Science.gov

Sample records for microquasar cygnus x-1

  1. Origin of multi-band emission from the microquasar Cygnus X-1

    SciTech Connect

    Zhang, Jianfu; Lu, Jufu; Xu, Bing

    2014-06-20

    We study the origin of non-thermal emissions from the Galactic black hole X-ray binary Cygnus X-1, which is a confirmed high-mass microquasar. By analogy with the methods used in studies of active galactic nuclei, we propose a two-dimensional, time-dependent radiation model from the microquasar Cygnus X-1. In this model, the evolution equation for relativistic electrons in a conical jet are numerically solved by including escape, adiabatic, and various radiative losses. The radiative processes involved are synchrotron emission, its self-Compton scattering, and inverse Compton scatterings of an accretion disk and its surrounding stellar companion. This model also includes an electromagnetic cascade process of an anisotropic γ-γ interaction. We study the spectral properties of electron evolution and its emission spectral characteristic at different heights of the emission region located in the jet. We find that radio data from Cygnus X-1 are reproduced by the synchrotron emission, the Fermi Large Area Telescope measurements by the synchrotron emission and Comptonization of photons of the stellar companion, and the TeV band emission fluxes by the Comptonization of the stellar photons. Our results show the following. (1) The radio emission region extends from the binary system scales to the termination of the jet. (2) The GeV band emissions should originate from the distance close to the binary system scales. (3) The TeV band emissions could be inside the binary system, and these emissions could be probed by the upcoming Cherenkov Telescope Array. (4) The MeV tail emissions, which produce a strongly linearly polarized signal, are emitted inside the binary system. The location of the emissions is very close to the inner region of the jet.

  2. Relevance of jet emitting disc physics to microquasars: application to Cygnus X-1

    NASA Astrophysics Data System (ADS)

    Petrucci, P. O.; Ferreira, J.; Henri, G.; Malzac, J.; Foellmi, C.

    2010-11-01

    Context. Interpretation of the X-ray spectra of X-ray binaries during their hard states requires a hot, optically thin medium. There are several accretion disc models that account for this aspect. However, none is designed to simultaneously explain powerful jets detected during these states. Aims: A new quasi-Keplerian hot accretion disc solution, a jet emitting disc (JED hereafter), which is part of a global disc-jet MHD structure producing stationary super-alfvénic ejection, is investigated here. Its radiative and energetic properties are then compared to the observational constraints found in Cygnus X-1. Methods: We solve the disc energy equation by balancing the local heating term with advection and cooling by synchrotron, bremsstrahlung, and Comptonization processes. The heating term, disc density, accretion velocity, and magnetic field amplitude were taken from published self-similar models of accretion-ejection structures. Both optically thin and thick regimes are considered in a one-temperature, gas-supported disc. Results: Three branches of solutions are found to be possible at a given radius, but we only investigate the hot, optically thin and geometrically slim solutions. These solutions give simultaneously and consistently the radiative and energetics properties of the disc-jet system. They are able to reproduce the global accretion-ejection properties of Cygnus X-1 very well, namely its X-ray spectral emission, jet power, and jet velocity. About half of the released accretion power is used to produce two mildly relativistic (v/c≃ 0.5) jets, and for a luminosity of about 1% of the Eddington luminosity, the JED temperature and optical depth are close to what is observed in the hard state of Cygnus X-1. Conclusions: The accretion and ejection properties of JEDs agree with the observations of the prototypical black hole binary Cygnus X-1. The JED solutions are likely to be relevant to the whole class of microquasars.

  3. EPISODIC TRANSIENT GAMMA-RAY EMISSION FROM THE MICROQUASAR CYGNUS X-1

    SciTech Connect

    Sabatini, S.; Tavani, M.; Vittorini, V.; Piano, G.; Del Monte, E.; Feroci, M.; Argan, A.; D'Ammando, F.; Costa, E.; De Paris, G.; Bulgarelli, A.; Trifoglio, M.; Gianotti, F.; Di Cocco, G.; Barbiellini, G.; Caraveo, P.; Chen, A. W.

    2010-03-20

    Cygnus X-1 (Cyg X-1) is the archetypal black hole binary system in our Galaxy. We report the main results of an extensive search for transient gamma-ray emission from Cygnus X-1 carried out in the energy range 100 MeV-3 GeV by the AGILE satellite, during the period 2007 July-2009 October. The total exposure time is about 300 days, during which the source was in the 'hard' X-ray spectral state. We divided the observing intervals in 2-4 week periods, and searched for transient and persistent emission. We report an episode of significant transient gamma-ray emission detected on 2009 October 16 in a position compatible with Cyg X-1 optical position. This episode, which occurred during a hard spectral state of Cyg X-1, shows that a 1-2 day time variable emission above 100 MeV can be produced during hard spectral states, having important theoretical implications for current Comptonization models for Cyg X-1 and other microquasars. Except for this one short timescale episode, no significant gamma-ray emission was detected by AGILE. By integrating all available data, we obtain a 2{sigma} upper limit for the total integrated flux of F {sub {gamma}}{sub ,U.L.} = 3 x 10{sup -8} ph cm{sup -2} s{sup -1} in the energy range 100 MeV-3 GeV. We then clearly establish the existence of a spectral cutoff in the energy range 1-100 MeV that applies to the typical hard state outside the flaring period and that confirms the historically known spectral cutoff above 1 MeV.

  4. GAMMA-RAY OBSERVATIONS OF THE MICROQUASARS CYGNUS X-1, CYGNUS X-3, GRS 1915+105, AND GX 339–4 WITH THE FERMI LARGE AREA TELESCOPE

    SciTech Connect

    Bodaghee, Arash; Tomsick, John A.; Pottschmidt, Katja; Rodriguez, Jérôme; Pooley, Guy G.

    2013-10-01

    Detecting gamma-rays from microquasars is a challenging but worthwhile endeavor for understanding particle acceleration and the jet mechanism and for constraining leptonic/hadronic emission models. We present results from a likelihood analysis on timescales of 1 day and 10 days of ∼4 yr worth of gamma-ray observations (0.1-10 GeV) by Fermi-LAT of Cyg X-1, Cyg X-3, GRS 1915+105, and GX 339–4. Our analysis reproduced all but one of the previous gamma-ray outbursts of Cyg X-3 as reported with Fermi or AGILE, plus five new days on which Cyg X-3 is detected at a significance of ∼5σ that are not reported in the literature. In addition, Cyg X-3 is significantly detected on 10 day timescales outside of known gamma-ray flaring epochs, which suggests that persistent gamma-ray emission from Cyg X-3 has been detected for the first time. For Cyg X-1 we find three low-significance excesses (∼3-4σ) on daily timescales that are contemporaneous with gamma-ray flares reported (also at low significance) by AGILE. Two other microquasars, GRS 1915+105 and GX 339–4, are not detected, and we derive 3σ upper limits of 2.3 × 10{sup –8} photons cm{sup –2} s{sup –1} and 1.6 × 10{sup –8} photons cm{sup –2} s{sup –1}, respectively, on the persistent flux in the 0.1-10 GeV range. These results enable us to define a list of the general conditions that are necessary for the detection of gamma-rays from microquasars.

  5. Extreme particle acceleration in the microquasar Cygnus X-3.

    PubMed

    Tavani, M; Bulgarelli, A; Piano, G; Sabatini, S; Striani, E; Evangelista, Y; Trois, A; Pooley, G; Trushkin, S; Nizhelskij, N A; McCollough, M; Koljonen, K I I; Pucella, G; Giuliani, A; Chen, A W; Costa, E; Vittorini, V; Trifoglio, M; Gianotti, F; Argan, A; Barbiellini, G; Caraveo, P; Cattaneo, P W; Cocco, V; Contessi, T; D'Ammando, F; Del Monte, E; De Paris, G; Di Cocco, G; Di Persio, G; Donnarumma, I; Feroci, M; Ferrari, A; Fuschino, F; Galli, M; Labanti, C; Lapshov, I; Lazzarotto, F; Lipari, P; Longo, F; Mattaini, E; Marisaldi, M; Mastropietro, M; Mauri, A; Mereghetti, S; Morelli, E; Morselli, A; Pacciani, L; Pellizzoni, A; Perotti, F; Picozza, P; Pilia, M; Prest, M; Rapisarda, M; Rappoldi, A; Rossi, E; Rubini, A; Scalise, E; Soffitta, P; Vallazza, E; Vercellone, S; Zambra, A; Zanello, D; Pittori, C; Verrecchia, F; Giommi, P; Colafrancesco, S; Santolamazza, P; Antonelli, A; Salotti, L

    2009-12-01

    Super-massive black holes in active galaxies can accelerate particles to relativistic energies, producing jets with associated gamma-ray emission. Galactic 'microquasars', which are binary systems consisting of a neutron star or stellar-mass black hole accreting gas from a companion star, also produce relativistic jets, generally together with radio flares. Apart from an isolated event detected in Cygnus X-1, there has hitherto been no systematic evidence for the acceleration of particles to gigaelectronvolt or higher energies in a microquasar, with the consequence that we are as yet unsure about the mechanism of jet energization. Here we report four gamma-ray flares with energies above 100 MeV from the microquasar Cygnus X-3 (an exceptional X-ray binary that sporadically produces radio jets). There is a clear pattern of temporal correlations between the gamma-ray flares and transitional spectral states of the radio-frequency and X-ray emission. Particle acceleration occurred a few days before radio-jet ejections for two of the four flares, meaning that the process of jet formation implies the production of very energetic particles. In Cygnus X-3, particle energies during the flares can be thousands of times higher than during quiescent states. PMID:19935645

  6. VERITAS Observations of the Microquasar Cygnus X-3

    NASA Astrophysics Data System (ADS)

    Archambault, S.; Beilicke, M.; Benbow, W.; Berger, K.; Bird, R.; Bouvier, A.; Buckley, J. H.; Bugaev, V.; Byrum, K.; Cerruti, M.; Chen, X.; Ciupik, L.; Connolly, M. P.; Cui, W.; Duke, C.; Dumm, J.; Errando, M.; Falcone, A.; Federici, S.; Feng, Q.; Finley, J. P.; Fortson, L.; Furniss, A.; Galante, N.; Gillanders, G. H.; Griffin, S.; Griffiths, S. T.; Grube, J.; Gyuk, G.; Hanna, D.; Holder, J.; Hughes, G.; Humensky, T. B.; Kaaret, P.; Kertzman, M.; Khassen, Y.; Kieda, D.; Krawczynski, H.; Lang, M. J.; Madhavan, A. S.; Maier, G.; Majumdar, P.; McArthur, S.; McCann, A.; Moriarty, P.; Mukherjee, R.; Nieto, D.; O'Faoláin de Bhróithe, A.; Ong, R. A.; Otte, A. N.; Pandel, D.; Park, N.; Perkins, J. S.; Pohl, M.; Popkow, A.; Prokoph, H.; Quinn, J.; Ragan, K.; Rajotte, J.; Reyes, L. C.; Reynolds, P. T.; Richards, G. T.; Roache, E.; Sembroski, G. H.; Sheidaei, F.; Smith, A. W.; Staszak, D.; Telezhinsky, I.; Theiling, M.; Tucci, J. V.; Tyler, J.; Varlotta, A.; Vincent, S.; Wakely, S. P.; Weekes, T. C.; Weinstein, A.; Williams, D. A.; Zitzer, B.; VERITAS Collaboration and; McCollough, M. L.; Astrophysical Observatory, Smithsonian

    2013-12-01

    We report results from TeV gamma-ray observations of the microquasar Cygnus X-3. The observations were made with the Very Energetic Radiation Imaging Telescope Array System (VERITAS) over a time period from 2007 June 11 to 2011 November 28. VERITAS is most sensitive to gamma rays at energies between 85 GeV and 30 TeV. The effective exposure time amounts to a total of about 44 hr, with the observations covering six distinct radio/X-ray states of the object. No significant TeV gamma-ray emission was detected in any of the states, nor with all observations combined. The lack of a positive signal, especially in the states where GeV gamma rays were detected, places constraints on TeV gamma-ray production in Cygnus X-3. We discuss the implications of the results.

  7. Veritas observations of the microquasar Cygnus X-3

    SciTech Connect

    Archambault, S.; Beilicke, M.; Buckley, J. H.; Bugaev, V.; Benbow, W.; Cerruti, M.; Berger, K.; Bird, R.; Bouvier, A.; Byrum, K.; Chen, X.; Federici, S.; Ciupik, L.; Connolly, M. P.; Cui, W.; Feng, Q.; Duke, C.; Dumm, J.; Errando, M.; Falcone, A. E-mail: cui@purdue.edu; Collaboration: VERITAS Collaboration) and; Smithsonian Astrophysical Observatory; and others

    2013-12-20

    We report results from TeV gamma-ray observations of the microquasar Cygnus X-3. The observations were made with the Very Energetic Radiation Imaging Telescope Array System (VERITAS) over a time period from 2007 June 11 to 2011 November 28. VERITAS is most sensitive to gamma rays at energies between 85 GeV and 30 TeV. The effective exposure time amounts to a total of about 44 hr, with the observations covering six distinct radio/X-ray states of the object. No significant TeV gamma-ray emission was detected in any of the states, nor with all observations combined. The lack of a positive signal, especially in the states where GeV gamma rays were detected, places constraints on TeV gamma-ray production in Cygnus X-3. We discuss the implications of the results.

  8. THE TRIGONOMETRIC PARALLAX OF CYGNUS X-1

    SciTech Connect

    Reid, Mark J.; McClintock, Jeffrey E.; Narayan, Ramesh; Gou Lijun; Remillard, Ronald A.; Orosz, Jerome A.

    2011-12-01

    We report a direct and accurate measurement of the distance to the X-ray binary Cygnus X-1, which contains the first black hole to be discovered. The distance of 1.86{sup +0.12}{sub -0.11} kpc was obtained from a trigonometric parallax measurement using the Very Long Baseline Array. The position measurements are also sensitive to the 5.6 day binary orbit and we determine the orbit to be clockwise on the sky. We also measured the proper motion of Cygnus X-1 which, when coupled to the distance and Doppler shift, gives the three-dimensional space motion of the system. When corrected for differential Galactic rotation, the non-circular (peculiar) motion of the binary is only about 21 km s{sup -1}, indicating that the binary did not experience a large 'kick' at formation.

  9. How to Determine The Precession of the Inner Accretion Disk in Cygnus X-1

    SciTech Connect

    Torres, D F; Romero, G E; Barcons, X; Lu, Y

    2005-01-05

    We show that changes in the orientation of the inner accretion disk of Cygnus X-1 affect the shape of the broad Fe K{alpha} emission line emitted from this object, in such a way that eV-level spectral resolution observations (such as those that will be carried out by the ASTRO-E2 satellite) can be used to analyze the dynamics of the disk. We here present a new diagnosis tool, supported by numerical simulations, by which short observations of Cygnus X-1, separated in time, can determine whether its accretion disk actually processes, and if so, determine its period and precession angle. Knowing the precession parameters of Cygnus X-1 would result in a clarification of the origin of such precession, distinguishing between tidal and spin-spin coupling. This approach could also be used for similar studies in other microquasar systems.

  10. Spectral energy distribution, radio maps and polarization of Cygnus X-1: a lepto-hadronic model

    NASA Astrophysics Data System (ADS)

    Vila, G. S.; Pepe, C.; Romero, G. E.

    2016-08-01

    The microquasar Cygnus X-1 is one of the most studied astrophysical sources. Several radiative models for the non-thermal broadband emission of Cygnus X-1 are available. For the jet emission in particular, only leptonic models have been considered despite the observational evidence of the presence of hadrons in the jets of other microquasars. In this work, we present an inhomogeneous, lepto-hadronic jet model for the non-thermal broadband emission of Cygnus X-1. We calculate the contribution to the spectrum of both relativistic electrons and protons, taking into account their interaction with the magnetic field, matter and photon fields internal and external to the jet. We obtain best-fit models for the spectrum that reproduce the observations from radio to gamma rays, including the MeV tail whose origin is still disputed. We also produce synthetic radio maps of the jet and compare them to actual interferometric observations of the source. Finally, we present preliminary results for the degree of polarization of the jet radiation in the MeV band.

  11. Modulated high-energy gamma-ray emission from the microquasar Cygnus X-3.

    PubMed

    Abdo, A A; Ackermann, M; Ajello, M; Axelsson, M; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Celik, O; Chaty, S; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Cominsky, L R; Conrad, J; Corbel, S; Corbet, R; Dermer, C D; de Palma, F; Digel, S W; do Couto e Silva, E; Drell, P S; Dubois, R; Dubus, G; Dumora, D; Farnier, C; Favuzzi, C; Fegan, S J; Focke, W B; Fortin, P; Frailis, M; Fusco, P; Gargano, F; Gehrels, N; Germani, S; Giavitto, G; Giebels, B; Giglietto, N; Giordano, F; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guillemot, L; Guiriec, S; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hill, A B; Hjalmarsdotter, L; Horan, D; Hughes, R E; Jackson, M S; Jóhannesson, G; Johnson, A S; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kawai, N; Kerr, M; Knödlseder, J; Kocian, M L; Koerding, E; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Marchand, L; Marelli, M; Max-Moerbeck, W; Mazziotta, M N; McColl, N; McEnery, J E; Meurer, C; Michelson, P F; Migliari, S; Mitthumsiri, W; Mizuno, T; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Omodei, N; Ong, R A; Ormes, J F; Paneque, D; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piron, F; Pooley, G; Porter, T A; Pottschmidt, K; Rainò, S; Rando, R; Ray, P S; Razzano, M; Rea, N; Readhead, A; Reimer, A; Reimer, O; Richards, J L; Rochester, L S; Rodriguez, J; Rodriguez, A Y; Romani, R W; Ryde, F; Sadrozinski, H F-W; Sander, A; Saz Parkinson, P M; Sgrò, C; Siskind, E J; Smith, D A; Smith, P D; Spinelli, P; Starck, J-L; Stevenson, M; Strickman, M S; Suson, D J; Takahashi, H; Tanaka, T; Thayer, J B; Thompson, D J; Tibaldo, L; Tomsick, J A; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Vasileiou, V; Vilchez, N; Vitale, V; Waite, A P; Wang, P; Wilms, J; Winer, B L; Wood, K S; Ylinen, T; Ziegler, M

    2009-12-11

    Microquasars are accreting black holes or neutron stars in binary systems with associated relativistic jets. Despite their frequent outburst activity, they have never been unambiguously detected emitting high-energy gamma rays. The Fermi Large Area Telescope (LAT) has detected a variable high-energy source coinciding with the position of the x-ray binary and microquasar Cygnus X-3. Its identification with Cygnus X-3 is secured by the detection of its orbital period in gamma rays, as well as the correlation of the LAT flux with radio emission from the relativistic jets of Cygnus X-3. The gamma-ray emission probably originates from within the binary system, opening new areas in which to study the formation of relativistic jets. PMID:19965378

  12. Modulated High-Energy Gamma-Ray Emission from the Microquasar Cygnus X-3

    NASA Astrophysics Data System (ADS)

    Fermi LAT Collaboration; Abdo, A. A.; Ackermann, M.; Ajello, M.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Baughman, B. M.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Brez, A.; Brigida, M.; Bruel, P.; Burnett, T. H.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Casandjian, J. M.; Cecchi, C.; Çelik, Ö.; Chaty, S.; Cheung, C. C.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Cominsky, L. R.; Conrad, J.; Corbel, S.; Corbet, R.; Dermer, C. D.; de Palma, F.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Dubus, G.; Dumora, D.; Farnier, C.; Favuzzi, C.; Fegan, S. J.; Focke, W. B.; Fortin, P.; Frailis, M.; Fusco, P.; Gargano, F.; Gehrels, N.; Germani, S.; Giavitto, G.; Giebels, B.; Giglietto, N.; Giordano, F.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Grondin, M.-H.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Hanabata, Y.; Harding, A. K.; Hayashida, M.; Hays, E.; Hill, A. B.; Hjalmarsdotter, L.; Horan, D.; Hughes, R. E.; Jackson, M. S.; Jóhannesson, G.; Johnson, A. S.; Johnson, T. J.; Johnson, W. N.; Kamae, T.; Katagiri, H.; Kawai, N.; Kerr, M.; Knödlseder, J.; Kocian, M. L.; Koerding, E.; Kuss, M.; Lande, J.; Latronico, J.; Lemoine-Goumard, M.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Madejski, G. M.; Makeev, A.; Marchand, L.; Marelli, M.; Max-Moerbeck, W.; Mazziotta, M. N.; McColl, N.; McEnery, J. E.; Meurer, C.; Michelson, P. F.; Migliari, S.; Mitthumsiri, W.; Mizuno, T.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Norris, J. P.; Nuss, E.; Ohsugi, T.; Omodei, N.; Ong, R. A.; Ormes, J. F.; Paneque, D.; Parent, D.; Pelassa, V.; Pepe, M.; Pesce-Rollins, M.; Piron, F.; Pooley, G.; Porter, T. A.; Pottschmidt, K.; Rainò, S.; Rando, R.; Ray, P. S.; Razzano, M.; Rea, N.; Readhead, A.; Reimer, A.; Reimer, O.; Richards, J. L.; Rochester, L. S.; Rodriguez, J.; Rodriguez, A. Y.; Romani, R. W.; Ryde, F.; Sadrozinski, H. F.-W.; Sander, A.; Saz Parkinson, P. M.; Sgrò, C.; Siskind, E. J.; Smith, D. A.; Smith, P. D.; Spinelli, P.; Starck, J.-L.; Stevenson, M.; Strickman, M. S.; Suson, D. J.; Takahashi, H.; Tanaka, T.; Thayer, J. B.; Thompson, D. J.; Tibaldo, L.; Tomsick, J. A.; Torres, D. F.; Tosti, G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Vasileiou, V.; Vilchez, N.; Vitale, V.; Waite, A. P.; Wang, P.; Wilms, J.; Winer, B. L.; Wood, K. W.; Ylinen, T.; Ziegler, M.

    2009-12-01

    Microquasars are accreting black holes or neutron stars in binary systems with associated relativistic jets. Despite their frequent outburst activity, they have never been unambiguously detected emitting high-energy gamma rays. The Fermi Large Area Telescope (LAT) has detected a variable high-energy source coinciding with the position of the x-ray binary and microquasar Cygnus X-3. Its identification with Cygnus X-3 is secured by the detection of its orbital period in gamma rays, as well as the correlation of the LAT flux with radio emission from the relativistic jets of Cygnus X-3. The gamma-ray emission probably originates from within the binary system, opening new areas in which to study the formation of relativistic jets.

  13. Modulated high-energy gamma-ray emission from the microquasar Cygnus X-3.

    PubMed

    Abdo, A A; Ackermann, M; Ajello, M; Axelsson, M; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Celik, O; Chaty, S; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Cominsky, L R; Conrad, J; Corbel, S; Corbet, R; Dermer, C D; de Palma, F; Digel, S W; do Couto e Silva, E; Drell, P S; Dubois, R; Dubus, G; Dumora, D; Farnier, C; Favuzzi, C; Fegan, S J; Focke, W B; Fortin, P; Frailis, M; Fusco, P; Gargano, F; Gehrels, N; Germani, S; Giavitto, G; Giebels, B; Giglietto, N; Giordano, F; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guillemot, L; Guiriec, S; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hill, A B; Hjalmarsdotter, L; Horan, D; Hughes, R E; Jackson, M S; Jóhannesson, G; Johnson, A S; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kawai, N; Kerr, M; Knödlseder, J; Kocian, M L; Koerding, E; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Marchand, L; Marelli, M; Max-Moerbeck, W; Mazziotta, M N; McColl, N; McEnery, J E; Meurer, C; Michelson, P F; Migliari, S; Mitthumsiri, W; Mizuno, T; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Omodei, N; Ong, R A; Ormes, J F; Paneque, D; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piron, F; Pooley, G; Porter, T A; Pottschmidt, K; Rainò, S; Rando, R; Ray, P S; Razzano, M; Rea, N; Readhead, A; Reimer, A; Reimer, O; Richards, J L; Rochester, L S; Rodriguez, J; Rodriguez, A Y; Romani, R W; Ryde, F; Sadrozinski, H F-W; Sander, A; Saz Parkinson, P M; Sgrò, C; Siskind, E J; Smith, D A; Smith, P D; Spinelli, P; Starck, J-L; Stevenson, M; Strickman, M S; Suson, D J; Takahashi, H; Tanaka, T; Thayer, J B; Thompson, D J; Tibaldo, L; Tomsick, J A; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Vasileiou, V; Vilchez, N; Vitale, V; Waite, A P; Wang, P; Wilms, J; Winer, B L; Wood, K S; Ylinen, T; Ziegler, M

    2009-12-11

    Microquasars are accreting black holes or neutron stars in binary systems with associated relativistic jets. Despite their frequent outburst activity, they have never been unambiguously detected emitting high-energy gamma rays. The Fermi Large Area Telescope (LAT) has detected a variable high-energy source coinciding with the position of the x-ray binary and microquasar Cygnus X-3. Its identification with Cygnus X-3 is secured by the detection of its orbital period in gamma rays, as well as the correlation of the LAT flux with radio emission from the relativistic jets of Cygnus X-3. The gamma-ray emission probably originates from within the binary system, opening new areas in which to study the formation of relativistic jets.

  14. The Lukewarm Absorber in the Microquasar Cir X-1

    NASA Astrophysics Data System (ADS)

    Schulz, Norbert S.; Galloway, D. K.; Brandt, W. N.

    2006-09-01

    Through many observations in the last decades the extreme and violent X-ray binary Cir X-1 has been classified as a microquasar, Z-source, X-ray burster, and accreting neutron star exhibiting ultrarelativistic jets. Since the launch of Chandra the source underwent a dramatic change from a high flux (1.5 Crab) source to a rather low persistent flux ( 30 mCrab) in the last year. Spectra from Chandra High Energy Transmission Grating Spectrometer (HETGS) taken during this transformation have revealed many details besides the large overall flux change ranging from blue-shifted absorption lines indicating high-velocity (< 2000 km/s) outflows during high flux, persistently bright lines emission throughout all phases to some form of warm absorption in the low flux phase. Newly released atomic data allows us to analyse specifically the Fe K line region with unprecedented detail for all flux phases observed so far. We also compare these new results with recently released findings of warm absorbers and outflow signatures observed in other microqasars such as GX 339+4, GRS J1655-40, and GRS1915+115.

  15. XMM-Newton observations of CYGNUS X-1

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard F. (Technical Monitor); Miller, Jon

    2005-01-01

    Observations of Cygnus X-1 were first attempted under this program in the spring of 2004, but were complicated by instrumental flaring problems. Successful observations were completed in the fall of 2004, and processed data were delivered to the PI in the winter and spring of 2005. Thus, focused work on this data was only possible starting in 2005. A preliminary reduction and analysis of data from the EPIC CCD cameras and the Reflection Grating Spectrometer has been made. The EPIC spectra reveal the best example of a broadened, relativistic iron emission line yet found in Cygnus X-1. The Oxygen K-shell region has been shown to be a very complex wavelength range in numerous spectra of accreting sources, but the RGS spectra reveal this region in great detail and will be important in understanding the wind from the 0-type donor star that is focused onto the black hole in Cygnus X-1.

  16. AGILE Detection of Gamma-Ray Emission from the Microquasar Cygnus X-3

    NASA Astrophysics Data System (ADS)

    Piano, G.; Tavani, M.; Bulgarelli, A.; Verrecchia, F.; Donnarumma, I.; Munar-Adrover, P.; Minervini, G.; Fioretti, V.; Zoli, A.; Pittori, C.; Lucarelli, F.; Vercellone, S.; Striani, E.; Cardillo, M.; Gianotti, F.; Trifoglio, M.; Giuliani, A.; Mereghetti, S.; Caraveo, P.; Perotti, F.; Chen, A.; Argan, A.; Costa, E.; Del Monte, E.; Evangelista, Y.; Feroci, M.; Lazzarotto, F.; Lapshov, I.; Pacciani, L.; Soffitta, P.; Sabatini, S.; Vittorini, V.; Pucella, G.; Rapisarda, M.; Di Cocco, G.; Fuschino, F.; Galli, M.; Labanti, C.; Marisaldi, M.; Pellizzoni, A.; Pilia, M.; Trois, A.; Barbiellini, G.; Vallazza, E.; Longo, F.; Morselli, A.; Picozza, P.; Prest, M.; Lipari, P.; Zanello, D.; Cattaneo, P. W.; Rappoldi, A.; Colafrancesco, S.; Parmiggiani, N.; Ferrari, A.; Antonelli, A.; Giommi, P.; Salotti, L.; Valentini, G.; D'Amico, F.

    2016-08-01

    The AGILE-GRID detector is revealing gamma-ray emission above 100 MeV from a source positionally consistent with the microquasar Cygnus X-3. Integrating from 2016-08-28 UT 09:00:00 to 2016-08-30 UT 09:00:00 (MJD: 57628.375 - 57630.375), a preliminary multi-source likelihood analysis detects a gamma-ray flux F( > 100 MeV) = (4.0 +/- 1.4) x 10^-6 photons/cm^2/s with a significance near 4 sigma.

  17. Absorption dips at low X-ray energies in Cygnus X-1. [observed with Copernicus satellite

    NASA Technical Reports Server (NTRS)

    Murdin, P. G.

    1976-01-01

    Absorbing material in Cygnus X-1 jitters near the line joining the two stars, out of the orbital plane is described. Three looks with the Copernicus satellite at Cygnus X-1 have produced four examples of absorption dips (decreases in the 2 to 7 keV flux from Cygnus X-1 with an increase of spectral hardness consistent with photoelectric absorption).

  18. A Multiwavelength Study of Cygnus X-1: The First Mid-infrared Spectroscopic Detection of Compact Jets

    NASA Astrophysics Data System (ADS)

    Rahoui, Farid; Lee, Julia C.; Heinz, Sebastian; Hines, Dean C.; Pottschmidt, Katja; Wilms, Jörn; Grinberg, Victoria

    2011-07-01

    We report on a Spitzer/InfraRed Spectrograph (mid-infrared), RXTE/PCA+HEXTE (X-ray), and Ryle (radio) simultaneous multiwavelength study of the microquasar Cygnus X-1, which aimed at an investigation of the origin of its mid-infrared emission. Compact jets were present in two out of three observations, and we show that they strongly contribute to the mid-infrared continuum. During the first observation, we detect the spectral break—where the transition from the optically thick to the optically thin regime takes place—at about 2.9 × 1013 Hz. We then show that the jet's optically thin synchrotron emission accounts for Cygnus X-1's emission beyond 400 keV, although it cannot alone explain its 3-200 keV continuum. A compact jet was also present during the second observation, but we do not detect the break, since it has likely shifted to higher frequencies. In contrast, the compact jet was absent during the last observation, and we show that the 5-30 μm mid-infrared continuum of Cygnus X-1 stems from the blue supergiant companion star HD 226868. Indeed, the emission can then be understood as the combination of the photospheric Rayleigh-Jeans tail and the bremsstrahlung from the expanding stellar wind. Moreover, the stellar wind is found to be clumpy, with a filling factor f ∞ ≈ 0.09-0.10. Its bremsstrahlung emission is likely anti-correlated to the soft X-ray emission, suggesting an anti-correlation between the mass-loss and mass-accretion rates. Nevertheless, we do not detect any mid-infrared spectroscopic evidence of interaction between the jets and Cygnus X-1's environment and/or the companion star's stellar wind.

  19. A MULTIWAVELENGTH STUDY OF CYGNUS X-1: THE FIRST MID-INFRARED SPECTROSCOPIC DETECTION OF COMPACT JETS

    SciTech Connect

    Rahoui, Farid; Lee, Julia C.; Heinz, Sebastian; Hines, Dean C.; Pottschmidt, Katja; Wilms, Joern; Grinberg, Victoria E-mail: jclee@cfa.harvard.edu E-mail: hines@stsci.edu E-mail: joern.wilms@sternwarte.uni-erlangen.de

    2011-07-20

    We report on a Spitzer/InfraRed Spectrograph (mid-infrared), RXTE/PCA+HEXTE (X-ray), and Ryle (radio) simultaneous multiwavelength study of the microquasar Cygnus X-1, which aimed at an investigation of the origin of its mid-infrared emission. Compact jets were present in two out of three observations, and we show that they strongly contribute to the mid-infrared continuum. During the first observation, we detect the spectral break-where the transition from the optically thick to the optically thin regime takes place-at about 2.9 x 10{sup 13} Hz. We then show that the jet's optically thin synchrotron emission accounts for Cygnus X-1's emission beyond 400 keV, although it cannot alone explain its 3-200 keV continuum. A compact jet was also present during the second observation, but we do not detect the break, since it has likely shifted to higher frequencies. In contrast, the compact jet was absent during the last observation, and we show that the 5-30 {mu}m mid-infrared continuum of Cygnus X-1 stems from the blue supergiant companion star HD 226868. Indeed, the emission can then be understood as the combination of the photospheric Rayleigh-Jeans tail and the bremsstrahlung from the expanding stellar wind. Moreover, the stellar wind is found to be clumpy, with a filling factor f{sub {infinity}} {approx} 0.09-0.10. Its bremsstrahlung emission is likely anti-correlated to the soft X-ray emission, suggesting an anti-correlation between the mass-loss and mass-accretion rates. Nevertheless, we do not detect any mid-infrared spectroscopic evidence of interaction between the jets and Cygnus X-1's environment and/or the companion star's stellar wind.

  20. The Microquasar Cyg X-1: A Short Review

    NASA Technical Reports Server (NTRS)

    Nowak, M. A.; Wilms, J.; Hanke, M.; Pottschmidt, K.; Markoff, S.

    2011-01-01

    We review the spectral properties of the black hole candidate Cygnus X-I. Specifically, we discuss two recent sets of multi-satellite observations. One comprises a 0.5-500 keY spectrum, obtained with eve!)' flying X-ray satellite at that time, that is among the hardest Cyg X-I spectra observed to date. The second set is comprised of 0.5-40 keV Chandra-HETG plus RXTE-PCA spectra from a radio-quiet, spectrally soft state. We first discuss the "messy astrophysics" often neglected in the study of Cyg X-I, i.e., ionized absorption from the wind of the secondary and the foreground dust scattering halo. We then discuss components common to both state extremes: a low temperature accretion disk, and a relativistically broadened Fe line and reflection. Hard state spectral models indicate that the disk inner edge does not extend beyond > or approx.= 40 GM/sq c , and may even approach as close as approx. = 6GM/sq c. The soft state exhibits a much more prominent disk component; however, its very low normalization plausibly indicates a spinning black hole in the Cyg X-I system. Key words. accretion, accretion disks - black hole physics - X-rays:binaries

  1. Shell-shocked: the interstellar medium near Cygnus X-1

    NASA Astrophysics Data System (ADS)

    Sell, P. H.; Heinz, S.; Richards, E.; Maccarone, T. J.; Russell, D. M.; Gallo, E.; Fender, R.; Markoff, S.; Nowak, M.

    2015-02-01

    We conduct a detailed case study of the interstellar shell near the high-mass X-ray binary, Cygnus X-1. We present new WIYN optical spectroscopic and Chandra X-ray observations of this region, which we compare with detailed MAPPINGS III shock models, to investigate the outflow powering the shell. Our analysis places improved, physically motivated constraints on the nature of the shock wave and the interstellar medium (ISM) it is plowing through. We find that the shock is travelling at less than a few hundred km s-1 through a low-density ISM (<5 cm-3). We calculate a robust, 3σ upper limit to the total, time-averaged power needed to drive the shock wave and inflate the bubble, <2 × 1038 erg s-1. We then review possible origins of the shock wave. We find that a supernova origin to the shock wave is unlikely and that the black hole jet and/or O-star wind can both be central drivers of the shock wave. We conclude that the source of the Cygnus X-1 shock wave is far from solved.

  2. Catching Up on State Transitions in Cygnus X-1

    NASA Technical Reports Server (NTRS)

    Boeck, Moritz; Hanke, Manfred; Wilms, Joern; Pirner, Stefan; Grinberg, Victoria; Markoff, Sera; Pottschmidt, Katja; Nowak, Michael A.; Pooley, Guy

    2008-01-01

    In 2005 February we observed Cygnus X-1 over a period of 10 days quasi-continuously with the Rossi X-ray Timing Explorer and the Ryle telescope. We present the results of the spectral and timing analysis on a timescale of 90 min and show that the behavior of Cyg X-1 is similar to that found during our years long monitoring campaign. As a highlight we present evidence for a full transition from the hard to the soft state that happened during less than three hours. The observation provided a more complete picture of a state transition than before, especially concerning the evolution of the time lags, due to unique transition coverage and analysis with high time resolution.

  3. The Extreme Spin of the Black Hole Cygnus X-1

    NASA Technical Reports Server (NTRS)

    Gou, Lijun; McClintock, Jeffrey E.; Reid, Mark J.; Orosz, Jerome A.; Steiner, James F.; Narayan, Ramesh; Xiang, Jingen; Remillard, Ronald A.; Arnaud, Keith A.; Davis, Shane W.

    2011-01-01

    Remarkably, an astronomical black hole is completely described by the two numbers that specify its mass and its spin. Knowledge of spin is crucial for understanding how, for example, black holes produce relativistic jets. Recently, it has become possible to measure the spins of black holes by focusing on the very inner region of an accreting disk of hot gas orbiting the black hole. According to General Relativity (GR), this disk is truncated at an inner radius 1 that depends only on the mass and spin of the black hole. We measure the radius of the inner edge of this disk by fitting its continuum X-ray spectrum to a fully relativistic model. Using our measurement of this radius, we deduce that the spin of Cygnus X-1 exceeds 97% of the maximum value allowed by GR.

  4. Feeding the monster: Wind accretion in Cygnus X-1

    NASA Astrophysics Data System (ADS)

    Miskovicova, Ivica

    2012-07-01

    Stellar wind in HMXBs is highly structured: dense clumps of low temperatures are embedded in highly ionized material. We present analysis of the focused stellar wind in the hard state of Cygnus X-1 from high-resolution Chandra-HETGS observations at four distinct orbital phases: phi~0, ~0.2, ~0.5 and ~0.75. All light curves but the one at phi~0.5 show strong absorption dips that are believed to be caused by the clumps. We compare the spectral properties between dips and persistent flux: while the H-like and He-like absorption lines reveal the highly photoionized wind, the lines of lower ionization stages visible only in the dip spectra constrain the properties of the clumps. Comparison between different orbital phases allows us to study the complex structure and dynamics of the wind.

  5. RXTE Observation of Cygnus X-1 Spectral Analysis

    NASA Technical Reports Server (NTRS)

    Dove, J. B.; Wilms, Joern; Nowak, M. A.; Vaughan, B. A.; Begelman, M. C.

    1998-01-01

    We present the results of the analysis of the broad-band spectrum of Cygnus X-1 from 3.0 to 200 keV, using data from a 10 ksec observation by the Rossi X-ray Timing Explorer. Although the spectrum can be well described phenomenologically by an exponentially cut-off power law (photon index Gamma = 1.45+0.01 -0.02 , e-folding energy e(sub f) = 162+9 -8 keV, plus a deviation from a power law that formally can be modeled as a thermal blackbody, with temperature kT(sub BB) = 1.2 +0.0 -0.1 keV), the inclusion of a reflection component does not improve the fit. As a physical description of this system, we apply the accretion disc corona (ADC) models. A slab-geometry ADC model is unable to describe the data. However, a spherical corona, with a total optical depth tau- = 1.6 + or - 0.1 and an average temperature kTc = 87 + or - 5 keV, surrounded by an exterior cold disc, does provide a good description of the data (X red (exp 2) = 1.55). These models deviate from the data bv up to 7% in the 5-10 keV range. However, considering how successfully the spherical corona reproduces the 10-200 keV data, such "photon-starved" coronal geometries seem very promising for explaining the accretion processes of Cygnus X-1.

  6. A LIKELY MICRO-QUASAR IN THE SHADOW OF M82 X-1

    SciTech Connect

    Xu, Xiao-jie; Liu, Jifeng; Liu, Jiren E-mail: jfliu@nao.cas.cn

    2015-02-01

    The ultra-luminous X-ray source M82 X-1 is one of the most promising intermediate mass black hole candidates in the local universe based on its high X-ray luminosities (10{sup 40}–10{sup 41} erg s{sup −1}) and quasi-periodic oscillations, and is possibly associated with a radio flare source. In this work, applying the sub-pixel technique to the 120 ks Chandra observation (ID: 10543) of M82 X-1, we split M82 X-1 into two sources separated by 1.″1. The secondary source is not detected in other M82 observations. The radio flare source is not found to associate with M82 X-1, but is instead associated with the nearby transient source S1 with an outburst luminosity of ∼10{sup 39} erg s{sup −1}. With X-ray outburst and radio flare activities analogous to the recently discovered micro-quasar in M31, S1 is likely to be a micro-quasar hidden in the shadow of M82 X-1.

  7. Microquasars

    NASA Astrophysics Data System (ADS)

    Castro-Tirado, Alberto J.; Greiner, Jochen; Paredes, Josep M.

    2001-06-01

    The study of microquasars, sources in our Galaxy displaying powerful relativistic jets, is a rapidly advancing field in astrophysics. New instrumentation on the ground (MERLIN, SCUBA, VLA, and VLT) and aboard satellites (ASCA, BSAX, ISO, IXAE and RXTE) has provided important results, and much more is expected to come from Chandra and XMM-Newton. In the future, powerful instrumentation will come online in sub-mm (ALMA) and gamma rays (INTEGRAL), extending our coverage to important regions for the study of microquasars. Energy transport via relativistic jets is one of the most important physical mechanisms taking place in compact objects, either in binary systems or in the nuclei of active galaxies. Large efforts have been devoted to proper understanding of the disk-jet connection, and even the effects of rotation or magnetic fields. Several important advances have been made recently, both from the point of view of the theoretical treatment of jets and the different new observational tests. All of them are reflected in this book, the first one devoted to the study of these enigmatic objects. Link: http://www.wkap.nl/book.htm/0-7923-6923-8

  8. RXTE Observation of Cygnus X-1. 1; Spectral Analysis

    NASA Technical Reports Server (NTRS)

    Dove, James B.; Wilms, Joern; Nowak, Michael A.; Vaughan, Brian A.; Begelman, Mitchell C.

    1998-01-01

    We present the results of the analysis of the broad-band spectrum of Cygnus X-1 from 3.0 to 200 keV, using data from a 10 ksec observation by the Rossi X-ray Timing Explorer. The spectrum can be well described phenomenologically by an exponentially cut-off power law with a photon index Gamma = 1.45(+0.01 -0.02) (a value considerably harder 0.02 than typically found), e-folding energy E(sub f) = 162(+9 -8) keV, plus a deviation from a power law that formally can be modeled as a thermal blackbody with temperature kT(sub bb) = 1.2(+0.0 -0.1) keV. Although the 3-30 keV portion of the spectrum can be fit with a reflected power law with Gamma = 1.81 + or - 0.01 and covering fraction f = 0.35 + or - 0.02, the quality of the fit is significantly reduced when the HEXTE data in the 30-100 keV range is included, as there is no observed hardening in the power law within this energy range. As a physical description of this system, we apply the accretion disc corona models of Dove, Wilms & Begelman (1997a) - where the temperature of the corona is determined self-consistently. A spherical corona with a total optical depth pi = 1.6 + or - 0.1 and an average temperature kT(sub c) = 87 + or - 5 keV, surrounded by an exterior cold disc, does provide a good description of the data (X(exp 2 sub red) = 1.55). These models deviate from red the data by up to 7% in the 5 - 10 keV range, and we discuss possible reasons for these discrepancies. However, considering bow successfully the spherical corona reproduces the 10 - 200 keV data, such "pboton-starved" coronal geometries seem very promising for explaining the accretion processes of Cygnus X-1.

  9. Hard X-ray spectrum of Cygnus X-1

    NASA Technical Reports Server (NTRS)

    Nolan, P. L.; Gruber, D. E.; Knight, F. K.; Matteson, J. L.; Rothschild, R. E.; Marshall, F. E.; Levine, A. M.; Primini, F. A.

    1981-01-01

    Long-term measurements of the hard X-ray spectrum from 3 keV to 8 MeV of the black-hole candidate Cygnus X-1 in its low state are reported. Observations were made from October 26 to November 18, 1977 with the A2 (Cosmic X-ray) and A4 (Hard X-ray and Low-Energy Gamma-Ray) experiments on board HEAO 1 in the spacecraft's scanning mode. The measured spectrum below 200 keV is found to agree well with previous spectra which have been fit by a model of the Compton scattering of optical or UV photons in a very hot plasma of electron temperature 32.4 keV and optical depth 3.9 or 1.6 for spherical or disk geometry, respectively. At energies above 300 keV, however, flux excess is observed which may be accounted for by a distribution of electron temperatures from 15 to about 100 keV.

  10. THE MASS OF THE BLACK HOLE IN CYGNUS X-1

    SciTech Connect

    Orosz, Jerome A.; McClintock, Jeffrey E.; Reid, Mark J.; Narayan, Ramesh; Gou, Lijun; Aufdenberg, Jason P.; Remillard, Ronald A. E-mail: jem@cfa.harvard.edu E-mail: narayan@cfa.harvard.edu E-mail: aufded93@erau.edu

    2011-12-01

    Cygnus X-1 is a binary star system that is comprised of a black hole and a massive giant companion star in a tight orbit. Building on our accurate distance measurement reported in the preceding paper, we first determine the radius of the companion star, thereby constraining the scale of the binary system. To obtain a full dynamical model of the binary, we use an extensive collection of optical photometric and spectroscopic data taken from the literature. By using all of the available observational constraints, we show that the orbit is slightly eccentric (both the radial velocity and photometric data independently confirm this result) and that the companion star rotates roughly 1.4 times its pseudosynchronous value. We find a black hole mass of M = 14.8 {+-} 1.0 M{sub Sun }, a companion mass of M{sub opt} = 19.2 {+-} 1.9 M{sub Sun }, and the angle of inclination of the orbital plane to our line of sight of i = 27.1 {+-} 0.8 deg.

  11. 10 microsecond time resolution studies of Cygnus X-1

    SciTech Connect

    Wen, H.C.

    1997-06-01

    Time variability analyses have been applied to data composed of event times of X-rays emitted from the binary system Cygnus X-1 to search for unique black hole signatures. The X-ray data analyzed was collected at ten microsecond time resolution or better from two instruments, the High Energy Astrophysical Observatory (HEAO) A-1 detector and the Rossi X-ray Timing Explorer (XTE) Proportional Counter Array (PCA). HEAO A-1 and RXTE/PCA collected data from 1977--79 and from 1996 on with energy sensitivity from 1--25 keV and 2--60 keV, respectively. Variability characteristics predicted by various models of an accretion disk around a black hole have been searched for in the data. Drop-offs or quasi-periodic oscillations (QPOs) in the Fourier power spectra are expected from some of these models. The Fourier spectral technique was applied to the HEAO A-1 and RXTE/PCA data with careful consideration given for correcting the Poisson noise floor for instrumental effects. Evidence for a drop-off may be interpreted from the faster fall off in variability at frequencies greater than the observed breaks. Both breaks occur within the range of Keplerian frequencies associated with the inner edge radii of advection-dominated accretion disks predicted for Cyg X-1. The break between 10--20 Hz is also near the sharp rollover predicted by Nowak and Wagoner`s model of accretion disk turbulence. No QPOs were observed in the data for quality factors Q > 9 with a 95% confidence level upper limit for the fractional rms amplitude at 1.2% for a 16 M{sub {circle_dot}} black hole.

  12. RXTE Observation of Cygnus X-1. Report 2; TIming Analysis

    NASA Technical Reports Server (NTRS)

    Nowak, Michael A.; Vaughan, Brian A.; Wilms, Joern; Dove, James B.; Begelman, Mitchell C.

    1998-01-01

    We present timing analysis for a Rossi X-ray Timing Explorer (RXTE) observation of Cygnus X-1 in its hard/low state. This was the first RXTE observation of Cyg X-1 taken after it transited back to this state from its soft/high state. RXTE's large effective area, superior timing capabilities, and ability to obtain long, uninterrupted observations have allowed us to obtain measurements of the power spectral density (PSD), coherence function, and Fourier time lags to a decade lower in frequency and half a decade higher in frequency than typically was achieved with previous instruments. Notable aspects of our observations include a weak 0.005 Hz feature in the PSD coincident with a coherence recovery; a 'hardening' of the high-frequency PSD with increasing energy; a broad frequency range measurement of the coherence function, revealing rollovers from unity coherence at both low and high frequency; and an accurate determination of the Fourier time lags over two and a half decades in frequency. As has been noted in previous similar observations, the time delay is approximately proportional to f(exp -0.7), and at a fixed Fourier frequency the time delay of the hard X-rays compared to the softest energy channel tends to increase logarithmically with energy. Curiously, the 0.01-0.2 Hz coherence between the highest and lowest energy bands is actually slightly greater than the coherence between the second highest and lowest energy bands. We carefully describe all of the analysis techniques used in this paper, and we make comparisons of the data to general theoretical expectations. In a companion paper, we make specific comparisons to a Compton corona model that we have successfully used to describe the energy spectral data from this observation.

  13. What is special about Cygnus X-1?. [evidence for a black hole

    NASA Technical Reports Server (NTRS)

    Boldt, E. A.; Holt, S. S.; Rothschild, R. E.; Serlemitsos, P. J.

    1974-01-01

    The X-ray evidence from several experiments is reviewed, with special emphasis on those characteristics which appear to distinguish Cygnus X-1 from other compact X-ray emitting objects. Data are examined within the context of a model in which millisecond bursts are superposed upon shot-noise fluctuations arising from events of durations on the order of a second. Possible spectral-temporal correlations are investigated which provide additional evidence that Cygnus X-1 is very likely a black hole.

  14. Wavelet analysis of fast photometry on Cygnus X-1 with the AstraLux camera

    SciTech Connect

    Luque-Escamilla, P. L.; Marti, J.; Combi, Jorge A.; Arjonilla, Alvaro Munoz; Sanchez-Sutil, J. R.

    2008-10-08

    We present sub-second fast photometry for the high mass X-ray binary Cygnus X-1. We try to observe variability due to instabilities in the accretion process at optical wavelengths. The observations were carried out using the high speed AstraLux camera at the Calar Alto 2.2 m telescope, Spain, in November 2006 and August 2007. We report that the Cygnus X-1 system light curve sampled every 30 milli-second did not display strong enough evidence of any periodic component related to the source.

  15. Cygnus X-1: A Case for a Magnetic Accretion Disk?

    NASA Technical Reports Server (NTRS)

    Nowak, Michael A.; Vaughan, B. A.; Dove, J.; Wilms, J.

    1996-01-01

    With the advent of Rossi X-ray Timing Explorer (RXTE), which is capable of broad spectral coverage and fast timing, as well as other instruments which are increasingly being used in multi-wavelength campaigns (via both space-based and ground-based observations), we must demand more of our theoretical models. No current model mimics all facets of a system as complex as an x-ray binary. However, a modern theory should qualitatively reproduce - or at the very least not fundamentally disagree with - all of Cygnus X-l's most basic average properties: energy spectrum (viewed within a broader framework of black hole candidate spectral behavior), power spectrum (PSD), and time delays and coherence between variability in different energy bands. Below we discuss each of these basic properties in turn, and we assess the health of one of the currently popular theories: Comptonization of photons from a cold disk. We find that the data pose substantial challenges for this theory, as well as all other in currently discussed models.

