Calibration Issues and Operating System Requirements for Electron-Probe Microanalysis
NASA Technical Reports Server (NTRS)
Carpenter, P.
2006-01-01
Instrument purchase requirements and dialogue with manufacturers have established hardware parameters for alignment, stability, and reproducibility, which have helped improve the precision and accuracy of electron microprobe analysis (EPMA). The development of correction algorithms and the accurate solution to quantitative analysis problems requires the minimization of systematic errors and relies on internally consistent data sets. Improved hardware and computer systems have resulted in better automation of vacuum systems, stage and wavelength-dispersive spectrometer (WDS) mechanisms, and x-ray detector systems which have improved instrument stability and precision. Improved software now allows extended automated runs involving diverse setups and better integrates digital imaging and quantitative analysis. However, instrumental performance is not regularly maintained, as WDS are aligned and calibrated during installation but few laboratories appear to check and maintain this calibration. In particular, detector deadtime (DT) data is typically assumed rather than measured, due primarily to the difficulty and inconvenience of the measurement process. This is a source of fundamental systematic error in many microprobe laboratories and is unknown to the analyst, as the magnitude of DT correction is not listed in output by microprobe operating systems. The analyst must remain vigilant to deviations in instrumental alignment and calibration, and microprobe system software must conveniently verify the necessary parameters. Microanalysis of mission critical materials requires an ongoing demonstration of instrumental calibration. Possible approaches to improvements in instrument calibration, quality control, and accuracy will be discussed. Development of a set of core requirements based on discussions with users, researchers, and manufacturers can yield documents that improve and unify the methods by which instruments can be calibrated. These results can be used to continue improvements of EPMA.
NASA Technical Reports Server (NTRS)
Carpenter, P. K.; Hahn, T. M.; Korotev, R. L.; Ziegler, R. A.; Jolliff, B. L.
2017-01-01
We present the first fully quantitative compositional maps of lunar meteorite NWA 2995 using electron microprobe stage mapping, and compare selected clast mineralogy and chemistry. NWA 2995 is a feldspathic fragmental breccia containing numerous highland fine grained lithologies, including anorthosite, norite, olivine basalt, subophitic basalt, gabbro, KREEP-like basalt, granulitic and glassy impact melts, coarse-grained mineral fragments, Fe-Ni metal, and glassy matrix [1]. Chips of NWA 2995, representing these diverse materials, were analyzed by INAA and fused-bead electron-probe microanalysis (EPMA); comparison of analytical data suggests grouping of lunar meteorites NWA 2995, 2996, 3190, 4503, 5151, and 5152. The mean composition of NWA 2995 corresponds to a 2:1 mixture of feldspathic and mare material, with approximately 5% KREEP component [2]. Clast mineral chemistry and petrologic interpretation of paired stone NWA 2996 has been reported by Mercer et al. [3], and Gross et al. [4]. This study combines advances in quantitative EPMA compositional mapping and data analysis, as applied to selected mafic clasts in a polished section of NWA 2995, to investigate the origin of mafic lithic components and to demonstrate a procedural framework for petrologic analysis.
Invisible gold in Colombian auriferous soils
NASA Astrophysics Data System (ADS)
Bustos Rodriguez, H.; Oyola Lozano, D.; Rojas Martínez, Y. A.; Pérez Alcázar, G. A.; Balogh, A. G.
2005-11-01
Optic microscopy, X-ray diffraction (XRD), Mössbauer spectroscopy (MS), Electron microprobe analysis (EPMA) and secondary ions mass spectroscopy (SIMS) were used to study Colombian auriferous soils. The auriferous samples, collected from El Diamante mine, located in Guachavez-Nariño (Colombia), were prepared by means of polished thin sections and polished sections for EPMA and SIMS. Petrography analysis was made using an optical microscope with a vision camera, registering the presence, in different percentages, of the following phases: pyrite, quartz, arsenopyrite, sphalerite, chalcopyrite and galena. By XRD analysis, the same phases were detected and their respective cell parameters calculated. By MS, the presence of two types of pyrite was detected and the hyperfine parameters are: δ 1 = 0.280 ± 0.01 mm/s and Δ Q 1 = 0.642 ± 0.01 mm/s, δ 2 = 0.379 ± 0.01 mm/s and Δ Q 2 = 0.613 ± 0.01 mm/s. For two of the samples MS detected also the arsenopyrite and chalcopyrite presence. The mean composition of the detected gold regions, established by EPMA, indicated 73% Au and 27% Ag (electrum type). Multiple regions of approximately 200 × 200 μm of area in each mineral sample were analyzed by SIMS registering the presence of “invisible gold” associated mainly with the pyrite and occasionally with the arsenopyrite.
DOT National Transportation Integrated Search
2013-02-01
Standard sample sets of cement and mortar formulations with known levels of Cl as well as concrete samples subject to Cl diffusion were all prepared for and analyzed with scanning electron microscopy (SEM) and electron microprobe (EPMA). Using x-ray ...
Trace element analysis by EPMA in geosciences: detection limit, precision and accuracy
NASA Astrophysics Data System (ADS)
Batanova, V. G.; Sobolev, A. V.; Magnin, V.
2018-01-01
Use of the electron probe microanalyser (EPMA) for trace element analysis has increased over the last decade, mainly because of improved stability of spectrometers and the electron column when operated at high probe current; development of new large-area crystal monochromators and ultra-high count rate spectrometers; full integration of energy-dispersive / wavelength-dispersive X-ray spectrometry (EDS/WDS) signals; and the development of powerful software packages. For phases that are stable under a dense electron beam, the detection limit and precision can be decreased to the ppm level by using high acceleration voltage and beam current combined with long counting time. Data on 10 elements (Na, Al, P, Ca, Ti, Cr, Mn, Co, Ni, Zn) in olivine obtained on a JEOL JXA-8230 microprobe with tungsten filament show that the detection limit decreases proportionally to the square root of counting time and probe current. For all elements equal or heavier than phosphorus (Z = 15), the detection limit decreases with increasing accelerating voltage. The analytical precision for minor and trace elements analysed in olivine at 25 kV accelerating voltage and 900 nA beam current is 4 - 18 ppm (2 standard deviations of repeated measurements of the olivine reference sample) and is similar to the detection limit of corresponding elements. To analyse trace elements accurately requires careful estimation of background, and consideration of sample damage under the beam and secondary fluorescence from phase boundaries. The development and use of matrix reference samples with well-characterised trace elements of interest is important for monitoring and improving of the accuracy. An evaluation of the accuracy of trace element analyses in olivine has been made by comparing EPMA data for new reference samples with data obtained by different in-situ and bulk analytical methods in six different laboratories worldwide. For all elements, the measured concentrations in the olivine reference sample were found to be identical (within internal precision) to reference values, suggesting that achieved precision and accuracy are similar. The spatial resolution of EPMA in a silicate matrix, even at very extreme conditions (accelerating voltage 25 kV), does not exceed 7 - 8 μm and thus is still better than laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) or secondary ion mass spectrometry (SIMS) of similar precision. These make the electron microprobe an indispensable method with applications in experimental petrology, geochemistry and cosmochemistry.
High-resolution EPMA X-ray images of mother liquid inclusions in a Pd2Ga single crystal
NASA Astrophysics Data System (ADS)
Müller, D.; Schwerin, J.; Gille, P.; Fehr, K. T.
2014-03-01
During crystal growth from solution inclusions of different compositions were trapped at the rim of a Pd2Ga single crystal. Their fine-grained (< 5 μm) internal structure demands special requirements for electron microprobe analysis, realized by low-voltage (5 keV) element mapping applying a step size of 0.138 μm for each pixel. It can be shown, that these inclusions represent an isolated chemical system, and that crystallisation upon cooling follows the expected thermodynamic phase relations. Thus the final composition in the centre of the inclusion consists of a small-scale mixture of PdGa and Pd5Ga3 evolved out of a solid-solid decomposition of Pd5Ga4.
NASA Astrophysics Data System (ADS)
Pourattar, Parisa
The cementation process of making Egyptian faience, reported by Hans Wulff from a workshop in Qom, Iran, has not been easy to replicate and various views have been set forth to understand the transport of materials from the glazing powder to the surfaces of the crushed quartz beads. Replications of the process fired to 950° C and under-fired to 850° C were characterized by electron beam microprobe analysis (EPMA), petrographic thin section analysis, and scanning electron microscopy with energy dispersive x-ray analysis (SEM-EDS). Chemical variations were modeled using thermal data, phase diagrams, and copper vaporization experiments. These replications were compared to 52 examples from various collections, including 20th century ethnographic collections of beads, glazing powder and plant ash, 12th century CE beads and glazing powder from Fustat (Old Cairo), Egypt, and to an earlier example from Abydos, Egypt in the New Kingdom and to an ash example from the Smithsonian Institution National Museum of Natural History.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelli Kazuberns; Sushil Gupta; Mihaela Grigore
Blast furnace efficiency may be improved by optimizing coke reactivity. Some but not all forms of mineral matter in the coke modify its reactivity, but changes in mineral matter that occur within coke while in the blast furnace have not been fully quantified. To determine changes in mineral matter forms in the blast furnace, coke samples from a dissection study in the LKAB experimental blast furnace (EBF) were characterized using SEM/EDS analysis, EPMA (microprobe), and low-temperature ashing/quantitative XRD analysis. Variations in alkali concentration, particularly potassium, dominated the compositional changes. At high concentrations of potassium, the mineral matter was largely potassium-bearingmore » but even more potassium was diffused throughout the coke and not associated with mineral matter. There was little difference in potassium concentration between the core and surface of the coke pieces, suggesting that potassium diffused rapidly through the whole coke. Iron, calcium, silicon, and aluminum concentrations were relatively constant in comparison, although the mineralogy of all elements changed significantly with changing temperature. 23 refs., 20 figs., 9 tabs.« less
Wang, Yan; Sun, Xiao-ming; Xu, Li; Liang, Ye-heng; Wu, Zhong-wei; Fu, Yu; Huang, Yi
2015-03-01
In this study, we analyze element geochemistry of submarine basalt in situ, which is sampled in hydrothermal areas from ultraslow spreading Southwest Indian Ridge, including the fresh basalt rocks (B19-9, B15-13) and altered basalt (B5-2). And we can confirm that altered mineral in B5-2 is celadonite by microscope and Raman Spectrum. Furthermore, amygdaloidal celadonites are analyzed by electron microprobe (EPMA) and EDS-line scanning. The results show that K-contents decrease and Na-contents increase from the core to the edge in these altered minerals, indicating the transition from celadonite to saponite. Celadonite is an altered minerals, forming in low temperature (< 50 degrees C) and oxidizing condition, while saponite form in low water/rock and more reducing condition. As a result, the transition from celadonite to saponite suggests environment change from oxidizing to reducing condition. Using the result of EPMA as internal standard, we can analyze rare earth elements (REE) in altered mineral in situ. Most of result show positive Eu anomaly (Δ(Eu)), indicating hydrothermal fluid transform from oxidizing to reducing, and reducing fluid rework on the early altered minerals. Comparison with REE in matrix feldspar both in altered and unaltered zoning, we find that reducing fluid can leach REE from the matrix feldspar, leading to lower total REE concentrations and positive Eu anomaly. So leaching process play an important role in hydrothermal system.
Zhou, Chunhua; Zhang, Dongliang; Bai, Yuxing; Li, Song
2014-01-01
Early childhood caries (ECC) is a serious problem that progresses rapidly and often goes untreated. Current traumatic treatments may be replaced by safe and effective remineralization at very early stages. The aim of this in vitro study was to evaluate the remineralization effects of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) paste on enamel lesions by assessing ultrastructure, nanomechanical properties, and compound and elemental analysis. Enamel specimens from 6-year-old children were divided into groups: (1) native enamel; (2) water as negative control; (3) 500ppm NaF as positive control; and (4-7) CPP-ACP paste for 4, 8, 12, and 24h, as test groups. Ultrastructure and roughness were observed by atomic force microscopy (AFM); nanohardness and elastic modulus were measured by nanoindentation; compound and crystal size of enamel surface patterns were investigated by X-ray diffractometer (XRD). An electron microprobe (EPMA) was used for element analysis. Data were analyzed using one-way ANOVA. The CPP-ACP paste repaired the microstructure of enamel, including prism and interprism, through significantly increased hydroxyapatite crystal size (12.06±0.21nm) and Ca/P molar ratios (1.637±0.096) as compared with NaF (8.56±0.13nm crystal size and 1.397±0.086 Ca/P, p<0.01). Both CPP-ACP and NaF decrease roughness, and increase the nanohardness and elastic modulus, with no significant differences between the materials. The CPP-ACP paste is more suitable for children than NaF, due to advantages for remineralization. The AFM, nanoindentation, EPMA, and XRD are very helpful methods for further understanding of microscale and nanoscale remineralization mechanisms. Copyright © 2013 Elsevier Ltd. All rights reserved.
Experimental verification of the shape of the excitation depth distribution function for AES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tougaard, S.; Jablonski, A.; Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw
2011-09-15
In the common formalism of AES, it is assumed that the in-depth distribution of ionizations is uniform. There are experimental indications that this assumption may not be true for certain primary electron energies and solids. The term ''excitation depth distribution function'' (EXDDF) has been introduced to describe the distribution of ionizations at energies used in AES. This function is conceptually equivalent to the Phi-rho-z function of electron microprobe analysis (EPMA). There are, however, experimental difficulties to determine this function in particular for energies below {approx} 10 keV. In the present paper, we investigate the possibility of determining the shape ofmore » the EXDDF from the background of inelastically scattered electrons on the low energy side of the Auger electron features in the electron energy spectra. The experimentally determined EXDDFs are compared with the EXDDFs determined from Monte Carlo simulations of electron trajectories in solids. It is found that this technique is useful for the experimental determination of the EXDDF function.« less
NASA Astrophysics Data System (ADS)
Fournelle, J.; Hanchar, J. M.
2013-12-01
It is not commonly recognized as such, but the accurate measurement of Hf in zircon is not a trivial analytical issue. This is important to assess because Hf is often used as an internal standard for trace element analyses of zircon by LA-ICPMS. The issues pertaining to accuracy revolve around: (1) whether the Hf Ma or the La line is used; (2) what accelerating voltage is applied if Zr La is also measured, and (3) what standard for Hf is used. Weidenbach, et al.'s (2004) study of the 91500 zircon demonstrated the spread (in accuracy) of possible EPMA values for six EPMA labs, 2 of which used Hf Ma, 3 used Hf La, and one used Hf Lb, and standards ranged from HfO2, a ZrO2-HfO2 compound, Hf metal, and hafnon. Weidenbach, et al., used the ID-TIMS values as the correct value (0.695 wt.% Hf.), for which not one of the EPMA labs came close to that value (3 were low and 3 were high). Those data suggest: (1) that there is a systematic underestimation error of the 0.695 wt% Hf (ID-TIMS Hf) value if Hf Ma is used; most likely an issue with the matrix correction, as the analytical lines and absorption edges of Zr La, Si Ka and Hf Ma are rather tightly packed in the electromagnetic spectrum. Mass absorption coefficients are easily in error (e.g., Donovan's determination of the MAC of Hf by Si Ka of 5061 differs from the typically used Henke value of 5449 (Donovan et al, 2002); and (2) For utilization of the Hf La line, however, the second order Zr Ka line interferes with Hf La if the accelerating voltage is greater than 17.99 keV. If this higher keV is used and differential mode PHA is applied, only a portion of the interference is removed (e.g., removal of escape peaks), causing an overestimation of Hf content. Unfortunately, it is virtually impossible to apply an interference correction in this case, as it is impossible to locate Hf-free Zr probe standard. We have examined many of the combinations used by those six EPMA labs and concluded that the optimal EPMA is done with Hf La with the accelerating voltage under 18 keV (e.g. 17 keV is optimal), and also with synthetic stoichiometric hafnon as the standard. We have developed useful standards that are to be distributed to the community for those researchers working on this problem and can be obtained from the second author at jhanchar@mun.ca. The standards include synthetic stoichiometric undoped zircon and hafnon, and synthetic zircon doped with 2 wt. % Hf. Donovan et al. (2002) Probe for Windows: User's Guide and Reference Wiedenbeck, M., et al. (2004) Further characterisation of the 91500 zircon crystal. Geostandards and Geoanatytical Research, 28: 9-39.
Kafemann, R.; Thiel, R.; Finn, J.E.; Neukamm, R.
1998-01-01
Abundance and biomass data for juveniles and adults, length frequency histograms and the electron microprobe analysis (EPMA) of otoliths were used to indicate density, migration and reproduction of common bream Abramis brama in the Kiel Canal drainage, Germany. The reproduction of common bream was primarily restricted to two types of spawning habitats: one in the Haaler Au, a freshwater tributary and another in shallow, oligohaline portion of the main Canal. Both spawning habitats were morphologically characterized as shallow with submerged vegetation. During April to June concentrations of spawners were observed, whereas age-0 common bream dominated from August through December. The distribution of age-0 common bream was primarily restricted to fresh and oligohaline waters. Outside the spawning season, the distribution of common bream was less obvious. Adult fish were more widely distributed within the Canal, indicating a tolerance for higher salinities. During the spawning season common bream seem to show an exceptional mobility between spawning and feeding habitats, which are denoted by different salinities.
Electrical Resistivity of natural Marcasite at High-pressures
NASA Astrophysics Data System (ADS)
Parthasarathy, Gopalakrishnarao
2013-06-01
Marcasite is considered to be a common iron sulfide in reducing Martian sediments and may enclose microbial remains during growth and hence study of marcasite may have significance in the search for fossil life on Mars. The high-pressure phase stability investigations of marcasite are useful in understanding the sulfide mineralogy of Martian surface, affected by meteorite impacts. The sulfides were characterized by electron microprobe micro analyses (EPMA), powder X-ray diffraction, DTA, and FTIR spectroscopic measurements. The samples were powdered using a porcelain mortar and pestle. The chemical composition of the sample was determined by an electron probe micro-analyzer (EPMA). High-pressure electrical resistivity measurements were carried out on natural marcasite, and marcasite rich samples (Marcasite 95 mol % pyrite 5 mol %) up to 7 GPa. Marcasite sample shows a discontinuous decrease in the electrical resistivity at 5. 2 (+/- 0.5) GPa indicating a first order phase transition. The Differential thermal analyses and the Fourier transform infrared spectroscopic measurements on the pressure quenched sample shows the characteristics of pyrite, indicating the pressure induced marcasite-to -pyrite transition of the natural marcasite at 5. 2 (+/- 0.5) GPa. The observation of marcasite to pyrite phase transition may be useful in estimating the pressure experienced by shock events on the Martian surface as well as the meteorites where marcasite- pyrite phases coexist. Financial support from CSIR-SHORE-PSC0205.
SUBMICROSCOPIC ( less than 1 mu m) MINERAL CONTENTS OF VITRINITES IN SELECTED BITUMINOUS COAL BEDS.
Minkin, J.A.; Chao, E.C.T.; Thompson, C.L.; Wandless, M.-V.; Dulong, F.T.; Larson, R.R.; Neuzil, S.G.; ,
1983-01-01
An important aspect of the petrographic description of coal is the characterization of coal quality, including chemical attributes. For geologic investigations, data on the concentrations, distribution, and modes of occurrence of minor and trace elements provide a basis for reconstructing the probable geochemical environment of the swamp material that was converted into peat, and the geochemical conditions that prevailed during and subsequent to coalification. We have been using electron (EPMA) and proton (PIXE) microprobe analytical methods to obtain data on the chemical characteristics of specific coal constituents in their original associations within coal samples. The present study is aimed at evaluation of the nature of mineral occurrences and heterogeneous elemental concentrations within vitrinites. Vitrinites are usually the most abundant, and therefore most important, maceral group in bituminous coal. 8 refs.
Focussed ion beam thin sample microanalysis using a field emission gun electron probe microanalyser
NASA Astrophysics Data System (ADS)
Kubo, Y.
2018-01-01
Field emission gun electron probe microanalysis (FEG-EPMA) in conjunction with wavelength-dispersive X-ray spectrometry using a low acceleration voltage (V acc) allows elemental analysis with sub-micrometre lateral spatial resolution (SR). However, this degree of SR does not necessarily meet the requirements associated with increasingly miniaturised devices. Another challenge related to performing FEG-EPMA with a low V acc is that the accuracy of quantitative analyses is adversely affected, primarily because low energy X-ray lines such as the L- and M-lines must be employed and due to the potential of line interference. One promising means of obtaining high SR with FEG-EPMA is to use thin samples together with high V acc values. This mini-review covers the basic principles of thin-sample FEG-EPMA and describes an application of this technique to the analysis of optical fibres. Outstanding issues related to this technique that must be addressed are also discussed, which include the potential for electron beam damage during analysis of insulating materials and the development of methods to use thin samples for quantitative analysis.
NASA Astrophysics Data System (ADS)
Berger, D.; Nissen, J.
2018-01-01
The studies in this paper are part of systematic investigations of the lateral analytical resolution of the field emission electron microprobe JEOL JXA-8530F. Hereby, the quantitative lateral resolution, which is achieved in practise, is in the focus of interest. The approach is to determine the minimum thickness of a metallic layer for which an accurate quantitative element analysis in cross-section is still possible. Previous measurements were accomplished at sputtered gold (Z = 79) layers, where a lateral resolution in the range of 140 to 170 nm was achieved at suitable parameters of the microprobe. To study the Z-dependence of the lateral resolution, now aluminium (Z = 13) resp. silver (Z = 47) layers with different thicknesses were generated by evaporation and prepared in cross-section subsequently by use of a focussed Ga-ion beam (FIB). Each layer was analysed quantitatively with different electron energies. The thinnest layer which can be resolved specifies the best lateral resolution. These measured values were compared on the one hand with Monte Carlo simulations and on the other hand with predictions from formulas from the literature. The measurements fit well to the simulated and calculated values, except the ones at the lowest primary electron energies with an overvoltage below ˜ 2. The reason for this discrepancy is not clear yet and has to be clarified by further investigations. The results apply for any microanalyser - even with energy-dispersive X-ray spectrometry (EDS) detection - if the probe diameters, which might deviate from those of the JEOL JXA-8530F, at suitable analysing parameters are considered.
NASA Technical Reports Server (NTRS)
Carpenter, Paul
2003-01-01
Electron-probe microanalysis standards and issues related to measurement and accuracy of microanalysis will be discussed. Critical evaluation of standards based on homogeneity and comparison with wet-chemical analysis will be made. Measurement problems such as spectrometer dead-time will be discussed. Analytical accuracy issues will be evaluated for systems by alpha-factor analysis and comparison with experimental k-ratio databases.
Takada, Toshinori; Moriyama, Hiroshi; Suzuki, Eiichi
2014-01-01
Occupational and environmental lung diseases are a group of pulmonary disorders caused by inhalation of harmful particles, mists, vapors or gases. Mineralogical analysis is not generally required in the diagnosis of most cases of these diseases. Apart from minerals that are encountered rarely or only in specific occupations, small quantities of mineral dusts are present in the healthy lung. As such when mineralogical analysis is required, quantitative or semi-quantitative methods must be employed. An electron probe microanalyzer with wavelength dispersive spectrometer (EPMA-WDS) enables analysis of human lung tissue for deposits of elements by both qualitative and semi-quantitative methods. Since 1993, we have analyzed 162 cases of suspected occupational and environmental lung diseases using an EPMA-WDS. Our institute has been accepting online requests for elemental analysis of lung tissue samples by EPMA-WDS since January 2011. Hard metal lung disease is an occupational interstitial lung disease that primarily affects workers exposed to the dust of tungsten carbide. The characteristic pathological findings of the disease are giant cell interstitial pneumonia (GIP) with centrilobular fibrosis, surrounded by mild alveolitis with giant cells within the alveolar space. EPMA-WDS analysis of biopsied lung tissue from patients with GIP has demonstrated that tungsten and/or cobalt is distributed in the giant cells and centrilobular fibrosing lesion in GIP. Pneumoconiosis, caused by amorphous silica, and acute interstitial pneumonia, associated with the giant tsunami, were also elementally analyzed by EPMA-WDS. The results suggest that commonly found elements, such as silicon, aluminum, and iron, may cause occupational and environmental lung diseases. Copyright © 2013 The Japanese Respiratory Society. Published by Elsevier B.V. All rights reserved.
Ro, Chul-Un; Kim, HyeKyeong; Van Grieken, René
2004-03-01
An electron probe X-ray microanalysis (EPMA) technique, using an energy-dispersive X-ray detector with an ultrathin window, designated a low-Z particle EPMA, has been developed. The low-Z particle EPMA allows the quantitative determination of concentrations of low-Z elements, such as C, N, and O, as well as chemical elements that can be analyzed by conventional energy-dispersive EPMA, in individual particles. Since a data set is usually composed of data for several thousands of particles in order to make environmentally meaningful observations of real atmospheric aerosol samples, the development of a method that fully extracts chemical information contained in the low-Z particle EPMA data is important. An expert system that can rapidly and reliably perform chemical speciation from the low-Z particle EPMA data is presented. This expert system tries to mimic the logic used by experts and is implemented by applying macroprogramming available in MS Excel software. Its feasibility is confirmed by applying the expert system to data for various types of standard particles and a real atmospheric aerosol sample. By applying the expert system, the time necessary for chemical speciation becomes shortened very much and detailed information on particle data can be saved and extracted later if more information is needed for further analysis.
EPMA Professionals--Servants or Masters?
ERIC Educational Resources Information Center
Black, Paul
2012-01-01
Insofar as the title of this piece might call for a straightforward answer, it seems obvious that EPMA professionals are servants. Viewed in this perspective, Paul E. Newton's analysis is carefully balanced, in that it respects the complex history of the concerns of the professionals, whilst moving towards conclusions that place the needs of the…
NASA Astrophysics Data System (ADS)
Mitchell, Rhea; William, Davis; Robert, Berman; Sharon, Carr; Michael, Jercinovic
2017-04-01
The Thelon Tectonic zone (TTZ), Nunavut, Canada, is a >500km long geophysically, lithologically and structurally distinct N-NNE striking Paleoproterozoic boundary zone between the Slave and Rae Archean provinces. The TTZ has been interpreted as a ca. 2.0 Ga continental arc on the western edge of the Rae craton, that was deformed during collision with the Slave craton ca. 1.97 Ga. Alternatively, the Slave-Rae collision is interpreted as occurring during the 2.35 Ga Arrowsmith orogeny while the 1.9-2.0 Ga TTZ represents an intra-continental orogenic belt formed in previously thinned continental crust, postdating the Slave-Rae collision. The central part of the TTZ comprises three >100 km long, 10-20 km wide belts of ca. 2.0 Ga, mainly charnockitic plutonic rocks, and a ca. 1910 Ma garnet-leucogranite belt. Metamorphism throughout these domains is upper-amphibolite to granulite-facies, with metasedimentary rocks occurring as volumetrically minor enclaves and strands of migmatites. The Ellice River domain occurs between the western and central plutonic belts. It contains ca. 1950 Ma ultramafic to dacitic volcanic rocks and foliated Paleoproterozoic psammitic metasedimentary rocks at relatively lower grade with lower to middle amphibolite-facies metamorphic assemblages. In-situ U-Pb analyses of monazite using a combination of Sensitive High-Resolution Ion Microprobe (SHRIMP) and Electron Probe Microanalyzer (EPMA) were carried out on high-grade metasedimentary rocks from seventeen samples representing the eastern margin of the Slave Province and all major lithological domains of the TTZ. 207Pb/206Pb monazite ages from SHRIMP analysis form the foundation of this dataset, while EPMA ages are supplementary. The smaller <6µm spot size of EPMA allowed for further constraint on ages of micro-scale intra-crystalline domains in some samples. Monazite ages define four distinct Paleoproterozoic metamorphic events and one Archean metamorphic event at ca. 2580 Ma. The latter is recorded exclusively along the eastern margin of the Slave Province. Metamorphism ca. 1996 Ma, recorded in one high-grade gneiss from the central plutonic belt appears to reflect a regional contact metamorphism associated with intrusion of 2000 Ma plutons. Throughout the TTZ, a selection of monazite grains included in garnet porphyroblasts define a metamorphic event ca. 1962 Ma. One sample from the eastern margin of the Slave Province similarly records metamorphism at 1961 Ma in monazite grains in the matrix. This sample interestingly does not record the ca. 2580 Ma metamorphism typical of the Slave Province. The longest lived and most wide spread metamorphic event in the TTZ occurred ca. 1922 to 1883 Ma. This event is interpreted as the main compressional/collisional and anatectic event, with partial melting forming the extensive ca. 1910 Ma garnet-leucogranite belts. Three samples, located in the eastern margin of the Slave province, the Ellice River domain and the eastern plutonic belt, record younger metamorphism at ca. 1814 Ma. These events may represent post-collisional transpression coeval with movement along nearby regional-scale faults.
X-ray Mapping of Terrestrial and Extraterrestrial Materials Using the Electron Microprobe
NASA Technical Reports Server (NTRS)
Carpenter, P.
2006-01-01
Lunar samples returned from the Apollo program motivated development of the Bence-Albee algorithm for the rapid and accurate analysis of lunar materials, and established interlaboratory comparability through its common use. In the analysis of mineral and rock fragments it became necessary to combine micro- and macroscopic analysis by coupling electron-probe microanalysis (EPMA) with automated stage point counting. A coarse grid that included several thousand points was used, and initially wavelength-dispersive (WDS) and later energydispersive (EDS) data were acquired at discrete stage points using approx. 5 sec count times. A approx 50 micrometer beam diameter was used for WDS and up to 500 micrometer beam diameter for EDS analysis. Average analyses of discretely sampled phases were coupled with the point count data to calculate the bulk composition using matrix algebra. Use of a defocused beam resulted in a contribution from multiple phases to each analytical point, and the analytical data were deconvolved relative to end-member phase chemistry on the fly. Impressive agreement was obtained between WDS and EDS measurements as well as comparison with bulk chemistry obtained by other methods. In the 30 years since these methods were developed, significant improvements in EPMA automation and computer processing have taken place. Digital beam control allows routine collection of x-ray maps by EDS, and stage mapping for WDS is conducted continuously at slew speed and incrementally by sampling at discrete points. Digital pulse processing in EDS systems has significantly increased the throughput for EDS mapping, and the ongoing development of Si-drift detector systems promises mapping capabilities rivaling WDS systems. Spectrum imaging allows a data cube of EDS spectra to be acquired and sophisticated processing of the original data is possible using matrix algebra techniques. The study of lunar and meteoritic materials includes the need to conveniently: (1) Characterize the sample at microscopic and macroscopic scales with relatively high sensitivity, (2) Determine the modal abundance of minerals, and (3) Identify and relocate discrete features of interest in terms of size and chemistry. The coupled substitution of cations in minerals can result in significant variation in mineral chemistry, but at similar average Z, leading to poor backscattered-electron (BSE) contrast discrimination of mineralogy. It is necessary to discriminate phase chemistry at both the trace element level and the major element level. To date, the WDS of microprobe systems is preferred for mapping due to high throughput and the ability to obtain the necessary intensity to discriminate phases at both trace and major element concentrations. It is desirable to produce fully quantitative compositional maps of geological materials, which requires the acquisition of k-ratio maps that are background and dead-time corrected, and which have been corrected by phi(delta z> or an equivalent algorithm at each pixel. To date, turnkey systems do not allow the acquisition of k-ratio maps and the rigorous correction in this manner. X-ray maps of a chondrule from the Ourique meteorite, and a comb-layered xenolith from the San Francisco volcanic field, have been analyzed and processed to extract phase information. The Ourique meteorite presents a challenge due to relatively low BSE contrast, and has been studied using spectrum imaging. X-ray maps for Si, Mg, and FeK(alpha) were used to produce RGB images. The xenolith sample contains sector-zoned augite, olivine, plagioclase, and basaltic glass. X-ray maps were processed using Lispix and ImageJ software to produce mineral phase maps. The x-ray maps for Mg, Ca, and Ti were used with traceback to generate binary images that were converted to RGB images. These approaches are successful in discriminating phases, but it is desirable to achieve the methods that were used on lunar samples 30 years ago on current microprobe systems. Curnt research includes x-ray mapping analysis of the Dalgety Downs chondrite by micro x-ray fluorescence and spectrum imaging, in collaboration with Kenny Witherspoon of IXRF Systems and Dale Newbury of NIST.
Jung, Hae-Jin; Eom, Hyo-Jin; Kang, Hyun-Woo; Moreau, Myriam; Sobanska, Sophie; Ro, Chul-Un
2014-08-21
In this work, quantitative energy-dispersive electron probe X-ray microanalysis (ED-EPMA) (called low-Z particle EPMA), Raman microspectrometry (RMS), and attenuated total reflectance Fourier transform infrared spectroscopic (ATR-FTIR) imaging were applied in combination for the analysis of the same individual airborne particles for the first time. After examining individual particles of micrometer size by low-Z particle EPMA, consecutive examinations by RMS and ATR-FTIR imaging of the same individual particles were then performed. The relocation of the same particles on Al or Ag foils was successfully carried out among the three standalone instruments for several standard samples and an indoor airborne particle sample, resulting in the successful acquisition of quality spectral data from the three single-particle analytical techniques. The combined application of the three techniques to several different standard particles confirmed that those techniques provided consistent and complementary chemical composition information on the same individual particles. Further, it was clearly demonstrated that the three different types of spectral and imaging data from the same individual particles in an indoor aerosol sample provided richer information on physicochemical characteristics of the particle ensemble than that obtainable by the combined use of two single-particle analytical techniques.
Recent advances in X-ray microanalysis in dermatology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forslind, B.; Grundin, T.G.; Lindberg, M.
1985-01-01
Electron microprobe and proton microprobe X-ray analysis can be used in several areas of dermatological research. With a proton probe, the distribution of trace elements in human hair can be determined. Electron microprobe analysis on freeze-dried cryosections of guinea-pig and human epidermis shows a marked gradient of Na, P and K over the stratum granulosum. In sections of freeze-substituted human skin this gradient is less steep. This difference is likely to be due to a decrease in water content of the epidermis towards the stratum corneum. Electron microprobe analysis of the epidermis can, for analysis of trace elements, be complementedmore » by the proton microprobe. Quantitative agreement between the two techniques can be obtained by the use of a standard. Proton microprobe analysis was used to determine the distribution of Ni or Cr in human epidermis exposed to nickel or chromate ions. Possible differences in water content between the stratum corneum of patients with atopic eczema and normal stratum corneum was investigated in skin freeze-substituted with Br-doped resin. No significant differences were observed.« less
Distribution of Minor Elements in Calcite From the Unsaturated Zone at Yucca Mountain, Nevada
NASA Astrophysics Data System (ADS)
Marshall, B. D.; Whelan, J. F.
2001-12-01
Calcite is sporadically distributed in fractures and cavities in the volcanic rocks that form the 500- to 700-m-thick unsaturated zone at Yucca Mountain. Previous work has shown that the calcite precipitated from water moving downward through the unsaturated zone since the volcanic rocks were emplaced approximately 13 Ma. Calcite thus serves as a proxy for the chemistry and amounts of past percolation, two parameters that are important in predictions of the future behavior of the potential radioactive waste repository at Yucca Mountain. Latest calcite, which began forming between approximately 5 and 2 Ma, typically displays fine-scale growth zoning defined by distributions of Mn (inferred from cathodoluminescence), Mg, and Sr. Electron microprobe (EPMA) mapping of outermost calcite reveals Mg growth zoning1 and higher overall concentrations of Mg in late calcite than in older calcite. Micro X-ray fluorescence (micro-XRF) maps were obtained by slow rastering of the samples over a 100-watt X-ray source collimated through a final aperture of 100 μ m. Although the spatial resolution of the micro-XRF mapping is much less than that of EPMA, this technique reveals distributions of some elements to which EPMA is less sensitive. Micro-XRF maps show that Sr is spatially correlated with Mg; Sr concentrations range to 500 μ g/g at the resolution of the 100-μ m collimator. Because both Mg and Sr have similar calcite-water distribution coefficients much less than one, the Mg/Sr in calcite reflects the Mg/Sr of the water that precipitated the calcite. The distribution coefficient for Mn is greater than one and variations in Mn are not correlated with Mg and Sr. Covariation of Mg and Sr in the percolating water may be explained by reactions that affect the rate of uptake of chemical constituents from the overlying rock and soil, and/or evaporation. Late calcite has lower δ 13C values, probably due to a regional change from wetter to drier climate conditions. The higher Mg and Sr concentrations in the late calcite may record lower deposition rates and decreased percolation fluxes due to the drier climate. 1 Wilson, N.S.F., Cline, J.S., and Lundberg, S.A.W., 2000, Paragenesis and chemical composition of secondary mineralization at Yucca Mountain, Nevada, Geol. Soc. Am. Abs. Prog., v. 32, p. A260.
[Element distribution analysis of welded fusion zone by laser-induced breakdown spectroscopy].
Yang, Chun; Zhang, Yong; Jia, Yun-Hai; Wang, Hai-Zhou
2014-04-01
Over the past decade there has been intense activity in the study and development of laser-induced breakdown spectroscopy (LIBS). As a new tool for surface microanalysis, it caused widespread in materials science because of the advantage of rapid and high sensitivity. In the present paper, the distribution of Ni, Mn, C and Si near weld fusion line was analyzed on two kinds of weld sample. Line scanning mode analysis was carried out by three different kinds of methods, namely laser-induced breakdown spectroscopy (LIBS), scanning electron microscope/energy dispersive spectrometer (SEM/EDS) and electron probe X-ray microanalyser (EPMA). The concentration variation trend of Ni and Mn acquired by LIBS is coincident with SEM/EDS and EPMA. The result shows that the content of Ni and Mn was significantly different between weld seam and base metal on both the samples. The content of Ni and Mn was much higher in weld seam than in base metal, and a sharp concentration gradient was analyzed in the fusion zone. According to the distribution of Ni and Mn, all the three methods got a similar value of welded fusion zone width. The concentration variation trend of C and Si acquired by LIBS is not coincident with SEM/EDS and EPMA. The concentration difference between weld seam and base metal was analyzed by LIBS, but had not by SEM/EDS and EPMA, because of the low concentration and slight difference. The concentration gradient of C and Si in fusion zone was shows clearly by LIBS. For higher sensitivity performance, LIBS is much more adapted to analyze low content element than SEM/EDS and EPMA.
HOLST, Alexandra Ioana; HOLST, Stefan; HIRSCHFELDER, Ursula; von SECKENDORFF, Volker
2012-01-01
Objective The objective of this study was to investigate the applicability of micro-analytical methods with high spatial resolution to the characterization of the composition and corrosion behavior of two bracket systems. Material and methods The surfaces of six nickel-free brackets and six nickel-containing brackets were examined for signs of corrosion and qualitative surface analysis using an electron probe microanalyzer (EPMA), prior to bonding to patient's tooth surfaces and four months after clinical use. The surfaces were characterized qualitatively by secondary electron (SE) images and back scattered electron (BSE) images in both compositional and topographical mode. Qualitative and quantitative wavelength-dispersive analyses were performed for different elements, and by utilizing qualitative analysis the relative concentration of selected elements was mapped two-dimensionally. The absolute concentration of the elements was determined in specially prepared brackets by quantitative analysis using pure element standards for calibration and calculating correction-factors (ZAF). Results Clear differences were observed between the different bracket types. The nickel-containing stainless steel brackets consist of two separate pieces joined by a brazing alloy. Compositional analysis revealed two different alloy compositions, and reaction zones on both sides of the brazing alloy. The nickel-free bracket was a single piece with only slight variation in element concentration, but had a significantly rougher surface. After clinical use, no corrosive phenomena were detectable with the methods applied. Traces of intraoral wear at the contact areas between the bracket slot and the arch wire were verified. Conclusion Electron probe microanalysis is a valuable tool for the characterization of element distribution and quantitative analysis for corrosion studies. PMID:23032212
Characterization of Minerals of Geochronological Interest by EPMA and Atom Probe Tomography
NASA Astrophysics Data System (ADS)
Snoeyenbos, D.; Jercinovic, M. J.; Reinhard, D. A.; Hombourger, C.
2012-12-01
Isotopic and chemical dating techniques for zircon and monazite rely on several assumptions: that initial common Pb is low to nonexistent, that the analyzed domain is chronologically homogeneous, and that any relative migration of radiogenic Pb and its parent isotopes has not exceeded the analyzed domain. Yet, both zircon and monazite commonly contain significant submicron heterogeneities that may challenge these assumptions and can complicate the interpretation of chemical and isotopic data. Compositional mapping and submicron quantitative analysis by EPMA and FE-EPMA have been found to be useful techniques both for the characterization of these heterogeneities, and for quantitative geochronological determinations within the analytical limits of these techniques and the statistics of submicron sampling. Complementary to high-resolution EPMA techniques is Atom Probe Tomography (APT), wherein a specimen with dimensions of a few hundreds of nanometers is field evaporated atom by atom. The original position of each atom is identified, along with its atomic species and isotope. The result is a reconstruction allowing quantitative three-dimensional study of the specimen at the atomic scale, with low detection limits and high mass resolution. With the introduction of laser-induced thermal pulsing to achieve field evaporation, the technique is no longer limited to conductive specimens. There exists the capability to explore the compositional and isotopic structure of insulating materials at sub-nanometer resolution. Minerals of geochronological interest have been studied by an analytical method involving first compositional mapping and submicron quantitative analysis by EPMA and FE-EPMA, and subsequent use of these data to select specific sites for APT specimen extraction by FIB. Examples presented include 1) zircon from the Taconian of New England, USA, containing a fossil resorption front included between an unmodified igneous core, and a subsequent metamorphic overgrowth, with significant redistribution of U, Th, P and Y along microfracture arrays extending into the overgrowth, and 2) Paleoproterozoic monazite in thin bands <1μm wide along cleavage planes within much older (Neoarchean) monazite from the Boothia mainland of the Western Churchill Province, Canada.
Sulfides from Martian and Lunar Basalts: Comparative Chemistry for Ni Co Cu and Se
DOE Office of Scientific and Technical Information (OSTI.GOV)
J Papike; P Burger; C Shearer
2011-12-31
Here Mars and Moon are used as 'natural laboratories' with Moon displaying lower oxygen fugacities ({approx}IW-1) than Mars ({approx}IW to FMQ). Moon has lower concentrations of Ni and Co in basaltic melts than does Mars. The major sulfides are troilite (FeS) in lunar basalts and pyrrhotite (Fe{sub 1-x}S) in martian basalts. This study focuses on the concentrations of Ni, Co, Cu, and Se. We chose these elements because of their geochemical importance and the feasibility of analyzing them with a combination of synchrotron X-ray fluorescence (SXRF) and electron microprobe (EPMA) techniques. The selenium concentrations could only be analyzed, at highmore » precision, with SXRF techniques as they are <150 ppm, similar to concentrations seen in carbonaceous chondrites and interplanetary dust particles (IDPs). Nickel and Co are in higher concentrations in martian sulfides than lunar and are higher in martian olivine-bearing lithologies than olivine-free varieties. The sulfides in individual samples show very large ranges in concentration (e.g., Ni ranges from 50 000 ppm to <5 ppm). These large ranges are mainly due to compositional heterogeneities within individual grains due to diffusion and phase separation. Electron microprobe wavelength-dispersive (WDS) mapping of Ni, Co, and Cu show the diffusion trajectories. Nickel and Co have almost identical diffusion trajectories leading to the likely nucleation of pentlandite (Ni,Co,Fe){sub 9}S{sub 8}, and copper diffuses along separate pathways likely toward chalcopyrite nucleation sites (CuFeS{sub 2}). The systematics of Ni and Co in lunar and martian sulfides clearly distinguish the two parent bodies, with martian sulfides displaced to higher Ni and Co values.« less
Elementary review of electron microprobe techniques and correction requirements
NASA Technical Reports Server (NTRS)
Hart, R. K.
1968-01-01
Report contains requirements for correction of instrumented data on the chemical composition of a specimen, obtained by electron microprobe analysis. A condensed review of electron microprobe techniques is presented, including background material for obtaining X ray intensity data corrections and absorption, atomic number, and fluorescence corrections.
NASA Technical Reports Server (NTRS)
Carpenter, Paul; Armstrong, John
2004-01-01
Improvement in the accuracy of electron-probe microanalysis (EPMA) has been accomplished by critical assessment of standards, correction algorithms, and mass absorption coefficient data sets. Experimental measurement of relative x-ray intensities at multiple accelerating potential highlights errors in the absorption coefficient. The factor method has been applied to the evaluation of systematic errors in the analysis of semiconductor and silicate minds. Accurate EPMA of Martian soil stimulant is necessary in studies that build on Martian rover data in anticipation of missions to Mars.
Ansari, T M; Marr, I L; Coats, A M
2001-02-01
This study was carried out to characterise the mineralogical forms of barium and the trace heavy metal impurities in commercial barytes of different origins using electron probe microanalysis (EPMA), X-ray diffraction (XRD) and inductively coupled plasma mass spectrometry (ICP-MS). Qualitative EPMA results show the presence of typically eight different minerals in commercial barytes including barite (BaSO4), barium feldspar, galena (PbS), pyrite (FeS2), sphalerite (ZnS), quartz (SiO2), and silicates, etc. Quantitative EPMA confirms that the barite crystals in the barytes contain some strontium and a little calcium, whereas trace heavy metals occur in the associated minerals. Analysis of aqua regia extracts of barytes samples by ICP-MS has shown the presence of a large number of elements in the associated minerals. Arsenic, copper and zinc concentrations correlate closely in all 10 samples. The findings suggest that barytes is not, as traditionally thought, an inert mineral, but is a potentially toxic substance due to its associated heavy metal impurities, which can be determined by an aqua regia digest without the need for complete dissolution of the barite itself. X-ray powder diffraction was not informative as the complex barite pattern masks the very weak lines from the small amounts of associated minerals.
NASA Astrophysics Data System (ADS)
Gatta, G. Diego; Rotiroti, Nicola; Cámara, Fernando; Meven, Martin
2018-03-01
The crystal chemistry of a cafarsite sample from the fengitic orthogneisses of the Mt. Leone-Arbola nappe (Lower Penninic), forming the central body of Mount Cervandone and cropping out both in Switzerland and Italy (Alpe Devero area, Verbano-Cusio-Ossola province), was investigated by electron microprobe analysis in wavelength-dispersive mode (EPMA-WDS), single-crystal Raman spectroscopy, and single-crystal X-ray and neutron diffraction at 293 K. The sample of cafarsite of this study was found experimentally to be anhydrous and the chemical formula obtained on the basis of the EPMA-WDS data and structural refinements is the following: Ca1,Ca2 (Ca15.56Na0.44)Σ16 Fe1 (Na0.53Fe2+ 0.17REE0.30)Σ1.00 Mn1,Ti,Fe2 (Ti7.46Fe3+ 4.47Fe2+ 3.20Mn2+ 0.85Al0.11) Σ16.11 As1,As2,As3 (AsO3)28 F F, with the general chemical formula Ca16(Na,Fe2+,REE)(Ti, Fe3+,Fe2+,Mn2+,Al)16(AsO3)28F [or Ca16(Na,Fe2+,REE)(Ti,Fe3+,Al)12(Fe2+,Mn)4(AsO3)28F]. Our experimental findings show that fluorine, which was unconsidered in the previous studies, is a key element. The anhydrous nature of this sample is also confirmed by its Raman spectrum, which does not show any evidence of active bands ascribable to the O-H stretching region. The X-ray and neutron structure refinements provide a structure model that is partially in agreement with the previous experimental findings. The space group (i.e. Pn3) and the unit-cell constant [i.e. 15.9507(4) Å] are conform to the literature data, but the structure of cafarsite, here refined, contains the following building units: three independent AsO3 groups (trigonal pyramids), one CaO6F polyhedron, one CaO8 polyhedron, two independent (Ti,Fe)O6 octahedra, one (Na,Fe,REE)O8 polyhedron, and one (Mn,Fe)O6 octahedron. Connections among polyhedra are mainly due to edge- or vertex-sharing; the AsO3 groups are not connected to each other.
Electron microprobe mineral analysis guide
NASA Technical Reports Server (NTRS)
Brown, R. W.
1980-01-01
Electron microprobe mineral analysis guide is a compilation of X-ray tables and spectra recorded from various mineral matrices. Spectra were obtained using electron microprobe, equipped with LiF geared, curved crystal X-ray spectrometers, utilizing typical analytical operating conditions: 15 Kv acceleration potential, 0.02 microampere sample current as measured on a clinopyroxene standard (CP19). Tables and spectra are presented for the majority of elements, fluorine through uranium, occurring in mineral samples from lunar, meteoritic and terrestrial sources. Tables for each element contain relevant analytical information, i.e., analyzing crystal, X-ray peak, background and relative intensity information, X-ray interferences and a section containing notes on the measurement. Originally intended to cover silicates and oxide minerals the tables and spectra have been expanded to cover other mineral phases. Electron microprobe mineral analysis guide is intended as a spectral base to which additional spectra can be added as the analyst encounters new mineral matrices.
Laser Microprobe Mass Spectrometry 1: Basic Principles and Performance Characteristics.
ERIC Educational Resources Information Center
Denoyer, Eric; And Others
1982-01-01
Describes the historical development, performance characteristics (sample requirements, analysis time, ionization characteristics, speciation capabilities, and figures of merit), and applications of laser microprobe mass spectrometry. (JN)
Melting of Fe-Si-O alloys: the Fate of Coexisting Si and O in the Core
NASA Astrophysics Data System (ADS)
Arveson, S. M.; Lee, K. K. M.
2017-12-01
The light element budget of Earth's core plays an integral role in sustaining outer core convection, which powers the geodynamo. Many experiments have been performed on binary iron compounds, but the results do not robustly agree with seismological observations and geochemical constraints. Earth's core is almost certainly made up of multiple light elements, so the future of core composition studies lies in ternary (or higher order) systems in order to examine interactions between light elements. We perform melting experiments on Fe-Si-O alloys in a laser-heated diamond-anvil cell to 80 GPa and 4000 K. Using 2D multi- wavelength imaging radiometry together with textural and chemical analysis of quenched samples, we measure the high-pressure melting curves and determine partitioning of light elements between the melt and the coexisting solid. Quenched samples are analyzed both in map view and in cross section using scanning electron microscopy (SEM) and electron microprobe analysis (EPMA) to examine the 3D melt structure and composition. Partitioning of light elements between molten and solid alloys dictates (1) the density contrast at the ICB, which drives compositional convection in the outer core and (2) the temperature of the CMB, an integral parameter for understanding the deep Earth. Our experiments suggest silicon and oxygen do not simply coexist in the melt and instead show complex solubility based on temperature. Additionally, we do not find evidence of crystallization of SiO2 at low oxygen content as was recently reported.11 Hirose, K., et al., Crystallization of silicon dioxide and compositional evolution of the Earth's core. Nature, 2017. 543(7643): p. 99-102.
Wavelength dispersive analysis with the synchrotron x ray fluorescence microprobe
NASA Technical Reports Server (NTRS)
Rivers, M. L.; Thorn, K. S.; Sutton, S. R.; Jones, K. W.; Bajt, S.
1993-01-01
A wavelength dispersive spectrometer (WDS) was tested on the synchrotron x ray fluorescence microprobe at Brookhaven National Laboratory. Compared to WDS spectra using an electron microprobe, the synchrotron WDS spectra have much better sensitivity and, due to the absence of bremsstrahlung radiation, lower backgrounds. The WDS spectrometer was successfully used to resolve REE L fluorescence spectra from standard glasses and transition metal K fluorescence spectra from kamacite.
NASA Technical Reports Server (NTRS)
Gray, H. R.
1972-01-01
Use of an ion microprobe and a laser microprobe to measure concentrations of corrosion-produced hydrogen on a microscopic scale. Hydrogen concentrations of several thousand ppm were measured by both analytical techniques below corroded and fracture surfaces of hot salt stress corroded titanium alloy specimens. This extremely high concentration compares with only about 100 ppm hydrogen determined by standard vacuum fusion chemical analyses of bulk samples. Both the ion and laser microprobes were used to measure hydrogen concentration profiles in stepped intervals to substantial depths below the original corroded and fracture surfaces. For the ion microprobe, the area of local analysis was 22 microns in diameter and for the laser microprobe, the area of local analysis was about 300 microns in diameter. The segregation of hydrogen below fracture surfaces supports a previously proposed theory that corrosion-produced hydrogen is responsible for hot salt stress corrosion embrittlement and cracking of titanium alloys. These advanced analytical techniques suggest great potential for many areas of stress corrosion and hydrogen embrittlement research, quality control, and field inspection of corrosion problems. For example, it appears possible that a contour map of hydrogen distribution at notch roots and crack tips could be quantitatively determined. Such information would be useful in substantiating current theories of stress corrosion and hydrogen embrittlement.
Ryu, JiYeon; Ro, Chul-Un
2009-08-15
This work demonstrates the practical applicability of the combined use of attenuated total reflectance (ATR) FT-IR imaging and low-Z particle electron probe X-ray microanalysis (EPMA) techniques for the characterization of individual aerosol particles. These two single particle analytical techniques provide complementary information on the physicochemical characteristics of the same individual particles, that is, the low-Z particle EPMA for the information on the morphology and elemental concentration and the ATR-FT-IR imaging on the functional group, molecular species, and crystal structure. It was confirmed that the ATR-FT-IR imaging technique can provide sufficient FT-IR absorption signals to perform molecular speciation of individual particles of micrometer size when applied to artificially generated aerosol particles such as ascorbic acid and NaNO(3) aerosols. An exemplar indoor atmospheric aerosol sample was investigated to demonstrate the practical feasibility of the combined application of ATR-FT-IR imaging and low-Z particle EPMA techniques for the characterization of individual airborne particles.
An experimental study of the distribution of retained xenon in transient-tested UO 2 fuel
NASA Astrophysics Data System (ADS)
Mogensen, M.; Bagger, C.; Walker, C. T.
1993-01-01
XRF and EPMA results for the distribution of retained xenon in twenty fuel pins are surveyed. The aim is to show the progress that has been achieved by combining these methods. One of the main concerns of the paper is the reliability of the XRF and EPMA measurements and the identification, of the principal sources of uncertainty. Another, is the wealth of new mechanistic information that has been acquired by systematically combining XRF and EPMA with quantitative image analysis (QIA) of the local size distribution of the gas bubbles in the fuel. It is shown that by correlating the three data sets it is possible to establish the distribution of retained gas on the grain boundaries and to estimate the pressure of the gas contained in grain boundary bubbles. It is concluded that often gas release during a reactor power transient cannot be predicted on the basis of simple gas diffusion considerations and that it is not possible to derive a gas diffusion coefficent of general relevance from puncturing data.
NASA Technical Reports Server (NTRS)
Kuehner, S. M.; Laughlin, J. R.; Grossman, L.; Johnson, M. L.; Burnett, D. S.
1989-01-01
The applicability of ion microprobe (IMP) for quantitative analysis of minor elements (Sr, Y, Zr, La, Sm, and Yb) in the major phases present in natural Ca-, Al-rich inclusions (CAIs) was investigated by comparing IMP results with those of an electron microprobe (EMP). Results on three trace-element-doped glasses indicated that it is not possible to obtain precise quantitative analysis by using IMP if there are large differences in SiO2 content between the standards used to derive the ion yields and the unknowns.
Evaluation of Benthic Foraminiferal Mg/Ca and δ18O: Paleoceanographic Application
NASA Astrophysics Data System (ADS)
Fukuda, K.; Frew, R. D.; Fordyce, R. E.
2005-12-01
Using several different analytical approaches on the same samples is crucial for reducing uncertainties in paleoceanographic studies. We examined two different sequences near Oamaru, New Zealand to evaluate a combination of Mg/Ca and δ18O techniques on benthic foraminifera. As a trial, we chose well-preserved material from the Altonian stage (-18 Ma) while as an application, cemented/altered material in Whaingaroan/Runangan stage (-34 Ma) was selected. For the Altonian, Mg/Ca in Notorotalia spinosa and Cibicides spp. were analysed by ICP-OES throughout the fossiliferous sequence and then paleotemperatures were estimated by our modern Mg/Ca calibration curves. The δ18O in N. spinosa and some Cibicides were also measured from the same stations for pairing with Mg/Ca results. Further, to evaluate paleotemperature estimates from the whole tests, spots analyses of Mg/Ca were taken through the successive chambers for the two species using Electron Probe Micro Analysis (EPMA). Paleotemperatures through the successive chambers, which should be related to their life spans, were estimated by the modern calibration curves established from EPMA analysis. Results show that Notorotalia may retain at least an annual record while the signal in Cibicides may retain a part of season. There is distinctive seasonality observed in this period and the δ18Oseawater estimates paired with Mg/Ca in N. spinosa are comparable with published estimates. For the Whaingaroan/Runangan, Mg/Ca in Cibicides parki (ICP) shows relatively low values (cool) through this sequence in agreement with EPMA analysis. However, δ18O-derived temperatures from C. parki imply warmer conditions prevailed. In addition, Mg/Ca and δ18O from Cribrorotalia (closely related to Notorotalia) provide similar temperature estimates to the C. parki isotope results. It appears that Mg/Ca in certain species are susceptible to post-mortem alteration resulting in lower apparent temperatures. Spot analyses in Cribrorotalia show no distinctive seasonality and the δ18Oseawater estimates indicate ice-free conditions. We conclude that pairing Mg/Ca with δ18O allows the estimation of δ18Oseawater, but only if well-preserved and annual recorder specimens are examined. Combination with EPMA analysis may provide insight into seasonal variability.
Tanaka, Yuji; Yamashita, Takako; Nagoshi, Masayasu
2017-04-01
Hydrocarbon contamination introduced during point, line and map analyses in a field emission electron probe microanalysis (FE-EPMA) was investigated to enable reliable quantitative analysis of trace amounts of carbon in steels. The increment of contamination on pure iron in point analysis is proportional to the number of iterations of beam irradiation, but not to the accumulated irradiation time. A combination of a longer dwell time and single measurement with a liquid nitrogen (LN2) trap as an anti-contamination device (ACD) is sufficient for a quantitative point analysis. However, in line and map analyses, contamination increases with irradiation time in addition to the number of iterations, even though the LN2 trap and a plasma cleaner are used as ACDs. Thus, a shorter dwell time and single measurement are preferred for line and map analyses, although it is difficult to eliminate the influence of contamination. While ring-like contamination around the irradiation point grows during electron-beam irradiation, contamination at the irradiation point increases during blanking time after irradiation. This can explain the increment of contamination in iterative point analysis as well as in line and map analyses. Among the ACDs, which are tested in this study, specimen heating at 373 K has a significant contamination inhibition effect. This technique makes it possible to obtain line and map analysis data with minimum influence of contamination. The above-mentioned FE-EPMA data are presented and discussed in terms of the contamination-formation mechanisms and the preferable experimental conditions for the quantification of trace carbon in steels. © The Author 2016. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Chen, J.R.; Chao, E.C.T.; Back, J.M.; Minkin, J.A.; Rivers, M.L.; Sutton, S.R.; Cygan, G.L.; Grossman, J.N.; Reed, M.J.
1993-01-01
The concentrations of rare earth elements (REEs) in specific mineral grains from the Bayan Obo ore deposit and synthetic high-silica glass samples have been measured by synchrotron X-ray fluorescence (SXRF) analysis using excitation of the REE K lines between 33 and 63 keV. Because SXRF, a nondestructive analytical technique, has much lower minimum detection limits (MDLs) for REEs, it is an important device that extends the in situ analytical capability of electron probe microanalysis (EPMA). The distribution of trace amounts of REEs in common rock-forming minerals, as well as in REE minerals and minerals having minor quantities of REEs, can be analyzed with SXRF. Synchrotron radiation from a bending magnet and a wiggler source at the National Synchrotron Light Source, Brookhaven National Laboratory, was used to excite the REEs. MDLs of 6 ppm (La) to 26 ppm (Lu) for 3600 s in 60-??m-thick standard samples were obtained with a 25-??m diameter wiggler beam. The MDLs for the light REEs were a factor of 10-20 lower than the MDLs obtained with a bending magnet beam. The SXRF REE concentrations in mineral grains greater than 25 ??m compared favorably with measurements using EPMA. Because EPMA offered REE MDLs as low as several hundred ppm, the comparison was limited to the abundant light REEs (La, Ce, Pr, Nd). For trace values of medium and heavy REEs, the SXRF concentrations were in good agreement with measurements using instrumental neutron activation analysis (INAA), a bulk analysis technique. ?? 1993.
NASA Astrophysics Data System (ADS)
Gacutan, J.; Vila-Concejo, A.; Nothdurft, L. D.; Fellowes, T. E.; Cathey, H. E.; Opdyke, B. N.; Harris, D. L.; Hamylton, S.; Carvalho, R. C.; Byrne, M.; Webster, J. M.
2017-10-01
Sediment transport is a key driver of reef zonation and biodiversity, where an understanding of sediment dynamics gives insights into past reef processes and allows the prediction of geomorphic responses to changing environmental conditions. However, modal conditions within the back-reef seldom promote sediment transport, hence direct observation is inherently difficult. Large benthic foraminifera (LBF) have previously been employed as 'tracers' to infer sediment transport pathways on coral reefs, as their habitat is largely restricted to the algal flat and post-mortem, their calcium carbonate test is susceptible to sediment transport forces into the back-reef. Foraminiferal test abundance and post-depositional test alteration have been used as proxies for sediment transport, although the resolution of these measures becomes limited by low test abundance and the lack of variation within test alteration. Here we propose the novel use of elemental ratios as a proxy for sediment transport. Two species, Baculogypsina sphaerulata and Calcarina capricornia, were analysed using a taphonomic index within One Tree and Lady Musgrave reefs, Great Barrier Reef (Australia). Inductively coupled plasma-atomic emission spectrometry (ICP-AES) was used to determine Mg/Ca and Sr/Ca and these ratios were compared with taphonomic data. Decreases in test Mg/Ca accompany increases in Sr/Ca in specimens from algal-flat to lagoonal samples in both species, mirroring trends indicated by taphonomic values, therefore indicating a relationship with test alteration. To delineate mechanisms driving changes in elemental ratios, back-scattered electron (BSE) images, elemental mapping and in situ quantitative spot analyses by electron microprobe microanalysis (EPMA) using wavelength dispersive X-ray spectrometers (WDS) were performed on un-altered algal flat and heavily abraded tests for both species. EPMA analyses reveal heterogeneity in Mg/Ca between spines and the test wall, implying the loss of appendages results in a decrease in Mg/Ca. BSE imaging and WDS elemental mapping provided evidence for cementation, facilitated by microbial-boring as the primary cause of increasing Sr/Ca. These novel proxies hold advantages over taphonomic measures and further provide a rapid method to infer sediment transport pathways within back-reef environments.
NASA Astrophysics Data System (ADS)
Osán, J.; Kurunczi, S.; Török, S.; Van Grieken, R.
2002-03-01
A serious heavy metal pollution of the Tisza River occurred on March 10, 2000, arising from a mine-dumping site in Romania. Sediment samples were taken from the main riverbed at six sites in Hungary, on March 16, 2000. The objective of this work was to distinguish the anthropogenic and crustal erosion particles in the river sediment. The samples were investigated using both bulk X-ray fluorescence (XRF) and thin-window electron probe microanalysis (EPMA). For EPMA, a reverse Monte Carlo method calculated the quantitative elemental composition of each single sediment particle. A high abundance of pyrite type particles was observed in some of the samples, indicating the influence of the mine dumps. Backscattered electron images proved that the size of particles with a high atomic number matrix was in the range of 2 μm. In other words the pyrites and the heavy elements form either small particles or are fragments of larger agglomerates. The latter are formed during the flotation process of the mines or get trapped to the natural crustal erosion particles. The XRF analysis of pyrite-rich samples always showed much higher Cu, Zn and Pb concentrations than the rest of the samples, supporting the conclusions of the single-particle EPMA results. In the polluted samples, the concentration of Cu, Zn and Pb reached 0.1, 0.3 and 0.2 wt.%, respectively. As a new approach, the abundance of particle classes obtained from single-particle EPMA and the elemental concentration obtained by XRF were merged into one data set. The dimension of the common data set was reduced by principal component analysis. The first component was determined by the abundance of pyrite and zinc sulfide particles and the concentration of Cu, Zn and Pb. The polluted samples formed a distinct group in the principal component space. The same result was supported by powder diffraction data. These analytical data combined with Earth Observation Techniques can be further used to estimate the quantity of particles originating from mine tailings on a defined river section.
NASA Astrophysics Data System (ADS)
Sakashita, Tatsuo; Chazono, Hirokazu; Pezzotti, Giuseppe
2007-12-01
A quantitative determination of domain distribution in polycrystalline barium titanate (BaTiO3, henceforth BT) ceramics has been pursued with the aid of a microprobe polarized Raman spectrometer. The crystallographic texture and domain orientation distribution of BT ceramics, which switched upon applying stress according to ferroelasticity principles, were determined from the relative intensity of selected phonon modes, taking into consideration a theoretical analysis of the angular dependence of phonon mode intensity for the tetragonal BT phase. Furthermore, the angular dependence of Raman intensity measured in polycrystalline BT depended on the statistical distribution of domain angles in the laser microprobe, which was explicitly taken into account in this work for obtaining a quantitative analysis of domain orientation for in-plane textured BT polycrystalline materials.
NASA Technical Reports Server (NTRS)
Mckay, G.; Wagstaff, J.; Yang, S.-R.
1986-01-01
Partition coefficients were determined for Gd, Lu, Hf and Zr among ilmenite, armalcolite, and synthetic high-Ti mare basaltic melts at temperatures from 1122 deg to 1150 deg, and at oxygen fugacities of IW x 10 exp 0.5, by in situ analysis with an electron microprobe, using samples doped to present concentration levels. Coefficients for Zr were also measured for samples containing 600-1600 ppm Zr using this microprobe. In addition, coefficients were determined for Hf and Zr between chromian ulvospinel and melt, for Hf between pigeonite and melt, and for Lu between olivine and melt by microprobe analysis of samples doped to present levels. Values measured using the microprobe were in agreement with the values measured by analyzing mineral separates from the same run products by isotope dilution. Coefficient values for ilmenite are less than 0.01 for the LREE, are around 0.1 for the HREE, and are several times greater than this for Zr and Hf.
Improved EPMA Trace Element Accuracy Using a Matrix Iterated Quantitative Blank Correction
NASA Astrophysics Data System (ADS)
Donovan, J. J.; Wark, D. A.; Jercinovic, M. J.
2007-12-01
At trace element levels below several hundred PPM, accuracy is more often the limiting factor for EPMA quantification rather than precision. Modern EPMA instruments equipped with low noise detectors, counting electronics and large area analyzing crystals can now routinely achieve sensitivities for most elements in the 10 to 100 PPM levels (or even lower). But due to various sample and instrumental artifacts in the x-ray continuum, absolute accuracy is often the limiting factor for ultra trace element quantification. These artifacts have various mechanisms, but are usually attributed to sample artifacts (e.g., sample matrix absorption edges)1, detector artifacts (e.g., Ar or Xe absorption edges) 2 and analyzing crystal artifacts (extended peak tails preventing accurate determination of the true background and ¡§negative peaks¡¨ or ¡§holes¡¨ in the x-ray continuum). The latter being first described3 by Self, et al. and recently documented for the Ti kÑ in quartz geo-thermometer. 4 Ti (ka) Ti (ka) Ti (ka) Ti (ka) Ti (ka) Si () O () Total Average: -.00146 -.00031 -.00180 .00013 .00240 46.7430 53.2563 99.9983 Std Dev: .00069 .00075 .00036 .00190 .00117 .00000 .00168 .00419 The general magnitude of these artifacts can be seen in the above analyses of Ti ka in a synthetic quartz standard. The values for each spectrometer/crystal vary systematically from ¡V18 PPM to + 24 PPM. The exact mechanism for these continuum ¡§holes¡¨ is not known but may be related to secondary lattice diffraction occurring at certain Bragg angles depending on crystal mounting orientation for non-isometric analyzing crystals5. These x-ray continuum artifacts can produce systematic errors at levels up to 100 PPM or more depending on the particular analytical situation. In order to correct for these inaccuracies, a ¡§blank¡¨ correction has been developed that applies a quantitative correction to the measured x-ray intensities during the matrix iteration, by calculating the intensity contribution from the systematic quantitative offset from a known (usually zero level) blank standard. Preliminary results from this new matrix iterated trace element blank correction demonstrate that systematic errors can be reduced to single digit PPM levels for many situations. 1B.W. Robinson, N.G. Ware and D.G.W. Smith, 1998. "Modern Electron-Microprobe Trace-Element Analysis in Mineralogy". In Cabri, L.J. and Vaughan, D.J., Eds. "Modern Approaches to Ore and Environmental Mineralogy", Short Course 27. Mineralogical Association of Canada, Ottawa 153-180 2Remond, G., Myklebust, R. Fialin, M. Nockolds, C. Phillips, M. Roques-Carmes, C. ¡§Decomposition of Wavelength Dispersive X-ray Spectra¡¨, Journal of Research of the National Institute of Standards and Technology (J. Res. Natl. Inst. Stand. Technol., v. 107, 509-529 (2002) 3Self, P.G., Norrish, K., Milnes, A.R., Graham, J. & Robinson, B.W. (1990): Holes in the Background in XRS. X-ray Spectrom. 19 (2), 59-61 4Wark, DA, and Watson, EB, 2006, TitaniQ: A Titanium-in-Quartz geothermometer: Contributions to Mineralogy and Petrology, 152:743-754, doi: 10.1007/s00410-006-0132-308
Hand, Kieran S; Cumming, Debbie; Hopkins, Susan; Ewings, Sean; Fox, Andy; Theminimulle, Sandya; Porter, Robert J; Parker, Natalie; Munns, Joanne; Sheikh, Adel; Keyser, Taryn; Puleston, Richard
2017-04-01
The implementation of electronic prescribing and medication administration (EPMA) systems is a priority for hospitals and a potential component of antimicrobial stewardship (AMS). To identify software features within EPMA systems that could potentially facilitate AMS and to survey practising UK infection specialist healthcare professionals in order to assign priority to these software features. A questionnaire was developed using nominal group technique and transmitted via email links through professional networks. The questionnaire collected demographic data, information on priority areas and anticipated impact of EPMA. Responses from different respondent groups were compared using the Mann-Whitney U -test. Responses were received from 164 individuals (142 analysable). Respondents were predominantly specialist infection pharmacists (48%) or medical microbiologists (37%). Of the pharmacists, 59% had experience of EPMA in their hospitals compared with 35% of microbiologists. Pharmacists assigned higher priority to indication prompt ( P < 0.001), allergy checker ( P = 0.003), treatment protocols ( P = 0.003), drug-indication mismatch alerts ( P = 0.031) and prolonged course alerts ( P = 0.041) and lower priority to a dose checker for adults ( P = 0.02) and an interaction checker ( P < 0.05) than microbiologists. A 'soft stop' functionality was rated essential or high priority by 89% of respondents. Potential EPMA software features were expected to have the greatest impact on stewardship, treatment efficacy and patient safety outcomes with lowest impact on Clostridium difficile infection, antimicrobial resistance and drug expenditure. The survey demonstrates key differences in health professionals' opinions of potential healthcare benefits of EPMA, but a consensus of anticipated positive impact on patient safety and AMS. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
U/Th dating by SHRIMP RG ion-microprobe mass spectrometry using single ion-exchange beads
NASA Astrophysics Data System (ADS)
Bischoff, James L.; Wooden, Joe; Murphy, Fred; Williams, Ross W.
2005-04-01
We present a new analytical method for U-series isotopes using the SHRIMP RG (Sensitive High mass Resolution Ion MicroProbe) mass spectrometer that utilizes the preconcentration of the U-series isotopes from a sample onto a single ion-exchange bead. Ion-microprobe mass spectrometry is capable of producing Th ionization efficiencies in excess of 2%. Analytical precision is typically better than alpha spectroscopy, but not as good as thermal ionization mass spectroscopy (TIMS) and inductively coupled plasma multicollector mass spectrometry (ICP-MS). Like TIMS and ICP-MS the method allows analysis of small samples sizes, but also adds the advantage of rapidity of analysis. A major advantage of ion-microprobe analysis is that U and Th isotopes are analyzed in the same bead, simplifying the process of chemical separation. Analytical time on the instrument is ˜60 min per sample, and a single instrument-loading can accommodate 15-20 samples to be analyzed in a 24-h day. An additional advantage is that the method allows multiple reanalyses of the same bead and that samples can be archived for reanalysis at a later time. Because the ion beam excavates a pit only a few μm deep, the mount can later be repolished and reanalyzed numerous times. The method described of preconcentrating a low concentration sample onto a small conductive substrate to allow ion-microprobe mass spectrometry is potentially applicable to many other systems.
U/Th dating by SHRIMP RG ion-microprobe mass spectrometry using single ion-exchange beads
Bischoff, J.L.; Wooden, J.; Murphy, F.; Williams, Ross W.
2005-01-01
We present a new analytical method for U-series isotopes using the SHRIMP RG (Sensitive High mass Resolution Ion MicroProbe) mass spectrometer that utilizes the preconcentration of the U-series isotopes from a sample onto a single ion-exchange bead. Ion-microprobe mass spectrometry is capable of producing Th ionization efficiencies in excess of 2%. Analytical precision is typically better than alpha spectroscopy, but not as good as thermal ionization mass spectroscopy (TIMS) and inductively coupled plasma multicollector mass spectrometry (ICP-MS). Like TIMS and ICP-MS the method allows analysis of small samples sizes, but also adds the advantage of rapidity of analysis. A major advantage of ion-microprobe analysis is that U and Th isotopes are analyzed in the same bead, simplifying the process of chemical separation. Analytical time on the instrument is ???60 min per sample, and a single instrument-loading can accommodate 15-20 samples to be analyzed in a 24-h day. An additional advantage is that the method allows multiple reanalyses of the same bead and that samples can be archived for reanalysis at a later time. Because the ion beam excavates a pit only a few ??m deep, the mount can later be repolished and reanalyzed numerous times. The method described of preconcentrating a low concentration sample onto a small conductive substrate to allow ion-microprobe mass spectrometry is potentially applicable to many other systems. Copyright ?? 2005 Elsevier Ltd.
Schibille, Nadine
2011-01-01
The chemical characterisation of archaeological glass allows the discrimination between different glass groups and the identification of raw materials and technological traditions of their production. Several lines of evidence point towards the large-scale production of first millennium CE glass in a limited number of glass making factories from a mixture of Egyptian mineral soda and a locally available silica source. Fundamental changes in the manufacturing processes occurred from the eight/ninth century CE onwards, when Egyptian mineral soda was gradually replaced by soda-rich plant ash in Egypt as well as the Islamic Middle East. In order to elucidate the supply and consumption of glass during this transitional period, 31 glass samples from the assemblage found at Pergamon (Turkey) that date to the fourth to fourteenth centuries CE were analysed by electron microprobe analysis (EPMA) and by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). The statistical evaluation of the data revealed that the Byzantine glasses from Pergamon represent at least three different glass production technologies, one of which had not previously been recognised in the glass making traditions of the Mediterranean. While the chemical characteristics of the late antique and early medieval fragments confirm the current model of glass production and distribution at the time, the elemental make-up of the majority of the eighth- to fourteenth-century glasses from Pergamon indicate the existence of a late Byzantine glass type that is characterised by high alumina levels. Judging from the trace element patterns and elevated boron and lithium concentrations, these glasses were produced with a mineral soda different to the Egyptian natron from the Wadi Natrun, suggesting a possible regional Byzantine primary glass production in Asia Minor. PMID:21526144
Schibille, Nadine
2011-04-19
The chemical characterisation of archaeological glass allows the discrimination between different glass groups and the identification of raw materials and technological traditions of their production. Several lines of evidence point towards the large-scale production of first millennium CE glass in a limited number of glass making factories from a mixture of Egyptian mineral soda and a locally available silica source. Fundamental changes in the manufacturing processes occurred from the eight/ninth century CE onwards, when Egyptian mineral soda was gradually replaced by soda-rich plant ash in Egypt as well as the Islamic Middle East. In order to elucidate the supply and consumption of glass during this transitional period, 31 glass samples from the assemblage found at Pergamon (Turkey) that date to the fourth to fourteenth centuries CE were analysed by electron microprobe analysis (EPMA) and by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). The statistical evaluation of the data revealed that the Byzantine glasses from Pergamon represent at least three different glass production technologies, one of which had not previously been recognised in the glass making traditions of the Mediterranean. While the chemical characteristics of the late antique and early medieval fragments confirm the current model of glass production and distribution at the time, the elemental make-up of the majority of the eighth- to fourteenth-century glasses from Pergamon indicate the existence of a late Byzantine glass type that is characterised by high alumina levels. Judging from the trace element patterns and elevated boron and lithium concentrations, these glasses were produced with a mineral soda different to the Egyptian natron from the Wadi Natrun, suggesting a possible regional Byzantine primary glass production in Asia Minor.
