the mechanical properties and the thermal stabilities of the resulting nanocomposites. This work provides an effective and promising way to prepare biorenewable, high performance nanocomposite coatings.

  9. Characteristics of microporous/mesoporous carbons prepared from rice husk under base- and acid-treated conditions.

    PubMed

    Liou, Tzong-Horng; Wu, Shao-Jung

    2009-11-15

    The study reports the preparation of activated carbon with a high surface area from rice husk using chemical activation with H(3)PO(4) and ZnCl(2). Activated carbon prepared from rice husk usually exhibits low specific surface areas due to its high ash content. However, experimental results show that base-leaching and acid-washing processes can effectively enhance the adsorption capacity of rice-husk carbon. The study also investigates the effects of preparation parameters on the surface characteristics of the carbon. These parameters include the kind of activating agent, before and after treatment procedures, impregnation ratio and activation temperature. The chemical and physical properties of samples were examined by EA, ICP-MS, XRD, FTIR, SEM and a N(2)-adsorption meter. The surface areas obtained from ZnCl(2) and H(3)PO(4) activation are as high as 2434 and 1741 m(2)/g, respectively. These values are higher than that of activated carbon treated with neither base nor acid (1262 and 508 m(2)/g for ZnCl(2) and H(3)PO(4) activation). Thermogravimetric analysis shows that the activation process can be divided into three parts based on temperature zones. The results of this study will be useful in developing resource recovery systems for agricultural biomass.

  10. Microporous activated carbons prepared from palm shell by thermal activation and their application to sulfur dioxide adsorption.

    PubMed

    Guo, Jia; Lua, Aik Chong

    2002-07-15

    Textural characterization of activated carbons prepared from palm shell by thermal activation with carbon dioxide (CO(2)) gas is reported in this paper. Palm shell (endocarp) is an abundant agricultural solid waste from palm-oil processing mills in many tropical countries such as Malaysia, Indonesia, and Thailand. The effects of activation temperature on the textural properties of the palm-shell activated carbons, namely specific surface area (BET method), porosity, and microporosity, were investigated. The activated carbons prepared from palm shell possessed well-developed porosity, predominantly microporosity, leading to potential applications in gas-phase adsorption for air pollution control. Static and dynamic adsorption tests for sulfur dioxide (SO(2)), a common gaseous pollutant, were carried out in a thermogravimetric analyzer and a packed column configuration respectively. The effects of adsorption temperature, adsorbate inlet concentration, and adsorbate superficial velocity on the adsorptive performance of the prepared activated carbons were studied. The palm-shell activated carbon was found to have substantial capability for the adsorption of SO(2), comparable to those of some commercial products and an adsorbent derived from another biomass.

  11. Synthesis of high surface area Al-containing mesoporous silica from calcined and acid leached kaolinites as the precursors.

    PubMed

    Madhusoodana, Chengala D; Kameshima, Yoshikazu; Nakajima, Akira; Okada, Kiyoshi; Kogure, Toshihiro; Mackenzie, Kenneth J D

    2006-05-15

    Al-containing mesoporous silicas were synthesized by hydrothermal treatment of microporous silica prepared by selectively acid leached metakaolinites with Si/Al = 3.9-92.5 mixed with a surfactant of cetyltrimethylammonium bromide (CTABr). The specific surface area of the products increased with higher surfactant/microporous silica (surf/Si) ratio and Si/Al ratio of the microporous silica, reaching about 1400 m2/g at CTABr/Si 0.1 and Si/Al 40. The XRD patterns of these products show a hexagonal (100) peak with the lattice parameter a0=4.2-4.3 nm and the N2 adsorption isotherms show steep increase of adsorption between relative pressure of 0.3 and 0.4. Hexagonal mesoporous microstructure is observed by high resolution TEM. The pore size distributions of the products show a sharp peak at 2.8 nm by the BJH method. The high specific surface area of the present mesoporous samples is attributed to the lower matrix density and surface roughness of mesopore wall. The highest specific surface area of the products reached up to 1420 m2/g and this value is apparently higher than those reported in hexagonal mesoporous silicas. A unique microporous structure of the starting material is thought to be related to achieve such a high specific surface area of the products.

  12. Preparation and characterization of Ag nanoparticle-embedded blank and ligand-anchored silica gels.

    PubMed

    Im, Hee-Jung; Lee, Byung Cheol; Yeon, Jei-Won

    2013-11-01

    Ag nanoparticles, used for halogen (especially iodine) adsorption and an evaluation of halogen behavior, were embedded in synthesized inorganic-organic hybrid gels. In particular, an irradiation method using an electron beam plays a part in introducing Ag nanoparticles to the organofunctionalized silica gels from AgNO3 solutions in a simple way at atmospheric pressure and room temperature. For preparation of the Ag nanoparticle-embedded inorganic-organic hybrid gels, ligands of ethylenediamine (NH2CH2CH2NH-, TMSen) and mercapto (HS-) functionalized three-dimensional porous SiO2 sol-gels were first synthesized through hydrolysis and condensation reactions, and Ag nanoparticles were then embedded into the ethylenediamine- and mercapto-anchored silica gels each, through electron-beam irradiation. The addition of ligands yielded larger average pore sizes than the absence of any ligand. Moreover, the ethylenediamine ligand led to looser structures and better access of the Ag nanoparticles to the ethylenediamine-anchored gel. As a result, more Ag nanoparticles were introduced into the ethylenediamine-anchored gel. The preparation and characterization of Ag nanoparticle-embedded blank and ligand-anchored silica gels are discussed in detail.

  13. Consecutively Preparing D-Xylose, Organosolv Lignin, and Amorphous Ultrafine Silica from Rice Husk

    PubMed Central

    Zhang, Hongxi; Ding, Xuefeng; Wang, Zichen; Zhao, Xu

    2014-01-01

    Rice husk is an abundant agricultural by-product reaching the output of 80 million tons annually in the world. The most common treatment method of rice husk is burning or burying, which caused serious air pollution and resource waste. In order to solve this problem, a new method is proposed to comprehensively utilize the rice husk in this paper. Firstly, the D-xylose was prepared from the semicellulose via dilute acid hydrolysis. Secondly, the lignin was separated via organic solvent pulping from the residue. Finally, the amorphous ultrafine silica was prepared via pyrolysis of the residue produced in the second process. In this way, the three main contents of rice husk (semicellulose, lignin, and silica) are consecutively converted to three fine chemicals, without solid waste produced. The yields of D-xylose and organosolv lignin reach 58.2% and 58.5%, respectively. The purity and specific surface of amorphous ultrafine silica reach 99.92% and 225.20 m2/g. PMID:25140120

  14. Consecutively preparing d-xylose, organosolv lignin, and amorphous ultrafine silica from rice husk.

    PubMed

    Zhang, Hongxi; Ding, Xuefeng; Wang, Zichen; Zhao, Xu

    2014-01-01

    Rice husk is an abundant agricultural by-product reaching the output of 80 million tons annually in the world. The most common treatment method of rice husk is burning or burying, which caused serious air pollution and resource waste. In order to solve this problem, a new method is proposed to comprehensively utilize the rice husk in this paper. Firstly, the D-xylose was prepared from the semicellulose via dilute acid hydrolysis. Secondly, the lignin was separated via organic solvent pulping from the residue. Finally, the amorphous ultrafine silica was prepared via pyrolysis of the residue produced in the second process. In this way, the three main contents of rice husk (semicellulose, lignin, and silica) are consecutively converted to three fine chemicals, without solid waste produced. The yields of D-xylose and organosolv lignin reach 58.2% and 58.5%, respectively. The purity and specific surface of amorphous ultrafine silica reach 99.92% and 225.20 m(2)/g.

  15. A novel approach for preparation and in situ tensile testing of silica glass membranes in the TEM

    NASA Astrophysics Data System (ADS)

    Mačković, Mirza; Przybilla, Thomas; Dieker, Christel; Herre, Patrick; Romeis, Stefan; Stara, Hana; Schrenker, Nadine; Peukert, Wolfgang; Spiecker, Erdmann

    2017-04-01

    The mechanical behavior of glasses in the micro- and/or nanometer regime increasingly gains importance in nowadays modern technology. However, suitable small scale preparation and mechanical testing approaches for a reliable assessment of the mechanical properties of glasses still remain a big challenge. In the present work, a novel approach for site-specific preparation and quantitative in situ tensile testing of thin silica glass membranes in the transmission electron microscope is presented. Thereby, advanced focused ion beam techniques are used for the preparation of nanoscale dog bone shaped silica glass specimens suitable for in situ tensile testing. Small amounts of gallium are detected on the surface of the membranes resulting from redeposition effects during the focused ion beam preparation procedure. Possible structural changes of silica glass upon irradiation with electrons and gallium ions are investigated by controlled irradiation experiments, followed by a structural analysis using Raman spectroscopy. While moderate electron beam irradiation does not alter the structure of silica glass, ion beam irradiation results in minor densification of the silica glass membranes. In situ tensile testing of membranes under electron beam irradiation results in distinctive elongations without fracture confirming the phenomenon of superplasticity. In contrast, in situ tensile testing in the absence of the electron beam reveals an elastic/plastic deformation behavior, and finally leads to fracture of the membranes. The Young’s moduli of the glass membranes pulled at beam off conditions in the TEM are comparable with values known for bulk fused silica, while the tensile strength is in the range of values reported for silica glass fibers with comparable dimensions. The impact of electron beam irradiation on the mechanical properties of silica glass membranes is further discussed. The results of the present work open new avenues for dedicated preparation and

  16. Preparation of hollow silica nanospheres in O/W microemulsion system by hydrothermal temperature changes

    NASA Astrophysics Data System (ADS)

    Wang, Dandan; Li, Xiuyan; Liu, Zuohua; Shi, Xue; Zhou, Guowei

    2017-01-01

    Hollow silica nanospheres with wrinkled or smooth surfaces were successfully fabricated through a hydrothermal method. In this method, oil-in-water microemulsion (composed of cyclohexane, water, ethanol, and cetyltrimethylammonium bromide), and polyvinylpyrrolidone were utilized as template and capping agent, respectively. In such a facile synthesis, we can well realize the morphological transformation of spheres with radially oriented mesochannels to hollow structures of silica nanoparticle only by regulating the hydrothermal temperature from 100 °C to 200 °C. Synthesized samples with different mesostructures were then used as supports to immobilize Candida rugosa lipase (CRL). The immobilized CRL was employed as a new biocatalyst for biodiesel production through the esterification of heptanoic acid with ethanol. The conversion ratio of heptanoic acid with ethanol catalyzed by the immobilized CRL was also evaluated. Results of this study suggest that the prepared samples have potential applications in biocatalysis.

  17. Morphology studies of hydrophobic silica on filter surface prepared via spray technique

    NASA Astrophysics Data System (ADS)

    Shahfiq Zulkifli, Nazrul; Zaini Yunos, Muhamad; Ahmad, Azlinnorazia; Harun, Zawati; Akhair, Siti Hajar Mohd; Adibah Raja Ahmad, Raja; Hafeez Azhar, Faiz; Rashid, Abdul Qaiyyum Abd; Ismail, Al Emran

    2017-08-01

    This study investigated the effect of the hydrophobic surface treatment effect of air filter performance by using silica aerogel powder as an additive by using spray coating techniques. The membrane characterization tests were carried out on a filter prepared from different additive concentration. Studies on the cross-section and the distribution of particles on the membrane were carried out using a scanning electron microscope (SEM), and the surface morphology was investigated by x-ray spectroscopy (EDS). The results are shown by SEM and EDS that the microstructure filter, especially in the upper layer and sub-layer has been changed. The results also show an increase of hydrophobicity due to the increased quantity of silica aerogel powder.

  18. Aliphatic polyurethane-silica nanocomposites prepared by the parallel synthesis: Morphology and mechanical characteristics

    NASA Astrophysics Data System (ADS)

    Gofman, I. V.; Sukhanova, T. E.; Vylegzhanina, M. É.; Abalov, I. V.; Stepanova, I. S.; Trofimov, A. E.; Ten'kovtsev, A. V.

    2010-03-01

    Films of aliphatic polyurethane-silica composites containing up to 27.3 mol % of SiO2 nanoparticles have been prepared by the parallel synthesis using the sol-gel technology. It has been revealed that the variations in the mechanical properties of these materials with increasing concentration of nanoparticles exhibit a nontrivial behavior: the ultimate strain gradually increases, whereas the elastic modulus and the yield stress decrease. A correlation of the changes observed in the mechanical characteristics with an increase in the free volume of the material with increasing silica concentration has been established. Atomic-force microscopy has confirmed the existence of a developed system of nanopores with characteristic sizes from 15 to 100 nm in the materials under investigation.

  19. Preparation of superhydrophobic and transparent micro-nano hybrid coatings from polymethylhydroxysiloxane and silica ormosil aerogels

    NASA Astrophysics Data System (ADS)

    Nagappan, Saravanan; Park, Jin Joo; Park, Sung Soo; Ha, Chang-Sik

    2014-12-01

    Superhydrophobic and transparent polymethylhydroxysiloxane (PMHOS)/silica ormosil aerogel hybrids were prepared successfully by mixing of PMHOS with various weight percentages of silica ormosil aerogels (as synthesized from methyltriethoxysilane (MTES) and methyltrimethoxysilane (MTMS) precursors) in separate seal perfume glass vials. The hybrids were spin coated on glass substrate at 1000 rpm for 60 seconds and used for further analysis. The surface morphology and chemical compositions of the hybrids were analyzed by high resolution scanning electron microscopy, high resolution transmission electron microscopy, atomic force spectroscopy, adsorption and desorption isotherm, and X-ray photoelectron spectroscopy. The transparency, thermal decomposition and static contact angle (SCA) of each sample were measured by UV-Visible spectrophotometer, TGA and drop shape analysis system, respectively. The spin coated substrates showed good superhydrophobic properties, thermal stability as well as transparency on the glass substrates.

  20. Versatile ene-thiol photoclick reaction for preparation of multimodal monolithic silica capillary columns.

    PubMed

    Marechal, A; Laaniste, A; El-Debs, R; Dugas, V; Demesmay, C

    2014-10-24

    This paper presents a photografting process of monolithic silica capillary columns based on the ene-thiol click chemistry. This study is performed on a "generic" vinyl-functionalized silica monolith (Hmin 6±1μm). The photoclick reaction is investigated using different thiol monomers (octadecanethiol, cysteine and sodium mercaptoethanesulfonate) to prepare capillary columns dedicated to various chromatographic modes (reversed-phase, HILIC and strong cation exchange). Whatever the monomer used, the photografting reaction is achieved in less than 5min with a relatively high thiol monomer content. This allows preparing highly retentive and efficient monolithic columns while avoiding polymerization and/or column clogging. In addition to the aforementioned properties (duration, versatility, efficiency), this photo-triggered chemical reaction allows addressing several appropriate surface functionalizations inside a single monolithic column in order to prepare nanovolume multimodal capillary columns. A multimodal biphasic monolithic column with a 1cm length cation-exchange segment followed by a 9cm length reversed-phase segment (SCX-RP) is prepared through two successive photografting reactions using a UV-mask to localize the reactions. This multimodal biphasic column is investigated using a model sample for the selective fractionation and separation of cationic and neutral compounds and is applied to the on-line preconcentration and separation of β-blockers. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Preparation and characterization of coatings with a high reflectivity on planar substrates and inside silica tubes

    NASA Astrophysics Data System (ADS)

    Bartoň, Ivo; Matějec, Vlastimil; Mrázek, Jan; Podrazký, Ondřej

    2015-01-01

    The paper presents results on preparation and characterization of highly reflective coatings on planar substrates and inside silica tubes. Coatings are designed for a maximum reflectivity at a wavelength of 550 nm and consist of several pairs of oxide layers. Each pair is composed of one layer with a high refractive index and one layer with a low refractive index with a refractive-index contrast of about 1.1. The layers were prepared by the sol-gel method. High-index layers were applied from a sol based on titanium butoxide while a sol of tetramethoxysilane was use for low-index layers. The sols were deposited onto silica slides or onto walls of silica tubes by using the dip-coating technique. Applied gel layers were thermally treated at temperatures up to 450 °C in order to obtain densified layers with thicknesses 50-100 nm. Coatings with one to five pairs of layers were fabricated. Prepared coatings were characterized by transmission and reflection spectrometry in a wavelength range from 190 to- 1100 nm, by contact profilometry, and by spectral ellipsometry. Thicknesses and refractive indices of coatings were determined from these measurements. For normal light incidence a reflectivity higher than 99% in a wavelength range of 500-650 nm was measured by transmission spectrometry on coatings prepared from four or five pairs of layers. Similar reflectivity values were determined for angles of incidence of 15, 30, 45 and 60 degrees by using reflection spectrometry. Transmission spectra measured on the coated tubes which show interference bands are also presented in the paper.

  2. Design of silica carrier for controlled release of molsidomine: effect of preparation methods of silica matrixes and their composites with molsidomine on the drug release kinetics in vitro.

    PubMed

    Parfenyuk, Elena V; Dolinina, Ekaterina S

    2014-11-01

    Biodegradable, controlled-release carrier materials with non-toxic degradation products are very valuable for delivery of cardiovascular drugs. This study is a part of development of novel form of vasodilator molsidomine to improve pharmacokinetic and consumer properties of the drug. It focuses on the effect of preparation methods of the drug-silica composites on their release kinetics. Phenyl modified silica materials prepared by different ways were studied as potential carriers for molsidomine. The composites of molsidomine with the modified silica were synthesized via one-step sol-gel route and adsorption. The drug was adsorbed onto the phenyl modified silica prepared by co-condensation and grafting. Furthermore, the one-step sol-gel derived composites were prepared at pH 4.4 (the isoelectric point of the drug) and pH 6.3 (the zero point of charge of the silica). In vitro release kinetics of molsidomine from the synthesized composites in simulated gastric (pH 1.6) and simulated blood (pH 7.4) media was studied. Our findings demonstrate that the release of the drug can be controlled by manipulating the synthesis ways and changing the sol-gel pH. The comparative analysis of molsidomine release profiles from the composites prepared by one-step sol-gel synthesis at different pH and adsorption allows to reveal perspective composites which exhibit sustained release of molsidomine for about 36h in acidic medium close to the zero order release kinetics.

  3. Acrylate-silica polymer nanocomposites obtained by sol-gel reactions. Structure, properties and scaffold preparation

    NASA Astrophysics Data System (ADS)

    Rodriguez Hernandez, Jose Carlos

    The manuscript deals with the development and characterization of hybrid materials based on poly(hydroxyethyl acrylate) (hereafter PHEA) reinforced by the inclusion of an amorphous silica phase. Both phases were simultaneously synthesized: the organic phase underwent a free radical polymerization reaction induced by the small addition of a thermal initiator (benzoyl peroxide); besides, silica (SiO2) was polymerized by an acid catalyzed sol-gel reaction of the silicon alkoxide tetraethoxysilane (hereafter TEOS). The sol-gel reaction conditions where silicon dioxide is formed influence the final silica structure: degree of condensation, linear versus branched intermediate species, average size, and so on. Some of the key parameters to control SiO2 topology on sol-gel derived composites include the catalyst nature used to increase the alkoxide reactivity (as well as its amount, pH), the available water to hydrolyze the silica precursor (referred to the stoichiometric amount needed to fully hydrolyze one molecule of TEOS) and ratio between the organic and inorganic phases on the final hybrid. The former (catalyst) and the second (water) conditions were fixed so as to synthesize materials with silica average sizes around tens of nanometres (nanocomposites); the latter, the relative ratio between organic and inorganic phases, was systematically changed. Besides, it is introduced a methodology to prepare a new kind of scaffolds made by nanocomposites whose pore morphology consists of a cylindrical channel mesh, which are perpendicular between themselves. The procedure is based on the well-known method of intermediate templates, this time prepared by a stack of woven fabrics which are first pressed and afterwards sintered. After the filling of the holes left inside the template by the monomeric solution and subsequent thermal polymerization, templates are removed by the selective solvent of the material it is made up. A suitable template preparation is found to be crucial

  4. Silica hydride intermediate for octadecylsilica and phenyl bonded phase preparation via heterogeneous hydrosilation in supercritical carbon dioxide.

    PubMed

    Scully, N M; Ashu-Arrah, B A; Nagle, A P; Omamogho, J O; O'Sullivan, G P; Friebolin, V; Dietrich, B; Albert, K; Glennon, J D

    2011-04-15

    Investigations into the preparation of silica hydride intermediate in supercritical carbon dioxide (sc-CO(2)) that avoids the use of organic solvents such as toluene or dioxane are described. The effects of reaction temperature, pressure and time on the surface coverage of the supercritical fluid generated silica hydride intermediate were studied. Under optimised supercritical conditions of 120°C, 483 bar and 3 h reaction time, silica hydride (Si-H) conversion efficiencies of ca. 40% were achieved for the hydride intermediate prepared from a monofunctional silane reagent (dimethylmethoxysilane). Si-H conversion efficiencies (as determined from (29)Si CP-MAS NMR spectral analysis) for the hydride intermediate prepared from triethoxysilane (TES) in sc-CO(2) were found to be comparable to those obtained using a TES silanisation approach in an organic solvent. (13)C and (29)Si CP-MAS-NMR spectroscopy was employed to provide a complete structural assignment of the silica hydride intermediates. Furthermore, supercritical CO(2) was subsequently employed as a reaction medium for the heterogenous hydrosilation of silica hydride with octadecene and with styrene, in the presence of a free radical initiator. These supercritical fluid generated reversed-phase materials were prepared in a substantially reduced reaction time (3 h) compared to organic solvent based methods (100 h reaction time). Silica functionalisation in sc-CO(2) presents an efficient and clean alternative to organic solvent based methods for the preparation of important silica hydride intermediate and silica bonded stationary phases via a hydrosilation approach. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Facile preparation of organic-silica hybrid monolith for capillary hydrophilic liquid chromatography based on "thiol-ene" click chemistry.

    PubMed

    Chen, Ming-Luan; Zhang, Jun; Zhang, Zheng; Yuan, Bi-Feng; Yu, Qiong-Wei; Feng, Yu-Qi

    2013-04-05

    In this work, a one-step approach to facile preparation of organic-inorganic hybrid monoliths was successfully developed. After vinyl-end organic monomers and azobisisobutyronitrile (AIBN) were mixed with hydrolyzed tetramethoxysilane (TMOS) and 3-mercaptopropyltrimethoxysilane (MPTMS), the homogeneous mixture was introduced into a fused-silica capillary for simultaneous polycondensation and "thiol-ene" click reaction to form the organic-silica hybrid monoliths. By employing this strategy, two types of organic-silica hybrid monoliths with positively charged quaternary ammonium and amide groups were prepared, respectively. The functional groups were successfully introduced onto the monoliths during the sol-gel process with "thiol-ene" click reaction, which was demonstrated by ζ-potential assessment, energy dispersive X-ray spectroscopy (EDX), and Fourier transform infrared (FT-IR) spectroscopy. The porous structure of the prepared monolithic columns was examined by scanning electron microscopy (SEM), nitrogen adsorption-desorption measurement, and mercury intrusion porosimetry. These results indicate the prepared organic-silica hybrid monoliths possess homogeneous column bed, large specific surface area, good mechanical stability, and excellent permeability. The prepared monolithic columns were then applied for anion-exchange/hydrophilic interaction liquid chromatography. Different types of analytes, including benzoic acids, inorganic ions, nucleosides, and nucleotides, were well separated with high column efficiency around 80,000-130,000 plates/m. Taken together, we present a facile and universal strategy to prepare organic-silica hybrid monoliths with a variety of organic monomers using one-step approach.

  6. Preparations for low-cost silica substrate of CIGS solar cell

    NASA Astrophysics Data System (ADS)

    Hsu, Ming-Seng; Chang, Chung Chih; Cheng, Hsiang Hshi; Ouyang, Yueh; Der Sheu, Shinn

    2008-08-01

    The production of CuInGaSe2 (CIGS) solar cell is based on vacuum processes, which requires a high manufacturing temperature and high cost. Our result show a simple method has been developed to prepare the silica substrates of CIGS solar cell. It's synthesized by sol-gel process from tetraethylorthosilicate (TEOS), methanol (CH3OH) and pure water (both ion-exchange and distillation) in the presence of ammonia as catalyst. The preparation procedure was elaborated as the flexible sequence to control chemical composition and properties of the particles in sol-gel-derived silica substrate. The morphology, particle size, and size distribution of CIGS substrate were characterized with dynamic light scattering (DLS) and atomic force microscopy (AFM). The results of AFM morphology and statistic evidence we find an easy way, non-vacuum and low temperature processes, to successfully prepare the CIGS solar cell substrates with surface roughness below 3 nm. It is powerful the advance study in low cost solar cell.

  7. Preparation of silica coated cobalt ferrite magnetic nanoparticles for the purification of histidine-tagged proteins

    NASA Astrophysics Data System (ADS)

    Aygar, Gülfem; Kaya, Murat; Özkan, Necati; Kocabıyık, Semra; Volkan, Mürvet

    2015-12-01

    Surface modified cobalt ferrite (CoFe2O4) nanoparticles containing Ni-NTA affinity group were synthesized and used for the separation of histidine tag proteins from the complex matrices through the use of imidazole side chains of histidine molecules. Firstly, CoFe2O4 nanoparticles with a narrow size distribution were prepared in an aqueous solution using the controlled co-precipitation method. In order to obtain small CoFe2O4 agglomerates, oleic acid and sodium chloride were used as dispersants. The CoFe2O4 particles were coated with silica and subsequently the surface of these silica coated particles (SiO2-CoFe2O4) was modified by amine (NH2) groups in order to add further functional groups on the silica shell. Then, carboxyl (-COOH) functional groups were added to the SiO2-CoFe2O4 magnetic nanoparticles through the NH2 groups. After that Nα,Nα-Bis(carboxymethyl)-L-lysine hydrate (NTA) was attached to carboxyl ends of the structure. Finally, the surface modified nanoparticles were labeled with nickel (Ni) (II) ions. Furthermore, the modified SiO2-CoFe2O4 magnetic nanoparticles were utilized as a new system that allows purification of the N-terminal His-tagged recombinant small heat shock protein, Tpv-sHSP 14.3.

  8. Preparation of aluminum-containing mesoporous silica with hierarchical macroporous architecture and its enhanced catalytic activities.

    PubMed

    Kamegawa, Takashi; Tanaka, Shota; Seto, Hiroki; Zhou, Dayang; Yamashita, Hiromi

    2013-08-28

    Aluminum-containing mesoporous silica with hierarchical macroporous architecture (Al-MMS) was successfully prepared using a solvent evaporation method through the combination of precursor solution for synthesis of Al-containing mesoporous silica (Al-MS) and poly(methyl methacrylate) (PMMA) colloidal crystals as a hard template. The porous structure and the state of aluminum were investigated using various characterization techniques. The construction of combined structure of Al-MMS, i.e., hierarchical macroporous architecture consisting of thin mesoporous silica frameworks, led to the formation of many mesopore entrances and the shortening of the mesoporous channels. In the tetrahydropyranylation of linear alcohols with dihydropyran (DHP), Al-MMS exhibited higher catalytic activities for the formation of corresponding tetrahydropyranyl ethers as compared to Al-MS. The advantageous structure of Al-MMS enables the efficient transport of reactants to the catalytically active sites, which realizes the significant enhancement of catalytic performances in the reaction of DHP with alcohols having longer alkyl chains.

  9. Feasibility of the preparation of silica monoliths for gas chromatography: fast separation of light hydrocarbons.

    PubMed

    Azzouz, Imadeddine; Essoussi, Anouar; Fleury, Joachim; Haudebourg, Raphael; Thiebaut, Didier; Vial, Jerome

    2015-02-27

    The preparation conditions of silica monoliths for gas chromatography were investigated. Silica-based monolithic capillary columns based on sol-gel process were tested in the course of high-speed gas chromatographic separations of light hydrocarbons mixture (C1-C4). The impact of modifying the amount of porogen and/or catalyst on the monolith properties were studied. At the best precursor/catalyst/porogen ratio evaluated, a column efficiency of about 6500 theoretical plates per meter was reached with a very good resolution (4.3) for very light compounds (C1-C2). The test mixture was baseline separated on a 70cm column. To our knowledge for the first time a silica-based monolithic capillary column was able to separate light hydrocarbons from methane to n-butane at room temperature with a back pressure in the range of gas chromatography facilities (under 4.1bar). Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Preparation of ultrafine silica from potash feldspar using sodium carbonate roasting technology

    NASA Astrophysics Data System (ADS)

    Liu, Jia-nan; Shen, Xiao-yi; Wu, Yan; Zhang, Jun; Zhai, Yu-chun

    2016-08-01

    A novel process was developed for the preparation of ultrafine silica from potash feldspar. In the first step, potash feldspar was roasted with Na2CO3 and was followed by leaching using NaOH solution to increase the levels of potassium, sodium, and aluminum in the solid residue. The leaching solution was then carbonated to yield ultrafine silica. The optimized reaction conditions in the roasting process were as follows: an Na2CO3-to-potash feldspar molar ratio of 1.1, a reaction temperature of 875°C, and a reaction time of 1.5 h. Under these conditions, the extraction rate of SiO2 was 98.13%. The optimized carbonation conditions included a final solution pH value of 9.0, a temperature of 40°C, a CO2 flow rate of 6 mL/min, a stirring intensity of 600 r/min, and an ethanol-to-water volume ratio of 1:9. The precipitation rate and granularity of the SiO2 particles were 99.63% and 200 nm, respectively. We confirmed the quality of the obtained ultrafine silica by comparing the recorded indexes with those specified in Chinese National Standard GB 25576―2010.

  11. Preparation of bio-compatible boron nanoparticles and novel mesoporous silica nanoparticles for bio-applications

    NASA Astrophysics Data System (ADS)

    Gao, Zhe

    This dissertation presents the synthesis and characterization of several novel inorganic and hybrid nanoparticles, including the bio-compatible boron nanoparticles (BNPs) for boron neutron capture therapy (BNCT), tannic acid-templated mesoporous silica nanoparticles and degradable bridged silsesquioxane silica nanoparticles. Chapter 1 provides background information of BNCT and reviews the development of design and synthesizing silica nanoparticles and the study of silica material degradability. Chapter 2 describes the preparation and characterization of dopamine modified BNPs and the preliminary cell study of them. The BNPs were first produced via ball milling, with fatty acid on the surface to stabilize the combustible boron elements. This chapter will mainly focus on the ligand-exchange strategy, in which the fatty acids were replaced by non-toxic dopamines in a facile one-pot reaction. The dopamine-coated BNPs (DA-BNPs) revealed good water dispersibility and low cytotoxicity. Chapter 3 describes the synthesis of tannic acid template mesoporous silica nanoparticles (TA-TEOS SiNPs) and their application to immobilize proteins. The monodispersed TA SiNPs with uniform pore size up to approximately 13 nm were produced by utilizing tannic acid as a molecular template. We studied the influence of TA concentration and reaction time on the morphology and pore size of the particles. Furthermore, the TA-TEOS particles could subsequently be modified with amine groups allowing them to be capable of incorporating imaging ligands and other guest molecules. The ability of the TA-TEOS particles to store biomolecules was preliminarily assessed with three proteins of different charge characteristics and dimensions. The immobilization of malic dehydrogenase on TA-TEOS enhanced the stability of the enzyme at room temperature. Chapter 4 details the synthesis of several bridged silsesquioxanes and the preparation of degradable hybrid SiNPs via co-condensation of bridged

  12. Enzyme encapsulation in silica gel prepared by polylysine and its catalytic activity

    NASA Astrophysics Data System (ADS)

    Kawachi, Yuki; Kugimiya, Shin-ichi; Nakamura, Hitomi; Kato, Katsuya

    2014-09-01

    Enzymes used in industrial applications are often immobilized onto different types of supports because they are sensitive to pH, temperature, and various other environmental conditions. However, many of the current immobilization approaches face problems such as the requirement of tedious multi-step procedures, loss of enzyme activity during immobilization, and poor reusability. In this study, we chose poly-L-lysine (Ki) as a catalyst for silica mineralization and attempted a one-step “leave to stand” synthesis method under mild conditions, so as to simultaneously maintain both high enzymatic activity and reusability. To examine the effect of Kx on the enzymatic reaction of lipase, we performed hydrolysis of 2-octylacetate without adding a silica precursor. Results indicate that Kx hardly exerts adverse influence on the enzymatic activity of lipase. The lipase encapsulated in the silica gel prepared by leave to stand (Gelstand) retained 70% of the activity compared to the free solution, which is two times higher than that obtained by mixing (Gelmix). However, the Km value was found to be similar to that of free enzymes. These results suggest that the leave to stand is a suitable procedure for immobilization, without any decrease in the mass transfer of substrate. The Gel-stand sample retained 100% activity even after the 5th cycle, and retained above 95% of its activity after 4 h of heat treatment at 65 °C. Using phenyltriethoxysilane as a silica precursor, tertiary structural stability of enzyme was obtained, and its Kcat value was improved when compared to a free solution.

  13. Optically transparent polyelectrolyte-silica composite materials: Preparation, characterization, and application in optical chemical sensing

    SciTech Connect

    Shi, Yining; Seliskar, C.J.

    1997-03-01

    A series of polyelectrolyte-containing silica composite materials have been prepared by sol-gel processing. These optically transparent composites have been characterized by scanning electron microscopy and UV-visible spectrophotometry. These materials can be processed into monolithic disks and thin films. The thicknesses of spin-coated films of these materials on glass can be varied from 0.13 to 3.5 {mu}m as determined by an optical interferences method. These materials are ion exchangeable and less brittle than the parent silica glass due to the incorporation of the organic polyelectrolyte. These new composites retain the nanoscale porosity and optical transparency into the ultraviolet of the parent silica sol-gel glasses, making them attractive host matrixes for the immobilization of ionizable dye molecules and chemical reagents. An optical pH sensing platform (0.9 x 2.5 cm) based on the electrostatic immobilization of HPTS (8-hydroxy-1,3,6-pyrenetrisulfonic acid trisodium salt) in a PDMDAAC (poly(diallyldimethylammonium chloride))-silica composite film was fabricated and evaluated. The results clearly demonstrate that this platform is easy to construct with high batch reproducibility and can be regenerated by simple solution ion exchange. The platform is usable in both the modes of absorption and fluorescence, making it versatile. Having a fast response time (ca. {approximately}2 s to more than 2 units of pH change), the platform is also highly resistant to dye leaching and storage degradation over a period of months. 49 refs., 9 figs., 2 tabs.

  14. Dummy molecularly imprinted mesoporous silica prepared by hybrid imprinting method for solid-phase extraction of bisphenol A.

    PubMed

    Yu, Dan; Hu, Xiaolei; Wei, Shoutai; Wang, Qiang; He, Chiyang; Liu, Shaorong

    2015-05-29

    A novel hybrid dummy imprinting strategy was developed to prepare a mesoporous silica for the solid-phase extraction (SPE) of bisphenol A (BPA). A new covalent template-monomer complex (BPAF-Si) was first synthesized with 2,2-bis(4-hydroxyphenyl)hexafluoropropane (BPAF) as the template. The imprinted silica was obtained through the gelation of BPAF-Si with tetraethoxysilane and the subsequent removal of template by thermal cleavage, and then it was characterized by FT-IR spectroscopy, scanning electron microscopy, transmission electron microscopy, and nitrogen adsorption-desorption isotherms. Results showed that the new silica had micron-level particle size and ordered mesoporous structure. The static binding test verified that the imprinted silica had much higher recognition ability for BPA than the non-imprinted silica. The imprinted silica also showed high extraction efficiencies and high enrichment factor for SPE of BPA. Using the imprinted silica, a SPE-HPLC-UV method was developed and successfully applied for detecting BPA in BPA-spiked tap water and lake water samples with a recovery of 99-105%, a RSD of 2.7-5.0% and a limit of detection (S/N=3) of 0.3ng/mL. The new imprinted silica avoided the interference of the residual template molecules and reduced the non-specific binding sites, and therefore it can be utilized as a good sorbent for SPE of BPA in environmental water samples.

  15. One-Pot Approach to Prepare Organo-silica Hybrid Capillary Monolithic Column with Intact Mesoporous Silica Nanoparticle as Building Block

    PubMed Central

    Liu, Shengju; Peng, Jiaxi; Liu, Zheyi; Liu, Zhongshan; Zhang, Hongyan; Wu, Ren’an

    2016-01-01

    A facile “one-pot” approach to prepare organo-silica hybrid capillary monolithic column with intact mesoporous silica nanoparticle (IMSN) as crosslinker and building block was described. An IMSN crosslinked octadecyl-silica hybrid capillary monolithic column (IMSN-C18 monolithic column) was successfully prepared, and the effects of fabrication conditions (e.g. concentration of intact mesoporous silica nanoparticle, polycondensation temperature, content of vinyltrimethoxysilane and stearyl methacrylate) on the structures of the IMSN-C18 monolithic column were studied in detail. The IMSN-C18 hybrid monolithic column possessed uniform morphology, good mechanical and pH stability (pH 1.1–11), which was applied to the separations of alkyl benzenes, polycyclic aromatic hydrocarbons (PAHs), as well as proteins. The minimum plate height of 10.5 μm (corresponding to 95000 N m−1) for butylbenzene and high reproducibility were achieved. The analysis of tryptic digest of bovine serum albumin (BSA) was carried out on the IMSN-C18 monolithic column by cLC coupled mass spectrometry (cLC-MS/MS), with the protein sequence coverage of 87.5% for BSA, demonstrating its potential application in proteomics. PMID:27698475

  16. One-Pot Approach to Prepare Organo-silica Hybrid Capillary Monolithic Column with Intact Mesoporous Silica Nanoparticle as Building Block.

    PubMed

    Liu, Shengju; Peng, Jiaxi; Liu, Zheyi; Liu, Zhongshan; Zhang, Hongyan; Wu, Ren'an

    2016-10-04

    A facile "one-pot" approach to prepare organo-silica hybrid capillary monolithic column with intact mesoporous silica nanoparticle (IMSN) as crosslinker and building block was described. An IMSN crosslinked octadecyl-silica hybrid capillary monolithic column (IMSN-C18 monolithic column) was successfully prepared, and the effects of fabrication conditions (e.g. concentration of intact mesoporous silica nanoparticle, polycondensation temperature, content of vinyltrimethoxysilane and stearyl methacrylate) on the structures of the IMSN-C18 monolithic column were studied in detail. The IMSN-C18 hybrid monolithic column possessed uniform morphology, good mechanical and pH stability (pH 1.1-11), which was applied to the separations of alkyl benzenes, polycyclic aromatic hydrocarbons (PAHs), as well as proteins. The minimum plate height of 10.5 μm (corresponding to 95000 N m(-1)) for butylbenzene and high reproducibility were achieved. The analysis of tryptic digest of bovine serum albumin (BSA) was carried out on the IMSN-C18 monolithic column by cLC coupled mass spectrometry (cLC-MS/MS), with the protein sequence coverage of 87.5% for BSA, demonstrating its potential application in proteomics.

  17. Impact of muffle furnace preparation on the results of crystalline silica analysis.

    PubMed

    Lee, R J; Van Orden, D R; Cox, L A; Arlauckas, S; Kautz, R J

    2016-10-01

    A prior report demonstrated an unacceptably low level of accuracy in silica analytical testing, with a general negative bias (i.e., underreporting) although other inaccuracies included false-positive results when analyzing blank filters. The possible bias may have been due to the loss of sample during shipping and or sample preparation. We report on a follow-up study that was designed to mimic the original study, but in which sources of variability were evaluated. We found no effect on silica recoveries due to shipping and confirmed the prior study results that the muffle furnace ashing process led to low overall recoveries (49-104%), depending on the adherence to the recommended preparation method. Plasma ashing recoveries ranged from 89 to 108%. Our results suggest that muffle-furnace ashing using a crucible should be restricted. More broadly, however, muffle-furnace ashing is only one source of analytical error that contributes to the relatively poor overall performance revealed by Cox et al. Whatever the case, OSHA should ensure that its proposed requirements to improve laboratory performance will actually lead to the discovery and correction of all major sources of error by participating laboratories. This is particularly important in light of OSHA's proposed reduction in the PEL and action level proposed by OSHA. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Structural and optical properties of Cu:silica nanocomposite films prepared by co-sputtering deposition

    NASA Astrophysics Data System (ADS)

    Battaglin, G.; Cattaruzza, E.; Gonella, F.; Polloni, R.; Scremin, B. F.; Mattei, G.; Mazzoldi, P.; Sada, C.

    2004-03-01

    Copper-containing silica films were synthesized by radiofrequency (rf) co-sputtering deposition technique, and then heat-treated in different annealing atmospheres, i.e. either oxidizing or reducing, with the aim to develop suitable preparation methodologies for controlling the composite structure. Characterization of the samples along the various preparation steps was performed by Rutherford backscattering spectrometry (RBS), transmission electron microscopy and optical absorption spectroscopy. The nonlinear optical coefficient n2 of the nanocomposite films was estimated by the Z-scan technique. Experimental observations showed that copper migration and aggregation depend critically on the annealing conditions, giving rise to quite different stable structures. In particular, for samples heat-treated first in air and then in a H2-Ar gas mixture, the oxidizing atmosphere drives copper towards the surface while the reducing one promotes the subsequent clusterization in a well defined region.

  19. Poromechanics of microporous media

    NASA Astrophysics Data System (ADS)

    Brochard, L.; Vandamme, M.; Pellenq, R. J.-M.

    2012-04-01

    Microporous media, i.e., porous media made of pores with a nanometer size, are important for a variety of applications, for instance for sequestration of carbon dioxide in coal, or for storage of hydrogen in metal-organic frameworks. In a pore of nanometer size, fluid molecules are not in their bulk state anymore since they interact with the atoms of the solid: they are said to be in an adsorbed state. For such microporous media, conventional poromechanics breaks down. In this work we derive poroelastic constitutive equations which are valid for a generic porous medium, i.e., even for a porous medium with pores of nanometer size. The complete determination of the poromechanical behavior of a microporous medium requires knowing how the amount of fluid adsorbed depends on both the fluid bulk pressure and the strain of the medium. The derived constitutive equations are validated with the help of molecular simulations on one-dimensional microporous media. Even when a microporous medium behaves linearly in the absence of any fluid (i.e., its bulk modulus does not depend on strain), we show that fluid adsorption can induce non-linear behavior (i.e., its drained bulk modulus can then depend significantly on strain). We also show that adsorption can lead to an apparent Biot coefficient of the microporous medium greater than unity or smaller than zero. The poromechanical response of a microporous medium to adsorption significantly depends on the pore size distribution. Indeed, the commensurability (i.e., the ratio of the size of the pores to that of the fluid molecules) proves to play a major role. For a one-dimensional model of micropores with a variety of pore sizes, molecular simulations show that the amount of adsorbed fluid depends linearly on the strain of the medium. We derive linearized constitutive equations which are valid when such a linear dependence of the adsorbed amount of fluid on the strain is observed. As an application, the case of methane and coal is

  20. Preparation of the narrow size distribution USPIO in mesoporous silica for magnetic field guided drug delivery and release

    NASA Astrophysics Data System (ADS)

    Zapotoczny, B.; Guskos, N.; Kozioł, J. J.; Dudek, M. R.

    2015-01-01

    Ultra-small superparamagnetic iron oxides (USPIO) with an average diameter of 2 nm were synthesized in mesoporous silica using the method of co-precipitation of Fe2+ and Fe3+ ions in aqueous solution directly in the silica nanopores. Two types of the silica material, hexagonal phase MCM-41 and mesoporous silica spheres (MSS), were used. The resulting magnetically modified silica samples show high-quality superparamagnetic properties which persist also at low temperatures near 2 K. Their magnetization saturation in an applied external magnetic field exceeds 15 emu/g. The magnetically modified silica samples were studied with the help of the ferromagnetic resonance (FMR), SQUID-magnetometry, X-ray diffraction (XRD), dynamic light scattering (DLS) and TEM/EDX microscopy. The studies were complemented by confirming the possibility of drug release by the modified silica samples where the standard fluorescent dye was used as an example. The prepared material is suggested to be considered for magnetic field guided drug delivery and release.

  1. [In-situ sol-gel preparation of nano silica porous layer capillary columns and their applications in gas chromatography].

    PubMed

    Zhao, Guohong; Wang, Zhonglai; Lei, Xiaoqiang; Gong, Chengke; Wang, Hanqing; Chen, Liren

    2004-03-01

    A new method is described to prepare nano silica porous layer columns by using in-situ sol-gel synthesis technology. By the interaction of ethyl acetate and water glass solution, the nano silica was synthesized on the inner surface of fused silica capillary. The influence of reaction conditions on the morphology surface area, pore volume and pore size was investigated. The experimental results demonstrate that when the mole ratio of ethyl acetate to silica was 0.82, the particle size of the superfine silica powder was in the range of 25-50 nm, the BET specific surface area was 420 m2/g, and the total pore volume was 0.68 cm3/g. The nano silica porous layer on the inner surface of fused silica capillary was formed by bonding reactions through cross-linked polysiloxane chains, and deactivated by 1 g/L KCl. The column shows sufficient selectivity, stable retention performance, proper resistance to water, good reproducibility, and unique activity. The column is suitable for the analysis of chlorofluorocarbons, halohydrocarbons, sulfur compounds, and light hydrocarbons C1-C4.

  2. Preparation of double emulsions using hybrid polymer/silica particles: new pickering emulsifiers with adjustable surface wettability.

    PubMed

    Williams, Mark; Warren, Nicholas J; Fielding, Lee A; Armes, Steven P; Verstraete, Pierre; Smets, Johan

    2014-12-10

    A facile route for the preparation of water-in-oil-in-water (w/o/w) double emulsions is described for three model oils, namely, n-dodecane, isopropyl myristate, and isononyl isononanoate, using fumed silica particles coated with poly(ethylene imine) (PEI). The surface wettability of such hybrid PEI/silica particles can be systematically adjusted by (i) increasing the adsorbed amount of PEI and (ii) addition of 1-undecanal to the oil phase prior to homogenization. In the absence of this long-chain aldehyde, PEI/silica hybrid particles (PEI/silica mass ratio = 0.50) produce o/w Pickering emulsions in all cases. In the presence of 1-undecanal, this reagent reacts with the primary and secondary amine groups on the PEI chains via Schiff base chemistry, which can render the PEI/silica hybrid particles sufficiently hydrophobic to stabilize w/o Pickering emulsions at 20 °C. Gas chromatography, (1)H NMR and X-ray photoelectron spectroscopy provide compelling experimental evidence for this in situ surface reaction, while a significant increase in the water contact angle indicates markedly greater hydrophobic character for the PEI/silica hybrid particles. However, when PEI/silica hybrid particles are prepared using a relatively low adsorbed amount of PEI (PEI/silica mass ratio = 0.075) only o/w Pickering emulsions are obtained, since the extent of surface modification achieved using this Schiff base chemistry is insufficient. Fluorescence microscopy and laser diffraction studies confirm that highly stable w/o/w double emulsions can be achieved for all three model oils. This is achieved by first homogenizing the relatively hydrophobic PEI/silica hybrid particles (PEI/silica mass ratio = 0.50) with an oil containing 3% 1-undecanal to form an initial w/o emulsion, followed by further homogenization using an aqueous dispersion of relatively hydrophilic PEI/silica particles (PEI/silica mass ratio = 0.075). Dye release from the internal aqueous cores into the aqueous continuous

  3. Synthesis and electrical response of polyaniline/poly(styrene sulfonate)-coated silica spheres prepared by seed-coating method.

    PubMed

    Lee, Seungae; Hong, Jin-Yong; Jang, Jyongsik

    2013-05-15

    The polyaniline/poly(styrene sulfonate) (PANI/PSS)-coated silica spheres with three different sizes (50, 100, and 250 nm) are fabricated through seed-coating method and adopted as dispersing materials for electrorheological (ER) fluids to examine the influence of particle diameter on ER activity. Interestingly, the ER properties of PANI/PSS-coated silica spheres exhibit a dependence on their size. Performances of PANI/PSS-coated silica spheres-based ER fluids enhanced with decreasing the diameter of particle. It is believed that the size effect played a dominant role in enhancing the performance of ER fluid. Furthermore, the fibrillation phenomenon of prepared PANI/PSS-coated silica spheres-based ER fluid was observed via an optical microscope in the applied electric field. Sedimentation properties were also analyzed to provide additional insight into the size effect of ER fluids.

  4. Optical Properties of Silica-Encapsulated ZnSe Nanocrystals Prepared with Water-in-Oil Microemulsions

    NASA Astrophysics Data System (ADS)

    Liu, Kang; Kim, Ji Hyeon; Park, Sang Joon

    2013-01-01

    Silica-encapsulated ZnSe nanocrystals (NCs) were prepared by a safe and simple synthesis method, utilizing a sodium bis (2-ethylhexyl) sulfosuccinate (AOT)/water/cyclohexane microemulsion system and characterized by UV-vis analysis, photoluminescence (PL) spectroscopy, and transmission electron microscopy (TEM). For the encapsulations, two reverse micellar solutions [one for tetraethyl orthosilicate (TEOS) and the other for ZnSe] containing different water volumes were employed. The size of silica particles containing ZnSe NCs could be controlled from 13-37 nm by varying the water content W (W=[H2O]/[AOT]). On the other hand, the size of encapsulated ZnSe NCs was almost unchanged (about 2.5 nm) even though the size of the silica particles was increased. At W = 7, the maximum PL efficiency of 6% was obtained and the photostability was increased markedly after ZnSe NCs were encapsulated by silica.

  5. Synthesis of silver nanoparticles deposited on silica by γ-irradiation and preparation of PE/Ag nano compound masterbatches

    NASA Astrophysics Data System (ADS)

    Nguyen, Thi Kim Lan; Trinh Nguyen, Thuy Ai; Phu Dang, Van; Duy Nguyen, Ngoc; Le, Anh Quoc; Hien Nguyen, Quoc

    2013-12-01

    Silver nanoparticles (AgNPs) deposited on silica were synthesized by gamma Co-60 irradiation of Ag+ dispersion in silica/ethanol/water mixture (9/80/20:w/v/v). The reduction of Ag+ is occurred by hydrated electron (e-aq) and hydrogen atom (H•) generated during radiolysis of ethanol/water. The conversion doses (Ag+ → Ag0) were determined by UV-Vis spectroscopy. The synthesized AgNPs/silica were characterized by transmission electron microscopy (TEM) and x-ray diffraction (XRD), which showed the size of AgNPs to be in the range of 5-40 nm for Ag+ concentrations from 5 to 20 mM. Masterbatches of PE/AgNPs/silica compound with silver content from 250 to 1000 mg kg-1 were also prepared. These masterbatches can be suitably used for various applications such as antimicrobial food containers and packing films, etc.

  6. Silica-tin nanotubes prepared from rice husk ash by sol-gel method: Characterization and its photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Adam, Farook; Appaturi, Jimmy Nelson; Thankappan, Radhika; Nawi, Mohd Asri Mohd

    2010-11-01

    Silica-tin material has been synthesized by simple sol-gel method using rice husk ash as the source of silica and cetyltrimethylammonium bromide as the surfactant at room temperature. Calcination of the material at 500 °C for 5 h gave nanotubes with external diameter of 2-4 nm and an internal diameter of 1-2 nm. The BET specific surface area was found to be 607 m 2 g -1. Nitrogen sorption analysis exhibits a type IV isotherm with H3 hysteresis loop. The powder X-ray diffraction pattern showed that the material is amorphous. The photocatalytic activity of the prepared material was studied towards degradation of methylene blue under UV-irradiation. According to the experimental results the silica-tin nanotubes exhibit high photocatalytic activity compared to pure rice husk silica.

  7. Investigating the Heavy Metal Adsorption of Mesoporous Silica Materials Prepared by Microwave Synthesis

    NASA Astrophysics Data System (ADS)

    Zhu, Wenjie; Wang, Jingxuan; Wu, Di; Li, Xitong; Luo, Yongming; Han, Caiyun; Ma, Wenhui; He, Sufang

    2017-05-01

    Mesoporous silica materials (MSMs) of the MCM-41 type were rapidly synthesized by microwave heating using silica fume as silica source and evaluated as adsorbents for the removal of Cu2+, Pb2+, and Cd2+ from aqueous solutions. The effects of microwave heating times on the pore structure of the resulting MSMs were investigated as well as the effects of different acids which were employed to adjust the solution pH during the synthesis. The obtained MCM-41 samples were characterized by nitrogen adsorption-desorption analyses, X-ray powder diffraction, and transmission electron microscopy. The results indicated that microwave heating method can significantly reduce the synthesis time of MCM-41 to 40 min. The MCM-41 prepared using citric acid (c-MCM-41(40)) possessed more ordered hexagonal mesostructure, higher pore volume, and pore diameter. We also explored the ability of c-MCM-41(40) for removing heavy metal ions (Cu2+, Pb2+, and Cd2+) from aqueous solution and evaluated the influence of pH on its adsorption capacity. In addition, the adsorption isotherms were fitted by Langmuir and Freundlich models, and the adsorption kinetics were assessed using pseudo-first-order and pseudo-second-order models. The intraparticle diffusion model was studied to understand the adsorption process and mechanism. The results confirmed that the as-synthesized adsorbent could efficiently remove the heavy metal ions from aqueous solution at pH range of 5-7. The adsorption isotherms obeyed the Langmuir model, and the maximum adsorption capacities of the adsorbent for Cu2+, Pb2+, and Cd2+ were 36.3, 58.5, and 32.3 mg/g, respectively. The kinetic data were well fitted to the pseudo-second-order model, and the results of intraparticle diffusion model showed complex chemical reaction might be involved during adsorption process.

  8. Preparation of magnetite-loaded silica microspheres for solid-phase extraction of genomic DNA from soy-based foodstuffs.

    PubMed

    Shi, Ruobing; Wang, Yucong; Hu, Yunli; Chen, Lei; Wan, Qian-Hong

    2009-09-04

    Solid-phase extraction has been widely employed for the preparation of DNA templates for polymerase chain reaction (PCR)-based analytical methods. Among the variety of adsorbents studied, magnetically responsive silica particles are particularly attractive due to their potential to simplify, expedite, and automate the extraction process. Here we report a facile method for the preparation of such magnetic particles, which entails impregnation of porous silica microspheres with iron salts, followed by calcination and reduction treatments. The samples were characterized using powder X-ray diffractometry (XRD), scanning electron microscopy (SEM), nitrogen adsorption/desorption isotherms, and vibrating sample magnetometry (VSM). XRD data show that magnetite nanocrystals of about 27.2 nm are produced within the pore channels of the silica support after reduction. SEM images show that the as-synthesized particles exhibit spherical shape and uniform particle size of about 3 microm as determined by the silica support. Nitrogen sorption data confirm that the magnetite-loaded silica particles possess typical mesopore structure with BET surface area of about 183 m(2)/g. VSM data show that the particles display paramagnetic behavior with saturation magnetization of 11.37 emu/g. The magnetic silica microspheres coated with silica shells were tested as adsorbents for rapid extraction of genomic DNA from soybean-derived products. The purified DNA templates were amplified by PCR for screening of genetically modified organisms (GMOs). The preliminary results confirm that the DNA extraction protocols using magnetite-loaded silica microspheres are capable of producing DNA templates which are inhibitor-free and ready for downstream analysis.

  9. Preparation and Properties of Ethylene Vinyl Acetate Copolymer/Silica Nanocomposites in Presence of EVA-g-Acrylic Acid.