  16. Low-energy gamma rays from Cygnus X-1

    NASA Technical Reports Server (NTRS)

    Roques, J. P.; Mandrou, P.; Lebrun, F.; Paul, J.

    1985-01-01

    The Cyg X-1 was observed by the balloonborne telescope OPALE, in June 1976. The high energy spectrum of the source, which was in its superlow state, was seen to extend well beyond 1 MeV. The observed low energy gamma ray component of Cyg X-1 is compared with the predictions of recent models involving accretion onto a stellar black hole, and including a possible contribution from the pair annihilation 511 keV gamma ray line.

  17. RXTE Observation of Cygnus X-1: Spectra and Timing

    NASA Technical Reports Server (NTRS)

    Wilms, J.; Dove, J.; Nowak, M.; Vaughan, B. A.

    1997-01-01

    We present preliminary results from the analysis of an R.XTE observation of Cyg X-1 in the hard state. We show that the observed X-ray spectrum can be explained with a model for an accretion disk corona (ADC), in which a hot sphere is situated inside of a cold accretion disk (similar to an advection dominated model). ADC Models with a slab-geometry do not successfully fit the data. In addition to the spectral results we present the observed temporal properties of Cyg X-1, i.e. the coherence-function and the time-lags, and discuss the constraints the. temporal properties imply for the accretion geometry in Cyg X-1.

  18. Studying the Warm Layer and the Hardening Factor in Cygnus X-1

    NASA Technical Reports Server (NTRS)

    Yao, Yangsen; Zhang, Shuangnan; Zhang, Xiaoling; Feng, Yuxin

    2002-01-01

    As the first dynamically determined black hole X-ray binary system, Cygnus X-1 has been studied extensively. However, its broadband spectrum observed with BeppoSax is still not well understood. Besides the soft excess described by the multi-color disk model (MCD), the power-law hard component and a broad excess feature above 10 keV (a disk reflection component), there is also an additional soft component around 1 keV, whose origin is not known currently. Here we propose that the additional soft component is due to the thermal Comptonization between the soft disk photons and a warm plasma cloud just above the disk, i.e., a warm layer. We use the Monte-Carlo technique to simulate this Compton scattering process and build a table model based on our simulation results. With this table model, we study the disk structure and estimate the hardening factor to the MCD component in Cygnus X-1.

  19. SAS-3 observations of an X-ray flare from Cygnus X-1

    NASA Technical Reports Server (NTRS)

    Canizares, C. R.; Bradt, H.; Buff, J.; Laufer, B.

    1976-01-01

    Preliminary results are presented for the SAS-3 observation of an X-ray flare from Cygnus X-1. The 1.5 to 6 keV intensity rose by a factor of four and exhibited variability on several time scales from seconds to hours. The 6 to 15 keV intensity showed less activity. The event is similar to that observed by ANS and Ariel 5, but lasted less than two weeks.

  20. Enhanced gamma-ray emission from the microquasar Cygnus X-3 detected by AGILE

    NASA Astrophysics Data System (ADS)

    Piano, G.; Pittori, C.; Verrecchia, F.; Tavani, M.; Bulgarelli, A.; Fioretti, V.; Zoli, A.; Munar-Adrover, P.; Lucarelli, F.; Donnarumma, I.; Vercellone, S.; Striani, E.; Cardillo, M.; Gianotti, F.; Trifoglio, M.; Giuliani, A.; Mereghetti, S.; Caraveo, P.; Perotti, F.; Chen, A.; Argan, A.; Costa, E.; Del Monte, E.; Evangelista, Y.; Feroci, M.; Lazzarotto, F.; Lapshov, I.; Pacciani, L.; Soffitta, P.; Sabatini, S.; Vittorini, V.; Pucella, G.; Rapisarda, M.; Di Cocco, G.; Fuschino, F.; Galli, M.; Labanti, C.; Marisaldi, M.; Pellizzoni, A.; Pilia, M.; Trois, A.; Barbiellini, G.; Vallazza, E.; Longo, F.; Morselli, A.; Picozza, P.; Prest, M.; Lipari, P.; Zanello, D.; Cattaneo, P. W.; Rappoldi, A.; Colafrancesco, S.; Parmiggiani, N.; Ferrari, A.; Antonelli, A.; Giommi, P.; Salotti, L.; Valentini, G.; D'Amico, F.

    2016-04-01

    Integrating from 2016-04-16 00:00 UT to 2016-04-19 00:00 UT, the AGILE-GRID detector is revealing gamma-ray emission above 100 MeV from a source positionally consistent with Cygnus X-3 at Galactic coordinates (l, b) = (79.4, 0.2) +/- 0.6 (stat.) +/- 0.1 (syst.) deg, with flux F( > 100 MeV) = (2.0 +/- 0.8) x 10^-6 photons/cm^2/s, as determined by a multi-source likelihood analysis.

  1. A holistic view of a black hole binary: bringing together spectral, timing, and polarization analysis of Cygnus X-1

    NASA Astrophysics Data System (ADS)

    Grinberg, Victoria

    2014-01-01

    The microquasar Cygnus X-1 is a persistent high mass X-ray binary, consisting of an O-type supergiant and a stellar mass black hole, and therefore one of those systems which are often considered downscaled versions of AGN, an analogy supported in Cyg X-1 by observations of radio jets. The size and proximity of such systems allow us to observe phenomena on time-scales which are not accessible in their supermassive siblings. Cyg X-1 shows distinct X-ray states, characterized by X-ray spectral and timing properties. Radio behavior is strongly correlated with the X-ray states and a jet-break exists in the mid-IR range in the hard state. The source state is therefore essential for the interpretation of data at all wavelengths. For most observations lacking broadband X-ray coverage, however, the exact state determination proves challenging. In this work, I will present a recently developed novel approach that uses data from all sky monitors such as RXTE-ASM, MAXI, Swift-BAT, and Fermi-GBM to define states and state transitions on a timescales of a few hours over a period of more than 17 years. This approach can be used to investigate the context of high resolution observations of Cyg X-1 with Chandra and XMM, and to conduct state-resolved polarization analysis with INTEGRAL. I then combine spectral and model-independent X-ray timing analysis of over 1900 RXTE orbits over 14 years and investigate the evolution of Fourier-dependent timing parameters such as power spectra, coherence, and time lag at different photon energies over all spectral states. Results include a correlation between the shape of the power and time lag spectra in all hard and intermediate states, a photon-energy dependent increase of the fractional rms in the soft state, and a strong energy-dependency of the power spectra shapes during state transitions. The findings are crucial for constraining physical models for accretion and ejection in compact objects and for comparisons with other accreting

  2. Galactic transients with AGILE: the case of Eta Carinae and Cygnus X-1

    NASA Astrophysics Data System (ADS)

    Sabatini, Sabina; Tavani, M.; Caraveo, P.; Barbiellini, G.; Costa, E.; Feroci, M.; Argan, A.; Bulgarelli, A.; Cattaneo, P. W.; Chen, A. W.; D'Ammando, F.; de Paris, G.; Del Monte, E.; Di Cocco, G.; Donnarumma, I.; Evangelista, Y.; Ferrari, A.; Fiorini, M.; Fuschino, F.; Galli, M.; Gianotti, F.; Giuliani, A.; Giusti, M.; Labanti, C.; Lazzarotto, F.; Lipari, P.; Longo, F.; Marisaldi, M.; Mereghetti, S.; Morelli, E.; Moretti, E.; Morselli, A.; Pacciani, L.; Pellizzoni, A.; Perotti, F.; Piano, G.; Picozza, P.; Pilia, M.; Pucella, G.; Prest, M.; Rapisarda, M.; Rappoldi, A.; Rubini, A.; Scalise, E.; Soffitta, P.; Striani, E.; Trifoglio, M.; Trois, A.; Vallazza, E.; Vercellone, S.; Zambra, A.; Zanello, D.; Pittori, C.; Verrecchia, F.; Vittorini, V.; Santolamazza, P.; Giommi, P.; Colafrancesco, S.; Antonelli, L. A.; Salotti, L.

    During its first 2.5 years of operation, the gamma-ray AGILE satellite accumulated an extensive dataset for the Galactic plane and carried out a specific search for emission from binary systems. Powerful colliding winds or relativistic jets in these systems can cause strong shocks in which both electrons and protons can be efficiently accelerated producing non-thermal emission. We developed specific tools of analysis for the search of transient gamma-ray sources in the data and several candidates were detected. Their variability and possible association were studied. In this talk we will mainly focus on the results of extensive observations of the Carina Re-gion and the Cygnus Region during the time period 2007 July -mid 2010. Both regions are extremely complex, hosting massive star formation, giant molecular clouds, HII regions and massive star star clusters. We present a detailed analysis of the gamma-ray data for the regions. In particular, we detect a gamma ray source (1AGL J1043-5931) consistent with the position of the colliding wind binary system Eta Carinae, and report a remarkable 2-days gamma-ray flaring episode from this source, providing the long sought first detection above 100 MeV of a colliding wind binary. Several steady and transient sources have been detected by AGILE in the Cygnus Region. Here we present the results of an extensive search for transient gamma-ray emission from the black hole binary system Cygnus X-1, during the period 2007 July -2009 October. We report an episode of significant transient gamma-ray emission detected on 2009, October 16 in a position compatible with Cygnus X-1.

  3. GAMMA-RAY OBSERVATIONS OF CYGNUS X-1 ABOVE 100 MeV IN THE HARD AND SOFT STATES

    SciTech Connect

    Sabatini, S.; Tavani, M.; Del Santo, M.; Campana, R.; Evangelista, Y.; Piano, G.; Del Monte, E.; Giusti, M.; Striani, E.; Pooley, G.; Chen, A.; Giuliani, A.; Colafrancesco, S.; Longo, F.; Morselli, A.; Pellizzoni, A.; Pilia, M.; and others

    2013-04-01

    We present the results of multi-year gamma-ray observations by the AGILE satellite of the black hole binary system Cygnus X-1. In a previous investigation we focused on gamma-ray observations of Cygnus X-1 in the hard state during the period mid-2007/2009. Here we present the results of the gamma-ray monitoring of Cygnus X-1 during the period 2010/mid-2012 which includes a remarkably prolonged 'soft state' phase (2010 June-2011 May). Previous 1-10 MeV observations of Cyg X-1 in this state hinted at a possible existence of a non-thermal particle component with substantial modifications of the Comptonized emission from the inner accretion disk. Our AGILE data, averaged over the mid-2010/mid-2011 soft state of Cygnus X-1, provide a significant upper limit for gamma-ray emission above 100 MeV of F{sub soft} < 20 Multiplication-Sign 10{sup -8} photons cm{sup -2} s{sup -1} , excluding the existence of prominent non-thermal emission above 100 MeV during the soft state of Cygnus X-1. We discuss theoretical implications of our findings in the context of high-energy emission models of black hole accretion. We also discuss possible gamma-ray flares detected by AGILE. In addition to a previously reported episode observed by AGILE in 2009 October during the hard state, we report a weak but important candidate for enhanced emission which occurred at the end of 2010 June (2010 June 30 10:00-2010 July 2 10:00 UT) exactly coinciding with a hard-to-soft state transition and before an anomalous radio flare. An appendix summarizes all previous high-energy observations and possible detections of Cygnus X-1 above 1 MeV.

  4. The Extreme Spin of the Black Hole in Cygnus X-1

    NASA Technical Reports Server (NTRS)

    Gou, Lijun; McClintock, Jeffrey E.; Reid, Mark J.; Orosz, Jerome A.; Steiner, James F.; Narayan, Ramesh; Xiang, Jingen; Remillard, Ronald A.; Arnaud, Keith A.; Davis, Shane W.

    2011-01-01

    The compact primary in the X-ray binary Cygnus X-1 was the first black hole to be established via dynamical observations. We have recently determined accurate values for its mass and distance, and for the orbital inclination angle of the binary. Building on these results, which are based on our favored (asynchronous) dynamical model, we have measured the radius of the inner edge of the black hole s accretion disk by fitting its thermal continuum spectrum to a fully relativistic model of a thin accretion disk. Assuming that the spin axis of the black hole is aligned with the orbital angular momentum vector, we have determined that Cygnus X-1 contains a near-extreme Kerr black hole with a spin parameter a* > 0.95 (3(sigma)). For a less probable (synchronous) dynamical model, we find a. > 0.92 (3 ). In our analysis, we include the uncertainties in black hole mass, orbital inclination angle, and distance, and we also include the uncertainty in the calibration of the absolute flux via the Crab. These four sources of uncertainty totally dominate the error budget. The uncertainties introduced by the thin-disk model we employ are particularly small in this case given the extreme spin of the black hole and the disk s low luminosity.

  5. A dark jet dominates the power output of the stellar black hole Cygnus X-1.

    PubMed

    Gallo, Elena; Fender, Rob; Kaiser, Christian; Russell, David; Morganti, Raffaella; Oosterloo, Tom; Heinz, Sebastian

    2005-08-11

    Black holes undergoing accretion are thought to emit the bulk of their power in the X-ray band by releasing the gravitational potential energy of the infalling matter. At the same time, they are capable of producing highly collimated jets of energy and particles flowing out of the system with relativistic velocities. Here we show that the 10-solar-mass (10M(o)) black hole in the X-ray binary Cygnus X-1 (refs 3-5) is surrounded by a large-scale (approximately 5 pc in diameter) ring-like structure that appears to be inflated by the inner radio jet. We estimate that in order to sustain the observed emission of the ring, the jet of Cygnus X-1 has to carry a kinetic power that can be as high as the bolometric X-ray luminosity of the binary system. This result may imply that low-luminosity stellar-mass black holes as a whole dissipate the bulk of the liberated accretion power in the form of 'dark', radiatively inefficient relativistic outflows, rather than locally in the X-ray-emitting inflow.

  6. On the orbital and physical parameters of the HDE 226868/Cygnus X-1 binary system

    NASA Astrophysics Data System (ADS)

    Iorio, Lorenzo

    2008-06-01

    In this paper we explore the consequences of the recent determination of the mass m=(8.7±0.8) M ⊙ of Cygnus X-1, obtained from the Quasi-Periodic Oscillation (QPO)-photon index correlation scaling, on the orbital and physical properties of the binary system HDE 226868/Cygnus X-1. By using such a result and the latest spectroscopic optical data of the HDE 226868 supergiant star we get M=(24±5) M ⊙ for its mass. It turns out that deviations from the third Kepler law significant at more than 1-sigma level would occur if the inclination i of the system’s orbital plane to the plane of the sky falls outside the range ≈41 56 deg: such deviations cannot be due to the first post-Newtonian (1PN) correction to the orbital period because of its smallness; interpreted in the framework of the Newtonian theory of gravitation as due to the stellar quadrupole mass moment Q, they are unphysical because Q would take unreasonably large values. By conservatively assuming that the third Kepler law is an adequate model for the orbital period we obtain i=(48±7) deg which yields for the relative semimajor axis a=(42±9) R ⊙ (≈0.2 AU).

  7. THE EXTREME SPIN OF THE BLACK HOLE IN CYGNUS X-1

    SciTech Connect

    Gou Lijun; McClintock, Jeffrey E.; Reid, Mark J.; Steiner, James F.; Narayan, Ramesh; Xiang, Jingen; Orosz, Jerome A.; Remillard, Ronald A.; Arnaud, Keith A.; Davis, Shane W.

    2011-12-01

    The compact primary in the X-ray binary Cygnus X-1 was the first black hole to be established via dynamical observations. We have recently determined accurate values for its mass and distance, and for the orbital inclination angle of the binary. Building on these results, which are based on our favored (asynchronous) dynamical model, we have measured the radius of the inner edge of the black hole's accretion disk by fitting its thermal continuum spectrum to a fully relativistic model of a thin accretion disk. Assuming that the spin axis of the black hole is aligned with the orbital angular momentum vector, we have determined that Cygnus X-1 contains a near-extreme Kerr black hole with a spin parameter a{sub *} > 0.95 (3{sigma}). For a less probable (synchronous) dynamical model, we find a{sub *} > 0.92 (3{sigma}). In our analysis, we include the uncertainties in black hole mass, orbital inclination angle, and distance, and we also include the uncertainty in the calibration of the absolute flux via the Crab. These four sources of uncertainty totally dominate the error budget. The uncertainties introduced by the thin-disk model we employ are particularly small in this case given the extreme spin of the black hole and the disk's low luminosity.

  8. The Extreme Spin of the Black Hole in Cygnus X-1

    NASA Technical Reports Server (NTRS)

    Gou, Lijun; McClintock, Jeffre E.; Reid, Mark J.; Orosz, Jerome A.; Steiner, James F.; Narayan, Ramesh; Xiang, Jingen; Remillard, Ronald A.; Arnaud, Keith A.; Davis, Shane W.

    2005-01-01

    The compact primary in the X-ray binary Cygnus X-1 was the first black hole to be established via dynamical observatIOns. We have recently determined accurate values for its mass and distance, and for the orbital inclination angle of the binary. Building on these.results, which are based on our favored (asynchronous) dynamical model, we have measured the radius of the inner edge of the black hole's accretion disk by fitting its thermal continuum.spectrum to a fully relativistic model of a thin accretion disk. Assuming that the spin axis of the black hole is aligned with the orbital angular momentum vector, we have determined that Cygnus X-I contains a near-extreme Kerr black hole with a spin parameter a* > 0.95 (3(sigma)). For a less probable (synchronous) dynamIcal model, we find a* > 0.92 (3(sigma)). In our analysis, we include the uncertainties in black hole mass orbital inclination angle and distance, and we also include the uncertainty in the calibration of the absolute flux via the Crab. These four sources of uncertainty totally dominate the error budget. The uncertainties introduced by the thin-disk model we employ are particularly small in this case given the extreme spin of the black hole and the disk's low luminosity.

  9. Polarized gamma-ray emission from the galactic black hole Cygnus X-1.

    PubMed

    Laurent, P; Rodriguez, J; Wilms, J; Cadolle Bel, M; Pottschmidt, K; Grinberg, V

    2011-04-22

    Because of their inherently high flux allowing the detection of clear signals, black hole x-ray binaries are interesting candidates for polarization studies, even if no polarization signals have been observed from them before. Such measurements would provide further detailed insight into these sources' emission mechanisms. We measured the polarization of the gamma-ray emission from the black hole binary system Cygnus X-1 with the International Gamma-Ray Astrophysics Laboratory Imager on Board the Integral Satellite (INTEGRAL/IBIS) telescope. Spectral modeling of the data reveals two emission mechanisms: The 250- to 400-keV (kilo-electron volt) data are consistent with emission dominated by Compton scattering on thermal electrons and are weakly polarized. The second spectral component seen in the 400-keV to 2-MeV band is by contrast strongly polarized, revealing that the MeV emission is probably related to the jet first detected in the radio band. PMID:21436402

  10. Using Monte-Carlo Simulations to Study the Disk Structure in Cygnus X-1

    NASA Technical Reports Server (NTRS)

    Yao, Y.; Zhang, S. N.; Zhang, X. L.; Feng, Y. X.

    2002-01-01

    As the first dynamically determined black hole X-ray binary system, Cygnus X-1 has been studied extensively. However, its broad-band spectra in hard state with BeppoSAX is still not well understood. Besides the soft excess described by the multi-color disk model (MCD), the power- law component and a broad excess feature above 10 keV (disk reflection component), there is also an additional soft component around 1 keV, whose origin is not known currently.We propose that the additional soft component is due to the thermal Comptonization process between the s oft disk photon and the warm plasma cloud just above the disk.i.e., a warm layer. We use Monte-Carlo technique t o simulate this Compton scattering process and build several table models based on our simulation results.

  11. UNDERSTANDING COMPACT OBJECT FORMATION AND NATAL KICKS. III. THE CASE OF CYGNUS X-1

    SciTech Connect

    Wong, Tsing-Wai; Valsecchi, Francesca; Kalogera, Vassiliki; Fragos, Tassos E-mail: francesca@u.northwestern.edu E-mail: tfragos@cfa.harvard.edu

    2012-03-10

    In recent years, accurate observational constraints have become available for an increasing number of Galactic X-ray binaries (XRBs). Together with proper-motion measurements, we could reconstruct the full evolutionary history of XRBs back to the time of compact object formation. In this paper, we present the first study of the persistent X-ray source Cygnus X-1 that takes into account all available observational constraints. Our analysis accounts for three evolutionary phases: orbital evolution and motion through the Galactic potential after the formation of a black hole (BH), and binary orbital dynamics at the time of core collapse. We find that the mass of the BH immediate progenitor is 15.0-20.0 M{sub Sun }, and at the time of core collapse, the BH has potentially received a small kick velocity of {<=}77 km s{sup -1} at 95% confidence. If the BH progenitor mass is less than {approx}17 M{sub Sun }, a non-zero natal kick velocity is required to explain the currently observed properties of Cygnus X-1. Since the BH has only accreted mass from its companion's stellar wind, the negligible amount of accreted mass does not explain the observationally inferred BH spin of a{sub *} > 0.95, and the origin of this extreme BH spin must be connected to the BH formation itself. Right after the BH formation, we find that the BH companion is a 19.8-22.6 M{sub Sun} main-sequence star, orbiting the BH at a period of 4.7-5.2 days. Furthermore, recent observations show that the BH companion is currently super-synchronized. This super-synchronism indicates that the strength of tides exerted on the BH companion should be weaker by a factor of at least two compared to the usually adopted strength.

  12. Understanding Black Hole X-ray Binaries: The Case of Cygnus X-1

    NASA Technical Reports Server (NTRS)

    Pottschmidt, Katja

    2008-01-01

    Black Hole X-ray Binaries are known to display distinct emission states that differ in their X-ray spectra, their X-ray timing properties (on times scales less than 1 s) and their radio emission. In recent years monitoring observations, specially with NASA's Rossi X-ray Timing Explorer (RXTE), have provided us with detailed empirical modeling of the phenomenology of the different states as well as a unification scheme of the long term evolution of black holes, transient and persistent, in terms of these states. Observations of the persistent High Mass X-ray Binary (HMXB) Cygnus X-l have been at the forefront of learning about black hole states since its optical identification through a state transition in 1973. In this talk I will present in depth studies of several different aspects of the accretion process in this system. The main data base for these studies is an ongoing RXTE and Ryle radio telescope bi-weekly monitoring campaign that started in 1997. I will discuss high-resolution timing results, especially power spectra, which first gave rise to the Lorentzian description now widely used for black hole and neutron star binaries, and time lags, which we found to be especially well suited to identify state transitions. The evolution of spectral, timing, and radio parameters over years will be shown, including the rms-flux relation and the observation of a clearly correlated radio/x-ray flare. We also observed Cygnus X-1 with INTEGRAL, which allowed us to extend timing and spectral studies to higher energies, with XMM, which provided strong constraints on the parameters of the 6.4 keV iron fluorescence line, and with Chandra, which provided the most in depth study to date of the stellar wind in this system. Models based on the physical conditions in the accretion region are still mainly concentrated on the one or other of the observational areas but they are expanding: as an example I will review results from a jet model for the quantitative description of the

  13. Multi-Satellite Observations of Cygnus X-1 to Study the Focused Wind and Absorption Dips

    NASA Technical Reports Server (NTRS)

    Hanke, Manfred; Wilms, Joern; Boeck, Moritz; Nowak, Michael A.; Schultz, Norbert S.; Pottschmidt, Katja; Lee, Julia C.

    2008-01-01

    High-mass X-ray binary systems are powered by the stellar wind of their donor stars. The X-ray state of Cygnus X-1 is correlated with the properties of the wind which defines the environment of mass accretion. Chandra-HETGS observations close to orbital phase 0 allow for an analysis of the photoionzed stellar wind at high resolution, but because of the strong variability due to soft X-ray absorption dips, simultaneous multi-satellite observations are required to track and understand the continuum, too. Besides an earlier joint Chandra and RXTE observation, we present first results from a recent campaign which represents the best broad-band spectrum of Cyg X-1 ever achieved: On 2008 April 18/19 we observed this source with XMM-Newton, Chandra, Suzaku, RXTE, INTEGRAL, Swift, and AGILE in X- and gamma-rays, as well as with VLA in the radio. After superior conjunction of the black hole, we detect soft X-ray absorption dips likely due to clumps in the focused wind covering greater than or equal to 95% of the X-ray source, with column densities likely to be of several 10(exp 23) cm(exp -2), which also affect photon energies above 20 keV via Compton scattering.

  14. Leveraging High Resolution Spectra to Understand the Disk and Relativistic Iron Line of Cygnus X-1

    NASA Astrophysics Data System (ADS)

    Nowak, M.; Wilms, J.; Pottschmidt, K.; Grinberg, V.; Schulz, N.; Corrales, L.

    2016-06-01

    In April 2008 we conducted an observation of the black hole candidate Cygnus X-1 that was performed simultaneously with every X-ray and gamma-ray satellite flying at that time, including Chandra-HETG. The HETG spectra are crucial for modeling the ionized absorbtion from the "focused-wind" of the secondary, which is present and must be accounted for in all of our spectra. These features, however, are unresolved in the non-gratings instruments (e.g., RXTE, Suzaku, Swift, XMM-EPIC, INTEGRAL). Similarly, we must account for differences in spatial resolution. The X-ray scattering dust halo, which is usually ignored in most analyses, is spatially resolved in the Chandra and XMM-Newton spectra, but is unresolved in the other instruments. Thus one must account for dust scattering loss in the high spatial resolution spectra, and the scattering back into our line of site for the low resolution spectra. In this work, we attempt to arrive at a joint model for these spectra, and further comment on the cross calibration of each of the X-ray instruments participating in this campaign.

  15. Time Domain Studies of X-Ray Shot Noise in Cygnus X-1

    SciTech Connect

    Focke, Warren; Wai, Lawrence L.; Swank, Jean H.; /NASA, Goddard

    2005-07-27

    We investigate the variability of Cygnus X-1 in the context of shot noise models, and employ a peak detection algorithm to select individual shots. For a long observation of the low, hard state, the distribution of time intervals between shots is found to be consistent with a purely random process, contrary to previous claims in the literature. The detected shots are fit to several model templates and found to have a broad range of shapes. The fitted shots have a distribution of timescales from below 10 milliseconds to above 1 second. The coherence of the cross spectrum of light curves of these data in different energy bands is also studied. The observed high coherence implies that the transfer function between low and high energy variability is uniform. The uniformity of the transfer function implies that the observed distribution of shot widths cannot have been acquired through Compton scattering. Our results in combination with other results in the literature suggest that shot luminosities are correlated with one another. We discuss how our experimental methodology relates to non-linear models of variability.

  16. Spectroscopy of the Stellar Wind in the Cygnus X-1 System

    NASA Technical Reports Server (NTRS)

    Miskovicova, Ivica; Hanke, Manfred; Wilms, Joern; Nowak, Michael A.; Pottschmidt, Katja; Schultz, Norbert

    2010-01-01

    The X-ray luminosity of black holes is produced through the accretion of material from their companion stars. Depending on the mass of the donor star, accretion of the material falling onto the black hole through the inner Lagrange point of the system or accretion by the strong stellar wind can occur. Cygnus X-1 is a high mass X-ray binary system, where the black hole is powered by accretion of the stellar wind of its supergiant companion star HDE226868. As the companion is close to filling its Roche lobe, the wind is not symmetric, but strongly focused towards the black hole. Chandra-HETGS observations allow for an investigation of this focused stellar wind, which is essential to understand the physics of the accretion flow. We compare observations at the distinct orbital phases of 0.0, 0.2, 0.5 and 0.75. These correspond to different lines of sights towards the source, allowing us to probe the structure and the dynamics of the wind.

  17. RAPID SPECTRAL CHANGES OF CYGNUS X-1 IN THE LOW/HARD STATE WITH SUZAKU

    SciTech Connect

    Yamada, S.; Makishima, K.; Negoro, H.; Torii, S.; Noda, H.; Mineshige, S.

    2013-04-20

    Rapid spectral changes in the hard X-ray on a timescale down to {approx}0.1 s are studied by applying a ''shot analysis'' technique to the Suzaku observations of the black hole binary Cygnus X-1, performed on 2008 April 18 during the low/hard state. We successfully obtained the shot profiles, covering 10-200 keV with the Suzaku HXD-PIN and HXD-GSO detector. It is notable that the 100-200 keV shot profile is acquired for the first time owing to the HXD-GSO detector. The intensity changes in a time-symmetric way, though the hardness changes in a time-asymmetric way. When the shot-phase-resolved spectra are quantified with the Compton model, the Compton y-parameter and the electron temperature are found to decrease gradually through the rising phase of the shot, while the optical depth appears to increase. All the parameters return to their time-averaged values immediately within 0.1 s past the shot peak. We have not only confirmed this feature previously found in energies below {approx}60 keV, but also found that the spectral change is more prominent in energies above {approx}100 keV, implying the existence of some instant mechanism for direct entropy production. We discuss possible interpretations of the rapid spectral changes in the hard X-ray band.

  18. What is special about Cygnus X-1 - Black holes in theory and observation: X-ray observations

    NASA Technical Reports Server (NTRS)

    Boldt, E.; Holt, S.; Rothschild, R.; Serlemitsos, P.

    1975-01-01

    Of the eight X-ray sources now known which may be associated with binary stellar systems, Cygnus X-1 is the most likely candidate for being a black hole. The X-ray evidence from several experiments is reviewed, with special emphasis on those characteristics which appear to distinguish Cygnus X-1 from other compact X-ray emitting objects. Data are examined within the context of a model in which millisecond bursts (Rothschild et al., 1974) are superposed on shot-noise fluctuations (Terrell, 1972) arising from 'events' of durations on the order of a second. Possible spectral-temporal correlations are investigated which indicate new measurements that need to be made in future experiments.

  19. Long term variability of Cygnus X-1. IV. Spectral evolution 1999-2004

    NASA Astrophysics Data System (ADS)

    Wilms, J.; Nowak, M. A.; Pottschmidt, K.; Pooley, G. G.; Fritz, S.

    2006-02-01

    Continuing the observational campaign initiated by our group, we present the long term spectral evolution of the Galactic black hole candidate Cygnus X-1 in the X-rays and at 15 GHz. We present 200 pointed observations taken between early 1999 and late 2004 with the Rossi X-ray Timing Explorer and the Ryle radio telescope. The X-ray spectra are remarkably well described by a simple broken power law spectrum with an exponential cutoff. Physically motivated Comptonization models, e.g., by Titarchuk (1994, ApJ, 434, 570, compTT) and by Coppi (1999, in High Energy Processes in Accreting Black Holes, ed. J. Poutanen, & R. Svensson (San Francisco: ASP), ASP Conf. Ser., 161, 375, eqpair), can reproduce this simplicity; however, the success of the phenomenological broken power law models cautions against "overparameterizing" the more physical models. Broken power law models reveal a significant linear correlation between the photon index of the lower energy power law and the hardening of the power law at 10 keV. This phenomenological soft/hard power law correlation is partly attributable to correlations of broad band continuum components, rather than being dominated by the weak hardness/reflection fraction correlation present in the Comptonization model. Specifically, the Comptonization models show that the bolometric flux of a soft excess (e.g., disk component) is strongly correlated with the compactness ratio of the Comptonizing medium, with L_disk propto (ell_h/ell_s)-0.19. Over the course of our campaign, Cyg X-1 transited several times into the soft state, and exhibited a large number of "failed state transitions". The fraction of the time spent in such low radio emission/soft X-ray spectral states has increased from 10% in 1996-2000 to 34% since early 2000. We find that radio flares typically occur during state transitions and failed state transitions (at ell_h/ell_s˜ 3), and that there is a strong correlation between the 10-50 keV X-ray flux and the radio

  20. A Multiwavelength Study of Cygnus X-1: The First Mid-Infrared Spectroscopic Detection of Compact Jets

    NASA Technical Reports Server (NTRS)

    Rahoui, Farid; Lee, Julia C.; Heinz, Sebastian; Hines, Dean C.; Pottschmidt, Katja; Wilms, Joern

    2011-01-01

    We report on a Spitzer/IRS (mid-infrared), RXTE /PCA+HEXTE (X-ray), and Ryle (radio) simultaneous multi-wavelength study of the micro quasar Cygnus X-I, which aimed at an investigation of the origin of its mid-infrared emission. Compact jets were present in two out of three observations, and we show that they strongly contribute to the mid-infrared continuum. During the first observation, we detect the spectral break - where the transition from the optically thick to the optically thin regime takes place - at about 2.9 x 10(exp 13) Hz. We then show that the jet's optically thin synchrotron emission accounts for the Cygnus X-1's emission beyond 400 keY, although it cannot alone explain its 3-200 keV continuum. A compact jet was also present during the second observation, but we do not detect the break, since it has likely shifted to higher frequencies. In contrast, the compact jet was absent during the last observation, and we show that the 5-30 micron mid-infrared continuum of Cygnus X-I stems from the blue supergiant companion star HD 226868. Indeed, the emission can then be understood as the combination of the photospheric Raleigh-Jeans tail and the bremsstrahlung from the expanding stellar wind. Moreover, the stellar wind is found to be clumpy, with a filling factor f(sub infinity) approx.= 0.09-0.10. Its bremsstrahlung emission is likely anti-correlated to the soft X-ray emission, suggesting an anticorrelation between the mass-loss and mass-accretion rates. Nevertheless, we do not detect any mid-infrared spectroscopic evidence of interaction between the jets and the Cygnus X-1's environment and/or companion star's stellar wind.

  1. Understanding the Long-Term Spectral Variability of Cygnus X-1 from BATSE and ASM Observations

    NASA Technical Reports Server (NTRS)

    Zdziarski, Andrzej A.; Poutanen, Juri; Paciesas, William S.; Wen, Linqing; Six, N. Frank (Technical Monitor)

    2002-01-01

    We present a spectral analysis of observations of Cygnus X-1 by the RXTE/ASM (1.5-12 keV) and CGRO/BATSE (20-300 keV), including about 1200 days of simultaneous data. We find a number of correlations between intensities and hardnesses in different energy bands from 1.5 keV to 300 keV. In the hard (low) spectral state, there is a negative correlation between the ASM 1.5-12 keV flux and the hardness at any energy. In the soft (high) spectral state, the ASM flux is positively correlated with the ASM hardness (as previously reported) but uncorrelated with the BATSE hardness. In both spectral states, the BATSE hardness correlates with the flux above 100 keV, while it shows no correlation with the flux in the 20-100 keV range. At the same time, there is clear correlation between the BATSE fluxes below and above 100 keV. In the hard state, most of the variability can be explained by softening the overall spectrum with a pivot at approximately 50 keV. The observations show that there has to be another, independent variability pattern of lower amplitude where the spectral shape does not change when the luminosity changes. In the soft state, the variability is mostly caused by a variable hard (Comptonized) spectral component of a constant shape superimposed on a constant soft blackbody component. These variability patterns are in agreement with the dependence of the rms variability on the photon energy in the two states. We interpret the observed correlations in terms of theoretical Comptonization models. In the hard state, the variability appears to be driven mostly by changing flux in seed photons Comptonized in a hot thermal plasma cloud with an approximately constant power supply. In the soft state, the variability is consistent with flares of hybrid, thermal/nonthermal, plasma with variable power above a stable cold disk. Also, based on broadband pointed observations simultaneous with those of the ASM and BATSE, we find the intrinsic bolometric luminosity increases by a

  2. The Soft State of Cygnus X-1 Observed with NuSTAR: A Variable Corona and a Stable Inner Disk

    NASA Astrophysics Data System (ADS)

    Walton, D. J.; Tomsick, J. A.; Madsen, K. K.; Grinberg, V.; Barret, D.; Boggs, S. E.; Christensen, F. E.; Clavel, M.; Craig, W. W.; Fabian, A. C.; Fuerst, F.; Hailey, C. J.; Harrison, F. A.; Miller, J. M.; Parker, M. L.; Rahoui, F.; Stern, D.; Tao, L.; Wilms, J.; Zhang, W.

    2016-07-01

    We present a multi-epoch hard X-ray analysis of Cygnus X-1 in its soft state based on four observations with the Nuclear Spectroscopic Telescope Array (NuSTAR). Despite the basic similarity of the observed spectra, there is clear spectral variability between epochs. To investigate this variability, we construct a model incorporating both the standard disk-corona continuum and relativistic reflection from the accretion disk, based on prior work on Cygnus X-1, and apply this model to each epoch independently. We find excellent consistency for the black hole spin and the iron abundance of the accretion disk, which are expected to remain constant on observational timescales. In particular, we confirm that Cygnus X-1 hosts a rapidly rotating black hole, 0.93≲ {a}* ≲ 0.96, in broad agreement with the majority of prior studies of the relativistic disk reflection and constraints on the spin obtained through studies of the thermal accretion disk continuum. Our work also confirms the apparent misalignment between the inner disk and the orbital plane of the binary system reported previously, finding the magnitude of this warp to be ˜10°-15°. This level of misalignment does not significantly change (and may even improve) the agreement between our reflection results and the thermal continuum results regarding the black hole spin. The spectral variability observed by NuSTAR is dominated by the primary continuum, implying variability in the temperature of the scattering electron plasma. Finally, we consistently observe absorption from ionized iron at ˜6.7 keV, which varies in strength as a function of orbital phase in a manner consistent with the absorbing material being an ionized phase of the focused stellar wind from the supergiant companion star.

  3. The Soft State of Cygnus X-1 Observed with NuSTAR: A Variable Corona and a Stable Inner Disk

    NASA Astrophysics Data System (ADS)

    Walton, D. J.; Tomsick, J. A.; Madsen, K. K.; Grinberg, V.; Barret, D.; Boggs, S. E.; Christensen, F. E.; Clavel, M.; Craig, W. W.; Fabian, A. C.; Fuerst, F.; Hailey, C. J.; Harrison, F. A.; Miller, J. M.; Parker, M. L.; Rahoui, F.; Stern, D.; Tao, L.; Wilms, J.; Zhang, W.

    2016-07-01

    We present a multi-epoch hard X-ray analysis of Cygnus X-1 in its soft state based on four observations with the Nuclear Spectroscopic Telescope Array (NuSTAR). Despite the basic similarity of the observed spectra, there is clear spectral variability between epochs. To investigate this variability, we construct a model incorporating both the standard disk-corona continuum and relativistic reflection from the accretion disk, based on prior work on Cygnus X-1, and apply this model to each epoch independently. We find excellent consistency for the black hole spin and the iron abundance of the accretion disk, which are expected to remain constant on observational timescales. In particular, we confirm that Cygnus X-1 hosts a rapidly rotating black hole, 0.93≲ {a}* ≲ 0.96, in broad agreement with the majority of prior studies of the relativistic disk reflection and constraints on the spin obtained through studies of the thermal accretion disk continuum. Our work also confirms the apparent misalignment between the inner disk and the orbital plane of the binary system reported previously, finding the magnitude of this warp to be ˜10°–15°. This level of misalignment does not significantly change (and may even improve) the agreement between our reflection results and the thermal continuum results regarding the black hole spin. The spectral variability observed by NuSTAR is dominated by the primary continuum, implying variability in the temperature of the scattering electron plasma. Finally, we consistently observe absorption from ionized iron at ˜6.7 keV, which varies in strength as a function of orbital phase in a manner consistent with the absorbing material being an ionized phase of the focused stellar wind from the supergiant companion star.

  4. Hard X-ray Observation of Cygnus X-1 By the Marshall Imaging X-ray Experiment (MIXE2)

    NASA Technical Reports Server (NTRS)

    Minamitani, Takahisa; Apple, J. A.; Austin, R. A.; Dietz, K. L.; Koloziejczak, J. J.; Ramsey, B. D.; Weisskopf, M. C.

    1998-01-01

    The second generation of the Marshall Imaging X-ray Experiment (MIXE2) was flown from Fort Sumner, New Mexico on May 7-8, 1997. The experiment consists of coded-aperture telescope with a field of view of 1.8 degrees (FWHM) and an angular resolution of 6.9 arcminutes. The detector is a large (7.84x10(exp 4) sq cm) effective area microstrip proportional counter filled with 2.0x10(exp5) Pascals of xenon with 2% isobutylene. We present MIXE2 observation of the 20-80keV spectrum and timing variability of Cygnus X-1 made during balloon flight.

  5. Confirmation via the continuum-fitting method that the spin of the black hole in Cygnus X-1 is extreme

    SciTech Connect

    Gou, Lijun; McClintock, Jeffrey E.; Steiner, James F.; Reid, Mark J.; Narayan, Ramesh; García, Javier; Remillard, Ronald A.; Orosz, Jerome A.; Hanke, Manfred

    2014-07-20

    In Gou et al., we reported that the black hole primary in the X-ray binary Cygnus X-1 is a near-extreme Kerr black hole with a spin parameter a{sub *} > 0.95 (3σ). We confirm this result while setting a new and more stringent limit: a{sub *} > 0.983 at the 3σ (99.7%) confidence level. The earlier work, which was based on an analysis of all three useful spectra that were then available, was possibly biased by the presence in these spectra of a relatively strong Compton power-law component: the fraction of the thermal seed photons scattered into the power law was f{sub s} = 23%-31%, while the upper limit for reliable application of the continuum-fitting method is f{sub s} ≲ 25%. We have subsequently obtained six additional spectra of Cygnus X-1 suitable for the measurement of spin. Five of these spectra are of high quality with f{sub s} in the range 10%-19%, a regime where the continuum-fitting method has been shown to deliver reliable results. Individually, the six spectra give lower limits on the spin parameter that range from a{sub *} > 0.95 to a{sub *} > 0.98, allowing us to conservatively conclude that the spin of the black hole is a{sub *} > 0.983 (3σ).

  6. Polarized Gamma-Ray Emission from the Galactic Black Hole Cygnus X-1

    NASA Technical Reports Server (NTRS)

    Laurent, P.; Rodriquez, J.; Wilms, J.; Bel, M. Cadolle; Pottschmidt, K.; Grinberg, V.

    2011-01-01

    Because of their inherently high flux allowing the detection of clear signals, black hole X-ray binaries are interesting candidates for polarization studies, even if no polarization signals have been observed from them before. Such measurements would provide further detailed insight into these sources' emission mechanisms. We measured the polarization of the gamma-ray emission from the black hole binary system Cygnus X-I with the INTEGRAL/IBIS telescope. Spectral modeling ofthe data reveals two emission mechanisms: The 250-400 keY data are consistent with emission dominated by Compton scattering on thermal electrons and are weakly polarized. The second spectral component seen in the 400keV-2MeV band is by contrast strongly polarized, revealing that the MeV emission is probably related to the jet first detected in the radio band.

  7. Self-Consistent Thermal Accretion Disk Corona Models for Compact Objects. II; Application to Cygnus X-1

    NASA Technical Reports Server (NTRS)

    Dove, James B.; Wilms, Joern; Maisack, Michael; Begelman, Mitchell C.

    1997-01-01

    We apply our self-consistent accretion disk corona (ADC) model, with two different geometries, to the broadband X-ray spectrum of the black hole candidate Cygnus X-1. As shown in a companion paper, models in which the Comptonizing medium is a slab surrounding the cold accretion disk cannot have a temperature higher than about 140 keV for optical depths greater than 0.2, resulting in spectra that are much softer than the observed 10-30 keV spectrum of Cyg X-1. In addition, the slab-geometry models predict a substantial "soft excess" at low energies, a feature not observed for Cyg X-1, and Fe K-alpha fluorescence lines that are stronger than observed. Previous Comptonization models in the literature have invoked a slab geometry with optical depth tau(sub T) approx. greater than 0.3 and coronal temperature T(sub c) approx. 150 keV, but they are not self-consistent. Therefore, ADC models with a slab geometry are not appropriate for explaining the X-ray spectrum of Cyg X-1. Models with a spherical corona and an exterior disk, however, predict much higher self-consistent coronal temperatures than the slab-geometry models. The higher coronal temperatures are due to the lower amount of reprocessing of coronal radiation in the accretion disk, giving rise to a lower Compton cooling rate. Therefore, for the sphere-plus-disk geometry, the predicted spectrum can be hard enough to describe the observed X-ray continuum of Cyg X-1 while predicting Fe fluorescence lines having an equivalent width of approx. 40 eV. Our best-fit parameter values for the sphere-plus-disk geometry are tau(sub T) approx. equal to 1.5 and T(sub c) approx. equal to 90 keV.

  8. The reflection component from Cygnus X-1 in the soft state measured by NuSTAR and Suzaku

    SciTech Connect

    Tomsick, John A.; Boggs, Steven E.; Craig, William W.; Nowak, Michael A.; Parker, Michael; Fabian, Andy C.; Miller, Jon M.; King, Ashley L.; Harrison, Fiona A.; Forster, Karl; Fürst, Felix; Grefenstette, Brian W.; Madsen, Kristin K.; Bachetti, Matteo; Barret, Didier; Christensen, Finn E.; Hailey, Charles J.; Natalucci, Lorenzo; Pottschmidt, Katja; Ross, Randy R.; and others

    2014-01-01

    The black hole binary Cygnus X-1 was observed in late 2012 with the Nuclear Spectroscopic Telescope Array (NuSTAR) and Suzaku, providing spectral coverage over the ∼1-300 keV range. The source was in the soft state with a multi-temperature blackbody, power law, and reflection components along with absorption from highly ionized material in the system. The high throughput of NuSTAR allows for a very high quality measurement of the complex iron line region as well as the rest of the reflection component. The iron line is clearly broadened and is well described by a relativistic blurring model, providing an opportunity to constrain the black hole spin. Although the spin constraint depends somewhat on which continuum model is used, we obtain a {sub *} > 0.83 for all models that provide a good description of the spectrum. However, none of our spectral fits give a disk inclination that is consistent with the most recently reported binary values for Cyg X-1. This may indicate that there is a >13° misalignment between the orbital plane and the inner accretion disk (i.e., a warped accretion disk) or that there is missing physics in the spectral models.

  9. Image of the Black Hole, Cygnus X-1, Taken by the High Energy Astronomy Observatory (HEAO)-2

    NASA Technical Reports Server (NTRS)

    1980-01-01

    This image of the suspected Black Hole, Cygnus X-1, was the first object seen by the High Energy Astronomy Observatory (HEAO)-2/Einstein Observatory. According to the theories to date, one concept of a black hole is a star, perhaps 10 times more massive than the Sun, that has entered the last stages of stelar evolution. There is an explosion triggered by nuclear reactions after which the star's outer shell of lighter elements and gases is blown away into space and the heavier elements in the stellar core begin to collapse upon themselves. Once this collapse begins, the inexorable force of gravity continues to compact the material until it becomes so dense it is squeezed into a mere point and nothing can escape from its extreme gravitational field, not even light. The HEAO-2, the first imaging and largest x-ray telescope built to date, was capable of producing actual photographs of x-ray objects. Shortly after launch, the HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy.

  10. Linear polarization from tidal distortions of the Cygnus X-1 primary component

    SciTech Connect

    Bochkarev, N.G.; Karitskaia, E.A.; Loskutov, V.M.; Sokolov, V.V.

    1986-02-01

    The variability that would be introduced into the optical linear polarization of the Cyg X-1 (V1357 Cyg) binary system due to tidal deformation or shallow partial eclipses of the primary component is calculated, allowing for the optical-depth variation of the source function and single-scattering albedo in a model stellar atmosphere with Teff = 32,900 K and log g = 3.1. Angular distributions of the intensity and polarization per unit area of the stellar surface are derived for selected wavelengths, and the wavelength dependence of the corresponding polarization variability amplitude Ap is predicted. In the optical range Ap should be less than about 0.025 percent, but in principle might be detectable at short wavelengths. The observed V-band variations in p are, however an order of magnitude stronger and cannot result from tidal distortions or partial eclipses. 24 references.

  11. X-ray Studies of the Black Hole Binary Cygnus X-1 with Suzaku

    NASA Astrophysics Data System (ADS)

    Yamada, Shin'ya

    2011-03-01

    In order to study X-ray properties of black hole binaries in so-called Low/Hard state, we analyzed 0.5--300 keV data of Cyg X-1, taken with the X-ray Imaging Spectrometer and the Hard X-ray Detector onboard the X-ray satellite Suzaku. The data were acquired on 25 occasions from 2005 to 2009, with a total exposure of ~450 ks. The source was in the Low/Hard state throughout, and the 0.5-300 keV luminosity changed by a factor of 4, corresponding to 2-10% of the Eddington limit for a 10 Mo black hole. Among the 25 data sets, the first one was already analyzed by Makishima et al. (2008), who successfully reproduced the wide-band spectrum by a linear combination of an emission from a standard accretion disk, soft and hard Comptonization continua, and reprocessed features. Given this, we analyzed the 25 data sets for intensity-related spectral changes, on three different time scales using different analysis methods. One is the source behavior on time scales of days to months, studied via direct comparison among the 25 spectra which are averaged over individual observations. Another is spectral changes on time scales of 1-2 seconds, revealed through ``intensity-sorted spectroscopy''. The other is spectral changes on time scales down to ~0.1 seconds, conducted using ``shot analysis" technique which was originally developed by Negoro et al. (1997) with Ginga. These studies partially incorporated spectral fitting in terms of a thermal Comptonization model. We payed great attention to instrumental problems caused by the source brightness, and occasional ``dipping" episodes which affects the Cyg X-1 spectrum at low energies. The shot analysis incorporated a small fraction of XIS data that were taken in the P-sum mode with a time resolution of 7.8 msec. Through these consistent analyses of all the 25 data sets, we found that a significant soft X-ray excess develops as the source gets brighter. Comparing results from the different time scales, the soft excess was further

  12. HIGHLY IONIZED Fe-K ABSORPTION LINE FROM CYGNUS X-1 IN THE HIGH/SOFT STATE OBSERVED WITH SUZAKU

    SciTech Connect

    Yamada, S.; Yoshikawa, A.; Makishima, K.; Torii, S.; Noda, H.; Mineshige, S.; Ueda, Y.; Kubota, A.; Gandhi, P.; Done, C.

    2013-04-20

    We present observations of a transient He-like Fe K{alpha} absorption line in Suzaku observations of the black hole binary Cygnus X-1 on 2011 October 5 near superior conjunction during the high/soft state, which enable us to map the full evolution from the start to the end of the episodic accretion phenomena or dips for the first time. We model the X-ray spectra during the event and trace their evolution. The absorption line is rather weak in the first half of the observation, but instantly deepens for {approx}10 ks, and weakens thereafter. The overall change in equivalent width is a factor of {approx}3, peaking at an orbital phase of {approx}0.08. This is evidence that the companion stellar wind feeding the black hole is clumpy. By analyzing the line with a Voigt profile, it is found to be consistent with a slightly redshifted Fe XXV transition, or possibly a mixture of several species less ionized than Fe XXV. The data may be explained by a clump located at a distance of {approx}10{sup 10-12} cm with a density of {approx}10{sup (-13)-(-11)} g cm{sup -3}, which accretes onto and/or transits the line of sight to the black hole, causing an instant decrease in the observed degree of ionization and/or an increase in density of the accreting matter. Continued monitoring for individual events with future X-ray calorimeter missions such as ASTRO-H and AXSIO will allow us to map out the accretion environment in detail and how it changes between the various accretion states.

  13. Probing the Inflow/Outflow and Accretion Disk of Cygnus X-1 in the High State with the Chandra High Energy Transmission Grating

    NASA Technical Reports Server (NTRS)

    Feng, Y. X.; Tennant, A. F.; Zhang, S. N.