NASA Astrophysics Data System (ADS)
McLeod, C. L.; Brown, K.; Brydon, R.; Haley, M.; Hill, T.; Shaulis, B.; Tronnes, R. G.
2017-12-01
Advances in the capabilities of microanalysis over the past several decades have promoted a redefinition of traditional petrological terminology. This has allowed a more accurate evaluation of a samples petrogenetic history. For example, the term "phenocryst", specifically describes crystals that grew from the liquid that solidified into the groundmass. Evolving from this idea is the term xenocryst, referring to crystals that did not originate in the magma but were gathered by it, and antecrysts, which crystallized from a progenitor of the magma that solidified into the groundmass. Through identification of a magmas different, and distinct, crystal populations, the petrogenetic history of a magmatic rock can therefore be unraveled. This approach has been widely applied to terrestrial volcanic systems throughout the past several decades. This study presents results from a combined microimaging and in-situ microanalytical investigation of granitic magmas crystal cargoes in order to unravel how granitic batholiths are constructed. 27 lithological units from two granite batholiths in the Oslo Rift, Norway form the basis of this investigation. Micro X-Ray Fluorescence (µXRF) mapping of major elements and selected trace elements is used in order to chemically map each granitic unit, identify any characteristic growth zoning, and compare the crystal cargoes of the different units. Major and trace elemental abundances of the major phases (feldspars, biotite, amphibole) and minor phases (apatite and titanite) are to be quantified through electron microprobe analysis (EPMA) and laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) respectively. Through chemically fingerprinting the crystal cargoes of these Oslo Rift granitic magmas, the open vs. closed nature of granitic, intrusive, magmatic systems will be investigated. Within the context of the Oslo Rift, this study also offers an opportunity to evaluate the processes inherent to granitoid magmatism during continental rifting.
Yamashita, Takako; Tanaka, Yuji; Yagoshi, Masayasu; Ishida, Kiyohito
2016-01-01
In multiphase steels, control of the carbon contents in the respective phases is the most important factor in alloy design for achieving high strength and high ductility. However, it is unusually difficult to determine the carbon contents in multiphase structures with high accuracy by electron probe microanalysis (EPMA) due to the unavoidable effect of hydrocarbon contamination during measurements. We have investigated new methods for suppressing hydrocarbon contamination during field emission (FE) EPMA measurements as well as a conventional liquid nitrogen trap. Plasma cleaner inside the specimen chamber results in a improvement of carbon-content determination by point analysis, increasing precision tenfold from the previous 0.1 mass%C to 0.01 mass%C. Stage heating at about 100 °C dramatically suppresses contamination growth during continuous point measurement and mapping. By the combination of above two techniques, we successfully visualized the two-dimensional carbon distribution in a dual-phase steel. It was also noted that the carbon concentrations at the ferrite/martensite interfaces were not the same across all interfaces, and local variation was observed. The developed technique is expected to be a powerful tool for understanding the mechanisms of mechanical properties and microstructural evolution, thereby contributing to the design of new steel products with superior properties. PMID:27431281
Microprobe monazite geochronology: new techniques for dating deformation and metamorphism
NASA Astrophysics Data System (ADS)
Williams, M.; Jercinovic, M.; Goncalves, P.; Mahan, K.
2003-04-01
High-resolution compositional mapping, age mapping, and precise dating of monazite on the electron microprobe are powerful additions to microstructural and petrologic analysis and important tools for tectonic studies. The in-situ nature and high spatial resolution of the technique offer an entirely new level of structurally and texturally specific geochronologic data that can be used to put absolute time constraints on P-T-D paths, constrain the rates of sedimentary, metamorphic, and deformational processes, and provide new links between metamorphism and deformation. New analytical techniques (including background modeling, sample preparation, and interference analysis) have significantly improved the precision and accuracy of the technique and new mapping and image analysis techniques have increased the efficiency and strengthened the correlation with fabrics and textures. Microprobe geochronology is particularly applicable to three persistent microstructural-microtextural problem areas: (1) constraining the chronology of metamorphic assemblages; (2) constraining the timing of deformational fabrics; and (3) interpreting other geochronological results. In addition, authigenic monazite can be used to date sedimentary basins, and detrital monazite can fingerprint sedimentary source areas, both critical for tectonic analysis. Although some monazite generations can be directly tied to metamorphism or deformation, at present, the most common constraints rely on monazite inclusion relations in porphyroblasts that, in turn, can be tied to the deformation and/or metamorphic history. Examples will be presented from deep-crustal rocks of northern Saskatchewan and from mid-crustal rocks from the southwestern USA. Microprobe monazite geochronology has been used in both regions to deconvolute overprinting deformation and metamorphic events and to clarify the interpretation of other geochronologic data. Microprobe mapping and dating are powerful companions to mass spectroscopic dating techniques. They allow geochronology to be incorporated into the microstructural analytical process, resulting in a new level of integration of time (t) into P-T-D histories.
Microprobe investigation of brittle segregates in aluminum MIG and TIG welds
NASA Technical Reports Server (NTRS)
Larssen, P. A.; Miller, E. L.
1968-01-01
Quantitative microprobe analysis of segregated particles in aluminum MIG /Metal Inert Gas/ and TIG /Tungsten Inert Gas/ welds indicated that there were about ten different kinds of particles, corresponding to ten different intermetallic compounds. Differences between MIG and TIG welds related to the individual cooling rates of these welds.
Raman microprobe analysis of single ramie fiber during mercerization
Akira Isogai; Umesh P. Agarwal; Rajai H. Atalla
2003-01-01
The Raman microprobe technique was applied to structural analysis of single ramie fibers during mercerization. Polarized laser beam was irradiated on a ramie fiber in 0-30 % NaOD/D2O with the electric vector at 0 or 90° to the fiber axis, and Raman spectra thus obtained were studied in relation to the concentration of NaOD in D2O. Conversion of -OH to -OD in ramie...
Scanning proton microprobe applied to analysis of individual aerosol particles from Amazon Basin
NASA Astrophysics Data System (ADS)
Gerab, Fábio; Artaxo, Paulo; Swietlicki, Erik; Pallon, Jan
1998-03-01
The development of the Scanning Proton Microprobe (SPM) offers a new possibility for individual aerosol particle studies. The SPM joins Particle Induced X-ray Emission (PIXE) elemental analysis qualities with micrometric spatial resolution. In this work the Lund University SPM facility was used for elemental characterization of individual aerosol particles emitted to the atmosphere in the Brazilian Amazon Basin, during gold mining activities by the so-called "gold shops".
Mars Microprobe Entry Analysis
NASA Technical Reports Server (NTRS)
Braun, Robert D.; Mitcheltree, Robert A.; Cheatwood, F. McNeil
1998-01-01
The Mars Microprobe mission will provide the first opportunity for subsurface measurements, including water detection, near the south pole of Mars. In this paper, performance of the Microprobe aeroshell design is evaluated through development of a six-degree-of-freedom (6-DOF) aerodynamic database and flight dynamics simulation. Numerous mission uncertainties are quantified and a Monte-Carlo analysis is performed to statistically assess mission performance. Results from this 6-DOF Monte-Carlo simulation demonstrate that, in a majority of the cases (approximately 2-sigma), the penetrator impact conditions are within current design tolerances. Several trajectories are identified in which the current set of impact requirements are not satisfied. From these cases, critical design parameters are highlighted and additional system requirements are suggested. In particular, a relatively large angle-of-attack range near peak heating is identified.
A Comparison of Experimental EPMA Data and Monte Carlo Simulations
NASA Technical Reports Server (NTRS)
Carpenter, P. K.
2004-01-01
Monte Carlo (MC) modeling shows excellent prospects for simulating electron scattering and x-ray emission from complex geometries, and can be compared to experimental measurements using electron-probe microanalysis (EPMA) and phi(rho z) correction algorithms. Experimental EPMA measurements made on NIST SRM 481 (AgAu) and 482 (CuAu) alloys, at a range of accelerating potential and instrument take-off angles, represent a formal microanalysis data set that has been used to develop phi(rho z) correction algorithms. The accuracy of MC calculations obtained using the NIST, WinCasino, WinXray, and Penelope MC packages will be evaluated relative to these experimental data. There is additional information contained in the extended abstract.
NASA Astrophysics Data System (ADS)
Wright, K. E.; Popa, K.; Pöml, P.
2018-01-01
Transmutation nuclear fuels contain weight percentage quantities of actinide elements, including Pu, Am and Np. Because of the complex spectra presented by actinide elements using electron probe microanalysis (EPMA), it is necessary to have relatively pure actinide element standards to facilitate overlap correction and accurate quantitation. Synthesis of actinide oxide standards is complicated by their multiple oxidation states, which can result in inhomogeneous standards or standards that are not stable at atmospheric conditions. Synthesis of PuP4 results in a specimen that exhibits stable oxidation-reduction chemistry and is sufficiently homogenous to serve as an EPMA standard. This approach shows promise as a method for producing viable actinide standards for microanalysis.
NASA Technical Reports Server (NTRS)
Sutton, S. R.; Delaney, J.; Bajt, S.; Rivers, M. L.; Smith, J. V.
1993-01-01
An exploratory application of x ray absorption near edge structure (XANES) analysis using the synchrotron x ray microprobe was undertaken to obtain Fe XANES spectra on individual sub-millimeter grains in conventional polished sections. The experiments concentrated on determinations of Fe valence in a suite of iron oxide minerals for which independent estimates of the iron speciation could be made by electron microprobe analysis and x ray diffraction.
Distribution of trace elements in a modified and grain refined aluminium-silicon hypoeutectic alloy.
Faraji, M; Katgerman, L
2010-08-01
The influence of modifier and grain refiner on the nucleation process of a commercial hypoeutectic Al-Si foundry alloy (A356) was investigated using optical microscopy, scanning electron microscopy (SEM) and electron probe microanalysis technique (EPMA). Filtering was used to improve the casting quality; however, it compromised the modification of silicon. Effect of filtering on strontium loss was also studied using the afore-mentioned techniques. EPMA was used to trace the modifying and grain refining agents inside matrix and eutectic Si. This was to help understanding mechanisms of nucleation and modification in this alloy. Using EPMA, the negative interaction of Sr and Al3TiB was closely examined. In modified structure, it was found that the maximum point of Sr concentration was in line with peak of silicon; however, in case of just 0.1wt% added Ti, the peak of Ti concentration was not in line with aluminium, (but it was close to Si peak). Furthermore, EPMA results showed that using filter during casting process lowered the strontium content, although produced a cleaner melt. (c) 2010 Elsevier Ltd. All rights reserved.
Minkin, J.A.; Chao, E.C.T.; Blank, Herma; Dulong, F.T.
1987-01-01
The PIXE (proton-induced X-ray emission) microprobe can be used for nondestructive, in-situ analyses of areas as small as those analyzed by the electron microprobe, and has a sensitivity of detection as much as two orders of magnitude better than the electron microprobe. Preliminary studies demonstrated that PIXE provides a capability for quantitative determination of elemental concentrations in individual coal maceral grains with a detection limit of 1-10 ppm for most elements analyzed. Encouraged by the earlier results, we carried out the analyses reported below to examine trace element variations laterally (over a km range) as well as vertically (cm to m) in the I and J coal beds in the Upper Cretaceous Ferron Sandstone Member of the Mancos Shale in central Utah, and to compare the data with the data from two samples of eastern coals of Pennsylvanian age.
NASA Technical Reports Server (NTRS)
Hutcheon, I. D.; Steele, I. M.; Smith, J. V.; Clayton, R. N.
1978-01-01
Three Type B inclusions from the Allende meteorite have been analyzed. A grain-to-grain characterization of mineral chemistry and isotopic content was made possible by the use of a range of techniques, including luminescence and scanning electron microscopy and electron and ion microprobe analysis. Cathodoluminescence was used in fine-grained, optically opaque regions to distinguish between sub-micrometer phases, such as garnet and Si-rich material, subsequently identified by electron probe and scanning electron microscope analyses. Four types of luminescence patterns, due to twinning, primary sector zoning, alteration of boundaries and fractures, and shock effects, were identified in Allende plagioclase. Luminescence color exhibited a strong correlation with Mg content and provided a guide for an electron probe quantitative map of Mg and Na distributions. Ion microprobe studies of individual grains revealed large excesses of Mg-26.
NASA Astrophysics Data System (ADS)
Armstrong, J. T.; McSwiggen, P.; Nielsen, C.
2013-12-01
Quantitative electron microprobe analysis has revolutionized two-dimensional elemental analysis of Earth materials at the micrometer-scale. Newly available commercial field emission (FE-) source instruments represent significant technological advances in quantitative measurement with high spatial resolution at sub-micrometer scale - helping to bridge the gap between conventional microprobe and AEM analyses. Their performance specifications suggest the ability to extend routine quantitative analyses from ~3-5 micrometer diameter areas down to 1-2 micrometer diameter at beam energies of 15 keV; and, with care, down to 200-500 nm diameter at reduced beam energies. . In order to determine whether the level of performance suggested by the specifications is realistic, we spent a week doing analyses at the newly installed JEOL JXA-8530F field emission microprobe at Arizona State University, using a series of samples that are currently being studied in various projects at CIW. These samples included: 1) high-pressure experiment run product containing intergrowths of sub-micrometer grains of metal, sulfide, Fe-Mg-perovskite, and ferropericlase; 2) a thin section of the Ivankinsky basalt, part of the Siberian flood basalt sequence containing complex sub-micrometer intergrowths of magnetite, titanomagnetite, ilmenite, titanite and rutile; 3) a polished section of the Giroux pallasite, being studied for element partitioning, that we used as an analogue to test the capabilities for zonation and diffusion determination; and 4) a polished section of the Semarkona ordinary chondrite containing chondules comprised of highly zoned and rimmed olivines and pyroxenes in a complex mesostasis of sub-micrometer pyroxenes and glass. The results of these analyses that we will present confirmed our optimism regarding the new analytical capabilities of a field emission microprobe. We were able, at reduced voltages, to accurately analyze the major and minor element composition of intergrowth and rimming phases as small as 200 nm without artifact contribution from the surrounding phases. We were able to determine the compositional gradients at kamacite-taenite boundaries in the pallasite specimen with a resolution of ~180 nm, enabling much higher precision and accuracy determination of the meteorite's cooling rate than previously possible with microprobe measurements. We were able to determine the composition and zonation of phases in the experimental run product, none of which were large enough to be analyzable in a conventional electron microprobe.
Measurement of Total Calcium in Neurons by Electron Probe X-ray Microanalysis
Pivovarova, Natalia B.; Andrews, S. Brian
2013-01-01
In this article the tools, techniques, and instruments appropriate for quantitative measurements of intracellular elemental content using the technique known as electron probe microanalysis (EPMA) are described. Intramitochondrial calcium is a particular focus because of the critical role that mitochondrial calcium overload plays in neurodegenerative diseases. The method is based on the analysis of X-rays generated in an electron microscope (EM) by interaction of an electron beam with the specimen. In order to maintain the native distribution of diffusible elements in electron microscopy specimens, EPMA requires "cryofixation" of tissue followed by the preparation of ultrathin cryosections. Rapid freezing of cultured cells or organotypic slice cultures is carried out by plunge freezing in liquid ethane or by slam freezing against a cold metal block, respectively. Cryosections nominally 80 nm thick are cut dry with a diamond knife at ca. -160 °C, mounted on carbon/pioloform-coated copper grids, and cryotransferred into a cryo-EM using a specialized cryospecimen holder. After visual survey and location mapping at ≤-160 °C and low electron dose, frozen-hydrated cryosections are freeze-dried at -100 °C for ~30 min. Organelle-level images of dried cryosections are recorded, also at low dose, by means of a slow-scan CCD camera and subcellular regions of interest selected for analysis. X-rays emitted from ROIs by a stationary, focused, high-intensity electron probe are collected by an energy-dispersive X-ray (EDX) spectrometer, processed by associated electronics, and presented as an X-ray spectrum, that is, a plot of X-ray intensity vs. energy. Additional software facilitates: 1) identification of elemental components by their "characteristic" peak energies and fingerprint; and 2) quantitative analysis by extraction of peak areas/background. This paper concludes with two examples that illustrate typical EPMA applications, one in which mitochondrial calcium analysis provided critical insight into mechanisms of excitotoxic injury and another that revealed the basis of ischemia resistance. PMID:24300079
An SU-8-based microprobe with a nanostructured surface enhances neuronal cell attachment and growth
NASA Astrophysics Data System (ADS)
Kim, Eunhee; Kim, Jin-Young; Choi, Hongsoo
2017-12-01
Microprobes are used to repair neuronal injury by recording electrical signals from neuronal cells around the surface of the device. Following implantation into the brain, the immune response results in formation of scar tissue around the microprobe. However, neurons must be in close proximity to the microprobe to enable signal recording. A common reason for failure of microprobes is impaired signal recording due to scar tissue, which is not related to the microprobe itself. Therefore, the device-cell interface must be improved to increase the number of neurons in contact with the surface. In this study, we developed nanostructured SU-8 microprobes to support neuronal growth. Nanostructures of 200 nm diameter and depth were applied to the surface of microprobes, and the attachment and neurite outgrowth of PC12 cells on the microprobes were evaluated. Neuronal attachment and neurite outgrowth on the nanostructured microprobes were significantly greater than those on non-nanostructured microprobes. The enhanced neuronal attachment and neurite outgrowth on the nanostructured microprobes occurred in the absence of an adhesive coating, such as poly- l-lysine, and so may be useful for implantable devices for long-term use. Therefore, nanostructured microprobes can be implanted without adhesive coating, which can cause problems in vivo over the long term.
Copper Oxide Precipitates in NBS Standard Reference Material 482
Windsor, Eric S.; Carlton, Robert A.; Gillen, Greg; Wight, Scott A.; Bright, David S.
2002-01-01
Copper oxide has been detected in the copper containing alloys of NBS Standard Reference Material (SRM) 482. This occurrence is significant because it represents heterogeneity within a standard reference material that was certified to be homogeneous on a micrometer scale. Oxide occurs as elliptically to spherically shaped precipitates whose size differs with alloy composition. The largest precipitates occur in the Au20-Cu80 alloy and range in size from submicrometer up to 2 μm in diameter. Precipitates are observed using light microscopy, electron microscopy, and secondary ion mass spectrometry (SIMS). SIMS has demonstrated that the precipitates are present within all the SRM 482 wires that contain copper. Only the pure gold wire is precipitate free. Initial results from the analysis of the Au20-Cu80 alloy indicate that the percentage of precipitates is less than 1 % by area. Electron probe microanalysis (EPMA) of large (2 μm) precipitates in this same alloy indicates that precipitates are detectable by EPMA and that their composition differs significantly from the certified alloy composition. The small size and low percentage of these oxide precipitates minimizes the impact that they have upon the intended use of this standard for electron probe microanalysis. Heterogeneity caused by these oxide precipitates may however preclude the use of this standard for automated EPMA analyses and other microanalysis techniques. PMID:27446759
Calculated X-ray Intensities Using Monte Carlo Algorithms: A Comparison to Experimental EPMA Data
NASA Technical Reports Server (NTRS)
Carpenter, P. K.
2005-01-01
Monte Carlo (MC) modeling has been used extensively to simulate electron scattering and x-ray emission from complex geometries. Here are presented comparisons between MC results and experimental electron-probe microanalysis (EPMA) measurements as well as phi(rhoz) correction algorithms. Experimental EPMA measurements made on NIST SRM 481 (AgAu) and 482 (CuAu) alloys, at a range of accelerating potential and instrument take-off angles, represent a formal microanalysis data set that has been widely used to develop phi(rhoz) correction algorithms. X-ray intensity data produced by MC simulations represents an independent test of both experimental and phi(rhoz) correction algorithms. The alpha-factor method has previously been used to evaluate systematic errors in the analysis of semiconductor and silicate minerals, and is used here to compare the accuracy of experimental and MC-calculated x-ray data. X-ray intensities calculated by MC are used to generate a-factors using the certificated compositions in the CuAu binary relative to pure Cu and Au standards. MC simulations are obtained using the NIST, WinCasino, and WinXray algorithms; derived x-ray intensities have a built-in atomic number correction, and are further corrected for absorption and characteristic fluorescence using the PAP phi(rhoz) correction algorithm. The Penelope code additionally simulates both characteristic and continuum x-ray fluorescence and thus requires no further correction for use in calculating alpha-factors.
NASA Technical Reports Server (NTRS)
Walter, L. S.; Doan, A. S., Jr.; Wood, F. M., Jr.; Bredekamp, J. H.
1972-01-01
A combined WDS-EDS system obviates the severe X-ray peak overlap problems encountered with Na, Mg, Al and Si common to pure EDS systems. By application of easily measured empirical correction factors for pulse pile-up and peak overlaps which are normally observed in the analysis of silicate minerals, the accuracy of analysis is comparable with that expected for WDS electron microprobe analyses. The continuum backgrounds are subtracted for the spectra by a spline fitting technique based on integrated intensities between the peaks. The preprocessed data are then reduced to chemical analyses by existing data reduction programs.
Vicenzi, Edward P.; Eggins, Stephen; Logan, Amelia; Wysoczanski, Richard
2002-01-01
An initial study of the minor element, trace element, and impurities in Corning archeological references glasses have been performed using three microbeam techniques: electron probe microanalysis (EPMA), laser ablation ICP-mass spectrometry (LA ICP-MS), and secondary ion mass spectrometry (SIMS). The EPMA results suggest a significant level of heterogeneity for a number of metals. Conversely, higher precision and a larger sampling volume analysis by LA ICP-MS indicates a high degree of chemical uniformity within all glasses, typically <2 % relative (1 σ). SIMS data reveal that small but measurable quantities of volatile impurities are present in the glasses, including H at roughly the 0.0001 mass fraction level. These glasses show promise for use as secondary standards for minor and trace element analyses of insulating materials such as synthetic ceramics, minerals, and silicate glasses. PMID:27446764
Improving Precision, Maintaining Accuracy, and Reducing Acquisition Time for Trace Elements in EPMA
NASA Astrophysics Data System (ADS)
Donovan, J.; Singer, J.; Armstrong, J. T.
2016-12-01
Trace element precision in electron probe micro analysis (EPMA) is limited by intrinsic random variation in the x-ray continuum. Traditionally we characterize background intensity by measuring on either side of the emission line and interpolating the intensity underneath the peak to obtain the net intensity. Alternatively, we can measure the background intensity at the on-peak spectrometer position using a number of standard materials that do not contain the element of interest. This so-called mean atomic number (MAN) background calibration (Donovan, et al., 2016) uses a set of standard measurements, covering an appropriate range of average atomic number, to iteratively estimate the continuum intensity for the unknown composition (and hence average atomic number). We will demonstrate that, at least for materials with a relatively simple matrix such as SiO2, TiO2, ZrSiO4, etc. where one may obtain a matrix matched standard for use in the so called "blank correction", we can obtain trace element accuracy comparable to traditional off-peak methods, and with improved precision, in about half the time. Donovan, Singer and Armstrong, A New EPMA Method for Fast Trace Element Analysis in Simple Matrices ", American Mineralogist, v101, p1839-1853, 2016 Figure 1. Uranium concentration line profiles from quantitative x-ray maps (20 keV, 100 nA, 5 um beam size and 4000 msec per pixel), for both off-peak and MAN background methods without (a), and with (b), the blank correction applied. We see precision significantly improved compared with traditional off-peak measurements while, in this case, the blank correction provides a small but discernable improvement in accuracy.
Synthesis and characterisation of the uranium pyrochlore betafite [(Ca,U)₂(Ti,Nb,Ta)₂O₇].
McMaster, Scott A; Ram, Rahul; Charalambous, Fiona; Pownceby, Mark I; Tardio, James; Bhargava, Suresh K
2014-09-15
Betafite of composition [(Ca,U)2(Ti,Nb,Ta)2O7] was prepared via a solid state synthesis route. The synthesis was shown to be sensitive to initial reactant ratios, the atmosphere used (oxidising, neutral, reducing) and time. The optimum conditions for the synthesis of betafite were found to be heating the reactants required at 1150°C for 48 h under an inert gas atmosphere. XRD characterisation revealed that the synthesised betafite contained minor impurities. EPMA analysis of a sectioned surface showed very small regions of Ca-free betafite on grain boundaries as well as minor rutile impurities. Some heterogeneity between the Nb:Ta ratio was observed by quantitative EPMA but was generally within the nomenclature requirements stated for betafite. SEM analysis revealed the synthesised betafite was comprised mostly of hexaoctohedral crystals of ∼ 3 μm in diameter. XPS analysis of the sample showed that the uranium in the synthesised betafite was predominately present in the U(5+) oxidation state. A minor amount of U(6+) was also detected which was possibly due to surface oxidation. Copyright © 2014 Elsevier B.V. All rights reserved.
Analytical Microscopy and Imaging Science | Materials Science | NREL
Microanalysis (EPMA) for quantitative compositional analysis. It relies on wavelength-dispersive spectroscopy to Science group in NREL's Materials Science Center. Mowafak Al-Jassim Group Manager Dr. Al-Jassim manages the Analytical Microscopy and Imaging Science group with the Materials Science Center. Email | 303-384
Humplik, Thomas; Stirrup, Emily K.; Grillet, Anne M.; ...
2016-04-30
The transient transport of electrolytes in thermally-activated batteries is studied in this paper using electron probe micro-analysis (EPMA), demonstrating the robust capability of EPMA as a useful tool for studying and quantifying mass transport within porous materials, particularly in difficult environments where classical flow measurements are challenging. By tracking the mobility of bromine and potassium ions from the electrolyte stored within the separator into the lithium silicon anode and iron disulfide cathode, we are able to quantify the transport mechanisms and physical properties of the electrodes including permeability and tortuosity. Due to the micron to submicron scale porous structure ofmore » the initially dry anode, a fast capillary pressure driven flow is observed into the anode from which we are able to set a lower bound on the permeability of 10 -1 mDarcy. The transport into the cathode is diffusion-limited because the cathode originally contained some electrolyte before activation. Finally, using a transient one-dimensional diffusion model, we estimate the tortuosity of the cathode electrode to be 2.8 ± 0.8.« less
Eom, Hyo-Jin; Jung, Hae-Jin; Sobanska, Sophie; Chung, Sang-Gwi; Son, Youn-Suk; Kim, Jo-Chun; Sunwoo, Young; Ro, Chul-Un
2013-11-05
Quantitative energy-dispersive electron probe X-ray microanalysis (ED-EPMA), known as low-Z particle EPMA, and Raman microspectrometry (RMS) were applied in combination for an analysis of the iron species in airborne PM10 particles collected in underground subway tunnels. Iron species have been reported to be a major chemical species in underground subway particles generated mainly from mechanical wear and friction processes. In particular, iron-containing particles in subway tunnels are expected to be generated with minimal outdoor influence on the particle composition. Because iron-containing particles have different toxicity and magnetic properties depending on their oxidation states, it is important to determine the iron species of underground subway particles in the context of both indoor public health and control measures. A recently developed analytical methodology, i.e., the combined use of low-Z particle EPMA and RMS, was used to identify the chemical species of the same individual subway particles on a single particle basis, and the bulk iron compositions of airborne subway particles were also analyzed by X-ray diffraction. The majority of airborne subway particles collected in the underground tunnels were found to be magnetite, hematite, and iron metal. All the particles collected in the tunnels of underground subway stations were attracted to permanent magnets due mainly to the almost ubiquitous ferrimagnetic magnetite, indicating that airborne subway particles can be removed using magnets as a control measure.
A deterministic model of electron transport for electron probe microanalysis
NASA Astrophysics Data System (ADS)
Bünger, J.; Richter, S.; Torrilhon, M.
2018-01-01
Within the last decades significant improvements in the spatial resolution of electron probe microanalysis (EPMA) were obtained by instrumental enhancements. In contrast, the quantification procedures essentially remained unchanged. As the classical procedures assume either homogeneity or a multi-layered structure of the material, they limit the spatial resolution of EPMA. The possibilities of improving the spatial resolution through more sophisticated quantification procedures are therefore almost untouched. We investigate a new analytical model (M 1-model) for the quantification procedure based on fast and accurate modelling of electron-X-ray-matter interactions in complex materials using a deterministic approach to solve the electron transport equations. We outline the derivation of the model from the Boltzmann equation for electron transport using the method of moments with a minimum entropy closure and present first numerical results for three different test cases (homogeneous, thin film and interface). Taking Monte Carlo as a reference, the results for the three test cases show that the M 1-model is able to reproduce the electron dynamics in EPMA applications very well. Compared to classical analytical models like XPP and PAP, the M 1-model is more accurate and far more flexible, which indicates the potential of deterministic models of electron transport to further increase the spatial resolution of EPMA.
Weber, P.K.; Bacon, C.R.; Hutcheon, I.D.; Ingram, B.L.; Wooden, J.L.
2005-01-01
The ion microprobe has the capability to generate high resolution, high precision isotopic measurements, but analysis of the isotopic composition of strontium, as measured by the 87Sr/ 86Sr ratio, has been hindered by isobaric interferences. Here we report the first high precision measurements of 87Sr/ 86Sr by ion microprobe in calcium carbonate samples with moderate Sr concentrations. We use the high mass resolving power (7000 to 9000 M.R.P.) of the SHRIMP-RG ion microprobe in combination with its high transmission to reduce the number of interfering species while maintaining sufficiently high count rates for precise isotopic measurements. The isobaric interferences are characterized by peak modeling and repeated analyses of standards. We demonstrate that by sample-standard bracketing, 87Sr/86Sr ratios can be measured in inorganic and biogenic carbonates with Sr concentrations between 400 and 1500 ppm with ???2??? external precision (2??) for a single analysis, and subpermil external precision with repeated analyses. Explicit correction for isobaric interferences (peak-stripping) is found to be less accurate and precise than sample-standard bracketing. Spatial resolution is ???25 ??m laterally and 2 ??m deep for a single analysis, consuming on the order of 2 ng of material. The method is tested on otoliths from salmon to demonstrate its accuracy and utility. In these growth-banded aragonitic structures, one-week temporal resolution can be achieved. The analytical method should be applicable to other calcium carbonate samples with similar Sr concentrations. Copyright ?? 2005 Elsevier Ltd.
Bioimaging of cells and tissues using accelerator-based sources.
Petibois, Cyril; Cestelli Guidi, Mariangela
2008-07-01
A variety of techniques exist that provide chemical information in the form of a spatially resolved image: electron microprobe analysis, nuclear microprobe analysis, synchrotron radiation microprobe analysis, secondary ion mass spectrometry, and confocal fluorescence microscopy. Linear (LINAC) and circular (synchrotrons) particle accelerators have been constructed worldwide to provide to the scientific community unprecedented analytical performances. Now, these facilities match at least one of the three analytical features required for the biological field: (1) a sufficient spatial resolution for single cell (< 1 mum) or tissue (<1 mm) analyses, (2) a temporal resolution to follow molecular dynamics, and (3) a sensitivity in the micromolar to nanomolar range, thus allowing true investigations on biological dynamics. Third-generation synchrotrons now offer the opportunity of bioanalytical measurements at nanometer resolutions with incredible sensitivity. Linear accelerators are more specialized in their physical features but may exceed synchrotron performances. All these techniques have become irreplaceable tools for developing knowledge in biology. This review highlights the pros and cons of the most popular techniques that have been implemented on accelerator-based sources to address analytical issues on biological specimens.
NASA Astrophysics Data System (ADS)
Kramer, J. L. A. M.; Ullings, A. H.; Vis, R. D.
1993-05-01
A real-time data acquisition system for microprobe analysis has been developed at the Free University of Amsterdam. The system is composed of two parts: a front-end real-time and a back-end monitoring system. The front-end consists of a VMEbus based system which reads out a CAMAC crate. The back-end is implemented on a Sun work station running the UNIX operating system. This separation allows the integration of a minimal, and consequently very fast, real-time executive within the sophisticated possibilities of advanced UNIX work stations.
NASA Astrophysics Data System (ADS)
Moussallam, Yves; Oppenheimer, Clive; Schipper, Ian C.; Hartley, Magaret; Scaillet, Bruno; Gaillard, Fabrice; Peters, Nial; Kyle, Phil
2015-04-01
The oxidation state of volcanic gases dictates their speciation and hence their reactivity in the atmosphere. It has become increasingly recognized that the oxidation state of a magma can be strongly affected by degassing. The oxidation state of gases will equally be impacted and the composition of gases emitted by volcanoes will therefore be function of the magma degassing history. This presentation will show results from three volcanoes where the oxidation state of the magma has been tracked during degassing. At Erebus and Laki we used Fe X-ray absorption near-edge structure spectroscopy (XANES) on extensive suites of melt inclusions and glasses, while at Surtsey we used S-Kα peak shifts measurements by electron microprobe (EPMA) on melt inclusions, embayment and glasses. At all three locations we found that a strong reduction of both Fe and S is associated with magma ascent. At Erebus this reduction is greatest, corresponding to a fall in magmatic fO2 of more than two log units. We propose that sulfur degassing can explain the observed evolution of the redox state with ascent and show that forward modeling using initial melt composition can successfully predict the composition of the gas phase measured at the surface. We suggest that the redox state of volcanic gases (expressed in term of redox couples: H2O/H2, SO2/H2S and CO2/CO) can be used to monitor the depth of gas-melt segregation at active volcanoes.
NASA Astrophysics Data System (ADS)
Williams, Michael L.; Jercinovic, Michael J.; Terry, Michael P.
1999-11-01
High-resolution X-ray mapping and dating of monazite on the electron microprobe are powerful geochronological tools for structural, metamorphic, and tectonic analysis. X-ray maps commonly show complex Th, U, and Pb zoning that reflects monazite growth and overgrowth events. Age maps constructed from the X-ray maps simplify the zoning and highlight age domains. Microprobe dating offers a rapid, in situ method for estimating ages of mapped domains. Application of these techniques has placed new constraints on the tectonic history of three areas. In western Canada, age mapping has revealed multiphase monazite, with older cores and younger rims, included in syntectonic garnet. Microprobe ages show that tectonism occurred ca. 1.9 Ga, 700 m.y. later than mylonitization in the adjacent Snowbird tectonic zone. In New Mexico, age mapping and dating show that the dominant fabric and triple-point metamorphism occurred during a 1.4 Ga reactivation, not during the 1.7 Ga Yavapai-Mazatzal orogeny. In Norway, monazite inclusions in garnet constrain high-pressure metamorphism to ca. 405 Ma, and older cores indicate a previously unrecognized component of ca. 1.0 Ga monazite. In all three areas, microprobe dating and age mapping have provided a critical textural context for geochronologic data and a better understanding of the complex age spectra of these multistage orogenic belts.
Advances in Laser Microprobe (U-Th)/He Geochronology
NASA Astrophysics Data System (ADS)
van Soest, M. C.; Monteleone, B. D.; Boyce, J. W.; Hodges, K. V.
2008-12-01
The development of the laser microprobe (U-Th)/He dating method has the potential to overcome many of the limitations that affect conventional (U-Th)/He geochronology. Conventional single- or multi-crystal (U- Th)/He geochronology requires the use of pristine, inclusion-free, euhedral crystals. Furthermore, the ages that are obtained require corrections for the effects of zoning and alpha ejection based on an ensemble of assumptions before interpretation of their geological relevance is possible. With the utilization of microbeam techniques many of the limitations of conventional (U-Th)/He geochronology can either be eliminated by careful spot selection or accounted for by detailed depth profiling analyses of He, U and Th on the same crystal. Combined He, Th, and U depth profiling on the same crystal potentially even offers the ability to extract thermal histories from the analyzed grains. Boyce et al. (2006) first demonstrated the laser microprobe (U-Th)/He dating technique by successfully dating monazite crystals using UV laser ablation to liberate He and determined U and Th concentrations using a Cameca SX-Ultrachron microprobe. At Arizona State University, further development of the microprobe (U-Th)/He dating technique continues using an ArF Excimer laser connected to a GVI Helix Split Flight Tube noble gas mass spectrometer for He analysis and SIMS techniques for U and Th. The Durango apatite age standard has been successfully dated at 30.7 +/- 1.7 Ma (2SD). Work on dating zircons by laser ablation is currently underway, with initial results from Sri Lanka zircon at 437 +/- 14 Ma (2SD) confirmed by conventional (U-Th)/He analysis and in agreement with the published (U-Th)/He age of 443 +/- 9 Ma (2SD) for zircons from this region in Sri Lanka (Nasdala et al., 2004). The results presented here demonstrate the laser microprobe (U-Th)/He method as a powerful tool that allows application of (U- Th)/He dating to areas of research such as detrital apatite and zircon dating, where conventional (U-Th)/He geochronology has limited applicability. Boyce et al. (2006) GCA 70 (3031-3039), Nasdala et al. (2004) Am. Min. 89 (219-231)
Malek, Md Abdul; Kim, Bowha; Jung, Hae-Jin; Song, Young-Chul; Ro, Chul-Un
2011-10-15
Our previous work on the speciation of individual mineral particles of micrometer size by the combined use of attenuated total reflectance FT-IR (ATR-FT-IR) imaging and a quantitative energy-dispersive electron probe X-ray microanalysis technique (EPMA), low-Z particle EPMA, demonstrated that the combined use of these two techniques is a powerful approach for looking at the single-particle mineralogy of externally heterogeneous minerals. In this work, this analytical methodology was applied to characterize six soil samples collected at arid areas in China, in order to identify mineral types present in the samples. The six soil samples were collected from two types of soil, i.e., loess and desert soils, for which overall 665 particles were analyzed on a single particle basis. The six soil samples have different mineralogical characteristics, which were clearly differentiated in this work. As this analytical methodology provides complementary information, the ATR-FT-IR imaging on mineral types, and low-Z particle EPMA on the morphology and elemental concentrations, on the same individual particles, more detailed information can be obtained using this approach than when either low-Z particle EPMA or ATR-FT-IR imaging techniques are used alone, which has a great potential for the characterization of Asian dust and mineral dust particles. © 2011 American Chemical Society
NASA Technical Reports Server (NTRS)
Albee, Arden L.
1993-01-01
During the past three years we have received support to continue our research in elucidating the formation and alteration histories of selected meteoritic materials by a combination of petrographic, trace element, and isotopic analyses employing optical and scanning electron microscopes and electron and ion microprobes. The awarded research funds enabled the P.I. to attend the annual LPSC, the co-I to devote approximately 15 percent of his time to the research proposed in the grant, and partial support for a visiting summer post-doctoral fellow to conduct electron microprobe analyses of meteoritic samples in our laboratory. The research funds, along with support from the NASA Education Initiative awarded to P.I. G. Wasserburg, enabled the co-I to continue a mentoring program with inner-city minority youth. The support enabled us to achieve significant results in the five projects that we proposed (in addition to the Education Initiative), namely: studies of the accretional and post-accretional alteration and thermal histories in CV meteorites, characterization of periclase-bearing Fremdlinge in CV meteorites, characterization of Ni-Pt-Ge-Te-rich Fremdlinge in CV meteorites in an attempt to determine the constraints they place on the petrogenetic and thermal histories of their host CAI's, correlated electron and ion microprobe studies of silicate and phosphate inclusions in the Colomera meteorite in an attempt to determine the petrogenesis of the IE iron meteorites, and development of improved instrumental and correction procedures for improved accuracy of analysis of meteoritic materials with the electron microprobe. This grant supported, in part or whole, 18 publications so far by our research team, with at least three more papers anticipated. The list of these publications is included. The details of the research results are briefly summarized.
NASA Astrophysics Data System (ADS)
Vauchy, Romain; Robisson, Anne-Charlotte; Martin, Philippe M.; Belin, Renaud C.; Aufore, Laurence; Scheinost, Andreas C.; Hodaj, Fiqiri
2015-01-01
The impact of the cation distribution homogeneity of the U0.54Pu0.45Am0.01O2-x mixed oxide on the americium oxidation state was studied by coupling X-ray diffraction (XRD), electron probe micro analysis (EPMA) and X-ray absorption spectroscopy (XAS). Oxygen-hypostoichiometric Am-bearing uranium-plutonium mixed oxide pellets were fabricated by two different co-milling based processes in order to obtain different cation distribution homogeneities. The americium was generated from β- decay of 241Pu. The XRD analysis of the obtained compounds did not reveal any structural difference between the samples. EPMA, however, revealed a high homogeneity in the cation distribution for one sample, and substantial heterogeneity of the U-Pu (so Am) distribution for the other. The difference in cation distribution was linked to a difference in Am chemistry as investigated by XAS, with Am being present at mixed +III/+IV oxidation state in the heterogeneous compound, whereas only Am(IV) was observed in the homogeneous compound. Previously reported discrepancies on Am oxidation states can hence be explained by cation distribution homogeneity effects.
PREFACE: EMAS 2011: 12th European Workshop on Modern Developments in Microbeam Analysis
NASA Astrophysics Data System (ADS)
Brisset, François; Dugne, Olivier; Robaut, Florence; Lábár, János L.; Walker, Clive T.
2012-03-01
This volume of IOP Conference Series: Materials Science and Engineering contains papers from the 12th Workshop of the European Microbeam Analysis Society (EMAS) on Modern Developments and Applications in Microbeam Analysis, which took place from the 15-19 May 2011 in the Angers Congress Centre, Angers, France. The primary aim of this series of workshops is to assess the state-of-the-art and reliability of microbeam analysis techniques. The workshops also provide a forum where students and young scientists starting out on a career in microbeam analysis can meet and discuss with the established experts. The workshops have a very specific format comprising invited plenary lectures by internationally recognized experts, poster presentations by the participants and round table discussions on the key topics led by specialists in the field. This workshop was organized in collaboration with GN-MEBA - Groupement National de Microscopie Electronique à Balayage et de microAnalysis, France. The technical programme included the following topics: the limits of EPMA, new techniques, developments and concepts in microanalysis, microanalysis in the SEM, and new and less common applications of micro- and nanoanalysis. As at previous workshops there was also a special oral session for young scientists. The best presentation by a young scientist was awarded with an invitation to attend the 2012 Microscopy and Microanalysis meeting at Phoenix, Arizona. The prize went to Pierre Burdet, of the Federal Institute of Technology of Lausanne (EPFL), for his talk entitled '3D EDS microanalysis by FIB-SEM: enhancement of elemental quantification'. The continuing relevance of the EMAS workshops and the high regard in which they are held internationally can be seen from the fact that 74 posters from 18 countries were on display at the meeting, and that the participants came from as far away as Japan, Canada and the USA. A selection of participants with posters were invited to give a short oral presentation of their work in three dedicated sessions. The prize for the best poster was an invitation to participate in the 22nd Australian Conference on Microscopy and Microanalysis (ACMM 22) at Perth, Western Australia. The prize was awarded to G Samardzija of the Jozef Stefan Institute, Ljubljana, for the poster entitled: 'EPMA-WDS quantitative compositional analysis of barium titanate ceramics doped with cerium'. This proceedings volume contains the full texts of 5 of the invited plenary lectures and of 23 papers on related topics originating from the posters presented at the workshop. All the papers have been subjected to peer review by a least two referees. January 2012 Acknowledgements On behalf of the European Microbeam Analysis Society I would like to thank all the invited speakers, session chairs and members of the discussion panels for making the meeting such a great success. Special thanks go to François Brisset and Luc Van't dack who directed the organisation of the workshop giving freely of their time and talents. As was the case for previous workshops, the EMAS board in corpore was responsible for the scientific programme. The technical exhibition, which occupied 130 sq.m of floor space, was outstanding. It was very encouraging to see new instruments on display, including a FEG electron microprobe as a first worldwide presentation. Moreover, almost all the companies that exhibited provided financial support, either by sponsoring an event or by advertising. Below, in alphabetical order, is a list of exhibiting companies and sponsors of the workshop: Ametek GmbH, Edax Business UnitGN-MEBA Bruker Nano GmbHJeol (Europe) SAS CamecaL'Oréal, Direction Générale Recherche et Innovation Carl Zeiss NTSNanoMEGAS sprl Commissariat à l'Energie AtomiqueOxford Instruments SAS European Institute for Transuranium Elements (Germany)Probe Software, Inc. ElexienceSAMx FEI CompanyTarget-Messtechnik Fondis Electronic SAThermo Fisher Scientific Gatan (France) Clive T. Walker EMAS President
Characterization of un-irradiated MIMAS MOX fuel by Raman spectroscopy and EPMA
NASA Astrophysics Data System (ADS)
Talip, Zeynep; Peuget, Sylvain; Magnin, Magali; Tribet, Magaly; Valot, Christophe; Vauchy, Romain; Jégou, Christophe
2018-02-01
In this study, Raman spectroscopy technique was implemented to characterize un-irradiated MIMAS (MIcronized - MASter blend) MOX fuel samples with average 7 wt.% Pu content and different damage levels, 13 years after fabrication, one year after thermal recovery and soon after annealing, respectively. The impacts of local Pu content, deviation from stoichiometry and self-radiation damage on Raman spectrum of the studied MIMAS MOX samples were assessed. MIMAS MOX fuel has three different phases Pu-rich agglomerate, coating phase and uranium matrix. In order to distinguish these phases, Raman results were associated with Pu content measurements performed by Electron Microprobe Analysis. Raman results show that T2g frequency significantly shifts from 445 to 453 cm-1 for Pu contents increasing from 0.2 to 25 wt.%. These data are satisfactorily consistent with the calculations obtained with Gruneisen parameters. It was concluded that the position of the T2g band is mainly controlled by Pu content and self-radiation damage. Deviation from stoichiometry does not have a significant influence on T2g band position. Self-radiation damage leads to a shift of T2g band towards lower frequency (∼1-2 cm-1 for the UO2 matrix of damaged sample). However, this shift is difficult to quantify for the coating phase and Pu agglomerates given the dispersion of high Pu concentrations. In addition, 525 cm-1 band, which was attributed to sub-stoichiometric structural defects, is presented for the first time for the self-radiation damaged MOX sample. Thanks to the different oxidation resistance of each phase, it was shown that laser induced oxidation could be alternatively used to identify the phases. It is demonstrated that micro-Raman spectroscopy is an efficient technique for the characterization of heterogeneous MOX samples, due to its low spatial resolution.
Ion microprobe mass analysis of lunar samples. Lunar sample program
NASA Technical Reports Server (NTRS)
Anderson, C. A.; Hinthorne, J. R.
1971-01-01
Mass analyses of selected minerals, glasses and soil particles of lunar, meteoritic and terrestrial rocks have been made with the ion microprobe mass analyzer. Major, minor and trace element concentrations have been determined in situ in major and accessory mineral phases in polished rock thin sections. The Pb isotope ratios have been measured in U and Th bearing accessory minerals to yield radiometric age dates and heavy volatile elements have been sought on the surfaces of free particles from Apollo soil samples.
Electron Microprobe Analyses of Lithic Fragments and Their Minerals from Luna 20 Fines
NASA Technical Reports Server (NTRS)
Conrad, G. H.; Hlava, P. F.; Green, J. A.; Moore, R. B.; Moreland, G.; Dowty, E.; Prinz, M.; Keil, K.; Nehru, C. E.; Bunch, T. E.
1973-01-01
The bulk analyses (determined with the broad beam electron microprobe technique) of lithic fragments are given in weight percentages and are arranged according to the rock classification. Within each rock group the analyses are arranged in order of increasing FeO content. Thin section and lithic fragment numbers are given at the top of each column of analysis and correspond to the numbers recorded on photo mosaics on file in the Institute of Meteoritics. CIPW molecular norms are given for each analysis. Electron microprobe mineral analyses (given in oxide weight percentages), structural formulae and molecular end member values are presented for plagioclase, olivine, pyroxene and K-feldspar. The minerals are selected mostly from lithic fragments that were also analyzed for bulk composition. Within each mineral group the analyses are presented according to the section number and lithic fragment number. Within each lithic fragment the mineral analyses are arranged as follows: Plagioclase in order of increasing CaO; olivine and pyroexene in order of increasing FeO; and K-feldspar in order of increasing K2O. The mineral grains are identified at the top of each column of analysis by grain number and lithic fragment number.
NASA Astrophysics Data System (ADS)
Eom, Hyo-Jin; Gupta, Dhrubajyoti; Cho, Hye-Rin; Hwang, Hee Jin; Do Hur, Soon; Gim, Yeontae; Ro, Chul-Un
2016-11-01
Two aerosol samples collected at King Sejong Korean scientific research station, Antarctica, on 9 December 2011 in the austral summer (sample S1) and 23 July 2012 in the austral winter (sample S2), when the oceanic chlorophyll a levels on the collection days of the samples were quite different, by ˜ 19 times (2.46 vs. 0.13 µg L-1, respectively), were investigated on a single-particle basis using quantitative energy-dispersive electron probe X-ray microanalysis (ED-EPMA), called low-Z particle EPMA, Raman microspectrometry (RMS), and attenuated total reflection Fourier transform infrared (ATR-FTIR) imaging techniques to obtain their characteristics based on the elemental chemical compositions, molecular species, and mixing state. X-ray analysis showed that the supermicron summertime and wintertime Antarctic aerosol samples have different elemental chemical compositions, even though all the individual particles analyzed were sea spray aerosols (SSAs); i.e., the contents of C, O, Ca, S, and Si were more elevated, whereas Cl was more depleted, for sample S1 than for sample S2. Based on qualitative analysis of the chemical species present in individual SSAs by the combined application of RMS and ATR-FTIR imaging, different organic species were observed in samples S1 and S2; i.e., Mg hydrate salts of alanine were predominant in samples S1 and S2, whereas Mg salts of fatty acids internally mixed with Mg hydrate salts of alanine were significant in sample S2. Although CaSO4 was observed significantly in both samples S1 and S2, other inorganic species, such as Na2SO4, NaNO3, Mg(NO3)2, SiO2, and CH3SO3Mg, were observed more significantly in sample S1, suggesting that those compounds may be related to the higher phytoplankton activity in summer.
Kolker, A.; Wooden, J.L.; Persing, H.M.; Zielinski, R.A.
2000-01-01
The distribution of Cr and other trace metals of environmental interest in a range of widely used U.S. coals was investigated using the Stanford-USGS SHRIMP-RG ion microprobe . Using the oxygen ion source, concentrations of Cr (11 to 176 ppm), V (23 to 248 ppm), Mn (2 to 149 ppm), Ni (2 to 30 ppm), and 13 other elements were determined in illite/smectite, a group of clay minerals commonly present in coal. The results confirm previous indirect or semi-quantitative determinations indicating illite/smectite to be an important host of these metals. Calibration was achieved using doped aluminosilicate-glass synthetic standards and glasses prepared from USGS rock standards. Grains for analysis were identified optically, and confirmed by 1) precursory electron microprobe analysis and wavelength-dispersive compositional mapping, and 2) SHRIMP-RG major element data obtained concurrently with trace element results. Follow-up investigations will focus on the distribution of As and other elements that are more effectively ionized with the cesium primary beam currently being tested.
Mulware, Stephen Juma
2015-01-01
The properties of many biological materials often depend on the spatial distribution and concentration of the trace elements present in a matrix. Scientists have over the years tried various techniques including classical physical and chemical analyzing techniques each with relative level of accuracy. However, with the development of spatially sensitive submicron beams, the nuclear microprobe techniques using focused proton beams for the elemental analysis of biological materials have yielded significant success. In this paper, the basic principles of the commonly used microprobe techniques of STIM, RBS, and PIXE for trace elemental analysis are discussed. The details for sample preparation, the detection, and data collection and analysis are discussed. Finally, an application of the techniques to analysis of corn roots for elemental distribution and concentration is presented.
Trace elemental analysis of bituminuos coals using the Heidelberg proton microprobe
Chen, J.R.; Kneis, H.; Martin, B.; Nobiling, R.; Traxel, K.; Chao, E.C.T.; Minkin, J.A.
1981-01-01
Trace elements in coal can occur as components of either the organic constituents (macerals) or the inorganic constituents (minerals). Studies of the concentrations and distribution of the trace elements are vital to understanding the geochemical millieu in which the coal was formed and in evaluating the attempts to recover rare but technologically valuable metals. In addition, information on the trace element concentrations is important in predicting the environmental impact of burning particular coals, as many countries move toward greater utilization of coal reserves for energy production. Traditionally, the optical and the electron microscopes and more recently the electron microprobe have been used in studying the components of coal. The proton-induced X-ray emission (PIXE) microprobe offers a new complementary approach with an order of magnitude or more better minimum detection limit. We present the first measurements with a PIXE microprobe of the trace element concentrations of bituminous coal samples. Elemental analyses of the coal macerals-vitrinite, exinite, and inertinite-are discussed for three coal samples from the Eastern U.S.A., three samples from the Western U.S.A., and one sample from the Peoples Republic of China. ?? 1981.
Song, Young-Chul; Ryu, JiYeon; Malek, Md Abdul; Jung, Hae-Jin; Ro, Chul-Un
2010-10-01
In our previous work, it was demonstrated that the combined use of attenuated total reflectance (ATR) FT-IR imaging and quantitative energy-dispersive electron probe X-ray microanalysis (ED-EPMA), named low-Z particle EPMA, had the potential for characterization of individual aerosol particles. Additionally, the speciation of individual mineral particles was performed on a single particle level by the combined use of the two techniques, demonstrating that simultaneous use of the two single particle analytical techniques is powerful for the detailed characterization of externally heterogeneous mineral particle samples and has great potential for characterization of atmospheric mineral dust aerosols. These single particle analytical techniques provide complementary information on the physicochemical characteristics of the same individual particles, such as low-Z particle EPMA on morphology and elemental concentrations and the ATR-FT-IR imaging on molecular species, crystal structures, functional groups, and physical states. In this work, this analytical methodology was applied to characterize an atmospheric aerosol sample collected in Incheon, Korea. Overall, 118 individual particles were observed to be primarily NaNO(3)-containing, Ca- and/or Mg-containing, silicate, and carbonaceous particles, although internal mixing states of the individual particles proved complicated. This work demonstrates that more detailed physiochemical properties of individual airborne particles can be obtained using this approach than when either the low-Z particle EPMA or ATR-FT-IR imaging technique is used alone.
Microprobe studies of microtomed particles of white druse salts in shergottite EETA 79001
NASA Technical Reports Server (NTRS)
Lindstrom, D. J.
1991-01-01
The white druse material in Antarctic shergottite EETA 79001 has attracted much attention as a possible sample fo Martian aqueous deposits. Instrumental Neutron Activation Analysis (INAA) was used to determine trace element analyses of small particles of this material obtained by handpicking of likely grains from broken surfaces of the meteorite. Electron microprobe work was attempted on grain areas as large as 150x120 microns. Backscattered electron images show considerable variations in brightness, and botryoidal structures were observed. Microprobe analyses showed considerable variability both within single particles and between different particles. Microtomed surfaces of small selected particles were shown to be very useful in obtaining information on the texture and composition of rare lithologies like the white druse of EETA 79001. This material is clearly heterogeneous on all distance scales, so a large number of further analyses will be required to characterize it.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graham, C.M.; Valley, J.W.; Winter, B.L.
1996-12-01
The oxygen isotopic compositions of authigenic quartz cements in sandstones provide a monitor of the temperatures, compositions, and origins of pore-occluding fluids during diagenesis, but quartz overgrowths are too fine-grained to be amenable to conventional isotopic analysis. We have used a Cameca ims-4f ion microprobe to determine oxygen isotopic variations in authigenic and detrital quartz in four samples of the Ordovician St. Peter Sandstone from the Michigan Basin and Wisconsin Arch, midwestern USA. Ion microprobe isotopic analyses have been successfully accomplished with an internal precision of {+-}1{per_thousand} (1{sigma}) and a spatial resolution of 20-30 {mu}m at low mass resolution usingmore » a high voltage offset technique. Repeated analyses of the quartz standard demonstrate a reproducibility of close to {+-}1{per_thousand} (1 sd) in good agreement with that expected from counting statistics. Conventional and ion microprobe analyses are mutually consistent, supporting the accuracy of the ion microprobe analyses. Within-sample isotopic variations of up to 13{per_thousand} and micro-scale isotopic variations of at least 4{per_thousand} over a distance of 100 {mu}m have been measured within quartz overgrowths in a sandstone from the Wisconsin Arch. Overgrowths are uniformly higher in {delta}{sup 18}O than detrital grains, and gradients of up to 25% exist across a few microns. {sup 18}O-enriched quartz overgrowths in sandstones from the Wisconsin Arch show complex CL zonation and reflect one of two possible processes: (1) low-temperature quartz precipitation during mixing of meteoric waters with upwelling basinal fluids; (2) higher temperature quartz precipitation during episodic gravity-driven upwelling of warm basinal fluids (of comparable isotopic composition to Michigan Basin fluids) from the Illinois Basin, related to evolution of Mississippi Valley type Pb-Zn ore-forming fluids. 59 refs., 7 figs., 4 tabs.« less
NASA Technical Reports Server (NTRS)
Zinner, Ernst
1991-01-01
A survey of microanalytical measurements on interplanetary dust particles (IDPs) and interstellar dust grains from primitive meteorites is presented. Ion-microprobe mass spectrometry with its capability to determine isotopic compositions of many elements on a micron spatial scale has played a special role. Examples are measurements of H, N, and O isotopes and refractory trace elements in IDPs; C, N, Mg, and Si isotopes in interstellar SiC grains; and C and N isotopes and H, N, Al, and Si concentrations in interstellar graphite grains.
NASA Astrophysics Data System (ADS)
Pastuovic, Z.; Siegele, R.; Cohen, D. D.; Mann, M.; Ionescu, M.; Button, D.; Long, S.
2017-08-01
The Centre for Accelerator Science facility at ANSTO has been expanded with the new NEC 6 MV ;SIRIUS; accelerator system in 2015. In this paper we present a detailed description of the new nuclear microprobe-Confocal Heavy Ion Micro-Probe (CHIMP) together with results of the microprobe resolution testing and the elemental analysis performed on typical samples of mineral ore deposits and hyper-accumulating plants regularly measured at ANSTO. The CHIMP focusing and scanning systems are based on the OM-150 Oxford quadrupole triplet and the OM-26 separated scan-coil doublet configurations. A maximum ion rigidity of 38.9 amu-MeV was determined for the following nuclear microprobe configuration: the distance from object aperture to collimating slits of 5890 mm, the working distance of 165 mm and the lens bore diameter of 11 mm. The overall distance from the object to the image plane is 7138 mm. The CHIMP beamline has been tested with the 3 MeV H+ and 6 MeV He2+ ion beams. The settings of the object and collimating apertures have been optimized using the WinTRAX simulation code for calculation of the optimum acceptance settings in order to obtain the highest possible ion current for beam spot sizes of 1 μm and 5 μm. For optimized aperture settings of the CHIMP the beam brightness was measured to be ∼0.9 pA μm-2 mrad-2 for 3 MeV H+ ions, while the brightness of ∼0.4 pA μm-2 mrad-2 was measured for 6 MeV He2+ ions. The smallest beam sizes were achieved using a microbeam with reduced particle rate of 1000 Hz passing through the object slit apertures several micrometers wide. Under these conditions a spatial resolution of ∼0.6 μm × 1.5 μm for 3 MeV H+ and ∼1.8 μm × 1.8 μm for 6 MeV He2+ microbeams in horizontal (and vertical) dimension has been achieved. The beam sizes were verified using STIM imaging on 2000 and 1000 mesh Cu electron microscope grids.
NASA Astrophysics Data System (ADS)
Yuan, Wu; Alemohammad, Milad; Yu, Xiaoyun; Yu, Shaoyong; Li, Xingde
2016-03-01
In this paper, we report a super-achromatic microprobe made with fiber-optic ball lens to enable ultrahigh-resolution endoscopic OCT imaging. An axial resolution of ~2.4 µm (in air) can be achieved with a 7-fs Ti:Sapphire laser. The microprobe has minimal astigmatism which affords a high transverse resolution of ~5.6 µm. The miniaturized microprobe has an outer diameter of ~520 µm including the encasing metal guard and can be used to image small luminal organs. The performance of the ultrahigh-resolution OCT microprobe was demonstrated by imaging rat esophagus, guinea pig esophagus, and mouse rectum in vivo.
CHIME monazite dating using FE-EPMA equipped with R=100 mm spectrometers
NASA Astrophysics Data System (ADS)
Shibata, K.; Shimizu, M.; Suzuki, K.; Sueoka, S.; Niwa, M.
2015-12-01
The age spectrum of detrital monazite grains is used to unravel the tectono-thermal history of the pre-Neogene terranes, which is required for geological disposal of high-level radioactive waste on tectonically active Japanese Islands. The CHIME (Chemical Th-U-total Pb isochron method, Suzuki and Adachi, 1991) is best suited for dating of detrital monazite whose grains are not chronologically uniform. In the previous studies (eg, Suzuki, 2011), EPMA equipped with conventional R=140 mm spectrometers was used for measurement of U, Th and Pb. However the spectrometers have low count rate of measurement of Pb. The JEOL JXA-8530F FE-EPMA equipped with R=100 mm spectrometers has been applied for the CHIME monazite dating. The intrinsic responses of each of the R=100 mm spectrometers for PbMβ are around ten times higher than that of the R=140 mm spectrometer. The R=100 mm spectrometers permits obtaining high count rate, which enables us to shorten measurement time than before. As these spectrometers have peculiar spectral interference, the method reported by Amli and Griffin (1978) is applied for correction of the interference. In order to verify the dating using the FE-EPMA and the interference correction method, two distinct age groups of monazite were measured. The ages were 425±25 Ma for monazite from Cooma granite in southeastern Australia, which had dated by SHRIMP as 432.8 ± 3.5 Ma (Williams, 2001) and 67 ± 7 Ma for monazite of the Kojaku granite in southwestern Japan, which is corresponding to the LA-ICP-MS U-Pb zircon ages of 68.5 ± 0.7 Ma. These results indicate that the FE-EPMA and the interference correction method are useful for the CHIME monazite dating and for revealing the tectono-thermal history of the terranes. This study was carried out under a contract with Agency of Natural Resources and Energy(ANRE), part of Ministry of Economy, Trade and Industry (METI) of Japan as part of its R&D supporting program for developing geological disposal technology.
NASA Astrophysics Data System (ADS)
Guggino, S. N.; Hervig, R. L.
2010-12-01
Fluorine (F) is a volatile constituent of magmas and hydrous minerals, and trace amounts of F are incorporated into nominally anhydrous minerals such as olivine and clinopyroxene. Microanalytical techniques are routinely used to measure trace amounts of F at both high sensitivity and high spatial resolution in glasses and crystals. However, there are few well-established F concentrations for the glass standards routinely used in microanalytical laboratories, particularly standards of low silica, basaltic composition. In this study, we determined the F content of fourteen commonly used microanalytical glass standards of basaltic, intermediate, and rhyolitic composition. To serve as calibration standards, five basaltic glasses with ~0.2 to 2.5 wt% F were synthesized and characterized. A natural tholeiite from the East Pacific Rise was mixed with variable amounts of CaF2. The mixture was heated in a 1 atmosphere furnace to 1440 °C at fO2 = NNO for 30 minutes and quenched in water. Portions of the run products were studied by electron probe microanalysis (EPMA) and secondary ion mass spectrometry (SIMS). The EPMA used a 15 µm diameter defocused electron beam with a 15 kV accelerating voltage and a 25 nA primary current, a TAP crystal for detecting FKα X-rays, and Biotite 3 as the F standard. The F contents by EPMA agreed with the F added to the basalts after correction for mass loss during melting. The SIMS analyses used a primary beam of 16O- and detection of low-energy negative ions (-5 kV) at a mass resolution that resolved 18OH. Both microanalytical techniques confirmed homogeneity, and the SIMS calibration defined by EPMA shows an excellent linear trend with backgrounds of 2 ppm or less. Analyses of basaltic glass standards based on our synthesized calibration standards gave the following F contents and 2σ errors (ppm): ALV-519 = 83 ± 3; BCR-2G = 359 ± 6; BHVO-2G = 322 ± 15; GSA-1G = 10 ± 1; GSC-1G = 11 ± 1; GSD-1G = 19 ± 2; GSE-1G = 173 ± 1; KL2G (MPI-DING) = 101 ± 1; ML3B-G (MPI-DING) = 49 ± 17. These values are lower than published values for BCR-2 and BHVO-2 (unmelted powders) and the “information values” for the MPI-DING glass standards. Proton Induced Gamma ray Emission (PIGE) was tested for the high silica samples. PIGE analyses (1.7 MeV Tandem Accelerator; reaction type: 19F(p, αγ)16O; primary current = 20-30 nA; incident beam voltage = 1.5 MeV) were calibrated with a crystal of fluor-topaz (F = 20.3 wt%) and gave F values of: NIST 610 = 266 ± 14 ppm; NIST 620 = 54 ± 5 ppm; and UTR-2 = 1432 ± 32 ppm. SIMS calibration defined by the PIGE analyses shows an excellent linear trend with low background similar to the basaltic calibration. The F concentrations of intermediate MPI-DING glasses were determined based on SIMS calibration generated from the PIGE analysis above. The F concentrations and 2σ errors (ppm) are: T1G = 219.9 ± 6.8; StHs/680-G = 278.0 ± 2.0 ppm. This study revealed a large matrix effect between the high-silica and basaltic glasses, thus requiring the use of appropriate standards and separate SIMS calibrations when analyzing samples of different compositions.
Jung, Hae-Jin; Malek, Md Abdul; Ryu, JiYeon; Kim, BoWha; Song, Young-Chul; Kim, HyeKyeong; Ro, Chul-Un
2010-07-15
Our previous work demonstrated for the first time the potential of the combined use of two techniques, attenuated total reflectance FT-IR (ATR-FT-IR) imaging and a quantitative energy-dispersive electron probe X-ray microanalysis, low-Z particle EPMA, for the characterization of individual aerosol particles. In this work, the speciation of mineral particles was performed on a single particle level for 24 mineral samples, including kaolinite, montmorillonite, vermiculite, talc, quartz, feldspar, calcite, gypsum, and apatite, by the combined use of ATR-FT-IR imaging and low-Z particle EPMA techniques. These two single particle analytical techniques provide complementary information, the ATR-FT-IR imaging on mineral types and low-Z particle EPMA on the morphology and elemental concentrations, on the same individual particles. This work demonstrates that the combined use of the two single particle analytical techniques can powerfully characterize externally heterogeneous mineral particle samples in detail and has great potential for the characterization of airborne mineral dust particles.
NASA Astrophysics Data System (ADS)
Bart, Gerhard; Aerne, Ernst Tino; Burri, Martin; Zwicky, Hans-Urs
1986-11-01
Cladding carburization during irradiation of advanced mixed uranium plutonium carbide fast breeder reactor fuel is possibly a life limiting fuel pin factor. The quantitative assessment of such clad carbon embrittlement is difficult to perform by electron microprobe analysis because of sample surface contamination, and due to the very low energy of the carbon K α X-ray transition. The work presented here describes a method developed at the Swiss Federal Institute for Reactor Research (EIR) to use shielded secondary ion mass spectrometry (SIMS) as an accurate tool to determine radial distribution profiles of carbon in radioactive stainless steel fuel pin cladding. Compared with nuclear microprobe analysis (NMA) [1], which is also an accurate method for carbon analysis, the SIMS method distinguishes itself by its versatility for simultaneous determination of additional impurities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vazehrad, S., E-mail: vazehrad@kth.se; Elfsberg, J., E-mail: jessica.elfsberg@scania.com; Diószegi, A., E-mail: attila.dioszegi@jth.hj.se
An investigation on silicon segregation of lamellar, compacted and nodular graphite iron was carried out by applying a selective, immersion color etching and a modified electron microprobe to study the microstructure. The color etched micrographs of the investigated cast irons by revealing the austenite phase have provided data about the chronology and mechanism of microstructure formation. Moreover, electron microprobe has provided two dimensional segregation maps of silicon. A good agreement was found between the segregation profile of silicon in the color etched microstructure and the silicon maps achieved by electron microprobe analysis. However, quantitative silicon investigation was found to bemore » more accurate than color etching results to study the size of the eutectic colonies. - Highlights: • Sensitivity of a color etchant to silicon segregation is quantitatively demonstrated. • Si segregation measurement by EMPA approved the results achieved by color etching. • Color etched micrographs provided data about solidification mechanism in cast irons. • Austenite grain boundaries were identified by measuring the local Si concentration.« less
Routh, V H; Helke, C J
1997-02-01
Antibody-coated microprobes are used to measure neuropeptide release in the central nervous system. Although they are not quantitative, they provide the most precise spatial resolution of the location of in vivo release of any currently available method. Previous methods of coating antibody microprobes are difficult and time-consuming. Moreover, using these methods we were unable to produce evenly coated antibody microprobes. This paper describes a novel method for the production of antibody microprobes using thiol-terminal silanes and the heterobifunctional crosslinker, 4-(4-N-maleimidophenyl)butyric acid hydrazide HCl 1/2 dioxane (MPBH). Following silation, glass micropipettes are incubated with antibody to substance P (SP) that has been conjugated to MPBH. This method results in a dense, even coating of antibody without decreasing the biological activity of the antibody. Additionally, this method takes considerably less time than previously described methods without sacrificing the use of antibody microprobes as micropipettes. The sensitivity of the microprobes for SP is in the picomolar range, and there is a linear correlation between the log of SP concentration (M) and B/B0 (r2 = 0.98). The microprobes are stable for up to 3 weeks when stored in 0.1 M sodium phosphate buffer with 50 mM NaCl (pH 7.4) at 5 degrees C. Finally, insertion into the exposed spinal cord of an anesthetized rat for 15 min produces no damage to the antibody coating.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Obrant, K.J.; Odselius, R.
1984-01-01
Energy dispersive X-ray microanalysis (EDX) (or electron microprobe analysis) of the relative intensity for calcium in different bone trabeculae from the tibia epiphysis, and in different parts of one and the same trabecula, was performed on 3 patients who had earlier had a fracture of the ipsilateral tibia-diaphysis. The variation in intensity was compared with the histochemical patterns obtained with both the Goldner and the von Kossa staining techniques for detecting calcium in tissues. Previously reported calcium distribution features, found to be typical for posttraumatic osteopenia, such as striated mineralization patterns in individual trabeculae and large differences in mineralization levelmore » between different trabeculae, could be verified both by means of the two histochemical procedures and from the electron microprobe analysis. A pronounced difference was observed, however, between the two histochemical staining techniques as regards their sensitivity to detect calcium. To judge from the values obtained from the EDX measurements, the sensitivity of the Goldner technique should be more than ten times higher than that of von Kossa. The EDX measurements gave more detailed information than either of the two histochemical techniques: great variations in the intensity of the calcium peak were found in trabeculae stained as unmineralized as well as mineralized.« less
Spatial investigation of some uranium minerals using nuclear microprobe
NASA Astrophysics Data System (ADS)
Valter, Anton A.; Knight, Kim B.; Eremenko, Gelij K.; Magilin, Dmitry V.; Ponomarov, Artem A.; Pisansky, Anatoly I.; Romanenko, Alexander V.; Ponomarev, Alexander G.
2018-01-01
In this work, several individual grains of uranium minerals—uraninite with high content of Ca, Ca-rich boltwoodite, growths of uranophane with β-uranophane, and weeksite—from different uranium deposits were studied by a scanning nuclear microprobe. Particle-induced X-ray emission technique provided by the microprobe (µ-PIXE) was carried out to obtain a concentration and 2D distribution of elements in these minerals. In addition, energy dispersive X-ray spectrometry (SEM-EDS) provided by a scanning electron microscope was used. The types of minerals were determined by X-ray diffraction methods. Results of this study improved the understanding of trace elemental composition of the uranium minerals depending on their origin. Obtained signatures could be linked then to the sample provenance. Such data are important for nuclear forensics to identify the ore types and even specific ore bodies, when only small samples may be available for analysis. In this study, the µ-PIXE technique was used for obtaining the 2D distribution of trace elements that are not commonly measured by SEM-EDS at the relevant concentrations. The detected levels and precisions of elements determination by µ-PIXE were also defined. Using µ-PIXE, several micro mineral inclusions such as phosphate with high level of V and Si were identified. The age of the uranium minerals was estimated due to a significant content of radiogenic Pb that provides an additional parameter for determination of the main attributive characteristics of the minerals. This work also showed that due to its high elemental sensitivity the nuclear microprobe can be a new analytical tool for creating a nuclear forensic database from the known uranium deposits and a subsequent analysis of the intercepted illicit materials.
Spatial investigation of some uranium minerals using nuclear microprobe
NASA Astrophysics Data System (ADS)
Valter, Anton A.; Knight, Kim B.; Eremenko, Gelij K.; Magilin, Dmitry V.; Ponomarov, Artem A.; Pisansky, Anatoly I.; Romanenko, Alexander V.; Ponomarev, Alexander G.
2018-06-01
In this work, several individual grains of uranium minerals—uraninite with high content of Ca, Ca-rich boltwoodite, growths of uranophane with β-uranophane, and weeksite—from different uranium deposits were studied by a scanning nuclear microprobe. Particle-induced X-ray emission technique provided by the microprobe (µ-PIXE) was carried out to obtain a concentration and 2D distribution of elements in these minerals. In addition, energy dispersive X-ray spectrometry (SEM-EDS) provided by a scanning electron microscope was used. The types of minerals were determined by X-ray diffraction methods. Results of this study improved the understanding of trace elemental composition of the uranium minerals depending on their origin. Obtained signatures could be linked then to the sample provenance. Such data are important for nuclear forensics to identify the ore types and even specific ore bodies, when only small samples may be available for analysis. In this study, the µ-PIXE technique was used for obtaining the 2D distribution of trace elements that are not commonly measured by SEM-EDS at the relevant concentrations. The detected levels and precisions of elements determination by µ-PIXE were also defined. Using µ-PIXE, several micro mineral inclusions such as phosphate with high level of V and Si were identified. The age of the uranium minerals was estimated due to a significant content of radiogenic Pb that provides an additional parameter for determination of the main attributive characteristics of the minerals. This work also showed that due to its high elemental sensitivity the nuclear microprobe can be a new analytical tool for creating a nuclear forensic database from the known uranium deposits and a subsequent analysis of the intercepted illicit materials.
Identification of provenance rocks based on EPMA analyses of heavy minerals
NASA Astrophysics Data System (ADS)
Shimizu, M.; Sano, N.; Ueki, T.; Yonaga, Y.; Yasue, K. I.; Masakazu, N.
2017-12-01
Information on mountain building is significant in the field of geological disposal of high-level radioactive waste, because this affects long-term stability in groundwater flow system. Provenance analysis is one of effective approaches for understanding building process of mountains. Chemical compositions of heavy minerals, as well as their chronological data, can be an index for identification of provenance rocks. The accurate identification requires the measurement of as many grains as possible. In order to achieve an efficient provenance analysis, we developed a method for quick identification of heavy minerals using an Electron Probe Micro Analyzer (EPMA). In this method, heavy mineral grains extracted from a sample were aligned on a glass slide and mounted in a resin. Concentration of 28 elements was measured for 300-500 grains per sample using EPMA. To measure as many grains as possible, we prioritized swiftness of measurement over precision, configuring measurement time of about 3.5 minutes for each grain. Identification of heavy minerals was based on their chemical composition. We developed a Microsoft® Excel® spread sheet input criteria of mineral identification using a typical range of chemical compositions for each mineral. The grains of <80 wt.% or >110 wt.% total were rejected. The criteria of mineral identification were revised through the comparison between mineral identification by optical microscopy and chemical compositions of grains classified as "unknown minerals". Provenance rocks can be identified based on abundance ratio of identified minerals. If no significant difference of the abundance ratio was found among source rocks, chemical composition of specific minerals was used as another index. This method was applied to the sediments of some regions in Japan where provenance rocks had lithological variations but similar formation ages. Consequently, the provenance rocks were identified based on chemical compositions of heavy minerals resistant to weathering, such as zircon and ilmenite.This study was carried out under a contract with Ministry of Economy, Trade and Industry of Japan as part of its R&D supporting program for developing geological disposal technology.
NASA Astrophysics Data System (ADS)
Sibi, N.; Subodh, G.
2017-12-01
Garnets are naturally occurring minerals with the general formula X3Y2Z3O12 having various applications. In the present study, the structural and physical properties of a garnet mineral obtained from Indian Rare Earth Ltd., Manavalakurichi, Tamil Nadu, India were comprehensively investigated. The compositional analysis using electron probe micro analysis (EPMA) revealed that the mineral belongs to almandine-pyrope solid solution (Al70Py29) with the chemical formula (Fe1.72Mg0.8Mn0.01Ca0.02) (Fe0.04Al2.36) Si2.93O12. Rietveld refinement of the x-ray diffraction pattern confirms that the space group is Ia{ - }\\overline{3} d with refined cubic lattice parameter a = 11.550(4) Å. The refined occupancy values of multiple cations in the dodecahedral and octahedral sites are in agreement with the EPMA data. Fourier transform infrared and FT Raman spectra show bands corresponding to almandine-pyrope solid solution. Peak splitting of IR and Raman bands confirms presence of multiple cations in the dodecahedral site. Thermogravimetric/differential thermal analysis shows that the mineral is stable up to 600°C in spite of the presence of Fe2+ ions. Low temperature magnetic susceptibility data is in agreement with the amount of Fe2+ ions present in the mineral. The dielectric constant of the mineral varied from 6 to 16.5 when sintered at temperatures ranging from 600°C to 1250°C.