    PubMed

    Tham, Do Quang; Tuan, Vu Manh; Thanh, Dinh Thi Mai; Chinh, Nguyen Thuy; Giang, Nguyen Vu; Trang, Nguyen Thi Thu; Hang, To Thi Xuan; Huong, Ho Thu; Dung, Nguyen Thi Kim; Hoang, Thai

    2015-04-01

    Here we report a facile approach to enhance the dispersibility of ethylene vinyl acetate copolymer (EVA)/silica nanocomposites (for the EVA/silica nanocomposites and interaction between silica nanoparticles (nanosilica) and EVA by adding EVA-g-acrylic acid (EVAgAA) as a compatibilizer, which was formed by grafting acrylic acid onto EVA chains with the aid of dicumyl peroxide). The above nanocomposites with and without EVAgAA were prepared by melt mixing in a Haake intermixer with different contents of silica and EVAgAA. Their structure and morphology were characterized by Fourier transform infra-red (FT-IR) spectroscopy, field emission scanning electron microscopy (FE-SEM), and the mechanical, rheological, dielectrical, and flammability properties of the nanocomposites were also investigated. The FT-IR spectra of the nanocomposites confirmed the formation of hydrogen bonds between the surface silanol groups of nanosilica and C=O groups of EVA and/or EVAgAA. The presence of EVAgAA remarkably increased the intensity of hydrogen bonding between nanosilica and EVA which not only enhanced the dispersion of nanosilica in EVA matrix but also increased the mechanical, viscosity and storage modulus of EVA/silica nanocomposites. In addition, the flammability of EVA/silica nanocomposites is also significantly reduced after the functionalization with EVAgAA. However, the mechanical properties of EVA/silica nanocomposites tended to level off when its content was above 1.5 wt.%. It has also been found that the dielectric constant value of the EVA/EVAgAA/silica nanocomposites is much lower than that of the EVA/silica nanocomposites, which is another evidence of the hydrogen bonding formation between EVAgAA and nanosilica.

  10. Unraveling the Mystery of Stöber Silica's Microporosity.

    PubMed

    Li, Shanshan; Wan, Quan; Qin, Zonghua; Fu, Yuhong; Gu, Yuantao

    2016-09-13

    Puzzling aspects of the microporous structure of Stöber silica, including inconsistencies in the BET specific surface area and the long measurement time required for N2 adsorption, hinder further research on and potential applications of this material. In this work, Stöber silica samples prepared using systematic and detailed post-treatment methods were characterized by N2 adsorption, scanning electron microscopy, transmission electron microscopy, inductively coupled plasma optical emission spectrometry, elemental analysis, and Fourier transform infrared spectroscopy. We have found that the often overlooked sample preparation conditions may be the main causes that perplex the gas adsorption characterization results of Stöber silica samples. The pore-blocking processes associated with a variety of sample treatment methods are discussed in detail. Strong evidence for the particle growth model and pore-blocking mechanism involving ethoxyl groups, Si species, and condensation of silanols is provided. A remarkable result is that the measurement time is shortened from 1 month in our previous work to 2-3 days for samples with large specific surface areas. A suitable post-treatment condition is recommended to obtain microporous Stöber silica with a short measurement time, including water washing, low temperature drying without a vacuum, and a short storage time.

  11. Preparation and complex characterization of silica holmium sol-gel monoliths.

    PubMed

    Cacaina, D; Areva, S; Laaksonen, H; Simon, S; Ylänen, H

    2011-01-01

    Amorphous, sol-gel derived SiO(2) are known to biocompatible and bioresorbable materials. Biodegradable and inert materials containing radioactive isotopes have potential application as delivery vehicles of the beta radiation to the cancer tumors inside the body. Incorporation of holmium in the sol-gel derived SiO(2) could lead to the formation of a biodegradable material which could be used as carrier biomaterial for the radiation of radioactive holmium to the various cancer sites. The homogeneity of the prepared sol-gel silica holmium monoliths was investigated by Back Scattered Electron Imaging of Scanning Electron Microscope equipped with Energy Dispersive X-ray Analysis, X-ray Induced Photoelectron Spectroscopy and Nuclear Magnetic Resonance Spectroscopy. The biodegradation of the monoliths was investigated in Simulated Body Fluid and TRIS (Trizma pre-set Crystals) solution. The results show that by suitable tailoring of the sol-gel processing parameters holmium can be homogeneously incorporated in the silica matrix with a controlled biodegradation rate.

  12. A simple approach to prepare monodisperse mesoporous silica nanospheres with adjustable sizes.

    PubMed

    Yu, Meihua; Zhou, Liang; Zhang, Jun; Yuan, Pei; Thorn, Peter; Gu, Wenyi; Yu, Chengzhong

    2012-06-15

    A new and facile approach has been developed to prepare monodisperse mesoporous silica nanospheres (MMSNs) with controlled particle sizes and pore structures. In our approach, MMSNs were synthesized simply in a sodium acetate solution without adding any other alkali or alcohol additives. MMSNs have a spherical shape and uniform particle sizes, which can be adjusted from 50 to 110 nm by increasing the reaction temperature from 40 to 80 °C. By performing a subsequent hydrothermal treatment (HT) under basic condition (pH=~11.5) at 130 °C, the mesoporous pore volume and surface area can be enhanced, while keeping the mono-dispersion characteristics and the mesopore size almost unchanged. The pore sizes of MMSNs can be adjusted from 2.8 to 4.0 nm under acidic solutions by changing the HT temperature from 100 to 130 °C. The formation process of MMSNs has been investigated by transmission electron microscopy (TEM) and attenuated total reflection Fourier transform infrared (ATR-FTIR) techniques. A spherical micelle templating mechanism is proposed to explain the formation of MMSNs in our system, which is different from that of traditional highly ordered mesoporous silica nanoparticles (MCM-41).

  13. Preparation, characterization and selective recognition for vanillic acid imprinted mesoporous silica polymers

    NASA Astrophysics Data System (ADS)

    Li, Hui; Xu, Miaomiao; Wang, Susu; Lu, Cuimei; Li, Zhiping

    2015-02-01

    A vanillic acid imprinted mesoporous silica polymer (MIPs) was prepared by copolymerizing a modified mesoporous silica molecular sieve with template molecule, functional monomer and cross-linker in present work. Interaction between the template and functional monomer was investigated by ultraviolet/visible spectrophotometry. These MIPs were characterized by Fourier transmission infrared spectrometry (FTIR) and scanning electron microscopy (SEM). Adsorption dynamics and thermodynamic behavior of MIPs was explored and the selective recognition capability evaluated. Also, the applicability for the MIPs as solid phase extraction media was tested. Results indicated the 1:1 (mole ratio) complex of vanillic acid-4-vinylpyridine might predominate in the pre-polymerization mixture and the MIPs obtained possessed rapid binding dynamics and higher affinity toward template molecules, reaching adsorption equilibrium within 230 min with the highest adsorption amount of 50.7 mg g-1. Freundlich model was shown best to describe isotherm adsorption for the MIPs. The MIPs could selectively bind template molecule with selectivity coefficients of 1.36-1.50. In addition, a higher enrichment capability when using it for gathering target compound from methanol extract of Artemisia stelleriana and a good reusability during adsorption-desorption recycling use could be observed.

  14. Nanocellulose Derivative/Silica Hybrid Core-Shell Chiral Stationary Phase: Preparation and Enantioseparation Performance.

    PubMed

    Zhang, Xiaoli; Wang, Litao; Dong, Shuqing; Zhang, Xia; Wu, Qi; Zhao, Liang; Shi, Yanping

    2016-05-04

    Core-shell silica microspheres with a nanocellulose derivative in the hybrid shell were successfully prepared as a chiral stationary phase by a layer-by-layer self-assembly method. The hybrid shell assembled on the silica core was formed using a surfactant as template by the copolymerization reaction of tetraethyl orthosilicate and the nanocellulose derivative bearing triethoxysilyl and 3,5-dimethylphenyl groups. The resulting nanocellulose hybrid core-shell chiral packing materials (CPMs) were characterized and packed into columns, and their enantioseparation performance was evaluated by high performance liquid chromatography. The results showed that CPMs exhibited uniform surface morphology and core-shell structures. Various types of chiral compounds were efficiently separated under normal and reversed phase mode. Moreover, chloroform and tetrahydrofuran as mobile phase additives could obviously improve the resolution during the chiral separation processes. CPMs still have good chiral separation property when eluted with solvent systems with a high content of tetrahydrofuran and chloroform, which proved the high solvent resistance of this new material.

  15. Preparation and characterization of PEG-coated silica nanoparticles for oral insulin delivery.

    PubMed

    Andreani, Tatiana; de Souza, Ana Luiza R; Kiill, Charlene P; Lorenzón, Esteban N; Fangueiro, Joana F; Calpena, Ana Cristina; Chaud, Marco V; Garcia, Maria L; Gremião, Maria Palmira D; Silva, Amélia M; Souto, Eliana B

    2014-10-01

    The present study reports the production and characterization of PEG-coated silica nanoparticles (SiNP-PEG) containing insulin for oral administration. High (PEG 20,000) and low (PEG 6000) PEG molecular weights were used in the preparations. SiNP were produced by sol-gel technology followed by PEG adsorption and characterized for in vitro release by Franz diffusion cells. In vitro permeation profile was assessed using everted rat intestine. HPLC method has been validated for the determination of insulin released and permeated. Insulin secondary structure was performed by circular dichroism (CD). Uncoated SiNP allowed slower insulin release in comparison to SiNP-PEG. The coating with high molecular weight PEG did not significantly (p> 0.05) alter insulin release. The slow insulin release is attributed to the affinity of insulin for silanol groups at silica surface. Drug release followed second order kinetics for uncoated and SiNP-PEG at pH 2.0. On the other hand, at pH 6.8, the best fitting was first-order for SiNP-PEG, except for SiNP which showed a Boltzmann behavior. Comparing the values of half-live, SiNP-PEG 20,000 showed a faster diffusion followed by Si-PEG 6000 and SiNP. CD studies showed no conformational changes occurring after protein release from the nanoparticles under gastrointestinal simulated conditions.

  16. Preparation of alumina nanoshell coated porous silica spheres for inorganic anions separation.

    PubMed

    Song, Zhihua; Wu, Dapeng; Ding, Kun; Guan, Yafeng

    2016-02-12

    It had been reported that alumina nanoshell coating could be obtained on the external surface of various substrates in one-nanometer precision in aqueous solution. In this work, alumina nanoshell coated mesoporous silica microbeads (nanoAl2O3/mesoSiO2) were prepared with the similar method, and were successfully applied to inorganic anions separation. As the mass transfer speed is largely constrained in the mesopore compared with that on the open surface, it was found that a complete alumina nanoshell coating could be obtained within the mesopore until the five-time coating was carried out. After characterization by BET, SEM and FTIR, it was found that the obtained nanoAl2O3/mesoSiO2 particles are smooth and well dispersed, and the mesopores are well reserved. In addition, the full coverage of nanoAl2O3 shell in mesopores was also confirmed by the binding capacity experiments with berberine. Finally, the nanoAl2O3/mesoSiO2 particles were packed in silica capillary for the separation of inorganic anions I(-), SCN(-), Br(-), NO2(-) and NO3(-) with ion chromatography (IC), and a column efficiency of 3.8 × 10(4) plates per meter was obtained for I(-).

  17. Preparation of glycerol carbonate esters by using hybrid Nafion-silica catalyst.

    PubMed

    Climent, María J; Corma, Avelino; Iborra, Sara; Martínez-Silvestre, Sergio; Velty, Alexandra

    2013-07-01

    Glycerol carbonate esters (GCEs), which are valuable biomass-derivative compounds, have been prepared through the direct esterification of glycerol carbonate and long organic acids with different chain lengths, in the absence of solvent, and with heterogeneous catalysts, including acidic-organic resins, zeolites, and hybrid organic-inorganic acids. The best results, in terms of activity and selectivity towards GCEs, were obtained using a Nafion-silica composite. A full reaction scheme has been established, and it has been demonstrated that an undesired competing reaction results in the generation of glycerol and esters derived from a secondary hydrolysis of the endocyclic ester group, which is attributed to water formed during the esterification reaction. The influence of temperature, substrate ratio, catalyst-to-substrate ratio, and the use of solvent has been studied and, under optimized reaction conditions and with the adequate catalyst, it was possible to achieve 95% selectivity for the desired product at 98% conversion. It was demonstrated that the reaction rate decreased as the number of carbon atoms in the linear alkyl chain of the carboxylic acid increased for both p-toluenesulfonic acid and Nafion-silica nanocomposite (Nafion SAC-13) catalysts. After fitting the experimental data to a mechanistically based kinetic model, the reaction kinetic parameters for Nafion SAC-13 catalysis were determined and compared for reactions involving different carboxylic acids. A kinetic study showed that the reduced reactivity of carboxylic acids with increasing chain lengths could be explained by inductive as well as steric effects.

  18. Facile preparation and characterization of modified magnetic silica nanocomposite particles for oil absorption

    NASA Astrophysics Data System (ADS)

    Yu, Liuhua; Hao, Gazi; Liang, Qianqian; Zhou, Shuai; Zhang, Ning; Jiang, Wei

    2015-12-01

    In this study, a novel environmental-friendly and superhydrophobic oil absorbent was fabricated by modifying magnetic silica nanocomposites. It was demonstrated that the modified rough magnetic silica nanocomposite particles possessed a number of superior features such as superhydrophobicity, superoleophilicity, and high oil-water separation efficiency etc. Moreover, the as-obtained material could be used as excellent absorbents for high density oils such as toluene and many organic liquids including viscous oils e.g. lubricating oil. The lubricating oil intake capacity for the nanocomposites was 7.15 times of its own weight. Importantly, the oil-absorption process of the nanocomposites was selective, fast and efficient when they were used in the purification of oil-contaminated water. Notably, the oil-absorbed nanocomposites could be renewed after suitable absolute ethanol washing and natural drying. In addition, the renewed nanocomposites still remained high oil-absorption capacity after the 20th cycle. These inspiring results show that the oil-absorbent material has good prospects for selection removal of oils and organic solvents on water surface. It is believed that the present work may have provided a novel and facile way for preparing environmental-friendly materials with ideal properties.

  19. Preparation of silica aerogels using CTAB/SDS as template and their efficient adsorption

    NASA Astrophysics Data System (ADS)

    Wa, Li; Fengyun, Li; Fanlu, Zhuo; Mengjing, Cao; Qiang, Cai; Jue, Huang; Weijun, Zhang; Mingwei, Mu

    2015-10-01

    Silica aerogels have been successfully synthesized using cationic cetyltrimethylammonium bromide (CTAB) and anionic sodium dodecyl sulfate (SDS) as template. This study provides a novel approach to synthesize silica aerogels. The molar ratio of surfactant mixture was CTAB/SDS = 1.00. The obtained silica aerogels exhibit very low apparent density (0.044 g cm-3) and high specific surface area (856 m2 g-1). Surfactant packing parameter theory is used to explain the possible formation mechanism of the silica aerogels using mixed surfactant template. In addition, the adsorption capacity of Rhodamine B on the as-synthesized silica aerogels is as higher as that on the commercial silica aerogels.

  20. Sonochemical preparation of silica nanorods for gene delivery using single-walled carbon nanotubes as templates.

    PubMed

    Lee, Kyoung G; Min, Jung Sun; Wi, Rinbok; Kim, Jin Chul; Ahn, Jeong Keun; Kim, Do Hyun

    2011-01-01

    Silica nanorods were fabricated with single-walled carbon nanotubes (SWCNTs) via ultrasound. The diameter of the resulting SWCNT-silica particles ranged from 60 to 70 nm. The morphology of this composite material was investigated via scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The individual SWCNTs are uniformly coated with silica and formed a unique nanocomposite material. The important role of ultrasound and the mechanism of silica layer formation on SWCNTs were explained via the hydrolysis of the silica source and the adsorption of the siloxane groups on the SWCNT surfaces under ultrasound irradiation. The amino-functionalized silica nanorods were demonstrated as non-viral vectors for gene delivery.

  1. Titanized silica-based stationary phases prepared with thermally and microwave-immobilized poly(methyloctylsiloxane).

    PubMed

    Fonseca, Dania A; Collins, Kenneth E; Collins, Carol H

    2004-03-19

    Silica supports having their surface modified with titanium oxide were prepared and coated with poly(methyloctylsiloxane) (PMOS). Subsequently, immobilization of the polysiloxane was induced by thermal treatment or microwave radiation. The thermal treatment was carried out for different times (4, 8, 16 and 24 h) at temperatures ranging between 100 and 220 degrees C. For PMOS immobilization by microwave radiation, 452, 520 and 586 W power levels and exposure times of 5, 15 and 30 min were used. After extraction of non-immobilized polymer, the chromatographic properties of the phases were evaluated. The phase immobilized at 120 degrees C for 8 h presented the best chromatographic parameters, suggesting that the quantity of acidic hydroxyl groups on the support surface was reduced, resulting in fewer undesirable interactions of a basic solute with the silanols not removed or covered on the support surface.

  2. Preparation, characterization and photocatalytic activity of manganese doped TiO(2) immobilized on silica gel.

    PubMed

    Xu, Yuehua; Lei, Bo; Guo, Laiqiu; Zhou, Wuyi; Liu, Youqin

    2008-12-15

    A series of Mn-TiO(2)/SiO(2) (silica gel loaded with manganese doped TiO(2)) photocatalysts have been prepared by sol-gel method, and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). Photocatalytic activities were enhanced in photocatalytic degradation of methyl orange over Mn-TiO(2)/SiO(2). XPS analysis shows that a Ti-O-Si or Ti-O-Mn bond is formed on the surface of photocatalyst. Mn is doped as a mixture of Mn(2+) and Mn(3+) on the surface of 1.0mol% Mn-TiO(2)/SiO(2). Mn(3+) appears to trap electrons and prohibit the electron-hole recombination. The electrons trapped in Mn(3+) site are subsequently transferred to the adsorbed O(2). As a result, the combination of the electron-hole pair was reduced.

  3. Binding behaviour of molecularly imprinted polymers prepared by a hierarchical approach in mesoporous silica beads of varying porosity.

    PubMed

    Baggiani, Claudio; Baravalle, Patrizia; Giovannoli, Cristina; Anfossi, Laura; Passini, Cinzia; Giraudi, Gianfranco

    2011-04-08

    One of the most interesting methods for preparing molecularly imprinted polymers with controlled morphology consists in filling the pores of silica beads with an imprinting mixture, polymerizing it and dissolving the support, leaving porous imprinted beads that are the "negative image" of the silica beads. The main advantage of such an approach consists in the easy preparation of spherical imprinted polymeric particles with narrow diameter and pore size distribution, particularly indicated for chromatographic applications. In this approach it has been shown that the resulting morphology of polymeric beads depends essentially on the porosity and surface properties of the silica beads that act as microreactors for the thermopolymerization process. Anyway, it is not yet clear if the porosity of the silica beads influences the binding properties of the resulting imprinted beads. In this paper, we report the effect of different porosities of the starting mesoporous silica beads on the resulting binding properties of imprinted polymers with molecular recognition properties towards the fungicide carbendazim. The morphological properties of the imprinted beads prepared through this hierarchical approach were measured by nitrogen adsorption porosimetry and compared with a reference imprinted material prepared by bulk polymerization. The chromatographic behaviour of HPLC columns packed with the imprinted materials were examined by eluting increasing amounts of carbendazim and extracting the binding parameters through a peak profiling approach. The experimental results obtained show that the resulting binding properties of the imprinted beads are strongly affected by the polymerization approach used but not by the initial porosity of the silica beads, with the sole exception of the binding site density, which appears to be inversely proportional to them. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Preparation of nanoscale Bacillus thuringiensis chitinases using silica nanoparticles for nematicide delivery.

    PubMed

    Qin, Xu; Xiang, Xuemei; Sun, Xiaowen; Ni, Hong; Li, Lin

    2016-01-01

    A series of amino, carboxylic, and aldehydic surface-grafted silica nanoparticles (SNPs) was prepared based on SiO2 NYSi40 nanoparticles to develop an efficient, biocompatible, and cost-effective biopesticide delivery system. Bacillus thuringiensis chitinase (Chi9602) was immobilized onto SNP surface to prepare nanoscale chitinases (SNPCs) through electrostatic adsorption and covalent binding. The specimens were characterized by Fourier transform infrared, scanning electron microscopy, and zeta-potential analyses. The delivery capacity of the SNPs in Caenorhabditis elegans N2 was observed by immunofluorescence. Results demonstrated that amino-grafted SiO2 nanoparticles with Chi9602 electrostatically adsorbed onto their surface (SNPC2) exhibited a relatively high enzyme immobilization rate (80.2%) and the highest (94.1%) residual enzyme activity among all SNPCs. SNPC2 also showed wider pH tolerance and relatively higher thermostability and ultraviolet radiation resistance capacity than Chi9602. Bioassays further showed that SNPC2 synergistically enhanced the nematicidal effect of B. thuringiensis YBT-020 preparation against C. elegans, with a reduced LC50 of 8.35mg/mL and a shortened LT50 of 12.04h. Immunofluorescence assays showed that SNPC2 had considerable delivery capacity to carry a large protein into C. elegans. Therefore, SNP2 can serve as an efficient nanocarrier for the delivery of macromolecular proteic biopesticides or drugs, indicating potential agricultural or biotechnological applications.

  5. N-doped mesoporous carbons supported palladium catalysts prepared from chitosan/silica/palladium gel beads.

    PubMed

    Zeng, Minfeng; Wang, Yudong; Liu, Qi; Yuan, Xia; Feng, Ruokun; Yang, Zhen; Qi, Chenze

    2016-08-01

    In this study, a heterogeneous catalyst including palladium nanoparticles supported on nitrogen-doped mesoporous carbon (Pd@N-C) is synthesized from palladium salts as palladium precursor, colloidal silica as template, and chitosan as carbon source. N2 sorption isotherm results show that the prepared Pd@N-C had a high BET surface area (640m(2)g(-1)) with large porosity. The prepared Pd@N-C is high nitrogen-rich as characterized with element analysis. X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HR-TEM), and Raman spectroscopy characterization of the catalyst shows that the palladium species with different chemical states are well dispersed on the nitrogen-containing mesoporous carbon. The Pd@N-C is high active and shows excellent stability as applied in Heck coupling reactions. This work supplies a successful method to prepare Pd heterogeneous catalysts with high performance from bulk biopolymer/Pd to high porous nitrogen-doped carbon supported palladium catalytic materials.

  6. Preparation and characterization of phosphorylated Zr-doped hybrid silica/PSF composite membrane.

    PubMed

    Zhang, Yuqing; Jin, Zhenhua; Shan, Xing; Sunarso, Jaka; Cui, Ping

    2011-02-15

    Polysulfone (PSF) membranes are broadly applied in many fields owing to good physicochemical stability, resistance to oxidation and chlorine. But when treated with wastewater containing oil, PSF membranes are easy to be contaminated for its hydrophobicity, which can result in the declining of flux and lifespan of the membrane and limit their application in large scale. To enhance the capability of PSF membrane in the above circumstances, phosphorylated Zr-doped hybrid silica particles (SZP particles) were firstly prepared. SZP particles have various point defects inside their structure and lots of hydroxide radicals on their surface. SZP particles were added to the porous matrix of PSF to prepare a novel composite membrane (SZP/PSF) through a phase inversion process. Finally, the optimum preparation conditions of SZP/PSF composite membranes were determined. The optimum conditions are: the mass ratio of PSF, PEG400 and SZP is 12:10:10; ultrasound 10 min inside each 30 min; the pre-evaporating time is 10s. Optimized SZP/PSF composite membrane was characterized by scanning electron microscope (SEM) and ultrafiltration experiment. The results indicate that SZP particles can be uniformly dispersed in SZP/PSF composite membranes with excellent hydrophilic property, antifouling capability and tensile strength. Therefore, it can be concluded that the optimized SZP/PSF composite membrane is desirable in the treatment of wastewater containing oil and wastewater.

  7. Preparation of mesoporous silica thin films by photocalcination method and their adsorption abilities for various proteins.

    PubMed

    Kato, Katsuya; Nakamura, Hitomi; Yamauchi, Yoshihiro; Nakanishi, Kazuma; Tomita, Masahiro

    2014-07-01

    Mesoporous silica (MPS) thin film biosensor platforms were established. MPS thin films were prepared from tetraethoxysilane (TEOS) via using sol-gel and spin-coating methods using a poly-(ethylene oxide)-block-poly-(propylene oxide)-block-poly-(ethylene oxide) triblock polymer, such as P123 ((EO)20(PO)70(EO)20) or F127 ((EO)106(PO)70(EO)106), as the structure-directing agent. The MPS thin film prepared using P123 as the mesoporous template and treated via vacuum ultraviolet (VUV) irradiation to remove the triblock copolymer had a more uniform pore array than that of the corresponding film prepared via thermal treatment. Protein adsorption and enzyme-linked immunosorbent assay (ELISA) on the synthesized MPS thin films were also investigated. VUV-irradiated MPS thin films adsorbed a smaller quantity of protein A than the thermally treated films; however, the human immunoglobulin G (IgG) binding efficiency was higher on the former. In addition, protein A-IgG specific binding on MPS thin films was achieved without using a blocking reagent; i.e., nonspecific adsorption was inhibited by the uniform pore arrays of the films. Furthermore, VUV-irradiated MPS thin films exhibited high sensitivity for ELISA testing, and cytochrome c adsorbed on the MPS thin films exhibited high catalytic activity and recyclability. These results suggest that MPS thin films are attractive platforms for the development of novel biosensors.

  8. Preparation of raspberry-like polymer/silica nanocomposite microspheres via emulsifier-free polymerization in water/acetone media.

    PubMed

    Yuhong, Zhang; Qichao, Zou; Xingwang, Shu; Qingqiong, Tang; Min, Chen; Limin, Wu

    2009-08-15

    Raspberry-like polymer/silica nanocomposite microspheres were prepared by emulsifier-free copolymerization of styrene (St) with butyl acrylate (BA) in the presence of 20 nm silica nanoparticles in water/acetone media. A cationic monomer, 2-(methacryloyl)ethyltrimethylammonium chloride (MTC), was used as comonomer and nanosilica particles were adsorbed onto the growing latex core via the electrostatic interaction between negatively charged silica particles and positively charged polymer particles. The average particle sizes and the final silica contents of the nanocomposite microspheres ranged from 200 to 500 nm and 20 to 40 wt%, respectively, depending on the reaction conditions. The solid content of the obtained dispersions could be adjusted between 10 and 25 wt%. The influence of some synthetic parameters, for instance, the ratio of acetone/water, initial silica amount, the mass ratio of the St/BA, MTC, and the APS concentration on the polymerization stability, the average particle size, silica content, and morphology of the composite microspheres, were studied here in detail. It was found that the addition of acetone to the continuous phase resulted in smaller particle sizes and for the lower dielectric medium electrostatic repulsion becomes larger; hence coagulative nucleation is reduced compared to that in aqueous media.

  9. Synthesis, characterization and propane metathesis activity of a tantalum-hydride prepared on high surface area "silica supported zirconium hydroxide".

    PubMed

    Rataboul, Franck; Copéret, Christophe; Lefort, Laurent; de Mallmann, Aimery; Thivolle-Cazat, Jean; Basset, Jean-Marie

    2007-03-07

    A new tantalum-hydride supported on zirconium hydroxide [(triple bond SiO)(2)Zr(H)-O-Ta(H)(x)-(OSi triple bond)] (x = 1 or 3) was prepared using surface organometallic chemistry and its catalytic properties in the propane metathesis reaction were assessed showing improved activity and selectivities in comparison to the tantalum-hydride supported on silica.

  10. Preparation and evaluation of ionic liquid-gold nanoparticles functionalized silica monolithic column for capillary electrochromatography.

    PubMed

    Lu, Junyu; Ye, Fanggui; Zhang, Aizhu; Chen, Xia; Wei, Yu; Zhao, Shulin

    2012-12-21

    This paper describes the development of silica monolithic column modified with ionic liquids-gold nanoparticles (ILs-GNPs) for capillary electrochromatography (CEC). The novel ILs (1-methyl-2-mercapto-3-butylimidazolium bromide) were synthesized and used to modify GNPs functionalized silica monolithic column via the formation of a Au-S bond. The morphology of the GNPs and ILs-GNPs functionalized silica (ILs-GNPs-silica) monolithic column were characterized by transmission electron microscopy and scanning electron microscope, respectively. A cathodic electroosmotic flow was observed at pH above 6.4 on ILs-GNPs-silica monolithic column, which was reversed at acidic pH. The electrochromatographic performance of ILs-GNPs-silica monolithic column was evaluated by separation of different kinds of analytes such as hydrophobic, polar and basic compounds. The ILs-GNPs-silica monolithic column displayed enhanced hydrophobic retention characteristics in the separation of five hydrophobic n-alkylbenzenes when compared to the ILs bonded silica monolithic column. The column efficiencies for the n-alkylbenzenes were from 62,000 to 110,000 N m(-1). The ILs-GNPs-silica monolithic column exhibited reversed-phase electrochromatographic behavior toward neutral solutes. Separation of polar compounds was demonstrated on ILs-GNPs-silica monolithic column in reversed-phase CEC mode using high aqueous mobile phases. The relatively good peak shape and high separation efficiency on ILs-GNPs-silica monolithic column was obtained for basic solutes when compared to silica monolithic column modified GNPs.

  11. Preparation of 4-butylaniline-bonded silica gel for the solid-phase extraction of flavone glycosides.

    PubMed

    Chu, Ganghui; Cai, Wensheng; Shao, Xueguang

    2015-04-01

    To extract flavone glycosides efficiently, a new extraction material based on 4-butylaniline-bonded silica gel was prepared using a two-step grafting method including a ring-opening reaction and synchronous hydrolysis. Preparation of the silica-based material was easily achieved under mild conditions, and the material was characterized by Fourier transform infrared spectroscopy, elemental analysis, and scanning electron microscopy. The material was used in solid-phase extraction, and the extraction can be performed in neutral conditions without regard to ionic strength. Selectivity tests of 14 compounds on the extraction cartridge showed that the material has a high affinity to flavone glycosides in contrast to octadecyl silica, and the extraction yields for four flavone glycosides were found to be >93%. Selectivity tests further reveal that the adsorption on its surface is likely attributed to multiple interactions, including hydrophobic interactions, π-π interactions, and hydrogen bonding. To explore the applicability of 4-butylaniline-bonded silica gel, naringin and hesperidin from Simotang oral liquid were extracted, and the extraction yields were >90%, which is distinguished from <28% on octadecyl silica cartridge.

  12. Preparation of silica thin films by novel wet process and study of their optical properties.

    PubMed

    Im, Sang-Hyeok; Kim, Nam-Jin; Kim, Dong-Hwan; Hwang, Cha-Won; Yoon, Duck-Ki; Ryu, Bong-Ki

    2012-02-01

    Silicon dioxide (SiO2) thin films have gained considerable attention because of their various industrial applications. For example, SiO2 thin films are used in superhydrophilic self-cleaning surface glass, UV protection films, anti-reflection coatings, and insulating materials. Recently, many processes such as vacuum evaporation, sputtering, chemical vapor deposition, and spin coating have been widely applied to prepare thin films of functionally graded materials. However, these processes suffer from several engineering problems. For example, a special apparatus is required for the deposition of films, and conventional wet processes are not suitable for coating the surfaces of substrates with a large surface area and complex morphology. In this study, we investigated the film morphology and optical properties of SiO2 films prepared by a novel technique, namely, liquid phase deposition (LPD). Images of the SiO2 films were obtained by scanning electron microscopy (SEM) and atomic force microscopy (AFM) in order to study the surface morphology of these films: these images indicate that films deposited with different reaction times were uniform and dense and were composed of pure silica. Optical properties such as refractive index and transmittance were estimated by UV-vis spectroscopy and ellipsometry. SiO2 films with porous structures at the nanometer scale (100-250 nm) were successfully produced by LPD. The deposited film had excellent transmittance in the visible wavelength region.

  13. Preparation of Silica/Reduced Graphene Oxide Nanosheet Composites for Removal of Organic Contaminants from Water.

    PubMed

    Li, Wen; Liu, Wei; Wang, Haifei; Lu, Wensheng

    2016-06-01

    Graphene-based composites open up new opportunities as effective adsorbents for the removal of organic contaminants from water. In this article, we report a novel and facile process to synthesize well-dispersed silica/reduced graphene oxide (SiO2/RGO) nanosheet composites. The SiO2/RGO nanosheet composites are prepared through a modified sol-gel process with in situ hydrolysis of tetraethoxysilane (TEOS) on graphene oxide (GO) nanosheet, followed by reduction of GO to graphene. In comparison with the RGO nanosheets, the as-prepared SiO2/RGO nanosheet composites have a larger surface area and good aqueous disperse ability. In addition, the application of SiO2/RGO nanosheet composites was demonstrated on removing organic dyes from water. The SiO2/RGO nanosheet composites show rapid and stable adsorption performance on removal of Methylene Blue (MB) and thionine (TH) from water. It is indicated that the resulting SiO2/RGO composites can be utilized as efficient adsorbents for the removal of organic contaminants from water.

  14. Preparation of porous TiO{sub 2}/silica composites without any surfactants

    SciTech Connect

    Ren Suxia; Zhao Xu; Zhao Lina; Yuan Meirong; Yu Yang; Guo Yupeng Wang Zichen

    2009-02-15

    TiO{sub 2}-SiO{sub 2} composites, with high specific surface area (up to 308 m{sup 2}/g), large pore volume, and narrow distribution with average pore sizes of 3.2 nm, have been synthesized from wollastonite and titanium sulfate in the absence of any surfactants. Calcium sulfate, a microsolubility salt, plays an important role in the formation of pores in this porous TiO{sub 2}/silica composite. The microstructure and chemical composition of composite were characterized by X-ray diffractometry (XRD), transmission electron microscopy (TEM) equipped with energy-dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectrometer (XPS) and N{sub 2} adsorption and desorption analysis. The as-prepared porous titanium dioxide-silicon dioxide composites with high specific surface area and well-crystallized anatase contents were used as an efficient photocatalyst. - Graphical abstract: TiO{sub 2}-SiO{sub 2} composites have been synthesized from wollastonite and titanium sulfate in the absence of any surfactants. In acid Ti(SO{sub 4}){sub 2} solution, Ca and Si ions in chain-like wollastonite could dissolve into the bulk solution and slightly soluble CaSO{sub 4} crystal phase and silicic acid formed. The concentration of the titanium species in the reaction solution is expected to increase with the hydrolysis process, nucleation starts. After the start of the nucleation, a very small amount of TiO{sub 2}, silicate and CaSO{sub 4} particle deposited together and formed composites. Some cavities formed during the washing step through the dissolution of CaSO{sub 4} crystal phase. The bulk of the material is then transformed from wollastonite into TiO{sub 2}/silica composites.

  15. Preparation of magnetic mesoporous silica nanoparticles as a multifunctional platform for potential drug delivery and hyperthermia

    PubMed Central

    Yu, Xia; Zhu, Yufang

    2016-01-01

    Abstract We report the preparation of magnetic mesoporous silica (MMS) nanoparticles with the potential multifunctionality of drug delivery and magnetic hyperthermia. Carbon-encapsulated magnetic colloidal nanoparticles (MCN@C) were used to coat mesoporous silica shells for the formation of the core-shell structured MMS nanoparticles (MCN@C/mSiO2), and the rattle-type structured MMS nanoparticles (MCN/mSiO2) were obtained after the removal of the carbon layers from MCN@C/mSiO2 nanoparticles. The morphology, structure, magnetic hyperthermia ability, drug release behavior, in vitro cytotoxicity and cellular uptake of MMS nanoparticles were investigated. The results revealed that the MCN@C/mSiO2 and MCN/mSiO2 nanoparticles had spherical morphology and average particle sizes of 390 and 320 nm, respectively. The MCN@C/mSiO2 nanoparticles exhibited higher magnetic hyperthermia ability compared to the MCN/mSiO2 nanoparticles, but the MCN/mSiO2 nanoparticles had higher drug loading capacity. Both MCN@C/mSiO2 and MCN/mSiO2 nanoparticles had similar drug release behavior with pH-controlled release and temperature-accelerated release. Furthermore, the MCN@C/mSiO2 and MCN/mSiO2 nanoparticles showed low cytotoxicity and could be internalized into HeLa cells. Therefore, the MCN@C/mSiO2 and MCN/mSiO2 nanoparticles would be promising for the combination of drug delivery and magnetic hyperthermia treatment in cancer therapy. PMID:27877873

  16. Preparation of micropatterns with profile heights up to 30 microns from silica sols

    NASA Astrophysics Data System (ADS)

    Mennig, Martin; Gier, A.; Krug, Herbert; Schmidt, Helmut K.

    1997-10-01

    A new synthesis and processing route for SiO2 glass like micropatterns with heights up to 30 micrometer by gel embossing and thermal densification has been developed. For this reason an organically modified nanoparticulate sol prepared by acid catalysis of methyl- and phenyl- triethoxysilane and tetraethyl orthosilicate in combination with colloidal silica sol was used. Sol coatings with thicknesses up to 15 micrometer are obtained by dipping of float glass substrates. After a predrying step of about 60 s micropatterns are obtained using a pressure of only 2.5 mN/mm2. Due to this low pressure, flexible and low cost silicon rubber stampers can be used. The gelation time of the sol can be extended from 5 d to 16 days and the working time for embossing can be extended from 60 s up to 100 s by a partial replacement of methyl silane by phenyl silane from 0 to 20 mole %. After embossing and drying at 50 degrees Celsius the patterned layer was densified at temperatures up to 500 degrees Celsius to 95% density as indicated by refractive index measurements. It is assumed that the densification process is strongly promoted by the used colloidal silica nano particles. The linear shrinkage of the micropatterns is limited to about 25% due to the high solid content of the sol and the high green density of the layers. Since the structures are densified at temperatures far below Tg sharp edged patterns can be obtained as shown by high resolution secondary electron microscopy. The capability of this technique is demonstrated by the fabrication of light trapping structures with pyramides of 7 micrometer in height and 10 micrometer in width on an area of 20 multiplied by 20 mm2 and micro lens arrays of lenses with 30 micrometer in height and 600 micrometer in diameter on an area of 20 multiplied by 30 mm2.

  17. Blue-Emitting Small Silica Particles Incorporating ZnSe-Based Nanocrystals Prepared by Reverse Micelle Method

    PubMed Central

    Ando, Masanori; Li, Chunliang; Yang, Ping; Murase, Norio

    2007-01-01

    ZnSe-based nanocrystals (ca. 4-5 nm in diameter) emitting in blue region (ca. 445 nm) were incorporated in spherical small silica particles (20–40 nm in diameter) by a reverse micelle method. During the preparation, alkaline solution was used to deposit the hydrolyzed alkoxide on the surface of nanocrystals. It was crucially important for this solution to include Zn2+ ions and surfactant molecules (thioglycolic acid) to preserve the spectral properties of the final silica particles. This is because these substances in the solution prevent the surface of nanocrystals from deterioration by dissolution during processing. The resultant silica particles have an emission efficiency of 16% with maintaining the photoluminescent spectral width and peak wavelength of the initial colloidal solution. PMID:18350119

  18. High-throughput preparation of hexagonally ordered mesoporous silica and gadolinosilicate nanoparticles for use as MRI contrast agents.

    PubMed

    Tse, Nicholas M K; Kennedy, Danielle F; Moffat, Bradford A; Kirby, Nigel; Caruso, Rachel A; Drummond, Calum J

    2012-08-13

    The development of biomedical nanoparticulate materials for use in diagnostics is a delicate balance between performance, particle size, shape, and stability. To identify materials that satisfy all of the criteria it is useful to employ automated high-throughput (HT) techniques for the study of these materials. The structure and performance of surfactant templated mesoporous silica is very sensitive to a wide number of variables. Variables, such as the concentration of the structure-directing agent, the cosolvent and dopant ions and also the temperature and concentration of quenching all have an influence on the structure, surface chemistry, and therefore, the performance of the mesoporous silica nanoparticles generated. Using an automated robotic synthetic platform, a technique has been developed for the high-throughput preparation of mesoporous silica and gadolinium-doped silicate (gadoliniosilicate) nanoparticulate MRI contrast agents. Twelve identical repeats of both the mesoporous silica and gadolinosilicate were synthesized to investigate the reproducibility of the HT technique. Very good reproducibility in the production of the mesoporous silica and the gadolinosilcate materials was obtained using the developed method. The performance of the gadolinosilicate materials was comparable as a T(1) agent to the commercial MRI contrast agents. This HT methodology is highly reproducible and an effective tool that can be translated to the discovery of any sol-gel derived nanomaterial.

  19. Silica-supported Au@hollow-SiO2 particles with outstanding catalytic activity prepared via block copolymer template approach.

    PubMed

    Shajkumar, Aruni; Nandan, Bhanu; Sanwaria, Sunita; Albrecht, Victoria; Libera, Marcin; Lee, Myong-Hoon; Auffermann, Gudrun; Stamm, Manfred; Horechyy, Andriy

    2017-04-01

    Catalytically active Au@hollow-SiO2 particles embedded in porous silica support (Au@hollow-SiO2@PSS) were prepared by using spherical micelles from poly(styrene)-block-poly(4-vinyl pyridine) block copolymer as a sacrificial template. Drastic increase of the shell porosity was observed after pyrolytic removal of polymeric template because the stretched poly(4-vinyl pyridine) chains interpenetrating with silica shell acted as an effective porogen. The embedding of Au@hollow-SiO2 particles in porous silica support prevented their fusion during pyrolysis. The catalytic activity of Au@hollow-SiO2@PSS was investigated using a model reaction of catalytic reduction of 4-nitrophenol and reductive degradation of Congo red azo-dye. Significantly, to the best of our knowledge, Au@hollow-SiO2@PSS catalyst shows the highest activity among analogous systems reported till now in literature. Such high activity was attributed to the presence of multiple pores within silica shell of Au@hollow-SiO2 particles and easy accessibility of reagents to the catalytically active sites of the ligand-free gold surface through the porous silica support.

  20. Preparation of silica stabilized biological templates for the production of metal and layered nanoparticles

    DOEpatents

    Culver, James N; Royston, Elizabeth; Brown, Adam; Harris, Michael

    2013-02-26

    The present invention relates to a system and method providing for increased silica growth on a bio-template, wherein the bio-template is pretreated with aniline to produce a uniform silica attractive surface and yielding a significant silica layers of at least 10 nm, and more preferably at least 20 nm in thickness, thereby providing for a high degree of stability to the bio-template.

  1. Preparation of RHA-silica/graphene oxide nanocomposite for removal of nickel ions from water

    NASA Astrophysics Data System (ADS)

    Tien, Tran Thi Thuy; Tu, Tran Hoang; Thao, Huynh Nguyen Phuong; Hieu, Nguyen Huu

    2017-09-01

    In this study, silica was synthesized from rice husk ash (RHA-SiO2) by precipitation method. Graphene oxide (GO) was prepared by modified Hummers method. RHA-SiO2/GO nanocomposite was fabricated by in-situ one-step method using 3-Aminopropyltriethoxysilane (APS) as a coupling agent. The nanocomposite was characterized by using X-ray Fluorescence, X-ray diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, and Brunauer-Emmett-Teller (BET) specific surface area. The adsorption of RHA-SiO2/GO for Ni2+ ions from water was investigated and compared with the precursors. Ultraviolet-visible (UV-Vis) spectroscopy was used to quantify the amount of the initial and the residual Ni2+ concentration. The maximum adsorption capacity of the nanocomposite for Ni2+ calculated from Langmuir isotherm model, which was 256.4 mg/g. In addition, the adsorption data were well-fitted to the pseudo-second-order kinetic equation. Accordingly, this study demonstrated that RHA-SiO2/GO could be used as a highly efficient adsorbent for removal Ni2+ ions from aqueous solution.

  2. Determination of tadalafil in pharmaceutical preparation by HPLC using monolithic silica column.

    PubMed

    Aboul-Enein, Hassan Y; Ali, Imran

    2005-01-15

    The simple, reliable and reproducible HPLC and extraction methods were developed for the analysis of tadalafil in pharmaceutical preparation. The column used was monolithic silica column, Chromolith Performance RP-18e (100mm x 4.6mm, i.d.). The mobile phase used was phosphate buffer (100mM, pH 3.0)-acetonitrile (80:20, v/v) at the flow rate of 5mLmin(-1) with UV detection at 230nm at ambient temperature. Extraction of tadalafil from tablet was carried out using methanol. Linearity was observed in the concentration range from 100 to 5000ngmL(-1) for tadalafil with a correlation coefficient (R(2)) 0.9999 and 100ngmL(-1) as the limit of detection. The values of linearity range, correlation coefficient (R(2)) and limit of detection were 50-5000ngmL(-1), 0.9999-50ngmL(-1), respectively for sildenafil. Parameters of validation prove the precision of the method and its applicability for the determination of tadalafil in pharmaceutical tablet formulation. The method is suitable for high throughput analysis of the drug.

  3. Preparation and in vitro characterisation of bioactive mesoporous silica microparticles for drug delivery applications.

    PubMed

    Prokopowicz, Magdalena; Czarnobaj, Katarzyna; Szewczyk, Adrian; Sawicki, Wiesław

    2016-03-01

    The aim of this study was to evaluate the surface mineralization activity and in vitro drug behaviour potential of new mesoporous silica microparticles (MSM). The unmodified MSM (MSM-0%Ca) and calcium-modified MSM (MSM-5%Ca, MSM-15%Ca, MSM-25%Ca) were prepared using the self-assembling method. Calcium diethoxide was used as a calcium precursor. Doxorubicin hydrochloride (DOX), used as an anticancer model drug, was selected to the drug loading and release studies. The DOX loading into the microparticles was performed by liquid adsorption process. The self-formation of carbonate hydroxyapatite (C-Hap) on the MSM surface was examined under in vitro biomimetic conditions. The samples were characterised by means of scanning-transmission electron microscopy (STEM) and energy dispersive X-ray spectrometry, powder X-ray diffraction, Fourier transform infrared spectroscopy, and nitrogen adsorption-desorption measurements. The results indicated an inverse relationship--while increasing the total amount of calcium in the MSM composition the surface area and pore volume decrease with a simultaneous increase in the pore size. This was correlated with a progressive increase in the surface mineralization ability--especially its initial promotion, and in the decrease in MSM drug loading efficiency. The release rate of the DOX can be effectively tailored by varying the amount of calcium, where the elution rate of DOX increases with an increasing amount of the Ca precursor.

  4. Silica cross-linked micelles loading with silicon nanoparticles: preparation and characterization.

    PubMed

    Pan, Guo-Hui; Barras, Alexandre; Boussekey, Luc; Boukherroub, Rabah

    2013-08-14

    A new family of luminescent and stable silicon-based nanoparticles (NPs), silica cross-linked pluronic F127 (PF127) micelles loaded with decyl capped silicon nanoparticles (decyl-SiNPs), were synthesized in aqueous media. The decyl-SiNPs were prepared by first liberating hydride terminated SiNPs (H-SiNPs) from a porous silicon matrix followed by their functionalization via hydrosilylation with 1-decene under photochemical activation. The silicon-based NPs exhibit bright photoluminescence (PL) with a quantum yield of ∼3.8% and peaking at ∼2.0 eV, which lies within the transmission window that is useful for biological imaging. They display a hydrodynamic size of ∼25 nm with exterior polyethylene oxide (PEO) blocks stretching out in aqueous media. Chloroform was found to quench the excitation at energy above 4.9 eV by shielding the incident light or relaxing the charge carriers, which highlights that caution against solvent interference should be taken when performing the studies on PL origin and luminescence efficiency of SiNPs. For PF127, the blocks of hydrophilic PEO participate in the PL quenching, while poly(propylene oxide) (PPO) does not. The colloidal solution displays excellent PL stability against salt (NaCl) and temperature but is susceptible to basic solution at pH above 9.

  5. Molecular dynamics simulations of stability at the early stages of silica materials preparation

    NASA Astrophysics Data System (ADS)

    Gholizadeh, Reza; Wang, Yujun; Yu, Yang-Xin

    2017-06-01

    The main objective of this article is the Molecular dynamics simulations of stability phenomenon at the early stages of silica production in a colloidal solution. The Dreiding force field used during the whole calculation for the search of all bonding, angle, dihedral, inversion potential sets for a given configuration. For studying the stability phenomenon, two scenarios are specified: (1) The diameter of silica nanoparticles in each simulation box is the same while initial distances of two silica nanoparticles are different (system I), (2) The initial distance between two silica nanoparticles in each simulation box is the same while silica nanoparticles diameters are different (system II). The charge of atoms in silica nanoparticles determined using density functional theory calculations (Dmol3). The Born repulsion forces were predominant rather than the van der Waals attraction forces. Furthermore, trajectories, mean squared displacements, radial distribution functions, and electrical charges of silica nanoparticles are determined. The displacement of silica nanoparticles was negligible which demonstrates that atoms could not approach more close. The studied colloidal solution was stable regard to the results of molecular dynamics simulations.

  6. Preparation of silica stabilized Tobacco mosaic virus templates for the production of metal and layered nanoparticles.

    PubMed

    Royston, Elizabeth S; Brown, Adam D; Harris, Michael T; Culver, James N

    2009-04-15

    The use of biological molecules as templates for the production of metal nanoparticles and wires is often limited by the stability of the bio-template and its affinity for nucleating metal deposition. In this study, Tobacco mosaic virus (TMV) was used as a model bio-template to investigate the use of silica coatings as a means to both enhance template stability and increase its affinity for metal ions. Results indicate that the unmodified TMV particle can function as a template for the growth of thin (<1 nm) silica layers. However, this thin silica shell did not enhance the stability of the template during metal deposition. To increase silica growth on the TMV template, a pretreatment with aniline was used to produce a uniform silica attractive surface. Aniline pretreated templates yielded significant silica layers of >20 nm in thickness. These silica shells conferred a high degree of stability to the TMV particle and promoted the deposition of various metal nanoparticles through conventional silica mineralization chemistries. This process provides a simple and robust method for the layering of inorganics onto a biological template.

  7. Yb³⁺-doped large core silica fiber for fiber laser prepared by glass phase-separation technology.

    PubMed

    Chu, Yingbo; Ma, Yunxiu; Yang, Yu; Liao, Lei; Wang, Yibo; Hu, Xiongwei; Peng, Jinggang; Li, Haiqing; Dai, Nengli; Li, Jinyan; Yang, Luyun

    2016-03-15

    We report on the preparation and optical characteristics of an Yb(3+)-doped large core silica fiber with the active core prepared from nanoporous silica rod by the glass phase-separation technology. The measurements show that the fiber has an Yb(3+) concentration of 9811 ppm by weight, a low background attenuation of 0.02 dB/m, and absorption from Yb(3+) about 5.5 dB/m at 976 nm. The laser performance presents a high slope efficiency of 72.8% for laser emission at 1071 nm and a low laser threshold of 3 W within only 2.3 m fiber length. It is suggested that the glass phase-separation technology shows great potential for realizing active fibers with larger core and complex fiber designs.

  8. Influence of roasting-quenching pretreatment on the rice husk silica prepared by calcination method

    NASA Astrophysics Data System (ADS)

    Maksum, Ahmad; Rustandi, Andi; Permana, Sulaksana; Soedarsono, Johny Wahyuadi

    2017-03-01

    Calcination is a simple method to produce silica from rice husk (RH). One of the key to obtain higher purity silica from rice husk by calcination method is the effectiveness of impurities removal, especially potassium, from RH surface before calcination process. So, in the present study, an attempt has been made to produce high purity silica powder by using calcination method with the combination of roasting-quenching and acid leaching as a pretreatment to eliminate metal impurities, especially potassium, detected by using inductively coupled plasma mass spectrometry (ICP-MS). Finally, the high purity silica, 99.928% was obtained by roasting and calcination temperature of 300°C and 650°C, respectively. However, by considering less energy usage and silica purity achievement, the combination of 300°C roasting-quenching, 1M hydrochloric acid leaching, and calcination at the temperature of 600°C was the best route.

  9. Preparation of frustule-like 1,2-ethylene-silica nanospheres through a chiral amphiphile/organic solvent dual-templating approach

    SciTech Connect

    Zhao, Yanwei; Huang, Zhibin; Yan, Zhuojun; Wang, Sibing; Li, Baozong; Li, Yi; Yang, Yonggang

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ► Frustule-like 1,2-ethylene-silicas were prepared through a dual-templating approach. ► The morphologies and pore architectures of the 1,2-ethylene-silicas are tunable. ► Mesoporous 1,2-ethylene-silica nanotubes were also prepared. -- Abstract: Hollow silica nanospheres with mesopores in the walls have been widely studied because of their potential applications in catalysis and drug release. Hollow organosilica nanospheres also attracted much attention because of their tunable wall backbones and wider applications. Herein, frustule-like 1,2-ethylene-silicas were obtained using a chiral amphiphile, CHCl{sub 3}, and a dual-templating approach. The morphologies and pore architectures of the 1,2-ethylene-silicas are tunable by changing the amount of CHCl{sub 3} in the reaction mixture. With the addition of CHCl{sub 3} in the reaction mixtures, hollow 1,2-ethylene-silica nanospheres with opened mesopores in the walls were feasible. Moreover, 1,2-ethylene-silicas with mesopores on the surfaces and coiled pore channels within the walls were obtained using the chiral amphiphile in a single-templating approach. These 1,2-ethylene-silicas were characterized using field-emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction and N{sub 2} sorptions.

  10. Supported microporous ceramic membranes

    DOEpatents

    Webster, E.; Anderson, M.

    1993-12-14

    A method for the formation of microporous ceramic membranes onto a porous support includes placing a colloidal suspension of metal or metal oxide particles on one side of the porous support and exposing the other side of the porous support to a drying stream of gas or a reactive gas stream so that the particles are deposited on the drying side of the support as a gel. The gel so deposited can be sintered to form a supported ceramic membrane useful for ultrafiltration, reverse osmosis, or molecular sieving having mean pore sizes less than 100 Angstroms. 4 figures.

  11. Supported microporous ceramic membranes

    DOEpatents

    Webster, Elizabeth; Anderson, Marc

    1993-01-01

    A method for permformation of microporous ceramic membranes onto a porous support includes placing a colloidal suspension of metal or metal oxide particles on one side of the porous support and exposing the other side of the porous support to a drying stream of gas or a reactive gas stream so that the particles are deposited on the drying side of the support as a gel. The gel so deposited can be sintered to form a supported ceramic membrane useful for ultrafiltration, reverse osmosis, or molecular sieving having mean pore sizes less than 100 Angstroms.

  12. Ordered mesoporous silica prepared by quiescent interfacial growth method - effects of reaction chemistry

    PubMed Central

    2013-01-01

    Acidic interfacial growth can provide a number of industrially important mesoporous silica morphologies including fibers, spheres, and other rich shapes. Studying the reaction chemistry under quiescent (no mixing) conditions is important for understanding and for the production of the desired shapes. The focus of this work is to understand the effect of a number of previously untested conditions: acid type (HCl, HNO3, and H2SO4), acid content, silica precursor type (TBOS and TEOS), and surfactant type (CTAB, Tween 20, and Tween 80) on the shape and structure of products formed under quiescent two-phase interfacial configuration. Results show that the quiescent growth is typically slow due to the absence of mixing. The whole process of product formation and pore structuring becomes limited by the slow interfacial diffusion of silica source. TBOS-CTAB-HCl was the typical combination to produce fibers with high order in the interfacial region. The use of other acids (HNO3 and H2SO4), a less hydrophobic silica source (TEOS), and/or a neutral surfactant (Tweens) facilitate diffusion and homogenous supply of silica source into the bulk phase and give spheres and gyroids with low mesoporous order. The results suggest two distinct regions for silica growth (interfacial region and bulk region) in which the rate of solvent evaporation and local concentration affect the speed and dimension of growth. A combined mechanism for the interfacial bulk growth of mesoporous silica under quiescent conditions is proposed. PMID:24237719

  13. Ordered mesoporous silica prepared by quiescent interfacial growth method - effects of reaction chemistry

    NASA Astrophysics Data System (ADS)

    Alsyouri, Hatem M.; Abu-Daabes, Malyuba A.; Alassali, Ayah; Lin, Jerry YS

    2013-11-01

    Acidic interfacial growth can provide a number of industrially important mesoporous silica morphologies including fibers, spheres, and other rich shapes. Studying the reaction chemistry under quiescent (no mixing) conditions is important for understanding and for the production of the desired shapes. The focus of this work is to understand the effect of a number of previously untested conditions: acid type (HCl, HNO3, and H2SO4), acid content, silica precursor type (TBOS and TEOS), and surfactant type (CTAB, Tween 20, and Tween 80) on the shape and structure of products formed under quiescent two-phase interfacial configuration. Results show that the quiescent growth is typically slow due to the absence of mixing. The whole process of product formation and pore structuring becomes limited by the slow interfacial diffusion of silica source. TBOS-CTAB-HCl was the typical combination to produce fibers with high order in the interfacial region. The use of other acids (HNO3 and H2SO4), a less hydrophobic silica source (TEOS), and/or a neutral surfactant (Tweens) facilitate diffusion and homogenous supply of silica source into the bulk phase and give spheres and gyroids with low mesoporous order. The results suggest two distinct regions for silica growth (interfacial region and bulk region) in which the rate of solvent evaporation and local concentration affect the speed and dimension of growth. A combined mechanism for the interfacial bulk growth of mesoporous silica under quiescent conditions is proposed.