    2003-01-01

    Cygnus X-1 was observed in the high state at the conjunction orbital phase (0) with Chandra High Energy Transmission Grating (HETG). Strong and asymmetric absorption lines of highly ionized species were detected, such as Fe xxv, Fe xxiv, Fe xxiii, Si xiv, S xvi, Ne x, etc. In the high state the profile of the absorption lines is composed of an extended red wing and a less extended blue wing. The red wings of higher ionized species are more extended than those of lower ionized species. The detection of these lines provides a way to probe the properties of the flow around the companion and the black hole in Cyg X-1 during the high state. A broad emission feature around 6.5 keV was significantly detected from the spectra of both the Chandra/HETG and the RXTE/Proportional Counter Array. This feature appears to be symmetric and can be fitted with a Gaussian function rather than the Laor disk line model of the fluorescent Fe K(alpha) line from an accretion disk. The implications of these results on the structure of the accretion flow of Cyg X-1 in the high state are discussed.

  14. Chandra X-ray Spectroscopy of the Focused Wind In the Cygnus X-1 System I. The Non-Dip Spectrum in the Low/Hard State

    NASA Technical Reports Server (NTRS)

    Hanke, Manfred; Wilms, Jorn; Nowak, Michael A.; Pottschmidt, Katja; Schultz, Norbert S.; Lee, Julia C.

    2008-01-01

    We present analyses of a 50 ks observation of the supergiant X-ray binary system CygnusX-1/HDE226868 taken with the Chandra High Energy Transmission Grating Spectrometer (HETGS). CygX-1 was in its spectrally hard state and the observation was performed during superior conjunction of the black hole, allowing for the spectroscopic analysis of the accreted stellar wind along the line of sight. A significant part of the observation covers X-ray dips as commonly observed for CygX-1 at this orbital phase, however, here we only analyze the high count rate non-dip spectrum. The full 0.5-10 keV continuum can be described by a single model consisting of a disk, a narrow and a relativistically broadened Fe K line, and a power law component, which is consistent with simultaneous RXTE broad band data. We detect absorption edges from overabundant neutral O, Ne and Fe, and absorption line series from highly ionized ions and infer column densities and Doppler shifts. With emission lines of He-like Mg XI, we detect two plasma components with velocities and densities consistent with the base of the spherical wind and a focused wind. A simple simulation of the photoionization zone suggests that large parts of the spherical wind outside of the focused stream are completely ionized, which is consistent with the low velocities (<200 km/s) observed in the absorption lines, as the position of absorbers in a spherical wind at low projected velocity is well constrained. Our observations provide input for models that couple the wind activity of HDE 226868 to the properties of the accretion flow onto the black hole.

  15. RXTE Observation of Cygnus X-1: III. Implications for Compton Corona and ADAF Models. Report 3; Implications for Compton Corona and ADAF Models

    NASA Technical Reports Server (NTRS)

    Nowak, Michael A.; Wilms, Joern; Vaughan, Brian A.; Dove, James B.; Begelman, Mitchell C.

    1999-01-01

    We have recently shown that a 'sphere + disk' geometry Compton corona model provides a good description of Rossi X-ray Timing Explorer (RXTE) observations of the hard/low state of Cygnus X-1. Separately, we have analyzed the temporal data provided by RXTE. In this paper we consider the implications of this timing analysis for our best-fit 'sphere + disk' Comptonization models. We focus our attention on the observed Fourier frequency-dependent time delays between hard and soft photons. We consider whether the observed time delays are: created in the disk but are merely reprocessed by the corona; created by differences between the hard and soft photon diffusion times in coronae with extremely large radii; or are due to 'propagation' of disturbances through the corona. We find that the time delays are most likely created directly within the corona; however, it is currently uncertain which specific model is the most likely explanation. Models that posit a large coronal radius [or equivalently, a large Advection Dominated Accretion Flow (ADAF) region] do not fully address all the details of the observed spectrum. The Compton corona models that do address the full spectrum do not contain dynamical information. We show, however, that simple phenomenological propagation models for the observed time delays for these latter models imply extremely slow characteristic propagation speeds within the coronal region.

  16. Corona, Jet, and Relativistic Line Models for Suzaku/RXTE/Chandra-HETG Observations of the Cygnus X-1 Hard State

    NASA Technical Reports Server (NTRS)

    Nowak, Michael A.; Hanke, Manfred; Trowbridge, Sarah N.; Markoff, Sera B.; Wilms, Joern; Pottschmidt, Katja; Coppi, Paolo; Maitra, Dipankar; Davis, Jhn E.; Tramper, Frank

    2009-01-01

    Using Suzaku and the Rossi X-ray Timing Explorer (RXTE), we have conducted a series of four simultaneous observations of the galactic black hole candidate Cyg X-1 in what were historically faint and spectrally hard "low states". Additionally, all of these observations occurred near superior conjunction with our line of sight to the X-ray source passing through the dense phases of the "focused wind" from the mass donating secondary. One of our observations was also simultaneous with observations by the Chandra-High Energy Transmission Grating (HETG). These latter spectra are crucial for revealing the ionized absorption due to the secondary s focused wind. Such absorption is present and must be accounted for in all four spectra. These simultaneous data give an unprecedented view of the 0.8-300 keV spectrum of Cyg X-1, and hence bear upon both corona and X-ray emitting jet models of black hole hard states. Three models fit the spectra well: coronae with thermal or mixed thermal/non-thermal electron populations, and jets. All three models require a soft component that we fit with a low temperature disk spectrum with an inner radius of only a few tens of GM/c2. All three models also agree that the known spectral break at 10 keV is not solely due to the presence of reflection, but each gives a different underlying explanation for the augmentation of this break. Thus whereas all three models require that there is a relativistically broadened Fe line, the strength and inner radius of such a line is dependent upon the specific model, thus making premature line-based estimates of the black hole spin in the Cyg X-1 system. We look at the relativistic line in detail, accounting for the narrow Fe emission and ionized absorption detected by HETG. Although the specific relativistic parameters of the line are continuum-dependent, none of the broad line fits allow for an inner disk radius that is > 40 GM/c(sup 2).

  17. THE EMISSION OF CYGNUS X-1: OBSERVATIONS WITH INTEGRAL SPI FROM 20 keV TO 2 MeV

    SciTech Connect

    Jourdain, E.; Roques, J. P.; Malzac, J.

    2012-01-01

    We report on Cyg X-1 observations performed by the SPI telescope on board the INTEGRAL mission and distributed over more than 6 years. We investigate the variability of the intensity and spectral shape of this peculiar source in the hard X-ray domain, and more particularly up to the MeV region. We first study the total averaged spectrum which presents the best signal-to-noise ratio (4 Ms of data). Then, we refine our results by building mean spectra by periods and gathering those of similar hardness. Several spectral shapes are observed with important changes in the curvature between 20 and 200 keV, even at the same luminosity level. In all cases, the emission decreases sharply above 700 keV, with flux values above 1 MeV (or upper limits) well below the recently reported polarized flux, while compatible with the MeV emission detected some years ago by the Compton Gamma-ray Observatory/COMPTEL. Finally, we take advantage of the spectroscopic capability of the instrument to seek for spectral features in the 500 keV region with negative results for any significant annihilation emission on 2 ks and day timescales, as well as in the total data set.

  18. Revealing the broad iron Kα line in Cygnus X-1 through simultaneous XMM-Newton, RXTE, and INTEGRAL observations

    NASA Astrophysics Data System (ADS)

    Duro, Refiz; Dauser, Thomas; Grinberg, Victoria; Miškovičová, Ivica; Rodriguez, Jérôme; Tomsick, John; Hanke, Manfred; Pottschmidt, Katja; Nowak, Michael A.; Kreykenbohm, Sonja; Cadolle Bel, Marion; Bodaghee, Arash; Lohfink, Anne; Reynolds, Christopher S.; Kendziorra, Eckhard; Kirsch, Marcus G. F.; Staubert, Rüdiger; Wilms, Jörn

    2016-05-01

    We report on the analysis of the broad Fe Kα line feature of Cyg X-1 in the spectra of four simultaneous hard intermediate state observations made with the X-ray Multiple Mirror mission (XMM-Newton), the Rossi X-ray Timing Explorer (RXTE), and the International Gamma-Ray Astrophysics Laboratory (INTEGRAL). The high quality of the XMM-Newton data taken in the Modified Timing Mode of the EPIC-pn camera provides a great opportunity to investigate the broadened Fe Kα reflection line at 6.4 keV with a very high signal to noise ratio. The 4-500 keV energy range is used to constrain the underlying continuum and the reflection at higher energies. We first investigate the data by applying a phenomenological model that consists of the sum of an exponentially cutoff power law and relativistically smeared reflection. Additionally, we apply a more physical approach and model the irradiation of the accretion disk directly from the lamp post geometry. All four observations show consistent values for the black hole parameters with a spin of a ~ 0.9, in agreement with recent measurements from reflection and disk continuum fitting. The inclination is found to be i ~ 30°, consistent with the orbital inclination and different from inclination measurements made during the soft state, which show a higher inclination. We speculate that the difference between the inclination measurements is due to changes in the inner region of the accretion disk.

  19. THE ULTRAVIOLET SPECTRUM AND PHYSICAL PROPERTIES OF THE MASS DONOR STAR IN HD 226868 = Cygnus X-1

    SciTech Connect

    Caballero-Nieves, S. M.; Gies, D. R.; Bolton, C. T. E-mail: gies@chara.gsu.edu

    2009-08-20

    We present an examination of high-resolution, ultraviolet (UV) spectroscopy from Hubble Space Telescope of the photospheric spectrum of the O-supergiant in the massive X-ray binary HD 226868 = Cyg X-1. We analyzed this and ground-based optical spectra to determine the effective temperature and gravity of the O9.7 Iab supergiant. Using non-LTE, line-blanketed, plane-parallel models from the TLUSTY grid, we obtain T{sub eff} = 28.0 {+-} 2.5 kK and log g {approx}> 3.00 {+-} 0.25, both lower than in previous studies. The optical spectrum is best fit with models that have enriched He and N abundances. We fit the model spectral energy distribution for this temperature and gravity to the UV, optical, and infrared (IR) fluxes to determine the angular size and extinction toward the binary. The angular size then yields relations for the stellar radius and luminosity as a function of distance. By assuming that the supergiant rotates synchronously with the orbit, we can use the radius-distance relation to find mass estimates for both the supergiant and black hole (BH) as a function of the distance and the ratio of stellar to Roche radius. Fits of the orbital light curve yield an additional constraint that limits the solutions in the mass plane. Our results indicate masses of 23{sup +8}{sub -6} M{sub sun} for the supergiant and 11{sup +5}{sub -3} M{sub sun} for the BH.

  20. MAXI observations of long-term variations of Cygnus X-1 in the low/hard and the high/soft states

    NASA Astrophysics Data System (ADS)

    Sugimoto, Juri; Mihara, Tatehiro; Kitamoto, Shunji; Matsuoka, Masaru; Sugizaki, Mutsumi; Negoro, Hitoshi; Nakahira, Satoshi; Makishima, Kazuo

    2016-06-01

    The long-term X-ray variability of the black hole binary Cygnus X-1 was studied with five years of MAXI data from 2009 to 2014, which include substantial periods of the high/soft state, as well as the low/hard state. In each state, normalized power spectrum densities (NPSDs) were calculated in three energy bands of 2-4 keV, 4-10 keV, and 10-20 keV. The NPSDs for frequencies from 10-7 Hz to 10-4 Hz are all approximated by a power-law function with an index -1.35-1.29. The fractional RMS variation η, calculated in the above frequency range, was found to show the following three properties: (1) η slightly decreases with energy in the low/hard state; (2) η increases towards higher energies in the high/soft state; and (3) in the 10-20 keV band, η is three times higher in the high/soft state than in the low/hard state. These properties were confirmed through studies of intensity-correlated changes of the MAXI spectra. Of these three findings, the first one is consistent with that seen in the short-term variability during the low/hard state. The latter two can be understood as a result of high variability of the hard-tail component seen in the high/soft state with the above very low frequency range, although the origin of the variability remains inconclusive.

  1. A New Method to Resolve X-Ray Halos around Point Sources with Chandra Data and Its Application to Cygnus X-1

    NASA Technical Reports Server (NTRS)

    Yao, Yangsen; Zhang, Shuang Nan; Zhang, Xiao-Ling; Feng, Yu-Xin

    2003-01-01

    With excellent angular resolution, good energy resolution, and a broad energy band, the Chandra Advanced CCD Imaging Spectrometer (ACIS) is the best instrument for studying the X-ray halos around some Galactic X-ray point sources caused by the dust scattering of X-rays in the interstellar medium. However, the direct images of bright sources obtained with the ACIS usually suffer from severe pileup. Making use of the fact that an isotropic image could be reconstructed from its projection in to any direction, we can reconstruct the images of the X-ray halos from the data obtained with the High Energy Transition Grating Spectrometer (HETGS) and/or in continuos clocking (CC) mode. These data have no or less serious pileup and enable us to take full advantage of the excellent angular resolution of Chandra. With the reconstructed high-resolution images, we can probe the X-ray halos as close as 1" to their associated point sources. Applying this method to Cygnus X-1 observed with the Chandra HETGS in CC mode, we derived an energy-dependent radial halo flux distribution and concluded that in a circular region (2' in radius) centered a the point source: (1) relative to the total intensity, the fractional halo intensity is about 15% at keV and drops to aboout 5% at approximately 6 keV (2) about 50% of the halo photons are within the region of a radius less than 40 inches and (3) the spectrum of the pooint source is slightly distorted by the halo contamination.

  2. Cygnus History

    SciTech Connect

    David J. Henderson, Raymond E. Gignac, Douglas E. Good, Mark D. Hansen, Charles V. Mitton; Daniel S. Nelson, Eugene C. Ormond; Steve R. Cordova, Isidro Molina; John R. Smith, Evan A. Rose

    2009-07-02

    The Cygnus Dual Beam Radiographic Facility consists of two identical radiographic sources: Cygnus 1 and Cygnus 2. This Radiographic Facility is located in an underground tunnel test area at the Nevada Test Site. The sources were developed to produce high-resolution images for dynamic plutonium experiments. This work will recount and discuss salient maintenance and operational issues encountered during the history of Cygnus. A brief description of Cygnus systems and rational for design selections will set the stage for this historical narrative. It is intended to highlight the team-derived solutions for technical problems encountered during extended periods of maintenance and operation. While many of the issues are typical to pulsed power systems, some of the solutions are unique. It is hoped that other source teams will benefit from this presentation, as well as other necessary disciplines (e.g., source users, system architects, facility designers and managers, funding managers, and team leaders).

  3. The Broad Iron K-alpha line of Cygnus X-1 as Seen by XMM-Newton in the EPIC-pn Modified Timing Mode

    NASA Technical Reports Server (NTRS)

    Duro, Refiz; Dauser, Thomas; Wilms, Jorn; Pottschmidt, Katja; Nowak, Michael A.; Fritz, Sonja; Kendziorra, Eckhard; Kirsch, Marcus G. F.; Reynolds, Christopher S.; Staubert, Rudiger

    2011-01-01

    We present the analysis of the broadened, flourescent iron K(alpha) line in simultaneous XMM-Newton and RXTE data from the black hole Cygnus X-I. The XMM-Newton data were taken in a modified version of the Timing Mode of the EPIC-pn camera. In this mode the lower energy threshold of the instrument is increased to 2.8 keV to avoid telemetry drop outs due to the brightness of the source, while at the same time preserving the signal to noise ratio in the Fe K(alpha) band. We find that the best-fit spectrum consists of the sum of an exponentially cut-off power-law and relativistically smeared, ionized reflection. The shape of the broadened Fe K(alpha) feature is due to strong Compton broadening combined with relativistic broadening. Assuming a standard, thin accretion disk, the black hole is close to maximally rotating. Key words. X-rays: binaries - black hole physics - gravitation

  4. Chandra X-ray spectroscopy of focused wind in the Cygnus X-1 system. II. The non-dip spectrum in the low/hard state - modulations with orbital phase

    NASA Astrophysics Data System (ADS)

    Miškovičová, Ivica; Hell, Natalie; Hanke, Manfred; Nowak, Michael A.; Pottschmidt, Katja; Schulz, Norbert S.; Grinberg, Victoria; Duro, Refiz; Madej, Oliwia K.; Lohfink, Anne M.; Rodriguez, Jérôme; Cadolle Bel, Marion; Bodaghee, Arash; Tomsick, John A.; Lee, Julia C.; Brown, Gregory V.; Wilms, Jörn

    2016-05-01

    Accretion onto the black hole in the system HDE 226868/Cygnus X-1 is powered by the strong line-driven stellar wind of the O-type donor star. We study the X-ray properties of the stellar wind in the hard state of Cyg X-1, as determined using data from the Chandra High Energy Transmission Gratings. Large density and temperature inhomogeneities are present in the wind, with a fraction of the wind consisting of clumps of matter with higher density and lower temperature embedded in a photoionized gas. Absorption dips observed in the light curve are believed to be caused by these clumps. This work concentrates on the non-dip spectra as a function of orbital phase. The spectra show lines of H-like and He-like ions of S, Si, Na, Mg, Al, and highly ionized Fe (Fe xvii-Fe xxiv). We measure velocity shifts, column densities, and thermal broadening of the line series. The excellent quality of these five observations allows us to investigate the orbital phase-dependence of these parameters. We show that the absorber is located close to the black hole. Doppler shifted lines point at a complex wind structure in this region, while emission lines seen in some observations are from a denser medium than the absorber. The observed line profiles are phase-dependent. Their shapes vary from pure, symmetric absorption at the superior conjunction to P Cygni profiles at the inferior conjunction of the black hole.

  5. VII Microquasar Workshop: Microquasars and Beyond

    NASA Astrophysics Data System (ADS)

    This workshop is the seventh of the series of conferences mainly devoted to Galactic black holes. The conference will cover all topics related to relativistic jet sources in the universe including microquasars, neutron stars, active galactic nuclei, and gamma-ray bursts. The results of the analysis of data from high energy missions (RXTE, Chandra, XMM-Newton, INTEGRAL, Swift, Suzaku, Agile) as well as from ground based observatories in the optical, infrared and radio bands will be presented. The emphasis will be on the formation and evolution of jets, and their relation to other accretion components. The broad context of the workshop will also allow researchers to present their results on the comparisons between microquasars, neutron stars, ultraluminous X-ray sources, active galactic nuclei and gamma-ray bursts. The workshop also intends to include presentations on recent missions (e.g. GLAST, ASTROSAT) and missions in preparation e.g. IXO concentrating on the prospects of black hole research with those missions. The program will be organized in sessions centered around a limited number of invited reviews, with contributed presentations and ample time for discussion. Young researchers will be encouraged to contribute.

  6. INTEGRAL SPI Observations of Cygnus X-1 in the Soft State: What about the Jet Contribution in Hard X-Rays?

    NASA Astrophysics Data System (ADS)

    Jourdain, E.; Roques, J. P.; Chauvin, M.

    2014-07-01

    During the first 7 yr of the INTEGRAL mission (2003-2009), Cyg X-1 has essentially been detected in its hard state (HS), with some incursions in intermediate HSs. This long, spectrally stable period allowed in particular the measurement of the polarization of the high-energy component that has long been observed above 200 keV in this peculiar object. This result strongly suggests that here we see the contribution of the jet, known to emit a strong synchrotron radio emission. In 2010 June, Cyg X-1 underwent a completed transition toward a soft state (SS). It gave us the unique opportunity to study in detail the corona emission in this spectral state, and to investigate in particular the behavior of the jet contribution. Indeed, during the SS, the hard X-ray emission decreases drastically, with its maximum energy shifted toward lower energy and its flux divided by a factor of ~5-10. Interestingly, the radio emission follows a similar drop, supporting the correlation between the jet emission and the hard component, even though the flux is too low to quantify the polarization characteristics. Based on observations with INTEGRAL, an ESA project with instruments and science data center funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Spain, and Switzerland), the Czech Republic and Poland with the participation of Russia and USA.

  7. INTEGRAL SPI observations of Cygnus X-1 in the soft state: What about the jet contribution in hard X-rays?

    SciTech Connect

    Jourdain, E.; Roques, J. P.; Chauvin, M.

    2014-07-01

    During the first 7 yr of the INTEGRAL mission (2003-2009), Cyg X-1 has essentially been detected in its hard state (HS), with some incursions in intermediate HSs. This long, spectrally stable period allowed in particular the measurement of the polarization of the high-energy component that has long been observed above 200 keV in this peculiar object. This result strongly suggests that here we see the contribution of the jet, known to emit a strong synchrotron radio emission. In 2010 June, Cyg X-1 underwent a completed transition toward a soft state (SS). It gave us the unique opportunity to study in detail the corona emission in this spectral state, and to investigate in particular the behavior of the jet contribution. Indeed, during the SS, the hard X-ray emission decreases drastically, with its maximum energy shifted toward lower energy and its flux divided by a factor of ∼5-10. Interestingly, the radio emission follows a similar drop, supporting the correlation between the jet emission and the hard component, even though the flux is too low to quantify the polarization characteristics.

  8. No Radio Flaring Detected from Cygnus X-3 at 3 GHz by Allen Telescope Array

    NASA Astrophysics Data System (ADS)

    Williams, P. K. G.; Bower, G. C.; Tomsick, J. A.; Bodaghee, A.; Corbet, R. H. D.

    2011-01-01

    Following the announcement of a 98 GHz flare from the microquasar Cygnus X-3 (ATel #3130), we observed it with the Allen Telescope Array (Welch et al., 2009 Proc. IEEE 97 1438 for 2.5 hours beginning at 2011 January 28.848 UT (MJD 55589.848), about 4.0 hours after the 98 GHz observations concluded.

  9. Understanding the Long-Term Spectral Variability of Cygnus X-1 with Burst and Transient Source Experiment and All-Sky Monitor Observations

    NASA Technical Reports Server (NTRS)

    Zdziarski, Andrzej A.; Poutanen, Juri; Paciesas, William S.; Wen, Lin-Qing

    2002-01-01

    We present a comprehensive analysis of all observations of Cyg X-1 by the Compton Gamma Ray Observatory Burst and Transient Source Experiment (BATSE; 20-300 keV) and by the Rossi X-Ray Timing Explorer all-sky monitor (ASM; 1.5-12 keV) until 2002 June, including approximately 1200 days of simultaneous data. We find a number of correlations between fluxes and hardnesses in different energy bands. In the hard (low) spectral state, there is a negative correlation between the ASM 1.5-12 keV flux and the hardness at any energy. In the soft (high) spectral state, the ASM flux is positively correlated with the ASM hardness but uncorrelated with the BATSE hardness. In both spectral states, the BATSE hardness correlates with the flux above 100 keV, while it shows no correlation with the 20-100 keV flux. At the same time, there is clear correlation between the BATSE fluxes below and above 100 keV. In the hard state, most of the variability can be explained by softening the overall spectrum with a pivot at approximately 50 keV. There is also another, independent variability pattern of lower amplitude where the spectral shape does not change when the luminosity changes. In the soft state, the variability is mostly caused by a variable hard (Comptonized) spectral component of a constant shape superposed on a constant soft blackbody component. These variability patterns are in agreement with the dependencies of the rms variability on the photon energy in the two states. We also study in detail recent soft states from late 2000 until 2002. The last of them has lasted thus far for more than 200 days. Their spectra are generally harder in the 1.5-5 keV band and similar or softer in the 3-12 keV band than the spectra of the 1996 soft state, whereas the rms variability is stronger in all the ASM bands. On the other hand, the 1994 soft state transition observed by BATSE appears very similar to the 1996 one. We interpret the variability patterns in terms of theoretical Comptonization

  10. Multi-wavelength observations of Cygnus X-3

    NASA Astrophysics Data System (ADS)

    Varlotta, Angelo

    2012-07-01

    Cygnus X-3 is a X-ray binary consisting of an accreting compact object orbiting a Wolf-Rayet star with collimated relativistic jets, placing it firmly in the category of microquasars. It has been detected at radio frequencies and up to the high-energy gamma rays (>100 MeV) by the Fermi LAT. Many theoretical models envision very-high-energy (VHE) emission (>100 GeV) when the source manifests relativistic persistent jets or transient ejections. In light of our multi-wavelength studies of Cygnus X-3 in the radio, infra-red, soft x-ray, hard x-ray and gamma-ray (<100 GeV) bands and with the aid of VERITAS, we believe we can cast light on the particular conditions which could trigger VHE emission. We argue this can help us understand the mechanisms that may trigger VHE gamma-ray emission, thus improving our knowledge of particle acceleration and radiative processes in the jets. The implications have far reaching consequences on the understanding of other microquasars and also of active galactic nuclei, which are in many ways similar to microquasars and are prominent VHE gamma-ray sources.

  11. Astronomers Trace Microquasar's Path Back in Time

    NASA Astrophysics Data System (ADS)

    2003-01-01

    Astronomers have traced the orbit through our Milky Way Galaxy of a voracious neutron star and a companion star it is cannibalizing, and conclude that the pair joined more than 30 million years ago and probably were catapulted out of a cluster of stars far from the Galaxy's center. Path of Microquasar and Sun Path of Microquasar (red) and Sun (yellow) through the Milky Way Galaxy for the past 230 million years. Animations: GIF Version MPEG Version CREDIT: Mirabel & Rodrigues, NRAO/AUI/NSF The pair of stars, called Scorpius X-1, form a "microquasar," in which material sucked from the "normal" star forms a rapidly-rotating disk around the superdense neutron star. The disk becomes so hot it emits X-rays, and also spits out "jets" of subatomic particles at nearly the speed of light. Using precise positional data from the National Science Foundation's Very Long Baseline Array (VLBA) and from optical telescopes, Felix Mirabel, an astrophysicist at the Institute for Astronomy and Space Physics of Argentina and French Atomic Energy Commission, and Irapuan Rodrigues, also of the French Atomic Energy Commission, calculated that Scorpius X-1 is not orbiting the Milky Way's center in step with most other stars, but instead follows an eccentric path far above and below the Galaxy's plane. Scorpius X-1, discovered with a rocket-borne X-ray telescope in 1962, is about 9,000 light-years from Earth. It is the brightest continuous source of X-rays beyond the Solar System. The 1962 discovery and associated work earned a share of the 2002 Nobel Prize in physics for Riccardo Giacconi. Mirabel and Rodrigues used a number of published observations to calculate the path of Scorpius X-1 over the past few million years. "This is the most accurate determination we have made of the path of an X-ray binary," said Mirabel. By tracing the object's path backward in time, the scientists were able to conclude that the neutron star and its companion have been traveling together for more than 30

  12. Microquasar Monitoring with the GBI

    NASA Astrophysics Data System (ADS)

    Waltman, E. B.; Ghigo, F. D.; Hjellming, R. M.; Johnston, K. J.

    1999-05-01

    Monitoring of the X-ray binaries GRS 1915+105, Cygnus X-3 (2030+407), LSI +61(deg) 303 (0236+610), and SS 433 (1909+048) at 2 and 8 GHz with the Green Bank Interferometer (GBI) is available on the website of the GBI. In addition to the 1997-1999 fluxes which have been available as public domain data, the archival data on these sources prior to 1996 are now included in the archives directory on the GBI website. The GBI is a facility of the NSF, operated by the NRAO with support for the Monitoring Program provided by the US Naval Observatory, the Naval Research Laboratory, and NASA, which should be acknowledged with the requested funding credit statement.

  13. Cygnus Water Switch Jitter

    SciTech Connect

    Charles V. Mitton, George D. Corrow, Mark D. Hansen, David J. Henderson, et al.

    2008-03-01

    The Cygnus Dual Beam Radiographic Facility consists of two identical radiographic sources - Cygnus 1 and Cygnus 2. Each source has the following x-ray output: 1-mm diameter spot size, 4 rad at 1 m, 50-ns Full Width Half Max. The diode pulse has the following electrical specifications: 2.25 MV, 60 kA, 60 ns. This Radiographic Facility is located in an underground tunnel test area at the Nevada Test Site (NTS). The sources were developed to produce high-resolution images on subcritical tests which are performed at NTS. Subcritical tests are single-shot, high-value events. For this application, it is desirable to maintain a high level of reproducibility in source output. The major components of the Cygnus machines are: Marx generator, water-filled pulse–forming line (PFL), water-filled coaxial transmission line, three-cell inductive voltage adder, and rod-pinch diode. A primary source of fluctuation in Cygnus shot-to-shot performance is jitter in breakdown of the main PFL switch, which is a “self-break” switch. The PFL switch breakdown time determines the peak PFL charging voltage, which ultimately affects the diode pulse. Therefore, PFL switch jitter contributes to shot-to-shot variation in source endpoint energy and dose. In this paper we will present PFL switch jitter analysis for both Cygnus machines and give the correlation with diode performance. For this analysis the PFL switch on each machine was maintained at a single gap setting which has been used for the majority of shots at NTS. In addition to this analysis, PFL switch performance for different switch gap settings taken recently will be examined. Lastly, implications of source jitter for radiographic diagnosis of subcritical shots will be discussed.

  14. The beginning of a giant radio flare from Cygnus X-3

    NASA Astrophysics Data System (ADS)

    Trushkin, S. A.; Nizhelskij, N. A.; Tsybulev, P. G.; Zhekanis, G. V.

    2016-09-01

    As we suggested in ATel #9416, galactic microquasar Cygnus X-3 is currently undergoing a flaring activity. If on 30 August 2016 (MJD 57630.798) its fluxes were 120-128 mJy at 4.6, 8.2, 11.2 GHz in the RATAN-600 radio telescope observations, then on 31 August (MJD 57631.795) the fluxes became 60, 300, 570, 740, 800 mJy at 2.3, 4.6, 8.2, 11.2 and 21.7 GHz with typical errors about 3-7%.

  15. Search for TeV Gamma Rays from Cygnus X-3

    NASA Astrophysics Data System (ADS)

    Cui, Wei; VERITAS Collaboration

    2013-06-01

    We report results from a systematic search for gamma-ray emission from Cygnus X-3 at TeV energies with VERITAS. The source is an enigmatic X-ray binary that has defied classification. Its short orbital period is typical of low-mass X-ray binaries, yet signatures of a Wolf-Rayet star are evident. Powerful jets seen are indicative of microquasar, but arguments for the existence of a neutron star are also compelling. Recently, Cygnus X-3 was detected at GeV gamma-ray energies with AGILE and Fermi LAT. There is strong evidence that GeV gamma-ray production is correlated with the radio/X-ray properties of the source. To this end, we have also carried out more focused searches for TeV gamma rays in the radio/X-ray states of interest.

  16. A search for new galactic microquasars

    NASA Astrophysics Data System (ADS)

    Tsarevsky, G. S.; Pavlenko, E. P.; Stathakis, R. A.; Kardashev, N. S.; Slee, O. B.

    2002-01-01

    The population of microquasars in our Galaxy} Accretion onto a supermassive black hole with a strong surrounding magnetic field can supply the necessary energy for AGNs (Kardashev 1995). Inside our own galaxy, accretion from a stellar component onto a black hole (or neutron star) in a close binary system can produce a similar kind of phenomenon. X-ray observations made by UHURU in 1978 attracted attention to the peculiar object SS 433 located in the very centre of the supernova remnant W50. When the orbital period was first determined, Shklovski (1978) suggested that SS 433 is a binary system associated with the ejection of relativistic particles, which are responsible for the strong, periodic radio emission. Many observations of SS 433 led to the conclusion that the system is a close binary consisting of a massive OB star and a neutron star or a black hole surrounded by a bright accretion disk opaque to X-rays. SS 433 and similar objects have been assigned to a special class called "microquasars" (see comprehensive review by Mirabel & Rodriguez, 1999). Only about 30 of ~280 known X-ray binaries (XRBs) have been detected in radio (Fender et al. 1997), and only a few of them have characteristic radio emission and morphology associated with the microquasars' family. Radio images of such objects bear a striking similarity to the structures of AGN: they have a compact core and two-sided jets of relativistic particles. Flux variability and superluminal motions are also quite common for the microquasars. GRO J1655--40 is a representative object of this class (Tingay at al. 1995). First discovered in X-rays, it produces relativistic radio jets with β = 0.92, and has an angular extent of 1arcsec. It is the intention of the project described here to search for similar features with the aim of increasing the number of known microquasars.

  17. "Microquasar" Discoveries Win Prize for Astronomers

    NASA Astrophysics Data System (ADS)

    The discovery of "microquasars" within our own Milky Way Galaxy has won two astronomers a prize from the High Energy Astrophysics Division of the American Astronomical Society. Felix Mirabel of the Center for Studies at Saclay, France, and Luis Rodriguez of the Institute of Astronomy at the National Autonomous University in Mexico City, were awarded the Bruno Rossi Prize at the American Astronomical Society meeting in Toronto, Ontario, today. The two researchers, who have collaborated for more than 15 years, used an orbiting X-Ray observatory and the National Science Foundation's Very Large Array (VLA) radio telescope to discover the extremely energetic microquasars. Microquasars are thought to be binary-star systems with one of the stars either a superdense neutron star or a black hole. They emit X-rays and eject jets of subatomic particles at speeds approaching that of light. Though the neutron stars or black holes in microquasars are only a few times the mass of the sun, the phenomena associated with them, such as the jets, are similar to those seen in active galaxies and quasars, believed to be powered by the gravitational energy of black holes with millions of times the mass of the sun. As such, the microquasars provide much closer "laboratories" for study of these phenomena, which remain poorly understood. The Rossi Prize is awarded for "a significant contribution to high energy astrophysics, with particular emphasis on recent work," according to the High Energy Astrophysics Division. Mirabel and Rodriguez began the research that led to the microquasar discoveries in 1990. Using the French-Russian SIGMA- GRANAT X-Ray satellite, they discovered a microquasar near the Milky Way's center in 1992. With the VLA, they found radio emission from this object. In 1992, using the same satellite, they discovered a similar object, called GRS 1915+105. In 1994, that object experienced an outburst that made it bright enough at radio wavelengths to observe with the VLA

  18. Cygnus Trigger System

    SciTech Connect

    G. Corrow, M. Hansen, D. Henderson, C. Mitton

    2008-02-01

    The Cygnus Dual Beam Radiographic Facility consists of two radiographic sources (Cygnus 1, Cygnus 2) each with a dose rating of 4 rads at 1 m, and a 1-mm diameter spot size. The electrical specifications are: 2.25 MV, 60 kA, 60 ns. This facility is located in an underground environment at the Nevada Test Site (NTS). These sources were developed as a primary diagnostic for subcritical tests, which are single-shot, high-value events. In such an application there is an emphasis on reliability and reproducibility. A robust, low-jitter trigger system is a key element for meeting these goals. The trigger system was developed with both commercial and project-specific equipment. In addition to the traditional functions of a trigger system there are novel features added to protect the investment of a high-value shot. Details of the trigger system, including elements designed specifically for a subcritical test application, will be presented. The individual electronic components have their nominal throughput, and when assembled have a system throughput with a measured range of jitter. The shot-to-shot jitter will be assessed both individually and in combination. Trigger reliability and reproducibility results will be presented for a substantial number of shots executed at the NTS.

  19. SAS 3 observations of Cygnus X-1 - The intensity dips

    NASA Technical Reports Server (NTRS)

    Remillard, R. A.; Canizares, C. R.

    1984-01-01

    In general, the dips are observed to occur near superior conjunctions of the X-ray source, but one pair of 2-minute dips occurs when the X-ray source is closer to the observer than is the supergiant companion. The dips are analyzed spectrally with the aid of seven energy channels in the range 1.2-50 keV. Essentially, there is no change in the spectral index during the dips. Reductions in the count rates are observed at energies exceeding 6 keV for some of the dips, but the dip amplitude is always significantly greater in the 1.2-3 keV band. It is believed that absorption by partially ionized gas may best explain these results, since the observations of Pravdo et al. (1980) rule out absorption by unionized material. Estimates for the intervening gas density, extent, and distance from the X-ray source are presented. Attention is also given to the problems confronting the models for the injection of gas through the line of sight, believed to be inclined by approximately 30 deg from the binary pole.

  20. MAGIC CONSTRAINTS ON {gamma}-RAY EMISSION FROM CYGNUS X-3

    SciTech Connect

    Aleksic, J.; Blanch, O.; Antonelli, L. A.; Bonnoli, G.; Antoranz, P.; Backes, M.; Baixeras, C.; Barrio, J. A.; Bastieri, D.; Gonzalez, J. Becerra; Bednarek, W.; Berdyugin, A.; Berger, K.; Bernardini, E.; Biland, A.; Boller, A.; Bock, R. K.; Tridon, D. Borla; Bordas, P.; Bosch-Ramon, V. E-mail: tysaito@mpp.mpg.d

    2010-09-20

    Cygnus X-3 is a microquasar consisting of an accreting compact object orbiting around a Wolf-Rayet star. It has been detected at radio frequencies and up to high-energy {gamma} rays (above 100 MeV). However, many models also predict a very high energy (VHE) emission (above hundreds of GeV) when the source displays relativistic persistent jets or transient ejections. Therefore, detecting such emission would improve the understanding of the jet physics. The imaging atmospheric Cherenkov telescope MAGIC observed Cygnus X-3 for about 70 hr between 2006 March and 2009 August in different X-ray/radio spectral states and also during a period of enhanced {gamma}-ray emission. MAGIC found no evidence for a VHE signal from the direction of the microquasar. An upper limit to the integral flux for energies higher than 250 GeV has been set to 2.2 x 10{sup -12} photons cm{sup -2} s{sup -1} (95% confidence level). This is the best limit so far to the VHE emission from this source. The non-detection of a VHE signal during the period of activity in the high-energy band sheds light on the location of the possible VHE radiation favoring the emission from the innermost region of the jets, where absorption is significant. The current and future generations of Cherenkov telescopes may detect a signal under precise spectral conditions.

  1. Circinus X-1: A Neutron Star Doing Its Best Impression Of A Black Hole?

    NASA Astrophysics Data System (ADS)

    Heinz, Sebastian; Sell, P.; Schulz, N.; Brandt, N.; Calvelo, D.; Jonker, P.

    2011-09-01

    The X-ray binary Circinus X-1 is a trailblazer in many ways: (a) It is one of only two neutron star X-ray binaries with a resolved radio jet, making it a prototype and defining member of the class of neutron star microquasars. (b) It is one of only two microquasars with well established large scale, diffuse radio lobes. (c) Its jet has been clocked at a Lorentz factor of Gamma=16, potentially making it the fastest microquasar to date. (d) Finally, Circinus X-1 has become the first and only neutron star XRB with a resolved X-ray jet: Recent Chandra and radio observations show the source in glorious detail, revealing parsec scale shocks and arcsecon scale extended X-ray emission. I will discuss the constraints we can put on the jet power from this neutron star and their implications for our understanding of relativistic jets from compact objects as a whole.

  2. Cygnus Diverter Switch Analysis

    SciTech Connect

    G. Corrow, M. Hansen, D. Henderson, C. Mitton et al.

    2008-02-01

    The Cygnus Dual Beam Radiographic Facility consists of two 2.25-MV, 60-kA, 50-ns x-ray sources fielded in an underground laboratory at the Nevada Test Site. The tests performed in this laboratory involve study of the dynamic properties of plutonium and are called subcritical experiments. From end-to-end, the Cygnus machines utilize the following components: Marx generator, water-filled pulse-forming line (PFL), waterfilled coaxial transmission line (WTL), 3-cell inductive voltage adder (IVA), and rod-pinch diode. The upstream WTL interface to the PFL is via a radial insulator with coaxial geometry. The downstream WTL terminates in a manifold where the center conductor splits into three lines which individually connect to each of the IVA cell inputs. There is an impedance mismatch at this juncture. It is a concern that a reflected pulse due to anomalous behavior in the IVA or diode might initiate breakdown upon arrival at the upstream PFL/WTL insulator. Therefore near the beginning of the WTL a radial diverter switch is installed to protect the insulator from over voltage and breakdown. The diverter has adjustable gap spacing, and an in-line aqueous-solution (sodium thiosulfate) resistor array for energy dissipation. There are capacitive voltage probes at both ends of the WTL and on the diverter switch. These voltage signals will be analyzed to determine diverter performance. Using this analysis the usefulness of the diverter switch will be evaluated.

  3. Tour the Cygnus X Star Factory

    NASA Video Gallery

    This video opens with wide optical and infrared images of the constellation Cygnus, then zooms into the Cygnus X region using radio, infrared and gamma-ray images. Fermi LAT shows that gamma rays f...

  4. Long-term studies with the Ariel 5 ASM. 2: The strong Cygnus sources

    NASA Technical Reports Server (NTRS)

    Holt, S. S.; Kaluzienski, L. J.; Boldt, E. A.; Serlemitsos, P. J.

    1979-01-01

    The three bright 3-6 keV X-ray sources in Cygnus are examined for regular temporal variability with a 1300-day record from the Ariel 5 All Sky Monitor. The only periods consistently observed are 5.6 days for Cyg X-1, 11.23 days for Cyg X-2, and 4.8 hours for Cyg X-3.

  5. GLAST Status and Application to Microquasars

    SciTech Connect

    Dubois, Richard; /SLAC

    2006-11-15

    The Gamma-ray Large Area Space Telescope (GLAST) is a next generation high energy gamma-ray observatory due for launch in Fall 2007. The primary instrument is the Large Area Telescope (LAT), which will measure gamma-ray flux and spectra from 20 MeV to > 300 GeV and is a successor to the highly successful EGRET experiment on CGRO. The LAT will have better angular resolution, greater effective area, wider field of view and broader energy coverage than any previous experiment in this energy range. An overview of the LAT instrument design and construction is presented which includes performance estimates with particular emphasis on how these apply to studies of microquasars. The nature and quality of the data that will be provided by the LAT is described with results from recent detailed simulations that illustrate the potential of the LAT to observe gamma ray variability and spectra.

  6. Cygnus X-3 Little Friend's Counterpart, the Distance to Cygnus X-3 and Jets (Oh My!)

    NASA Astrophysics Data System (ADS)

    McCollough, Michael L.; Dunham, Michael M.; Corrales, Lia

    2016-04-01

    Chandra observations have revealed a feature within 16" of Cygnus X-3 which varied in phase with Cygnus X-3. This feature was shown to be a Bok globule which is along the line of sight to Cygnus X-3. We report onobservations made with Submillimeter Array (SMA) to search for molecular emission from this globule, also known as Cygnus X-3's "little friend." We have found a counterpart in both 12CO and 13CO emission. From the velocity shift of the molecular lines we are able determine a kinematic distance to the little friend and in turn a distance to Cygnus X-3. The uncertainties in this distance estimate to Cygnus X-3 are less than 10%. An additional unexpected discovery was that Cygnus X-3 is not the only source to have jets!

  7. The Cygnus Loop: An Older Supernova Remnant.

    ERIC Educational Resources Information Center

    Straka, William

    1987-01-01

    Describes the Cygnus Loop, one of brightest and most easily studied of the older "remnant nebulae" of supernova outbursts. Discusses some of the historical events surrounding the discovery and measurement of the Cygnus Loop and makes some projections on its future. (TW)

  8. Radio Astronomical studies of microquasars with RATAN-600 radio telescope

    NASA Astrophysics Data System (ADS)

    Trushkin, Sergei; Nizhelskij, Nikolaj; Tsybulev, Peter; Bursov, Nikolaj

    Relativistic outflows of accreted matter in the collimated two opposite side jets, ejected from polar regions of accretion disks around black holes or neutron stars in microquasars, are the intensive sources of variable synchrotron radio emission and even TeV energy gamma-ray emission. The ballistic tracks of the clouds (blobs) are directly visible as radio jets in VLA and VLBI maps of SS433, GRS 1915+105, Cyg X-3. The temporal and frequency changes in the measured light curves are a key for deep understanding and a good probe test for physical models of of cosmic jets in mQSO and AGNs. A comparison the radio, optical, X-ray and now high energy gamma-ray intensities allows us to provide detailed studies. We have carried out the long-time monitoring (as a rule 200-250 daily measurements per year) Cyg X-3, GRS1915+10, SS433, Cyg X-1, LSI+61d303, LS5039 with RATAN-600 at 4.8, 7.7, 11.2, 21.7, and 30 GHz during last four years. While Cyg X-3 was in quiet state, we have detected clear radio-X-ray (RATAN-Swift) correlation. We have detected a lot of very bright flares (more than 1.5 Jy at 4.8 GHz) from SS433. In quiet state the radio emission of SS433 is modulated by a half of orbit period near 6.5d, probably being the geometric effect of precessing (164d) and nodding (6.1d) jets. GRS1915+105 have shown the clear correlation of flaring radio emission with X-ray flux from MAXI (Punsly et al., 2014 ApJ, in press). We have detected the enhanced absorption due to the rising hydrogen column density. We continue to study the super-orbital modulation (1666 days) of the flaring radio emission from LSI+61d303. The moments of maxima of the periodically flaring radio emission from it correlated with phase of this super-orbital period. The studies were supported by the grant 12-02-00812 from Russian Foundation of Basic Research.

  9. Cygnus Loop: A double bubble?

    NASA Astrophysics Data System (ADS)

    West, J.; Safi-Harb, S.; Reichardt, I.; Stil, J.; Kothes, R.; Jaffe, T.; Galfacts Team

    2016-06-01

    The Cygnus Loop is a well-studied supernova remnant (SNR) that has been observed across the electromagnetic spectrum. Although widely believed to be an SNR shell with a blow-out region in the south, we consider the possibility that this object is two SNRs projected along the same line-of-sight by using multi-wavelength images and modelling. Our results show that a model of two objects including some overlap region/interaction between the two objects has the best match to the observed data.

  10. NGC 300 X-1 and IC 10 X-1: a new breed of black hole binary?

    NASA Astrophysics Data System (ADS)

    Barnard, R.; Clark, J. S.; Kolb, U. C.

    2008-09-01

    Context: IC 10 X-1 has recently been confirmed as a black hole (BH) + Wolf-Rayet (WR) X-ray binary, and NGC 300 X-1 is thought to be. The only other known BH+WR candidate is Cygnus X-3. IC 10 X-1 and NGC 300 X-1 have similar X-ray properties, with 0.3-10 keV luminosities ~1038 erg s-1, and their X-ray lightcurves exhibit orbital periods ~30 h. Aims: We investigate similarities between IC 10 X-1 and NGC 300 X-1, as well as differences between these systems and the known Galactic BH binary systems. Methods: We have examined all four XMM-Newton observations of NGC 300 X-1, as well as the single XMM-Newton observation of IC 10 X-1. For each observation, we extracted lightcurves and spectra from the pn, MOS1 and MOS2 cameras; power density spectra were constructed from the lightcurves, and the X-ray emission spectra were modeled. Results: Each source exhibits power density spectra that are well described by a power law with index, γ, ~1. Such variability is characteristic of turbulence in wind accretion or disc-accreting X-ray binaries (XBs) in the high state. In this state, Galactic XBs with known BH primaries have soft, thermal emission; however the emission spectra of NGC 300 X-1 and IC 10 X-1 in the XMM-Newton observations are predominantly non-thermal. Furthermore, the Observation 1 spectrum of NGC 300 X-1 is strikingly similar to that of IC 10 X-1. Conclusions: The remarkable similarity between the behaviour of NGC 300 X-1 in Observation 1 and that of IC 10 X-1 lends strong evidence for NGC 300 X-1 being a BH+WR binary. Our spectral modeling rules out Bondi-Hoyle accretion onto a neutron star (NS) for NGC 300 X-1, but not a disc-accreting NS+WR system, nor a NS low mass X-ray binary (LMXB) that is merely coincident with the WR. We favour disc accretion for both systems, but cannot exclude Bondi-Hoyle accretion onto a BH. The unusual spectra of NGC 300 X-1 and IC 10 X-1 may be due to these systems existing in a persistently high state, whereas all known BH LMXBs

  11. Anomalous Proper-Motions in the Cygnus Super Bubble Region

    NASA Astrophysics Data System (ADS)

    Comeron, F.; Torra, J.; Jordi, C.; Gomez, A. E.

    1993-10-01

    In an analysis of proper motions of O and B stars contained in the Input Catalogue for Hipparcos, we have found a clear deviation from the expected pattern of systematic motions which can be readily identified with the associations Cygnus OB1 and Cygnus OB9, located near the edge of the Cygnus Superbubble. The anomalous motions are directed outwards from the center of the Superbubble, which is coincident with the association Cygnus OB2. This seems to support the hypothesis of a strong stellar and supernova activity in Cygnus OB2 giving rise to the Superbubble and, by means of gravitational instabilities in its boundaries, to Cygnus CB1 and Cygnus OB9. New uvbyβ aperture photometry of selected O and B stars in the area of Cygnus OB1 and Cygnus OB9 is also presented and analyzed in this paper.

  12. Global Simulations of the Interaction of Microquasar Jets with a Stellar Wind in High-mass X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Yoon, D.; Heinz, S.

    2015-03-01

    Jets powered by high-mass X-ray binaries must traverse the powerful wind of the companion star. We present the first global three-dimensional simulations of jet-wind interaction in high-mass X-ray binaries. We show that the wind momentum flux intercepted by the jet can lead to significant bending of the jet and that jets propagating through a spherical wind will be bent to an asymptotic angle {{\\psi }∞ }. We derive simple expressions for {{\\psi }∞ } as a function of jet power and wind thrust. For known wind parameters, measurements of {{\\psi }∞ } can be used to constrain the jet power. In the case of Cygnus X-1, the lack of jet precession as a function of orbital phase observed by the Very Long Baseline Array can be used to put a lower limit on the jet power of {{L}jet}≳ {{10}36} ergs {{s}-1}. We further discuss the case where the initial jet is inclined relative to the binary orbital axis. We also analyze the case of Cygnus X-3 and show that jet bending is likely negligible unless the jet is significantly less powerful or much wider than currently thought. Our numerical investigation is limited to isotropic stellar winds. We discuss the possible effects of wind clumping on jet-wind interaction, which are likely significant, but argue that our limits on jet power for Cygnus X-1 are likely unaffected by clumping unless the global wind mass-loss rate is orders of magnitude below the commonly assumed range for Cyg X-1.