Krecar, Dragan; Vassileva, Vassilka; Danninger, Herbert; Hutter, Herbert
2004-06-01
Powder metallurgy is a highly developed method of manufacturing reliable ferrous parts. The main processing steps in a powder metallurgical line are pressing and sintering. Sintering can be strongly enhanced by the formation of a liquid phase during the sintering process when using phosphorus as sintering activator. In this work the distribution (effect) of phosphorus was investigated by means of secondary ion mass spectrometry (SIMS) supported by Auger electron spectroscopy (AES) and electron probe micro analysis (EPMA). To verify the influence of the process conditions (phosphorus content, sintering atmosphere, time) on the mechanical properties, additional measurements of the microstructure (pore shape) and of impact energy were performed. Analysis of fracture surfaces was performed by means of scanning electron microscopy (SEM). The concentration of phosphorus differs in the samples from 0 to 1% (w/ w). Samples with higher phosphorus concentrations (1% (w/ w) and above) are also measurable by EPMA, whereas the distributions of P at technically relevant concentrations and the distribution of possible impurities are only detectable (visible) by means of SIMS. The influence of the sintering time on the phosphorus distribution will be demonstrated. In addition the grain boundary segregation of P was measured by AES at the surface of in-situ broken samples. It will be shown that the distribution of phosphorus depends also on the concentration of carbon in the samples.
Ion microprobe magnesium isotope analysis of plagioclase and hibonite from ordinary chondrites
NASA Technical Reports Server (NTRS)
Hinton, R. W.; Bischoff, A.
1984-01-01
Ion and electron microprobes were used to examine Mg-26 excesses from Al-26 decay in four Al-rich objects from the type 3 ordinary hibonite clast in the Dhajala chondrite. The initial Al-26/Al-27 ratio was actually significantly lower than Al-rich inclusions in carbonaceous chondrites. Also, no Mg-26 excesses were found in three plagioclase-bearing chondrules that were also examined. The Mg-26 excesses in the hibonite chondrites indicated a common origin for chondrites with the excesses. The implied Al-26 content in a proposed parent body could not, however, be confirmed as a widespread heat source in the early solar system.
NASA Astrophysics Data System (ADS)
Shih, T. I.; Lin, Y. C.; Duh, J. G.; Hsu, Tom
2006-10-01
Lead-free solder bumps have been widely used in current flip-chip technology (FCT) due to environmental issues. Solder joints after temperature cycling tests were employed to investigate the interfacial reaction between the Ti/Ni/Cu under-bump metallization and Sn-Ag-Cu solders. The interfacial morphology and quantitative analysis of the intermetallic compounds (IMCs) were obtained by electron probe microanalysis (EPMA) and field emission electron probe microanalysis (FE-EPMA). Various types of IMCs such as (Cu1-x,Agx)6Sn5, (Cu1-y,Agy)3Sn, and (Ag1-z,Cuz)3Sn were observed. In addition to conventional I-V measurements by a special sample preparation technique, a scanning electron microscope (SEM) internal probing system was introduced to evaluate the electrical characteristics in the IMCs after various test conditions. The electrical data would be correlated to microstructural evolution due to the interfacial reaction between the solder and under-bump metallurgy (UBM). This study demonstrated the successful employment of an internal nanoprobing approach, which would help further understanding of the electrical behavior within an IMC layer in the solder/UBM assembly.
Effects of Ion-Releasing Tooth-Coating Material on Demineralization of Bovine Tooth Enamel
Kawasaki, Koji; Kambara, Masaki
2014-01-01
We compared the effect of a novel ion-releasing tooth-coating material that contained S-PRG (surface-reaction type prereacted glass-ionomer) filler to that of non-S-PRG filler and nail varnish on the demineralization of bovine enamel subsurface lesions. The demineralization process of bovine enamel was examined using quantitative light-induced fluorescence (QLF) and electron probe microanalyzer (EPMA) measurement. Ion concentrations in demineralizing solution were measured using inductively coupled plasma atomic (ICP) emission spectrometry and an ion electrode. The nail varnish group and the non-S-PRG filler group showed linear demineralization. Although the nail varnish group and the non-S-PRG filler group showed linear demineralization, the S-PRG filler group did not. Further, plane-scanning by EPMA analysis in the S-PRG filler group showed no changes in Ca ion distribution, and F ions showed peak levels on the surface of enamel specimens. Most ions in the demineralizing solution were present at higher concentrations in the S-PRG filler group than in the other two groups. In conclusion, only the S-PRG filler-containing tooth-coating material released ions and inhibited demineralization around the coating. PMID:24578706
NASA Astrophysics Data System (ADS)
Mishra, D. K.; Roul, B. K.; Singh, S. K.; Srinivasu, V. V.
2018-02-01
We report on the possible observation of Griffith phase in a wide range of temperature (>272-378 K) in the 2.5 min plasma sintered La0.67Ca0.33MnO3 (LCMO) as deduced from careful electron spin resonance studies. This is 106 K higher than the paramagnetic to ferromagnetic transition (Curie transition ∼272 K) temperature. The indication of Griffith phase in such a wide range is not reported earlier by any group. We purposefully prepared LCMO samples by plasma sintering technique so as to create a disordered structure by rapid quenching which we believe, is the prime reason for the observation of Griffith Phase above the Curie transition temperature. The inverse susceptibility curve represents the existence of ferromagnetic cluster in paramagnetic region. The large resonance peak width (40-60 mT) within the temperature range 330-378 K confirms the sample magnetically inhomogeneity which is also established from our electron probe microstructure analysis (EPMA). EPMA establishes the presence of higher percentage of Mn3+ cluster in comparison to Mn4+. This is the reason for which Griffith state is enhanced largely to a higher range of temperature.
NASA Astrophysics Data System (ADS)
Dasgupta, S.; Gupta, A. K.
2011-12-01
Liquidus phase relations in the system forsterite-diopside-enstatite has been made at 70 kbar under anhydrous conditions using a Walker-type multi-anvil high pressure apparatus. Positions of the pseudoeutectic/ invariant, minimum points and amount of solid solutions of appearing phases are summarized in table 1. Comparison of these phase relations with those conducted by previous investigators at lower pressures and temperatures shows that the fosterite-pyroxene liquidus boundary shifts toward forsterite and away from the diopside apex with increasing pressure. Microprobe analyses indicate that the maximum amount of MgSiO3 that can be incorporated in diopside increases with pressure, and at the solidus (70 kbar, 2010°C), it is about 82%. On the basis of EPMA analyses of coexisting liquid and crystalline phases, three-phase triangles have been constructed. It is observed that at 70 kbar, the early partial melt generated from a model peridotite does not precipitate orthopyroxene. If such a melt instead of crystallizing in-situ, ascend to the surface, then the polybaric-polythermal crystallization path should never intersect the liquidus phase field of orthopyroxene, enstatitess may then appear in the solidus as an exsolution product. Our calculation shows that at 31% partial melting of a model mantle, orthopyroxene should appear as a liquidus phase. With further increase in the degree of partial melting (42-60%), proportion of orthopyroxene crystallizing from the melt progressively increases. With reference to the above discussion we propose that the Gorgona komatiites which are primarily orthopyroxene-deficient komatiites, are an outcome of low degree of partial melting, whereas the orthopyroxene-bearing Commondale komatiites of the southern Kaapvaal Craton, South Africa, are the outcome of a larger degree of partial melting, both generated from melting of an anhydrous mantle.
NASA Astrophysics Data System (ADS)
Klesner, Catherine Elizabeth
Decorative, polychrome ceramics from Corinth, Greece, produced during the 8th-6th centuries B.C.E. are luxury goods that were widely traded throughout Greece and the Mediterranean. The decorated ceramics were produced in a variety of shapes, including aryballos, alabastron, and olpe. They were decorated with slip-glazes in distinctive white, black, red, yellow, and purple colors, and in a variety of surface finishes, matte, semi-matte and glossy. Artisans in Corinthian workshops experimented to change the colors of the slips by varying the type and amount of iron-rich raw materials. They also varied the composition of the clay used as a binder and the amount of flux used as a sintering aid to promote glass formation. This research reconstructs the technology used by the Corinthian craftsmen to produce the Archaic polychrome ceramics, and shows how these technologies differed from the production of better known, more prestigious Athenian black-figure and red-figure ceramics. Through microstructural examination of archaeological samples and replication experiments, this thesis proposes that the purple iron oxide pigment is the result of acid treatment and oxidation of iron metal. The firing temperature range of the Corinthian polychrome ceramics was determined experimentally to be 925-1025°C, which is higher than previously reported and similar to that reported for Corinthian transport amphoras. The firing range is higher by 50-150°C than the Athenian black-figure and red-figure ceramics. Samples of Corinthian polychrome and Athenian black-figure ceramics from the Marie Farnsworth collection at the University of Arizona were tested and compared to Corinthian clay collections. Analytical techniques included Fourier-transform infrared spectroscopy (FTIR), scanning-electron microscopy with energy-dispersive spectroscopy (SEM-EDS), micro-Raman spectroscopy, and wavelength-dispersive electron microprobe (EPMA with BSE-SEM).
Aluminum Solubility Mechanisms in Quartz: Implications for Al-in-Quartz Thermobarometry
NASA Astrophysics Data System (ADS)
Was, E.; Thomas, J. B.; Nachlas, W. O.
2016-12-01
Trace element thermobarometers in minerals are becoming increasingly important tools for studying geologic processes in many different geologic environments. The solubility of some trace-level (i.e. <1000 ppmw) components in minerals can be measured and used to estimate the pressure (P) and/or temperature (T) of mineral crystallization. To date, quartz has been useful for trace element thermobarometry (based on its Ti content) due to its common occurrence in many rock types and therefore can provide information on a wide range of petrologic processes. However, this technique relies on an independent constraint on T (or P) to calculate P (or T), which can be difficult to obtain in some rocks. To add to the utility of quartz as a thermobarometer, we have experimentally co-crystallized quartz and aluminosilicates at elevated P-T conditions to determine Al solubilities in quartz, which will allow use of the crossing isopleths method to determine a unique P and T solution from two independent techniques (using Ti and Al) in the same mineral. Preliminary experiments demonstrate that Al concentrations in quartz vary systematically with P and T, and also show that Al is soluble at greater levels than Ti. The success of an Al-in-quartz thermobarometer relies on determining both the variations in Al solubility across P-T space as well as the solubility mechanism for Al substitution into the quartz structure. To determine these parameters, we use Fourier transform infrared spectroscopy (FTIR) to quantify H+ contents as a charge-balancing ion for Al3+ to replace Si4+, electron microprobe (EPMA) to measure Al concentrations, and nuclear magnetic resonance spectroscopy (NMR) to determine the coordination environment of Al in quartz.
In vivo deployment of mechanically adaptive nanocomposites for intracortical microelectrodes
Harris, J P; Hess, A E; Rowan, S J; Weder, C; Zorman, C A; Tyler, D J; Capadona, J R
2012-01-01
We recently introduced a series of stimuli-responsive, mechanically-adaptive polymer nanocomposites. Here, we report the first application of these bio-inspired materials as substrates for intracortical microelectrodes. Our hypothesis is that the ideal electrode should be initially stiff to facilitate minimal trauma during insertion into the cortex, yet becomes mechanically compliant to match the stiffness of the brain tissue and minimize forces exerted on the tissue, attenuating inflammation. Microprobes created from mechanically reinforced nanocomposites demonstrated a significant advantage compared to model microprobes composed of neat polymer only. The nanocomposite microprobes exhibit a higher storage modulus (E’ = ~5 GPa) than the neat polymer microprobes (E’ = ~2 GPa) and could sustain higher loads (~17 mN), facilitating penetration through the pia mater and insertion into the cerebral cortex of a rat. In contrast, the neat polymer microprobes mechanically failed under lower loads (~7 mN) before they were capable of inserting into cortical tissue. Further, we demonstrated the material’s ability to morph while in the rat cortex to more closely match the mechanical properties of the cortical tissue. Nanocomposite microprobes that were implanted into the rat cortex for up to 8 weeks demonstrated increased cell density at the microelectrode-tissue interface and a lack of tissue necrosis or excessive gliosis. This body of work introduces our nanocomposite-based microprobes as adaptive substrates for intracortical microelectrodes and potentially other biomedical applications. PMID:21654037
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ice, G.E.; Barbee, T.; Bionta, R.
The increasing availability of synchrotron x-ray sources has stimulated the development of advanced hard x-ray (E{>=}5 keV) microprobes. New x-ray optics have been demonstrated which show promise for achieving intense submicron hard x-ray probes. These probes will be used for extraordinary elemental detection by x-ray fluorescence/absorption and for microdiffraction to identify phase and strain. The inherent elemental and crystallographic sensitivity of an x-ray microprobe and its inherently nondestructive and penetrating nature makes the development of an advanced hard x-ray microprobe an important national goal. In this workshop state-of-the-art hard x-ray microprobe optics were described and future directions were discussed. Genemore » Ice, Oak Ridge National Laboratory (ORNL), presented an overview of the current status of hard x-ray microprobe optics and described the use of crystal spectrometers to improve minimum detectable limits in fluorescent microprobe experiments. Al Thompson, Lawrence Berkeley Laboratory (LBL), described work at the Center for X-ray Optics to develop a hard x-ray microprobe based on Kirkpatrick-Baez (KB) optics. Al Thompson also showed the results of some experimental measurements with their KB optics. Malcolm Howells presented a method for bending elliptical mirrors and Troy Barbee commented on the use of graded d spacings to achieve highest efficiency in KB multilayer microfocusing. Richard Bionta, Lawrence Livermore National Laboratory (LLNL), described the development of the first hard x-ray zone plates and future promise of so called {open_quotes}jelly roll{close_quotes} or sputter slice zone plates. Wenbing Yun, Argonne National Laboratory (ANL), described characterization of jelly roll and lithographically produced zone plates and described the application of zone plates to focus extremely narrow bandwidths by nuclear resonance. This report summarizes the presentations of the workshop subgroup on hard x-ray microprobes.« less
Achondrite Binda; Ordinary Eucrite or the Only Crystalline Howardite?
NASA Astrophysics Data System (ADS)
Yanai, K.
1996-03-01
Binda meteorite, originally classified as howardite (Hey, 1966), was reclassified as eucrite of monomict breccia (Duke and Silver, 1967). Binda was recognized as the most Mg-rich eucrite (or most Fe-rich diogenite) with crystalline-unbrecciated texture for long time. Therefore Binda is believed to have genetic significance in relation to eucrites and diogenites, because in howardite group Binda is the only specimen with unbrecciated or monomict and crystalline texture. Re-examination of Binda was carried out by EPMA, microscope analysis and wet chemical analysis. Binda is the most common (ordinary) encrite showing crystalline texture with slightly brecciated.
The electron microprobe as a metallographic tool
NASA Technical Reports Server (NTRS)
Goldstein, J. I.
1974-01-01
The electron microprobe (EMP) is shown to represent one of the most powerful techniques for the examination of the microstructure of materials. It is an electron optical instrument in which compositional and topographic information is obtained from regions smaller than 1 micron in diameter on a specimen. Photographs of compositional and topographic changes in 1-sq-mm to 20-sq-micron areas on various types of specimens can also be obtained. These photographs are strikingly similar to optical photomicrographs. Various signals measured in the EMP (X-rays, secondary electrons, backscattered electrons, etc.) are discussed, along with their resolution and the type of information they may help obtain. In addition to elemental analysis, solid state detecting and scanning techniques are reviewed. Various techniques extending the EMP instrument capabilities, such as deconvolution and soft X-ray analysis, are also described.
NASA Astrophysics Data System (ADS)
Zamyatin, Dmitry A.; Shchapova, Yuliya V.; Votyakov, Sergey L.; Nasdala, Lutz; Lenz, Christoph
2017-09-01
The U-Th-Pb isotope system in the accessory mineral zircon may be disturbed, as for instance by the secondary loss of radiogenic lead. The recognition of such alteration is crucial for the sound interpretation of geochronology results, in particular for chemical dating by means of an electron probe micro-analyser (EPMA). Here we present the example of high-U zircon samples from a granite pegmatite from the Aduiskii Massif, Middle Urals, Russia. The structural and chemical heterogeneity of samples was characterised by EPMA, including joint probability distribution (JPD) analysis of back-scattered electrons (BSE), cathodoluminescence (CL) and U M β images, and by Raman and photoluminescence (PL) spectroscopy. We found a high-U interior region (U up to 11.4 wt%) without any obvious indication of alteration. This domain has stoichiometric composition, and its Raman spectrum is similar to that of amorphous ZrSiO4. In addition, altered lower-U regions are present that are non-stoichiometric and contain non-formula elements such as Ca, Al, Fe, and water up to several wt%. Their Raman spectra yielded a band near 760-810 cm-1 which is not related to any ZrSiO4 vibration; we assign it tentatively to the symmetric stretching of (UO2)2+ groups. This assignment is supported by the observation of a fairly intense PL phenomenon whose spectral position and vibrational-coupling structure strongly indicates a uranyl-related emission. Altered zones were formed by both fluid-driven diffusion reaction and coupled dissolution-reprecipitation processes. The variation of BSE and CL intensities in amorphous high-U zircon is controlled by its chemical composition and the presence of water and uranyl groups. We have determined a weighted mean EPMA age of 246 ± 2 Ma, which agrees reasonably well with previous dating results for the Aduiskii Massif.
NASA Astrophysics Data System (ADS)
Jennings, E. S.; Wade, J.; Laurenz, V.; Kearns, S.; Buse, B.; Rubie, D. C.
2017-12-01
The process by which the Earth's core segregated, and its resulting composition, can be inferred from the composition of the bulk silicate Earth if the partitioning of various elements into metal at relevant conditions is known. As such, partitioning experiments between liquid metal and liquid silicate over a wide range of pressures and temperatures are frequently performed to constrain the partitioning behaviour of many elements. The use of diamond anvil cell experiments to access more extreme conditions than those achievable by larger volume presses is becoming increasingly common. With a volume several orders of magnitude smaller than conventional samples, these experiments present unique analytical challenges. Typically, sample preparation is performed by FIB as a 2 mm thick slice, containing a small iron ball surrounded by a layer of silicate melt. This implies that analyses made by EPMA will be made near boundaries where fluoresced X-rays from the neighbouring phase may be significant. By measuring and simulating synthetic samples, we investigate thickness and fluorescence limitations. We find that for typical sample geometries, a thickness of 2 μm contains the entire analytical volume for standard 15kV analyses of metals. Fluoresced X-rays from light elements into the metal are below detection limits if there is no direct electron interaction with the silicate. Continuum fluorescence from higher atomic number elements from the metal into silicate poses significant difficulties [1]. This can cause metal-silicate partition coefficients of siderophile elements to be underestimated. Finally, we examine the origin and analytical consequences of oxide-rich exsolutions that are frequently found in the metal phase of such experiments. These are spherical with diameters of 100 nm and can be sparsely to densely packed. They appear to be carbon-rich and result in low analytical totals by violating the assumption of homogeneity in matrix corrections (e.g. φρz), which results in incorrect relative abundances. Using low kV analysis, we explore their origin i.e. whether they originate from quench exsolution or dynamic processes. Identifying their composition is key to understanding their origin and the interpretation of DAC experimental results.[1] Wade J & Wood B. J. (2012) PEPI 192-193, 54-58.
2010-12-01
in the conventional Bragg-Bentano mode. The residual stress of the coatings was measured by glancing incident angle XRD (GIXRD) in the same X - ray ...micro-analysis (EPMA), x - ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), nanoindentation, scratch test, and ball-on...the coatings was determined by XRD using a SIEMENS X - ray diffractometer (Model KRISTALLOFLEX-810) operated with K-alpha Cu radiation (30 kV and 20 mA
On the Applications of IBA Techniques to Biological Samples Analysis: PIXE and RBS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Falcon-Gonzalez, J. M.; Bernal-Alvarado, J.; Sosa, M.
2008-08-11
The analytical techniques based on ion beams or IBA techniques give quantitative information on elemental concentration in samples of a wide variety of nature. In this work, we focus on PIXE technique, analyzing thick target biological specimens (TTPIXE), using 3 MeV protons produced by an electrostatic accelerator. A nuclear microprobe was used performing PIXE and RBS simultaneously, in order to solve the uncertainties produced in the absolute PIXE quantifying. The advantages of using both techniques and a nuclear microprobe are discussed. Quantitative results are shown to illustrate the multielemental resolution of the PIXE technique; for this, a blood standard wasmore » used.« less
SU-8 microprobe with microelectrodes for monitoring electrical impedance in living tissues.
Tijero, M; Gabriel, G; Caro, J; Altuna, A; Hernández, R; Villa, R; Berganzo, J; Blanco, F J; Salido, R; Fernández, L J
2009-04-15
This paper presents a minimally invasive needle-shaped probe capable of monitoring the electrical impedance of living tissues. This microprobe consists of a 160 microm thick SU-8 substrate containing four planar platinum (Pt) microelectrodes. We design the probe to minimize damage to the surrounding tissue and to be stiff enough to be inserted in living tissues. The proposed batch fabrication process is low cost and low time consuming. The microelectrodes obtained with this process are strongly adhered to the SU-8 substrate and their impedance does not depend on frequency variation. In vitro experiments are compared with previously developed Si and SiC based microprobes and results suggest that it is preferable to use the SU-8 based microprobes due to their flexibility and low cost. The microprobe is assembled on a flexible printed circuit FPC with a conductive glue, packaged with epoxy and wired to the external instrumentation. This flexible probe is inserted into a rat kidney without fracturing and succeeds in demonstrating the ischemia monitoring.
Microprobe Analysis of Pu-Ga Standards
Wall, Angélique D.; Romero, Joseph P.; Schwartz, Daniel
2017-08-04
In order to obtain quantitative analysis using an Electron Scanning Microprobe it is essential to have a standard of known composition. Most elemental and multi-elemental standards can be easily obtained from places like Elemental Scientific or other standards organizations that are NIST (National Institute of Standards and Technology) traceable. It is, however, more challenging to find standards for plutonium. Past work performed in our group has typically involved using the plutonium sample to be analysed as its own standard as long as all other known components of the sample have standards to be compared to [1,2,3]. Finally, this method worksmore » well enough, but this experiment was performed in order to develop a more reliable standard for plutonium using five samples of known chemistry of a plutonium gallium mix that could then be used as the main plutonium and gallium standards for future experiments.« less
Microprobe Analysis of Pu-Ga Standards
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wall, Angélique D.; Romero, Joseph P.; Schwartz, Daniel
In order to obtain quantitative analysis using an Electron Scanning Microprobe it is essential to have a standard of known composition. Most elemental and multi-elemental standards can be easily obtained from places like Elemental Scientific or other standards organizations that are NIST (National Institute of Standards and Technology) traceable. It is, however, more challenging to find standards for plutonium. Past work performed in our group has typically involved using the plutonium sample to be analysed as its own standard as long as all other known components of the sample have standards to be compared to [1,2,3]. Finally, this method worksmore » well enough, but this experiment was performed in order to develop a more reliable standard for plutonium using five samples of known chemistry of a plutonium gallium mix that could then be used as the main plutonium and gallium standards for future experiments.« less
Muhammad, Pir; Liu, Jia; Xing, Rongrong; Wen, Yanrong; Wang, Yijia; Liu, Zhen
2017-12-01
Determination of specific target compounds in agriculture food and natural plant products is essential for many purposes; however, it is often challenging due to the complexity of the sample matrices. Herein we present a new approach called plasmonic affinity sandwich assay for the facile and rapid probing of glucose and fructose in plant tissues. The approach mainly relies on molecularly imprinted plasmonic extraction microprobes, which were prepared on gold-coated acupuncture needles via boronate affinity controllable oriented surface imprinting with the target monosaccharide as the template molecules. An extraction microprobe was inserted into plant tissues under investigation, which allowed for the specific extraction of glucose or fructose from the tissues. The glucose or fructose molecules extracted on the microprobe were labeled with boronic acid-functionalized Raman-active silver nanoparticles, and thus affinity sandwich complexes were formed on the microprobes. After excess Raman nanotags were washed away, the microprobe was subjected to Raman detection. Upon being irradiated with a laser beam, surface plasmon on the gold-coated microprobes was generated, which further produced plasmon-enhanced Raman scattering of the silver-based nanotags and thereby provided sensitive detection. Apple fruits, which contain abundant glucose and fructose, were used as a model of plant tissues. The approach exhibited high specificity, good sensitivity (limit of detection, 1 μg mL -1 ), and fast speed (the whole procedure required only 20 min). The spatial distribution profiles of glucose and fructose within an apple were investigated by the developed approach. Copyright © 2017 Elsevier B.V. All rights reserved.
PXRF, μ-XRF, vacuum μ-XRF, and EPMA analysis of Email Champlevé objects present in Belgian museums.
Van der Linden, Veerle; Meesdom, Eva; Devos, Annemie; Van Dooren, Rita; Nieuwdorp, Hans; Janssen, Elsje; Balace, Sophie; Vekemans, Bart; Vincze, Laszlo; Janssens, Koen
2011-10-01
The enamel of 20 Email Champlevé objects dating between the 12th and 19th centuries was investigated by means of microscopic and portable X-ray fluorescence analysis (μ-XRF and PXRF). Seven of these objects were microsampled and the fragments were analyzed with electron probe microanalysis (EPMA) and vacuum μ-XRF to obtain quantitative data about the composition of the glass used to produce these enameled objects. As a result of the evolution of the raw materials employed to produce the base glass, three different compositional groups could be discriminated. The first group consisted of soda-lime-silica glass with a sodium source of mineral origin (with low K content) that was opacified by addition of calcium antimonate crystals. This type of glass was only used in objects made in the 12th century. Email Champlevé objects from the beginning of the 13th century onward were enameled with soda-lime-silica glass with a sodium source of vegetal origin. This type of glass, which has a higher potassium content, was opacified with SnO2 crystals. The glass used for 19th century Email Champlevé artifacts was produced with synthetic and purified components resulting in a different chemical composition compared to the other groups. Although the four analytical techniques employed in this study have their own specific characteristics, they were all found to be suitable for classifying the objects into the different chronological categories.
Root, D.B.; Hacker, B.R.; Mattinson, J.M.; Wooden, J.L.
2004-01-01
Understanding the formation and exhumation of the remarkable ultrahigh-pressure (UHP) rocks of the Western Gneiss Region, Norway, hinges on precise determination of the time of eclogite recrystallization. We conducted detailed thermal ionization mass spectrometry, chemical abrasion analysis and sensitive high-resolution ion-microprobe analysis of zircons from four ultrahigh- and high-pressure (HP) rocks. Ion-microprobe analyses from the Flatraket eclogite yielded a broad range of apparently concordant Caledonian ages, suggesting long-term growth. In contrast, higher precision thermal ionization mass spectrometry analysis of zircon subject to combined thermal annealing and multi-step chemical abrasion yielded moderate Pb loss from the first (lowest temperature) abrasion step, possible minor Pb loss or minor growth at 400 Ma from the second step and a 407-404 Ma cluster of slightly discordant 206Pb/238U ages, most likely free from Pb loss, from the remaining abrasion steps. We interpret the latter to reflect zircon crystallization at ???405-400 Ma with minor discordance from inherited cores. Zircon crystallization occurred at eclogite-facies, possibly post-peak conditions, based on compositions of garnet inclusions in zircon as well as nearly flat HREE profiles and lack of Eu anomalies in zircon fractions subjected to chemical abrasion. These ages are significantly younger than the 425 Ma age often cited for western Norway eclogite recrystallization, implying faster rates of exhumation (>2.5-8.5 km/Myr), and coeval formation of eclogites across the UHP portion of the Western Gneiss Region. ?? 2004 Published by Elsevier B.V.
Impact of Fuel Metal Impurities on the Durability of a Light-Duty Diesel Aftertreatment System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, A.; Burton, J.; McCormick, R. L.
2013-04-01
Alkali and alkaline earth metal impurities found in diesel fuels are potential poisons for diesel exhaust catalysts. A set of diesel engine production exhaust systems was aged to 150,000 miles. These exhaust systems included a diesel oxidation catalyst, selective catalytic reduction (SCR) catalyst, and diesel particulate filter (DPF). Four separate exhaust systems were aged, each with a different fuel: ultralow sulfur diesel containing no measureable metals, B20 (a common biodiesel blend) containing sodium, B20 containing potassium, and B20 containing calcium, which were selected to simulate the maximum allowable levels in B100 according to ASTM D6751. Analysis included Federal Test Proceduremore » emissions testing, bench-flow reactor testing of catalyst cores, electron probe microanalysis (EPMA), and measurement of thermo-mechanical properties of the DPFs. EPMA imaging found that the sodium and potassium penetrated into the washcoat, while calcium remained on the surface. Bench-flow reactor experiments were used to measure the standard nitrogen oxide (NOx) conversion, ammonia storage, and ammonia oxidation for each of the aged SCR catalysts. Vehicle emissions tests were conducted with each of the aged catalyst systems using a chassis dynamometer. The vehicle successfully passed the 0.2 gram/mile NOx emission standard with each of the four aged exhaust systems.« less
RN12 and RN30 Epidote anlayses
Andrew Fowler
2015-01-01
Results for laser ablation measurement of reare earth elments and electron microprobe analysis of major elments in hydrothermal epidote. Laser ablation measurements were completed using an Agilent 7700 quadrupole ICP-MS coupled with 193nm Photon Instruments Excimer laser.
NASA Astrophysics Data System (ADS)
Ostrooumov, M.
2016-08-01
The Raman microprobe (RMP), infrared (IR) and XRD analysis have been applied to the examination of mineralogical composition of seven mexican meteorites: Aldama, Cosina, El Pozo, Escalon, Nuevo Mercurio,Pacula, Zapotitlan Salinas.
Connecting Lunar Meteorites to Source Terrains on the Moon
NASA Technical Reports Server (NTRS)
Jolliff, B. L.; Carpenter, P. K.; Korotev, R. L.; North-Valencia, S. N.; Wittmann, A.; Zeigler, R. A.
2014-01-01
The number of named stones found on Earth that have proven to be meteorites from the Moon is approx. 180 so far. Since the Moon has been mapped globally in composition and mineralogy from orbit, it has become possible to speculate broadly on the region of origin on the basis of distinctive compositional characteristics of some of the lunar meteorites. In particular, Lunar Prospector in 1998 [1,2] mapped Fe and Th at 0.5 degree/pixel and major elements at 5 degree/pixel using gamma ray spectroscopy. Also, various multispectral datasets have been used to derive FeO and TiO2 concentrations at 100 m/pixel spatial resolution or better using UV-VIS spectral features [e.g., 3]. Using these data, several lunar meteorite bulk compositions can be related to regions of the Moon that share their distinctive compositional characteristics. We then use EPMA to characterize the petrographic characteristics, including lithic clast components of the meteorites, which typically are breccias. In this way, we can extend knowledge of the Moon's crust to regions beyond the Apollo and Luna sample-return sites, including sites on the lunar farside. Feldspathic Regolith Breccias. One of the most distinctive general characteristics of many lunar meteorites is that they have highly feldspathic compositions (Al2O3 approx. 28% wt.%, FeO <5 wt.%, Th <1 ppm). These compositions are significant because they are similar to a vast region of the Moon's farside highlands, the Feldspathic Highlands Terrane, which are characterized by low Fe and Th in remotely sensed data [4]. The meteorites provide a perspective on the lithologic makeup of this part of the Moon, specifically, how anorthositic is the surface and what, if any, are the mafic lithic components? These meteorites are mostly regolith breccias dominated by anorthositic lithic clasts and feldspathic glasses, but they do also contain a variety of more mafic clasts. On the basis of textures, we infer these clasts to have formed by large impacts that excavated and mixed rocks from depth within the lunar crust and possibly the upper mantle. One of the key questions is whether the mafic materials are ferroan or magnesian, which remote sensing does not clearly distinguish, and if mafic, whether they might contain mantlederived components such as olivine (dunite). Many but not all have mainly ferroan mafic components, consistent with a ferroan crustal source that is complementary to the ferroan anorthositic suite and that represents primary magma-ocean-derived feldspathic crust. Meteorites such as ALH 81005 [5] and Shisr 161 [6], however, contain coarse-grained magnesian mafic clasts (Fig. 1a) derived from deeply seated and melted material associated with impact basins. Comparison to LP gamma-ray data [2] supports an origin for magnesian feldspathic meteorites such as these (e.g., Shisr 161) as shown in Fig. 1b. Sayh al Uhaymir (SaU) 169. Another distinctive but much less common composition is represented by relatively mafic impact-melt breccia that is rich in incompatible elements known as KREEP. These meteorites can be related to the western nearside Procellarum KREEP Terrane, especially through a combination of Fe and Th contents. Among the most enriched is SaU 169, which has been related to high- Th impact-melt breccia found at the Apollo 12 site [7]. Through detailed EPMA and ion microprobe analysis we have shown that these two rock types are related in age and origin.
Centeno, J A; Mullick, F G; Panos, R G; Miller, F W; Valenzuela-Espinoza, A
1999-07-01
Raman spectroscopy (the analysis of scattered photons after excitation with a monochromatic light source) provides a nondestructive method for identifying organic and inorganic materials on the basis of the molecule's characteristic spectrum of vibrational frequencies. Although the technique has been predominantly applied in sciences other than pathology, the recent advent of high-quality microscope optics coupled to optical Raman spectrometers (a variation known as a Raman microprobe) rendered this technique amenable to applications in human pathology. In the Raman microprobe, a laser beam is focused on a spot approximately 1 microm in diameter on the surface of the sample, e.g., tissue, and the scattered light is collected and analyzed. In this investigation, we used the Raman microprobe for the identification of foreign materials in breast implant capsular tissues. The characteristic silicone group frequencies associated with the silicon-oxygen stretch, the silicone-carbon stretch, the silicon-methyl and the methyl carbon-hydrogen stretch frequencies were used to identify polydimethylsiloxane and to define chemical differences among the various other implant-related inclusions. All of the inclusions were positively identified in a series of 44 capsules from silicone gel-filled implants: polydimethylsiloxane was found in 44 of 44 capsules surrounding silicone gel-filled implants; polyurethane was seen in 4 of 4 capsules around polyurethane foam-coated gel-filled implants; 4 of 4 capsules enveloping Dacron patch gel-filled implants revealed Dacron; and talc was identified in 8 of these 44 capsules. Raman microspectroscopy provides a rapid, accurate, and sensitive method for identifying inclusions associated with silicone and other implant materials in tissue.
NASA Technical Reports Server (NTRS)
Zare, Richard N.; Boyce, Joseph M. (Technical Monitor)
2001-01-01
Polycyclic Aromatic Hydrocarbons (PAHs) are of considerable interest today because they are ubiquitous on Earth and in the interstellar medium (ISM). In fact, about 20% of cosmic carbon in the galaxy is estimated to be in the form of PAHs. Investigation of these species has obvious uses for determining the cosmochemistry of the solar system. Work in this laboratory has focused on four main areas: 1) Mapping the spatial distribution of PAHs in a variety of meteoritic samples and comparing this distribution with mineralogical features of the meteorite to determine whether a correlation exists between the two. 2) Developing a method for detection of fullerenes in extraterrestrial samples using microprobe Laser Desorption Ionization Mass Spectroscopy and utilizing this technique to investigate fullerene presence, while exploring the possibility of spatially mapping the fullerene distribution in these samples through in situ detection. 3) Investigating a possible formation pathway for meteoritic and ancient terrestrial kerogen involving the photochemical reactions of PAHs with alkanes under prebiotic and astrophysically relevant conditions. 4) Studying reaction pathways and identifying the photoproducts generated during the photochemical evolution of PAH-containing interstellar ice analogs as part of an ongoing collaboration with researchers at the Astrochemistry Lab at NASA Ames. All areas involve elucidation of the solar system formation and chemistry using microprobe Laser Desorption Laser Ionization Mass Spectrometry. A brief description of microprobe Laser Desorption Ionization Mass Spectroscopy, which allows selective investigation of subattomole levels of organic species on the surface of a sample at 10-40 micrometer spatial resolution, is given.
Laboratory technology and cosmochemistry
Zinner, Ernst K.; Moynier, Frederic; Stroud, Rhonda M.
2011-01-01
Recent developments in analytical instrumentation have led to revolutionary discoveries in cosmochemistry. Instrumental advances have been made along two lines: (i) increase in spatial resolution and sensitivity of detection, allowing for the study of increasingly smaller samples, and (ii) increase in the precision of isotopic analysis that allows more precise dating, the study of isotopic heterogeneity in the Solar System, and other studies. A variety of instrumental techniques are discussed, and important examples of discoveries are listed. Instrumental techniques and instruments include the ion microprobe, laser ablation gas MS, Auger EM, resonance ionization MS, accelerator MS, transmission EM, focused ion-beam microscopy, atom probe tomography, X-ray absorption near-edge structure/electron loss near-edge spectroscopy, Raman microprobe, NMR spectroscopy, and inductively coupled plasma MS. PMID:21498689
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ko, J .Y. Peter; Sham, Tsun-Kong; Chakrabarti, Subrata
2009-12-01
Hemochromatosis is a genetic disorder that causes body to store excess iron in organs such as heart or liver. Distribution of iron, as well as copper, zinc and calcium, and chemical identity of iron in hemochromatosis liver and intestine were investigated by X-ray microprobe experiments, which consist of X-ray microscopy and micro-X-ray absorption fine structure. Our results show that iron concentration in hemochromatosis liver tissue is high, while much less Fe is found in intestinal tissue. Moreover, chemical identity of Fe in hemochromatosis liver can be identified. X-ray microprobe experiments allows for examining elemental distribution at an excellent spatial resolution.more » Moreover, chemical identity of element of interest can be obtained.« less
Ion microprobe mass analysis of plagioclase from 'non-mare' lunar samples
NASA Technical Reports Server (NTRS)
Meyer, C., Jr.; Anderson, D. H.; Bradley, J. G.
1974-01-01
The ion microprobe was used to measure the composition and distribution of trace elements in lunar plagioclase, and these analyses are used as criteria in determining the possible origins of some nonmare lunar samples. The Apollo 16 samples with metaclastic texture and high-bulk trace-element contents contain plagioclase clasts with extremely low trace-element contents. These plagioclase inclusions represent unequilibrated relicts of anorthositic, noritic, or troctolitic rocks that have been intermixed as a rock flour into the KREEP-rich matrix of these samples. All of the plagioclase-rich inclusions which were analyzed in the KREEP-rich Apollo 14 breccias were found to be rich in trace elements. This does not seem to be consistent with the interpretation that the Apollo 14 samples represent a pre-Imbrium regolith, because such an ancient regolith should have contained many plagioclase clasts with low trace-element contents more typical of plagioclase from the pre-Imbrium crust. Ion-microprobe analyses for Ba and Sr in large plagioclase phenocrysts in 14310 and 68415 are consistent with the bulk compositions of these rocks and with the known distribution coefficients for these elements. The distribution coefficient for Li (basaltic liquid/plagioclase) was measured to be about 2.
NASA Astrophysics Data System (ADS)
Bechtel, H. A.; Allen, C.; Bajt, S.; Borg, J.; Brenker, F.; Bridges, J.; Brownlee, D. E.; Burchell, M.; Burghammer, M.; Butterworth, A. L.; Cloetens, P.; Davis, A. M.; Floss, C.; Flynn, G. J.; Frank, D.; Gainsforth, Z.; Grun, E.; Heck, P. R.; Hillier, J. K.; Hoppe, P.; Howard, L.; Huss, G. R.; Huth, J.; Kearsley, A.; King, A. J.; Lai, B.; Leitner, J.; Lemelle, L.; Leroux, H.; Nittler, L. R.; Ogliore, R. C.; Postberg, F.; Price, M. C.; Sandford, S. A.; Sans Tresseras, J. A.; Schmitz, S.; Schoonjans, T.; Silversmit, G.; Simionovici, A.; Srama, R.; Stadermann, F. J.; Stephan, T.; Stodolna, J.; Stroud, R. M.; Sutton, S. R.; Toucoulou, R.; Trieloff, M.; Tsou, P.; Tsuchiyama, A.; Tyliczszak, T.; Vekemans, B.; Vincze, L.; Westphal, A. J.; Zolensky, M. E.; 29,000 Stardust@Home Dusters
2011-03-01
More than 20 aerogel keystones, many of which contained candidates for interstellar dust, were extracted from the Stardust interstellar dust collector and examined with synchrotron FTIR spectromicroscopy.
Wille, G; Lerouge, C; Schmidt, U
2018-01-16
In cassiterite, tin is associated with metals (titanium, niobium, tantalum, indium, tungsten, iron, manganese, mercury). Knowledge of mineral chemistry and trace-element distribution is essential for: the understanding of ore formation, the exploration phase, the feasibility of ore treatment, and disposal/treatment of tailings after the exploitation phase. However, the availability of analytical methods make these characterisations difficult. We present a multitechnical approach to chemical and structural data that includes scanning electron microscopy (SEM)-based imaging and microanalysis techniques such as: secondary and backscattered electrons, cathodoluminescence (CL), electron probe microanalyser (EPMA), electron backscattered diffraction (EBSD) and confocal Raman-imaging integrated in a SEM (RISE). The presented results show the complementarity of the used analytical techniques. SEM, CL, EBSD, EPMA provide information from the interaction of an electron beam with minerals, leading to atomistic information about their composition, whereas RISE, Raman spectroscopy and imaging completes the studies with information about molecular vibrations, which are sensitive to structural modifications of the minerals. The correlation of Raman bands with the presence/absence of Nb, Ta, Fe (heterovalent substitution) and Ti (homovalent substitution) is established at a submicrometric scale. Combination of the different techniques makes it possible to establish a direct link between chemical and crystallographic data of cassiterite. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.
NASA Astrophysics Data System (ADS)
Crummy, J. M.; Savov, I. P.; Morgan, D. J.; Wilson, M.; Loughlin, S.; Navarro-Ochoa, C.
2012-12-01
Volcán de Colima in western Mexico explosively erupts basaltic to high-silica andesitic magmas. Detailed petrological and geochemical analyses of Holocene tephra fallout deposits reveal two distinct magma types: I. typical calc-alkaline series magmas; and II. mixed calc-alkaline - alkaline magmas. Group I magmas comprise basalt to high-silica andesite (50.7 to 60.4 wt.% SiO2) and typically contain phenocrysts of plagioclase + clinopyroxene + orthopyroxene + Fe-Ti oxides ± hornblende ± olivine. Crystallinity varies from 10-25 vol.% dominated by plagioclase in a groundmass comprising highly vesiculated glass with abundant microlites. Back-scatter electron (BSE) microscope images together with electron microprobe analyses (EPMA) reveal complex zoning patterns and compositional variations in plagioclase and pyroxene phenocrysts. Large scale resorption events with dissolution surfaces cross-cutting multiple growth zones, combined with large steps in An content of up to 20 mol.% in plagioclase, and Mg# varying from 0.74 to 0.86 in clinopyroxene and orthopyroxene, indicates destabilisation and recrystallisation in a more mafic melt: increases in Cr coincident with step increases in Mg# reveal mafic magma recharge. Many plagioclase and pyroxene phenocrysts record multiple magma recharge events; while small-scale oscillations reveal compositional fluctuations as a result of decompression and degassing. Group II magmas comprise basalt to basaltic-andesite (48.3 to 57.5 wt.% SiO2) and contain 10-15 vol.% crystals comprising clinopyroxene + olivine + phlogopite + plagioclase + Fe-Ti oxides ± hornblende ± orthopyroxene. The groundmass comprises highly vesiculated glass with abundant microlites of the same mineral phases. Clinopyroxene phenocrysts have magnesian cores (Mg# 0.88-0.89) that display strong dissolution with clear resorption and recrystallisation. EPMA analyses reveal large compositional differences with the surrounding growth zone (Mg# 0.80) indicating recrystallisation and re-equilibration within a compositionally different melt. This composition of the clinopyroxene is similar to that of the Group I magmas. Whole-rock geochemical and Sr and Nd isotopic analyses reveal strong trends in the Group II magmas towards the composition of monogenetic cinder cones composed of phlogopite-bearing alkaline lamprophyre situated to the north of Volcán de Colima. The alkaline magmas are thought to have formed from partial melting of metasomatically enriched veins within the lithospheric mantle. We suggest the high Mg clinopyroxene cores of the Group II magmas crystallised from such alkaline melts, which then mixed with the parental mantle-derived melts of the Group I magmas. Geothermometry and hygrometry based on mineral-mineral and mineral-melt equilibria reveal no correlation between variations in eruption temperature (930-1000°C) and magmatic H2O content (3-6 wt.%) with magma composition. This implies magma composition and volatile content are not controlling the highly explosive mafic and intermediate eruptions at Volcán de Colima, but rather, are driven by very fast ascent rates from source to surface.
The study of voids in the AuAl thin-film system using the nuclear microprobe
NASA Astrophysics Data System (ADS)
de Waal, H. S.; Pretorius, R.; Prozesky, V. M.; Churms, C. L.
1997-07-01
A Nuclear Microprobe (NMP) was used to study void formation in thin film gold-aluminium systems. Microprobe Rutherford Backscattering Spectrometry (μRBS) was utilised to effectively obtain a three-dimensional picture of the void structure on the scale of a few nanometers in the depth dimension and a few microns in the in-plane dimension. This study illustrates the usefulness of the NMP in the study of materials and specifically thin-film structures.
In vivo monitoring of nanosphere onsite delivery using fiber optic microprobe
NASA Astrophysics Data System (ADS)
Lo, Leu-Wei; Yang, Chung-Shi
2005-02-01
To recognize the information of ischemia-induced blood vessel permeability would be valuable to formulate the drugs for optimal local delivery, we constructed an implantable needle type fiber-optic microprobe for the monitoring of in vivo fluorescent substances in anesthetized rats. This fiber-optic microprobe was composed of coaxial optical fibers and catheterized using a thin wall tubing of stainless steel (~400 um O.D. and ~300 um I.D.). The central fiber, with 100 um core diameter and 20 um cladding, coated with a 30 um layer of gold, was surrounded by 10 fibers with 50 um cores. The central fiber carried the light from the 488 nm Argon laser to the tissue while the surrounding fibers collected the emitted fluorescence to the detector. When the fiber-optic microprobe was placed in the solutions containing various concentrations of fluorescent nanospheres (20 nm), either with or without 10% lipofundin as optical phantom, nanosphere concentration-dependent responses of the fluorescence intensity were observed. The microprobe was then implanted into the liver and the brain of anesthetized rats to monitor the in situ extravasation of pre-administered fluorescent nanospheres from vasculature following the ischemic insults. Both the hepatic and cerebral ischemic insults showed immediate increases of the extracellular 20 nm fluorescent nanospheres. The implantable fiber-optic microprobe constructed in present study provides itself as a minimally-invasive technique capable of investigating the vascular permeability for in vivo nanosphere delivery in both ischemic liver and brain.
Analysis of biological materials using a nuclear microprobe
NASA Astrophysics Data System (ADS)
Mulware, Stephen Juma
The use of nuclear microprobe techniques including: Particle induced x-ray emission (PIXE) and Rutherford backscattering spectrometry (RBS) for elemental analysis and quantitative elemental imaging of biological samples is especially useful in biological and biomedical research because of its high sensitivity for physiologically important trace elements or toxic heavy metals. The nuclear microprobe of the Ion Beam Modification and Analysis Laboratory (IBMAL) has been used to study the enhancement in metal uptake of two different plants. The roots of corn (Zea mays) have been analyzed to study the enhancement of iron uptake by adding Fe (II) or Fe(III) of different concentrations to the germinating medium of the seeds. The Fe uptake enhancement effect produced by lacing the germinating medium with carbon nanotubes has also been investigated. The aim of this investigation is to ensure not only high crop yield but also Fe-rich food products especially from calcareous soil which covers 30% of world's agricultural land. The result will help reduce iron deficiency anemia, which has been identified as the leading nutritional disorder especially in developing countries by the World Health Organization. For the second plant, Mexican marigold (Tagetes erecta ), the effect of an arbuscular mycorrhizal fungi (Glomus intraradices ) for the improvement of lead phytoremediation of lead contaminated soil has been investigated. Phytoremediation provides an environmentally safe technique of removing toxic heavy metals (like lead), which can find their way into human food, from lands contaminated by human activities like mining or by natural disasters like earthquakes. The roots of Mexican marigold have been analyzed to study the role of arbuscular mycorrhizal fungi in enhancement of lead uptake from the contaminated rhizosphere.
Geochemistry and origin of regional dolomites. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson, G.N.; Meyers, W.J.
1995-05-01
The main goal of our research on dolomites has been to better understand the composition of the fluids and processes of the fluid-rock interaction responsible for the formation of massive dolostones occurring over regional scales within sedimentary sequences. Understanding the timing of dolomitization, the fluids responsible for the dolomitization and the timing of the development of porosity has major economic ramifications in that dolomites are major oil reservoirs often having better reservoir properties than associated limestones. Our approach has been to apply trace element, major element, petrographic, crystallographic, stable isotope and radiogenic isotope systems to test models for the originsmore » of dolomites and to give information that may allow us to develop new models. Fluid compositions and processes are evaluated through the use of numerical models which we have developed showing the simultaneous evolution of the trace element and isotope systems during dolomitization. Our research has included the application of B, O, C, Sr, Nd and Pb isotope systematics and the trace elements Mn, Fe St, rare earth elements, Rb, Ba, U, Th, Pb, Zn, Na, Cl, F and SO{sub 4}{sup 2-}. Analyses are possible on individual cements or dolomite types using micro-sampling or microprobe techniques. The microprobe techniques used include synchrotron X-ray microprobe analysis at Brookhaven National Laboratory or electron microprobe at Stony Brook. Lack of a modern analogue for ancient massive dolostones has limited the application of the uniformitarian concept to developing models for the ancient regional dolostones. In addition it has not been possible to synthesize dolomite in the laboratory under conditions similar to the sedimentary or diagenetic possible environments in which the dolomites must have formed.« less
Scanning Auger Microprobe and atomic absorption studies of lunar volcanic volatiles
NASA Technical Reports Server (NTRS)
Cirlin, E. H.; Housley, R. M.
1979-01-01
Results on lunar volatile transport processes have been obtained by studying green and brown glass droplets, orange and black core tube samples and the surface sample 74241 with the Scanning Auger Microprobe (SAM) and by Flameless Atomic Absorption Analysis (FLAA). SAM analyses show that the most dominant volatiles in the top few atomic layers of droplets are Zn and S, confirming that the surface Zn and S are good indicators of pyroclastic origin, and they are not entirely present as ZnS. In addition, FLAA thermal release profiles show that almost all the Zn and Cd are on grain surfaces, indicating that Zn and Cd were completely outgassed from lava fountain products during the volcanic eruption, were recondensed during or after the eruptions, and are thus present as surface coating.
Progress toward accurate high spatial resolution actinide analysis by EPMA
NASA Astrophysics Data System (ADS)
Jercinovic, M. J.; Allaz, J. M.; Williams, M. L.
2010-12-01
High precision, high spatial resolution EPMA of actinides is a significant issue for geochronology, resource geochemistry, and studies involving the nuclear fuel cycle. Particular interest focuses on understanding of the behavior of Th and U in the growth and breakdown reactions relevant to actinide-bearing phases (monazite, zircon, thorite, allanite, etc.), and geochemical fractionation processes involving Th and U in fluid interactions. Unfortunately, the measurement of minor and trace concentrations of U in the presence of major concentrations of Th and/or REEs is particularly problematic, especially in complexly zoned phases with large compositional variation on the micro or nanoscale - spatial resolutions now accessible with modern instruments. Sub-micron, high precision compositional analysis of minor components is feasible in very high Z phases where scattering is limited at lower kV (15kV or less) and where the beam diameter can be kept below 400nm at high current (e.g. 200-500nA). High collection efficiency spectrometers and high performance electron optics in EPMA now allow the use of lower overvoltage through an exceptional range in beam current, facilitating higher spatial resolution quantitative analysis. The U LIII edge at 17.2 kV precludes L-series analysis at low kV (high spatial resolution), requiring careful measurements of the actinide M series. Also, U-La detection (wavelength = 0.9A) requires the use of LiF (220) or (420), not generally available on most instruments. Strong peak overlaps of Th on U make highly accurate interference correction mandatory, with problems compounded by the ThMIV and ThMV absorption edges affecting peak, background, and interference calibration measurements (especially the interference of the Th M line family on UMb). Complex REE bearing phases such as monazite, zircon, and allanite have particularly complex interference issues due to multiple peak and background overlaps from elements present in the activation volume, as well as interferences from fluorescence at a distance from adjacent phases or distinct compositional domains in the same phase. Interference corrections for elements detected during boundary fluorescence are further complicated by X-ray focusing geometry considerations. Additional complications arise from the high current densities required for high spatial resolution and high count precision, such as fluctuations in internal charge distribution and peak shape changes as satellite production efficiency varies from calibration to analysis. No flawless method has yet emerged. Extreme care in interference corrections, especially where multiple and sometime mutual overlaps are present, and maximum care (and precision) in background characterization to account for interferences and curvature (e.g., WDS scan or multipoint regression), are crucial developments. Calibration curves from multiple peak and interference calibration measurements at different concentrations, and iterative software methodologies for incorporating absorption edge effects, and non-linearities in interference corrections due to peak shape changes and off-axis X-ray defocussing during boundary fluorescence at a distance, are directions with significant potential.
Bacon, Charles R.; Grove, Marty; Vazquez, Jorge A.; Coble, Matthew A.
2012-01-01
Answers to many questions in Earth science require chemical analysis of minute volumes of minerals, volcanic glass, or biological materials. Secondary Ion Mass Spectrometry (SIMS) is an extremely sensitive analytical method in which a 5–30 micrometer diameter "primary" beam of charged particles (ions) is focused on a region of a solid specimen to sputter secondary ions from 1–5 nanograms of the sample under high vacuum. The elemental abundances and isotopic ratios of these secondary ions are determined with a mass spectrometer. These results can be used for geochronology to determine the age of a region within a crystal thousands to billions of years old or to precisely measure trace abundances of chemical elements at concentrations as low as parts per billion. A partnership of the U.S. Geological Survey and the Stanford University School of Earth Sciences operates a large SIMS instrument, the Sensitive High-Resolution Ion Microprobe with Reverse Geometry (SHRIMP–RG) on the Stanford campus.
NASA Astrophysics Data System (ADS)
Kawabata, Shunsuke; Kada, Wataru; Parajuli, Raj Kumar; Matsubara, Yoshinori; Sakai, Makoto; Miura, Kenta; Satoh, Takahiro; Koka, Masashi; Yamada, Naoto; Kamiya, Tomihiro; Hanaizumi, Osamu
2016-06-01
Micrometer-scale responses of radio-photoluminescence (RPL) glass dosimeters to focused ionized particle radiation were evaluated by combining ion-beam-induced luminescence (IBIL) and proton beam writing (PBW) using a 3 MeV focused proton microbeam. RPL phosphate glass dosimeters doped with ionic Ag or Cu activators at concentrations of 0.2 and 0.1% were fabricated, and their scintillation intensities were evaluated by IBIL spectroscopy under a PBW micropatterning condition. Compared with the Ag-doped dosimeter, the Cu-doped dosimeter was more tolerant of the radiation, while the peak intensity of its luminescence was lower, under the precise dose control of the proton microprobe. Proton-irradiated areas were successfully recorded using these dosimeters and their RPL centers were visualized under 375 nm ultraviolet light. The reproduction of the irradiated region by post-RPL imaging suggests that precise estimation of irradiation dose using microdosimeters can be accomplished by optimizing RPL glass dosimeters for various proton microprobe applications in organic material analysis and in micrometer-scale material modifications.
Phase diagram and electrical behavior of silicon-rich iridium silicide compounds
NASA Technical Reports Server (NTRS)
Allevato, C. E.; Vining, Cronin B.
1992-01-01
The iridium-silicon phase diagram on the silicon-rich side was investigated by means of X-ray powder diffraction, density, differential thermal analysis, metalography, microprobe analysis, and electrical resistivity. Attempts were made to prepare eight previously reported silicon-rich iridium silicide compounds by arc melting and Bridgman-like growth. However, microprobe analysis identified only four distinct compositions: IrSi, Ir3Si4, Ir3Si5 and IrSi sub about 3. The existence of Ir4Si5 could not be confirmed in this study, even though the crystal structure has been previously reported. Differential thermal analysis (DTA) in conjunction with X-ray powder diffraction confirm polymorphism in IrSi sub about 3, determined to have orthorhombic and monoclinic unit cells in the high and low temperature forms. A eutectic composition alloy of 83 +/- 1 atomic percent silicon was observed between IrSi sub about 3 and silicon. Ir3Si4 exhibits distinct metallic behavior while Ir3Si5 is semiconducting. Both and IrSi and IrSi sub about 3 exhibit nearly temperature independent electrical resistivities on the order of 5-10 x 10 exp -6 ohms-m.
Stevenson, Thomas; Doschak, Michael
2014-01-01
The aim of this animal study was to develop a model of orthodontic tooth movement using a microimplant as a TSAD in rodents. A finite element model of the TSAD in alveolar bone was built using μCT images of rat maxilla to determine the von Mises stresses and displacement in the alveolar bone surrounding the TSAD. For in vivo validation of the FE model, Sprague-Dawley rats (n = 25) were used and a Stryker 1.2 × 3 mm microimplant was inserted in the right maxilla and used to protract the right first permanent molar using a NiTi closed coil spring. Tooth movement measurements were taken at baseline, 4 and 8 weeks. At 8 weeks, animals were euthanized and tissues were analyzed by histology and EPMA. FE modeling showed maximum von Mises stress of 45 Mpa near the apex of TSAD but the average von Mises stress was under 25 Mpa. Appreciable tooth movement of 0.62 ± 0.04 mm at 4 weeks and 1.99 ± 0.14 mm at 8 weeks was obtained. Histological and EPMA results demonstrated no active bone remodeling around the TSAD at 8 weeks depicting good secondary stability. This study provided evidence that protracted tooth movement is achieved in small animals using TSADs. PMID:25295060
µ-XANES AND µ-XRF INVESTIGATIONS OF METAL BINDING MECHANISMS IN BIOSOLIDS
Micro-X-ray fluorescence (µ-XRF) microprobe analysis and micro-X-ray absorption near edge spectroscopy (µ-XANES) were employed to identify Fe and Mn phases and their association with selected toxic elements in two biosolids (limed composted and Nu-Earth) containing low ...
NASA Technical Reports Server (NTRS)
Fournelle, John; Carpenter, Paul
2006-01-01
Modem electron microprobe systems have become increasingly sophisticated. These systems utilize either UNIX or PC computer systems for measurement, automation, and data reduction. These systems have undergone major improvements in processing, storage, display, and communications, due to increased capabilities of hardware and software. Instrument specifications are typically utilized at the time of purchase and concentrate on hardware performance. The microanalysis community includes analysts, researchers, software developers, and manufacturers, who could benefit from exchange of ideas and the ultimate development of core community specifications (CCS) for hardware and software components of microprobe instrumentation and operating systems.
A thermal microprobe fabricated with wafer-stage processing
NASA Astrophysics Data System (ADS)
Zhang, Yongxia; Zhang, Yanwei; Blaser, Juliana; Sriram, T. S.; Enver, Ahsan; Marcus, R. B.
1998-05-01
A thermal microprobe has been designed and built for high resolution temperature sensing. The thermal sensor is a thin-film thermocouple junction at the tip of an atomic force microprobe (AFM) silicon probe needle. Only wafer-stage processing steps are used for the fabrication. For high resolution temperature sensing it is essential that the junction be confined to a short distance at the AFM tip. This confinement is achieved by a controlled photoresist coating process. Experiment prototypes have been made with an Au/Pd junction confined to within 0.5 μm of the tip, with the two metals separated elsewhere by a thin insulating oxide layer. Processing begins with double-polished, n-type, 4 in. diameter, 300-μm-thick silicon wafers. Atomically sharp probe tips are formed by a combination of dry and wet chemical etching, and oxidation sharpening. The metal layers are sputtering deposited and the cantilevers are released by a combination of KOH and dry etching. A resistively heated calibration device was made for temperature calibration of the thermal microprobe over the temperature range 25-110 °C. Over this range the thermal outputs of two microprobes are 4.5 and 5.6 μV/K and is linear. Thermal and topographical images are also obtained from a heated tungsten thin film fuse.
Fine-scale traverses in cumulate rocks, Stillwater Complex: A lunar analogue study
NASA Technical Reports Server (NTRS)
Elthon, Donald
1988-01-01
The objective was to document finite-scale compositional variations in cumulate rocks from the Stillwater Complex in Montana and to interpret these data in the context of planetary magma fractionation processes such as those operative during the formation of the Earth's Moon. This research problem involved collecting samples in the Stillwater Complex and analyzing them by electron microprobe, X-ray fluorescence (XRF), and instrumental neutron activation analysis (INAA). The electron microprobe is used to determine the compositions of cumulus and intercumulus phases in the rocks, the XRF is used to determine the bulk-rock major element and trace element (Y, Sr, Rb, Zr, Ni, and Cr) abundances, and the INAA lab. is used to determine the trace element (Sc, Co, Cr, Ni, Ta, Hf, U, Th, and the REE) abundances of mineral separates and bulk rocks.
Preparation and Thermoelectric Properties of Semiconcucting Zn(sub 4) Sb(sub 3)
NASA Technical Reports Server (NTRS)
Caillat, T.; Fleurial, J. P.; Barshchevsky, A.
1996-01-01
Hot-pressed samples fothe semiconducting compound Beta - Zn(sub 4) Sb(sub 3) were prepared and characterized by x-ray and microprobe analysis. Some physical properties of Beta - Zn(sub 4) Sb(sub 3) were determined and its thermoelectric properties measured between room temperature and 650K.
NASA Technical Reports Server (NTRS)
Flynn, G. J.; Sutton, S. R.; Horz, F.
2000-01-01
Using in-situ x-ray fluorescence, we determined the Cr/Fe, Mn/Fe and Ni/Fe of a particle captured in aerogel on MIR are approximately chondritic, indicating an extraterrestrial origin. Impurity of the aerogel precluded determining the Cu and Zn.
NASA Astrophysics Data System (ADS)
Awadalla, Gamal S.
2010-07-01
Phosphorites in Egypt occur in the Eastern Desert, the Nile Valley and the Western Desert at Abu Tartur area and present in Duwi Formation as a part of the Middle Eastern to North African phosphogenic province of Late Cretaceous to Paleogene age (Campanian-Maastrichtian). The Maghrabi-Liffiya phosphorite sector is considered as the most important phosphorite deposits in the Abu Tartur area due to its large reserve thickness and high-grade of lower phosphorite bed beside high content of REE. Back scattered electron (BSE) images show framboidal pyrite filling the pores of the phosphatic grains, suggesting diagenetic reducing conditions during phosphorites formation. Electron Probe Micro Analyzer (EPMA) chemical mapping was conducted to examine the variation and distributions of selected elements (P, F, La, Fe, Yb, Si, Ce, W, Eu, S, Ca, Y and Er) within the shark teeth, coprolites and bone fragments. In the teeth W, S, Fe are concentrated along the axis of the teeth, the bone fragments show high concentration of W, Yb, Er and Eu, whereas coprolites are nearly homogenous in composition contains S, Er with some Si as micro-inclusions. Fluorapatite is considered as main phosphate mineral whereas pyrite occurs as pore-filling within the phosphatic grains and cement materials. Maghrabi-Liffiya samples show a wide range in the P 2O 5 content, between 19.8 wt.% and 29.8 wt.% with an average of 24.6 wt.% and shows low U content ranging from 15 ppm to 34 ppm with an average of 22 ppm. The total REE content in nine samples representing the Maghrabi-Liffiya ranges from 519 to 1139 ppm with an average of about 879 ppm. The calculation of LREE (La-Gd) show indeed a marked enrichment relative to the HREE (Tb-Lu) where LREE/HREE ratio attains 8.4 indicating a strong fractionation between the LREE and HREE. Chondrite-normalized REE patterns of the studied phosphorite samples show a negative Eu anomaly.
Carbonate Mineral Assemblages as Inclusions in Yakutian Diamonds: TEM Verifications
NASA Astrophysics Data System (ADS)
Logvinova, A. M.; Wirth, R.; Sobolev, N. V.; Taylor, L. A.
2014-12-01
Carbonate mineral inclusions are quite rare in diamonds from the upper mantle, but are evidence for a carbonate abundance in the mantle. It is believed that such carbonatitic inclusions originated from high-density fluids (HDFs) that were enclosed in diamond during its growth. Using TEM and EPMA, several kinds of carbonate inclusions have been identified in Yakutian diamonds : aragonite, dolomite, magnesite, Ba-, Sr-, and Fe-rich carbonates. Most of them are represented by multi-phase inclusions of various chemically distinct carbonates, rich in Ca, Mg, and K and associated with minor amounts of silicate, oxide, saline, and volatile phases. Volatiles, leaving some porosity, played a significant role in the diamond growth. A single crystal of aragonite (60μm) is herein reported for the first time. This inclusion is located in the center of a diamond from the Komsomolskaya pipe. Careful CL imaging reveals the total absence of cracks around the aragonite inclusion - i.e., closed system. This inclusion has been identified by X-ray diffraction and microprobe analysis. At temperatures above 1000 0C, aragonite is only stable at high pressures of 5-6 GPa. Inside this aragonite, we observed nanocrystalline inclusions of titanite, Ni-rich sulfide, magnetite, water-bearing Mg-silicate, and fluid bubbles. Dolomite is common in carbonate multi-phase inclusions in diamonds from the Internatsionalnaya, Yubileinaya, and Udachnaya kimberlite pipes. Alluvial diamonds of the northeastern Siberian Platform are divided into two groups based on the composition of HDFs: 1) Mg-rich multi-phase inclusions (60% magnesite + dolomite + Fe-spinel + Ti-silicate + fluid bubbles); and 2) Ca-rich multi-phase inclusions (Ca,Ba-, Ca,Sr-, Ca,Fe-carbonates + Ti-silicate + Ba-apatite + fluid bubbles). High-density fluids also contain K. Volatiles in the fluid bubbles are represented by water, Cl, F, S, CO2, CH4, and heavy hydrocarbons. Origin of the second group of HDFs may be related to the non-silicate carbonatitic melt. We consider the primary hydrous, Сa-rich and Mg-poor carbonate melts as having formed in subducted oceanic crust. Variations of carbonate-inclusion compositions among diamonds indicate the variability in the source media during the formation of diamond and may be the result of metasomatic interaction with host rocks.
Aqueous alteration and brecciation in Bells, an unusual, saponite-bearing, CM chondrite
NASA Astrophysics Data System (ADS)
Brearley, Adrian J.
1995-06-01
The petrological and mineralogical characteristics of the unusual CM2 chondrite, Bells, have been investigated in detail by scanning electron microscopy (SEM), electron microprobe analysis (EPMA), and transmission electron microscopy (TEM). Bells is a highly brecciated chondrite which contains few intact chondrules, a very low abundance of refractory inclusions, and is notable in having an unusually high abundance of magnetite, which is disseminated throughout the fine-grained matrix. Fragmental olivines and pyroxenes are common and, based on compositional data, appear to have been derived from chondrules as a result of extensive brecciation. The fine-grained mineralogy of matrix in Bells differs considerably from other CM chondrites and has closer affinities to matrix in CI chondrites. The dominant phases are fine-grained saponite interlayered with serpentine, and phases such as tochilinite and cronstedtite, which are typical of CM chondrite matrices, are entirely absent. Pentlandite, pyrrhotite, magnetite, anhydrite, calcite, and rare Ti-oxides also occur as accessory phases. Based on its oxygen and noble gas isotopic compositions (Zadnik, 1985; Rowe et al., 1994), Bells can be considered to be a CM2 chondrite, although its bulk composition shows some departures from the typical range exhibited by this group. However, these variations in bulk chemistry are entirely consistent with the observed mineralogy of Bells. The unusual fine-grained mineralogy of Bells matrix can be reasonably attributed to the combined effects of aqueous alteration and advanced brecciation in a parent body environment. Extensive brecciation has assisted aqueous alteration by reducing chondrules and mineral grains into progressively smaller grains with high surface areas, which are more susceptible to dissolution reactions involving aqueous fluids. This has resulted in the preferential dissolution of Fe-rich chondrule olivines, which are now completely absent in Bells although present in other CM chondrites. The formation of saponite in Bells probably resulted from the dissolution of relatively silica-rich phases, such as pyroxene and olivine, that were derived from chondrules. The result of such dissolution reactions would be to increase the activity of silica in the fluid phase, at least on a localized scale, stabilizing saponite in preference to serpentine. An increase in aSiO 2 would also have destabilized preexisting cronstedtite which may have reacted to form magnetite and MgFe serpentine under conditions of constant ƒO 2 .
[Progress in the application of laser ablation ICP-MS to surface microanalysis in material science].
Zhang, Yong; Jia, Yun-hai; Chen, Ji-wen; Shen, Xue-jing; Liu, Ying; Zhao, Leiz; Li, Dong-ling; Hang, Peng-cheng; Zhao, Zhen; Fan, Wan-lun; Wang, Hai-zhou
2014-08-01
In the present paper, apparatus and theory of surface analysis is introduced, and the progress in the application of laser ablation ICP-MS to microanalysis in ferrous, nonferrous and semiconductor field is reviewed in detail. Compared with traditional surface analytical tools, such as SEM/EDS (scanning electron microscopy/energy dispersive spectrum), EPMA (electron probe microanalysis analysis), AES (auger energy spectrum), etc. the advantage is little or no sample preparation, adjustable spatial resolution according to analytical demand, multi-element analysis and high sensitivity. It is now a powerful complementary method to traditional surface analytical tool. With the development of LA-ICP-MS technology maturing, more and more analytical workers will use this powerful tool in the future, and LA-ICP-MS will be a super star in elemental analysis field just like LIBS (Laser-induced breakdown spectroscopy).
NASA Astrophysics Data System (ADS)
Burton, A. S.; Berger, E. L.; Locke, D. R.; Lewis, E. K.; Moore, J. F.
2018-04-01
Laser microprobe of surfaces utilizing a two laser setup whereby the desorption laser threshold is lowered below ionization, and the resulting neutral plume is examined using 157nm Vacuum Ultraviolet laser light for mass spec surface mapping.
A study of GeV proton microprobe lens system designs with normal magnetic quadrupole
NASA Astrophysics Data System (ADS)
Dou, Yanxin; Jamieson, David N.; Liu, Jianli; Li, Liyi
2017-12-01
High energy proton irradiation has many applications to the study of radiation effects in semiconductor devices, biological tissues, proton tomography and space science. Many applications could be extended and enhanced by use of a high energy proton microprobe. However the design of a GeV proton microprobe must address significant challenges including beam collimation that minimizes ion scattering and the probe forming lens system for ions of high rigidity. Here we address the probe forming lens system design subject to several practical constraints including the use of non-superconducting normal magnetic quadrupole lenses, the ability to focus 1-5 GeV protons into 5 μm diameter microprobes and compatibility with the beam parameters of GeV proton accelerators. We show that 2, 3 and 4 lens systems of lenses with effective lengths up to 0.63 m can be employed for this purpose with a demagnification up to 58 and investigate the probe size limitations from beam brightness, lens aberrations and machining precision.
A microprobe for parallel optical and electrical recordings from single neurons in vivo.
LeChasseur, Yoan; Dufour, Suzie; Lavertu, Guillaume; Bories, Cyril; Deschênes, Martin; Vallée, Réal; De Koninck, Yves
2011-04-01
Recording electrical activity from identified neurons in intact tissue is key to understanding their role in information processing. Recent fluorescence labeling techniques have opened new possibilities to combine electrophysiological recording with optical detection of individual neurons deep in brain tissue. For this purpose we developed dual-core fiberoptics-based microprobes, with an optical core to locally excite and collect fluorescence, and an electrolyte-filled hollow core for extracellular single unit electrophysiology. This design provides microprobes with tips < 10 μm, enabling analyses with single-cell optical resolution. We demonstrate combined electrical and optical detection of single fluorescent neurons in rats and mice. We combined electrical recordings and optical Ca²(+) measurements from single thalamic relay neurons in rats, and achieved detection and activation of single channelrhodopsin-expressing neurons in Thy1::ChR2-YFP transgenic mice. The microprobe expands possibilities for in vivo electrophysiological recording, providing parallel access to single-cell optical monitoring and control.
Maher, K.; Wooden, J.L.; Paces, J.B.; Miller, D.M.
2007-01-01
We used the sensitive high-resolution ion microprobe reverse-geometry (SHRIMP-RG) to date pedogenic opal using the 230Th-U system. Due to the high-spatial resolution of an ion microprobe (typically 30 ??m), regions of pure opal within a sample can be targeted and detrital material can be avoided. In addition, because the technique is non-destructive, the sample can be preserved for other types of analyses including electron microprobe or other stable isotope or trace element ion microprobe measurements. The technique is limited to material with U concentrations greater than ???50 ppm. However, the high spatial resolution, small sample requirements, and the ability to avoid detrital material make this technique a suitable technique for dating many Pleistocene deposits formed in semi-arid environments. To determine the versatility of the method, samples from several different deposits were analyzed, including silica-rich pebble coatings from pedogenic carbonate horizons, a siliceous sinter deposit, and opaline silica deposited as a spring mound. U concentrations for 30-??m-diameter spots ranged from 50 to 1000 ppm in these types of materials. The 230Th/232Th activity ratios also ranged from ???100 to 106, eliminating the need for detrital Th corrections that reduce the precision of traditional U-Th ages for many milligram- and larger-sized samples. In pedogenic material, layers of high-U opal (ca. 500 ppm) are commonly juxtaposed next to layers of calcite with much lower U concentrations (1-2 ppm). If these types of samples are not analyzed using a technique with the appropriate spatial resolution, the ages may be strongly biased towards the age of the opal. Comparison with standard TIMS (Thermal Ionization Mass Spectrometry) measurements from separate microdrilled samples suggests that although the analytical precision of the ion microprobe (SHRIMP-RG) measurements is less than TIMS, the high spatial resolution results in better accuracy in the age determination for finely layered or complex deposits. The ion microprobe approach also may be useful for pre-screening samples to determine the age and degree of post-depositional alteration, analyzing finely layered samples or samples with complex growth histories, and obtaining simultaneous measurements of trace elements.
Eid, Ashraf A.; Komabayashi, Takashi; Watanabe, Etsuko; Shiraishi, Takanobu; Watanabe, Ikuya
2012-01-01
Introduction Mineral trioxide aggregate (MTA) has been used successfully for perforation repair, vital pulpotomies, and direct pulp capping. However, little is known about the interactions between MTA and glass ionomer cement (GIC) in final restorations. In this study, 2 null hypotheses were tested: (1) GIC placement time does not affect the MTA-GIC structural interface and hardness and (2) moisture does not affect the MTA-GIC structural interface and hardness. Methods Fifty cylinders were half filled with MTA and divided into 5 groups. The other half was filled with resin-modified GIC either immediately after MTA placement or after 1 or 7 days of temporization in the presence or absence of a wet cotton pellet. The specimens were then sectioned, carbon coated, and examined using a scanning electron microscope and an electron probe micro-analyzer (SEM-EPMA) for interfacial adaptation, gap formation, and elemental analysis. The Vickers hardness numbers of the interfacial MTA were recorded 24 hours after GIC placement and 8 days after MTA placement and analyzed using the analysis of variance test. Results Hardness testing 24 hours after GIC placement revealed a significant increase in hardness with an increase of temporization time but not with a change of moisture conditions (P < .05). Hardness testing 8 days after MTA placement indicated no significant differences among groups. SEM-EPMA showed interfacial adaptation to improve with temporization time and moisture. Observed changes were limited to the outermost layer of MTA. The 2 null hypotheses were not rejected. Conclusions GIC can be applied over freshly mixed MTA with minimal effects on the MTA, which seemed to decrease with time. PMID:22794220
Installation and performance of the Budapest Hamburg proton microprobe
NASA Astrophysics Data System (ADS)
Kovács, I.; Kocsonya, A.; Kostka, P.; Szőkefalvi-Nagy, Z.; Schrang, K.; Krüger, A.; Niecke, M.
2005-04-01
A new scanning proton microprobe has been installed at the 5 MV Van de Graaff accelerator of the KFKI Research Institute for Particle and Nuclear Physics. It is the energy-upgraded version of the Hamburg proton microprobe dismantled in 2001. The probe forming system includes a pair of focusing quadrupoles and an additional quadrupole pair in front of it, which is applied to increase the proton beam divergence. The average probe size at 2.5 MeV proton energy is 2.2 μm × 1.1 μm. The test results on stability and the preliminary experiments on cement corrosion and fish otoliths are also presented.