  14. Preparation of Silica Nanoparticles Loaded with Nootropics and Their In Vivo Permeation through Blood-Brain Barrier

    PubMed Central

    Zaruba, Kamil; Kunes, Martin; Ulbrich, Pavel; Brezaniova, Ingrid; Triska, Jan; Suchy, Pavel

    2015-01-01

    The blood-brain barrier prevents the passage of many drugs that target the central nervous system. This paper presents the preparation and characterization of silica-based nanocarriers loaded with piracetam, pentoxifylline, and pyridoxine (drugs from the class of nootropics), which are designed to enhance the permeation of the drugs from the circulatory system through the blood-brain barrier. Their permeation was compared with non-nanoparticle drug substances (bulk materials) by means of an in vivo model of rat brain perfusion. The size and morphology of the nanoparticles were characterized by transmission electron microscopy. The content of the drug substances in silica-based nanocarriers was analysed by elemental analysis and UV spectrometry. Microscopic analysis of visualized silica nanocarriers in the perfused brain tissue was performed. The concentration of the drug substances in the tissue was determined by means of UHPLC-DAD/HRMS LTQ Orbitrap XL. It was found that the drug substances in silica-based nanocarriers permeated through the blood brain barrier to the brain tissue, whereas bulk materials were not detected in the brain. PMID:26075264

  15. Preparation of silica nanoparticles loaded with nootropics and their in vivo permeation through blood-brain barrier.

    PubMed

    Jampilek, Josef; Zaruba, Kamil; Oravec, Michal; Kunes, Martin; Babula, Petr; Ulbrich, Pavel; Brezaniova, Ingrid; Opatrilova, Radka; Triska, Jan; Suchy, Pavel

    2015-01-01

    The blood-brain barrier prevents the passage of many drugs that target the central nervous system. This paper presents the preparation and characterization of silica-based nanocarriers loaded with piracetam, pentoxifylline, and pyridoxine (drugs from the class of nootropics), which are designed to enhance the permeation of the drugs from the circulatory system through the blood-brain barrier. Their permeation was compared with non-nanoparticle drug substances (bulk materials) by means of an in vivo model of rat brain perfusion. The size and morphology of the nanoparticles were characterized by transmission electron microscopy. The content of the drug substances in silica-based nanocarriers was analysed by elemental analysis and UV spectrometry. Microscopic analysis of visualized silica nanocarriers in the perfused brain tissue was performed. The concentration of the drug substances in the tissue was determined by means of UHPLC-DAD/HRMS LTQ Orbitrap XL. It was found that the drug substances in silica-based nanocarriers permeated through the blood brain barrier to the brain tissue, whereas bulk materials were not detected in the brain.

  16. Facile preparation of transparent and dense CdS-silica gel glass nanocomposites for optical limiting applications

    NASA Astrophysics Data System (ADS)

    Feng, Miao; Zhan, Hongbing

    2014-03-01

    To realize their practical and operable applications as a potential optical limiting (OL) material, quantum dots (QDs) need to have good processability by incorporating them into optical-quality matrices. This work reports a facile route for the room-temperature preparation of large, stable transparent monolithic CdS nanocomposites which can be easily extended to allow the introduction of acid-sensitive functional molecules/nanoparticles into a silica network by sol-gel chemistry. Our strategy involves a two-step sol-gel process (acid-catalyst hydrolysis and basic-catalyst condensation) and the co-condensation of the resulting alkoxysilane-capped CdS QDs with other alkoxysilanes, which allows the CdS QDs to become part of the silica covalent network. The degradation and agglomeration of CdS QDs were thereby effectively restrained, and large monolithic transparent CdS-silica gel glass was obtained. Using Z-scan theory and the resulting open-aperture Z-scan curves, the nonlinear extinction coefficient of the CdS-silica nanocomposite gel glass was calculated to be 1.02 × 10-14 cm W-1, comparable to that of the parent CdS QD dispersion, indicating their promise for OL applications.

  17. Facile preparation of transparent and dense CdS-silica gel glass nanocomposites for optical limiting applications.

    PubMed

    Feng, Miao; Zhan, Hongbing

    2014-04-21

    To realize their practical and operable applications as a potential optical limiting (OL) material, quantum dots (QDs) need to have good processability by incorporating them into optical-quality matrices. This work reports a facile route for the room-temperature preparation of large, stable transparent monolithic CdS nanocomposites which can be easily extended to allow the introduction of acid-sensitive functional molecules/nanoparticles into a silica network by sol-gel chemistry. Our strategy involves a two-step sol-gel process (acid-catalyst hydrolysis and basic-catalyst condensation) and the co-condensation of the resulting alkoxysilane-capped CdS QDs with other alkoxysilanes, which allows the CdS QDs to become part of the silica covalent network. The degradation and agglomeration of CdS QDs were thereby effectively restrained, and large monolithic transparent CdS-silica gel glass was obtained. Using Z-scan theory and the resulting open-aperture Z-scan curves, the nonlinear extinction coefficient of the CdS-silica nanocomposite gel glass was calculated to be 1.02 × 10(-14) cm W(-1), comparable to that of the parent CdS QD dispersion, indicating their promise for OL applications.

  18. Silica-based nanocomposites via reverse microemulsions: classifications, preparations, and applications

    NASA Astrophysics Data System (ADS)

    Wang, Jiasheng; Shah, Zameer Hussain; Zhang, Shufen; Lu, Rongwen

    2014-04-01

    Silica-based nanocomposites with amorphous silica as the matrix or carrier along with a functional component have been extensively investigated. These nanocomposites combine the advantages of both silica and the functional components, demonstrating great potential for various applications. To synthesize such composites, one of the most frequently used methods is reverse microemulsion due to its convenient control over the size, shape, and structures. The structures of the composites have a decisive significance for their properties and applications. In this review, we tried to categorize the silica-based nanocomposites via reverse microemulsions based on their structures, discussed the syntheses individually for each structure, summarized their applications, and made some perspectives based on the current progress of this field.Silica-based nanocomposites with amorphous silica as the matrix or carrier along with a functional component have been extensively investigated. These nanocomposites combine the advantages of both silica and the functional components, demonstrating great potential for various applications. To synthesize such composites, one of the most frequently used methods is reverse microemulsion due to its convenient control over the size, shape, and structures. The structures of the composites have a decisive significance for their properties and applications. In this review, we tried to categorize the silica-based nanocomposites via reverse microemulsions based on their structures, discussed the syntheses individually for each structure, summarized their applications, and made some perspectives based on the current progress of this field. Electronic supplementary information (ESI) available: The structures of all the surfactants included in this review are listed. See DOI: 10.1039/c3nr06025j

  19. Preparation and characterization of monodisperse large-porous silica microspheres as the matrix for protein separation.

    PubMed

    Xia, Hongjun; Wan, Guangping; Zhao, Junlong; Liu, Jiawei; Bai, Quan

    2016-11-04

    High performance liquid chromatography (HPLC) is a kind of efficient separation technology and has been used widely in many fields. Micro-sized porous silica microspheres as the most popular matrix have been used for fast separation and analysis in HPLC. In this paper, the monodisperse large-porous silica microspheres with controllable size and structure were successfully synthesized with polymer microspheres as the templates and characterized. First, the poly(glycidyl methacrylate-co-ethyleneglycol dimethacrylate) microspheres (PGMA-EDMA) were functionalized with tetraethylenepentamine (TEPA) to generate amino groups which act as a catalyst in hydrolysis of tetraethyl orthosilicate (TEOS) to form Si-containing low molecular weight species. Then the low molecular weight species diffused into the functionalized PGMA-EDMA microspheres by induction force of the amino groups to form polymer/silica hybrid microspheres. Finally, the organic polymer templates were removed by calcination, and the large-porous silica microspheres were obtained. The compositions, morphology, size distribution, specific surface area and pore size distribution of the porous silica microspheres were characterized by infrared analyzer, scanning-electron microscopy, dynamic laser scattering, the mercury intrusion method and thermal gravimetric analysis, respectively. The results show that the agglomeration of the hybrid microspheres can be overcome when the templates were functionalized with TEPA as amination reagent, and the yield of 95.7% of the monodisperse large-porous silica microspheres can be achieved with high concentration of polymer templates. The resulting large-porous silica microspheres were modified with octadecyltrichlorosilane (ODS) and the chromatographic evaluation was performed by separating the proteins and the digest of BSA. The baseline separation of seven kinds of protein standards was achieved, and the column delivered a better performance when separating BSA digests

  20. Preparation of Silica Nanoparticles Through Microwave-assisted Acid-catalysis

    PubMed Central

    Lovingood, Derek D.; Owens, Jeffrey R.; Seeber, Michael; Kornev, Konstantin G.; Luzinov, Igor

    2013-01-01

    Microwave-assisted synthetic techniques were used to quickly and reproducibly produce silica nanoparticle sols using an acid catalyst with nanoparticle diameters ranging from 30-250 nm by varying the reaction conditions. Through the selection of a microwave compatible solvent, silicic acid precursor, catalyst, and microwave irradiation time, these microwave-assisted methods were capable of overcoming the previously reported shortcomings associated with synthesis of silica nanoparticles using microwave reactors. The siloxane precursor was hydrolyzed using the acid catalyst, HCl. Acetone, a low-tan δ solvent, mediates the condensation reactions and has minimal interaction with the electromagnetic field. Condensation reactions begin when the silicic acid precursor couples with the microwave radiation, leading to silica nanoparticle sol formation. The silica nanoparticles were characterized by dynamic light scattering data and scanning electron microscopy, which show the materials' morphology and size to be dependent on the reaction conditions. Microwave-assisted reactions produce silica nanoparticles with roughened textured surfaces that are atypical for silica sols produced by Stöber's methods, which have smooth surfaces. PMID:24379052

  1. Effect of Sintering Temperature on the Properties of Fused Silica Ceramics Prepared by Gelcasting

    NASA Astrophysics Data System (ADS)

    Wan, Wei; Huang, Chun-e.; Yang, Jian; Zeng, Jinzhen; Qiu, Tai

    2014-07-01

    Fused silica ceramics were fabricated by gelcasting, by use of a low-toxicity N' N-dimethylacrylamide gel system, and had excellent properties compared with those obtained by use of the low-toxicity 2-hydroxyethyl methacrylate and toxic acrylamide systems. The effect of sintering temperature on the microstructure, mechanical and dielectric properties, and thermal shock resistance of the fused silica ceramics was investigated. The results showed that sintering temperature has a critical effect. Use of an appropriate sintering temperature will promote densification and improve the strength, thermal shock resistance, and dielectric properties of fused silica ceramics. However, excessively high sintering temperature will greatly facilitate crystallization of amorphous silica and result in more cristobalite in the sample, which will cause deterioration of these properties. Fused silica ceramics sintered at 1275°C have the maximum flexural strength, as high as 81.32 MPa, but, simultaneously, a high coefficient of linear expansion (2.56 × 10-6/K at 800°C) and dramatically reduced residual flexural strength after thermal shock (600°C). Fused silica ceramics sintered at 1250°C have excellent properties, relatively high and similar flexural strength before (67.43 MPa) and after thermal shock (65.45 MPa), a dielectric constant of 3.34, and the lowest dielectric loss of 1.20 × 10-3 (at 1 MHz).

  2. The situ preparation of silica nanoparticles on the surface of functionalized graphene nanoplatelets

    NASA Astrophysics Data System (ADS)

    Li, Jiani; Yu, Kejing; Qian, Kun; Cao, Haijian; Lu, Xuefeng; Sun, Jie

    2014-04-01

    A method for situ preparing a hybrid material consisting of silica nanoparticles (SiO2) attached onto the surface of functionalized graphene nanoplatelets (f-GNPs) is proposed. Firstly, polyacrylic acid (PAA) was grafted to the surface of f-GNPs to increase reacting sites, and then 3-aminopropyltriethoxysilane (APTES) KH550 reacted with abovementioned product PAA-GNPs to obtain siloxane-GNPs, thus providing reaction sites for the growth of SiO2 on the surface of GNPs. Finally, the SiO2/graphene nanoplatelets (SiO2/GNPs) hybrid material is obtained through introducing siloxane-GNPs into a solution of tetraethyl orthosilicate, ammonia and ethanol for hours' reaction. The results from Fourier transform infrared spectroscopy (FTIR) showed that SiO2 particles have situ grown on the surface of GNPs through chemical bonds as Si-O-Si. And the nanostructure of hybrid materials was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). All the images indicated that SiO2 particles with similar sizes were grafted on the surface of graphene nanoplatelets successfully. And TEM images also showed the whole growth process of SiO2 particles on the surface of graphene as time grows. Moreover, TGA traces suggested the SiO2/GNPs hybrid material had stable thermal stability. And at 900°C, the residual weight fraction of polymer on siloxane-GNPs was about 94.2% and that of SiO2 particles on hybrid materials was about 75.0%. However, the result of Raman spectroscopy showed that carbon atoms of graphene nanoplatelets became much more disordered, due to the destroyed carbon domains during the process of chemical drafting. Through orthogonal experiments, hybrid materials with various sizes of SiO2 particles were prepared, thus achieving the particle sizes controllable. And the factors' level of significance is as follows: the quantity of ammonia > the quantity of tetraethyl orthosilicate (TEOS) > the reaction time.

  3. The situ preparation of silica nanoparticles on the surface of functionalized graphene nanoplatelets

    PubMed Central

    2014-01-01

    A method for situ preparing a hybrid material consisting of silica nanoparticles (SiO2) attached onto the surface of functionalized graphene nanoplatelets (f-GNPs) is proposed. Firstly, polyacrylic acid (PAA) was grafted to the surface of f-GNPs to increase reacting sites, and then 3-aminopropyltriethoxysilane (APTES) KH550 reacted with abovementioned product PAA-GNPs to obtain siloxane-GNPs, thus providing reaction sites for the growth of SiO2 on the surface of GNPs. Finally, the SiO2/graphene nanoplatelets (SiO2/GNPs) hybrid material is obtained through introducing siloxane-GNPs into a solution of tetraethyl orthosilicate, ammonia and ethanol for hours' reaction. The results from Fourier transform infrared spectroscopy (FTIR) showed that SiO2 particles have situ grown on the surface of GNPs through chemical bonds as Si-O-Si. And the nanostructure of hybrid materials was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). All the images indicated that SiO2 particles with similar sizes were grafted on the surface of graphene nanoplatelets successfully. And TEM images also showed the whole growth process of SiO2 particles on the surface of graphene as time grows. Moreover, TGA traces suggested the SiO2/GNPs hybrid material had stable thermal stability. And at 900°C, the residual weight fraction of polymer on siloxane-GNPs was about 94.2% and that of SiO2 particles on hybrid materials was about 75.0%. However, the result of Raman spectroscopy showed that carbon atoms of graphene nanoplatelets became much more disordered, due to the destroyed carbon domains during the process of chemical drafting. Through orthogonal experiments, hybrid materials with various sizes of SiO2 particles were prepared, thus achieving the particle sizes controllable. And the factors’ level of significance is as follows: the quantity of ammonia > the quantity of tetraethyl orthosilicate (TEOS) > the reaction time. PMID:24717037

  4. Preparation and controlled drug delivery applications of mesoporous silica polymer nanocomposites through the visible light induced surface-initiated ATRP

    NASA Astrophysics Data System (ADS)

    Huang, Long; Liu, Meiying; Mao, Liucheng; Xu, Dazhuang; Wan, Qing; Zeng, Guangjian; Shi, Yingge; Wen, Yuanqing; Zhang, Xiaoyong; Wei, Yen

    2017-08-01

    The mesoporous materials with large pore size, high specific surface area and high thermal stability have been widely utilized in a variety of fields ranging from environmental remediation to separation and biomedicine. However, surface modification of these silica nanomaterials is required to endow novel properties and achieve better performance for most of these applications. In this work, a new method has been established for surface modification of mesoporous silica nanoparticles (MSNs) that relied on the visible light induced atom transfer radical polymerization (ATRP). In the procedure, the copolymers composited with itaconic acid (IA) and poly(ethylene glycol)methyl acrylate (PEGMA) were grafted from MSNs using IA and PEGMA as the monomers and 10-Phenylphenothiazine(PTH) as the organic catalyst. The successful preparation of final polymer nanocomposites (named as MSNs-NH2-poly(IA-co-PEGMA)) were evidenced by a series of characterization techniques. More importantly, the anticancer agent cisplatin can be effectively loaded on MSNs-NH2-poly(IA-co-PEGMA) and controlled release it from the drug-loading composites with pH responsive behavior. As compared with conventional ATRP, the light induced surface-initiated ATRP could also be utilized for preparation of various silica polymer nanocomposites under rather benign conditions (e.g. absent of transition metal ions, low polymerization temperature and short polymerization time). Taken together, we have developed a rather promising strategy method for fabrication of multifunctional MSNs-NH2-poly(IA-co-PEGMA) with great potential for biomedical applications.

  5. Zeolite materials prepared using silicate waste from template synthesis of ordered mesoporous carbon.

    PubMed

    Kim, Yun Kyung; Rajesh, Kizhakke Palleeri; Yu, Jong-Sung

    2013-09-15

    Significant amount of silica waste is generated in the preparation of porous carbon materials using template synthesis. Industrial production of such porous carbon not only creates waste chemicals, but also poses significant environmental concerns and high waste treatment cost. Recycling is proposed as the best solution for tackling such chemical wastes. In this study, etched silica waste released from template synthesis of mesoporous carbon is recycled to produce precious functional microporous zeolite materials. The solid silica template is etched out with NaOH solution to produce silica-free mesoporous carbon. The collected silica waste is recycled to generate zeolites such as LTA and MFI type silica materials. The formation of zeolites is confirmed by FT-IR, XRD, (29)Si NMR, (27)Al NMR, and SEM. This straight forward green chemistry route not only recycles the waste chemicals, but also decreases environmental pollution for better improvement of our living.

  6. New opportunities in the preparation of nanocomposites for biomedical applications: revised mechanosynthesis of magnetite–silica nanocomposites

    NASA Astrophysics Data System (ADS)

    Scano, Alessandra; Cabras, Valentina; Marongiu, Francesca; Peddis, Davide; Pilloni, Martina; Ennas, Guido

    2017-02-01

    Environmentally friendly preparation of functionalized magnetite-silica (Fe3O4/SiO2) nanocomposites (NCs) with different SiO2 content (6, 20 and 50 wt%) using revised mechanosynthesis is reported. High-energy ball milling of α-Fe2O3, Si and SiO2 mixtures was followed by hydrolysis and condensation of 3-aminopropyl-triethoxysilane. X-ray powder diffraction and transmission electron microscopy showed the formation of almost spherical Fe3O4 nanocrystals with a narrow size distribution (4–6 nm) uniformly dispersed in the amorphous 100–200 nm SiO2 agglomerates. Scanning electron microscopy and energy dispersive spectroscopy were used to study the elemental distribution in the sample. Fourier transform infrared spectroscopy confirmed the NC surface functionalization with amino groups. Magnetic properties were also explored, indicating a homogeneous distribution of magnetic nanoparticles in the silica matrix.

  7. Thermo-optic characterization of neodymium/nickel doped silica glasses prepared via sol-gel route.

    PubMed

    Manuel, Ancy; Kumar, B Rajesh; Basheer, N Shemeena; Kumari, B Syamala; Paulose, P I; Kurian, Achamma; George, Sajan D

    2012-12-01

    Intrinsic as well as rare earth (Neodymium) doped silica glasses with various molar ratio of dopant and a metallic (Nickel) co-dopant is prepared via sol-gel route. The structural characterization of the sample is carried out using X-ray diffraction and Fourier Transform Infrared Spectroscopy. The influence of dopant and doping concentration on the optical properties of silica matrix is investigated via UV-VIS absorption spectroscopy. Effect of dopant on thermal effusivity value of the host matrix is carried out by laser induced open cell photoacoustic technique. Analysis of the results showed that doping affect the thermal effusivity value and results are interpreted in terms of structural modification of the lattice and phonon assisted heat transport mechanism.

  8. In-column preparation of a brush-type chiral stationary phase using click chemistry and a silica monolith

    PubMed Central

    Slater, Michael D.; Fréchet, Jean M.J.; Svec, Frantisek

    2009-01-01

    Brush-type chiral stationary phases have been prepared both from a silica monolith and, separately, from 10 μm porous silica beads via a process of in-column modification including attachment of the chiral selector via copper catalyzed azide-alkyne cycloaddition. Azide functionalities were first introduced on the pore surface of each type of support by reaction with 3-(azidopropyl)trimethoxysilane, followed by immobilization of a proline-derived chiral selector containing an alkyne moiety. This functionalization reaction was carried out in dimethylformamide in the presence of catalytic amounts of copper(I) iodide. The separation performance of these triazole linked stationary phases was demonstrated in enantioseparations of four model analytes, which afforded separation factors as high as 11.4. PMID:19051194

  9. Preparation and characterization of a BisGMA-resin dental restorative composites with glass, silica and titania fillers.

    PubMed

    Thorat, Sanjay; Patra, Niranjan; Ruffilli, Roberta; Diaspro, Alberto; Salerno, Marco

    2012-01-01

    A photo-polymerizable Bisphenol-A diglycidylether methacrylate resin was characterized by Fourier transform infrared spectroscopy after its irradiation under different conditions to identify the best curing. Bonding-agent free composites with particles of ball-milled glass, silica and titania at loading of 10 and 50%wt were prepared, and their viscoelastic properties investigated by dynamic mechanical analysis, in experimental conditions close to the working environment in the mouth. All composites showed good stability at the considered conditions. The stiffest composite was the silica one, which was based on the smallest primary particles. The storage moduli close to room temperature (25°C) and mastication frequency (1 Hz) were extracted as reference bending moduli for the materials, and compared to static compressive moduli measured by nanoindentation performed by atomic force microscopy.Nanoindentation showed qualitative results in agreement with dynamic mechanical analysis as to the ranking of different materials, while resulting in approximately two-fold elastic modulus.

  10. Preparation of silane-functionalized silica films via two-step dip coating sol-gel and evaluation of their superhydrophobic properties

    NASA Astrophysics Data System (ADS)

    Ramezani, Maedeh; Vaezi, Mohammad Reza; Kazemzadeh, Asghar

    2014-10-01

    In this paper, we study the two-step dip coating via a sol-gel process to prepare superhydrophobic silica films on the glass substrate. The water repellency of the silica films was controlled by surface silylation method using isooctyltrimethoxysilane (iso-OTMS) as a surface modifying agent. Silica alcosol was synthesized by keeping the molar ratio of ethyltriethoxysilane (ETES) precursor, ethanol (EtOH) solvent, water (H2O) was kept constant at 1:36:6.6 respectively, with 6 M NH4OH throughout the experiment and the percentages of hydrophobic agent in hexane bath was varied from 0 to 15 vol.%. The static water contact angle values of the silica films increased from 108° to 160° with an increase in the vol.% of iso-OTMS. At 15 vol%. of iso-OTMS, the silica film shows static water contact angle as high as 160°. The superhydrophobic silica films are thermally stable up to 440 °C and above this temperature, the silica films lose superhydrophobicity. By controlling the primer particle size of SiO2 about 26 nm, leading to decrease the final size of silica nanoparticles after modification of nanoparticles by isooctyltrimethoxysilane about 42 nm. The films are transparent and have uniform size on the surface. The silica films have been characterized by atomic force microscopy (AFM), fourier transform infrared spectroscopy (FT-IR), transparency, contact angle measurement (CA), Zeta-potential, Thermal stability by TG-DTA analysis.

  11. Mesoporous silica/polyacrylamide composite: Preparation by UV-graft photopolymerization, characterization and use as Hg(II) adsorbent

    NASA Astrophysics Data System (ADS)

    Saad, Ali; Bakas, Idriss; Piquemal, Jean-Yves; Nowak, Sophie; Abderrabba, Manef; Chehimi, Mohamed M.

    2016-03-01

    MCM-41 ordered mesoporous silica was prepared, aminosilanized and grafted with polyacrylamide (PAAM) through in situ radical photopolymerization process. The resulting composite, denoted PAAM-NH2-MCM-41, the calcined and silanized reference MCM-41s were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and N2 physisorption at 77 K. These complementary techniques brought strong supporting evidence for the silanization process followed by PAAM grafting. The surface composition was found to be PAAM-rich as judged by XPS. The composite was then employed for the uptake of Hg(II) from aqueous solutions. Adsorption was monitored versus pH, time, and temperature. The maximum adsorption capacity at 25 °C and pH 5.2 was 177 mg g-1. Kinetically, the equilibrium was reached within 60 min for a 100 mg L-1 mercury solution. The adsorption of Hg(II) on PAAM-NH2-MCM-41 composites followed second order kinetics. Thermodynamic parameters suggested that the favorable adsorption process is exothermic in nature and the adsorption is ascribed to a decrease in the degree of freedom of adsorbed ions which results in the entropy change. This work conclusively shows that mesoporous silica-polymer hybrid metal ion adsorbents (with robust silica-polymer interface) can be prepared in a simple way by in situ radical photopolymerization in the presence of aminosilanized silica acting as a support and a macro-hydrogen donor simultaneously.

  12. Preparation of a mercaptopropyl bonded silica intermediate in supercritical carbon dioxide: synthesis, characterisation and chromatography of a quinine based chiral stationary phase.

    PubMed

    Scully, Norma M; O'Sullivan, Gerard P; Healy, Liam O; Glennon, Jeremy D; Dietrich, Benjamin; Albert, Klaus

    2007-07-13

    This research examines the preparation of a mercaptopropyl bonded silica intermediate in supercritical carbon dioxide (sc-CO(2)) and the subsequent conversion in sc-CO(2) to a quinine derived chiral stationary phase (CSP). The effects of reaction temperature, pressure and time on the surface coverage of the silica intermediate were investigated when porous silica particles (Exsil-Avanti, 3microm) were reacted with 3-trimethoxymercaptopropylsilane in sc-CO(2). We present results which demonstrate that a stable mercaptopropyl bonded silica intermediate can be successfully prepared under supercritical conditions of 40 degrees C, 483bar, in a substantially reduced reaction time of 1h with superior surface coverages compared to organic solvent based methods. The further utility of this supercritical fluid technology was demonstrated by the free radical addition of a quinine derived chiral selector onto a mercaptopropyl bonded silica intermediate in sc-CO(2). This supercritical fluid generated chiral stationary phase (CSP) was utilised for the direct LC enantioseparation of a series of 3,5-dinitrobenzoyl (DNB) amino acids. Bonded silica samples were characterised using elemental analysis, diffuse reflectance infrared fourier transform (DRIFT) spectroscopy, solid state (13)C and (29)Si CP-MAS NMR spectroscopy, and thermogravimetric analysis (TGA). This supercritical fluid functionalisation approach offers an efficient and cleaner alternative to existing organic solvent based approaches for the preparation of bonded silica phases.

  13. Core-shell-structured silica/polyacrylate particles prepared by Pickering emulsion: influence of the nucleation model on particle interfacial organization and emulsion stability.

    PubMed

    Ji, Jing; Shu, Shi; Wang, Feng; Li, Zhilin; Liu, Jingjun; Song, Ye; Jia, Yi

    2014-01-01

    This work reports a new evidence of the versatility of silica sol as a stabilizer for Pickering emulsions. The organization of silica particles at the oil-water interface is a function of the nucleation model. The present results show that nucleation model, together with monomer hydrophobicity, can be used as a trigger to modify the packing density of silica particles at the oil-water interface: Less hydrophobic methylmethacrylate, more wettable with silica particles, favors the formation of core-shell-structured composite when the composite particles are prepared by miniemulsion polymerization in which monomers are fed in batch (droplet nucleation). By contrast, hydrophobic butylacrylate promotes the encapsulating efficiency of silica when monomers are fed dropwise (homogeneous nucleation). The morphologies of polyacrylate-nano-SiO2 composites prepared from different feed ratio of methylmethacrylate/butylacrylate (with different hydrophobicity) and by different feed processes are characterized by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) techniques. The results from SEM and TEM show that the morphologies of the as-prepared polyacrylate/nano-SiO2 composite can be a core-shell structure or a bare acrylic sphere. The stability of resulting emulsions composed of these composite particles is strongly dependent on the surface coverage of silica particles. The emulsion stability is improved by densely silica-packed composite particles.

  14. Preparation of bi-functional silica particles for antibacterial and self cleaning surfaces.

    PubMed

    Hebalkar, Neha Y; Acharya, Snigdhatanu; Rao, Tata N

    2011-12-01

    Synthesis of bi-functional silica particles by a simple wet chemical method is described where the mixture of ultra fine nanoparticles (1-3 nm) of titania and silver were attached on the silica particle surface in a controlled way to form a core-shell structure. The silica surface showed efficient bi-functional activity of photo-catalytically self cleaning and antibacterial activity due to nanotitania and nanosilver mutually benefiting each other's function. The optimum silver concentration was found where extremely small silver nanoparticles are formed and the total composite particle remains white in color. This is an important property in view of certain applications such as antibacterial textiles where the original fabric color has to be retained even after applying the nanosilver on it. The particles were characterized at each step of the synthesis by X-ray photoelectron spectroscopy, UV-visible spectroscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscopy and electron energy loss spectroscopy. Bi-functional silica particles showed accelerated photocatalytic degradation of methylene blue as well as enhanced antibacterial property when tested as such particles and textiles coated with these bi-functional silica particles even at lower silver concentration.

  15. Facile preparation of silver nanoparticles homogeneously immobilized in hierarchically monolithic silica using ethylene glycol as reductant.

    PubMed

    Yu, Huan; Zhu, Yang; Yang, Hui; Nakanishi, Kazuki; Kanamori, Kazuyoshi; Guo, Xingzhong

    2014-09-07

    A facile and "green" method was proposed to introduce Ag nanoparticles (Ag NPs) into the hierarchically monolithic silica uniformly in the presence of (3-aminopropyl)-triethoxysilane (APTES) and ethylene glycol. APTES is used to modify the monolith by incorporating amino groups onto the surface of meso-macroporous skeletons, while ethylene glycol is employed as the productive reductant. Ag NPs are homogeneously immobilized in hierarchically monolithic silica after reduction and drying at 40 °C for different duration times, and the embedded amount of Ag NPs can reach 15.44 wt% when treated once. The embedment of Ag NPs increases with the repeat treatment and the APTES amount, without uncontrollable crystalline growth. The surface areas of Ag NPs embedded in silica monoliths after heat treatment at 300 and 400 °C are higher than those before heat treatment. The modification via APTES and the embedment of Ag NPs does not spoil the morphology of monolithic silica, while changing the pore structures of the monolith. A tentative formation process and a reduction mechanism are proposed for the modification, reduction and embedment. Ag NPs embedded in monolithic silica is promising for wide applications such as catalysis and separation.

  16. Synthesis and adsorption properties of chitosan-silica nanocomposite prepared by sol-gel method

    NASA Astrophysics Data System (ADS)

    Budnyak, Tetyana M.; Pylypchuk, Ievgen V.; Tertykh, Valentin A.; Yanovska, Elina S.; Kolodynska, Dorota

    2015-02-01

    A hybrid nanocomposite material has been obtained by in situ formation of an inorganic network in the presence of a preformed organic polymer. Chitosan biopolymer and tetraethoxysilane (TEOS), which is the most common silica precursor, were used for the sol-gel reaction. The obtained composite chitosan-silica material has been characterized by physicochemical methods such as differential thermal analyses (DTA); carbon, hydrogen, and nitrogen (CHN) elemental analysis; nitrogen adsorption/desorption isotherms, scanning electron microscopy (SEM); and Fourier transform infrared (FTIR) spectroscopy to determine possible interactions between silica and chitosan macromolecules. Adsorption of microquantities of V(V), Mo(VI), and Cr(VI) oxoanions from the aqueous solutions by the obtained composite has been studied in comparison with the chitosan beads, previously crosslinked with glutaraldehyde. The adsorption capacity and kinetic sorption characteristics of the composite material were estimated.

  17. A sustainable route for the preparation of activated carbon and silica from rice husk ash.

    PubMed

    Liu, Yan; Guo, Yupeng; Zhu, Yanchao; An, Dongmin; Gao, Wei; Wang, Zhuo; Ma, Yuejia; Wang, Zichen

    2011-02-28

    An environmentally friendly and economically effective process to produce silica and activated carbon form rice husk ask simultaneously has been developed in this study. An extraction yield of silica of 72-98% was obtained and the particle size was 40-50 nm. The microstructures of the as-obtained silica powders were characterized by X-ray diffraction (XRD) and infrared spectra (IR). The surface area, iodine number and capacitance value of activated carbon could achieve 570 m(2)/g, 1708 mg/g, 180 F/g, respectively. In the whole synthetic procedure, the wastewater and the carbon dioxide were collected and reutilized. The recovery rate of sodium carbonate was achieved 92.25%. The process is inexpensive, sustainable, environmentally friendly and suitable for large-scale production.

  18. Preparation of efficient quercetin delivery system on Zn-modified mesoporous SBA-15 silica carrier.

    PubMed

    Trendafilova, Ivalina; Szegedi, Agnes; Mihály, Judith; Momekov, Georgi; Lihareva, Nadejda; Popova, Margarita

    2017-04-01

    Mesoporous silica material type SBA-15 was modified with different amounts of Zn (2 and 4wt.%) by incipient wetness impregnation method in ethanol. The parent, Zn-modified and quercetin loaded samples, were characterized by XRD, N2 physisorption, TEM, thermal gravimetric analysis, UV-vis and FT-IR spectroscopies and in vitro release of quercetin at pH5.5 which is typical of dermal formulations. By this loading method anhydrous quercetin was formed on the silica carrier It was found that the different hydrate forms of quercetin (dihydrate, monohydrate, anhydrite) significantly influence the physico-chemical properties of the delivery system. It was found that hydrate forms of quercetin can be differentiated by XRD and by FT-IR spectroscopic methods. Thus, by evaluating the interaction of the drug with the silica carrier the changes due to its hydration state always have to be taken into account. Formation of Zn-quercetin complex was evidenced on zinc modified SBA-15 silica by FT-IR spectroscopy. High quercetin loading capacity (over 40wt.%) could be achieved on the parent and Zn-containing SBA-15 samples. The in-vitro release process at pH=5.5 showed slower quercetin release from Zn-modified SBA-15 samples compared to the parent one. Additionally, the comparative cytotoxic experiments evidenced that quercetin encapsulated in Zn-modified silica carriers has superior antineoplastic potential against HUT-29 cells compared to free drug. Zn-modified SBA-15 silica particles could be promising carriers for dermal delivery of quercetin. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Preparation of Mesoporous Silica Templated Metal Nanowire Films on Foamed Nickel Substrates

    SciTech Connect

    Campbell, Roger; Kenik, Edward A; Bakker, Martin; Havrilla, George; Montoya, Velma; Shamsuzzoha, Mohammed

    2006-01-01

    A method has been developed for the formation of high surface area nanowire films on planar and three-dimensional metal electrodes. These nanowire films are formed via electrodeposition into a mesoporous silica film. The mesoporous silica films are formed by a sol-gel process using Pluronic tri-block copolymers to template mesopore formation on both planar and three-dimensional metal electrodes. Surface area increases of up to 120-fold have been observed in electrodes containing a templated film when compared to the same types of electrodes without the templated film.

  20. Preparation and In-vitro Evaluation of Rifampin-loaded Mesoporous Silica Nanoaggregates by an Experimental Design

    PubMed Central

    Mohseni, Meysam; Gilani, Kambiz; Bahrami, Zohreh; Bolourchian, Noushin; Mortazavi, Seyed Alireza

    2015-01-01

    The goal of this research is preparation, optimization and in-vitro evaluation of rifampin-loaded silica nanoparticles in order to use in the pulmonary drug delivery. Nanoparticles are exhaled because of their small size. Preparation of nanoaggregates in a micron-size scale and re-dispersion of them after deposition in the lung is an approach to overcome this problem. We used this approach in our research. Rifampin was selected as a model lipophilic molecule since it was a well-documented and much used anti tuberculosis drug. A half factorial design was used to identify significant parameters of the spray drying process. The results showed that feed concentration, feed pH and the interaction between feed flow rate and gas atomizer flow rate had statistically significant effects on the particle size of nanoaggregates. The Box-Behnken design was employed to optimize the spray drying process. Finally, a quadratic equation which explains the relation between independent variables and aerodynamic diameter of nanoaggregates was obtained. Rifampin-loaded silica nanoaggregates underwent different in-vitro tests including: SEM, Aerosol performance and drug release. The in-vitro drug release was investigated with buffer phosphate (pH=7.4). Regarding the drug release study, a triphasic pattern of release was observed. The rifampin-loaded silica nanoaggregates were capable of releasing 90% drug content after 24 h in combination patterns of release. The prepared rifampin-loaded nanoaggregates seem to have a potential to be used in a pulmonary drug delivery. PMID:25901143

  1. On-machine precision preparation and dressing of ball-headed diamond wheel for the grinding of fused silica

    NASA Astrophysics Data System (ADS)

    Chen, Mingjun; Li, Ziang; Yu, Bo; Peng, Hui; Fang, Zhen

    2013-09-01

    In the grinding of high quality fused silica parts with complex surface or structure using ball-headed metal bonded diamond wheel with small diameter, the existing dressing methods are not suitable to dress the ball-headed diamond wheel precisely due to that they are either on-line in process dressing which may causes collision problem or without consideration for the effects of the tool setting error and electrode wear. An on-machine precision preparation and dressing method is proposed for ball-headed diamond wheel based on electrical discharge machining. By using this method the cylindrical diamond wheel with small diameter is manufactured to hemispherical-headed form. The obtained ball-headed diamond wheel is dressed after several grinding passes to recover geometrical accuracy and sharpness which is lost due to the wheel wear. A tool setting method based on high precision optical system is presented to reduce the wheel center setting error and dimension error. The effect of electrode tool wear is investigated by electrical dressing experiments, and the electrode tool wear compensation model is established based on the experimental results which show that the value of wear ratio coefficient K' tends to be constant with the increasing of the feed length of electrode and the mean value of K' is 0.156. Grinding experiments of fused silica are carried out on a test bench to evaluate the performance of the preparation and dressing method. The experimental results show that the surface roughness of the finished workpiece is 0.03 μm. The effect of the grinding parameter and dressing frequency on the surface roughness is investigated based on the measurement results of the surface roughness. This research provides an on-machine preparation and dressing method for ball-headed metal bonded diamond wheel used in the grinding of fused silica, which provides a solution to the tool setting method and the effect of electrode tool wear.

  2. A study on the consecutive preparation of d-xylose and pure superfine silica from rice husk.

    PubMed

    Zhang, Hongxi; Zhao, Xu; Ding, Xuefeng; Lei, Hong; Chen, Xue; An, Dongmin; Li, Yunling; Wang, Zichen

    2010-02-01

    Rice husk is an abundant agricultural byproduct. In the present paper, research on consecutive preparation of d-xylose and superfine silica from rice husk is carried out. The optimum hydrolysis conditions of xylan in rice husk to d-xylose are as follows: the concentration of H(2)SO(4) is 4% (wt.%), the temperature is 130 degrees C, the ratio of rice husk mass (g) to H(2)SO(4) solution volume (ml) is 1:4 and the time is 2 h. The hydrolysis degree of xylan reaches 96.22% (wt.%). High purity (98.5%, wt.%) d-xylose is obtained from acid hydrolysis solution with the purification yield of 71.63% (wt.%). At the same time, the metal oxides in rice husk are efficiently dissolved by H(2)SO(4). Residuals from H(2)SO(4) pre-treatment are incinerated under 750 degrees C in stationary air for 15 min. Silica is obtained with the purity of 99.87% (wt.%). The superfine silica powder is obtained after ground and ultrasonic dispersion, with the diameter of 30-200 nm and specific surface 287.86 m(2)/g.

  3. Preparation and retention mechanism exploration of mesostructured cellular foam silica as stationary phase for high performance liquid chromatography.

    PubMed

    Sun, Shaoai; Zhang, Xiaoqiong; Han, Qiang; Wan, Wei; Ding, Mingyu

    2016-01-01

    Siliceous mesostructured cellular foam (MCF) with highly interconnected porous structure, ultralarge pore size and relatively uniform particle size (3-5μm) was prepared to achieve the mixed-mode and efficient separation of intact proteins. And molecular sieving effect for the first time played an important role in protein separation using mesoporous silica materials as HPLC stationary phase. The spherical silica particles were synthesized via hydrothermal method and the pore size was easily regulated by adding NH4F as well as altering the aging time. After aminopropyl derivatization, the chromatographic performance of functionalized mesoporous silica particles was investigated in comparison with those without modification and commercial NH2 column, and their mixed-mode retention mechanisms were investigated in detail. The superior separation performance for the retention of proteins was obtained on our home-made column in comparison with commercial NH2 column. The influences of aminopropyl derivatization and mobile phase composition on the column property were also investigated. Moreover, the home-made column showed similar performance for separation of polar anilines and neutral PAHs with the commercial column, owing to mixed-mode retention mechanisms including p-π stacking, electron interaction, hydrophobic effect, π-π EDA interaction and hydrogen bonding. All these results indicated that the aminopropyl modified MCF would be promising in the mixed-mode and efficient separation of biomolecules in addition with small molecules.

  4. Preparation, characterization and application in deep catalytic ODS of the mesoporous silica pillared clay incorporated with phosphotungstic acid.

    PubMed

    Li, Baoshan; Liu, Zhenxing; Liu, Jianjun; Zhou, Zhiyuan; Gao, Xiaohui; Pang, Xinmei; Sheng, Huiting

    2011-10-15

    Mesoporous silica pillared clay (SPC) materials with different contents of H(3)PW(12)O(40) (HPW) heteropoly acid were synthesized by introducing HPW into clay interlayer template in an acidic suspension using sol-gel method. Samples with similar HPW loadings were also prepared by impregnation method using SPC as the support. The results of the characterizations showed that HPW was dispersed more homogeneously in the encapsulated samples than in the impregnated samples. The encapsulated materials exhibited better catalytic performance than the impregnated samples in oxidative desulfurization of dibenzothiophene-containing model oil. The sulfur removal reached up to 98.6% for the model oil under the experiential conditions.

  5. Particle-filled microporous materials

    DOEpatents

    McAllister, Jerome W.; Kinzer, Kevin E.; Mrozinski, James S.; Johnson, Eric J.

    1992-07-14

    A microporous particulate-filled thermoplastic polymeric article is provided. The article can be in the form of a film, a fiber, or a tube. The article has a thermoplastic polymeric structure having a plurality of interconnected passageways to provide a network of communicating pores. The microporous structure contains discrete submicron or low micron-sized particulate filler, the particulate filler being substantially non-agglomerated.

  6. Particle-filled microporous materials

    DOEpatents

    McAllister, Jerome W.; Kinzer, Kevin E.; Mrozinski, James S.; Johnson, Eric J.; Dyrud, James F.

    1990-01-01

    A microporous particulate-filled thermoplastic polymeric article is provided. The article can be in the form of a film, a fiber, or a tube. The article has a thermoplastic polymeric structure having a plurality of interconnected passageways to provide a network of communicating pores. The microporous structure contains discrete submicron or low micron-sized particulate filler, the particulate filler being substantially non-agglomerated.

  7. Particle-filled microporous materials

    DOEpatents

    McAllister, J.W.; Kinzer, K.E.; Mrozinski, J.S.; Johnson, E.J.; Dyrud, J.F.

    1990-09-18

    A microporous particulate-filled thermoplastic polymeric article is provided. The article can be in the form of a film, a fiber, or a tube. The article has a thermoplastic polymeric structure having a plurality of interconnected passageways to provide a network of communicating pores. The microporous structure contains discrete submicron or low micron-sized particulate filler, the particulate filler being substantially non-agglomerated. 3 figs.

  8. Preparation and optical properties of silica Ag-Cu alloy core-shell composite colloids

    SciTech Connect

    Zhang Jianhui Liu Huaiyong; Wang Zhenlin; Ming Naiben

    2007-04-15

    The silica Ag-Cu alloy core-shell composite colloids have been successfully synthesized by an electroless plating approach to explore the possibility of modifying the plasmon resonance at the nanoshell surface by varying the metal nanoshell composition for the first time. The surface plasmon resonance of the composite colloids increases in intensity and shifts towards longer, then shorter wavelengths as the Cu/Ag ratio in the alloy shell is increased. The variations in intensity of the surface plasmon resonance with the Cu/Ag ratio obviously affect the Raman bands of the silica colloid core. The report here may supply a new technique to effectively modify the surface plasmon resonance. - Graphical abstract: The silica Ag-Cu alloy core-shell colloids have been successfully synthesized to explore the possibility of modifying the surface plasmon resonance (SPR) by varying the metal nanoshell composition for the first time. Varying the Cu/Ag ratio of the alloy nanoshell has obvious influences on the SPR of the composite colloids and the Raman bands of the amorphous silica core.

  9. Dry plant extracts loaded on fumed silica for direct compression: preparation and preformulation.

    PubMed

    Palma, S D; Manzo, R H; Allemandi, D A

    1999-01-01

    This paper describes the development of a method to load fumed silica with vegetal material (solid residue) from a liquid extract to obtain a solid loaded silica product (LSP) with satisfactory flow properties and compressibility to be processed by direct-compression technology. Extracts of Melissa officinalis L. (M.o.), Cardus marianus L. (C.m.), and Peumus boldus L. (P.b.) were used to load silica support. The release of boldine from LSP (P.b.) reached 100% in HCl 0.1 N solution and only approximately 70% in water. Some physical-mechanical properties of LSP (M.o. and C.m.) alone and LSP-excipient mixtures were determined. The densities (bulk and tap) of LSP were higher than those of fumed silica alone. Consequently, good flow properties of LSP products were observed. On the other hand, flowability, densities, and compactibility of directly compressible excipients (lactose, dicalcium phosphate dihydrate, and microcrystalline cellulose) were not adversely affected when mixed with LSP.

  10. Preparation of Self-Activated Fluorescence Mesoporous Silica Hollow Nanoellipsoids for Theranostics.

    PubMed

    Singh, Rajendra Kumar; Kim, Tae-Hyun; Mahapatra, Chinmaya; Patel, Kapil Dev; Kim, Hae-Won

    2015-10-20

    The newly developed multifunctional (self-activated fluorescent, mesoporous, and biocompatible) hollow mesoporous silica nanoellipsoids (f-hMS) are potentially useful as a delivery system of drugs for therapeutics and imaging purposes. For the synthesis of f-hMS, self-activated fluorescence hydroxyapatite (fHA) was used as a core template. A mesoporous silica shell was obtained by silica formation and subsequent removal of the fHA core, which resulted in a hollow-cored f-hMS. Although the silica shell provided a highly mesoporous structure, enabling an effective loading of drug molecules, the fluorescent property of fHA was also well-preserved in the f-hMS. Cytochrome c and doxorubicin, used as a model protein and anticancer drug, respectively, were shown to be effectively loaded onto f-hMS and were then released in a sustainable and controllable manner. The f-hMS was effectively taken up by the cells and exhibited fluorescent labeling while preserving excellent cell viability. Overall, the f-hMS nanoreservoir may be useful as a multifunctional carrier system for drug delivery and cell imaging.

  11. Development of novel biocompatible hybrid nanocomposites based on polyurethane-silica prepared by sol gel process.

    PubMed

    Rashti, Ali; Yahyaei, Hossein; Firoozi, Saman; Ramezani, Sara; Rahiminejad, Ali; Karimi, Roya; Farzaneh, Khadijeh; Mohseni, Mohsen; Ghanbari, Hossein

    2016-12-01

    Due to high biocompatibility, polyurethane has found many applications, particularly in development of biomedical devices. A new nanocomposite based on thermoset polyurethane and silica nanoparticles was synthesized using sol-gel method. Sol-gel process was fulfilled in two acidic and basic conditions by using tetraethylorthosilicate (TEOS) and trimethoxyisocyanatesilane as precursors. The hybrid films characterized for mechanical and surface properties using tensile strength, contact angle, ATR-FTIR and scanning electron microscopy. Biocompatibility and cytotoxicity of the hybrids were assessed using standard MTT, LDH and TUNEL assays. The results revealed that incorporation of silica nanoparticles was significantly improved tensile strength and mechanical properties of the hybrids. Based on the contact angle results, silica nanoparticles increased hydrophilicity of the hybrids. Biocompatibility by using human lung epithelial cell line (MRC-5) demonstrated that the hybrids were significantly less cytotoxic compared to pristine polymer as tested by MTT and LDH assays. TUNEL assay revealed no signs of apoptosis in all tested samples. The results of this study demonstrated that incorporation of silica nanoparticles into polyurethane lead to the enhancement of biocompatibility, indicating that these hybrids could potentially be used in biomedical field in particular as a new coating for medical implants.

  12. One-pot preparation of mercaptotetrazole-silica hybrid monoliths by the thiol-ene click reaction for mixed-mode capillary liquid chromatography.

    PubMed

    Wang, Haojiang; Hu, Wenli; Zheng, Qiong; Bian, Wei; Lin, Zian

    2017-06-01

    A novel mercaptotetrazole-silica hybrid monolithic column was prepared for capillary liquid chromatography, in which the thiol-end mercaptotetrazole was mixed with hydrolyzed γ-methacryloxypropyltrimethoxysilane and tetramethyloxysilane for the co-polycondensation and thiol-ene click reaction in a one-pot process. The effects of the molar ratio of silanes, the amount of mercaptotetrazole, and the volume of porogen on the morphology, permeability and pore properties of the as-prepared mercaptotetrazole-silica hybrid monoliths were investigated in detail. A series of test compounds including alkylbenzenes, amides and anilines were employed for evaluating the retention behaviors of the mercaptotetrazole-silica hybrid monolithic columns. The results demonstrated that the mercaptotetrazole-silica hybrid monoliths exhibited hydrophobic, hydrophilic as well as ion-exchange interaction. The run-to-run, column-to-column and batch-to-batch reproducibilities of the mercaptotetrazole-silica hybrid monoliths were satisfactory with the relative standard deviations less than 1.4 (n = 5), 3.9 (n = 3) and 4.0% (n = 5), respectively. In addition, the mercaptotetrazole-silica hybrid monolith was further applied to the separation of sulfonamides, nucleobases and protein tryptic digests. These successful applications confirmed the promising potential of the mercaptotetrazole-silica hybrid monolith in the separation of complex samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Microwave-induced degradation of atrazine sorbed in mineral micropores.

    PubMed

    Hu, Erdan; Cheng, Hefa; Hu, Yuanan

    2012-05-01

    The herbicide atrazine is a common pollutant in reservoirs and other sources of drinking water worldwide. The adsorption of atrazine from water onto zeolites CBV-720 and 4A, mesoporous silica MCM-41, quartz sand, and diatomite, and its microwave-induced degradation when sorbed on these minerals, were studied. Dealuminated HY zeolite CBV-720 exhibited the highest atrazine sorption capacity among the mineral sorbents because of its high micropore volume, suitable pore sizes, and surface hydrophobicity. Atrazine sorbed on the minerals degraded under microwave irradiation due to interfacial selective heating by the microwave, while atrazine in aqueous solution and associated with PTFE powder was not affected. Atrazine degraded rapidly in the micropores of CBV-720 under microwave irradiation and its degradation intermediates also decomposed with further irradiation, suggesting atrazine could be fully mineralized. Two new degradation intermediates of atrazine, 3,5-diamino-1,2,4-triazole and guanidine, were first identified in this study. The evolution of degradation intermediates and changes in infrared spectra of CBV-720 after microwave irradiation consistently indicate the creation of microscale hot spots in the micropores and the degradation of atrazine following a pyrolysis mechanism. These results indicate that microporous mineral sorption coupled with microwave-induced degradation could serve as an efficient treatment technology for removing atrazine from drinking water.

  14. Preparation of chlorocholine chloride/urea deep eutectic solvent-modified silica and an examination of the ion exchange properties of modified silica as a Lewis adduct.

    PubMed

    Tang, Baokun; Park, Ha Eun; Row, Kyung Ho

    2014-07-01

    Chlorocholine chloride/urea (ClChCl-urea), a deep eutectic solvent (DES), was applied successfully to the modification of silica. The resulting modified silica was characterized by Fourier transform infrared spectroscopy, Brunauer-Emmett-Teller analysis, and elemental analysis. Based on the ClChCl-urea modification of silica, the ClChCl-urea-modified silica is a Lewis adduct with ion exchange properties, and ferulic acid was adsorbed on the ClChCl-urea-modified silica via an ion exchange process. The adsorbed percentage of ferulic acid increased with the increasing amount of modified silica, and a high adsorbed percentage of 89% could be obtained by the ion exchange process. The Freundlich isotherm used to describe the adsorption of ferulic acid on the modified silica by ion exchange showed a good correlation (R(2) = 0.93). Based on the characterization of the structure and the analysis of the ion exchange property of the ClChCl-urea-modified silica, the modified silica as a potential medium can be applied in some analytical technologies such as solid phase extraction, chromatography, and so on.

  15. Simple method for preparation of porous polyimide film with an ordered surface based on in situ self-assembly of polyamic acid and silica microspheres.

    PubMed

    Wang, Chao; Wang, Qihua; Wang, Tingmei

    2010-12-07

    In this Article, we addressed a facile method for the fabrication of porous polyimide film with an ordered surface based on the solvent-evaporation-assisted in situ self-assembly of polyamic acid (PAA, precursor of polyimide) and silica microspheres during vacuum-drying of PAA/silica colloid solution. Hydroxyl groups on the surface of silica microspheres have strong hydrogen-bonding with PAA chains, which improve the dispersion of silica microspheres in PAA/DMF solution and further help the self-assembly of PAA/silica colloid solution via solvent evaporation. The approach is simple, neither the preparation of special template nor complex preparation process and precise control over condition is necessary. Furthermore, the method could be employed for mass production of ordered porous polyimide films, and by changing the content and size of silica microspheres, the pore size and porous structure of the porous polyimide films could be tunable. The wettability behavior of the as-prepared porous polyimide films is also studied; the ordered surface topography of the porous polyimide films could change the wettability from hydrophilicity to hydrophobicity.

  16. Preparation of Mn-Zn ferrite nanoparticles and their silica-coated clusters: Magnetic properties and transverse relaxivity

    NASA Astrophysics Data System (ADS)

    Kaman, Ondřej; Kuličková, Jarmila; Herynek, Vít; Koktan, Jakub; Maryško, Miroslav; Dědourková, Tereza; Knížek, Karel; Jirák, Zdeněk

    2017-04-01

    Hydrothermal synthesis of Mn1-xZnxFe2O4 nanoparticles followed by direct encapsulation of the as-grown material into silica is demonstrated as a fast and facile method for preparation of efficient negative contrast agents based on clusters of ferrite crystallites. At first, the hydrothermal procedure is optimized to achieve strictly single-phase magnetic nanoparticles of Mn-Zn ferrites in the compositional range of x≈0.2-0.6 and with the mean size of crystallites ≈10 nm. The products are characterized by powder X-ray diffraction, X-ray fluorescence spectroscopy, and SQUID magnetometry, and the composition close to x=0.4 is selected for the preparation of silica-coated clusters with the mean diameter of magnetic cores ≈25 nm. Their composite structure is studied by means of transmission electron microscopy combined with detailed image analysis and magnetic measurements in DC fields. The relaxometric studies, performed in the magnetic field of B0=0.5 T, reveal high transverse relaxivity (r2(20 °C)=450 s-1 mmol(Me3O4)-1 L) with a pronounced temperature dependence, which correlates with the observed temperature dependence of magnetization and is ascribed to a mechanism of transverse relaxation similar to the motional averaging regime.