  13. Cygnus Loop Supernova Blast Wave

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This is an image of a small portion of the Cygnus Loop supernova remnant, which marks the edge of a bubble-like, expanding blast wave from a colossal stellar explosion, occurring about 15,000 years ago. The HST image shows the structure behind the shock waves, allowing astronomers for the first time to directly compare the actual structure of the shock with theoretical model calculations. Besides supernova remnants, these shock models are important in understanding a wide range of astrophysical phenomena, from winds in newly-formed stars to cataclysmic stellar outbursts. The supernova blast is slamming into tenuous clouds of insterstellar gas. This collision heats and compresses the gas, causing it to glow. The shock thus acts as a searchlight revealing the structure of the interstellar medium. The detailed HST image shows the blast wave overrunning dense clumps of gas, which despite HST's high resolution, cannot be resolved. This means that the clumps of gas must be small enough to fit inside our solar system, making them relatively small structures by interstellar standards. A bluish ribbon of light stretching left to right across the picture might be a knot of gas ejected by the supernova; this interstellar 'bullet' traveling over three million miles per hour (5 million kilometres) is just catching up with the shock front, which has slowed down by ploughing into interstellar material. The Cygnus Loop appears as a faint ring of glowing gases about three degrees across (six times the diameter of the full Moon), located in the northern constellation, Cygnus the Swan. The supernova remnant is within the plane of our Milky Way galaxy and is 2,600 light-years away. The photo is a combination of separate images taken in three colors, oxygen atoms (blue) emit light at temperatures of 30,000 to 60,000 degrees Celsius (50,000 to 100,000 degrees Farenheit). Hydrogen atoms (green) arise throughout the region of shocked gas. Sulfur atoms (red) form when the gas cools to

  14. X-1 in flight

    NASA Technical Reports Server (NTRS)

    1947-01-01

    The Bell Aircraft Corporation X-1-1 (#46-062) in flight. The shock wave pattern in the exhaust plume is visible. The X-1 series aircraft were air-launched from a modified Boeing B-29 or a B-50 Superfortress bombers. The X-1-1 was painted a bright orange by Bell Aircraft. It was thought that the aircraft would be more visable to those doing the tracking during a flight. When NACA received the airplanes they were painted white, which was an easier color to find in the skies over Muroc Air Field in California. This particular craft was nicknamed 'Glamorous Glennis' by Chuck Yeager in honor of his wife, and is now on permanent display in the Smithsonian Institution's National Air and Space Museum in Washington, DC. There were five versions of the Bell X-1 rocket-powered research aircraft that flew at the NACA High-Speed Flight Research Station, Edwards, California. The bullet-shaped X-1 aircraft were built by Bell Aircraft Corporation, Buffalo, N.Y. for the U.S. Army Air Forces (after 1947, U.S. Air Force) and the National Advisory Committee for Aeronautics (NACA). The X-1 Program was originally designated the XS-1 for EXperimental Sonic. The X-1's mission was to investigate the transonic speed range (speeds from just below to just above the speed of sound) and, if possible, to break the 'sound barrier.' Three different X-1s were built and designated: X-1-1, X-1-2 (later modified to become the X-1E), and X-1-3. The basic X-1 aircraft were flown by a large number of different pilots from 1946 to 1951. The X-1 Program not only proved that humans could go beyond the speed of sound, it reinforced the understanding that technological barriers could be overcome. The X-1s pioneered many structural and aerodynamic advances including extremely thin, yet extremely strong wing sections; supersonic fuselage configurations; control system requirements; powerplant compatibility; and cockpit environments. The X-1 aircraft were the first transonic-capable aircraft to use an all

  15. Long-term studies with the Ariel 5 ASM. II - The strong Cygnus sources

    NASA Technical Reports Server (NTRS)

    Holt, S. S.; Kaluzienski, L. J.; Boldt, E. A.; Serlemitsos, P. J.

    1979-01-01

    The three bright 3-6 keV X-ray sources in Cygnus are examined for regular temporal variability with a 1300 day record from the Ariel 5 All-Sky Monitor. The only periods consistently observed are 5.6 days for Cyg X-1, 11.23 days for Cyg X-2, and 4.8 hours for Cyg X-3. The 78.4 day period of Kemp, Herman, and Barbour for Cyg X-1, the 9.843 day period of Cowley, Crampton, and Hutchings for Cyg X-2, and the 16.75 day period of Holt et al. for Cyg X-3 are not confirmed.

  16. X-1 on display

    NASA Technical Reports Server (NTRS)

    1949-01-01

    A Bell Aircraft Corporation X-1 series aircraft on display at an Open House at NACA Muroc Flight Test Unit or High-Speed Flight Research Station hangar on South Base of Edwards Air Force Base, California. (The precise date of the photo is uncertain, but it is probably before 1948.) The instrumentation that was carried aboard the aircraft to gather data is on display. The aircraft data was recorded on oscillograph film that was read, calibrated, and converted into meaningful parameters for the engineers to evaluate from each research flight. In the background of the photo are several early U.S. jets. These include several Lockheed P-80 Shooting Stars, which were used as chase planes on X-1 flights; two Bell P-59 Airacomets, the first U.S. jet pursuit aircraft (fighter in later parlance); and a prototype Republic XP-84 Thunderjet. There were five versions of the Bell X-1 rocket-powered research aircraft that flew at the NACA High-Speed Flight Research Station, Edwards, California. The bullet-shaped X-1 aircraft were built by Bell Aircraft Corporation, Buffalo, N.Y. for the U.S. Army Air Forces (after 1947, U.S. Air Force) and the National Advisory Committee for Aeronautics (NACA). The X-1 Program was originally designated the XS-1 for eXperimental Sonic. The X-1's mission was to investigate the transonic speed range (speeds from just below to just above the speed of sound) and, if possible, to break the 'sound barrier.' Three different X-1s were built and designated: X-1-1, X-1-2 (later modified to become the X-1E), and X-1-3. The basic X-1 aircraft were flown by a large number of different pilots from 1946 to 1951. The X-1 Program not only proved that humans could go beyond the speed of sound, it reinforced the understanding that technological barriers could be overcome. The X-1s pioneered many structural and aerodynamic advances including extremely thin, yet extremely strong wing sections; supersonic fuselage configurations; control system requirements; powerplant

  17. Search for UHE emission from Cygnus X-3

    SciTech Connect

    Stark, M.J.; The CYGNUS Collaboration

    1993-05-01

    Data from the CYGNUS experiment has been searched for evidence of ultra high energy (UHE) emission from Cygnus X-3. An upper limit to continuous flux from the source is given. In addition, we find no evidence for episodic emission from Cygnus X-3 on any time scale from 3.3 minutes to 4 years. The results of searches for periodic emission from Cygnus X-3 will be presented at the conference.

  18. Search for UHE emission from Cygnus X-3

    SciTech Connect

    Stark, M.J.

    1993-01-01

    Data from the CYGNUS experiment has been searched for evidence of ultra high energy (UHE) emission from Cygnus X-3. An upper limit to continuous flux from the source is given. In addition, we find no evidence for episodic emission from Cygnus X-3 on any time scale from 3.3 minutes to 4 years. The results of searches for periodic emission from Cygnus X-3 will be presented at the conference.

  19. X1 Exoskeleton

    NASA Video Gallery

    NASA's Ironman-Like Exoskeleton Could Give Astronauts, Paraplegics Improved Mobility and Strength. While NASA's X1 robotic exoskeleton can't do what you see in the movies, the latest robotic, space...

  20. Cygnus

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    (the Swan; abbrev. Cyg, gen. Cygni; area 804 sq. deg.) A northern constellation which lies between Cepheus and Vulpecula, and culminates at midnight in late July. Its origin is uncertain, though it was known to the ancient Greeks, who identified it with one of the forms assumed by Zeus during his amorous pursuits, or with other mythological swans. Its brightest stars were cataloged by Ptolemy (c....

  1. Prospects for High Energy Detection of Microquasars with the AGILE and GLAST Gamma-Ray Telescopes

    SciTech Connect

    Santolamazza, Patrizia; Pittori, Carlotta; Verrecchia, Francesco

    2007-08-21

    We estimate the sensitivities of the AGILE and GLAST {gamma}-ray experiments taking into account two cases for the galactic {gamma}-ray diffuse background (at high galactic latitude and toward the galactic center). Then we use sensitivities to estimate microquasar observability with the two experiments, assuming the {gamma}-ray emission above 100 MeV of a recent microquasar model.

  2. Gigantic Cosmic Corkscrew Reveals New Details About Mysterious Microquasar

    NASA Astrophysics Data System (ADS)

    2004-10-01

    Making an extra effort to image a faint, gigantic corkscrew traced by fast protons and electrons shot out from a mysterious microquasar paid off for a pair of astrophysicists who gained new insights into the beast's inner workings and also resolved a longstanding dispute over the object's distance. Microquasar SS 433 VLA Image of Microquasar SS 433 CREDIT: Blundell & Bowler, NRAO/AUI/NSF (Click on Image for Larger Version) The astrophysicists used the National Science Foundation's Very Large Array (VLA) radio telescope to capture the faintest details yet seen in the plasma jets emerging from the microquasar SS 433, an object once dubbed the "enigma of the century." As a result, they have changed scientists' understanding of the jets and settled the controversy over its distance "beyond all reasonable doubt," they said. SS 433 is a neutron star or black hole orbited by a "normal" companion star. The powerful gravity of the neutron star or black hole draws material from the stellar wind of its companion into an accretion disk of material tightly circling the dense central object prior to being pulled onto it. This disk propels jets of fast protons and electrons outward from its poles at about a quarter of the speed of light. The disk in SS 433 wobbles like a child's top, causing its jets to trace a corkscrew in the sky every 162 days. The new VLA study indicates that the speed of the ejected particles varies over time, contrary to the traditional model for SS 433. "We found that the actual speed varies between 24 percent to 28 percent of light speed, as opposed to staying constant," said Katherine Blundell, of the University of Oxford in the United Kingdom. "Amazingly, the jets going in both directions change their speeds simultaneously, producing identical speeds in both directions at any given time," Blundell added. Blundell worked with Michael Bowler, also of Oxford. The scientists' findings have been accepted by the Astrophysical Journal Letters. SS 433 New VLA

  3. Contributions from the CYGNUS/Milagro Collaboration

    SciTech Connect

    Allen, G.E.; Chang, C.Y.; Chen, M.L.

    1995-09-01

    This document consists of eleven reports contributed to the XXIV International Cosmic Ray Conference (Rome, Italy, August 28--September 8, 1995) from the CYGNUS/Milagro Collaboration: ``Search for Ultra-High-Energy Radiation from Gamma-Ray Bursts``, ``Gamma-Ray Bursts: Detection and Distance Estimates with Milagro``, ``Searching for Gamma-Ray Bursts with Water-Cerenkov-Detector Single-Particle Rates``, ``The Milagro Detector``, ``The Milagro Data Acquisition System``, ``Source Searches Using the CYGNUS Water-Cerenkov Array``, ``Search for UHE Emission from Supernova Remnants``, ``Solar Physics with the Milagro Telescope``, ``An Experiment to Detect Correlations Between Cerenkov and Muon Lateral Distributions in EAS``, ``A Study of Large-Zenith-Angle Air Showers with the CYGNUS Experiment``, and ``Mass Resolution of Ground Based Air Shower Experiments in the 10 to 10000 TeV range.``

  4. Accretion and Jets in Microquasars and Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Markoff, S.

    2006-09-01

    Black holes from stellar to galactic scales are observed to accrete material from their environments and, via an as yet unknown mechanism, produce jets of outflowing plasma. In X-ray binaries (XRBs), the systems display radically different radiative properties depending on the amount of captured gas reaching the event horizon. These modes of behavior (one of which includes ``microquasars'') correspond to actual physical changes in the environment near the black hole and can occur on timescales of days to weeks. Some of this behavior should hold true for active galactic nuclei (AGN) if the underlying physics scales with central mass and accretion power, as would be expected if black holes can be characterized mainly by their mass and local environment. However, the timescales on which changes occur should be inversely proportional to the mass. Recent studies support that this scaling applies in some cases, opening the way for comparisons of different stages of time-dependent behavior in microquasars to different classes of AGN zoology. In this distinctly jet-biased review, I will summarize our current understanding of accretion and outflow in these systems and present some of the newest progress addressing unanswered questions about the nature of the accretion flows, jet formation, and jet composition.

  5. Search for neutrino emission from microquasars with the ANTARES telescope

    NASA Astrophysics Data System (ADS)

    Galatà, S.

    2012-12-01

    Neutrino telescopes are nowadays exploring a new window of observation on the high energy universe and may shed light on the longstanding problem regarding the origin of cosmic rays. The ANTARES neutrino telescope is located underwater 40 km offshore from the Southern coast of France, on a plateau at 2475 m depth. Since 2007 it observes the high energy (>100 GeV) neutrino sky looking for cosmic neutrino sources. Among the candidate neutrino emitters are microquasars, i.e. galactic X-ray binaries exhibiting relativistic jets, which may accelerate hadrons thus producing neutrinos, under certain conditions. These sources are also variable in time and undergo X-ray or gamma ray outburst that can be related to the acceleration of relativistic particles witnessed by their radio emission. These events can provide a trigger to the neutrino search, with the advantage of drastically reducing the atmospheric neutrino background. A search for neutrino emission from microquasar during outbursts is presented based on the data collected by ANTARES between 2007 and 2010. Upper limits are shown and compared with the predictions.

  6. A study of 2-20 KeV X-rays from the Cygnus region

    NASA Technical Reports Server (NTRS)

    Bleach, R. D.

    1972-01-01

    Two rocket-borne proportional counters, each with 650 sq c, met area and 1.8 x 7.1 deg FWHM rectangular mechanical collimation, surveyed the Cygnus region in the 2 to 20 keV energy range on two occasions. X-ray spectral data gathered on 21 September 1970 from discrete sources in Cygnus are presented. The data from Cyg X-1, Cyg X-2, and Cyg X-3 have sufficient statistical significance to indicate mutually exclusive spectral forms for the three. Upper limits are presented for X-ray intensities above 2 keV for Cyg X-4 and Cyg X-5 (Cygnus loop). A search was made on 9 August 1971 for a diffuse component of X-rays 1.5 keV associated with an interarm region of the galaxy at galactic longitudes in the vicinity of 60 degrees. A statistically significant excess associated with a narrow disk component was detected. Several possible emission models are discussed, with the most likely candidate being a population of unresolvable low luminosity discrete sources.

  7. Positron annihilation signatures associated with the outburst of the microquasar V404 Cygni.

    PubMed

    Siegert, Thomas; Diehl, Roland; Greiner, Jochen; Krause, Martin G H; Beloborodov, Andrei M; Bel, Marion Cadolle; Guglielmetti, Fabrizia; Rodriguez, Jerome; Strong, Andrew W; Zhang, Xiaoling

    2016-03-17

    Microquasars are stellar-mass black holes accreting matter from a companion star and ejecting plasma jets at almost the speed of light. They are analogues of quasars that contain supermassive black holes of 10(6) to 10(10) solar masses. Accretion in microquasars varies on much shorter timescales than in quasars and occasionally produces exceptionally bright X-ray flares. How the flares are produced is unclear, as is the mechanism for launching the relativistic jets and their composition. An emission line near 511 kiloelectronvolts has long been sought in the emission spectrum of microquasars as evidence for the expected electron-positron plasma. Transient high-energy spectral features have been reported in two objects, but their positron interpretation remains contentious. Here we report observations of γ-ray emission from the microquasar V404 Cygni during a recent period of strong flaring activity. The emission spectrum around 511 kiloelectronvolts shows clear signatures of variable positron annihilation, which implies a high rate of positron production. This supports the earlier conjecture that microquasars may be the main sources of the electron-positron plasma responsible for the bright diffuse emission of annihilation γ-rays in the bulge region of our Galaxy. Additionally, microquasars could be the origin of the observed megaelectronvolt continuum excess in the inner Galaxy. PMID:26934231

  8. Positron annihilation signatures associated with the outburst of the microquasar V404 Cygni.

    PubMed

    Siegert, Thomas; Diehl, Roland; Greiner, Jochen; Krause, Martin G H; Beloborodov, Andrei M; Bel, Marion Cadolle; Guglielmetti, Fabrizia; Rodriguez, Jerome; Strong, Andrew W; Zhang, Xiaoling

    2016-03-17

    Microquasars are stellar-mass black holes accreting matter from a companion star and ejecting plasma jets at almost the speed of light. They are analogues of quasars that contain supermassive black holes of 10(6) to 10(10) solar masses. Accretion in microquasars varies on much shorter timescales than in quasars and occasionally produces exceptionally bright X-ray flares. How the flares are produced is unclear, as is the mechanism for launching the relativistic jets and their composition. An emission line near 511 kiloelectronvolts has long been sought in the emission spectrum of microquasars as evidence for the expected electron-positron plasma. Transient high-energy spectral features have been reported in two objects, but their positron interpretation remains contentious. Here we report observations of γ-ray emission from the microquasar V404 Cygni during a recent period of strong flaring activity. The emission spectrum around 511 kiloelectronvolts shows clear signatures of variable positron annihilation, which implies a high rate of positron production. This supports the earlier conjecture that microquasars may be the main sources of the electron-positron plasma responsible for the bright diffuse emission of annihilation γ-rays in the bulge region of our Galaxy. Additionally, microquasars could be the origin of the observed megaelectronvolt continuum excess in the inner Galaxy.

  9. XMM-Newton, RXTE, and Radio Observations of CYGNUS X-1

    NASA Technical Reports Server (NTRS)

    Miller, Jon; Mushotzky, Richard (Technical Monitor)

    2005-01-01

    XMM-Newton observations of this target were not made successfully until October 2004, due to problems of high background and instrumental flaring in the prior observability windows. Processed data for analysis was delivered a few months after the observations. Thus, work on these observations is beginning now, in the spring of 2005. A preliminary analysis of these observations reveals a complex spectrum, with relativistic emission line features. Detailed modeling and interpretation of this data will be completed over several months.

  10. X-1 cockpit instrument panel

    NASA Technical Reports Server (NTRS)

    1949-01-01

    A Bell Aircraft Corporation X-1 series aircraft cockpit instruments display. The gages reflecting the airplane's parameters such as indicated pressure altitude, indicated airspeed, rocket chamber pressure, fuel and liquid oxygen supply, angle of attack, angle of sideslip, and Mach number are shown. Other information pertinent for the pilot to complete a successful flight is also displayed. There were five versions of the Bell X-1 rocket-powered research aircraft that flew at the NACA High-Speed Flight Research Station, Edwards, California. The bullet-shaped X-1 aircraft were built by Bell Aircraft Corporation, Buffalo, N.Y. for the U.S. Army Air Forces (after 1947, U.S. Air Force) and the National Advisory Committee for Aeronautics (NACA). The X-1 Program was originally designated the XS-1 for EXperimental Sonic. The X-1's mission was to investigate the transonic speed range (speeds from just below to just above the speed of sound) and, if possible, to break the 'sound barrier.' Three different X-1s were built and designated: X-1-1, X-1-2 (later modified to become the X-1E), and X-1-3. The basic X-1 aircraft were flown by a large number of different pilots from 1946 to 1951. The X-1 Program not only proved that humans could go beyond the speed of sound, it reinforced the understanding that technological barriers could be overcome. The X-1s pioneered many structural and aerodynamic advances including extremely thin, yet extremely strong wing sections; supersonic fuselage configurations; control system requirements; powerplant compatibility; and cockpit environments. The X-1 aircraft were the first transonic-capable aircraft to use an all-moving stabilizer. The flights of the X-1s opened up a new era in aviation. The first X-1 was air-launched unpowered from a Boeing B-29 Superfortress on Jan. 25, 1946. Powered flights began in December 1946. On Oct. 14, 1947, the X-1-1, piloted by Air Force Captain Charles 'Chuck' Yeager, became the first aircraft to exceed the

  11. X-1E on Lakebed

    NASA Technical Reports Server (NTRS)

    1955-01-01

    The Bell Aircraft Corporation X-1E is shown here in 1955 on the Rogers Dry Lakebed at Edwards Air Force Base in California. The X-1E was actually the extensively rebuilt X-1-2 (46-063). It had a new thin wing, a stepped canopy, and a low-pressure fuel system. It flew through 1958, bringing the X-1 saga to a close after twelve years of research flying at the NACA High-Speed Flight Station. There were four versions of the Bell X-1 rocket-powered research aircraft that flew at the NACA High-Speed Flight Research Station, Edwards, California. The bullet-shaped X-1 aircraft were built by Bell Aircraft Corporation, Buffalo, N.Y. for the U.S. Army Air Forces (after 1947, U.S. Air Force) and the National Advisory Committee for Aeronautics (NACA). The X-1 Program was originally designated the XS-1 for EXperimental Supersonic. The X-1's mission was to investigate the transonic speed range (speeds from just below to just above the speed of sound) and, if possible, to break the 'sound barrier.' Three different X-1s were built and designated: X-1-1, X-1-2 (later modified to become the X-1E), and X-1-3. The basic X-1 aircraft were flown by a large number of different pilots from 1946 to 1951. The X-1 Program not only proved that humans could go beyond the speed of sound, it reinforced the understanding that technological barriers could be overcome. The X-1s pioneered many structural and aerodynamic advances including extremely thin, yet extremely strong wing sections; supersonic fuselage configurations; control system requirements; powerplant compatibility; and cockpit environments. The X-1 aircraft were the first transonic-capable aircraft to use an all-moving stabilizer. The flights of the X-1s opened up a new era in aviation. The first X-1 was air-launched unpowered from a Boeing B-29 Superfortress on January 25, 1946. Powered flights began in December 1946. On October 14, 1947, the X-1-1, piloted by Air Force Captain Charles 'Chuck' Yeager, became the first aircraft to

  12. Hadronic gamma-ray and neutrino emission from Cygnus X-3

    SciTech Connect

    Sahakyan, N.; Piano, G.; Tavani, M.

    2014-01-01

    Cygnus X-3 (Cyg X-3) is a remarkable Galactic microquasar (X-ray binary) emitting from radio to γ-ray energies. In this paper, we consider the hadronic model of emission of γ-rays above 100 MeV and their implications. We focus on the joint γ-ray and neutrino production resulting from proton-proton interactions within the binary system. We find that the required proton injection kinetic power, necessary to explain the γ-ray flux observed by AGILE and Fermi-LAT, is L{sub p} ∼ 10{sup 38} erg s{sup –1}, a value in agreement with the average bolometric luminosity of the hypersoft state (when Cyg X-3 was repeatedly observed to produce transient γ-ray activity). If we assume an increase of the wind density at the superior conjunction, the asymmetric production of γ-rays along the orbit can reproduce the observed modulation. According to observational constraints and our modeling, a maximal flux of high-energy neutrinos would be produced for an initial proton distribution with a power-law index α = 2.4. The predicted neutrino flux is almost two orders of magnitude less than the two-month IceCube sensitivity at ∼1 TeV. If the protons are accelerated up to PeV energies, the predicted neutrino flux for a prolonged 'soft X-ray state' would be a factor of about three lower than the one-year IceCube sensitivity at ∼10 TeV. This study shows that, for a prolonged soft state (as observed in 2006) possibly related to γ-ray activity and a hard distribution of injected protons, Cyg X-3 might be close to being detectable by cubic-kilometer neutrino telescopes such as IceCube.

  13. A Giant Radio Flare from Cygnus X-3 with Associated Gamma-Ray Emission

    NASA Technical Reports Server (NTRS)

    Corbel, S.; Dubus, G.; Tomsick, J. A.; Szostek, A.; Corbet, R. H. D.; Miller-Jones, J. C. A.; Richards, J. L.; Pooley, G.; Trushkin, S.; Dubois, R.; Hill, A. B.; Kerr, M.; Max-Moerbeck, W.; Readhead, A. C. S.; Bodaghee, A.; Tudose, V.; Parent, D.; Wilms, J.; Pottschmidt, K.

    2012-01-01

    With frequent flaring activity of its relativistic jets, Cygnus X-3 (Cyg X-3) is one of the most active microquasars and is the only Galactic black hole candidate with confirmed high energy gamma-ray emission, thanks to detections by Fermi/LAT and AGILE. In 2011, Cyg X-3 was observed to transit to a soft X-ray state, which is known to be associated with high-energy gamma-ray emission. We present the results of a multiwavelength campaign covering a quenched state, when radio emission from Cyg X-3 is at its weakest and the X-ray spectrum is very soft. A giant (approx 20 Jy) optically thin radio flare marks the end of the quenched state, accompanied by rising non-thermal hard X-rays. Fermi/LAT observations (E greater than or equal 100 MeV) reveal renewed gamma-ray activity associated with this giant radio flare, suggesting a common origin for all non-thermal components. In addition, current observations unambiguously show that the gamma-ray emission is not exclusively related to the rare giant radio flares. A 3-week period of gamma-ray emission is also detected when Cyg X-3 was weakly flaring in radio, right before transition to the radio quenched state. No gamma rays are observed during the one-month long quenched state, when the radio flux is weakest. Our results suggest transitions into and out of the ultrasoft X-ray (radio quenched) state trigger gamma-ray emission, implying a connection to the accretion process, and also that the gamma-ray activity is related to the level of radio flux (and possibly shock formation), strengthening the connection to the relativistic jets.

  14. THE 2010 MAY FLARING EPISODE OF CYGNUS X-3 IN RADIO, X-RAYS, AND {gamma}-RAYS

    SciTech Connect

    Williams, Peter K. G.; Bower, Geoffrey C.; Tomsick, John A.; Bodaghee, Arash; Pooley, Guy G.; Pottschmidt, Katja; Rodriguez, Jerome; Migliari, Simone; Trushkin, Sergei A.

    2011-06-01

    In 2009, Cygnus X-3 (Cyg X-3) became the first microquasar to be detected in the GeV {gamma}-ray regime, via the satellites Fermi and AGILE. The addition of this new band to the observational toolbox holds promise for building a more detailed understanding of the relativistic jets of this and other systems. We present a rich data set of radio, hard and soft X-ray, and {gamma}-ray observations of Cyg X-3 made during a flaring episode in 2010 May. We detect a {approx}3 day softening and recovery of the X-ray emission, followed almost immediately by a {approx}1 Jy radio flare at 15 GHz, followed by a 4.3{sigma} {gamma}-ray flare (E > 100 MeV) {approx}1.5 days later. The radio sampling is sparse, but we use archival data to argue that it is unlikely the {gamma}-ray flare was followed by any significant unobserved radio flares. In this case, the sequencing of the observed events is difficult to explain in a model in which the {gamma}-ray emission is due to inverse Compton scattering of the companion star's radiation field. Our observations suggest that other mechanisms may also be responsible for {gamma}-ray emission from Cyg X-3.

  15. The 2010 May Flaring Episode of Cygnus X-3 in Radio, X-Rays, and gamma-Rays

    NASA Technical Reports Server (NTRS)

    Williams, Peter K. G.; Tomsick, John A.; Bodaghee, Arash; Bower, Geoffrey C.; Pooley, Guy G.; Pottschmidt, Katja; Rodriguez, Jerome; Wilms, Joern; Migliari, Simone; Trushkin, Sergei A.

    2011-01-01

    In 2009, Cygnus X-3 (Cyg X-3) became the first microquasar to be detected in the GeV gamma-ray regime, via the satellites Fermi and AGILE. The addition of this new band to the observational toolbox holds promise for building a more detailed understanding of the relativistic jets of this and other systems. We present a rich dataset of radio, hard and soft X-ray, and gamma-ray observations of Cyg X-3 made during a flaring episode in 2010 May. We detect a approx.3-d softening and recovery of the X-ray emission, followed almost immediately by a approx.1-Jy radio flare at 15 GHz, followed by a 4.3sigma gamma-ray flare (E > 100 MeV) approx.1.5 d later. The radio sampling is sparse, but we use archival data to argue that it is unlikely the gamma-ray flare was followed by any significant unobserved radio flares. In this case, the sequencing of the observed events is difficult to explain in a model in which the gamma-ray emission is due to inverse Compton scattering of the companion star's radiation field. Our observations suggest that other mechanisms may also be responsible for gamma-ray emission from Cyg X-3.

  16. Modeling the Infrared Emission from Cygnus A

    NASA Astrophysics Data System (ADS)

    Privon, George C.; Baum, S.; O'Dea, C.; Axon, D.; Robinson, A.; Gallimore, J.; Noel-Storr, J.

    2010-01-01

    The Spitzer Space Telescope provides a unique view of the Universe at infrared wavelengths. Improved sensitivity and angular resolution over previous missions enable detailed studies of astrophysical objects, both in imaging and spectroscopic modes. Spitzer observations of active galactic nuclei can help shed light on the physical conditions of the central regions of these active galaxies. The nearby radio galaxy Cygnus A is one of the most luminous radio sources in the local Universe. In addition to the high radio power, it is also very luminous in the infrared. New Spitzer spectroscopy and photometry of Cygnus A is combined with data from the literature at radio and sub-mm wavelengths. The resulting complication is modeled with a combination of: a synchrotron emitting jet, a burst of star formation, and emission from an AGN torus. The infrared emission in Cyngus A shows contributions from all three processes and the models are able to reproduce the observed emission over almost 5 dex in frequency. The bolometric AGN luminosity is found to be 1045 erg s-1, with a clumpy torus size of 7 pc. Evidence is seen for a break in the synchrotron spectrum in the mid-infrared. The relevant component of the infrared emission suggests Cygnus A has a star formation rate of 20 Msun yr-1. Even in the absence of the AGN, it would still be a luminous infrared source. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech.

  17. Variable very-high-energy gamma-ray emission from the microquasar LS I +61 303.

    PubMed

    Albert, J; Aliu, E; Anderhub, H; Antoranz, P; Armada, A; Asensio, M; Baixeras, C; Barrio, J A; Bartelt, M; Bartko, H; Bastieri, D; Bavikadi, S R; Bednarek, W; Berger, K; Bigongiari, C; Biland, A; Bisesi, E; Bock, R K; Bordas, P; Bosch-Ramon, V; Bretz, T; Britvitch, I; Camara, M; Carmona, E; Chilingarian, A; Ciprini, S; Coarasa, J A; Commichau, S; Contreras, J L; Cortina, J; Curtef, V; Danielyan, V; Dazzi, F; De Angelis, A; de Los Reyes, R; De Lotto, B; Domingo-Santamaría, E; Dorner, D; Doro, M; Errando, M; Fagiolini, M; Ferenc, D; Fernández, E; Firpo, R; Flix, J; Fonseca, M V; Font, L; Fuchs, M; Galante, N; Garczarczyk, M; Gaug, M; Giller, M; Goebel, F; Hakobyan, D; Hayashida, M; Hengstebeck, T; Höhne, D; Hose, J; Hsu, C C; Isar, P G; Jacon, P; Kalekin, O; Kosyra, R; Kranich, D; Laatiaoui, M; Laille, A; Lenisa, T; Liebing, P; Lindfors, E; Lombardi, S; Longo, F; López, J; López, M; Lorenz, E; Lucarelli, F; Majumdar, P; Maneva, G; Mannheim, K; Mansutti, O; Mariotti, M; Martínez, M; Mase, K; Mazin, D; Merck, C; Meucci, M; Meyer, M; Miranda, J M; Mirzoyan, R; Mizobuchi, S; Moralejo, A; Nilsson, K; Oña-Wilhelmi, E; Orduña, R; Otte, N; Oya, I; Paneque, D; Paoletti, R; Paredes, J M; Pasanen, M; Pascoli, D; Pauss, F; Pavel, N; Pegna, R; Persic, M; Peruzzo, L; Piccioli, A; Poller, M; Pooley, G; Prandini, E; Raymers, A; Rhode, W; Ribó, M; Rico, J; Riegel, B; Rissi, M; Robert, A; Romero, G E; Rügamer, S; Saggion, A; Sánchez, A; Sartori, P; Scalzotto, V; Scapin, V; Schmitt, R; Schweizer, T; Shayduk, M; Shinozaki, K; Shore, S N; Sidro, N; Sillanpää, A; Sobczynska, D; Stamerra, A; Stark, L S; Takalo, L; Temnikov, P; Tescaro, D; Teshima, M; Tonello, N; Torres, A; Torres, D F; Turini, N; Vankov, H; Vitale, V; Wagner, R M; Wibig, T; Wittek, W; Zanin, R; Zapatero, J

    2006-06-23

    Microquasars are binary star systems with relativistic radio-emitting jets. They are potential sources of cosmic rays and can be used to elucidate the physics of relativistic jets. We report the detection of variable gamma-ray emission above 100 gigaelectron volts from the microquasar LS I 61 + 303. Six orbital cycles were recorded. Several detections occur at a similar orbital phase, which suggests that the emission is periodic. The strongest gamma-ray emission is not observed when the two stars are closest to one another, implying a strong orbital modulation of the emission or absorption processes. PMID:16709745

  18. Variable very-high-energy gamma-ray emission from the microquasar LS I +61 303.

    PubMed

    Albert, J; Aliu, E; Anderhub, H; Antoranz, P; Armada, A; Asensio, M; Baixeras, C; Barrio, J A; Bartelt, M; Bartko, H; Bastieri, D; Bavikadi, S R; Bednarek, W; Berger, K; Bigongiari, C; Biland, A; Bisesi, E; Bock, R K; Bordas, P; Bosch-Ramon, V; Bretz, T; Britvitch, I; Camara, M; Carmona, E; Chilingarian, A; Ciprini, S; Coarasa, J A; Commichau, S; Contreras, J L; Cortina, J; Curtef, V; Danielyan, V; Dazzi, F; De Angelis, A; de Los Reyes, R; De Lotto, B; Domingo-Santamaría, E; Dorner, D; Doro, M; Errando, M; Fagiolini, M; Ferenc, D; Fernández, E; Firpo, R; Flix, J; Fonseca, M V; Font, L; Fuchs, M; Galante, N; Garczarczyk, M; Gaug, M; Giller, M; Goebel, F; Hakobyan, D; Hayashida, M; Hengstebeck, T; Höhne, D; Hose, J; Hsu, C C; Isar, P G; Jacon, P; Kalekin, O; Kosyra, R; Kranich, D; Laatiaoui, M; Laille, A; Lenisa, T; Liebing, P; Lindfors, E; Lombardi, S; Longo, F; López, J; López, M; Lorenz, E; Lucarelli, F; Majumdar, P; Maneva, G; Mannheim, K; Mansutti, O; Mariotti, M; Martínez, M; Mase, K; Mazin, D; Merck, C; Meucci, M; Meyer, M; Miranda, J M; Mirzoyan, R; Mizobuchi, S; Moralejo, A; Nilsson, K; Oña-Wilhelmi, E; Orduña, R; Otte, N; Oya, I; Paneque, D; Paoletti, R; Paredes, J M; Pasanen, M; Pascoli, D; Pauss, F; Pavel, N; Pegna, R; Persic, M; Peruzzo, L; Piccioli, A; Poller, M; Pooley, G; Prandini, E; Raymers, A; Rhode, W; Ribó, M; Rico, J; Riegel, B; Rissi, M; Robert, A; Romero, G E; Rügamer, S; Saggion, A; Sánchez, A; Sartori, P; Scalzotto, V; Scapin, V; Schmitt, R; Schweizer, T; Shayduk, M; Shinozaki, K; Shore, S N; Sidro, N; Sillanpää, A; Sobczynska, D; Stamerra, A; Stark, L S; Takalo, L; Temnikov, P; Tescaro, D; Teshima, M; Tonello, N; Torres, A; Torres, D F; Turini, N; Vankov, H; Vitale, V; Wagner, R M; Wibig, T; Wittek, W; Zanin, R; Zapatero, J

    2006-06-23

    Microquasars are binary star systems with relativistic radio-emitting jets. They are potential sources of cosmic rays and can be used to elucidate the physics of relativistic jets. We report the detection of variable gamma-ray emission above 100 gigaelectron volts from the microquasar LS I 61 + 303. Six orbital cycles were recorded. Several detections occur at a similar orbital phase, which suggests that the emission is periodic. The strongest gamma-ray emission is not observed when the two stars are closest to one another, implying a strong orbital modulation of the emission or absorption processes.

  19. Is the Cygnus Superbubble a Hypernova Remnant?

    NASA Astrophysics Data System (ADS)

    Kimura, Masashi; Tsunemi, Hiroshi; Tomida, Hiroshi; Sugizaki, Mutsumi; Ueno, Shiro; Hanayama, Takanori; Yoshidome, Koshiro; Sasaki, Masayuki

    2013-02-01

    We present here an observation of the Cygnus Superbubble (CSB) using the Solid-state slit camera (SSC) aboard the Monitor of All-sky X-ray Image (MAXI). The CSB is a large diffuse structure in the Cygnus region with enhanced soft X-ray emission. By utilizing the CCD spectral resolution of the SSC, we detected Fe, Ne, Mg emission lines from the CSB for the first time. The best-fit model implies a thin hot plasma of kT ≈ 0.3 keV with a depleted abundance of 0.26±0.1 solar. Joint spectrum fittings of the ROSAT/PSPC data and MAXI/SSC data enabled us to measure precise values of NH and the temperature inside the CSB. The results show that all of the regions in the CSB have a similar NH and temperature, indicating that the CSB is a single unity. An energy budgets calculation suggests that (2-3) × 106 yr of stellar wind from the Cyg OB2 is sufficient to power up the CSB, whereas due to its off-center position, the origin of the CSB is most likely to be a Hypernova.

  20. A broadband leptonic model for gamma-ray emitting microquasars

    NASA Astrophysics Data System (ADS)

    Bosch-Ramon, V.; Romero, G. E.; Paredes, J. M.

    2006-02-01

    Observational and theoretical studies point to microquasars (MQs) as possible counterparts of a significant fraction of the unidentifiedgamma-ray sources detected so far. At present, a proper scenario to explain the emission beyond soft X-rays from these objects is not known, nor what the precise connection is between the radio and the high-energy radiation. We develop a new model where the MQ jet is dynamically dominated by cold protons and radiatively dominated by relativistic leptons. The matter content and power of the jet are both related with the accretion process. The magnetic field is assumed to be close to equipartition, although it is attached to and dominated by the jet matter. For the relativistic particles in the jet, their maximum energy depends on both the acceleration efficiency and the energy losses. The model takes into account the interaction of the relativistic jet particles with the magnetic field and all the photon and matter fields. Such interaction produces significant amounts of radiation from radio to very high energies through synchrotron, relativistic Bremsstrahlung, and inverse Compton (IC) processes. Variability of the emission produced by changes in the accretion process (e.g. via orbital eccentricity) is also expected. The effects of the gamma-ray absorption by the external photon fields on the gamma-ray spectrum have been taken into account, revealing clear spectral features that might be observed. This model is consistent to the accretion scenario, energy conservation laws, and current observational knowledge, and can provide deeper physical information of the source when tested against multiwavelength data.

  1. Gamma-Ray Spectra and Variability of Cygnus Z-1 Observed by BATSE

    NASA Technical Reports Server (NTRS)

    Ling, J. C.; Wheaton, William A.; Wallyn, P.; Mahoney, W. .; Paciesas, W. S.; Harmon, B. A.; Fishman, G. J.; Zhang, S. N.; Hua, X. M.

    1998-01-01

    We present new BATSE earth occultation observations of the 25 keV-1.8 MeV spectrum and variability of Cygnus X-1 made between August 1993 and May 1994. We observed that the normal soft gamma ray spectrum (gamma2) of Cygnus X-1 has two components: a Comptonized part seen below 300 keV, and a high-energy tail in the 0.3 - 2 MeV range. We interpret it in terms of a two-layer region, consisting of a high-energy core (with an equivalent electron temperature of approximately 210-250 keV) near the event horizon, embedded in an about 50 keV corona. In this scenario, the observed 25-300 keV photons were produced by Compton scattering of soft photons (about 0.5 keV) by the hot electrons in the outer corona. These same hard x rays were further up-scattered by a population of energetic electrons in the inner core, producing the spectral tail above 300 keV. Cygnus X-1 went through an extended sequence of transitions between August 1993 and May 1994, when the 45-140 keV flux first decreased steadily from approximately gamma2 to roughly one-quarter of its intensity over a period of about 140 days. The flux remained at this low level for about 40 days before returning, swiftly (approximately 20 days) to approximately the initial gamma2 level. During the transition, the spectrum evolved to a shape consistent with either a power law with photon index of about 2.6 or a single temperature Compton model with electron temperature kT = 110 +/- 11 keV, and optical depth t = 0.40 +/- 0.06, and then returned essentially to the original gamma2 spectrum at the end of the active period. The overall cooling of the system during the low flux period may be due to an increase in the soft photon population which effectively quenched the hot electrons in these regions through Compton scattering.

  2. X-1E on Lakebed

    NASA Technical Reports Server (NTRS)

    1955-01-01

    The Bell Aircraft Corporation X-1E in 1955 on the Rogers Dry Lakebed near the NACA High-Speed Flight Station, Edwards, California. The X-1E was notable for being shorter, with a thinner wing than the X-1A, -B, and -D. Aerodynamic heating caused the ailerons, rudder, and elevators to remain unpainted throughout the X-1E's flight test program. When the ventral fins were added, they were left unpainted too. On August 31, 1956, the aircraft reached a top speed of 1,480 miles per hour (Mach 2.24). There were four versions of the Bell X-1 rocket-powered research aircraft that flew at the NACA High-Speed Flight Research Station, Edwards, California. The bullet-shaped X-1 aircraft were built by Bell Aircraft Corporation, Buffalo, N.Y. for the U.S. Army Air Forces (after 1947, U.S. Air Force) and the National Advisory Committee for Aeronautics (NACA). The X-1 Program was originally designated the XS-1 for EXperimental Supersonic. The X-1's mission was to investigate the transonic speed range (speeds from just below to just above the speed of sound) and, if possible, to break the 'sound barrier.' Three different X-1s were built and designated: X-1-1, X-1-2 (later modified to become the X-1E), and X-1-3. The basic X-1 aircraft were flown by a large number of different pilots from 1946 to 1951. The X-1 Program not only proved that humans could go beyond the speed of sound, it reinforced the understanding that technological barriers could be overcome. The X-1s pioneered many structural and aerodynamic advances including extremely thin, yet extremely strong wing sections; supersonic fuselage configurations; control system requirements; powerplant compatibility; and cockpit environments. The X-1 aircraft were the first transonic-capable aircraft to use an all-moving stabilizer. The flights of the X-1s opened up a new era in aviation. The first X-1 was air-launched unpowered from a Boeing B-29 Superfortress on January 25, 1946. Powered flights began in December 1946. On October 14

  3. X-1A on lakebed

    NASA Technical Reports Server (NTRS)

    1955-01-01

    The Bell Aircraft Corporation X-1A (48-1384) is photographed in July 1955 sitting on Rogers Dry Lake at Edwards Air Force Base, California. This view of the left side of the aircraft shows the change to the X-1A canopy from the X-1s (see photo E49-0039 under XS-1) The nose boom carries an angle-of-attack and angle-of-sideslip vane, along with a pitot tube for measuring static and impact pressures. The fuselage length is 35 feet 8 inches, with a wing span of 28 feet. The X-1A was created to explore stability and control characteristics at speeds in excess of Mach 2 and altitudes greater than 90,000 feet. Bell test pilot Jean 'Skip' Ziegler made six test flights in the X-1A between 14 February and 25 April 1953. Air Force test pilots Maj. Charles 'Chuck' Yeager and Maj. Arthur 'Kit' Murray made 18 flights between 21 November 1953 and 26 August 1954. NACA test pilot Joseph Walker made one successful flight on 20 July 1955. During a second flight attempt, on 8 August 1955, an explosion damaged the X-1A shortly before launch. Walker, unhurt, climbed up into the JTB-29A mothership, and the X-1A was jettisoned over the Edwards AFB bombing range.

  4. NIR Variable YSOs in Cygnus OB7 and the ONC

    NASA Astrophysics Data System (ADS)

    Wolk, Scott; Rice, Thomas; Aspin, Colin

    2013-07-01

    We present an analysis of near-infrared time-series photometry in J, H, and K bands for about 100 epochs, mostly focusing on a 1x1 degree region of the Lynds 1003/1004 dark cloud in the Cygnus OB7 region. Augmented by data from the Wide-field Infrared Survey Explorer (WISE), we identify 96 candidate disk bearing young stellar objects (YSOs) in the region. Of these, 30 are clearly Class I or earlier. Using the Wide-Field imaging CAMera (WFCAM) on the United Kingdom InfraRed Telescope (UKIRT), we obtained photometry over three observing seasons, with photometric uncertainty better than 0.05 mag down to J ~ 17. We study detailed light curves and color trajectories of ~50 of the YSOs in the monitored field. We investigate the variability and periodicity of the YSOs and find the data are consistent with all YSOs being variable in these wavelengths on time scales of a few years. We divide the variability into four observational classes: 1) stars with periodic variability stable over long timescales, 2) variables which exhibit short-lived cyclic behavior, 3) long duration variables, and 4) stochastic variables. Some YSO variability defies simple classification. We can explain much of the observed variability as being due to dynamic and rotational changes in the disk, including an asymmetric or changing blocking fraction, changes to the inner disk hole size, as well as changes to the accretion rate. Overall, we find that the Class I:Class II ratio of the cluster is consistent with an age of < 1 Myr, with at least one individual, wildly varying, source ~100,000 yr old. We have also discovered a Class~II eclipsing binary system with a period of 17.87 days. Preliminary statistical results for the ONC are also presented.

  5. The Cygnus region of the galaxy: A VERITAS perspective

    NASA Astrophysics Data System (ADS)

    Weinstein, A.

    2015-12-01

    The Cygnus-X star-forming region ("Cygnus") is the richest star-forming region within 2 kpc of Earth and is home to a wealth of potential cosmic ray accelerators, including supernova remnants, massive star clusters, and pulsar wind nebulae. Over the past five years, discoveries by several gamma-ray observatories sensitive in different energy bands, including the identification by Fermi-LAT of a potential cocoon of freshly accelerated cosmic rays, have pinpointed this region as a unique laboratory for studying the early phases of the cosmic ray life cycle. From 2007 to 2009 VERITAS, a very high energy (VHE; E > 100 GeV) observatory in southern Arizona, undertook an extensive survey of the Cygnus region from 67 to 82 degrees Galactic longitude and from -1 to 4 degrees in Galactic latitude. In the years since, VERITAS has continued to accumulate data at specific locations within the survey region. We will review the discoveries and insights that this rich dataset has already provided. We will also consider the key role that we expect these data to play in interpreting the complex multiwavelength picture we have of the Cygnus region, particularly in the vicinity of the Cygnus cocoon. As part of this discussion we will summarize ongoing studies of VERITAS data in the Cygnus region, including the development of new data analysis techniques that dramatically increase VERITAS' sensitivity to sources on scales larger than a square degree.

  6. X-ray Variability of the Microquasar LS 5039 through its Eccentric Orbit

    NASA Technical Reports Server (NTRS)

    Swank, Jean (Technical Monitor); Miller, Jon

    2005-01-01

    Under this program, RXTE made a number of observations of the Galactic microquasar LS 5039, spaced through its binary orbital period. The results of an initial spectral and timing study have been published in a refereed journal. Work on integrating the RXTE data with simultaneous multi-wavelength data is presently underway.

  7. X-1 aircraft in flight

    NASA Technical Reports Server (NTRS)

    1949-01-01

    The first of the rocket-powered research aircraft, the X-1 (originally designated the XS-1), was a bullet-shaped airplane that was built by the Bell Aircraft Company for the US Air Force and the National Advisory Committee for Aeronautics (NACA). The mission of the X-1 was to investigate the transonic speed range (speeds from just below to just above the speed of sound) and, if possible, to break the 'sound barrier'. The first of the three X-1s was glide-tested at Pinecastle Field, FL, in early 1946. The first powered flight of the X-1 was made on Dec. 9, 1946, at Muroc Army Air Field (later redesignated Edwards Air Force Base) with Chalmers Goodlin, a Bell test pilot,at the controls. On Oct. 14, 1947, with USAF Captain Charles 'Chuck' Yeager as pilot, the aircraft flew faster than the speed of sound for the first time. Captain Yeager ignited the four-chambered XLR-11 rocket engines after being air-launched from under the bomb bay of a B-29 at 21,000 ft. The 6,000-lb thrust ethyl alcohol/liquid oxygen burning rockets, built by Reaction Motors, Inc., pushed him up to a speed of 700 mph in level flight. Captain Yeager was also the pilot when the X-1 reached its maximum speed of 957 mph. Another USAF pilot. Lt. Col. Frank Everest, Jr., was credited with taking the X-1 to its maximum altitude of 71,902 ft. Eighteen pilots in all flew the X-1s. The number three plane was destroyed in a fire before evermaking any powered flights. A single-place monoplane, the X-1 was 31 ft long, 10 ft high, and had a wingspan of 29 ft. It weighed 4,900 lb and carried 8,200 lb of fuel. It had a flush cockpit with a side entrance and no ejection seat. The following movie runs about 20 seconds, and shows several air-to-air views of X-1 Number 2 and its modified B-50 mothership. It begins with different angles of the X-1 in-flight while mated to the B-50's bomb bay, and ends showing the air-launch. The X-1 drops below the B-50, then accelerates away as the rockets ignite.

  8. Stellar Pair Shot Out from Its Birthplace: Astronomers Link Moving Microquasar to Star Cluster

    NASA Astrophysics Data System (ADS)

    2004-07-01

    Astronomers studying data from the National Science Foundation's Very Long Baseline Array (VLBA) and other telescopes have concluded that a binary pair of stars forming an energetic microquasar was blasted out of the cluster in which it was born by a supernova explosion some 1.7 million years ago. This is the first time that a fast-moving stellar pair has been tracked back to a specific star cluster. Microquasar and Star Cluster The microquasar, circled in red, and stars of the cluster (yellow) in visible-light image. Green arrow indicates microquasar's motion in sky and yellow arrow indicates star cluster's motion. Red arrow indicates microquasar's motion relative to (away from) star cluster. CREDIT: NRAO/AUI/NSF (Click on Image for Larger Version) The scientists analyzed numerous observations of a microquasar called LSI +61 303, and concluded that it is moving away from a star cluster named IC 1805 at nearly 17 miles per second. A microquasar is a pair of stars, one of which is either a dense neutron star or a black hole, in which material sucked from a "normal" star forms a rapidly-rotating disk around the denser object. The disk becomes so hot it emits X-rays, and also spits out "jets" of subatomic particles at nearly the speed of light. "In this case, both the microquasar and the star cluster are about 7,500 light-years from Earth and the characteristics of the 'normal' star in the microquasar match those of the other stars in the cluster, so we feel confident that the microquasar was shot out from a birthplace in this cluster," said Felix Mirabel, an astrophysicist at the Institute for Astronomy and Space Physics of Argentina and French Atomic Energy Commission. Mirabel worked with Irapuan Rodrigues, of the Federal University of Rio Grande do Sul, Brazil, and Qingzhong Liu of the Purple Mountain Observatory in Nanjing, China. The astronomers reported their results in the August 1 issue of the scientific journal Astronomy & Astrophysics. Many neutron stars

  9. The Cluster of Galaxies Surrounding Cygnus A

    NASA Astrophysics Data System (ADS)

    Owen, Frazer N.; Ledlow, Michael J.; Morrison, Glenn E.; Hill, John M.

    1997-10-01

    We report optical imaging and spectroscopy of 41 galaxies in a 22' square region surrounding Cygnus A. The results show that there is an extensive rich cluster associated with Cyg A of Abell richness of at least 1 and possibly as high as 4. The velocity histogram has two peaks, one centered on Cyg A and a more significant peak redshifted by about 2060 km s-1 from the velocity of Cyg A. The dynamical centroid of the spatial distribution is also shifted somewhat to the northwest. However, statistical tests show only weak evidence that there are two distinct clusters. The entire system has a velocity dispersion of 1581 km s-1, which is slightly larger than other, well-studied examples of rich clusters.

  10. Modelling a Simultaneous Radio/X-Ray Flare from Cyg X-1

    NASA Technical Reports Server (NTRS)

    Leventis, Konstantinos; Markoff, Sera; Wilsm, Joern; Nowak, Michael A.; Maitra, Dipankar; Pottschmidt, Katja; Pooley, Guy G.; Kreykenbohm, Ingo; Rotschild, Richard E.

    2008-01-01

    The long-term monitoring campaign of Cyg X-1 has provided the detection of the first simultaneous radio/X-ray flare seen from that source. We investigate the physical characteristics of the event in terms of emission from a homogeneous, expanding blob of pair-plasma, superimposed on a baseline flux in both bands. We find that while the radio flare can be reconstructed under various configurations of a cooling blob, continuous (re)acceleration of particles inside the jet is necessary to sustain X-ray emission at the levels implied by the data, for the observed duration. We present major results of the modelling and discuss implications for the role of microquasar jets.

  11. New evidence from Soudan 1 for underground muons associated with Cygnus X-3

    SciTech Connect

    Ayres, D.S.