High-speed microprobe for roughness measurements in high-aspect-ratio microstructures
NASA Astrophysics Data System (ADS)
Doering, Lutz; Brand, Uwe; Bütefisch, Sebastian; Ahbe, Thomas; Weimann, Thomas; Peiner, Erwin; Frank, Thomas
2017-03-01
Cantilever-type silicon microprobes with an integrated tip and a piezoresistive signal read out have successfully proven to bridge the gap between scanning force microscopy and stylus profilometry. Roughness measurements in high-aspect-ratio microstructures (HARMS) with depths down to 5 mm and widths down to 50 µm have been demonstrated. To improve the scanning speed up to 15 mm s-1, the wear of the tip has to be reduced. The atomic layer deposition (ALD) technique with alumina (Al2O3) has been tested for this purpose. Repeated wear measurements with coated and uncoated microprobe cantilevers have been carried out on a roughness standard at a speed of 15 mm s-1. The tip shape and the wear have been measured using a new probing tip reference standard containing rectangular silicon grooves with widths from 0.3 µm to 3 µm. The penetration depth of the microprobe allows one to measure the wear of the tip as well as the tip width and the opening angle of the tip. The roughness parameters obtained on the roughness standard during wear experiments agree well with the reference values measured with a calibrated stylus instrument, nevertheless a small amount of wear still is observable. Further research is necessary in order to obtain wear resistant microprobe tips for non-destructive inspection of microstructures in industry and microform measurements, for example in injection nozzles.
NASA Astrophysics Data System (ADS)
McCarty, R. J.; Stebbins, J. F.
2015-12-01
This research seeks to constrain the crystallographic site preferences of aluminum in forsterite, clinoenstatite and periclase, mantle minerals in which this element is only found at low concentrations. Improved site preference information will help constrain thermodynamic descriptions of the substitution mechanisms, making them more useful to geobarometric and geothermometric techniques. Using high field magic angle spinning nuclear magnetic resonance (NMR) and electron probe microanalysis (EPMA), we constrain the site preferences of minor and trace amounts (2000 to 400 mol ppm) of aluminum in extremely pure synthetic forsterite, clinoenstatite and periclase. The primary challenge of this research is determining how much of each of the aluminum species observed by NMR in the bulk sample (abundances and coordinations) resides in the major synthesized mineral. In our samples, the aluminum partitions between small amounts (often <1%) of impurity phases with high aluminum concentrations, such as glass and accessory crystals, and the major, intended phase with low aluminum concentrations. We use EPMA composition maps to locate scarce impurity phases and EPMA point analyses to determine the aluminum concentrations in both the intended major phase and in the impurity phases. Long NMR acquisitions (several days) and careful subtraction of rotor background signals (present in even 'low-Al' zirconia rotor materials) are required to obtain adequate signal-to-noise ratios at such low concentrations. Ordered octahedral aluminum has been identified in forsterite, clinoenstatite, and periclase. Disordered 4, 5 and 6 coordinated aluminum species have also been observed, but it is still unclear if the disordered species are in the major mineral phases, the impurity phases or both.
In situ identification and X-ray imaging of microorganisms distribution on the Tatahouine meteorite
NASA Astrophysics Data System (ADS)
Lemelle, L.; Salomé, M.; Fialin, M.; Simionovici, A.; Gillet, Ph.
2004-10-01
Microorganisms were searched for among the complex microstructures observed on the surface of a fragment of the Tatahouine meteorite inherited from the Tunisian soil in which they were buried. In this view, the chemical compositions, particularly the nitrogen, phosphorus, and sulphur compositions, including the sulphur speciation, were investigated using scanning electron microscopy (SEM), electron probe microanalysis (EPMA) mapping, and scanning X-ray microscopy (SXM). A few 2-μm-thick filaments, partly covered by patches of calcite ensuring they were not deposited by a laboratory contamination, were observed by SEM. The EPMA maps show that the portions free of calcite of the filaments have low but constant contents of nitrogen, sulphur, and phosphorus. The SXM maps were recorded at 2473.5, 2478, and 2482.2 eV, which are respectively characteristic for amino acid linked sulphur, sulphite (SO32-), and sulphate (SO42-). The portions of the filaments detected by EPMA are also those that are enriched in amino acid linked sulphur. The calculated (N/S) elemental ratio is consistent with the one of the dehydrated Escherichia coli matter, contrary to the much lower (P/S) elemental ratio. In living cells, the bulk N and S elements are mainly located in large polymers by covalent bonds, whereas a significant amount of P belongs to small and reactive molecules. We thus can propose that the observed microstructures are dehydrated microorganisms, in which most of the elements that were composing the polymers were retained, whereas the small electrolytes and molecules were removed.
A versatile system for the rapid collection, handling and graphics analysis of multidimensional data
NASA Astrophysics Data System (ADS)
O'Brien, P. M.; Moloney, G.; O'Connor, A.; Legge, G. J. F.
1993-05-01
The aim of this work was to provide a versatile system for handling multiparameter data that may arise from a variety of experiments — nuclear, AMS, microprobe elemental analysis, 3D microtomography etc. Some of the most demanding requirements arise in the application of microprobes to quantitative elemental mapping and to microtomography. A system to handle data from such experiments had been under continuous development and use at MARC for the past 15 years. It has now been made adaptable to the needs of multiparameter (or single parameter) experiments in general. The original system has been rewritten, greatly expanded and made much more powerful and faster, by use of modern computer technology — a VME bus computer with a real time operating system and a RISC workstation running Unix and the X Window system. This provides the necessary (i) power, speed and versatility, (ii) expansion and updating capabilities (iii) standardisation and adaptability, (iv) coherent modular programming structures, (v) ability to interface to other programs and (vi) transparent operation with several levels, involving the use of menus, programmed function keys and powerful macro programming facilities.
Minkin, J.A.; Finkelman, R.B.; Thompson, C.L.; Chao, E.C.T.; Ruppert, L.F.; Blank, H.; Cecil, C.B.
1984-01-01
Optical and scanning electron microscope as well as electron and proton microprobe techniques have been used in a detailed investigation of the modes of occurrence of arsenic and selenium in pyrite in Upper Freeport coal from the Homer City area, Indiana County, Pennsylvania. Polished blocks were prepared from columnar samples of the coal bed to represent particular zones continuously from top to bottom. Initial selection of zones to be studied was based on chemical analysis of bench-channel samples. Microprobe data indicate that the highest concentrations of arsenic (as great as 1. 5 wt. %) are apparently in solid solution in pyrite within a limited stratigraphic interval of the coal bed. Smaller amounts of arsenic and selenium (concentrations up to approximately 0. 1 and 0. 2 wt. % respectively) were detected at isolated points within pyrite grains in various strata of the coal bed.
Nuclear microprobe imaging of gallium nitrate in cancer cells
NASA Astrophysics Data System (ADS)
Ortega, Richard; Suda, Asami; Devès, Guillaume
2003-09-01
Gallium nitrate is used in clinical oncology as treatment for hypercalcemia and for cancer that has spread to the bone. Its mechanism of antitumor action has not been fully elucidated yet. The knowledge of the intracellular distribution of anticancer drugs is of particular interest in oncology to better understand their cellular pharmacology. In addition, most metal-based anticancer compounds interact with endogenous trace elements in cells, altering their metabolism. The purpose of this experiment was to examine, by use of nuclear microprobe analysis, the cellular distribution of gallium and endogenous trace elements within cancer cells exposed to gallium nitrate. In a majority of cellular analyses, gallium was found homogeneously distributed in cells following the distribution of carbon. In a smaller number of cells, however, gallium appeared concentrated together with P, Ca and Fe within round structures of about 2-5 μm diameter located in the perinuclear region. These intracellular structures are typical of lysosomial material.
Volatility in the lunar crust: Trace element analyses of lunar minerals by PIXE proton microprobe
NASA Technical Reports Server (NTRS)
Norman, M. D.; Griffin, W. L.; Ryan, C. G.
1993-01-01
In situ determination of mineral compositions using microbeam techniques can characterize magma compositions through mineral-melt partitioning, and be used to investigate fine-grained or rare phases which cannot be extracted for analysis. Abundances of Fe, Mn, Sr, Ga, Zr, Y, Nb, Zn, Cu, Ni, Se, and Sb were determined for various mineral phases in a small number of lunar highlands rocks using the PIXE proton microprobe. Sr/Ga ratios of plagioclase and Mn/Zn ratios of mafic silicates show that the ferroan anorthosites and Mg-suite cumulates are depleted in volatile lithophile elements to about the same degree compared with chondrites and the Earth. This links the entire lunar crust to common processes or source compositions. In contrast, secondary sulfides in Descartes breccia clasts are enriched in chalcophile elements such as Cu, Zn, Ni, Se, and Sb, and represent a potential resource in the lunar highlands.
Silver and mercury in single gold grains from the Witwatersrand and Barberton, South Africa
NASA Astrophysics Data System (ADS)
von Gehlen, K.
1983-10-01
The contents of silver and mercury in 323 spots on gold grains from seven localities of the Witwatersrand palaeo-placer and Archaean vein deposits from Barberton were measured using an electron microprobe. The objective was to obtain information on the extent of gold alteration during fluvial transport and post-depositional geological processes. The results, however, show that Ag and Hg are distributed homogeneously in the gold grains studied. No indications were found that the gold was transported in solution nor that leaching took place in an oxidizing fluvial environment. This strongly suggests that the Ag and Hg contents in Witwatersrand gold grains represent geochemical ‘fingerprints’ inherited from their eroded primary sources. Combined analysis for Ag and Hg in Witwatersrand gold grains by electron microprobe can therefore be a valuable tool in establishing the types of primary sources for the gold.
Microstructure and Thermal History of Metal Particles in CH Chondrites
NASA Astrophysics Data System (ADS)
Goldstein, J. I.; Jones, R. H.; Kotula, P. G.; Michael, J. R.
2005-03-01
This paper provides detailed microstructural and microchemical information at the nm to µm scale (SEM, EPMA, TEM, EBSD) for a select suite of metal particles in four CH chondrites, ALH 85085, PAT 91546, Acfer 214, NWA 739.
CAMECA IMS 1300-HR3: The New Generation Ion Microprobe
NASA Astrophysics Data System (ADS)
Peres, P.; Choi, S. Y.; Renaud, L.; Saliot, P.; Larson, D. J.
2016-12-01
The success of secondary ion mass spectrometry (SIMS) in Geo- and Cosmo-chemistry relies on its performance in terms of: 1) very high sensitivity (mandatory for high precision measurements or to achieve low detection limits); 2) a broad mass range of elemental and isotopic species, from low mass (H) to high mass (U and above); 3) in-situ analysis of any solid flat polished surface; and 4) high spatial resolution from tens of microns down to sub-micron scale. The IMS 1300-HR3 (High Reproducibility, High spatial Resolution, High mass Resolution) is the latest generation of CAMECA's large geometry magnetic sector SIMS (or ion microprobe), successor to the internationally recognized IMS 1280-HR. The 1300-HR3delivers unmatched analytical performance for a wide range of applications (stable isotopes, geochronology, trace elements, nuclear safeguards and environmental studies…) due to: • High brightness RF-plasma oxygen ion source with enhanced beam density and current stability, dramatically improving spatial resolution, data reproducibility, and throughput • Automated sample loading system with motorized sample height (Z) adjustment, significantly increasing analysis precision, ease-of-use, and productivity • UV-light microscope for enhanced optical image resolution, together with dedicated software for easy sample navigation (developed by University of Wisconsin, USA) • Low noise 1012Ω resistor Faraday cup preamplifier boards for measuring low signal intensities In addition, improvements in electronics and software have been integrated into the new instrument. In order to meet a growing demand from geochronologists, CAMECA also introduces the KLEORA, which is a fully optimized ion microprobe for advanced mineral dating derived from the IMS 1300-HR3. Instrumental developments as well as data obtained for stable isotope and U-Pb dating applications will be presented in detail.
Scanning ion images; analysis of pharmaceutical drugs at organelle levels
NASA Astrophysics Data System (ADS)
Larras-Regard, E.; Mony, M.-C.
1995-05-01
With the ion analyser IMS 4F used in microprobe mode, it is possible to obtain images of fields of 10 × 10 [mu]m2, corresponding to an effective magnification of 7000 with lateral resolution of 250 nm, technical characteristics that are appropriate for the size of cell organelles. It is possible to characterize organelles by their relative CN-, P- and S- intensities when the tissues are prepared by freeze fixation and freeze substitution. The recognition of organelles enables correlation of the tissue distribution of ebselen, a pharmaceutical drug containing selenium. The various metabolites characterized in plasma, bile and urine during biotransformation of ebselen all contain selenium, so the presence of the drug and its metabolites can be followed by images of Se. We were also able to detect the endogenous content of Se in tissue, due to the increased sensitivity of ion analysis in microprobe mode. Our results show a natural occurrence of Se in the border corresponding to the basal lamina of cells of proximal but not distal tubules of the kidney. After treatment of rats with ebselen, an additional site of Se is found in the lysosomes. We suggest that in addition to direct elimination of ebselen and its metabolites by glomerular filtration and urinary elimination, a second process of elimination may occur: Se compounds reaching the epithelial cells via the basal lamina accumulate in lysosomes prior to excretion into the tubular fluid. The technical developments of using the IMS 4F instrument in the microprobe mode and the improvement in preparation of samples by freeze fixation and substitution further extend the limit of ion analysis in biology. Direct imaging of trace elements and molecules marked with a tracer make it possible to determine their targets by comparison with images of subcellular structures. This is a promising advance in the study of pathways of compounds within tissues, cells and the whole organism.
NASA Technical Reports Server (NTRS)
Smith, R. K.; Lofgren, G. E.
1982-01-01
Natural and experimentally grown zoned plagioclase feldspars were examined by electron microprobe. The analyses revealed discontinuous, sector, and oscillary chemical zoning superimposed on continuous normal or reverse zoning trends. Postulated mechanisms for the origin of zoning are based on either physical changes external to the magma (P, T, H2O saturation) or kinetic changes internal to the magma (diffusion, supersaturation, growth rate). Comparison of microprobe data on natural zoned plagioclase with zoned plagioclase grown in controlled experiments show that it may be possible to distinguish zonal development resulting from physio-chemical changes to the bulk magma from local kinetic control on the growth of individual crystals.
Focused Heavy Ion Nuclear Microprobe facility at the University of North Texas
NASA Astrophysics Data System (ADS)
Guo, B. N.; Yang, C.; El Bouanani, M.; Duggan, J. L.; McDaniel, F. D.
1999-10-01
A Focused Heavy Ion Nuclear Microprobe facility has been constructed at the University of North Texas. The microprobe utilizes two separated Russian magnetic quadrupole quadruplets. The two identical magnetic quadrupole doublet lenses are separated by 2.61 meters. The lens system with ~ 80 times demagnification has the ability to focus proton, alpha particle, or heavier ions down to a spot size of ~ 1 μm. The microprobe components rest on a 7 meter steel beam support with vibration isolation. A computer provides control for the lens power supplies and also the parameters for a post-lens scanning coil to raster-scan the beam across the sample. Up to four detection channels can be used for simultaneous data acquisition under VME control. A RISC workstation is used to collect, display and analyze the data. The data is transferred via ethernet. A detailed description of the facility and data acquisition system along with preliminary testing results on TEM grids with Rutherford Backscattering Spectrometry and the Ion Beam Induced Charge Collection techniques will be presented.
1978-10-17
because of the rapid progress made in laser technology to date. The use of the Laser Microprobe in spectrochemical analysis of the elements is based on...spectroscopy to vaporize microscopic amounts of samples for elemental analysis . On the other hand, the intense, highly monochromatic laser beam is being...employed as a light source for Raman spectroscopy to study molecular structure. These two uses of lasers in spectroscopic analysis have been sucessful
Laser-Ablation (U-Th)/He Geochronology
NASA Astrophysics Data System (ADS)
Hodges, K.; Boyce, J.
2003-12-01
Over the past decade, ultraviolet laser microprobes have revolutionized the field of 40Ar/39Ar geochronology. They provide unprecedented information about Ar isotopic zoning in natural crystals, permit high-resolution characterization of Ar diffusion profiles produced during laboratory experiments, and enable targeted dating of multiple generations of minerals in thin section. We have modified the analytical protocols used for 40Ar/39Ar laser microanalysis for use in (U-Th)/He geochronologic studies. Part of the success of the 40Ar/39Ar laser microprobe stems from fact that measurements of Ar isotopic ratios alone are sufficient for the calculation of a date. In contrast, the (U-Th)/He method requires separate analysis of U+Th and 4He. Our method employs two separate laser microprobes for this process. A target mineral grain is placed in an ultrahigh vacuum chamber fitted with a window of appropriate composition to transmit ultraviolet radiation. A focused ArF (193 nm) excimer laser is used to ablate tapered cylindrical pits on the surface of the target. The liberated material is scrubbed with a series of getters in a fashion similar to that used for 40Ar/39Ar geochronology, and the 4He abundance is determined using a quadrupole mass spectrometer with well-calibrated sensitivity. A key requirement for calculation of the 4He abundance in the target is a precise knowledge of the volume of the ablation pit. This is the principal reason why we employ the ArF excimer for 4He analysis rather than a less-expensive frequency-multiplied Nd-YAG laser; the excimer creates tapered cylindrical pits with extremely reproducible and easily characterized geometry. After 4He analysis, U and Th are measured on the same sample surface using the more familiar technique of laser-ablation inductively coupled plasma mass spectrometry (LA-ICPMS). Our early experiments have been done using a frequency-quintupled Nd-YAG microprobe (213nm), While the need to analyze U+Th and He in separate ablation experiments results in considerably worse spatial resolution than that typically possible for 40Ar/39Ar laser microprobe dating, it is possible to site the LA-ICPMS ablation pit within a few microns of the pit used for He extraction, or to simply re-occupy and enlarge the original ablation pit. The potential effective spatial resolution of the technique is thus on the order of a few tens to roughly 100 microns. As a proof-of-concept exercise, we have applied this technique to fluorapatite from Cerro de Mercado, Durango, Mexico, which has a generally accepted (U-Th)/He age of 32.1 +/- 3.4 Ma (2 sigma) based on single-crystal fusion analyses reported by House et al. (2000, EPSL). Using the approach described above, we made 48 separate age measurements on a 12 mm polished section cut through a single crystal of Durango fluorapatite perpendicular to its c axis. The measured dates yield a mean of 34.9 +/- 5.1 Ma (2 sigma), with a total dispersion of dates comparable to that reported by House et al. Much of the apparent age variation observed in both studies is due to documented U+Th heterogeneities in single crystals of the Durango fluorapatite. Nevertheless, the consistency of the laser ablation and conventional results for this material is striking. Compared to conventional laser and furnace methods of (U-Th)/He geochronology, the laser microprobe approach offers substantially improved spatial resolution, and the ability to avoid (or at least minimize) alpha-ejection corrections. In addition, the method affords improved sample throughput, such that age estimates for homogeneous materials can be made with considerably higher precision based on a larger number of analyses.
Defense Small Business Innovation Research Program (SBIR). Abstracts of Phase I Awards. 1986.
1986-01-01
RELATIVE HUMIDITY AT TEMPERATURES FOUND IN ARCTIC ENVIRONMENTS. IT IS BASED ON THE OBSERVATION THAT CERTAIN FLUORESCENT AND PHOSPHORESCENT COMPOUNDS ...FREEDMAN TITLE: III-V COMPOUNDS TRACE ELEMENT PROFILE ANALYSIS USING LASER ASSISTED S PECTROSCOPY T 55 OFFICE: RADC/DOR A NOVEL MICROPROBE ANALYSIS...AND II-VI AND III-V COMPOUNDS . THESE ADVANTAGES MAKE THE LSCE TECHNIQUE PARTICULARY WELL SUITED TO THE DEPOSITION OF QUANTUM WELL AND SUPERLATT ICE
X-ray microprobe analysis of platelets. Principles, methods and review of the literature.
Yarom, R
1983-01-01
Platelets are well suited to X-ray microanalysis as there is no need for chemical fixation or sectioning, and the concentrations of calcium and phosphorus are above 10(-3). The principles of the technique, the methods of specimen preparation, instrumental conditions during analysis and ways of quantitation are described. This is followed by a review of published reports and a brief summary of the author's own work in the field.
Study of Italian Renaissance sculptures using an external beam nuclear microprobe
NASA Astrophysics Data System (ADS)
Zucchiatti, A.; Bouquillon, A.; Moignard, B.; Salomon, J.; Gaborit, J. R.
2000-03-01
The use of an extracted proton micro-beam for the PIXE analysis of glazes is discussed in the context of the growing interest in the creation of an analytical database on Italian Renaissance glazed terracotta sculptures. Some results concerning the frieze of an altarpiece of the Louvre museum, featuring white angels and cherubs heads, are presented.
2014-01-01
The European Association for Predictive, Preventive and Personalised Medicine (EPMA) considers acute problems in medical sciences as well as the quality and management of medical services challenging health care systems in Europe and worldwide. This actuality has motivated the representatives of EPMA to comment on the efforts in promoting an integrative approach based on multidisciplinary expertise to advance health care-related research and management. The current paper provides a global overview of the problems related to medical services: pandemic scenario in the progression of common non-communicable diseases, delayed interventional approaches of reactive medicine, poor economy of health care systems, lack of specialised educational programmes, problematic ethical aspects of several treatments as well as inadequate communication among professional groups and policymakers. In the form of individual paragraphs, the article presents a consolidated position of PPPM professionals towards the new European programme ‘Horizon 2020’ providing the long-lasting instruments for scientific and technological progress in medical services and health care-related programmes. In the author's opinion, Horizon 2020 provides unlimited room for research and implementation in Predictive, Preventive and Personalised Medicine. However, the overall success of the programme strongly depends on the effective communication and consolidation of professionals relevant for PPPM as well as the communication quality with policymakers. Smart political decision is the prerequisite of the effective PPPM implementation in the health care sector. This position is focused on the patients' needs, innovative medical sciences, optimal health and disease management, expert recommendations for the relevant medical fields and optimal solutions which have a potential to advance health care services if the long-term strategies were to be effectively implemented as proposed here. PMID:24708704
Mastalerz, Maria; Gurba, L.W.
2001-01-01
This paper discusses nitrogen determination with the Cameca SX50 electron microprobe using PCO as an analyzing crystal. A set of conditions using differing accelerating voltages, beam currents, beam sizes, and counting times were tested to determine parameters that would give the most reliable nitrogen determination. The results suggest that, for the instrumentation used, 10 kV, current 20 nA, and a counting time of 20 s provides the most reliable nitrogen determination, with a much lower detection limit than the typical concentration of this element in coal. The study demonstrates that the electron microprobe technique can be used to determine the nitrogen content of coal macerals successfully and accurately. ?? 2001 Elsevier Science B.V. All rights reserved.
Study on the surface sulfidization behavior of smithsonite at high temperature
NASA Astrophysics Data System (ADS)
Lv, Jin-fang; Tong, Xiong; Zheng, Yong-xing; Xie, Xian; Wang, Cong-bing
2018-04-01
Surface sulfidization behavior of smithsonite at high temperature was investigated by X-ray powder diffractometer (XRD) along with thermodynamic calculation, X-ray photoelectron spectroscopy (XPS) and electron probe microanalysis (EPMA). The XRD and thermodynamic analyses indicated that the smithsonite was decomposed into zincite at high temperatures. After introducing a small amount of pyrite, artificial sulfides were formed at surface of the obtained zincite. The XPS analyses revealed that the sulfide species including zinc sulfide and zinc disulfide were generated at the zincite surface. The EPMA analyses demonstrated that the film of sulfides was unevenly distributed at the zincite surface. The average concentration of elemental sulfur at the sample surface increased with increasing of pyrite dosage. A suitable mole ratio of FeS2 to ZnCO3 for the surface thermal modification was determined to be about 0.3. These findings can provide theoretical support for improving the process during which the zinc recovery from refractory zinc oxide ores is achieved by xanthate flotation.
Mineralogy of mine waste at the Vermont Asbestos Group mine, Belvidere Mountain, Vermont
Levitan, D.M.; Hammarstrom, J.M.; Gunter, M.E.; Seal, R.R.; Chou, I.-Ming; Piatak, N.M.
2009-01-01
Samples from the surfaces of waste piles at the Vermont Asbestos Group mine in northern Vermont were studied to determine their mineralogy, particularly the presence and morphology of amphiboles. Analyses included powder X-ray diffraction (XRD), optical microscopy, scanning electron microscopy (SEM), electron probe microanalysis (EPMA), and Raman spectroscopy. Minerals identified by XRD were serpentine-group minerals, magnetite, chlorite, quartz, olivine, pyroxene, and brucite; locally, mica and carbonates were also present. Raman spectroscopy distinguished antigorite and chrysotile, which could not be differentiated using XRD. Long-count, short-range XRD scans of the (110) amphibole peak showed trace amounts of amphibole in most samples. Examination of amphiboles in tailings by optical microscopy, SEM, and EPMA revealed non-fibrous amphiboles compositionally classified as edenite, magnesiohornblende, magnesiokatophorite, and pargasite. No fibrous amphibole was found in the tailings, although fibrous tremolite was identified in a sample of host rock. Knowledge of the mineralogy at the site may lead to better understanding of potential implications for human health and aid in designing a remediation plan.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ifka, Tomáš, E-mail: tomas.ifka@savba.sk; Palou, Martin; Baraček, Jan
2014-05-01
The formation of Portland clinker phases has taken place in thermodynamically non-equilibrium state between macro-oxides CaO, SiO{sub 2}, Al{sub 2}O{sub 3}, Fe{sub 2}O{sub 3} and MgO from raw meal and P{sub 2}O{sub 5} from bone meal. The paper deals with the study of clinker minerals as solid solutions with P{sub 2}O{sub 5} during the clinkerization of raw mixture containing bone meal (BM). The ash of BM has contributed as a raw material to the formation of different clinker phases. Electron probe microanalysis (EPMA) method was used to determine the preferential distribution of P{sub 2}O{sub 5} inside calcium silicate phases andmore » its influence upon C{sub 2}S/C{sub 3}S ratio. Basing on these results, composition of solid solution of C{sub 2}S and C{sub 3}S was established.« less
NASA Astrophysics Data System (ADS)
Lin, Yung-Chi; Shih, Toung-Yi; Tien, Shih-Kang; Duh, Jenq-Gong
2007-11-01
Interfacial morphologies and microstructure of Sn-3Ag-0.5Cu/Ni-P under bump metallization (UBM) with various phosphorous contents were investigated by transmission electron microscope (TEM) and field emission electron probe microanalyzer (FE-EPMA). It was revealed that as the Ni-Sn-P compound was formed between the solder matrix and Ni-P UBM, the conventionally so-called phosphorous-rich (P-rich) layer was transformed to a series of layer compounds, including Ni3P, Ni12P5 and Ni2P. The relationship between Ni-Sn-P formation and evolution of P-rich layers was probed by electron microscopic characterization with the aid of the phase diagram of Ni-P. On the basis of the TEM micrograph, the selected area diffraction (SAD) pattern, and the FE-EPMA results, the detailed phase evolution of P-rich layers in the SnAgCu/Ni-P joint was revealed and proposed.
Strategies for Analyzing Sub-Micrometer Features with the FE-EPMA
NASA Astrophysics Data System (ADS)
McSwiggen, P.; Armstrong, J. T.; Nielsen, C.
2013-12-01
Changes in column design and electronics, as well as new types of spectrometers and analyzing crystals, have significantly advanced electron microprobes, in terms of stability, reproducibility and detection limits. A major advance in spatial resolution has occurred through the use of the field emission electron gun. The spatial resolution of an analysis is controlled by the diameter of the electron beam and the amount of scatter that takes place within the sample. The beam diameter is controlled by the column and type of electron gun being used. The accelerating voltage and the average atomic number/density of the sample control the amount of electron scatter within the sample. However a large electron interaction volume does not necessarily mean a large analytical volume. The beam electrons may spread out within a large volume, but if the electrons lack sufficient energy to produce the X-ray of interest, the analytical volume could be significantly smaller. Therefore there are two competing strategies for creating the smallest analytical volumes. The first strategy is to reduce the accelerating voltage to produce the smallest electron interaction volume. This low kV analytical approach is ultimately limited by the size of the electron beam itself. With a field emission gun, normally the smallest analytical area is achieved at around 5-7 kV. At lower accelerating voltages, the increase in the beam diameter begins to overshadow the reduction in internal scattering. For tungsten filament guns, the smallest analytical volume is reached at higher accelerating voltages. The second strategy is to minimize the overvoltage during the analysis. If the accelerating voltage is only 1-3 kV greater than the critical ionization energy for the X-ray line of interest, then even if the overall electron interaction volume is large, those electrons quickly loose sufficient energy to produce the desired X-rays. The portion of the interaction volume in which the desired X-rays will be produce will be very small and very near the surface. Both strategies have advantages and disadvantages depending on the ultimate goal of the analysis and the elements involved. This work will examine a number of considerations when attempting to decide which approach is best for a given analytical situation. These include: (1) the size of the analytical volumes, (2) minimum detection limits, (3) quality of the matrix corrections, (4) secondary fluorescence, (5) effects of surface contamination, oxide layers, and carbon coatings. This work is based on results largely from the Fe-Ni binary. A simple conclusion cannot be draw as to which strategy is better overall. The determination is highly system dependent. For many mineral systems, both strategies used in combination will produce the best results. Using multiple accelerating voltages to preform a single analysis allows the analyst to optimize their analytical conditions for each element individually.
NASA Technical Reports Server (NTRS)
McDaniels, Steven J.
2004-01-01
The Space Shuttle Columbia was descending for a landing at the Kennedy Space Center (KSC) on February 1, 2003. Approximately 20 minutes prior to touchdown, the Columbia began disintegrating over the western United States; the majority of debris eventually impacted in eastern Texas and western Louisiana. A monumental effort eventually recovered approximately 84,000 pieces of debris, approximately 38% of the Orbiter's original dry weight. The debris was transported to KSC, where the items were catalogued and evaluated. Critical areas of interest, such as the left and right leading edge surfaces and the underside of the ship, were placed upon a grid to aid in the reconstruction. Items of interest included metallic structures, reinforced carbon-carbon composites, and ceramic heat insulation tiles. Many of the leading edge elements had re-solidified metallic deposits spattered on them. These deposits became known as slag and were one of the main focuses of the investigation. In order to help determine the sequence of events inside the left wing during the accident, the slag's composition, layering order, and directionality of deposition were studied. A myriad of analytical tests were performed in an attempt to ascertain the compositional and depositional characteristics of selected slag deposits, including the ordering of deposited layers within each individual slag deposit harvested. Initially, Scanning Electron Microscopy and Energy Dispersive X-Ray Spectroscopy (SEM/EDX) were performed to quickly characterize the overall composition of individual slag deposits: SEM utilizes a narrowlyfocused high-energy electron beam impinging upon a specimen. The incident beam excites and liberates lower energy secondary electrons, which are detected and analyzed, providing a visual representation of the sample's surface topography. EDX also relies on an incident electron beam, except an EDX unit measures X-ray energies generated by the impinging beam. Each element generates a unique X-ray signature; the EDX detector measures these discreet energies. EDX actually penetrates approximately 2 microns into the bulk of the sample. However, random examination of various portions of slag, coupled with the semiquantitative nature of the SEM/EDX analysis, did not yield convincingly pertinent data. Therefore, X-ray dot mapping was conducted, which provided more understandable data, both in terms of slag layering and composition. An X-ray dot map is generated by performing numerous EDX scans for individual elements, then compiling the scans in a visual representation. Eventually, specimens consisting of not only the slag, but of the adjacent RCC substrate as well were cross-sectioned. X-Ray dot mapping of the materialographicallymounted and -polished cross- sections provided a visual representation of both the layering sequence and compositional characteristics of the slag. Contemporaneously, Electron Spectroscopy for Chemical Analysis/X-Ray Photoelectron Spectroscopy (ESCA/XPS) and powdered X-Ray Diffraction (XRD) were performed to further characterize the deposits and to attempt to identify what, if any, compounds were present. The ESCA/XPS analysis allowed the analyst to "sputter" into the sample with an electron gun, aiding in the identification of the layering sequence. XPS uses photons, rather than electrons, which impinge upon the surface of the sample. XPS measures the electrons emitted from within the first 5 nm of the sample's surface. The XRD measures the scatter angles of incident X-rays; the angle and intensity of scatter depend upon the crystalline structure of the pulverized sample. XRD is considered a qualitative rather than quantitative technique. ESCA/XPS revealed that the final layer to deposit was predominantly carbonaceous. XRD was successful in identifying specific compounds, such as Al 2O3, Al and/or Al3 21SiO47, mullite (3(Al2)O3 -SiO2), and nickel-aluminides. Eventually, Electron MicroProbe Analysis (EMPA) was conducted on the marialographically-prepared cross- sections of selected slag deposits. Microprobe combines SEM and Wavelength Dispersive X-Ray Spectroscopy (WDS), and, like EDX, uses a narrowly-focused high-energy electron beam impinging upon a specimen to elicit, in the case of EPMA, characteristic X-rays with specific wavelengths. This quantitative, analytical tool proved the most useful in determining depositional layering and composition of the slag deposits. This information was utilized in verifying the location of the breach in the left leading edge of the wing of the Columbia.
Characterization of Alq3 thin films by a near-field microwave microprobe.
Hovsepyan, Artur; Lee, Huneung; Sargsyan, Tigran; Melikyan, Harutyun; Yoon, Youngwoon; Babajanyan, Arsen; Friedman, Barry; Lee, Kiejin
2008-09-01
We observed tris-8-hydroxyquinoline aluminum (Alq3) thin films dependence on substrate heating temperatures by using a near-field microwave microprobe (NFMM) and by optical absorption at wavelengths between 200 and 900 nm. The changes of absorption intensity at different substrate heating temperatures are correlated to the changes in the sheet resistance of Alq3 thin films.
Examination of Surveyor 3 parts with the scanning electron microscope and electron microprobe
NASA Technical Reports Server (NTRS)
Chodos, A. A.; Devaney, J. R.; Evens, K. C.
1972-01-01
Two screws and two washers, several small chips of tubing, and a fiber removed from a third screw were examined with the scanning electron microscope and the electron microprobe. The purpose of the examination was to determine the nature of the material on the surface of these samples and to search for the presence of meteoritic material.
1981-08-01
electron microprobe analysis and other laboratory procedures is also acknowledged. The author recognizes the considerable contributions of Ms. Cheryl ...J. Knott , Acta Met., 23, (7), (1975), 841. 473. A. Tetelman and A. McEvily, op. cit. 474. J. Feeney and J. McMillan and R. Wei, Met. Trans., 1, (1970
NASA Astrophysics Data System (ADS)
Lei, Qiantao; Liu, Ke; Gao, Jie; Li, Xiaolin; Shen, Hao; Li, Yan
2017-08-01
Nickel-based alloys as candidate materials for Thorium Molten Salt Reactor (TMSR), need to be used under high temperature in molten salt environment. In order to ensure the safety of the reactor running, it is necessary to study the elemental move characteristic of nickel-based alloys in the high temperature molten salts. In this work, the scanning nuclear microprobe at Fudan University was applied to study the elemental move. The Nickel-based alloy samples were corroded by molten salt at different temperatures. The element concentrations in the Nickel-based alloys samples were determined by the scanning nuclear microprobe. Micro-PIXE results showed that the element concentrations changed from the interior to the exterior of the alloy samples after the corrosion.
Burruss, R.C.; Ging, T.G.; Eppinger, R.G.; Samson, a.M.
1992-01-01
Fluorescence emission spectra of three samples of fluorite containing 226-867 ppm total rare earth elements (REE) were excited by visible and ultraviolet wavelength lines of an argon ion laser and recorded with a Raman microprobe spectrometer system. Narrow emission lines ( 0.9 for Eu2+ and 0.99 for Er3+. Detection limits for three micrometer spots are about 0.01 ppm Eu2+ and 0.07 ppm Er3+. These limits are less than chondrite abundance for Eu and Er, demonstrating the potential microprobe analytical applications of laser-excited fluorescence of REE in fluorite. However, application of this technique to common rock-forming minerals may be hampered by competition between fluorescence emission and radiationless energy transfer processes involving lattice phonons. ?? 1992.
NASA Astrophysics Data System (ADS)
Baris, A.; Restani, R.; Grabherr, R.; Chiu, Y.-L.; Evans, H. E.; Ammon, K.; Limbäck, M.; Abolhassani, S.
2018-06-01
A high burn-up Zircaloy-2 cladding is characterised in order to correlate its microstructure and composition to the change of oxidation and hydrogen uptake behaviour during long term service in the reactor. After 9 cycle of service, the chemical analysis of the cladding segment shows that most secondary phase particles (SPPs) have dissolved into the matrix. Fe and Ni are distributed homogenously in the metal matrix. Cr-containing clusters, remnants of the original Zr(Fe, Cr)2 type precipitates, are still present. Hydrides are observed abundantly in the metal side close to the metal-oxide interface. These hydrides have lower Fe and Ni concentration than that in the metal matrix. The three-dimensional (3D) reconstruction of the oxide and the metal-oxide interface obtained by Focused Ion Beam (FIB) tomography shows how the oxide microstructure has evolved with the number of cycles. The composition and microstructural changes in the oxide and the metal can be correlated to the oxidation kinetics and the H-uptake. It is observed that there is an increase in the oxidation kinetics and in the H-uptake between the third and the fifth cycles, as well as during the last two cycles. At the same time the volume fraction of cracks in the oxide significantly increased. Many fine cracks and pores exist in the oxide formed in the last cycle. Furthermore, the EPMA results confirm that this oxide formed at the last cycle reflects the composition of the metal at the metal-oxide interface after the long residence time in the reactor.
The grape cluster, metal particle 63344,1. [in lunar coarse fines
NASA Technical Reports Server (NTRS)
Goldstein, J. I.; Axon, H. J.; Agrell, S. O.
1975-01-01
The grape cluster metal particle 63344,1 found in lunar coarse fines is examined using the scanning electron microscope (SEM), electron microprobe, and an optical microscope. This metal particle is approximately 0.5 cm in its largest dimension and consists of hundreds of metallic globules welded together to form a structure somewhat like a bunch of grapes. Electron microprobe analysis for Fe, Ni, Co, P, and S in the metal was carried out using wavelength dispersive detectors. No primary solidification structure is observed in the globules, and the particle is slow cooled from the solidification temperature (nearly 1300 C) taking days to probably months to reach 600 C. Two mechanisms for the formation of globules are proposed. One mechanism involves the primary impact of an iron meteorite which produces a metallic liquid and vapor phase. The second mechanism involves the formation of a liquid pool of metal after impact of an iron meteorite projectile followed by a secondary impact in the liquid metal pool.
NASA Technical Reports Server (NTRS)
Drake, M. J.; Newsom, H. E.; Reed, S. J. B.; Enright, M. C.
1984-01-01
The distribution of Ga between solid Fe metal and synthetic basaltic melt is investigated experimentally at temperatures of 1190 and 1330 C, and over a narrow range of oxygen fugacities. Metal-silicate reversal experiments were conducted, indicating a close approach to equilibrium. The analysis of the partitioned products was performed using electron and ion microprobes. At one bar total pressure, the solid metal/silicate melt partition coefficient D(Ga) is used to evaluate metal-silicate fractionation processes in the earth, moon, and Eucrite Parent Body (EPB). It is found that the depletion of Ga abundances in the EPB is due to the extraction of Ga into a metallic core. Likewise, the depletion of Ga in the lunar mantle is consistent with the extraction of Ga into a smaller lunar core if Ga was originally present in a subchondritic concentration. The relatively high Ga abundances in the earth's mantle are discussed, with reference to several theoretical models.
Development of an external beam nuclear microprobe on the Aglae facility of the Louvre museum
NASA Astrophysics Data System (ADS)
Calligaro, T.; Dran, J.-C.; Ioannidou, E.; Moignard, B.; Pichon, L.; Salomon, J.
2000-03-01
The external beam line of our facility has been recently equipped with the focusing system previously mounted on a classical nuclear microprobe. When using a 0.1 μm thick Si 3N 4 foil for the exit window and flowing helium on the sample under analysis, a beam spot as small as 10 μm is attainable at a distance of 3 mm from the window. Elemental micromapping is performed by mechanical scanning. An electronic device has been designed which allows XY scanning by moving the sample under the beam by steps down to 0.1 μm. Beam monitoring is carried out by means of the weak X-ray signal emitted by the exit foil and detected by a specially designed Si(Li) detector cooled by Peltier effect. The characteristics of external beams of protons and alpha particles are evaluated by means of resonance scanning and elemental mapping of a grid. An example of application is presented, dealing with elemental micro-mapping of inclusions in gemstones.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matzel, J; Jacobsen, B; Hutcheon, I D
2009-09-09
The {sup 53}Mn-{sup 53}Cr systematics of meteorite samples provide an important high resolution chronometer for early solar system events. Accurate determination of the initial abundance of {sup 53}Mn ({tau}{sub 1/2} = 3.7 Ma) by secondary ion mass spectrometry (SIMS) is dependent on properly correcting for differing ion yields between Mn and Cr by use of a relative sensitivity factor (RSF). Ideal standards for SIMS analysis should be compositionally and structurally similar to the sample of interest. However, previously published Mn-Cr studies rely on few standards (e.g., San Carlos olivine, NIST 610 glass) despite significant variations in chemical composition. We investigatemore » a potential correlation between RSF and bulk chemical composition by determining RSFs for {sup 55}Mn/{sup 52}Cr in 11 silicate glass and mineral standards (San Carlos olivine, Mainz glasses KL2-G, ML3B-G, StHs6/80-G, GOR128-G, BM90/21-G, and T1-G, NIST 610 glass, and three LLNL pyroxene-composition glasses). All standards were measured on the Cameca ims-3f ion microprobe at LLNL, and a subset were also measured on the Cameca ims-1270 ion microprobe at the Geological Survey of Japan. The standards cover a range of bulk chemical compositions with SiO{sub 2} contents of 40-71 wt.%, FeO contents of 0.05-20 wt.% and Mn/Cr ratios between 0.4 and 58. We obtained RSF values ranging from 0.83 to 1.15. The data obtained on the ims-1270 ion microprobe are within {approx}10% of the RSF values obtained on the ims-3f ion microprobe, and the RSF determined for San Carlos olivine (0.86) is in good agreement with previously published data. The typical approach to calculating an RSF from multiple standard measurements involves making a linear fit to measured {sup 55}Mn/{sup 52}Cr versus true {sup 55}Mn/{sup 52}Cr. This approach may be satisfactory for materials of similar composition, but fails when compositions vary significantly. This is best illustrated by the {approx}30% change in RSF we see between glasses with similar Mn/Cr ratios but variable Fe and Na content. We are developing an approach that uses multivariate analysis to evaluate the importance of different chemical components in controlling the RSF and predict the RSF of unknowns when standards of appropriate composition are not available. Our analysis suggests that Fe, Si, and Na are key compositional factors in these silicate standards. The RSF is positively correlated with Fe and Si and negatively correlated with Na. Work is currently underway to extend this analysis to a wider range of chemical compositions and to evaluate the variability of RSF on measurements obtained by NanoSIMS.« less
Fused Bead Analysis of Diogenite Meteorites
NASA Technical Reports Server (NTRS)
Mittlefehldt, D.W.; Beck, B.W.; McSween, H.Y.; Lee, C.T. A.
2009-01-01
Bulk rock chemistry is an essential dataset in meteoritics and planetary science [1]. A common method used to obtain the bulk chemistry of meteorites is ICP-MS. While the accuracy, precision and low detection limits of this process are advantageous [2], the sample size used for analysis (approx.70 mg) can be a problem in a field where small and finite samples are the norm. Fused bead analysis is another bulk rock analytical technique that has been used in meteoritics [3]. This technique involves forming a glass bead from 10 mg of sample and measuring its chemistry using a defocused beam on a microprobe. Though the ICP-MS has lower detection limits than the microprobe, the fused bead method destroys a much smaller sample of the meteorite. Fused bead analysis was initially designed for samples with near-eutectic compositions and low viscosities. Melts generated of this type homogenize at relatively low temperatures and produce primary melts near the sample s bulk composition [3]. The application of fused bead analysis to samples with noneutectic melt compositions has not been validated. The purpose of this study is to test if fused bead analysis can accurately determine the bulk rock chemistry of non-eutectic melt composition meteorites. To determine this, we conduct two examinations of the fused bead. First, we compare ICP-MS and fused bead results of the same samples using statistical analysis. Secondly, we inspect the beads for the presence of crystals and chemical heterogeneity. The presence of either of these would indicate incomplete melting and quenching of the bead.
Micro-PIXE analysis of silicate reference standards
Czamanske, G.K.; Sisson, T.W.; Campbell, J.L.; Teesdale, W.J.
1993-01-01
The accuracy and precision of the University of Guelph proton microprobe have been evaluated through trace-element analysis of well-characterized silicate glasses and minerals, including BHVO-1 glass, Kakanui augite and hornblende, and ten other natural samples of volcanic glass, amphibole, pyroxene, and garnet. Using the 2.39 wt% Mo in a NIST steel as the standard, excellent precision and agreement between reported and analyzed abundances were obtained for Fe, Ni, Cu, Zn, Ga, Rb, Sr, Y, Zr, and Nb. -from Authors
NASA Astrophysics Data System (ADS)
Kelly, Jacque L.; Fu, Bin; Kita, Noriko T.; Valley, John W.
2007-08-01
A detailed oxygen isotope study of detrital quartz and authigenic quartz overgrowths from shallowly buried (<1 km) quartz arenites of the St. Peter Sandstone (in SW Wisconsin) constrains temperature and fluid sources during diagenesis. Quartz overgrowths are syntaxial (optically continuous) and show complex luminescent zonation by cathodoluminescence. Detrital quartz grains were separated from 53 rocks and analyzed for oxygen isotope ratio by laser fluorination, resulting in an average δ 18O of 10.0 ± 0.2‰ (1SD, n = 109). Twelve thin sections were analyzed by CAMECA-1280 ion microprobe (6-10 μm spot size, analytical precision better than ±0.2‰, 1SD). Detrital quartz grains have an average δ 18O of 10.0 ± 1.4‰ (1SD, n = 91) identical to the data obtained by laser fluorination. The ion microprobe data reveal true variability that is otherwise lost by homogenization of powdered samples necessary for laser fluorination. Laser fluorination uses samples that are one million times larger than the ion microprobe. Whole rock (WR) samples from the 53 rocks were analyzed by laser fluorination, giving δ 18O between 9.8‰ and 16.7‰ ( n = 110). Quartz overgrowths in thin sections from 10 rocks were analyzed by ion microprobe and average δ 18O = 29.3 ± 1.0‰ (1SD, n = 161). Given the similarity, on average, of δ 18O for all detrital quartz grains and for all quartz overgrowths, samples with higher δ 18O(WR) values can be shown to have more cement. The quartz cement in the 53 rocks, calculated by mass balance, varies from <1 to 21 vol.% cement, with one outlier at 33 vol.% cement. Eolian samples have an average of 11% cement compared to marine samples, which average 4% cement. Two models for quartz cementation have been investigated: high temperature (50-110 °C) formation from ore-forming brines related to Mississippi Valley Type (MVT) mineralization and formation as silcretes at low temperature (10-30 °C). The homogeneity of δ 18O for quartz overgrowths determined by ion microprobe rules out a systematic regional variation of temperature as predicted for MVT brines and there are no other known heating events in these sediments that were never buried to depths >1 km. The data in this study suggest that quartz overgrowths formed as silcretes in the St. Peter Sandstone from meteoric water with δ 18O values of -10‰ to -5‰ at 10-30 °C. This interpretation runs counter to conventional wisdom based on fibrous or opaline silica cements suggesting that the formation of syntaxial quartz overgrowths requires higher temperatures. While metastable silica cements commonly form at high degrees of silica oversaturation following rapid break-down reactions of materials such as of feldspars or glass, the weathering of a clean quartz arenite is slower facilitating chemical equilibrium and precipitation of crystallographically oriented overgrowths of α-quartz.
Crystal-Chemical Correlations in Chromites from Kimberlitic and Non-Kimberlitic Sources.
NASA Astrophysics Data System (ADS)
Freckelton, C. N.; Flemming, R. L.
2009-05-01
This study explores the utility of micro X-ray diffraction (μXRD) as a tool for diamond exploration, as a compliment to current industry-standard techniques such as electron probe microanalysis (EPMA). Here we examine chromite. As one of the first phases to crystallize in mantle rocks, it is a useful indicator of upper mantle magmatic conditions in rocks that have been sampled by kimberlites. In addition, chromite does not alter easily from chemical and physical weathering processes. As such, chromite is a useful kimberlite indicator mineral in diamond exploration. We present correlations between crystal structure (unit cell) and chemical composition of chromite, (Fe,Mg)[Cr, Al]2O4, using correlated μXRD and EPMA data for 133 chromites from a three source locations: Two kimberlite sources and one non-kimberlitic source from an Archean granite/greenstone terrain. Quantitative analysis was performed using Electron Probe Microanalysis (EPMA) at Mineral Services, South Africa, prior to the loan of the samples. Randomly-oriented chromite grains, approximately 500 μm in diameter, were analyzed as previously mounted for EPMA. Micro X-ray-diffraction was performed using a Bruker D8-Discover Diffractometer, with θ-θ geometry, with CuKα radiation, operating at 40 kV and 40 mA, with nominal beam diameter of 500 μm. The data were collected in omega scan mode. Two dimensional General Area Detector Diffraction System (GADDS) images were collected for 20 minutes per image, and integrated to produce one-dimensional plots of intensity versus 2θ, for subsequent unit cell refinement using CELREF. Although all samples in this study were considered to be 'chromite', a plot of Cr/(Cr+Al) versus Fe2+/(Fe2++Mg) shows extensive substitution among four dominant members: chromite (FeCr2O4), magnesio-chromite (MgCr2O4), spinel (MgAl2O4), and hercynite (FeAl2O4), where Mg and Fe2+ substitute for one another on the tetrahedral site, and Cr and Al substitute for one another on the octahedral site. Our data are widely variable as compared to the field occupied by chromite inclusions in diamonds (high Cr and Mg (˜60 wt %) and very low Ti (˜0.40 wt %). Plots of the unit cell parameter, ao, versus composition demonstrate a decrease in unit cell size with increasing Al content (and corresponding decrease in Cr content), consistent with a smaller cation radius for Al versus Cr (Al=0.675 Å and Cr=0.905 Å). The trend in unit cell size is unlikely to be effected by Mg-Fe substitution because of the very small difference in their tetrahedral cation radii (Fe2+=0.835 Å and Mg=0.86 Å). Initial plots of composition versus unit cell parameter were clearly able to distinguish a difference between unit cell of kimberlitic chromites and non-kimberlitic chromites. The significantly higher Cr content in kimberlitic chromites (radius=0.905 Å), and correspondingly higher Al content in non-kimberlitic chromites (radius=0.675 Å), results in a striking bimodal distribution in unit cell parameter, ao, where kimberlitic chromites have a larger unit cell (> 8.3 Å) than non-kimberlitic chromites (< 8.3 Å). This preliminary data provides a useful starting point for screening minerals from naturally relevant chromite solid solutions using their corresponding unit cell parameters. Future work will examine which site substitutions (octahedral versus tetrahedral) are affecting the unit cell as well as the effect of cation order-disorder on unit cell parameters.
Kesler, G; Koren, R; Kesler, A; Hay, N; Gal, R
1998-10-01
Until now, no suitable delivery fiber has existed for CO2 laser endodontic radiation in the apical region, where it is most difficult to eliminate the pulp tissue using conventional methods. To overcome this problem, we have designed a microprobe that reaches closer to the apex, distributing the energy density to a smaller area of the root canal and thus favorably increasing the thermal effects. A CO2 laser microprobe coupled onto a special hand piece was attached to the delivery fiber of a Sharplan 15-F CO2 laser. The study was conducted on 30 vital maxillary or mandibulary, central, lateral, or premolar teeth destined for extraction due to periodontal problems. Twenty were experimentally treated with pulsed CO2 laser delivered by this newly developed fiber after conventional root canal preparation. Temperature measured at three points on the root surface during laser treatment did not exceed 38 degrees C. Ten teeth represented the control group, in which only root canal preparation was performed in the conventional method. Histological examination of the laser-treated teeth showed coagulation necrosis and vacuolization of the remaining pulp tissue in the root canal periphery. Primary and secondary dentin appeared normal in all cases treated with 15-F CO2 laser. Gram stain and bacteriologic examination revealed complete sterilization. These results demonstrate the unique capabilities of this special microprobe in sterilization of the root canal, with no thermal damage to the surrounding tissue. The combination of classical root canal preparation with CO2 laser irradiation using this special microprobe before closing the canal can drastically change the quality of root canal fillings.
NASA Technical Reports Server (NTRS)
Wopenka, Brigitte; Jollife, Bradley L.; Zinner, Ernst; Kremser, Daniel T.
1996-01-01
We have determined major (Si, Zr, Hf), minor (Al, Y, Fe, P), and trace element (Ca, Sc, Ti, Ba, REE, Th, U) concentrations and Raman spectra of a zoned, 200 microns zircon grain in lunar sample 14161,7069, a quartz monzodiorite breccia collected at the Apollo 14 site. Analyses were obtained on a thin section in situ with an ion microprobe, an electron microprobe, and a laser Raman microprobe. The zircon grain is optically zoned in birefringence, a reflection of variable (incomplete) metamictization resulting from zo- nation in U and Th concentrations. Variations in the concentrations of U and Th correlate strongly with those of other high-field-strength trace elements and with changes in Raman spectral parameters. Concentrations of U and Th range from 21 to 55 ppm and 6 to 31 ppm, respectively, and correlate with lower Raman peak intensities, wider Raman peaks, and shifted Si-O peak positions. Concentrations of heavy rare earth elements range over a factor of three to four and correlate with intensities of fluorescence peaks. Correlated variations in trace element concentrations reflect the original magmatic differentiation of the parental melt approx. 4 b.y. ago. Degradation of the zircon structure, as reflected by the observed Raman spectral parameters, has occurred in this sample over a range of alpha-decay event dose from approx. 5.2 x 10(exp 14) to 1.4 x 10(exp 15) decay events per milligram of zircon, as calculated from the U and Th concentrations. This dose is well below the approx. 10(exp 16) events per milligram cumulative dose that causes complete metamictization and indicates that laser Raman microprobe spectroscopy is an analytical technique that is very sensitive to the radiation-induced damage in zircon.
Paces, J.B.; Neymark, L.A.; Wooden, J.L.; Persing, H.M.
2004-01-01
Two novel methods of in situ isotope analysis, ion microprobe and microdigestion, were used for 230Th/U and 234U/238U dating of finely laminated opal hemispheres formed in unsaturated felsic tuff at Yucca Mountain, Nevada, proposed site for a high-level radioactive waste repository. Both methods allow analysis of layers as many as several orders of magnitude thinner than standard methods using total hemisphere digestion that were reported previously. Average growth rates calculated from data at this improved spatial resolution verified that opal grew at extremely slow rates over the last million years. Growth rates of 0.58 and 0.69 mm/m.y. were obtained for the outer 305 and 740 ??m of two opal hemispheres analyzed by ion microprobe, and 0.68 mm/m.y. for the outer 22 ??m of one of these same hemispheres analyzed by sequential microdigestion. These Pleistocene growth rates are 2 to 10 times slower than those calculated for older secondary calcite and silica mineral coatings deposited over the last 5 to 10 m.y. dated by the U-Pb method and may reflect differences between Miocene and Pleistocene seepage flux. The microdigestion data also imply that opal growth rates may have varied over the last 40 k.y. These data are the first indication that growth rates and associated seepage in the proposed repository horizon may correlate with changes in late Pleistocene climate, involving faster growth during wetter, cooler climates (glacial maximum), slower growth during transition climates, and no growth during the most arid climate (modern). Data collected at this refined spatial scale may lead to a better understanding of the hydrologic variability expected within the thick unsaturated zone at Yucca Mountain over the time scale of interest for radioactive waste isolation. ?? 2004 Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Chen, Zewu
This thesis describes the experimental work in the fabrication of doubly-curved mica diffractors and their applications in monochromatic microprobe x-ray fluorescence analysis and wavelength dispersive spectrometry. Three-dimension focusing of x-rays can be achieved by diffraction from a doubly-curved diffractor. A Johann point-focusing mica diffractor was fabricated for focusing the Cu Kα1 radiation and characterized by using a microfocus x-ray source. The intensity of the focused beam was measured to be 1.01 × 108 photons/s at the focal spot. The spot size of the focused beam was measured by the knife edge scan method. A Cu Kα1 focal spot of 43 μm x 68 μm has been obtained. Monochromatic microprobe x-ray fluorescence (MMXRF) analysis was performed by using the focused Cu Kα1 radiation. The microfocus x-ray source was operated at 30 kV and 0.1 mA. MMXRF spectra of bulk specimens of GaAs, Si, ZnSe, Mg and 40 μm thick Muscovite were recorded with a Si(Li) energy dispersive detector. Exceptional high signal-to-background ratios were observed. Due to the low background, detection limits as low as 1.6 ppm were predicted for a measurement time of 500 s for bulk specimens. The detector background was determined by recording a spectrum from an Fe55 source and was found to be a significant contribution to the total observed background. A wavelength dispersive spectrometer was designed and constructed for the use in a JEOL transmission electron microscope. A logarithmic spiral of revolution diffractor was fabricated and used explored for measurement of Ca concentration in the TEM. Bench tests were carried out by using the microfocus x-ray source. Preliminary data of tests in the TEM indicated that the spectrometer may give better performance than EDS systems previously used.
Pluth, Joseph J.; Smith, Joseph V.
2002-01-01
A crystal from the type locality Ajo, AZ, yielded just enough intensity from streaked diffractions using synchrotron x-rays at the Advanced Photon Source to solve the crystal structure with composition (K + Na)3Cu20Al3Si29O76(OH)16⋅∼8H2O; triclinic, P1̄, a = 13.634(5) Å, b = 13.687(7), c = 14.522(7), α = 110.83(1)°, β = 107.21(1), γ = 105.68(1); refined to a final R = 12.5%. Electron microprobe analysis yielded a similar chemical composition that is slightly different from the combined chemical and electron microprobe analyses in the literature. The ajoite structure can be described as a zeolitic octahedral-tetrahedral framework that combines the alternate stacking of edge-sharing octahedral CuO6 layers and curved aluminosilicate layers and strings. Channels bounded by elliptical 12-rings and circular 8-rings of tetrahedra contain (K and Na) ions and water. The Al atoms occupy some of the Si tetrahedral sites. Each Cu atom has near-planar bonds to four oxygen atoms plus two longer distances that generate a distorted octahedron. Valence bond estimates indicate that 8 oxygen atoms of 46 are hydroxyl. Only one alkali atom was located in distorted octahedral coordination, and electron microprobe analyses indicate K and Na as major substituents. The water from chemical analysis presumably occurs as disordered molecules of zeolitic type not giving electron density from diffraction. The high R factor results from structural disorder and many weak intensities close to detection level. The crystal chemistry is compared with shattuckite, Cu5(SiO3)4(OH)2, and planchéite, Cu8Si8O22(OH)4⋅H2O, both found in oxidized copper deposits of Arizona but only the former directly with ajoite. PMID:12177404
Pluth, Joseph J; Smith, Joseph V
2002-08-20
A crystal from the type locality Ajo, AZ, yielded just enough intensity from streaked diffractions using synchrotron x-rays at the Advanced Photon Source to solve the crystal structure with composition (K + Na)3Cu20Al3Si29O76(OH)16* approximately 8H2O; triclinic, P1, a = 13.634(5) A, b = 13.687(7), c = 14.522(7), alpha = 110.83(1) degrees, beta = 107.21(1), gamma = 105.68(1); refined to a final R = 12.5%. Electron microprobe analysis yielded a similar chemical composition that is slightly different from the combined chemical and electron microprobe analyses in the literature. The ajoite structure can be described as a zeolitic octahedral-tetrahedral framework that combines the alternate stacking of edge-sharing octahedral CuO6 layers and curved aluminosilicate layers and strings. Channels bounded by elliptical 12-rings and circular 8-rings of tetrahedra contain (K and Na) ions and water. The Al atoms occupy some of the Si tetrahedral sites. Each Cu atom has near-planar bonds to four oxygen atoms plus two longer distances that generate a distorted octahedron. Valence bond estimates indicate that 8 oxygen atoms of 46 are hydroxyl. Only one alkali atom was located in distorted octahedral coordination, and electron microprobe analyses indicate K and Na as major substituents. The water from chemical analysis presumably occurs as disordered molecules of zeolitic type not giving electron density from diffraction. The high R factor results from structural disorder and many weak intensities close to detection level. The crystal chemistry is compared with shattuckite, Cu5(SiO3)4(OH)2, and planchéite, Cu8Si8O22(OH)4.H2O, both found in oxidized copper deposits of Arizona but only the former directly with ajoite.
Kisban, S; Herwik, S; Seidl, K; Rubehn, B; Jezzini, A; Umiltà, M A; Fogassi, L; Stieglitz, T; Paul, O; Ruther, P
2007-01-01
This paper reports on a novel type of silicon-based microprobes with linear, two and three dimensional (3D) distribution of their recording sites. The microprobes comprise either single shafts, combs with multiple shafts or 3D arrays combining two combs with 9, 36 or 72 recording sites, respectively. The electrical interconnection of the probes is achieved through highly flexible polyimide ribbon cables attached using the MicroFlex Technology which allows a connection part of small lateral dimensions. For an improved handling, probes can be secured by a protecting canula. Low-impedance electrodes are achieved by the deposition of platinum black. First in vivo experiments proved the capability to record single action potentials in the motor cortex from electrodes close to the tip as well as body electrodes along the shaft.
NASA Technical Reports Server (NTRS)
Morgan, R. S.; Sattilaro, R. F.
1972-01-01
Atomic absorption spectroscopy, electron microprobe analysis, and dithizone staining of trophozoites and cysts of Entamoeba invadens demonstrate that these cells have a high concentration of zinc (approximately one picogram per cell or 1% of their dry weight). In the cysts of this organism, the zinc is confined to the chromatoid bodies, which previous work has shown to contain crystals of ribosomes. The chemical state and function of this zinc are unknown.
Petrology of 60035 - Evolution of a polymict ANT breccia
NASA Technical Reports Server (NTRS)
Warner, R. D.; Taylor, G. J.; Keil, K.
1980-01-01
Extensive analysis of the lunar rock sample 60035 with optical microscopy and electron microprobe methods show it to be a polymict ANT breccia partly coated with glass, containing abundant clasts which have troctolitic/noritic anorthosite compositions. At least two episodes of crushing and mixing were involved in the petrogenesis of 60035, and annealing and mineral equilibration have not been extensive since the formation of the breccia.
NASA Astrophysics Data System (ADS)
Rout, Bibhudutta; Dhoubhadel, Mangal S.; Poudel, Prakash R.; Kummari, Venkata C.; Pandey, Bimal; Deoli, Naresh T.; Lakshantha, Wickramaarachchige J.; Mulware, Stephen J.; Baxley, Jacob; Manuel, Jack E.; Pacheco, Jose L.; Szilasi, Szabolcs; Weathers, Duncan L.; Reinert, Tilo; Glass, Gary A.; Duggan, Jerry L.; McDaniel, Floyd D.
2013-07-01
The Ion Beam Modification and Analysis Laboratory (IBMAL) at the University of North Texas includes several accelerator facilities with capabilities of producing a variety of ion beams from tens of keV to several MeV in energy. The four accelerators are used for research, graduate and undergraduate education, and industrial applications. The NEC 3MV Pelletron tandem accelerator has three ion sources for negative ions: He Alphatross and two different SNICS-type sputter ion sources. Presently, the tandem accelerator has four high-energy beam transport lines and one low-energy beam transport line directly taken from the negative ion sources for different research experiments. For the low-energy beam line, the ion energy can be varied from ˜20 to 80 keV for ion implantation/modification of materials. The four post-acceleration beam lines include a heavy-ion nuclear microprobe; multi-purpose PIXE, RBS, ERD, NRA, and broad-beam single-event upset; high-energy ion implantation line; and trace-element accelerator mass spectrometry. The NEC 3MV single-ended Pelletron accelerator has an RF ion source mainly for hydrogen, helium and heavier inert gases. We recently installed a capacitive liner to the terminal potential stabilization system for high terminal voltage stability and high-resolution microprobe analysis. The accelerator serves a beam line for standard RBS and RBS/C. Another beamline for high energy focused ion beam application using a magnetic quadrupole lens system is currently under construction. This beam line will also serve for developmental work on an electrostatic lens system. The third accelerator is a 200 kV Cockcroft-Walton accelerator with an RF ion source. The fourth accelerator is a 2.5 MV Van de Graaff accelerator, which was in operation for last several decades is currently planned to be used mainly for educational purpose. Research projects that will be briefly discussed include materials synthesis/modification for photonic, electronic, and magnetic applications, surface sputtering and micro-fabrication of materials, development of high-energy ion microprobe systems, and educational and outreach activities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rout, Bibhudutta; Dhoubhadel, Mangal S.; Poudel, Prakash R.
2013-07-03
The Ion Beam Modification and Analysis Laboratory (IBMAL) at the University of North Texas includes several accelerator facilities with capabilities of producing a variety of ion beams from tens of keV to several MeV in energy. The four accelerators are used for research, graduate and undergraduate education, and industrial applications. The NEC 3MV Pelletron tandem accelerator has three ion sources for negative ions: He Alphatross and two different SNICS-type sputter ion sources. Presently, the tandem accelerator has four high-energy beam transport lines and one low-energy beam transport line directly taken from the negative ion sources for different research experiments. Formore » the low-energy beam line, the ion energy can be varied from {approx}20 to 80 keV for ion implantation/modification of materials. The four post-acceleration beam lines include a heavy-ion nuclear microprobe; multi-purpose PIXE, RBS, ERD, NRA, and broad-beam single-event upset; high-energy ion implantation line; and trace-element accelerator mass spectrometry. The NEC 3MV single-ended Pelletron accelerator has an RF ion source mainly for hydrogen, helium and heavier inert gases. We recently installed a capacitive liner to the terminal potential stabilization system for high terminal voltage stability and high-resolution microprobe analysis. The accelerator serves a beam line for standard RBS and RBS/C. Another beamline for high energy focused ion beam application using a magnetic quadrupole lens system is currently under construction. This beam line will also serve for developmental work on an electrostatic lens system. The third accelerator is a 200 kV Cockcroft-Walton accelerator with an RF ion source. The fourth accelerator is a 2.5 MV Van de Graaff accelerator, which was in operation for last several decades is currently planned to be used mainly for educational purpose. Research projects that will be briefly discussed include materials synthesis/modification for photonic, electronic, and magnetic applications, surface sputtering and micro-fabrication of materials, development of high-energy ion microprobe systems, and educational and outreach activities.« less
NASA Technical Reports Server (NTRS)
Sutton, S. R.
1989-01-01
The Synchrotron X ray Fluorescence (SXRF) microprobe at the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory, will be an excellent instrument for non-destructive trace element analyses of cometary nucleus samples. Trace element analyses of as-received cometary nucleus material will also be possible with this technique. Bulk analysis of relatively volatile elements will be important in establishing comet formation conditions. However, as demonstrated for meteorites, microanalyses of individual phases in their petrographic context are crucial in defining the histories of particular components in unequilibrated specimens. Perhaps most informative in comparing cometary material with meteorites will be the halogens and trace metals. In-situ, high spatial resolution microanalyses will be essential in establishing host phases for these elements and identifying terrestrial (collection/processing) overprints. The present SXRF microprobe is a simple, yet powerful, instrument in which specimens are excited with filtered, continuum synchrotron radiation from a bending magnet on a 2.5 GeV electron storage ring. A refrigerated cell will be constructed to permit analyses at low temperatures. The cell will consist essentially of an air tight housing with a cold stage. Kapton windows will be used to allow the incident synchrotron beam to enter the cell and fluorescent x rays to exit it. The cell will be either under vacuum or continuous purge by ultrapure helium during analyses. Several other improvements of the NSLS microprobe will be made prior to the cometary nucleus sample return mission that will greatly enhance the sensitivity of the technique.
DSMC Simulations of Blunt Body Flows for Mars Entries: Mars Pathfinder and Mars Microprobe Capsules
NASA Technical Reports Server (NTRS)
Moss, James N.; Wilmoth, Richard G.; Price, Joseph M.
1997-01-01
The hypersonic transitional flow aerodynamics of the Mars Pathfinder and Mars Microprobe capsules are simulated with the direct simulation Monte Carlo method. Calculations of axial, normal, and static pitching coefficients were obtained over an angle of attack range comparable to actual flight requirements. Comparisons are made with modified Newtonian and free-molecular-flow calculations. Aerothermal results were also obtained for zero incidence entry conditions.
Lateral diffusion study of the Pt-Al system using the NAC nuclear microprobe.
NASA Astrophysics Data System (ADS)
de Waal, H.; Pretorius, R.
1999-10-01
In this study a nuclear microprobe (NMP) was used to analyse phase formation during reaction in Pt-Al lateral diffusion couples. Phase identification was done by Rutherford backscattering spectroscopy. These results were compared with phase formation during conventional thin film Pt-Al interactions. The co-existence of multiple phases in lateral diffusion couples is discussed with reference to the effective heat of formation (EHF) model.
1988-11-01
Bilayer ........................................... 14 5. Current-Voltage Curve for Gramacidin in a Lecithin -Sphingomyelin Patch Bilayer... lecithin (Avanti). 9 2. MATERIALS 2.1 Patch Microprobe Instrumentation. The basis of the microprobe system is an AxoPatch Patch- Clamping Amplifier System...histogram of 1024 events cut above 2 pA. Events sampled are thought to be from the same single gramacidin channel in a lecithin : sphingomyelin (5:1) patch
Pure phase encode magnetic field gradient monitor.
Han, Hui; MacGregor, Rodney P; Balcom, Bruce J
2009-12-01
Numerous methods have been developed to measure MRI gradient waveforms and k-space trajectories. The most promising new strategy appears to be magnetic field monitoring with RF microprobes. Multiple RF microprobes may record the magnetic field evolution associated with a wide variety of imaging pulse sequences. The method involves exciting one or more test samples and measuring the time evolution of magnetization through the FIDs. Two critical problems remain. The gradient waveform duration is limited by the sample T(2)*, while the k-space maxima are limited by gradient dephasing. The method presented is based on pure phase encode FIDs and solves the above two problems in addition to permitting high strength gradient measurement. A small doped water phantom (1-3 mm droplet, T(1), T(2), T(2)* < 100 micros) within a microprobe is excited by a series of closely spaced broadband RF pulses each followed by FID single point acquisition. Two trial gradient waveforms have been chosen to illustrate the technique, neither of which could be measured by the conventional RF microprobe measurement. The first is an extended duration gradient waveform while the other illustrates the new method's ability to measure gradient waveforms with large net area and/or high amplitude. The new method is a point monitor with simple implementation and low cost hardware requirements.
The Mars Microprobe Mission: Advanced Micro-Avionics for Exploration Surface
NASA Astrophysics Data System (ADS)
Blue, Randel
2000-01-01
The Mars Microprobe Mission is the second spacecraft developed as part of the New Millennium Program deep space missions. The objective of the Microprobe Project is to demonstrate the applicability of key technologies for future planetary missions by developing two probes for deployment on Mars. The probes are designed with a single stage entry, descent, and landing system and impact the Martian surface at speeds of approximately 200 meters per second. The microprobes are composed of two main sections, a forebody section that penetrates to a depth below the Martian surface of 0.5 to 2 meters, and an aftbody section that remains on the surface. Each probe system consists of a number of advanced technology components developed specifically for this mission. These include a non-erosive aeroshell for entry into. the atmosphere, a set of low temperature batteries to supply probe power, an advanced microcontroller to execute the mission sequence, collect the science data, and react to possible system fault conditions, a telecommunications subsystem implemented on a set of custom integrated circuits, and instruments designed to provide science measurements from above and below the Martian surface. All of the electronic components have been designed and fabricated to withstand the severe impact shock environment and to operate correctly at predicted temperatures below -100 C.
Light stable isotope analysis of meteorites by ion microprobe
NASA Technical Reports Server (NTRS)
Mcsween, Harry Y., Jr.
1994-01-01
The main goal was to develop the necessary secondary ion mass spectrometer (SIMS) techniques to use a Cameca ims-4f ion microprobe to measure light stable isotope ratios (H, C, O and S) in situ and in non-conducting mineral phases. The intended application of these techniques was the analysis of meteorite samples, although the techniques that have been developed are equally applicable to the investigation of terrestrial samples. The first year established techniques for the analysis of O isotope ratios (delta O-18 and delta O-17) in conducting mineral phases and the measurement of S isotope ratios (delta S-34) in a variety of sulphide phases. In addition, a technique was developed to measure delta S-34 values in sulphates, which are insulators. Other research undertaken in the first year resulted in SIMS techniques for the measurement of wide variety of trace elements in carbonate minerals, with the aim of understanding the nature of alteration fluids in carbonaceous chondrites. In the second year we developed techniques for analyzing O isotope ratios in nonconducting mineral phases. These methods are potentially applicable to the measurement of other light stable isotopes such as H, C and S in insulators. Also, we have further explored the analytical techniques used for the analysis of S isotopes in sulphides by analyzing troilite in a number of L and H ordinary chondrites. This was done to see if there was any systematic differences with petrological type.
NASA Astrophysics Data System (ADS)
Llovet, X.; Salvat, F.
2018-01-01
The accuracy of Monte Carlo simulations of EPMA measurements is primarily determined by that of the adopted interaction models and atomic relaxation data. The code PENEPMA implements the most reliable general models available, and it is known to provide a realistic description of electron transport and X-ray emission. Nonetheless, efficiency (i.e., the simulation speed) of the code is determined by a number of simulation parameters that define the details of the electron tracking algorithm, which may also have an effect on the accuracy of the results. In addition, to reduce the computer time needed to obtain X-ray spectra with a given statistical accuracy, PENEPMA allows the use of several variance-reduction techniques, defined by a set of specific parameters. In this communication we analyse and discuss the effect of using different values of the simulation and variance-reduction parameters on the speed and accuracy of EPMA simulations. We also discuss the effectiveness of using multi-core computers along with a simple practical strategy implemented in PENEPMA.
NASA Astrophysics Data System (ADS)
Jugo, Pedro J.; Wilke, Max; Botcharnikov, Roman E.
2010-05-01
XANES analyses at the sulfur K-edge were used to determine the oxidation state of S in natural and synthetic basaltic glasses and to constrain the fO2 conditions for the transition from sulfide (S2-) to sulfate (S6+) in silicate melts. XANES spectra of basaltic samples from the Galapagos spreading center, the Juan de Fuca ridge and the Lau Basin showed a dominant broad peak at 2476.8 eV, similar to the spectra obtained from synthetic sulfide-saturated basalts and pyrrhotite. An additional sharp peak at 2469.8 eV, similar to that of crystalline sulfides, was present in synthetic glasses quenched from hydrous melts but absent in anhydrous glasses and may indicate differences in sulfide species with hydration or presence of minute sulfide inclusions exsolved during quenching. The XANES spectra of a basalt from the 1991 eruption of Mount Pinatubo, Philippines, and absarokitic basalts from the Cascades Range, Oregon, U.S.A., showed a sharp peak at 2482.8 eV, characteristic of synthetic sulfate-saturated basaltic glasses and crystalline sulfate-bearing minerals such as haüyne. Basaltic samples from the Lamont Seamount, the early submarine phase of Kilauea volcano and the Loihi Seamount showed unequivocal evidence of the coexistence of S2- and S6+ species, emphasizing the relevance of S6+ to these systems. XANES spectra of basaltic glasses synthesized in internally-heated pressure vessels and equilibrated at fO2 ranging from FMQ-1.7 to FMQ+2.7 showed systematic changes in the features related to S2- and S6+ with changes in fO2. No significant features related to sulfite (S4+) species were observed. These results were used to construct a function that allows estimates of S6+/ΣS from XANES data. Theoretical considerations and comparison of compiled S6+/ΣS data obtained by SKα shifts estimated with electron probe microanalysis (EPMA) and S6+/ΣS obtained from XANES spectra show that data obtained from EPMA measurements underestimate S6+/ΣS in samples that are sulfate-dominated (most likely because of photo-reduction effects during analysis) whereas S6+/ΣS data from XANES provide a close match to the expected theoretical values. The XANES-derived relationship for S6+/ΣS as a function of fO2 indicates that the transition from S2- to S6+ with increasing fO2 occurs over a narrower interval than what is predicted by the EPMA-derived relationship. The implications for natural systems is that small variation of fO2 above FMQ+1 will have a large effect on S behavior in basaltic systems, in particular regarding the amount of S that can be transported by basaltic melts before sulfide saturation can occur.