  17. Facile and scalable preparation of highly wear-resistance superhydrophobic surface on wood substrates using silica nanoparticles modified by VTES

    NASA Astrophysics Data System (ADS)

    Jia, Shanshan; Liu, Ming; Wu, Yiqiang; Luo, Sha; Qing, Yan; Chen, Haibo

    2016-11-01

    In this study, an efficient, facile method has been developed for fabricating superhydrophobic surfaces on wood substrates using silica nanoparticles modified by VTES. The as-prepared superhydrophobic wood surface had a water contact angle of 154° and water slide angle close to 0°. Simultaneously, this superhydrophobic wood showed highly durable and robust wear resistance when having undergone a long period of sandpaper abrasion or being scratched by a knife. Even under extreme conditions of boiling water, the superhydrophobicity of the as-prepared wood composite was preserved. Characterizations by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and Fourier transform infrared spectroscopy showed that a typical and tough hierarchical micro/nanostructure was created on the wood substrate and vinyltriethoxysilane contributed to preventing the agglomeration of silica nanoparticles and serving as low-surface-free-energy substances. This superhydrophobic wood was easy to fabricate, mechanically resistant and exhibited long-term stability. Therefore, it is considered to be of significant importance in the industrial production of functional wood, especially for outdoor applications.

  18. Aptamer-based organic-silica hybrid affinity monolith prepared via "thiol-ene" click reaction for extraction of thrombin.

    PubMed

    Wang, Zheng; Zhao, Jin-cheng; Lian, Hong-zhen; Chen, Hong-yuan

    2015-06-01

    A novel strategy for preparing aptamer-based organic-silica hybrid monolithic column was developed via "thiol-ene" click chemistry. Due to the large specific surface area of the hybrid matrix and the simplicity, rapidness and high efficiency of "thiol-ene" click reaction, the average coverage density of aptamer on the organic-silica hybrid monolith reached 420 pmol μL(-1). Human α-thrombin can be captured on the prepared affinity monolithic column with high specificity and eluted by NaClO4 solution. N-p-tosyl-Gly-Pro-Arg p-nitroanilide acetate was used as the sensitive chromogenic substrate of thrombin. The thrombin enriched by this affinity column was detected with a detection of limit of 0.01 μM by spectrophotometry. Furthermore, the extraction recovery of thrombin at 0.15 μM in human serum was 91.8% with a relative standard deviation of 4.0%. These results indicated that "thiol-ene" click chemistry provided a promising technique to immobilize aptamer on organic-inorganic hybrid monolith and the easily-assembled affinity monolithic material could be used to realize highly selective recognition of trace proteins.

  19. Preparation and characterization of mesoporous silicas modified with chiral selectors as stationary phase for high-performance liquid chromatography.

    PubMed

    Pérez-Quintanilla, Damián; Morante-Zarcero, Sonia; Sierra, Isabel

    2014-01-15

    New hybrid materials were prepared as novel chiral stationary phases (CSPs) for high-performance liquid chromatography (HPLC). Pure mesoporous silica (SM) and ethylene-bridged periodic mesostructured organosilica (PMO) were functionalized, by a post-synthesis method, with derivates of erythromycin and vancomycin. N2 adsorption-desorption measurements, XRD, FT-IR, MAS NMR, SEM, TEM and elemental analysis were used to characterize the physico-chemical properties of these mesostructured materials, before and after the modification process. The synthesized particles had non-symmetrical 3-D wormhole-like mesostructure, spherical morphology, and a mean pore diameter between 53 and 59 Å. CSPs prepared were tested for the separation of four chiral β-blockers (atenolol, metoprolol, pindolol and propranolol) in normal phase (NP) and polar organic phase (PO) elution modes. Much stronger chiral interaction was observed in vancomycin-modified silicas. Results obtained in these preliminary studies will permit in future works to improve the synthesis route in order to design mesoporous materials with better performance as a chiral stationary phase for HPLC. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. One-pot preparation of glutathione-silica hybrid monolith for mixed-mode capillary liquid chromatography based on "thiol-ene" click chemistry.

    PubMed

    Lin, Zian; Tan, Xiaoqing; Yu, Ruifang; Lin, Jiashi; Yin, Xiaofei; Zhang, Lan; Yang, Huanghao

    2014-08-15

    A novel glutathione (GSH)-silica hybrid monolithic column synthesized via a combination of thiol-ene click reaction and one-pot process was described, where thiol-end GSH organic monomer and 2,2-azobisisobutyronitrile (AIBN) were mixed with hydrolyzed tetramethyloxysilane (TMOS) and γ-methacryloxypropyltrimethoxysilane (γ-MAPS) and then introduced into a fused-silica capillary for simultaneous polycondensation and "thiol-ene" click reaction to form the GSH-silica hybrid monolith. The effects of the molar ratio of TMOS/γ-MAPS, the amount of GSH, and the volume of porogen on the morphology, permeability and pore properties of the prepared GSH-silica hybrid monoliths were studied in detail. A uniform monolithic network with high porosity was obtained. A series of test compounds including alkylbenzenes, amides, and anilines were used to evaluate the retention behaviors of the GSH-silica hybrid monolithic column. The results demonstrated that the prepared GSH-silica hybrid monolith exhibited multiple interactions including hydrophobicity, hydrophilicity, as well as cation exchange interaction. The run-to-run, column-to-column and batch-to-batch reproducibilities of the GSH-silica hybrid monolith for phenols' retention were satisfactory with the relative standard deviations (RSDs) less than 1.3% (n=5), 2.6% (n=3) and 3.2% (n=3), respectively, indicating the effectiveness and practicability of the proposed method. In addition, the GSH-silica hybrid monolith was applied to the separation of nucleotides, peptides and protein tryptic digests, respectively. The successful applications suggested the potential of the GSH-silica hybrid monolith in complex sample analysis.

  1. Preparation of nanoporous systems for the study of the mechanical properties of silica aerogels by Molecular Dynamics simulations

    NASA Astrophysics Data System (ADS)

    Rivas Murillo, John S.; Bachlechner, Martina E.; Barbero, Ever J.

    2009-03-01

    This presentation focuses on the application of the Molecular Dynamics technique to study the mechanical properties of silica aerogels through the simulation of a tension test. It covers multiple areas, including aspects related to the preparation of a well-relaxed nanoporous system from the expansion of an amorphous bulk sample and the influence of the initial configuration of the system on the final results of the simulated tension test. The results presented here will help to develop a more complete procedure to prepare a proper sample for the study of the mechanical properties of a nanoporous system by using Molecular Dynamics. Comparison of the simulation results and previously published experimental data is provided

  2. [Preparative separation of aloin diastereoisomers by high-speed countercurrent chromatography combined with silica gel column chromatography].

    PubMed

    Huang, Danfeng; Cao, Xueli; Zhao, Hua; Dong, Yinmao

    2006-01-01

    Aloin, naturally a mixture of two diastereoisomers, aloin A and aloin B, is the major anthraquinone in aloe, and now served as one of the important control constituents in most of the commercial aloe products. High-speed countercurrent chromatography (HSCCC) combined with silica gel column chromatography was developed for the preparative separation of the two individual aloins. Aloin A (98%) and aloin B (96%) were obtained. Fast atom bombardment mass spectrometry (FAB-MS), 1H nuclear magnetic resonance (1H NMR) and GOESY (gradient-enhanced nuclear Overhauser effect spectroscopy) were employed for the elucidation of their structure conformation. The developed method is of high preparative capacity and high efficiency in resolution.

  3. Capillary electrochromatography with monolithic silica column: I. Preparation of silica monoliths having surface-bound octadecyl moieties and their chromatographic characterization and applications to the separation of neutral and charged species.

    PubMed

    Allen, Darin; El Rassi, Ziad

    2003-01-01

    Monolithic silica columns with surface-bound octadecyl (C18) moieties have been prepared by a sol-gel process in 100 microm ID fused-silica capillaries for reversed-phase capillary electrochromatography of neutral and charged species. The reaction conditions for the preparation of the C18-silica monoliths were optimized for maximum surface coverage with octadecyl moieties in order to maximize retention and selectivity toward neutral and charged solutes with a sufficiently strong electroosmotic flow (> 2 mm/s) to yield rapid analysis time. Furthermore, the effect of the pore-tailoring process on the silica monoliths was performed over a wide range of treatment time with 0.010 M ammonium hydroxide solution in order to determine the optimum time and conditions that yield mesopores of narrow pore size distribution that result in high separation efficiency. Under optimum column fabrication conditions and optimum mobile phase composition and flow velocity, the average separation efficiency reached 160 000 plates/m, a value comparable to that obtained on columns packed with 3 microm C18-silica particles with the advantages of high permeability and virtually no bubble formation. The optimized monolithic C18-silica columns were evaluated for their retention properties toward neutral and charged analytes over a wide range of mobile phase compositions. A series of dimensionless retention parameters were evaluated and correlated to solute polarity and electromigration property. A dimensionless mobility modulus was introduced to describe charged solute migration and interaction behavior with the monolithic C18-silica in a counterflow regime during capillary electrochromatography (CEC )separations. The mobility moduli correlated well with the solute hydrophobic character and its charge-to-mass ratio.

  4. Investigation of the properties of organically modified ordered mesoporous silica films.

    PubMed

    Jung, Sang-Bae; Ha, Tae-Jung; Park, Hyung-Ho

    2008-04-15

    Organically modified, ordered mesoporous silica films, which can provide hydrophobicity and low polarizability to the framework, were prepared using Brij-76 block copolymer as a template. Due to a fast condensation reaction of the silica precursor, mesostructured silica films were not properly synthesized. To circumvent this problem, a synthesis procedure was modified to provide an enhancement of pore periodicity through the incorporation of methyl ligands on the framework. The micropore volume was reduced, and the pore size was enlarged, as the concentration of the methyl ligands on the framework was increased. A mesophase transition from a two-dimensional hexagonal structure to a body-centered cubic (BCC) structure was observed according to the concentration of incorporated methyl ligands. The mechanical properties of the fabricated films were investigated according to the pore ordering and film density. The mechanical properties of the films with random pore geometry show a positive correlation between film density and elastic modulus. Meanwhile, the mechanical behavior of organically modified mesoporous silica films with periodic pore distribution represents a negative correlation within a certain density range, which is advantageous to the low-k materials. Especially, film with a low micropore volume fraction and BCC pore ordering is more applicable to a low-k material due to low dielectric constant and high mechanical strength.

  5. Preparation of single-site catalyst inside the functionalized nanopore of silica and its ethylene polymerization.

    PubMed

    Lee, Sang Yun; Ko, Young Soo

    2013-06-01

    Amorphous silica have been functionalized with organo-silane, and (n-BuCp)2ZrCI2 and methylaluminoxane (MAO) were subsequently immobilized on the functionalized silica for the further evaluation as a catalyst of ethylene polymerization. Four organo-silanes such as 3-aminopropyltrimethoxysilane (1NS), N-[(3-trimethoxysilyl)propyl]ethylenediamine (2NS), N1-[3-(trimethoxysilyl)propyl]diethylenetriamine (3NS), and 4-(triethoxysilyl)butyronitrile (1NCy), were employed for this study. The Zr content and polymerization activity of the supported catalysts were strongly dependent on the kind and structure of organo-silane. 2NS showed the highest Zr content with higher activity, indicating the more Zr could be captured due to a stronger interaction between (n-BuCp)2ZrCl2 and amine group.

  6. Preparation and characterization of silica aerogels from diatomite via ambient pressure drying

    NASA Astrophysics Data System (ADS)

    Wang, Baomin; Ma, Hainan; Song, Kai

    2014-07-01

    The silica aerogels were successfully fabricated under ambient pressure from diatomite. The influence of different dilution ratios of diatomite filtrate on physical properties of aerogels were studied. The microstructure, surface functional groups, thermal stability, morphology and mechanical properties of silica aerogels based on diatomite were investigated by BET adsorption, FT-IR, DTA-TG, FESEM, TEM, and nanoindentation methods. The results indicate that the filtrate diluted with distilled water in a proportion of 1: 2 could give silica aerogels in the largest size with highest transparency. The obtained aerogels with density of 0.122-0.203 g/m3 and specific surface area of 655.5-790.7 m2/g are crack free amorphous solids and exhibited a sponge-like structure. Moreover, the peak pore size resided at 9 nm. The initial aerogels were hydrophobic, when being heat-treated around 400°C, the aerogels were transformed into hydrophilic ones. The obtained aerogel has good mechanical properties.

  7. [Preparation and evaluation of 2,6-di-O-pentyl-beta-cyclodextrin bonded silica stationary phase for high performance liquid chromatography].

    PubMed

    Liu, Liwen; Luo, Aiqin; Dai, Rongji; Ge, Xiaoxia; Yang, Shaoning

    2004-11-01

    In order to improve the chiral separation capability of the conventional beta-cyclodextrin bonded-silica gel stationary phase, 2,6-di-O-pentyl-beta-cyclodextrin bonded stationary phase (PCDS) was prepared via a long spacer. The resulted bonded-silica stationary phase was characterized by three methods, namely Fourier transform infrared, Molisch color reaction, X-ray optical electrical energy spectrogram. The chromatographic performances of PCDS were investigated by using liquid chromatography with toluene, dimethyl phthalate, and phenanthrene as solutes, and their retention mechanism was investigated and discussed. The results show that the introduction of pentyl to beta-cyclodextrin leads to enhancement of the retention of the solutes. The chiral separation capability of the new bonded-silica stationary phase was evaluated by using liquid chromatography with some chiral drugs. Some of the enantiomers such as chlorphenamine maleate and bupropion hydrochloride were separated by heptakis (2,6-di-O-pentyl)-beta-cyclodextrin bonded silica stationary.

  8. Critical roles of cationic surfactants in the preparation of colloidal mesostructured silica nanoparticles: control of mesostructure, particle size, and dispersion.

    PubMed

    Yamada, Hironori; Urata, Chihiro; Higashitamori, Sayuri; Aoyama, Yuko; Yamauchi, Yusuke; Kuroda, Kazuyuki

    2014-03-12

    Mesoporous silica nanoparticles are promising materials for various applications, such as drug delivery and catalysis, but the functional roles of surfactants in the formation and preparation of mesostructured silica nanoparticles (MSN-as) remain to be seen. It was confirmed that the molar ratio of cationic surfactants to Si of alkoxysilanes (Surf/Si) can affect the degree of mesostructure formation (i.e., whether the mesochannels formed inside the nanoparticles actually pass through the outer surface of the particles), the particle diameter, and the dispersibility of MSN-as. Wormhole-like mesostructures formed with low Surf/Si ratios; however, the mesopores did not pass through the outer surface of the particles completely. At high Surf/Si ratios, the mesostructures extended. The particle diameter was 100 nm or larger at low Surf/Si ratios, and the primary particle diameter decreased as the Surf/Si ratio increased. This was because the surfactants enhanced the dispersity of the alkoxysilanes in water and the hydrolysis rate of the alkoxysilanes became faster, leading to an increased nucleation as compared to the particle growth. Moreover, primary particles aggregated at low Surf/Si ratios because of the hydrophobic interactions among the surfactants that were not involved in the mesostructure formation but were adsorbed onto the nanoparticles. At high Surf/Si ratios, the surfactant micelles were adsorbed on the surface of primary particles (admicelles), resulting in the dispersion of the particles due to electrostatic repulsion. In particular, molar ratios of 0.13 or higher were quite effective for the preparation of highly dispersed MSN-as. Surfactants played important roles in the mesostructure formation, decreasing the particle diameters, and the dispersibility of the particles. All of these factors were considerably affected by the Surf/Si ratio. The results suggested novel opportunities to control various colloidal mesostructured nanoparticles from the

  9. Preparation and characterization of antibacterial Senegalia (Acacia) senegal/iron-silica bio-nanocomposites

    NASA Astrophysics Data System (ADS)

    Şişmanoğlu, Tuba; Karakuş, Selcan; Birer, Özgür; Soylu, Gülin Selda Pozan; Kolan, Ayşen; Tan, Ezgi; Ürk, Öykü; Akdut, Gizem; Kilislioglu, Ayben

    2015-11-01

    Many studies that research bio-nanocomposites utilize techniques that involve the dispersion of strengthening components like silica, metal and metal oxides through a host biopolymer matrix. The biggest success factor for the bio-nanocomposite is having a smooth integration of organic and inorganic phases. This interattraction between the surfaces of inorganic particles and organic molecules are vital for good dispersion. In this study, a novel biodegradable antibacterial material was developed using gum arabic from Senegalia senegal (stabilizer), silica (structure reinforcer) and zero valent iron particles. Silica particles work to not only strengthen the mechanical properties of the Senegalia senegal but also prevent the accumulation of ZVI nanoparticles due to attraction between hydroxyl groups and FeO. The gum arabic/Fe-SiO2 bio-nanocomposite showed effective antibacterial property against the Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. Using Scanning electron microscopy, homogeneous dispersion and uniform particle size was viewed in the biopolymer. X-ray diffraction studies of iron particles organization in Senegalia senegal also showed that the main portion of iron was crystalline and in the form of FeO and Fe0. X-ray photoelectron spectroscopy was used to evaluate the chemical composition of the surface but no appreciable peak was measured for the iron before Ar etching. These results suggest that the surface of iron nanoparticles consist mainly of a layer of iron oxides in the form of FeO. Thermal gravimetric analysis was used to determine the thermal stability and absorbed moisture content.

  10. Preparation and evaluation of a lysine-bonded silica monolith as polar stationary phase for hydrophilic interaction pressurized capillary electrochromatography.

    PubMed

    Huang, Guihua; Lian, Qiuyan; Zeng, Wencan; Xie, Zenghong

    2008-09-01

    A silica-based monolith as polar stationary phase was described for hydrophilic interaction pressurized capillary electrochromatography (HI-pCEC). The polar monolithic column was prepared by on-column reaction of lysine with epoxy groups on a gamma-glycidoxypropyltrimethosysilane-modified silica monolith. The stationary phase yielded strong hydrophilic interaction due to the slightly polar hydroxyl groups, and the strong polar lysine ligand with amino groups and carboxylic groups contained on the surface of the monolith. In order to evaluate the hydrophilic character of lysine ligand, the chromatographic behaviors of epoxy monolith (before lysine bonded) and diol monolith (hydroxyl groups contained) were also investigated. Two groups of comparative experiment were developed in terms of the separation of typical neutral non-polar and polar compounds performed in a mobile phase of aqueous-acetonitrile solution. Results showed that the lysine monolith was much more hydrophilic than the diol monolith, which presented less hydrophobic than the epoxy monolith. For further study on its hydrophilic character, the lysine monolith was demonstrated in the HI-pCEC mode for the separations of various polar compounds such as phenols, nucleic acid bases and nucleosides.

  11. Structural, Optical and Magnetic Properties of Nickel-Silica Nanocomposite Prepared by a Sol-Gel Route

    NASA Astrophysics Data System (ADS)

    Saha, Mrinal; Soumya Mukherjee; Gayen, Arup; Siddhartha Mukherjee

    2015-10-01

    Nickel-silica nanocomposites have been synthesized by a sol-gel method using dextrose (C6H12O6) as the reducing agent. The dried gel is heat treated at 850 and 900 °C for 30 min in an inert atmosphere by N2 purging to obtain the composite material. The samples have been characterized by powder X-ray diffraction, field emission scanning electron microscopy, atomic force microscopy, transmission electron microscopy and selected area electron diffraction. Pure polycrystalline nickel granular particle has been found to form with face-centered cubic structure and is entrapped in amorphous silica matrix with particle sizes in between 10 and 30 nm and is almost spherical in shape. The strong ferromagnetic nature of Ni-SiO2 composite became evident from the M-H curve which is quite different from the bulk nickel. The band gap of the synthesized Ni-SiO2 nanocomposite is found to be 2.35 eV. The reported sol-gel technique is a convenient and effective method to prepare high purity nanopowders with uniform size distribution.

  12. Preparation and in vitro/in vivo Evaluation of Lacidipine by Adsorption onto Fumed Silica Using Supercritical Carbon Dioxide.

    PubMed

    Geng, Yajie; Fu, Qiang; Guo, Bei; Li, Yun; Zhang, Xiangrong; Wang, Xianglin; Zhang, Tianhong

    2016-01-01

    The aim of this study was to design a silica-supported solid dispersion of lacidipine (LCDP) to enhance the dissolution rate and oral absorption using supercritical CO2 (scCO2) as a solvent. The formulation was characterized using differential scanning calorimetry, powder X-ray diffraction, scanning electron microscopy and fourier transformed infrared spectroscopy. In the dissolution test, LCDP-scCO2 formulation showed a significantly enhanced dissolution compared with LCDPsilica physical mixture and a faster dissolution rate than Lacipil® under different dissolution conditions. In an in vivo test, the area under concentration-time curve and Cmax of LCDP-scCO2 formulation was 9.23 and 23.78 fold greater than LCDP-silica physical mixture (1:15, w/w), respectively, whereas the corresponding values were 1.92 and 2.80 fold greater than Lacipil®, respectively. Our results showed that the solid dispersion prepared by supercritical fluids technology is a feasible method to enhance the oral bioavailability of LCDP.

  13. SBA-15 mesoporous silica free-standing thin films containing copper ions bounded via propyl phosphonate units - preparation and characterization

    SciTech Connect

    Laskowski, Lukasz; Laskowska, Magdalena; Jelonkiewicz, Jerzy; Dulski, Mateusz; Wojtyniak, Marcin; Fitta, Magdalena; Balanda, Maria

    2016-09-15

    The SBA-15 silica thin films containing copper ions anchored inside channels via propyl phosphonate groups are investigated. Such materials were prepared in the form of thin films, with hexagonally arranged pores, laying rectilinear to the substrate surface. However, in the case of our thin films, their free standing form allowed for additional research possibilities, that are not obtainable for typical thin films on a substrate. The structural properties of the samples were investigated by X-ray reflectometry, atomic force microscopy (AFM) and transmission electron microscopy (TEM). The molecular structure was examined by Raman spectroscopy supported by numerical simulations. Magnetic measurements (SQUID magnetometry and EPR spectroscopy) showed weak antiferromagnetic interactions between active units inside silica channels. Consequently, the pores arrangement was determined and the process of copper ions anchoring by propyl phosphonate groups was verified in unambiguous way. Moreover, the type of interactions between magnetic atoms was determined. - Highlights: • Functionalized free-standing SBA-15 thin films were synthesized for a first time. • Thin films synthesis procedure was described in details. • Structural properties of the films were thoroughly investigated and presented. • Magnetic properties of the novel material was investigated and presented.

  14. Robust preparation of core-shell type silica/polymer nanocomposites by using surface-initiated ARGET ATRP

    NASA Astrophysics Data System (ADS)

    Mai, Thanh Binh; Tran, Thi Nga; Kim, Dong Woo; Lim, Kwon Taek; Hong, Seong-Soo; Park, Chan

    2015-01-01

    A facile route for covalent functionalization of silica (SiO2) nanoparticles with poly(methyl methacrylate) (PMMA) has been investigated. The surfaces of the SiO2 nanoparticles were treated with 2-bromo-2-methyl-N-[3-(trimethoxysilyl)propyl] propanamide to introduce the initiator moieties on the surface. Subsequently, activators regenerated by using electron transfer atom transfer radical polymerization (ARGET ATRP) of methyl methacrylate were employed for the preparation of SiO2/PMMA nanocomposites with a CuBr2/ N,N,N', N″,N″-pentamethyldiethylenetriamine catalyst system and a tin(II) 2-ethylhexanoate reducing agent. The modification of SiO2 was confirmed by surface analyses including Fourier transfer infrared spectroscopy and X-ray photoelectron spectroscopy. The morphology of the nanocomposites was investigated by using field-emission scanning electron microscopy and transmission electron microscopy. A thermogravimetric analysis was used to evaluate the thermal properties and the grafting density. The colloidal stability of silica nanoparticles in a common organic solvent was explicitly shown to have been remarkably improved by the grafting process.

  15. Preparation of iron boride-silica core-shell nanoparticles with soft ferromagnetic properties.

    PubMed

    Saiyasombat, C; Petchsang, N; Tang, I M; Hodak, J H

    2008-02-27

    A one-pot aqueous chemical synthesis for silica-passivated ferromagnetic nanoparticles is presented. The average size of these particles is 84 ± 20 nm. The x-ray and electron diffraction experiments revealed that the nanoparticles are mainly composed of polycrystalline iron boride. The broad x-ray diffraction peak leads to an average crystallite size of 1.8 nm, which is much smaller than the overall size of the particles, and is consistent with the polycrystalline nature of the samples. Mössbauer spectroscopy and magnetization experiments were used to establish the room temperature magnetic properties as well as the chemical nature of the particles. Fe(2)B dominates the composition of the nanoparticles, having a hyperfine field broadly distributed in the 10-33 T range. Alpha iron, the second ferromagnetic material identified in the particles, amounts to 4.6% of the composition. Finally, a paramagnetic phase accounting for approximately 14.6% of the material of the particles was also detected. These nanoparticles contain a core with soft ferromagnetic properties surrounded by a passivating silica layer, and are suitable for magnetically targeted drug delivery and electromagnetic induction heating applications.

  16. Preparation of porous hollow silica spheres via a layer-by-layer process and the chromatographic performance

    NASA Astrophysics Data System (ADS)

    Wei, Xiaobing; Gong, Cairong; Chen, Xujuan; Fan, Guoliang; Xu, Xinhua

    2017-01-01

    Hollow silica spheres possessing excellent mechanical properties were successfully prepared through a layer-by-layer process using uniform polystyrene (PS) latex fabricated by dispersion polymerization as template. The formation of hollow SiO2 micro-spheres, structures and properties were observed in detail by zeta potential, SEM, TEM, FTIR, TGA and nitrogen sorption porosimetry. The results indicated that the hollow spheres were uniform with particle diameter of 1.6 μm and shell thickness of 150 nm. The surface area was 511 m2/g and the pore diameter was 8.36 nm. A new stationary phase for HPLC was obtained by using C18-derivatized hollow SiO2 micro-spheres as packing materials and the chromatographic properties were evaluated for the separation of some regular small molecules. The packed column showed low column pressure, high values of efficiency (up to about 43 000 plates/m) and appropriate asymmetry factors.

  17. Preparation of Fe3O4 encapsulated-silica sulfonic acid nanoparticles and study of their in vitro antimicrobial activity.

    PubMed

    Naeimi, Hossein; Nazifi, Zahra Sadat; Amininezhad, Seyedeh Matin

    2015-08-01

    A simple and efficient method for the functionalization of silica-coated Fe3O4 magnetic nanoparticles (Fe3O4@SiO2) using chlorosulfonic acid is described. The prepared compounds were screened for antibacterial activity against Escherichia coli (E. coli ATCC 25922) and Staphylococcus aureus (S. aureus ATCC 25923) under UV-light and dark conditions. It was found that the Fe3O4@SiO2-SO3H was significantly indicated the higher photocatalytic inactivation than both Fe3O4 and Fe3O4@SiO2 against E. coli in compared with S. aureus. Furthermore, the inactivation efficiency against both organisms under light conditions has been higher than this efficiency under dark conditions.

  18. Preparation of porous hollow silica spheres via a layer-by-layer process and the chromatographic performance

    NASA Astrophysics Data System (ADS)

    Wei, Xiaobing; Gong, Cairong; Chen, Xujuan; Fan, Guoliang; Xu, Xinhua

    2017-03-01

    Hollow silica spheres possessing excellent mechanical properties were successfully prepared through a layer-by-layer process using uniform polystyrene (PS) latex fabricated by dispersion polymerization as template. The formation of hollow SiO2 micro-spheres, structures and properties were observed in detail by zeta potential, SEM, TEM, FTIR, TGA and nitrogen sorption porosimetry. The results indicated that the hollow spheres were uniform with particle diameter of 1.6 μm and shell thickness of 150 nm. The surface area was 511 m2/g and the pore diameter was 8.36 nm. A new stationary phase for HPLC was obtained by using C18-derivatized hollow SiO2 micro-spheres as packing materials and the chromatographic properties were evaluated for the separation of some regular small molecules. The packed column showed low column pressure, high values of efficiency (up to about 43 000 plates/m) and appropriate asymmetry factors.

  19. Preparation of sequence-controlled triblock copolymer-grafted silica microparticles by sequential-ATRP for highly efficient glycopeptides enrichment.

    PubMed

    Pan, Yiting; Ma, Cheng; Tong, Wei; Fan, Chao; Zhang, Qian; Zhang, Wanjun; Tian, Fang; Peng, Bo; Qin, Weijie; Qian, Xiaohong

    2015-01-06

    As one of the most important subproteomes in eukaryote cells, N-glycoproteins play crucial roles in various of biological processes and have long been considered closely correlated with the occurrence, progression, and metastasis of cancer. Comprehensive characterization of protein N-glycosylation and association of their aberrant patterns to the corresponding cancer stage may provide a unique way to discover new diagnostic biomarkers and therapeutic drug targets. However, the extremely complex nature of biological samples and relatively low abundance of N-glycosylated proteins makes the enrichment of glycoprotein/glycopeptide a prerequisite for large scale N-glycosylation identification. In this work, we prepared sequence controlled triblock copolymer grafted silica-microparticles (TCP-SMs) by sequential atom transfer radical polymerization (sequential-ATRP) of monosaccharides and zwitterionic-ion monomers for highly efficient and selective glycopeptides enrichment. The triblock copolymer is composed of sequence defined poly zwitterionic-ion, poly-N-acetylglucosamine and poly mannose blocks. The glycopolymer blocks carrying densely packed pendent sugars are excellent mimics of the natural carbohydrate clusters and may induce multivalent carbohydrate-carbohydrate interaction (CCI) with the target glycopeptides. Therefore, increased retention of glycopeptides can be expected by the combination of CCI and zwitterionic-HILIC interaction. As a result, 1244 glycopeptides were identified after TCP-SMs enrichment from mouse liver, which are 65-120% higher than that obtained by homoglycopolymer or random-copolymer grafted silica microparticles prepared using the conventional free radical polymerization. These results demonstrate the critical role of sequence-defined block copolymer of TCP-SMs for obtaining enhanced affinity toward glycopeptides and the potential of this sequential-ATRP strategy to integrate different affinity moieties into one enrichment material to

  20. Preparation and characterization of pure and mixed monolayers of poly(ethylene glycol) brushes chemically adsorbed to silica surfaces.

    PubMed

    McNamee, Cathy E; Yamamoto, Shinpei; Higashitani, Ko

    2007-04-10

    We prepared pure and mixed monolayers of methoxy-terminated poly(ethylene glycol)s (m-PEG's) chemically attached to silica surfaces by using m-PEG silane coupling agents of three different molecular weights. These films were subsequently characterized in water by atomic force microscopy (AFM). Images of pure m-PEG monolayers showed the formation of polymer brushes on silica. Force curves between two modified surfaces suggested that an increase in the number of oxyethylene (OE) groups from 6 (PEG6 surface) to 43 (PEG43 surface) to 113 (PEG113 surface) decreased the flexibility of the m-PEG chains in the m-PEG brushes. Frictional force measurements also showed that the friction increased in the order PEG6 < PEG43 prepared using various fractions of PEG6 and PEG113. Images of mixed PEG6 and PEG113 monolayers showed that the size of the PEG113 islands in the film decreased as the fraction of PEG113 decreased. The force curves between two modified surfaces suggested that the flexibility of the mixed monolayers decreased as the fraction of PEG113 increased. Frictional force measurements also showed that the friction decreased as the fraction of PEG6 in the PEG6-PEG113 mixed film increased. Entanglements were therefore thought to decrease as the fraction of PEG113 in the mixed monolayer decreased.

  1. [Preparation and stability of β-carotene loaded using mesoporous silica nanoparticles as carriers system].

    PubMed

    Liu, Jing; Ren, Zhi-hui; Wang, Hai-yuan; Jin, Xing-hua

    2015-09-01

    1,3,5-Trimethylbenzene (1,3,5-TMB) was used as the pore-enlarging modifier to expand the pore size of MCM-41 (mobil company of matter) mesoporous silica nanoparticles. The solvent impregnation method was adopted to assemble non-water-soluble β-carotene into the pore channel of MCM-41. The MCM-41 and drug assemblies were characterized by TEM, FT-IR, elemental analysis and N2 adsorption-desorption. The results showed that MCM-41 has good sphericity and regular pore structure. The research also investigated the optimal loading time, the drug loading and the vitro stability of the β-carotene. As a drug carrier, the modified MCM-41 showing a shorter drug loading time, the drug loading as high as 85.58% and the stability of β-carotene in drug assemblies has improved. The study of this new formulation provides a new way for β-carotene application.

  2. Preparation and characterization of porous hollow silica nanoparticles for drug delivery application.

    PubMed

    Chen, Jian-Feng; Ding, Hao-Min; Wang, Jie-Xin; Shao, Lei

    2004-02-01

    Porous hollow silica nanoparticles (PHSNP) with a diameter of 60-70 nm and wall thickness of approximately 10nm were synthesized by using CaCO(3) nano-particles as the inorganic template. The characterization of PHSNP by TEM and BET indicated that PHSNP were uniform spherical particles with good dispersion, and had a specific surface area of 867 m(2)/g. The as-synthesized PHSNP were subsequently employed as drug carrier to investigate in vitro release behavior of cefradine in simulated body fluid. UV-spectrometry and TG analyses were performed to determine the amount of cefradine entrapped in the carrier. The BJH pore size distribution of PHSNP before and after entrapping cefradine was examined. Cefradine release profile from PHSNP followed a three-stage pattern and exhibited a delayed release effect.

  3. Preparation and Electrochemical Characterization of Mesoporous Polyaniline-Silica Nanocomposites as an Electrode Material for Pseudocapacitors

    PubMed Central

    Zu, Lei; Cui, Xiuguo; Jiang, Yanhua; Hu, Zhongkai; Lian, Huiqin; Liu, Yang; Jin, Yushun; Li, Yan; Wang, Xiaodong

    2015-01-01

    Mesoporous polyaniline-silica nanocomposites with a full interpenetrating structure for pseudocapacitors were synthesized via the vapor phase approach. The morphology and structure of the nanocomposites were deeply investigated by scanning electron microscopy, infrared spectroscopy, X-ray diffraction, thermal gravimetric analysis and nitrogen adsorption-desorption tests. The results present that the mesoporous nanocomposites possess a uniform particle morphology and full interpenetrating structure, leading to a continuous conductive polyaniline network with a large specific surface area. The electrochemical performances of the nanocomposites were tested in a mixed solution of sulfuric acid and potassium iodide. With the merits of a large specific surface area and suitable pore size distribution, the nanocomposite showed a large specific capacitance (1702.68 farad (F)/g) due to its higher utilization of the active material. This amazing value is almost three-times larger than that of bulk polyaniline when the same mass of active material was used. PMID:28788006

  4. Controlling surface energy of glass substrates to prepare superhydrophobic and transparent films from silica nanoparticle suspensions.

    PubMed

    Ogihara, Hitoshi; Xie, Jing; Saji, Tetsuo

    2015-01-01

    We fabricated superhydrophobic and transparent silica nanoparticle (SNP) films on glass plates via spray-coating technique. When suspensions containing 1-propanol and hydrophobic SNPs were sprayed over glass plates that were modified with dodecyl groups, superhydrophobic and transparent SNP films were formed on the substrates. Surface energy of the glass plates had a significant role to obtain superhydrophobic and transparent SNP films. SNP films did not show superhydrophobicity when bare glass plates were used as substrates, because water droplets tend to adhere the exposed part of the hydrophilic glass plate. Glass plates having extreme low surface energy were not also suitable because suspension solution was repelled from the substrates, which resulted in forming non-uniform SNP films. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Preparation of MTMS based transparent superhydrophobic silica films by sol-gel method.

    PubMed

    Venkateswara Rao, A; Latthe, Sanjay S; Nadargi, Digambar Y; Hirashima, H; Ganesan, V

    2009-04-15

    Superhydrophobic surfaces with water contact angle higher than 150 degrees generated a lot of interest both in academia and in industry because of the self-cleaning properties. Optically transparent superhydrophobic silica films were synthesized at room temperature (27 degrees C) using sol-gel process by a simple dip coating technique. The molar ratio of MTMS:MeOH:H(2)O (5 M NH(4)OH) was kept constant at 1:10.56:4.16, respectively. Emphasis is given to the effect of the surface modifying agents on the hydrophobic behavior of the films. Methyl groups were introduced in the silica film by post-synthesis grafting from two solutions using trimethylchlorosilane (TMCS) and hexamethyldisilazane (HMDZ) silylating agents in hexane solvent, individually. The percentage of silylating agents and silylation period was varied from 2.5 to 7.5% and 1 to 3 h, respectively. The TMCS modified films exhibited a very high water contact angle (166+/-2 degrees) in comparison to the HMDZ (138+/-2 degrees) modified films, indicating the water repellent behavior of the surface. When the TMCS and HMDZ modified films were heated at temperatures higher than 350 degrees C and 335 degrees C, respectively, the films became superhydrophilic; the contact angle for water on the films was smaller than 5 degrees. Further, the humidity study was carried out at a relative humidity of 85% at 30 degrees C temperature over 30 days. The films have been characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FT-IR), % optical transmission, humidity tests and contact angle (CA) measurements.

  6. Microporous biodegradable polyurethane membranes for tissue engineering.

    PubMed

    Tsui, Yuen Kee; Gogolewski, Sylwester

    2009-08-01

    Microporous membranes with controlled pore size and structure were produced from biodegradable polyurethane based on aliphatic diisocyanate, poly(epsilon-caprolactone) diol and isosorbide chain extender using the modified phase-inversion technique. The following parameters affecting the process of membrane formation were investigated: the type of solvent, solvent-nonsolvent ratio, polymer concentration in solution, polymer solidification time, and the thickness of the polymer solution layer cast on a substrate. The experimental systems evaluated were polymer-N,N-dimethylformamide-water, polymer-N,N-dimethylacetamide-water and polymer-dimethylsulfoxide-water. From all three systems evaluated the best results were obtained for the system polymer-N,N-dimethylformamide-water. The optimal conditions for the preparation of microporous polyurethane membranes were: polymer concentration in solution 5% (w/v), the amount of nonsolvent 10% (v/v), the cast temperature 23 degrees C, and polymer solidification time in the range of 24-48 h depending on the thickness of the cast polymer solution layer. Membranes obtained under these conditions had interconnected pores, well defined pore size and structure, good water permeability and satisfactory mechanical properties to allow for suturing. Potential applications of these membranes are skin wound cover and, in combination with autogenous chondrocytes, as an "artificial periosteum" in the treatment of articular cartilage defects.

  7. Development of a simple method for the preparation of novel egg-shell type Pt catalysts using hollow silica nanostructures as supporting precursors

    SciTech Connect

    Wang Jiexin; Chen Jianfeng

    2008-04-01

    A simple method for the preparation of novel egg-shell type platinum catalysts was developed and achieved by utilizing unique hollow silica nanostructures, i.e., hollow silica nanospheres and nanotubes, as supports. The observation by transmission electron microscopy indicated that the well-dispersed hollow silica supported Pt catalysts with a Pt particle diameter of 8-14 nm can be successfully prepared by wet impregnation process and heat treatment. The Pt-loaded hollow silica nanostructures were also characterized by inductively coupled plasma, X-ray diffraction, specific surface area, Fourier transformation infrared spectroscopy, X-ray photoelectron spectroscopy and energy dispersive spectroscopy. It was thus demonstrated that a higher Pt loading amount (0.392%) could be obtained under the same conditions except the addition of ammonia, which was found to be more effective than that (0.061%) with the addition of HCl in the immobilization of Pt. In addition, the effect of soaking time, Pt precursor concentration and calcination temperature on the loading of Pt in hollow silica nanostructures were investigated as well.

  8. Preparation of TiO2/MCM-41 photocatalyst using rice husk ash as silica source

    NASA Astrophysics Data System (ADS)

    Fatimah, Is; Sopia, Lusi

    2017-03-01

    This work aimed to prepare TiO2/MCM-41 from rice husk ash (RHA) agricultural waste and its application as photocatalyst in dye degradation. The preparation was conducted by two main steps; preparation of MCM-41 and titanium immobilization onto MCM-41. Sol gel method using CTMABr as templating agent was applied in MCM-41 synthesis and as TiO2 precursor, titanium isopropoxide was utilized. The study of physicochemical character change was performed by by X-ray diffraction, IR spectroscopy, BET method and thermogravimetric analysis (TGA). Photocatalytic activity of material was tested in methylene blue photodegradation system. According to the results, it is found that TiO2/MCM-41 has been successfully prepared and shows photocatalytic activity. Kinetic study of the reaction is discussed in this paper.

  9. Slow Desorption of Phenanthrene from Silica Particles: Influence of Pore Size, Pore Water, and Aging Time

    SciTech Connect

    Huesemann, Michael H.; Fortman, Timothy J.; Riley, Robert G.; Thompson, Christopher J.; Wang, Zheming; Truex, Michael J.; Peyton, Brent M.

    2006-01-16

    When micro-porous and meso-porous silica particles were exposed to aqueous phenanthrene solutions for various durations it was observed that sorbed-phase phenanthrene concentrations increased with aging time only for meso-porous but not micro-porous silicas. Desorption equilibrium was reached almost instantaneously for the micro-porous particles while both the rate and extent of desorption decreased with increasing aging time for the meso-porous silicas. These findings indicate that phenanthrene can be sequestered within the internal pore-space of meso-porous silicas while the internal surfaces of micro-porous silicas are not accessible to phenanthrene sorption, possibly due to the presence of physi- or chemi-sorbed water that may sterically hinder the diffusion of phenanthrene inside water-filled micro-pores. By contrast, the internal surfaces of these micro-porous silicas are accessible to phenanthrene when aging methods are employed which assure that pores are devoid of physi-sorbed water. Consequently, when phenanthrene was incorporated into these particles using either supercritical CO2 or via solvent soaking, the aqueous desorption kinetics were extremely slow indicating effective sequestration of phenanthrene inside micro-porous particles. Finally, a two-compartment conceptual model is used to interpret the experimental findings.

  10. Shell cross-linked micelles as cationic templates for the preparation of silica-coated nanoparticles: strategies for controlling the mean particle diameter.

    PubMed

    Li, Yuting; Du, Jianzhong; Armes, Steven P

    2009-03-19

    The mean diameter of poly[2-(dimethylamino)ethyl methacrylate]-block-poly[2-(diisopropylamino)ethyl methacrylate] (PDMA-PDPA) diblock copolymer micelles can be easily adjusted from 27-155 nm (as measured by DLS) by either selective quaternisation of the PDMA block or by adding PDPA homopolymer prior to micellisation; these self-assembled nanostructures can be shell crosslinked with 1,2-bis-(2-iodoethoxy)ethane and subsequently used as templates for the preparation of silica-coated nanoparticles and, ultimately, hollow silica nanoparticles. Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Role of Pickering stabilization and bulk gelation for the preparation and properties of solid silica foams.

    PubMed

    Lesov, I; Tcholakova, S; Kovadjieva, M; Saison, T; Lamblet, M; Denkov, N

    2017-10-15

    Foaming of particulate suspensions, followed by foam drying, is developed as an efficient method for production of highly porous materials with various applications. A key factor for success is the appropriate choice of surfactants which both modify the particle surface and stabilize the foam. Here we compare the efficiency of this method for silica suspensions containing two surfactants which lead to very different types of foam stabilization. Cationic TTAB leads to particle-stabilized foams (Pickering stabilization) whereas zwitterionic CAPB - to surfactant-stabilized foams. Thus we determined the general (common) features shared between the various surfactant systems: (1) The foaminess is controlled exclusively by the suspension viscosity under shearing conditions which mimic precisely the foaming process; (2) The foam stability to drainage and coarsening is controlled exclusively by the suspension yield stress; (3) The surfactant adsorption on the particle surface should occur in the time scale of seconds to minutes, thus ensuring appropriate rheological properties of the foaming suspension. Similar kinetic effects could be of high interest to other colloid systems and processes, e.g. for kinetic control of the internal structure and properties of aerogels produced from sheared suspensions, and for control of the transient rheological properties and non-Newtonian flow of particulate gels. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Magnetic properties of cobalt ferrite-silica nanocomposites prepared by a sol-gel autocombustion technique.

    PubMed

    Cannas, C; Musinu, A; Piccaluga, G; Fiorani, D; Peddis, D; Rasmussen, H K; Mørup, S

    2006-10-28

    The magnetic properties of cobalt ferrite-silica nanocomposites with different concentrations (15, 30, and 50 wt %) and sizes (7, 16, and 28 nm) of ferrite particles have been studied by static magnetization measurements and Mossbauer spectroscopy. The results indicate a superparamagnetic behavior of the nanoparticles, with weak interactions slightly increasing with the cobalt ferrite content and with the particle size. From high-field Mossbauer spectra at low temperatures, the cationic distribution and the degree of spin canting have been estimated and both parameters are only slightly dependent on the particle size. The magnetic anisotropy constant increases with decreasing particle size, but in contrast to many other systems, the cobalt ferrite nanoparticles are found to have an anisotropy constant that is smaller than the bulk value. This can be explained by the distribution of the cations. The weak dependence of spin canting degree on particle size indicates that the spin canting is not simply a surface phenomenon but also occurs in the interiors of the particles.

  13. Methods for synthesizing microporous crystals and microporous crystal membranes

    DOEpatents

    Dutta, Prabir; Severance, Michael; Sun, Chenhu

    2017-02-07

    A method of making a microporous crystal material, comprising: a. forming a mixture comprising NaOH, water, and one or more of an aluminum source, a silicon source, and a phosphate source, whereupon the mixture forms a gel; b. heating the gel for a first time period, whereupon a first volume of water is removed from the gel and micoroporous crystal nuclei form, the nuclei having a framework; and c.(if a membrane is to be formed) applying the gel to a solid support seeded with microporous crystals having a framework that is the same as the framework of the nuclei; d. heating the gel for a second time period. during which a second volume of water is added to the gel; wherein the rate of addition of the second volume of water is between about 0.5 and about 2.0 fold the rate of removal of the first volume of water.

  14. One Polymorph and Various Morphologies of Phenytoin at a Silica Surface Due to Preparation Kinetics

    PubMed Central

    2014-01-01

    The preparation of solid crystalline films at surfaces is of great interest in a variety of fields. Within this work the preparation of pharmaceutically relevant thin films containing the active pharmaceutical ingredient phenytoin is demonstrated. The preparation techniques applied include drop casting, spin coating, and vacuum deposition. For the solution processed samples a decisive impact of the solution concentration and the applied film fabrication technique is observed; particular films form for all samples but with their extensions along different crystallographic directions strongly altered. Vacuum deposition of phenytoin reveals amorphous films, which over time crystallize into needle-like or particular-type structures whereby a nominal thickness of 50 nm is required to achieve a fully closed layer. Independent of all preparation techniques, the resulting polymorph is the same for each sample as confirmed by specular X-ray diffraction scans. Thus, morphologies observed via optical and atomic force microscope techniques are therefore a result of the preparation technique. This shows that the different time scales for which crystallization is obtained is the driving force for the various morphologies in phenytoin thin films rather than the presence of another polymorph forming. PMID:25593545

  15. Preparation and characterization of new photoluminescent nano-powder based on Eu3+:La2Ti2O7 and dispersed into silica matrix for latent fingerprint detection

    NASA Astrophysics Data System (ADS)

    Saif, M.; Alsayed, N.; Mbarek, A.; El-Kemary, M.; Abdel-Mottaleb, M. S. A.

    2016-12-01

    Pure lanthanum titanate doped with europium metal ions (La2Ti2O7:Eu3+) and dispersed in silica matrix phosphor powder was prepared by sol-gel process followed by thermal treatment. The prepared nanophosphors were characterized by powder X-ray Diffraction (XRD), Fourier Transform Infrared (FT-IR), Transmission Electron Microscope (TEM), Energy Dispersive Spectroscopy (EDX), and Photoluminescence Spectroscopy (PL). The effects of silica, thermal treatment, Eu3+ ion, and surfactant (CTAB) concentrations on the crystal, morphology, and photoluminescence properties were investigated. The present work found that dispersion of La2Ti2O7:Eu3+ into silica matrix significantly altered the morphology of La2Ti2O7:Eu3+ from high crystalline micro-plate like shape into amorphous aggregated Nano-spherical shape. The high separated spherical shape with intense red PL emission and long lifetime was obtained from 10 mol% Eu3+:La2Ti2O7:Eu3+, dispersed into silica matrix, and prepared in the presence of CTAB. The high PL Nano-phosphor has been successfully used in developing latent fingerprint from various forensic relevant materials.

  16. Preparation and adsorption behavior of berberine hydrochloride imprinted polymers by using silica gel as sacrificed support material

    NASA Astrophysics Data System (ADS)

    Li, Hui; Li, Yuzhuo; Li, Zhiping; Peng, Xiyang; Li, Yanan; Li, Gui; Tan, Xianzhou; Chen, Gongxi

    2012-03-01

    Preparation of berberine hydrochloride (B-Cl) imprinted polymers (MIPs) based on surface imprinting technique with silica gel as sacrificial support material was performed successfully by using B-Cl as template, methacrylic acid (MAA) and ethylene glycol dimethacrylate (EGDMA) as functional monomer and cross-linker, respectively. The prepared polymers were characterized by Fourier transmission infrared spectrometry (FTIR) and scanning electron microscopy (SEM). Adsorption behavior of the MIPs for the template and its structural analogues was investigated. Sites distribution on the surface of MIPs was explored by using different isotherm adsorption models and thermodynamic parameters for the adsorption of B-Cl on the MIPs determined. Sample application and reusability for the MIPs was also evaluated. Results indicated the strong adsorption and high selectivity of the MIPs for B-Cl. Saturated adsorption capacity reached 27.2 μmol g-1 and the selectivity coefficient of the MIPs for B-Cl relative to jatrorrhizine hydrochloride (J-Cl) and palmatine palmatus hydrochloride (P-Cl) are 3.70 and 6.03, respectively. In addition, the MIPs were shown with good reusability and selectively retention ability in sample application.

  17. The hybrid photocatalyst of TiO2-SiO2 thin film prepared from rice husk silica

    NASA Astrophysics Data System (ADS)

    Klankaw, P.; Chawengkijwanich, C.; Grisdanurak, N.; Chiarakorn, Siriluk

    2012-03-01

    The TiO2-SiO2 thin film was prepared by self-assembly method by mixing SiO2 precursor with titanium precursor solution and aged to obtain a co-precipitation of silica and titanium crystals. Dip coating method was applied for thin film preparation on glass slide. The X-ray diffraction (XRD) of the self-assembly thin film had no characteristic property of SiO2 and even anatase TiO2 but indicated new crystal structure which was determined from the Fourier Transform Infrared Spectrophotometer (FTIR) as a hybridized Ti-O-Si bonding. The surface area and surface volume of the self-assembly sample were increased when SiO2 was incorporated into the film. The self-assembly TiO2-SiO2 thin film exhibited the enhanced photocatalytic decolorization of methylene blue (MB) dye. The advantages of SiO2 are; (1) to increase the adsorbability of the film and (2) to provide the hydroxyl radical to promote the photocatalytic reaction. The self-assembly thin film with the optimum molar ratio (SiO2:TiO2) as 20:80 gave the best performance for photocatalytic decolorization of MB dye with the overall efficiency of 81%.

  18. A nanosized Ag-silica hybrid complex prepared by γ-irradiation activates the defense response in Arabidopsis

    NASA Astrophysics Data System (ADS)

    Chu, Hyosub; Kim, Hwa-Jung; Su Kim, Joong; Kim, Min-Soo; Yoon, Byung-Dae; Park, Hae-Jun; Kim, Cha Young

    2012-02-01

    Silver nanoparticles have antimicrobial activity against many pathogenic microbes. Here, the preparation of a nanosized Ag-silica hybrid complex (NSS) prepared by γ-irradiation is described. The effects of both NSS and reduced Ag nanoparticles (Ag 0) on the growth of the model plant Arabidopsis thaliana were tested. The application of 1-10 ppm NSS complex improved Arabidopsis growth in soil, whereas 100 ppm NSS resulted in weakly curled leaves. In addition, supplementation of Murashige and Skoog (MS) growth medium with 1 ppm NSS promoted the root growth of Arabidopsis seedlings, but root growth was inhibited by supplementation with 10 ppm NSS. To investigate whether the NSS complex could induce plant defense responses, the expression of pathogenesis-related ( PR) genes that are implicated in systemic acquired resistance (SAR) in Arabidopsis plants was examined. PR1, PR2 and PR5 were significantly up-regulated by each application of 10 ppm NSS complex or Ag 0 to the rosette leaves. Furthermore, pretreatment with the NSS complex induced more pathogen resistance to the virulent pathogen Pseudomonas syringae pv. tomato DC3000 ( Pst) compared to water treatment in Arabidopsis plants.

  19. Tuning of the vinyl groups' spacing at surface of modified silica in preparation of high density imprinted layer-coated silica nanoparticles: a dispersive solid-phase extraction materials for chlorpyrifos.

    PubMed

    Lu, Qing; Chen, Xuemei; Nie, Li; Luo, Jing; Jiang, Huijun; Chen, Lina; Hu, Qin; Du, Shuhu; Zhang, Zhongping

    2010-05-15

    This paper reports the preparation of high density imprinted layer-coated silica nanoparticles toward selective recognition and fast enrichment of chlorpyrifos (CP) from complicated matrices. The molecularly imprinted polymers (MIPs) were successfully coated at the surface of modified silica through using the chemical immovable vinyl groups at the nanoparticles' surface, followed by the graft copolymerization of methacrylic acid (MAA) and ethylene glycol dimethacrylate (EGDMA) in the presence of templates CP. It has been demonstrated that the space of end vinyl groups at the surface of silica can be controlled by changing the condition of chemical modification, regulating the thickness of imprinted shells and the density of efficient imprinted sites. After removal of templates by solvent extraction, the recognition sites of CP were created in the polymer coating layer. The CP-imprinted nanoparticles exhibited high recognition selectivity and binding affinity to CP analyte. When the CP-imprinted nanoparticles were used as dispersive solid-phase extraction (dSPE) materials, the high recovery yields of 76.1-93.5% from various spiked samples with only 1microg/mL analyte were achieved by one-step extraction. These results reported herein provide the possibility for the separation and enrichment of CP from complicated matrices by the molecular imprinting modification at the surface of common silica nanoparticles.

  20. Preparation and evaluation of 2-methylimidazolium-functionalized silica as a mixed-mode stationary phase for hydrophilic interaction and anion-exchange chromatography.

    PubMed

    Yang, Beibei; Liu, Houmei; Chen, Jia; Guan, Ming; Qiu, Hongdeng

    2016-10-14

    In this paper, a novel 2-methylimidazolium-functionalized silica stationary phase was prepared and further used for hydrophilic interaction and anion-exchange mixed-mode chromatography. The stationary phase was characterized by elemental analysis and Fourier transform infrared spectrometry. The chromatographic properties of this stationary phase were investigated by hydrophilic chromatography for the separation of nucleosides, nucleobases, water soluble vitamins, sulfonamides and saccharides, and ion chromatography for the separation of inorganic anions. The effect of acetonitrile content, salt concentration and pH values of the mobile phase on the retention of the stationary phases was also investigated. Compared with 1-methylimidazolium-functionalized silica stationary phase, this new stationary phase demonstrated similar or better separation selectivity. This new column demonstrated good performance and separation selectivity even better than a commercial hydrophilic column. Besides, 2-methylimidazolium-functionalized silica is possible to be modified again and used as a precursor to derivate some new stationary phases from the 3-position nitrogen.