    1986-06-05

    The Soudan 1 experiment has obtained additional evidence for underground muons associated with the x-ray pulsar Cygnus X-3. We report the preliminary analysis of data recorded during the October 1985 radio outburst of Cygnus X-3, which show a significant excess of muons for a narrow range of Cygnus X-3 phases.

  12. A discussion of the H-alpha filamentary nebulae and galactic structure in the Cygnus region

    NASA Technical Reports Server (NTRS)

    Matthews, T. A.; Simonson, S. C., III

    1971-01-01

    From observation of the galactic structure in Cygnus, the system of filamentary nebulae was found to lie at a distance of roughly 1.5 kpc, in the same region as about half the thermal radio sources in Cygnus X, the supernova remnant near gamma Cygni, and the association Cygnus OB2, in the direction of which the X-ray source Cygnus XR-3 is observed. The source of excitation was probably the pulse of radiation from a supernova explosion, as proposed in the case of Gum nebula. However continuing excitation by early stars in the region of Cygnus X cannot be excluded.

  13. VERITAS Observations of the Cygnus Region of the Galaxy

    NASA Astrophysics Data System (ADS)

    Bird, Ralph; VERITAS Collaboration

    2016-03-01

    The Cygnus region is a very active region of our Galaxy, with many sources of GeV and TeV gamma-ray emission, such as supernova remnants, pulsar wind nebulae, high mass X-ray binaries and massive star clusters. A detailed study of the Cygnus region can give insight into the processes of particle acceleration in astrophysical sources. VERITAS is an array of four 12-meter diameter imaging atmospheric Cherenkov telescopes located at Mt. Hopkins, AZ, USA. From 2007 through 2012 nearly 300 hours of data was gathered in the Cygnus region, covering 67 to 83 degrees Galactic longitude and -2 to 5 degrees in Galactic latitude. An update of the Fermi-LAT and VERITAS analysis of this region is presented. In particular we examine the source and hotspot regions within the Milagro dataset covering this region and the comparison between these objects in the three different instruments.

  14. Satellite tracking of the migration of Whooper Swans Cygnus cygnus wintering in Japan

    USGS Publications Warehouse

    Shimada, Tetsuo; Yamaguchi, Noriyuki M.; Hijikata, N.; Hiraoka, Emiko N.; Hupp, Jerry; Flint, Paul L.; Tokita, Ken-ichi; Fujita, Go; Uchida, Kiyoshi; Sato, F.; Kurechi, Masayuki; Pearce, John M.; Ramey, Andy M.; Higuchi, Hiroyoshi

    2014-01-01

    We satellite-tracked Whooper Swans Cygnus cygnus wintering in northern Japan to document their migration routes and timing, and to identify breeding areas. From 47 swans that we marked at Lake Izunuma-Uchinuma, Miyagi Prefecture, northeast Honshu, and at Lake Kussharo, east Hokkaido, we observed 57 spring and 33 autumn migrations from 2009-2012. In spring, swans migrated north along Sakhalin Island from eastern Hokkaido using stopovers in Sakhalin, at the mouth of the Amur River and in northern coastal areas of the Sea of Okhotsk. They ultimately reached molting/breedmg areas along the Indigirka River and the lower Kolyma River in northern Russia. In autumn, the swans basically reversed the spring migration routes. We identified northern Honshu, eastern Hokkaido, coastal areas in Sakhalin, the lower Amur River and northern coastal areas of the Sea of Okhotsk as the most frequent stopover sites, and the middle reaches of the Indigirka and the lower Kolyma River as presumed breeding sites. Our results are helpful in understanding the distribution of the breeding and stopover sites of Whooper Swans wintering in Japan and in identifying their major migration habitats. Our findings contribute to understanding the potential transmission process of avian influenza viruses potentially carried by swans, and provide information necessary to conserve Whooper Swans in East Asia.

  15. Are 3C 120 and Other Active Galactic Nuclei Overweight Microquasars?

    NASA Astrophysics Data System (ADS)

    Marscher, Alan P.

    2005-11-01

    The appearance of superluminal radio knots follows drops in the X-ray flux in the FR1 radio galaxy 3C 120 and possibly the FR2 source 3C 111. This corresponds in a very general way to the behavior of the X-ray binary GRS 1915 + 105, but the light curves of the microquasar are much richer in detail. Starting in 2003.7, the character of the radio and X-ray light curves of 3C 120 changed, perhaps signaling a new stage of activity. I discuss here what one might expect when a microquasar is scaled up to AGN dimensions, and compare this with what we see in 3C 120. There is a mismatch between expectations and observations.

  16. A search for time dependent neutrino emission from microquasars with the ANTARES telescope

    NASA Astrophysics Data System (ADS)

    Adrián-Martínez, S.; Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Ardid, M.; Astraatmadja, T.; Aubert, J.-J.; Baret, B.; Barrios, J.; Basa, S.; Bertin, V.; Biagi, S.; Bigongiari, C.; Bogazzi, C.; Bouhou, B.; Bouwhuis, M. C.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Cârloganu, C.; Carr, J.; Cecchini, S.; Charif, Z.; Charvis, P.; Chiarusi, T.; Circella, M.; Coniglione, R.; Core, L.; Costantini, H.; Coyle, P.; Creusot, A.; De Rosa, G.; Dekeyser, I.; Deschamps, A.; De Bonis, G.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drouhin, D.; Dumas, A.; Eberl, T.; Elsässer, D.; Emanuele, U.; Enzenhöfer, A.; Ernenwein, J.-P.; Escoffier, S.; Fehn, K.; Felis, I.; Fermani, P.; Folger, F.; Fusco, L. A.; Galatà, S.; Gay, P.; Geißelsöder, S.; Geyer, K.; Giordano, V.; Gleixner, A.; Gómez-González, J. P.; Graf, K.; Guillard, G.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Herold, B.; Hößl, J.; Hofestädt, J.; James, C. W.; de Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U.; Kooijman, P.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lambard, E.; Lambard, G.; Larosa, G.; Lattuada, D.; Lefèvre, D.; Leonora, E.; Loehner, H.; Loucatos, S.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martínez-Mora, J. A.; Martini, S.; Mathieu, A.; Michael, T.; Migliozzi, P.; Montaruli, T.; Müller, C.; Neff, M.; Nezri, E.; Palioselitis, D.; Păvălaş, G. E.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Racca, C.; Riccobene, G.; Richter, R.; Rivière, C.; Robert, A.; Roensch, K.; Rostovtsev, A.; Saldaña, M.; Samtleben, D. F. E.; Sánchez-Losa, A.; Sanguineti, M.; Sapienza, P.; Schmid, J.; Schnabel, J.; Schulte, S.; Schüssler, F.; Seitz, T.; Sieger, C.; Spies, A.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, T.; Taiuti, M.; Tamburini, C.; Tayalati, Y.; Trovato, A.; Vallage, B.; Vallée, C.; Van Elewyck, V.; Vernin, P.; Visser, E.; Vivolo, D.; Wagner, S.; Wilms, J.; de Wolf, E.; Yatkin, K.; Yepes, H.; Zornoza, J. D.; Zúñiga, J.

    2014-09-01

    Results are presented on a search for neutrino emission from a sample of six microquasars, based on the data collected by the ANTARES neutrino telescope between 2007 and 2010. By means of appropriate time cuts, the neutrino search has been restricted to the periods when the acceleration of relativistic jets was taking place at the microquasars under study. The time cuts have been chosen using the information from the X-ray telescopes RXTE/ASM and Swift/BAT, and, in one case, the gamma-ray telescope Fermi/LAT. No statistically significant excess has been observed, thus upper limits on the neutrino fluences have been derived and compared to the predictions by models. Constraints have been put on the ratio of proton to electron luminosity in the jets.

  17. Characterization of microsatellite loci isolated in trumpeter swan (Cygnus buccinator)

    USGS Publications Warehouse

    John, J. St; Ransler, F.A.; Quinn, T.W.; Oyler-McCance, S.J.

    2006-01-01

    Primers for 16 microsatellite loci were developed for the trumpeter swan (Cygnus buccinator), a species recovering from a recent population bottleneck. In a screen of 158 individuals, the 16 loci were found to have levels of variability ranging from two to seven alleles. No loci were found to be linked, although two loci repeatedly revealed significant departures from Hardy-Weinberg equilibrium. Amplification in the closely related tundra swan (Cygnus columbianus) was successful for all except one locus. These microsatellite loci will be applicable for population genetic analyses and ultimately aid in management efforts. ?? 2006 The Authors.

  18. JET TRAILS AND MACH CONES: THE INTERACTION OF MICROQUASARS WITH THE INTERSTELLAR MEDIUM

    SciTech Connect

    Yoon, D.; Morsony, B.; Heinz, S.; Wiersema, K.; Fender, R. P.; Russell, D. M.; Sunyaev, R.

    2011-11-20

    A subset of microquasars exhibits high peculiar velocity with respect to the local standard of rest due to the kicks they receive when being born in supernovae. The interaction between the radio plasma released by microquasar jets from such high-velocity binaries with the interstellar medium must lead to the production of trails and bow shocks similar to what is observed in narrow-angle tailed radio galaxies and pulsar wind nebulae. We present a set of numerical simulations of this interaction that illuminate the long-term dynamical evolution and the observational properties of these microquasar bow-shock nebulae and trails. We find that this interaction always produces a structure that consists of a bow shock, a trailing neck, and an expanding bubble. Using our simulations to model emission, we predict that the shock surrounding the bubble and the neck should be visible in H{sub {alpha}} emission, the interior of the bubble should be visible in synchrotron radio emission, and only the bow shock is likely to be detectable in X-ray emission. We construct an analytic model for the evolution of the neck and bubble shape and compare this model with observations of the X-ray binary SAX J1712.6-3739.

  19. Evolution of relativistic jets from XTE J1550-564 and the environment of microquasars

    NASA Astrophysics Data System (ADS)

    Zhang, Shuang Nan; Hao, Jing Fang

    2008-10-01

    Two relativistic X-ray jets have been detected with the Chandra X-ray observatory in the black hole X-ray transient XTE J1550-564. We report a full analysis of the evolution of the two jets with a gamma-ray burst external shock model. A plausible scenario suggests a cavity outside the central source and the jets first travelled with constant velocity and then are slowed down by the interactions between the jets and the interstellar medium (ISM). The best fitted radius of the cavity is ~0.36 pc on the eastern side and ~0.46 pc on the western side, and the densities also show asymmetry, of ~0.015 cm-3 on the east to ~0.21 cm-3 on the west. Large scale low density region is also found in another microquasar system, H 1743-322. These results are consistent with previous suggestions that the environment of microquasars should be rather vacuous, compared to the normal Galactic environment. A generic scenario for microquasar jets is proposed, classifying the observed jets into three main categories, with different jet morphologies (and sizes) corresponding to different scales of vacuous environments surrounding them.

  20. Global far-ultraviolet properties of the Cygnus Loop

    SciTech Connect

    Kim, Il-Joong; Seon, Kwang-Il; Lee, Dae-Hee; Han, Wonyong; Lim, Yeo-Myeong; Min, Kyoung-Wook; Edelstein, Jerry

    2014-03-20

    We present the C III λ977, O VI λλ1032, 1038 and N IV] λ1486 emission line maps of the Cygnus Loop, obtained with the newly processed data of the Spectroscopy of Plasma Evolution from Astrophysical Radiation (SPEAR; also known as FIMS) mission. In addition, the Si IV+O IV] line complexes around 1400 Å are resolved into two separate emission lines whose intensity demonstrates a relatively high Si IV region that was predicted in the previous study. The morphological similarity between the O VI and X-ray images, as well as a comparison of the O VI intensity with the value expected from the X-ray results, indicates that large portions of the observed O VI emissions could be produced from X-ray emitting gas. Comparisons of the far-ultraviolet (FUV) images with the optical and H I 21 cm images reveal spatial variations of shock-velocity populations and high FUV extinction in the direction of a previously identified H I cloud. By calculating the FUV line ratios for several subregions of the Cygnus Loop, we investigate the spatial variation of the population of radiative shock velocities as well as the effects of resonance scattering, X-ray emitting gas, and nonradiative shocks. The FUV and X-ray luminosity comparisons between the Cygnus Loop and the Vela supernova remnant suggest that the fraction of shocks in the early evolutionary stages is much larger in the Cygnus Loop.

  1. Search for old neutron stars in molecular clouds: Cygnus rift and Cygnus OB7.

    NASA Astrophysics Data System (ADS)

    Belloni, T.; Zampieri, L.; Campana, S.

    1997-03-01

    We present the results of a systematic search for old isolated neutron stars (ONSs) in the direction of two giant molecular clouds in Cygnus (Rift and OB7). From theoretical calculations, we expect the detection of a large number of ONSs with the PSPC on board ROSAT. By analyzing the PSPC pointings in the direction of the clouds, we find four sources characterized by count rates (~10^-3^ct/s) and spectral properties consistent with the hypothesis that the X-ray radiation is produced by ONSs and also characterized by the absence of any measurable optical counterpart within their error circle in the digitized red plates of the Palomar All Sky Survey. The importance of follow-up deep observations in the direction of these ONS candidates is discussed. The observational and theoretical approach presented here could be fruitfully applied also to the systematic search for ONSs in other regions of the Galaxy.

  2. LINE-OF-SIGHT SHELL STRUCTURE OF THE CYGNUS LOOP

    SciTech Connect

    Uchida, Hiroyuki; Tsunemi, Hiroshi; Katsuda, Satoru; Kimura, Masashi; Kosugi, Hiroko; Takahashi, Hiroaki

    2009-11-10

    We conducted a comprehensive study on the shell structure of the Cygnus Loop using 41 observation data obtained by the Suzaku and the XMM-Newton satellites. To investigate the detailed plasma structure of the Cygnus Loop, we divided our fields of view into 1042 box regions. From the spectral analysis, the spectra obtained from the limb of the Loop are well fitted by the single-component non-equilibrium ionization plasma model. On the other hand, the spectra obtained from the inner regions are well fitted by the two-component model. As a result, we confirmed that the low-temperature and high-temperature components originated from the surrounding interstellar matter (ISM) and the ejecta of the Loop, respectively. From the best-fit results, we showed a flux distribution of the ISM component. The distribution clearly shows the limb-brightening structure, and we found out some low-flux regions. Among them, the south blowout region has the lowest flux. We also found other large low-flux regions at slightly west and northeast from the center. We estimated the former thin shell region to be approx1.{sup 0}3 in diameter and concluded that there exists a blowout along the line of sight in addition to the south blowout. We also calculated the emission measure distribution of the ISM component and showed that the Cygnus Loop is far from the result obtained by a simple Sedov evolution model. From the results, we support that the Cygnus Loop originated from a cavity explosion. The emission measure distribution also suggests that the cavity-wall density is higher in the northeast than that in the southwest. These results suggest that the thickness of the cavity wall surrounding the Cygnus Loop is not uniform.

  3. Cygnus X-3: Its Little Friend’s Counterpart, the Distance to Cygnus X-3, and Outflows/Jets

    NASA Astrophysics Data System (ADS)

    McCollough, M. L.; Corrales, L.; Dunham, M. M.

    2016-10-01

    Chandra observations have revealed a feature within 16″ of Cygnus X-3 that varied in phase with Cygnus X-3. This feature was shown to be a Bok globule that is along the line of sight to Cygnus X-3. We report on observations made with the Submillimeter Array to search for molecular emission from this globule, also known as Cygnus X-3's “Little Friend.” We have found a counterpart in both 12CO (2-1) and 13CO (2-1) emission. From the velocity shift of the molecular lines we are able to find two probable distances based on the Bayesian model of Milky Way kinematics of Reid et al. For the LF velocity of ‑47.5 km s‑1, we find distances of 6.1 ± 0.6 kpc (62% probability) and 7.8 ± 0.6 kpc (38% probability). This yields distances to Cyg X-3 of 7.4 ± 1.1 kpc and 10.2 ± 1.2 kpc, respectively. Based on the probabilities entailed, we take 7.4 ± 1.1 kpc as the preferred distance to Cyg X-3. We also report the discovery of bipolar molecular outflow, suggesting that there is active star formation occurring within the Little Friend.

  4. Continuum and line emission in Cygnus A

    NASA Astrophysics Data System (ADS)

    Stockton, Alan; Ridgway, Susan E.; Lilly, Simon J.

    1994-08-01

    We present the results from (1) imaging observations of Cygnus A in five essentially line-free continuum bands with central wavelengths ranging from 0.34 to 2.1 microns. (2) imaging observations in five narrowband filters centered on the emission lines H beta(O III) lambda5007, H alpha(N II) lambda6583, and (S II) lambda lambda6716, 6731, and (3) deep spectroscopy covering the entire central region of Cyg A. We confirm that the featureless spectrum component is to be identified with the prominent double morphology at the center of Cyg A, but uncertainties in the distribution of the dust in this region tend to limit the accuracy with which we can determine its morphology and spectral-energy distribution (SED). From regions that appear to be least affected by obscuration, we find fv is approximately v-0.1 for this component. This SED could be consistent with free-free emission, a population of young stars, or a quasar continuum scattered by electrons, but probably not with a quasar continuum scattered by dust, which would be bluer. Our spectroscopy places an upper limit on the equivalent width of broad H beta that is well below that of typical quasars, showing that this flat-spectrum component (FSC) is almost certainly not dominated by scattered quasar radiation. Appeals to scattering by hot electrons to smear the scattered broad lines into invisibility appear to fail because the large density scale height of the electrons and the inefficiency of electron scattering should result in smoother and more extensive structure than we observe. Although the relative SED is consistent with free-free emission, the required amount of hot gas violates other observational constraints. At high angular resolution, the apparent morphology of the FSC is spiral-like. Although this impression may be partly due to obscuration, the distribution of the dust itself only serves to reinforce the spiral-like nature of the material with which it is associated. We conclude that the FSC is most

  5. The youngest known X-ray binary: Circinus X-1 and its natal supernova remnant

    SciTech Connect

    Heinz, S.; Sell, P.; Fender, R. P.; Jonker, P. G.; Brandt, W. N.; Calvelo-Santos, D. E.; Tzioumis, A. K.; Nowak, M. A.; Schulz, N. S.; Wijnands, R.; Van der Klis, M.

    2013-12-20

    Because supernova remnants are short-lived, studies of neutron star X-ray binaries within supernova remnants probe the earliest stages in the life of accreting neutron stars. However, such objects are exceedingly rare: none were known to exist in our Galaxy. We report the discovery of the natal supernova remnant of the accreting neutron star Circinus X-1, which places an upper limit of t < 4600 yr on its age, making it the youngest known X-ray binary and a unique tool to study accretion, neutron star evolution, and core-collapse supernovae. This discovery is based on a deep 2009 Chandra X-ray observation and new radio observations of Circinus X-1. Circinus X-1 produces type I X-ray bursts on the surface of the neutron star, indicating that the magnetic field of the neutron star is small. Thus, the young age implies either that neutron stars can be born with low magnetic fields or that they can rapidly become de-magnetized by accretion. Circinus X-1 is a microquasar, creating relativistic jets that were thought to power the arcminute-scale radio nebula surrounding the source. Instead, this nebula can now be attributed to non-thermal synchrotron emission from the forward shock of the supernova remnant. The young age is consistent with the observed rapid orbital evolution and the highly eccentric orbit of the system and offers the chance to test the physics of post-supernova orbital evolution in X-ray binaries in detail for the first time.

  6. Holleman in X-1 Reaction Control Cockpit

    NASA Technical Reports Server (NTRS)

    1958-01-01

    The X-1B and X-1E were simulated several times between 1956 and 1958 on both the AFFTC and NACA/NASA analog computers. The X-1 simulations were used for pilot training, envelope expansion studies, roll and inertial coupling studies, and reaction control studies.

  7. Discovery of a Radio Transient in Cygnus A

    NASA Astrophysics Data System (ADS)

    Perley, D. A.; Perley, R. A.; Carilli, C. L.

    2016-09-01

    We report the detection of a new radio source close to the nucleus of Cygnus A. Observations taken with the Very Large Array at frequencies between 8-20 GHz in July 2015, and between 20-50 GHz in August 2016, reveal a point source at the following location (J2000): RA = 19:59:28.32385 Dec = +40:44:01.9165 The source is detected at all frequencies and cleanly resolved from the Cygnus A nucleus; the separation is 0.395" (=430 pc). The positional accuracy (as registered against the nucleus) is approximately 3 mas. The flux density of this source is 4 mJy at 10 GHz, with a spectral index of alpha ~ -0.2 (F_nu ~ nu^alpha).

  8. Cygnus X-2 in a radio quiet state

    NASA Astrophysics Data System (ADS)

    Rushton, A.; Bach, U.; Spencer, R.; Kadler, M.; Church, M.; Balucinska-Church, M.; Wilms, J.; Hanke, M.; Zola, S.; Schulz, N.

    2009-05-01

    The neutron star X-ray binary Cygnus X-2 was observed using the e- EVN (European VLBI Network) on May 12/13th 2009 between 23:00-13:00 UT at 5 GHz. The radio telescopes participating with the e-EVN at 5 GHz were Effelsberg, Medicina, Onsala 25m, Torun, Sheshan, Yebes, Jodrell Bank MKII, Cambridge and Knockin. A maximum data rate of 1024 Mbps were achieved from four telescopes (Effelsberg, Onsala, Torun and Jodrell Bank MKII).

  9. Catching a Galactic Football: Chandra Examines Cygnus A

    NASA Astrophysics Data System (ADS)

    2000-11-01

    Using NASA's Chandra X-ray Observatory, astronomers have found a giant football-shaped cavity within X-ray emitting hot gas surrounding the galaxy Cygnus A. The cavity in the hot gas has been created by two powerful jets emitted from the central black hole region in the nucleus of Cygnus A. Hot gas is steadily being piled up around the cavity as it continuously expands, creating a bright rim of X-ray emission. The jets themselves terminate in radio and X-ray emitting "hot spots" some 300,000 light years from the center of the galaxy. These results are being presented to the High Energy Astrophysics Division of the American Astronomical Society meeting in Honolulu, HI, by Andrew S. Wilson, Andrew J. Young (University of Maryland) and Patrick L. Shopbell (California Institute of Technology). "This is a spectacular cavity, which is inflated by jets and completely surrounds the Cygnus A galaxy," said Dr. Wilson, who is Professor of Astronomy at the University of Maryland, College Park. "We are witnessing a battle between the gravity of the Cygnus A galaxy, which is trying to pull the hot gas inwards, and the pressure of material created by the jets, which is trying to push the hot gas outwards." Cygnus A has long been famous as the brightest radio source in the sky. It is the nearest powerful radio galaxy. The Chandra X-ray image, which was taken with the Advanced CCD Imaging Spectrometer (ACIS), shows the cavity surrounded by a vast sea of extremely hot gas. The elongated oval shape comes from the force of the outwardly moving jets as they push through the hot gas. Bright bands around the "equator of the football" are also visible, and this may be evidence of material swirling toward the central black hole. Cygnus A Illustration Illustration of Cygnus A Credit: CXC Without the jets, an X-ray image of Cygnus A, which is about 700 million light years from Earth, would appear as a more or less spherical region (about 2 million light years across) of hot gas slowly

  10. Ejection of the Corona at State Transitions: a Common Behavior in Microquasars?

    NASA Astrophysics Data System (ADS)

    Prat, L.; Rodriguez, J.

    2009-05-01

    The onset of most microquasar outbursts is characterized by a state transition between a Low/Hard State (LHS) and a High/Soft State (HSS). Besides drastic spectral and timing changes, this transition often shows a discrete ejection event detectable in the radio range. However, the exact nature of the ejected material and the mechanisms that give birth to these phenomena are yet to be unraveled. Recent simultaneous radio and X-ray observations on several sources point to a coronal nature of the ejected material. In the cases of GRS 1915+105, XTE J1550-564, and the 2002 outburst of GX 339-4, the flux of the Compton component decreases sharply just before an ejection is detected in the radio range. Finally, in the case of H1743-322, drastic physical changes occurred in the corona just before the state transition, compatible with the disappearance of part of this medium. Thus, the behavior of at least 4 microquasars points in the direction of an ejection of the corona at the state transition, feature that is yet to be confirmed (or infirmed) in the case of other available sources.

  11. X-1A in flight over lakebed

    NASA Technical Reports Server (NTRS)

    1953-01-01

    The Bell Aircraft Corporation X-1A (48-1384) returning from an Air Force test flight over Edwards Air Force Base, California in late 1953. A North American F-86A Sabre as chase plane will follow the X-1A to touchdown. The Rogers Dry Lake is the whitish area under the planes with the airfield at the edge of the dry lake. Bell test pilot Jean 'Skip' Ziegler made six flights between 14 February and 25 April 1953. Air Force test pilots Maj. Charles 'Chuck' Yeager and Maj. Arthur 'Kit' Murray made 18 test flights between 21 November 1953 and 26 August 1954. NACA test pilot Joseph Walker made one successful flight on 20 July 1955. During a second flight attempt, on 8 August 1955, an explosion damaged the aircraft shortly before launch. Walker, unhurt, climbed up into the JTB-29A mothership, and the X-1A was jettisoned over the Edwards AFB bombing range. There were five versions of the Bell X-1 rocket-powered research aircraft that flew at the NACA High-Speed Flight Research Station, Edwards, California. The bullet-shaped X-1 aircraft were built by Bell Aircraft Corporation, Buffalo, N.Y. for the U.S. Army Air Forces (after 1947, U.S. Air Force) and the National Advisory Committee for Aeronautics (NACA). The X-1 Program was originally designated the XS-1 for EXperimental Sonic. The X-1's mission was to investigate the transonic speed range (speeds from just below to just above the speed of sound) and, if possible, to break the 'sound barrier.' Three different X-1s were built and designated: X-1-1, X-1-2 (later modified to become the X-1E), and X-1-3. The basic X-1 aircraft were flown by a large number of different pilots from 1946 to 1951. The X-1 Program not only proved that humans could go beyond the speed of sound, it reinforced the understanding that technological barriers could be overcome. The X-1s pioneered many structural and aerodynamic advances including extremely thin, yet extremely strong wing sections; supersonic fuselage configurations; control system

  12. X-1E with Pilot Joe Walker

    NASA Technical Reports Server (NTRS)

    1958-01-01

    A photo of the X-1E with pilot Joe Walker suited up at the NASA High-Speed Flight Station, Edwards, California. The dice and 'Little Joe' are prominently displayed under the cockpit area. (Little Joe is a dice players slang term for two deuces.) Five years later when Walker reached 354,200 feet in the X-15, that aircraft carried similar artwork - 'Little Joe the II.' Walker is shown in the photo above wearing an early partial pressure suit. This protected the pilot if cockpit pressure was lost above 50,000 feet. There were five versions of the Bell X-1 rocket-powered research aircraft that flew at the NACA High-Speed Flight Research Station, Edwards, California. The bullet-shaped X-1 aircraft were built by Bell Aircraft Corporation, Buffalo, N.Y. for the U.S. Army Air Forces (after 1947, U.S. Air Force) and the National Advisory Committee for Aeronautics (NACA). The X-1 Program was originally designated the XS-1 for EXperimental Sonic. The X-1's mission was to investigate the transonic speed range (speeds from just below to just above the speed of sound) and, if possible, to break the 'sound barrier.' Three different X-1s were built and designated: X-1-1, X-1-2 (later modified to become the X-1E), and X-1-3. The basic X-1 aircraft were flown by a large number of different pilots from 1946 to 1951. The X-1 Program not only proved that humans could go beyond the speed of sound, it reinforced the understanding that technological barriers could be overcome. The X-1s pioneered many structural and aerodynamic advances including extremely thin, yet extremely strong wing sections; supersonic fuselage configurations; control system requirements; powerplant compatibility; and cockpit environments. The X-1 aircraft were the first transonic-capable aircraft to use an all-moving stabilizer. The flights of the X-1s opened up a new era in aviation. The first X-1 was air-launched unpowered from a Boeing B-29 Superfortress on Jan. 25, 1946. Powered flights began in December 1946

  13. X-1E Engine Ground Test Run

    NASA Technical Reports Server (NTRS)

    1956-01-01

    The Bell Aircraft Corporation X-1E during a ground engine test run on the NACA High-Speed Flight Station ramp near the Rogers Dry Lake. The rocket technician is keeping the concrete cool by hosing it with water during the test. This also helps in washing away any chemicals that might spill. The test crew worked close to the aircraft during ground tests. There were four versions of the Bell X-1 rocket-powered research aircraft that flew at the NACA High-Speed Flight Research Station, Edwards, California. The bullet-shaped X-1 aircraft were built by Bell Aircraft Corporation, Buffalo, N.Y. for the U.S. Army Air Forces (after 1947, U.S. Air Force) and the National Advisory Committee for Aeronautics (NACA). The X-1 Program was originally designated the XS-1 for EXperimental Supersonic. The X-1's mission was to investigate the transonic speed range (speeds from just below to just above the speed of sound) and, if possible, to break the 'sound barrier.' Three different X-1s were built and designated: X-1-1, X-1-2 (later modified to become the X-1E), and X-1-3. The basic X-1 aircraft were flown by a large number of different pilots from 1946 to 1951. The X-1 Program not only proved that humans could go beyond the speed of sound, it reinforced the understanding that technological barriers could be overcome. The X-1s pioneered many structural and aerodynamic advances including extremely thin, yet extremely strong wing sections; supersonic fuselage configurations; control system requirements; powerplant compatibility; and cockpit environments. The X-1 aircraft were the first transonic-capable aircraft to use an all-moving stabilizer. The flights of the X-1s opened up a new era in aviation. The first X-1 was air-launched unpowered from a Boeing B-29 Superfortress on January 25, 1946. Powered flights began in December 1946. On October 14, 1947, the X-1-1, piloted by Air Force Captain Charles 'Chuck' Yeager, became the first aircraft to exceed the speed of sound, reaching about

  14. Consolidating the Cygnus Region 1.809 MeV Emission

    NASA Technical Reports Server (NTRS)

    Oberlack, Uwe

    2000-01-01

    The analysis of additional Cygnus observations together with a further improved background model resulted in an update of the 1.809 MeV allsky map. Along with improvements of the data, the Cygnus region has been studied in greater detail and compared to a model of non-stationary nucleosynthesis following the evolution of young OB associations. This model has been vastly extended to include additional observables such as dynamics of the interstellar medium (ISM), following the evolution of superbubbles, and the emission of ionizing ultraviolet light. The rich OB associations Cygnus OB 1 and OB 2 could indeed account for a large fraction of the 'Cygnus West' emission. Emission from 'Cygnus East' however, cannot easily be modelled by the sparse Cygnus OB 7 association. This led to a study on the impact of a newly proposed Al-26 source, massive close binaries. It is found that a very significant Al-26 contribution from massive close binaries would be needed to account for the observed emission in Cygnus East, which would single out this region from other observations. It appears more likely that deeper observations (e.g., in the near infrared) are needed to get a better estimate on the population of massive stars in Cygnus East.

  15. Near-Infrared Variability Among YSOs in the Star Forming Region Cygnus OB7

    NASA Astrophysics Data System (ADS)

    Rice, Thomas; Wolk, S. J.; Aspin, C.

    2013-01-01

    We present an analysis of near-infrared time-series photometry in J, H, and K bands for about 100 epochs of a 1 deg x 1 deg region of the Lynds 1003/1004 dark cloud in the Cygnus OB7 region. From the 7 bands of near and mid-infrared photometry we identify 92 candidate disk bearing young stellar objects (YSOs). Of these, 27 are clearly Class I or earlier. Using the Wide-Field imaging CAMera (WFCAM) on the United Kingdom InfraRed Telescope (UKIRT), we were able to obtain photometry over three observing seasons, with photometric uncertainty better than 0.05 mag down to J=17. We study in detail the light curves and color trajectories of 50 of these sources in the monitored field. We investigate the variability and periodicity of the YSOs and find the data are consistent with all YSOs being variable in these wavelengths on time scales of a few years. We divide the variability into four observational classes: 1) stars with periodic variability stable over long timescales, 2) variables which exhibit short-lived periodicity, 3) long-term eruptive variables, and 4) stochastic variables. Some YSO variability defies simple classification. We can explain much of the observed variability as being due to dynamic and rotational changes in the disk, including an asymmetric or changing blocking fraction, changes to the inner disk hole size as well as the accretion rate.

  16. X-1E with Pilot Joe Walker

    NASA Technical Reports Server (NTRS)

    1958-01-01

    A photo of the X-1E with pilot Joe Walker suited up at the NASA High-Speed Flight Station, Edwards, California. The dice and 'Little Joe' are prominently displayed under the cockpit area. (Little Joe is a dice players slang term for two deuces.) Five years later when Walker reached 354,200 feet in the X-15, that aircraft carried similar artwork - 'Little Joe the II.' Walker is shown in the photo above wearing an early partial pressure suit. This protected the pilot if cockpit pressure was lost above 50,000 feet. There were five versions of the Bell X-1 rocket-powered research aircraft that flew at the NACA High-Speed Flight Research Station, Edwards, California. The bullet-shaped X-1 aircraft were built by Bell Aircraft Corporation, Buffalo, N.Y. for the U.S. Army Air Forces (after 1947, U.S. Air Force) and the National Advisory Committee for Aeronautics (NACA). The X-1 Program was originally designated the XS-1 for EXperimental Sonic. The X-1's mission was to investigate the transonic speed range (speeds from just below to just above the speed of sound) and, if possible, to break the 'sound barrier.' Three different X-1s were built and designated: X-1-1, X-1-2 (later modified to become the X-1E), and X-1-3. The basic X-1 aircraft were flown by a large number of different pilots from 1946 to 1951. The X-1 Program not only proved that humans could go beyond the speed of sound, it reinforced the understanding that technological barriers could be overcome. The X-1s pioneered many structural and aerodynamic advances including extremely thin, yet extremely strong wing sections; supersonic fuselage configurations; control system requirements; powerplant compatibility; and cockpit environments. The X-1 aircraft were the first transonic-capable aircraft to use an all-moving stabilizer. The flights of the X-1s opened up a new era in aviation. The first X-1 was air-launched unpowered from a Boeing B-29 Superfortress on Jan. 25, 1946. Powered flights began in December 1946

  17. PREFACE: CYGNUS 2013: 4th Workshop on Directional Detection of Dark Matter

    NASA Astrophysics Data System (ADS)

    Naka, Tatsuhiro; Miuchi, Kentaro

    2013-12-01

    It is a great pleasure to publish the proceedings of the 4th Workshop on Directional Detection of Dark Matter held in Toyama, Japan on 10-12 June 2013 (CYGNUS 2013). These proceedings contain written versions of the presentations made at CYGNUS 2013 as scientific outputs of the directional detection of dark matter. The GYGNUS workshop started in 2007 at Boulby Underground Laboratory (UK), followed by CYGNUS 2009 (MIT in Cambridge, Massachusetts, USA) and CYGNUS 2011 (AUSSOIS, France). CYGNUS 2013 was held by the combination of a two and a half days of scientific program and a half day visit to the underground laboratory (Kamioka Observatory) as a 'tradition' of CYGNUS workshops. The name 'CYGNUS' came from the fact that the 'dark matter wind' is expected to come from the direction of the constellation Cygnus due to the motion of the Solar system in the galaxy. A general aim of these CYGNUS workshops is to bring together the theoretical and experimental studies on the directional dark matter detection. Directional detection of dark matter is a promising approach to a 'clear detection' and also to 'further investigations' of galactic dark matter, or Weakly Interacting Massive Particles (WIMPs). Directional detection requires the simultaneous detection of the energy and track of low energy recoils. Among many technological challenges for the requirement above, three of them, namely size, background, and directionality (angular resolution and head-tail detection), are most important to demonstrate and improve the quality as a dark matter detector. In the workshop, up-to-date activities by the international reserchers are discussed. The workshop was a great success thanks to the oral contributions and fruitful discussions held throughout the workshop period. We hope that readers will remember and share the great enthusiasm shown during the CYGNUS 2013 workshop. The Editors Tatsuhiro Naka and Kentaro Miuchi

  18. Understanding the Cray X1 System

    NASA Technical Reports Server (NTRS)

    Cheung, Samson

    2004-01-01

    This paper helps the reader understand the characteristics of the Cray X1 vector supercomputer system, and provides hints and information to enable the reader to port codes to the system. It provides a comparison between the basic performance of the X1 platform and other platforms that are available at NASA Ames Research Center. A set of codes, solving the Laplacian equation with different parallel paradigms, is used to understand some features of the X1 compiler. An example code from the NAS Parallel Benchmarks is used to demonstrate performance optimization on the X1 platform.

  19. X-1E canopy mock-up

    NASA Technical Reports Server (NTRS)

    1953-01-01

    This photo appears to depict the design of the X-1E canopy. In 1955, the X-1-2 was modified. The modifications included a new thin wing and a low-pressure fuel system. The most visible change was a raised canopy that replaced the original flush windshield on the aircraft, which was called the X-1E. The modified aircraft made its first glide flight on December 12, 1955, and its first powered flight three days later. Over a three-year period, the X-1E made a total of 26 flights, reaching a speed of Mach 2.24. National Advisory Committee for Aeronautics (NACA) pilot Joseph Walker was the pilot for flights 1 through 21, while John McKay made flights 22 to 26. The final flight occurred on November 6, 1958. This was also the last flight by an X-1 aircraft. On April 29, 1960, the X-1E was mounted on a pole in front of the Flight Research Center (FRC) headquarters building. In 1976 the FRC became the Hugh L. Dryden Flight Research Center, and the X-1E remained in front of the headquarters building. There were five versions of the Bell X-1 rocket-powered research aircraft that flew at the NACA High-Speed Flight Research Station, Edwards, California. The bullet-shaped X-1 aircraft were built by Bell Aircraft Corporation, Buffalo, N.Y. for the U.S. Army Air Forces (after 1947, U.S. Air Force) and the National Advisory Committee for Aeronautics (NACA). The X-1 Program was originally designated the XS-1 for EXperimental Sonic. The X-1's mission was to investigate the transonic speed range (speeds from just below to just above the speed of sound) and, if possible, to break the 'sound barrier.' Three different X-1s were built and designated: X-1-1, X-1-2 (later modified to become the X-1E), and X-1-3. The basic X-1 aircraft were flown by a large number of different pilots from 1946 to 1951. The X-1 Program not only proved that humans could go beyond the speed of sound, it reinforced the understanding that technological barriers could be overcome. The X-1s pioneered many

  20. Spectrum of a jet-emitting disc: application to the microquasar XTE J1118+480

    NASA Astrophysics Data System (ADS)

    Zhang, Jian-Fu; Xie, Fu-Guo

    2013-10-01

    Under the framework of the magnetized accretion ejection structures, we analyse the energy balance properties, and study the spectral energy distributions (SEDs) of the jet-emitting disc (JED) model for black hole X-ray transients. Various radiative processes are considered, i.e. synchrotron, bremsstrahlung, and their Comptonizations, and external Comptonization of radiation from the outer thin disc. With these cooling terms taken into account, we solve the thermal equilibrium equation self-consistently and find three solutions, of which the cold and the hot solutions are stable. Subsequently, we investigate the theoretical SEDs for these two stable solutions. We find the hot JED model can naturally explain the spectra of the Galactic microquasars in their hard states. As an example, we apply this model to the case of XTE J1118+480.

  1. Gemini H-band spectroscopy of the Galactic microquasar GRS 1915+105

    NASA Astrophysics Data System (ADS)

    McConnell, O.; Callanan, P.; Reynolds, M.

    2014-07-01

    Since its discovery in 1994 (Castro-Tirado 1994) GRS 1915+105 has become one of the most intensely studied of all the X-ray binaries in the Galaxy. This Galactic microquasar system is unique in that it has remained in outburst for the past 20 years: furthermore, initial measurements suggested a relatively high black hole mass of 14 ± 4 M_{⊙} (Greiner et al. 2001), outside the predicted mass range for such transients (Ozel et al. 2010). Here we present new Gemini H-band observations, and discuss the degree to which they can be used to refine the black hole mass in comparison to more recent estimates (Hurley et al 2013, Steeghs et al 2013). In addition, previous work found phase dependent emission of the CO bandheads in the K-band, and we present evidence of double peaked emission lines, indicative of ongoing mass transfer via the accretion disk.

  2. VLBA "Movie" Gives Scientists New Insights On Workings of Mysterious Microquasars

    NASA Astrophysics Data System (ADS)

    2004-01-01

    Astronomers have made a 42-day movie showing unprecedented detail of the inner workings of a strange star system that has puzzled scientists for more than two decades. Their work is providing new insights that are changing scientists' understanding of the enigmatic stellar pairs known as microquasars. SS 433 Frame from SS 433 Movie: End to end is some 200 billion miles. CREDIT: Mioduszewski et al., NRAO/AUI/NSF Image Files Single Frame Overall Jet View (above image) VLBA Movie (animated gif, 2.3 MB) Animated graphic of SS 433 System (18MB) (Created using software by Robert Hynes, U.Texas) Annotated brightening graphic Unannotated brightening Frame 1 Unannotated brightening Frame 2 "This once-a-day series of exquisitely-detailed images is the best look anyone has ever had at a microquasar, and already has made us change our thinking about how these things work," said Amy Mioduszewski, of the National Radio Astronomy Observatory (NRAO), in Socorro, New Mexico. The astronomers used the National Science Foundation's Very Long Baseline Array (VLBA), a system of radio telescopes stretching from Hawaii to the Caribbean, to follow daily changes in a binary-star system called SS 433, some 15,000 light-years from Earth in the constellation Aquila. Mioduszewski worked with Michael Rupen, Greg Taylor and Craig Walker, all of NRAO. They reported their findings to the American Astronomical Society's meeting in Atlanta, Georgia. SS 433 consists of a neutron star or black hole orbited by a "normal" companion star. The powerful gravity of the neutron star or black hole is drawing material from the stellar wind of its companion into an accretion disk of material tightly circling the dense, central object prior to being pulled onto that object. This disk propels jets of subatomic particles outward from its poles. In SS 433, the particles in the jets move at 26 percent of the speed of light; in other microquasars, the jet material moves at 90-95 percent of light speed. The disk in SS

  3. X-1-2 on ramp

    NASA Technical Reports Server (NTRS)

    1951-01-01

    The Bell Aircraft Corporation X-1-2 aircraft on the ramp at NACA High Speed Flight Research Station located on the South Base of Muroc Army Air Field in 1947. The X-1-2 flew until October 23, 1951, completing 74 glide and powered flights with nine different pilots. The aircraft has white paint and the NACA tail band. The black Xs are reference markings for tracking purposes. They were widely used on NACA aircraft in the early 1950s. There were five versions of the Bell X-1 rocket-powered research aircraft that flew at the NACA High-Speed Flight Research Station, Edwards, California. The bullet-shaped X-1 aircraft were built by Bell Aircraft Corporation, Buffalo, N.Y. for the U.S. Army Air Forces (after 1947, U.S. Air Force) and the National Advisory Committee for Aeronautics (NACA). The X-1 Program was originally designated the XS-1 for EXperimental Sonic. The X-1's mission was to investigate the transonic speed range (speeds from just below to just above the speed of sound) and, if possible, to break the 'sound barrier.' Three different X-1s were built and designated: X-1-1, X-1-2 (later modified to become the X-1E), and X-1-3. The basic X-1 aircraft were flown by a large number of different pilots from 1946 to 1951. The X-1 Program not only proved that humans could go beyond the speed of sound, it reinforced the understanding that technological barriers could be overcome. The X-1s pioneered many structural and aerodynamic advances including extremely thin, yet extremely strong wing sections; supersonic fuselage configurations; control system requirements; powerplant compatibility; and cockpit environments. The X-1 aircraft were the first transonic-capable aircraft to use an all-moving stabilizer. The flights of the X-1s opened up a new era in aviation. The first X-1 was air-launched unpowered from a Boeing B-29 Superfortress on Jan. 25, 1946. Powered flights began in December 1946. On Oct. 14, 1947, the X-1-1, piloted by Air Force Captain Charles 'Chuck' Yeager

  4. ADDITIONAL MASSIVE BINARIES IN THE CYGNUS OB2 ASSOCIATION

    SciTech Connect

    Kiminki, Daniel C.; Kobulnicky, Henry A.; Ewing, Ian; Lundquist, Michael; Alexander, Michael; Vargas-Alvarez, Carlos; Choi, Heather; Bagley Kiminki, Megan M.; Henderson, C. B.

    2012-03-01

    We report the discovery and orbital solutions for two new OB binaries in the Cygnus OB2 Association, MT311 (B2V + B3V) and MT605 (B0.5V + B2.5:V). We also identify the system MT429 as a probable triple system consisting of a tight eclipsing 2.97 day B3V+B6V pair and a B0V at a projected separation of 138 AU. We further provide the first spectroscopic orbital solutions to the eclipsing, double-lined, O-star binary MT696 (O9.5V + B1:V), the double-lined, early B binary MT720 (B0-1V + B1-2V), and the double-lined, O-star binary MT771 (O7V + O9V). These systems exhibit orbital periods between 1.5 days and 12.3 days, with the majority having P <6 days. The two new binary discoveries and six spectroscopic solutions bring the total number of known massive binaries in the central region of the Cygnus OB2 Association to 20, with all but two having full orbital solutions.

  5. Underground muons from the direction of Cygnus X-3

    NASA Technical Reports Server (NTRS)

    Marshak, M. L.

    1992-01-01

    The flux of underground muons from the direction of the binary Cygnus X-3 was measured by the Soudan 2 proton decay detector. This time-projection calorimeter is located at a depth of 2200 m (water equivalent) in northern Minnesota at latitude 48 deg N, longitude 92 deg W. An analysis was then performed that compared both the total observed flux and the observed flux per transit with the number of events expected in the absence of a source. This expected number of events was determined by combining the detector acceptance as a function of time with detector acceptance as a function of the local spatial coordinates. These functions were evaluated by use of off-source events. The direction of Cygnus X-3 was defined as a 2 deg half-angle cone, centered on the nominal source coordinates. This definition is consistent with the expected appearance of a point source in the Soudan 2 detector after consideration of track reconstruction errors, multiple scattering in the rock, and possible systematic effects. Details of the analysis and the results are presented.

  6. Cygnus Pressurized Cargo Module (PCM) Flight Inertial Load Static Tests

    NASA Astrophysics Data System (ADS)

    Murgia, Giovanni; Mancini, Simone; Palmieri, Paolo; Rutigliano, Luigi

    2012-07-01

    Cygnus PCM Flight Inertial Load Static Test campaign has been performed by Thales Alenia Space - Italy (TAS-I) to achieve the Static Qualification of its Primary Structure. A “Proto-flight Approach” has been followed (as per [1] and [2]), thus the first flight unit, the PCM0, has been tested up to qualification level (qualification/acceptance factor equivalent to 1.2 [1]). The PCM0 has been constrained to a dummy Service Module (the second member of Cygnus Spacecraft), representative in terms of interfaces provisions, and flight load conditions have been reproduced with proper forces that have been applied by means of hydraulic jacks at internal PCM secondary structure interfaces. Test load cases have been defined in order to simulate load paths and relevant stress fields associated to the worst flight load conditions by using the FE model analyses. Tests have been monitored by means of gauges and displacement transducers and results have been utilized to correlate the PCM FEM following [3] requirements.

  7. AR1429 Releases X1 Class Flare

    NASA Video Gallery

    The Solar Dynamics Observatory captured the X1 flare, shown here in the 171 Angstrom wavelength, a wavelength typically shown in the color gold. This movie runs from 10 PM ET March 4 to 3 AM March ...

  8. Highly Structured Wind in Vela X-1

    NASA Technical Reports Server (NTRS)

    Kreykenbohm, Ingo; Wilms, Joern; Kretschmar, Peter; Torrejon, Jose Miguel; Pottschmidt, Katja; Hanke, Manfred; Santangelo, Andrea; Ferrigno, Carlo; Staubert, Ruediger

    2008-01-01

    We present an in-depth analysis of the spectral and temporal behavior of a long almost uninterrupted INTEGRAL observation of Vela X-1 in Nov/Dec 2003. In addition to an already high activity level, Vela X-1 exhibited several very intense flares with a maximum intensity of more than 5 Crab in the 20 40 keV band. Furthermore Vela X-1 exhibited several off states where the source became undetectable with ISGRI. We interpret flares and off states as being due to the strongly structured wind of the optical companion: when Vela X-1 encounters a cavity in the wind with strongly reduced density, the flux will drop, thus potentially triggering the onset of the propeller effect which inhibits further accretion, thus giving rise to the off states. The required drop in density to trigger the propeller effect in Vela X-1 is of the same order as predicted by theoretical papers for the densities in the OB star winds. The same structured wind can give rise to the giant flares when Vela X-1 encounters a dense blob in the wind. Further temporal analysis revealed that a short lived QPO with a period of 6800 sec is present. The part of the light curve during which the QPO is present is very close to the off states and just following a high intensity state, thus showing that all these phenomena are related.

  9. NACA Aircraft on Lakebed - D-558-2, X-1B, and X-1E

    NASA Technical Reports Server (NTRS)

    1955-01-01

    Early NACA research aircraft on the lakebed at the High Speed Research Station in 1955: Left to right: X-1E, D-558-2, X-1B There were four versions of the original Bell X-1 rocket-powered research aircraft that flew at the NACA High-Speed Flight Research Station, Edwards, California. The bullet-shaped X-1 aircraft were built by Bell Aircraft Corporation, Buffalo, N.Y. for the U.S. Army Air Forces (after 1947, U.S. Air Force) and the National Advisory Committee for Aeronautics (NACA). The X-1 Program was originally designated the XS-1 for EXperimental Supersonic. The X-1's mission was to investigate the transonic speed range (speeds from just below to just above the speed of sound) and, if possible, to break the 'sound barrier.' Three different X-1s were built and designated: X-1-1, X-1-2 (later modified to become the X-1E), and X-1-3. The basic X-1 aircraft were flown by a large number of different pilots from 1946 to 1951. The X-1 Program not only proved that humans could go beyond the speed of sound, it reinforced the understanding that technological barriers could be overcome. The X-1s pioneered many structural and aerodynamic advances including extremely thin, yet extremely strong wing sections; supersonic fuselage configurations; control system requirements; powerplant compatibility; and cockpit environments. The X-1 aircraft were the first transonic-capable aircraft to use an all-moving stabilizer. The flights of the X-1s opened up a new era in aviation. The first X-1 was air-launched unpowered from a Boeing B-29 Superfortress on January 25, 1946. Powered flights began in December 1946. On October 14, 1947, the X-1-1, piloted by Air Force Captain Charles 'Chuck' Yeager, became the first aircraft to exceed the speed of sound, reaching about 700 miles per hour (Mach 1.06) and an altitude of 43,000 feet. The number 2 X-1 was modified and redesignated the X-1E. The modifications included adding a conventional canopy, an ejection seat, a low-pressure fuel system

  10. X-1 launch from B-29 mothership

    NASA Technical Reports Server (NTRS)

    1947-01-01

    The first of the rocket-powered research aircraft, the X-1 (originally designated the XS-1), was a bullet-shaped airplane that was built by the Bell Aircraft Company for the US Air Force and the National Advisory Committee on Aeronautics (NACA). The mission of the X-1 was to investigate the transonic speed range (speeds from just below to just above the speed of sound) and, if possible, to break the 'sound barrier'. The first of the three X-1s was glide-tested at Pinecastle Air Force Base, FL, in early 1946. The first powered flight of the X-1 was made on Dec. 9, 1946, at Edwards Air Force Base with Chalmers Goodlin, a Bell test pilot, at the controls. On Oct. 14, 1947, with USAF Captain Charles 'Chuck' Yeager as pilot, the aircraft flew faster than the speed of sound for the first time. Captain Yeager ignited the four-chambered XLR-11 rocket engines after being air-launched from under the bomb bay of a B-29 at 21,000 ft. The 6,000-lb thrust ethyl alcohol/liquid oxygen burning rockets, built by Reaction Motors, Inc., pushed him up to a speed of 700 mph in level flight. Captain Yeager was also the pilot when the X-1 reached its maximum speed of 957 mph. Another USAF pilot. Lt. Col. Frank Everest, Jr., was credited with taking the X-1 to its maximum altitude of 71,902 ft. Eighteen pilots in all flew the X-1s. The number three plane was destroyed in a fire before ever making any powered flights. A single-place monoplane, the X-1 was 31 ft long, 10 ft high, and had a wingspan of 29 ft. It weighed 4,900 lb and carried 8,200 lb of fuel. It had a flush cockpit with a side entrance and no ejection seat. This roughly 30-second video clip shows the X-1 launched from a B-29, ignition of the XLR-11 rocket engine, and the succeeding flight, including a roll. At one point, the video shows observers of the flight from the ground.