NASA Astrophysics Data System (ADS)
Jugo, Pedro J.; Wilke, Max; Botcharnikov, Roman E.
2010-10-01
XANES analyses at the sulfur K-edge were used to determine the oxidation state of S species in natural and synthetic basaltic glasses and to constrain the fO 2 conditions for the transition from sulfide (S 2-) to sulfate (S 6+) in silicate melts. XANES spectra of basaltic samples from the Galapagos spreading center, the Juan de Fuca ridge and the Lau Basin showed a dominant broad peak at 2476.8 eV, similar to the spectra obtained from synthetic sulfide-saturated basalts and pyrrhotite. An additional sharp peak at 2469.8 eV, similar to that of crystalline sulfides, was present in synthetic glasses quenched from hydrous melts but absent in anhydrous glasses and may indicate differences in sulfide species with hydration or presence of minute sulfide inclusions exsolved during quenching. The XANES spectra of a basalt from the 1991 eruption of Mount Pinatubo, Philippines, and absarokitic basalts from the Cascades Range, Oregon, USA, showed a sharp peak at 2482.8 eV, characteristic of synthetic sulfate-saturated basaltic glasses and crystalline sulfate-bearing minerals such as hauyne. Basaltic samples from the Lamont Seamount, the early submarine phase of Kilauea volcano and the Loihi Seamount showed unequivocal evidence of the coexistence of S 2- and S 6+ species, emphasizing the relevance of S 6+ to these systems. XANES spectra of basaltic glasses synthesized in internally-heated pressure vessels and equilibrated at fO 2 ranging from FMQ - 1.4 to FMQ + 2.7 showed systematic changes in the features related to S 2- and S 6+ with changes in fO 2. No significant features related to sulfite (S 4+) species were observed. These results were used to construct a function that allows estimates of S 6+/ΣS from XANES data. Comparison of S 6+/ΣS data obtained by S Kα shifts measured with electron probe microanalysis (EPMA), S 6+/ΣS obtained from XANES spectra, and theoretical considerations show that data obtained from EPMA measurements underestimate S 6+/ΣS in samples that are sulfate-dominated (most likely because of photo-reduction effects during analysis) whereas S 6+/ΣS from XANES provide a close match to the expected theoretical values. The XANES-derived relationship for S 6+/ΣS as a function of fO 2 indicates that the transition from S 2- to S 6- with increasing fO 2 occurs over a narrower interval than what is predicted by the EPMA-derived relationship. The implications for natural systems is that small variation of fO 2 above FMQ + 1 will have a large effect on S behavior in basaltic systems, in particular regarding the amount of S that can be transported by basaltic melts before sulfide saturation can occur.
A Two-Dimensional Multielectrode Microprobe for the Visual Cortex.
1979-12-01
used in studies of the auditory nerve (Ref 5t494-500) and studies of cortical electrical activity during seizures (Ref 6s414). Since silicon is the...Master of Science by 7> Joseph A. Tatman 2Lt USAF Graduate Electrical Engineering December 1979 Approved for public releases distribution unlimited s...designed around this microprobe to detect- the cortico- electrical C , signas, multiplex and modulate these data, and then transmit them across the
NASA Astrophysics Data System (ADS)
Ozerov, Alexei Y.
2000-01-01
The origin of calc-alkaline high-alumina basalts (HAB) of the Klyuchevskoy volcano, Kamchatka, was examined using electron microprobe analyses of phenocrysts and mineral phases included in the phenocrysts. Continuous trends on major-element variation diagrams suggest the HAB were derived from high-magnesia basalt (HMB) by fractional crystallization. Phenocrysts in the HAB are strongly zoned: olivine (Mg# 91-64), clinopyroxene (Wo 45-38En 40-51Fs 5-20) and chrome—spinel/magnetite inclusions in them (Cr 2O 3 45-0 wt.%, TiO 2 0.5-11%). Microprobe analyses of minerals included in the phenocrysts provide additional constraints on the mineral crystallization trends in the HAB. Fe/Mg partitioning data, when applied to the phenocrysts cores, show they crystallized from a HMB. The similarity of phenocryst core compositions in HAB with those in HMB strongly suggests a genetic relationship between the two magma types.
Sensing surface mechanical deformation using active probes driven by motor proteins
Inoue, Daisuke; Nitta, Takahiro; Kabir, Arif Md. Rashedul; Sada, Kazuki; Gong, Jian Ping; Konagaya, Akihiko; Kakugo, Akira
2016-01-01
Studying mechanical deformation at the surface of soft materials has been challenging due to the difficulty in separating surface deformation from the bulk elasticity of the materials. Here, we introduce a new approach for studying the surface mechanical deformation of a soft material by utilizing a large number of self-propelled microprobes driven by motor proteins on the surface of the material. Information about the surface mechanical deformation of the soft material is obtained through changes in mobility of the microprobes wandering across the surface of the soft material. The active microprobes respond to mechanical deformation of the surface and readily change their velocity and direction depending on the extent and mode of surface deformation. This highly parallel and reliable method of sensing mechanical deformation at the surface of soft materials is expected to find applications that explore surface mechanics of soft materials and consequently would greatly benefit the surface science. PMID:27694937
Study of ultrasonic melt treatment on the quality of horizontal continuously cast Al-1%Si alloy.
Li, Xin-Tao; Li, Ting-Ju; Li, Xi-Meng; Jin, Jun-Ze
2006-02-01
The fluctuation of the melt temperature in a tundish was measured during casting and experiments were conducted to investigate the effects of ultrasonic melt treatment on the surface quality and solidification structures of Al-1%Si ingots. The results show that the uniformity of melt temperature was enhanced with the application of ultrasonic melt treatment. When the ultrasonic power is 1,000W, the surface quality was evidently improved and grains of cast ingots were refined. Moreover, EPMA analysis was adopted to study the relationship between the ultrasonic power and boundary segregation of Si element. The result shows that boundary segregation is suppressed with the increase of ultrasonic power and the phenomenon was theoretically interpreted.
NASA Technical Reports Server (NTRS)
Distefano, S.; Rameshan, R.; Fitzgerald, D. J.
1991-01-01
Amorphous iron and titanium-based alloys containing various amounts of chromium, phosphorus, and boron exhibit high corrosion resistance. Some physical properties of Fe and Ti-based metallic alloy films deposited on a glass substrate by a dc-magnetron sputtering technique are reported. The films were characterized using differential scanning calorimetry, stress analysis, SEM, XRD, SIMS, electron microprobe, and potentiodynamic polarization techniques.
In situ 40K-40Ca ‘double-plus’ SIMS dating resolves Klokken feldspar 40K-40Ar paradox
NASA Astrophysics Data System (ADS)
Harrison, T. Mark; Heizler, Matthew T.; McKeegan, Kevin D.; Schmitt, Axel K.
2010-11-01
The 40K- 40Ca decay system has not been widely utilized as a geochronometer because quantification of radiogenic daughter is difficult except in old, extremely high K/Ca domains. Even these environments have not heretofore been exploited by ion microprobe analysis due to the very high mass resolving power (MRP) of 25,000 required to separate 40K + from 40Ca +. We introduce a method that utilizes doubly-charged K and Ca species which permits isotopic measurements to be made at relatively low MRP (~ 5000). We used this K-Ca 'double-plus' approach to address an enduring controversy in 40Ar/ 39Ar thermochronology revolving around exsolved alkali feldspars from the 1166 Ma Klokken syenite (southern Greenland). Ion microprobe 40K- 40Ca analysis of Klokken samples reveal both isochron and pseudoisochron behaviors that reflect episodic isotopic and chemical exchange of coarsely exsolved perthites and a near end-member K-feldspar until ≤ 719 Ma, and perhaps as late at ~ 400 Ma. Feldspar microtextures in the Klokken syenite evolved over a protracted interval by non-thermal processes (fluid-assisted recrystallization) and thus this sample makes a poor model from which to address the general validity of 40Ar/ 39Ar thermochronological methodologies.
An external milli-beam for archaeometric applications on the AGLAE IBA facility of the Louvre museum
NASA Astrophysics Data System (ADS)
Calligaro, T.; Dran, J.-C.; Hamon, H.; Moignard, B.; Salomon, J.
1998-03-01
External beam lines have been built on numerous IBA facilities for the analysis of works of art to avoid sampling and vacuum potentially detrimental to the integrity of such precious objects. On the other hand, growing interest lies on microprobe systems which provide a high lateral resolution but which usually work under vacuum. Until recently, the AGLAE facility was equipped with separate external beam and microprobe lines. The need of a better spatial resolution in the external beam mode has led us to combine them into a single system which exhibits numerous advantages and allows the analysis of small heterogeneities like inclusions in gemstones or tiny components of composite samples. The triplet of quadrupole lenses bought from Oxford is used to focus the beam. By using a 0.75 μm thick Al foil as the exit window, blowing a helium flow around the beam spot and reducing the window-sample distance below 3 mm, a beam size of about 30 μm can be reached. The experimental setup includes two Si(Li), a HPGe and a Si surface barrier detectors for the simultaneous implementation of PIXE, NRA and RBS. The full description of this device is given as well as a few applications to highlight its capability.
Mo, A; Wang, J; Liao, Y; Cen, Y; Shi, X
2001-12-01
Sufficient porcelain-titanium bond is a vital factor determining the clinical performance of titanium-porcelain restorations. The purpose of this study was to investigate the effects of self-preparation La-porcelain composition on the porcelain-titanium bonding strength and to compare with the Vita Titankeramik. The present study examines 5 different recipes of porcelain by weight%: SiO2, 12%-17%; LaO2, 7%-10%; Al2O3, 9%-14%; B2O3, 23%-31%; CaO, 6%-8%; K2O, 2%-3%; SrO, 2%-4%; Na2O, 1%-3%; SnO2, 8%-10%; ZrO2, 3%-5%; TiO2, 6%-8%. Specimens were tested in push type shear with a universal testing machine. Scanning electron microscopy (SEM) and electron probe microanalyzer (EPMA) were employed to reveal the microstructures and diffusion of elements in the interfacial regions between the porcelain coating and titanium to the bond strength when fired at 800 degrees C. The ratios of crystallized compositions had significant influences on the porcelain-titanium bond strength (P < 0.05). La-porcelain had the highest shear bond strength (37.76 MPa). The shear bond strength of the Vita Titankeramik to titanium was 20.18 MPa. The results of SEM revealed integrity of porcelain-titanium joints in La-porcelain and a greater amount of porosity in the interface of Vita Titankeramik to titanium. EPMA analysis demonstrated the aggregation of Si and Sn in the interfacial regions and their diffusion into the titanium. Chemical compositions of porcelain and ratios of crystallized compositions play the important role in the titanium porcelain bond. La-porcelain had the highest shear bond strength and good porcelain-titanium joints. La-porcelain is a new-style low fusing porcelain/titanium system.
Quantitative Electron Probe Microanalysis: State of the Art
NASA Technical Reports Server (NTRS)
Carpernter, P. K.
2005-01-01
Quantitative electron-probe microanalysis (EPMA) has improved due to better instrument design and X-ray correction methods. Design improvement of the electron column and X-ray spectrometer has resulted in measurement precision that exceeds analytical accuracy. Wavelength-dispersive spectrometer (WDS) have layered-dispersive diffraction crystals with improved light-element sensitivity. Newer energy-dispersive spectrometers (EDS) have Si-drift detector elements, thin window designs, and digital processing electronics with X-ray throughput approaching that of WDS Systems. Using these systems, digital X-ray mapping coupled with spectrum imaging is a powerful compositional mapping tool. Improvements in analytical accuracy are due to better X-ray correction algorithms, mass absorption coefficient data sets,and analysis method for complex geometries. ZAF algorithms have ban superceded by Phi(pz) algorithms that better model the depth distribution of primary X-ray production. Complex thin film and particle geometries are treated using Phi(pz) algorithms, end results agree well with Monte Carlo simulations. For geological materials, X-ray absorption dominates the corretions end depends on the accuracy of mass absorption coefficient (MAC) data sets. However, few MACs have been experimentally measured, and the use of fitted coefficients continues due to general success of the analytical technique. A polynomial formulation of the Bence-Albec alpha-factor technique, calibrated using Phi(pz) algorithms, is used to critically evaluate accuracy issues and can be also be used for high 2% relative and is limited by measurement precision for ideal cases, but for many elements the analytical accuracy is unproven. The EPMA technique has improved to the point where it is frequently used instead of the petrogaphic microscope for reconnaissance work. Examples of stagnant research areas are: WDS detector design characterization of calibration standards, and the need for more complete treatment of the continuum X-ray fluorescence correction.
Li, Hai-juan; Zhao, Xin; Jia, Qing-fei; Li, Tian-lai; Ning, Wei
2012-08-01
The achenes morphological and micro-morphological characteristics of six species of genus Taraxacum from northeastern China as well as SRAP cluster analysis were observed for their classification evidences. The achenes were observed by microscope and EPMA. Cluster analysis was given on the basis of the size, shape, cone proportion, color and surface sculpture of achenes. The Taraxacum inter-species achene shape characteristic difference is obvious, particularly spinulose distribution and size, achene color and achene size; with the Taraxacum plant achene shape the cluster method T. antungense Kitag. and the T. urbanum Kitag. should combine for the identical kind; the achene morphology cluster analysis and the SRAP tagged molecule systematics's cluster result retrieves in the table with "the Chinese flora". The class group to divide the result is consistent. Taraxacum plant achene shape characteristic stable conservative, may carry on the inter-species division and the sibship analysis according to the achene shape characteristic combination difference; the achene morphology cluster analysis as well as the SRAP tagged molecule systematics confirmation support dandelion classification result of "the Chinese flora".
Microbeam X-ray analysis in Poland - past and future
NASA Astrophysics Data System (ADS)
Kusinski, J.
2010-02-01
The article provides an overview of the development of electron beam X-ray microanalysis (EPMA) in Poland. Since the introduction by Prof. Bojarski of EMPA over 45 years ago, tremendous advances in methodologies and in instrumentation have been made in order to improve the precision of quantitative compositional analysis, spatial resolution and analytical sensitivity. This was possible due to the activity of Applied Crystallography Committee at the Polish Academy of Sciences, as well as the groups of researches working in the Institute for Ferrous Metallurgy (Gliwice), the Technical University of Warsaw, the Silesian Technical University (Katowice), the AGH-University of Sciences and Technology (Krakow), and the Institute of Materials Science and Metallurgy Polish Academy of Sciences (Krakow). Based on the research examples realized by these teams, conferences, seminars and congresses organized, as well as books and academic textbooks issued, the evolution of electron beam X-ray microanalysis in Poland is demonstrated.
Preparation of CuIn{sub x}Ga{sub 1{minus}x}Se{sub 2} thin films on Si substrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamamoto, Yukio; Yamaguchi, Toshiyuki; Suzuki, Masayoshi
For fabricating efficient tandem solar cells, CuIn{sub x}Ga{sub 1{minus}x}Se{sub 2} thin films have been prepared on Si(100), Si(110) and Si(111) substrates in the temperature range (R.T.{approximately}400 C) by rf sputtering. From EPMA analysis, these sputtered thin films are found to be nearly stoichiometric over the whole substrate temperature range, irrespective of the azimuth plane of the Si substrate. XPS studies showed that the compositional depth profile in these thin films is uniform. X-ray diffraction analysis indicated that all the thin films had a chalcopyrite structure. CuIn{sub x}Ga{sub 1{minus}x}Se{sub 2} thin films were strongly oriented along the (112) plane with increasingmore » the substrate temperature, independent of the azimuth plane of the Si substrate, suggesting the larger grain growth.« less
A clinical pathologic study of mercurialentis medicamentosus.
Garron, L K; Wood, I S; Spencer, W H; Hayes, T L
1976-01-01
Thirty-one patients who used eye drops containing the preservative, phenylmercuric nitrate for from 3 to 15 years, developed a brownish pigmentation of the anterior capsule of the pupillary area. Light and electron microscopic studies on two lenses demonstrated deposits of dense particulate material resembling melanin pigment on and in the anterior capsule of the lens in the area of the pupil. Special studies, including electron microprobe analysis and neutron activation analysis established the presence of mercury in a lens with mercurialentis. No mercury was found in two lenses used as controls.
Integrated otpical monitoring of MEMS for closed-loop control
NASA Astrophysics Data System (ADS)
Dawson, Jeremy M.; Wang, Limin; McCormick, W. B.; Rittenhouse, S. A.; Famouri, Parviz F.; Hornak, Lawrence A.
2003-01-01
Robust control and failure assessment of MEMS employed in physically demanding, mission critical applications will allow for higher degrees of quality assurance in MEMS operation. Device fault detection and closed-loop control require detailed knowledge of the operational states of MEMS over the lifetime of the device, obtained by a means decoupled from the system. Preliminary through-wafer optical monitoring research efforts have shown that through-wafer optical probing is suitable for characterizing and monitoring the behavior of MEMS, and can be implemented in an integrated optical monitoring package for continuous in-situ device monitoring. This presentation will discuss research undertaken to establish integrated optical device metrology for closed-loop control of a MUMPS fabricated lateral harmonic oscillator. Successful linear closed-loop control results using a through-wafer optical microprobe position feedback signal will be presented. A theoretical optical output field intensity study of grating structures, fabricated on the shuttle of the resonator, was performed to improve the position resolution of the optical microprobe position signal. Through-wafer microprobe signals providing a positional resolution of 2 μm using grating structures will be shown, along with initial binary Fresnel diffractive optical microelement design layout, process development, and testing results. Progress in the design, fabrication, and test of integrated optical elements for multiple microprobe signal delivery and recovery will be discussed, as well as simulation of device system model parameter changes for failure assessment.
The Perils of Electron Microprobe Analysis of Apatite
NASA Astrophysics Data System (ADS)
Henderson, C. E.; Essene, E. J.; Wang, K. L.; Zhang, Y.
2010-12-01
Accurate electron microprobe analysis of apatite is problematic, especially for F and Cl, whose concentrations are essential in calculating a non-analyzable OH component. The issues include beam-induced sample damage and temporal variation of F and Cl X-rays; both effects are mainly dependent on beam current, beam spot size and apatite orientation [1]. To establish a rigorous analytical procedure, several oriented apatite samples, including the well-known Durango and Wilberforce fluorapatites, were analyzed for a large suite of elements, including oxygen. Careful X-ray spectroscopy was performed, including selection of appropriate analytical standards, background measurement positions and comparison of area peak factors. Polarized infrared spectra on oriented apatite samples were also collected for complementary information. The results show that when apatite samples are oriented with the c-axis parallel to the electron beam, there is significant nonlinear variation (an increase or decrease, depending on measurement conditions) of F and Cl X-ray intensities during analyses, and systematically higher-than-expected F apparent concentrations, despite the careful selection of electron beam conditions from a series of X-ray time scans and zero-time count rate extrapolation. On the other hand, when the electron beam is oriented perpendicular to the c-axis, with a ≤ 15 nA beam current and a ≥ 5 µm diameter defocused beam, F and Cl X-ray intensities do not vary or vary slowly and predictably with time, yielding quantitative analysis results for the Durango and Wilberforce apatites (both containing little OH) which are in good agreement with published wet chemical analyses. Furthermore, the OH and CO2 contents inferred for three other analyzed apatite samples are roughly consistent with infrared analyses. For example, for an apatite from Silver Crater Mine in Ontario, significant deficiency in the P site, as well as extra F, was inferred from microprobe analyses. Infrared spectra show a strong band of (CO3)2- for this apatite, which indicates a possible substitution of (CO3)2-(F)- for (PO4)3-. Other techniques to mitigate temporal variation of F and Cl, including alternative metal coatings, concurrent stage movement, and cryogenic sample-cooling were attempted, but did not eliminate the disparity in measured F concentrations between the two sample orientations. Thus, we believe that F measurements on F-rich apatite samples of unknown orientation are immediately suspect and should be regarded as upper limits of true F concentration. X-ray mapping, CL imaging and subsequent quantitative analyses show compositional variations in Na, S, Si, and REE in the Durango and Wilberforce fluorapatite samples used in this study. Problems of electron beam sensitivity, X-ray intensity anisotropy due to sample orientation, and compositional heterogeneity call into question their continued use as routine microanalysis reference materials. Microanalysts are encouraged to use more robust calibration standards, such as Cl-rich or other F-poor apatites for Ca, P, O and Cl, and MgF2 for F measurements. [1] Stormer, J.C., Pierson, M.L, and Tacker, R.C. (1993) Variation of F and Cl X-ray intensity due to anisotropic diffusion in apatite during electron microprobe analysis. Am. Min., 78, 641-648.
Nuclear micro-probe analysis of Arabidopsis thaliana leaves
NASA Astrophysics Data System (ADS)
Ager, F. J.; Ynsa, M. D.; Domínguez-Solís, J. R.; López-Martín, M. C.; Gotor, C.; Romero, L. C.
2003-09-01
Phytoremediation is a cost-effective plant-based approach for remediation of soils and waters which takes advantage of the remarkable ability of some plants to concentrate elements and compounds from the environment and to metabolize various molecules in their tissues, such as toxic heavy metals and organic pollutants. Nowadays, phytoremediation technology is becoming of paramount importance when environmental decontamination is concerned, due to the emerging knowledge of its physiological and molecular mechanisms and the new biological and engineering strategies designed to optimize and improve it. In addition, the feasibility of using plants for environmental cleanup has been confirmed by many different trials around the world. Arabidopsis thaliana plants can be used for basic studies to improve the technology on phytoremediation. Making use of nuclear microscopy techniques, in this paper we study leaves of wild type and transgenic A. thaliana plants grown in a cadmium-rich environment under different conditions. Micro-PIXE, RBS and SEM analyses, performed on the scanning proton micro-probe at the CNA in Seville (Spain), prove that cadmium is preferentially sequestered in the central region of epidermal trichome and allow comparing the effects of genetic modifications.
Channeling STIM analysis of radiation damage in single crystal diamond membrane
NASA Astrophysics Data System (ADS)
Sudić, I.; Cosic, D.; Ditalia Tchernij, S.; Olivero, P.; Pomorski, M.; Skukan, N.; Jakšić, M.
2017-08-01
The use of focused ion beam transmission channeling patterns to monitor the damage creation process in thin diamond single crystal membrane is described. A 0.8 MeV proton beam from the Ruđer Bošković Institute nuclear microprobe was used to perform Channeling Scanning Transmission Ion Microscopy (CSTIM) measurements. CSTIM was used instead of RBS channeling because of (several orders of magnitude) lower damage done to the sample during the measurements. Damage was introduced in selected areas by 15 MeV carbon beam in range of fluences 3·1015-2·1017 ions/cm2. Contrary to Ion Beam Induced Charge (IBIC), CSTIM is shown to be sensitive to the large fluences of ion beam radiation. Complementary studies of both IBIC and CSTIM are presented to show that very high fluence range can be covered by these two microprobe techniques, providing much wider information about the diamond radiation hardness. In addition micro Raman measurements were performed and the height of the GR 1 peak was correlated to the ion beam fluence.
NASA Technical Reports Server (NTRS)
Andersen, C. A.; Hinthorne, J. R.
1972-01-01
Results of ion microprobe analyses of Apollo 11, 12 and 14 material, showing that U, Th, Pb and REE are concentrated in accessory minerals such as apatite, whitlockite, zircon, baddeleyite, zirkelite, and tranquillityite. Th/U ratios are found to vary by over a factor of 40 in these minerals. K, Ba, Rb and Sr have been localized in a K rich, U and Th poor glass phase that is commonly associated with the U and Th bearing accessory minerals. Li is observed to be fairly evenly distributed between the various accessory phases. The phosphates have been found to have REE abundance patterns (normalized to the chondrite abundances) that are fairly flat, while the Zr bearing minerals have patterns that rise steeply, by factors of ten or more, from La to Gd. All the accessory minerals have large negative Eu anomalies. Radiometric age dates (Pb 207/Pb 206) of the individual U and Th bearing minerals compare favorably with the Pb 207/Pb 206 age of the bulk rocks.
NASA Technical Reports Server (NTRS)
Martinez, I.; Guyot, F.; Schaerer, U.
1992-01-01
In order to better understand phase transformations, chemical migration, and isotopic disequilibrium in highly shocked rocks, we have performed a microprobe and an ATEM study on gneisses shocked up to 60 GPa from the Haughton Crater. This study reveals the following chemical and structural characteristics: (1) SiO2 dominant areas are formed by a mixture of pure SiO2 polycrystalline quartz identified by electron diffraction pattern and chemical analysis and a silica-rich amorphous phase containing minor amounts of aluminium, potassium, and iron; (2) Areas with biotitelike composition are formed by less than 200-nm grains of iron-rich spinels embedded in a silica-rich amorphous phase that is very similar to the one described above; (3) Layers with feldsparlike composition are constituted by 100-200-nm-sized alumina-rich grains (the indexation of the crystalline structure is under progress) and the silica-rich amorphous phase; (4) Zones characterized by the unusual Al/Si ratio close to 1 are formed by spinel grains (200-nm-sized) embedded in the same silica-rich amorphous phase; and (5) The fracturated sillimanites contain domains with a lamellar structure, defined by the intercalation of 100-nm-wide lamellae of mullite crystals and of a silica-rich amorphous phase. These mullite crystals preserved the crystallographical orientation of the preshock sillimanite. All compositional domains, identified at the microprobe scale, can thus be explained by a mixture in different proportion between the following phases: (1) a silica-rich amorphous phase, with minor Al and K; (2) quartz crystals; (3) spinel crystals and alumina-rich crystals; (4) sillimanite; and (5) mullite. Such mixtures of amorphous phases and crystals in different proportions explain disturbed isotope systems in these rocks and chemical heterogeneities observed on the microprobe.
Hydrogen motion in Zircaloy-4 cladding during a LOCA transient
NASA Astrophysics Data System (ADS)
Elodie, T.; Jean, D.; Séverine, G.; M-Christine, B.; Michel, C.; Berger, P.; Martine, B.; Antoine, A.
2016-04-01
Hydrogen and oxygen are key elements influencing the embrittlement of zirconium-based nuclear fuel cladding during the quench phase following a Loss Of Coolant Accident (LOCA). The understanding of the mechanisms influencing the motion of these two chemical elements in the metal is required to fully describe the material embrittlement. High temperature steam oxidation tests were performed on pre-hydrided Zircaloy-4 samples with hydrogen contents ranging between 11 and 400 wppm prior to LOCA transient. Thanks to the use of both Electron Probe Micro-Analysis (EPMA) and Elastic Recoil Detection Analysis (μ-ERDA), the chemical elements partitioning has been systematically quantified inside the prior-β phase. Image analysis and metallographic examinations were combined to provide an average oxygen profile as well as hydrogen profile within the cladding thickness after LOCA transient. The measured hydrogen profile is far from homogeneous. Experimental distributions are compared to those predicted numerically using calculations derived from a finite difference thermo-diffusion code (DIFFOX) developed at IRSN.
NASA Astrophysics Data System (ADS)
Mouri, H.; Brandl, G.; Whitehouse, M.; de Waal, S.; Guiraud, M.
2008-02-01
The combination of ion microprobe dating and cathodoluminescence (CL) imaging of zircons from a high-grade rock from the Central Zone of the Limpopo Belt were used to constrain the age of metamorphic events in the area. Zircon grains extracted from an orthopyroxene-gedrite-bearing granulite were prepared for single crystal CL-imaging and ion microprobe dating. The grains display complex zoning when using SEM-based CL-imaging. A common feature in most grains is the presence of a distinct core with a broken oscillatory zoned structure, which clearly appears to be the remnant of an original grain of igneous origin. This core is overgrown by an unzoned thin rim measuring about 10-30 μm in diameter, which is considered as new zircon growth during a single metamorphic event. Selected domains of the zircon grains were analysed for U, Pb and Th isotopic composition using a CAMECA IMS 1270 ion microprobe (Nordsim facility). Most of the grains define a near-concordant cluster with some evidence of Pb loss. The most concordant ages of the cores yielded a weighted mean 207Pb/ 206Pb age of 2689 ± 15 (2 σ) Ma, interpreted as the age of the protolith of an igneous origin. The unzoned overgrowths of the zircon grains yielded a considerably younger weighted mean 207Pb/ 206Pb age of ˜2006.5 ± 8.0 Ma (2 σ), and these data are interpreted to reflect closely the age of the ubiquitous high-grade metamorphic event in the Central Zone. This study shows clearly, based on both the internal structure of the zircons and the data obtained by ion microprobe dating, that only a single metamorphic event is recorded by the studied 2.69 Ga old rocks, and we found no evidence of an earlier metamorphic event at ˜2.5 Ga as postulated earlier by some workers.
Major and Trace Element Analysis of Natural and Experimental Igneous Systems using LA-ICP-MS
NASA Technical Reports Server (NTRS)
Jenner, Frances E.; Arevalo, Ricardo D., Jr.
2016-01-01
Major- and trace-element compositions of minerals provide valuable information on a variety of global Earth-system processes, including melting of distinct mantle reservoirs, the growth and evolution of the Earths crust and the formation of economically viable ore deposits. In the mid-1980s and early 1990s, attempts were made to couple laser ablation (LA) systems to inductively coupled plasma mass spectrometry (ICPMS) instruments (e.g. Fryer et al. 1995; Jackson et al. 1992). The goal was to develop a rapid, highly sensitive in situ analytical technique to measure abundances and spatial distributions of trace elements in minerals and other geological samples. Elemental analysis using LAICPMS was envisaged as a quicker and less destructive means of chemical analysis (requiring only g quantities) than labour-intensive sample digestion and solution analysis (requiring mg-levels of material); and it would be a more cost-effective method than secondary ion mass spectrometry (SIMS) for the routine analysis of trace elements from solid samples. Furthermore, it would have lower limits-of-detection than electron probe microanalysis (EPMA) (e.g. Jackson et al. 1992; Eggins 2003).
Boron Carbide Aluminum Cermets for External Pressure Housing Applications
1992-09-01
CHEMISTRY AND MICROSTRUCTURES OF THE B4C/Al SYSTEM ......................................... 4 3.2 MECHANICAL PROPERTIES OF B4C/AI COMPOSITES ....... 10...TABLES 1. Phase chemistry of B4C/A1 composites as a function of baking temperature (by stereology) .................. ...... 10 2. Summary of the...diffractometer using CuKo radiation and a scan rate of 2° per minute. The chemistry of all phases was determined from electron microprobe analysis of
Ilmenite exsolution schemes in Apollo-17 high-Ti basalts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaniman, D.; Heiken, G.; Muhich, T.
1990-01-01
Combined electron microprobe and scanning electron microscope (SEM) x-ray image analyses are used to obtain semiquantitative data on the relations between ilmenite grains and their exsolved chromite and rutile. Comparisons of these data for ilmenites in four Apollo-17 high-Ti basalts with a database of electron microprobe analyses from the literature indicates that Cr expulsion from ilmenite can be as important as Fe{sup 2+} reduction in causing subsolidus exsolution of chromite and rutile from ilmenite. 12 refs., 4 figs., 5 tabs.
NASA Technical Reports Server (NTRS)
Barta, D. J.; Tibbitts, T. W.
1991-01-01
An electron microprobe with wavelength-dispersive x-ray spectrometry (WDS) was found to be useful for the determination of Ca concentrations in leaf tissue deficient in Ca. WDS effectively detected Ca concentrations as low as 0.2 mg/g dry wt in the presence of high levels of K and Mg (120 and 50 mg/g dry wt, respectively). Leaf specimens were prepared for analysis by quick-freezing in liquid nitrogen and freeze-drying at -20 degrees C to maintain elemental integrity within the tissue. Because dry material was analyzed, sample preparation was simple and samples could be stored for long periods before analysis. A large beam diameter of 50 gm was used to minimize tissue damage under the beam and analyze mineral concentrations within several cells at one time. Beam penetration was between 50 and 55 microns, approximately one-third of the thickness of the leaf. For analysis of concentrations in interveinal areas, analyses directed into the abaxial epidermis were found most useful. However, because of limited beam penetration, analyses of veinal areas would require use of cross sections [correction of crosssections]. Solid mineral standards were used for instrument standardization. To prevent measurement errors resulting from differences between the matrix of the mineral standards and the analyzed tissue, concentrations in leaves were corrected using gelatin standards prepared and analyzed under the same conditions. WDS was found to be useful for documenting that very low Ca levels occur in specific areas of lettuce leaves exhibiting the Ca deficiency injury termed tipburn.
1998-11-12
KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), JPL workers mount a Mars microprobe onto the Mars Polar Lander. Two microprobes will hitchhike on the lander, scheduled to be launched Jan. 3, 1999, aboard a Delta II rocket. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. The Mars microprobes, called Deep Space 2, are part of NASA's New Millennium Program. They will complement the climate-related scientific focus of the lander by demonstrating an advanced, rugged microlaser system for detecting subsurface water. Such data on polar subsurface water, in the form of ice, should help put limits on scientific projections for the global abundance of water on Mars
1998-11-12
KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), JPL workers prepare to mount a Mars microprobe onto the Mars Polar Lander. Two microprobes will hitchhike on the lander, scheduled to be launched Jan. 3, 1999, aboard a Delta II rocket. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. The Mars microprobes, called Deep Space 2, are part of NASA's New Millennium Program. They will complement the climate-related scientific focus of the lander by demonstrating an advanced, rugged microlaser system for detecting subsurface water. Such data on polar subsurface water, in the form of ice, should help put limits on scientific projections for the global abundance of water on Mars
1998-11-12
KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), Chris Voorhees (front) watches while Satish Krishnan (back) places a Mars microprobe on a workstand. Two microprobes will hitchhike on the Mars Polar Lander, scheduled to be launched Jan. 3, 1999, aboard a Delta II rocket. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. The Mars microprobes, called Deep Space 2, are part of NASA's New Millennium Program. They will complement the climate-related scientific focus of the lander by demonstrating an advanced, rugged microlaser system for detecting subsurface water. Such data on polar subsurface water, in the form of ice, should help put limits on scientific projections for the global abundance of water on Mars
1998-11-10
KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), Satish Krishnan (right) from the Jet Propulsion Laboratory places a Mars microprobe on a workstand. In the background, Chris Voorhees watches. Two microprobes will hitchhike on the Mars Polar Lander, scheduled to be launched Jan. 3, 1999, aboard a Delta II rocket. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. The Mars microprobes, called Deep Space 2, are part of NASA's New Millennium Program. They will complement the climate-related scientific focus of the lander by demonstrating an advanced, rugged microlaser system for detecting subsurface water. Such data on polar subsurface water, in the form of ice, should help put limits on scientific projections for the global abundance of water on Mars
1998-11-12
KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), Chris Voorhees (left) and Satish Krishnan (right), from the Jet Propulsion Laboratory, remove the second Mars microprobe from a drum. Two microprobes will hitchhike on the Mars Polar Lander, scheduled to be launched Jan. 3, 1999, aboard a Delta II rocket. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. The Mars microprobes, called Deep Space 2, are part of NASA's New Millennium Program. They will complement the climate-related scientific focus of the lander by demonstrating an advanced, rugged microlaser system for detecting subsurface water. Such data on polar subsurface water, in the form of ice, should help put limits on scientific projections for the global abundance of water on Mars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popescu, B.F.Gh.; Belak, Z.R.; Ignatyev, K.
2009-06-04
The asymmetric distribution of many components of the Xenopus oocyte, including RNA, proteins, and pigment, provides a framework for cellular specialization during development. During maturation, Xenopus oocytes also acquire metals needed for development, but apart from zinc, little is known about their distribution. Synchrotron X-ray fluorescence microprobe was used to map iron, copper, and zinc and the metalloid selenium in a whole oocyte. Iron, zinc, and copper were asymmetrically distributed in the cytoplasm, while selenium and copper were more abundant in the nucleus. A zone of high copper and zinc was seen in the animal pole cytoplasm. Iron was alsomore » concentrated in the animal pole but did not colocalize with zinc, copper, or pigment accumulations. This asymmetry of metal deposition may be important for normal development. Synchrotron X-ray fluorescence microprobe will be a useful tool to examine how metals accumulate and redistribute during fertilization and embryonic development.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popescu, B.F.G.; Belak, Z.R.; Ignatyev, K.
2009-04-29
The asymmetric distribution of many components of the Xenopus oocyte, including RNA, proteins, and pigment, provides a framework for cellular specialization during development. During maturation, Xenopus oocytes also acquire metals needed for development, but apart from zinc, little is known about their distribution. Synchrotron X-ray fluorescence microprobe was used to map iron, copper, and zinc and the metalloid selenium in a whole oocyte. Iron, zinc, and copper were asymmetrically distributed in the cytoplasm, while selenium and copper were more abundant in the nucleus. A zone of high copper and zinc was seen in the animal pole cytoplasm. Iron was alsomore » concentrated in the animal pole but did not colocalize with zinc, copper, or pigment accumulations. This asymmetry of metal deposition may be important for normal development. Synchrotron X-ray fluorescence microprobe will be a useful tool to examine how metals accumulate and redistribute during fertilization and embryonic development.« less
1998-11-12
KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), a JPL worker checks the Mars microprobe. Two microprobes will hitchhike on the Mars Polar Lander, scheduled to be launched Jan. 3, 1999, aboard a Delta II rocket. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. The Mars microprobes, called Deep Space 2, are part of NASA's New Millennium Program. They will complement the climate-related scientific focus of the lander by demonstrating an advanced, rugged microlaser system for detecting subsurface water. Such data on polar subsurface water, in the form of ice, should help put limits on scientific projections for the global abundance of water on Mars
1998-11-12
KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), the two Mars microprobes are shown mounted on opposite sides of the Mars Polar Lander. The two microprobes and the lander are scheduled to be launched Jan. 3, 1999, aboard a Delta II rocket. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. The Mars microprobes, called Deep Space 2, are part of NASA's New Millennium Program. They will complement the climate-related scientific focus of the lander by demonstrating an advanced, rugged microlaser system for detecting subsurface water. Such data on polar subsurface water, in the form of ice, should help put limits on scientific projections for the global abundance of water on Mars
1998-11-12
KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), two JPL workers measure a Mars microprobe. Two microprobes will hitchhike on the Mars Polar Lander, scheduled to be launched Jan. 3, 1999, aboard a Delta II rocket. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. The Mars microprobes, called Deep Space 2, are part of NASA's New Millennium Program. They will complement the climate-related scientific focus of the lander by demonstrating an advanced, rugged microlaser system for detecting subsurface water. Such data on polar subsurface water, in the form of ice, should help put limits on scientific projections for the global abundance of water on Mars
1998-11-12
KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), a JPL worker carries a Mars microprobe to the Mars Polar Lander at left. Two microprobes will hitchhike on the lander, scheduled to be launched Jan. 3, 1999, aboard a Delta II rocket. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. The Mars microprobes, called Deep Space 2, are part of NASA's New Millennium Program. They will complement the climate-related scientific focus of the lander by demonstrating an advanced, rugged microlaser system for detecting subsurface water. Such data on polar subsurface water, in the form of ice, should help put limits on scientific projections for the global abundance of water on Mars
Corrosion Behavior of Ti60 Alloy under a Solid NaCl Deposit in Wet Oxygen Flow at 600 °C
Fan, Lei; Liu, Li; Yu, Zhongfen; Cao, Min; Li, Ying; Wang, Fuhui
2016-01-01
The corrosion behavior of Ti60 alloy covered with a solid NaCl deposit in wet oxygen flow at 600 °C has been studied further by SEM, EDX, XPS, XRD, TEM and EPMA analysis. The results show that solid NaCl and H2O react with Ti oxides, which destroyed the Ti oxide scale to yield the non-protective Na4Ti5O12 and other volatile species. The resulting corrosion product scale was multilayered and contained abundant rapid diffusion channels leading to the fast diffusion which improved the corrosion rate. A possible mechanism has been proposed for the NaCl-covered Ti60 alloy, based on the experimental results. PMID:27357732
In Situ Trace Element Analysis of an Allende Type B1 CAI: EK-459-5-1
NASA Technical Reports Server (NTRS)
Jeffcoat, C. R.; Kerekgyarto, A.; Lapen, T. J.; Andreasen, R.; Righter, M.; Ross, D. K.
2014-01-01
Variations in refractory major and trace element composition of calcium, aluminum-rich inclusions (CAIs) provide constraints on physical and chemical conditions and processes in the earliest stages of the Solar System. Previous work indicates that CAIs have experienced complex histories involving, in many cases, multiple episodes of condensation, evaporation, and partial melting. We have analyzed major and trace element abundances in two core to rim transects of the melilite mantle as well as interior major phases of a Type B1 CAI (EK-459-5-1) from Allende by electron probe micro-analyzer (EPMA) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to investigate the behavior of key trace elements with a primary focus on the REEs Tm and Yb.
Chromium in urban sediment particulates: an integrated micro-chemical and XANES study
NASA Astrophysics Data System (ADS)
Taylor, Kevin; Byrne, Patrick; Hudson-Edwards, Karen
2015-04-01
Chromium is generally common within the urban sediment cascade as a result of abundant industrial and transport-related sources. The risks that Cr-bearing particles pose to ecosystems and humans depend on the solid phase chemical speciation of Cr in the particles. In this study, we use bulk chemical digests, sequential chemical extraction analysis, electron microscopy, electron microprobe and microfocus XANES analysis to describe the solid-phase speciation of Cr in urban particulate matter from both aquatic sediment and road dust sediment (RDS) in Manchester, UK. Cr-bearing grains within RDS are predominantly iron oxide grains, commonly of goethite or haematite mineralogy, but Cr-bearing silicate glass grains are also present. Iron oxide glass grains most likely have sorbed Cr, and derive from the rusting of Cr-steel particles from vehicles. Electron microprobe analysis indicates concentrations of Cr up to 3200 μg/g in these grains, and XANES analysis indicates that Cr(III) is the dominant oxidation state, with some trace amounts of Cr(VI). Cr-bearing grains within aquatic sediments are dominated by alumino-silicate glass grains derived from industrial waste. These grains contain Cr-rich areas with up to 19% Cr2O3 and XANES analysis indicates that Cr is present as Cr(III). The dominance of Cr(III) in these urban particulate grains suggests limited bioavailability or toxicity. However, the presence within two markedly different grain types (iron oxides and silicate glasses) indicates that the long-term geochemical behaviour and environmental risk of RDS and the aquatic sediments studied are likely to be quite different. These findings highlight the importance of understanding sources of metal contaminants in urban environments and the geochemical processes that affect their transfer through the urban sediment cascade and the wider river basin.
Understanding Thermal Transport in Graded, Layered and Hybrid Materials
2014-04-01
interfacial chemistries, including metallic and carbide layers, and; (iv) mimic the observed interface structure on a TDTR specimen by manipulating the...surface carbides , which were extracted from several different composites via acid dissolution of Cu, continued throughout the last 12 months of the...effort. The previously-reported electron probe microanalysis (EPMA) based techniques were employed to estimate the interfacial carbide layer thickness
Laboratory synthesis of silicate glass spherules: Application to impact ejecta
NASA Astrophysics Data System (ADS)
Stoddard, P. S.; Pahlevan, K.; Tumber, S.; Weber, R.; Lee, K. K.
2012-12-01
To investigate the process by which molten droplets of impact ejecta solidify into glassy spherule tektites, we employed laser levitation experiments to recreate the hot temperatures of falling molten rock. Following models for Earth composition based on enstatite chondrites, we levitated mixtures of oxide powders in a stream of gas and melted them with a laser, producing silicate glass beads. After quenching, we polished the ~1 mm diameter samples in cross-section and analyzed with electron probe microanalysis (EPMA). Fine and coarsely-spaced EPMA transects across each bead displayed diffusion profiles at their edges, particularly in their SiO2 and MgO content. Heating altered the beads' bulk composition as well; all of the glassy spherules were compositionally different from the initial combination of powders. By comparing these changes to the environmental factors acting on the bead (e.g., temperature, type of levitation gas, duration of heating and amount of rotation), we produced a model for how molten ejecta change chemically and physically as they solidify into a glass. We find that high temperatures likely generated on impact have a strong effect on the composition of tektites; therefore, attempts to correlate tektites to their parent rocks should correct for this effect.
Constituent Redistribution in U-Zr Metallic Fuel Using the Advanced Fuel Performance Code BISON
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galloway, Jack D.; Unal, Cetin; Matthews, Christopher
2016-09-30
Previous work done by Galloway, et. al. on EBR-II ternary (U-Pu-Zr) fuel constituent redistribution yielded accurate simulation data for the limited data sets of Zr redistribution. The data sets included EPMA scans of two different irradiated rods. First, T179, which was irradiated to 1.9 at% burnup, was analyzed. Second, DP16, which was irradiated to 11 at% burnup, was analyzed. One set of parameters that most accurately represented the zirconium profiles for both experiments was determined. Since the binary fuel (U-Zr) has previously been used as the driver fuel for sodium fast reactors (SFR) as well as being the likely drivermore » fuel if a new SFR is constructed, this same process has been initiated on the binary fuel form. From limited binary EPMA scans as well as other fuel characterization techniques, it has been observed that zirconium redistribution also occurs in the binary fuel, albeit at a reduced rate compared to observation in the ternary fuel, as noted by Kim et. al. While the rate of redistribution has been observed to be slower, numerous metallographs of U-Zr fuel show distinct zone formations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Z.D.; Liu, L.M.; Shen, Y.
2008-01-15
Gas tungsten arc (GTA) welds were prepared on 5-mm thick plates of wrought magnesium AZ31B alloy, using an activated flux. The microstructural characteristics of the weld joint were investigated using optical and scanning microscopy, and the fusion zone microstructure was compared with that of the base metal. The elemental distribution was also investigated by electron probe microanalysis (EPMA). Mechanical properties were determined by standard tensile tests on small-scale specimens. The as-welded fusion zone prepared using a CdCl{sub 2} flux exhibited a larger grain size than that prepared without flux; the microstructure consisted of matrix {alpha}-Mg, eutectic {alpha}-Mg and {beta}-Al{sub 12}Mg{submore » 17}. The HAZ was observed to be slightly wider for the weld prepared with a CdCl{sub 2} flux compared to that prepared without flux; thus the tensile strength was lower for the flux-prepared weld. The fact that neither Cd nor Cl was detected in the weld seam by EPMA indicates that the CdCl{sub 2} flux has a small effect on convection in the weld pool.« less
NASA Astrophysics Data System (ADS)
Iguchi, Yuki; Sugiyama, Taiki; Inoue, Kazutoshi; Yanagi, Hiroshi
2018-05-01
Tin monosulfide (SnS) is an attractive material for photovoltaic cells because of its suitable band-gap energy, high absorption coefficient, and non-toxic and abundant constituent elements. The primary drawback of this material is the lack of n-type SnS. We recently demonstrated n-type SnS by doping with Cl. However, the Cl-doped n-type SnS bulk ceramics exhibited an odd behavior in which carrier-type conversion but not electron carrier concentration depended on the Cl concentration. In this study, the electron probe microanalysis (EPMA) elemental mapping of Cl-doped SnS revealed continuous homogeneous regions with a relatively low Cl concentration along with the islands of high Cl concentration in which Sn/S is far from unity. The difference between the Cl concentration in the homogeneous region (determined by EPMA) and the bulk Cl concentration (determined by wavelength-dispersive X-ray fluorescence spectroscopy) increased with the increasing Cl doping amount. The carrier concentration and the Hall coefficient clearly depended on the Cl concentration in the homogeneous region. Carrier-type conversion was observed at the Cl concentration of 0.26 at. % (in the homogeneous region).
Workshop on Cometary Dust in Astrophysics
NASA Technical Reports Server (NTRS)
2003-01-01
The paper include contribution of each Lunar and Planetary Institute. Contents include the following: Mass flux in the ancient Earth-Moon system and benign implications for the origin of life on Earth. In-situ analysis of complex organic matter in cometary dust by ion microprobe. Pristine presolar silicon carbide. Infrared spectra of melilite solid solution. Comet observations with SIRTF. Ice and carbon chemistry in comets. The nature in interstellar dust. Modeling the infrared emission from protoplanetary dust disks.
1988-12-01
by light finger pressure; and surface shaded or rubbed by soft pencil, charcoal, or crayon. Anglers initiated this custom as a means of recording...related to the barium titanate or simple nects, and mixers. Some of these applica- perovskite unit cell (Figure 1). In this struc- tions can be...dispersive spectroscopy (EDS), Target-~ microprobe analysis, and x-ray diffraction R~orOC(XRD). MagnetsOptical microscopy with polarized light
A Review of Positive Ion Sensitivities for the SIMS Analysis of CMT
1991-05-01
microprobe. Inter-laboratory exercises organised by NRL using standardised glasses and steels’ s showed considerable agreement usually within a factor...would be sufficient oxygen to convert all the remaining matrix atoms to oxides, TeO2 and CdO. Any general theory of the lonisation of sputtered particles...Eggert equation which works well for many other matrices, such as metals, glasses and ceramics. Despite decades of basic studies there is still no
Hot-phonon generation in THz quantum cascade lasers
NASA Astrophysics Data System (ADS)
Spagnolo, V.; Vitiello, M. S.; Scamarcio, G.; Williams, B. S.; Kumar, S.; Hu, Q.; Reno, J. L.
2007-12-01
Observation of non-equilibrium optical phonons population associated with electron transport in THz quantum cascade lasers is reported. The phonon occupation number was measured by using a combination of micro-probe photoluminescence and Stokes/Anti-Stokes Raman spectroscopy. Energy balance analysis allows us to estimate the phonon relaxation rate, that superlinearly increases with the electrical power in the range 1.5 W - 1.95 W, above laser threshold. This observation suggests the occurrence of stimulated emission of optical phonons.
Zhu, Yu-Min; Zhang, Hua; Fan, Shi-Suo; Wang, Si-Jia; Xia, Yi; Shao, Li-Ming; He, Pin-Jing
2014-07-15
Due to the heterogeneity of metal distribution, it is challenging to identify the speciation, source and fate of metals in solid samples at micro scales. To overcome these challenges single particles of air pollution control residues were detected in situ by synchrotron microprobe after each step of chemical extraction and analyzed by multivariate statistical analysis. Results showed that Pb, Cu and Zn co-existed as acid soluble fractions during chemical extraction, regardless of their individual distribution as chlorides or oxides in the raw particles. Besides the forms of Fe2O3, MnO2 and FeCr2O4, Fe, Mn, Cr and Ni were closely associated with each other, mainly as reducible fractions. In addition, the two groups of metals had interrelations with the Si-containing insoluble matrix. The binding could not be directly detected by micro-X-ray diffraction (μ-XRD) and XRD, suggesting their partial existence as amorphous forms or in the solid solution. The combined method on single particles can effectively determine metallic multi-associations and various extraction behaviors that could not be identified by XRD, μ-XRD or X-ray absorption spectroscopy. The results are useful for further source identification and migration tracing of heavy metals. Copyright © 2014 Elsevier B.V. All rights reserved.
Tykot, Robert H
2002-08-01
Chemical fingerprinting using major or trace element composition is used to characterize the Mediterranean island sources of obsidian and can even differentiate as many as nine flows in the Monte Arci region of Sardinia. Analysis of significant numbers of obsidian artifacts from Neolithic sites in the central Mediterranean reveals specific patterns of source exploitation and suggests particular trade mechanisms and routes. The use of techniques such as X-ray fluorescence, the electron microprobe, neutron activation analysis, and laser ablation ICP mass spectrometry are emphasized in order to produce quantitative results while minimizing damage to valuable artifacts.
Optical and chemical analysis of iron in Luna 20 plagioclase.
NASA Technical Reports Server (NTRS)
Bell, P. M.; Mao, H. K.
1973-01-01
Review of analytical data on the iron content of Luna 20 anorthitic plagioclase, obtained by a highly sensitive technique for measuring polarized absorption related to crystal-field splittings and by automated electron microprobe analysis of oriented single crystals. The iron content is found to range from a few hundredths to a few tenths of a weight per cent from crystal to crystal. The optical and chemical properties of the iron appear to be caused by postcrystallization migration and exsolution. Postcrystallization effects may obscure evidence of the original oxidation state and iron concentration of these crystals.
NASA Technical Reports Server (NTRS)
Sutton, S. R.; Bajt, S.; Rivers, M. L.; Smith, J. V.
1993-01-01
The synchrotron x-ray microprobe is being used to obtain oxidation state information on planetary materials with high spatial resolution. Initial results on chromium in olivine from various sources including laboratory experiments, lunar basalt, and kimberlitic diamonds are reported. The lunar olivine was dominated by Cr(2+) whereas the diamond inclusions had Cr(2+/Cr(3+) ratios up to about 0.3. The simpliest interpretation is that the terrestrial olivine crystallized in a more oxidizing environment than the lunar olivine.
Vizkelethy, G.; King, M. P.; Aktas, O.; ...
2016-12-02
Radiation responses of high-voltage, vertical gallium-nitride (GaN) diodes were investigated using Sandia National Laboratories’ nuclear microprobe. Effects of the ionization and the displacement damage were studied using various ion beams. We found that the devices show avalanche effect for heavy ions operated under bias well below the breakdown voltage. Here, the displacement damage experiments showed a surprising effect for moderate damage: the charge collection efficiency demonstrated an increase instead of a decrease for higher bias voltages.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vizkelethy, G.; King, M. P.; Aktas, O.
Radiation responses of high-voltage, vertical gallium-nitride (GaN) diodes were investigated using Sandia National Laboratories’ nuclear microprobe. Effects of the ionization and the displacement damage were studied using various ion beams. We found that the devices show avalanche effect for heavy ions operated under bias well below the breakdown voltage. Here, the displacement damage experiments showed a surprising effect for moderate damage: the charge collection efficiency demonstrated an increase instead of a decrease for higher bias voltages.
Elemental mapping of biological samples using a scanning proton microprobe
NASA Astrophysics Data System (ADS)
Watt, F.; Grime, G. W.
1988-03-01
Elemental mapping using a scanning proton microprobe (SPM) can be a powerful technique for probing trace elements in biology, allowing complex interfaces to be studied in detail, identifying contamination and artefacts present in the specimen, and in certain circumstances obtaining indirect chemical information. Examples used to illustrate the advantages of the technique include the elemental mapping of growing pollen tubes, honey bee brain section, a mouse macrophage cell, human liver section exhibiting primary biliary cirrhosis, and the attack by a mildew fungus on a pea leaf.
Study of silicon carbide formation by liquid silicon infiltration of porous carbon structures
NASA Astrophysics Data System (ADS)
Margiotta, Jesse C.
Silicon carbide (SiC) materials are prime candidates for high temperature heat exchangers for next generation nuclear reactors due to their refractory nature and high thermal conductivity at elevated temperatures. This research has focused on demonstrating the potential of liquid silicon infiltration (LSI) for making SiC to achieve this goal. The major advantage of this method over other ceramic processing techniques is the enhanced capability of making fully dense, high purity SiC materials in complex net shapes. For successful formation of net shape SiC using LSI techniques, the carbon preform reactivity and pore structure must be controlled to allow the complete infiltration of the porous carbon structure followed by conversion of this carbon to SiC. We have established a procedure for achieving desirable carbon properties by using carbon precursors consisting of two readily available high purity organic materials, crystalline cellulose and phenolic resin. Phenolic resin yields a glassy carbon with low reactivity and porosity, and cellulose carbon is highly reactive and porous. By adjusting the ratio of these two materials in the precursor mixtures, the properties of the carbons produced can be controlled. We have identified the most favorable carbon precursor composition to be a cellulose:resin mass ratio of 6:4 for LSI formation of SiC. The optimum reaction conditions are a temperature of 1800°C, a pressure of 0.5 Torr of argon, and a time of 120 minutes. The fully dense net shape SiC material produced has a density of 2.96 g cm-3 (about 92% of pure SiC) and a SiC volume fraction of over 0.82. Kinetics of the LSI SiC formation process were studied by optical microscopy and quantitative digital image analysis. This study identified six reaction stages and provided important understanding of the process. Such knowledge can be used to further refine the LSI technique. Although the thermal conductivity of pure SiC at elevated temperatures is very high, thermal conductivities of most commercial SiC materials are much lower due to phonon scattering by impurities (e.g., sintering aids located at the grain boundaries of these materials). The thermal conductivity of our SiC was determined using the laser flash method and it is 214 W/mK at 373 K and 64 W/mK at 1273 K. These values are very close to those of pure SiC and are much higher than those of SiC materials made by industrial processes. Thus, SiC made by our LSI process is an ideally suited material for use in high temperature heat exchanger applications. Electron probe microanalysis (EPMA) and Auger electron spectroscopy (AES) were used to study the chemical composition of LSI SiC materials. Optimized low voltage microanalysis conditions for EPMA of SiC were theoretically determined. EPMA and AES measurements indicate that the SiC phase in our materials is slightly carbon rich. Carbon contamination was identified as a possible source of error during EPMA of SiC, and this error was corrected by using high purity SiC standards. Cellulose and phenolic resin carbons lack the well-defined atomic structures associated with common carbon allotropes. Atomic-scale structure was studied using high resolution transmission electron microscopy (HRTEM), nitrogen gas adsorption and helium gas pycnometry. These studies revealed that cellulose carbon exhibits a very high degree of atomic disorder and angstrom-scale porosity. It has a density of only 93% of that of pure graphite, with primarily sp2 bonding character and a low concentration of graphene clusters. Phenolic resin carbon shows more structural order and substantially less angstrom-scale porosity. Its density is 98% of that of pure graphite, and Fourier transform analysis of its TEM micrographs has revealed high concentrations of sp3 diamond and sp 2 graphene nano-clusters. This is the first time that diamond nano-clusters have been observed in carbons produced from phenolic resin.
Sample Preparation for Electron Probe Microanalysis—Pushing the Limits
Geller, Joseph D.; Engle, Paul D.
2002-01-01
There are two fundamental considerations in preparing samples for electron probe microanalysis (EPMA). The first one may seem obvious, but we often find it is overlooked. That is, the sample analyzed should be representative of the population from which it comes. The second is a direct result of the assumptions in the calculations used to convert x-ray intensity ratios, between the sample and standard, to concentrations. Samples originate from a wide range of sources. During their journey to being excited under the electron beam for the production of x rays there are many possibilities for sample alteration. Handling can contaminate samples by adding extraneous matter. In preparation, the various abrasives used in sizing the sample by sawing, grinding and polishing can embed themselves. The most accurate composition of a contaminated sample is, at best, not representative of the original sample; it is misleading. Our laboratory performs EPMA analysis on customer submitted samples and prepares over 250 different calibration standards including pure elements, compounds, alloys, glasses and minerals. This large variety of samples does not lend itself to mass production techniques, including automatic polishing. Our manual preparation techniques are designed individually for each sample. The use of automated preparation equipment does not lend itself to this environment, and is not included in this manuscript. The final step in quantitative electron probe microanalysis is the conversion of x-ray intensities ratios, known as the “k-ratios,” to composition (in mass fraction or atomic percent) and/or film thickness. Of the many assumptions made in the ZAF (where these letters stand for atomic number, absorption and fluorescence) corrections the localized geometry between the sample and electron beam, or takeoff angle, must be accurately known. Small angular errors can lead to significant errors in the final results. The sample preparation technique then becomes very important, and, under certain conditions, may even be the limiting factor in the analytical uncertainty budget. This paper considers preparing samples to get known geometries. It will not address the analysis of samples with irregular, unprepared surfaces or unknown geometries. PMID:27446757
The Role of the Ion Microprobe in Solid-Earth Geochemistry
NASA Astrophysics Data System (ADS)
Hauri, E. H.
2002-12-01
Despite the early success of the electron microprobe in taking petrology to the micron scale, and the widespread use of mass spectrometers in geochemistry and geochronology, it was not until the mid-1970s that the ion microprobe came into its own as an in situ analytical tool in the Earth sciences. Despite this inauspicious beginning, secondary ion mass spectrometry (SIMS) was widely advertised as a technology that would eventually eclipse thermal ion mass spectrometry (TIMS) in isotope geology. However this was not to happen. While various technical issues in SIMS such as interferences and matrix effects became increasingly clear, an appreciation grew for the complimentary abilities of SIMS and TIMS that, even with the advent of ICP-MS, continues to this day. Today the ion microprobe is capable of abundance measurements in the parts-per-billion range across nearly the entire periodic table, and SIMS stable isotope data quality is now routinely crossing the 1 per mil threshold, all at the micron scale. Much of this success is due to the existence of multi-user community facilities for SIMS research, and the substantial efforts of interested scientists to understand the fundamentals of sputtered ion formation and their application to geochemistry. Recent discoveries of evidence for the existence of ancient crust and oceans, the emergence of life on Earth, the large-scale cycling of surficial materials into the deep Earth, and illumination of fundamental high-pressure phenomena have all been made possible by SIMS, and these (and many more) discoveries owe a debt to the vision of creating and supporting multi-user community facilities for SIMS. The ion microprobe remains an expensive instrument to purchase and maintain, yet it is also exceedingly diverse in application. Major improvements in SIMS, indeed in all mass spectrometry, are visible on the near horizon. Yet the geochemical community cannot depend on commercial manufacturers alone to design and build the next generation of instrumentation for geochemistry. Such will be the role of instrument-minded scientists asking questions that simply cannot be answered by extant means. And it will be multi-user facilities that will make such advancements available to the wider geochemical community.
NASA Technical Reports Server (NTRS)
Huneke, J. C.; Armstrong, J. T.; Wassserburg, G. J.
1983-01-01
Isotopic ratios have been determined, at a precision level approaching that of counting statistics using beam switching, by employing PANURGE, a modified CAMECA IMS3F ion microprobe at a mass resolving power of 5000. This technique is used to determine the isotopic composition of Mg and Si and the atomic ratio of Al/Mg in minerals from the Allende inclusion WA and the Allende FUN inclusion C1. Results show enrichment in Mg-26 of up to 260 percent. Results of Mg and Al/Mg measurements on cogenetic spinel inclusion and host plagiclase crystals show Mg-Al isochrons in excellent agreement with precise mineral isochrons determined by thermal emission mass spectrometry. The measurements are found to confirm the presence of substantial excess Mg-26 in WA and its near absence in C1. Data is obtained which indicates a metamorphic reequilibrium of Mg in Allende plagioclase at least 0.6 my after WA formation. Ion probe measurements are obtained which confirm that the Mg composition in Allende C1 is highly fractionated and is uniform among pyroxene, melilite, plagioclase, spinel crystals, and spinel included in melilite and plagioclase crystals.
Void formation in INCONEL MA-754 by high temperature oxidation
NASA Astrophysics Data System (ADS)
Rosenstein, Alan H.; Tien, John K.; Nix, William D.
1986-01-01
Subsurface void formation in oxide dispersion strengthened MA-754 caused by high temperature oxidation was investigated at temperatures of 1100, 1150, and 1200 °C for times of 1, 10, 50, and 100 hours. Material exposed at 1200 °C was examined using microprobe, SEM, and optical microscopy techniques. After exposure in air at 1200 °C for 100 hours, chromium depletion by as much as 10 wt pct was observed near the surface, and voids of various sizes up to 15 µm in diameter were found to depths of 300 µm. The fraction of voids increases with exposure time and, with the exception of anomalous values near the surface, decreases with depth. The maximum area fraction of voids observed was approximately 8 pct. Correlation of the void area fraction profile with the measured chromium depletion through a diffusion analysis shows that void formation is due to vacancy injection. Similar void formation in Ni-Cr alloys without oxide dispersions suggests that void formation is not dependent upon the presence of oxide dispersions. The diffusion coefficient for chromium in MA-754 at 1200 °C was computed from microprobe data to be 4 × 10-10 cm2 per second.
Force-displacement measurements of earlywood bordered pits using a mesomechanical tester.
Zelinka, Samuel L; Bourne, Keith J; Hermanson, John C; Glass, Samuel V; Costa, Adriana; Wiedenhoeft, Alex C
2015-10-01
The elastic properties of pit membranes are reported to have important implications in understanding air-seeding phenomena in gymnosperms, and pit aspiration plays a large role in wood technological applications such as wood drying and preservative treatment. Here we present force-displacement measurements for pit membranes of circular bordered pits, collected on a mesomechanical testing system. The system consists of a quartz microprobe attached to a microforce sensor that is positioned and advanced with a micromanipulator mounted on an inverted microscope. Membrane displacement is measured from digital image analysis. Unaspirated pits from earlywood of never-dried wood of Larix and Pinus and aspirated pits from earlywood of dried wood of Larix were tested to generate force-displacement curves up to the point of membrane failure. Two failure modes were observed: rupture or tearing of the pit membrane by the microprobe tip, and the stretching of the pit membrane until the torus was forced out of the pit chamber through the pit aperture without rupture, a condition we refer to as torus prolapse. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
NASA Technical Reports Server (NTRS)
McKeegan, Kevin D.
1998-01-01
NASA NAGW-4112 has supported development of the CAMECA ims 1270 ion microprobe at UCLA for applications in cosmochemistry. The instrument has been brought to an operational status and techniques developed for accurate, precise microbeam analysis of oxygen isotope ratios in polished thin-sections. We made the first oxygen isotopic (delta(18)O and delta(17)O) measurements of rare mafic silicates in the most chemically primitive meteorites, the a chondrites (Leshin et al., 1997). The results have implications for both high temperature processing in the nebula and low-T aqueous alteration on the CI asteroid. We have performed measurements of oxygen isotopic compositions of magnetite and co-existing olivine from carbonaceous (Choi et al., 1997) and unequilibrated ordinary chondrites (Choi et al., in press). This work has identified a significant new oxygen isotope reservoir in the early solar system: water characterized by a very high Delta(17)) value of approx. 5 % per thousand. We have determined the spatial distributions of oxygen isotopic anomalies in all major mineral phases of a type B CAI from Allende. We have also studied an unusual fractionated CAI from Leoville and made the first oxygen isotopic measurements in rare CAIs from ordinary chondrites.
Background of SAM atom-fraction profiles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ernst, Frank
Atom-fraction profiles acquired by SAM (scanning Auger microprobe) have important applications, e.g. in the context of alloy surface engineering by infusion of carbon or nitrogen through the alloy surface. However, such profiles often exhibit an artifact in form of a background with a level that anti-correlates with the local atom fraction. This article presents a theory explaining this phenomenon as a consequence of the way in which random noise in the spectrum propagates into the discretized differentiated spectrum that is used for quantification. The resulting model of “energy channel statistics” leads to a useful semi-quantitative background reduction procedure, which ismore » validated by applying it to simulated data. Subsequently, the procedure is applied to an example of experimental SAM data. The analysis leads to conclusions regarding optimum experimental acquisition conditions. The proposed method of background reduction is based on general principles and should be useful for a broad variety of applications. - Highlights: • Atom-fraction–depth profiles of carbon measured by scanning Auger microprobe • Strong background, varies with local carbon concentration. • Needs correction e.g. for quantitative comparison with simulations • Quantitative theory explains background. • Provides background removal strategy and practical advice for acquisition.« less
Occurrence modes of As, Sb, Te, Bi, Ag in sulfide assemblages of gold deposits of the Urals
NASA Astrophysics Data System (ADS)
Vikent'eva, O.; Vikentev, I.
2016-04-01
Review of occurrence modes of trace toxic elements ("potential pollutants") in ores from large gold deposits (the Urals) of different genetic types is presented. Mineral forms of these elements as well as their presence in main minerals from gold-bearing sulfide assemblages according to SEM, EPMA, INAA, ICP-MS and LA-ICP-MS are demonstrated.
NASA Astrophysics Data System (ADS)
Fahad, M.; Iqbal, Y.; Riaz, M.; Ubic, R.; Redfern, S. A. T.
2015-12-01
The KP province of Pakistan hosts widespread deposits of thermo-metamorphic marbles that were extensively used as a building and ornamental stones since the time of earliest flourishing civilization in this region known as Indus Valley Civilization (2500 BC). The macroscopic characteristics of 22 marble varieties collected from three different areas of Lesser Himalayas (Northwest Pakistan), its chemical, mineralogical, petrographic features, temperature conditions of metamorphic re-crystallization, and the main physical properties are presented in order to provide a solid basis for possible studies on the provenance and distribution of building stones from this region. The results provide a set of diagnostic parameters that allow discriminating the investigated marbles and quarries. Studied marbles overlap in major phase assemblage, but the accessory mineral content, chemistry, the maximum grain size (MGS) and other petrographic characteristics are particularly useful in the distinction between them. On the basis of macroscopic features, the studied marbles can be classifies into four groups: (i) white (ii) grey-to-brown veined, (iii) brown-reddish to yellowish and (iv) dark-grey to blackish veined marbles. The results show that the investigated marbles are highly heterogeneous in both their geochemical parameters and minero-petrographic features. Microscopically, the white, grey-to-brown and dark-grey to blackish marbles display homeoblastic/granoblastic texture, and the brown-reddish to yellowish marbles display a heteroblastic texture with traces of slightly deformed polysynthetic twining planes. Minero-petrography, XRD, SEM and EPMA revealed that the investigated marbles chiefly consist of calcite along with dolomite, quartz, muscovite, pyrite, K-feldspar, Mg, Ti and Fe-oxides as subordinates. The magnesium content of calcite coexisting with dolomite was estimated by both XRD and EPMA/EDS, indicating the metamorphic temperature of re-crystallization from 414 - 628oC. The multi-analytical approach applied in the present study allows the best possible discrimination. The detailed databank relating to the quarried material, created here for the first time, provides a solid basis for possible studies on the provenance and distribution of building stones from these areas.
NASA Astrophysics Data System (ADS)
Colomer, M. T.; Kilner, J. A.
2015-08-01
This work reports the effect of two different sintering times, 6 and 48 h on the structural, microstructural, and chemical features of Ni-doped La0.90Sr0.10GaO3.00-δ. Independently of the sintering time, La0.90Sr0.10Ga1-xNixO3.00-δ (where x=0.10, and 0.20 (mol)) presents a rhombohedral symmetry with a lattice volume that decreases when NiO dopant increases. Besides the perovskite, LaSrGa3.00O7.00 (nominal composition) is present as second phase in all cases. When the samples are doped with NiO, the peaks of this second phase are shifted with respect to the peaks of the pure phase. These shifts suggest that this second phase could admit some Ni ions in its structure. According to the XRD patterns, the amount of the latter phase is larger when sintering time is increased. Electron probe microanalysis (EPMA) indicated that the matrix of the samples sintered for 6 h is constituted by a perovskite with an experimental composition very close to the nominal one. However, when the samples are sintered for 48 h the matrix of each sample is constituted by two perovskites; both with compositional deviations with respect to their nominal one. In particular, a significant Sr depletion compensated by a La increment in the A site is observed. Those compositional deviations could be mainly due to the diffusion of the cations in the bulk and/or from the bulk to the surface of the samples. That diffusion can favour the formation, not only, of a second perovskite with a different composition in relation with the first one formed, but also, the formation of second phases. In addition, a very slight broadening of Bragg peaks of the perovskites sintered for 48 h is observed by XRD and can be related to the presence of two different perovskites in each sample according to EPMA results. By BSEM and EPMA analyses La4.00Ga2.00O9.00 (nominal composition) is also observed as second phase when samples are treated for 48 h.
NASA Technical Reports Server (NTRS)
Wigley, D. A.
1981-01-01
Diffusion assisted bonds are formed in 17-4 PH, 15-5 PH, type 347 and Nitronic 40 stainless steels using electrodeposited copper as the bonding agent. The bonds are analyzed by conventional metallographic, electron microprobe analysis, and scanning electron microscopic techniques as well as Charpy V-notch impact tests at temperatures of 77 and 300 K. Results are discussed in terms of a postulated model for the bonding process.
Dual fiber microprobe for mapping elemental distributions in biological cells
Martin, Rodger C [Powell, TN; Martin, Madhavi Z [Powell, TN
2007-07-31
Laser-induced breakdown spectroscopy (LIBS) is applied on a microscale for in situ elemental analysis and spatial mapping in biological cells. A high power laser beam is focused onto a cell surface using a dual branching optical fiber probe for optical excitation of the cell constituents. Dual spectrometers and ICCD detectors capture the emission spectra from the excited cell(s). Repeated probing or repositioning of the laser beam with respect to the cell can provide 2-D or 3-D mapping of the cell.
1998-11-10
KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), Tandy Bianco, with Lockheed Martin, and Satish Krishnan (foreground) and Chris Voorhees (behind him), from the Jet Propulsion Laboratory, observe a Mars microprobe on the workstand. Two microprobes will hitchhike on the Mars Polar Lander, scheduled to be launched Jan. 3, 1999, aboard a Delta II rocket. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. The Mars microprobes, called Deep Space 2, are part of NASA's New Millelnnium Program. They will complement the climate-related scientific focus of the lander by demonstrating an advanced, rugged microlaser system for detecting subsurface water. Such data on polar subsurface water, in the form of ice, should help put limits on scientific projections for the global abundance of water on Mars
Late Pleistocene granodiorite beneath Crater Lake caldera, Oregon, dated by ion microprobe
Bacon, C.R.; Persing, H.M.; Wooden, J.L.; Ireland, T.R.
2000-01-01
Variably melted granodiorite blocks ejected during the Holocene caldera-forming eruption of Mount Mazama were plucked from the walls of the climactic magma chamber ~15 km depth. Ion-microprobe U-Pb dating of zircons from two unmelted granodiorite blocks with SHRIMP RG (sensitive high-resolution ion microprobe-reverse geometry) gives a nominal 238U/206Pb age of 101+78-80 ka, or 174+89-115 ka when adjusted for an initial 230Th deficit. SHRIMP RG U-Th measurements on a subset of the zircons yield a 230Th/238U isochron age of 112 ?? 24 ka, considered to be the best estimate of the time of solidification of the pluton. These results suggest that the granodiorite is related to andesite and dacite of Mount Mazama and not to magmas of the climactic eruption. The unexposed granodiorite has an area of at least 28 km2. This young, shallow pluton was emplaced in virtually the same location where a similarly large magma body accumulated and powered violent explosive eruptions ~7700 yr ago, resulting in collapse of Crater Lake caldera.
NASA Astrophysics Data System (ADS)
Abiy, Lidet; Telischi, Fred; Parel, Jean-Marie A.; Manns, Fabrice; Saettele, Ralph; Morawski, Krzysztof; Ozdamar, Ozcan; Borgos, John; Delgado, Rafael; Miskiel, Edward; Yavuz, Erdem
2003-06-01
The aim of this project is the development of a microsurgical laser Doppler (LD) probe that simultaneously monitors blood flow and Electrocochleography (ECochG) from the round window of the ear. The device will prevent neurosensory hearing loss during acoustic neuroma surgery by preventing damage to the internal auditory nerve and to the cochlear blood flow supply. A commercially available 0.5 mm diameter Laser-Doppler velocimetry probe (LaserFlo, Vasamedics) was modified to integrate an ECochG electrode. A tube for suction and irrigation was incorporated into a sheath of the probe shaft, to facilitate cleaning of the round window (RW) and allow drug delivery to the round window membrane. The prototype microprobe was calibrated on a single vessel model and tested in vivo in a rabbit model. Preliminary results indicate that the microprobe was able to measure changes in cochlear blood flow (CBF) and ECochG potentials from the round window of rabbits in vivo. The microprobe is suitable for monitoring cochlear blood flow and auditory cochlear potentials during human surgery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shearer, C.K.; Papike, J.J.; Simon, S.B.
1989-05-01
To study the effects of crystallization sequence and rate on trace element zoning characteristics of pyroxenes, the authors used combined electron microprobe-ion microprobe techniques on four nearly isochemical Apollo 12 and 15 pigeonite basalts with different cooling rates and crystallization histories. Major and minor element zoning characteristics are nearly identical to those reported in the literature. All the pyroxenes have similar chondrite-normalized REE patterns: negative Eu anomalies, positive slopes as defined by Yb/Ce, and slopes of REE patterns from Ce to Sm much steeper than from Gd to Yb. These trace element zoning characteristics in pyroxene and the partitioning ofmore » trace elements between pyroxene and the melt are intimately related to the interplay among the efficiency of the crystallization process, the kinetics at the crystal-melt interface, the kinetics of plagioclase nucleation and the characteristics of the crystal chemical substitutions within both the pyroxene and the associated crystallizing phases (i.e. plagioclase).« less
A Crystal Stratigraphy Approach to Deciphering the Petrogenesis of the Detroit Seamount
NASA Astrophysics Data System (ADS)
Simonetti, A.; Davenport, J.; Neal, C. R.