  1. Preparation of amino-Fe(III) functionalized mesoporous silica for synergistic adsorption of tetracycline and copper.

    PubMed

    Zhang, Ziyang; Liu, Huijuan; Wu, Liyuan; Lan, Huachun; Qu, Jiuhui

    2015-11-01

    Finding effective methods for simultaneous removal of antibiotics and heavy metals has attracted increasing concern since both of them are frequently detected in aquatic environments. In this study, a novel mesoporous silica adsorbent (Fe-N,N-SBA15) contained dual-functional groups was synthesized by first grafting di-amino groups on SBA15, and then coordinating Fe(III) onto the adsorbent. The adsorbent was then used in the synchronous elimination of tetracycline (TC) and Cu(II) from water, which was deeply studied by solution pH, kinetics, equilibriums in sole and binary systems. It was found that the adsorbent had high affinity for both TC and Cu(II) and synergistic effects on the adsorption were found. The solution pH remarkably affected the adsorption due to pH-dependent speciation of TC, Cu(II), TC-Cu(II) complex and the surface properties of the adsorbent. Increasing adsorption amount of TC and Cu(II) on the adsorbent could be attributed to the formation of complex TC-Cu(II) bridging or the stronger affinity of the adsorbent for the TC-Cu(II) complex than that for TC or Cu(II) separately. FT-IR and XPS studies revealed that Fe(III) and amino groups on the adsorbent were complexed with the amide of TC and Cu(II), respectively. The recyclabilities of the adsorbent were also evaluated and the Fe-N,N-SBA15 exhibited good reusability for TC and Cu(II) removal. This study shows guidelines and offers an innovative, effective method for the synergistic removal of antibiotics and heavy metals from aquatic environments.

  2. Preparation of monodisperse polystyrene/silica core-shell nano-composite abrasive with controllable size and its chemical mechanical polishing performance on copper

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Wang, Haibo; Zhang, Zefang; Qin, Fei; Liu, Weili; Song, Zhitang

    2011-11-01

    Monodisperse silica-coated polystyrene (PS) nano-composite abrasives with controllable size were prepared via a two-step process. Monodisperse positively charged PS colloids were synthesized via polymerization of styrene by using a cationic initiator. In the subsequent coating process, silica formed shell on the surfaces of core PS particles via the ammonia-catalyzed hydrolysis and condensation of tetraethoxysilane. Neither centrifugation/water wash/redispersion cycle process nor surface modification or addition surfactant was needed in the whole process. The morphology of the abrasives was characterized by scanning electron microscope. Transmission electron microscope and energy dispersive X-ray analysis results indicated that silica layer was successfully coated onto the surfaces of PS particles. Composite abrasive has a core-shell structure and smooth surface. The chemical mechanical polishing performances of the composite abrasive and conventional colloidal silica abrasive on blanket copper wafers were investigated. The root mean square roughness decreases from 4.27 nm to 0.56 nm using composite abrasive. The PS/SiO2 core-shell composite abrasives exhibited little higher material removal rate than silica abrasives.

  3. Composites of Eu(3+)-doped calcium apatite nanoparticles and silica particles: comparative study of two preparation methods.

    PubMed

    Isobe, Ayumu; Takeshita, Satoru; Isobe, Tetsuhiko

    2015-02-10

    We synthesized composites of Eu(3+)-doped calcium apatite (CaAp:Eu(3+)) nanoparticles and silica particles via two methods: (i) in situ synthesis of CaAp:Eu(3+) in the presence of silica particles and (ii) electrostatic adsorption of CaAp:Eu(3+) nanoparticles on silica particle surfaces. In both methods, submicrometer spherical silica particles were covered with CaAp:Eu(3+) nanoparticles without forming any impurity phases, as confirmed by X-ray diffractometry, Fourier-transform infrared spectroscopy, and scanning electron microscopy. In method i, part of the silica surface acted as a nucleation site for apatite crystals and silica particles were inhomogeneously covered with CaAp:Eu(3+) nanoparticles. In method ii, positively charged CaAp:Eu(3+) nanoparticles were homogeneously adsorbed on the negatively charged silica surface through electrostatic interactions. The bonds between the silica surface and CaAp:Eu(3+) nanoparticles are strong enough not to break under ultrasonic irradiation, irrespective of the synthetic method used. The composite particles showed red photoluminescence corresponding to 4f → 4f transitions of Eu(3+) under near-UV irradiation. Although the absorption coefficient of the forbidden 4f → 4f transitions of Eu(3+) was small, the red emission was detectable with a commercial fluorescence microscope because the CaAp:Eu(3+) nanoparticles accumulated on the silica particle surfaces.

  4. White light emission from transparent SiO2 glass prepared from nanometer-sized silica particles

    NASA Astrophysics Data System (ADS)

    Uchino, Takashi; Yamada, Tomoko

    2004-08-01

    We report that nanometer-sized silicon-dioxide particles are sintered to optical transparency at temperatures even below 1000°C, forming nonporous bulk silica glass. The resultant silica glass exhibits visible emission, which appears white to the naked eye, in the wavelength range from ˜400to˜700nm at room temperature under ultraviolet excitation. The observed emission is quite stable after prolonged exposure to the atmosphere and shows no appreciable light-induced degradation. The present photoluminescence characteristics are found to be basically different from those reported previously for silica nanoparticles and silica-based porous materials.

  5. Facile and fast preparation of low-cost silica-supported graphitic carbon nitride for solid-phase extraction of fluoroquinolone drugs from environmental waters.

    PubMed

    Speltini, Andrea; Maraschi, Federica; Govoni, Roberta; Milanese, Chiara; Profumo, Antonella; Malavasi, Lorenzo; Sturini, Michela

    2017-03-17

    The analytical application of silica-supported graphitic carbon nitride (g-C3N4@silica) for solid-phase extraction (SPE) of fluoroquinolone (FQ) pollutants from water is presented for the first time. g-C3N4@silica was easily and quickly prepared by one-pot thermal condensation of dicyandiamide and characterized by powder X-ray diffraction, thermogravimetric analysis, scanning electron microscopy, Fourier transform infrared spectroscopy and surface area measurements. The novel composite was applied as sorbent for SPE of FQs from water prior high-performance liquid chromatography with fluorescence detection. The extraction efficiency of g-C3N4 was tested in tap and surface waters at actual concentrations (10-100ngL(-1)). Quantitative adsorption was achieved using 100mg sorbent (20wt% g-C3N4) for pre-concentration of 50-500mL sample, at the native pH (∼7.5-8). Elution was performed with 25mM H3PO4 aqueous solution-acetonitrile (80:20), obtaining recoveries in the range 70-114%, enrichment factors up to 500 and inter-day RSDs≤12%. The batch-to-batch reproducibility was assessed on three independently synthesized g-C3N4@silica preparations (RSD 6-12%). g-C3N4 supported on silica microparticles proved to be of easy preparation, inexpensive, reusable for at least 4 extractions of raw surface waters, and suitable for determination in real matrices. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Well-defined functional mesoporous silica/polymer hybrids prepared by an ICAR ATRP technique integrated with bio-inspired polydopamine chemistry for lithium isotope separation.

    PubMed

    Liu, Yuekun; Liu, Xuegang; Ye, Gang; Song, Yang; Liu, Fei; Huo, Xiaomei; Chen, Jing

    2017-05-09

    Mesoporous silica/polymer hybrids with well-preserved mesoporosity were prepared by integrating the initiators for continuous activator regeneration (ICAR) atom transfer radical polymerization (ATRP) technique with the bio-inspired polydopamine (PDA) chemistry. By manipulating the auto-oxidative polymerization of dopamine, uniform PDA layers were deposited on the surfaces and pore walls of ordered mesoporous silicas (OMSs), thereby promoting the immobilization of ATRP initiators. Poly(glycidyl methacrylate) (PGMA) brushes were then grown from the OMSs by using the ICAR ATRP technique. The evolution of the mesoporous silica/polymer hybrids during synthesis, in terms of morphology, structure, surface and porous properties, was detailed. And, parameters influencing the controlled growth of polymer chains in the ICAR ATRP system were studied. Taking advantage of the abundant epoxy groups in the PGMA platform, post-functionalization of the mesoporous silica/polymer hybrids by the covalent attachment of macrocyclic ligands for the adsorptive separation of lithium isotopes was realized. Adsorption behavior of the functionalized hybrids toward lithium ions was fully investigated, highlighting the good selectivity, and effects of temperature, solvent and counter ions. The ability for lithium isotope separation was evaluated. A higher separation factor could be obtained in systems with softer counter anions and lower polarity solvents. More importantly, due to the versatility of the ICAR ATRP technique, combined with the non-surface specific PDA chemistry, the methodology established in this work would provide new opportunities for the preparation of advanced organic-inorganic porous hybrids for broadened applications.

  7. Preparation and evaluation of micro and meso porous silica monoliths with embedded carbon nanoparticles for the extraction of non-polar compounds from waters.

    PubMed

    Fresco-Cala, Beatriz; Cárdenas, Soledad; Valcárcel, Miguel

    2016-10-14

    A novel hybrid micro and meso porous silica monolith with embedded carbon nanoparticles (Si-CNPs monolith) was prepared inside a fused silica capillary (3cm in length) and used as a sorbent for solid-phase microextraction. The hybrid monolithic capillary was synthetized by hydrolysis and polycondensation of a mixture of tetraethoxysilane (TEOS), ethanol, and three different carbon nanoparticles such as carboxylated single-walled carbon nanotubes (c-SWCNTs), carboxylated multi-walled carbon nanotubes (c-MWCNTs), and oxidized single-walled carbon nanohorns (o-SWNHs) via a two-step catalytic sol-gel process. Compared with silica monolith without carbon nanoparticles, the developed monolithic capillary column exhibited a higher extraction efficiency towards the analytes which can be ascribed to the presence of the carbon nanoparticles. In this regard, the best performance was achieved for silica monolith with embedded c-MWCNTs. The resulted monolithic capillaries were also characterized by scanning electron microscopy (SEM), elemental analysis and nitrogen intrusion porosimetry. Variables affecting to the preparation of the sorbent phase including three different carbon nanoparticles and extraction parameters were studied in depth using polycyclic aromatic hydrocarbons (PAHs) as target analytes. Gas chromatography-mass spectrometry was selected as instrumental technique. Detection limits range from 0.1 to 0.3μgL(-1), and the inter-extraction units precision (expressed as relative standard deviation) is between 5.9 and 14.4%. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Numerical analysis of the influence of the impregnation ratio on the microporous structure formation of activated carbons, prepared by chemical activation of waste biomass with phosphoric(V) acid

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, Mirosław; Kalderis, Dimitrios; Diamadopoulos, Evan

    2017-06-01

    This paper presents the results of the application of new mathematical adsorption models with the unique numerical fast multivariate identification procedure as the tool for analysing the influence of the impregnation ratio i.e. activator to the raw material mass ratio on the microporous structure development of the activated carbons, obtained from sugarcane bagasse and rice husk by chemical activation with phosphoric(V) acid.

  9. Fabrication of colloidal crystals composed of pore-expanded mesoporous silica nanoparticles prepared by a controlled growth method.

    PubMed

    Yamamoto, Eisuke; Mori, Seiya; Shimojima, Atsushi; Wada, Hiroaki; Kuroda, Kazuyuki

    2017-02-16

    Colloidal crystals composed of mesoporous silica nanoparticles (MSNs) are expected to have various applications because of their unique hierarchical structures and tunable functions. The expansion of the mesopore size is important for introducing guest species which cannot be accommodated by using conventional colloidal crystals of MSNs; however, the preparation of MSNs with a controllable pore size, suitable for the fabrication of colloidal crystals, still remains a challenge. In this study, we fabricated colloidal crystals composed of pore-expanded MSNs using a sophisticated particle growth method to control the pore size of colloidal MSNs while retaining their monodispersity high enough to form colloidal crystals. By adding triisopropylbenzene (TIPB) only during the growth process with the stepwise addition of tetrapropoxysilane (TPOS), the particle size can be tuned from 60 nm to 100 nm, while the pore size can be tuned from 3 nm to ten plus several nm which is the largest size among the previous MSNs capable of forming colloidal crystals. These novel colloidal crystals should contribute to the expansion of nanomaterials science.

  10. Preparation of a boronate affinity silica stationary phase with enhanced binding properties towards cis-diol compounds.

    PubMed

    Li, Hengye; Zhang, Xuemeng; Zhang, Lin; Wang, Xiaojin; Kong, Fenying; Fan, Dahe; Li, Lei; Wang, Wei

    2016-11-18

    In this study, a boronate affinity silica stationary phase with enhanced binding properties towards cis-diol compounds was prepared through the combination of surface-initiated atom transfer radical polymerization (SI-ATRP) with a Wulff-type boronate as affinity ligand. The stationary phase showed good hydrophilicity and improved binding strength toward adenosine, with binding constant to be as low as 2.38×10(-4)M. The column exhibited excellent binding specificity, low binding pH (≥5.5) and high binding capacities (80.1μmol adenosine g(-1) at pH 7.0 and 45.2μmol adenosine g(-1) at pH 5.5, respectively). The stationary phase was applied as adsorbent for the selective extraction of nucleosides in human urine with excellent specificity and high enrichment efficiency. These results demonstrated that this stationary phase could be favorably applied for selective capture and enrichment of cis-diol compounds in complex samples.

  11. Preparation and evaluation of surface-bonded tricationic ionic liquid silica as stationary phases for high-performance liquid chromatography.

    PubMed

    Qiao, Lizhen; Shi, Xianzhe; Lu, Xin; Xu, Guowang

    2015-05-29

    Two tricationic ionic liquids were prepared and then bonded onto the surface of supporting silica materials through "thiol-ene" click chemistry as new stationary phases for high-performance liquid chromatography. The obtained columns of tricationic ionic liquids were evaluated respectively in the reversed-phase liquid chromatography (RPLC) mode and hydrophilic interaction liquid chromatography (HILIC) mode, and possess ideal column efficiency of 80,000 plates/m in the RPLC mode with naphthalene as the test solute. The tricationic ionic liquid stationary phases exhibit good hydrophobic and shape selectivity to hydrophobic compounds, and RPLC retention behavior with multiple interactions. In the HILIC mode, the retention and selectivity were evaluated through the efficient separation of nucleosides and bases as well as flavonoids, and the typical HILIC retention behavior was demonstrated by investigating retention changes of hydrophilic solutes with water volume fraction in mobile phase. The results show that the tricationic ionic liquid columns possess great prospect for applications in analysis of hydrophobic and hydrophilic samples.

  12. Preparation and characterization of 1-naphthylacetic acid-silica conjugated nanospheres for enhancement of controlled-release performance

    NASA Astrophysics Data System (ADS)

    Ao, Mingming; Zhu, Yuncong; He, Shun; Li, Deguang; Li, Pingliang; Li, Jianqiang; Cao, Yongsong

    2013-01-01

    Chemical pesticides have been widely used to increase the yield and quality of agricultural products as they are efficient, effective, and easy to apply. However, the rapid degradation and low utilization ratio of conventional pesticides has led to environmental pollution and resource waste. Nano-sized controlled-release formulations (CRFs) can provide better penetration through the plant cuticle and deliver the active ingredients efficiently to the targeted tissue. In this paper we reported novel conjugated nanospheres derived from 1-naphthylacetic acid (NNA), 3-aminopropyltriethoxysilane (APTES) and tetraethyl orthosilicate and their application as a controlled-release plant growth regulator. The NNA and APTES conjugate was prepared through a covalent cross-linking reaction and subsequent hydrolyzation and polycondensation to synthesize NNA-silica nanospheres. The release data indicated that the release of NNA was by non-Fickian transport and increased as particle size decreased. It was also found that the acidity-alkalinity was enhanced and as the temperature increased, the release of the active ingredient was faster. The nanoconjugate displayed a better efficacy in promoting root formation than NNA technical. The present study provides a novel synthesis route for CRFs comprising a pesticide, with long-duration sustained-release performance and good environmental compatibility. This method may be extended to other pesticides that possess a carboxyl group.

  13. Preparation and characterization of bonded silica hydride intermediate from triethoxysilane and dimethylmethoxysilane using supercritical carbon dioxide and dioxane as reaction medium.

    PubMed

    Ashu-Arrah, Benjamin A; Glennon, Jeremy D; Albert, Klaus

    2012-05-04

    This research examines bonding methodology, surface coverage and silanol conversion efficiencies on the preparation of silica hydride (SiH) intermediate from triethoxysilane (TES) and dimethylmethoxysilane (DMMS) using sc-CO(2) and dioxane as reaction solvent. Under sc-CO(2) reaction conditions (at temperature and pressure of 100 °C, 414 bar, respectively and 3h reaction time), the surface coverages of SiH (evaluated from %C obtained from elemental analysis) prepared with DMMS (3.39 μmol/m(2)) and TES (4.46 μmol/m(2)) increased by 2- and 4-folds respectively, when compared to reaction performed in dioxane (2.66 μmol/m(2), SiH, DMMS and 0.69 μmol/m(2), SiH, TES). The relatively higher surface coverage of SiH from TES over DMMS generated in sc-CO(2) is due to the inherent trialkoxy moiety of the TES that favours siloxane crosslinkage, forming polymeric surface attachments to yield a higher ligand density than the monomeric DMMS ligand. A conversion efficiency of ∼84.4% of SiH prepared from TES in sc-CO(2) estimated from (29)Si CP/MAS NMR analysis is comparable to TES silanization in dioxane or toluene. Moreover, silica hydride (SiH) conversion efficiency of ca. 42.4% achieved for the hydride intermediate prepared from DMMS in sc-CO(2) is more superior to 33.3% efficiency obtained in dioxane. The differences in conversion efficiencies is attributed to the ability of sc-CO(2) being able to access silica pores that are inaccessible in organic solvents. Bonded silica hydride from TES, DMMS prepared in sc-CO(2) were characterized using elemental analysis, thermogravimetric analysis (TGA), BET surface area, Fourier transform infrared (FI-IR) and solid state NMR spectroscopy. Silica hydride technology/chemical functionalization of silica in sc-CO(2) avoid extended purification steps (i.e. filtration and washing), generation of waste organic solvent and the need of costly or energy consuming drying processing with improved modification efficiency. Copyright © 2012

  14. Development and evaluation of microporous osmotic tablets of diltiazem hydrochloride.

    PubMed

    Bathool, Afifa; Gowda, D V; Khan, Mohammed S; Ahmed, Ayaz; Vasudha, S L; Rohitash, K

    2012-04-01

    Microporous osmotic tablet of diltiazem hydrochloride was developed for colon targeting. These prepared microporous osmotic pump tablet did not require laser drilling to deliver the drug to the specific site of action. The tablets were prepared by wet granulation method. The prepared tablets were coated with microporous semipermeable membrane and enteric polymer using conventional pan coating process. The incorporation of sodium lauryl sulfate (SLS), a leachable pore-forming agent, could form in situ delivery pores while coming in contact with gastrointestinal medium. The effect of formulation variables was studied by changing the amounts of sodium alginate and NaCMC in the tablet core, osmogen, and that of pore-forming agent (SLS) used in the semipermeable coating. As the amount of hydrophilic polymers increased, drug release rate prolonged. It was found that drug release was increased as the concentration of osmogen and pore-former was increased. Fourier transform infrared spectroscopy and Differential scanning calorimetry results showed that there was no interaction between drug and polymers. Scanning electron microscopic studies showed the formation of pores after predetermined time of coming in contact with dissolution medium. The formation of pores was dependent on the amount of pore former used in the semipermeable membrane. in vitro results showed acid-resistant, timed release at an almost zero order up to 24 hours. The developed osmotic tablets could be effectively used for prolonged delivery of Diltiazem HCl.

  15. TiO{sub 2} supported on rod-like mesoporous silica SBA-15: Preparation, characterization and photocatalytic behaviour

    SciTech Connect

    Li, Yanjuan; Li, Nan; Tu, Jinchun; Li, Xiaotian; Wang, Beibei; Chi, Yue; Liu, Darui; Yang, Dianfan

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Rod-like SBA-15 and normal SBA-15 were used to prepare TiO{sub 2}/SBA-15 composites. Black-Right-Pointing-Pointer TiO{sub 2}/SBA-15 composites were studied as catalysts for methyl orange photodegradation. Black-Right-Pointing-Pointer TiO{sub 2}/Rod-SBA-15 exhibited higher photocatalytic activity than TiO{sub 2}/Nor-SBA-15. Black-Right-Pointing-Pointer The higher catalytic activity was a result of the controlled morphology of SBA-15. -- Abstract: TiO{sub 2} nanoparticles have been successfully incorporated in the pores of mesoporous silica SBA-15 with different morphologies by a wet impregnation method. The composites were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), inductively coupled plasma (ICP) emission spectroscopy, transmission electron microscopy (TEM), N{sub 2}-sorption and UV-Vis diffuse reflectance spectroscopy. The photodegradation of methyl orange (MO) was used to study their photocatalytic property. It is indicated that the morphology of SBA-15 had a great influence on the photocatalytic activity of the composites. When TiO{sub 2}/SBA-15 composite was prepared by loading TiO{sub 2} nanoparticles on uniform rod-like SBA-15 of 1 {mu}m length, it showed higher photocatalytic degradation rate than that on less regular but much larger SBA-15 support. This difference was rationalized in terms of the homogeneously distributed and shorter channels of rod-like SBA-15, which favored mass transport and improved the efficient utilization of the pore surface.

  16. Photoluminescence from terbium doped silica-titania prepared by a sol-gel method

    SciTech Connect

    Ismail, Adel Ali; Abboudi, Mostafa . E-mail: abboudi14@hotmail.com; Holloway, Paul; El-Shall, Hassan

    2007-01-18

    Terbium doped (0.5 at.%) TiO{sub 2}-SiO{sub 2} (30%/70%) was prepared by a sol-gel method. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were used to characterize the powder calcined at two different temperatures. At a low temperature of 550 deg. C an amorphous phase was obtained, but at a higher temperature of 1000 deg. C, the anatase TiO{sub 2} phase was crystallized in the amorphous SiO{sub 2} phase. Green photoluminescence from ultraviolet excitation was detected after heating to either temperature, but the amorphous sample heated to 550 deg. C exhibited a higher intensity. X-ray diffraction and photoluminescence excitation data are discussed to explain these observations.

  17. Preparation and antifrictional properties of surface modified hybrid fluorine-containing silica particles

    NASA Astrophysics Data System (ADS)

    Gorbunova, T. I.; Zapevalov, A. Ya.; Beketov, I. V.; Demina, T. M.; Timoshenkova, O. R.; Murzakaev, A. M.; Gaviko, V. S.; Safronov, A. P.; Saloutin, V. I.

    2015-01-01

    Modified SiO2 particles were successfully prepared via [(perfluorobutyl)methyl]oxirane and [(perfluorobutyl)methyl]thiirane in sol-gel conditions using basic catalysis. As a result of acid catalysis non-modified nano-sized SiO2 particles were formed. Chemically modified SiO2 particles were characterized by means of FT-IR, BET, TEM, XRD- and XPS-analyses. Friction coefficients were determined at steel surface for base oil with modified SiO2 additives (5, 10 and 15 wt.%) at 10, 20, 30 and 60 N loads. Friction was reduced most strongly in the oil mix with the lowest content of the additive. A possible mechanism of antifrictional improvement is the formation of boundary lubrication layers containing iron salts.

  18. Characteristics of organic-inorganic hybrid sols prepared from colloidal silica and multifunctional organoalkoxysilanes

    NASA Astrophysics Data System (ADS)

    Lee, Hyeon Hwa; Park, Hoy Yul; Kang, Dong Jun

    2015-01-01

    The characteristics of organic-inorganic hybrid coatings that were prepared well from surfacemodified silicate sols were studied. The surface-modified silicate sols were fabricated in a two-step sol-gel process involving nano-silicates and silanes by varying the type of silane and the reaction time. The synthesized oraganosilane-treated silicate hybrid sols were confirmed using Fouriertransform infrared (FT-IR) spectroscopy. The viscosity of the sols increased with increasing number of alkoxy functional groups in the organoalkoxysilane and the transmittance of the sol solutions decreased with increasing reaction time. The thermal stability of the hybrid coatings increased with increasing amount of inorganic components. The surface roughness of the coatings depended highly on the homogeneity of the sol solutions. In addition, the contact angle of the hybrid coatings increased as the length of the alkyl chain decreased. Importantly, stabilized hybrid sols and coatings with well-controlled surface and thermal propreties were successfully fabricated by controlling the organoalkoxysilanes and the reaction time.

  19. Studies of the factors effecting the preparation of heterogeneous platinum-based catalyst on silica supports

    SciTech Connect

    Kim, Chang Young; Jung, Chi-Young; Jung, Jae-Woong; Jeong, Sung Hoon; Yi, Sung-Chul; Kim, Wha Jung

    2010-10-15

    Pt nanoparticles with an average size of {approx}3 nm were successfully immobilized on the surface of SiO{sub 2} functionalized with -NH{sub 2} and -SH groups through chemical reduction process using polyvinylpyrrolidone as a stabilizer and different reducing agents. The effects of molecular weight of polyvinylpyrrolidone, molar ratio of reducing agent to Pt salt, type of reducing agent on the size and degree of agglomeration of Pt nanoparticles on the SiO{sub 2} surface were investigated. The X-ray diffraction and transmission electron micrograph analyses were performed to identify the product phase, size and morphology of immobilized Pt onto SiO{sub 2}. UV-vis analysis was also conducted to identify the degree of reduction of Pt ions. The Pt-SiO{sub 2} nanocomposite prepared from both NH{sub 2}- and SH-functionalized SiO{sub 2} exhibited similar behavior. The number of immobilized Pt nanoparticles and their average size was increased with polyvinylpyrrolidone concentration while the number of immobilized Pt was decreased with its molecular weight.

  20. Preparation and photoluminescence of monolithic silica glass doped with Tb3+ ions using SiO2-PVA nanocomposite

    NASA Astrophysics Data System (ADS)

    Ikeda, Hiroshi; Murata, Takahiro; Fujino, Shigeru

    2014-05-01

    The monolithic silica glass doped with Tb3+ ions was fabricated using the SiO2-PVA nanocomposite as the glass precursor. In order to dope Tb3+ ions in the monolithic silica glass, the mesoporous SiO2-PVA nanocomposite was immersed in the Tb3+ ions contained solution and subsequently sintered at 1100 °C in air. Consequently the monolithic transparent silica glass was obtained, exhibiting green fluorescence attributed to 5D4 → 7F5 main transitions under UV excitation. The Tb concentration in the sintered glass could be controlled by immersion time of the nanocomposite in the solution.

  1. Yeast-based microporous carbon materials for carbon dioxide capture.

    PubMed

    Shen, Wenzhong; He, Yue; Zhang, Shouchun; Li, Junfen; Fan, Weibin

    2012-07-01

    A hierarchical microporous carbon material with a Brunauer-Emmett-Teller surface area of 1348 m(2) g(-1) and a pore volume of 0.67 cm(3) g(-1) was prepared from yeast through chemical activation with potassium hydroxide. This type of material contains large numbers of nitrogen-containing groups (nitrogen content >5.3 wt%), and, consequently, basic sites. As a result, this material shows a faster adsorption rate and a higher adsorption capacity of CO(2) than the material obtained by directly carbonizing yeast under the same conditions. The difference is more pronounced in the presence of N(2) or H(2)O, showing that chemical activation of discarded yeast with potassium hydroxide could afford high-performance microporous carbon materials for the capture of CO(2). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Innovative Route to Prepare of Au/C Catalysts by Replication of Gold-containing Mesoporous Silicas

    NASA Astrophysics Data System (ADS)

    Kerdi, Fatmé; Caps, Valérie; Tuel, Alain

    Gold-catalyzed aerobic epoxidations in the liquid phase are generally performed in low-polarity solvents, in which conventional oxide-supported catalysts are poorly dispersed. To improve the wettability of the catalytic powder and, thus, the efficiency of the catalyst, gold nanoparticles (NPs) have been dispersed on meso-structured carbons. Gold is first introduced in functionalized mesostructured silica and particles are formed inside the porosity. Silica pores are then impregnated with a carbon precursor and the composite material is heated at 900 °C under vacuum or nitrogen. Silica is then removed by acid leaching, leading to partially encapsulated gold particles in mesoporous carbon. Carbon prevents aggregation of gold particles at high temperature, both the mean size and distribution being similar to those observed in silica. However, while Au@SiO2 exhibit significant catalytic activity in the aerobic oxidation of trans-stilbene in the liquid phase, its Au@C mesostructured replica is quite inactive.

  3. Polyelectrolyte-assisted preparation of gold nanocluster-doped silica particles with high incorporation efficiency and improved stability

    NASA Astrophysics Data System (ADS)

    Wang, Haonan; Huang, Zhenzhen; Guo, Zilong; Yang, Wensheng

    2017-07-01

    In this paper, we reported an approach for efficient incorporation of glutathione-capped gold nanoclusters (GSH-Au NCs) into silica particles with the assistance of a polyelectrolyte, poly-diallyldimethyl-ammoniumchloride (PDDA). In this approach, the negatively charged GSH-Au NCs were firstly mixed with the positively charged PDDA to form PDDA-Au NC complexes. Then, the complexes were added into a pre-hydrolyzed Stöber system to get the Au NCs-doped silica particles. With increased ratio of PDDA in the complexes, the negative charges on surface of the Au NCs were neutralized gradually and finally reversed to positive in presence of excess PDDA, which facilitated the incorporation of the Au NCs into the negatively charged silica matrix. Under the optimal amount of PDDA in the complexes, the incorporation efficiency of Au NCs could be as high as 88%. After being incorporated into the silica matrix, the Au NCs become much robust against pH and heavy metal ions attributed to the protection effect of silica and PDDA. This approach was also extendable to highly efficient incorporation of other negatively charged metal nanoclusters, such as bovine serum albumin-capped Cu nanoclusters, into silica matrix.

  4. Pyrocarbons prepared by carbonisation of polymers adsorbed or synthesised on a surface of silica and mixed oxides

    NASA Astrophysics Data System (ADS)

    Gun'ko, V. M.; Skubiszewska-Zi ęba, J.; Leboda, R.; Voronin, E. F.; Zarko, V. I.; Levitskaya, S. I.; Brei, V. V.; Guzenko, N. V.; Kazakova, O. A.; Seledets, O.; Janusz, W.; Chibowski, S.

    2004-04-01

    Initial oxides fumed silica, alumina/silica and titania/silica and silica gel and hybrid adsorbents with pyrocarbon formed on these oxide substrates by carbonisation of immobilised (adsorbed or synthesised) polymers such as starch, methyl cellulose, polyvinylpyrrolidone, polystyrene, and polybutylvinyl ether were studied by adsorption, AFM, TEM, and FTIR methods. Polymer/oxide materials were investigated by nitrogen and Pb(II) adsorption, FTIR, and potentiometric titration methods. Analysis of nitrogen adsorption-desorption isotherms by different methods, FTIR spectra, AFM and TEM images of the initial and hybrid adsorbents reveals that the morphology of the substrates significantly changes on carbonisation of oxygen-containing polymers because of hydrothermal treatment of them by water eliminated as a product of pyrolysis. Contribution of own microporosity of pyrocarbon deposits formed on carbonisation of immobilised polymers is greater (dependent on reaction conditions) than that on pyrolysis of low-molecular compounds at the same oxide substrates. Pyrocarbon particles formed on silica gel are larger than those formed on fumed oxides and larger than those formed on silica gel on pyrolysis of low-molecular compounds.

  5. Separation of enantiomers on chiral stationary phase based on cellulase: Effect of preparation method and silica particle diameters on chiral recognition ability.

    PubMed

    Matsunaga, Hisami; Haginaka, Jun

    2016-10-07

    Cellulase (Cel) was immobilized onto aminopropyl-silica gels via its amino and carboxy groups, respectively, using N,N'-disuccinimidyl carbonate, and 1-ethyl-3-(3'-dimethylaminopropyl)carbodimide and N-hydroxysulfosuccinimide. They were termed N-Cel and C-Cel, respectively. Despite their smaller retention factors on a C-Cel column, the enantioseparation factors and resolution of β-blockers, propranolol, alprenolol, oxprenolol and pindolol, were similar with N- and C-Cel columns. In addition, C-Cel was prepared using aminopropyl-silica gels, whose nominal particle diameters were 5 and 3, and 2.1μm, respectively. A C-Cel column prepared with 2.1-μm aminopropyl-silica gels gave the highest enantioselectivity and column efficiency among three C-Cel columns. Furthermore, the influence of N,N-dimethyl-n-octylamine (DMOA) or cellobiose concentrations on the retentivity and enantioselectivity for β-blockers on a C-Cel column was investigated. The results indicate that single-site competition of β-blockers with DMOA or cellobiose on the catalytic binding site of Cel and the further bindings at the secondary site in a non-competitive fashion could occur. Furthermore, the enantioselective bindings of β-blockers could occur at the catalytic biding cite of Cel and at the secondary binding site.

  6. Preparation of a silica stationary phase co-functionalized with Wulff-type phenylboronate and C12 for mixed-mode liquid chromatography.

    PubMed

    Li, Hengye; Zhang, Xuemeng; Zhang, Lin; Wang, Xiaojin; Kong, Fenying; Fan, Dahe; Li, Lei; Wang, Wei

    2017-04-15

    A silica stationary phase was designed and synthesized through the co-functionalization of silica with Wulff-type phenylboronate and C12 for mixed-mode liquid chromatography applications. The as-synthesized stationary phase was characterized by elemental analysis and Fourier Transform-InfraRed Spectroscopy (FT-IR). Retention mechanisms, including boronate affinity (BA), reversed-phase (RP) and anion-exchange (AE), were involved. Retention mechanism switching was easily realized by adjustment of the mobile phase constitution. Cis-diol compounds could be selectively captured under neutral conditions in BA mode and off-line separated in RP mode. Neutral, basic, acidic and amphiprotic compounds were chromatographed on the column in RP chromatography, while inorganic anions were chromatographed in AE chromatography to characterize the mixed-mode nature of the prepared stationary phase. In addition, the RP performance was compared with an octadecyl silica column in terms of column efficiency (N/m), asymmetry factor (Af), retention factor (k) and resolution (Rs). The prepared stationary phase offered multiple interactions with analytes in addition to hydrophobic interactions under RP elution conditions. Based on the mixed-mode properties, off-line 2D-LC, for selective capture and separation of urinary nucleosides, was successfully realized on a single column, demonstrating its powerful application potential for complex samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Well-defined hollow nanochanneled-silica nanospheres prepared with the aid of sacrificial copolymer nanospheres and surfactant nanocylinders

    NASA Astrophysics Data System (ADS)

    Kim, Young Yong; Hwang, Bora; Song, Sungjin; Ree, Brian J.; Kim, Yongjin; Cho, Seo Yeon; Heo, Kyuyoung; Kwon, Yong Ku; Ree, Moonhor

    2015-08-01

    A new approach for synthesizing well-defined hollow nanochanneled-silica nanosphere particles is demonstrated, and the structural details of these particles are described for the first time. Positively charged styrene copolymer nanospheres with a clean, smooth surface and a very narrow size distribution are synthesized by surfactant-free emulsion copolymerization and used as a thermal sacrificial core template for the production of core-shell nanoparticles. A surfactant/silica composite shell with a uniform thickness is successfully produced and deposited onto the polymeric core template by charge density matching between the polymer nanosphere template surface and the negatively charged silica precursors and then followed by selective thermal decomposition of the polymeric core and the surfactant cylinder domains in the shell, producing the hollow nanochanneled-silica nanospheres. Comprehensive, quantitative structural analyses collectively confirm that the obtained nanoparticles are structurally well defined with a hollow core and a shell composed of cylindrical nanochannels that provide facile accessibility to the hollow interior space. Overall, the hollow nanochanneled-silica nanoparticles have great potential for applications in various fields.A new approach for synthesizing well-defined hollow nanochanneled-silica nanosphere particles is demonstrated, and the structural details of these particles are described for the first time. Positively charged styrene copolymer nanospheres with a clean, smooth surface and a very narrow size distribution are synthesized by surfactant-free emulsion copolymerization and used as a thermal sacrificial core template for the production of core-shell nanoparticles. A surfactant/silica composite shell with a uniform thickness is successfully produced and deposited onto the polymeric core template by charge density matching between the polymer nanosphere template surface and the negatively charged silica precursors and then

  8. Water-dispersible Hollow Microporous Organic Network Spheres as Substrate for Electroless Deposition of Ultrafine Pd Nanoparticles with High Catalytic Activity and Recyclability.

    PubMed

    Wang, Zhifang; Chang, Jing; Hu, Yuchen; Yu, Yifu; Guo, Yamei; Zhang, Bin

    2016-11-22

    Microporous organic networks (MONs) have been considered as an ideal substrate to stabilize active metal nanoparticles. However, the development of highly water-dispersible hollow MONs nanostructures which can serve as both the reducing agent and stabilizer is highly desirable but still challenging. Here we report a template-assisted method to synthesize hollow microporous organic network (H-MON) spheres using silica spheres as hard template and 1,3,5-triethynylbenzene as the building blocks through a Glaser coupling reaction. The obtained water-dispersible H-MON spheres bearing sp- and sp(2) -hybridized carbon atoms possess a highly conjugated electronic structure and show low reduction potential; thus, they can serve as a reducing agent and stabilizer for electroless deposition of highly dispersed Pd clusters to form a Pd/H-MON spherical hollow nanocomposite. Benefitting from their high porosity, large surface area, and excellent solution dispersibility, the as-prepared Pd/H-MON hollow nanocomposite exhibits a high catalytic performance and recyclability toward the reduction of 4-nitrophenol. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Preparation of TiO2-SiO2 via sol-gel method: Effect of Silica precursor on Catalytic and Photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Fatimah, I.

    2017-02-01

    TiO2-SiO2have been synthesized by the sol-gel method from titanium isopropoxide and varied silica precursors: tetraethyl orthosilicate and tetra methyl ortho silicate. To study the effect of the precursor, prepared materials were characterized by X-ray diffraction, scanning electron microscopy, Diffuse Reflectance UV-vis optical absorption, and also gas sorption analysis. XRD patterns showed the formation of TiO2 anatase in the TiO2-SiO2 composite with different crystallite size from different silica precursor as well as the different surface morphology. The DRUV-vis absorption spectra exhibit similar band gap energy correspond to 3.21eV value while the surface area, pore volume and pore radius of the materials seems to be affected by the precursor. The higher specific surface area contributes to give the enhanced activity in phenol hydroxylation and methylene blue photodegradation.

  10. One-step preparation of CdS nanocrystals supported on thiolated silica-gel matrix and evaluation of photocatalytic performance.

    PubMed

    Andrade, George R S; Nascimento, Cristiane C; Neves, Erick C; Barbosa, Cintya D'Angeles Espirito Santo; Costa, Luiz P; Barreto, Ledjane S; Gimenez, Iara F

    2012-02-15

    Here we report the use of a thiol-functionalized silica-gel to prepare supported CdS nanocrystals by a facile one-step procedure. Upon changing the relative proportion of the matrix we obtained nanocrystals with different average sizes and size distributions, as evidenced by spectroscopic measurements as well as TEM images. Photoluminescence spectra also indicated that the main effect of the matrix is related to the size control since the spectral profiles were found to be strongly dependent on the excitation wavelength. The performance of the material in the photocatalytic degradation of two commercial dyes (methylene blue and rhodamine 6G) has been tested under sunlight radiation, showing promising results. Almost complete decolorization has been observed after 80 min of exposure, with no adsorption on the silica surface.

  11. Effect of Heteroatoms in Ordered Microporous Carbons on Their Electrochemical Capacitance.

    PubMed

    Itoi, Hiroyuki; Nishihara, Hirotomo; Kyotani, Takashi

    2016-11-22

    Micropores play a more important role in enhancing the electrochemical capacitance than mesopores and macropores; therefore, the effect of heteroatom doping into micropores on the electrochemical behavior is interesting. However, heteroatom doping into porous carbon materials would potentially change their pore structures and pore sizes, which also affect their electrochemical capacitive behaviors. To gain insight into the intrinsic effects of heteroatoms on the electrochemical capacitive behaviors, zeolite-templated carbon (ZTC) may be the most suitable candidate. ZTC is an ordered microporous carbon with a uniform micropore size of 1.2 nm, a high surface area, and a large micropore volume. In this work, a series of ZTCs containing oxygen, nitrogen, or boron as heteroatoms, with an ordered pore structure and the same pore size, are prepared. By examining their electrochemical capacitive behaviors in an organic electrolyte, the effect of heteroatom doping can be isolated and discussed without considering the effects of pore structure and pore size. Acid anhydride groups are found to generate pseudocapacitance in two potential ranges, -1.0 to -0.3 V (vs Ag/AgClO4) and -0.2 to 0.4 V. B is introduced into the ZTC framework solely as -B(OH)2, which is found to be an electrochemically inert species. N is introduced as pyridine (3.0%), pyridone/pyrrole (23.8%), quaternary (66.6%), and oxidized N (6.6%), and these species exhibit noticeable pseudocapacitance in the microporous carbon.

  12. Magnetic properties and dye adsorption capacities of silica-hematite nanocomposites with well-defined structures prepared in surfactant solutions

    NASA Astrophysics Data System (ADS)

    You, Kyung-Eun; Park, Jun-Hwan; Kim, Young Chai; Oh, Seong-Geun

    2014-07-01

    Silica-hematite (α-Fe2O3) nanocomposites were synthesized by addition of aqueous solution containing ferrous ions (Fe2+), cetyltrimethylammonium bromide (CTAB) as a surfactant and tert-butanol (t-butanol) as a cosurfactant into colloidal silica solution. At alkaline atmosphere, silica surface with negative charges electrostatically attracts positively-charged iron hydroxide nuclei or particles which are stabilized by cationic CTAB molecules, and then silica-iron compound composites could be formed. Finally, the silica-hematite composite particles were obtained after calcination at 800 °C for 4 h. Through these processes, two types of composites having “core-shell type” or “decorated type” could be achieved. Morphology, BET surface area, crystallinity and magnetic properties of samples were analyzed by using TEM, BET, XRD and VSM, respectively. The “decorated type” composites had larger BET surface area and better magnetization. Also, to estimate the application in water treatment, adsorption properties of composites were studied through methylene blue (MB) adsorption which was characterized by UV-vis spectroscopy, involving collection of composites with neodymium magnet.

  13. Preparation and characterization of carbon dot-decorated silica stationary phase in deep eutectic solvents for hydrophilic interaction chromatography.

    PubMed

    Zhang, Haijuan; Qiao, Xin; Cai, Tianpei; Chen, Jia; Li, Zhan; Qiu, Hongdeng

    2017-03-01

    In this paper, N-doped carbon dots (NCDs) were successfully decorated on the spherical porous silica surface in deep eutectic solvents (DESs) as a novel class of green solvents. The appropriate density and hydrophility of DESs guaranteed the fine dispersibility of silica particles and NCDs, resulting in a homogeneous and thin layer of NCDs immobilization. As compared with traditional organic solvents (DMF and THF), higher surface coverage was obtained in the medium of DES, proving its feasibility as a new kind of alternative solvent for hydrophilic nanomaterial-based surface modification of silica spheres. The resulting NCDs-decorated silica particles (Sil-NCDs) were characterized in detail and packed into chromatographic columns to study their initial feasibility as adsorbent material for liquid chromatography. The resultant packing materials demonstrate a selective behavior for polar compounds in hydrophilic interaction liquid chromatography (HILIC) mode. This work gives a typical example of using carbon dots as stationary phase component, and such material is hopeful to be used in other research fields such as solid absorbents, recycling catalysts, and solid-state electrochemistry etc. Graphical Abstract N-doped carbon dots (NCDs) were successfully coupled on the surface of porous silica spheres in a green strategy using deep eutectic solvents (DES) as media for HILIC.

  14. Well-defined hollow nanochanneled-silica nanospheres prepared with the aid of sacrificial copolymer nanospheres and surfactant nanocylinders.

    PubMed

    Kim, Young Yong; Hwang, Bora; Song, Sungjin; Ree, Brian J; Kim, Yongjin; Cho, Seo Yeon; Heo, Kyuyoung; Kwon, Yong Ku; Ree, Moonhor

    2015-09-21

    A new approach for synthesizing well-defined hollow nanochanneled-silica nanosphere particles is demonstrated, and the structural details of these particles are described for the first time. Positively charged styrene copolymer nanospheres with a clean, smooth surface and a very narrow size distribution are synthesized by surfactant-free emulsion copolymerization and used as a thermal sacrificial core template for the production of core-shell nanoparticles. A surfactant/silica composite shell with a uniform thickness is successfully produced and deposited onto the polymeric core template by charge density matching between the polymer nanosphere template surface and the negatively charged silica precursors and then followed by selective thermal decomposition of the polymeric core and the surfactant cylinder domains in the shell, producing the hollow nanochanneled-silica nanospheres. Comprehensive, quantitative structural analyses collectively confirm that the obtained nanoparticles are structurally well defined with a hollow core and a shell composed of cylindrical nanochannels that provide facile accessibility to the hollow interior space. Overall, the hollow nanochanneled-silica nanoparticles have great potential for applications in various fields.

  15. Electrochemical synthesis of a microporous conductive polymer based on a metal-organic framework thin film.

    PubMed

    Lu, Chunjing; Ben, Teng; Xu, Shixian; Qiu, Shilun

    2014-06-16

    A new approach to preparing 3D microporous conductive polymer has been demonstrated in the electrochemical synthesis of a porous polyaniline network with the utilization of a MOF thin film supported on a conducting substrate. The prepared porous polyaniline with well-defined uniform micropores of 0.84 nm exhibits a high BET surface area of 986 m(2) g(-1) and a high electric conductivity of 0.125 S cm(-1) when doped with I2, which is superior to existing porous conducting materials of porous MOFs, CMPs, and COFs.

  16. Preparation and physical characterization of calcium sulfate cement/silica-based mesoporous material composites for controlled release of BMP-2.

    PubMed

    Tan, Honglue; Yang, Shengbing; Dai, Pengyi; Li, Wuyin; Yue, Bing

    2015-01-01

    As a commonly used implant material, calcium sulfate cement (CSC), has some shortcomings, including low compressive strength, weak osteoinduction capability, and rapid degradation. In this study, silica-based mesoporous materials such as SBA-15 were synthesized and combined with CSC to prepare CSC/SBA-15 composites. The properties of SBA-15 were characterized by X-ray diffraction, transmission electron microscopy, and nitrogen adsorption-desorption isotherms. SBA-15 was blended into CSC at 0, 5, 10, and 20 wt%, referred to as CSC, CSC-5S (5% mass ratio), CSC-10S (10% mass ratio), and CSC-20S (20% mass ratio), respectively. Fourier-transform infrared spectroscopy and compression tests were used to determine the structure and mechanical properties of the composites, respectively. The formation of hydroxyapatite on composite surfaces was analyzed using scanning electron microscopy and X-ray diffraction after soaking in simulated body fluid. BMP-2 was loaded into the composites by vacuum freeze-drying, and its release characteristics were detected by Bradford protein assay. The in vitro degradation of the CSC/SBA-15 composite was investigated by measuring weight loss. The results showed that the orderly, nanostructured, mesoporous SBA-15 possessed regular pore size and structure. The compressive strength of CSC/SBA-15 increased with the increase in SBA-15 mass ratio, and CSC-20S demonstrated the maximum strength. Compared to CSC, hydroxyapatite that formed on the surfaces of CSC/SBA-15 was uniform and compact. The degradation rate of CSC/SBA-15 decreased with increasing mass ratio of SBA-15. The adsorption of BMP-2 increased and released at a relatively slow rate; the release rate of BMP-2 in CSC-20S was the slowest, and presented characteristics of low doses of release. In vitro experiments demonstrated that the physical properties of pure CSC incorporated with SBA-15 could be improved significantly, which made the CSC/SBA-15 composite more suitable for bone repair

  17. Preparation and physical characterization of calcium sulfate cement/silica-based mesoporous material composites for controlled release of BMP-2

    PubMed Central

    Tan, Honglue; Yang, Shengbing; Dai, Pengyi; Li, Wuyin; Yue, Bing

    2015-01-01

    As a commonly used implant material, calcium sulfate cement (CSC), has some shortcomings, including low compressive strength, weak osteoinduction capability, and rapid degradation. In this study, silica-based mesoporous materials such as SBA-15 were synthesized and combined with CSC to prepare CSC/SBA-15 composites. The properties of SBA-15 were characterized by X-ray diffraction, transmission electron microscopy, and nitrogen adsorption–desorption isotherms. SBA-15 was blended into CSC at 0, 5, 10, and 20 wt%, referred to as CSC, CSC-5S (5% mass ratio), CSC-10S (10% mass ratio), and CSC-20S (20% mass ratio), respectively. Fourier-transform infrared spectroscopy and compression tests were used to determine the structure and mechanical properties of the composites, respectively. The formation of hydroxyapatite on composite surfaces was analyzed using scanning electron microscopy and X-ray diffraction after soaking in simulated body fluid. BMP-2 was loaded into the composites by vacuum freeze-drying, and its release characteristics were detected by Bradford protein assay. The in vitro degradation of the CSC/SBA-15 composite was investigated by measuring weight loss. The results showed that the orderly, nanostructured, mesoporous SBA-15 possessed regular pore size and structure. The compressive strength of CSC/SBA-15 increased with the increase in SBA-15 mass ratio, and CSC-20S demonstrated the maximum strength. Compared to CSC, hydroxyapatite that formed on the surfaces of CSC/SBA-15 was uniform and compact. The degradation rate of CSC/SBA-15 decreased with increasing mass ratio of SBA-15. The adsorption of BMP-2 increased and released at a relatively slow rate; the release rate of BMP-2 in CSC-20S was the slowest, and presented characteristics of low doses of release. In vitro experiments demonstrated that the physical properties of pure CSC incorporated with SBA-15 could be improved significantly, which made the CSC/SBA-15 composite more suitable for bone repair

  18. Pyridine-containing block copolymer/silica core-shell nanoparticles for one-step preparation of superhydrophobic surfaces.

    PubMed

    Liang, Junyan; Wang, Li; He, Ling; Sun, Shaodong

    2013-07-14

    Two poly(4-vinylpyridine)-b-polystyrene diblock copolymer/silica core-shell nanoparticles (P4VP-b-PS/SiO2 NPs) are developed in this work. Confirmed by DLS analysis and TEM observation, one comprises a SiO2 core surrounded by a P4VP-b-PS shell and the other comprises a P4VP-b-PS core surrounded by a SiO2 shell, which is facilely prepared by the in situ hydrolysis of tetraethyl orthosilicate (TEOS) using cationic P4VP-b-PS micelles obtained in a THF-H2C2O4 (aq, 0.1 mol L(-1)) mixture and a DMF-H2C2O4 (aq, 0.01 mol L(-1)) mixture as template, respectively. The SCA, CAH, SA and SEM measurements reveal that one-step deposition of P4VP-b-PS/SiO2 NPs with SiO2 cores formed at a high level of TEOS creates a superhydrophobic surface with an SCA of 160°, a CAH of 2° and an SA of around 4° originating from the formation of a typical micro-nanoscale binary structure (MNBS). For the NPs with SiO2 cores formed at a low level of TEOS, the superhydrophobicity with a SCA of 151°, CAH of 3° and SA of around 5° can be induced by the transition of the surface microstructure from an uneven and discontinuous MNBS, created by a one-step deposition process, to the coexistence of MNBS and a nanoscale structure (NS) after annealing with toluene for 30 min. In contrast, one-step deposition of P4VP-b-PS/SiO2 NPs with P4VP-b-PS cores and SiO2 shells usually results in the inhomogeneous precipitation of SiO2 from bulk P4VP-b-PS along with the production of micro-cracks, with which is impossible to achieve surface superhydrophobicity.

  19. Preparation of aqueous colloidal mesostructured and mesoporous silica nanoparticles with controlled particle size in a very wide range from 20 nm to 700 nm

    NASA Astrophysics Data System (ADS)

    Yamada, Hironori; Urata, Chihiro; Ujiie, Hiroto; Yamauchi, Yusuke; Kuroda, Kazuyuki

    2013-06-01

    Particle size control of colloidal mesoporous silica nanoparticles (CMPS) in a very wide range is quite significant for the design of CMPS toward various applications, such as catalysis and drug delivery. Various types of CMPS and their precursors (colloidal mesostructured silica nanoparticles (CMSS)) with different particle sizes (ca. 20-700 nm) were newly prepared from tetraalkoxysilanes with different alkoxy groups (Si(OR)4, R = Me, Et, Pr, and Bu) in the presence of alcohols (R'OH, R' = Me, Et, Pr, and Bu) as additives. CMSS with larger particle size were obtained by using tetrabutoxysilane (TBOS) and by increasing the amount of BuOH, which is explained by both the difference in the hydrolysis rates of tetraalkoxysilanes themselves and the effect of added alcohols on the hydrolysis rates of tetraalkoxysilanes. Larger amounts of alcohols with longer alkyl chains decrease the hydrolysis rates of tetraalkoxysilanes and the subsequent formation rates of silica species. Thus, the preferential particle growth of CMSS to nucleation occurs, and larger CMSS are formed. Highly dispersed CMPS were prepared by the removal of surfactants of CMSS by dialysis which can lead to the preparation of CMPS without aggregation. Therefore, the particle size control through the tuning of the hydrolysis rate of tetraalkoxysilanes can be conducted by a one-pot and easy approach. Even larger CMPS (ca. 700 nm in size) show relatively high dispersibility. This dispersibility will surely contribute to the design of materials both retaining nanoscale characteristics and avoiding various nanorisks.Particle size control of colloidal mesoporous silica nanoparticles (CMPS) in a very wide range is quite significant for the design of CMPS toward various applications, such as catalysis and drug delivery. Various types of CMPS and their precursors (colloidal mesostructured silica nanoparticles (CMSS)) with different particle sizes (ca. 20-700 nm) were newly prepared from tetraalkoxysilanes with

  20. Well-crystallized mesoporous TiO2 shells for enhanced photocatalytic activity: prepared by carbon coating and silica-protected calcination.

    PubMed

    Zhang, Zewu; Zhou, Yuming; Zhang, Yiwei; Zhou, Shijian; Shi, Junjun; Kong, Jie; Zhang, Sicheng

    2013-04-14

    Mesoporous anatase-phase TiO2 hollow shells were successfully fabricated by the solvothermal and calcination process. This method involves preparation of SiO2@TiO2 core-shell colloidal templates, sequential deposition of carbon and then silica layers through solvothermal and sol-gel processes, crystallization of TiO2 by calcination and finally removal of the inner and outer silica to produce hollow anatase TiO2 shells. The prepared samples were characterized by transmission electron microscopy, X-ray diffraction, N2 adsorption-desorption isotherms and UV-vis absorption spectroscopy. The results show that a uniform carbon layer is coated on the core-shell particles through the solvothermal process. The combustion of carbon offers the space for the TiO2 to further grow into large crystal grains, and the outer silica layer serves as a barrier against the excessive growth of anatase TiO2 nanocrystals. Furthermore, the initial crystallization of TiO2 generated in the carbon coating step and the heat generated by the combustion of the carbon layer allow the crystallization of TiO2 at a relatively low temperature without changing the uniform structure. When used as photocatalysts for the oxidation decomposition of Rhodamine B in aqueous solution under UV irradiation, the hollow TiO2 shells showed enhanced catalytic activity. Moreover, the TiO2 hollow shells prepared with optimal crystallinity by this method showed a higher performance than commercial P25 TiO2.