  11. X-1 research aircraft landing on lakebed

    NASA Technical Reports Server (NTRS)

    1947-01-01

    The first of the rocket-powered research aircraft, the X-1 (originally designated the XS-1), was a bullet-shaped airplane that was built by the Bell Aircraft Company for the US Air Force and the National Advisory Committee on Aeronautics (NACA). The mission of the X-1 was to investigate the transonic speed range (speeds from just below to just above the speed of sound) and, if possible, to break the 'sound barrier'. The first of the three X-1s was glide-tested at Pinecastle Air Force Base, FL, in early 1946. The first powered flight of the X-1 was made on Dec. 9, 1946, at Edwards Air Force Base with Chalmers Goodlin, a Bell test pilot, at the controls. On Oct. 14, 1947, with USAF Captain Charles 'Chuck' Yeager as pilot, the aircraft flew faster than the speed of sound for the first time. Captain Yeager ignited the four-chambered XLR-11 rocket engines after being air-launched from under the bomb bay of a B-29 at 21,000 ft. The 6,000-lbthrust ethyl alcohol/liquid oxygen burning rockets, built by Reaction Motors, Inc., pushed him up to a speed of 700 mph in level flight. Captain Yeager was also the pilot when the X-1 reached its maximum speed of 957 mph. Another USAF pilot. Lt. Col. Frank Everest, Jr., was credited with taking the X-1 to its maximum altitude of 71,902 ft. Eighteen pilots in all flew the X-1s. The number three plane was destroyed in a fire before ever making any powered flights. A single-place monoplane, the X-1 was 31 ft long, 10 ft high, and had a wingspan of 29 ft. It weighed 4,900 lb and carried 8,200 lb of fuel. It had a flush cockpit with a side entrance and no ejection seat. This roughly 30-second video clip shows the X-1 landing on Rogers Dry Lakebed followed by the safety chase aircraft.

  12. Cray X1 Evaluation Status Report

    SciTech Connect

    Vetter, J.S.

    2004-02-09

    On August 15, 2002 the Department of Energy (DOE) selected the Center for Computational Sciences (CCS) at Oak Ridge National Laboratory (ORNL) to deploy a new scalable vector supercomputer architecture for solving important scientific problems in climate, fusion, biology, nanoscale materials and astrophysics. ''This program is one of the first steps in an initiative designed to provide U.S. scientists with the computational power that is essential to 21st century scientific leadership,'' said Dr. Raymond L. Orbach, director of the department's Office of Science The Cray X1 is an attempt to incorporate the best aspects of previous Cray vector systems and massively-parallel-processing (MPP) systems into one design. Like the Cray T90, the X1 has high memory bandwidth, which is key to realizing a high percentage of theoretical peak performance. Like the Cray T3E, the X1 has a high-bandwidth, low-latency, scalable interconnect, and scalable system software. And, like the Cray SV1, the X1 leverages commodity off-the-shelf (CMOS) technology and incorporates non-traditional vector concepts, like vector caches and multi-streaming processors. In FY03, CCS procured a 256-processor Cray X1 to evaluate the processors, memory subsystem, scalability of the architecture, software environment and to predict the expected sustained performance on key DOE applications codes. The results of the micro-benchmarks and kernel benchmarks show the architecture of the Cray X1 to be exceptionally fast for most operations. The best results are shown on large problems, where it is not possible to fit the entire problem into the cache of the processors. These large problems are exactly the types of problems that are important for the DOE and ultra-scale simulation.

  13. Fine structure of the jet from Cygnus A

    NASA Astrophysics Data System (ADS)

    Matveyenko, L. I.; Seleznev, S. V.

    2015-12-01

    The superfine structure of the bipolar outflow from the radio galaxy Cygnus A has been investigated at a wavelength of 2 cm. The surrounding thermal plasma inflows onto the disk and is transferred in a spiral to the center, with the plasma velocity and temperature increasing to relativistic values. The rotating bipolar outflow carries away an excess angular momentum as it is accumulated. The high-velocity central flow is surrounded by parallel chains of components, the tangential directions of the low-velocity flows. Rotation collimates the flow; ring currents, a longitudinal magnetic field, are generated in it. The size of the high-velocity jet exceeds the size of the counterjet by a factor of 3.5 due to the velocity difference: the acceleration of the flow moving along the field and its decelerationwhenmoving in a direction opposite to the magnetic field of the system. The observed features are typical of objects with active nuclei.

  14. Subaru spectroscopy and spectral modeling of Cygnus A

    SciTech Connect

    Merlo, Matthew J.; Perlman, Eric S.; Nikutta, Robert; Packham, Christopher; Elitzur, Moshe; Imanishi, Masatoshi; Levenson, N. A.; Radomski, James T.

    2014-06-10

    We present high angular resolution (∼0.''5) MIR spectra of the powerful radio galaxy, Cygnus A (Cyg A), obtained with the Subaru telescope. The overall shape of the spectra agree with previous high angular resolution MIR observations, as well as previous Spitzer spectra. Our spectra, both on and off nucleus, show a deep silicate absorption feature. The absorption feature can be modeled with a blackbody obscured by cold dust or a clumpy torus. The deep silicate feature is best fit by a simple model of a screened blackbody, suggesting that foreground absorption plays a significant, if not dominant, role in shaping the spectrum of Cyg A. This foreground absorption prevents a clear view of the central engine and surrounding torus, making it difficult to quantify the extent the torus attributes to the obscuration of the central engine, but does not eliminate the need for a torus in Cyg A.

  15. An infrared supershell surrounding the Cygnus OB1 association

    NASA Technical Reports Server (NTRS)

    Saken, Jon M.; Shull, J. M.; Garmany, Catharine D.; Nichols-Bohlin, Joy; Fesen, Robert A.

    1992-01-01

    New studies are reported of a large, 2 x 5 deg peanut-shaped cavity in the far-infrared emission seen using IRAS data for the Cygnus X region. A more complete and better defined infrared supershell than reported by Lozinskaya and Repin (1990) is found and connected to the Cyg OB1 association. It is shown that the cavity represents the early stages of a superbubble produced by the winds and possible SNe from 10 to 20 massive stars. The locations and properties of these stars are used to estimate the energy deposition rate and to understand the manner in which supershells form and propagate. In Cyg OB1, spatially distributed subclustering appears to have played an important role in determining the nonspherical morphology of the superbubble.

  16. THE VARIABLE NEAR-INFRARED COUNTERPART OF THE MICROQUASAR GRS 1758–258

    SciTech Connect

    Luque-Escamilla, Pedro L.

    2014-12-10

    We present a new study of the microquasar system GRS 1758–258 in the near-infrared domain based on archival observations with the Hubble Space Telescope and the NICMOS camera. In addition to confirming the near-infrared counterpart pointed out by Muñoz-Arjonilla et al., we show that this object displays significant photometric variability. From its average magnitudes, we also find that GRS 1758–258 fits well within the correlation between the optical/near-infrared and X-ray luminosity known to exist for low-mass, black-hole candidate X-ray binaries in a hard state. Moreover, the spectral energy distribution built using all radio, near-infrared, and X-ray data available closest in time to the NICMOS observations can be reasonably interpreted in terms of a self-absorbed radio jet and an irradiated accretion disk model around a stellar-mass black hole. All these facts match the expected behavior of a compact binary system and strengthen our confidence in the counterpart identification.

  17. THE DISTANCE, INCLINATION, AND SPIN OF THE BLACK HOLE MICROQUASAR H1743-322

    SciTech Connect

    Steiner, James F.; McClintock, Jeffrey E.; Reid, Mark J.

    2012-01-20

    During its 2003 outburst, the black hole X-ray transient H1743-322 produced two-sided radio and X-ray jets. Applying a simple and symmetric kinematic model to the trajectories of these jets, we determine the source distance, 8.5 {+-} 0.8 kpc, and the inclination angle of the jets, 75 Degree-Sign {+-} 3 Degree-Sign . Using these values, we estimate the spin of the black hole by fitting its Rossi X-ray Timing Explorer spectra, obtained during the 2003 outburst, to a standard relativistic accretion-disk model. For its spin, we find a{sub *} = 0.2 {+-} 0.3 (68% limits), -0.3 < a{sub *} < 0.7 at 90% confidence. We strongly rule against an extreme value of spin: a{sub *} < 0.92 at 99.7% confidence. H1743-322 is the third known microquasar (after A0620-00 and XTE J1550-564) that displays large-scale ballistic jets and has a moderate value of spin. Our result, which depends on an empirical distribution of black hole masses, takes into account all known sources of measurement error.

  18. Variable-Frequency QPOs from the Galactic Microquasar GRS 1915+105

    NASA Technical Reports Server (NTRS)

    Markwardt, Craig B.; Swank, Jean H.; Taam, Ronald E.

    1998-01-01

    We show that the galactic microquasar GRS 1915+105 exhibits quasi-periodic oscillations (QPOS) whose frequency varies continuously from 1-15 Hz, during spectrally hard dips when the source is in a flaring state. NN'e report here analyses of simultaneous energy spectra and power density spectra at 4 s intervals. The energy spectrum is well fit at each time step by an optically thick accretion disk plus power law model, while the power density spectrum consists of a varying red noise component plus the variable frequency QPO. The features of both spectra are strongly correlated with one another. The 1-15 Hz QPOs appear when the power law component becomes hard and intense, and themselves have an energy spectrum consistent with the power law component (with root mean square amplitudes as high as 10%). The frequency of the oscillations, however, is most strikingly correlated with the parameters of the thermal disk component. The tightest correlation is between QPO frequency and the disk X-ray flux. This fact indicates that the properties of the QPO are not determined by solely a disk or solely a corona.

  19. SUZAKU OBSERVATIONS OF THE GALACTIC CENTER MICROQUASAR 1E 1740.7-2942

    SciTech Connect

    Reynolds, Mark T.; Miller, Jon M.

    2010-06-20

    We present two Suzaku observations of the Galactic center microquasar 1E 1740.7-2942 separated by approximately 700 days. The source was observed on both occasions after a transition to the spectrally hard state. Significant emission from 1E 1740.7-2942 is detected out to an energy of 300 keV, with no spectral break or turnover evident in the data. We tentatively measure a lower limit to the cutoff energy of {approx}380 keV. The spectra are found to be consistent with a Comptonized corona on both occasions, where the high energy emission is consistent with a hard power-law ({Gamma} {approx} 1.8) with a significant contribution from an accretion disk with a temperature of {approx}0.4 keV at soft X-ray energies. The measured value for the inner radius of the accretion disk is found to be inconsistent with the picture whereby the disk is truncated at large radii in the low-hard state and instead favors a radius close to the ISCO (R{sub in} {approx} 10 - 20 R{sub g}).

  20. The exotic mute swan (Cygnus olor) in Chesapeake Bay, USA

    USGS Publications Warehouse

    Perry, M.C.; Perry, M.C.

    2002-01-01

    The exotic mute swan (Cygnus olor) has increased its population size in Chesapeake Bay (Maryland and Virginia) to approximately 4,500 since 1962 when five swans were released in the Bay. The Bay population of mute swans now represents 30% of the total Atlantic Flyway population (12,600) and has had a phenomenal increase of 1,200% from 1986 to 1999. Unlike the tundra swans (Cygnus columbianus) that migrate to the Bay for the winter, the mute swan is a year-long resident, and, therefore, reports of conflicts with nesting native waterbirds and the consumption of submerged aquatic vegetation (SAV) have raised concerns among resource managers. Populations of black skimmers (Rynchops niger) and least terns (Sterna antillarum) nesting on beaches and oyster shell bars have been eliminated by molting mute swans. Although data on the reduction of SAV by nesting mute swans and their offspring during the spring and summer are limited, food habits data show that mute swans rely heavily on SAV during these months. Widgeon grass (Ruppia maritima) constituted 56% and eel grass (Zostera marina) constituted 43% of the gullet food of mute swans. Other SAV and invertebrates (including bryozoans, shrimp, and amphipods) formed a much smaller amount of the food percentage (1%). Invertebrates are believed to have been selected accidently within the vegetation eaten by the swans. Corn (Zea mays) fed to swans by Bay residents during the winter probably supplement limited vegetative food resources in late winter. A program to control swan numbers by the addling of eggs and the killing of adult swans has been a contentious issue with some residents of the Bay area. A management plan is being prepared by a diverse group of citizens appointed by the Governor to advise the Maryland Department of Natural Resources on viable and optimum options to manage mute swans in the Maryland portion of Chesapeake Bay. Hopefully, the implementation of the plan will alleviate the existing conflicts to the

  1. Study of the Cygnus Star-Forming Field

    NASA Astrophysics Data System (ADS)

    Christopherson, Christopher; Kaltcheva, Nadia

    2016-01-01

    The star-forming complexes in Cygnus extend nearly 30 deg in Galactic longitude and 20 deg in latitude, and most probably include star-formation sites located between 600 and 4000 pc. We combine the catalog by Heiles (2000) with uvbyβ photometric data from the catalog of Paunzen (2015) to collate a sample of O and B-type stars with precise homogeneous distances, color excess and available polarimetry. This allows us to identify star-forming sites at different distances along the line of sight and to investigate their spatial correlation to the interstellar matter. Further, we use this sample to study the orientation of the polarization as revealed by the polarized light of the bright early-type stars and analyze the polarization-extinction correlation for this field. Since dust grains align in the presence of a magnetic field cause the observed polarization at optical wavelengths, the data contain information about the large-scale component of the Galactic magnetic field. In addition, wide-field astrophotography equipment was used to image the Cygnus field in Hydrogen-alpha, Hydrogen-beta and the [OIII] line at 500.7 nm. This allows us to map the overall distribution of ionized material and the interstellar dust and trace large-scale regions where the physical conditions change rapidly due to supernova shock fronts and strong stellar winds. Acknowledgments: This work was supported by NSF grant AST- 1516932 and the Wisconsin Space Grant Consortium, NASA Space Grant College and Fellowship Program, NASA Training Grant #NNX14AP22H.

  2. NACA Aircraft on Lakebed - D-558-2, X-1B, and X-1E

    NASA Technical Reports Server (NTRS)

    1955-01-01

    Early NACA research aircraft on the lakebed at the High Speed Research Station in 1955: Left to right: X-1E, D-558-2, X-1B There were four versions of the original Bell X-1 rocket-powered research aircraft that flew at the NACA High-Speed Flight Research Station, Edwards, California. The bullet-shaped X-1 aircraft were built by Bell Aircraft Corporation, Buffalo, N.Y. for the U.S. Army Air Forces (after 1947, U.S. Air Force) and the National Advisory Committee for Aeronautics (NACA). The X-1 Program was originally designated the XS-1 for EXperimental Supersonic. The X-1's mission was to investigate the transonic speed range (speeds from just below to just above the speed of sound) and, if possible, to break the 'sound barrier.' Three different X-1s were built and designated: X-1-1, X-1-2 (later modified to become the X-1E), and X-1-3. The basic X-1 aircraft were flown by a large number of different pilots from 1946 to 1951. The X-1 Program not only proved that humans could go beyond the speed of sound, it reinforced the understanding that technological barriers could be overcome. The X-1s pioneered many structural and aerodynamic advances including extremely thin, yet extremely strong wing sections; supersonic fuselage configurations; control system requirements; powerplant compatibility; and cockpit environments. The X-1 aircraft were the first transonic-capable aircraft to use an all-moving stabilizer. The flights of the X-1s opened up a new era in aviation. The first X-1 was air-launched unpowered from a Boeing B-29 Superfortress on January 25, 1946. Powered flights began in December 1946. On October 14, 1947, the X-1-1, piloted by Air Force Captain Charles 'Chuck' Yeager, became the first aircraft to exceed the speed of sound, reaching about 700 miles per hour (Mach 1.06) and an altitude of 43,000 feet. The number 2 X-1 was modified and redesignated the X-1E. The modifications included adding a conventional canopy, an ejection seat, a low-pressure fuel system

  3. Space X1 First Entry Sample

    NASA Technical Reports Server (NTRS)

    James, John T.

    2012-01-01

    One mini-grab sample container (m-GSC) was returned aboard Space X1 because of the importance of quickly knowing first-entry conditions in this new commercial module. This sample was analyzed alongside samples of the portable clean room (PCR) used in the Space X complex at KSC. The recoveries of C-13-acetone, fluorobenzene, and chlorobenzene from the GSCs averaged 130, 129, and 132 %, respectively.

  4. A Deep XMM-Newton Observation of the Enigmatic Microquasar 1E 1740.7-2942

    NASA Astrophysics Data System (ADS)

    Miller, Jon

    1E 1740.7-2942 is a microquasar residing in the Galactic center. It is persistently bright at X-ray energies and has been shown to power large scale bi-polar jets, thus making it an ideal source to probe the jet generation/launching mechanism in accreting black holes. Analysis of archival data hinted at the presence of a relativistically broadened iron line, providing a means to constrain the spin of the black hole in this system for the first time. In AO-10 we were awarded a 130 ks XMM-Newton category B target of oppurtunity (ToO) observation, with the aim of observing this system in the low-hard state. This observation was triggered in April 2012 and the data have been obtained, where a preliminary analysis reveals the expected broad iron line. Modeling this iron line will allow us to constrain the spin of the black hole and probe its relation to the presence of large scale jets in this system. We request a total of $63.7k funding to support the analysis of this deep XMM-Newton observation, including the primary target (1E 1740.7-2942) and the serendipitous sources in the field of view (< 60). This proposal will enhance our understanding of the interaction of the accretion flow with the black hole and the generation of astrophysical jets, thus addressing NASA strategic objectives 2.4.1: Improve understanding of the origin and destiny of the universe, and the nature of black holes, dark energy, dark matter, and gravity. and 2.4.2: Improve understanding of the many phenomena and processes associated with galaxy, stellar, and planetary system formation and evolution from the earliest epochs to today.

  5. Black Hole Mass and Spin from the 2:3 Twin-peak QPOs in Microquasars

    NASA Astrophysics Data System (ADS)

    Mondal, Soumen

    2010-01-01

    In the Galactic microquasars with double peak kHz quasi-periodic oscillations (QPOs) detected in X-ray fluxes, the ratio of the twin-peak frequencies is exactly, or almost exactly 2:3. This rather strongly supports the fact that they originate a few gravitational radii away from its center due to two modes of accretion disk oscillations. Numerical investigations suggest that post-shock matter, before they settle down in a subsonic branch, execute oscillations in the neighborhood region of "shock transition". This shock may excite QPO mechanism. The radial and vertical epicyclic modes of oscillating matter exactly match with these twin-peak QPOs. In fully general relativistic transonic flows, we investigate that shocks may form very close to the horizon around highly spinning Kerr black holes and appear as extremum in the inviscid flows. The extreme shock location provides upper limit of QPOs and hence fixes "lower cutoff" of the spin. We conclude that the 2:3 ratio exactly occurs for spin parameters a >= 0.87 and almost exactly, for wide range of spin parameter, for example, XTE 1550-564, and GRO 1655-40 a>0.87, GRS 1915+105 a>0.83, XTE J1650-500 a>0.78, and H 1743-322 a>0.68. We also make an effort to measure unknown mass for XTE J1650-500(9.1 ~ 14.1 M sun) and H 1743-322(6.6 ~ 11.3 M sun).

  6. Application of cosmic-ray shock theories to the Cygnus Loop - An alternative model

    NASA Technical Reports Server (NTRS)

    Boulares, Ahmed; Cox, Donald P.

    1988-01-01

    Steady state cosmic-ray shock models are investigated here in the light of observations of the Cygnus Loop supernova remnant. The predicted downstream temperature is derived for each model. The Cygnus Loop data and the application of the models to them, including wave dissipation, are presented. Heating rate and ionization fraction structures are provided along with an estimate of the cosmic-ray diffusion coefficient. It is found that the model of Voelk, Drury, and McKenzie (1984), in which the plasma waves are generated by the streaming instability of the cosmic rays and are dissipated into the gas, can be made consistent with some observed characteristics of the Cygnus Loop shocks. The model is used to deduce upstream densities and shock velocities and, compared to the usual pure gas shock interpretation, it is found that lower densities and approximately three times higher velocities are required.

  7. ORNL Cray X1 evaluation status report

    SciTech Connect

    Agarwal, P.K.; Alexander, R.A.; Apra, E.; Balay, S.; Bland, A.S; Colgan, J.; D'Azevedo, E.F.; Dongarra, J.J.; Dunigan Jr., T.H.; Fahey, M.R.; Fahey, R.A.; Geist, A.; Gordon, M.; Harrison, R.J.; Kaushik, D.; Krishnakumar, M.; Luszczek, P.; Mezzacappa, A.; Nichols, J.A.; Nieplocha, J.; Oliker, L.; Packwood, T.; Pindzola, M.S.; Schulthess, T.C.; Vetter, J.S.; White III, J.B.; Windus, T.L.; Worley, P.H.; Zacharia, T.

    2004-05-01

    On August 15, 2002 the Department of Energy (DOE) selected the Center for Computational Sciences (CCS) at Oak Ridge National Laboratory (ORNL) to deploy a new scalable vector supercomputer architecture for solving important scientific problems in climate, fusion, biology, nanoscale materials and astrophysics. ''This program is one of the first steps in an initiative designed to provide U.S. scientists with the computational power that is essential to 21st century scientific leadership,'' said Dr. Raymond L. Orbach, director of the department's Office of Science. In FY03, CCS procured a 256-processor Cray X1 to evaluate the processors, memory subsystem, scalability of the architecture, software environment and to predict the expected sustained performance on key DOE applications codes. The results of the micro-benchmarks and kernel bench marks show the architecture of the Cray X1 to be exceptionally fast for most operations. The best results are shown on large problems, where it is not possible to fit the entire problem into the cache of the processors. These large problems are exactly the types of problems that are important for the DOE and ultra-scale simulation. Application performance is found to be markedly improved by this architecture: - Large-scale simulations of high-temperature superconductors run 25 times faster than on an IBM Power4 cluster using the same number of processors. - Best performance of the parallel ocean program (POP v1.4.3) is 50 percent higher than on Japan s Earth Simulator and 5 times higher than on an IBM Power4 cluster. - A fusion application, global GYRO transport, was found to be 16 times faster on the X1 than on an IBM Power3. The increased performance allowed simulations to fully resolve questions raised by a prior study. - The transport kernel in the AGILE-BOLTZTRAN astrophysics code runs 15 times faster than on an IBM Power4 cluster using the same number of processors. - Molecular dynamics simulations related to the phenomenon of

  8. Reexamination of the SAS 2 Cygnus X-3 data

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Thompson, D. J.; Lamb, R. C.

    1987-01-01

    Recent observations of Cygnus X-3 have shown marked variability of the radiation on short time scales. In particular, the bursts lasting on the order of 10 minutes, seen in both the infrared and very high energy (greater than 10 to the 11th eV) gamma-ray regions, and the time-variations on many scales at high energies, have stimulated a reanalysis of the March 6 to 13, 1973 SAS 2 high-energy gamma-ray data. Although a clear periodicity in the E greater 35 MeV gamma radiation is observed at the 4.79 hr period seen in X-rays, there is no evidence for major variations of the radiation from one day to the next, and no statistically significant evidence for bursts on the 10-minute time scale seen in the infrared or very high energy ranges. If the excess observed had been predominantly in the form of ten minute bursts even at a rate as high as two/day, a clearly significant set of bursts would have been seen.

  9. The VERITAS Survey of the Cygnus Region of the Galaxy

    NASA Astrophysics Data System (ADS)

    Popkow, Alexis; Aune, Taylor; Ong, Rene A.; Ward, John E

    2014-08-01

    VERITAS (Very Energetic Radiation Imaging Telescope Array System) is an array of four 12 m diameter Imaging Atmospheric Cherenkov Telescopes (IACTs) located at Mt Hopkins, AZ. From 2007 to 2009 VERITAS undertook an extensive survey of the Cygnus region from 67 to 82 degrees Galactic longitude and from -1 to 4 degrees in Galactic latitude. This is a region with many promising Very High Energy (VHE) gamma-ray candidates such as supernova remnants, pulsar wind nebulae, high mass X-ray binaries and massive star clusters including previously detected VHE gamma-ray sources and dozens of GeV gamma-ray sources (detected by the Fermi-LAT). Along with the initial 140 hours of observations, there are over 150 hrs (a total of 294 hours after cuts for bad weather) of follow-up pointed VERITAS observations in the region that we are analyzing with updated analysis techniques. Here we present the current status of this analysis, and of an analysis of over five years of Fermi-LAT data in the region. Using a cross correlation of these results we can motivate continued observations in this active region of the Galaxy, and will incorporate multi-wavelength perspectives into a future results paper.

  10. Monitoring of heavy metal burden in mute swan (Cygnus olor).

    PubMed

    Grúz, Adrienn; Szemerédy, Géza; Kormos, Éva; Budai, Péter; Majoros, Szilvia; Tompai, Eleonóra; Lehel, József

    2015-10-01

    Concentrations of heavy metals (especially arsenic, cadmium, chromium, copper, mercury and lead) were measured in the contour (body) feathers of mute swans (Cygnus olor) and in its nutrients (fragile stonewort [Chara globularis], clasping leaf pondweed [Potamogeton perfoliatus], Eurasian watermilfoil [Myriophyllum spicatum], fennel pondweed [Potamogeton pectinatus]) to investigate the accumulation of metals during the food chain. The samples (17 feathers, 8 plants) were collected at Keszthely Bay of Lake Balaton, Hungary. Dry ashing procedure was used for preparing of sample and the heavy metal concentrations were analysed by inductively coupled plasma optical emission spectroscopy (ICP-OES). Copper (10.24 ± 2.25 mg/kg) and lead (1.11 ± 1.23 mg/kg) were detected the highest level in feathers, generally, the other metals were mostly under the detection limit (0.5 mg/kg). However, the concentrations of the arsenic (3.17 ± 1.87 mg/kg), cadmium (2.41 ± 0.66 mg/kg) and lead (2.42 ± 0.89 mg/kg) in the plants were low but the chromium (198.27 ± 102.21 mg/kg) was detected in high concentration. PMID:26044143

  11. X1X1X2X2/X1X2Y sex chromosome systems in the Neotropical Gymnotiformes electric fish of the genus Brachyhypopomus.

    PubMed

    Cardoso, Adauto Lima; Pieczarka, Julio Cesar; Nagamachi, Cleusa Yoshiko

    2015-05-01

    Several types of sex chromosome systems have been recorded among Gymnotiformes, including male and female heterogamety, simple and multiple sex chromosomes, and different mechanisms of origin and evolution. The X1X1X2X2/X1X2Y systems identified in three species of this order are considered homoplasic for the group. In the genus Brachyhypopomus, only B. gauderio presented this type of system. Herein we describe the karyotypes of Brachyhypopomus pinnicaudatus and B. n. sp. FLAV, which have an X1X1X2X2/X1X2Y sex chromosome system that evolved via fusion between an autosome and the Y chromosome. The morphology of the chromosomes and the meiotic pairing suggest that the sex chromosomes of B. gauderio and B. pinnicaudatus have a common origin, whereas in B . n. sp. FLAV the sex chromosome system evolved independently. However, we cannot discard the possibility of common origin followed by distinct processes of differentiation. The identification of two new karyotypes with an X1X1X2X2/X1X2Y sex chromosome system in Gymnotiformes makes it the most common among the karyotyped species of the group. Comparisons of these karyotypes and the evolutionary history of the taxa indicate independent origins for their sex chromosomes systems. The recurrent emergence of the X1X1X2X2/X1X2Y system may represent sex chromosomes turnover events in Gymnotiformes. PMID:26273225

  12. Evidence from the Soudan 1 experiment for underground muons associated with Cygnus X-3

    NASA Technical Reports Server (NTRS)

    Ayres, D. S. E.

    1986-01-01

    The Soudan 1 experiment has yielded evidence for an average underground muon flux of approximately 7 x 10 to the minus 11th power/sq cm/s which points back to the X-ray binary Cygnus X-3, and which exhibits the 4.8 h periodicity observed for other radiation from this source. Underground muon events which seem to be associated with Cygnus X-3 also show evidence for longer time variability of the flux. Such underground muons cannot be explained by any conventional models of the propagation and interaction of cosmic rays.

  13. Recent results from the CYGNUS experiment and plans for the MILAGRO experiment

    SciTech Connect

    Williams, D.A. )

    1992-02-05

    Recent results from the CYGNUS cosmic-ray experiment are presented, including a survey of the northern sky for continuous point sources and a search for emission lasting several hours (one day of observation) from many known x-ray and [gamma]-ray sources. The performance of five water-Cerenkov detectors recently added to the CYGNUS array is summarized. A proposed water-Cerenkov detector called MILAGRO for the detection of cosmic-ray air showers over a broad energy range, 1--1000 TeV, is described.

  14. THE ORBITAL PERIOD OF SCORPIUS X-1

    SciTech Connect

    Hynes, Robert I.; Britt, Christopher T.

    2012-08-10

    The orbital period of Sco X-1 was first identified by Gottlieb et al. While this has been confirmed on multiple occasions, this work, based on nearly a century of photographic data, has remained the reference in defining the system ephemeris ever since. It was, however, called into question when Vanderlinde et al. claimed to find the one-year alias of the historical period in RXTE/All-Sky Monitor data and suggested that this was the true period rather than that of Gottlieb et al. We examine data from the All Sky Automated Survey (ASAS) spanning 2001-2009. We confirm that the period of Gottlieb et al. is in fact the correct one, at least in the optical, with the one-year alias strongly rejected by these data. We also provide a modern time of minimum light based on the ASAS data.

  15. Leon X-1, the First Chandra Source

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.; Aldcroft, Tom; Cameron, Robert A.; Gandhi, Poshak; Foellmi, Cedric; Elsner, Ronald F.; Patel, Sandeep K.; ODell, Stephen L.

    2004-01-01

    Here we present an analysis of the first photons detected with the Chandra X-ray Observatory and an identification of the brightest source in the field which we named Leon X-1 to honor the momentous contributions of the Chandra Telescope Scientist, Leon Van Speybroeck. The observation took place immediately following the opening of the last door protecting the X-ray telescope. We discuss the unusual operational conditions as the first extra-terrestrial X-ray photons reflected from the telescope onto the ACIS camera. One bright source was a p parent to the team at the control center and the small collection of photons that appeared on the monitor were sufficient to indicate that the telescope had survived the launch and was approximately in focus, even prior to any checks and subsequent adjustments.

  16. PHOTOEVAPORATING PROPLYD-LIKE OBJECTS IN CYGNUS OB2

    SciTech Connect

    Wright, Nicholas J.; Drake, Jeremy J.; Guarcello, Mario G.; Hora, Joseph L.; Drew, Janet E.; Gutermuth, Robert A.; Kraemer, Kathleen E.

    2012-02-20

    We report the discovery of 10 proplyd-like objects in the vicinity of the massive OB association Cygnus OB2. They were discovered in IPHAS H{alpha} images and are clearly resolved in broadband Hubble Space Telescope/Advanced Camera for Surveys, near-IR, and Spitzer mid-IR images. All exhibit the familiar tadpole shape seen in photoevaporating objects such as the Orion proplyds, with a bright ionization front at the head facing the central cluster of massive stars and a tail stretching in the opposite direction. Many also show secondary ionization fronts, complex tail morphologies, or multiple heads. We consider the evidence that these are either proplyds or 'evaporating gaseous globules' (EGGs) left over from a fragmenting molecular cloud, but find that neither scenario fully explains the observations. Typical sizes are 50,000-100,000 AU, larger than the Orion proplyds, but in agreement with the theoretical scaling of proplyd size with distance from the ionizing source. These objects are located at projected separations of {approx}6-14 pc from the OB association, compared to {approx}0.1 pc for the Orion proplyds, but are clearly being photoionized by the {approx}65 O-type stars in Cyg OB2. Central star candidates are identified in near- and mid-IR images, supporting the proplyd scenario, though their large sizes and notable asymmetries are more consistent with the EGG scenario. A third possibility is therefore considered that these are a unique class of photoevaporating partially embedded young stellar objects that have survived the destruction of their natal molecular cloud. This has implications for the properties of stars that form in the vicinity of massive stars.

  17. FIVE MORE MASSIVE BINARIES IN THE CYGNUS OB2 ASSOCIATION

    SciTech Connect

    Kiminki, Daniel C.; Kobulnicky, Henry A.; Gilbert, Ian; Bird, Sarah; Chunev, Georgi

    2009-06-15

    We present the orbital solutions for four OB spectroscopic binaries, MT145, GSC 03161 - 00815, 2MASS J20294666+4105083, and Schulte 73, and the partial orbital solution to the B spectroscopic binary, MT372, as part of an ongoing study to determine the distribution of orbital parameters for massive binaries in the Cygnus OB2 Association. MT145 is a new, single-lined, moderately eccentric (e = 0.291 {+-} 0.009) spectroscopic binary with period of 25.140 {+-} 0.008 days. GSC 03161 - 00815 is a slightly eccentric (e = 0.10 {+-} 0.01), eclipsing, interacting and double-lined spectroscopic binary with a period of 4.674 {+-} 0.004 days. 2MASS J20294666+4105083 is a moderately eccentric (e = 0.273 {+-} 0.002) double-lined spectroscopic binary with a period of 2.884 {+-} 0.001 days. Schulte 73 is a slightly eccentric (e = 0.169 {+-} 0.009), double-lined spectroscopic binary with a period of 17.28 {+-} 0.03 days and the first 'twin' in our survey with a mass ratio of q = 0.99 {+-} 0.02. MT372 is a single-lined, eclipsing system with a period of 2.228 days and low eccentricity (e {approx} 0). Of the now 18 known OB binaries in Cyg OB2, 14 have periods and mass ratios. Emerging evidence also shows that the distribution of log(P) is flat and consistent with 'Oepik's Law'.

  18. The massive star population of Cygnus OB2

    NASA Astrophysics Data System (ADS)

    Wright, Nicholas J.; Drew, Janet E.; Mohr-Smith, Michael

    2015-05-01

    We have compiled a significantly updated and comprehensive census of massive stars in the nearby Cygnus OB2 association by gathering and homogenizing data from across the literature. The census contains 169 primary OB stars, including 52 O-type stars and 3 Wolf-Rayet stars. Spectral types and photometry are used to place the stars in a Hertzsprung-Russell diagram, which is compared to both non-rotating and rotating stellar evolution models, from which stellar masses and ages are calculated. The star formation history and mass function of the association are assessed, and both are found to be heavily influenced by the evolution of the most massive stars to their end states. We find that the mass function of the most massive stars is consistent with a `universal' power-law slope of Γ = 1.3. The age distribution inferred from stellar evolutionary models with rotation and the mass function suggest the majority of star formation occurred more or less continuously between 1 and 7 Myr ago, in agreement with studies of low- and intermediate-mass stars in the association. We identify a nearby young pulsar and runaway O-type star that may have originated in Cyg OB2 and suggest that the association has already seen its first supernova. Finally we use the census and mass function to calculate the total mass of the association of 16 500^{+3800}_{-2800} M⊙, at the low end, but consistent with, previous estimates of the total mass of Cyg OB2. Despite this Cyg OB2 is still one of the most massive groups of young stars known in our Galaxy making it a prime target for studies of star formation on the largest scales.

  19. A Far-Ultraviolet Study of the Cygnus Loop Using the VOYAGER Ultraviolet Spectrometers

    NASA Technical Reports Server (NTRS)

    Vancura, Olaf; Blair, William P.; Long, Knox S.; Raymond, John C.; Holberg, J. B.

    1993-01-01

    We have used the Voyager 1 and 2 Ultraviolet Spectrometers to study the far-ultraviolet emissions from different types of shock waves in the Cygnus Loop. In the southeast and northern parts of the supernova remnant (SNR), we have measured the O(VI) lambda1035 surface brightness from the main blast wave. This value is several times below the average and more than one order of magnitude below the peak O(VI) brightness in the SNR as measured with Voyager. A simple blast wave model appears able to reproduce the observations in the southeast and the northern parts of the Cygnus Loop but can only account for 10%-15% of the total O(VI) emission from the Cygnus Loop. The brightest O(VI) and C(III) lambda977 emission is found coincident with optical filamentation and X-ray enhancements in the northeast. We interpret the observations in the northeast in terms of nonradiative and incomplete shocks whose surface area rises in the optical filamentary regions. We conclude that the bulk of the O(VI) emission from the Cygnus Loop arises from optically bright clouds within which intermediate-velocity (200 + 50 km/s) nonradiative and incomplete shocks are widespread.

  20. RXTE/ASM Observations Of SS 433 And Cygnus X-2

    NASA Astrophysics Data System (ADS)

    Hoffman, Lisa; Mason, P. A.

    2010-01-01

    We present a dynamic period search analysis of the X-ray binaries SS 433 and Cygnus X-2 using data from the Rossi X-Ray Timing Explorer All Sky Monitor (RXTE/ASM) spanning over 13 years. We report the detection of a period in SS 433 near 162 days. This may be the first detection of the disk precession period in X-rays. We detect an 81.8 day period in the object Cygnus X-2. The RXTE/ASM light curve is inconsistent with the 77.7 day X-ray period of Wijnands et al. (1996), which was based on a small subset of the RXTE/ASM data combined with data from VELA 5B, and Ariel 5 All-Sky Monitors. Since Cygnus X-2 displays periodic behavior that seems to come and go, producing different best-fit periods on time scales of a few years; we suggest that Cygnus X-2 exhibits quasi-periodic oscillations of about 80 days. This research is supported by a grant from the New Mexico Space Grant Consortium.

  1. JOINT SUZAKU AND XMM-NEWTON SPECTRAL ANALYSIS OF THE SOUTHWEST CYGNUS LOOP

    SciTech Connect

    Leahy, Denis; Hassan, Mohammed

    2013-02-10

    We carry out a joint spectral analysis of the Cygnus Loop using data from all six detectors combined from Suzaku and XMM-Newton. This had not been done before, but if a spectral model is physically realistic, it is required that it be consistent with data from different instruments. Thus, our results are an important verification of spectral models for the Cygnus Loop. One of the prominent features of the Cygnus Loop is the bright 'V' region near the southwest rim. We choose this region, in part, because it has been observed by both Suzaku and XMM-Newton. We divide the field of view into 12 box-shaped regions, such that each contains 9000-13,000 photons in the Suzaku-XIS1 camera. A non-equilibrium ionization model with variable abundances (VNEI) or a two-component VNEI model is found to fit the observations. Resulting electron temperatures and ionization timescales are inversely related, consistent with an origin in density variations by a factor of {approx}3. Element abundances and temperature are strongly correlated, which can be explained by mixing in the outer hydrogen-rich envelope of ejecta: Heavy-element-rich regions have higher velocity to reach this far out from the center of the Cygnus Loop, resulting in higher shock temperature for more element-rich regions.

  2. A SPITZER VIEW OF STAR FORMATION IN THE CYGNUS X NORTH COMPLEX

    SciTech Connect

    Beerer, I. M.; Koenig, X. P.; Hora, J. L.; Keto, E.; Smith, H. A.; Fazio, G. G.; Gutermuth, R. A.; Bontemps, S.; Schneider, N.; Megeath, S. T.; Motte, F.; Simon, R.; Allen, L. E.; Kraemer, K. E.; Price, S.; Mizuno, D.; Adams, J. D.; Hernandez, J.; Lucas, P. W.

    2010-09-01

    We present new images and photometry of the massive star-forming complex Cygnus X obtained with the Infrared Array Camera (IRAC) and the Multiband Imaging Photometer for Spitzer (MIPS) on board the Spitzer Space Telescope. A combination of IRAC, MIPS, UKIRT Deep Infrared Sky Survey, and Two Micron All Sky Survey data are used to identify and classify young stellar objects (YSOs). Of the 8231 sources detected exhibiting infrared excess in Cygnus X North, 670 are classified as class I and 7249 are classified as class II. Using spectra from the FAST Spectrograph at the Fred L. Whipple Observatory and Hectospec on the MMT, we spectrally typed 536 sources in the Cygnus X complex to identify the massive stars. We find that YSOs tend to be grouped in the neighborhoods of massive B stars (spectral types B0 to B9). We present a minimal spanning tree analysis of clusters in two regions in Cygnus X North. The fraction of infrared excess sources that belong to clusters with {>=}10 members is found to be 50%-70%. Most class II objects lie in dense clusters within blown out H II regions, while class I sources tend to reside in more filamentary structures along the bright-rimmed clouds, indicating possible triggered star formation.

  3. The dependence of protostellar luminosity on environment in the Cygnus-X star-forming complex

    SciTech Connect

    Kryukova, E.; Megeath, S. T.; Hora, J. L.; Smith, Howard A.; Gutermuth, R. A.; Bontemps, S.; Schneider, N.; Kraemer, K.; Hennemann, M.; Motte, F.

    2014-07-01

    The Cygnus-X star-forming complex is one of the most active regions of low- and high-mass star formation within 2 kpc of the Sun. Using mid-infrared photometry from the IRAC and MIPS Spitzer Cygnus-X Legacy Survey, we have identified over 1800 protostar candidates. We compare the protostellar luminosity functions of two regions within Cygnus-X: CygX-South and CygX-North. These two clouds show distinctly different morphologies suggestive of dissimilar star-forming environments. We find the luminosity functions of these two regions are statistically different. Furthermore, we compare the luminosity functions of protostars found in regions of high and low stellar density within Cygnus-X and find that the luminosity function in regions of high stellar density is biased to higher luminosities. In total, these observations provide further evidence that the luminosities of protostars depend on their natal environment. We discuss the implications this dependence has for the star formation process.

  4. The JCMT 12CO(3-2) survey of the Cygnus X region. I. A pathfinder

    NASA Astrophysics Data System (ADS)

    Gottschalk, M.; Kothes, R.; Matthews, H. E.; Landecker, T. L.; Dent, W. R. F.

    2012-05-01

    Context. Cygnus X is one of the most complex areas in the sky, rich in massive stars; Cyg OB2 (2600 stars, 120 O stars) and other OB associations lie within its boundaries. This complicates interpretation, but also creates the opportunity to investigate accretion into molecular clouds and many subsequent stages of star formation, all within one small field of view. Understanding large complexes like Cygnus X is the key to understanding the dominant role that massive star complexes play in galaxies across the Universe. Aims: The main goal of this study is to establish feasibility of a high-resolution CO survey of the entire Cygnus X region by observing part of it as a pathfinder, and to evaluate the survey as a tool for investigating the star-formation process. We can investigate the mass accretion history of outflows, study interaction between star-forming regions and their cold environment, and examine triggered star formation around massive stars. Methods: A 2° × 4° area of the Cygnus X region has been mapped in the 12CO(3-2) line at an angular resolution of 15'' and a velocity resolution of ~0.4 km s-1 using HARP-B and ACSIS on the James Clerk Maxwell Telescope. The star formation process is heavily connected to the life-cycle of the molecular material in the interstellar medium. The high critical density of the 12CO(3-2) transition reveals clouds in key stages of molecule formation, and shows processes that turn a molecular cloud into a star. Results: We observed ~15% of Cygnus X, and demonstrated that a full survey would be feasible and rewarding. We detected three distinct layers of 12CO(3-2) emission, related to the Cygnus Rift (500-800 pc), to W75N (1-1.8 kpc), and to DR 21 (1.5-2.5 kpc). Within the Cygnus Rift, H i self-absorption features are tightly correlated with faint diffuse CO emission, while HISA features in the DR 21 layer are mostly unrelated to any CO emission. 47 molecular outflows were detected in the pathfinder, 27 of them previously

  5. Cygnus OB2 DANCe: A high-precision proper motion study of the Cygnus OB2 association

    NASA Astrophysics Data System (ADS)

    Wright, Nicholas J.; Bouy, Herve; Drew, Janet E.; Sarro, Luis Manuel; Bertin, Emmanuel; Cuillandre, Jean-Charles; Barrado, David

    2016-08-01

    We present a high-precision proper motion study of 873 X-ray and spectroscopically selected stars in the massive OB association Cygnus OB2 as part of the DANCe project. These were calculated from images spanning a 15 yr baseline and have typical precisions <1 mas yr-1. We calculate the velocity dispersion in the two axes to be σ _α (c) = 13.0^{+0.8}_{-0.7} and σ _δ (c) = 9.1^{+0.5}_{-0.5} km s-1, using a two-component, two-dimensional model that takes into account the uncertainties on the measurements. This gives a three-dimensional velocity dispersion of σ3D = 17.8 ± 0.6 km s-1 implying a virial mass significantly larger than the observed stellar mass, confirming that the association is gravitationally unbound. The association appears to be dynamically unevolved, as evidenced by considerable kinematic substructure, non-isotropic velocity dispersions and a lack of energy equipartition. The proper motions show no evidence for a global expansion pattern, with approximately the same amount of kinetic energy in expansion as there is in contraction, which argues against the association being an expanded star cluster disrupted by process such as residual gas expulsion or tidal heating. The kinematic substructures, which appear to be close to virial equilibrium and have typical masses of 40-400 M⊙, also do not appear to have been affected by the expulsion of the residual gas. We conclude that Cyg OB2 was most likely born highly substructured and globally unbound, with the individual subgroups born in (or close to) virial equilibrium, and that the OB association has not experienced significant dynamical evolution since then.

  6. Detection of a Relativistic Outflow from the Galactic Microquasar GRS 1758-258 in the Hard State

    NASA Astrophysics Data System (ADS)

    Reynolds, Mark; Miller, Jon; Cackett, Edward; King, Ashley

    2016-07-01

    Outflows in the form of collimated jets and wider angle winds are observed ubiquitously from accreting systems. Herein, we present the results of a Suzaku observation of the persistent Galactic microquasar GRS 1758-258 at a luminosity of ˜1% L_{Edd}. Spectral analysis reveals the presence of an absorption feature at an energy of ˜7.5 keV, consistent with the presence of a relativistic outflow (v ˜0.1c). Photo-ionization modeling with XSTAR finds this wind to be highly ionized consistent with absorption by Fe XXVI at a distance of ˜2700 R_g from the black hole. This is the highest velocity wind detected from a stellar mass black hole accretion flow to date, and represents the first detection of a photo-ionized outflow in the hard spectral state, demonstrating the persistent of the wind outflow mechanism down to luminosities of at least 1% L_{Edd}.

  7. Measuring Black-Hole Spin and Modeling the Jet Dynamics in Microquasar XTE J1550-564

    NASA Astrophysics Data System (ADS)

    Steiner, James F.; McClintock, J. E.

    2011-05-01

    The microquasar XTE J1550-564 produced the very first X-ray jets to be observed from a black-hole X-ray binary. Chandra imaging data obtained for these jets during 2000-2003 offer a near-unique opportunity to test whether the black hole's spin axis is tilted or aligned with respect to the plane of the binary orbit. To this end, we apply a kinematic relativistic blast-wave model to position measurements of the expanding jet. A comparison of the derived orientation of the jet to the optically measured binary inclination angle has important implications for the measurement of black hole spin. We present our results in the context of ongoing studies of the spins of several black holes, including XTE J1550-564.

  8. XMM-Newton Spectroscopy of the Galactic Microquasar GRS 1758-258 in the Peculiar Off/Soft State

    NASA Technical Reports Server (NTRS)

    Miller, J. M.; Wunands, R.; Rodriguez-Pascual, P. M.; Ferrando, P.; Gaensler, B. M.; Goldwurm, A.; Lewin, W. H. G.; Pooley, D.

    2002-01-01

    We report on an XMM-Newton Reflection Grating Spectrometer observation of the black hole candidate and Galactic microquasar GRS 1758-258. The source entered a peculiar "off/soft" state in 2001 late February in which the spectrum softened while the X-ray flux-and the inferred mass accretion rate-steadily decreased. We find no clear evidence for emission or absorption lines in the dispersed spectra, indicating that most of the observed soft flux is likely from an accretion disk and not from a cool plasma. The accretion disk strongly dominates the spectrum in this lower luminosity state and is only mildly recessed from the marginally stable orbit. These findings may be di8licult to explain in terms of advection-dominated accretion flow (ADAF) models. We discuss these results within the context of ADAF models, simultaneous two-flow models, and observed correlations between hard X-ray flux and jet production.

  9. Infrared study of H 1743-322 in outburst: a radio-quiet and NIR-dim microquasar

    NASA Astrophysics Data System (ADS)

    Chaty, S.; Muñoz Arjonilla, A. J.; Dubus, G.

    2015-05-01

    Context. Microquasars are accreting Galactic sources that are commonly observed to launch relativistic jets. One of the most important issues regarding these sources is the energy budget of ejections relative to the accretion of matter. Aims: The X-ray binary, black hole candidate, and microquasar H 1743-322 exhibited a series of X-ray outbursts between 2003 and 2008. We took optical and near-infrared (OIR) observations with the ESO/NTT telescope during three of these outbursts (2003, 2004, and 2008). The goals of these observations were to investigate the presence of a jet, and to disentangle the various contributions constituting the spectral energy distribution (SED): accretion, ejection, and stellar emission. Methods: Photometric and spectroscopic OIR observations allowed us to produce a high time-resolution lightcurve in Ks-band, to analyze emission lines present in the IR spectra, to construct a multiwavelength SED including radio, IR, and X-ray data, and to complete the OIR vs. X-ray correlation of black hole binaries with H 1743-322 data points. Results: We detect rapid flares of duration ~5 min in the high time-resolution IR lightcurve. We identify hydrogen and helium emission lines in the IR spectra, coming from the accretion disk. The IR SED exhibits the spectral index typically associated with the X-ray high, soft state in our observations taken during the 2003 and 2004 outbursts, while the index changes to one that is typical of the X-ray low, hard state during the 2008 outburst. During this last outburst, we detected a change of slope in the NIR spectrum between the J and Ks bands, where the JH part is characteristic of an optically thick disk emission, while the HKs part is typical of optically thin synchrotron emission. Furthermore, the comparison of our IR data with radio and X-ray data shows that H 1743-322 exhibits a faint jet both in radio and NIR domains. Finally, we suggest that the companion star is a late-type main sequence star located in

  10. Twin laser 2x1 MMI coupler

    NASA Astrophysics Data System (ADS)

    de Pedraza, M. L.