2012-12-01
The Detroit Seamount (DSM) erupted ~76-81 Ma ago, and is the northwestern terminus of the Hawaiian-Emperor Seamount chain. The Hawaiian-Emperor Seamount chain has drastically furthered our understanding of how and where mantle plumes originate, the dynamics of interactions between plumes and mantle, and plate movement in the recent past. DSM Basalts from Site 1203 of Leg 197 of the Ocean Drilling Program (ODP) contain, by rock volume, a large quantity of plagioclase and olivine phenocrysts. Previous investigations into magma chamber processes via phenocryst analysis such as those occurring at the DSM have largely relied solely on major and trace element analyses. However, since both are easily susceptible to post-solidification alteration processes, in this study we are undertaking a multi-faceted approach to deciphering the petrogenetic history of the DSM basalts via crystal stratigraphy, crystal size distributions (CSDs), electron microprobe analysis (EPMA), laser ablation and multi-collector inductively coupled plasma mass spectrometry (LA- and MC-ICP-MS), microdilling and phase separation, and isotope analysis of whole-rock, olivine and plagioclase phenocrysts and their associated melt inclusions. A preliminary Sr isotope and trace element investigation of DSM whole rock basalts from Site 884 yielded a range of values between 0.70262 and 0.70276, as well as MORB-like trace element patterns. Notably, the plagioclase rims analyzed possessed a more radiogenic (87Sr/86Sr)I than the core (0.70361 ± 2 vs. 0.70347 ± 2). Our initial interpretation of this radiogenic increase from core-to-rim was crystal growth in an OIB-rich magma source that was not cogenetic with its matrix. Eight olivine phenocrysts from DSM basalts were analyzed for major elements using scanning electron microscopy (SEM) and energy dispersive spectrum (EDS) techniques. Fosterite contents of the olivine phenocrysts range from 84-86. Olivines from basalt sample 10R-4 exhibit a well-defined correlation between Ni and Mn contents, whereas those from sample 10R-3 show a more limited range of Mn and Ni compositions. The trends defined by the data from the olivine phenocrysts clearly suggest that fractional crystallization was not the sole magma differentiation process to have occurred. Rare earth element (REE) abundances for the olivine phenocrysts are low, and generally range from 0.1 to 2 ppm, with those from basalt sample 10R-4 containing higher abundances than sample 10R-3. Melt inclusions from within plagioclase phenocrysts in DSM basalt sample 9R-2 from Site 884 were analyzed via laser ablation-ICP-MS. Results from the analyses indicate that the melt inclusions are LREE-enriched and negatively-sloped compared to the LREE-depleted basalt whole rock compositions from the DSM and the East Pacific Rise. Of interest, the La concentrations in the melt inclusions are notably similar to abundances found for the Manua Kea tholeiites. Trace element data and Sr isotope ratios for both melt inclusions and phenocrysts from the DSM basalts are all indicative of open system behavior and possibly consistent with magma mixing between at least two end-member mantle components.
NASA Astrophysics Data System (ADS)
Fuji-Ta, K.; Katsura, T.; Tainosho, Y.
2003-12-01
We have developed a technique to measure electrical conductivity of crustal rocks with relatively low conductivity and complicated mineral components in order to compare with results given by Magneto-Telluric (MT) measurements. A granulite from Hidaka Metamorphic Belt (HMB) in Hokkaido, Japan at high temperature and pressure conditions was obtained. The granulite sample was ground and sintered under the conditions similar to those of mid to lower crust. We have observed smooth and reversible change of conductivity with temperature up to about 900 K at 1 GPa. Through the qualitative and quantitative evaluations using Electron Probe Micro Analysis (EPMA), microstructures of the sintered sample were inspected. This inspection is essential to confirm the sample was not affected by chemical interaction of minerals. We also examined the role of accessory minerals in the rock, and the mechanisms of electrical conductivity paths in _gdry_h or _gbasic_h rocks should be reconsidered. Finally, results from electrical conductivity measurements were consistent with the electrical conductivity structures suggested by the former MT data analysis.
The irradiation behavior of atomized U-Mo alloy fuels at high temperature
NASA Astrophysics Data System (ADS)
Park, Jong-Man; Kim, Ki-Hwan; Kim, Chang-Kyu; Meyer, M. K.; Hofman, G. L.; Strain, R. V.
2001-04-01
Post-irradiation examinations of atomized U-10Mo, U-6Mo, and U-6Mo-1.7Os dispersion fuels from the RERTR-3 experiment irradiated in the Advanced Test Reactor (ATR) were carried out in order to investigate the fuel behavior of high uranium loading (8 gU/cc) at a high temperature (higher than 200°C). It was observed after about 40 at% BU that the U-Mo alloy fuels at a high temperature showed similar irradiation bubble morphologies compared to those at a lower temperature found in the RERTR-1 irradiation result, but there was a thick reaction layer with the aluminum matrix which was found to be greatly affected by the irradiation temperature and to a lesser degree by the fuel composition. In addition, the chemical analysis for the irradiated U-Mo fuels using the Electron Probe Micro Analysis (EPMA) method were conducted to investigate the compositional changes during the formation of the reaction product.
NASA Astrophysics Data System (ADS)
Chen, Zhangqi; Liu, Zi-Kui; Zhao, Ji-Cheng
2018-05-01
Diffusion coefficients of seven binary systems (Ti-Mo, Ti-Nb, Ti-Ta, Ti-Zr, Zr-Mo, Zr-Nb, and Zr-Ta) at 1200 °C, 1000 °C, and 800 °C were experimentally determined using three Ti-Mo-Nb-Ta-Zr diffusion multiples. Electron probe microanalysis (EPMA) was performed to collect concentration profiles at the binary diffusion regions. Forward simulation analysis (FSA) was then applied to extract both impurity and interdiffusion coefficients in Ti-rich and Zr-rich part of the bcc phase. Excellent agreements between our results and most of the literature data validate the high-throughput approach combining FSA with diffusion multiples to obtain a large amount of systematic diffusion data, which will help establish the diffusion (mobility) databases for the design and development of biomedical and structural Ti alloys.
NASA Astrophysics Data System (ADS)
Chen, Zhangqi; Liu, Zi-Kui; Zhao, Ji-Cheng
2018-07-01
Diffusion coefficients of seven binary systems (Ti-Mo, Ti-Nb, Ti-Ta, Ti-Zr, Zr-Mo, Zr-Nb, and Zr-Ta) at 1200 °C, 1000 °C, and 800 °C were experimentally determined using three Ti-Mo-Nb-Ta-Zr diffusion multiples. Electron probe microanalysis (EPMA) was performed to collect concentration profiles at the binary diffusion regions. Forward simulation analysis (FSA) was then applied to extract both impurity and interdiffusion coefficients in Ti-rich and Zr-rich part of the bcc phase. Excellent agreements between our results and most of the literature data validate the high-throughput approach combining FSA with diffusion multiples to obtain a large amount of systematic diffusion data, which will help establish the diffusion (mobility) databases for the design and development of biomedical and structural Ti alloys.
Hybrid magnetic materials formed by ferritin intercalated into a layered double hydroxide
NASA Astrophysics Data System (ADS)
Clemente-León, Miguel; Coronado, Eugenio; Primo, Vicent; Ribera, Antonio; Soriano-Portillo, Alejandra
2008-12-01
A hybrid magnetic material formed by ferritin intercalated into a layered double hydroxide (LDH) of Mg and Al (Mg/Al molar ratio 2) is prepared and characterized through powder X-ray diffraction (XRD), thermogravimetric analysis (TGA), Fourier transform infrared (FT-IR) spectroscopy, electron probe microanalysis (EPMA) and high resolution transmission electron microscopy (HRTEM). One observes an enhancement in the thermal stability of the ferritin molecules when they are inserted in the layered material. Magnetic measurements of the hybrid material exhibit the typical superparamagnetic behaviour of the ferritin molecule. On the other hand, the intercalation of ferritin into the LDH guarantees a homogeneous dispersion of the ferritin molecules, which do not aggregate even after calcination of the sample. This feature allows obtaining well-dispersed magnetic metal oxide nanoparticles upon calcination of the hybrid material.
Rapid correction of electron microprobe data for multicomponent metallic systems
NASA Technical Reports Server (NTRS)
Gupta, K. P.; Sivakumar, R.
1973-01-01
This paper describes an empirical relation for the correction of electron microprobe data for multicomponent metallic systems. It evaluates the empirical correction parameter, a for each element in a binary alloy system using a modification of Colby's MAGIC III computer program and outlines a simple and quick way of correcting the probe data. This technique has been tested on a number of multicomponent metallic systems and the agreement with the results using theoretical expressions is found to be excellent. Limitations and suitability of this relation are discussed and a model calculation is also presented in the Appendix.
$ANBA; a rapid, combined data acquisition and correction program for the SEMQ electron microprobe
McGee, James J.
1983-01-01
$ANBA is a program developed for rapid data acquisition and correction on an automated SEMQ electron microprobe. The program provides increased analytical speed and reduced disk read/write operations compared with the manufacturer's software, resulting in a doubling of analytical throughput. In addition, the program provides enhanced analytical features such as averaging, rapid and compact data storage, and on-line plotting. The program is described with design philosophy, flow charts, variable names, a complete program listing, and system requirements. A complete operating example and notes to assist in running the program are included.
Micro-PIXE studies of Lupinus angustifolius L. after treatment of seeds with molybdenum
NASA Astrophysics Data System (ADS)
Przybylowicz, W. J.; Mesjasz-Przybylowicz, J.; Wouters, K.; Vlassak, K.; Combrink, N. J. J.
1997-02-01
An example of nuclear microprobe application in agriculture is presented. The NAC nuclear microprobe was used to determine quantitative elemental distribution of major, minor and trace elements in Lupinus angustifolius L. (Leguminosae) after treatment of seeds with molybdenum. Experiments were performed in order to establish safe concentration levels and sources of Mo in seed treatments. Elemental distributions in Mo-treated plants and in the non-treated control plants were studied in order to explain how Mo causes toxicity. Some specific regions of Mo and other main and trace elements enrichment were identified.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ostrach, D J; Phillis, C C; Weber, P K
2004-09-17
Habitat use has been shown to be an important factor in the bioaccumulation of contaminants in striped bass. This study examines migration in striped bass as part of a larger study investigating bioaccumulation and maternal transfer of xenobiotics to progeny in the San Francisco Estuary system. Habitat use, residence time and spawning migration over the life of females (n = 23) was studied. Female striped bass were collected between Knights Landing and Colusa on the Sacramento River during the spawning runs of 1999 and 2001. Otoliths were removed, processed and aged via otolith microstructure. Subsequently, otoliths were analyzed for strontium/calciummore » (Sr/Ca) ratio using an electron-microprobe to measure salinity exposure and to distinguish freshwater, estuary, and marine habitat use. Salinity exposure during the last year before capture was examined more closely for comparison of habitat use by the maternal parent to contaminant burden transferred to progeny. Results were selectively confirmed by ion microprobe analyses for habitat use. The Sr/Ca data demonstrate a wide range of migratory patterns. Age of initial ocean entry differs among individuals before returning to freshwater, presumably to spawn. Some fish reside in freshwater year-round, while others return to more saline habitats and make periodic migrations to freshwater. Frequency of habitat shifts and residence times differs among fish, as well as over the lifetime of individual fish. While at least one fish spent its final year in freshwater, the majority of spawning fish spent their final year in elevated salinity. However, not all fish migrated to freshwater to spawn in the previous year. Results from this investigation concerning migration history in striped bass can be combined with contaminant and histological developmental analyses to better understand the bioaccumulation of contaminants and the subsequent effects they and habitat use have on fish populations in the San Francisco Estuary system.« less
The petrogenesis of L-6 chondrites - Insights from the chemistry of minerals
NASA Technical Reports Server (NTRS)
Curtis, D. B.; Schmitt, R. A.
1979-01-01
Measurements of the major, minor and trace element abundances of the major minerals of the L-6 chondrites Alfianello, Colby (WI) and Leedey are used to investigate the formation mechanisms of L-6 chondrites. Electron microprobe analysis was performed on individual grains of each mineral, and separated minerals were analyzed by instrumental and radiochemical neutron activation analysis. The compositions of the three meteorites are observed to be generally uniform, however different abundances and distributions of rare earth elements and Co and Ni indicate that the meteorites have different petrogenetic histories. Alkali element distributions are found to be incompatible with internal equilibration of a closed system.
Implications of Polishing Techniques in Quantitative X-Ray Microanalysis
Rémond, Guy; Nockolds, Clive; Phillips, Matthew; Roques-Carmes, Claude
2002-01-01
Specimen preparation using abrasives results in surface and subsurface mechanical (stresses, strains), geometrical (roughness), chemical (contaminants, reaction products) and physical modifications (structure, texture, lattice defects). The mechanisms involved in polishing with abrasives are presented to illustrate the effects of surface topography, surface and subsurface composition and induced lattice defects on the accuracy of quantitative x-ray microanalysis of mineral materials with the electron probe microanalyzer (EPMA). PMID:27446758
Yamamoto, S; Han, L; Noiri, Y; Okiji, T
2017-12-01
To evaluate the Ca 2+ -releasing, alkalizing and apatite-like surface precipitate-forming abilities of a prototype tricalcium silicate cement, which was mainly composed of synthetically prepared tricalcium silicate and zirconium oxide radiopacifier. The prototype tricalcium silicate cement, white ProRoot MTA (WMTA) and TheraCal LC (a light-cured resin-modified calcium silicate-filled material) were examined. The chemical compositions were analysed with a wavelength-dispersive X-ray spectroscopy electron probe microanalyser with an image observation function (SEM-EPMA). The pH and Ca 2+ concentrations of water in which the set materials had been immersed were measured, and the latter was assessed with the EDTA titration method. The surface precipitates formed on the materials immersed in phosphate-buffered saline (PBS) were analysed with SEM-EPMA and X-ray diffraction (XRD). Kruskal-Wallis tests followed by Mann-Whitney U-test with Bonferroni correction were used for statistical analysis (α = 0.05). The prototype cement contained Ca, Si and Zr as major elemental constituents, whereas it did not contain some metal elements that were detected in the other materials. The Ca 2+ concentrations and pH of the immersion water samples exhibited the following order: WMTA = prototype cement > TheraCal LC (P < 0.05). All three materials produced Ca- and P-containing surface precipitates after PBS immersion, and the precipitates produced by TheraCal LC displayed lower Ca/P ratios than those formed by the other materials. XRD peaks corresponding to hydroxyapatite were detected in the precipitates produced by the prototype cement and WMTA. The prototype tricalcium silicate cement exhibited similar Ca 2+ -releasing, alkalizing and apatite-like precipitate-forming abilities to WMTA. The Ca 2+ -releasing, alkalizing and apatite-like precipitate-forming abilities of TheraCal LC were lower than those of the other materials. © 2016 International Endodontic Journal. Published by John Wiley & Sons Ltd.
A Geochemical Investigation of Volcanic Rocks from the San Rafael Volcanic Field, Utah
NASA Astrophysics Data System (ADS)
Koebli, D. J.; Germa, A.; Connor, C.; Atlas, Z. D.
2016-12-01
A Geochemical Investigation of Volcanic Rocks from the San Rafael Volcanic Field, Utah Authors: Danielle Koebli, Dr. Aurelie Germa, Dr. Zackary Atlas, Dr. Charles Connor The San Rafael Volcanic Field (SRVF), Utah, is a 4Ma volcanic field located in the northwestern section of the Colorado Plateau. Alkaline magmas intruded into Jurassic sandstones , known as the Carmel, Entrada, Curtis and Summerville sandstone formations, and formed comagmatic dikes, sills and conduits that became uniquely well exposed as country rocks were eroded. The two rock types that formed from the melts are shonkinite (45.88 wt% SiO2) and syenite (50.84wt% SiO2); with dikes being predominantly shonkinite and sills exhibiting vertical alternation of shonkinite and syenite, a result of liquid immiscibility. The aim of this study is to determine magma temperatures, and mineral compositions which will be used for determining physical conditions for magma crystallization. Research is being conducted using an Electron Probe Micro Analyzer (EPMA) for single crystal analysis, and data were plotted using PINGU software through VHub cyberinfrastructure. EPMA data supports hydrated magma theories due to the large amounts of biotite and hornblende mixed in with olivine, feldspar and pyroxene. The data is also indicative of a calcium-rich magma which is further supported by the amount of pyroxene and plagioclase in the sample. Moreover, there are trace amounts orthoclase, quartz and k-feldspar due to sandstone inclusions from the magma intruding into the country rocks. The olivine crystals present in the samples are all chemically similar, having high Mg (Fo80-Fo90), which, coupled with a lower Fe content indicate a hotter magma. Comparison of mineral and whole-rock compositions using MELTs program will allow us to calculate magma viscosity and density so that the physical conditions for magma crystallization can be determined.
The effect of chlorhexidine on dental calculus formation: an in vitro study.
Sakaue, Yuuki; Takenaka, Shoji; Ohsumi, Tatsuya; Domon, Hisanori; Terao, Yutaka; Noiri, Yuichiro
2018-03-27
Chlorhexidine gluconate (CHG) has been proven to be effective in preventing and controlling biofilm formation. At the same time, an increase in calculus formation is known as one of considerable side effects. The purpose of this study was to investigate whether mineral deposition preceding a calculus formation would occur at an early stage after the use of CHG using an in vitro saliva-related biofilm model. Biofilms were developed on the MBEC™ device in brain heart infusion (BHI) broth containing 0.5% sucrose at 37 °C for 3 days under anaerobic conditions. Biofilms were periodically exposed to 1 min applications of 0.12% CHG every 12 h and incubated for up to 2 days in BHI containing a calcifying solution. Calcium and phosphate in the biofilm were measured using atomic absorption spectrophotometry and a phosphate assay kit, respectively. Morphological structure was observed using a scanning electron microscope (SEM), and chemical composition was analyzed with an electron probe microanalyzer (EPMA). The concentrations of Ca and Pi following a single exposure to CHG increased significantly compared with the control. Repeatedly exposing biofilms to CHG dose-dependently increased Ca deposition, and the amount of Ca was five times as much as that of the control. Pi levels in CHG-treated biofilms were significantly higher than those from the control group (p < 0.05); however, the influence of the number of exposures was limited. Analyses using an SEM and EPMA showed many clusters containing calcium and phosphate complexes in CHG-treated biofilms. Upon composition analysis of the clusters, calcium was detected at a greater concentration than phosphate. Findings suggested that CHG may promote mineral uptake into the biofilm soon after its use. It is necessary to disrupt the biofilm prior to the start of a CHG mouthwash in order to reduce the side effects associated with this procedure. The management of patients is also important.
Mercury speciation and selenium in toothed-whale muscles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakamoto, Mineshi, E-mail: sakamoto@nimd.go.jp; Itai, Takaaki; Yasutake, Akira
2015-11-15
Mercury accumulates at high levels in marine mammal tissues. However, its speciation is poorly understood. The main goal of this investigation was to establish the relationships among mercury species and selenium (Se) concentrations in toothed-whale muscles at different mercury levels. The concentrations of total mercury (T-Hg), methylmercury (MeHg), inorganic mercury (I-Hg) and Se were determined in the muscles of four toothed-whale species: bottlenose dolphins (n=31), Risso's dolphins (n=30), striped dolphins (n=29), and short-finned pilot whales (n=30). In each species, the MeHg concentration increased with increasing T-Hg concentration, tending to reach a plateau. In contrast, the proportion of MeHg in T-Hgmore » decreased from 90–100% to 20–40%. The levels of T-Hg and Se showed strong positive correlations. Se/I-Hg molar ratios rapidly decreased with the increase of I-Hg and reached almost 1 in all species. These results suggested that the demethylated MeHg immediately formed Se/I-Hg equimolar complex of mercury selenide (HgSe) in their muscles. In addition, an X-ray absorption fine structure analysis (XAFS) of a bottlenose dolphin muscle confirmed that the dominant chemical form of the Se/I-Hg equimolar complex was HgSe. HgSe was mainly localized in cells near the endomysium using electron probe microanalysis (EPMA). These results suggested that the demethylated MeHg finally deposits within muscle cells of bottlenose dolphin as an inert HgSe. - Highlights: • T-Hg, MeHg, I-Hg and Se were determined in the muscles of four toothed-whales. • MeHg increased with increasing T-Hg and tended to reach a plateau in all species. • Se/I-Hg molar ratios rapidly decreased with increase of I-Hg and reached almost 1. • XAFS of bottlenose dolphin muscle confirmed that HgSe was dominant chemical form. • EPMA of bottlenose dolphin muscle showed that HgSe deposited in muscle cells.« less
NASA Astrophysics Data System (ADS)
Braun-Dullaeus, Karl-Ulrich; Traxel, Kurt
1995-02-01
One method forestimating cooling rates of meteorite parent bodies is to model measured nickel distributions in taenite lamellae of iron meteorites. Goldstein and Ogilvie ( Geochim. Cosmochim. Acta29, 893, 1965) and Rasmussen ( Icarus45, 564, 1981) developed techniques based on this idea to examine the cooling history in the temperature range between ˜700 and ˜400°C. As a result of Instrumental Neutron Activation Analysis (INAA) Rasmussen et al. ( Meteoritics23, 105, 1988) postulated that some trace elements would also be good cooling rate indicators. They argued that elements with distinct diffusion behavior are sensitive to different temperature ranges. The new Heidelberg proton microprobe uses the method of Proton Induced X-ray Emission (PIXE) for elemental analysis. This microprobe is an appropriate instrument to measure distributions of trace elements with a spatial resolution of 2 μm. We demonstrated on the iron meteorites Cape York (Agpalilik), Toluca and Odessa that the elements copper, zinc, gallium and germanium imitate the profiles of nickel in taenite lamella. The interpretation of the Zn, Ga and Ge profiles leads to the conclusion that these elements undergo diffusion mechanisms comparable to those of Ni. The numerical simulation of Cu distributions with a simplified model points out that little new information can be obtained about the cooling history of the meteorites by modelling Cu profiles. To simulate Zn, Ga or Ge distributions, the use of ternary phase diagrams is necessary.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ranson, W.A.; Garihan, J.M.; Ulmer, K.E.
1992-01-01
Amphibolite outcrops of unusual mineralogy within the Chunky Gal Mountain mafic-ultramafic complex display cm-scale rhythmic layers with moderate-steep dips. Layers are troctolitic, gabbroic, and anorthositic in composition, locally in contact with dunite of the Buck Creek ultramafic body. Meta-gabbroic layers contain striking bladed, emerald green amphibole as the chief mafic phase and relict bronzite with reacted margins. An additional major phase is plagioclase, [approximately]An 95 based on microprobe analysis. Ruby corundum is a minor (> 5%) constituent, which in some of the gabbroic rocks is mantled by a reaction rim of fibrolite. The clinoamphibole has optical properties resembling magnesio-cummingtonite: colorlessmore » to pale green in plane light with (+) sign and 2V = 60--70[degree]. However, microprobe analysis of the clinoamphibole indicates alumino-magnesio-hornblende. Although the texture of the bronzite shows that it is breaking down, it is clear that the clinoamphibole and corundum could not be the reaction products without the addition of Al, Ca, and Si in an aqueous fluid. Associated meta-troctolitic layers contain plagioclase and coarse, anhedral olivines displaying an inner corona of bladed orthopyroxene, rimmed by symplectite. The granulite facies reactions is: plagioclase + olivine = clinopyroxene + garnet. The mesoscopic-scale proximity of troctolitic and gabbroic rhythmic layers indicates both underwent granulite facies metamorphism. Retrogression to amphibolite grade is apparent only in the gabbroic layers, resulting in assemblages distinguished locally by abundant emerald green clinoamphibole and corundum porphyroblasts rimmed by fibrolite.« less
NASA Astrophysics Data System (ADS)
Omer, Muhamed F.; Omer, Dilshad; Zebari, Bahroz Gh.
2014-12-01
A combination of high resolution cathodoluminsecnce-spectroscopy (HRS-CL) with spatial electron microprobe analysis and optical microscopy is used to determine paragenesis and history of cementation in the limestones and dolostones of Khurmala Formation which is exposed in many parts of Northern Iraq. Khurmala Formation was subjected to different diagenetic processes such as micritization, compaction, dissolution, neomorphism, pyritization and cementation that occurred during marine to shallow burial stages and culminated during intermediate to deep burial later stages. Five dolomite textures are recognized and classified according to crystal size distribution and crystal-boundary shape. Dolomitization is closely associated with the development of secondary porosity that pre-and postdates dissolution and corrosion; meanwhile such porosity was not noticed in the associated limestones. Microprobe analysis revealed three types of cement, calcite, dolomite and ankerite which range in their luminescence from dull to bright. Cathodoluminescence study indicated four main texture generations. These are (1) unzoned microdolomite of planar and subhedral shape, with syntaxial rim cement of echinoderm that show dull to red luminescence, (2) equant calcite cements filling interparticle pores which shows dull luminescence and weak zonal growth, (3.1) homogenous intrinsic blue stoichiometric calcite with dull luminescence and without activators, (3.2) coarse blocky calcite cement with strong oscillatory zoning and bright orange luminescence which postdates other calcite cements, (4) ankerite cement with red to orange, non-luminescence growth zonation which is the last formed cement.
NASA Astrophysics Data System (ADS)
Grosch, Eugene
2017-04-01
Analytical and petrological software developments over the past decade have seen rapid innovation in high-spatial resolution petrological techniques, for example, laser-ablation ICP-MS, secondary ion microprobe (SIMS, nano-SIMS), thermodynamic modelling and electron microprobe microscale mapping techniques (e.g. XMapTools). This presentation will focus on the application of petrochronology to ca. 3.55 to 3.33 billion-year-old metavolcanic and sedimentary rocks of the Onverwacht Group, shedding light on the earliest geologic evolution of the Paleoarchean Barberton greenstone belt (BGB) of South Africa. The field, scientific drilling and petrological research conducted over the past 8 years, aims to illustrate how: (a) LA-ICP-MS and SIMS U-Pb detrital zircon geochronology has helped identify the earliest tectono-sedimentary basin and sediment sources in the BGB, as well as reconstructing geodynamic processes as early as ca. 3.432 billion-years ago; (b) in-situ SIMS multiple sulphur isotope analysis of sulphides across various early Archean rock units help to reconstruct atmospheric, surface and subsurface environments on early Archean Earth and (c) the earliest candidate textural traces for subsurface microbial life can be investigated by in-situ LA-ICP-MS U-Pb dating of titanite, micro-XANES Fe-speciation analysis and metamorphic microscale mapping. Collectively, petrochronology combined with high-resolution field mapping studies, is a powerful multi-disciplinary approach towards deciphering petrogenetic and geodynamic processes preserved in the Paleoarchean Barberton greenstone belt of South Africa, with implications for early Archean Earth evolution.
NASA Astrophysics Data System (ADS)
Kesler, Gavriel; Koren, Rumelia; Gal, Rivka
1998-04-01
Until now, no suitable delivery fiber existed for CO2 laser endodontic radiation in the apical region where it is most difficult to eliminate the pulp tissue using conventional methods. To overcome this problem, we designed a microprobe that reaches closer to the apex, distributing the energy density to a smaller area of the root canal, thus favorably increasing the thermal effects. The 15 F CO2 microprobe is a flexible, hollow, metal fiber, 300 micrometer in diameter and 20 mm in length, coupled onto a handpiece, with the following radiation parameters: wavelength -- 10.6 micrometer; pulse duration -- 50m/sec; energy per pulse 0.25 joule; energy density -- 353.7J/cm2 per pulse; power on tissue -- 5 W. The study was conducted on 30 vital maxillary or mandibulary; central, lateral, or premolar teeth destined for extraction due to periodontal problems. Twenty were experimentally treated with pulsed CO2 laser delivered by this newly developed fiber after conventional root canal preparation. Temperature measured at three points on the root surface during laser treatment did not exceed 38 degrees Celsius. Ten teeth represented the control group in which only root canal preparation was performed in the conventional method. Histological examination of the laser treated teeth showed coagulation necrosis and vacuolization of remaining pulp tissue in the root canal periphery. Primary and secondary dentin appeared normal, in all cases treated with 15 F CO2 laser. Gramm stain and bacteriologic examination revealed complete sterilization. These results demonstrate the unique capabilities of this special microprobe in sterilization of the root canal, and no thermal damage to the surrounding tissue.
Black, L.P.; Kamo, S.L.; Allen, C.M.; Davis, D.W.; Aleinikoff, J.N.; Valley, J.W.; Mundil, R.; Campbell, I.H.; Korsch, R.J.; Williams, I.S.; Foudoulis, C.
2004-01-01
Precise isotope dilution-thermal ionisation mass spectrometry (ID-TIMS) documentation is given for two new Palaeozoic zircon standards (TEMORA 2 and R33). These data, in combination with results for previously documented standards (AS3, SL13, QGNG and TEMORA 1), provide the basis for a detailed investigation of inconsistencies in 206Pb/238U ages measured by microprobe. Although these ages are normally consistent between any two standards, their relative age offsets are often different from those established by ID-TIMS. This is true for both sensitive high-resolution ion-microprobe (SHRIMP) and excimer laser ablation-inductively coupled plasma-mass spectrometry (ELA-ICP-MS) dating, although the age offsets are in the opposite sense for the two techniques. Various factors have been investigated for possible correlations with age bias, in an attempt to resolve why the accuracy of the method is worse than the indicated precision. Crystallographic orientation, position on the grain-mount and oxygen isotopic composition are unrelated to the bias. There are, however, striking correlations between the 206Pb/238U age offsets and P, Sm and, most particularly, Nd abundances in the zircons. Although these are not believed to be the primary cause of this apparent matrix effect, they indicate that ionisation of 206Pb/238U is influenced, at least in part, by a combination of trace elements. Nd is sufficiently representative of the controlling trace elements that it provides a quantitative means of correcting for the microprobe age bias. This approach has the potential to reduce age biases associated with different techniques, different instrumentation and different standards within and between laboratories. Crown Copyright ?? 2004 Published by Elsevier B.V. All rights reserved.
Quantitative EPMA of Nano-Phase Iron-Silicides in Apollo 16 Lunar Regolith
NASA Astrophysics Data System (ADS)
Gopon, P.; Fournelle, J.; Valley, J. W.; Pinard, P. T.; Sobol, P.; Horn, W.; Spicuzza, M.; Llovet, X.; Richter, S.
2013-12-01
Until recently, quantitative EPMA of phases under a few microns in size has been extremely difficult. In order to achieve analytical volumes to analyze sub-micron features, accelerating voltages between 5 and 8 keV need to be used. At these voltages the normally used K X-ray transitions (of higher Z elements) are no longer excited, and we must rely of outer shell transitions (L and M). These outer shell transitions are difficult to use for quantitative EPMA because they are strongly affected by different bonding environments, the error associated with their mass attenuation coefficients (MAC), and their proximity to absorption edges. These problems are especially prevalent for the transition metals, because of the unfilled M5 electron shell where the Lα transition originates. Previous studies have tried to overcome these limitations by using standards that almost exactly matched their unknowns. This, however, is cumbersome and requires accurate knowledge of the composition of your sample beforehand, as well as an exorbitant number of well characterized standards. Using a 5 keV electron beam and utilizing non-standard X-ray transitions (Ll) for the transition metals, we are able to conduct accurate quantitative analyses of phases down to ~300nm. The Ll transition in the transition metals behaves more like a core-state transition, and unlike the Lα/β lines, is unaffected by bonding effects and does not lie near an absorption edge. This allows for quantitative analysis using standards do not have to exactly match the unknown. In our case pure metal standards were used for all elements except phosphorus. We present here data on iron-silicides in two Apollo 16 regolith grains. These plagioclase grains (A6-7 and A6-8) were collected between North and South Ray Craters, in the lunar highlands, and thus are associated with one or more large impact events. We report the presence of carbon, nickel, and phosphorus (in order of abundance) in these iron-silicide phases. Although carbon is an especially difficult measurement, (with contamination from the lab environment, sample, and vacuum system being a large problem) we found that the iron-silicide phases contain a few weight percent carbon. X-ray mapping shows carbon to be concentrated within the silicide blebs. We conducted sample reference (i.e. baseline) carbon measurements in standards mounted in the same block as the sample, to establish a contamination baseline then any carbon measured above this baseline was assumed to be real. This finding seems to indicate that while the iron-silicide phases formed in the reducing conditions of the lunar surface, these conditions were not low enough to form the phases on their own and needed the presence of carbon to reduce them down to the much lower reducing conditions were native silicon is stable. The source of the carbon and nickel found in the iron-silicides is most likely form an impactor, rather than from the lunar surface.
NASA Astrophysics Data System (ADS)
Iatan, E. L.; Popescu, Gh. C.
2012-04-01
Rosia Poieni is the largest porphyry copper (±Au±Mo) deposits associated with Neogene magmatic rocks from the South Apuseni Mountains, being located approximately 8 km northeast of the town of Abrud. During a recent examination of some epithermal mineralized veins, crosscutting the porphyry mineralization from the Roşia Poieni deposit, two species of tellurides and one tellurosulfide minerals were identified. The studied samples were collected from the + 1045 m level, SW side of the open pit and are represented by epithermal veins, crosscutting the porphyry copper mineralized body. The thickness of the veins is almost 4 cm. Following reflected-polarized light microscopy to identify the ore-mineral assemblages, the polished sections were studied with a Scanning Electron Microscope (SEM) equipped with a back-scattered electron (BSE) detector to study fine-sized minerals. Quantitative compositional data were determined using a Cameca SX 50 electron microprobe (EMP). Based on optical microscopy, SEM and EMPA three mineral associations have been separated inside the epithermal vein, from the margins to the centre: 1. quartz+tennantite-tetrahedrite+goldfieldite+pyrite+sphalerite; 2. quartz+pyrite+tellurobismutite; 3. chalcopyrite+hessite+vivianite. Goldfieldite occurs in anhedral grains and it is associated with tennantite-tetrahedrite and quartz. The electron microprobe analysis gave a variable content in Te between 13.28-13.39 wt.%, 43.34 wt.% Cu, 0.1 wt. % Fe, 0.2 wt.% Zn, 14.68 wt.% As, 4.35 wt.% Sb and 24.84 wt.% S. The calculated formula for the goldfieldite is Cu11.8Te1.8(Sb,As)4S13.4. The EPM analyses on tetrahedrite-tennantite revealed a low content in Te (0.02-0.03 wt.%) and 42.23 wt.% Cu, 2.67 wt.% Fe, 7.34 wt.% Zn, 0.04 wt.% Sb, 19.28 wt.% As and 28.4 wt.% S. The calculated formula is Cu9.8(Fe,Zn)2.4(Sb,As,Te)3.8S13. The variable ratio of the Te content may reflect a variable content of Te in the hydrothermal fluids from which the tellurian tetrahedrite precipitated. Hessite lies close to the grain boundary between the calchopyrite grains, which is associated with vivianite. Electron microprobe analysis gave 57.73 wt.% Ag and 42.27 wt.% Te with calculated stoichiometric formula Ag1.9Te1.1 . Tellurobismuthite it forms irregular grains and it is associated with quartz and pyrite. Electron microprobe analysis gave 57.20 wt.% Bi and 42.80 wt.% Te with calculated stoichiometric formula Bi2.2Te2.8. Based on the mineral assemblages separated inside the ore vein and on the ratio of the Te content for the different identified tellurium bearing minerals, we can conclude that the Te content of the fluids from which they precipitated, increased from the margins to the centre of the vein. In summary, this study of specimens from Rosia Poieni porphyry copper deposit, has resulted in the recognition of some tellurium-bearing minerals, not reported by previous workers. These minerals are represented by tellurobismutite, hessite and goldfieldite and they are associated with epithermal vein mineralization (pyrite, chalcopyrite, sphalerite, tennantite-tetrahedrite, quartz, vivianite). The presence of tellurium indicates the transition between porphyry-style mineralization to epithermal vein mineralization. Acknowledgements: This work was supported by the strategic grant POSDRU/89/1.5/S58852, Project "Postdoctoral program for training scientific researches" co-financed by the European Social Found within the Sectorial Operational Program Human Resources Development 2007-2013".
A High Resolution Microprobe Study of EETA79001 Lithology C
NASA Technical Reports Server (NTRS)
Schrader, Christian M.; Cohen, B. A.; Donovan, J. J.; Vicenzi, E. P.
2010-01-01
Antarctic meteorite EETA79001 has received substantial attention for possibly containing a component of Martian soil in its impact glass (Lithology C) [1]. The composition of Martian soil can illuminate near-surface processes such as impact gardening [2] and hydrothermal and volcanic activity [3,4]. Impact melts in meteorites represent our most direct samples of Martian regolith. We present the initial findings from a high-resolution electron microprobe study of Lithology C from Martian meteorite EETA79001. As this study develops we aim to extract details of a potential soil composition and to examine Martian surface processes using elemental ratios and correlations.
X-ray microprobe of orbital alignment in strong-field ionized atoms.
Young, L; Arms, D A; Dufresne, E M; Dunford, R W; Ederer, D L; Höhr, C; Kanter, E P; Krässig, B; Landahl, E C; Peterson, E R; Rudati, J; Santra, R; Southworth, S H
2006-08-25
We have developed a synchrotron-based, time-resolved x-ray microprobe to investigate optical strong-field processes at intermediate intensities (10(14) - 10(15) W/cm2). This quantum-state specific probe has enabled the direct observation of orbital alignment in the residual ion produced by strong-field ionization of krypton atoms via resonant, polarized x-ray absorption. We found strong alignment to persist for a period long compared to the spin-orbit coupling time scale (6.2 fs). The observed degree of alignment can be explained by models that incorporate spin-orbit coupling. The methodology is applicable to a wide range of problems.
Electron microprobe evaluation of terrestrial basalts for whole-rock K-Ar dating
Mankinen, E.A.; Brent, Dalrymple G.
1972-01-01
Four basalt samples for whole-rock K-Ar dating were analyzed with an electron microprobe to locate potassium concentrations. Highest concentrations of potassium were found in those mineral phases which were the last to crystallize. The two reliable samples had potassium concentrated in fine-grained interstitial feldspar and along grain boundaries of earlier formed plagioclase crystals. The two unreliable samples had potassium concentrated in the glassy matrix, demonstrating the ineffectiveness of basaltic glass as a retainer of radiogenic argon. In selecting basalt samples for whole-rock K-Ar dating, particular emphasis should be placed on determining the nature and condition of the fine-grained interstitial phases. ?? 1972.
Pezzotti, Giuseppe; Sakakura, Seiji
2003-05-01
A Raman microprobe spectroscopy characterization of microscopic fracture mechanisms is presented for a natural hydroxyapatite material (cortical bovine femur) and two synthetic hydroxyapatite-based materials with biomimetic structures-a hydroxyapatite skeleton interpenetrated with a metallic (silver) or a polymeric (nylon-6) phase. In both the natural and synthetic materials, a conspicuous amount of toughening arose from a microscopic crack-bridging mechanism operated by elasto-plastic stretching of unbroken second-phase ligaments along the crack wake. This mechanism led to a rising R-curve behavior. An additional micromechanism, responsible for stress relaxation at the crack tip, was recognized in the natural bone material and was partly mimicked in the hydroxyapatite/silver composite. This crack-tip mechanism conspicuously enhanced the cortical bone material resistance to fracture initiation. A piezo-spectroscopic technique, based on a microprobe measurement of 980 cm(-1) Raman line of hydroxyapatite, enabled us to quantitatively assess in situ the microscopic stress fields developed during fracture both at the crack tip and along the crack wake. Using the Raman piezo-spectroscopy technique, toughening mechanisms were assessed quantitatively and rationally related to the macroscopic fracture characteristics of hydroxyapatite-based materials. Copyright 2003 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Conradie, J. L.; Eisa, M. E. M.; Celliers, P. J.; Delsink, J. L. G.; Fourie, D. T.; de Villiers, J. G.; Maine, P. M.; Springhorn, K. A.; Pineda-Vargas, C. A.
2005-04-01
With the aim of improving the reliability and stability of the beams delivered to the nuclear microprobe at iThemba LABS, as well as optimization of the beam characteristics along the van de Graaff accelerator beamlines in general, relevant modifications were implemented since the beginning of 2003. The design and layout of the beamlines were revised. The beam-optical characteristics through the accelerator, from the ion source up to the analysing magnet directly after the accelerator, were calculated and the design optimised, using the computer codes TRANSPORT, IGUN and TOSCA. The ion source characteristics and optimal operating conditions were determined on an ion source test bench. The measured optimal emittance for 90% of the beam intensity was about 50π mm mrad for an extraction voltage of 6 kV. These changes allow operation of the Nuclear Microprobe at proton energies in the range 1 MeV-4 MeV with beam intensities of tenths of a pA at the target surface. The capabilities of the nuclear microprobe facility were evaluated in the improved beamline, with particular emphasis to bio-medical samples.
The uses of synchrotron radiation sources for elemental and chemical microanalysis
Chen, J.R.; Chao, E.C.T.; Minkin, J.A.; Back, J.M.; Jones, K.W.; Rivers, M.L.; Sutton, S.R.
1990-01-01
Synchrotron radiation sources offer important features for the analysis of a material. Among these features is the ability to determine both the elemental composition of the material and the chemical state of its elements. For microscopic analysis synchrotron X-ray fluorescence (SXRF) microprobes now offer spatial resolutions of 10 ??m with minimum detection limits in the 1-10 ppm range depending on the nature of the sample and the synchrotron source used. This paper describes the properties of synchrotron radiation and their importance for elemental analysis, existing synchrotron facilities and those under construction that are optimum for SXRF microanalysis, and a number of applications including the high energy excitation of the K lines of heavy elements, microtomography, and XANES and EXAFS spectroscopies. ?? 1990.
Mossotti, Victor G.; Eldeeb, A. Raouf; Oscarson, Robert
1998-01-01
MORPH-I is a set of C-language computer programs for the IBM PC and compatible minicomputers. The programs in MORPH-I are used for the fractal analysis of scanning electron microscope and electron microprobe images of pore profiles exposed in cross-section. The program isolates and traces the cross-sectional profiles of exposed pores and computes the Richardson fractal dimension for each pore. Other programs in the set provide for image calibration, display, and statistical analysis of the computed dimensions for highly complex porous materials. Requirements: IBM PC or compatible; minimum 640 K RAM; mathcoprocessor; SVGA graphics board providing mode 103 display.
Ion microprobe U-Pb dating and strontium isotope analysis of biogenic apatite
NASA Astrophysics Data System (ADS)
Sano, Y.; Toyoshima, K.; Takahata, N.; Shirai, K.
2012-12-01
Conodonts are micro-fossils chemically composed of apatite which occurred in the body of one animal. They are guide fossils to show formation ages of sedimentary sequences with the highest resolution [1] and good samples to verify the dating method. We developed the ion microprobe U-Pb dating of apatite [2] and applied the method to a Carboniferous conodont [3] by using a SHRIMP II installed at Department of Earth and Planetary Sciences, Hiroshima University. Recently we have developed the NanoSIMS U-Pb dating method and successfully measured the formation ages of monazite [4] and zircon [5] at Atmosphere and Ocean Research Institute, University of Tokyo. In this work we carried out the NanoSIMS U-Pb dating of biogenic apatite such as conodont. Since the spot size of NanoSIMS is smaller than SHRIMP II, it is easier to have multi-spots on the single fragment of biogenic apatite. Based on the isochron method of U-Pb system, we have calculated the formation ages. They are consistent with those in literature. In order to study the chemical evolution of ocean during the past 600 Million years, strontium isotopes (87Sr/86Sr) of fossil marine carbonate such as coral skeletons and foraminifera tests were measured and compiled [6]. However they are not robust when the age is older than 500Ma, partly due to post-depositional histories. Apatite is more stable and more resistant to the alteration than carbonate [7]. Recently we have developed the method of NanoSIMS strontium isotopic analysis of a fish otolith, which composed of aragonite [8]. In this work we carried out the strontium isotopic analysis of biogenic apatite. The advantage of the ion microprobe technique over the TIMS (thermal ionization mass spectrometer) and MC-ICP-MS (multi-collector inductively coupled argon plasma mass spectrometer) method is preservation of the important textural context and to provide an opportunity for other simultaneous analytical work with high spatial resolution. This is the case for the combination of U-Pb dating and strontium isotope analysis of biogenic apatite. This method may be useful to extract the information of the chemistry of Past ocean in future. [1] Sweet and Donoghue (2001) J. Paleont. 75, 1174-1184. [3] Sano et al., (1999) Chem. Geol. 153, 249-258. [3] Sano and Terada (2001) Geophys. Res. Lett. 28, 831-834. [4] Sano et al. (2006) Geochem. J. 40, 597-608. [5] Takahata et al. (2008) Gondwana Res. 14, 587-596. [6] Prokoph et al. (2008) Earth Sci. Rev. 87, 113-133. [7] Karhu and Epstein (1986) Geochim. Cosmochim. Acta 50, 1745-1756. [8] Sano et al. (2008) App. Geochem. 23, 2406-2413.
Aspects of the evolution of the West Antarctic margin of Gondwanaland
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grunow, A.M.
1989-01-01
A combination of paleomagnetism, structural field mapping, microprobe analysis, microfabric analysis and {sup 40}Ar/{sup 39}Ar geochronology was used to elucidate the history of the West Antarctic crustal block and the evolution of subduction complexes along the Scotia Ridge. West Antarctica is composed of four crustal blocks whose relationship to East Antarctica and to each other throughout the Phanerozoic is not well known. These blocks are: the Ellsworth-Whitmore Mountains (EWM); the Antarctic Peninsula (AP); Thurston Island (TI); Marie Byrd Land (MBL). Paleomagnetic sampling and analysis were conducted on rocks from the EWM and TI blocks in the hope of constraining themore » motion of these blocks and the opening history of the Weddell Sea. The paleomagnetic results suggest that the AP, EWM, and TI blocks have moved relative to East Antarctica prior to the mid-Cretaceous and that the main opening of the Weddell Sea was between the Early and mid-Cretaceous. Detailed field mapping was conducted on the subduction complexes of the Scotia Metamorphic Complex (SMC) on Smith Island and Elephant Island (Antarctica). Polyphase ductile deformation characterizes the Smith Island and Elephant Island tectonites. Microprobe analyses indicate that the blue amphiboles from both areas are primary crossite. Pressure-temperature estimates for Smith Island blueschist metamorphism are {approximately}350 C at 6-7 kbars. The {sup 40}Ar/{sup 39}Ar geochronology indicates a complex thermal evolution for the SMC. The north to south increase in intensity of deformation and metamorphism on Elephant Island corresponds to decrease in {sup 40}Ar/{sup 39}Ar age. Uplift of the Smith Island blueschists occurred since 47 Ma while most of the uplift on Elephant Island occurred since {approximately}102 Ma.« less
Unusual Thermal Stability of High-Entropy Alloy Amorphous Structure
2012-06-20
incident angle X - ray diffractometer (GIAXRD, RIGAKU D/MAX2500) with Cu Kα radiation and at the incident angle of 1°. The surface morphology and...microanalyzer (EPMA, JEOL JAX-8800). The crystallographic structures of as-deposited and annealed metallic films were characterized utilizing a glancing ...field image and selected-area- diffraction (SAD) patterns of (a) 800 °C-, (b) 850 °C- and (c) 900 °C-annealed alloy thin films, respectively. Both
Electron microprobe analysis program for biological specimens: BIOMAP
NASA Technical Reports Server (NTRS)
Edwards, B. F.
1972-01-01
BIOMAP is a Univac 1108 compatible program which facilitates the electron probe microanalysis of biological specimens. Input data are X-ray intensity data from biological samples, the X-ray intensity and composition data from a standard sample and the electron probe operating parameters. Outputs are estimates of the weight percentages of the analyzed elements, the distribution of these estimates for sets of red blood cells and the probabilities for correlation between elemental concentrations. An optional feature statistically estimates the X-ray intensity and residual background of a principal standard relative to a series of standards.
Thermal stress cycling of GaAs solar cells
NASA Technical Reports Server (NTRS)
Francis, Robert W.
1987-01-01
Thermal stress cycling was performed on gallium arsenide solar cells to investigate their electrical, mechanical, and structural integrity. Cells were cycled under low Earth orbit (LEO) simulated temperature conditions in vacuum. Cell evaluations consisted of power output values, spectral response, optical microscopy and ion microprobe mass analysis, and depth profiles on both front surface inter-grid areas and metallization contact grid lines. Cells were examined for degradation after 500, 5,000, 10,000 and 15,245 thermal cycles. No indication of performance degradation was found for any vendor's cell lot.
Thermoelectric properties of n-type polycrystalline BixSb2-xTe3 alloys
NASA Technical Reports Server (NTRS)
Snyder, J.; Gerovac, N.; Caillat, T.
2002-01-01
(BixSbl-x)2Te3(.5 = x = .7) polycrystalline samples were synthesized using a combination of melting and powder metallurgy techniques. The samples were hot pressed in graphite dies and cut perpendicular and parallel to the pressing direction. Samples were examined by microprobe analysis to determine their atomic composition. The thermoelectric properties were measured at room temperature in both directions. These properties include Seebeck coefficient, thermal conductivity, electrical resistivity, and Hall effect. The thermoelectric figure-of-merit, ZT, was calculated fiom these properties.
NASA Astrophysics Data System (ADS)
Tomilenko, A. A.; Kuzmin, D. V.; Bul'bak, T. A.; Sobolev, N. V.
2017-08-01
The primary melt and fluid inclusions in regenerated zonal crystals of olivine and homogeneous phenocrysts of olivine from kimberlites of the Udachnaya-East pipe, were first studied by means of microthermometry, optic and scanning electron microscopy, electron and ion microprobe analysis (SIMS), inductively coupled plasma mass-spectrometry (ICP MSC), and Raman spectroscopy. It was established that olivine crystals were regenerated from silicate-carbonate melts at a temperature of 1100°C.
Chemistry and particle track studies of Apollo 14 glasses.
NASA Technical Reports Server (NTRS)
Glass, B. P.; Storzer, D.; Wagner, G. A.
1972-01-01
The abundance and the composition of Apollo 14 glasses have been studied. Glass particles were analyzed for Si, Ti, Al, Fe, Mn, Mg, Na, and K by electron microprobe analysis. The refractive indices of 26 particles were determined by the oil immersion method. Track analyses have been carried out in order to determine the uranium content and the radiation history of glass particles. The proper identification of galactic and solar flare nuclei tracks makes it possible to estimated residence times of the glass particles in the top layer of the lunar soil.
Extracellular proteins limit the dispersal of biogenic nanoparticles
Moreau, J.W.; Weber, P.K.; Martin, M.C.; Gilbert, B.; Hutcheon, I.D.; Banfield, J.F.
2007-01-01
High-spatial-resolution secondary ion microprobe spectrometry, synchrotron radiation-based Fourier-transform infrared spectroscopy, and polyacrylamide gel analysis demonstrated the intimate association of proteins with spheroidal aggregates of biogenic zinc sulfide nanocrystals, an example of extracellular biomineralization. Experiments involving synthetic zinc sulfide nanoparticles and representative amino acids indicated a driving role for cysteine in rapid nanoparticle aggregation. These findings suggest that microbially derived extracellular proteins can limit the dispersal of nanoparticulate metal-bearing phases, such as the mineral products of bioremediation, that may otherwise be transported away from their source by subsurface fluid flow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, R.B.
The U--Al--Fe constitution diagram up to about 1000 ppm each of aluminum and iron is sthdied. The techniques used for this study include optical, electron, and x-ray metallography; microprobe analysis, electric conductivity, and hardness measurements. A combination of techniques are giving evidence of the amount of solid solubility of aluminum and iron in alpha, beta, and gamma uranium at selected higher temperatures. The U-Al and U-Fe phase diagrams are also being determined. (N.W.R.)
Jamieson, Heather E.; Robinson, Clare; Alpers, Charles N.; Nordstrom, D. Kirk; Poustovetov, Alexei; Lowers, Heather A.
2005-01-01
Jarosite-group minerals accumulate in the form of stalactites and fine-grained mud on massive pyrite in the D drift of the Richmond mine, Iron Mountain, California. Water samples were collected by placing beakers under the dripping stalactites and by extracting pore water from the mud using a centrifuge. The water is rich in Fe3+ and SO4 2−, with a pH of approximately 2.1, which is significantly higher than the extremely acidic waters found elsewhere in the mine. Electron-microprobe analysis and X-ray mapping indicate that the small crystals (<10 μm in diameter) are compositionally zoned with respect to Na and K, and include hydronium jarosite corresponding to the formula (H3O)0.6K0.3Na0.1Fe3 3+(SO4)2(OH)6. The proton-microprobe analyses indicate that the jarosite-group minerals contain significant amounts of As, Pb and Zn, and minor levels of Bi, Rb, Sb, Se, Sn and Sr. Speciation modeling indicates that the drip waters are supersaturated with respect to jarosite-group minerals. The expected range in composition of jarosite-group solid-solution in equilibrium with the pore water extracted from the mud was found to be consistent with the observed range in composition.
Newly recognized hosts for uranium in the Hanford Site vadose zone
Stubbs, J.E.; Veblen, L.A.; Elbert, D.C.; Zachara, J.M.; Davis, J.A.; Veblen, D.R.
2009-01-01
Uranium contaminated sediments from the U.S. Department of Energy's Hanford Site have been investigated using electron microscopy. Six classes of solid hosts for uranium were identified. Preliminary sediment characterization was carried out using optical petrography, and electron microprobe analysis (EMPA) was used to locate materials that host uranium. All of the hosts are fine-grained and intergrown with other materials at spatial scales smaller than the analytical volume of the electron microprobe. A focused ion beam (FIB) was used to prepare electron-transparent specimens of each host for the transmission electron microscope (TEM). The hosts were identified as: (1) metatorbernite [Cu(UO2)2(PO4)2??8H2O]; (2) coatings on sediment clasts comprised mainly of phyllosilicates; (3) an amorphous zirconium (oxyhydr)oxide found in clast coatings; (4) amorphous and poorly crystalline materials that line voids within basalt lithic fragments; (5) amorphous palagonite surrounding fragments of basaltic glass; and (6) Fe- and Mn-oxides. These findings demonstrate the effectiveness of combining EMPA, FIB, and TEM to identify solid-phase contaminant hosts. Furthermore, they highlight the complexity of U geochemistry in the Hanford vadose zone, and illustrate the importance of microscopic transport in controlling the fate of contaminant metals in the environment. ?? 2008 Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Ma, C.-J.; Tohno, S.; Kasahara, M.; Hayakawa, S.
2004-06-01
To determine the chemical properties of residue retained in individual cloud droplets is primarily important for the understanding of rainout mechanism and aerosol modification in droplet. The sampling of individual cloud droplets were carried out on the summit of Mt. Taiko located in Tango peninsula, Kyoto prefecture, during Asian dust storm event in March of 2002. XRF microprobe system equipped at SPring-8, BL-37XU was applied to the subsequent quantification analysis of ultra trace elements in residues of individual cloud droplets. It was possible to form the replicas of separated individual cloud droplets on the thin collodion film. The two dimensional XRF maps for the residues in individual cloud droplets were clearly drawn by scanning of micro-beam. Also, XRF spectra of trace elements in residues were well resolved. From the XRF spectra for individual residues, the chemical mixed state of residues could be assumed. The chemical forms of Fe (Fe +++) and Zn (Zn +) could be clearly characterized by their K-edge micro-XANES spectra. By comparison of Z/Si mass ratios of residues in cloud droplets and those of the original sands collected in desert areas in China, the aging of ambient dust particles and their in cloud modification were indirectly assumed.
NASA Technical Reports Server (NTRS)
Uchida, Hinako; Righter, Kevin; Lavina, Barbara; Nowell, Matthew M.; Wright, Stuart I.; Downs, Robert T.; Yang, Hexiong
2007-01-01
A magnesium vanadate spinel crystal, ideally MgV2O4, synthesized at 1 bar, 1200 C and equilibrated under FMQ + 1.3 log f(sub o2) condition, was investigated using single-crystal X-ray diffraction, electron microprobe, and electron backscatter (EBSD). The initial X-ray structure refinements gave tetrahedral and octahedral site occupancies, along with the presence of 0.053 apfu Mg at an interstitial octahedral site . Back-scattered electron (BSE) images and electron microprobe analyses revealed the existence of an Mg-rich phase in the spinel matrix, which was too small (less than or equal to 3microns) for an accurate chemical determination. The EBSD analysis combined with X-ray energy dispersive spectroscop[y (XEDS) suggested that the Mg-rich inclusions are periclase oriented coherently with the spinel matrix. The final structure refinements were optimized by subtracting the X-ray intensity contributions (approx. 9%) of periclase reflections, which eliminated the interstitial Mg. This study provides insight into possible origins of refined interstitial cations reported in the the literature for spinel, and points to the difficulty of using only X-ray diffraction data to distinguish a spinel with interstitial cations from one with coherently oriented MgO inclusions.
In situ synthesis of hydroxyapatite coating by laser cladding.
Wang, D G; Chen, C Z; Ma, J; Zhang, G
2008-10-15
HA bioceramic coatings were synthesized on titanium substrate by laser cladding using cheap calcium carbonate and calcium hydrogen phosphate. The thermodynamic condition for synthesizing HA was calculated by software Matlab 5.0, the microstructure and phase analysis of laser clad HA bioceramic coatings were studied by electron probe microanalyser (EPMA), X-ray diffractometer (XRD) and transmission electron microscopy (TEM). The theoretical results show that the Gibbs free enthalpy for the synthesis of HA phase is satisfied, and the presence of HA phase in the clad coatings was then further verified by XRD and the selected area diffraction patterns. When the laser power is 600W and the scanning speed is 3.5mm/s, the compact HA bioceramic coatings were obtained, which have cellular dendritic structure and consist of the phases of HA, alpha-Ca(2)P(2)O(7), CaO and CaTiO(3).
NASA Astrophysics Data System (ADS)
Ettler, Vojtěch; Johan, Zdenek; Touray, Jean-Claude; Jelínek, Emil
2000-08-01
Metallurgical slags of different ages resulting from Pb-metallurgy in the Příbram district (Czech Republic) have been studied. The chemical analysis (EPMA) of melilite, clinopyroxene, olivine and glassy matrix showed the following ZnO concentrations (in wt. %): 3.20-11.93 (melilite), 1.56 (clinopyroxene), 1.29-7.82 (olivine), 1.58-6.58 (glass). The Zn partition coefficient D = Cs / Cl between crystallized phases and coexisting glass was calculated. The values obtained are: 1.96-2.16 (melilite), 0.41 (clinopyroxene) and 0.79-1.19 (olivine). The distribution of zinc between the crystalline phases and glass depends on the phase assemblage, which reflects the blast furnace charge and temperature, as well as the cooling conditions of slags.
NASA Technical Reports Server (NTRS)
Stoeffler, D.; Deutsch, A.; Avermann, M.; Brockmeyer, P.; Lakomy, R.; Mueller-Mohr, V.
1992-01-01
Within the Sudbury Project of the University of Muenster and the Ontario Geological Survey special emphasis was put on the breccia formations exposed at the Sudbury structure (SS) because of their crucial role for the impact hypothesis. They were mapped and sampled in selected areas of the north, east, and south ranges of the SS. The relative stratigraphic positions of these units are summarized. Selected samples were analyzed by optical microscopy, SEM, microprobe, XRF and INAA, Rb-Sr and SM-Nd-isotope geochemistry, and carbon isotope analysis. The results of petrographic and chemical analysis for those stratigraphic units that were considered the main structural elements of a large impact basin are summarized.
NASA Technical Reports Server (NTRS)
Simoneit, B. R.; Burlingame, A. L.
1972-01-01
The mirror and middle shroud were extracted for organics by washing the surfaces with solvents. The techniques are discussed. Ion microprobe analyses of the primarily atomic species are presented. The sources of the organic contaminants are: (1) hydrocarbons from lubricating oils and general terrestrial contamination, (2) dioctyl phthalate, probably from polyethylene bagging material (the plasticizer), (3) carboxylic acids from decomposition of grease and general terrestrial contamination, (4) silicones from sources such as lubricating oil, (5) outgassing of electronics and plasticizer, (6) vinyl alcohol and styrene copolymer, probably from electronic insulation, and (7) nitrogenous compounds from the lunar module and possibly Surveyor 3 engine exhaust.
New eutectic alloys and their heats of transformation
NASA Technical Reports Server (NTRS)
Farkas, D.; Birchenall, C. E.
1985-01-01
Eutectic compositions and congruently melting intermetallic compounds in binary and multicomponent systems among common elements such as Al, Ca, Cu, Mg, P, Si, and Zn may be useful for high temperature heat storage. In this work, heats of fusion of new multicomponent eutectics and intermetallic phases are reported, some of which are competitive with molten salts in heat storage density at high temperatures. The method used to determine unknown eutectic compositions combined results of differential thermal analysis, metallography, and microprobe analysis. The method allows determination of eutectic compositions in no more than three steps. The heats of fusion of the alloys were measured using commercial calorimeters, a differential thermal analyzer, and a differential scanning calorimeter.
Three-dimensional hydrogen microscopy using a high-energy proton probe
NASA Astrophysics Data System (ADS)
Dollinger, G.; Reichart, P.; Datzmann, G.; Hauptner, A.; Körner, H.-J.
2003-01-01
It is a challenge to measure two-dimensional or three-dimensional (3D) hydrogen profiles on a micrometer scale. Quantitative hydrogen analyses of micrometer resolution are demonstrated utilizing proton-proton scattering at a high-energy proton microprobe. It has more than an-order-of-magnitude better position resolution and in addition higher sensitivity than any other technique for 3D hydrogen analyses. This type of hydrogen imaging opens plenty room to characterize microstructured materials, and semiconductor devices or objects in microbiology. The first hydrogen image obtained with a 10 MeV proton microprobe shows the hydrogen distribution of the microcapillary system being present in the wing of a mayfly and demonstrates the potential of the method.
The Oxford scanning proton microprobe: A medical diagnostic application
NASA Astrophysics Data System (ADS)
Watt, F.; Grime, G. W.; Takacs, J.; Vaux, D. J. T.
1984-04-01
Primary biliary cirrhosis (PBC) is a disease characterised by progressive destruction of small intrahepatic bile ducts, cholestasis, and high levels of copper within the liver. The Oxford 1 μm scanning proton microprobe (SPM) has been used to construct elemental maps of a 7 μm section of diseased liver at several different magnifications. The results of these investigations have shown that the copper is distributed in small deposits ( < 5 μm) at specific locations in the liver. Further there appears to be a 1:1 atomic correlation between copper and sulphur, indicating the presence of an inorganic salt or a protein with approximately equal numbers of copper and sulphur atoms.
Micro Electron MicroProbe and Sample Analyzer
NASA Technical Reports Server (NTRS)
Manohara, Harish; Bearman, Gregory; Douglas, Susanne; Bronikowski, Michael; Urgiles, Eduardo; Kowalczyk, Robert; Bryson, Charles
2009-01-01
A proposed, low-power, backpack-sized instrument, denoted the micro electron microprobe and sample analyzer (MEMSA), would serve as a means of rapidly performing high-resolution microscopy and energy-dispersive x-ray spectroscopy (EDX) of soil, dust, and rock particles in the field. The MEMSA would be similar to an environmental scanning electron microscope (ESEM) but would be much smaller and designed specifically for field use in studying effects of geological alteration at the micrometer scale. Like an ESEM, the MEMSA could be used to examine uncoated, electrically nonconductive specimens. In addition to the difference in size, other significant differences between the MEMSA and an ESEM lie in the mode of scanning and the nature of the electron source.
Lemke, Heinz U; Golubnitschaja, Olga
2014-01-01
At the international EPMA Summit carried out in the EU Parliament (September 2013), the main challenges in Predictive, Preventive and Personalised Medicine have been discussed and strategies outlined in order to implement scientific and technological innovation in medicine and healthcare utilising new strategic programmes such as 'Horizon 2020'. The joint EPMA (European Association for Predictive, Preventive and Personalised Medicine) / IFCARS (International Foundation for Computer Assisted Radiology and Surgery) paper emphasises the consolidate position of the leading experts who are aware of the great responsibility of being on a forefront of predictive, preventive and personalised medicine. Both societies consider long-term international partnerships and multidisciplinary projects to create PPPM relevant innovation in science, technological tools and practical implementation in healthcare. Personalisation in healthcare urgently needs innovation in design of PPPM-related medical services, new products, research, education, didactic materials, propagation of targeted prevention in the society and treatments tailored to the person. For the paradigm shift from delayed reactive to predictive, preventive and personalised medicine, a new culture should be created in communication between individual professional domains, between doctor and patient, as well as in communication with individual social (sub)groups and patient cohorts. This is a long-term mission in personalised healthcare with the whole spectrum of instruments available and to be created in the field.
Ro, Chul-Un; Kim, HyeKyeong; Oh, Keun-Young; Yea, Sun Kyung; Lee, Chong Bum; Jang, Meongdo; Van Grieken, René
2002-11-15
A recently developed single-particle analytical technique, called low-Z electron probe X-ray microanalysis (low-Z EPMA), was applied to characterize urban aerosol particles collected in three cities of Korea (Seoul, CheongJu, and ChunCheon) on single days in the winter of 1999. In this study, it is clearly demonstrated that the low-Z EPMA technique can provide detailed and quantitative information on the chemical composition of particles in the urban atmosphere. The collected aerosol particles were analyzed and classified on the basis of their chemical species. Various types of particles were identified, such as soil-derived, carbonaceous, marine-originated, and anthropogenic particles. In the sample collected in Seoul, carbonaceous, aluminosilicates, silicon dioxide, and calcium carbonate aerosol particles were abundantly encountered. In the CheongJu and ChunCheon samples, carbonaceous, aluminosilicates, reacted sea salts, and ammonium sulfate aerosol particles were often seen. However, in the CheongJu sample, ammonium sulfate particles were the most abundant in the fine fraction. Also, calcium sulfate and nitrate particles were significantly observed. In the ChunCheon sample, organic particles were the most abundant in the fine fraction. Also, sodium nitrate particles were seen at high levels. The ChunCheon sample seemed to be strongly influenced by sea-salt aerosols originating from the Yellow Sea, which is located about 115 km away from the city.
2014-01-01
At the international EPMA Summit carried out in the EU Parliament (September 2013), the main challenges in Predictive, Preventive and Personalised Medicine have been discussed and strategies outlined in order to implement scientific and technological innovation in medicine and healthcare utilising new strategic programmes such as ‘Horizon 2020’. The joint EPMA (European Association for Predictive, Preventive and Personalised Medicine) / IFCARS (International Foundation for Computer Assisted Radiology and Surgery) paper emphasises the consolidate position of the leading experts who are aware of the great responsibility of being on a forefront of predictive, preventive and personalised medicine. Both societies consider long-term international partnerships and multidisciplinary projects to create PPPM relevant innovation in science, technological tools and practical implementation in healthcare. Personalisation in healthcare urgently needs innovation in design of PPPM-related medical services, new products, research, education, didactic materials, propagation of targeted prevention in the society and treatments tailored to the person. For the paradigm shift from delayed reactive to predictive, preventive and personalised medicine, a new culture should be created in communication between individual professional domains, between doctor and patient, as well as in communication with individual social (sub)groups and patient cohorts. This is a long-term mission in personalised healthcare with the whole spectrum of instruments available and to be created in the field. PMID:24883142
NASA Astrophysics Data System (ADS)
Caterina, Ingoglia; Maurizio, Triscari; Giuseppe, Sabatino
The archaeological site in Via La Farina, Block P, in Messina, is unique in many ways, due also to the high quantity of samples of iron slag. The slag was examined to identify the production centres of such materials, and, after characterization, was compared to similar material, exclusively for product typology, from different archaeological sites in the province of Messina, situated in the Peloritani Mountains (Messina city, S. Marco d'Alunzio, Milazzo, Francavilla di Sicilia, Novara di Sicilia as well as the archaeological site of Halaesa, near Tusa). Mineralogical characterization of the phases carried out by X-ray diffractometry (XRD) and Rietveld data elaboration, morphological study of slag findings and a semi-quantitative analysis by scanning electronic microscope (SEM+EDX) were performed. A chemical investigation was carried out by electron probe micro analysis (EPMA), to determine major element,. Minor and trace elements were determined by LA-ICP-MS. All the examined slag is related to iron metallurgy, and, in the case of Via La Farina, there is firm archaeological evidence pinpointing to smelting activity.
Development of Ultra Low Temperature, Impact Resistant Lithium Battery for the Mars Microprobe
NASA Technical Reports Server (NTRS)
Frank, H.; Deligiannis, F.; Davies, E.; Ratnakumar, Bugga V.; Surampudi, S.; Russel, P. G.; Reddy, T. B.
1998-01-01
The requirements of the power source for the Mars Microprobe, to be backpacked on the Mars 98 Spacecraft, are fairly demanding, with survivability to a shock of the order of 80,000 g combined with an operational requirement at -80 C. Development of a suitable power system, based on primary lithium-thionyl chloride is underway for the last eighteen months, together with Yardney Technical Products Inc., Pawcatuck, CT. The battery consists of 4 cells of 2 Ah capacity at 25 C, of which at least 25 % would be available at -80 C, at a moderate rate of C/20. Each probe contains two batteries and two such probes will be deployed. The selected cell is designed around an approximate 1/2 "D" cells, with flat plate electrodes. Significant improvements to the conventional Li-SOCl2 cell include: (a) use of tetrachlorogallate salt instead of aluminate for improved low temperature performance and reduced voltage delay, (b) optimization of the salt concentration, and (c) modification of the cell design to develop shock resistance to 80,000 g. We report here results from our several electrical performance tests, mission simulation tests, microcalorimetry and AC impedance studies, and Air gun tests. The cells have successfully gone through mission-enabling survivability and performance tests for the Mars Microprobe penetrator.
NASA Astrophysics Data System (ADS)
Schofield, Robert; Lefevre, Harlan; Shaffer, Michael
1989-04-01
Energy-loss scanning transmission ion microscopy (ELSTIM or just STIM), PIXE and electron microprobe techniques are used to investigate certain minor element accumulations in a few spiders and scorpions. STIM and PIXE are used to survey the unsectioned specimens, while electron microprobe techniques are used for higher resolution investigations of several sections of the specimens. Concentration values measured using STIM and PIXE are found to be in satisfactory agreement with those measured using electron probe microanalysis. A garden spider Araneus diadematus is found to contain high concentrations of zinc in a thin layer near the surface of its fangs (reaching 23% of dry weight), and manganese in its marginal teeth (about 5% of dry weight). A wolf spider Alopecosa kochi is found to have similar concentrations of zinc in a layer near the surface of it's fang, and concentrations of manganese reaching 1.5% in a layer beneath the zinc containing layer. A scorpion Centruroides sp. is found to contain high concentrations of iron (reaching 8%) and zinc (reaching 24%) in the tips of teeth on the cheliceral fingers, and manganese (about 5%) in the stinger. The hypothesis that these elements simply harden the cuticle does not appear to explain their segregation patterns.
Flexible Microsensor Array for the Root Zone Monitoring of Porous Tube Plant Growth System
NASA Technical Reports Server (NTRS)
Sathyan, Sandeep; Kim, Chang-Soo; Porterfield, D. Marshall; Nagle, H. Troy; Brown, Christopher S.
2004-01-01
Control of oxygen and water in the root zone is vital to support plant growth in the microgravity environment. The ability to control these sometimes opposing parameters in the root zone is dependent upon the availability of sensors to detect these elements and provide feedback for control systems. In the present study we demonstrate the feasibility of using microsensor arrays on a flexible substrate for dissolved oxygen detection, and a 4-point impedance microprobe for surface wetness detection on the surface of a porous tube (PT) nutrient delivery system. The oxygen microsensor reported surface oxygen concentrations that correlated with the oxygen concentrations of the solution inside the PT when operated at positive pressures. At negative pressures the microsensor shows convergence to zero saturation (2.2 micro mol/L) values due to inadequate water film formation on porous tube surface. The 4-point microprobe is useful as a wetness detector as it provides a clear differentiation between dry and wet surfaces. The unique features of the dissolved oxygen microsensor array and 4-point microprobe include small and simple design, flexibility and multipoint sensing. The demonstrated technology is anticipated to provide low cost, and highly reliable sensor feedback monitoring plant growth nutrient delivery system in both terrestrial and microgravity environments.
NASA Astrophysics Data System (ADS)
Marques, A. F.; Marques, J. P.; Casaca, C.; Carvalho, M. L.
2004-10-01
This work reports on the measurements of elemental profiles in teeth collected from patients with renal insufficiency. Elemental concentrations of Ti, Mn, Fe, Co, Ni, Cu, Zn, Se, Br, Rb Sr and Pb in different parts of teeth from patients with renal insufficiency are discussed and correlated with the corresponding values for healthy citizens. Both situations, patients with and without dialysis treatment were studied. The purpose of this work is to point out the influence of renal insufficiency together with long dialysis treatment, on teeth elemental content. An X-ray fluorescence set-up with microprobe capabilities, installed at the LURE synchrotron (France) was used for elemental determination. The resolution of the synchrotron microprobe was 100 μm and the energy of the incident photons was 19 keV. Teeth of citizens with renal insufficiency and those submitted since several years to dialysis treatment show a similar concentration with teeth of healthy subjects in what concerns the elemental distribution for Mn, Fe, Cu, Zn and Sr. However, higher levels of Pb were found in pulp region of diseased citizens when compared to values of healthy people. Very low concentrations of Ti, Co, Ni, Se, Br and Rb were found in all the analysed teeth. No difference was found in patients with and without dialysis treatment.
Tunable lasers and their application in analytical chemistry
NASA Technical Reports Server (NTRS)
Steinfeld, J. I.
1975-01-01
The impact that laser techniques might have in chemical analysis is examined. Absorption, scattering, and heterodyne detection is considered. Particular emphasis is placed on the advantages of using frequency-tunable sources, and dye solution lasers are regarded as the outstanding example of this type of laser. Types of spectroscopy that can be carried out with lasers are discussed along with the ultimate sensitivity or minimum detectable concentration of molecules that can be achieved with each method. Analytical applications include laser microprobe analysis, remote sensing and instrumental methods such as laser-Raman spectroscopy, atomic absorption/fluorescence spectrometry, fluorescence assay techniques, optoacoustic spectroscopy, and polarization measurements. The application of lasers to spectroscopic methods of analysis would seem to be a rewarding field both for research in analytical chemistry and for investments in instrument manufacturing.
NASA Astrophysics Data System (ADS)
Ruthven, R. C.; Ketcham, R. A.; Kelly, E. D.
2015-12-01
Three-dimensional textural analysis of garnet porphyroblasts and electron microprobe analyses can, in concert, be used to pose novel tests that challenge and ultimately increase our understanding of metamorphic crystallization mechanisms. Statistical analysis of high-resolution X-ray computed tomography (CT) data of garnet porphyroblasts tells us the degree of ordering or randomness of garnets, which can be used to distinguish the rate-limiting factors behind their nucleation and growth. Electron microprobe data for cores, rims, and core-to-rim traverses are used as proxies to ascertain porphyroblast nucleation and growth rates, and the evolution of sample composition during crystallization. MnO concentrations in garnet cores serve as a proxy for the relative timing of nucleation, and rim concentrations test the hypothesis that MnO is in equilibrium sample-wide during the final stages of crystallization, and that concentrations have not been greatly altered by intracrystalline diffusion. Crystal size distributions combined with compositional data can be used to quantify the evolution of nucleation rates and sample composition during crystallization. This study focuses on quartzite schists from the Picuris Mountains with heterogeneous garnet distributions consisting of dense and sparse layers. 3D data shows that the sparse layers have smaller, less euhedral garnets, and petrographic observations show that sparse layers have more quartz and less mica than dense layers. Previous studies on rocks with homogeneously distributed garnet have shown that crystallization rates are diffusion-controlled, meaning that they are limited by diffusion of nutrients to growth and nucleation sites. This research extends this analysis to heterogeneous rocks to determine nucleation and growth rates, and test the assumption of rock-wide equilibrium for some major elements, among a set of compositionally distinct domains evolving in mm- to cm-scale proximity under identical P-T conditions.
NASA Astrophysics Data System (ADS)
Kesler, Gavriel; Koren, Rumelia; Kesler, Anat; Hay, Nissim; Gal, Rivka
1999-05-01
The purpose of this study was to determine the efficiency of 15 F CO2 laser microprobe, in cases of periapical lesions, by eliminating the pathological reaction caused by certain species of bacteria, reduction of reinfection and stimulation of osteogenesis in the periapical region. Until now, no suitable delivery fiber existed for CO2 laser endodontic radiation in the apical region where it is most difficult to eliminate the pulp tissue using conventional methods. To overcome this problem, Sharplan laser designed a microprobe that reaches closer to the apex, distributing the energy density to a smaller area of the root canal, thus favorably increasing the thermal effects. The study was conducted on 900 teeth, divided in two groups. 468 were new case, carefully selected according to strict parameters such as: wide periapical translucency over 1mm, supported by digital x-ray, with a lesion of 3mm and more. All root canals were mechanically prepared in the conventional method up to size 35, Physiological saline solution served as finding solution and were treated by 15 F CO2 laser microprobe for 60 pulses repeatedly. The temperature at the surrounding tissue of the root did not exceed 38 degrees C filling of the canal was possible at the same appointment, without antibiotical treatment. 432 of the cases, which were referred to us by other dentists, after an unsuccessful treatment according to the classical therapy, were treated by the same laser therapy. Follow up was performed by clinical examination, and digital x-ray taken, during and after treatment as well as after 3, 6, 9, 12 month. The result demonstrate 98% success rate in both study groups, according to objective criteria for a successful treatment such as: reduction of apical translucency after 2- 6 months, freedom form clinical complains, and no need for periapical surgery.