  1. Preparation of silica-supported porous sorbent for heavy metal ions removal in wastewater treatment by organic-inorganic hybridization combined with sucrose and polyethylene glycol imprinting.

    PubMed

    Li, Feng; Du, Ping; Chen, Wei; Zhang, Shusheng

    2007-03-07

    A new porous sorbent for wastewater treatment of metal ions was synthesized by covalent grafting of molecularly imprinted organic-inorganic hybrid on silica gel. With sucrose and polyethylene glycol 4000 (PEG 4000) being synergic imprinting molecules, covalent surface coating on silica gel was achieved by using polysaccharide-incorporated sol-gel process starting from the functional biopolymer, chitosan and an inorganic epoxy-precursor, gamma-glycidoxypropyltrimethoxysiloxane (GPTMS) at room temperature. The prepared porous sorbent was characterized by using simultaneous thermogravimetry and differential scanning calorimeter (TG/DSC), scanning electron microscopy (SEM), nitrogen adsorption porosimetry measurement and X-ray diffraction (XRD). Copper ion, Cu(2+), was chosen as the model metal ion to evaluate the effectiveness of the new biosorbent in wastewater treatment. The influence of epoxy-siloxane dose, buffer pH and co-existed ions on Cu(2+) adsorption was assessed through batch experiments. The imprinted composite sorbent offered a fast kinetics for the adsorption of Cu(2+). The uptake capacity of the sorbent imprinted by two pore-building components was higher than those imprinted with only a single component. The dynamic adsorption in column underwent a good elimination of Cu(2+) in treating electric plating wastewater. The prepared composite sorbent exhibited high reusability. Easy preparation of the described porous composite sorbent, absence of organic solvents, cost-effectiveness and high stability make this approach attractive in biosorption.

  2. Fabrication of bulk-modified carbon paste electrode containing alpha-PW12O40(3-) polyanion supported on modified silica gel: Preparation, electrochemistry and electrocatalysis.

    PubMed

    Hamidi, Hassan; Shams, Esmaeil; Yadollahi, Bahram; Esfahani, Farhad Kabiri

    2008-01-15

    Alpha-PW(12)O(40)(3-) (PW(12)) supported on the surface of silica gel derivatized by 3-aminopropyl(triethoxy)silane (devoted briefly as SiNH(3)PW(12)) was synthesized and used as bulk modifier to fabricate a renewable three-dimensional chemically modified electrode. The electrochemical behavior of the modified electrode was characterized by cyclic voltammetry. There is an ionic bonding character between PW(12) and the surface amino groups of modified silica, which greatly improves the stability of SiNH(3)PW(12)-modified carbon paste electrode due to insolubility of silica gel in water. The SiNH(3)PW(12) bulk-modified carbon paste electrode not only maintains the electrochemical activity of PW(12), but also exhibits remarkable advantages of renewability, as well as simple preparation and inexpensive material. The modified electrode offers an excellent and stable electrocatalytic response for the reduction of IO(3)(-) and hydrogen peroxide. The SiNH(3)PW(12)-CPE is successfully applied as an electrochemical detector to monitor IO(3)(-) in flow injection analysis (FIA). The catalytic peak current was found to be linear with the IO(3)(-) concentration in the range 5x10(-6) to 1x10(-3)molL(-1). The detection limit of the proposed method was found to be 3.1x10(-6)molL(-1) for IO(3)(-) determination.

  3. Preparation of a nitro-substituted tris(indolyl)methane modified silica in deep eutectic solvents for solid-phase extraction of organic acids.

    PubMed

    Wang, Na; Wang, Jiamin; Liao, Yuan; Shao, Shijun

    2016-05-01

    A new sorbent for solid-phase extraction was synthesized by chemical immobilization of nitro-substituted tris(indolyl)methane on silica in new and green deep eutectic solvents. Elemental analysis results indicated that deep eutectic solvents could be an alternative to the traditional solvents in preparing nitro-substituted tris(indolyl)methane modified silica. Coupled with high performance liquid chromatography, the extraction performance of the sorbent was evaluated by using four organic acids as model analytes. The rebinding experiments results showed that the nitro-substituted tris(indolyl)methane modified silica sorbent had a good adsorption capacity towards the selected organic acids. Under the appropriate experimental conditions, good precision and wide linear ranges with coefficient of determination (R(2)) of higher than 0.9957 were obtained, and the limits of detection were in the range of 0.50-2.0μgL(-1) for the organic acids tested. The developed solid-phase extraction-high performance liquid chromatography-diode array detection (SPE-HPLC-DAD) method was successfully applied for the determination of organic acids in two drinking samples with recoveries ranging from 76.7% to 110.0% and 67.7% to 104.0% for all the selected organic acids, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Pressure induced swelling in microporous materials

    DOEpatents

    Vogt, Thomas; Hriljac, Joseph A.; Lee, Yongjae

    2006-07-11

    A method for capturing specified materials which includes contacting a microporous material with a hydrostatic fluid having at least one specified material carried therein, under pressure which structurally distorts the lattice sufficiently to permit entry of the at least one specified material. The microporous material is capable of undergoing a temporary structural distortion which alters resting lattice dimensions under increased ambient pressure and at least partially returning to rest lattice dimensions when returned to ambient pressure. The pressure of the fluid is then reduced to permit return to at least partial resting lattice dimension while the at least one specified material is therein. By this method, at least one specified material is captured in the microporous material to form a modified microporous material.

  5. Chemical pattern on silica surface prepared by UV irradiation of 3-mercaptopropyltriethoxy silane layer: surface characterization and fibrinogen adsorption

    PubMed Central

    Liu, Jie

    2012-01-01

    A flat silica surface modified with 3-mercaptopropyltriethoxy silane (MTS) was patterned using UV irradiation and a custom-designed mask. The irradiated surface was characterized by X-ray photoelectron spectroscopy (XPS), scanning force microscopy (SFM) and water contact angle measurements. The XPS S2p spectra indicated that the UV treatment resulted in the oxidation of MTS sulfur. The optimal UV irradiation dose for patterning, estimated from the XPS S2p binding energy shifts and water contact angles of irradiated surfaces, was 4.8 J cm−2 at 270 nm. The surface patterns were visualized by total internal reflection fluorescence microscopy, while exposing the pattern to a solution of acridine orange, by water vapor condensation, and by SFM lateral force imaging in dilute electrolyte solution. The adhesion SFM measurements revealed the adhesion force only on the areas which were not UV-irradiated. The adsorption of fluorescein-labeled fibrinogen (FITC-Fgn) from dilute buffer solution also produced visual information on the pattern. The kinetics of FITC-Fgn adsorption onto the oxidized and unoxidized MTS-silica surfaces from dilute protein solution proceeded with identical initial adsorption rates. The steady-state FITC-Fgn adsorption was twice as large on the unoxidized MTS-silica than on the oxidized MTS-silica surface. PMID:25132726

  6. Filtration performance of microporous ceramic supports.

    PubMed

    Belouatek, Aissa; Ouagued, Abdellah; Belhakem, Mustapha; Addou, Ahmed

    2008-04-24

    The use of inorganic membranes in pollution treatment is actually limited by the cost of such membranes. Advantages of inorganic membranes are their chemical, thermal and pH properties. The purpose of this work was the development of microporous ceramic materials based on clay for liquid waste processing. The supports or ceramic filters having various compositions were prepared and thermally treated at 1100 degrees C. The results show that, at the temperature studied, porosity varied according to the support composition from 12% for the double-layered (ceramic) support to 47% for the activated carbon- filled support with a mean pore diameter between 0.8 and 1.3 microm, respectively. Volumes of 5 l of distilled water were filtered tangentially for 3 h under an applied pressure of 3.5 and 5.5 bar. The retention of tubular supports prepared was tested with molecules of varying size (Evans blue, NaCl and Sacharose). The study of the liquid filtration and flow through these supports showed that the retention rate depends on support composition and pore diameter, and solute molecular weight. The S1 support (mixture of barbotine and 1% (w/w) activated carbon) gave a flux for distilled water of 68 L/m2 h while the double-layered support resulted in a flux of 8 L/m2 h for the same solution at the pressure of 3.5 bar. At a pressure of 5.5 bar an increase in the distilled water flux through the various supports was observed. It was significant for the S1 support (230 L/m h).

  7. A simple and convenient approach for preparing core-shell-like silica@nickel species nanoparticles: highly efficient and stable catalyst for the dehydrogenation of 1,2-cyclohexanediol to catechol.

    PubMed

    Chen, Bao-Hui; Liu, Wei; Li, An; Liu, Ya-Juan; Chao, Zi-Sheng

    2015-01-21

    A simple and convenient approach denoted as gel-deposition-precipitation (G-D-P) for the preparation of core-shell-like silica@nickel species nanoparticles was studied systematically. Core-shell-like silica@nickel species nanoparticles consisted of a Si-rich core and a Ni-rich shell. The G-D-P process included two steps: one was the deposition-precipitation of nickel over the gelled colloidal silica particle, generating core-shell-like silica@nickel species nanoparticles, and the other was the aging period. It was found that the nickel phyllosilicate layer was formed mainly during the aging period and served as the protective cover to resist against aggregation of the nanoparticles, which could be utilized for regulating the dispersion of nickel over the silica@nickel species nanoparticles. In the present paper, the silica@nickel species nanoparticles were used as the catalysts for preparing catechol via dehydrogenation of 1,2-cyclohexanediol. Their catalytic activity and long-term stability were compared to those of a catalyst prepared by a conventional deposition-precipitation (D-P) approach. The higher activity and better stability of the title reaction over the silica@nickel species nanoparticles catalyst prepared by G-D-P than those over the catalyst prepared by D-P could be due to the higher dispersion of metallic nickel stabilized by the layers of nickel phyllosilicates. Moreover, it was found that the dehydrogenation of 1,2-cyclohexanediol to catechol was a structurally sensitive reaction.

  8. CO2 capture using zeolite 13X prepared from bentonite

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Park, Dong-Wha; Ahn, Wha-Seung

    2014-02-01

    Zeolite 13X was prepared using bentonite as the raw material by alkaline fusion followed by a hydrothermal treatment without adding any extra silica or alumina sources. The prepared zeolite 13X was characterized by X-ray powder diffraction, N2-adsorption-desorption measurements, and scanning electron microscopy. The CO2 capture performance of the prepared zeolite 13X was examined under both static and flow conditions. The prepared zeolite 13X showed a high BET surface area of 688 m2/g with a high micropore volume (0.30 cm3/g), and exhibited high CO2 capture capacity (211 mg/g) and selectivity to N2 (CO2/N2 = 37) at 25 °C and 1 bar. In addition, the material showed fast adsorption kinetics, and stable CO2 adsorption-desorption recycling performance at both 25 and 200 °C.

  9. C18 silica packed capillary columns with monolithic frits prepared with UV light emitting diode: usefulness in nano-liquid chromatography and capillary electrochromatography.

    PubMed

    D'Orazio, Giovanni; Fanali, Salvatore

    2012-04-06

    In this paper the potential of fused silica capillaries packed with RP18 silica particles entrapped with monolithic frits using both nano-liquid chromatography (nano-LC) and capillary electrochromatography (CEC) was investigated. Frits were prepared after removing a short part of the polyimide layer on the capillary wall and irradiating the polymerization mixture with an UV-light emitter diode (LED) at 370 nm. The capillary, was rotated during the polymerization procedure in order to obtain a homogeneous monolith. The distance of the LED from the capillary and the exposure time to UV light were studied in order to obtain frits with good porosity and high robustness. A mixture containing five alkylbenzenes was selected as sample and analyzed by both nano-LC and CEC. The standard mixture was baseline separated with good efficiency in the range 78,000-93,000 and 99,000-113,000 plates/m in nano-LC and CEC, respectively. The columns resulted to be very robust and the prepared monolithic frits allowed working with backpressure as high as 400 bar (nano-LC). In addition high voltages were applied in CEC (25-30 kV) without bubbles formation in absence of pressure assistance during runs.

  10. Preparation of magnetic photocatalyst nanoparticles—TiO{sub 2}/SiO{sub 2}/Mn–Zn ferrite—and its photocatalytic activity influenced by silica interlayer

    SciTech Connect

    Laohhasurayotin, Kritapas; Pookboonmee, Sudarat; Viboonratanasri, Duangkamon; Kangwansupamonkon, Wiyong

    2012-06-15

    Highlights: ► TiO{sub 2}/SiO{sub 2}/Mn–Zn ferrite acts as magnetic photocatalyst nanoparticle. ► SiO{sub 2} interlayer is used to prevent electron migration between photocatalyst and magnetic core. ► TiO{sub 2}/Mn–Zn ferrite without SiO{sub 2} interlayer shows poor magnetic and photocatalytic property. -- Abstract: A magnetic photocatalyst, TiO{sub 2}/SiO{sub 2}/Mn–Zn ferrite, was prepared by stepwise synthesis involving the co-precipitation of Mn–Zn ferrite as a magnetic core, followed by a coating of silica as the interlayer, and titania as the top layer. The particle size and distribution of magnetic nanoparticles were found to depend on the addition rate of reagent and dispersing rate of reaction. The X-ray diffractometer and transmission electron microscope were used to examine the crystal structures and the morphologies of the prepared composites. Vibrating sample magnetometer was also used to reveal their superparamagnetic property. The UV–Vis spectrophotometer was employed to monitor the decomposition of methylene blue in the photocatalytic efficient study. It was found that at least a minimum thickness of the silica interlayer around 20 nm was necessary for the inhibition of electron transference initiated by TiO{sub 2} and Mn–Zn ferrite.

  11. Preparation and characterization - including in situ Small Angle X-Ray Scattering - of gas chromatographic capillary columns with mesoporous silica thin films as stationary phases.

    PubMed

    Lefebvre, D; Rayes, R Sayah-El; Jousseaume, V; Maret, M; Veyre, L; Charleux, B; Thieuleux, C; Ricoul, F

    2015-09-25

    In this study the preparation of various mesoporous silica thin films as new stationary phases for gas chromatography (GC) columns is presented. The synthesis was performed inside capillaries via a sol-gel process using a templating route. The as-obtained columns were found to be highly efficient for the fast separation of light n-alkanes (C1-C5) mixture; these columns exhibiting a normalized retention 30 times higher than that of a commercially available silica column used as standard. A particular effort was directed towards the characterization of the stationary phase physical features: thin film inspection by Scanning Electron Microscopy and, for the first time to our knowledge, in situ SAXS characterization using synchrotron radiation were used to study the impact of the pore-network structuration on the GC properties. Worm-like, cubic and hexagonal phases were observed for specific preparation conditions. Unexpectedly, the normalized retention relative to film thickness appeared higher with disordering of the pores network.

  12. Unique Separation Behavior of a C60 Fullerene-Bonded Silica Monolith Prepared by an Effective Thermal Coupling Agent.

    PubMed

    Kubo, Takuya; Murakami, Yoshiki; Tsuzuki, Madoka; Kobayashi, Hiroshi; Naito, Toyohiro; Sano, Tomoharu; Yan, Mingdi; Otsuka, Koji

    2015-12-07

    Herein, we report a newly developed C60 fullerene-bonded silica monolith in a capillary with unique retention behavior due to the structure of C60 fullerene. N-Hydroxysuccinimide (NHS)-conjugated C60 fullerene was successfully synthesized by a thermal coupling agent, perfluorophenyl azide (PFPA), and assigned by spectroscopic analyses. Then, NHS-PFPA-C60 fullerene was attached onto the surface of a silica monolith in a capillary. The capillary provided specific separation ability for polycyclic aromatic hydrocarbons in liquid chromatography by an effective π-π interaction. Furthermore, corannulene, which has a hemispherical structure, was selectively retained in the capillary based on the specific structural recognition due to the spherical C60 fullerene. This is the first report revealing the spherical recognition ability by C60 fullerene in liquid chromatographic separation.

  13. Preparation and Characterization of Sulfonic Acid Functionalized Silica and Its Application for the Esterification of Ethanol and Maleic Acid

    NASA Astrophysics Data System (ADS)

    Sirsam, Rajkumar; Usmani, Ghayas

    2016-04-01

    The surface of commercially available silica gel, 60-200 mesh size, was modified with sulfonic acid through surface activation, grafting of 3-Mercaptopropyltrimethoxysilane, oxidation and acidification of 3-Mercaptopropylsilica. Sulfonic Acid Functionalization of Silica (SAFS) was confirmed by Fourier Transform Infra-red (FTIR) spectroscopy and thermal gravimetric analysis. Acid-base titration was used to estimate the cation exchange capacity of the SAFS. Catalytic activity of SAFS was judged for the esterification of ethanol with maleic acid. An effect of different process parameters viz. molar ratio, catalyst loading, speed of agitation and temperature were studied and optimized by Box Behnken Design (BBD) of Response Surface Methodology (RSM). Quadratic model developed by BBD-RSM reasonably satisfied an experimental and predicted values with correlation coefficient value R2 = 0.9504.

  14. New Method for Development of Carbon Coated Silica Phases for Liquid Chromatography Part I. Preparation of Carbon Phases

    PubMed Central

    Paek, Changyub; McCormick, Alon V.; Carr, Peter W.

    2011-01-01

    Owing to its combination of unique selectivity and mechanical strength, commercial carbon clad zirconia (C/ZrO2) has been widely used for many applications, including fast two-dimensional liquid chromatography (2DLC). However, the low surface area available (only 20 - 30 m2/g for commercial porous ZrO2) limits its retentivity. We have recently addressed this limitation by developing a carbon phase coated on the high surface area of HPLC grade alumina (C/Al2O3). This material provides higher retentivity and comparable selectivity, but its use is still limited by how few HPLC quality types of alumina particles (e.g., particle size, surface area, pore size) are available. In this work, we have developed useful carbon phases on silica particles, which are available in various particle sizes, pore sizes and forms of HPLC grade. To make the carbon phase on silica, we first treat the silica surface with a monolayer or less of metal cations that bind to deprotonated silanols to provide catalytic sites for carbon deposition. After Al (III) treatment, a carbon phase is formed on the silica surface by chemical vapor deposition at 700 °C using hexane as the carbon source. The amount of Al (III) on the surface was varied to assess its effect on carbon deposition, and the carbon loading was varied at different Al (III) levels to assess its effect on the chromatographic properties of the various carbon adsorbents. We observed that use of a concentration of Al (III) corresponding to a full monolayer leads to the most uniform carbon coating. A carbon coating sufficient to cover all the Al (III) sites, required about 4 – 5 monolayers in this work, provided the best chromatographic performance. The resulting carbon phases behave as reversed phases with reasonable efficiency (50,000 – 79,000 plates/meter) for non-aromatic test species. PMID:21295308

  15. Preparation and characterization of gold nanoparticles and nanowires loaded into rod-shaped silica by a one-step procedure

    NASA Astrophysics Data System (ADS)

    Mnasri, Najib; Nyalosaso, Jeff L.; Kachbouri, Sana; Zajac, Jerzy; Elaloui, Elimame; Charnay, Clarence

    2017-01-01

    Rod-shaped mesoporous silica nanoparticles (RMSN) with built-in gold nanoparticles or thin gold nanowires in the pore channels were in situ synthesized via a one-step procedure. The insertion of a hydrophobic gold precursor into the mesopores of RMSN was reached through a micellar solubilization mechanism and gold nanoparticles were achieved through a thermal reduction. The resulting RMSN and Au-RMSN samples were characterized by using X-ray diffraction, transmission and scanning microscopies (TEM and SEM), X-ray photoelectron spectroscopy (XPS), nitrogen physisorption and solid-state Nuclear Magnetic Resonance (NMR). The interaction of Au precursor (a carbene complex) with the thiol group at the silica surface was identified and found to play a crucial role in the dispersion of the uniform metal nanoparticles at the internal surface of RMSN. Moreover, TEM micrographs revealed the absence of large gold particles outside the mesopore network. The shape of Au nanoparticles and their loading amount in the mesoporous silica could be easily tuned by altering the concentration of gold precursor.

  16. Application of graphene nanoplatelets silica composite, prepared by sol-gel technology, as a novel sorbent in two microextraction techniques.

    PubMed

    Heidari, Mahmoud; Bahrami, Abdolrahman; Ghiasvand, Ali Reza; Shahna, Farshid Ghorbani; Soltanian, Ali Reza; Rafieiemam, Maryam

    2015-12-01

    In this study, the application of a novel nanomaterial composite was investigated in two microextraction techniques of solid-phase microextraction and a needle trap device in a variety of sampling conditions. The optimum sampling temperature and relative humidity were 10°C and 20%, respectively, for both techniques with two sorbents of graphene/silica composite and polydimethyl siloxane. The two microextraction techniques with the proposed sorbent showed recoveries of 95.2 and 94.6% after 7 days. For the needle trap device the optimums desorption time and temperature were 3 min at 290°C and for SPME these measures were 1 and 1.5 min at 240-250°C for the graphene/silica composite and polydimethyl siloxane, respectively. The relative standard division obtained in inter- and intra-day comparative studies were 3.3-14.3 and 5.1-25.4, respectively. For four sample the limit of detection was 0.021-0.25 ng/mL, and the limit of quantitation was 0.08-0.75 ng/mL. The results show that the graphene/silica composite is an appropriate extraction media for both techniques. Combining an appropriate sorbent with microextraction techniques, and using these in conjunction with a sensitive analytical instrument can introduce a strong method for sampling and analysis of occupational and environmental pollutants in air.

  17. Microporous polyurethane material for size selective heterogeneous catalysis of the Knoevenagel reaction.

    PubMed

    Dey, Sandeep Kumar; de Sousa Amadeu, Nader; Janiak, Christoph

    2016-06-14

    The first polyurethane material which is microporous (BET surface area of 312 m(2) g(-1)) is prepared by solvothermal synthesis and acts as highly efficient and recyclable heterogeneous catalyst in the Knoevenagel condensation showing size selectivity, and in the Henry reaction showing substrate selectivity under mild reaction conditions.

  18. Rational design of high-surface-area carbon nanotube/microporous carbon core-shell nanocomposites for supercapacitor electrodes.

    PubMed

    Yao, Yuanyuan; Ma, Cheng; Wang, Jitong; Qiao, Wenming; Ling, Licheng; Long, Donghui

    2015-03-04

    All-carbon-based carbon nanotube (CNT)/microporous carbon core-shell nanocomposites, in which a CNT as the core and high-surface-area microporous carbon as the shell, have been prepared by in situ resorcinol-formaldehyde resin coating of CNTs, followed by carbonization and controlled KOH activation. The obtained nanocomposites have very high Brunauer-Emmett-Teller surface areas (up to 1700 m(2)/g), narrow pore size distribution (<2 nm), and 1D tubular structure within a 3D entangled network. The thickness of the microporous carbon shell can be easily tuned from 20 to 215 nm by changing the carbon precursor/CNT mass ratio. In such a unique core-shell structure, the CNT core could mitigate the key issue related to the low electronic conductivity of microporous carbons. On the other hand, the 1D tubular structure with a short pore-pathway micropore as well as a 3D entangled network could increase the utilization degree of the overall porosity and improve the electrode kinetics. Thus, these CNT/microporous carbon core-shell nanocomposites exhibit a great potential as an electrode material for supercapacitors, which could deliver high specific capacitance of 237 F/g, excellent rate performance with 75% maintenance from 0.1 to 50 A/g, and high cyclability in H2SO4 electrolyte. Moreover, the precisely controlled microporous carbon shells may allow them to serve as excellent model systems for microporous carbons, in general, to illustrate the role of the pore length on the diffusion and kinetics inside the micropores.

  19. Fabrication of silica-decorated graphene oxide nanohybrids and the properties of composite epoxy coatings research

    NASA Astrophysics Data System (ADS)

    Ma, Yu; Di, Haihui; Yu, Zongxue; Liang, Ling; Lv, Liang; Pan, Yang; Zhang, Yangyong; Yin, Di

    2016-01-01

    With the purpose of preparing anticorrosive coatings, solvent-based epoxy resins often serve as raw material. Unfortunately, plentiful micro-pores are fabricated via solvent evaporation in the resin⿿ curing process, which is an intrinsic shortcoming and it is thus necessary to obstacle their micro-pore for enhancing antiseptic property. To reduce the intrinsic defect and increase the corrosion resistance of coating, we synthesize a series of SiO2⿿GO hybrids through anchoring silica (SiO2) on graphene oxide (GO) sheets with the help of 3-aminopropyltriethoxysilane and 3-glycidoxypropyltrimethoxysilane, and disperse the hybrids into epoxy resin at a low weight fraction of 2%. Furthermore, we investigate the appropriate preparation proportion of SiO2⿿GO hybrids (namely: SiO2⿿GO (1:5)). The electrochemical impedance spectroscopy (EIS) test and coatings⿿ morphology monitoring in corrosion process reveal that the anticorrosive performance of epoxy coatings is significantly enhanced by incorporation of SiO2⿿GO (1:5) hybrids to epoxy compared with neat epoxy and other nanofillers including SiO2 or GO at the same contents. The superiority of the SiO2⿿GO (1:5) hybrids is related to their excellent dispersion in resin and sheet-like structure.

  20. Hierarchical mesoporous/microporous carbon with graphitized frameworks for high-performance lithium-ion batteries

    SciTech Connect

    Lv, Yingying; Fang, Yin; Qian, Xufang; Tu, Bo; Wu, Zhangxiong; Asiri, Abdullah M.; Zhao, Dongyuan

    2014-11-01

    A hierarchical meso-/micro-porous graphitized carbon with uniform mesopores and ordered micropores, graphitized frameworks, and extra-high surface area of ∼2200 m{sup 2}/g, was successfully synthesized through a simple one-step chemical vapor deposition process. The commercial mesoporous zeolite Y was utilized as a meso-/ micro-porous template, and the small-molecule methane was employed as a carbon precursor. The as-prepared hierarchical meso-/micro-porous carbons have homogeneously distributed mesopores as a host for electrolyte, which facilitate Li{sup +} ions transport to the large-area micropores, resulting a high reversible lithium ion storage of 1000 mA h/g and a high columbic efficiency of 65% at the first cycle.

  1. An Elastic Monolithic Catalyst: A Microporous Metalloporphyrin-Containing Framework-Wrapped Melamine Foam for Process-Intensified Acyl Transfer.

    PubMed

    Wu, Keyi; Guo, Jia; Wang, Changchun

    2016-05-10

    The advent of conjugated microporous polymers (CMPs) has had significant impact in catalysis. However, the presence of only micropores in these polymers often imposes diffusion limitations, which has resulted in the low utilization of CMPs in catalytic reactions. Herein, the preparation of a foam-supporting CMP composite with interconnective micropores and macropores and elastic properties is reported. Metalloporphyrin-based CMP organogels are synthesized within the melamine foam by a room-temperature oxidative homocoupling reaction of terminal alkynes. Upon drying, the CMP-based xerogels tightly wrap the framework skeletons of the foam, while the foam cells are still open to allow for the preservation of elasticity and macroporosity. Such a hierarchical structure is efficient for acyl transfer, facilitates substrate diffusion within interpenetrative macropores and micropores, and could be used to intensify catalytic processes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Core–shell Ag@SiO{sub 2} nanoparticles of different silica shell thicknesses: Preparation and their effects on photoluminescence of lanthanide complexes

    SciTech Connect

    Kang, Jie; Li, Yuan; Chen, Yingnan; Wang, Ailing; Yue, Bin; Qu, Yanrong; Zhao, Yongliang; Chu, Haibin

    2015-11-15

    Highlights: • Ag@SiO{sub 2} nanoparticles of different silica shell thicknesses were prepared via the Stöber process. • Sm and Dy complexes with benzoate, 1,10-phenanthroline and 2,2′-bipyridine were synthesized. • The complex-doped Ag@SiO{sub 2} composites show stronger luminescent intensities than pure complexes. • The luminescent intensities of the composites strongly depend on the SiO{sub 2} shell thickness. - Abstract: Three kinds of almost spherical core–shell Ag@SiO{sub 2} nanoparticles of different silica shell thicknesses (10, 25 and 80 nm) were prepared via the Stöber process. The Ag core nanoparticles were prepared by reducing silver nitrate with sodium citrate. The size, morphology and structure of core–shell Ag@SiO{sub 2} nanoparticles were characterized by transmission electron microscopy. Subsequently, eight kinds of lanthanide complexes with benzoate, 1,10-phenanthroline and 2,2′-bipyridine were synthesized. The composition of the lanthanide complexes was characterized by elemental analysis, IR and UV spectra. Finally, lanthanide complexes were attached to the surface of Ag@SiO{sub 2} nanoparticles to form lanthanide-complex-doped Ag@SiO{sub 2} nanocomposites. The results show that the complex-doped Ag@SiO{sub 2} nanocomposites display much stronger luminescence intensities than the lanthanide complexes. Furthermore, the luminescence intensities of the lanthanide-complex-doped Ag@SiO{sub 2} nanocomposites with SiO{sub 2} shell thickness of 25 nm are stronger than those of the nanocomposites with SiO{sub 2} shell thickness of 10 and 80 nm.

  3. Highly Monodisperse Microporous Polymeric and Carbonaceous Nanospheres with Multifunctional Properties

    PubMed Central

    Ouyang, Yi; Shi, Huimin; Fu, Ruowen; Wu, Dingcai

    2013-01-01

    Fabrication of monodisperse porous polymeric nanospheres with diameters below 500 nm remains a great challenge, due to serious crosslinking between neighboring nanospheres during pore-making process. Here we show how a versatile hypercrosslinking strategy can be used to prepare monodisperse microporous polystyrene nanospheres (MMPNSs) with diameters as low as ca. 190 nm. In our approach, an unreactive crosslinked PS outer skin as protective layer can be in-situ formed at the very beginning of hypercrosslinking treatment to minimize the undesired inter-sphere crosslinking. The as-prepared MMPNSs with a well-developed microporous network demonstrate unusual multifunctional properties, including remarkable colloidal stability in aqueous solution, good adsorption-release property for drug, and large adsorption capacity toward organic vapors. Surprisingly, MMPNSs can be directly transformed into high-surface-area monodisperse carbon nanospheres with good colloidal stability via a facile hydrothermal-assisted carbonization procedure. These findings provide a new benchmark for fabricating well-defined porous nanospheres with great promise for various applications. PMID:23478487

  4. Activation of the Solid Silica Layer of Aerosol-Based C/SiO₂ Particles for Preparation of Various Functional Multishelled Hollow Microspheres.

    PubMed

    Li, Xiangcun; Luo, Fan; He, Gaohong

    2015-05-12

    Double-shelled C/SiO2 hollow microspheres with an outer nanosheet-like silica shell and an inner carbon shell were reported. C/SiO2 aerosol particles were synthesized first by a one-step rapid aerosol process. Then the solid silica layer of the aerosol particles was dissolved and regrown on the carbon surface to obtain novel C/SiO2 double-shelled hollow microspheres. The new microspheres prepared by the facile approach possess high surface area and pore volume (226.3 m(2) g(-1), 0.51 cm(3) g(-1)) compared with the original aerosol particles (64.3 m(2) g(-1), 0.176 cm(3) g(-1)), providing its enhanced enzyme loading capacity. The nanosheet-like silica shell of the hollow microspheres favors the fixation of Au NPs (C/SiO2/Au) and prevents them from growing and migrating at 500 °C. Novel C/C and C/Au/C (C/Pt/C) hollow microspheres were also prepared based on the hollow nanostructure. C/C microspheres (482.0 m(2) g(-1), 0.92 cm(3) g(-1)) were ideal electrode materials. In particular, the Au NPs embedded into the two carbon layers (C/Au/C, 431.2 m(2) g(-1), 0.774 cm(3) g(-1)) show a high catalytic activity and extremely chemical stability even at 850 °C. Moreover, C/SiO2/Au, C/Au/C microspheres can be easily recycled and reused by an external magnetic field because of the presence of Fe3O4 species in the inner carbon shell. The synthetic route reported here is expected to simplify the fabrication process of double-shelled or yolk-shell microspheres, which usually entails multiple steps and a previously synthesized hard template. Such a capability can facilitate the preparation of various functional hollow microspheres by interfacial design.

  5. Synthesis and crystal structures of a novel layered silicate SSA-1 and its microporous derivatives by topotactic transformation.

    PubMed

    Takahashi, S; Kurita, Y; Ikeda, T; Miyamoto, M; Uemiya, S; Oumi, Y

    2016-10-18

    The synthesis of a novel layered silicate SSA-1 (SSA: silicate synthesized with a quaternary amine) was achieved in the SiO2-H2O-TEAOH (TEAOH: tetraethylammonium hydroxide - as an organic structural directing agent) system. The crystal structure of SSA-1 involved two silicate layers composed of bre [10T]-type CBU (Composite Building Unit) and TEAOH in interlayers. The topotactic transformation of SSA-1 by calcination was examined, resulting in a porous material (PML-1: porous material transformed from a layered silicate) with a 108 m(2) g(-1) BET surface area and 0.035 cm(3) g(-1) pore volume. PML-1 is a siliceous microporous material with silanols in the framework and possesses unique properties, such as hydrophilicity, in spite of all its silica composition. The most reasonable crystal structure of PML-1 was successfully determined on the basis of the crystal structure of SSA-1 by a combination of manual modelling, PXRD pattern simulation, DFT optimization and Rietveld analysis. Additionally, an interlayer expanded siliceous zeolite SSA-1 (IEZ-SSA-1) was also successfully prepared by silylation using trichloro(methyl)silane under acidic conditions. IEZ-SSA-1 showed hydrophilicity or hydrophobicity properties by changing the functional group of the pillar part in the interlayer. Additionally, IEZ-SSA-1 showed a large gas adsorption property (537 m(2) g(-1) and 0.21 cm(3) g(-1)).

  6. Preparation and evaluation of o-phenanthroline immobilized on a hybrid silica monolith modified with ionic liquids for reversed-phase pressurized capillary electrochromatography.

    PubMed

    Qin, Wenfei; Lü, Haixia; Xie, Zenghong

    2014-12-01

    A novel o-phenanthroline-immobilized ionic-liquid-modified hybrid monolith for capillary electrochromatography was synthesized based on chloropropyl-silica, which was prepared by the in situ polymerization of tetramethoxysilane and 3-chloropropyltrimethoxysilane via a sol-gel process. The morphology of the hybrid monolith was characterized by scanning electron microscopy, and relatively stable anodic electroosmotic flow was observed under a broad pH ranged from pH 3.0 to 9.0. The separation mechanism was investigated by separating four neutral molecules (toluene, dimethylformamide, formamide, and thiourea). The obtained hybrid monolith possessed an obviously reversed-phase retention mechanism, but when the acetonitrile content in the mobile phase was >90% v/v, a weak hydrophilic mechanism was observed on the resultant o-phenanthroline-modified chloropropyl-silica hybrid monolith. The reproducibility of the column was also investigated by measuring relative standard deviations of the migration time for four neutral molecules. Relative standard deviations of run to run (n = 3), day to day (n = 3), and column to column (n = 3) were in the range of 0.4-0.7, 0.9-2.1, and 1.4-3.3%, respectively. Basic separations of various polar analytes including phenols and aromatic amines were successfully achieved.

  7. Preparation and evaluation of monodispersed, submicron, non-porous silica particles functionalized with β-CD derivatives for chiral-pressurized capillary electrochromatography.

    PubMed

    Yangfang, Lu; Hui, Wang; Yun, Xue; Xue, Gu; Yan, Wang; Chao, Yan

    2015-09-01

    Submicron, non-porous, chiral silica stationary phase has been prepared by the immobilization of functionalized β-CD derivatives to isocyanate-modified silica via chemical reaction and applied to the pressurized capillary electrochromatography (pCEC) enantio-separation of various chiral compounds. The submicron, non-porous, cyclodextrin-based chiral stationary phases (sub_μm-CSP2) exhibited excellent chiral recognition of a wide range of analytes including clenbuterol hydrochloride, mexiletine hydrochloride, chlorpheniramine maleate, esmolol hydrochloride, and metoprolol tartrate. The synthesized submicron particles were regularly spherical and uniformly non-porous with an average diameter of around 800 nm and a mean pore size of less than 2 nm. The synthesized chiral stationary phase was packed into 10 cm × 100 μm id capillary columns. The sub_μm-CSP2 column used in the pCEC system showed better separation of the racemates and at a higher rate compared to those used in the capillary liquid chromatography mode (cLC) system. The sub_μm-CSP2 possessed high mechanical strength, high stereoselectivity, and long lifespan, demonstrating rapid enantio-separation and good resolution of samples. The column provided an efficiency of up to 170,000 plates/m for n-propylbenzene.

  8. Preparation of xylenol orange functionalized silica gel as a selective solid phase extractor and its application for preconcentration--separation of mercury from waters.

    PubMed

    Fan, Jing; Wu, Chunlai; Wei, Yafang; Peng, Chuanyun; Peng, Pingan

    2007-06-25

    A new selective solid phase extractor was prepared from silica gel modified with xylenol orange (SGMXO). The solid phase extractor is stable in 6molL(-1) HCl, common organic solvents, and pH 1.0-9.0 buffer solutions. In the batch experiments, Hg(II) can be adsorbed on SGMXO at pH 1.0 with 90.0% retention, whereas the retention of other common coexisting metal ions such as Cd(II), Pb(II), Cu(II), Ni(II), Co(II), Mn(II), Zn(II), and Fe(III) is less than 4.1%.. The adsorption equilibration for Hg(II) was achieved within 3min. At optimum conditions, the adsorption capacity of the extractor is 18.26micromolg(-1) of dry modified silica gel, and the preconcentration factor is as high as 333. The recovery is still higher than 95% for the preconcentration of 10ngmL(-1) Hg(II). The new solid phase extractor has been used for the preconcentration of low level of Hg(II) in surface water, tap water in chemistry laboratory and student's dormitory and a simulated sea water samples, recoveries of 98.2-100.6% were obtained. It is showed that low level of Hg(II) can be effectively preconcentrated by this new selective solid phase extractor.

  9. Characterization and acidic properties of Al-SBA-15 materials prepared by post-synthesis alumination of a low-cost ordered mesoporous silica

    SciTech Connect

    Gomez-Cazalilla, M.; Merida-Robles, J.M.; Gurbani, A.; Rodriguez-Castellon, E.; Jimenez-Lopez, A.

    2007-03-15

    A series of Al-containing SBA-15 type materials with different Si/Al ratio, were prepared by post-synthesis modification of a pure highly ordered mesoporous silica SBA-15 obtained by using sodium silicate as silica source, and amphiphilic block copolymer as structure-directing agent. A high level of aluminum incorporation was achieved, reaching an Si/Al ratio of up to 5.5, without any significant loss in the textural properties of SBA-15. These materials were fully characterized by powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), {sup 27}Al NMR spectroscopy, and N{sub 2} adsorption at 77 K. The acid properties of these materials have been evaluated by NH{sub 3}-TPD, adsorption of pyridine and deuterated acetonitrile coupled to FTIR spectroscopy. The effective acidity of these materials was evaluated using two catalytic reactions: 2-propanol dehydrogenation and 1-butene isomerization. The adsorption of basic probe molecules and the catalytic behavior revealed an evolution of the acid properties with the Al content. These studies have shown that the Al-SBA-15 materials contain Bronsted and Lewis acid sites with medium acidity which makes them appropriate to be used as acid catalysts in heterogeneous catalysis, catalytic supports, and adsorbents. - Graphical abstract: Al KLL spectra of Al-SBA-15 materials with different Si/Al ratios.

  10. Preparation and kinetic performance assessment of thick film 10-20 μm open tubular silica capillaries in normal phase high pressure liquid chromatography.

    PubMed

    Forster, Simon; Kolmar, Harald; Altmaier, Stephan

    2013-11-08

    It is well-known that the open tubular column design basically can offer very high plate numbers. Experimental realization has however not kept pace with theoretical considerations, lacking efficient methods for the deposition of a thick film porous layer within a microbore capillary. A previously published sol-gel synthesis method was extended from 20 μm to 10 μm inner diameter fused silica capillaries and the resulting columns were compared to a monolithic reference capillary in terms of kinetic performance at pressure maximum. Column permeability was investigated and pressure/flow-diagrams were obtained with a 400-fold permeability gain for the open tubes. Structural characterizations regarding layer thickness and surface porosity were carried out and displayed via scanning electron microscopy and nitrogen sorption analysis. Chromatographic results in normal phase mode at elevated mobile phase flow rate reveal the intrinsic performance potential of this column format when it comes to kinetic performance limitation plots, which were constructed for all columns prepared and compared to the monolithic silica reference capillary.

  11. Preparation of silica-magnetite nanoparticle mixed hemimicelle sorbents for extraction of several typical phenolic compounds from environmental water samples.

    PubMed

    Zhao, Xiaoli; Shi, Yali; Wang, Thanh; Cai, Yaqi; Jiang, Guibin

    2008-04-25

    A novel type of superparamagnetic silica-coated (Fe3O4/SiO2 core/shell) magnetite nanoparticle modified by surfactants has been successfully synthesized and was applied as an effective sorbent material for the pre-concentration of several typical phenolic compounds (bisphenol A (BPA), 4-tert-octylphenol (4-OP) and 4-n-nonylphenol (4-NP)) from environmental water samples. Compared with pure magnetic particles, a thin and dense silica layer would protect the iron oxide core from leaching out in acidic conditions. In order to enhance their adsorptive tendency towards organic compounds, cetylpyridinium chloride (CPC) or cetyltrimethylammonium bromide (CTAB) were added, which adsorbed on the surface of the Fe3O4/SiO2 nanoparticles (Fe3O4/SiO2 NPs) and formed mixed hemimicelles. Main factors affecting the adsolubilization of analytes were optimized and comparative study on the use of CPC and CTAB-coated Fe3O4/SiO2 NPs mixed hemimicelles-based SPE was also carried out. CPC-coated Fe3O4/SiO2 NPs system was selected due to lower elution volume required and more effective adsorption of the target compounds. Under selected conditions, concentration factor of 1600 was achieved by using this method to extract 800 mL of different environmental water samples. The detection limits obtained for BPA, 4-OP and 4-NP with HPLC-FLD were 7, 14, and 20 ng/L, respectively.

  12. Preparation, characterization and luminescent properties of dense nano-silica hybrids loaded with 1,8-naphthalic anhydride.

    PubMed

    Wang, Jinpeng; Sun, Jihong; Li, Yuzhen; Wang, Feng

    2014-03-01

    Novel luminescent dense nano-silica hybrid materials (DNSS) modified with different amounts of (3-aminopropyl)triethoxysilane (APTES) and 1,8-naphthalic anhydride (NA) were successfully synthesized via two steps combined with post-grafting methods. Powder X-ray diffraction (XRD), N2-sorption analysis, Fourier transform infrared (FT-IR) spectroscopy, transmission electron microscopy (TEM), thermogravimetric analysis (TGA), photoluminescence (PL) spectroscopy and elemental analysis, as well as time-resolved decays were employed to characterize the resultant hybrid materials. The results revealed that luminescent organic molecules had been successfully loaded onto the amine-modified surface of nano-silica spheres. In addition, their fluorescence intensity and characteristic peak of emission spectra changed with increasing amount of APTES and NA additive. In particular, the characteristic peak showed a red shift from 390 to 450 nm, however, this was inconsistent with results calculated on the basis of the elemental analysis data, most probably because of the dispersion behaviors of NA molecules from the aggregating to the monolayer state. These observations demonstrated the existence of a quantum confinement effectiveness of NA-DNSS samples, and therefore a possible mechanism was put forward.

  13. 21 CFR 177.2250 - Filters, microporous polymeric.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... as Components of Articles Intended for Repeated Use § 177.2250 Filters, microporous polymeric. Microporous polymeric filters identified in paragraph (a) of this section may be safely used, subject to the... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Filters, microporous polymeric. 177.2250 Section...

  14. Preparation of poly(acrylic)/SiO2/EuL3 x 2H2O, hybrid thin films from monodispersed colloidal silica.

    PubMed

    Chien, Wen-Chen; Yu, Yang-Yen; Chen, Shih-Yu; Yang, Chang-Chung

    2010-08-01

    In this study, poly(acrylic)/SiO2/EuL3 x 2H2O hybrid thin films were prepared from various acrylic monomers (MMA and EDMA/TMPTA), lanthanide metal complexes (EuL3 x 2H2O, L = pyridine carboxylic acid), and monodispersed colloidal silica with a coupling agent, 3-(trimethoxysilyl)propyl methacrylate (MSMA). It is a combination of the sol-gel reaction, thermal polymerization, and spin coating. The silica content in the hybrid thin films is fixed at 20 wt%, and the EuL3 x 2H2O content is varied from 0.01 g to 0.07 g. FTIR and EA analysis confirms the chemical structure of the prepared EuL3 x 2H2O and poly(acrylic)/SiO2/EuL3 x 2H2O hybrid thin films. UV-Vis spectra and n&k analysis shows that the hybrid thin film has good transparency in visible light. The refractive index of hybrid thin films can be effectively controlled through the EuL3 x 2H2O content. The PL spectra shows that the strongest emission peak occurs at 615 nm and the emission intensity increases to the peak maximum at an EuL3 x 2H2O content of 0.05 g. Both TGA and PL analysis show that the prepared hybrid thin films from the crosslinked acrylic polymer moiety have much better film uniformity, thermal stability, and fluorescence properties. The TEM diagram shows that the MSMA/SiO2/EuL3 x 2H2O particles with a size 15-20 nm are well dispersed in the reaction solution. The SEM diagram shows that the particle distribution in the prepared hybrid thin films is uniform and no phase separation is observed. Finally, AFM analysis indicates that the prepared hybrid thin films have an excellent surface planarity.

  15. Cellulose-silica aerogels.

    PubMed

    Demilecamps, Arnaud; Beauger, Christian; Hildenbrand, Claudia; Rigacci, Arnaud; Budtova, Tatiana

    2015-05-20

    Aerogels based on interpenetrated cellulose-silica networks were prepared and characterised. Wet coagulated cellulose was impregnated with silica phase, polyethoxydisiloxane, using two methods: (i) molecular diffusion and (ii) forced flow induced by pressure difference. The latter allowed an enormous decrease in the impregnation times, by almost three orders of magnitude, for a sample with the same geometry. In both cases, nanostructured silica gel was in situ formed inside cellulose matrix. Nitrogen adsorption analysis revealed an almost threefold increase in pores specific surface area, from cellulose aerogel alone to organic-inorganic composite. Morphology, thermal conductivity and mechanical properties under uniaxial compression were investigated. Thermal conductivity of composite aerogels was lower than that of cellulose aerogel due to the formation of superinsulating mesoporous silica inside cellulose pores. Furthermore, composite aerogels were stiffer than each of reference aerogels.

  16. Synthesis and characterization of high-surface-area millimeter-sized silica beads with hierarchical multi-modal pore structure by the addition of agar

    SciTech Connect

    Han, Yosep; Choi, Junhyun; Tong, Meiping; Kim, Hyunjung

    2014-04-01

    Millimeter-sized spherical silica foams (SSFs) with hierarchical multi-modal pore structure featuring high specific surface area and ordered mesoporous frameworks were successfully prepared using aqueous agar addition, foaming and drop-in-oil processes. The pore-related properties of the prepared spherical silica (SSs) and SSFs were systematically characterized by field emission-scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), small-angle X-ray diffraction (SAXRD), Hg intrusion porosimetry, and N{sub 2} adsorption–desorption isotherm measurements. Improvements in the BET surface area and total pore volume were observed at 504 m{sup 2} g{sup −1} and 5.45 cm{sup 3} g{sup −1}, respectively, after an agar addition and foaming process. Despite the increase in the BET surface area, the mesopore wall thickness and the pore size of the mesopores generated from the block copolymer with agar addition were unchanged based on the SAXRD, TEM, and BJH methods. The SSFs prepared in the present study were confirmed to have improved BET surface area and micropore volume through the agar loading, and to exhibit interconnected 3-dimensional network macropore structure leading to the enhancement of total porosity and BET surface area via the foaming process. - Highlights: • Millimeter-sized spherical silica foams (SSFs) are successfully prepared. • SSFs exhibit high BET surface area and ordered hierarchical pore structure. • Agar addition improves BET surface area and micropore volume of SSFs. • Foaming process generates interconnected 3-D network macropore structure of SSFs.

  17. Preparation and characterization of novel Pd/SiO 2 and Ca-Pd/SiO 2 egg-shell catalysts with porous hollow silica

    NASA Astrophysics Data System (ADS)

    Song, Ji-Rui; Wen, Li-Xiong; Shao, Lei; Chen, Jian-Feng

    2006-12-01

    Novel egg-shell structured monometallic Pd/SiO 2 and bimetallic Ca-Pd/SiO 2 catalysts were prepared by an impregnation method using porous hollow silica (PHS) as the support and PdCl 2 and Ca(NO 3) 2·4H 2O as the precursors. It was found from transmission electron microscope (TEM), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) that Pd was loaded on PHS with a particle size of 5-12 nm in Pd/SiO 2 samples and the Pd particle size in Ca-Pd/SiO 2 was smaller than that in Pd/SiO 2 since Ca could prevent Pd particles from aggregating. X-ray photoelectron spectroscopy (XPS) analyses exhibited that Pd 3d 5/2 binding energies of Pd/SiO 2 and Ca-Pd/SiO 2 were 0.2 and 0.9 eV lower than that of bulk Pd, respectively, as a result of the shift of the electron cloud from Pd to oxygen in Pd/SiO 2 and to both oxygen and Ca in Ca-Pd/SiO 2. The activity of Ca-Pd/SiO 2 egg-shell catalyst for CO hydrogenation and the selectivity to methanol, with a value of 36.50 mmol CO mol -1Pd s -1 and 100%, respectively, were much higher than those of the catalysts prepared with traditional silica gel as the support, owing to the porous core-shell structure of the PHS support.

  18. Processing of CuAlMn Shape Memory Foams with Open Spherical Pores by Silica-Gel Beads Infiltration Method

    NASA Astrophysics Data System (ADS)

    Li, Hua; Yuan, Bin; Gao, Yan

    2016-10-01

    A molten metal infiltration process with amorphous SiO2 (silica-gel) beads as space holders was used to prepare Cu-based shape memory foams in this article. We found that the silica-gel beads with micropores inside expanded when being heated to elevated temperatures and that proper control of the expansion of silica-gel beads helped form necks between the beads with different bonding extent, which had been taken advantage of to have a good control of the foam morphology and porosity, by carefully designing suitable procedures and choosing proper parameters for the process. In addition, we studied in detail the effect of heating temperature, silica-gel bead density, and infiltration pressure of the present process on the morphology and porosity of CuAlMn shape memory foams. By coordinating these three key parameters, CuAlMn shape memory foams with open spherical pores and adjustable porosity from 66 to 85 pct were reliably produced.

  19. Bacterial-cellulose-derived interconnected meso-microporous carbon nanofiber networks as binder-free electrodes for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Hao, Xiaodong; Wang, Jie; Ding, Bing; Wang, Ya; Chang, Zhi; Dou, Hui; Zhang, Xiaogang

    2017-06-01

    Bacterial cellulose (BC), a typical biomass prepared from the microbial fermentation process, has been proved that it can be an ideal platform for design of three-dimensional (3D) multifunctional nanomaterials in energy storage and conversion field. Here we developed a simple and general silica-assisted strategy for fabrication of interconnected 3D meso-microporous carbon nanofiber networks by confine nanospace pyrolysis of sustainable BC, which can be used as binder-free electrodes for high-performance supercapacitors. The synthesized carbon nanofibers exhibited the features of interconnected 3D networks architecture, large surface area (624 m2 g-1), mesopores-dominated hierarchical porosity, and high graphitization degree. The as-prepared electrode (CN-BC) displayed a maximum specific capacitance of 302 F g-1 at a current density of 0.5 A g-1, high-rate capability and good cyclicity in 6 M KOH electrolyte. This work, together with cost-effective preparation strategy to make high-value utilization of cheap biomass, should have significant implications in the green and mass-producible energy storage.

  20. Novel Shape-Stabilized Phase Change Materials Composed of Polyethylene Glycol/Nonsurfactant-Templated Mesoporous Silica: Preparation and Thermal Properties

    NASA Astrophysics Data System (ADS)

    Chen, Yan; Zhu, Yingying; Wang, Jinbao; Lv, Mengjiao; Zhang, Xiongjie; Gao, Junkai; Zhang, Zijun; Lei, Hao

    2017-09-01

    A novel shape-stabilized phase change material (PEG/TAMS), fabricated using tannic acid-templated mesoporous silica (TAMS) as a support for polyethylene glycol, was developed for thermal energy storage. The method used to synthesize TAMS was simple, cost effective, environmentally friendly, and free of surfactant. The characterization results indicated that PEG was physically absorbed to TAMS and that TAMS had no influence on the crystal structure of PEG. According to the TGA thermograms, PEG/TAMS has excellent thermal stability and can be applied over a wide temperature range. Additionally, the differential scanning calorimetry results suggested that PEG/TAMS has good thermal properties and that its fusion and solidification enthalpies reached 114.7 J/g and 102.4 J/g, respectively. The results indicated that PEG/TAMS has great potential for practical applications.

  1. Preparation of submicrometer monodispersed magnetic silica particles using a novel water in oil microemulsion: properties and application for enzyme immobilization.

    PubMed

    Tuttolomondo, Maria Victoria; Villanueva, Maria Emilia; Alvarez, Gisela Solange; Desimone, Martín Federico; Díaz, Luis Eduardo

    2013-10-01

    The synthesis of monodispersed magnetic silica nanoparticles (MSN) is described using a water-in-oil reverse microemulsion system that does not require the use of co-surfactants. Sodium silicate, Tween 20 as a neutral surfactant and 1-butanol as the organic phase were used. There are several advantages of the proposed method including a saturation magnetization value of 10 emu/g for the particles obtained, uniformity of size and that they are easily functionalized to bind urease covalently. Moreover, the intra-day, inter-day and long-term stability results confirm that the procedure was successful and the enzyme-linked MSNs were stable over repeated uses and storage retaining more than 75% activity after 4 months.

  2. Preparation of chitosan/mesoporous silica nanoparticle composite hydrogels for sustained co-delivery of biomacromolecules and small chemical drugs

    NASA Astrophysics Data System (ADS)

    Zhu, Min; Zhu, Yufang; Zhang, Lingxia; Shi, Jianlin

    2013-08-01

    We have developed composite hydrogels of chitosan (CS) and mesoporous silica nanoparticles (MSNs) in this study. The gelation rate, gel strength, drug delivery behavior and chondrocyte proliferation properties were investigated. The introduction of MSNs into CS accelerated the gelation process at body temperature and also increased the elastic modulus G‧ from 1000 to 1800 Pa. When we used gentamicin (GS) and bovine serum albumin (BSA) as model small chemical drugs and biomacromolecules, respectively, the CS/MSN hydrogels released GS and BSA in a sustained manner simultaneously, but the CS hydrogels only showed sustained BSA release. Furthermore, in vitro chondrocyte culture showed that the CS/MSN composite hydrogels indeed performed much better in supporting chondrocyte growth and maintaining chondrocytic phenotype compared to the CS hydrogels. Therefore, the results suggest that the CS/MSN composite hydrogels can be potentially very useful for cartilage regeneration.

  3. Preparation of magnetic nano-composite: barium hexaferrite loaded in the ordered meso-porous silica matrix (MCM-41).

    PubMed

    Emamian, H R; Honarbakhsh-Raouf, A; Ataie, A

    2010-04-01

    In this work a magnetic nano-composite was synthesized by modified incorporation of iron-barium complex into ordered meso-porous silica (MCM-41) as a matrix. The MCM-41 was synthesized by silylation treatment which was accompanied by pH adjusting. Low angle XRD patterns of both annealed MCM-41 and resulted composite exhibited the characteristic reflection of high quality hexagonal meso-structures. TEM image of the composite material revealed that the hexagonal ordered meso-structure host material was not affected by wet impregnation and subsequent calcination in order to incorporate with barium hexaferrite. Also, TEM images accompanied by EDS analysis confirmed the formation of second phase consists of barium and iron ions inside the MCM-41 channels. The resulted composite material showed a super-paramagnetic nature at room temperature.