    2005-07-01

    In previous studies, it was shown that using a Y waveguide, a twin laser output signal could be mixed and coupled to a fiber. The need to adapt the dimensions of the Y waveguide and apply the more restrictive conditions of a coherent regime for laser emission and waveguide mixing, led us to try an MMI coupler to focus the output signal. Herein, ideal 2x1 MMI for this purpose are presented in schematic form. Using a TE mode approximated with Gaussian distributions for the twin laser output signal (the input signal to the MMI coupler), an optimally focused output signal requirement is considered. Possible longitudinal and width dimensions for the couplers are calculated. Similar values of the MMI refraction index to the laser magnitude values were assumed to avoid the drop in transmission produced by reflections at the boundary surface. We also assumed no air gap between the laser and MMI coupler. The functioning of these ideal devices for coherent and incoherent twin laser emission is discussed.

  11. A 300-parsec-long jet-inflated bubble around a powerful microquasar in the galaxy NGC 7793.

    PubMed

    Pakull, Manfred W; Soria, Roberto; Motch, Christian

    2010-07-01

    Black-hole accretion states near or above the Eddington luminosity (the point at which radiation force outwards overcomes gravity) are still poorly known because of the rarity of such sources. Ultraluminous X-ray sources are the most luminous class of black hole (L(X) approximately 10(40) erg s(-1)) located outside the nuclei of active galaxies. They are likely to be accreting at super-Eddington rates, if they are powered by black holes with masses less than 100 solar masses. They are often associated with shock-ionized nebulae, though with no evidence of collimated jets. Microquasars with steady jets are much less luminous. Here we report that the large nebula S26 (ref. 4) in the nearby galaxy NGC 7793 is powered by a black hole with a pair of collimated jets. It is similar to the famous Galactic source SS433 (ref. 5), but twice as large and a few times more powerful. We determine a mechanical power of around a few 10(40) erg s(-1). The jets therefore seem 10(4) times more energetic than the X-ray emission from the core. S26 has the structure of a Fanaroff-Riley type II (FRII-type) active galaxy: X-ray and optical core, X-ray hot spots, radio lobes and an optical and X-ray cocoon. It is a microquasar where most of the jet power is dissipated in thermal particles in the lobes rather than relativistic electrons. PMID:20613836

  12. The effects of the stellar wind and orbital motion on the jets of high-mass microquasars

    NASA Astrophysics Data System (ADS)

    Bosch-Ramon, V.; Barkov, M. V.

    2016-05-01

    Context. High-mass microquasar jets propagate under the effect of the wind from the companion star, and the orbital motion of the binary system. The stellar wind and the orbit may be dominant factors determining the jet properties beyond the binary scales. Aims: This is an analytical study, performed to characterise the effects of the stellar wind and the orbital motion on the jet properties. Methods: Accounting for the wind thrust transferred to the jet, we derive analytical estimates to characterise the jet evolution under the impact of the stellar wind. We include the Coriolis force effect, induced by orbital motion and enhanced by the wind's presence. Large-scale evolution of the jet is sketched, accounting for wind-to-jet thrust transfer, total energy conservation, and wind-jet flow mixing. Results: If the angle of the wind-induced jet bending is larger than its half-opening angle, the following is expected: (i) a strong recollimation shock; (ii) bending against orbital motion, caused by Coriolis forces and enhanced by the wind presence; and (iii) non-ballistic helical propagation further away. Even if disrupted, the jet can re-accelerate due to ambient pressure gradients, but wind entrainment can weaken this acceleration. On large scales, the opening angle of the helical structure is determined by the wind-jet thrust relation, and the wind-loaded jet flow can be rather slow. Conclusions: The impact of stellar winds on high-mass microquasar jets can yield non-ballistic helical jet trajectories, jet partial disruption and wind mixing, shocks, and possibly non-thermal emission. Among other observational diagnostics, such as radiation variability at any band, the radio morphology on milliarcsecond scales can be informative on the wind-jet interaction.

  13. AN IMPROVED DYNAMICAL MODEL FOR THE MICROQUASAR XTE J1550-564

    SciTech Connect

    Orosz, Jerome A.; Steiner, James F.; McClintock, Jeffrey E.; Torres, Manuel A. P.; Remillard, Ronald A.; Bailyn, Charles D.; Miller, Jon M. E-mail: jsteiner@cfa.harvard.edu E-mail: mtorres@cfa.harvard.edu E-mail: charles.bailyn@yale.edu

    2011-04-01

    We present an improved dynamical model of the X-ray binary and microquasar XTE J1550-564 based on new moderate-resolution optical spectroscopy and near-infrared photometry obtained with the 6.5 m Magellan Telescopes at Las Campanas Observatory. Twelve spectra of the source were obtained using the Magellan Echellette Spectrograph between 2008 May 6 and August 4. In addition, several hundred images of the field were obtained between 2006 May and 2009 July in the J and K{sub S} filters using the PANIC camera. The agreement between the 2006/2007 and 2008 J and K{sub S} light curves is not perfect, and the differences can plausibly be attributed to a hot spot on the accretion disk during the 2006/2007 observations. By combining our new radial velocity measurements with previous measurements obtained in 2001 May at the 8.2 m Very Large Telescope and with light curves, we find an orbital period of P = 1.5420333 {+-} 0.0000024 days and a radial velocity semiamplitude of K{sub 2} = 363.14 {+-} 5.97 km s{sup -1}, which together imply an optical mass function of f(M) = 7.65 {+-} 0.38 M{sub sun}. We find that the projected rotational velocity of the secondary star is 55 {+-} 5 km s{sup -1}, which implies a very extreme mass ratio of Q {identical_to} M/M{sub 2} {approx} 30. Using a model of a Roche lobe-filling star and an azimuthally symmetric accretion disk, we fit simultaneously optical light curves from 2001, near-infrared light curves from 2008, and all of the radial velocity measurements to derive system parameters. We find an inclination of 74.{sup 0}7 {+-} 3.{sup 0}8 and component masses of M{sub 2} = 0.30 {+-} 0.07 M{sub sun} and M = 9.10 {+-} 0.61 M{sub sun} for the secondary star and black hole, respectively. We note that these results depend on the assumption that in 2008, the disk did not have a hot spot, and that the fraction of light contributed by the accretion disk did not change between the spectroscopic and photometric observations. By considering two

  14. Diet and nutrition of western rock lobsters, Panulirus cygnus, in shallow coastal waters: the role of habitat

    EPA Science Inventory

    Generalist consumers often have diets that vary considerably over time and space, which reflects changes in resource availability. Predicting diets of consumers can therefore be difficult. The western rock lobster, Panulirus cygnus, is an omnivorous generalist consumer that uses ...

  15. The dust scattering halo of Cygnus X-3

    NASA Astrophysics Data System (ADS)

    Corrales, L. R.; Paerels, F.

    2015-10-01

    Dust grains scatter X-ray light through small angles, producing a diffuse halo image around bright X-ray point sources situated behind a large amount of interstellar material. We present analytic solutions to the integral for the dust scattering intensity, which allow for a Bayesian analysis of the scattering halo around Cygnus X-3. Fitting the optically thin 4-6 keV halo surface brightness profile yields the dust grain size and spatial distribution. We assume a power-law distribution of grain sizes (n ∝ a-p) and fit for p, the grain radius cut-off amax, and dust mass column. We find that a p ≈ 3.5 dust grain size distribution with amax ≈ 0.2 μm fits the halo profile relatively well, whether the dust is distributed uniformly along the line of sight or in clumps. We find that a model consisting of two dust screens, representative of foreground spiral arms, requires the foreground Perseus arm to contain 80 per cent of the total dust mass. The remaining 20 per cent of the dust, which may be associated with the outer spiral arm of the Milky Way, is located within 1 kpc of Cyg X-3. Regardless of which model was used, we found τ_sca ˜ 2 E_keV^{-2}. We examine the energy resolved haloes of Cyg X-3 from 1 to 6 keV and find that there is a sharp drop in scattering halo intensity when E < 2-3 keV, which cannot be explained with multiple scattering effects. We hypothesize that this may be caused by large dust grains or material with unique dielectric properties, causing the scattering cross-section to depart from the Rayleigh-Gans approximation that is used most often in X-ray scattering studies. The foreground Cyg OB2 association, which contains several evolved stars with large extinction values, is a likely culprit for grains of unique size or composition.

  16. Infrared photometry and polarimetry of Cygnus X-3

    NASA Technical Reports Server (NTRS)

    Jones, Terry Jay; Gehrz, Robert D.; Kobulnicky, Henry A.; Molnar, Lawrence A.; Howard, Eric M.

    1994-01-01

    We present photometry and linear polarimetry of Cygnus X-3 at K (2.2 micrometers) obtained over a 5 yr period. Photometry and polarimetry at J, H, and K of nearby field stars is also presented. From an analysis of these data we find: (1) Using the x-ray ephemeris of Kitamoto et al. (ApJ, 384, 263 (1992), including the first and second derivatives of the period, the leading edge of the decline to minimum in the quiescent K light curve has not changed in phase since 1974. The duration of the minimum in the light curve has changed significantly between different epochs, becoming much broader in 1993 than it was previously. (2) In addition to an interstellar polarization component, it is likely Cyg X-3 has an intrinsic polarization component that is variable. The variations in the polarization do not show any diagnostic pattern with orbital phase. A crude analysis of the polarization suggests the intrinsic polarization of Cyg X-3 has a mean position angle of approximately 12 deg, nearly the same as the direction of the expanding radio lobes. This is consistent with circumstellar electrons scattering in an equatorial disk that is perpendicular to the lobe axis. (3) The mean position angle for the interstellar polarization in the direction of Cyg X-3 is 150 deg. This is nearly perpendicular to the axis of interstellar radio scattering seen in the extended (Very Long Baseline Inteferometry (VLBI) images. Since the position angle of interstellar polarization is the same as the projected magnetic field direction, this suggests the interstellar (not circumstellar) scattering must be taking place perpendicular to the interstellar magnetic field lines. (4) Cyg X-3 was observed at K during a flare on 1992 September 30 with a temporal resolution of 6 s. The flaring had rise and fall times of approximately 50 s with peak intensities up to 80 mJy. The flux between individual flare events never dropped to quiescent levels for the duration of our observations (approximately 2000 s).

  17. Photometric Observations of 6000 Stars in the Cygnus Field

    NASA Technical Reports Server (NTRS)

    Borucki, W.; Caldwell, D.; Koch, D.; Jenkins, J.; Ninkov, Z.

    1999-01-01

    A small photometer to detect transits by extrasolar planets has been assembled and is being tested at Lick Observatory on Mt. Hamilton, California. The Vulcan photometer is constructed from a 30 cm focal length, F/2.5 AeroEktar reconnaissance lens and Photometrics PXL16800 CCD camera. A spectral filter is used to confine the pass band from 480 to 763 mn. It simultaneously monitors 6000 stars brighter than 12th magnitude within a single star field in the galactic plane. When the data are folded and phased to discover low amplitude transits, the relative precision of one-hour samples is about 1 part per thousand (10 x l0(exp -3)) for many of the brighter stars. This precision is sufficient to find jovian-size planets orbiting solar-like stars, which have signal amplitudes from 5 to 30 x l0(exp -3) depending on the inflation of the planet and the size of the star. Based on the frequency of giant inner-planets discovered by Doppler-velocity method, one or two planets should be detectable in a rich star field. The goal of the observations is to obtain the sizes of giant extrasolar planets in short-period orbits and to combine these with masses determined from Doppler velocity measurements to determine the densities of these planets. A further goal is to compare the measured planetary diameters with those predicted from theoretical models. From August 10 through September 30 of 1998, a forty nine square degree field in the Cygnus constellation centered at RA and DEC of 19 hr 47 min, +36 deg 55 min was observed. Useful data were obtained on twenty-nine nights. Nearly fifty stars showed some evidence of transits with periods between 0.3 and 8 days. Most had amplitudes too large to be associated with planetary transits. However, several stars showed low amplitude transits. The data for several transits of each of these two stars have been folded and been folded into 30 minute periods. Only Cygl433 shows any evidence of a flattened bottom that is expected when a small object

  18. X-1E on Display Stand at Dryden

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A photo showing the Bell Aircraft Corporation X-1E mounted at a jaunty angle in front of the main building (4800) at NASA Dryden Flight Research Center, Edwards, California. The X-1E began life as the X-1-2, a first generation aircraft. The X-1E flew twenty-six times with two pilots. It was retired on November 6, 1958. There were four versions of the Bell X-1 rocket-powered research aircraft that flew at the NACA High-Speed Flight Research Station, Edwards, California. The bullet-shaped X-1 aircraft were built by Bell Aircraft Corporation, Buffalo, N.Y. for the U.S. Army Air Forces (after 1947, U.S. Air Force) and the National Advisory Committee for Aeronautics (NACA). The X-1 Program was originally designated the XS-1 for EXperimental Supersonic. The X-1's mission was to investigate the transonic speed range (speeds from just below to just above the speed of sound) and, if possible, to break the 'sound barrier.' Three different X-1s were built and designated: X-1-1, X-1-2 (later modified to become the X-1E), and X-1-3. The basic X-1 aircraft were flown by a large number of different pilots from 1946 to 1951. The X-1 Program not only proved that humans could go beyond the speed of sound, it reinforced the understanding that technological barriers could be overcome. The X-1s pioneered many structural and aerodynamic advances including extremely thin, yet extremely strong wing sections; supersonic fuselage configurations; control system requirements; powerplant compatibility; and cockpit environments. The X-1 aircraft were the first transonic-capable aircraft to use an all-moving stabilizer. The flights of the X-1s opened up a new era in aviation. The first X-1 was air-launched unpowered from a Boeing B-29 Superfortress on January 25, 1946. Powered flights began in December 1946. On October 14, 1947, the X-1-1, piloted by Air Force Captain Charles 'Chuck' Yeager, became the first aircraft to exceed the speed of sound, reaching about 700 miles per hour (Mach 1.06) and

  19. X-1E Loaded in B-29 Mothership on Ramp

    NASA Technical Reports Server (NTRS)

    1955-01-01

    The Bell Aircraft Corporation X-1E loaded into the Boeing B-29 in NACA High Speed Flight Station service area. The B-29 would carry the X-1E to an altitude of approximately 25,000 feet. If all systems were `go' the aircraft would be launched. The pilot would activate the rocket engines and follow a pre-determined flight plan for altitude and speed, doing other maneuvers as requested, returning on a glide path to the Rogers Dry Lakebed for a touch down. There were four versions of the Bell X-1 rocket-powered research aircraft that flew at the NACA High-Speed Flight Research Station, Edwards, California. The bullet-shaped X-1 aircraft were built by Bell Aircraft Corporation, Buffalo, N.Y. for the U.S. Army Air Forces (after 1947, U.S. Air Force) and the National Advisory Committee for Aeronautics (NACA). The X-1 Program was originally designated the XS-1 for EXperimental Supersonic. The X-1's mission was to investigate the transonic speed range (speeds from just below to just above the speed of sound) and, if possible, to break the 'sound barrier.' Three different X-1s were built and designated: X-1-1, X-1-2 (later modified to become the X-1E), and X-1-3. The basic X-1 aircraft were flown by a large number of different pilots from 1946 to 1951. The X-1 Program not only proved that humans could go beyond the speed of sound, it reinforced the understanding that technological barriers could be overcome. The X-1s pioneered many structural and aerodynamic advances including extremely thin, yet extremely strong wing sections; supersonic fuselage configurations; control system requirements; powerplant compatibility; and cockpit environments. The X-1 aircraft were the first transonic-capable aircraft to use an all-moving stabilizer. The flights of the X-1s opened up a new era in aviation. The first X-1 was air-launched unpowered from a Boeing B-29 Superfortress on January 25, 1946. Powered flights began in December 1946. On October 14, 1947, the X-1-1, piloted by Air Force

  20. Globules and pillars in Cygnus X. I. Herschel far-infrared imaging of the Cygnus OB2 environment

    NASA Astrophysics Data System (ADS)

    Schneider, N.; Bontemps, S.; Motte, F.; Blazere, A.; André, Ph.; Anderson, L. D.; Arzoumanian, D.; Comerón, F.; Didelon, P.; Di Francesco, J.; Duarte-Cabral, A.; Guarcello, M. G.; Hennemann, M.; Hill, T.; Könyves, V.; Marston, A.; Minier, V.; Rygl, K. L. J.; Röllig, M.; Roy, A.; Spinoglio, L.; Tremblin, P.; White, G. J.; Wright, N. J.

    2016-06-01

    The radiative feedback of massive stars on molecular clouds creates pillars, globules and other features at the interface between the H II region and molecular cloud. Optical and near-infrared observations from the ground as well as with the Hubble or Spitzer satellites have revealed numerous examples of such cloud structures. We present here Herschel far-infrared observations between 70 μm and 500 μm of the immediate environment of the rich Cygnus OB2 association, performed within the Herschel imaging survey of OB Young Stellar objects (HOBYS) program. All of the observed irradiated structures were detected based on their appearance at 70 μm, and have been classified as pillars, globules, evaporating gasous globules (EGGs), proplyd-like objects, and condensations. From the 70 μm and 160 μm flux maps, we derive the local far-ultraviolet (FUV) field on the photon dominated surfaces. In parallel, we use a census of the O-stars to estimate the overall FUV-field, that is 103-104 G0 (Habing field) close to the central OB cluster (within 10 pc) and decreases down to a few tens G0, in a distance of 50 pc. From a spectral energy distribution (SED) fit to the four longest Herschel wavelengths, we determine column density and temperature maps and derive masses, volume densities and surface densities for these structures. We find that the morphological classification corresponds to distinct physical properties. Pillars and globules are massive (~500 M⊙) and large (equivalent radius r ~ 0.6 pc) structures, corresponding to what is defined as "clumps" for molecular clouds. EGGs and proplyd-likeobjects are smaller (r ~ 0.1 and 0.2 pc) and less massive (~10 and ~30 M⊙). Cloud condensations are small (~0.1 pc), have an average mass of 35 M⊙, are dense (~6 × 104 cm-3), and can thus be described as molecular cloud "cores". All pillars and globules are oriented toward the Cyg OB2 association center and have the longest estimated photoevaporation lifetimes, a few million

  1. THE ROLE OF FAST MAGNETIC RECONNECTION ON THE RADIO AND GAMMA-RAY EMISSION FROM THE NUCLEAR REGIONS OF MICROQUASARS AND LOW LUMINOSITY AGNs

    SciTech Connect

    Kadowaki, L. H. S.; Pino, E. M. de Gouveia Dal; Singh, C. B. E-mail: dalpino@iag.usp.br

    2015-04-01

    Fast magnetic reconnection events can be a very powerful mechanism operating in the core region of microquasars and active galactic nuclei (AGNs). In earlier work, it has been suggested that the power released by fast reconnection events between the magnetic field lines lifting from the inner accretion disk region and the lines anchored into the central black hole could accelerate relativistic particles and produce the observed radio emission from microquasars and low luminosity AGNs (LLAGNs). Moreover, it has been proposed that the observed correlation between the radio emission and the mass of these sources, spanning 10{sup 10} orders of magnitude in mass, might be related to this process. In the present work, we revisit this model comparing two different fast magnetic reconnection mechanisms, namely, fast reconnection driven by anomalous resistivity (AR) and by turbulence. We apply the scenario above to a much larger sample of sources (including also blazars, and gamma-ray bursts—GRBs), and find that LLAGNs and microquasars do confirm the trend above. Furthermore, when driven by turbulence, not only their radio but also their gamma-ray emission can be due to magnetic power released by fast reconnection, which may accelerate particles to relativistic velocities in the core region of these sources. Thus the turbulent-driven fast reconnection model is able to reproduce verywell the observed emission. On the other hand, the emission from blazars and GRBs does not follow the same trend as that of the LLAGNs and microquasars, indicating that the radio and gamma-ray emission in these cases is produced beyond the core, along the jet, by another population of relativistic particles, as expected.

  2. X-1-2 mounted under B-29 for launch

    NASA Technical Reports Server (NTRS)

    1949-01-01

    A roll-out of the Boeing B-29 Superfortress, bomber with the Bell Aircraft Corporation X-1-2 mated and ready for flight. NACA Flight 33 was flown on September 23, 1949, as a pilot familiarization flight with NACA pilot, John H. Griffith at the controls. Griffith reached a top speed of Mach 0.998 during the flight. There were four versions of the Bell X-1 rocket-powered research aircraft that flew at the NACA High-Speed Flight Research Station, Edwards, California. The bullet-shaped X-1 aircraft were built by Bell Aircraft Corporation, Buffalo, N.Y. for the U.S. Army Air Forces (after 1947, U.S. Air Force) and the National Advisory Committee for Aeronautics (NACA). The X-1 Program was originally designated the XS-1 for EXperimental Sonic. The X-1's mission was to investigate the transonic speed range (speeds from just below to just above the speed of sound) and, if possible, to break the 'sound barrier.' Three different X-1s were built and designated: X-1-1, X-1-2 (later modified to become the X-1E), and X-1-3. The basic X-1 aircraft were flown by a large number of different pilots from 1946 to 1951. The X-1 Program not only proved that humans could go beyond the speed of sound, it reinforced the understanding that technological barriers could be overcome. The X-1s pioneered many structural and aerodynamic advances including extremely thin, yet extremely strong wing sections; supersonic fuselage configurations; control system requirements; powerplant compatibility; and cockpit environments. The X-1 aircraft were the first transonic-capable aircraft to use an all-moving stabilizer. The flights of the X-1s opened up a new era in aviation. The first X-1 was air-launched unpowered from a Boeing B-29 Superfortress on Jan. 25, 1946. Powered flights began in December 1946. On Oct. 14, 1947, the X-1-1, piloted by Air Force Captain Charles 'Chuck' Yeager, became the first aircraft to exceed the speed of sound, reaching about 700 miles per hour (Mach 1.06) and an altitude of

  3. X-1E Being Loaded on B-29 Mothership

    NASA Technical Reports Server (NTRS)

    1955-01-01

    The Bell Aircraft Corporation X-1E being loaded under the Boeing B-29 in preparation for a NACA High-Speed Flight Station captive flight in 1955. One rocket technician is servicing the aircraft while another technician is busy 'buttoning' up an inspection panel. There were four versions of the Bell X-1 rocket-powered research aircraft that flew at the NACA High-Speed Flight Research Station, Edwards, California. The bullet-shaped X-1 aircraft were built by Bell Aircraft Corporation, Buffalo, N.Y. for the U.S. Army Air Forces (after 1947, U.S. Air Force) and the National Advisory Committee for Aeronautics (NACA). The X-1 Program was originally designated the XS-1 for EXperimental Supersonic. The X-1's mission was to investigate the transonic speed range (speeds from just below to just above the speed of sound) and, if possible, to break the 'sound barrier.' Three different X-1s were built and designated: X-1-1, X-1-2 (later modified to become the X-1E), and X-1-3. The basic X-1 aircraft were flown by a large number of different pilots from 1946 to 1951. The X-1 Program not only proved that humans could go beyond the speed of sound, it reinforced the understanding that technological barriers could be overcome. The X-1s pioneered many structural and aerodynamic advances including extremely thin, yet extremely strong wing sections; supersonic fuselage configurations; control system requirements; powerplant compatibility; and cockpit environments. The X-1 aircraft were the first transonic-capable aircraft to use an all-moving stabilizer. The flights of the X-1s opened up a new era in aviation. The first X-1 was air-launched unpowered from a Boeing B-29 Superfortress on January 25, 1946. Powered flights began in December 1946. On October 14, 1947, the X-1-1, piloted by Air Force Captain Charles 'Chuck' Yeager, became the first aircraft to exceed the speed of sound, reaching about 700 miles per hour (Mach 1.06) and an altitude of 43,000 feet. The number 2 X-1 was modified

  4. X-1E on Display Stand at Dryden

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Bell Aircraft Corporation X-1E is shown in this artistic night photo taken in February 1996. This aircraft is displayed on a pedestal in front of the main building (4800) at NASA Dryden Flight Research Center, Edwards, California. There were four versions of the Bell X-1 rocket-powered research aircraft that flew at the NACA High-Speed Flight Research Station, Edwards, California. The bullet-shaped X-1 aircraft were built by Bell Aircraft Corporation, Buffalo, N.Y. for the U.S. Army Air Forces (after 1947, U.S. Air Force) and the National Advisory Committee for Aeronautics (NACA). The X-1 Program was originally designated the XS-1 for EXperimental Supersonic. The X-1's mission was to investigate the transonic speed range (speeds from just below to just above the speed of sound) and, if possible, to break the 'sound barrier.' Three different X-1s were built and designated: X-1-1, X-1-2 (later modified to become the X-1E), and X-1-3. The basic X-1 aircraft were flown by a large number of different pilots from 1946 to 1951. The X-1 Program not only proved that humans could go beyond the speed of sound, it reinforced the understanding that technological barriers could be overcome. The X-1s pioneered many structural and aerodynamic advances including extremely thin, yet extremely strong wing sections; supersonic fuselage configurations; control system requirements; powerplant compatibility; and cockpit environments. The X-1 aircraft were the first transonic-capable aircraft to use an all-moving stabilizer. The flights of the X-1s opened up a new era in aviation. The first X-1 was air-launched unpowered from a Boeing B-29 Superfortress on January 25, 1946. Powered flights began in December 1946. On October 14, 1947, the X-1-1, piloted by Air Force Captain Charles 'Chuck' Yeager, became the first aircraft to exceed the speed of sound, reaching about 700 miles per hour (Mach 1.06) and an altitude of 43,000 feet. The number 2 X-1 was modified and redesignated the X-1E

  5. X-1E Loaded in B-29 Mothership on Ramp

    NASA Technical Reports Server (NTRS)

    1955-01-01

    The Bell Aircraft Corporation X-1E airplane being loaded under the mothership, Boeing B-29. The X planes had originally been lowered into a loading pit and the launch aircraft towed over the pit, where the rocket plane was hoisted by belly straps into the bomb bay. By the early 1950s a hydraulic lift had been installed on the ramp at the NACA High-Speed Flight Station to elevate the launch aircraft and then lower it over the rocket plane for mating. There were four versions of the Bell X-1 rocket-powered research aircraft that flew at the NACA High-Speed Flight Research Station, Edwards, California. The bullet-shaped X-1 aircraft were built by Bell Aircraft Corporation, Buffalo, N.Y. for the U.S. Army Air Forces (after 1947, U.S. Air Force) and the National Advisory Committee for Aeronautics (NACA). The X-1 Program was originally designated the XS-1 for EXperimental Supersonic. The X-1's mission was to investigate the transonic speed range (speeds from just below to just above the speed of sound) and, if possible, to break the 'sound barrier.' Three different X-1s were built and designated: X-1-1, X-1-2 (later modified to become the X-1E), and X-1-3. The basic X-1 aircraft were flown by a large number of different pilots from 1946 to 1951. The X-1 Program not only proved that humans could go beyond the speed of sound, it reinforced the understanding that technological barriers could be overcome. The X-1s pioneered many structural and aerodynamic advances including extremely thin, yet extremely strong wing sections; supersonic fuselage configurations; control system requirements; powerplant compatibility; and cockpit environments. The X-1 aircraft were the first transonic-capable aircraft to use an all-moving stabilizer. The flights of the X-1s opened up a new era in aviation. The first X-1 was air-launched unpowered from a Boeing B-29 Superfortress on January 25, 1946. Powered flights began in December 1946. On October 14, 1947, the X-1-1, piloted by Air Force

  6. A Multi-Frequency VLBA Survey of Interstellar Scattering in the Cygnus X Region

    NASA Astrophysics Data System (ADS)

    Mutel, R. L.; Molnar, L. A.; Spangler, S. R.

    1998-05-01

    We describe the results of a multi-frequency VLBA study of the scatter-broadened images of fifteen compact extragalactic sources. The sources are located along lines of sight which intercept the Cygnus X superbubble. We have used the phase structure function to determine the spatial spectrum of turbulence with high SNR on scales from 100 to 6,000 km. We will discuss evidence for detection of an inner scale length along some lines of sight as well as excess visibility amplitude for projected baseline lengths much greater than the diffractive scale. We also find that most scattered-broadened images are significantly elliptical with orientations which may be related to the large-scale magnetic field orientation in the Cygnus superbubble.

  7. Chandra Discovers the X-ray Signature of a Powerful Wind from a Galactic Microquasar

    NASA Astrophysics Data System (ADS)

    2000-11-01

    NASA's Chandra X-ray Observatory has detected, for the first time in X rays, a stellar fingerprint known as a P Cygni profile--the distinctive spectral signature of a powerful wind produced by an object in space. The discovery reveals a 4.5-million-mile-per-hour wind coming from a highly compact pair of stars in our galaxy, report researchers from Penn State and the Massachusetts Institute of Technology in a paper they will present on 8 November 2000 during a meeting of the High-Energy Astrophysics Division of the American Astronomical Society in Honolulu, Hawaii. The paper also has been accepted for publication in The Astrophysical Journal Letters. "To our knowledge, these are the first P Cygni profiles reported in X rays," say researchers Niel Brandt, assistant professor of astronomy and astrophysics at Penn State, and Norbert S. Schulz, research scientist at the Massachusetts Institute of Technology. The team made the discovery during their first observation of a binary-star system with the Chandra X-ray Observatory, which was launched into space in July 1999. The system, known as Circinus X-1, is located about 20,000 light years from Earth in the constellation Circinus near the Southern Cross. It contains a super-dense neutron star in orbit around a normal fusion-burning star like our Sun. Although Circinus X-1 was discovered in 1971, many properties of this system remain mysterious because Circinus X-1 lies in the galactic plane where obscuring dust and gas have blocked its effective study in many wavelengths. The P Cygni spectral profile, previously detected primarily at ultraviolet and optical wavelengths but never before in X rays, is the textbook tool astronomers rely on for probing stellar winds. The profile looks like the outline of a roller coaster, with one really big hill and valley in the middle, on a data plot with velocity on one axis and the flow rate of photons per second on the other. It is named after the famous star P Cygni, in which such

  8. X-1-2 with Pilots Robert Champine Herb Hoover

    NASA Technical Reports Server (NTRS)

    1949-01-01

    The Bell Aircraft Corporation X-1-2 and two of the NACA pilots that flew the aircraft. The one on the left is Robert Champine with the other being Herbert Hoover. The X-1-2 was also equipped with the 10-percent wing and 8 percent tail, powered with an XLR-11 rocket engine and aircraft made its first powered flight on December 9, 1946 with Chalmers 'Slick' Goodlin at the controls. As with the X-1-1 the X-1-2 continued to investigate transonic/supersonic flight regime. NACA pilot Herbert Hoover became the first civilian to fly Mach 1, March 10, 1948. X-1-2 flew until October 23, 1951, completing 74 glide and powered flights with nine different pilots, when it was retired to be rebuilt as the X-1E.

  9. Fussy Feeders: Phyllosoma Larvae of the Western Rocklobster (Panulirus cygnus) Demonstrate Prey Preference

    PubMed Central

    Saunders, Megan I.; Thompson, Peter A.; Jeffs, Andrew G.; Säwström, Christin; Sachlikidis, Nikolas; Beckley, Lynnath E.; Waite, Anya M.

    2012-01-01

    The Western Rocklobster (Panulirus cygnus) is the most valuable single species fishery in Australia and the largest single country spiny lobster fishery in the world. In recent years a well-known relationship between oceanographic conditions and lobster recruitment has become uncoupled, with significantly lower recruitment than expected, generating interest in the factors influencing survival and development of the planktonic larval stages. The nutritional requirements and wild prey of the planktotrophic larval stage (phyllosoma) of P. cygnus were previously unknown, hampering both management and aquaculture efforts for this species. Ship-board feeding trials of wild-caught mid-late stage P. cygnus phyllosoma in the eastern Indian Ocean, off the coast of Western Australia, were conducted in July 2010 and August-September 2011. In a series of experiments, phyllosoma were fed single and mixed species diets of relatively abundant potential prey items (chaetognaths, salps, and krill). Chaetognaths were consumed in 2–8 times higher numbers than the other prey, and the rate of consumption of chaetognaths increased with increasing concentration of prey. The highly variable lipid content of the phyllosoma, and the fatty acid profiles of the phyllosoma and chaetognaths, indicated they were from an oligotrophic oceanic food chain where food resources for macrozooplankton were likely to be constrained. Phyllosoma fed chaetognaths over 6 days showed significant changes in some fatty acids and tended to accumulate lipid, indicating an improvement in overall nutritional condition. The discovery of a preferred prey for P. cygnus will provide a basis for future oceanographic, management and aquaculture research for this economically and ecologically valuable species. PMID:22586479

  10. Support for joint infrared and Copernicus X-Ray observations of Cygnus X-3

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Simultaneous X-ray and infrared measurements were carried out of the flares from Cygnus X-3 from the Copernicus spacecraft observatory. The detectors, InSb, were arranged so that 1.65 and 2.2 micrometer broadbend photometry was performed through a common diaphragm. The measurements were used to determine the energy distribution during a flare and thus learn about the infrared spectrum and its changes during the flare.

  11. X-1-2 on Ramp with Boeing B-29

    NASA Technical Reports Server (NTRS)

    1949-01-01

    The Bell Aircraft Corporation X-1-2 sitting on the ramp at NACA High- Speed Flight Research Station with the Boeing B-29 launch ship behind. The B-29 was fondly referred to as 'Fertile Myrtle.' The painting near the nose depicts a stork carrying a bundle which is symbolic of the Mothership launching her babe (X-1-2). The pilot access door is open to the cockpit of the X-1-2 aircraft.

  12. Far-ultraviolet mapping of the Cygnus Loop with the Voyager 2 Ultraviolet Spectrometer

    SciTech Connect

    Blair, W.P.; Long, K.S.; Vancura, O.; Holberg, J.B. Arizona, University, Tucson )

    1991-06-01

    FUV maps of the Cygnus Loop made using spectroscopic data from the Voyager 2 Ultraviolet Spectrometer are presented. Emission line features at about 980 and about 1035 A dominate the 500-1700 A spectra of the Cygnus Loop as observed with Voyager. Maps were generated in the light of these two features. The 980 and 1035 A maps are compared with X-ray and optical images of the Cygnus Loop that have been sampled in the same manner. From this comparison it is clear that the 980 A feature arises mainly from regions of bright optical emission, whereas the 1035 A emission more closely resembles the X-ray emission. This general impression can be confirmed by inspection of the spectra as a function of position. Spectra extracted from positions corresponding to the primary shock front show the 1035 A feature to be relatively strong, while the 980 A feature is brighter when substantial optical emission is present within the aperture. 42 refs.

  13. Discovery of a Pulsar Wind Nebula Candidate in the Cygnus Loop

    NASA Technical Reports Server (NTRS)

    Katsuda, Satoru; Tsunemi, Hiroshi; Mori, Koji; Uchida, Hiroyuki; Petre, Robert; Yamada, Shin'ya; Tamagawa, Toru

    2012-01-01

    We report on a discovery of a diffuse nebula containing a point-like source in the southern blowout region of the Cygnus Loop supernova remnant, based on Suzaku and XMM-Newton observations. The X-ray spectra from the nebula and the point-like source are well represented by an absorbed power-law model with photon indices of 2.2+/-0.1 and 1.6+/-0.2, respectively. The photon indices as well as the flux ratio of F(sub nebula)/F(sub point-like) approx. 4 lead us to propose that the system is a pulsar wind nebula, although pulsations have not yet been detected. If we attribute its origin to the Cygnus Loop supernova, then the 0.5-8 keV luminosity of the nebula is computed to be 2.1x10(exp 31)(d/540pc)(exp 2)ergss/2, where d is the distance to the Loop. This implies a spin-down loss-energy E approx. 2.6x10(exp 35)(d/540pc)(exp 2)ergs/s. The location of the neutron star candidate, approx.2deg away from the geometric center of the Loop, implies a high transverse velocity of approx.1850(theta/2deg)(d/540pc)(t/10kyr)/k/s assuming the currently accepted age of the Cygnus Loop.

  14. CARBON, HELIUM, AND PROTON KINETIC TEMPERATURES IN A CYGNUS LOOP SHOCK WAVE

    SciTech Connect

    Raymond, John C.; Edgar, Richard J.; Ghavamian, Parviz; Blair, William P.

    2015-06-01

    Observations of SN 1006 have shown that ions and electrons in the plasma behind fast supernova remnant shock waves are far from equilibrium, with the electron temperature much lower than the proton temperature and ion temperatures approximately proportional to ion mass. In the ∼360 km s{sup −1}shock waves of the Cygnus Loop, on the other hand, electron and ion temperatures are roughly equal, and there is evidence that the oxygen kinetic temperature is not far from the proton temperature. In this paper, we report observations of the He ii λ1640 line and the C iv λ1550 doublet in a 360 km s{sup −1}shock in the Cygnus Loop. While the best-fit kinetic temperatures are somewhat higher than the proton temperature, the temperatures of He and C are consistent with the proton temperature and the upper limits are 0.5 and 0.3 times the mass-proportional temperatures, implying efficient thermal equilibration in this collisionless shock. The equilibration of helium and hydrogen affects the conversion between proton temperatures determined from Hα line profiles and shock speeds, and the efficient equilibration found here reduces the shock speed estimates and the distance estimate to the Cygnus Loop of Medina et al. to about 800 pc.

  15. Estimate from Gulmarg of PeV photon flux from Cygnus X-3 and its relevance

    NASA Astrophysics Data System (ADS)

    Bhat, C. L.; Sapru, M. L.; Razdan, H.

    1986-07-01

    Atmospheric pulses recorded at Gulmarg, India between January 1976 and December 1977 using wide-angle photomultipliers indicate a phase-dependent component exhibiting the Cygnus X-3 modulation period of 4.8 hr, and an amplitude, determined by the number of excess events in the phase peak relative to the total phase-independent events, of 1.8 + or - 0.4 percent (corresponding to a detected average flux of 1.6 + or - 0.4 gamma/sq cm per s above 0.5 PeV). The possibility of a long-term reduction in the luminosity of the PeV source by a factor of about 1.5/yr is also suggested by Haverah Park phase histograms of Cygnus X-3 obtained between January 1979 and December 1984, and by Plateau Rosa data from the December 1981 to March 1985 period. After accounting for losses in the PeV photon beam due to gamma-gamma interactions with the 2.7 K microwave background, the ultrahigh energy photon fluxes in the 10 to the 11th to 10 to the 12th eV region are found to be much lower than those of Cygnus X-3.

  16. High Resolution Spectroscopy of C_2 and CN in the Cygnus OB2 Association

    NASA Astrophysics Data System (ADS)

    McCall, Benjamin J.; Oka, Takeshi

    2000-08-01

    The unexpected detection of a large column density of hhh along the lines of sight to Cygnus OB2 #12 and Cygnus OB2 #5 cannot be explained by the standard models of diffuse cloud chemistry, which imply unreasonably long absorption path lengths (hundreds of parsecs). In order to gather more information about the physical condition of the diffuse gas in these lines of sight, we propose to obtain high resolution (R 120 000) visible spectra of several stars in the Cygnus OB2 association, including #12 and #5. The observed rotational distribution of the diatomics çand CN will enable us to estimate the kinetic temperature and number density of the molecular gas. In addition, the high resolution of the HRS at HET will allow us to study the velocity distribution of both the atomic (K I) and molecular (çand CN) gas along these lines of sight. Together with our previous observations of hhh, the temperatures, number densities, and velocity distributions from the proposed observations will seriously constrain theoretical models of these sightlines, such as that recently proposed by Cecchi-Pestellini and Dalgarno.

  17. PREDICTING GAIA’S PARALLAX DISTANCE TO THE CYGNUS OB2 ASSOCIATION WITH ECLIPSING BINARIES

    SciTech Connect

    Kiminki, Daniel C.; Kobulnicky, Henry A.; Álvarez, Carlos A. Vargas; Alexander, Michael J.; Lundquist, Michael J.

    2015-10-01

    The Cygnus OB2 Association is one of the nearest and largest collections of massive stars in the Galaxy. Situated at the heart of the “Cygnus X” complex of star-forming regions and molecular clouds, its distance has proven elusive owing to the ambiguous nature of kinematic distances along this ℓ ≃ 80° sightline and the heavy, patchy extinction. In an effort to refine the three-dimensional geometry of key Cygnus X constituents, we have measured distances to four eclipsing double-lined OB-type spectroscopic binaries that are probable members of Cyg OB2. We find distances of 1.33 ± 0.17, 1.32 ± 0.07, 1.44 ± 0.18, and 1.32 ± 0.13 kpc toward MT91 372, MT91 696, CPR2002 A36, and Schulte 3, respectively. We adopt a weighted average distance of 1.33 ± 0.06 kpc. This agrees well with spectrophotometric estimates for the Association as a whole and with parallax measurements of protostellar masers in the surrounding interstellar clouds, thereby linking the ongoing star formation in these clouds with Cyg OB2. We also identify Schulte 3C (O9.5V), a 4″ visual companion to the 4.75 day binary Schulte 3(A+B), as a previously unrecognized Association member.

  18. An unidentified TeV source in the vicinity of Cygnus OB2

    NASA Astrophysics Data System (ADS)

    Aharonian, F.; Akhperjanian, A.; Beilicke, M.; Bernlöhr, K.; Börst, H.; Bojahr, H.; Bolz, O.; Coarasa, T.; Contreras, J.; Cortina, J.; Denninghoff, S.; Fonseca, V.; Girma, M.; Götting, N.; Heinzelmann, G.; Hermann, G.; Heusler, A.; Hofmann, W.; Horns, D.; Jung, I.; Kankanyan, R.; Kestel, M.; Kettler, J.; Kohnle, A.; Konopelko, A.; Kornmeyer, H.; Kranich, D.; Krawczynski, H.; Lampeitl, H.; Lopez, M.; Lorenz, E.; Lucarelli, F.; Magnussen, N.; Mang, O.; Meyer, H.; Milite, M.; Mirzoyan, R.; Moralejo, A.; Ona, E.; Panter, M.; Plyasheshnikov, A.; Prahl, J.; Pühlhofer, G.; Rauterberg, G.; Reyes, R.; Rhode, W.; Ripken, J.; Röhring, A.; Rowell, G. P.; Sahakian, V.; Samorski, M.; Schilling, M.; Schröder, F.; Siems, M.; Sobzynska, D.; Stamm, W.; Tluczykont, M.; Völk, H. J.; Wiedner, C. A.; Wittek, W.; Uchiyama, Y.; Takahashi, T.; HEGRA Collaboration

    2002-10-01

    Deep observation ( ~ 113 hrs) of the Cygnus region at TeV energies using the HEGRA stereoscopic system of air Čerenkov telescopes has serendipitously revealed a signal positionally inside the core of the OB association Cygnus OB2, at the edge of the 95% error circle of the EGRET source 3EG J2033+4118, and ~ 0.5o north of Cyg X-3. The source centre of gravity is RA alphaJ2000: 20h 32m 07s+/- 9.2sstat +/-2.2ssys, Dec deltaJ2000: +41o 30' 30''+/- 2.0'stat +/- 0.4'sys. The source is steady, has a post-trial significance of +4.6sigma , indication for extension with radius 5.6' at the ~ 3sigma level, and has a differential power-law flux with hard photon index of -1.9 +/-0.3stat +/-0.3sys. The integral flux above 1 TeV amounts ~ 3% that of the Crab. No counterpart for the TeV source at other wavelengths is presently identified, and its extension would disfavour an exclusive pulsar or AGN origin. If associated with Cygnus OB2, this dense concentration of young, massive stars provides an environment conducive to multi-TeV particle acceleration and likely subsequent interaction with a nearby gas cloud. Alternatively, one could envisage gamma -ray production via a jet-driven termination shock.

  19. Chandra Discovers the X-ray Signature of a Powerful Wind from a Galactic Microquasar

    NASA Astrophysics Data System (ADS)

    2000-11-01

    NASA's Chandra X-ray Observatory has detected, for the first time in X rays, a stellar fingerprint known as a P Cygni profile--the distinctive spectral signature of a powerful wind produced by an object in space. The discovery reveals a 4.5-million-mile-per-hour wind coming from a highly compact pair of stars in our galaxy, report researchers from Penn State and the Massachusetts Institute of Technology in a paper they will present on 8 November 2000 during a meeting of the High-Energy Astrophysics Division of the American Astronomical Society in Honolulu, Hawaii. The paper also has been accepted for publication in The Astrophysical Journal Letters. "To our knowledge, these are the first P Cygni profiles reported in X rays," say researchers Niel Brandt, assistant professor of astronomy and astrophysics at Penn State, and Norbert S. Schulz, research scientist at the Massachusetts Institute of Technology. The team made the discovery during their first observation of a binary-star system with the Chandra X-ray Observatory, which was launched into space in July 1999. The system, known as Circinus X-1, is located about 20,000 light years from Earth in the constellation Circinus near the Southern Cross. It contains a super-dense neutron star in orbit around a normal fusion-burning star like our Sun. Although Circinus X-1 was discovered in 1971, many properties of this system remain mysterious because Circinus X-1 lies in the galactic plane where obscuring dust and gas have blocked its effective study in many wavelengths. The P Cygni spectral profile, previously detected primarily at ultraviolet and optical wavelengths but never before in X rays, is the textbook tool astronomers rely on for probing stellar winds. The profile looks like the outline of a roller coaster, with one really big hill and valley in the middle, on a data plot with velocity on one axis and the flow rate of photons per second on the other. It is named after the famous star P Cygni, in which such

  20. High-Frequency Quasi-Periodic Oscillations in the 2000 Outburst of the Galactic Microquasar XTE J1550-564

    NASA Technical Reports Server (NTRS)

    Miller, J. M.; Wijnands, R.; Homan, J.; Belloni, T.; Pooley, D.; Kouveliotou, C.; vanderKlis, M.; Lewin, W. H. G.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    We present an analysis of the high-frequency timing properties of the April-May 2000 outburst of the black hole candidate and Galactic microquasar XTE J1550-564, measured with the Rossi X-ray Timing Explorer, The rapid X-ray variability we measure is consistent with the source being in either the "very high" or "intermediate" canonical black hole state. A strong (5-8% RMS) quasi-periodic oscillation (QPO) is found between 249-278 Hz; this may represent the first recurrence of the same high-frequency QPO in subsequent outbursts of a transient black hole candidate. We also present possible evidence for a lower-frequency QPO at approximately 187 Hz, also reported previously and likely present simultaneously with the higher-frequency QPO. We discuss these findings within the context of the 1998 outburst of XTE J1550-564, and comment on implications for models of QPOs, accretion flows, and black hole spin.

  1. Long term X-ray variability of Circinus X-1

    SciTech Connect

    Saz Parkinson, Pablo

    2003-03-19

    We present an analysis of long term X-ray monitoring observations of Circinus X-1 (Cir X-1) made with four different instruments: Vela 5B, Ariel V ASM, Ginga ASM, and RXTE ASM, over the course of more than 30 years. We use Lomb-Scargle periodograms to search for the {approx}16.5 day orbital period of Cir X-1 in each of these data sets and from this derive a new orbital ephemeris based solely on X-ray measurements, which we compare to the previous ephemerides obtained from radio observations. We also use the Phase Dispersion Minimization (PDM) technique, as well as FFT analysis, to verify the periods obtained from periodograms. We obtain dynamic periodograms (both Lomb-Scargle and PDM) of Cir X-1 during the RXTE era, showing the period evolution of Cir X-1, and also displaying some unexplained discrete jumps in the location of the peak power.

  2. X-1-2 on ramp with Boeing B-29

    NASA Technical Reports Server (NTRS)

    1949-01-01

    The Bell Aircraft Corporation X-1-2 Sitting on the ramp at NACA High-Speed Flight Research Station with the Boeing B-29 launch ship behind. The painting near the nose of the B-29 depicts a stork carrying a bundle which is symbolic of the Mothership launching her babe (X-1-2). The pilot access door is open to the cockpit of the X-1-2 aircraft. On the X-1-2's fin is the old NACA shield, which was later replaced with a yellow band and the letters 'NACA' plus wings that were both black. There were four versions of the Bell X-1 rocket-powered research aircraft that flew at the NACA High-Speed Flight Research Station, Edwards, California. The bullet-shaped X-1 aircraft were built by Bell Aircraft Corporation, Buffalo, N.Y. for the U.S. Army Air Forces (after 1947, U.S. Air Force) and the National Advisory Committee for Aeronautics (NACA). The X-1 Program was originally designated the XS-1 for EXperimental Sonic. The X-1's mission was to investigate the transonic speed range (speeds from just below to just above the speed of sound) and, if possible, to break the 'sound barrier.' Three different X-1s were built and designated: X-1-1, X-1-2 (later modified to become the X-1E), and X-1-3. The basic X-1 aircraft were flown by a large number of different pilots from 1946 to 1951. The X-1 Program not only proved that humans could go beyond the speed of sound, it reinforced the understanding that technological barriers could be overcome. The X-1s pioneered many structural and aerodynamic advances including extremely thin, yet extremely strong wing sections; supersonic fuselage configurations; control system requirements; powerplant compatibility; and cockpit environments. The X-1 aircraft were the first transonic-capable aircraft to use an all-moving stabilizer. The flights of the X-1s opened up a new era in aviation. The first X-1 was air-launched unpowered from a Boeing B-29 Superfortress on Jan. 25, 1946. Powered flights began in December 1946. On Oct. 14, 1947, the X-1

  3. X-1E on Lakebed with Collapsed Nose Gear

    NASA Technical Reports Server (NTRS)

    1956-01-01

    This photo was taken June 18, 1956 on Rogers Dry Lakebed after Flight 7 of the Bell Aircraft Corporation X-1E with NACA High-Speed Flight Station test pilot Joseph `Joe' Walker at the controls. The first generation X-1s were well known for nose gear failures and the X-1E was no exception. The hard pitch down on landing usually resulted in a collapsed nose gear. The damage rarely was serious but required several days of down-time for repair. The X-1E was the only one to have a true tail skid to protect the empennage from over-rotation during landing. There were four versions of the Bell X-1 rocket-powered research aircraft that flew at the NACA High-Speed Flight Research Station, Edwards, California. The bullet-shaped X-1 aircraft were built by Bell Aircraft Corporation, Buffalo, N.Y. for the U.S. Army Air Forces (after 1947, U.S. Air Force) and the National Advisory Committee for Aeronautics (NACA). The X-1 Program was originally designated the XS-1 for EXperimental Supersonic. The X-1's mission was to investigate the transonic speed range (speeds from just below to just above the speed of sound) and, if possible, to break the 'sound barrier.' Three different X-1s were built and designated: X-1-1, X-1-2 (later modified to become the X-1E), and X-1-3. The basic X-1 aircraft were flown by a large number of different pilots from 1946 to 1951. The X-1 Program not only proved that humans could go beyond the speed of sound, it reinforced the understanding that technological barriers could be overcome. The X-1s pioneered many structural and aerodynamic advances including extremely thin, yet extremely strong wing sections; supersonic fuselage configurations; control system requirements; powerplant compatibility; and cockpit environments. The X-1 aircraft were the first transonic-capable aircraft to use an all-moving stabilizer. The flights of the X-1s opened up a new era in aviation. The first X-1 was air-launched unpowered from a Boeing B-29 Superfortress on January 25

  4. X-1-2 on ramp during ground engine test

    NASA Technical Reports Server (NTRS)

    1947-01-01

    Ground engine test run on the Bell Aircraft Corporation X-1-2 airplane at NACA Muroc Flight Test Unit service area. Notice the front on the lower part of the aircraft aft of the nose section. The frost forms from the mixture of the propellants (including liquid oxygen) in the internal tanks. This photograph was taken in 1947. The aircraft shown is still painted in its original saffron (orange) paint finish. This was later changed to white, which was more visible against the dark blue sky than saffron turned out to be. There were four versions of the Bell X-1 rocket-powered research aircraft that flew at the NACA High-Speed Flight Research Station, Edwards, California. The bullet-shaped X-1 aircraft were built by Bell Aircraft Corporation, Buffalo, N.Y. for the U.S. Army Air Forces (after 1947, U.S. Air Force) and the National Advisory Committee for Aeronautics (NACA). The X-1 Program was originally designated the XS-1 for EXperimental Sonic. The X-1's mission was to investigate the transonic speed range (speeds from just below to just above the speed of sound) and, if possible, to break the 'sound barrier.' Three different X-1s were built and designated: X-1-1, X-1-2 (later modified to become the X-1E), and X-1-3. The basic X-1 aircraft were flown by a large number of different pilots from 1946 to 1951. The X-1 Program not only proved that humans could go beyond the speed of sound, it reinforced the understanding that technological barriers could be overcome. The X-1s pioneered many structural and aerodynamic advances including extremely thin, yet extremely strong wing sections; supersonic fuselage configurations; control system requirements; powerplant compatibility; and cockpit environments. The X-1 aircraft were the first transonic-capable aircraft to use an all-moving stabilizer. The flights of the X-1s opened up a new era in aviation. The first X-1 was air-launched unpowered from a Boeing B-29 Superfortress on Jan. 25, 1946. Powered flights began in December

  5. Search for a periodic signal from Cygnus X-3 usingmuons observed underground in the Frejus detector (4800 mwe)

    NASA Technical Reports Server (NTRS)

    Bareyre, P.; Barloutaud, R.; Becker, K. H.; Behr, L.; Berger, C.; Bland, R. W.; Chardin, G.; Daum, H. J.; Degrange, B.; Demski, S.