Petrology and Mineral Chemistry of New Olivine-Phyric Shergottite RBT04262
NASA Technical Reports Server (NTRS)
Dalton, H. A.; Peslier, A. H.; Brandon, A. D.; Lee, C.-T. A.; Lapen, T. J.
2008-01-01
RBT04262 was found by the 2004-2005 ANSMET team at the Roberts Massif in Antarctica. It is paired with RBT04261 and is classified as an olivine-phyric shergottite. RBT04261 is 4.0 x 3.5 x 2.5 cm and 78.8 g, and RBT04262 is 6.5 x 5.5 x 3.5 cm and 204.6 g. Both were partially covered by a fusion crust [1]. Chemical analysis and mapping of this meteorite was performed using the Cameca SX100 electron microprobe at NASA Johnson Space Center.
An occurrence of metastable cristobalite in high-pressure garnet Granulite
Darling, R.S.; Chou, I.-Ming; Bodnar, R.J.
1997-01-01
High-pressure (0.8 gigapascals) granulite facies garnet from Gore Mountain, New York, hosts multiple solid inclusions containing the low- pressure silica polymorph cristobalite along with albite and minor ilmenite. Identification of cristobalite is based on Raman spectra, electron microprobe analysis, and microthermometric measurements on the ??/?? phase transformation. The cristobalite plus albite inclusions may have originated as small, trapped samples of hydrous sodium-aluminum-siliceous melt. Diffusive loss of water from these inclusions under isothermal, isochoric conditions may have resulted in a large enough internal pressure decrease to promote the metastable crystallization of cristobalite.
Oxidation of silicon nitride sintered with rare-earth oxide additions
NASA Technical Reports Server (NTRS)
Mieskowski, D. M.; Sanders, W. A.
1985-01-01
The effects of rare-earth oxide additions on the oxidation of sintered Si3N4 were examined. Insignificant oxidation occurred at 700 and 1000 C, with no evidence of phase instability. At 1370 C, the oxidation rate was lowest for Y2O3 and increased for additions of La2O3, Sm2O3, and CeO2, in that order. Data obtained from X-ray diffraction, electron microprobe analysis, and scanning electron microscopy indicate that oxidation occurs via diffusion of cationic species from Si3N4 grain boundaries.
Duggan, A W; Schaible, H G; Hope, P J; Lang, C W
1992-05-08
Antibody microprobes bearing antibodies to the C-terminus of substance P (SP) were used to measure release of immunoreactive (ir) SP in the dorsal horn of barbiturate anaesthetized spinal cats. Electrical stimulation of unmyelinated primary afferents of the ipsilateral tibial nerve produced a relatively localised release of ir SP in the superficial dorsal horn. Prior microinjection of the peptidase inhibitors kelatorphan and enalaprilat in the dorsal horn resulted in ir SP being detected over the whole of the dorsal horn and the overlying dorsal column. This pattern had previously been observed with evoked release of ir neurokinin A and supports the proposal that a slow degradation results in a neuropeptide accessing many sites remote from sites of release.
The Amsterdam quintuplet nuclear microprobe
NASA Astrophysics Data System (ADS)
van den Putte, M. J. J.; van den Brand, J. F. J.; Jamieson, D. N.; Rout, B.; Szymanski, R.
2003-09-01
A new nuclear microprobe comprising of a quintuplet lens system is being constructed at the Ion Beam Facility of the "Vrije Universiteit" Amsterdam in collaboration with the Microanalytical Research Centre of the University of Melbourne. An overview of the Amsterdam set-up will be presented. Detailed characterisation of the individual lenses was performed with the grid shadow method using a 2000 mesh Cu grid mounted at a relative angle of 0.5° to the vertical lens line focus. The lenses were found to have very low parasitic aberrations equal or below the minimum detectable limit for the method, which was approximately 0.1% for the sextupole component and 0.2% for the octupole component. We present experimental and theoretical grid shadow patterns, showing results for all five lenses.
NASA Astrophysics Data System (ADS)
Park, Jun-Hyub; Shin, Myung-Soo
2011-09-01
This paper describes the results of tensile tests for a beryllium-copper (BeCu) alloy thin film and the application of the results to the design of a probe. The copper alloy films were fabricated by electroplating. To obtain the tensile characteristics of the film, the dog-bone type specimen was fabricated by the etching method. The tensile tests were performed with the specimen using a test machine developed by the authors. The BeCu alloy has an elastic modulus of 119 GPa and the 0.2% offset yield and ultimate tensile strengths of 1078 MPa and 1108 MPa, respectively. The design and manufacture of a smaller probe require higher pad density and smaller pad-pitch chips. It should be effective in high-frequency testing. For the design of a new micro-probe, we investigated several design parameters that may cause problems, such as the contact force and life, using the tensile properties and the design of experiment method in conjunction with finite element analysis. The optimal dimensions of the probe were found using the response surface method. The probe with optimal dimensions was manufactured by a precision press process. It was verified that the manufactured probe satisfied the life, the contact force and the over drive through the compression tests and the life tests of the probes.
The external scanning proton microprobe of Firenze: A comprehensive description
NASA Astrophysics Data System (ADS)
Giuntini, L.; Massi, M.; Calusi, S.
2007-06-01
An external proton scanning microbeam setup is installed on the -30° line of the new 3 MV tandem accelerator in Firenze; the most relevant features of the line, such as detection setup for IBA measurements, target viewing system, beam diagnostic and transport are described here. With our facility we can work with a beam spot on sample better than 10 μm full-width half-maximum (FWHM) and an intensity of some nanoamperes. Standard beam exit windows are silicon nitride (Si 3N 4) TEM membranes, 100 nm thick and 0.5×0.5 mm 2 wide; we also successfully performed measurements using membranes 1×1 mm 2 wide, 100 nm thick, and 2×2 mm 2 wide, 200 and 500 nm thick. Exploiting the yield of Si X-rays produced by the beam in the exit window as an indirect measurement of the charge, a beam charge monitor system was implemented. The analytical capabilities of the microbeam have been extended by integrating a two-detector PIXE setup with BS and PIGE detectors; the external scanning proton microprobe in Firenze is thus a powerful instrument to fully characterize samples by ion beam analysis, through the simultaneous collection of PIXE, PIGE and BS elemental maps. Its characteristics can make it often competitive with traditional in vacuum microbeam for measurements of thick targets.
Distribution of siderophile and other trace elements in melt rock at the Chicxulub impact structure
NASA Technical Reports Server (NTRS)
Schuraytz, B. C.; Lindstrom, D. J.; Martinez, R. R.; Sharpton, V. L.; Marin, L. E.
1994-01-01
Recent isotopic and mineralogical studies have demonstrated a temporal and chemical link between the Chicxulub multiring impact basin and ejecta at the Cretaceous-Tertiary boundary. A fundamental problem yet to be resolved, however, is identification of the projectile responsible for this cataclysmic event. Drill core samples of impact melt rock from the Chichxulub structure contain Ir and Os abundances and Re-Os isotopic ratios indicating the presence of up to approx. 3 percent meteoritic material. We have used a technique involving microdrilling and high sensitivity instrumental neutron activation analysis (INAA) in conjunction with electron microprobe analysis to characterize further the distribution of siderophile and other trace elements among phases within the C1-N10 melt rock.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reusch, L. M., E-mail: lmmcguire@wisc.edu; Den Hartog, D. J.; Goetz, J.
The two-color soft x-ray (SXR) tomography diagnostic on the Madison Symmetric Torus is capable of making electron temperature measurements via the double-filter technique; however, there has been a 15% systematic discrepancy between the SXR double-filter (SXR{sub DF}) temperature and Thomson scattering (TS) temperature. Here we discuss calibration of the Be filters used in the SXR{sub DF} measurement using empirical measurements of the transmission function versus energy at the BESSY II electron storage ring, electron microprobe analysis of filter contaminants, and measurement of the effective density. The calibration does not account for the TS and SXR{sub DF} discrepancy, and evidence frommore » experiments indicates that this discrepancy is due to physics missing from the SXR{sub DF} analysis rather than instrumentation effects.« less
Limitations on analysis of small particles with an electron probe: pollution studies
Heidel, R.H.; Desborough, G.A.
1975-01-01
Recent literature concerning the size and composition of airborne lead particles in automobile exhaust emissions determined by electron microprobe analysis reports 14 distinct lead compounds. Particle sizes reported were from 0.2 ??m to 2 ??m in the diameter. The determination of chemical formulae for compounds requires quantitative elemental data for individual particles. It was also assumed that the lead bearing particles analysed were solid (specifically non porous or non fluffy) compounds which occurred as discrete (non aggregate) particles. Intensity data obtained in the laboratory from the excited volume in a 1 ??m diameter sphere of solid lead chloride indicate insufficient precision and sensitivity to obtain chemical formulae as reported in the literature for exhaust emission products.
Ways to Improve the Quality of Die Steel 5KhNM
NASA Astrophysics Data System (ADS)
Efimov, S. V.; Malykhina, O. Yu; Pavlova, A. G.; Milyuts, V. G.; Tsukanov, V. V.; Vikharev, V. V.
2017-12-01
There was performed an analysis of influence of the deoxidation technology, hydrogen content and high concentration of titanium in steel 5KhNM (Rus. “5XHM”) on quality of die blanks, evaluated based on the results of the ultrasonic test. The fractographic examinations of fractures and the X-ray microprobe analysis of chemical composition of non-metallic inclusions were conducted, the evaluation of macro- and micro-structure of a die blank with high titanium content was performed. It is demonstrated that defects of dies from steel 5KhNM (Rus. “5XHM”) are cracks from merged flakes and micro-flakes; in most cases large concentrations of sulphides appeared to be hydrogen collectors for formation of flakes and micro-flakes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartz, W., E-mail: wojciech.bartz@ing.uni.wroc.pl; Filar, T.
Optical microscopic observations, scanning electron microscopy and microprobe with energy dispersive X-ray analysis, X-ray diffraction and differential thermal/thermogravimetric analysis allowed detailed characterization of rendering mortars from decorative details (figures of Saints) of a baroque building in Kozuchow (Lubuskie Voivodship, Western Poland). Two separate coats of rendering mortars have been distinguished, differing in composition of their filler. The under coat mortar has filler composed of coarse-grained siliceous sand, whereas the finishing one has much finer grained filler, dominated by a mixture of charcoal and Fe-smelting slag, with minor amounts of quartz grains. Both mortars have air-hardening binder composed of gypsum andmore » micritic calcite, exhibiting microcrystalline structure.« less
The solubility and site preference of Fe3+ in Li7−3xFexLa3Zr2O12 garnets
Rettenwander, D.; Geiger, C.A.; Tribus, M.; Tropper, P.; Wagner, R.; Tippelt, G.; Lottermoser, W.; Amthauer, G.
2015-01-01
A series of Fe3+-bearing Li7La3Zr2O12 (LLZO) garnets was synthesized using solid-state synthesis methods. The synthetic products were characterized compositionally using electron microprobe analysis and inductively coupled plasma optical emission spectroscopy (ICP-OES) and structurally using X-ray powder diffraction and 57Fe Mössbauer spectroscopy. A maximum of about 0.25 Fe3+ pfu could be incorporated in Li7−3xFexLa3Zr2O12 garnet solid solutions. At Fe3+ concentrations lower than about 0.16 pfu, both tetragonal and cubic garnets were obtained in the synthesis experiments. X-ray powder diffraction analysis showed only a garnet phase for syntheses with starting materials having intended Fe3+ contents lower than 0.52 Fe3+ pfu. Back-scattered electron images made with an electron microprobe also showed no phase other than garnet for these compositions. The lattice parameter, a0, for all solid-solution garnets is similar with a value of a0≈12.98 Å regardless of the amount of Fe3+. 57Fe Mössbauer spectroscopic measurements indicate the presence of poorly- or nano-crystalline FeLaO3 in syntheses with Fe3+ contents greater than 0.16 Fe3+ pfu. The composition of different phase pure Li7−3xFexLa3Zr2O12 garnets, as determined by electron microprobe (Fe, La, Zr) and ICP-OES (Li) measurements, give Li6.89Fe0.03La3.05Zr2.01O12, Li6.66Fe0.06La3.06Zr2.01O12, Li6.54Fe0.12La3.01Zr1.98O12, and Li6.19Fe0.19La3.02Zr2.04O12. The 57Fe Mössbauer spectrum of cubic Li6.54Fe0.12La3.01Zr1.98O12 garnet indicates that most Fe3+ occurs at the special crystallographic 24d position, which is the standard tetrahedrally coordinated site in garnet. Fe3+ in smaller amounts occurs at a general 96h site, which is only present for certain Li-oxide garnets, and in Li6.54Fe0.12La3.01Zr1.98O12 this Fe3+ has a distorted 4-fold coordination. PMID:26435549
PIXE analysis of caries related trace elements in tooth enamel
NASA Astrophysics Data System (ADS)
Annegarn, H. J.; Jodaikin, A.; Cleaton-Jones, P. E.; Sellschop, J. P. F.; Madiba, C. C. P.; Bibby, D.
1981-03-01
PIXE analysis has been applied to a set of twenty human teeth to determine trace element concentration in enamel from areas susceptible to dental caries (mesial and distal contact points) and in areas less susceptible to the disease (buccal surfaces), with the aim of determining the possible roles of trace elements in the curious process. The samples were caries-free anterior incisors extracted for periodontal reasons from subjects 10-30 years of age. Prior to extraction of the sample teeth, a detailed dental history and examination was carried out in each individual. PIXE analysis, using a 3 MeV proton beam of 1 mm diameter, allowed the determination of Ca, Mn, Fe, Cu, Zn, Sr and Pb above detection limits. As demonstrated in this work, the enhanced sensitivity of PIXE analysis over electron microprobe analysis, and the capability of localised surface analysis compared with the pooled samples required for neutron activation analysis, makes it a powerful and useful technique in dental analysis.
Geng, Hong; Cheng, Fangqin; Ro, Chul-Un
2011-11-01
A quantitative energy-dispersive electron probe X-ray microanalysis (ED-EPMA), namely low-Z (atomic number) particle EPMA, was used to characterize the chemical compositions of the individual aerosol particles collected at the Gosan supersite, Jeju Island, Korea, as a part of the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia). On 4-10 April 2001 just before a severe dust storm arrived, seven sets of aerosol samples were obtained by a seven-stage May cascade impactor with a flow rate of 20 L/min. Overall 11,200 particles on stages 1-6 with cutoff diameters of 16, 8, 4, 2, 1, and 0.5 microm, respectively, were examined and classified based on their secondary electron images and X-ray spectra. In general, sea salt particles were the most frequently encountered, followed by mineral dust, organic carbon (OC)-like, (NH4)2SO4/NH4HSO4-containing, elemental carbon (EC)-like, Fe-rich, and K-rich particles. Sea salt and mineral dust particles had a higher relative abundance on stages 1-5, whereas OC-like, (NH4)2SO4/NH4HSO4-containing, Fe-rich, and K-rich particles were relatively abundant on stage 6. The analysis on relative number abundances of various particle types combined with 72-hr backward air mass trajectories indicated that a lot of reacted sea salt and reacted mineral dust (with airborne NOx and SO2 or their acidic products) and OC-like particles were carried by the air masses passing over the Yellow Sea (for sample "10 April") and many NH4HSO4/ (NH4)2SO4-containing particles were carried by the air masses passing over the Sea of Japan and Korea Strait (for samples "4-9 April"). It was concluded that the atmosphere over Jeju Island was influenced by anthropogenic SO2 and NOx, organic compounds, and secondary aerosols when Asian dust was absent.
Electrode erosion in steady-state electric propulsion engines
NASA Technical Reports Server (NTRS)
Pivirotto, Thomas J.; Deininger, William D.
1988-01-01
The anode and cathode of a 30 kW class arcjet engine were sectioned and analyzed. This arcjet was operated for a total time of 573 hr at power levels between 25 and 30 kW with ammonia at flow rates of 0.25 and 0.27 gm/s. The accumulated run time was sufficient to clearly establish erosion patterns and their causes. The type of electron emission from various parts of the cathode surface was made clear by scanning electron microscope analysis. A scanning electron microscope was used to study recrystallization on the hot anode surface. These electrodes were made of 2 percent thoriated tungsten and the surface thorium content and gradient perpendicular to the surfaces was determined by quantitative microprobe analysis. The results of this material analysis on the electrodes and recommendations for improving electrode operational life time are presented.
Watson: A new link in the IIE iron chain
NASA Technical Reports Server (NTRS)
Olsen, Edward; Davis, Andrew; Clarke, Roy S., Jr.; Schultz, Ludolf; Weber, Hartwig W.; Clayton, Robert; Mayeda, Toshiko; Jarosewich, Eugene; Sylvester, Paul; Grossman, Lawrence
1994-01-01
Watson, which was found in 1972 in South Australia, contains the largest single silicate rock mass seen in any known iron meteorite. A comprehensive study has been completed on this unusual meteorite: petrography, metallography, analyses of the silicate inclusion (whole rock chemical analysis, INAA, RNAA, noble gases, and oxygen isotope analysis) and mineral compositions (by electron microprobe and ion microprobe). The whole rock has a composition of an H-chondrite minus the normal H-group metal and troilite content. The oxygen isotope composition is that of the silicates in the IIE iron meteorites and lies along an oxygen isotope fractionation line with the H-group chondrites. Trace elements in the metal confirm Watson is a new IIE iron. Whole rock Watson silicate shows an enrichment in K and P (each approximately 2X H-chondrites). The silicate inclusion has a highly equilibrated igneous (peridotite-like) texture with olivine largely poikilitic within low-Ca pyroxene: olivine (Fa20), opx (Fs17Wo3), capx (Fs9Wo14)(with very fine exsolution lamellae), antiperthite feldspar (An1-3Or5) with less than 1 micron exsolution lamellae (An1-3Or greater than 40), shocked feldspar with altered stoichiometry, minor whitlockite (also a poorly characterized interstitial phosphate-rich phase) and chromite, and only traces of metal and troilite. The individual silicate minerals have normal chondritic REE patterns, but whitlockite has a remarkable REE pattern. It is very enriched in light REE (La is 720X C1, and Lu is 90X C1, as opposed to usual chonditic values of approximately 300X and 100-150X, respectively) with a negative Eu anomaly. The enrichment of whole rock K is expressed both in an unusually high mean modal Or content of the feldspar, Or13, and in the presence of antiperthite.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elsenheimer, D.W.
1992-01-01
The extent of fluid/rock interaction within the crust is a function of crustal depth, with large hydrothermal systems common in the brittle, hydrostatically pressured upper crust, but restricted fluid flow in the lithostatically pressured lower crust. To quantify this fluid/rock interaction, a Nd-YAG/CO[sub 2] laser microprobe system was constructed to analyze oxygen isotope ratios in silicates. Developed protocols produce high precision in [sigma][sup 18]O ([+-]0.2, 1[sigma]) and accuracy comparable to conventional extraction techniques on samples of feldspar and quartz as small as 0.3mg. Analysis of sub-millimeter domains in quartz and feldspar in granite from the Isle of Skye, Scotland, revealsmore » complex intragranular zonation. Contrasting heterogeneous and homogeneous [sigma][sup 18]O zonation patterns are revealed in samples <10m apart. These differences suggest fluid flow and isotopic exchange was highly heterogeneous. It has been proposed that granulite-facies metamorphism in the Highland Southwestern Complex (HSWC), Sri Lanka, resulted from the pervasive influx of CO[sub 2], with the marbles and calc-silicates within the HSWC a proposed fluid source. The petrologic and stable isotopic characteristic of HSWC marbles are inconsistent with extensive decarbonation. Wollastonite calc-silicates occur as deformed bands and as post-metamorphis veins with isotopic compositions that suggest vein fluids that are at least in part magmatic. Post-metamorphic magmatic activity is responsible for the formation of secondary disseminated graphite growth in the HSWC. This graphite has magmatic isotopic compositions and is associated with vein graphite and amphibolite-granulite facies transitions zones. Similar features in Kerela Khondalite Belt, South India, may suggest a common metamorphic history for the two terranes.« less
Microrisks for medical decision analysis.
Howard, R A
1989-01-01
Many would agree on the need to inform patients about the risks of medical conditions or treatments and to consider those risks in making medical decisions. The question is how to describe the risks and how to balance them with other factors in arriving at a decision. In this article, we present the thesis that part of the answer lies in defining an appropriate scale for risks that are often quite small. We propose that a convenient unit in which to measure most medical risks is the microprobability, a probability of 1 in 1 million. When the risk consequence is death, we can define a micromort as one microprobability of death. Medical risks can be placed in perspective by noting that we live in a society where people face about 270 micromorts per year from interactions with motor vehicles. Continuing risks or hazards, such as are posed by following unhealthful practices or by the side-effects of drugs, can be described in the same micromort framework. If the consequence is not death, but some other serious consequence like blindness or amputation, the microrisk structure can be used to characterize the probability of disability. Once the risks are described in the microrisk form, they can be evaluated in terms of the patient's willingness-to-pay to avoid them. The suggested procedure is illustrated in the case of a woman facing a cranial arteriogram of a suspected arterio-venous malformation. Generic curves allow such analyses to be performed approximately in terms of the patient's sex, age, and economic situation. More detailed analyses can be performed if desired. Microrisk analysis is based on the proposition that precision in language permits the soundness of thought that produces clarity of action and peace of mind.
NASA Technical Reports Server (NTRS)
Berger, Pascal; Sayir, Ali; Berger, Marie-Helene
2004-01-01
The interaction between hydrogen and various high temperature protonic conductors (HTPC) has not been clearly understood due to poor densification and unreacted secondary phases. the melt-processing technique is used in producing fully dense simple SrCe(0.9)Y (0.10) O(3-delta) and complex Sr3Ca(1+x)Nb(2+x)O(9-delta) perovskites that can not be achieved by solid-state sintering. the possibilities of ion beam analysis have been investigated to quantify hydrogen distribution in HTPC perovskites subjected to water heat treatment. Nuclear microprobe technique is based on the interactions of a focused ion beam of MeV light ions (H-1, H-2, He-3, He-4,.) with the sample to be analyzed to determine local elemental concentrations at the cubic micrometer scale, the elastic recoil detection analysis technique (ERDA) has been carried out using He-4(+) microbeams and detecting the resulting recoil protons. Mappings of longitudinal sections of water treated SrCeO3 and Sr(Ca(1/3)Nb(2/3))O3 perovskites have been achieved, the water treatment strongly alters the surface of simple SrCe(0.9)Y(0.10)O(3-delta) perovskite. From Rutherford Back Scattering measurements (RBS), both Ce depletion and surface re-deposition is evidenced. the ERDA investigations on water treated Sr3Ca(1+x)Nb(2+x)O(9-delta) perovskite did not exhibit any spatial difference for the hydrogen incorporation from the surface to the centre. the amount of hydrogen incorporation for Sr3Ca(1+x)Nb(2+x)O(9-delta) was low and required further development of two less conventional techniques, ERDA in forward geometry and forward elastic diffusion H-1(p,p) H-1 with coincidence detection.
Single ion hit detection set-up for the Zagreb ion microprobe
NASA Astrophysics Data System (ADS)
Smith, R. W.; Karlušić, M.; Jakšić, M.
2012-04-01
Irradiation of materials by heavy ions accelerated in MV tandem accelerators may lead to the production of latent ion tracks in many insulators and semiconductors. If irradiation is performed in a high resolution microprobe facility, ion tracks can be ordered by submicrometer positioning precision. However, full control of the ion track positioning can only be achieved by a reliable ion hit detection system that should provide a trigger signal irrespectively of the type and thickness of the material being irradiated. The most useful process that can be utilised for this purpose is emission of secondary electrons from the sample surface that follows the ion impact. The status report of the set-up presented here is based on the use of a channel electron multiplier (CEM) detector mounted on an interchangable sample holder that is inserted into the chamber in a close geometry along with the sample to be irradiated. The set-up has been tested at the Zagreb ion microprobe for different ions and energies, as well as different geometrical arrangements. For energies of heavy ions below 1 MeV/amu, results show that efficient (100%) control of ion impact can be achieved only for ions heavier than silicon. The successful use of the set-up is demonstrated by production of ordered single ion tracks in a polycarbonate film and by monitoring fluence during ion microbeam patterning of Foturan glass.
NASA Astrophysics Data System (ADS)
Godart, J.; Weiss, P.; Chantepie, B.; Clemens, J. C.; Delpierre, P.; Dinkespiler, B.; Janvier, B.; Jevaud, M.; Karkar, S.; Lefebvre, F.; Mastrippolito, R.; Menouni, M.; Pain, F.; Pangaud, P.; Pinot, L.; Morel, C.; Laniece, P.
2010-06-01
We present a design study of PIXSIC, a new β+ radiosensitive microprobe implantable in rodent brain dedicated to in vivo and autonomous measurements of local time activity curves of beta radiotracers in a small (a few mm3) volume of brain tissue. This project follows the initial β microprobe previously developed at IMNC, which has been validated in several neurobiological experiments. This first prototype has been extensively used on anesthetized animals, but presents some critical limits for utilization on awake and freely moving animals. Consequently, we propose to develop a wireless setup that can be worn by an animal without constraints upon its movements. To that aim, we have chosen a Silicon-based detector, highly β sensitive, which allows for the development of a compact pixellated probe (typically 600 × 200 × 1000 μm3), read out with miniaturized wireless electronics. Using Monte-Carlo simulations, we show that high resistive Silicon pixels are appropriate for this purpose, assuming that the pixel dimensions are adapted to our specific signals. More precisely, a tradeoff has to be found between the sensitivity to β+ particles and to the 511 keV j background resulting from annihilations of β+ with electrons. We demonstrate that pixels with maximized surface and minimized thickness can lead to an optimization of their β+ sensitivity with a relative transparency to the annihilation background.
Synthesis, characterization and magnetic behavior of Co/MCM-41 nano-composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cuello, N.; Elías, V.; CONICET
2013-09-15
Synthesis, structure and magnetic properties of Co/MCM-41 as magnetic nano-composites have been investigated. Mesoporous materials with different degrees of metal loading were prepared by wet impregnation and characterized by ICP, XRD, N{sub 2} adsorption, UV–vis DRS, TPR and EPMA-EDS. Cobalt oxide clusters and Co{sub 3}O{sub 4} nano-particles could be confined inside the mesopores of MCM-41, being this fact favored by the Co loading increasing. In addition, larger crystals of Co{sub 3}O{sub 4} detectable by XRD also grow on the surface when the Co loading is enhanced. The magnetic characterization was performed in a SQUID magnetometer using a maximum magnetic appliedmore » field µ{sub 0}Ha=1 T. While the samples with the higher Co loadings showed a behavior typically paramagnetic, a superparamagnetic contribution is more notorious for lower loadings, suggesting high Co species dispersion. - Graphical abstract: Room temperature hysteresis loops as a function of the Co content. Display Omitted - Highlights: • Co species as isolated Co{sup 2+}, oxide clusters and Co{sub 3}O{sub 4} nano-particles were detected. • For higher Co loads were detected, by XRD, Co{sub 3}O{sub 4} particles on the external surface. • The confining of Co species inside the mesopores was achieved by increasing Co load. • Paramagnetism from oxide clusters/nano-particles becomes dominant for higher Co loads. • Superparamagnetism can be assigned to Co species of small size and finely dispersed.« less
Water-bearing, high-pressure Ca-silicates
NASA Astrophysics Data System (ADS)
Németh, Péter; Leinenweber, Kurt; Ohfuji, Hiroaki; Groy, Thomas; Domanik, Kenneth J.; Kovács, István J.; Kovács, Judit S.; Buseck, Peter R.
2017-07-01
Water-bearing minerals provide fundamental knowledge regarding the water budget of the mantle and are geophysically significant through their influence on the rheological and seismic properties of Earth's interior. Here we investigate the CaO-SiO2-H2O system at 17 GPa and 1773 K, corresponding to mantle transition-zone condition, report new high-pressure (HP) water-bearing Ca-silicates and reveal the structural complexity of these phases. We document the HP polymorph of hartrurite (Ca3SiO5), post-hartrurite, which is tetragonal with space group P4/ncc, a = 6.820 (5), c = 10.243 (8) Å, V = 476.4 (8) Å3, and Z = 4, and is isostructural with Sr3SiO5. Post-hartrurite occurs in hydrous and anhydrous forms and coexists with larnite (Ca2SiO4), which we find also has a hydrous counterpart. Si is 4-coordinated in both post-hartrurite and larnite. In their hydrous forms, H substitutes for Si (4H for each Si; hydrogrossular substitution). Fourier transform infrared (FTIR) spectroscopy shows broad hydroxyl absorption bands at ∼3550 cm-1 and at 3500-3550 cm-1 for hydrous post-hartrurite and hydrous larnite, respectively. Hydrous post-hartrurite has a defect composition of Ca2.663Si0.826O5H1.370 (5.84 weight % H2O) according to electron-probe microanalysis (EPMA), and the Si deficiency relative to Ca is also observed in the single-crystal data. Hydrous larnite has average composition of Ca1.924Si0.851O4H0.748 (4.06 weight % H2O) according to EPMA, and it is in agreement with the Si occupancy obtained using X-ray data collected on a single crystal. Superlattice reflections occur in electron-diffraction patterns of the hydrous larnite and could indicate crystallographic ordering of the hydroxyl groups and their associated cation defects. Although textural and EPMA-based compositional evidence suggests that hydrous perovskite may occur in high-Ca-containing (or low silica-activity) systems, the FTIR measurement does not show a well-defined hydroxyl absorption band for this phase, implying the water content, at least in the quenched glass, is below the limit of detection (100-1000 ppm). We conclude that at high pressure, as at ambient pressure, some calcium silicates have a high affinity for H2O and high dehydration temperatures. The thermal stability of these hydrous phases suggests that they could exist along a typical mantle geotherm and thus they might be relevant for understanding the mineralogy and water content of Earth's mantle.
A view on elemental distribution alterations of coronary artery walls in atherogenesis
NASA Astrophysics Data System (ADS)
Pallon, J.; Homman, P.; Pinheiro, T.; Halpern, M. J.; Malmqvist, K.
1995-09-01
In this study, the Nuclear Microprobe technique was employed to investigate the elemental concentration alterations of minor and trace elements at the different cellular layers and structures of freeze-dried cryosections of human coronary arteries. Nuclear microprobe analyses enable to determine 7 elements, i.e., P, S, Cl, K, Ca, Fe and Zn in the artery walls. Furthermore, it was possible to identify early modifications of the artery due to the atherosclerosis progression that cannot be detected with specific staining or conventional histological methods. These modifications are shown to be related to abnormal Fe and Zn depositions in the surroundings of the elastic laminae. Later on, the calcifications of these regions occur, contributing to the elastic laminae damage and leading to the atheroma growing and maturation.
Transport of a high brightness proton beam through the Munich tandem accelerator
NASA Astrophysics Data System (ADS)
Moser, M.; Greubel, C.; Carli, W.; Peeper, K.; Reichart, P.; Urban, B.; Vallentin, T.; Dollinger, G.
2015-04-01
Basic requirement for ion microprobes with sub-μm beam focus is a high brightness beam to fill the small phase space usually accepted by the ion microprobe with enough ion current for the desired application. We performed beam transport simulations to optimize beam brightness transported through the Munich tandem accelerator. This was done under the constraint of a maximum ion current of 10 μA that is allowed to be injected due to radiation safety regulations and beam power constrains. The main influence of the stripper foil in conjunction with intrinsic astigmatism in the beam transport on beam brightness is discussed. The calculations show possibilities for brightness enhancement by using astigmatism corrections and asymmetric filling of the phase space volume in the x- and y-direction.
Hertz-Schünemann, Romy; Streibel, Thorsten; Ehlert, Sven; Zimmermann, Ralf
2013-09-01
A micro-probe (μ-probe) gas sampling device for on-line analysis of gases evolving in confined, small objects by single-photon ionisation time-of-flight mass spectrometry (SPI-TOFMS) was developed. The technique is applied for the first time in a feasibility study to record the formation of volatile and flavour compounds during the roasting process within (inside) or in the direct vicinity (outside) of individual coffee beans. A real-time on-line analysis of evolving volatile and semi-volatile organic compounds (VOC and SVOC) as they are formed under the mild pyrolytic conditions of the roasting process was performed. The soft-ionisation mass spectra depict a molecular ion signature, which is well corresponding with the existing knowledge of coffee roasting and evolving compounds. Additionally, thereby it is possible to discriminate between Coffea arabica (Arabica) and Coffea canephora (Robusta). The recognized differences in the roasting gas profiles reflect the differences in the precursor composition of the coffee cultivars very well. Furthermore, a well-known set of marker compounds for Arabica and Robusta, namely the lipids kahweol and cafestol (detected in their dehydrated form at m/z 296 and m/z 298, respectively) were observed. If the variation in time of different compounds is observed, distinctly different evolution behaviours were detected. Here, phenol (m/z 94) and caffeine (m/z 194) are exemplary chosen, whereas phenol shows very sharp emission peaks, caffeine do not have this highly transient behaviour. Finally, the changes of the chemical signature as a function of the roasting time, the influence of sampling position (inside, outside) and cultivar (Arabica, Robusta) is investigated by multivariate statistics (PCA). In summary, this pilot study demonstrates the high potential of the measurement technique to enhance the fundamental knowledge of the formation processes of volatile and semi-volatile flavour compounds inside the individual coffee bean.
Advanced Microstructural Study of Suspension Plasma Sprayed Hydroxyapatite Coatings
NASA Astrophysics Data System (ADS)
Podlesak, Harry; Pawlowski, Lech; D'Haese, Romain; Laureyns, Jacky; Lampke, Thomas; Bellayer, Severine
2010-03-01
Fine, home-synthesized, hydroxyapatite powder was formulated with water and alcohol to obtain a suspension used to plasma spray coatings onto a titanium substrate. The deposition process was optimized using statistical design of 2 n experiments with two variables: spray distance and electric power input to plasma. X-ray diffraction (XRD) was used to determine quantitatively the phase composition of obtained deposits. Raman microscopy and electron probe microanalysis (EPMA) enabled localization of the phases in different positions of the coating cross sections. Transmission electron microscopic (TEM) study associated with energy-dispersive x-ray spectroscopy (EDS) enabled visualization and analysis of a two-zone microstructure. One zone contained crystals of hydroxyapatite, tetracalcium phosphate, and a phase rich in calcium oxide. This zone included lamellas, usually observed in thermally sprayed coatings. The other zone contained fine hydroxyapatite grains that correspond to nanometric and submicrometric solids from the suspension that were agglomerated and sintered in the cold regions of plasma jet and on the substrate.
NASA Astrophysics Data System (ADS)
Gao, Michael C.; Ünlü, Necip; Mihalkovic, Marek; Widom, Michael; Shiflet, G. J.
2007-10-01
This study investigates glass formation, phase equilibria, and thermodynamic descriptions of the Al-rich Al-Ce-Co ternary system using a novel approach that combines critical experiments, CALPHAD modeling, and first-principles (FP) calculations. The glass formation range (GFR) and a partial 500 °C isotherm are determined using a range of experimental techniques including melt spinning, transmission electron microscopy (TEM), electron probe microanalysis (EPMA), X-ray diffraction, and differential thermal analysis (DTA). Three stable ternary phases are confirmed, namely, Al8CeCo2, Al4CeCo, and AlCeCo, while a metastable phase, Al5CeCo2, was discovered. The equilibrium and metastable phases identified by the present and earlier reported experiments, together with many hypothetical ternary compounds, are further studied by FP calculations. Based on new experimental data and FP calculations, the thermodynamics of the Al-rich Al-Co-Ce system is optimized using the CALPHAD method. Application to glass formation is discussed in light of present studies.
Corrosion behavior of low alloy steels in a wet-dry acid humid environment
NASA Astrophysics Data System (ADS)
Zhao, Qing-he; Liu, Wei; Yang, Jian-wei; Zhu, Yi-chun; Zhang, Bin-li; Lu, Min-xu
2016-09-01
The corrosion behavior of corrosion resistant steel (CRS) in a simulated wet-dry acid humid environment was investigated and compared with carbon steel (CS) using corrosion loss, polarization curves, X-ray diffraction (XRD), scanning electron microscopy (SEM), electron probe micro-analysis (EPMA), N2 adsorption, and X-ray photoelectron spectroscopy (XPS). The results show that the corrosion kinetics of both steels were closely related to the composition and compactness of the rust, and the electrochemical properties of rusted steel. Small amounts of Cu, Cr, and Ni in CRS increased the amount of amorphous phases and decreased the content of γ-FeOOH in the rust, resulting in higher compactness and electrochemical stability of the CRS rust. The elements Cu, Cr, and Ni were uniformly distributed in the CRS rust and formed CuFeO2, Cu2O, CrOOH, NiFe2O4, and Ni2O3, which enhanced the corrosion resistance of CRS in the wet-dry acid humid environment.
NASA Astrophysics Data System (ADS)
Di Roberto, Alessio; Smedile, Alessandra; Del Carlo, Paola; De Martini, Paolo Marco; Iorio, Marina; Petrelli, Maurizio; Pantosti, Daniela; Pinzi, Stefania; Todrani, Alessandro
2018-03-01
Two cores were sampled in the Fucino Basin (central Apennines, Italy), which represents an extensional intramountain basin filled by Pliocene to Quaternary continental alluvial and lacustrine deposits. The cores were investigated for tephra content and five visible tephras with thickness ranging from 1 to 8 cm were identified. Six additional cryptotephra were identified during the inspection of significant peaks of the magnetic susceptibility curve. Texture and mineralogy of five tephra and six cryptotephra layers were analyzed by means of scanning electron microscope coupled with energy-dispersive X-ray spectrometry system (SEM-EDS) and geochemical measurements were performed by an electron microprobe (EPMA) equipped with five wavelength-dispersive spectrometers (WDS) and using a laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) system on single glass shards. The results allowed us to assign tephra and cryptotephra to ten known volcanic eruptions that occurred over the last ca. 60 ka in the Campanian Province (Phlegrean Fields and Ischia Island), the Alban Hills volcanic complex, and Lipari island. In particular, we recognized the deposits of the Monte Epomeo Green Tuff and the Piroclastiti di Catavola eruptions of Ischia, the pre-Campanian Ignimbrite Tlc, the Campanian Ignimbrite and the Neapolitan Yellow Tuff eruptions of the Phlegrean Fields, the Gabellotto-Fiume Bianco eruption of Lipari, and all the four explosive events belonging to the last cycle of volcanic activity of Albano maar (Albano 4-7). Deposits from five of these identified events (i.e., Piroclastiti di Catavola, Gabellotto-Fiume Bianco, Albano 5 and 6 eruptions, and Campanian Ignimbrite) were previously un-reported in the Fucino basin. These findings add new tephra layers to the list of possible tephrochronologic markers in the region and highlight that a comprehensive tephra record may be constructed when the study of cryptotephra layers is included. Moreover, results provide insights into the most recent volcanic activity of Albano maar, allowing us to date the onset of activity at the maar system at ca. 40 ka and to estimate the ages of all four eruptions that made up this eruptive sequence at ca. 37.5 ka (Albano 5), ca. 36.5 ka (Albano 6) and ca. 36 ka (Albano 7), respectively. Our work extends the known dispersal of several major explosive events, suggesting the intensity and magnitude appraisals, and attended risk scenario's need to be revised using improved records of distal fall out.
Layer dependence of the superconducting transition temperature of HgBa2Can-1 CunO2 n+2+ δ
NASA Astrophysics Data System (ADS)
Scott, B. A.; Suard, E. Y.; Tsuei, C. C.; Mitzi, D. B.; McGuire, T. R.; Chen, B.-H.; Walker, D.
1994-09-01
High-pressure methods have been used to synthesize multiphase compositions in the Hg12{ n-1} n homologous series. The phase assemblages were examined by optical, electron diffraction and X-ray diffraction techniques, and their stoichiometries verified by electron microprobe. Transport and magnetic susceptibility measurements were combined with the results of the phase analysis to establish superconducting transition temperatures for both as-prepared and O 2- or Ar-annealed materials. It was found that the transition temperature peaks at Tc = 134 K for n = 3 and then decreases abruptly for n>4, reaching Tc<90 K for n⪖7.
NASA Technical Reports Server (NTRS)
Young, S. G.
1973-01-01
The NASA nickel-base alloy WAZ-20 was analyzed by advanced metallographic techniques to qualitatively and quantitatively characterize its phases and stability. The as-cast alloy contained primary gamma-prime, a coarse gamma-gamma prime eutectic, a gamma-fine gamma prime matrix, and MC carbides. A specimen aged at 870 C for 1000 hours contained these same constituents and a few widely scattered high W particles. No detrimental phases (such as sigma or mu) were observed. Scanning electron microscope, light metallography, and replica electron microscope methods are compared. The value of quantitative electron microprobe techniques such as spot and area analysis is demonstrated.
Northwest Africa 5298: A Basaltic Shergottite
NASA Technical Reports Server (NTRS)
Hui, Hejiu; Peslier, Anne; Lapen, Thomas J.; Brandon, Alan; Shafer, John
2009-01-01
NWA 5298 is a single 445 g meteorite found near Bir Gandouz, Morocco in March 2008 [1]. This rock has a brown exterior weathered surface instead of a fusion crust and the interior is composed of green mineral grains with interstitial dark patches containing small vesicles and shock melts [1]. This meteorite is classified as a basaltic shergottite [2]. A petrologic study of this Martian meteorite is being carried out with electron microprobe analysis and soon trace element analyses by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Oxygen fugacity is calculated from Fe-Ti oxides pairs in the sample. The data from this study constrains the petrogenesis of basaltic shergottites.
Segregation and inhomogeneities in photorefractive SBN fibers
NASA Astrophysics Data System (ADS)
Erdei, Sandor; Galambos, Ludwig; Tanaka, Isao; Hesselink, Lambertus; Ainger, Frank W.; Cross, Leslie E.; Feigelson, Robert S.
1996-10-01
Ce doped and undoped SrxBa1-xNb2O6 (SBN) fibers grown by the laser heated pedestal growth (LHPG) technique in Stanford University were investigated by 2D scanning electron microprobe analysis. The SBN fibers grown along c [001] or a [100] axes often show radially distributed optical inhomogeneities (core effects) of varying magnitude. Ba enrichment and Sr reduction were primarily detected in the core which can be qualitatively described by a complex-segregation effect. This defect structure as a complex-congruency related phenomenon modified by the composition-control mechanism of LHPG system. Its radial dependence of effective segregation coefficient is described by the modified Burton-Prim- Slichter equation.
NASA Technical Reports Server (NTRS)
Manning, C. R., Jr.; Honeycutt, L., III
1974-01-01
Evaluation of tantalum carbide-tungsten fiber composites has been completed as far as weight percent carbon additions and weight percent additions of tungsten fiber. Extensive studies were undertaken concerning Young's Modulus and fracture strength of this material. Also, in-depth analysis of the embrittling effects of the extra carbon additions on the tungsten fibers has been completed. The complete fabrication procedure for the tantalum carbide-tungsten fiber composites with extra carbon additions is given. Microprobe and metallographic studies showed the effect of extra carbon on the tungsten fibers, and evaluation of the thermal shock parameter fracture strength/Young's Modulus is included.
Phase relations in the system CuMoS
Dawei, H.; Chang, L.L.Y.; Knowles, C.R.
1990-01-01
Phase relations in the system CuMoS were studied in the temperature range 500-1000 ??C by using the conventional sealed, evacuated glass capsule technique. Reflected-light microscopy, X-ray powder diffraction and electron microprobe analysis were used for phase characterization. The chevrel-type phase, CuxMo3S4, is stable above 600??C, and forms equilibrium assemblages with the cubic Cu2S solid solution, copper, molybdenum, Mo2S3 and MoS2. Its solid solution ranges from Cu1.50-2.00Mo3S4 at 700??C to Cu1.22-2.00Mo3S4 at 1000 ??C. ?? 1990.
Textural variability of ordinary chondrite chondrules: Implications of their formation
NASA Technical Reports Server (NTRS)
Zinovieva, N. G.; Mitreikina, O. B.; Granovsky, L. B.
1994-01-01
Scanning electron microscopy (SEM) and microprobe examination of the Raguli H3-4, Saratov L3, and Fucbin L5-6 ordinary chondrites and the analysis of preexisted data on other meteorites have shown that the variety of textural types of chondrules depends on the chemical composition of the chondrules. The comparison of bulk-rock chemistries of the chondrules by major components demonstrates that they apparently fall, like basic-ultrabasic rock, into groups of dunitic and pyroxenitic composition. This separation is further validated by the character of zoning in chondrules of the intermediate, peridotitic type. The effect is vividly demonstrated by the 'chondrule-in-chondrule' structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, R.B.
The determination of the U--Al-- Fe constitution diagram up to about 1000 ppm each of aluminum and iron is now being implemented by a determination of the U--Al and U-- Fe binary systems. The techniques to be used for this study include optical, electron and x-ray metallography, microprobe analysis, electrical resistance, and hothardness measurements. It is expected that a combination of techniques will give evidence of the amount of solid solubility of aluminum and iron in alpha uranium from 300 to 660 deg C, and in beta uranium at selected higher temperatures. (N.W.R.)
Scanning Electron Microscopy | Materials Science | NREL
platform. The electron microprobe JEOL 8900L is the preference when quantitative composition of specimens , electroluminescence, lateral transport measurements, NFCL JEOL JXA-8900L Electron probe microanalysis Quantitative
Plasma properties and heating at the anode of a 1 kW arcjet using electrostatic probes
NASA Astrophysics Data System (ADS)
Tiliakos, Nicholas
A 1 kW hydrazine arcjet thruster has been modified for internal probing of the near-anode boundary layer with an array of fourteen electrostatic micro-probes. The main objectives of this experimental investigation were to: (1) obtain axial and azimuthal distributions of floating potential phisbf, anode sheath potential phisbs, probe current density at zero volts jsba, electron number density nsbes, electron temperature Tsbes, and anode heating due to electrons qsbe for arc currents Isbarc, between 7.8 and 10.6 A, propellant flow rates m = 40-60 mg/s, and specific energies, 18.8 MJ/kg ≤ P/m ≤ 27.4 MJ/kg; (2) probe the anode boundary layer using flush-mounted and cylindrical micro-probes; (3) verify azimuthal current symmetry; (4) understand what affects anode heating, a critical thruster lifetime issue; and (5) provide experimental data for validation of the Megli-Krier-Burton (MKB) model. All of the above objectives were met through the design, fabrication and implementation of fourteen electrostatic micro-probes, of sizes ranging from 0.170 mm to 0.43 mm in diameter. A technique for cleaning and implementing these probes was developed. Two configurations were used: flush-mounted planar probes and cylindrical probes extended 0.10-0.30 mm into the plasma flow. The main results of this investigation are: (1) electrostatic micro-probes can successfully be used in the harsh environment of an arcjet; (2) under all conditions tested the plasma is highly non-equilibrium in the near-anode region; (3) azimuthal current symmetry exists for most operating conditions; (4) the propellant flow rate affects the location of maximum anode sheath potential, current density, and anode heating more than the arc current; (5) the weighted anode sheath potential is always positive and varies from 8-17 V depending on thruster operating conditions; (6) the fraction of anode heating varies from 18-24% of the total input power over the range of specific energies tested; and (7) based on an energy loss factor of delta = 1200, reasonable correlation between the experimental data and the MKB model was found.
Boll, Rose Ann; Matos, Milan; Torrico, Matthew N.
2015-03-27
Electrodeposition is a technique that is routinely employed in nuclear research for the preparation of thin solid films of actinide materials which can be used in accelerator beam bombardments, irradiation studies, or as radioactive sources. The present study investigates the deposition of both lanthanides and actinides from an aqueous ammonium acetate electrolyte matrix. Electrodepositions were performed primarily on stainless steel disks; with yield analysis evaluated using -spectroscopy. Experimental parameters were studied and modified in order to optimize the uniformity and adherence of the deposition while maximizing the yield. The initial development utilized samarium as the plating material, with and withoutmore » a radioactive tracer. As a result, surface characterization studies were performed by scanning electron microscopy, electron microprobe analysis, radiographic imaging, and x-ray diffraction.« less
Trujillo-vazquez, A; Metiver-pignon, H; Tiruta-barna, L; Piantone, P
2009-02-01
Air pollution control (APC) residues which are generated by municipal solid waste (MSW) incineration show a high-level of pollution potential. In order to stabilize such APC residues, the French power supply company (EDF) is developing a thermal treatment process which leads to the production of a vitrified material. A structural characterization of the vitrified product was carried out by applying complementary investigation methods: XRD, SEM, Raman spectroscopy, EPMA, and data interpretation methods such as mineralogical analysis and principal component analysis (PCA). The major phase of the material was a solid solution of melilite type composed of five end-members: gehlenite (44%), åkermanite (25%), ferri-gehlenite (5%), sodamelilite (14%) and hardystonite (11%). The minor phases identified were spinels and pyroxenes. An ANC leaching test was performed in order to observe the treatment effect on pollutant release. The natural pH was close to 10, and the major element release was less than in the case of untreated APC. This was a consequence of melilite formation. The effect of pH was fundamental for heavy metals release: lower solubilization occurs at pH 10 than at APC's natural pH (11-12).
Formation of the ZnFe2O4 phase in an electric arc furnace off-gas treatment system.
Suetens, T; Guo, M; Van Acker, K; Blanpain, B
2015-04-28
To better understand the phenomena of ZnFe2O4 spinel formation in electric arc furnace dust, the dust was characterized with particle size analysis, X-ray fluorescence (XRF), electron backscatter diffraction (EBSD), and electron probe micro-analysis (EPMA). Different ZnFe2O4 formation reaction extents were observed for iron oxide particles with different particle sizes. ZnO particles were present as both individual particles and aggregated on the surface of larger particles. Also, the slag particles found in the off-gas were shown not to react with the zinc vapor. After confirming the presence of a ZnFe2O4 formation reaction, the thermodynamic feasibility of in-process separation - a new electric arc furnace dust treatment technology - was reevaluated. The large air intake and the presence of iron oxide particles in the off-gas were included into the thermodynamic calculations. The formation of the stable ZnFe2O4 spinel phase was shown to be thermodynamically favorable in current electric arc furnace off-gas ducts conditions even before reaching the post combustion chamber. Copyright © 2015 Elsevier B.V. All rights reserved.
Gupta, Dhrubajyoti; Ghosh, Rita; Mitra, Ajoy K; Roy, Subinit; Sarkar, Manoranjan; Chowdhury, Subhajit; Bhowmik, Asit; Mukhopadhyay, Ujjal; Maskey, Shila; Ro, Chul-Un
2011-11-01
The long-term environmental impact of municipal solid waste (MSW) landfilling is still under investigation due to the lack of detailed characterization studies. A MSW landfill site, popularly known as Dhapa, in the eastern fringe of the metropolis of Kolkata, India, is the subject of present study. A vast area of Dhapa, adjoining the current core MSW dump site and evolving from the raw MSW dumping in the past, is presently used for the cultivation of vegetables. The inorganic chemical characteristics of the MSW-contaminated Dhapa surface soil (covering a 2-km stretch of the area) along with a natural composite (geogenic) soil sample (from a small countryside farm), for comparison, were investigated using two complementary nondestructive analytical techniques, energy-dispersive X-ray fluorescence (EDXRF) for bulk analysis and low-Z (atomic number) particle electron probe X-ray microanalysis (low-Z particle EPMA) for single-particle analysis. The bulk concentrations of K, Rb, and Zr remain almost unchanged in all the soil samples. The Dhapa soil is found to be polluted with heavy metals such as Cu, Zn, and Pb (highly elevated) and Ti, Cr, Mn, Fe, Ni, and Sr (moderately elevated), compared to the natural countryside soil. These high bulk concentration levels of heavy metals were compared with the Ecological Soil Screening Levels for these elements (U.S. Environment Protection Agency) to assess the potential risk on the immediate biotic environment. Low-Z particle EPMA results showed that the aluminosilicate-containing particles were the most abundant, followed by SiO2, CaCO3-containing, and carbonaceous particles in the Dhapa samples, whereas in the countryside sample only aluminosilicate-containing and SiO2 particles were observed. The mineral particles encountered in the countryside sample are solely of geogenic origin, whereas those from the Dhapa samples seem to have evolved from a mixture of raw dumped MSW, urban dust, and other contributing factors such as wind, precipitation, weather patterns, farming, and water logging, resulting in their diverse chemical compositions and the abundant observation of carbonaceous species. Particles containing C and P were more abundant in the Dhapa samples than in the countryside soil sample, suggesting that MSW-contaminated soils are more fertile. However, the levels of particles containing potentially toxic heavy metals such as Cr, Mn, Ni, Cu, Zn, and/or Pb in the Dhapa samples were significant, corroborated by their high bulk concentration levels (EDXRF), causing deep concern for the immediate environment and contamination of the food chain through food crops.
A method of mounting multiple otoliths for beam-based microchemical analyses
Donohoe, C.J.; Zimmerman, C.E.
2010-01-01
Beam-based analytical methods are widely used to measure the concentrations of elements and isotopes in otoliths. These methods usually require that otoliths be individually mounted and prepared to properly expose the desired growth region to the analytical beam. Most analytical instruments, such as LA-ICPMS and ion and electron microprobes, have sample holders that will accept only one to six slides or mounts at a time. We describe a method of mounting otoliths that allows for easy transfer of many otoliths to a single mount after they have been prepared. Such an approach increases the number of otoliths that can be analyzed in a single session by reducing the need open the sample chamber to exchange slides-a particularly time consuming step on instruments that operate under vacuum. For ion and electron microprobes, the method also greatly reduces the number of slides that must be coated with an electrical conductor prior to analysis. In this method, a narrow strip of cover glass is first glued at one end to a standard microscope slide. The otolith is then mounted in thermoplastic resin on the opposite, free end of the strip. The otolith can then be ground and flipped, if needed, by reheating the mounting medium. After otolith preparation is complete, the cover glass is cut with a scribe to free the otolith and up to 20 small otoliths can be arranged on a single petrographic slide. ?? 2010 The Author(s).
Isotope Geochemistry of Possible Terrestrial Analogue for Martian Meteorite ALH84001
NASA Technical Reports Server (NTRS)
Mojzsis, Stephen J.
2000-01-01
We have studied the microdomain oxygen and carbon isotopic compositions by SIMS of complex carbonate rosettes from spinel therzolite xenoliths, hosted by nepheline basanite, from the island of Spitsbergen (Norway). The Quaternary volcanic rocks containing the xenoliths erupted into a high Arctic environment and through relatively thick continental crust containing carbonate rocks. We have attempted to constrain the sources of the carbonates in these rocks by combined O-18/O-16 and C-13/C-12 ratio measurements in 25 micron diameter spots of the carbonate and compare them to previous work based primarily on trace-element distributions. The origin of these carbonates can be interpreted in terms of either contamination by carbonate country rock during ascent of the xenoliths in the host basalt, or more probably by hydrothermal processes after emplacement. The isotopic composition of these carbonates from a combined delta.18O(sub SMOW) and delta.13C(sub PDB) standpoint precludes a primary origin of these minerals from the mantle. Here a description is given of the analysis procedure, standardization of the carbonates, major element compositions of the carbonates measured by electron microprobe, and their correlated C and O isotope compositions as measured by ion microprobe. Since these carbonate rosettes may represent a terrestrial analogue to the carbonate "globules" found in the martian meteorite ALH84001 interpretations for the origin of the features found in the Spitsbergen may be of interest in constraining the origin of these carbonate minerals on Mars.
A comparative study of modern and fossil cone scales and seeds of conifers: A geochemical approach
Artur, Stankiewicz B.; Mastalerz, Maria; Kruge, M.A.; Van Bergen, P. F.; Sadowska, A.
1997-01-01
Modern cone scales and seeds of Pinus strobus and Sequoia sempervirens, and their fossil (Upper Miocene, c. 6 Mar) counterparts Pinus leitzii and Sequoia langsdorfi have been studied using pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS), electron-microprobe and scanning electron microscopy. Microscopic observations revealed only minor microbial activity and high-quality structural preservation of the fossil material. The pyrolysates of both modern genera showed the presence of ligno-cellulose characteristic of conifers. However, the abundance of (alkylated)phenols and 1,2-benzenediols in modern S. sempervirens suggests the presence of non-hydrolysable tannins or abundant polyphenolic moieties not previously reported in modern conifers. The marked differences between the pyrolysis products of both modern genera are suggested to be of chemosystematic significance. The fossil samples also contained ligno-cellulose which exhibited only partial degradation, primarily of the carbohydrate constituents. Comparison between the fossil cone scale and seed pyrolysates indicated that the ligno-cellulose complex present in the seeds is chemically more resistant than that in the cone scales. Principal component analysis (PCA) of the pyrolysis data allowed for the determination of the discriminant functions used to assess the extent of degradation and the chemosystematic differences between both genera and between cone scales and seeds. Elemental composition (C, O, S), obtained using electron-microprobe, corroborated the pyrolysis results. Overall, the combination of chemical, microscopic and statistical methods allowed for a detailed characterization and chemosystematic interpretations of modern and fossil conifer cone scales and seeds.
Growth Structure and Properties of Gradient Nanocrystalline Coatings of the Ti-Al-Si-Cu-N System
NASA Astrophysics Data System (ADS)
Ovchinnikov, S. V.; Pinzhin, Yu. P.
2016-10-01
Methods of electron microprobe analysis, X-ray structure analysis and electron microscopy were used to study the element composition and features of the structure-phase, elastic stress state of nanocrystalline coatings of the Ti- Al- Si- Cu- N system with gradient of copper concentration across their thickness. The authors established the effects of element composition modification, non-monotonous behavior of the lattice constant of alloyed nitride and rise in the bending-torsion value of the crystalline lattice in individual nanocrystals to values of around 400 degrees/μm with increase in copper concentration, whereas the sizes of alloyed nitride crystals remained practically unchanged. Mechanical (hardness), adhesion and tribological properties of coatings were examined. Comparative analysis demonstrates higher values of adhesion characteristics in the case of gradient coatings of the Ti- Al- Si- Cu- N system than in the case of single-layer (with constant element concentration) analogues.
Nuclear analytical techniques in medicine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cesareo, R.
1988-01-01
This book acquaints one with the fundamental principles and the instrumentation relevant to analytical technique based on atomic and nuclear physics, as well as present and future biomedical applications. Besides providing a theoretical description of the physical phenomena, a large part of the book is devoted to applications in the medical and biological field, particularly in hematology, forensic medicine and environmental science. This volume reviews methods such as the possibility of carrying out rapid multi-element analysis of trace elements on biomedical samples, in vitro and in vivo, by XRF-analysis; the ability of the PIXE-microprobe to analyze in detail and tomore » map trace elements in fragments of biomedical samples or inside the cells; the potentiality of in vivo nuclear activation analysis for diagnostic purposes. Finally, techniques are described such as radiation scattering (elastic and inelastic scattering) and attenuation measurements which will undoubtedly see great development in the immediate future.« less
XAP, a program for deconvolution and analysis of complex X-ray spectra
Quick, James E.; Haleby, Abdul Malik
1989-01-01
The X-ray analysis program (XAP) is a spectral-deconvolution program written in BASIC and specifically designed to analyze complex spectra produced by energy-dispersive X-ray analytical systems (EDS). XAP compensates for spectrometer drift, utilizes digital filtering to remove background from spectra, and solves for element abundances by least-squares, multiple-regression analysis. Rather than base analyses on only a few channels, broad spectral regions of a sample are reconstructed from standard reference spectra. The effects of this approach are (1) elimination of tedious spectrometer adjustments, (2) removal of background independent of sample composition, and (3) automatic correction for peak overlaps. Although the program was written specifically to operate a KEVEX 7000 X-ray fluorescence analytical system, it could be adapted (with minor modifications) to analyze spectra produced by scanning electron microscopes, electron microprobes, and probes, and X-ray defractometer patterns obtained from whole-rock powders.
NASA Astrophysics Data System (ADS)
Moretto, P.; Ortega, R.; Llabador, Y.; Simonoff, M.; Bénard, J.; Moretto, Ph.
1995-09-01
Macro-and Micro-PIXE analysis were applied to study the mechanisms of cellular resistance to cisplatin, a chemotherapeutic agent, widely used nowadays for the treatment of ovarian cancer. Two cultured cell lines, a cisplatin-sensitive and a resistant one, were compared for their trace elements content and platinum accumulation following in vitro exposure to the drug. Bulk analysis revealed significant differences in copper and iron content between the two lines. Subsequent individual cell microanalysis permitted us to characterize the response of the different morphological cell types of the resistant line. This study showed that the metabolism of some trace metals in cisplatin-resistant cells could be affected but the exact relationship with the resistant phenotype remains to be determined. From a technical point of view, this experiment demonstrated that an accurate measurement of trace elements could be derived from nuclear microprobe analysis of individual cell.
NASA Astrophysics Data System (ADS)
Hughes, N. P.; Perry, C. C.; Williams, R. J. P.; Watt, F.; Grime, G. W.
1988-03-01
Proton-induced X-ray emission (PIXE) combined with the Oxford scanning proton microprobe (SPM) was used to investigate the abundance and spatial distribution of inorganic elements in mineralising stinging emergences from the leaf of the Common Stinging Nettle, Urtica dioica L. Elemental maps and point analytical data were collected for emergences at two stages of maturity. In all emergences calcium and silicon were spatially organised and present at high concentration. The inorganic elements K, P, S and Mn were also spatially organised during mineralisation, but at maturity these elements were present only at background levels and then showed no specific localisation. The observed changes in the inorganic content of the emergences are obviously related to the mineralisation processes. The possible biochemical significance of the distribution of the elements is discussed.
Fast probe of local electronic states in nanostructures utilizing a single-lead quantum dot
Otsuka, Tomohiro; Amaha, Shinichi; Nakajima, Takashi; Delbecq, Matthieu R.; Yoneda, Jun; Takeda, Kenta; Sugawara, Retsu; Allison, Giles; Ludwig, Arne; Wieck, Andreas D.; Tarucha, Seigo
2015-01-01
Transport measurements are powerful tools to probe electronic properties of solid-state materials. To access properties of local electronic states in nanostructures, such as local density of states, electronic distribution and so on, micro-probes utilizing artificial nanostructures have been invented to perform measurements in addition to those with conventional macroscopic electronic reservoirs. Here we demonstrate a new kind of micro-probe: a fast single-lead quantum dot probe, which utilizes a quantum dot coupled only to the target structure through a tunneling barrier and fast charge readout by RF reflectometry. The probe can directly access the local electronic states with wide bandwidth. The probe can also access more electronic states, not just those around the Fermi level, and the operations are robust against bias voltages and temperatures. PMID:26416582
NASA Astrophysics Data System (ADS)
Scott, Jill R.; Tremblay, Paul L.
2002-03-01
Traditionally, mass spectrometry has relied on manipulating the sample target to provide scanning capabilities for laser desorption microprobes. This has been problematic for an internal source laser desorption Fourier transform mass spectrometer (LD-FTMS) because of the high magnetic field (7 Tesla) and geometric constraints of the superconducting magnet bore. To overcome these limitations, we have implemented a unique external laser scanning mechanism for an internal source LD-FTMS. This mechanism provides adjustable resolution enhancement so that the spatial resolution at the target is not limited to that of the stepper motors at the light source (˜5 μm/step). The spatial resolution is now limited by the practical optical diffraction limit of the final focusing lens. The scanning mechanism employs a virtual source that is wavelength independent up to the final focusing lens, which can be controlled remotely to account for focal length dependence on wavelength. A binary index provides an automatic alignment feature. The virtual source is located ˜9 ft from the sample; therefore, it is completely outside of the vacuum system and beyond the 50 G line of the fringing magnetic field. To eliminate reproducibility problems associated with vacuum pump vibrations, we have taken advantage of the magnetic field inherent to the FTMS to utilize Lenz's law for vibrational dampening. The LD-FTMS microprobe has exceptional reproducibility, which enables successive mapping sequences for depth-profiling studies.
NASA Technical Reports Server (NTRS)
Fogel, R. A.
1994-01-01
Two aubrite basalt vitrophyre clasts have been found within AMNH thin sections from the Parsa EH3 chondrite and the Khor Temiki aubrite. Polished sections of the Parsa Aubrite Inclusion (PAI) and the Khor Temiki Inclusion (KTI) were studied by optical, electron probe microanalysis (EPMA), and scanning electron microscopy (SEM) techniques with broad-beam and low absorbed EPMA currents used to minimize glass volatile loss. Some data have previously been reported for PAI and KTI may possibly correlate to a previously reported inclusion in Khor Tiimiki. In polished sections, PAI and KTI are approximately equal 4 mm in diameter and contain a large volume of glass. The clasts have similar textural characteristics and are akin to lunar vitrophyre textures. The glasses have high alkali rhyodacitic compositions Al-though PAI is peraluminous, KTI is significantly peralkaline. Additionally, the glasses have elevated sulfur concentrations that are extremely high by geochemical standards. SEM examination for beam overlap of microscopic CaS, FeS, and (Mg, Mn, Fe) S inclusions showed no such contamination. Furthermore, homogeneity of glass S content and low FeO contents help rule out contamination. Materials research data show that under reducing conditions alumino-silicate melts can dissolve up to several weight percent sulfur in the absence of Fe. The high S and alkali contents, the lack of associated high shock features, and the rationalized phase equilibria suggest that PAI and KTI are igneous melting products of an E-chondrite-like source material. Although large-scale impact melting cannot totally be ruled out, the above observations eliminate the possibility of in-situ shock melting.
Audetat, Andreas; Garbe-Schonberg, Dieter; Kronz, Andreas; Pettke, Thomas; Rusk, Brian G.; Donovan, John J.; Lowers, Heather
2015-01-01
A natural smoky quartz crystal from Shandong province, China, was characterised by laser ablation ICP-MS, electron probe microanalysis (EPMA) and solution ICP-MS to determine the concentration of twenty-four trace and ultra trace elements. Our main focus was on Ti quantification because of the increased use of this element for titanium-in-quartz (TitaniQ) thermobarometry. Pieces of a uniform growth zone of 9 mm thickness within the quartz crystal were analysed in four different LA-ICP-MS laboratories, three EPMA laboratories and one solution-ICP-MS laboratory. The results reveal reproducible concentrations of Ti (57 ± 4 μg g-1), Al (154 ± 15 μg g-1), Li (30 ± 2 μg g-1), Fe (2.2 ± 0.3 μg g-1), Mn (0.34 ± 0.04 μg g-1), Ge (1.7 ± 0.2 μg g-1) and Ga (0.020 ± 0.002 μg g-1) and detectable, but less reproducible, concentrations of Be, B, Na, Cu, Zr, Sn and Pb. Concentrations of K, Ca, Sr, Mo, Ag, Sb, Ba and Au were below the limits of detection of all three techniques. The uncertainties on the average concentration determinations by multiple techniques and laboratories for Ti, Al, Li, Fe, Mn, Ga and Ge are low; hence, this quartz can serve as a reference material or a secondary reference material for microanalytical applications involving the quantification of trace elements in quartz.
Yoshinari, Masao; Uzawa, Shinobu; Komiyama, Yataro
2016-10-01
The aim of this in vitro study was to evaluate tensile bond strengths and corrosion resistance of CoCr alloys joined with gold cylinder by a soldering system in comparison with the conventional cast-joining system. CoCr alloys joined with gold cylinder by a soldering system using a high-fusing gold solder (CoCr/Solder/Gold cylinder), gold alloy joined with gold cylinder by a cast joining system (Gold alloy/Gold cylinder) and CoCr castings were fabricated. The tensile bond strength and corrosion resistance in 0.9% NaCl solution (pH 7.4 and pH 2.3) were evaluated. Scanning electron microscopy (SEM) of the fractured surface and electron probe microanalysis (EPMA) of the joined interfaces were also performed. The tensile bond strengths of the CoCr/Solder/Gold cylinder specimens showed similar values as the Gold alloy/Gold cylinder specimens. SEM observation and EPMA analyses suggested firm bonding between the CoCr alloy and gold cylinder. The released elements from the CoCr/Solder/Gold cylinder specimens were similar to ones from CoCr castings. Results showed that superstructures made of CoCr alloys joined with the gold cylinder using a high-fusing gold solder had sufficient bond strength and high corrosion resistance. These hybrid frameworks with cobalt-chromium alloy and gold cylinder are promising prosthesis for implant superstructures with the low cost and favorable mechanical properties instead of conventional high-gold alloys. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
Craig L. Perkins, Ph.D. | NREL
molecular beam epitaxy systems, two photoemission systems, a field-emission scanning Auger microprobe, a ;Molecular Anchors for Self-Assembled Monolayers on ZnO: A Direct Comparison of the Thiol and Phosphonic Acid
Interdiffusion in the Ni/TD-NiCr and Cr/TD-NiCr systems
NASA Technical Reports Server (NTRS)
Pawar, A. V.; Tenney, D. R.
1974-01-01
The diffusion of Ni and Cr into TD-NiCr has been studied over the 900 to 1100 C temperature range. The diffusion couples were prepared by electroplating Cr and Ni on polished TD-NiCr wafers. Concentration profiles produced as a result of isothermal diffusion at 905, 1000, and 1100 C were determined by electron microprobe analysis. The Boltzmann-Matano analysis was used to determine concentration-dependent diffusion coefficients which were found to compare favorably with previously reported values. These data suggest that 2 vol % ThO2 distribution has no appreciable effect on the rates of diffusion in TD-NiCr with a large grain size. This supports the view that an inert dispersoid in an alloy matrix will not in itself lead to enhanced diffusion unless a short-circuit diffusion structure is stabilized.
NASA Astrophysics Data System (ADS)
Olabanji, S. O.; Ige, O. A.; Mazzoli, C.; Ceccato, D.; Akintunde, J. A.; De Poli, M.; Moschini, G.
2005-10-01
For the first time, the complementary accelerator-based analytical technique of PIXE and electron microprobe analysis (EMPA) were employed for the characterization of some Nigeria's natural minerals namely fluorite, tourmaline and topaz. These minerals occur in different areas in Nigeria. The minerals are mainly used as gemstones and for other scientific and technological applications and therefore are very important. There is need to characterize them to know the quality of these gemstones and update the geochemical data on them geared towards useful applications. PIXE analysis was carried out using the 1.8 MeV collimated proton beam from the 2.5 MV AN 2000 Van de Graaff accelerator at INFN, LNL, Legnaro, Padova, Italy. The novel results which show many elements at different concentrations in these minerals are presented and discussed.
Ding, Z.; Zheng, B.; Zhang, Jiahua; Belkin, H.E.; Finkelman, R.B.; Zhao, F.; Zhou, D.; Zhou, Y.; Chen, C.
1999-01-01
Coal samples from high arsenic coal areas have been analyzed by electron microprobe analyzer (EMPA), scanning electron microscopy with an energy dispersive X-ray analyzer (SEM-EDX), X-ray diffraction analysis (XRD), low temperature ashing (LTA), transmission electron microscopy (TEM), X-ray absorption fine structure (XAFS), instrument neutron activation analysis (INAA) and wet chemical analysis. Although some As-bearing minerals such as pyrite, arsenopyrite, realgar (?), As-bearing sulfate, and As-bearing clays are found in the high arsenic coals, their contents do not account for the abundance of arsenic in the some coals. Analysis of the coal indicates that arsenic exists mainly in the form of As5+ and As3+, combined with compounds in the organic matrix. The occurrence of such exceptionally high arsenic contents in coal and the fact that the arsenic is dominantly organically associated are unique observations. The modes of occurrence of arsenic in high As-coals are discussed.
Petrology and Geochemistry of the NWA 3368 Eucrite
NASA Astrophysics Data System (ADS)
Gardner, K. G.; Lauretta, D. S.; Hill, D. H.; Goreva, J. S.; Domanik, K. J.; Franchi, I. A.; Drake, M. J.
2006-03-01
We report the petrology and geochemistry of NWA 3368, a new non-cumulate, monomict eucrite breccia with a variety of clast sizes and a pink-tinted matrix. Analytical techniques include electron microprobe, INAA, and ICP-MS.
NASA Technical Reports Server (NTRS)
Galbreath, K. C.; Shearer, C. K.; Papike, J. J.; Shimizu, N.
1990-01-01
Results are presented on major- and trace-element abundance analyses of Apollo 15 pyroclastic green glasses from groups A, B, C, D, and E, carried out using electron- and ion-microprobe techniques. The diagrams depicting Sr, Zr, Ba, and Nd vs Co variations indicate the presence of a high-Co trend in groups A and D and a low-Co trend in groups B and C. Group-E glasses were found to be significantly enriched in Sr, relative to the other four glass groups. Chemical data of this study were integrated with previous data to evaluate various magmatic processes that have been proposed in the past to explain chemical variations in the lunar green glass. Results of calculations using a source mixing model suggest that the Apollo 15 green glasses represent multiple eruptive events from three chemically distinct but compositionally variable source regions.
NASA Technical Reports Server (NTRS)
Macpherson, Glenn J.; Davis, Andrew M.
1993-01-01
A Type B Ca-, Al-rich 6-m-diam inclusion (CAI) found in the Vigarano C3V chondrite was inspected using optical and scanning electron microscopies and ion microprobe analyses. It was found that the primary constituents of the CAI inclusion are (in percent), melilite (52), fassaite, (20), anorthite (18), spinel (10), and trace Fe-Ni metal. It is noted that, while many of the properties of the inclusion indicate solidification from a melt droplet, the Al-26/Mg-26 isotopic systematics and some textural relationships are incompatible with single-stage closed system crystallization of a homogeneous molten droplet, indicating that the history of this inclusion must have been more complex than melt solidification alone. Moreover, there was unusually high content of Na in melilite, suggesting that the droplet did not form by melting of pristine high-temperature nebular condensates.
NASA Astrophysics Data System (ADS)
Szikszai, Z.; Kertész, Zs.; Bodnár, E.; Major, I.; Borbíró, I.; Kiss, Á. Z.; Hunyadi, J.
2010-06-01
Ultrafine metal oxides, such as titanium dioxide and zinc oxide are widely used in cosmetic and health products like sunscreens. These oxides are potent UV filters and the small particle size makes the product more transparent compared to formulations containing coarser particles. In the present work the penetration of ultrafine zinc oxide into intact and tape-stripped human skin was investigated using nuclear microprobe techniques, such as proton induced X-ray spectroscopy and scanning transmission ion microscopy. Our results indicate that the penetration of ultrafine zinc oxide, in a hydrophobic basis gel with 48 h application time, is limited to the stratum corneum layer of the intact skin. Removing the stratum corneum partially or entirely by tape-stripping did not cause the penetration of the particles into the deeper dermal layers; the zinc particles remained on the surface of the skin.
Yorozu, M; Yanagida, T; Nakajyo, T; Okada, Y; Endo, A
2001-04-20
We measured the depth profile of hydrogen atoms in graphite by laser microprobing combined with resonant laser ablation. Deuterium-implanted graphite was employed for the measurements. The sample was ablated by a tunable laser with a wavelength corresponding to the resonant wavelength of 1S-2S of deuterium with two-photon excitation. The ablated deuterium was ionized by a 2 + 1 resonant ionization process. The ions were analyzed by a time-of-flight mass spectrometer. The deuterium ions were detected clearly with the resonant ablation. The detection limit was estimated to be less than 10(16) atoms/cm(3) in our experiments. We determined the depth profile by considering the etching profile and the etching rate. The depth profile agreed well with Monte Carlo simulations to within a precision of 23 mum for the center position and 4-mum precision for distributions for three different implantation depths.
Electron microprobe analyses of Ca, S, Mg and P distribution in incisors of Spacelab-3 rats
NASA Technical Reports Server (NTRS)
Rosenberg, G. D.; Simmons, D. J.
1985-01-01
The distribution of Ca, S, Mg and P was mapped within the incisors of Spacelab-3 rats using an electron microprobe. The data indicate that Flight rats maintained in orbit for 7 days have significantly higher Ca/Mg ratios in dentin due to both higher Ca and lower Mg content than in dentin of ground-based Controls. There is no statistical difference in distribution of either P or S within Fligth animals and Controls, but there is clear indication that, for P at least, the reason is the greater variability of the Control data. These results are consistent with those obtained on a previous NASA/COSMOS flight of 18.5 days duration, although they are not pronounced. The results further suggest that continuously growing rat incisors provide useful records of the effects of weightlessness on Ca metabolism.