  4. Characteristics of ultra low-k nanoporous and fluorinated silica based films prepared by plasma enhanced chemical vapor deposition

    SciTech Connect

    Abbasi-Firouzjah, M.; Shokri, B.

    2013-12-07

    Low dielectric constant (low-k) silica based films were deposited on p-type silicon and polycarbonate substrates by radio frequency (RF) plasma enhanced chemical vapor deposition method at low temperature. A mixture of tetraethoxysilane vapor, oxygen, and tetrafluoromethane (CF{sub 4}) was used for the deposition of the films in forms of two structures called as SiO{sub x}C{sub y} and SiO{sub x}C{sub y}F{sub z}. Properties of the films were controlled by amount of porosity and fluorine content in the film matrix. The influence of RF power and CF{sub 4} flow on the elemental composition, deposition rate, surface roughness, leakage current, refractive index, and dielectric constant of the films were characterized. Moreover, optical emission spectroscopy was applied to monitor the plasma process at the different parameters. Electrical characteristics of SiO{sub x}C{sub y} and SiO{sub x}C{sub y}F{sub z} films with metal-oxide-semiconductor structure were investigated using current-voltage analysis to measure the leakage current and breakdown field, as well as capacitance-voltage analysis to obtain the film's dielectric constant. The results revealed that SiO{sub x}C{sub y} films, which are deposited at lower RF power produce more leakage current, meanwhile the dielectric constant and refractive index of these films decreased mainly due to the more porosity in the film structure. By adding CF{sub 4} in the deposition process, fluorine, the most electronegative and the least polarized atom, doped into the silica film and led to decrease in the refractive index and the dielectric constant. In addition, no breakdown field was observed in the electrical characteristics of SiO{sub x}C{sub y}F{sub z} films and the leakage current of these films reduced by increment of the CF{sub 4} flow.

  5. One-pot and efficient synthesis of triazolo[1,2-a]indazole-triones via reaction of arylaldehydes with urazole and dimedone catalyzed by silica nanoparticles prepared from rice husk.

    PubMed

    Hamidian, Hooshang; Fozooni, Samieh; Hassankhani, Asadollah; Mohammadi, Sayed Zia

    2011-10-26

    A novel synthesis of triazolo[1,2-a]indazole-1,3,8-trione derivatives by reaction of urazole, dimedone and aromatic aldehydes under conventional heating and microwave irradiation and solvent-free conditions using silica nanoparticles prepared from rice husk ash as catalyst is described. The new method features high yields, multicomponent reactions and environmental friendliness.

  6. Lithographically defined microporous carbon-composite structures

    DOEpatents

    Burckel, David Bruce; Washburn, Cody M.; Lambert, Timothy N.; Finnegan, Patrick Sean; Wheeler, David R.

    2016-12-06

    A microporous carbon scaffold is produced by lithographically patterning a carbon-containing photoresist, followed by pyrolysis of the developed resist structure. Prior to exposure, the photoresist is loaded with a nanoparticulate material. After pyrolysis, the nanonparticulate material is dispersed in, and intimately mixed with, the carbonaceous material of the scaffold, thereby yielding a carbon composite structure.

  7. Catalytic effect of transition metals on microwave-induced degradation of atrazine in mineral micropores.

    PubMed

    Hu, Erdan; Cheng, Hefa

    2014-06-15

    With their high catalytic activity for redox reactions, transition metal ions (Cu(2+) and Fe(3+)) were exchanged into the micropores of dealuminated Y zeolites to prepare effective microporous mineral sorbents for sorption and microwave-induced degradation of atrazine. Due to its ability to complex with atrazine, loading of copper greatly increased the sorption of atrazine. Atrazine sorption on iron-exchanged zeolites was also significantly enhanced, which was attributed to the hydrolysis of Fe(3+) polycations in mineral micropores and electrostatic interactions of protonated atrazine molecules with the negatively charged pore wall surface. Copper and iron species in the micropores also significantly accelerated degradation of the sorbed atrazine (and its degradation intermediates) under microwave irradiation. The catalytic effect was attributed to the easy reducibility and high oxidation activity of Cu(2+) and Fe(3+) species stabilized in the micropores of the zeolites. It was postulated that the surface species of transition metals (monomeric Cu(2+), Cu(2+)-O-Cu(2+) complexes, FeO(+), and dinuclear Fe-O-Fe-like species) in the mineral micropores were thermally activated under microwave irradiation, and subsequently formed highly reactive sites catalyzing oxidative degradation of atrazine. The transition metal-exchanged zeolites, particularly the iron-exchanged ones, were relatively stable when leached under acidic conditions, which suggests that they are reusable in sorption and microwave-induced degradation. These findings offer valuable insights on designing of effective mineral sorbents that can selectively uptake atrazine from aqueous solutions and catalyze its degradation under microwave irradiation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Micropore extrusion-induced alignment transition from perpendicular to parallel of cylindrical domains in block copolymers

    NASA Astrophysics Data System (ADS)

    Qu, Ting; Zhao, Yongbin; Li, Zongbo; Wang, Pingping; Cao, Shubo; Xu, Yawei; Li, Yayuan; Chen, Aihua

    2016-02-01

    The orientation transition from perpendicular to parallel alignment of PEO cylindrical domains of PEO-b-PMA(Az) films has been demonstrated by extruding the block copolymer (BCP) solutions through a micropore of a plastic gastight syringe. The parallelized orientation of PEO domains induced by this micropore extrusion can be recovered to perpendicular alignment via ultrasonication of the extruded BCP solutions and subsequent annealing. A plausible mechanism is proposed in this study. The BCP films can be used as templates to prepare nanowire arrays with controlled layers, which has enormous potential application in the field of integrated circuits.The orientation transition from perpendicular to parallel alignment of PEO cylindrical domains of PEO-b-PMA(Az) films has been demonstrated by extruding the block copolymer (BCP) solutions through a micropore of a plastic gastight syringe. The parallelized orientation of PEO domains induced by this micropore extrusion can be recovered to perpendicular alignment via ultrasonication of the extruded BCP solutions and subsequent annealing. A plausible mechanism is proposed in this study. The BCP films can be used as templates to prepare nanowire arrays with controlled layers, which has enormous potential application in the field of integrated circuits. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr09140c

  9. Large-Pore Mesoporous Silica with Three-Dimensional Wormhole Framework Structures.

    PubMed

    Park, In; Pinnavaia, Thomas J

    2009-02-01

    Large-pore mesoporous silica with 3D wormhole framework structures (denoted MSU-J) are prepared through a supramolecular hydrogen-bonding assembly pathway from low-cost sodium silicate as the silica source and commercially available mono- and triamine Jeffamine and Surfonamine surfactants as structure-directing porogens. The calcined mesostructures exhibit large pore sizes (up to 8.2 nm), surface areas (632-1030 m(2)/g) and pore volumes (0.5-2.0 cm(3)/g), depending on the surfactant chain length and synthesis temperature (25-65 °C). The textural properties of these new wormhole mesostructures are comparable to those of hexagonal SBA-15 derivatives and large pore MCM-48. However, unlike the SBA-15 structure type, wherein the 3D pore network is formed by connecting 1D cylindrical mesopores through micropores, MSU-J mesophases have wormhole framework structures containing fully interconnected 3D mesopores that can minimize the diffusion limitations often encountered in adsorption and chemical catalysis. Also, unlike large pore MCM-48, which requires cost-intensive tetraethylorthosilicate as a silica source and the use of a co-surfactant as a pore expander under strong acid conditions, MSU-J mesostructures are assembled from low cost sodium silicate in the presence of a single Jeffamine or Surfonamine porogen at near-neutral pH.

  10. Large-Pore Mesoporous Silica with Three-Dimensional Wormhole Framework Structures

    PubMed Central

    Park, In; Pinnavaia, Thomas J.

    2009-01-01

    Large-pore mesoporous silica with 3D wormhole framework structures (denoted MSU-J) are prepared through a supramolecular hydrogen-bonding assembly pathway from low-cost sodium silicate as the silica source and commercially available mono- and triamine Jeffamine and Surfonamine surfactants as structure-directing porogens. The calcined mesostructures exhibit large pore sizes (up to 8.2 nm), surface areas (632–1030 m2/g) and pore volumes (0.5–2.0 cm3/g), depending on the surfactant chain length and synthesis temperature (25–65 °C). The textural properties of these new wormhole mesostructures are comparable to those of hexagonal SBA-15 derivatives and large pore MCM-48. However, unlike the SBA-15 structure type, wherein the 3D pore network is formed by connecting 1D cylindrical mesopores through micropores, MSU-J mesophases have wormhole framework structures containing fully interconnected 3D mesopores that can minimize the diffusion limitations often encountered in adsorption and chemical catalysis. Also, unlike large pore MCM-48, which requires cost-intensive tetraethylorthosilicate as a silica source and the use of a co-surfactant as a pore expander under strong acid conditions, MSU-J mesostructures are assembled from low cost sodium silicate in the presence of a single Jeffamine or Surfonamine porogen at near-neutral pH. PMID:20126285

  11. Surface microarchitectural design in biomedical applications: in vivo analysis of tissue ingrowth in excimer laser-directed micropored scaffold for cardiovascular tissue engineering.

    PubMed

    Nakayama, Y; Nishi, S; Ishibashi-Ueda, H; Matsuda, T

    2000-09-05

    A micropatterned microporous segmented polyurethane film (20 x 12 mm in size, 30 micrometer thick) with four regions was prepared by excimer laser microprocessing to provide an in vivo model of transmural tissue ingrowth in an open cell-structured scaffold specially designed for cardiovascular tissue engineering. Three microporous regions had the same circular micropores (30 micrometer diameter) but different pore density arrangements (percentage of total pore area against unit area was 0.3%, 1.1%, and 4.5%), and the other region remained nonporous. The covered stent, prepared by wrapping the regionally different density-microporous film on an expandable metallic stent (approximately 3.1 mm in diameter), was delivered to the luminal surface of canine common carotid arteries and placed after expansion of the stent to a diameter of approximately 8 mm using a balloon catheter. At 4 weeks of implantation, all the covered stents (n = 10) were patent. The luminal surfaces of the covered stents were almost confluently endothelialized both in nonporous and microporous regions. Histological examination showed that the neointimal wall was formed by tissue ingrowth from host through micropores (transmural) and anastomotic sites. Thrombus formation occurred frequently in the lowest density porous region and nonporous region. With an increase in pore density, the thickness of the neointimal wall decreased. This study demonstrated how the micropore density of implanted devices influences tissue ingrowth in arterial implantation. Copyright 2000 John Wiley & Sons, Inc.

  12. Bis-clickable Mesoporous Silica Nanoparticles: Straightforward Preparation of Light-Actuated Nanomachines for Controlled Drug Delivery with Active Targeting.

    PubMed

    Noureddine, Achraf; Gary-Bobo, Magali; Lichon, Laure; Garcia, Marcel; Zink, Jeffrey I; Wong Chi Man, Michel; Cattoën, Xavier

    2016-07-04

    Bis(clickable) mesoporous silica nanospheres (ca. 100 nm) were obtained by the co-condensation of TEOS with variable amounts (2-5 % each) of two clickable organosilanes in the presence of CTAB. Such nanoparticles could be easily functionalized with two independent functions using the copper-catalyzed alkyne-azide cycloaddition (CuAAC) reaction to transform them into nanomachines bearing cancer cell targeting ligands with the ability to deliver drugs on-demand. The active targeting was made possible after anchoring folic acid by CuAAC click reaction, whereas the controlled delivery was performed by clicked azobenzene fragments. Indeed, the azobenzene groups are able to obstruct the pores of the nanoparticles in the dark whereas upon irradiation in the UV or in the blue range, their trans-to-cis photoisomerization provokes disorder in the pores, enabling the delivery of the cargo molecules. The on-command delivery was proven in solution by dye release experiments, and in vitro by doxorubicin delivery. The added value of the folic acid ligand was clearly evidenced by the difference of cell killing induced by doxorubicin-loaded nanoparticles under blue irradiation, depending on whether the particles featured the clicked folic acid ligand or not.

  13. Preparation of end-capped pH-sensitive mesoporous silica nanocarriers for on-demand drug delivery.

    PubMed

    Moreira, André F; Gaspar, Vítor M; Costa, Elisabete C; de Melo-Diogo, Duarte; Machado, Paulo; Paquete, Catarina M; Correia, Ilídio J

    2014-11-01

    Nanocarriers with a pH responsive behavior are receiving an ever growing attention due to their potential for promoting on-demand drug release and thus increase the therapeutic effectiveness of anti-tumoral pharmaceutics. However, the majority of these systems require costly, time-consuming and complex chemical modifications of materials or drugs to synthesize nanoparticles with pH triggered release. Herein, the development of dual drug loaded pH-responsive mesoporous silica nanoparticles (MSNs) with a calcium carbonate-based coating is presented as an effective alternative. This innovative approach allowed the loading of a non-steroidal anti-inflammatory drug (Ibuprofen) and Doxorubicin, with high efficiency. The resulting dual drug loaded MSNs have spherical morphology and a mean size of 171nm. Our results indicate that under acidic conditions the coating disassembles and the drugs are rapidly released, whereas at physiologic pH the release is slower and gradually increases with time. Furthermore, an improved cytotoxic effect was obtained for Doxorubicin-Ibuprofen MSNs coated with CaCO3 in comparison with non-coated particles. The cytotoxic effect of dual loaded carbonate coated particles, was similar to that of Doxorubicin+Ibuprofen free drug administration at 72h, even with the delivery of a significantly lower amount of drug by MSNs-CaCO3. These results suggest that the carbonate coating of MSNs is a promising approach to create a pH-sensitive template for a delivery system with application in cancer therapy.

  14. Ceria and titania incorporated silica based catalyst prepared from rice husk: adsorption and photocatalytic studies of methylene blue.

    PubMed

    Adam, Farook; Muniandy, Lingeswarran; Thankappan, Radhika

    2013-09-15

    Titania and ceria incorporated rice husk silica based catalyst was synthesized via sol-gel method using CTAB and glycerol as surface directing agents at room temperature and labeled as RHS-50Ti10Ce. The catalyst was used to study the adsorption and photodegradation of methylene blue (MB) under UV irradiation. The powder XRD pattern of RHS-50Ti10Ce was much broader (2θ=25-30°) than that of the parent RHS (2θ=22°). The catalyst exhibited type IV isotherm with H3 hysteresis loop, and the TEM images showed partially ordered pore arrangements. The TGA-DTG thermograms confirmed the complete removal of the templates after calcination at 500°C. RHS-50Ti10Ce exhibited excellent adsorption capability with more than 99% removal of MB from a 40 mg L(-1) solution in just 15 min. It also decolorized an 80 mg L(-1) MB solution under UV irradiation in 210 min, which was comparable with the commercialized pure anatase TiO2.

  15. Preparation and characterization of micro-cell membrane chromatographic column with silica-based porous layer open tubular capillary as cellular membrane carrier.

    PubMed

    Zhang, Fugeng; Zhao, Xinchao; Xu, Bei; Cheng, Shuai; Tang, Cheng; Duan, Hongquan; Xiao, Xuefeng; Du, Wuxun; Xu, Liang

    2016-04-01

    Cell membrane chromatography (CMC) is a powerful tool to study membrane protein interactions and to screen active compounds extracted from natural products. Unfortunately, a large amount of cells are typically required for column preparation in order to carry out analyses in an efficient manner. Micro-CMC (mCMC) has recently been developed by using a silica capillary as a membrane carrier. However, a reduced retention of analytes is generally associated with mCMC mostly due to a low ligand (cellular membrane) capacity. To solve this common problem, in this work a silica-based porous layer open tubular (PLOT) capillary was fabricated and, to the best of our knowledge, for the first time applied to mCMC. The mCMC column was prepared by physical adsorption of rabbit red blood cell (rRBC) membranes onto the inner surface of the PLOT capillary. The effects of the PLOT capillaries fabricated by different feed compositions, on the immobilization amount of cellular membranes (represented by the fluorescence intensity of the capillary immobilized with fluorescein isothiocyanate isomer-labeled cellular membranes) and on the dynamic binding capacity (DBC) of verapamil (VP, a widely used calcium antagonist which specific interacts with L-type calcium channel proteins located on cellular membrane of rRBC) have been systematically investigated. The fluorescence intensity of the mCMC column when combined with the PLOT capillary was found to be more than five times higher than the intensity using a bare capillary. This intriguing result indicates that the PLOT capillary exhibits a higher cellular membrane capacity. The DBC of VP in the PLOT column was found to be more than nine times higher than that in the bare capillary. An rRBC/CMC column was also prepared for comparative studies. As a result, mCMC provides similar chromatographic retention factors and stability with common CMC; however, the cellular membrane consumption for mCMC was found to be more than 460 times lower than

  16. Preparation, characterization, and evaluation in vivo of Ins-SiO₂-HP55 (insulin-loaded silica coating HP55) for oral delivery of insulin.

    PubMed

    Zhao, Xiuhua; Shan, Chang; Zu, Yuangang; Zhang, Ying; Wang, Weiguo; Wang, Kunlun; Sui, Xiaoyu; Li, Ruiqiang

    2013-09-15

    Insulin is the most effective and durable drug in the treatment of advanced stage diabetes. However, oral delivering insulin was a tough task for rapid enzymatic degradation. In this work, we designed and developed a delivery system composed of enteric nanosphere for oral delivery of insulin. The silica was selected for loading insulin, which surface has a lot of pores with a powerful adsorption capacity, advantages for permeability and slow-release. The insulin-loaded silica (Ins-SiO2) was prepared by adsorption in HCl solution. The Ins-SiO2 obtained was coated with the hydroxypropyl methylcellulose phthalate (HP55) by desolvation method, which is a good enteric coating material. The Ins-SiO2-HP55, an enteric nanosphere of insulin obtained were characterized by transmission electron microscope (TEM), surface area, Fourier-transform infrared (FT-IR), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The results showed that insulin was loaded most in the pores of silica, while the HP55 coated on the extent of Ins-SiO2. In vitro drug release results revealed that the release of insulin from Ins-SiO2-HP55 was markedly reduced in simulated gastric fluid (SGF). By contrast, the release amount of insulin from Ins-SiO2-HP55 was increased significantly in simulated intestinal fluid (SIF). In vivo evaluation on diabetic animals showed the blood glucose level of diabetic rats could be effectively reduced after oral administration Ins-SiO2-HP55. There is marked hypoglycemic effect after 1h of taking the Ins-SiO2-HP55. After 3h, the GLU of rats of the Ins-SiO2-HP55 stably kept from 4.85 to 2.67 mmol/L that was significantly less than the normal level (6.7 mmol/L). However, that of rats taking raw insulin kept from 8.03 to 6.56 mmol/L that is higher than the normal level. These results suggested that Ins-SiO2-HP55 could have potential value in oral administration systems of diabetes chemotherapy.

  17. One-pot preparation of a mixed-mode organic-silica hybrid monolithic capillary column and its application in determination of endogenous gibberellins in plant tissues.

    PubMed

    Zhang, Zheng; Hao, Yan-Hong; Ding, Jun; Xu, Sheng-Nan; Yuan, Bi-Feng; Feng, Yu-Qi

    2015-10-16

    A newly improved one-pot method, based on "thiol-ene" click chemistry and sol-gel approach in microemulsion system, was developed for the preparation of C8/PO(OH)2-silica hybrid monolithic capillary column. The prepared monolith possesses large specific surface area, narrow mesopore size distribution and high column efficiency. The monolithic column was demonstrated to have cation exchange/reversed-phase (CX/RP) mixed-mode retention for analytes on nano-liquid chromatography (nano-LC). On the basis of the developed nano-LC system with MS detector coupled to pipette tip solid phase extraction (PT-SPE) and derivatization process, we then realized simultaneous determination of 10 gibberellins (GAs) with low limits of detection (LODs, 0.003-0.025 ng/mL). Furthermore, 6 endogenous GAs in only 5mg rice leaves (fresh weight) were successfully detected and quantified. The developed PT-SPE-nano-LC-MS strategy may offer promising applications in the determination of low abundant bioactive molecules from complex matrix. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Preparation of hybrid organic-inorganic mesoporous silicas applied to mercury removal from aqueous media: Influence of the synthesis route on adsorption capacity and efficiency.

    PubMed

    Pérez-Quintanilla, Damián; Sánchez, Alfredo; Sierra, Isabel

    2016-06-15

    New hybrid organic-inorganic mesoporous silicas were prepared by employing three different synthesis routes and mercury adsorption studies were done in aqueous media using the batch technique. The organic ligands employed for the functionalization were derivatives of 2-mercaptopyrimidine or 2-mercaptothiazoline, and the synthesis pathways used were post-synthesis, post-synthesis with surface ion-imprinting and co-condensation with ion-imprinting. The incorporation of functional groups and the presence of ordered mesopores in the organosilicas was confirmed by XRD, TEM and SEM, nitrogen adsorption-desorption isotherms, (13)C MAS-NMR, (29)Si MAS-NMR, elemental and thermogravimetric analysis. The highest adsorption capacity and selectivity observed was for the material functionalized with 2-mercaptothiazoline ligand by means the co-condensation with ion-imprinting route (1.03 mmol g(-1) at pH 6). The prepared material could be potential sorbent for the extraction of this heavy metal from environmental and drinking waters.

  19. Recovery of silica from electronic waste for the synthesis of cubic MCM-48 and its application in preparing ordered mesoporous carbon molecular sieves using a green approach

    NASA Astrophysics Data System (ADS)

    Liou, Tzong-Horng

    2012-07-01

    The electronics industry is one of the world's fastest growing manufacturing industries. However, e-waste has become a serious pollution problem. This study reports the recovery of e-waste for preparing valuable MCM-48 and ordered mesoporous carbon for the first time. Specifically, this study adopts an alkali-extracted method to obtain sodium silicate precursors from electronic packaging resin ash. The influence of synthesis variables such as gelation pH, neutral/cationic surfactant ratio, hydrothermal treatment temperature, and calcination temperature on the mesophase of MCM-48 materials is investigated. Experimental results confirm that well-ordered cubic MCM-48 materials were synthesized in strongly acidic and strongly basic media. The resulting mesoporous silica had a high surface area of 1,317 m2/g, mean pore size of about 3.0 nm, and a high purity of 99.87 wt%. Ordered mesoporous carbon with high surface area (1,715 m2/g) and uniform pore size of CMK-1 type was successfully prepared by impregnating MCM-48 template using the resin waste. The carbon structure was sensitive to the sulfuric acid concentration and carbonization temperature. Converting e-waste into MCM-48 materials not only eliminates the disposal problem of e-waste, but also transforms industrial waste into a useful nanomaterial.

  20. Preparation and characterization of multi-carboxyl-functionalized silica gel for removal of Cu (II), Cd (II), Ni (II) and Zn (II) from aqueous solution

    NASA Astrophysics Data System (ADS)

    Li, Min; Li, Ming-yu; Feng, Chang-gen; Zeng, Qing-xuan

    2014-09-01

    In this paper, the multi-carboxyl-functionalized silica gel was prepared by surface grafting method and applied for the removal of Cu (II), Cd (II), Ni (II) and Zn (II) from aqueous solution. The adsorbent was characterized by FT-IR, thermogravimetry, Brunauer-Emmett-Teller surface area measurement and elemental analysis, and it proved that the organic functional group, carboxyl group, was grafted successfully onto the silica gel surface. The effect of solution pH on removal efficiencies of Cu (II), Cd (II), Ni (II) and Zn (II) was investigated and it was found that with the exception of Zn (II), the removal efficiencies of the rest of metal ions increased with the increasing of pH in the solution, the maximum removal efficiency occurred at pH 6.0, whereas the maximum removal efficiency for Zn (II) was found to be at pH 7.0. Adsorption equilibrium data were well fitted to Langmuir than Freundlich isotherm model and the maximum adsorption capacity for Cu (II), Cd (II), Ni (II) and Zn (II) was 47.07, 41.48, 30.80 and 39.96 mg/g, respectively. Competitive adsorption experiments demonstrated that the adsorbent material had excellent adsorption amount and high affinity for the Cu (II) in the binary systems. In addition, the column experiments were used to investigate stability and reusability of the adsorbent, the dynamic adsorption performance, and desorption of metal ions absorbed from the adsorbent. The results confirmed that the adsorbent presents good dynamic adsorption performance for Cu (II), Cd (II), Ni (II) and Zn (II) and these metal ions adsorbed were easy to be desorbed from the adsorbent. The adsorption capacities of metal ions did not present an obvious decrease after five cycles of adsorption-desorption.

  1. Encapsulation of biomolecules for bioanalytical purposes: preparation of diclofenac antibody-doped nanometer-sized silica particles by reverse micelle and sol-gel processing.

    PubMed

    Tsagkogeorgas, Fotios; Ochsenkühn-Petropoulou, Maria; Niessner, Reinhard; Knopp, Dietmar

    2006-07-28

    In recent years, the sol-gel technique has attracted increasing interest as a unique approach to immobilize biomolecules for bioanalytical applications as well as biochemical and biophysical studies. For this purpose, crushed biomolecule-doped sol-gel glass monoliths have been widely used. In the present work, for the first time, the encapsulation of anti-diclofenac antibodies in silica nanoparticles was carried out by a combination of reverse micelle and sol-gel technique. Cyclohexane was used for the preparation of the microemulsion as organic solvent, while surfactant Igepal CO-520 was found to be the optimal stabilizer. The antibody source was a purified IgG fraction originating from a polyclonal rabbit antiserum. Tetramethyl orthosilicate (TMOS) was used as precursor. Rather uniform, monodispersed and spherical silica particles of about 70nm diameter size were fabricated, as was demonstrated by transmission electron microscopy (TEM) and scanning electron microscopy/energy dispersive X-ray fluorescence analysis (SEM/EDX). The biological activity of the encapsulated antibodies was evaluated by incubation of the nanoparticles with a diclofenac standard solution and analysis of the filtrate and followed washing solutions by a highly sensitive enzyme-linked immunosorbent assay (ELISA), using non-doped particles as blanks. While only about 6% of the added diclofenac was nonspecifically retained by the blank, the corresponding amount of about 66% was much higher with the antibody-doped particles. An obvious advantage of this approach is the general applicability of the developed technique for a mild immobilization of different antibody species.

  2. Preparation and retention mechanism study of graphene and graphene oxide bonded silica microspheres as stationary phases for high performance liquid chromatography.

    PubMed

    Zhang, Xiaoqiong; Chen, Sha; Han, Qiang; Ding, Mingyu

    2013-09-13

    Graphene oxide (GO) bonded stationary phase for high performance liquid chromatography (HPLC) was fabricated by coating GO sheets onto aminosilica microspheres via covalent coupling. Graphene (G) functionalized HPLC stationary phase was then prepared through hydrazine reduction of GO bonded silica (GO@SiO2) composite, which was the first example of using graphene as stationary-phase component for HPLC. Effective separations of the tested neutral and polar compounds on both GO@SiO2 and graphene bonded silica (G@SiO2) columns were achieved under the optimal experimental conditions. Compared with commercial C18 column, the different chromatographic performances of GO and graphene bonded columns were ascribed to their unique retention mechanisms. The polyaromatic scaffold of GO and graphene gives π-π stacking property and hydrophobic effect, and other retention mechanisms, such as π-π electron-donor-acceptor (EDA) interaction for the separation of nitroaromatic compounds and hydrogen bonding for hydroxyl and amino compounds, may also be taken into consideration. Experimental results indicated that the mixed-mode retention mechanism can facilitate the separation of analytes with similar hydrophobicity, which is a unique property compared with C18 column. Additionally, G@SiO2 showed higher affinity to aromatic analytes in contrast with GO@SiO2 and its retention mechanism was not consistent with the typical reversed phase behavior. The separation of aromatic compounds on G@SiO2 column relies primarily on the π-π stacking interaction and then the hydrophobicity, while the two interactions have equal shares on GO@SiO2 column.

  3. Silica sodalite without occluded organic matters by topotactic conversion of lamellar precursor.

    PubMed

    Moteki, Takahiko; Chaikittisilp, Watcharop; Shimojima, Atsushi; Okubo, Tatsuya

    2008-11-26

    Novel pure silica sodalite with hollow sodalite-cages has been synthesized for the first time by topotactic conversion of layered silicate (RUB-15) precursor. This success has been achieved by stepwise syntheses from silicate monomers, through clusters and layers, to microporous crystals. The pretreatment of layered silicate with small carboxylic acids before conversion is a crucial step. The obtained sodalite possesses accessible micropores, as confirmed by physical adsorption of hydrogen molecules. This plate-like silica sodalite would be very promising as fillers in mixed-matrix membranes for hydrogen separation.

  4. A dual-spatially-confined reservoir by packing micropores within dense graphene for long-life lithium/sulfur batteries

    NASA Astrophysics Data System (ADS)

    Li, Hongfei; Yang, Xiaowei; Wang, Xiaomin; He, Yu-Shi; Ye, Fangmin; Liu, Meinan; Zhang, Yuegang

    2016-01-01

    In lithium/sulfur batteries, micropores could bring about strong interactions with polysulfides, but could not alleviate the partial polysulfide overflowing outside because of the volume expansion of the lithiated sulfur. A dual-spatially-confined reservoir for sulfur by wrapping microporous carbon with dense graphene, micro@meso-porous DSC (dual-spatial carbon), is synthesized to solve this issue. Such a structure is prepared through two distinctive methods: graphene promoted in situ hydrothermal carbonization of organics to grow micropores on itself, and liquid mediated drying of graphene hydrogel to form mesoporous graphene frameworks. In contrast to previously reported hierarchical carbon/S, the inner micropores are mainly responsible for loading sulfur, which could help confine its particle size, thus increasing the electrical/ionic conductivity and the utilization of sulfur, and restrain lithium polysulfide dissolution because of strong interaction with pore walls; while the outer mesopores act as another reservoir to stabilize the overflowed polysulfide and to enhance the Li+ transport. The S-micro@meso-porous DSC cathode exhibits better discharge capacity and cycling performance than S-microporous AC and S-micro@macro-porous DSC, i.e., 59% and 37% higher capacity remaining at 0.5 C than the latter two, respectively.In lithium/sulfur batteries, micropores could bring about strong interactions with polysulfides, but could not alleviate the partial polysulfide overflowing outside because of the volume expansion of the lithiated sulfur. A dual-spatially-confined reservoir for sulfur by wrapping microporous carbon with dense graphene, micro@meso-porous DSC (dual-spatial carbon), is synthesized to solve this issue. Such a structure is prepared through two distinctive methods: graphene promoted in situ hydrothermal carbonization of organics to grow micropores on itself, and liquid mediated drying of graphene hydrogel to form mesoporous graphene frameworks. In

  5. Tuning preparation conditions towards optimized separation performance of thermally polymerized organo-silica monolithic columns in capillary liquid chromatography.

    PubMed

    Gharbharan, Deepa; Britsch, Denae; Soto, Gabriela; Weed, Anna-Marie Karen; Svec, Frantisek; Zajickova, Zuzana

    2015-08-21

    Tuning of preparation conditions, such as variations in the amount of a porogen, concentration of an aqueous acid catalyst, and adjustment in polymerization temperature and time, towards optimized chromatographic performance of thermally polymerized monolithic capillaries prepared from 3-(methacryloyloxy)propyltrimethoxysilane has been carried out. Performance of capillary columns in reversed-phase liquid chromatography was assessed utilizing various sets of solutes. Results describing hydrophobicity, steric selectivity, and extent of hydrogen bonding enabled comparison of performance of hybrid monolithic columns prepared under thermal (TSG) and photopolymerized (PSG) conditions. Reduced amounts of porogen in the polymerization mixture, and prolonged reaction times were necessary for the preparation of monolithic columns with enhanced retention and column efficiency that reached to 111,000 plates/m for alkylbenzenes with shorter alkyl chains. Both increased concentration of catalyst and higher temperature resulted in faster polymerization but inevitably in insufficient time for pore formation. Thermally polymerized monoliths produced surfaces, which were slightly more hydrophobic (a methylene selectivity of 1.28±0.002 TSG vs 1.20±0.002 PSG), with reduced number of residual silanols (a caffeine/phenol selectivity of 0.13±0.001 TSG vs 0.17±0.003 PSG). However, steric selectivity of 1.70±0.01 was the same for both types of columns. The batch-to-batch repeatability was better using thermal initiation compared to monolithic columns prepared under photopolymerized conditions. RSD for retention factor of benzene was 3.7% for TSG capillaries (n=42) vs. 6.6% for PSG capillaries (n=18). A similar trend was observed for columns prepared within the same batch.

  6. [Compared with colloidal silica and porous silica as baicalin solid dispersion carrier].

    PubMed

    Yan, Hong-Mei; Ding, Dong-Mei; Wang, Jing; Sun, E; Jia, Xiao-Bin; Zhang, Zhen-Hai

    2014-07-01

    To compare the dissolution characteristics of colloidal silica and porous silica as the solid dispersion carrier, with baicalin as the model drug. The baicalin solid dispersion was prepared by the solvent method, with colloidal silica and porous silica as the carriers. In the in vitro dissolution experiment, the solid dispersion was identified by scanning electron microscopy, differential scanning and X-ray diffraction. The solid dispersion carriers prepared with both colloidal silica and porous silica could achieve the purpose of rapid release. Along with the increase in the proportion of the carriers, the dissolution rate is accelerated to more than 80% within 60 min. Baicalin existed in the solid dispersion carriers in the non-crystalline form. The release behaviors of the baicalin solid dispersion prepared with two types of carrier were different. Among the two solid dispersion carriers, porous silica dissolved slowly than colloidal silica within 60 min, and they showed similar dissolutions after 60 min.

  7. Preparation of chitosan-modified silica nanoparticles and their applications in the separation of auxins by capillary electrophoresis.

    PubMed

    Duan, Lan-Ping; Ding, Guo-Sheng; Tang, An-Na

    2015-09-17

    In recent years, nanoparticles have gained more attention when used in separation science. In this study, chitosan-modified silica nanoparticles were successfully synthesized and characterized by transmission electron microscopy, elemental analysis and zeta potential measurements, etc. When added into the running buffer solution as pseudo-stationary phase in capillary electrophoresis, the separation of four representative auxins, i.e., indole-3-acetic acid, indole butyric acid, 2,4-dichlorophenoxyacetic acid, 1-naphthaleneacetic acid, was carried out. Some important factors, such as the nanoparticles concentration, the pH and concentration of the running buffer solution, were also investigated on the separation. Under optimized experimental conditions, all the auxins investigated can be baseline separated within 5 min with higher column performance. The method established can also be used for quantitative analysis. The relative standard deviations obtained for indole-3-acetic acid, indole butyric acid, 2,4-dichlorophenoxyacetic acid, 1-naphthaleneacetic acid were in the range of 1.6-5.7% for peak area and 0.53-1.60% for migration time. The calibration curves obtained from the peaks areas for auxins were linear in the range of 0.1-80 mg/L with the correlation coefficients of 0.994-0.999. The limit of detection (S/N = 3) was 11-75 μg/L. The developed method was also successfully used for the determination of auxins in fruits and vegetables samples with good recoveries. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Preparation of NO2-Aged Silver-Functionalized Silica-Aerogel and Silver Mordenite Samples

    SciTech Connect

    Jordan, Jacob A.; Bruffey, Stephanie H.

    2016-10-01

    Reprocessing used nuclear fuel can result in the volatilization of radioactive gaseous species, including 129I, into the various process off-gas streams. In order to comply with US regulatory requirements, plant off-gas streams must be treated to remove the iodine prior to discharging the off-gas into the environment. The performance of available gas removal methods depends not only on the concentration of the volatile radioisotope of interest, but also on other constituents that could be present in the reprocessing off-gas streams. Some of the constituents, such as NOx produced during fuel dissolution, are known to have deleterious effects on the capture performance of silver-based sorbents used for iodine removal. Commercially available reduced silver mordenite (AgZ) has an iodine saturation concentration of 7.0-9.0 wt%, and its iodine sorption capacity is reduced by 20-50% as a result of NO2 aging. Silverfunctionalized silica aerogel (AgAerogel), an alternative for iodine capture, has an initial iodine saturation of 29.0 wt% and its iodine capacity is only reduced by 15% from NO2 aging. Understanding the differences in aging behavior between AgZ and AgAerogel is critical to determining the behavior of these sorbents under realistic off-gas conditions. To assist in future technical studies on this topic, samples of both AgZ and AgAerogel were aged with NO2. In the experiment, 10.2190 g of AgZ and 10.1771 g of AgAerogel were exposed to a static 0.75% NO2/dry air blend for a period of 28 days. The samples were then removed and stored under argon until needed for future experiments.=

  9. Ketoprofen mesoporous silica nanoparticles SBA-15 hard gelatin capsules: preparation and in vitro/in vivo characterization.

    PubMed

    Abd-Elrahman, Ahmed A; El Nabarawi, Mohamed A; Hassan, Doaa H; Taha, Amal A

    2016-11-01

    SBA-15 is used to enhance the bioavailability of poorly soluble ketoprofen (KP) through stabilization of its amorphous state. Additionally, the current work provides a complete in vitro and in vivo study on preformulated KP-SBA-15 sample and formulated KP-SBA-15 in hard gelatin capsule. Loading of KP was done by a novel method called immersion-rotavapor method. KP was quantified by extraction and thermal gravimetric analysis (TGA). Characterization of the loaded SBA-15 sample was done by high resolution transmission electron microscopy (HRTEM), small angle X-ray diffraction (SAXRD), nitrogen adsorption/desorption isotherms, differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR) spectroscopy and dissolution profiles. The loaded sample was formulated in hard gelatin capsule. The anti-inflammatory and analgesic studies were carried out on 24 adult male albino rats. TGA and extraction results showed 54.4 wt% of drug incorporated. Characterization of KP-SBA-15 sample confirmed the successful encapsulation of KP into the carrier pores in a molecular amorphous state. Additionally, loading of KP did not affect the mesoporous internal structure. During the first 5 min, the dissolution study showed very high release rates; nearly 50% of KP was released. These results were reflected on the in vivo study resulting in 82% inhibition in edema after 1 h and maximum analgesia after 30 min from the administration of the formulated sample. SBA-15 mesoporous silica nanoparticle proved to be a very promising drug delivery carrier that can be used as a facile way to enhance the bioavailability of poorly soluble drugs.

  10. Zeotile-2: A microporous analogue of MCM-48

    NASA Astrophysics Data System (ADS)

    Kremer, Sebastien P. B.; Kirschhock, Christine E. A.; Aerts, Alexander; Aerts, Caroline A.; Houthoofd, Kristof J.; Grobet, Piet J.; Jacobs, Pierre A.; Lebedev, Oleg I.; Van Tendeloo, Gustaaf; Martens, Johan A.

    2005-07-01

    Ordered mesoporous materials with specific microporosity in the mesopore walls can be assembled by a secondary templating synthesis departing from a clear subcolloidal suspension dedicated to the tetrapropylammonium (TPA) mediated synthesis of colloidal Silicalite-1. A typical member of this material family is Zeotile-2. Zeotile-2 is mesostructurally similar to the cubic MCM-48 material with exceptional long-range order of the mesostructure. Zeotile-2 samples in which the TPA was either left or evacuated were prepared by leaching in boiling ethanolic acetic acid and calcination. The evacuation of the TPA gave rise to a substantial micropore volume revealed with nitrogen adsorption isotherms. The mesoporosity was independent of the presence of the TPA. Molecular separations of isooctane/octane mixtures illustrated the occurrence of molecular shape selectivity similar to MFI-type zeolites.

  11. Wear and Friction Behavior of Metal Impregnated Microporous Carbon Composites

    NASA Technical Reports Server (NTRS)

    Goller, Gultekin; Koty, D. P.; Tewari, S. N.; Singh, M.; Tekin, A.

    1996-01-01

    Metal-matrix composites have been prepared by pressure-infiltration casting of copper-base alloy melts into microporous carbon preforms. The carbon preforms contained varying proportions of amorphous carbon and graphite. Load dependence of the wear and friction behavior of the composite pins has been examined under ambient conditions against cast-iron plates, using a pin-on-plate reciprocating wear tester. The wear resistance of the composite is significantly improved, as compared with the base alloy. Contrary to the normally expected behavior, the addition of graphite to the amorphous carbon does not reduce the friction coefficient, especially at high loads. The wear and friction behavior of the composites is very sensitive to the size and distribution of the microstructural constituents.

  12. Wear and friction behavior of metal impregnated microporous carbon composites

    SciTech Connect

    Goller, G.; Koty, D.P.; Tewari, S.N.; Singh, M.; Tekin, A.

    1996-11-01

    Metal-matrix composites have been prepared by pressure-infiltration casting of copper-base alloy melts into microporous carbon preforms. The carbon preforms contained varying proportions of amorphous carbon and graphite. Load dependence of the wear and friction behavior of the composite pins has been examined under ambient conditions against cast-iron plates, using a pin-on-plate reciprocating wear tester. The wear resistance of the composite is significantly improved, as compared with the base alloy. Contrary to the normally expected behavior, the addition of graphite to the amorphous carbon does not reduce the friction coefficient, especially at high loads. The wear and friction behavior of the composites is very sensitive to the size and distribution of the microstructural constituents.

  13. Electron transfer reactions in microporous solids

    SciTech Connect

    Mallouk, T.E.

    1993-01-01

    Basic thrust the research program involves use of microporous solids (zeolites, clays, layered and tunnel structure oxide semiconductors) as organizing media for artificial photosynthetic systems. Purpose of the microporous solid is twofold. First, it induces spatial organization of photoactive and electroactive components (sensitizers, semiconductor particles, electron relays, and catalysts) at the solid-solution interface, enhancing the quantum efficiency of charge separation and separating physically the ultimate electron donor and acceptor in the electron transport chain. Second, since the microcrystalline solid admits only molecules of a certain charge and size, it is possible to achieve permanent charge separation by sieving chemical photoproducts (e.g., H[sub 2] and I[sub 3][sup [minus

  14. Method for making a microporous membrane

    NASA Technical Reports Server (NTRS)

    Gavalas, Lillian Susan (Inventor)

    2013-01-01

    A method for making a microporous membrane comprises the steps of: providing a plurality of carbon nanotubes having a hollow interior diameter of 20 Angstroms or less; sonicating the plurality of carbon nanotubes utilizing a solution comprising deionized, distilled water and a surfactant that coats at least one of the plurality of carbon nanotubes; collecting the coated carbon nanotubes; forming a matrix that supports the plurality of carbon nanotubes; embedding the coated carbon nanotubes into the matrix; rinsing the coated nanotubes to remove at least a portion of the surfactant; curing the nanotube-matrix assembly; and cutting the nanotube-matrix assembly to a particular thickness so as to open the ends of the embedded nanotubes. The hollow interiors of the plurality of embedded carbon nanotubes comprise the pores of the microporous membrane.

  15. 78 FR 14540 - Cyromazine, Silica Silicates (Silica Dioxide and Silica Gel), Glufosinate Ammonium, Dioctyl...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-06

    ... AGENCY Cyromazine, Silica Silicates (Silica Dioxide and Silica Gel), Glufosinate Ammonium, Dioctyl Sodium... the registration review of cyromazine, silica silicates (silica dioxide and silica gel), glufosinate...). Silica silicates, silicon dioxide and silica gel, are insecticides and acaracides used in...

  16. Water Adsorption Equilibria on Microporous Carbons

    DTIC Science & Technology

    1988-11-01

    of water adsorption on activated carbon is the presence of a large hysteresis loop indicating that the amount adsorbed depends on the past exposure...conditions of the carbon. The theories to describe hysteresis in microporous adsorbents and the experimental evidence to support each theory have been...observed behaviors on activated carbon. Neither the Dubinin- Serpinsky, nor the Sircar equations provide any explanation for hysteresis . It appears that

  17. Microporous polyimide films for reduced dielectric applications

    SciTech Connect

    Saunders, R.S.; Aubert, J.H.; McNamara, W.F.

    1996-08-01

    Limiting factor to computer chip speed and size is the dielectric constant of the interlayer insulating materials, which has been reduced going from inorganic to organic type materials. A further reduction, together with better mechanical properties, is still needed. We have developed a spincoating method in conjunction with a thermodynamic process (Non-solvent Induced Phase Separation) to create microporous polyimide films with both lower dielectric constant and better stress reduction properties compared to solid films. In this method, we spincoat a soluble polyimide solution in 1, 3-dimethoxybenzene solvent onto a Si wafer, and then immediately submerse the wet polymer film into a non-solvent bath, typically toluene. Phase separation of the polymer occurs on a micron size scale and the resulting microporous structure becomes locked in by the high glass transition temperature of the polyimide. Factors affecting film morphology, thickness, pore size, and % porosity include polymer concentration, spin speed, and non-solvent type. Morphology is explained in terms of thermodynamics and kinetics of phase separation and diffusion, using an idealized ternary phase diagram. One particular film having 68% porosity, 22 microns thickness, and 1.4 micron pore size had a dielectric constant of 1.88 and loss of 0.002. Stress measurements indicated that the microporous film reduced surface stress on the wafer by more than a factor of 10 compared to analogous solid polyimide film.

  18. Inorganic dual-layer microporous supported membranes

    DOEpatents

    Brinker, C. Jeffrey; Tsai, Chung-Yi; Lu, Yungfeng

    2003-03-25

    The present invention provides for a dual-layer inorganic microporous membrane capable of molecular sieving, and methods for production of the membranes. The inorganic microporous supported membrane includes a porous substrate which supports a first inorganic porous membrane having an average pore size of less than about 25 .ANG. and a second inorganic porous membrane coating the first inorganic membrane having an average pore size of less than about 6 .ANG.. The dual-layered membrane is produced by contacting the porous substrate with a surfactant-template polymeric sol, resulting in a surfactant sol coated membrane support. The surfactant sol coated membrane support is dried, producing a surfactant-templated polymer-coated substrate which is calcined to produce an intermediate layer surfactant-templated membrane. The intermediate layer surfactant-templated membrane is then contacted with a second polymeric sol producing a polymeric sol coated substrate which is dried producing an inorganic polymeric coated substrate. The inorganic polymeric coated substrate is then calcined producing an inorganic dual-layered microporous supported membrane in accordance with the present invention.

  19. Phase equilibrium and preparation, crystallization and viscous sintering of glass in the alumina-silica-lanthanum phosphate system

    NASA Astrophysics Data System (ADS)

    He, Feng

    The phase equilibrium, viscosity of melt-quenched glasses, and processing of sol-gel glasses of the alumina-silica-lanthanum phosphate system were studied. These investigations were directed towards serving the objective of synthesizing nano-structured ceramic-matrix-composites via controlled crystallization of glass precursors. The thermal stability, phase equilibrium, and liquidus temperatures of the alumina- and mullite-lanthanum phosphate systems are determined. An iridium wire heater was constructed to anneal samples up to 2200°C. Phosphorus evaporation losses were significant at high temperatures, especially over 1800°C. The tentative phase diagrams of the two quasi-binary systems were presented. The viscosity of the melt-quenched mullite-lanthanum phosphate glasses was measured by three different methods, including viscous sintering of glass powder compacts, neck formation between two Frenkel glass beads, and thermal analysis of the glass transition. Improved methodologies were developed for applying the interpretative mathematical models to the results of the sintered powder and thermal analytical experiments. Good agreement was found between all three methods for both absolute values and temperature dependence. A sol-gel process was developed as a low temperature route to producing glasses. A unique, single phase mullite gel capable of low temperature (575°C) mullitization was made from tetraethoxysilane and aluminum isopropoxide at room temperature in three days. Low temperature crystallization was attributed to the avoidance of phase segregation during gel formation and annealing. This was greatly enhanced by a combination of low temperature preheating in the amorphous state, a high heating rate during crystallization and low water content. The Al2O3 content in mullite (61-68 mol%) depended on the highest annealing temperature. Two mullite-lanthanum phosphate gels were made based upon modifying the chemical procedures used for the homogeneous single

  20. Fluorescence probing investigation of the mechanism of formation of MSU-type mesoporous silica prepared in fluoride medium.

    PubMed

    Lesaint, Cédric; Lebeau, Bénédicte; Marichal, Claire; Patarin, Joël; Zana, Raoul

    2005-09-13

    The mechanism of formation of a MSU-type siliceous material from tetraethyl orthosilicate (TEOS) in the presence of the nonionic surfactant tergitol T-15-S-12, sulfuric acid, and sodium fluoride has been investigated using mainly fluorescence probing techniques and, to a lesser extent, dynamic light scattering (DLS) and 29Si NMR spectroscopy. The tergitol micelles present in the systems obtained by progressively generating the reaction mixture giving rise to the mesostructured material by adding to an appropriate tergitol solution sulfuric acid, TEOS, and NaF were characterized by fluorescence probing (micelle aggregation number, micropolarity, and microviscosity) and also by dynamic light scattering (apparent micelle diameter). 29Si NMR experiments were also performed on selected systems after hydrolysis of the TEOS. The fluorescence probing techniques were also used to follow the changes of micelle characteristics with time during the evolution of the full reaction mixture from a limpid solution to a system containing a minor amount of condensed siliceous material. The synthesized solid material was characterized by X-ray diffraction and nitrogen adsorption-desorption analyses. The micelle aggregation number N was found to change only little, and the micropolarity remained constant when going from the tergitol solution to the full reaction mixture. The results of DLS measurements agree with this finding. Besides, while the condensation of silica took place after addition of NaF, the N value increased only very little with time up to the point where a small amount of mesostructured material precipitated out. These results indicate that the interaction between tergitol micelles and the siliceous species formed in the system by the hydrolysis of TEOS and also between micelles and the growing siliceous species must be very weak. As in our previous studies of the mechanism of formation of MCM41-type material from sodium silicate in the presence of

  1. Evaluation of colloidal silica suspension as efficient additive for improving physicochemical and in vitro biological properties of calcium sulfate-based nanocomposite bone cement.

    PubMed

    Borhan, Shokoufeh; Hesaraki, Saeed; Ahmadzadeh-Asl, Shaghayegh

    2010-12-01

    In the present study new calcium sulfate-based nanocomposite bone cement with improved physicochemical and biological properties was developed. The powder component of the cement consists of 60 wt% α-calcium sulfate hemihydrate and 40 wt% biomimetically synthesized apatite, while the liquid component consists of an aqueous colloidal silica suspension (20 wt%). In this study, the above mentioned powder phase was mixed with distilled water to prepare a calcium sulfate/nanoapatite composite without any additive. Structural properties, setting time, compressive strength, in vitro bioactivity and cellular properties of the cements were investigated by appropriate techniques. From X-ray diffractometer analysis, except gypsum and apatite, no further phases were found in both silica-containing and silica-free cements. The results showed that both setting time and compressive strength of the calcium sulfate/nanoapatite cement improved by using colloidal silica suspension as cement liquid. Meanwhile, the condensed phase produced from the polymerization process of colloidal silica filled the micropores of the microstructure and covered rodlike gypsum crystals and thus controlled cement disintegration in simulated body fluid. Additionally, formation of apatite layer was favored on the surfaces of the new cement while no apatite precipitation was observed for the cement prepared by distilled water. In this study, it was also revealed that the number of viable osteosarcoma cells cultured with extracts of both cements were comparable, while silica-containing cement increased alkaline phosphatase activity of the cells. These results suggest that the developed cement may be a suitable bone filling material after well passing of the corresponding in vivo tests.

  2. Improved Fibroblast Functionalities by Microporous Pattern Fabricated by Microelectromechanical Systems

    PubMed Central

    Wei, Hongbo; Zhao, Lingzhou; Chen, Bangdao; Bai, Shizhu; Zhao, Yimin

    2014-01-01

    Fibroblasts, which play an important role in biological seal formation and maintenance, determine the long-term success of percutaneous implants. In this study, well-defined microporous structures with micropore diameters of 10–60 µm were fabricated by microelectromechanical systems and their influence on the fibroblast functionalities was observed. The results show that the microporous structures with micropore diameters of 10–60 µm did not influence the initial adherent fibroblast number; however, those with diameters of 40 and 50 µm improved the spread, actin stress fiber organization, proliferation and fibronectin secretion of the fibroblasts. The microporous structures with micropore diameters of 40–50 µm may be promising for application in the percutaneous part of an implant. PMID:25054322

  3. Synthesis and modification of mesoporous silica and the preparation of molecular sieve thin films via pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Coutinho, Decio Heringer

    2001-07-01

    Hexagonal mesoporous DAM-1 (Dallas Amorphous Material-1) was prepared using Vitamin E TPGS as the structure-directing agent. Depending upon the temperature and gel composition, highly ordered and hydrothermally stable DAM-1 with various morphologies could be achieved including spheres, gyroids, discoid, hexagonal plates and rods. This synthesis was modified to prepare hybrid organic-inorganic amine and thiol bifunctionalized DAM-1 by direct co-condensation under acidic conditions. Patterned DAM-1 thin films were prepared on patterned transparencies utilizing pulsed laser deposition (PLD) and line patterning techniques. DAM-1 laser ablation onto the patterned substrate followed by hydrothermal treatment resulted in a densely packed film. Removal of the patterned lines by sonication revealed patterned DAM-1 films. Thin films of zeolite type X were also prepared using the PLD technique. Laser ablation of zeolite X onto TiN-coated silicon wafers followed by a hydrothermal treatment resulted in partially oriented, crystalline membranes. Hydrothermal treatment of PLD films on stainless steel mesh produced a coated wire mesh with a 3-mum thick zeolite X film. A novel strategy for imprinting mesoporous SBA-15 that combines a triblock copolymer template and a chiral ruthenium complex is reported. A chiral PEO helix was formed by the chiral ruthenium complex interaction with the block copolymer during the synthesis of SBA-15. Upon removal of the chiral ruthenium complex, a stereospecfic cavity was created. Preliminary results indicated stereoselective absorption of Delta or Λ-Ru(phen)3 2+ isomer from a racemic mixture could be achieved depending on the chirality of the PEO chain. Practicum Two. The industrial practicum report describes the process development unit (PDU) 3-pentenenitrile (3PN) refining operation. This distillation works was operated to refine crude 3PN product, which contained 3PN, 2-methyl-3-butenenitrile (2M3BN), and other byproducts. This report also

  4. Investigation of the sample preparation and curing treatment effects on mechanical properties and bioactivity of silica rich metakaolin geopolymer.

    PubMed

    Catauro, M; Bollino, F; Papale, F; Lamanna, G

    2014-03-01

    In many biomedical applications both the biological and mechanical behaviours of implants are of relevant interest; in the orthopaedic field, for example, favourable bioactivity and biocompatibility capabilities are necessary, but at the same time the mechanical characteristics of the implants must be such as to allow one to support the body weight. In the present work, the authors have examined the application of geopolymers with composition H24AlK7Si31O79 and ratio Si/Al=31 to be used in biomedical field, considering two different preparation methods: one of the activators (KOH) has been added as pellets in the potassium silicate solution, in the other as a water solution with 8M concentration. Moreover, a different water content was used and only some of the synthesized samples were heat treated. The chemical and microstructural characterizations of those materials have been carried out by Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). Subsequently, the effects of the adopted preparation on the mechanical and biological properties have been studied: compressive strength tests have demonstrated that more fragile specimens were obtained when KOH was added as a solution. The bioactivity was successfully evaluated with the soaking of the samples in a simulated body fluid (SBF) for 3 weeks. The formation of a layer of hydroxyapatite on the surface of the materials has been shown both by SEM micrographs and EDS analyses.

  5. Micropores and methods of making and using thereof

    DOEpatents

    Perroud, Thomas D.; Patel, Kamlesh D.; Meagher, Robert J.

    2016-08-02

    Disclosed herein are methods of making micropores of a desired height and/or width between two isotropic wet etched features in a substrate which comprises single-level isotropic wet etching the two features using an etchant and a mask distance that is less than 2.times. a set etch depth. Also disclosed herein are methods using the micropores and microfluidic devices comprising the micropores.

  6. Preparation of magnetic core-shell iron oxide@silica@nickel-ethylene glycol microspheres for highly efficient sorption of uranium(VI).

    PubMed

    Tan, Lichao; Zhang, Xiaofei; Liu, Qi; Wang, Jun; Sun, Yanbo; Jing, Xiaoyan; Liu, Jingyuan; Song, Dalei; Liu, Lianhe

    2015-04-21

    We report a facile approach for the formation of magnetic core-shell iron oxide@silica@nickel-ethylene glycol (Fe3O4@SiO2@Ni-L) microspheres. The structure and morphology of Fe3O4@SiO2@Ni-L are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and nitrogen sorption isotherm. The composite possesses a high specific surface area of 382 m(2) g(-1). The obtained core/shell structure is composed of a superparamagnetic core with a strong response to external fields, which are recovered readily from aqueous solutions by magnetic separation. When used as the adsorbent for uranium(vi) in water, the as-prepared Fe3O4@SiO2@Ni-L multi-structural microspheres exhibit a high adsorption capacity, which is mainly attributed to the large specific surface area and typical mesoporous characteristics of Fe3O4@SiO2@Ni-L microspheres. This work provides a promising approach for the design and synthesis of multifunctional microspheres, which can be used for water treatment, as well as having other potential applications in a variety of biomedical fields including drug delivery and biosensors.

  7. Preparation of organic-inorganic hybrid silica monolith with octyl and sulfonic acid groups for capillary electrochromatograhpy and application in determination of theophylline and caffeine in beverage.

    PubMed

    Chen, Ming-Luan; Zheng, Ming-Ming; Feng, Yu-Qi

    2010-05-21

    An organic-inorganic hybrid silica monolithic column with octyl and sulfonic acid groups has been prepared by sol-gel technique for capillary electrochromatograhpy. The structure of hybrid monolith was optimized by changing the composition of tetraethoxysilane (TEOS), octyltriethoxysilane (C(8)-TEOS) and 3-mercaptopropyltrimethoxysilane (MPTMS) in the mixture of precursors. Then, the obtained hybrid monolith was oxidized using hydrogen peroxide (30%, w/w) to yield sulfonic acid groups. The sulfonic acid group, which served as strong cation-exchanger, dominated the charge on the surface of the capillary column and generated stable electroosmotic flow (EOF) in a wide range of pH. The monolithic column was characterized by scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy and elemental analysis (EA), and the performance of column was evaluated in detail by separating different kinds of compounds with column efficiency up to 155,000 plates/m for thiourea. In addition, this monolithic column was also applied in the analysis of theophylline (TP) and caffeine (CA) in beverages. The detection limits were 0.39 and 0.48 microg/mL for theophylline and caffeine, respectively. The method reproducibility was tested by evaluating the intra- and inter-day precisions, and relative standard deviations of less than 3.9 and 8.4%, respectively, were obtained. Recoveries of compounds from spiked beverage samples ranged from 87.2 to 105.2%. 2010 Elsevier B.V. All rights reserved.

  8. Polarization-induced local pore-wall functionalization for biosensing: from micropore to nanopore.

    PubMed

    Liu, Jie; Pham, Pascale; Haguet, Vincent; Sauter-Starace, Fabien; Leroy, Loïc; Roget, André; Descamps, Emeline; Bouchet, Aurélie; Buhot, Arnaud; Mailley, Pascal; Livache, Thierry

    2012-04-03

    The use of biological-probe-modified solid-state pores in biosensing is currently hindered by difficulties in pore-wall functionalization. The surface to be functionalized is small and difficult to target and is usually chemically similar to the bulk membrane. Herein, we demonstrate the contactless electrofunctionalization (CLEF) approach and its mechanism. This technique enables the one-step local functionalization of the single pore wall fabricated in a silica-covered silicon membrane. CLEF is induced by polarization of the pore membrane in an electric field and requires a sandwich-like composition and a conducting or semiconducting core for the pore membrane. The defects in the silica layer of the micropore wall enable the creation of an electric pathway through the silica layer, which allows electrochemical reactions to take place locally on the pore wall. The pore diameter is not a limiting factor for local wall modification using CLEF. Nanopores with a diameter of 200 nm fabricated in a silicon membrane and covered with native silica layer have been successfully functionalized with this method, and localized pore-wall modification was obtained. Furthermore, through proof-of-concept experiments using ODN-modified nanopores, we show that functionalized nanopores are suitable for translocation-based biosensing.

  9. Tuning the Surface Polarity of Microporous Organic Polymers for CO2 Capture.

    PubMed

    Chen, Jian; Li, He; Zhong, Mingmei; Yang, Qihua

    2017-09-05

    CO2 capture is very important to reduce the CO2 concentration in atmosphere. Herein, we report the preparation of microporous polymers with tunable surface polarity for CO2 capture. Porous polymers functionalized with -NH2 , -SO3 H, and -SO3 Li have been successfully prepared by using a post-synthesis modification of microporous polymers (P-PhPh3 prepared with 1,3,5-triphenylbenzene as the monomer and AlCl3 as the catalyst) by chemical transformations, such as nitration-reduction, sulfonation, and cationic exchange. The CO2 adsorption selectivity (CO2 /N2 and CO2 /H2 ) and isosteric heats of the microporous polymers increase markedly after modification, P-PhPh3 -NH2 and P-PhPh3 -SO3 Li afford higher CO2 uptake capacity than P-PhPh3 at pressures of less than 0.15 bar due to the enhanced interaction between CO2 and the -NH2 and -SO3 Li functional groups. Moreover, functionalized porous polymers could be stably used for CO2 capture. Surface modification is an efficient approach to tune the CO2 capture properties of porous polymers. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Bactericidal activity and silver release of porous ceramic candle filter prepared by sintering silica with silver nanoparticles/zeolite for water disinfection

    NASA Astrophysics Data System (ADS)

    Trinh Nguyen, Thuy Ai; Phu Dang, Van; Duy Nguyen, Ngoc; Le, Anh Quoc; Thanh Nguyen, Duc; Hien Nguyen, Quoc

    2014-09-01

    Porous ceramic candle filters (PCCF) were prepared by sintering silica from rice husk with silver nanoparticles (AgNPs)/zeolite A at about 1050 °C to create bactericidal PCCF/AgNPs for water disinfection. The silver content in PCCF/AgNPs was of 300-350 mg kg-1 determined by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and the average pore size of PCCF/AgNPs was of 50-70 Å measured by Brunauer-Emmett-Teller (BET) method. The bactericidal activity and silver release of PCCF/AgNPs have been investigated by flow test with water flow rate of 5 L h-1 and initial inoculation of E. coli in inlet water of 106 CFU/100 mL. The volume of filtrated water was collected up to 500 L. Results showed that the contamination of E. coli in filtrated water was <1 CFU/100 mL and the content of silver released from PCCF/AgNPs into filtrated water was <1 μg L-1, it is low, far under the WHO guideline of 100 μg L-1 at maximum for drinking water. Based on the content of silver in PCCF/AgNPs and in filtrated water, it was estimated that one PCCF/AgNPs could be used to filtrate of ˜100 m3 water. Thus, as-prepared PCCF/AgNPs releases low content of silver into water and shows effectively bactericidal activity that is promising to apply as point-of-use water treatment technology for drinking water disinfection.

  11. Macroporous Polymers with Aligned Microporous Walls from Pickering High Internal Phase Emulsions.

    PubMed

    Zhu, Yun; Zhang, Ranran; Zhang, Shengmiao; Chu, Yeqian; Chen, Jianding

    2016-06-21

    A novel class of macroporous polymers, open macroporous polymers with aligned microporous void walls, were prepared by combining particle-stabilized high internal phase emulsion (Pickering HIPE) and unidirectional freezing technique. These Pickering HIPEs were prepared by utilizing poly(urethane urea)/(vinyl ester resin) nanoparticles as the sole stabilizer, and this nanoparticles also acted as building blocks for the resulting macroporous polymers. Moreover, the morphology and compression modulus of the resulting porous materials could be tuned easily. This means now Pickering-HIPE templated open-cell foams can be prepared, and this route was normally achieved with surfactant and/or chemical reaction involved.

  12. A facile route to preparation of high purity nanoporous silica from acid-leached residue of serpentine.

    PubMed

    Bai, Penn; Sharratt, Paul; Yeo, Tze Yuen; Bu, Jie

    2014-09-01

    As the current cost of mineral carbonation is too high for an economically viable industrial process, it is desirable to produce value-added products from CO2 mineralization process. In this work, a facile and cost-effective process was developed for the production of high purity SiO2 from acid-leached serpentine residue. The Si extraction rate is fast even under ambient conditions due to the highly defective structure of the residue. The reaction kinetics were studied and it was found that the Si extraction rate was under a combination of chemical reaction control and film diffusion control. The SiO2 sample prepared has high purity with a nanoporous structure, which renders it a potential candidate for applications such as an adsorbent and a catalyst support.

  13. Preparation of high efficiency and low carry-over immobilized enzymatic reactor with methacrylic acid-silica hybrid monolith as matrix for on-line protein digestion.

    PubMed

    Yuan, Huiming; Zhang, Lihua; Zhang, Yukui

    2014-12-05

    In this work, a novel kind of organic-silica hybrid monolith based immobilized enzymatic reactor (IMER) was developed. The monolithic support was prepared by a single step "one-pot" strategy via the polycondensation of tetramethoxysilane and vinyltrimethoxysilane and in situ copolymerization of methacrylic acid and vinyl group on the precondensed siloxanes with ammonium persulfate as the thermal initiator. Subsequently, the monolith was activated by N-(3-dimethylaminopropyl) - N'-ethylcarbodiimide (EDC) and N-hydroxysuccinimide (NHS), followed by the modification of branched polyethylenimine (PEI) to improve the hydrophilicity. Finally, after activated by EDC and NHS, trypsin was covalently immobilized onto the monolithic support. The performance of such a microreactor was evaluated by the in sequence digestion of bovine serum albumin (BSA) and myoglobin, followed by MALDI-TOF-MS analysis. Compared to those obtained by traditional in-solution digestion, not only higher sequence coverages for BSA (74±1.4% vs. 59.5±2.7%, n=6) and myoglobin (93±3% vs. 81±4.5%, n=6) were obtained, but also the digestion time was shortened from 24h to 2.5 min, demonstrating the high digestion efficiency of such an IMER. The carry-over of these two proteins on the IMER was investigated, and peptides from BSA could not be found in mass spectrum of myoglobin digests, attributed to the good hydrophilicity of our developed monolithic support. Moreover, the dynamic concentration range for protein digestion was proved to be four orders of magnitude, and the IMER could endure at least 7-day consecutive usage. Furthermore, such an IMER was coupled with nano-RPLC-ESI/MS/MS for the analysis of extracted proteins from Escherichia coli. Compared to formerly reported silica hybrid monolith based IMER and the traditional in-solution counterpart, by our developed IMER, although the identified protein number was similar, the identified distinct peptide number was improved by 7% and 25% respectively

  14. Molecular engineering of porous silica using aryl templates

    DOEpatents

    Loy, D.A.; Shea, K.J.

    1994-06-14

    A process is described for manipulating the porosity of silica using a series of organic template groups covalently incorporated into the silicate matrix. The templates in the bridged polysilsesquioxanes are selectively removed from the material by oxidation with oxygen plasma or other means, leaving engineered voids or pores. The size of these pores is dependent upon the length or size of the template or spacer. The size of the templates is measured in terms of Si-Si distances which range from about 0.67 nm to 1.08 nm. Changes introduced by the loss of the templates result in a narrow range of micropores (i.e. <2 nm). Both aryl and alkyl template groups are used as spacers. Novel microporous silica materials useful as molecular sieves, desiccants, and catalyst supports are produced. 3 figs.

  15. Molecular engineering of porous silica using aryl templates

    DOEpatents

    Loy, Douglas A.; Shea, Kenneth J.

    1994-01-01

    A process for manipulating the porosity of silica using a series of organic template groups covalently incorporated into the silicate matrix. The templates in the bridged polysilsesquioxanes are selectively removed from the material by oxidation with oxygen plasma or other means, leaving engineered voids or pores. The size of these pores is dependent upon the length or size of the template or spacer. The size of the templates is measured in terms of Si-Si distances which range from about 0.67 nm to 1.08 nm. Changes introduced by the loss of the templates result in a narrow range of micropores (i.e. <2 nm). Both aryl and alkyl template groups are used as spacers. Novel microporous silica materials useful as molecular seives, dessicants, and catalyst supports are produced.

  16. Effects of CO2 activation on electrochemical performance of microporous carbons derived from poly(vinylidene fluoride)

    NASA Astrophysics Data System (ADS)

    Lee, Seul-Yi; Park, Soo-Jin

    2013-11-01

    In this work, we have prepared microporous carbons (MPCs) derived from poly(vinylidene fluoride) (PVDF), and the physical activation of MPCs using CO2 gas is subsequently carried out with various activation temperatures to investigate the electrochemical performance. PVDF is successfully converted into MPCs with a high specific surface area and well-developed micropores. After CO2 activation, the specific surface areas of MPCs (CA-MPCs) are enhanced by 12% compared with non-activated MPCs. With increasing activation temperature, the micropore size distributions of A-MPCs also become narrower and shift to larger pore size. It is also confirmed that the CO2 activation had developed the micropores and introduced the oxygen-containing groups to MPCs‧ surfaces. From the results, the specific capacitances of the electrodes in electric double layer capacitors (EDLCs) based on CA-MPCs are distinctly improved through CO2 activation. The highest specific capacitance of the A-MPCs activated at 700 °C is about 125 F/g, an enhancement of 74% in comparison with NA-MPCs, at a discharge current of 2 A/g in a 6 M KOH electrolyte solution. We also found that micropore size of 0.67 nm has a specific impact on the capacitance behaviors, besides the specific surface area of the electrode samples.

  17. Random lasing of microporous surface of Cr{sup 2+}:ZnSe crystal induced by femtosecond laser

    SciTech Connect

    Yang, Xianheng; Feng, Guoying E-mail: zhoush@scu.edu.cn; Yao, Ke; Yi, Jiayu; Zhang, Hong; Zhou, Shouhuan E-mail: zhoush@scu.edu.cn

    2015-06-15

    We demonstrate a random lasing emission based on microporous surface of Cr{sup 2+}:ZnSe crystal prepared by femtosecond pulsed laser ablation in high vacuum (below 5 × 10{sup −4} Pa). The scanning electron microscope results show that there are a mass of micropores with an average size of ∼13 μm and smaller ones with ∼1.2 μm on the surface of Cr{sup 2+}:ZnSe crystal. The adjacent micropore spacing of the smaller micropores ranges from 1 μm to 5 μm. Under 1750 nm excitation of Nd:YAG (355 nm) pumped optical parametric oscillator, a random lasing emission with center wavelength of 2350 nm and laser-like threshold of 0.3 mJ/pulse is observed. The emission lifetime of 2350 nm laser reduces from 800 ns to 30 ns as the pump energy increases above threshold. The emission spectra and decay time of smooth surface, groove and microporous surface of Cr{sup 2+}:ZnSe crystal are contrasted. The optional pump wavelength range is from 1500 nm to 1950 nm, which in accordance with the optical absorption property of Cr{sup 2+}:ZnSe crystal. The peak position of excitation spectra is almost identical to the strongest absorption wavelength.

  18. A dual-spatially-confined reservoir by packing micropores within dense graphene for long-life lithium/sulfur batteries.

    PubMed

    Li, Hongfei; Yang, Xiaowei; Wang, Xiaomin; He, Yu-Shi; Ye, Fangmin; Liu, Meinan; Zhang, Yuegang

    2016-01-28

    In lithium/sulfur batteries, micropores could bring about strong interactions with polysulfides, but could not alleviate the partial polysulfide overflowing outside because of the volume expansion of the lithiated sulfur. A dual-spatially-confined reservoir for sulfur by wrapping microporous carbon with dense graphene, micro@meso-porous DSC (dual-spatial carbon), is synthesized to solve this issue. Such a structure is prepared through two distinctive methods: graphene promoted in situ hydrothermal carbonization of organics to grow micropores on itself, and liquid mediated drying of graphene hydrogel to form mesoporous graphene frameworks. In contrast to previously reported hierarchical carbon/S, the inner micropores are mainly responsible for loading sulfur, which could help confine its particle size, thus increasing the electrical/ionic conductivity and the utilization of sulfur, and restrain lithium polysulfide dissolution because of strong interaction with pore walls; while the outer mesopores act as another reservoir to stabilize the overflowed polysulfide and to enhance the Li(+) transport. The S-micro@meso-porous DSC cathode exhibits better discharge capacity and cycling performance than S-microporous AC and S-micro@macro-porous DSC, i.e., 59% and 37% higher capacity remaining at 0.5 C than the latter two, respectively.

  19. Self-formation of microporous polysulfone hollow fiber using a single nozzle spinneret and reduction of phase-inversion speed

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Jin; Jang, Chang Sik; Kim, Byeong Hee; Seo, Young Ho

    2016-06-01

    This study proposed a simple fabrication technique for microporous hollow fibers whose inner channel was naturally formed because of a slow phase inversion speed. Conventionally, microporous hollow fibers have been fabricated by extruding a polymer solution through the outer nozzle and a bore liquid through the inner nozzle of a dual nozzle spinneret. Injecting a bore liquid played a key role for the formation of a hollow structure. In this study, the self-formation of a hollow structure of microporous fiber was developed using a single nozzle spinneret without a bore liquid. A sharp tip single nozzle spinneret of 200 µm in diameter was fabricated by the wetting effect of a liquid pre-polymer of polydimethylsiloxane, and polysulfone solution was extruded through the prepared single nozzle spinneret. The temperature of the coagulant bath was controlled in order to reduce the speed of phase change, because the phase-change speed depended on the temperature of the coagulant solution. An inner channel in the microporous fiber was successfully fabricated by reducing the phase-change speed and by increasing the solidification speed. The inner diameter of the microporous hollow fiber was decreased as the temperature of the coagulant bath was increased, and eventually the inner channel was not formed at the higher bath temperature rather than 25 °C.

  20. Microporous polyimide films for reduced dielectric applications

    SciTech Connect

    Saunders, R.S.; Aubert, J.H.; McNamara, W.F.

    1995-01-01

    With all the advances in the microelectronics industry, a limiting factor to computer chip speed and size is becoming the dielectric constant of the interlayer insulating materials. Dielectric constants of these layers have been reduced in going from inorganic to organic type materials. A further reduction in dielectric constant, coupled with better mechanical properties are still required for these types of materials. The authors have developed a technique involving spincoating in conjunction with a thermodynamic process called {open_quotes}Non-solvent Induced Phase Separation{close_quotes} (NSIPS) to create microporous polyimide films that exhibit both a lower dielectric constant and better stress reduction properties compared to their solid film counterparts. In this technique, the authors spincoat a soluble polyimide solution in 1,3-dimethoxybenzene solvent onto a silicon wafer, and then immediately submerse the {open_quotes}wet{close_quotes} polymer film into a non-solvent bath, typically toluene. Phase separation of the polymer occurs on a micron size scale and the resulting microporous structure becomes locked in by the high glass transition temperature of the polyimide. The authors have determined the factors affecting the film morphology, thickness, pore size, and percent porosity; these factors include the polymer concentration, spin speed, and the type of non-solvent used. The different morphologies obtained for the varying non-solvents are explained in terms of thermodynamics and kinetics of phase separation and diffusion, using an idealized ternary phase diagram. One particular film having a porosity of 68%, thickness of 22 microns and pore size of 1.4 microns had a measured dielectric constant of 1.88 and dielectric loss of 0.002. Stress measurements indicated that the microporous film reduced surface stress on the wafer by more than a factor of 10 when compared to the analogous solid polyimide film.

  1. Solvent-resistant microporous polymide membranes

    DOEpatents

    Miller, W.K.; McCray, S.B.; Friesen, D.T.

    1998-03-10

    An asymmetric microporous membrane with exceptional solvent resistance and highly desirable permeability is disclosed. The membrane is made by a solution-casting or solution-spinning process from a copolyamic acid comprising the condensation reaction product in a solvent of at least three reactants selected from certain diamines and dianhydrides and post-treated to imidize and in some cases cross-link the copolyamic acid. The membrane is useful as an uncoated membrane for ultrafiltration, microfiltration, and membrane contactor applications, or may be used as a support for a permselective coating to form a composite membrane useful in gas separations, reverse osmosis, nanofiltration, pervaporation, or vapor permeation.

  2. Solvent-resistant microporous polymide membranes

    DOEpatents

    Miller, Warren K.; McCray, Scott B.; Friesen, Dwayne T.

    1998-01-01

    An asymmetric microporous membrane with exceptional solvent resistance and highly desirable permeability is disclosed. The membrane is made by a solution-casting or solution-spinning process from a copolyamic acid comprising the condensation reaction product in a solvent of at least three reactants selected from certain diamines and dianhydrides and post-treated to imidize and in some cases cross-link the copolyamic acid. The membrane is useful as an uncoated membrane for ultrafiltration, microfiltration, and membrane contactor applications, or may be used as a support for a permselective coating to form a composite membrane useful in gas separations, reverse osmosis, nanofiltration, pervaporation, or vapor permeation.

  3. Nanoelectrospray aerosols from microporous polymer wick sources

    NASA Astrophysics Data System (ADS)

    Tepper, Gary; Kessick, Royal

    2009-02-01

    Nanoelectrospray aerosols were formed from microporous polymer wick sources. Current-voltage characteristics were measured as a function of solution electrical conductivity and surface tension and two distinct electrospray modes were observed. In the first mode, when the maximum capillary flow rate through the wick exceeds the electrospray flow rate, a single electrospray forms from a droplet at the end of the wick. In the second mode, when the maximum capillary flow rate is less than the electrospray flow rate, a multitude of microscopic nanoelectrospray sources are formed from within the surface of the wick tip.

  4. Nanoscale assembly of lanthanum silica with dense and porous interfacial structures

    PubMed Central

    Ballinger, Benjamin; Motuzas, Julius; Miller, Christopher R.; Smart, Simon; Diniz da Costa, João C.

    2015-01-01

    This work reports on the nanoscale assembly of hybrid lanthanum oxide and silica structures, which form patterns of interfacial dense and porous networks. It was found that increasing the molar ratio of lanthanum nitrate to tetraethyl orthosilicate (TEOS) in an acid catalysed sol-gel process alters the expected microporous metal oxide silica structure to a predominantly mesoporous structure above a critical lanthanum concentration. This change manifests itself by the formation of a lanthanum silicate phase, which results from the reaction of lanthanum oxide nanoparticles with the silica matrix. This process converts the microporous silica into the denser silicate phase. Above a lanthanum to silica ratio of 0.15, the combination of growth and microporous silica consumption results in the formation of nanoscale hybrid lanthanum oxides, with the inter-nano-domain spacing forming mesoporous volume. As the size of these nano-domains increases with concentration, so does the mesoporous volume. The absence of lanthanum hydroxide (La(OH)3) suggests the formation of La2O3 surrounded by lanthanum silicate. PMID:25644988

  5. Microporous polyvinyl chloride: novel reactor for PVC/CaCO3 nanocomposites

    NASA Astrophysics Data System (ADS)

    Xiong, Chuanxi; Lu, Shengjun; Wang, Dongyan; Dong, Lijie; Jiang, David D.; Wang, Qinggang

    2005-09-01

    Microporous polyvinyl chloride (PVC) with pore size of 0.2-2 µm has been obtained by the foaming of PVC powders using a solution of 2,2'-azo-bis-iso-butyronitrile in a co-solvent of butanone and cyclohexanone. The PVC/CaCO3 hybrid powders deposited with CaCO3 nanoparticles have been synthesized using the microporous PVC as reactors of CaCO3 nanoparticles, i.e., the reaction of Ca(OH)2 with CO2 occurs inside the pore of microporous PVC. The in situ PVC/CaCO3 nanocomposites have been prepared by melt blending in situ PVC/CaCO3 hybrid powders. The images of SEM and TEM show that the in situ CaCO3 nanoparticles are uniformly dispersed in the PVC matrix and the sizes of the CaCO3 nanoparticles are less than 50 nm. TEM images and XRD patterns for the in situ CaCO3 strongly suggest that pseudo-amorphous crystals and defect-rich crystals are formed. The mechanical properties and DMA data indicate that the in situ PVC/CaCO3 nanocomposites exhibit much higher strength, toughness, modulus and glass temperature than common PVC/CaCO3 nanocomposites. This novel nanotechnology has potential applications in preparation of organic-inorganic hybrid nanocomposites.

  6. 21 CFR 177.2250 - Filters, microporous polymeric.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... as to prevent potential microbial adulteration of the food. (g) To assure safe use of the microporous... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Filters, microporous polymeric. 177.2250 Section 177.2250 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...

  7. Organically modified silicas on metal nanowires.

    PubMed

    Dean, Stacey L; Stapleton, Joshua J; Keating, Christine D

    2010-09-21

    Organically modified silica coatings were prepared on metal nanowires using a variety of silicon alkoxides with different functional groups (i.e., carboxyl groups, polyethylene oxide, cyano, dihydroimidazole, and hexyl linkers). Organically modified silicas were deposited onto the surface of 6-μm-long, ∼300-nm-wide, cylindrical metal nanowires in suspension by the hydrolysis and polycondensation of silicon alkoxides. Syntheses were performed at several ratios of tetraethoxysilane to an organically modified silicon alkoxide to incorporate desired functional groups into thin organosilica shells on the nanowires. These coatings were characterized using transmission electron microscopy, X-ray photoelectron spectroscopy, and infrared spectroscopy. All of the organically modified silicas prepared here were sufficiently porous to allow the removal of the metal nanowire cores by acid etching to form organically modified silica nanotubes. Additional functionality provided to the modified silicas as compared to unmodified silica prepared using only tetraethoxysilane precursors was demonstrated by chromate adsorption on imidazole-containing silicas and resistance to protein adsorption on polyethyleneoxide-containing silicas. Organically modified silica coatings on nanowires and other nano- and microparticles have potential application in fields such as biosensing or nanoscale therapeutics due to the enhanced properties of the silica coatings, for example, the prevention of biofouling.

  8. Organically Modified Silicas on Metal Nanowires

    PubMed Central

    2010-01-01

    Organically modified silica coatings were prepared on metal nanowires using a variety of silicon alkoxides with different functional groups (i.e., carboxyl groups, polyethylene oxide, cyano, dihydroimidazole, and hexyl linkers). Organically modified silicas were deposited onto the surface of 6-μm-long, ∼300-nm-wide, cylindrical metal nanowires in suspension by the hydrolysis and polycondensation of silicon alkoxides. Syntheses were performed at several ratios of tetraethoxysilane to an organically modified silicon alkoxide to incorporate desired functional groups into thin organosilica shells on the nanowires. These coatings were characterized using transmission electron microscopy, X-ray photoelectron spectroscopy, and infrared spectroscopy. All of the organically modified silicas prepared here were sufficiently porous to allow the removal of the metal nanowire cores by acid etching to form organically modified silica nanotubes. Additional functionality provided to the modified silicas as compared to unmodified silica prepared using only tetraethoxysilane precursors was demonstrated by chromate adsorption on imidazole-containing silicas and resistance to protein adsorption on polyethyleneoxide-containing silicas. Organically modified silica coatings on nanowires and other nano- and microparticles have potential application in fields such as biosensing or nanoscale therapeutics due to the enhanced properties of the silica coatings, for example, the prevention of biofouling. PMID:20715881

  9. Microporous organic polymers with ketal linkages: synthesis, characterization, and gas sorption properties.

    PubMed

    Han, Ying; Zhang, Li-Min; Zhao, Yan-Chao; Wang, Tao; Han, Bao-Hang

    2013-05-22

    A series of microporous organic polymers with ketal linkages were synthesized based on the condensation of aromatic acetyl monomers with pentaerythritol. Fourier transform infrared and solid-state cross-polarization/magic-angle-spinning (13)C NMR spectroscopy were utilized to confirm the ketal linkages of the resulting polymers. The morphology can be observed from scanning electron microscopy and transmission electron microscopy images. The materials possess Brunauer-Emmet-Teller specific surface area values ranging from 520 to 950 m(2) g(-1), and the highest hydrogen sorption capacity is up to 1.96 wt % (77 K and 1.0 bar), which is superior to that of most of microporous organic polymers. The facile and cost-effective preparation process and excellent gas sorption properties make these kinds of materials promising candidates for practical applications.

  10. Fused silica capillaries with two segments of different internal diameters and inner surface roughnesses prepared by etching with supercritical water and used for volume coupling electrophoresis.

    PubMed

    Horká, Marie; Karásek, Pavel; Roth, Michal; Šlais, Karel

    2017-02-22

    In this work, single-piece fused silica capillaries with two different internal diameter segments featuring different inner surface roughness were prepared by new etching technology with supercritical water and used for volume coupling electrophoresis. The concept of separation and online pre-concentration of analytes in high conductivity matrix is based on the online large-volume sample pre-concentration by the combination of transient isotachophoretic stacking and sweeping of charged proteins in micellar electrokinetic chromatography using non-ionogenic surfactant. The modified surface roughness step helped to the significant narrowing of the zones of examined analytes. The sweeping and separating steps were accomplished simultaneously by the use of phosphate buffer (pH 7) containing ethanol, non-ionogenic surfactant Brij 35, and polyethylene glycol (PEG 10000) after sample injection. Sample solution of a large volume (maximum 3.7 μL) dissolved in physiological saline solution was injected into the wider end of capillary with inlet inner diameter from 150, 185 or 218 μm. The calibration plots were linear (R(2) ∼ 0.9993) over a 0.060-1 μg/mL range for the proteins used, albumin and cytochrome c. The peak area RSDs from at least 20 independent measuremens were below 3.2%. This online pre-concentration technique produced a more than 196-fold increase in sensitivity, and it can be applied for detection of, e.g. the presence of albumin in urine (0.060 μg/mL).

  11. Immersion Calorimetry: Molecular Packing Effects in Micropores.

    PubMed

    Madani, S Hadi; Silvestre-Albero, Ana; Biggs, Mark J; Rodríguez-Reinoso, Francisco; Pendleton, Phillip

    2015-12-21

    Repeated and controlled immersion calorimetry experiments were performed to determine the specific surface area and pore-size distribution (PSD) of a well-characterized, microporous poly(furfuryl alcohol)-based activated carbon. The PSD derived from nitrogen gas adsorption indicated a narrow distribution centered at 0.57±0.05 nm. Immersion into liquids of increasing molecular sizes ranging from 0.33 nm (dichloromethane) to 0.70 nm (α-pinene) showed a decreasing enthalpy of immersion at a critical probe size (0.43-0.48 nm), followed by an increase at 0.48-0.56 nm, and a second decrease at 0.56-0.60 nm. This maximum has not been reported previously. After consideration of possible reasons for this new observation, it is concluded that the effect arises from molecular packing inside the micropores, interpreted in terms of 2D packing. The immersion enthalpy PSD was consistent with that from quenched solid density functional theory (QSDFT) analysis of the nitrogen adsorption isotherm. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Selective oxidation with nanoporous silica supported sensitizers: an environment friendly process using air and visible light.

    PubMed

    Saint-Cricq, Philippe; Pigot, Thierry; Blanc, Sylvie; Lacombe, Sylvie

    2012-04-15

    Transparent and porous silica xerogels containing various grafted photosensitizers (PSs) such as anthraquinone derivatives, Neutral Red, Acridine Yellow and a laboratory-made dicyano aromatics (DBTP) were prepared. In most cases, the xerogels were shown to be mainly microporous by porosimetry. The PSs were characterized in the powdered monoliths (form, aggregation, concentration) by electronic spectroscopy which also proved to be a useful tool for monitoring the material evolution after irradiation. These nanoporous xerogels were used as microreactors for gas/solid solvent-free photo-oxygenation of dimethylsulfide (DMS) using visible light and air as the sole reactant. All these PSs containing monoliths were efficient for gas-solid DMS oxidation, leading to sulfoxide and sulfone in varying ratios. As these polar oxidation products remained strongly adsorbed on the silica matrix, the gaseous flow at the outlet of the reactor was totally free of sulfide and odorless. The best results in term of yield and initial rate of degradation of DMS were obtained with DBTP containing xerogels. Moreover, as these materials were reusable without loss of efficiency and sensitizer photobleaching after a washing regeneration step, the concept of recyclable sensitizing materials was approved, opening the way to green process. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Exposure to crystalline silica in abrasive blasting operations where silica and non-silica abrasives are used.

    PubMed

    Radnoff, Diane L; Kutz, Michelle K

    2014-01-01

    Exposure to respirable crystalline silica is a hazard common to many industries in Alberta but particularly so in abrasive blasting. Alberta occupational health and safety legislation requires the consideration of silica substitutes when conducting abrasive blasting, where reasonably practicable. In this study, exposure to crystalline silica during abrasive blasting was evaluated when both silica and non-silica products were used. The crystalline silica content of non-silica abrasives was also measured. The facilities evaluated were preparing metal products for the application of coatings, so the substrate should not have had a significant contribution to worker exposure to crystalline silica. The occupational sampling results indicate that two-thirds of the workers assessed were potentially over-exposed to respirable crystalline silica. About one-third of the measurements over the exposure limit were at the work sites using silica substitutes at the time of the assessment. The use of the silica substitute, by itself, did not appear to have a large effect on the mean airborne exposure levels. There are a number of factors that may contribute to over-exposures, including the isolation of the blasting area, housekeeping, and inappropriate use of respiratory protective equipment. However, the non-silica abrasives themselves also contain silica. Bulk analysis results for non-silica abrasives commercially available in Alberta indicate that many contain crystalline silica above the legislated disclosure limit of 0.1% weight of silica per weight of product (w/w) and this information may not be accurately disclosed on the material safety data sheet for the product. The employer may still have to evaluate the potential for exposure to crystalline silica at their work site, even when silica substitutes are used. Limited tests on recycled non-silica abrasive indicated that the silica content had increased. Further study is required to evaluate the impact of product recycling

  14. Laboratory Testing of Silica Sol Grout in Coal Measure Mudstones.

    PubMed

    Pan, Dongjiang; Zhang, Nong; Xie, Zhengzheng; Feng, Xiaowei; Kong, Yong

    2016-11-22

    The effectiveness of silica sol grout on mudstones is reported in this paper. Using X-ray diffraction (XRD), the study investigates how the silica sol grout modifies mudstone mineralogy. Micropore sizes and mechanical properties of the mudstone before and after grouting with four different materials were determined with a surface area/porosity analyser and by uniaxial compression. Tests show that, after grouting, up to 50% of the mesopore volumes can be filled with grout, the dominant pore diameter decreases from 100 nm to 10 nm, and the sealing capacity is increased. Uniaxial compression tests of silica sol grouted samples shows that their elastic modulus is 21%-38% and their uniaxial compressive strength is 16%-54% of the non-grouted samples. Peak strain, however, is greater by 150%-270%. After grouting, the sample failure mode changes from brittle to ductile. This paper provides an experimental test of anti-seepage and strengthening properties of silica sol.

  15. Laboratory Testing of Silica Sol Grout in Coal Measure Mudstones

    PubMed Central

    Pan, Dongjiang; Zhang, Nong; Xie, Zhengzheng; Feng, Xiaowei; Kong, Yong

    2016-01-01

    The effectiveness of silica sol grout on mudstones is reported in this paper. Using X-ray diffraction (XRD), the study investigates how the silica sol grout modifies mudstone mineralogy. Micropore sizes and mechanical properties of the mudstone before and after grouting with four different materials were determined with a surface area/porosity analyser and by uniaxial compression. Tests show that, after grouting, up to 50% of the mesopore volumes can be filled with grout, the dominant pore diameter decreases from 100 nm to 10 nm, and the sealing capacity is increased. Uniaxial compression tests of silica sol grouted samples shows that their elastic modulus is 21%–38% and their uniaxial compressive strength is 16%–54% of the non-grouted samples. Peak strain, however, is greater by 150%–270%. After grouting, the sample failure mode changes from brittle to ductile. This paper provides an experimental test of anti-seepage and strengthening properties of silica sol. PMID:28774061

  16. Performance and long term stability of mesoporous silica membranes for desalination.

    PubMed

    Elma, Muthia; Yacou, Christelle; Diniz da Costa, João C; Wang, David K

    2013-07-12

    This work shows the preparation of silica membranes by a two-step sol-gel method using tetraethyl orthosilicate in ethanolic solution by employing nitric acid and ammonia as co-catalysts. The sols prepared in pH 6 resulted in the lowest concentration of silanol (Si-OH) species to improve hydrostability and the optimized conditions for film coating. The membrane was tested to desalinate 0.3-15 wt % synthetic sodium chloride (NaCl) solutions at a feed temperature of 22 °C followed by long term membrane performance of up to 250 h in 3.5 wt % NaCl solution. Results show that the water flux (and salt rejection) decrease with increasing salt concentration delivering an average value of 9.5 kg m-2 h-1 (99.6%) and 1.55 kg m-2 h-1 (89.2%) from the 0.3 and 15 wt % saline feed solutions, respectively. Furthermore, the permeate salt concentration was measured to be less than 600 ppm for testing conditions up to 5 wt % saline feed solutions, achieving below the recommended standard for potable water. Long term stability shows that the membrane performance in water flux was stable for up to 150 h, and slightly reduced from thereon, possibly due to the blockage of large hydrated ions in the micropore constrictions of the silica matrix. However, the integrity of the silica matrix was not affected by the long term testing as excellent salt rejection of >99% was maintained for over 250 h.

  17. Performance and Long Term Stability of Mesoporous Silica Membranes for Desalination

    PubMed Central

    Elma, Muthia; Yacou, Christelle; Diniz da Costa, João C.; Wang, David K.

    2013-01-01

    This work shows the preparation of silica membranes by a two-step sol-gel method using tetraethyl orthosilicate in ethanolic solution by employing nitric acid and ammonia as co-catalysts. The sols prepared in pH 6 resulted in the lowest concentration of silanol (Si–OH) species to improve hydrostability and the optimized conditions for film coating. The membrane was tested to desalinate 0.3–15 wt % synthetic sodium chloride (NaCl) solutions at a feed temperature of 22 °C followed by long term membrane performance of up to 250 h in 3.5 wt % NaCl solution. Results show that the water flux (and salt rejection) decrease with increasing salt concentration delivering an average value of 9.5 kg m–2 h–1 (99.6%) and 1.55 kg m–2 h–1 (89.2%) from the 0.3 and 15 wt % saline feed solutions, respectively. Furthermore, the permeate salt concentration was measured to be less than 600 ppm for testing conditions up to 5 wt % saline feed solutions, achieving below the recommended standard for potable water. Long term stability shows that the membrane performance in water flux was stable for up to 150 h, and slightly reduced from thereon, possibly due to the blockage of large hydrated ions in the micropore constrictions of the silica matrix. However, the integrity of the silica matrix was not affected by the long term testing as excellent salt rejection of >99% was maintained for over 250 h. PMID:24956942

  18. Preparation and characterization of glycidyl methacrylate organo bridges grafted mesoporous silica SBA-15 as ibuprofen and mesalamine carrier for controlled release.

    PubMed

    Rehman, Fozia; Rahim, Abdur; Airoldi, Claudio; Volpe, Pedro L O

    2016-02-01

    Mesoporous silica SBA-15 was synthesized and functionalized with bridged polysilsesquioxane monomers obtained by the reaction of 3-aminopropyltriethoxy silane with glycidyl methacrylate in 2:1 ratio. The synthesized mesoporous silica materials were characterized by elemental analysis, infrared spectroscopy, nuclear magnetic resonance spectroscopy, nitrogen adsorption, X-ray diffraction, thermogravimetry and scanning electron microscopy. The nuclear magnetic resonance in the solid state is in agreement with the sequence of carbon distributed in the attached organic chains, as expected for organically functionalized mesoporous silica. After functionalization with organic bridges the BET surface area was reduced from 1311.80 to 494.2m(2)g(-1) and pore volume was reduced from 1.98 to 0.89cm(3)g(-1), when compared to original precursor silica. Modification of the silica surface with organic bridges resulted in high loading capacity and controlled release of ibuprofen and mesalamine in biological fluids. The Korsmeyer-Peppas model better fits the release data indicating Fickian diffusion and zero order kinetics for synthesized mesoporous silica. The drug release rate from the modified silica was slow in simulated gastric fluid, (pH1.2) where less than 10% of mesalamine and ibuprofen were released in initial 8h, while comparatively high release rates were observed in simulated intestinal (pH6.8) and simulated body fluids (pH7.2). The preferential release of mesalamine at intestinal pH suggests that the modified silica could be a simple, efficient, inexpensive and convenient carrier for colon targeted drugs, such a mesalamine and also as a controlled drug release system.

  19. Preparation of monopodal and bipodal aluminum surface species by selective protonolysis of highly reactive [AlH3(NMe2Et)] on silica.

    PubMed

    Sauter, D W; Chiari, V; Aykac, N; Bouaouli, S; Perrin, L; Delevoye, L; Gauvin, R M; Szeto, K C; Boisson, C; Taoufik, M

    2017-09-12

    The synthesis and characterization of silica-grafted monopodal and bipodal aluminum hydrides has been achieved starting from 200 °C- and 700 °C-annealed silica and [AlH3(NMe2Et)]. The mechanism by which aluminum trishydride reacts with isolated and vicinal silanols, assisted by the amine, has been investigated computationally at the ωB97XD-DFT level.

  20. Porous structure, permeability, and mechanical properties of polyolefin microporous films

    NASA Astrophysics Data System (ADS)

    Elyashevich, G. K.; Kuryndin, I. S.; Lavrentyev, V. K.; Bobrovsky, A. Yu.; Bukošek, V.

    2012-09-01

    Microporous films of polyolefins, namely, polyethylene and polypropylene, have been prepared using the process based on the extrusion of the melt with the subsequent annealing, uniaxial extension, and thermal fixation. The influence of the conditions used for preparation of the films on their morphology, porosity, number and sizes of through-flow channels, and mechanical properties has been investigated. It has been found that a significant influence on the characteristics of the porous structure of the films is exerted by the degree of orientation of the melt at extrusion, the annealing temperature, and the degree of uniaxial extension of the films. The threshold values of these parameters, at which through-flow channels are formed in the films, have been determined. It has been shown using filtration porosimetry that polyethylene films have a higher permeability to liquids as compared to the polypropylene samples (240 and 180 L/(m2 h atm), respectively). The porous structure of the polyethylene films is characterized by larger sizes of through pores than those of the polypropylene samples (the average pore sizes are 210 and 160 nm, respectively), whereas the polypropylene films contain a larger number of through-flow channels.

  1. Superhydrophobicity of silica nanoparticles modified with polystyrene

    NASA Astrophysics Data System (ADS)

    Sun, X. L.; Fan, Z. P.; Zhang, L. D.; Wang, L.; Wei, Z. J.; Wang, X. Q.; Liu, W. L.

    2011-01-01

    Polystyrene/silica nanoparticles were prepared by radical polymerization of silica nanoparticles possessing vinyl groups and styrene with benzoyl peroxide. The resulting vinyl silica nanoparticles, polystyrene/silica nanoparticles were characterized by means of Fourier transformation infrared spectroscopy, scanning electron microscopy and UV-vis absorption spectroscopy. The results indicated that polystyrene had been successfully grafted onto vinyl silica nanoparticles via covalent bond. The morphological structure of polystyrene/silica nanoparticles film, investigated by scanning electron microscopy, showed a characteristic rough structure. Surface wetting properties of the polystyrene/silica nanoparticles film were evaluated by measuring water contact angle and the sliding angle using a contact angle goniometer, which were measured to be 159° and 2°, respectively. The excellent superhydrophobic property enlarges potential applications of the superhydrophobic surfaces.

  2. Fabrication and Characterization of High Aspect Ratio Membranes and Microporous Filters made from PMMA

    NASA Astrophysics Data System (ADS)

    Burant, Alex; Augustine, Brian; Hughes, Chris

    2011-03-01

    This experiment shows a new way to create high aspect ratio membranes and microporous filters by curing a liquid monomer, methyl methacrylate (MMA), into poly(methyl methacrylate) (PMMA) structures. Holes were cut in 200 μ m PMMA sheets by laser cutting. Membranes were made by filling these holes with wax and cooling until the wax solidified. The liquid monomer solution was flowed over the wax-filled holes and photopolymerized to make a thin membrane. The membrane thickness could be controlled by adding 3-10 μ m, 30-50 μ m, or 50-100 μ m silica beads to the monomer solution. Filters were made by filling the holes with curing solution containing 3-10 μ m beads, photopolymerizing, and etching the silica with hydrofluoric acid. The filter porosity could be controlled by varying the weight percentage of silica beads added to the monomer solution. Scanning electron microscopy was used as a method for characterizing both membrane thickness and filter porosity.

  3. Granular bamboo-derived activated carbon for high CO(2) adsorption: the dominant role of narrow micropores.

    PubMed

    Wei, Haoran; Deng, Shubo; Hu, Bingyin; Chen, Zhenhe; Wang, Bin; Huang, Jun; Yu, Gang

    2012-12-01

    Cost-effective biomass-derived activated carbons with a high CO(2) adsorption capacity are attractive for carbon capture. Bamboo was found to be a suitable precursor for activated carbon preparation through KOH activation. The bamboo size in the range of 10-200 mesh had little effect on CO(2) adsorption, whereas the KOH/C mass ratio and activation temperature had a significant impact on CO(2) adsorption. The bamboo-derived activated carbon had a high adsorption capacity and excellent selectivity for CO(2) , and also the adsorption process was highly reversible. The adsorbed amount of CO(2) on the granular activated carbon was up to 7.0 mmol g(-1) at 273 K and 1 bar, which was higher than almost all carbon materials. The pore characteristics of activated carbons responsible for high CO(2) adsorption were fully investigated. Based on the analysis of narrow micropore size distribution of several activated carbons prepared under different conditions, a more accurate micropore range contributing to CO(2) adsorption was proposed. The volume of micropores in the range of 0.33-0.82 nm had a good linear relationship with CO(2) adsorption at 273 K and 1 bar, and the narrow micropores of about 0.55 nm produced the major contribution, which could be used to evaluate CO(2) adsorption on activated carbons.

  4. Fabrication of GaN Microporous Structure at a GaN/Sapphire Interface as the Template for Thick-Film GaN Separation Grown by HVPE

    NASA Astrophysics Data System (ADS)

    Chen, Jianli; Cheng, Hongjuan; Zhang, Song; Lan, Feifei; Qi, Chengjun; Xu, Yongkuan; Wang, Zaien; Li, Jing; Lai, Zhanping

    2016-10-01

    In this paper, a microporous structure at the GaN/sapphire interface has been obtained by an electrochemical etching method via a selective etching progress using an as-grown GaN/sapphire wafer grown by metal organic chemical vapor deposition. The as-prepared GaN interfacial microporous structure has been used as a template for the following growth of thick-film GaN crystal by hydride vapor phase epitaxy (HVPE), facilitating the fabrication of a free-standing GaN substrate detached from a sapphire substrate. The evolution of the interfacial microporous structure has been investigated by varying the etching voltages and time, and the formation mechanism of interfacial microporous structure has been discussed in detail as well. Appropriate interfacial microporous structure is beneficial for separating the thick GaN crystal grown by HVPE from sapphire during the cooling down process. The separation that occurred at the place of interfacial microporous can be attributed to the large thermal strain between GaN and sapphire. This work realized the fabrication of a free-standing GaN substrate with high crystal quality and nearly no residual strain.

  5. Ultra-thin microporous/hybrid materials

    DOEpatents

    Jiang, Ying-Bing [Albuquerque, NM; Cecchi, Joseph L [Albuquerque, NM; Brinker, C Jeffrey [Albuquerque, NM

    2012-05-29

    Ultra-thin hybrid and/or microporous materials and methods for their fabrication are provided. In one embodiment, the exemplary hybrid membranes can be formed including successive surface activation and reaction steps on a porous support that is patterned or non-patterned. The surface activation can be performed using remote plasma exposure to locally activate the exterior surfaces of porous support. Organic/inorganic hybrid precursors such as organometallic silane precursors can be condensed on the locally activated exterior surfaces, whereby ALD reactions can then take place between the condensed hybrid precursors and a reactant. Various embodiments can also include an intermittent replacement of ALD precursors during the membrane formation so as to enhance the hybrid molecular network of the membranes.

  6. CO2 Capture in the Sustainable Wheat-Derived Activated Microporous Carbon Compartments

    PubMed Central

    Hong, Seok-Min; Jang, Eunji; Dysart, Arthur D.; Pol, Vilas G.; Lee, Ki Bong

    2016-01-01

    Microporous carbon compartments (MCCs) were developed via controlled carbonization of wheat flour producing large cavities that allow CO2 gas molecules to access micropores and adsorb effectively. KOH activation of MCCs was conducted at 700 °C with varying mass ratios of KOH/C ranging from 1 to 5, and the effects of activation conditions on the prepared carbon materials in terms of the characteristics and behavior of CO2 adsorption were investigated. Textural properties, such as specific surface area and total pore volume, linearly increased with the KOH/C ratio, attributed to the development of pores and enlargement of pores within carbon. The highest CO2 adsorption capacities of 5.70 mol kg−1 at 0 °C and 3.48 mol kg−1 at 25 °C were obtained for MCC activated with a KOH/C ratio of 3 (MCC-K3). In addition, CO2 adsorption uptake was significantly dependent on the volume of narrow micropores with a pore size of less than 0.8 nm rather than the volume of larger pores or surface area. MCC-K3 also exhibited excellent cyclic stability, facile regeneration, and rapid adsorption kinetics. As compared to the pseudo-first-order model, the pseudo-second-order kinetic model described the experimental adsorption data methodically. PMID:27698448

  7. Nitrogen-doped microporous carbon: An efficient oxygen reduction catalyst for Zn-air batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Li-Yuan; Wang, Meng-Ran; Lai, Yan-Qing; Li, Xiao-Yan

    2017-08-01

    N-doped microporous carbon as an exceptional metal-free catalyst from waste biomass (banana peel as representative) was obtained via fast catalysis carbonization, followed by N-doping modification. The method achieves a relatively high C conversion efficiency of ∼41.9%. The final carbon materials are doped by N (∼3 at.%) and possess high surface area (∼1097 m2 g-1) and abundant micropores. Compared to commercial Pt/C materials, the as-prepared carbon catalyst exhibits a comparable electrocatalytic activity and much better stability. Furthermore, the metal-free catalyst loaded Zn-air battery possesses higher discharge voltage and power density as compared with that of commercial Pt/C. This novel technique can also be readily applied to produce metal-free carbon catalysts from other typical waste biomass (e.g., orange peel, leaves) as the carbon sources. The method can be developed as a potentially general and effective industrial route to transform waste biomass into high value-added microporous carbon with superior functionalities.

  8. CO2 capture in the sustainable wheat-derived activated microporous carbon compartments

    DOE PAGES

    Hong, Seok -Min; Jang, Eunji; Dysart, Arthur D.; ...

    2016-10-04

    Here, microporous carbon compartments (MCCs) were developed via controlled carbonization of wheat flour producing large cavities that allow CO2 gas molecules to access micropores and adsorb effectively. KOH activation of MCCs was conducted at 700 °C with varying mass ratios of KOH/C ranging from 1 to 5, and the effects of activation conditions on the prepared carbon materials in terms of the characteristics and behavior of CO2 adsorption were investigated. Textural properties, such as specific surface area and total pore volume, linearly increased with the KOH/C ratio, attributed to the development of pores and enlargement of pores within carbon. Themore » highest CO2 adsorption capacities of 5.70 mol kg-1 at 0 °C and 3.48 mol kg-1 at 25 °C were obtained for MCC activated with a KOH/C ratio of 3 (MCC-K3). In addition, CO2 adsorption uptake was significantly dependent on the volume of narrow micropores with a pore size of less than 0.8 nm rather than the volume of larger pores or surface area. MCC-K3 also exhibited excellent cyclic stability, facile regeneration, and rapid adsorption kinetics. As compared to the pseudofirst-order model, the pseudo-second-order kinetic model described the experimental adsorption data methodically.« less

  9. CO2 capture in the sustainable wheat-derived activated microporous carbon compartments

    SciTech Connect

    Hong, Seok -Min; Jang, Eunji; Dysart, Arthur D.; Pol, Vilas G.; Lee, Ki Bong

    2016-10-04

    Here, microporous carbon compartments (MCCs) were developed via controlled carbonization of wheat flour producing large cavities that allow CO2 gas molecules to access micropores and adsorb effectively. KOH activation of MCCs was conducted at 700 °C with varying mass ratios of KOH/C ranging from 1 to 5, and the effects of activation conditions on the prepared carbon materials in terms of the characteristics and behavior of CO2 adsorption were investigated. Textural properties, such as specific surface area and total pore volume, linearly increased with the KOH/C ratio, attributed to the development of pores and enlargement of pores within carbon. The highest CO2 adsorption capacities of 5.70 mol kg-1 at 0 °C and 3.48 mol kg-1 at 25 °C were obtained for MCC activated with a KOH/C ratio of 3 (MCC-K3). In addition, CO2 adsorption uptake was significantly dependent on the volume of narrow micropores with a pore size of less than 0.8 nm rather than the volume of larger pores or surface area. MCC-K3 also exhibited excellent cyclic stability, facile regeneration, and rapid adsorption kinetics. As compared to the pseudofirst-order model, the pseudo-second-order kinetic model described the experimental adsorption data methodically.

  10. CO2 Capture in the Sustainable Wheat-Derived Activated Microporous Carbon Compartments

    NASA Astrophysics Data System (ADS)

    Hong, Seok-Min; Jang, Eunji; Dysart, Arthur D.; Pol, Vilas G.; Lee, Ki Bong

    2016-10-01

    Microporous carbon compartments (MCCs) were developed via controlled carbonization of wheat flour producing large cavities that allow CO2 gas molecules to access micropores and adsorb effectively. KOH activation of MCCs was conducted at 700 °C with varying mass ratios of KOH/C ranging from 1 to 5, and the effects of activation conditions on the prepared carbon materials in terms of the characteristics and behavior of CO2 adsorption were investigated. Textural properties, such as specific surface area and total pore volume, linearly increased with the KOH/C ratio, attributed to the development of pores and enlargement of pores within carbon. The highest CO2 adsorption capacities of 5.70 mol kg‑1 at 0 °C and 3.48 mol kg‑1 at 25 °C were obtained for MCC activated with a KOH/C ratio of 3 (MCC-K3). In addition, CO2 adsorption uptake was significantly dependent on the volume of narrow micropores with a pore size of less than 0.8 nm rather than the volume of larger pores or surface area. MCC-K3 also exhibited excellent cyclic stability, facile regeneration, and rapid adsorption kinetics. As compared to the pseudo-first-order model, the pseudo-second-order kinetic model described the experimental adsorption data methodically.

  11. Adsorption of pharmaceuticals to microporous activated carbon treated with potassium hydroxide, carbon dioxide, and steam.

    PubMed

    Fu, Heyun; Yang, Liuyan; Wan, Yuqiu; Xu, Zhaoyi; Zhu, Dongqiang

    2011-01-01

    Adsorption of sulfapyridine, tetracycline, and tylosin to a commercial microporous activated carbon (AC) and its potassium hydroxide (KOH)-, CO-, and steam-treated counterparts (prepared by heating at 850°C) was studied to explore efficient adsorbents for the removal of selected pharmaceuticals from water. Phenol and nitrobenzene were included as additional adsorbates, and nonporous graphite was included as a model adsorbent. The activation treatments markedly increased the specific surface area and enlarged the pore sizes of the mesopores of AC (with the strongest effects shown on the KOH-treated AC). Adsorption of large-size tetracycline and tylosin was greatly enhanced, especially for the KOH-treated AC (more than one order of magnitude), probably due to the alleviated size-exclusion effect. However, the treatments had little effect on adsorption of low-size phenol and nitrobenzene due to the predominance of micropore-filling effect in adsorption an