NASA Astrophysics Data System (ADS)
Dou, Yanxin; Jamieson, David N.; Liu, Jianli; Li, Liyi
2018-03-01
This paper describes the design of a new probe forming lens system consisting of a high excitation magnetic quadrupole lens quadruplet that incorporates a single magnetic octupole lens. This system achieves both a high demagnification and a low spherical aberration compared to conventional high excitation systems and is intended for deployment for the Harbin 300 MeV proton microprobe for applications in space science and ion beam therapy. This relative simplicity of the ion optical design to include a single octupole lens minimizes the risks associated with the constructional and operational precision usually needed for the probe forming lens system and this system could also be deployed in microprobe systems that operate with less magnetically rigid ions. The design of the new system is validated with reference to two independent ion optical computer codes.
Secondary ion collection and transport system for ion microprobe
Ward, James W.; Schlanger, Herbert; McNulty, Jr., Hugh; Parker, Norman W.
1985-01-01
A secondary ion collection and transport system, for use with an ion microprobe, which is very compact and occupies only a small working distance, thereby enabling the primary ion beam to have a short focal length and high resolution. Ions sputtered from the target surface by the primary beam's impact are collected between two arcuate members having radii of curvature and applied voltages that cause only ions within a specified energy band to be collected. The collected ions are accelerated and focused in a transport section consisting of a plurality of spaced conductive members which are coaxial with and distributed along the desired ion path. Relatively high voltages are applied to alternate transport sections to produce accelerating electric fields sufficient to transport the ions through the section to an ion mass analyzer, while lower voltages are applied to the other transport sections to focus the ions and bring their velocity to a level compatible with the analyzing apparatus.
1998-11-10
KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), the Mars Polar Lander is prepared to receive a number of microprobes being added to the spacecraft. Scheduled to be launched on Jan. 3, 1999, the solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. The Mars microprobes will complement the climate-related scientific focus of the lander by demonstrating an advanced, rugged microlaser system for detecting subsurface water. Such data on polar subsurface water, in the form of ice, should help put limits on scientific projections for the global abundance of water on Mars
Hg diffusion in books of XVIII and XIX centuries by synchrotron microprobe
NASA Astrophysics Data System (ADS)
Pessanha, S.; Carvalho, M. L.; Manso, M.; Guilherme, A.; Marques, A. F.; Perez, C. A.
2009-08-01
The pigment vermilion (HgS) was used to color the fore edge, tail and head of books. Dissemination and quantification of Hg present in the ink used to color books from XVIII and XIX centuries are reported. Mercury is a very toxic element for the human body, therefore it is extremely important to know whether Hg tends to disseminate throughout the paper or stays confined to the borders of the books with less danger for readers. Synchrotron X-ray microprobe was used to evaluate Hg dissemination from the border to the centre of the paper sheet. The diffusion pattern of Hg was compared with the results obtained by a portable X-ray fluorescence spectrometer and mean quantitative calculations were obtained by a stationary X-ray fluorescence system with triaxial geometry. The results showed high concentrations of Hg in the external regions, but no diffusion was observed for the inner parts of the paper.
Elemental maps of Amoeba proteus by a scanning proton microprobe
NASA Astrophysics Data System (ADS)
Li, Minqian; Zhu, Jingde; Zhu, Jieqing; Zhou, Zheng; Huang, Zeqi; Zhou, Weiying; Cholewa, M.; Legge, G. J. F.
1991-03-01
Elemental maps for P, S, Cl, K, Ca and Zn of individual Amoeba proteus were obtained with the Melbourne scanning proton microprobe. The emphasis was put on the relationship of both distribution and concentration of Zn within the cell and the growth inhibitory effect of higher Zn concentrations in the culture medium. At a concentration of 0.04 mmol ZnCl 2, Amoeba growth was inhibited. But at a concentration of 0.0016 mmol, the Amoeba grew as well as a control grown without addition of Zn. We found that in the former (0.04 mmol) Zn concentrated three times more than in the latter (0.0016 mmol), and also that Zn was enriched much more in the nucleus and endoplasm (five to six times) than in other parts of the cell (two times). Future work along these lines may provide insight into the mechanism by which Zn affects the growth of Amoeba proteus and other cells.
Barreda, F.-A.; Nicolas, C.; Sirven, J.-B.; Ouf, F.-X.; Lacour, J.-L.; Robert, E.; Benkoula, S.; Yon, J.; Miron, C.; Sublemontier, O.
2015-01-01
The Laser-Induced Breakdown Detection technique (LIBD) was adapted to achieve fast in-situ characterization of nanoparticle beams focused under vacuum by an aerodynamic lens. The method employs a tightly focused, 21 μm, scanning laser microprobe which generates a local plasma induced by the laser interaction with a single particle. A counting mode optical detection allows the achievement of 2D mappings of the nanoparticle beams with a reduced analysis time thanks to the use of a high repetition rate infrared pulsed laser. As an example, the results obtained with Tryptophan nanoparticles are presented and the advantages of this method over existing ones are discussed. PMID:26498694
NASA Astrophysics Data System (ADS)
Janssens, K.; Aerts, A.; Vincze, L.; Adams, F.; Yang, C.; Utui, R.; Malmqvist, K.; Jones, K. W.; Radtke, M.; Garbe, S.; Lechtenberg, F.; Knöchel, A.; Wouters, H.
1996-04-01
A series of 89 glass fragments of Roman glass are studied using electron, proton and synchrotron radiation induced X-ray emission from microscopic areas on the sample surface. The glass originates from Qumran, Jordan and was buried for 1900 years. The weathering layers that result from the extended contact with ground water have been studied, next to the trace composition of the original glass of these pieces. The latter information indicates that at Qumran, large quantities of glass objects were being used in Ancient times. Cross-sectional profiles of the glass show a complex migration behaviour of various groups of major and trace elements.
Evidence for extreme Ti-50 enrichments in primitive meteorites
NASA Technical Reports Server (NTRS)
Fahey, A.; Mckeegan, K. D.; Zinner, E.; Goswami, J. N.
1985-01-01
The results of the first high mass resolution ion microprobe study of Ti isotopic compositions in individual refractory grains from primitive carbonaceous meteorites are reported. One hibonite from the Murray carbonaceous chondrite has a 10 percent excess of Ti-50, 25 times higher than the maximum value previously reported for bulk samples of refractory inclusions from carbonaceous chondrites. The variation of the Ti compositions between different hibonite grains, and among pyroxenes from a single Allende refractory inclusion, indicates isotopic inhomogeneities over small scale lengths in the solar nebula and emphasizes the importance of the analysis of small individual phases. This heterogeneity makes it unlikely that the isotopic anomalies were carried into the solar system in the gas phase.
Analyses of amphibole asbestiform fibers in municipal water supplies
Nicholson, William J.
1974-01-01
Details are given of the techniques used in the analysis of asbestiform fibers in the water systems of Duluth, Minnesota and other cities. Photographic electron diffraction and electron microprobe analyses indicated that the concentration of verified amphibole mineral fibers ranged from 20 × 106 to 75 × 106 fibers/l. Approximately 50–60% of the fibers were in the cummingtonite-grunerite series and 20% were in the actinolite-tremolite series. About 5% were chemically identical with amosite. A wide variety of analytical techniques must be employed for unique identification of the mineral species present in water systems. ImagesFIGURE 1.FIGURE 2.FIGURE 3.FIGURE 4.FIGURE 5.FIGURE 6. PMID:4470931
Ion beam microanalysis of human hair follicles
NASA Astrophysics Data System (ADS)
Kertész, Zs.; Szikszai, Z.; Pelicon, P.; Simčič, J.; Telek, A.; Bíró, T.
2007-07-01
Hair follicle is an appendage organ of the skin which is of importance to the survival of mammals and still maintains significance for the human race - not just biologically, but also through cosmetic and commercial considerations. However data on composition of hair follicles are scarce and mostly limited to the hair shaft. In this study we provide detailed information on the elemental distribution in human hair follicles in different growth phases (anagen and catagen) using a scanning proton microprobe. The analysis of skin samples obtained from human adults undergoing plastic surgery and of organ-cultured human hair follicles may yield a new insight into the function, development and cyclic activity of the hair follicle.
Mineralogy and Microstructures of Shock-Induced Melt Veins in Chondrites
NASA Technical Reports Server (NTRS)
Sharp, Thomas G.
2000-01-01
The applicability of phase equilibrium data to the interpretation of shock-induced melt veins can only be tested by a detailed study of melt- vein mineralogy to see how high-pressure assemblages vary as a function of shock conditions inferred from other indicators. We have used transmission electron microscopy (TEM), analytical electron microscopy (AEM), scanning electron microscopy (SEM), electron microprobe analysis (EMA) and optical petrography to characterize the mineralogy, microstructures, and compositions of melt veins and associated high-pressure minerals in shocked chondrites and SNC meteorites. In the processes, we have gained a better understanding of what melt veining can tell us about shock conditions and we have discovered new mineral phases in chondritic and SNC meteorites.
NASA Astrophysics Data System (ADS)
Kolesnik, O. N.; Astakhova, N. V.
2018-01-01
Iron-manganese formations and igneous rocks of submarine elevations in the Sea of Japan contain overlapping mineral phases (grains) with quite identical morphology, localization, and chemical composition. Most of the grains conform to oxides, intermetallic compounds, native elements, sulfides, and sulfates in terms of the set of nonferrous, noble, and certain other metals (Cu, Zn, Sn, Pb, Ni, Mo, Ag, Pd, and Pt). The main conclusion that postvolcanic hydrothermal fluids are the key sources of metals is based upon a comparison of the data of electron microprobe analysis of iron-manganese formations and igneous rocks dredged at the same submarine elevations in the Sea of Japan.
Composition, structure, and properties of iron-rich nontronites of different origins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palchik, N. A., E-mail: nadezhda@igm.nsc.ru; Grigorieva, T. N.; Moroz, T. N.
2013-03-15
The composition, structure, and properties of smectites of different origins have been studied by X-ray diffraction, IR spectroscopy, scanning electron microscopy, and microprobe analysis. The results showed that nontronites of different origins differ in composition, properties, morphology, and IR spectroscopic characteristics. Depending on the degree of structural order and the negative charge of iron-silicate layers in nontronites, the shift of the 001 reflection to smaller angles as a result of impregnation with ethylene glycol (this shift is characteristic of the smectite group) occurs differently. The calculated values of the parameter b (from 9.11 to 9.14A) are valid for the extrememore » terms of dioctahedral smectite representatives: nontronites.« less
Ridley, William I.; Pribil, Michael; Koenig, Alan E.; Slack, John F.
2015-01-01
Laser ablation multi-collector ICPMS is a modern tool for in situ measurement of S isotopes. Advantages of the technique are speed of analysis and relatively minor matrix effects combined with spatial resolution sufficient for many applications. The main disadvantage is a more destructive sampling mechanism relative to the ion microprobe technique. Recent advances in instrumentation allow precise measurement with spatial resolutions down to 25 microns. We describe specific examples from economic geology where increased spatial resolution has greatly expanded insights into the sources and evolution of fluids that cause mineralization and illuminated genetic relations between individual deposits in single mineral districts.
Initation of pitting corrosion in martensitic stainless steels. [17-4PH; 13-8Mo; Custom 450
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cieslak, W.R.; Semarge, R.E.; Bovard, F.S.
1986-01-01
The form of localized corrosion known as pitting often initiates preferentially at microstructural inhomogeneities. The pit initiation resistance, therefore, is controlled by the characteristics of the initiation sites, rather than by the bulk material composition. This investigation correlates the pit initiation resistance, as measured by critical pitting potentials, with preferred pit initiation sites for 3 martensitic stainless steels. Pit initiation sites are determined by secondary electron (SE) and backscattered electron (BSE) imaging and energy dispersive and wavelength dispersive spectrometries (EDS and WDS) with a scalling electron microscope (SEM) and an electron probe microanalyzer (EPMA).
Bacon, C.R.; Weber, P.K.; Larsen, K.A.; Reisenbichler, R.; Fitzpatrick, J.A.; Wooden, J.L.
2004-01-01
Strontium isotope and Sr/Ca ratios measured in situ by ion microprobe along radial transects of otoliths of juvenile chinook salmon (Oncorhynchus tshawytscha) vary between watersheds with contrasting geology. Otoliths from ocean-type chinook from Skagit River estuary, Washington, had prehatch regions with 87Sr/86Sr ratios of ???0.709, suggesting a maternally inherited marine signature, extensive fresh water growth zones with 87Sr/86Sr ratios similar to those of the Skagit River at ???0.705, and marine-like 87Sr/86Sr ratios near their edges. Otoliths from stream-type chinook from central Idaho had prehatch 87Sr/86Sr ratios ???0.711, indicating that a maternal marine Sr isotopic signature is not preserved after the ???1000- to 1400-km migration from the Pacific Ocean. 87Sr/86Sr ratios in the outer portions of otoliths from these Idaho juveniles were similar to those of their respective streams (???0.708-0.722). For Skagit juveniles, fresh water growth was marked by small decreases in otolith Sr/Ca, with increases in Sr/Ca corresponding to increases in 87Sr/86Sr with migration into salt water. Otoliths of Idaho fish had Sr/Ca radial variation patterns that record seasonal fluctuation in ambient water Sr/Ca ratios. The ion microprobe's ability to measure both 87Sr/86Sr and Sr/Ca ratios of otoliths at high spatial resolution in situ provides a new tool for studies of fish rearing and migration. ?? 2004 NRC Canada.
NASA Astrophysics Data System (ADS)
Wasisto, Hutomo Suryo; Yu, Feng; Doering, Lutz; Völlmeke, Stefan; Brand, Uwe; Bakin, Andrey; Waag, Andreas; Peiner, Erwin
2015-05-01
Silicon microprobe tips are fabricated and integrated with piezoresistive cantilever sensors for high-speed surface roughness scanning systems. The fabrication steps of the high-aspect-ratio silicon microprobe tips were started with photolithography and wet etching of potassium hydroxide (KOH) resulting in crystal-dependent micropyramids. Subsequently, thin conformal wear-resistant layer coating of aluminum oxide (Al2O3) was demonstrated on the backside of the piezoresistive cantilever free end using atomic layer deposition (ALD) method in a binary reaction sequence with a low thermal process and precursors of trimethyl aluminum and water. The deposited Al2O3 layer had a thickness of 14 nm. The captured atomic force microscopy (AFM) image exhibits a root mean square deviation of 0.65 nm confirming the deposited Al2O3 surface quality. Furthermore, vacuum-evaporated 30-nm/200-nm-thick Au/Cr layers were patterned by lift-off and served as an etch mask for Al2O3 wet etching and in ICP cryogenic dry etching. By using SF6/O2 plasma during inductively coupled plasma (ICP) cryogenic dry etching, micropillar tips were obtained. From the preliminary friction and wear data, the developed silicon cantilever sensor has been successfully used in 100 fast measurements of 5- mm-long standard artifact surface with a speed of 15 mm/s and forces of 60-100 μN. Moreover, the results yielded by the fabricated silicon cantilever sensor are in very good agreement with those of calibrated profilometer. These tactile sensors are targeted for use in high-aspect-ratio microform metrology.
NASA Astrophysics Data System (ADS)
Pain, F.; Dhenain, M.; Gurden, H.; Routier, A. L.; Lefebvre, F.; Mastrippolito, R.; Lanièce, P.
2008-10-01
The β-microprobe is a simple and versatile technique complementary to small animal positron emission tomography (PET). It relies on local measurements of the concentration of positron-labeled molecules. So far, it has been successfully used in anesthetized rats for pharmacokinetics experiments and for the study of brain energetic metabolism. However, the ability of the technique to provide accurate quantitative measurements using 18F, 11C and 15O tracers is likely to suffer from the contribution of 511 keV gamma rays background to the signal and from the contribution of positrons from brain loci surrounding the locus of interest. The aim of the present paper is to provide a method of evaluating several parameters, which are supposed to affect the quantification of recordings performed in vivo with this methodology. We have developed realistic voxelized phantoms of the rat whole body and brain, and used them as input geometries for Monte Carlo simulations of previous β-microprobe reports. In the context of realistic experiments (binding of 11C-Raclopride to D2 dopaminergic receptors in the striatum; local glucose metabolic rate measurement with 18F-FDG and H2O15 blood flow measurements in the somatosensory cortex), we have calculated the detection efficiencies and corresponding contribution of 511 keV gammas from peripheral organs accumulation. We confirmed that the 511 keV gammas background does not impair quantification. To evaluate the contribution of positrons from adjacent structures, we have developed β-Assistant, a program based on a rat brain voxelized atlas and matrices of local detection efficiencies calculated by Monte Carlo simulations for several probe geometries. This program was used to calculate the 'apparent sensitivity' of the probe for each brain structure included in the detection volume. For a given localization of a probe within the brain, this allows us to quantify the different sources of beta signal. Finally, since stereotaxic accuracy is crucial for quantification in most microprobe studies, the influence of stereotaxic positioning error was studied for several realistic experiments in favorable and unfavorable experimental situations (binding of 11C-Raclopride to D2 dopaminergic receptors in the striatum; binding of 18F-MPPF to 5HT1A receptors in the dorsal raphe nucleus).
Pickens, C L; Milliron, A R; Fussner, A L; Dversdall, B C; Langenstroer, P; Ferguson, S; Fu, X; Schmitz, F J; Poole, E C
1999-07-01
Several urinary calculi were submitted to our institution for compositional analysis. The typical techniques of analysis, polarized light microscopy, electron microprobe analysis, and infrared spectroscopy proved inadequate for a definitive identification. As a result, a more detailed organic analysis was conducted to determine the exact chemical structure of the material. Infrared spectroscopy and mass spectrometric analysis were carried out on the solid material, providing information concerning the functional groups and the molecular mass of the organic constituent and its components. The stone was solubilized in deuterated solvents and analyzed by nuclear magnetic resonance spectroscopy, which resulted in a definitive chemical structure. The spectroscopic analysis indicated that the stones were composed of a calcium salt of beta-(2-methoxyphenoxy)-lactic acid, a metabolite of the pharmaceutical guaifenesin, which is used as an expectorant. Guaifenesin, an expectorant common in over-the-counter cold and allergy remedies, can cause urolithiasis if taken in excess. Discussions with physicians and their patients confirmed that most patients admitted to taking large doses of guaifenesin-containing medications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohammadi, J.; Behnamian, Y.; Mostafaei, A., E-mail: amir.mostafaei@gmail.com
2015-03-15
Friction stir welding is an efficient manufacturing method for joining dissimilar alloys, which can dramatically reduce grain sizes and offer high mechanical joint efficiency. Lap FSW joints between dissimilar AZ31B and Al 6061 alloy sheets were made at various tool rotation and travel speeds. Rotation and travel speeds varied between 560–1400 r/min and 16–40 mm/min respectively, where the ratio between these parameters was such that nearly constant pitch distances were applied during welding. X-ray diffraction pattern (XRD), optical microscopy images (OM), electron probe microanalysis (EPMA) and scanning electron microscopy equipped with an energy-dispersive X-ray spectroscopy (SEM-EDS) were used to investigatemore » the microstructures of the joints welded. Intermetallic phases including Al{sub 12}Mg{sub 17} (γ) and Al{sub 3}Mg{sub 2} (β) were detected in the weld zone (WZ). For different tool rotation speeds, the morphology of the microstructure in the stir zone changed significantly with travel speed. Lap shear tensile test results indicated that by simultaneously increasing the tool rotation and travel speeds to 1400 r/min and 40 mm/min, the joint tensile strength and ductility reached a maximum. Microhardness measurements and tensile stress–strain curves indicated that mechanical properties were affected by FSW parameters and mainly depended on the formation of intermetallic compounds in the weld zone. In addition, a debonding failure mode in the Al/Mg dissimilar weld nugget was investigated by SEM and surface fracture studies indicated that the presence of intermetallic compounds in the weld zone controlled the failure mode. XRD analysis of the fracture surface indicated the presence of brittle intermetallic compounds including Al{sub 12}Mg{sub 17} (γ) and Al{sub 3}Mg{sub 2} (β). - Highlights: • Dissimilar Al/Mg joint was obtained by lap friction stir welding technique. • Effect of rotation and travel speeds on the formation of intermetallic compounds • Microstructure and chemical studies including metallography, XRD, SEM-EDS, and EPMA • Mechanical property tests such as stress–strain curves, failure load and hardness • IMCs as Al{sub 3}Mg{sub 2} and Al{sub 12}Mg{sub 17} were identified in weld nugget and at Al/Mg interface.« less
The Ti-Mn system revisited: experimental investigation and thermodynamic modelling.
Khan, A U; Brož, P; Premović, M; Pavlů, J; Vřeštál, J; Yan, X; Maccio, D; Saccone, A; Giester, G; Rogl, P
2016-08-17
As the Ti-Mn phase diagram is part of numerous ternary and higher order systems of technological importance, the present paper defines phase relations which have been experimentally established throughout this work from 800 °C to the melting range based on Differential Thermal Analyses (DTA), X-ray powder diffraction, metallography and Electron Probe Micro Analysis (EPMA) techniques on ∼50 alloys, which were prepared by arc melting or high frequency melting under high purity argon starting from freshly cleaned metal ingots. Novel compounds were identified and reaction isotherms were redefined accordingly. In the Ti-rich region a novel compound TiMn was detected, sandwiched between the known phases: TiMn1-x (∼45 at% Mn) and TiMn1+x (∼55 at% Mn). In the Mn-rich region the hitherto unknown crystal structure of TiMn∼3 was solved from X-ray single crystal diffraction data and found to be of a unique structure type Ti6(Ti1-xMnx)6Mn25 (x = 0.462; space group Pbam (#55); a = 0.79081(3) nm, b = 2.58557(9) nm, c = 0.47931(2) nm), which consists of two consecutive layers of the hexagonal MgZn2-type Laves phase (TiMn2) and a combined layer of alternate structure blocks of MgZn2 type and Zr4Al3 type. Whereas TiMn can be considered as a line compound (solubility range <∼1 at%), the homogeneity regions of the Ti-Mn compounds are significant (determined by EPMA): TiMn1-x (44.0 to 46.6 at% Mn), TiMn1+x (54.6 to 56.3 at% Mn), Ti1+xMn2-x (MgZn2-type, 59 to 69 at% Mn at 1000 °C: -0.08 < x < 0.23), TiMn∼3 (unique type; 74 to 76.5 at% Mn) and TiMn∼4 (R-phase: Ti8(TixMn1-x)6Mn39, 80 to 84 at% Ti). Supported by ab initio calculations of the ground state energy for the Laves phase, the new experimental results enabled thermodynamic modelling of the entire Ti-Mn phase diagram providing a complete and novel set of thermodynamic data thus providing a sound basis for future thermodynamic predictions of higher order Ti-Mn-X-Y systems.
Hodson, Mark E; Benning, Liane G; Demarchi, Bea; Penkman, Kirsty E H; Rodriguez-Blanco, Juan D; Schofield, Paul F; Versteegh, Emma A A
Many biominerals form from amorphous calcium carbonate (ACC), but this phase is highly unstable when synthesised in its pure form inorganically. Several species of earthworm secrete calcium carbonate granules which contain highly stable ACC. We analysed the milky fluid from which granules form and solid granules for amino acid (by liquid chromatography) and functional group (by Fourier transform infrared (FTIR) spectroscopy) compositions. Granule elemental composition was determined using inductively coupled plasma-optical emission spectroscopy (ICP-OES) and electron microprobe analysis (EMPA). Mass of ACC present in solid granules was quantified using FTIR and compared to granule elemental and amino acid compositions. Bulk analysis of granules was of powdered bulk material. Spatially resolved analysis was of thin sections of granules using synchrotron-based μ-FTIR and EMPA electron microprobe analysis. The milky fluid from which granules form is amino acid-rich (≤ 136 ± 3 nmol mg -1 (n = 3; ± std dev) per individual amino acid); the CaCO 3 phase present is ACC. Even four years after production, granules contain ACC. No correlation exists between mass of ACC present and granule elemental composition. Granule amino acid concentrations correlate well with ACC content (r ≥ 0.7, p ≤ 0.05) consistent with a role for amino acids (or the proteins they make up) in ACC stabilisation. Intra-granule variation in ACC (RSD = 16%) and amino acid concentration (RSD = 22-35%) was high for granules produced by the same earthworm. Maps of ACC distribution produced using synchrotron-based μ-FTIR mapping of granule thin sections and the relative intensity of the ν 2 : ν 4 peak ratio, cluster analysis and component regression using ACC and calcite standards showed similar spatial distributions of likely ACC-rich and calcite-rich areas. We could not identify organic peaks in the μ-FTIR spectra and thus could not determine whether ACC-rich domains also had relatively high amino acid concentrations. No correlation exists between ACC distribution and elemental concentrations determined by EMPA. ACC present in earthworm CaCO 3 granules is highly stable. Our results suggest a role for amino acids (or proteins) in this stability. We see no evidence for stabilisation of ACC by incorporation of inorganic components. Graphical abstractSynchrotron-based μ-FTIR mapping was used to determine the spatial distribution of amorphous calcium carbonate in earthworm-produced CaCO 3 granules.
Richter, Heiko; Kierdorf, Uwe; Richards, Alan; Melcher, Frank; Kierdorf, Horst
2011-08-01
Fluoride concentration in dentine has been recommended as the best marker for the level of chronic fluoride intake and the most suitable indicator of an individual's total body burden of fluoride. We analysed fluoride concentrations in the dentine of cheek teeth of European roe deer from fluoride-polluted habitats to retrospectively assess the level of fluoride uptake into the tissue. Thereby, we tested the hypothesis of the existence of mechanisms that limit fluoride intake of individuals and fluoride exposure of forming dental hard tissues during the late foetal and early postnatal periods in the species. Using electron-microprobe analysis, fluoride profiles were obtained on sectioned P(4)s, M(1)s, and M(3)s from individuals exhibiting pronounced dental fluorosis. Fluoride concentrations were compared between early formed (peripheral) and late-formed (juxtapulpal) dentine both within single teeth and amongst the three different teeth studied. Peripheral dentine of the M(1), which is formed during the late foetal and early postnatal periods, exhibited markedly lower fluoride concentrations than juxtapulpal dentine of the same tooth and both, peripheral and juxtapulpal dentine of P(4) and M(3) that are formed post-weaning. Our study provides strong support for the hypothesis that in the European roe deer the prenatal and early postnatal (pre-weaning) stages of dental development are (largely) protected against exposure to excess fluoride. This is attributed to the operation of certain protective mechanisms during these periods. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helz, R. T.; Cottrell, E.; Brounce, M. N.
The 1959 summit eruption of Kmore » $$\\bar{i}$$lauea Volcano exhibited high lava fountains of gas-rich, primitive magma, containing olivine + chromian spinel in highly vesicular brown glass. Microprobe analysis of these samples shows that euhedral rims on olivine phenocrysts, in direct contact with glass, vary significantly in forsterite (Fo) content, at constant major-element melt composition, as do unzoned groundmass olivine crystals. Ferric/total iron (Fe+ 3/FeT)ratios for matrix and interstitial glasses, plus olivine-hosted glass inclusions in eight 1959 scoria samples have been determined by micro X-ray absorption near-edge structure spectroscopy (μ-XANES). These data show that much of the variation in Fo content reflects variation in oxidation state of iron in the melt, which varies with sulfur concentration in the glass and (locally) with proximity to scoria edges in contact with air. Data for 24 olivine-melt pairs in the better-equilibrated samples from later in the eruption show KD averaging 0.280 ± 0.03 for the exchange of Fe and Mg between olivine and melt, somewhat displaced from the value of 0.30 ± 0.03 given by Roeder and Emslie (1970). This may reflect the low SiO2 content of the 1959 magmas, which is lower than that in most K$$\\bar{i}$$lauea tholeiites. More broadly, we show the potential of μ-XANES and electron microprobe to revisit and refine the value of KD in natural systems.« less
Approximate chemical analysis of volcanic glasses using Raman spectroscopy
Morgavi, Daniele; Hess, Kai‐Uwe; Neuville, Daniel R.; Borovkov, Nikita; Perugini, Diego; Dingwell, Donald B.
2015-01-01
The effect of chemical composition on the Raman spectra of a series of natural calcalkaline silicate glasses has been quantified by performing electron microprobe analyses and obtaining Raman spectra on glassy filaments (~450 µm) derived from a magma mingling experiment. The results provide a robust compositionally‐dependent database for the Raman spectra of natural silicate glasses along the calcalkaline series. An empirical model based on both the acquired Raman spectra and an ideal mixing equation between calcalkaline basaltic and rhyolitic end‐members is constructed enabling the estimation of the chemical composition and degree of polymerization of silicate glasses using Raman spectra. The model is relatively insensitive to acquisition conditions and has been validated using the MPI‐DING geochemical standard glasses1 as well as further samples. The methods and model developed here offer several advantages compared with other analytical and spectroscopic methods such as infrared spectroscopy, X‐ray fluorescence spectroscopy, electron and ion microprobe analyses, inasmuch as Raman spectroscopy can be performed with a high spatial resolution (1 µm2) without the need for any sample preparation as a nondestructive technique. This study represents an advance in efforts to provide the first database of Raman spectra for natural silicate glasses and yields a new approach for the treatment of Raman spectra, which allows us to extract approximate information about the chemical composition of natural silicate glasses using Raman spectroscopy. We anticipate its application in handheld in situ terrestrial field studies of silicate glasses under extreme conditions (e.g. extraterrestrial and submarine environments). © 2015 The Authors Journal of Raman Spectroscopy Published by John Wiley & Sons Ltd PMID:27656038
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seo, Seong-Moon, E-mail: castme@kims.re.kr; Jeong, Hi-Won; Ahn, Young-Keun
Quantitative microsegregation analyses were systematically carried out during the solidification of the Ni-base superalloy CMSX-10 to clarify the methodological effect on the quantification of microsegregation and to fully understand the solidification microstructure. Three experimental techniques, namely, mushy zone quenching (MZQ), planar directional solidification followed by quenching (PDSQ), and random sampling (RS), were implemented for the analysis of microsegregation tendency and the magnitude of solute elements by electron probe microanalysis. The microprobe data and the calculation results of the diffusion field ahead of the solid/liquid (S/L) interface of PDSQ samples revealed that the liquid composition at the S/L interface is significantlymore » influenced by quenching. By applying the PDSQ technique, it was also found that the partition coefficients of all solute elements do not change appreciably during the solidification of primary γ. All three techniques could reasonably predict the segregation behavior of most solute elements. Nevertheless, the RS approach has a tendency to overestimate the magnitude of segregation for most solute elements when compared to the MZQ and PDSQ techniques. Moreover, the segregation direction of Cr and Mo predicted by the RS approach was found to be opposite from the results obtained by the MZQ and PDSQ techniques. This conflicting segregation behavior of Cr and Mo was discussed intensively. It was shown that the formation of Cr-rich areas near the γ/γ′ eutectic in various Ni-base superalloys, including the CMSX-10 alloy, could be successfully explained by the results of microprobe analysis performed on a sample quenched during the planar directional solidification of γ/γ′ eutectic. - Highlights: • Methodological effect on the quantification of microsegregation was clarified. • The liquid composition at the S/L interface was influenced by quenching. • The segregation direction of Cr varied depending on the experimental techniques. • Cr and Mo segregation in Ni-base superalloys was fully understood.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macente, A.; Fusseis, F.; Menegon, L.
Reaction and deformation microfabrics provide key information to understand the thermodynamic and kinetic controls of tectono-metamorphic processes, however they are usually analysed in two dimensions, omitting important information regarding the third spatial dimension. We applied synchrotron-based X-ray microtomography to document the evolution of a pristine olivine gabbro into a deformed omphacite-garnet eclogite in four dimensions, where the 4th dimension is represented by the degree of strain. In the investigated samples, which cover a strain gradient into a shear zone from the Western Gneiss Region (Norway), we focused on the spatial transformation of garnet coronas into elongated clusters of garnets withmore » increasing strain. Our microtomographic data allowed quantification of garnet volume, shape and spatial arrangement evolution with increasing strain. We combined microtomographic observations with light microscope- and backscatter electron images as well as electron microprobe- (EMPA) and electron backscatter diffraction (EBSD) analysis to correlate mineral composition and orientation data with the X-ray absorption signal of the same mineral grains. With increasing deformation, the garnet volume almost triples. In the low strain domain, garnets form a well interconnected large garnet aggregate that develops throughout the entire Page 1 of 52 sample. We also observed that garnet coronas in the gabbros never completely encapsulate olivine grains. In the most highly deformed eclogites, the oblate shapes of garnet clusters reflect a deformational origin of the microfabrics. We interpret the aligned garnet aggregates to direct synkinematic fluid flow and consequently influence the transport of dissolved chemical components. EBSD analyses reveal that garnet show a near-random crystal preferred orientation that testifies no evidence for crystal plasticity. There is, however evidence for minor fracturing, neo-nucleation and overgrowth. Microprobe chemical analysis revealed that garnet compositions progressively equilibrate to eclogite facies, becoming more almandine-rich. We interpret these observations as pointing to a mechanical disintegration of the garnet coronas during strain localisation, and their rearrangement into individual garnet clusters through a combination of garnet coalescence and overgrowth while the rock was deforming.« less
Fedele, Luca; Tarzia, Maurizio; Belkin, Harvey E.; De Vivo, Benedetto; Lima, Annamaria; Lowenstern, Jacob
2007-01-01
The Breccia Museo, a pyroclastic flow that crops out in the Campi Flegrei volcanic complex (Naples, Italy), contains alkali-syenite (trachyte) nodules with enrichment in Cl and incompatible elements (e.g., U, Zr, Th, and rare-earth elements). Zircon was dated at ≈52 ka, by U-Th isotope systematics using a SHRIMP. Scanning electron microscope and electron microprobe analysis of the constituent phases have documented the mineralogical and textural evolution of the nodules of feldspar and mafic accumulations on the magma chamber margins. Detailed electron microprobe data are given for alkali and plagioclase feldspar, salite to ferrosalite clinopyroxene, pargasite, ferrogargasite, magnesio-hastingsite hornblende amphibole, biotite mica, Cl-rich scapolite, and a member (probable davyne-type) of the cancrinite group. Detailed whole rock, major and minor element data are also presented for selected nodules. A wide variety of common and uncommon accessory minerals were identified such as zircon, baddeleyite, zirconolite, pollucite, sodalite, titanite, monazite, cheralite, apatite, titanomagnetite and its alteration products, scheelite, ferberite, uraninite/thorianite, uranpyrochlore, thorite, pyrite, chalcopyrite, and galena. Scanning electron microscope analysis of opened fluid inclusions identified halite, sylvite, anhydrite, tungstates, carbonates, silicates, sulfides, and phosphates; most are probably daughter minerals. Microthermometric determinations on secondary fluid inclusions hosted by alkali feldspar define a temperature regime dominated by hypersaline aqueous fluids. Fluid-inclusion temperature data and mineral-pair geothermometers for coexisting feldspars and hornblende and plagioclase were used to construct a pressure-temperature scenario for the development and evolution of the nodules. We have compared the environment of porphyry copper formation and the petrogenetic environment constructed for the studied nodules. The suite of ore minerals observed in the nodules supports a potential for mineralization, which is similar to that observed in the alkaline volcanic systems of southern Italy (Pantelleria, Pontine Archipelago, Mt. Somma-Vesuvius).
Mazdab, F.K.
2009-01-01
Crystals of titanite can be readily grown under ambient pressure from a mixture of CaO, TiO2 and SiO2 in the presence of molten sodium tetraborate. The crystals produced are euhedral and prismatic, lustrous and transparent, and up to 5 mm in length. Titanite obtained by this method contains approximately 4300 ppm Na and 220 ppm B contributed from the flux. In addition to dopant-free material, titanite containing trace alkali and alkaline earth metals (K, Sr, Ba), transition metals (Sc, Cr, Ni, Y, Zr, Nb, Hf and Ta), rare-earth elements (REE), actinides (Th, U) and p-block elements (F, S, Cl, Ge, Sn and Pb) have been prepared using the same procedure. Back-scattered electron (BSE) imaging accompanied by ion-microprobe (SHRIMP-RG) analysis confirms significant incorporation of selected trace-elements at structural sites. Regardless of some zonation, the large size of the crystals and broad regions of chemical homogeneity make these crystals useful as experimental starting material, and as matrix-matched trace-element standards for a variety of microbeam analytical techniques where amorphous titanite glass, heterogeneous natural titanite or a non-titanite standard may be less than satisfactory. Trace-element-doped synthetic crystals can also provide a convenient proxy for a better understanding of trace-element incorporation in natural titanite. Comparisons with igneous, authigenic and high-temperature metasomatic titanite are examined. The use of high-mass-resolution SIMS also demonstrates the analytical challenges inherent to any in situ mass-spectrometry-based analysis of titanite, owing to the production of difficult-to-resolve molecular interferences. These interferences are dominated by Ca-Ca, Ca-Ti and Ti-Ti dimers that are significant in the mass range of 80-100, affecting all isotopes of Sr and Zr, as well as 89Y and 93Nb. Methods do exist for the evaluation of interferences by these dimers and of polyatomic interferences on the LREE.
Matta, Mary Elizabeth; Orland, Ian J; Ushikubo, Takayuki; Helser, Thomas E; Black, Bryan A; Valley, John W
2013-03-30
The oxygen isotope ratio (δ(18)O value) of aragonite fish otoliths is dependent on the temperature and the δ(18)O value of the ambient water and can thus reflect the environmental history of a fish. Secondary ion mass spectrometry (SIMS) offers a spatial-resolution advantage over conventional acid-digestion techniques for stable isotope analysis of otoliths, especially given their compact nature. High-precision otolith δ(18)O analysis was conducted with an IMS-1280 ion microprobe to investigate the life history of a yellowfin sole (Limanda aspera), a Bering Sea species known to migrate ontogenetically. The otolith was cut transversely through its core and one half was roasted to eliminate organic contaminants. Values of δ(18)O were measured in 10-µm spots along three transects (two in the roasted half, one in the unroasted half) from the core toward the edge. Otolith annual growth zones were dated using the dendrochronology technique of crossdating. Measured values of δ(18)O ranged from 29.0 to 34.1‰ (relative to Vienna Standard Mean Ocean Water). Ontogenetic migration from shallow to deeper waters was reflected in generally increasing δ(18)O values from age-0 to approximately age-7 and subsequent stabilization after the expected onset of maturity at age-7. Cyclical variations of δ(18)O values within juvenile otolith growth zones, up to 3.9‰ in magnitude, were caused by a combination of seasonal changes in the temperature and the δ(18)O value of the ambient water. The ion microprobe produced a high-precision and high-resolution record of the relative environmental conditions experienced by a yellowfin sole that was consistent with population-level studies of ontogeny. Furthermore, this study represents the first time that crossdating has been used to ensure the dating accuracy of δ(18)O measurements in otoliths. Copyright © 2013 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Javidani, M.; Arreguin-Zavala, J.; Danovitch, J.; Tian, Y.; Brochu, M.
2017-04-01
This paper aims to study the manufacturing of the AlSi10Mg alloy with direct energy deposition (DED) process. Following fabrication, the macro- and microstructural evolution of the as-processed specimens was initially investigated using optical microscopy and scanning electron microscopy. Columnar dendritic structure was the dominant solidification feature of the deposit; nevertheless, detailed microstructural analysis revealed cellular morphology near the substrate and equiaxed dendrites at the top end of the deposit. Moreover, the microstructural morphology in the melt pool boundary of the deposit differed from the one in the core of the layers. The remaining porosity of the deposit was evaluated by Archimedes' principle and by image analysis of the polished surface. Crystallographic texture in the deposit was also assessed using electron backscatter diffraction and x-ray diffraction analysis. The dendrites were unidirectionally oriented at an angle of 80° to the substrate. EPMA line scans were performed to evaluate the compositional variation and elemental segregation in different locations. Eventually, microhardness (HV) tests were conducted in order to study the hardness gradient in the as-DED-processed specimen along the deposition direction. The presented results, which exhibited a deposit with an almost defect free structure, indicate that the DED process can suitable for the deposition of Al-Si-based alloys with a highly consolidated structure.
Ellipsometric porosimetry on pore-controlled TiO2 layers
NASA Astrophysics Data System (ADS)
Rosu, Dana-Maria; Ortel, Erik; Hodoroaba, Vasile-Dan; Kraehnert, Ralph; Hertwig, Andreas
2017-11-01
The practical performance of surface coatings in applications like catalysis, water splitting or batteries depends critically on the coating materials' porosity. Determining the porosity in a fast and non-destructive way is still an unsolved problem for industrial thin-films technology. As a contribution to calibrated, non-destructive, optical layer characterisation, we present a multi-method comparison study on porous TiO2 films deposited by sol-gel synthesis on Si wafers. The ellipsometric data were collected on a range of samples with different TiO2 layer thickness and different porosity values. These samples were produced by templated sol-gel synthesis resulting in layers with a well-defined pore size and pore density. The ellipsometry measurement data were analysed by means of a Bruggeman effective medium approximation (BEMA), with the aim to determine the mixture ratio of void and matrix material by a multi-sample analysis strategy. This analysis yielded porosities and layer thicknesses for all samples as well as the dielectric function for the matrix material. Following the idea of multi-method techniques in metrology, the data was referenced to imaging by electron microscopy (SEM) and to a new EPMA (electron probe microanalysis) porosity approach for thin film analysis. This work might lead to a better metrological understanding of optical porosimetry and also to better-qualified characterisation methods for nano-porous layer systems.
Liu, Xuan L; Gheno, Thomas; Lindahl, Bonnie B; Lindwall, Greta; Gleeson, Brian; Liu, Zi-Kui
2015-01-01
The phase relations and thermodynamic properties of the condensed Al-Co-Cr ternary alloy system are investigated using first-principles calculations based on density functional theory (DFT) and phase-equilibria experiments that led to X-ray diffraction (XRD) and electron probe micro-analysis (EPMA) measurements. A thermodynamic description is developed by means of the calculations of phase diagrams (CALPHAD) method using experimental and computational data from the present work and the literature. Emphasis is placed on modeling the bcc-A2, B2, fcc-γ, and tetragonal-σ phases in the temperature range of 1173 to 1623 K. Liquid, bcc-A2 and fcc-γ phases are modeled using substitutional solution descriptions. First-principles special quasirandom structures (SQS) calculations predict a large bcc-A2 (disordered)/B2 (ordered) miscibility gap, in agreement with experiments. A partitioning model is then used for the A2/B2 phase to effectively describe the order-disorder transitions. The critically assessed thermodynamic description describes all phase equilibria data well. A2/B2 transitions are also shown to agree well with previous experimental findings.
Development of solid-lubricated ball-screws for use in space
NASA Technical Reports Server (NTRS)
Chiba, Masatoshi; Gyougi, Toru; Nishimura, Makoto; Seki, Katsumi
1991-01-01
Ball-screws lubricated by solid lubricant films containing molybdenum disulphide are developed. The ball-screws (shaft diameter: phi 25 mm, length: 667 mm) were operated under a load of 40 to 120 N at a speed of 1.5 to 200 rpm at 10(exp -5) Pa. First, ball-screws made of stainless steel SUS 440C were studied using test equipment originally designed for this study. To reduce weight, the next step taken was to develop a ball-screw made of 6Al-4V-titanium. Long wear-life of more than 1 x 10(exp 7) revolutions was achieved with solid lubricated ball-screws made of SUS 440C and 6Al-4V-titanium in a hard vacuum. According to the surface profile of the shaft measured after 1 x 10(exp 7) revolutions, more solid lubricant remained on the surface of 6Al-4V-titanium than that of stainless steel. Auger and EPMA analysis confirmed lubrication was maintained by solid lubricant on nuts and screws after the lubricant films on the balls were worn off.
Behavior of W-SiC/SiC dual layer tiles under LHD plasma exposure
NASA Astrophysics Data System (ADS)
Mohrez, Waleed A.; Kishimoto, Hirotatsu; Kohno, Yutaka; Hirotaki, S.; Kohyama, Akira
2013-11-01
Towards the early realization of fusion power reactors, high performance first wall and plasma facing components (PFCs) are essentially required. As one of the biggest challenges for this, high heat flux component (HHFC) design and R & D has been emphasized. This report provides the high performance HHFC materials R & D status and the first plasma exposure test result from large helical device (LHD). W-SiC/SiC dual layer tiles (hereafter, W-SiC/SiC) were developed by applied NITE process. This is the realistic concept of tungsten armor with ceramic composite substrates for fusion power reactors. The dual layer tiles were fabricated and tested their survival under the LHD divertor plasma exposure (Nominally 10 MW/m2 maximum heat load for 6 s operation cycle). The microstructure evolution, including crack and pore formation, was analyzed, besides the behavior of bonding layer between tungsten and SiC/SiC was evaluated by C-scanning images of ultrasonic method and Electron probe Micro-analyzer (EPMA). Thermal analysis was conducted by finite element method, where ANSYS code release 13.0 was used.
Viscosity Measurements of "FeO"-SiO2 Slag in Equilibrium with Metallic Fe
NASA Astrophysics Data System (ADS)
Chen, Mao; Raghunath, Sreekanth; Zhao, Baojun
2013-06-01
The current study delivered the measurements of viscosities in the system "FeO"-SiO2 in equilibrium with metallic Fe in the composition range between 15 and 40 wt pct SiO2. The experiments were carried out in the temperature range of 1473 K to 1773 K (1200 °C to 1500 °C) using a rotational spindle technique. An analysis of the quenched sample by electron probe X-ray microanalysis (EPMA) after the viscosity measurement enables the composition and microstructure of the slag to be directly linked with the viscosity. The current results are compared with available literature data. The significant discrepancies of the viscosity measurements in this system have been clarified. The possible reasons affecting the accuracy of the viscosity measurement have been discussed. The activation energies derived from the experimental data have a sharp increase at about 33 wt pct SiO2, which corresponds to the composition of fayalite (Fe2SiO4). The modified quasi-chemical model was constructed in the system "FeO"-SiO2 to describe the current viscosity data.
NASA Astrophysics Data System (ADS)
Ma, C.; Tschauner, O. D.
2016-12-01
The combination of FESEM-EDS-EBSD, EPMA, and synchrotron microdiffraction is developing into a powerful tool for identification of micron-scale minerals in rocks such as high-pressure phases in shocked meteorites. During a nanomineralogy investigation of the Shergotty meteorite using this approach, we have identified a new shock-induced high-pressure silicate, majoritic almandine with a tetragonal I41/a structure, in an impact melt pocket. The Shergotty meteorite, which fell in the Gaya district, Bihar, India in 1865, is a Martian basaltic shergottite with shock features. Tetragonal almandine in Shergotty occurs as aggregates of subhedral crystals, 0.8 - 2.5 µm in diameter, along with stishovite in the central region of a shock melt pocket, showing an empirical formula of (Fe1.16Ca0.75Mg0.61Na0.42Mn0.03K0.01)(Al1.16Si0.63Mg0.19Ti0.02)Si3O12. Its general formula is (Fe,Mg,Ca,Na)3(Al,Si,Mg)2Si3O12. EBSD indicated this phase has a garnet-related structure. Synchrotron X-ray diffraction revealed that this garnet has actually a tetragonal structure (I41/a) with unit cell dimensions: a = 11.585(9) Å, c = 11.63(4) Å, V = 1561(7) Å3, and Z = 8. Tetragonal almandine is the polymorph of cubic almandine, a new high-pressure garnet mineral, formed by shock metamorphism via the Shergotty impact event on Mars. It apparently crystallized from Fe-rich shock-induced melt under high-pressure and high-temperature conditions.
Sorption of Eu(III) on granite: EPMA, LA-ICP-MS, batch and modeling studies.
Fukushi, Keisuke; Hasegawa, Yusuke; Maeda, Koushi; Aoi, Yusuke; Tamura, Akihiro; Arai, Shoji; Yamamoto, Yuhei; Aosai, Daisuke; Mizuno, Takashi
2013-11-19
Eu(III) sorption on granite was assessed using combined microscopic and macroscopic approaches in neutral to acidic conditions where the mobility of Eu(III) is generally considered to be high. Polished thin sections of the granite were reacted with solutions containing 10 μM of Eu(III) and were analyzed using EPMA and LA-ICP-MS. On most of the biotite grains, Eu enrichment up to 6 wt % was observed. The Eu-enriched parts of biotite commonly lose K, which is the interlayer cation of biotite, indicating that the sorption mode of Eu(III) by the biotite is cation exchange in the interlayer. The distributions of Eu appeared along the original cracks of the biotite. Those occurrences indicate that the prior water-rock interaction along the cracks engendered modification of biotite to possess affinity to the Eu(III). Batch Eu(III) sorption experiments on granite and biotite powders were conducted as functions of pH, Eu(III) loading, and ionic strength. The macroscopic sorption behavior of biotite was consistent with that of granite. At pH > 4, there was little pH dependence but strong ionic strength dependence of Eu(III) sorption. At pH < 4, the sorption of Eu(III) abruptly decreased with decreased pH. The sorption behavior at pH > 4 was reproducible reasonably by the modeling considering single-site cation exchange reactions. The decrease of Eu(III) sorption at pH < 4 was explained by the occupation of exchangeable sites by dissolved cationic species such as Al and Fe from granite and biotite in low-pH conditions. Granites are complex mineral assemblages. However, the combined microscopic and macroscopic approaches revealed that elementary reactions by a single mineral phase can be representative of the bulk sorption reaction in complex mineral assemblages.
NASA Astrophysics Data System (ADS)
Calder, E.; Clarke, B. A.; Cortes, J. A.; Butler, I. B.; Yirgu, G.
2016-12-01
In peralkaline rhyolitic melts, Na+ and K+ combined with halogens act to disrupt silicate polymers reducing melt viscosity in comparison to other melts of equivalent silica content. As a result, such magmas are often associated with somewhat unusual deposits for which the associated eruptive behaviours are relatively poorly understood. We have discovered unusual globule-shaped clasts within an unconsolidated pyroclastic succession associated with a pumice cone at Aluto volcano in the Main Ethiopian Rift. The clasts are lapilli to ash sized, often have a droplet-like morphology and are characterised by a distinctive obsidian skin indicative of having been shaped by surface tension. We adopt Walker's term achneliths for these clasts. These achneliths however, unlike their mafic counterparts, are highly vesicular ( 78 vol %), and the glassy skin often shows a bread-crusted texture. Importantly, there is strong evidence for post-depositional, in-situ, inflation, including expanding against other clasts and in some cases fusing together. The unconsolidated nature of the deposit at Aluto means that these peralkaline achneliths are easily separated and investigated in 3D, providing an unprecedented opportunity to study their features in detail through the use of µCT, SEM and EPMA. Textural observations and preliminary 3D vesicle size distribution data suggest that surface tension is an important factor in shaping these clasts, and that vesiculation and degassing occurs over a prolonged period post-emplacement. MELTS model calculations on the EPMA analyses assuming dry conditions, suggest maximum liquidus temperatures of 1030 °C and minimum viscosities of 6 Log(poise). These observations have important implications for understanding the nature of late stage degassing, fragmentation and eruption style in peralkaline rhyolite systems as well as incipient welding in peralkaline pyroclastic units.
NASA Astrophysics Data System (ADS)
Guastoni, Alessandro; Nestola, Fabrizio; Schiazza, Mariangela
2017-06-01
CaCeAl2(Fe3+ 2/3□1/3)[Si2O7][SiO4]O(OH), allanite-(Ce) and rare earth element (REE)-bearing epidote occur as globular aggregates and platy prismatic crystals in miarolitic cavities in a niobium, yttrium, fluorine (NYF) granitic pegmatite at Baveno, Verbania, Southern Alps, Italy. These samples were investigated by means of an electron probe micro-analyser (EPMA) and single-crystal X-ray diffraction. Our EPMA results show that the globular aggregates have the highest REE content in the core portion and decreases to REE-bearing epidote towards the rim whereas the prismatic crystals are characterized by marked oscillatory zoning that have the highest REE contents at the rim of the crystal. The unit-cell parameters of "allanites" have an intermediate unit-cell between CaCeAl2(Fe3+ 2/3□1/3)[Si2O7][SiO4]O(OH), allanite-(Ce) and REE-free epidote, because reflect the strong chemical heterogeneity of the samples which form complete solid solutions. Hydrothermal fluids control the activity and precipitation of incompatible elements like high field strength elements (HFSE), Sc and REE by hydrous F-rich fluids below the critical temperature which allow to deposit accessory minerals in the cavities with decreasing temperature. The source of REE and Y are the sheet and REE-silicates like siderophyllite-annite, and gadolinite-(Y) which underwent partial to complete decomposition by the activity of aggressive F-rich hydrothermal fluids.
Tribological properties of TiC/a-C:H nanocomposite coatings prepared via HiPIMS
NASA Astrophysics Data System (ADS)
Sánchez-López, J. C.; Dominguez-Meister, S.; Rojas, T. C.; Colasuonno, M.; Bazzan, M.; Patelli, A.
2018-05-01
High power impulse magnetron sputtering (HiPIMS) technology has been employed to prepare TiC/a-C:H nanocomposite coatings from a titanium target in acetylene (C2H2) reactive atmospheres. Gas fluxes were varied from 1.3 to 4.4 sccm to obtain C/Ti ratios from 2 to 15 as measured by electron probe microanalysis (EPMA). X-ray diffraction and transmission electron microscopy demonstrate the presence of TiC nanocrystals embedded in an amorphous carbon-based matrix. The hardness properties decrease from 17 to 10 GPa as the carbon content increases. The tribological properties were measured using a pin-on-disk tribometer in ambient air (RH = 30-40%) at 10 cm/s with 5 N of applied load against 6-mm 100Cr6 balls. The friction coefficient and the film wear rates are gradually improved from 0.3 and 7 × 10-6 mm3/N m to 0.15 and 2 × 10-7 mm3/N m, respectively, by increasing the C2H2 flux. To understand the tribological processes appearing at the interface and to elucidate the wear mechanism, microstructural and chemical investigations of the coatings were performed before and after the friction test. EPMA, X-ray photoelectron and electron energy-loss spectroscopies were employed to obtain an estimation of the fraction of the a-C:H phase, which can be correlated with the tribological behavior. Examination of the friction counterfaces (ball and track) by Raman microanalysis reveals an increased ordering of the amorphous carbon phase concomitant with friction reduction. The tribological results were compared with similar TiC/a-C(:H) composites prepared by the conventional direct current process.
Growth and properties of oxygen- and ion-doped Bi2Sr2CaCu2O8+δ single crystals
NASA Astrophysics Data System (ADS)
Mitzi, D. B.; Lombardo, L. W.; Kapitulnik, A.; Laderman, S. S.; Jacowitz, R. D.
1990-04-01
A directional solidification method for growing large single crystals in the Bi2Sr2CaCu2O8+δ system is reported. Ion doping, with replacement of La for Sr and Y for Ca, as well as oxygen doping in these crystals has been explored. Doped and undoped crystals have been characterized using microprobe analysis, x-ray diffraction, thermogravimetric analysis, and magnetic and Hall measurements. Ion doping results in little change of the superconducting transition for substitution levels below 20-25%, while beyond this level the Meissner signal broadens and the low-temperature Meissner signal decreases. Microprobe analysis and x-ray diffraction performed on these more highly substituted single crystals provide evidence for inhomogeneity and phase segregation into regions of distinct composition. Annealing unsubstituted crystals in increasing partial pressures of oxygen reversibly depresses the superconducting transition temperature from 90 (as made) to 77 K (oxygen pressure annealed), while the carrier concentrations, as determined from Hall effect measurements, increase from n=3.1(3)×1021 cm-3 (0.34 holes per Cu site) to 4.6(3)×1021 cm-3 (0.50 holes per Cu site). No degradation of the Meissner transition or other indications of inhomogeneity or phase segregation with doping are noted, suggesting that oxygen-doped Bi2Sr2CaCu2O8+δ is a suitable system for pursuing doping studies. The decrease in Tc with concentration for 0.34<=n<=0.50 indicates that a high-carrier-concentration regime exists in which Tc decreases with n and suggests that this decrease does not arise from material inhomogeneity or other materials problems. An examination of the variation of Tc with the density of states and lattice constants for all of the doped and undoped superconducting samples considered here indicates that changes in Tc with doping are primarily affected by changes in the density of states (or carrier concentration) rather than by structural variation induced by the doping.
NASA Astrophysics Data System (ADS)
Nam, S. H.; Hong, J. W.; Lee, H. J.; Jeon, Y. C.; Kim, G. C.
2017-08-01
The purpose of this study was to evaluate the influence of bleaching with nonthermal atmospheric pressure plasma and 15% hydrogen peroxide (HP) or 15% carbamide peroxide (CP). Sixty human enamel and dentin slabs were randomly assigned to six groups as follows: Group 1 was a control group and did not receive any treatment; Group 2 was exposed only to plasma, as a negative control; Group 3 was treated with 15% HP; Group 4 was treated with 15% HP plus plasma; Group 5 was treated with 15% CP alone; and Group 6 was treated with 15% CP plus plasma during 30 min bleaching treatments. A microhardness measurement was conducted according to a microhardness tester. The amount of calcium (Ca), phosphorus (P), chloride (Cl), sodium (Na), magnesium (Mg), and zinc (Zn) in the enamel and dentin was quantified with an electron probe microanalyzer (EPMA). The data were analyzed by using the Student’s t test and one-way analysis of variance (ANOVA), complemented by Tukey’s test. The statistical analysis did not show any significant differences in microhardness values and six mineral contents in all groups (p > 0.05). Therefore, we believe that the application of nonthermal atmospheric pressure plasma is a safe energy source for tooth bleaching.
A Study of the Oscillation Marks' Characteristics of Continuously Cast Incoloy Alloy 825 Blooms
NASA Astrophysics Data System (ADS)
Saleem, Saud; Vynnycky, Michael; Fredriksson, Hasse
2016-08-01
A comprehensive experimental study of oscillation mark (OM) formation and its characteristics during the solidification of Incoloy alloy 825 in the continuous casting of blooms is investigated by plant trials and metallographic study. The experiments involved two heats with the same casting and mold conditions and sampling at different locations across the strand. The metallographic study combined macro/micro-examinations of OMs and segregation analysis of Cr, Mn, Mo, Ni, and Si by microprobe analysis. The results show that OMs have widely different characteristics, such as mark type, depth, segregation, and accompanying microstructure. Furthermore, the mark pitch can vary considerably even for the similar casting conditions, leading to different conditions for the marks' formation in relation to the mold's cyclic movement. Finally, a mechanism for the OM formation is discussed and proposed. Possible solutions for minimizing the observed defects by optimizing the mold conditions are suggested.
NASA Technical Reports Server (NTRS)
Larimer, John W.; Ganapathy, R.
1987-01-01
The trace element distribution in oldhamite (CaS) extracted from enstatite chondrites was determined by INAA. Prior to extraction, the petrologic setting of the grains was studied microscopically, and their minor element contents determined by microprobe analysis; samples that displayed a wide range of minor element contents were selected for detailed elementary analysis. Those samples of CaS suspected to be more primitive on the basis of their minor element and petrologic siting contain the entire inventory of the host meteorite's light REE (LREE) and Eu, plus 30-50 percent of the heavy-REE inventory. In less primitive samples, the LREE are less enriched although Eu remains highly concentrated. Several other elements, including lithophiles and chalcophiles, are most enriched in the most primitive CaS. It is suggested that oldhamite played a key role in the redistribution of these elements during the metamorphism and evolution of enstatite-rich material.
Some wear studies on aircraft brake systems
NASA Technical Reports Server (NTRS)
Ho, T. L.
1975-01-01
An initial investigation of worn surfaces in friction pads and steel rotors used in current aircraft brakes was carried out using electron microprobe and X-ray diffraction analysis. It consists of the topographical study and the analysis of chemical element distribution. Based upon this initial examination, two approaches, microscopic and macroscopic have been conducted to interpret and formulate the wear mechanism of the aircraft brake materials. Microscopically, the wear particles were examined. The initiation and growth of surface cracks and the oxidation were emphasized in this investigation. Macroscopically, it has been found that, for the current copper based brake material sliding against 17-22 AS steel in a caliper brake, the surface temperature raised due to frictional heat is nonlinearly proportional to the load applied and slide time with speed at 1750 rpm. The wear of brake materials is then proportional to this temperature and is also a function of the melting temperature for copper.
NASA Technical Reports Server (NTRS)
Kornacki, A. S.; Wood, J. A.
1985-01-01
The technique developed by Kornacki (1984) for identifying group II Ca/Al-rich inclusions in carbonaceous chondrites by electron-microprobe analysis of the ZrO2 or Y2O3 content of their perovskite component is demonstrated using material from 20 Allende inclusions. The results are presented in tables and graphs and compared with findings obtained by other procedures. Group II inclusions are found to have perovskites generally containing less than 0.10 wt pct ZrO2 and/or Y2O3 (average of several grains), while those of groups I, III, V, and VI have more than 0.25 wt pct ZrO2. Analysis of data on eight Allende Ca/Al-rich inclusions shows that 75 percent of the fine-grained inclusions belong to group II. The implications of these findings for fractionation processes in the primitive solar nebula are indicated.
NASA Astrophysics Data System (ADS)
Hidayat, Taufiq; Shishin, Denis; Grimsey, David; Hayes, Peter C.; Jak, Evgueni
2018-02-01
The Kalgoorlie Nickel Smelter (KNS) produces low Fe, low Cu nickel matte in its Peirce-Smith converter operations. To inform process development in the plant, new fundamental data are required on the effect of CaO in slag on the distribution of arsenic between slag and matte. A combination of plant sample analysis, high-temperature laboratory experiments, and thermodynamic modeling was carried out to identify process conditions in the converter and to investigate the effect of slag composition on the chemical behavior of the system. The high-temperature experiments involved re-equilibration of industrial matte-slag-lime samples at 1498 K (1225 °C) and P(SO2) = 0.12 atm on a magnetite/quartz substrate, rapid quenching in water, and direct measurement of phase compositions using electron probe X-ray microanalysis (EPMA) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). A private thermodynamic database for the Ca-Cu-Fe-Mg-Ni-O-S-Si-(As) system was used together with the FactSage software package to assist in the analysis. Thermodynamic predictions combined with plant sample characterization and the present experimental data provide a quantitative basis for the analysis of the effect of CaO fluxing on the slag-matte thermochemistry during nickel sulfide converting, in particular on the spinel liquidus and the distribution of elements between slag and matte as a function of CaO addition.
NASA Technical Reports Server (NTRS)
Flynn, G. J.; Sutton, S. R.
1989-01-01
Trace element analyses were performed on bulk cosmic dust particles by Proton Induced X Ray Emission (PIXE) and Synchrotron X Ray Fluorescence (SXRF). When present at or near chondritic abundances the trace elements K, Ti, Cr, Mn, Cu, Zn, Ga, Ge, Se, and Br are presently detectable by SXRF in particles of 20 micron diameter. Improvements to the SXRF analysis facility at the National Synchrotron Light Source presently underway should increase the range of detectable elements and permit the analysis of smaller samples. In addition the Advanced Photon Source will be commissioned at Argonne National Laboratory in 1995. This 7 to 8 GeV positron storage ring, specifically designed for high-energy undulator and wiggler insertion devices, will be an ideal source for an x ray microprobe with one micron spatial resolution and better than 100 ppb elemental sensitivity for most elements. Thus trace element analysis of individual micron-sized grains should be possible by the time of the comet nucleus sample return mission.
Probing below the Surface of Mars. ITEA/NASA-JPL Learning Activity.
ERIC Educational Resources Information Center
Urquhart, Mary; Urquhart, Sally
2000-01-01
This activity, developed by NASA's Jet Propulsion Laboratory, involves students in recording and graphing temperature data to learn about NASA's Mars Microprobe Mission, Deep Space 2, and how the properties of a material affect the transfer of heat. (Author/JOW)
Compositional Zoning and Mn-Cr Systematics in Carbonates from the Y791198 CM2 Carbonaceous Chondrite
NASA Technical Reports Server (NTRS)
Brearley, Adrian J.; Hutcheon, Ian D.; Browning, Lauren
2001-01-01
Cathodoluminescence and microprobe analyses show that carbonates in Y791198 exhibit complex zoning. Cr-Mn dating suggests formation of carbonates 10 Ma after CAI formation Additional information is contained in the original extended abstract..
High Fluence Synchrotron Radiation Microprobe Effects on Stardust Interstellar Dust Candidates
NASA Astrophysics Data System (ADS)
Simionovici, A.; Allen, C.; Bajt, S.; Bastien, R.; Bechtel, H.; Borg, J.; Brenker, F. E.; Bridges, J. C.; Brownlee, D. E.; Burchell, M. J.; Burghammer, M.; Butterworth, A.; Cloetens, P.; Davis, A. M.; Floss, C.; Flynn, G.; Frank, D.; Gainsforth, Z.; Grün, E.; Heck, P. R.; Hillier, J.; Hoppe, P.; Howard, L.; Huss, G. R.; Huth, J.; Kearsley, A. T.; King, A. J.; Lai, B.; Leitner, J.; Lemelle, L.; Leroux, H.; Lettieri, R.; Marchant, W.; Nittler, L.; Ogliore, R.; Postberg, F.; Sandford, S.; Sans Tresseras, J. A.; Schoonjans, T.; Schmitz, S.; Silversmit, G.; Srama, R.; Stadermann, F. J.; Stephan, T.; Stodolna, J.; Stroud, R. M.; Sutton, S.; Tucoulou, R.; Trieloff, M.; Tsou, P.; Tsuchiyama, A.; Tyliczszak, T.; Vekemans, B.; Vincze, L.; Westphal, A. J.; Zevin, D.; Zolensky, M. E.; 29,000 Stardust@Home Dusters
2011-03-01
We are presenting for the first time damage effects produced by focused high-fluence synchrotron beams on Stardust interstellar dust candidates. The damage produced on submicrometer grains shows up as particle smearing. We attribute this mainly to charging effects.
Particulate matter in exhaled breath condensate: A promising indicator of environmental conditions
NASA Astrophysics Data System (ADS)
Pinheiro, Teresa; Alexandra Barreiros, M.; Alves, Luis C.; Felix, Pedro M.; Franco, Cristiana; Sousa, Joana; Almeida, S. M.
2011-10-01
Assessing the retention of aerosol particles in the human lung, one of the most important pathways of absorption, is a demanding issue. At present, there is no direct biomarker of exposure for the respiratory system. The collection of exhaled breath condensate (EBC) constitutes a new non-invasive method for sampling from the lung. However, the heterogeneity of the sample due to particulate matter suspended in the condensed phase may influence the quality of analytical results in occupational assessments. The main objective of the study was to confirm the presence of particulate matter in the condensate, to investigate how large the particles in suspension could be and to determine their elemental contents relative to those of EBC matrix. This paper reports on preliminary nuclear microprobe data of particulate matter in EBC. The sizes and the elemental contents of particles suspended in EBC of workers of a lead processing industry and in EBC of non-exposed individuals were inspected. Results demonstrated that EBC of workers contain large aerosol particles, isolated and in agglomerates, contrasting with non-exposed individuals. The particles contained high concentrations of Cl, Ca, Zn and Pb that are elements associated to the production process. These elements were also present in the EBC matrix although in much lower levels, suggesting that a fraction of the inhaled particulate matter was solubilised or their size-ranges were below the nuclear microprobe resolution. Therefore, the morphological characterization of individual particles achieved with nuclear microprobe techniques helped describing EBC constituents in detail, to comprehend their origin and enabled to delineate methodological procedures that can be recommended in occupational assessments. These aspects are critical to the validation of EBC as a biomarker of exposure to metals for the respiratory system.
Walker, R.; Mastalerz, Maria
2004-01-01
The individual maceral chemistries of two Pennsylvanian, high volatile bituminous coals, the Danville Coal Member (Dugger Formation, R o=0.55%) and the Lower Block Coal Member (Brazil Formation, R o=0.56%) of Indiana, were investigated using electron microprobe and Fourier Transform Infrared Spectrometry (FTIR) techniques, with the purpose of understanding differences in their coking behavior. Microprobe results reveal that carbon contents are highest in inertinite and sporinite, followed by desmocollinite and telocollinite. Oxygen and organic nitrogen are most abundant in telocollinite and desmocollinite; sporinite and inertinite contain lesser amounts of these two elements. Organic sulfur contents are highest in sporinite, lowest in inertinite, and intermediate in desmocollinite and telocollinite. Vitrinites within the Danville and Lower Block coals are very similar in elemental composition, while Lower Block inertinites and sporinites have higher carbon, lower oxygen, and sulfur contents which, when combined with the inertinite-and sporinite-rich composition of the Lower Block seam, strongly influences its whole coal chemistry. Fourier transform infrared spectrometry revealed greater aromatic hydrogen in the Lower Block coal, along with higher CH2/CH3 ratios, which suggest that liptinites contribute considerable amounts of long-chain, unbranched aliphatics to the overall kerogen composition of the Lower Block coal. Long-chain, unbranched aliphatics crack at higher temperatures, producing tar and oily byproducts during coking; these may help increase Lower Block plasticity. Electron microprobe and FTIR results indicate that individual maceral chemistries, combined with the maceral composition of the seam, are the primary control of better coking properties of the Lower Block coal. ?? 2003 Elsevier B.V. All rights reserved.
A high brightness proton injector for the Tandetron accelerator at Jožef Stefan Institute
NASA Astrophysics Data System (ADS)
Pelicon, Primož; Podaru, Nicolae C.; Vavpetič, Primož; Jeromel, Luka; Ogrinc Potocnik, Nina; Ondračka, Simon; Gottdang, Andreas; Mous, Dirk J. M.
2014-08-01
Jožef Stefan Institute recently commissioned a high brightness H- ion beam injection system for its existing tandem accelerator facility. Custom developed by High Voltage Engineering Europa, the multicusp ion source has been tuned to deliver at the entrance of the Tandetron™ accelerator H- ion beams with a measured brightness of 17.1 A m-2 rad-2 eV-1 at 170 μA, equivalent to an energy normalized beam emittance of 0.767 π mm mrad MeV1/2. Upgrading the accelerator facility with the new injection system provides two main advantages. First, the high brightness of the new ion source enables the reduction of object slit aperture and the reduction of acceptance angle at the nuclear microprobe, resulting in a reduced beam size at selected beam intensity, which significantly improves the probe resolution for micro-PIXE applications. Secondly, the upgrade strongly enhances the accelerator up-time since H and He beams are produced by independent ion sources, introducing a constant availability of 3He beam for fusion-related research with NRA. The ion beam particle losses and ion beam emittance growth imply that the aforementioned beam brightness is reduced by transport through the ion optical system. To obtain quantitative information on the available brightness at the high-energy side of the accelerator, the proton beam brightness is determined in the nuclear microprobe beamline. Based on the experience obtained during the first months of operation for micro-PIXE applications, further necessary steps are indicated to obtain optimal coupling of the new ion source with the accelerator to increase the normalized high-energy proton beam brightness at the JSI microprobe, currently at 14 A m-2 rad-2 eV-1, with the output current at 18% of its available maximum.
Development of modal layering in granites: a case study from the Carna Pluton, Connemara, Ireland
NASA Astrophysics Data System (ADS)
McKenzie, Kirsty; McCarthy, William; Hunt, Emma
2016-04-01
Modal layering in igneous rocks uniquely record dynamic processes operating in magma chambers and also host a large proportion of Earth's strategic mineral deposits. This research investigates the origin of biotite modal layering and primary pseudo-sedimentary structures in felsic magmas, by using a combination of Crystal Size Distribution (CSD) analysis and Electron Probe Microanalysis (EPMA) to determine the mechanisms responsible for the development of these structures in the Carna Pluton, Connemara, Ireland. The Carna Pluton is a composite granodiorite intrusion and is one of five plutons comprising the Galway Granite Complex (425 - 380 Ma). Prominent 30 cm thick modal layers are defined by sharp basal contacts to a biotite-rich (20%) granite, which grades upward over 10 cm into biotite-poor, alkali-feldspar megacrystic granite. The layering strikes parallel to, and dips 30-60° N toward the external pluton contact. Pseudo-sedimentary structures (cross-bedding, flame structures, slumping and crystal graded bedding) are observed within these layers. Petrographic observations indicate the layers contain euhedral biotite and fresh undeformed quartz and feldspar. Throughout the pluton, alkali-feldspar phenocrysts define a foliation that is sub-parallel to the strike of biotite modal layers. Together these observations indicate that the intrusion's concentric foliation, biotite layers and associated structures formed in the magmatic state and due to a complex interaction between magma flow and crystallisation processes. Biotite CSDs (>250 crystals per sample) were determined for nine samples across three biotite-rich layers in a single unit. Preliminary CSD results suggest biotite within basal contacts accumulated via fractional crystallisation within an upward-growing crystal pile, likely reflecting the yield strength of the magma as a limiting factor to gravitational settling of biotite. This is supported by the abrupt decrease in mean biotite crystal size across the contact, compared to the biotite crystals in the megacrystic granite below. CSD results provide additional evidence for in-situ textural coarsening of biotite. This study proposes a new model for the crystallisation dynamics of the Carna Pluton. During emplacement, 2 - 5 cm alkali-feldspar megacrysts were aligned and fractional crystallisation was the primary mechanism driving the formation of biotite modal layers. Pseudo-sedimentary structures are interpreted to have formed due to the entrainment of biotite crystals within a necessarily highly fluid magma chamber. However, this interpretation is difficult to reconcile with the high viscosities commonly associated with granitic melts. To test this hypothesis, ongoing EPMA analysis on biotite F content and Fe/(Fe+Mg) ratios will assess whether the magma viscosity could have been low enough to produce these features via flow processes; or whether expansion of the pluton and tilting of planar primary magmatic layers, prior to solidification, could be responsible.
NASA Technical Reports Server (NTRS)
Simon, Charles G.; Hunter, Jerry L.; Wortman, Jim J.; Griffis, Dieter P.
1992-01-01
Hypervelocity impact features from very small particles (less than 3 microns in diameter) on several of the electro-active dust sensors used in the Interplanetary Dust Experiment (IDE) were subjected to elemental analysis using an ion microscope. The same analytical techniques were applied to impact and containment features on a set of ultra-pure, highly polished single crystal germanium wafer witness plates that were mounted on tray B12. Very little unambiguously identifiable impactor debris was found in the central craters or shatter zones of small impacts in this crystalline surface. The surface contamination, ubiquitous on the surface of the Long Duration Exposure Facility, has greatly complicated data collection and interpretation from microparticle impacts on all surfaces.
Chemical processes involved in the initiation of hot corrosion of B-1900 and NASA-TRW VIA
NASA Technical Reports Server (NTRS)
Fryburg, G. C.; Kohl, F. J.; Stearns, C. A.
1979-01-01
Sodium sulfate induced hot corrosion of B-1900 and NASA-TRW VIA at 900 C was studied with special emphasis on the chemical reactions occurring during and immediately after the induction period. Thermogravimetric tests were run for set periods of time after which the samples were washed with water and water soluable metal salts and/or residual sulfates were analyzed chemically. Element distributions within the oxide layer were obtained from electron microprobe X-ray micrographs. A third set of samples were subjected to surface analysis by X-ray photoelectron spectroscopy. Evolution of SO2 was monitored throughout many of the hot corrosion tests. Results are interpreted in terms of acid-base fluxing mechanisms.
NASA Astrophysics Data System (ADS)
Erdei, S.; Galambos, L.; Tanaka, I.; Hesselink, L.; Cross, L. E.; Feigelson, R. S.; Ainger, F. W.; Kojima, H.
1996-10-01
Inhomogeneities in Ce-doped and undoped fibers grown by laser-heated pedestal growth (LHPG) along the c- or a- axis were investigated by two-dimensional scanning electron microprobe analysis (SEPMA). SEPMA data indicated that these cores are primarily connected with the source rod compositions utilized and the convection characteristics of the LHPG technique. Ba enrichment and Sr decrease were primarily detected in the cores and qualitatively described in terms of the composition-control mechanism of LHPG, the complex-segregation and a modified Burton—Prim—Slichter (BPS) equation. Certain aspects of defect structure as a complex congruency related phenomenon are also discussed in the paper giving a more complete interpretation of the origin of cores in SBN fibers.
NASA Technical Reports Server (NTRS)
Brearley, Adrian J.
1993-01-01
SEM, TEM, and electron microprobe analysis were used to investigate in detail the mineralogical and chemical characteristics of dark matrix and fine-grained rims in the unequilibrated CO3 chondrite ALHA77307. Data obtained revealed that there was a remarkable diversity of distinct mineralogical components, which can be identified using their chemical and textural characteristics. The matrix and rim components in ALHA77307 formed by disequilibrium condensation process as fine-grained amorphous dust that is represented by the abundant amorphous component in the matrix. Subsequent thermal processing of this condensate material, in a variety of environments in the nebula, caused partial or complete recrystallization of the fine-grained dust.