    1986-01-01

    Periodic signals from Cygnus X-3 in the ultra high energy range were recently reported by air shower arrays and attributed to gamma rays. Although gamma rays are expected to produce muon-poor showers, the preceding observations have stimulated similar studies based on underground muons. Two groups have claimed a significant underground signal coming from Cygnus X-3. The results are, however, extremely difficult to explain in the present framework of particle physics, and clearly need confirmation. The preliminary results obtained from the Frejus underground detector during its first 16 months of operation (March 1984 to June 1985) are presented.

  6. VLBI Measurements of Plasma Turbulence Associated with the Cygnus OB1 Association

    NASA Astrophysics Data System (ADS)

    Spangler, Steven R.; Cordes, James M.

    1998-10-01

    We have made dual-frequency (1.67 and 5.00 GHz) VLBI observations of five compact, presumably extragalactic radio sources in the Galactic plane in the constellation of Cygnus. The lines of sight to these sources pass through a part of the interstellar medium that is modified by the Cygnus OB1 association. The VLBI observations were processed to yield measurements of the scattering measure due to interstellar plasma turbulence. The dual-frequency VLBI observations allowed estimates of the possible intrinsic structure contamination of the scattering measurements. Such an error is estimated to be less than 5% of the scattering measure for our two best-observed cases, and 15% to as high as 30% for a more weakly scattered source. Modeling the spatial power spectrum of the turbulence by Pδn(q) = C2Nq-α, where q is the spatial wavenumber of the turbulent fluctuations, our observations provide a measurement of 0LC2Ndz, where L is the thickness of the scattering medium and z is a coordinate along the line of sight. When combined with our earlier observations of the radio source 2013+370, we have a total of six lines of sight through the Cygnus OB1 association. Our observations show that the scattering through the Cygnus OB1 association is heavy and that the scattering measures vary from 0.14 to 2.21 m-20/3 kpc on lines of sight separated by as little as 1°-2°. When combined with measurements of the emission measure in the same directions, our scattering-measure results constrain properties of the turbulence in the Cygnus OB1 association. Specifically, if ε is the normalized amplitude of the density fluctuations, and l0 is the outer scale to the Kolmogorov spectrum, then our combined scattering measure-emission measure data set constrains the quantity ε2/(1+ε2)l2/30. The mean value is ~4.3 × 10-13 cm-2/3, with a range of about 0.5 in the logarithm. We do not have sufficient information to determine ε and l0 separately, but plausible ranges are ε < 1 and l0 < 3 pc

  7. New Evidence for a Black Hole in the Compact Binary Cygnus X-3

    NASA Technical Reports Server (NTRS)

    Shrader, Chris R.; Titarchuk, Lev; Shaposhnikov, Nikolai

    2010-01-01

    The bright and highly variable X-ray and radio source known as Cygnus X-3 was among the first X-ray sources discovered, yet it remains in many ways an enigma. Its known to consist of a massive. Wolf-Rayet primary in an extremely tight orbit with a compact object. Yet one of the most basic of pa.ranietern the mass of the compact object - is not known. Nor is it even clear whether its is a neutron star or a black hole. In this Paper we present our analysis of the broad-band high-energy continua covering a substantial range in luminosity and spectral morphology. We apply these results to a recently identified scaling relationship which has been demonstrated to provide reliable estimates of the compact object mass in a number of accretion powered binaries. This analysis leads us to conclude that the compact object in Cygnus X-3 has a mass greater than 4.2 solar mass thus clearly indicative of a black hole and as such resolving a longstanding issue. The full range of uncertainty in our analysis and from using a. range of recently published distance estimates constrains the compact object mass to lie between 4.2 solar mass and 14.4 solar mass. Our favored estimate, based on a 9.0 kpc distance estimate is approx. l0 solar mass, with the. error margin of 3.2 solar masses. This result may thus pose challenges to shared-envelope evolutionary models of compact binaries. as well as establishing Cygnus X-3 as the first confirmed accretion-powered galactic gamma: ray source.

  8. Young and embedded clusters in Cygnus-X: evidence for building up the initial mass function?

    NASA Astrophysics Data System (ADS)

    Maia, F. F. S.; Moraux, E.; Joncour, I.

    2016-05-01

    We provide a new view on the Cygnus-X north complex by accessing for the first time the low mass content of young stellar populations in the region. Canada-France-Hawaii Telescope/Wide-Field Infrared Camera was used to perform a deep near-infrared survey of this complex, sampling stellar masses down to ˜0.1 M⊙. Several analysis tools, including a extinction treatment developed in this work, were employed to identify and uniformly characterize a dozen unstudied young star clusters in the area. Investigation of their mass distributions in low-mass domain revealed a relatively uniform log-normal initial mass function (IMF) with a characteristic mass of 0.32 ± 0.08 M⊙ and mass dispersion of 0.40 ± 0.06. In the high-mass regime, their derived slopes showed that while the youngest clusters (age < 4 Myr) presented slightly shallower values with respect to the Salpeter's, our older clusters (4 Myr < age < 18 Myr) showed IMF compliant values and a slightly denser stellar population. Although possibly evidencing a deviation from an `universal' IMF, these results also supports a scenario where these gas-dominated young clusters gradually `build up' their IMF by accreting low-mass stars formed in their vicinity during their first ˜3 Myr, before the gas expulsion phase, emerging at the age of ˜4 Myr with a fully fledged IMF. Finally, the derived distances to these clusters confirmed the existence of at least three different star-forming regions throughout Cygnus-X north complex, at distances of 500-900 pc, 1.4-1.7 and 3.0 kpc, and revealed evidence of a possible interaction between some of these stellar populations and the Cygnus OB2 association.

  9. Possible Charge-Exchange X-Ray Emission in the Cygnus Loop Detected with Suzaku

    NASA Technical Reports Server (NTRS)

    Katsuda, Satoru; Tsunemi, Hiroshi; Mori, Koji; Uchida, Hiroyuki; Kosugi, Hiroko; Kimura, Masashi; Nakajima, Hiroshi; Takakura, Satoru; Petre, Robert; Hewitt. John W.; Yamaguchi, Hiroya

    2011-01-01

    X-ray spectroscopic measurements of the Cygnus Loop supernova remnant indicate that metal abundances throughout most of the remnant s rim are depleted to approx.0.2 times the solar value. However, recent X-ray studies have revealed in some narrow regions along the outermost rim anomalously "enhanced" abundances (up to approx. 1 solar). The reason for these anomalous abundances is not understood. Here, we examine X-ray spectra in annular sectors covering nearly the entire rim of the Cygnus Loop using Suzaku (21 pointings) and XMM-Newton (1 pointing). We find that spectra in the "enhanced" abundance regions commonly show a strong emission feature at approx.0.7 keV. This feature is likely a complex of He-like O K(gamma + delta + epsilon), although other possibilities cannot be fully excluded. The intensity of this emission relative to He-like O K(alpha) appears to be too high to be explained as thermal emission. This fact, as well as the spatial concentration of the anomalous abundances in the outermost rim, leads us to propose an origin from charge-exchange processes between neutrals and H-like O. We show that the presence of charge-exchange emission could lead to the inference of apparently "enhanced" metal abundances using pure thermal emission models. Accounting for charge-exchange emission, the actual abundances could be uniformly low throughout the rim. The overall abundance depletion remains an open question. Subject headings: ISM: abundances ISM: individual objects (Cygnus Loop) ISM: supernova remnants X-rays: ISM atomic processes

  10. Multispectral analysis of Cygnus Loop and IC 443 with iFTS

    NASA Astrophysics Data System (ADS)

    Alarie, Alexandre

    2016-06-01

    Cygnus Loop and IC 443 are supernova remnants (SNRs) recognized as excellent laboratories to study the interaction between the SNR and the surrounding interstellar medium. The overall complex morphologies and large dimensions of those SNRs have always represented an observational challenge. This is especially true for optical observations for which the data available are very scarce. In order to palliate this scarcity in the optical regime, we are using two wide field-imaging Fourier transform spectrometers (iFTS): SpIOMM, attached to the Mont Megantic 1.6-m telescope and SITELLE recently installed at the Canada-France-Hawaii Telescope. Both instruments are capable of obtaining the spatially resolved visible spectrum of every source of light in an 11 arc minute field of view, in selected bandpasses. Using those iFTS on extended object such as Cygnus Loop and IC 443, we have obtained millions of spectra covering all major emission lines. Due to the large projected surface of Cygnus Loop and IC 443, we started a survey and the latest dataset will be presented. The extended 2D mappings of several emission lines ([O II] 3727, [O III] 4363, Hb, [O III] 4959, 5007, Ha, [N II] 6548, 6583 and [S II] 6716, 6731) allowed the creation of numerous ratios maps useful for shock diagnostics: shock velocity, electronic and temperature densities, location of incomplete shocks and extinction maps. These maps are then used to determine key parameters needed to compare the observations with theoretical shock models. Using the shock modeling code MAPPINGS, we can create abundances maps of nitrogen, oxygen and sulfur for an appreciable fraction of the observed regions. Furthermore, using the radial velocity as well as the spectro-imagery capability of the iFTS, we can have a glimpse of the three-dimensional structure of the remnants. All those data allow us to forge a coherent analysis of the complex interaction between the SNRs and their surrounding environment.

  11. CIRCUMSTELLAR STRUCTURE AROUND EVOLVED STARS IN THE CYGNUS-X STAR FORMATION REGION

    SciTech Connect

    Kraemer, Kathleen E.; Price, Stephan D.

    2010-06-15

    We present observations of newly discovered 24 {mu}m circumstellar structures detected with MIPS around three evolved stars in the Cygnus-X star-forming region. One of the objects, BD+43 3710, has a bipolar nebula, possibly due to an outflow or a torus of material. A second, HBHA 4202-22, a Wolf-Rayet candidate, shows a circular shell of 24 {mu}m emission suggestive of either a limb-brightened shell or disk seen face-on. No diffuse emission was detected around either of these two objects in the Spitzer 3.6-8 {mu}m IRAC bands. The third object is the luminous blue variable candidate G79.29+0.46. We resolved the previously known inner ring in all four IRAC bands. The 24 {mu}m emission from the inner ring extends {approx}1.'2 beyond the shorter wavelength emission, well beyond what can be attributed to the difference in resolutions between MIPS and IRAC. Additionally, we have discovered an outer ring of 24 {mu}m emission, possibly due to an earlier episode of mass loss. For the two shell stars, we present the results of radiative transfer models, constraining the stellar and dust shell parameters. The shells are composed of amorphous carbon grains, plus polycyclic aromatic hydrocarbons in the case of G79.29+0.46. Both G79.29+0.46 and HBHA 4202-22 lie behind the main Cygnus-X cloud. Although G79.29+0.46 simply may be on the far side of the cloud, HBHA 4202-22 is unrelated to the Cygnus-X star formation region.

  12. Enhancement of the Forbidden Line in the Southwestern Knot of the Cygnus Loop

    NASA Astrophysics Data System (ADS)

    Uchida, Hiroyuki; Tanaka, Takaaki; Katsuda, Satoru; Mori, Koji; Koyama, Katsuji; Tsunemi, Hiroshi

    We observed the southwestern knot (SW-K) of the Cygnus Loop supernova remnant with XMM-Newton RGS. The SW-K is one of the brightest and the most compact region in this remnant. The high energy resolution of RGS enables us to resolve details of the line complex of SW-K below ˜1 keV. We particularly focus on the OVII triplet in which the forbidden line is significantly enhanced relative to the resonance line. The measured forbidden-to-resonance line ratio is 1.75±0.13 which can not be explained by standard thermal plasma models such as collisional ionization equilibrium or ionizing plasmas. Recently, our comprehensive study of the Cygnus Loop with Suzaku XIS has found a possible sign of charge exchange (CX) from some points of its rim; their spectra always show a strong excess at ˜0.7 keV whose origin is likely a complex of cascade lines of He-like Oxygen (Kgamma+delta+epsilon). Since the SW-K is one of these regions, the RGS spectrum provides a conclusive information about the presence of the CX emission. It will also resolve a problem of the abundance inhomogeneity which is extensively seen in the Cygnus Loop and more importantly, will give us direct evidence for an interaction between ambient neutrals and ionized materials existing behind the shock. In this talk, we will also discuss other important possibilities such as the recombination or the resonance scattering for the SW-K spectrum. The RGS observation will cast a new light on the X-ray studies of shock-cloud interactions in SNRs ahead of the ASTRO-H era.

  13. Non-Thermal Emission from the massive stellar association Cygnus OB2

    NASA Astrophysics Data System (ADS)

    Fenech, Danielle Marie; Prinja, Raman; Morford, Jack

    2015-08-01

    The Cygnus OB2 association is located in the Galactic Cygnus X region at a distance of 1.4 kpc, making it one of the closest young massive stellar clusters. Cyg OB2 is not only very rich in stellar density but also in its diversity. It is known to contain a rich population of massive stars including almost 2600 OB stars, a large number of binaries (including a collection of some of the most interesting radio emitting colliding-wind binaries), and a considerable number of pre-main sequence stars.We report here on the first results from The Cyg OB2 Radio Survey (COBRaS), which is a UCL-led e-MERLIN legacy project to provide a deep-field radio mapping of the Cygnus OB2 association. The project has been awarded a total allocation of 252 hours at C-band (5GHz) and 42 hours at L-band (1.6GHz) to image the core of the cluster.We discuss in particular the presence of non-thermal radio emission at 20 cm (L-band), and its potential as a highly efficient way to identify binaries via single-epoch observations, particularly for colliding-wind binaries. COBRaS data will provide a powerful tool for establishing binary incidence in Cyg~OB2, specifically in the difficult intermediate-period range (1--100~yr). Knowing the binary frequency over the whole period range is important for population synthesis.Additionally, Weak-lined T Tauri (WTT) stars in Cyg OB2 also emit non-thermal radiation from magnetically active regions. Hence these observations will be used to detect the considerable population of younger stars.Ultimately, we aim to assemble a substantial and uniquely sensitive radio dataset, which will be exploited to address several fundamentally important areas of stellar astrophysics, including mass-loss, binary frequency, stellar cluster dynamics, and triggered star-formation.

  14. NEW EVIDENCE FOR A BLACK HOLE IN THE COMPACT BINARY CYGNUS X-3

    SciTech Connect

    Shrader, Chris R.; Titarchuk, Lev; Shaposhnikov, Nikolai

    2010-07-20

    The bright and highly variable X-ray and radio source known as Cygnus X-3 was among the first X-ray sources discovered, yet it remains in many ways an enigma. It is known to consist of a massive, Wolf-Rayet primary in an extremely tight orbit with a compact object. However, one of the most basic of parameters-the mass of the compact object-is not known, nor is it even clear whether it is a neutron star or a black hole (BH). In this paper, we present our analysis of the broadband high-energy continua covering a substantial range in luminosity and spectral morphology. We apply these results to a recently identified scaling relationship that has been demonstrated to provide reliable estimates of the compact object mass in a number of accretion powered binaries. This analysis leads us to conclude that the compact object in Cygnus X-3 has a mass greater than 4.2 M{sub sun}, thus clearly indicative of a BH and as such, resolves a long-standing issue. The full range of uncertainty in our analysis and from using a range of recently published distance estimates constrain the compact object mass to lie between 4.2 M{sub sun} and 14.4 M{sub sun}. Our favored estimate, based on a 9.0 kpc distance estimate, is {approx}10 M{sub sun}, with an error margin of 3.2 solar masses. This result may thus pose challenges to shared-envelope evolutionary models of compact binaries, as well as establishing Cygnus X-3 as the first confirmed accretion-powered galactic gamma-ray source.

  15. NuSTAR Observations of the Powerful Radio Galaxy Cygnus A

    NASA Astrophysics Data System (ADS)

    Reynolds, Christopher S.; Lohfink, Anne M.; Ogle, Patrick M.; Harrison, Fiona A.; Madsen, Kristin K.; Fabian, Andrew C.; Wik, Daniel R.; Madejski, Grzegorz; Ballantyne, David R.; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Fuerst, Felix; Hailey, Charles J.; Lanz, Lauranne; Miller, Jon M.; Saez, Cristian; Stern, Daniel; Walton, Dominic J.; Zhang, William

    2015-08-01

    We present NuSTAR observations of the powerful radio galaxy Cygnus A, focusing on the central absorbed active galactic nucleus (AGN). Cygnus A is embedded in a cool-core galaxy cluster, and hence we also examine archival XMM-Newton data to facilitate the decomposition of the spectrum into the AGN and intracluster medium components. NuSTAR gives a source-dominated spectrum of the AGN out to \\gt 70 keV. In gross terms, the NuSTAR spectrum of the AGN has the form of a power law ({{Γ }}∼ 1.6-1.7) absorbed by a neutral column density of {N}{{H}}∼ 1.6× {10}23 {{cm}}-2. However, we also detect curvature in the hard (\\gt 10 keV) spectrum resulting from reflection by Compton-thick matter out of our line of sight to the X-ray source. Compton reflection, possibly from the outer accretion disk or obscuring torus, is required even permitting a high-energy cut off in the continuum source; the limit on the cut-off energy is {E}{cut}\\gt 111 keV(90% confidence). Interestingly, the absorbed power law plus reflection model leaves residuals suggesting the absorption/emission from a fast (15,000-26,000 {km} {{{s}}}-1 ), high column-density ({N}W\\gt 3× {10}23 {{cm}}-2), highly ionized (ξ ∼ 2500 {erg} {cm} {{{s}}}-1) wind. A second, even faster ionized wind component is also suggested by these data. We show that the ionized wind likely carries a significant mass and momentum flux, and may carry sufficient kinetic energy to exercise feedback on the host galaxy. If confirmed, the simultaneous presence of a strong wind and powerful jets in Cygnus A demonstrates that feedback from radio-jets and sub-relativistic winds are not mutually exclusive phases of AGN activity but can occur simultaneously.

  16. A parallax distance to the microquasar GRS 1915+105 and a revised estimate of its black hole mass

    SciTech Connect

    Reid, M. J.; McClintock, J. E.; Steiner, J. F.; Narayan, R.; Steeghs, D.; Remillard, R. A.; Dhawan, V.

    2014-11-20

    Using the Very Long Baseline Array, we have measured a trigonometric parallax for the microquasar GRS 1915+105, which contains a black hole and a K-giant companion. This yields a direct distance estimate of 8.6{sub −1.6}{sup +2.0} kpc and a revised estimate for the mass of the black hole of 12.4{sub −1.8}{sup +2.0} M {sub ☉}. GRS 1915+105 is at about the same distance as some H II regions and water masers associated with high-mass star formation in the Sagittarius spiral arm of the Galaxy. The absolute proper motion of GRS 1915+105 is –3.19 ± 0.03 mas yr{sup –1} and –6.24 ± 0.05 mas yr{sup –1} toward the east and north, respectively, which corresponds to a modest peculiar speed of 22 ± 24 km s{sup –1} at the parallax distance, suggesting that the binary did not receive a large velocity kick when the black hole formed. On one observational epoch, GRS 1915+105 displayed superluminal motion along the direction of its approaching jet. Considering previous observations of jet motions, the jet in GRS 1915+105 can be modeled with a jet inclination to the line of sight of 60° ± 5° and a variable flow speed between 0.65c and 0.81c, which possibly indicates deceleration of the jet at distances from the black hole ≳ 2000 AU. Finally, using our measurements of distance and estimates of black hole mass and inclination, we provisionally confirm our earlier result that the black hole is spinning very rapidly.

  17. Angular resolution studies of the CYGNUS array using the shadows of the sun and moon

    SciTech Connect

    Shoup, A.L.

    1993-01-01

    Using the cosmic ray shadows of the sun and moon, we have estimated the angular resolution of the CYGNUS extensive air shower array. With the event sample now available we estimate the angular resolution of the array to be 0.70[sub [minus]0.06][sup [plus]0.07] degrees. The resolution depends on the total number of detected shower particles. A new parameterization of the measured shower-front timing structure and the use of counters with small pulse areas lead to a [approximately]25% improvement in the resolution. The systematic pointing error of the array is less than 0.4[degree].

  18. Angular resolution studies of the CYGNUS array using the shadows of the sun and moon

    SciTech Connect

    Shoup, A.L.; The CYGNUS Collaboration

    1993-05-01

    Using the cosmic ray shadows of the sun and moon, we have estimated the angular resolution of the CYGNUS extensive air shower array. With the event sample now available we estimate the angular resolution of the array to be 0.70{sub {minus}0.06}{sup {plus}0.07} degrees. The resolution depends on the total number of detected shower particles. A new parameterization of the measured shower-front timing structure and the use of counters with small pulse areas lead to a {approximately}25% improvement in the resolution. The systematic pointing error of the array is less than 0.4{degree}.

  19. Detection of H3+ in the diffuse interstellar medium toward Cygnus OB2 No. 12.

    PubMed

    McCall, B J; Geballe, T R; Hinkle, K H; Oka, T

    1998-03-20

    The molecular ion H3+ is considered the cornerstone of interstellar chemistry because it initiates the reactions responsible for the production of many larger molecules. Recently discovered in dense molecular clouds, H3+ has now been observed in the diffuse interstellar medium toward Cygnus OB2 No. 12. Analysis of H3+ chemistry suggests that the high H3+ column density (3.8 x 10(14) per square centimeter) is due not to a high H3+ concentration but to a long absorption path. This and other work demonstrate the ubiquity of H3+ and its potential as a probe of the physical and chemical conditions in the interstellar medium.

  20. Fermi-LAT Detection of a Gamma-ray Flare from Cygnus X-3

    NASA Astrophysics Data System (ADS)

    Cheung, C. C.; Loh, Alan

    2016-09-01

    The Large Area Telescope (LAT), one of the two instruments on the Fermi Gamma-ray Space Telescope, has observed a gamma-ray flare from the high-mass X-ray binary Cygnus X-3. Preliminary analysis indicates that on 2016 September 15 and 16, the gamma-ray source was observed with respective daily averaged fluxes (E > 100MeV) of (2.2+/-0.4) x 10^-6 photons cm^-2 s^-1 and (2.8+/-0.4) x 10^-6 photons cm^-2 s^-1 (errors are statistical only).

  1. Nine New Variable Stars in Cygnus and Variability Type Determination of [Wm2007] 1176

    NASA Astrophysics Data System (ADS)

    Furgoni, R.

    2013-06-01

    I report the discovery of nine new variable stars in Cygnus: five pulsating (VSX J192319.8+280832, VSX J192405.8+280352, VSX J192220.7+275518, VSX J192304.4+280231, VSX J192255.1+274744) and four eclipsing (VSX J192252.4+280217, VSX J192251.4+280456, VSX J192226.0+281019, VSX J192524.9+275342). The variability type of the variable star [WM2007] 1176, that was considered in literature a possible RRC, was found to be a W UMa variable with an obvious O'Connell effect.

  2. Long-term studies with the Ariel 5 ASM. I - Hercules X-1, Vela X-1, and Centaurus X-3

    NASA Technical Reports Server (NTRS)

    Holt, S. S.; Kaluzienski, L. J.; Boldt, E. A.; Serlemitsos, P. A.

    1979-01-01

    Twelve hundred days of 3-6 keV X-ray data from Her X-1, Vela X-1, and Cen X-3 accumulated with the Ariel 5 All-Sky Monitor are interrogated. The binary periodicities of all three can be clearly observed, as can the 35 day variation of Her X-1, for which we can refine the period to 34.875 plus or minus 0.030 days. No such longer-term periodicity less than 200 days is observed from Vela X-1. The 26.6 days low-state recurrence period for Cen X-3 is not observed, but a 43.0 day candidate periodicity is found which may be consistent with the precession of an accretion disk in that system. The present results are illustrative of the long-term studies which can be performed on approximately 50 sources over a temporal base which will ultimately extend to at least 1800 days.

  3. X-1A in flight with flight data superimposed

    NASA Technical Reports Server (NTRS)

    1953-01-01

    This photo of the X-1A includes graphs of the flight data from Maj. Charles E. Yeager's Mach 2.44 flight on December 12, 1953. (This was only a few days short of the 50th anniversary of the Wright brothers' first powered flight.) After reaching Mach 2.44, then the highest speed ever reached by a piloted aircraft, the X-1A tumbled completely out of control. The motions were so violent that Yeager cracked the plastic canopy with his helmet. He finally recovered from a inverted spin and landed on Rogers Dry Lakebed. Among the data shown are Mach number and altitude (the two top graphs). The speed and altitude changes due to the tumble are visible as jagged lines. The third graph from the bottom shows the G-forces on the airplane. During the tumble, these twice reached 8 Gs or 8 times the normal pull of gravity at sea level. (At these G forces, a 200-pound human would, in effect, weigh 1,600 pounds if a scale were placed under him in the direction of the force vector.) Producing these graphs was a slow, difficult process. The raw data from on-board instrumentation recorded on oscillograph film. Human computers then reduced the data and recorded it on data sheets, correcting for such factors as temperature and instrument errors. They used adding machines or slide rules for their calculations, pocket calculators being 20 years in the future. Three second generation Bell Aircraft Corporations X-1s were built, though four were requested. They were the X-1A (48-1384); X-1B (48-1385); X-1C (canceled and never built); X-1D (48-1386). These aircraft were similar to the X-1s, except they were five feet longer, had conventional canopies, and were powered by Reaction Motors, Inc. XLR11-RM-5 rocket engines. The RM-5, like the previous engines, had no throttle and was controlled by igniting one or more of the four thrust chambers at will. The original program outline called for the X-1A and X-1B to be used for dynamic stability and air loads investigations. The X-1D was to be used

  4. X-1E launch from B-50 mothership

    NASA Technical Reports Server (NTRS)

    1950-01-01

    Beginning in 1946, two XS-1 experimental research aircraft (later redesignated X-1s) conducted pioneering tests at Muroc Army Air Field (now Edwards Air Force Base) in California to obtain flight data on conditions in the transonic speed range. These early tests culminated on October 14, 1947, in the first piloted flight faster than Mach 1.0, the speed of sound. During November, 1947, the Air Force authorized studies that led to a contract (W-33-038-ac-20062) with Bell Aircraft to build four (later three) improved X-1 aircraft (the X-1C being cancelled). Designated X-1A (#48-1384), X-1B (#48-1385), and X-1D (#48-1386), the airplanes were ready by late 1950. The aircraft were about five feet longer and 2,500 lbs. heavier than the original X-craft planes. They used the 8-percent wing like the earlier X-craft. The D-model had a low-pressure turbo-pump and the B model was fitted with a prototype hydrogen peroxide reaction control system for later aircraft to use in exoatmospheric research flights. Access was through a lift-off canopy. The planes were finished in their bare metal color and white. The X-1D was ready first, but on what was intended to be its second flight (August 22, 1951) it was jettisoned and crashed at Muroc after an aerial explosion while still mated to its mother (B-50A [#46-006A]) ship. The long-delayed X-1 #3 airplane with the turbine pump was finally completed for the NACA in 1951. It made its first glide flight on July 20, 1951, with NACA pilot Joseph Cannon. Its second and final captive flight was on November 9, 1951. It was destroyed on the ground by an explosion and fire along with its B-50A mother ship while attempting to jettison fuel. The X-1A arrived at Muroc in January, 1953 and had its first powered flight on February 21, 1953. On December 8, 1953 with Yeager as pilot, the aircraft investigated high-speed stability and control issues. The X-1A was turned over to the NACA, but was lost to aerial explosion on August 8, 1955, shortly before

  5. Identification of the TeV gamma-ray source ARGO J2031+4157 with the Cygnus Cocoon

    SciTech Connect

    Bartoli, B.; Catalanotti, S.; D'Ettorre Piazzoli, B.; Di Girolamo, T.; Bernardini, P.; D'Amone, A.; De Mitri, I.; Bi, X. J.; Cao, Z.; Chen, S. Z.; Branchini, P.; Budano, A.; Camarri, P.; Cardarelli, R.; Di Sciascio, G.; Chen, T. L.; Danzengluobu; Creti, P.; Cui, S. W.; Dai, B. Z.; Collaboration: ARGO-YBJ Collaboration; and others

    2014-08-01

    The extended TeV gamma-ray source ARGO J2031+4157 (or MGRO J2031+41) is positionally consistent with the Cygnus Cocoon discovered by Fermi-LAT at GeV energies in the Cygnus superbubble. Reanalyzing the ARGO-YBJ data collected from 2007 November to 2013 January, the angular extension and energy spectrum of ARGO J2031+4157 are evaluated. After subtracting the contribution of the overlapping TeV sources, the ARGO-YBJ excess map is fitted with a two-dimensional Gaussian function in a square region of 10° × 10°, finding a source extension σ{sub ext}= 1.°8 ± 0.°5. The observed differential energy spectrum is dN/dE = (2.5 ± 0.4) × 10{sup –11}(E/1 TeV){sup –2.6±0.3} photons cm{sup –2} s{sup –1} TeV{sup –1}, in the energy range 0.2-10 TeV. The angular extension is consistent with that of the Cygnus Cocoon as measured by Fermi-LAT and the spectrum also shows a good connection with the one measured in the 1-100 GeV energy range. These features suggest to identify ARGO J2031+4157 as the counterpart of the Cygnus Cocoon at TeV energies. The Cygnus Cocoon, located in the star-forming region of Cygnus X, is interpreted as a cocoon of freshly accelerated cosmic rays related to the Cygnus superbubble. The spectral similarity with supernova remnants (SNRs) indicates that the particle acceleration inside a superbubble is similar to that in an SNR. The spectral measurements from 1 GeV to 10 TeV allows for the first time to determine the possible spectrum slope of the underlying particle distribution. A hadronic model is adopted to explain the spectral energy distribution.

  6. The Nuclear Jet and Counterjet Region of the Radio Galaxy Cygnus A

    NASA Astrophysics Data System (ADS)

    Bartel, N.; Sorathia, B.; Bietenholz, M. F.; Carilli, C. L.; Diamond, P.

    1995-12-01

    Very-long-baseline interferometry images of the nuclear region of the radio galaxy Cygnus A reveal a pronounced "core" and a knotty jet and counterjet. The knots are moving away from the core at apparent speeds which are subluminal for h = 1 [h = H_0/100 km.s-1.Mpc-1;1 parsec (pc) = 3.09 x 1016m] and about c for h = 0.5. The jet is aligned with the outer, kiloparsec-scale jet to within 2^circ. The counterjet has a total flux density at 5 GHz of about one-fifth of that of the jet. In the context of the twin relativistic jet model for active galactic nuclei, the jet in Cygnus A is oriented at an angle to our line of sight of 35-80^circ and 55-85^circ, and the intrinsic velocity of the jet fluid is 0.4-0.6c and 0.6-1c for h = 1 and h = 0.5, respectively.

  7. The nuclear jet and counterjet region of the radio galaxy Cygnus A.

    PubMed Central

    Bartel, N; Sorathia, B; Bietenholz, M F; Carilli, C L; Diamond, P

    1995-01-01

    Very-long-baseline interferometry images of the nuclear region of the radio galaxy Cygnus A reveal a pronounced "core" and a knotty jet and counterjet. The knots are moving away from the core at apparent speeds which are subluminal for h = 1 [h = H0/100 km.s-1.Mpc-1;1 parsec (pc) = 3.09 x 10(16)m] and about c for h = 0.5. The jet is aligned with the outer, kiloparsec-scale jet to within 2 degrees. The counterjet has a total flux density at 5 GHz of about one-fifth of that of the jet. In the context of the twin relativistic jet model for active galactic nuclei, the jet in Cygnus A is oriented at an angle to our line of sight of 35-80 degrees and 55-85 degrees, and the intrinsic velocity of the jet fluid is 0.4-0.6c and 0.6-1c for h = 1 and h = 0.5, respectively. PMID:11607600

  8. Discovery of TeV Gamma-Ray Emission from the Cygnus Region

    SciTech Connect

    Abdo, A.A.; Allen, B.; Berley, D.; Blaufuss, E.; Casanova, S.; Chen, C.; Coyne, D.G.; Delay, R.S.; Dingus, B.L.; Ellsworth, R.W.; Fleysher, L.; Fleysher, R.; Gonzalez, M.M.; Goodman, J.A.; Hays, E.; Hoffman, C.M.; Kolterman, B.E.; Kelley, L.A.; Lansdell, C.P.; Linnemann, J.T.; McEnery, J.E.

    2006-11-28

    The diffuse gamma radiation arising from the interaction of cosmic ray particles with matter and radiation in the Galaxy is one of the few probes available to study the origin of the cosmic rays. Milagro is a water Cherenkov detector that continuously views the entire overhead sky. The large field-of-view combined with the long observation time makes Milagro the most sensitive instrument available for the study of large, low surface brightness sources such as the diffuse gamma radiation arising from interactions of cosmic radiation with interstellar matter. In this paper we present spatial and flux measurements of TeV gamma-ray emission from the Cygnus Region. The TeV image shows at least one new source MGRO J2019+37 as well as correlations with the matter density in the region as would be expected from cosmic-ray proton interactions. However, the TeV gamma-ray flux as measured at {approx}12 TeV from the Cygnus region (after excluding MGRO J2019+37) exceeds that predicted from a conventional model of cosmic ray production and propagation. This observation indicates the existence of either hard-spectrum cosmic-ray sources and/or other sources of TeV gamma rays in the region.

  9. LOFAR imaging of Cygnus A - Direct detection of a turnover in the hotspot radio spectra

    NASA Astrophysics Data System (ADS)

    McKean, J. P.; Godfrey, L. E. H.; Vegetti, S.; Wise, M. W.; Morganti, R.; Hardcastle, M. J.; Rafferty, D.; Anderson, J.; Avruch, I. M.; Beck, R.; Bell, M. E.; van Bemmel, I.; Bentum, M. J.; Bernardi, G.; Best, P.; Blaauw, R.; Bonafede, A.; Breitling, F.; Broderick, J. W.; Brüggen, M.; Cerrigone, L.; Ciardi, B.; de Gasperin, F.; Deller, A.; Duscha, S.; Engels, D.; Falcke, H.; Fallows, R. A.; Frieswijk, W.; Garrett, M. A.; Grießmeier, J. M.; van Haarlem, M. P.; Heald, G.; Hoeft, M.; Horst, A. J. van der; Iacobelli, M.; Intema, H.; Juette, E.; Karastergiou, A.; Kondratiev, V. I.; Koopmans, L. V. E.; Kuniyoshi, M.; Kuper, G.; van Leeuwen, J.; Maat, P.; Mann, G.; Markoff, S.; McFadden, R.; McKay-Bukowski, D.; Mulcahy, D. D.; Munk, H.; Nelles, A.; Orru, E.; Paas, H.; Pandey-Pommier, M.; Pietka, M.; Pizzo, R.; Polatidis, A. G.; Reich, W.; Röttgering, H. J.. A.; Rowlinson, A.; Scaife, A. M. M.; Serylak, M.; Shulevski, A.; Sluman, J.; Smirnov, O.; Steinmetz, M.; Stewart, A.; Swinbank, J.; Tagger, M.; Thoudam, S.; Toribio, M. C.; Vermeulen, R.; Vocks, C.; van Weeren, R. J.; Wucknitz, O.; Yatawatta, S.; Zarka, P.

    2016-08-01

    The low-frequency radio spectra of the hotspots within powerful radio galaxies can provide valuable information about the physical processes operating at the site of the jet termination. These processes are responsible for the dissipation of jet kinetic energy, particle acceleration, and magnetic-field generation. Here we report new observations of the powerful radio galaxy Cygnus A using the Low Frequency Array (LOFAR) between 109 and 183 MHz, at an angular resolution of ˜3.5 arcsec. The radio emission of the lobes is found to have a complex spectral index distribution, with a spectral steepening found towards the centre of the source. For the first time, a turnover in the radio spectrum of the two main hotspots of Cygnus A has been directly observed. By combining our LOFAR imaging with data from the Very Large Array at higher frequencies, we show that the very rapid turnover in the hotspot spectra cannot be explained by a low-energy cut-off in the electron energy distribution, as has been previously suggested. Thermal (free-free) absorption or synchrotron self absorption models are able to describe the low-frequency spectral shape of the hotspots, however, as with previous studies, we find that the implied model parameters are unlikely, and interpreting the spectra of the hotspots remains problematic.

  10. Coordinated Xmm-Newton Spectroscopy of Circinus X-1

    NASA Astrophysics Data System (ADS)

    Shirey, Robert

    During absorption dips in the unusual LMXB Circinus X-1, a bright spectral component is obscured, revealing a faint scattered component. Using RXTE, we found a similar Fe Kalpha flux inside and outside dips, suggesting that Fe fluorescence occurs in the scattering medium. Our extensive RXTE study also revealed that intensity flares in Cir X-1 are associated with branches of a Z-source track. We discovered an unusual line- or edge-like feature near 10 keV on the normal and flaring branches. We propose observations with RXTE during our approved XMM- Newton AO-1 observations of Cir X-1 in order to perform simultaneous broad-band and high-resolution spectroscopy during dips and flares.

  11. Preconceptual design requirements for the X-1 Advanced Radiation Source

    SciTech Connect

    Rochau, G.E.; Hands, J.A.; Raglin, P.S.; Ramirez, J.J.; Goldstein, S.A.; Cereghino, S.J.; MacLeod, G.

    1998-09-01

    The X-1 Advanced Radiation Source represents the next step in providing the US Department of Energy`s Stockpile Stewardship Program with the high-energy, large volume, laboratory x-ray source for the Radiation Effects Science and Simulation, Inertial Confinement Fusion, and Weapon Physics Programs. Advances in fast pulsed power technology and in z-pinch hohlraums on Sandia National Laboratories` Z Accelerator provide sufficient basis for pursuing the development of X-1. The X-1 plan follows a strategy based on scaling the 2 MJ x-ray output on Z via a 3-fold increase in z-pinch load current. The large volume (>5 cm{sup 3}), high temperature (>150 eV), temporally long (>10 ns) hohlraums are unique outside of underground nuclear weapon testing. Analytical scaling arguments and hydrodynamic simulations indicate that these hohlraums at temperatures of 230--300 eV will ignite thermonuclear fuel and drive the reaction to a yield of 200 to 1,000 MJ in the laboratory. X-1 will provide the high-fidelity experimental capability to certify the survivability and performance of non-nuclear weapon components in hostile radiation environments. Non-ignition sources will provide cold x-ray environments (<15 keV), and high yield fusion burn sources will provide high fidelity warm x-ray environments (15 keV--80 keV).

  12. Response of the middle atmosphere to Sco X-1

    NASA Technical Reports Server (NTRS)

    Goldberg, R. A.; Barcus, J. R.; Mitchell, J. D.

    1985-01-01

    On the night of Mar. 9, 1983 (UT) at Punta Lobos Launch Site, Peru (12.5 deg S, 76.8 deg W, magnetic dip -0.7 deg), a sequence of sounding rockets was flown to study the electrical structure of the equatorial middle atmosphere and to evaluate perturbations on this environment induced by the X-ray star Sco X-1. The rocket series was anchored by two Nike Orion payloads (31.032 and 31.033) which were launched at 0327 and 0857 UT, near Sco X-1 star-rise and after it had attained an elevation angle of 70 deg E. An enhanced flux of X-rays was observed on the second Nike Orion flight (31.033). This increase is directly attributed to Sco X-1, both from the spectral properties of the measured X-ray distribution and by spatial information acquired from a spinning X-ray detector during the upleg portion of the 31.033 flight. Simultaneously, a growth in ion conductivity and density was seen to occur in the lower mesosphere between 60 and 80 km on the second flight, specifically in the region of maximum energy deposition by the Sco X-1 X-rays. The results imply the presence of a significant number of ionized heavy constituents within the lower mesosphere, with masses possibly in the submacroscopoic range.

  13. Herschel Observations of Circinus X-1 during Outburst and Quiescence

    NASA Astrophysics Data System (ADS)

    Harrison, Thomas E.; Gelino, Dawn M.; Buxton, Michelle; Fost, Tyler

    2014-07-01

    We have used the Photodetector Array Camera and Spectrometer and Spectral and Photometric Imaging REceiver instruments on the Herschel Space Observatory to observe Cir X-1 both in and out of outburst. We detected Cir X-1 during outburst at 70 μm. Unfortunately, a cold background source dominates Cir X-1 at longer wavelengths. We have assembled optical and infrared (IR) data for Cir X-1 to model its spectral energy distribution (SED) in both quiescence and outburst and find that in both states it is consistent with a heavily reddened, 10,000 K blackbody. We believe this behavior is completely consistent with previous suggestions that these outbursts are due to accretion disk events, not unlike those of dwarf novae. To explore the behavior of other low-mass X-ray binaries with reported synchrotron jets, we have extracted and/or compiled optical and near- and mid-IR data sets for five such systems to construct their SEDs. The Z-source GX 349+2 and the black hole system GRS 1915+105 have strong and variable mid-IR excesses that suggest synchrotron emission. The other Z-sources have rather weak (or no) IR excesses that can be explained as reddened blackbody spectra with the addition of either synchrotron or bremsstrahlung components. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  14. Recurrent X-ray outbursts from Aquila X-1

    NASA Technical Reports Server (NTRS)

    Kaluzienski, L. J.; Holt, S. S.; Boldt, E. A.; Serlemitsos, P. J.

    1976-01-01

    Aquila X-1 observations by the All Sky Monitor on Ariel 5 are presented. Data is compared with that obtained by rocket survey, and by the Uhuru, OSO 7, and OAO 3 satellites. The variability of brightness is discussed as a connection between dwarf novae and long term transient X ray sources.

  15. Herschel observations of Circinus X-1 during outburst and quiescence

    SciTech Connect

    Harrison, Thomas E.; Gelino, Dawn M.; Buxton, Michelle; Fost, Tyler E-mail: dawn@ipac.caltech.edu E-mail: tyler.fost@gmail.com

    2014-07-01

    We have used the Photodetector Array Camera and Spectrometer and Spectral and Photometric Imaging REceiver instruments on the Herschel Space Observatory to observe Cir X-1 both in and out of outburst. We detected Cir X-1 during outburst at 70 μm. Unfortunately, a cold background source dominates Cir X-1 at longer wavelengths. We have assembled optical and infrared (IR) data for Cir X-1 to model its spectral energy distribution (SED) in both quiescence and outburst and find that in both states it is consistent with a heavily reddened, 10,000 K blackbody. We believe this behavior is completely consistent with previous suggestions that these outbursts are due to accretion disk events, not unlike those of dwarf novae. To explore the behavior of other low-mass X-ray binaries with reported synchrotron jets, we have extracted and/or compiled optical and near- and mid-IR data sets for five such systems to construct their SEDs. The Z-source GX 349+2 and the black hole system GRS 1915+105 have strong and variable mid-IR excesses that suggest synchrotron emission. The other Z-sources have rather weak (or no) IR excesses that can be explained as reddened blackbody spectra with the addition of either synchrotron or bremsstrahlung components.

  16. Sunspot 1520 Releases Strong (X1.4) Solar Flare

    NASA Video Gallery

    This movie shows the sun July 10-12, ending with the X1.4 class flare on July 12, 2012. It was captured by NASA’s Solar Dynamics Observatory in the 131 Angstrom wavelength - a wavelength that is...

  17. Origin of ultra-high-energy gamma-rays from Cygnus X-3 and related sources

    NASA Technical Reports Server (NTRS)

    Kazanas, D.; Ellison, D. C.

    1986-01-01

    Diffusive shock acceleration of ions is examined as the mechanism responsible for the ultrahigh energy (UHE) gamma ray emission observed from Cygnus X-3 and several other binary X-ray sources at energies of 10 to the 15th eV and higher. The shock acceleration can under reasonable assumptions be sufficiently short to allow acceleration of ions to energies near 10 to the 16th eV. It is proposed that the subsequent proton-proton collisions and photodissociation of He-4 can produce a flux of neutrons that escapes from the acceleration site despite high magnetic fields. These neutrons, by interacting with the binary companion, produce the observed UHE radiation.

  18. Cygnus Pressured Cargo Module: Validation of Mathematical Model and Dynamic Qualification of Secondary Structures

    NASA Astrophysics Data System (ADS)

    Bellini, Marina; Luison, Dario; Tizzani, Luca

    2012-07-01

    Thales Alenia Space Italy is in charge to develop build- up, integrate and verify Cygnus Pressurized Cargo Module (PCM). This cargo is characterized by the large amount of payload, wrapped in foam, transferred in soft stowage bags, connected to the structure of support by belts. The paper summarizes the several tests performed to acquire the dynamic properties of bags. On the basis of the empirical results a reliable linear model was generated and used for a successful campaign of qualification of secondary structure. It is also demonstrated that the empirical-linear model of the soft-stowage bag was also the reason of a significant reduction of loads, which allowed achieving more easily the goal of carried mass, for PCM. The validation of PCM by Modal Survey Test is presented as well, emphasizing that the more realistic modeling of the soft bags has made easier the definition of a very simple test configuration.

  19. Fatal verminous pharyngitis and esophagitis caused by Streptocara incognita in mute swans (Cygnus olor).

    PubMed

    Alić, A; Prasović, S; Hodzić, A; Besirović, H; Residbegović, Emina; Omeragić, J

    2013-03-01

    Streptocara spp. infections are reported to cause gastritis, proventriculitis, esophagitis, and pharyngitis in various waterfowls, especially diving ducks. In the present paper, we describe severe fatal diphtheritic pharyngitis and esophagitis caused by Streptocara incognita in three female mute swans (Cygnus olor) in Bosnia and Herzegovina. Prior to death, the swans were showing signs of lethargy, anorexia, and reluctance to move. At necropsy, in all swans severe diphtheritic pharyngitis and esophagitis with deep, dark red hemorrhagic ulcerations were observed. Numerous thin, white, up to 1-cm-long nematodes, identified as S. incognita, were observed embedded in the pharyngeal and esophageal mucosa under the diphtheritic membranes. Histopathology revealed severe fibrinonecrotic inflammation with numerous cross-sections of the parasites. To the authors' knowledge, this is the first report of severe, fatal streptocariasis in mute swans. PMID:23678745

  20. VizieR Online Data Catalog: Millimeter continuum mapping of Cygnus X (Motte+, 2007)

    NASA Astrophysics Data System (ADS)

    Motte, F.; Bontemps, S.; Schilke, P.; Schneider, N.; Menten, K. M.; Broguiere, D.

    2007-09-01

    We report on a millimeter continuum survey of the entire Cygnus X molecular complex. We used the MAMBO and MAMBO-2 bolometer arrays on the IRAM 30m telescope to map a 3deg2 area at 1.2mm (see fits files of Figures 2, kept to 11" resolution). Our MAMBO-2 imaging gives a complete view of the cloud structures ranging from 0.03pc to 5pc, i.e. from dense cores to clumps. We perform a multi-resolution analysis to extract 129 compact dense cores (~0.1pc, see Table 1) and identify 40 massive large-scale clumps (~0.7pc, see Table 2). The 21um fluxes arising from dense cores are taken from the MSX point source catalog (MSX C6, Cat. ). (5 data files).

  1. VizieR Online Data Catalog: Young and embedded clusters in Cygnus-X (Maia+, 2016)

    NASA Astrophysics Data System (ADS)

    Maia, F. F. S.; Moraux, E.; Joncour, I.

    2016-02-01

    CFHT/WIRCam was used to acquire deep (960s, 1200s, 480s) JHK exposures of five fields covering ~1 degree squared in the Cygnus-X complex, in six nights between 04/09/2012 and 29/10/2012. The frames were detrended and coadded into a master mosaic where PSF photometry was carried out using SExtractor and PSFex software using a 2-sigma detection threshold. The resulting catalog was calibrated against the 2MASS catalog, but no transformation was done to our data. Instead, bright sources (brighter than the saturation magnitude) were recovered from 2MASS and calibrated to the WIRCam instrumental system to complement our catalog. The final table contains about 310000 stars spanning 12 magnitudes and reaching K=18.5 at 95% completeness. The fundamental parameters of 10 young stellar systems in the region were derived through this final catalogue. (2 data files).

  2. Distraction Osteogenesis Correction of Mandibular Ramis Fracture Malunion in a Juvenile Mute Swan ( Cygnus olor ).

    PubMed

    Calvo Carrasco, Daniel; Dutton, Thomas A G; Shimizu, Naomi; Sabater, Mikel; Forbes, Neil A

    2016-03-01

    A juvenile mute swan (Cygnus olor) was presented with right lateral deviation of the mandible. Radiographs demonstrated a healed fracture of the right mandibular ramis, which had compromised osteogenesis. A corrective osteotomy was performed and an osteogenic distractor was inserted over the lateral aspect of the right mandible. Dental acrylic implants were fixed to the rhinotheca to correct rotational alignment. A pharyngostomy tube was placed to facilitate administration of nutrition and medication. Postoperative images confirmed correct alignment of the mandible in relation to the maxilla. Implants were removed and postoperative complications were not reported. This is the first report of an osteogenic distractor used to correct mandibular deviation in an avian species. Distraction osteogenesis should be considered as a valid surgical option in juvenile or adult avian patients with pathologic bone shortening.

  3. A cocoon of freshly accelerated cosmic rays detected by Fermi in the Cygnus superbubble.

    PubMed

    Ackermann, M; Ajello, M; Allafort, A; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Belfiore, A; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bottacini, E; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; de Angelis, A; de Palma, F; Dermer, C D; do Couto E Silva, E; Drell, P S; Dumora, D; Favuzzi, C; Fegan, S J; Focke, W B; Fortin, P; Fukazawa, Y; Fusco, P; Gargano, F; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Guillemot, L; Guiriec, S; Hadasch, D; Hanabata, Y; Harding, A K; Hayashida, M; Hayashi, K; Hays, E; Jóhannesson, G; Johnson, A S; Kamae, T; Katagiri, H; Kataoka, J; Kerr, M; Knödlseder, J; Kuss, M; Lande, J; Latronico, L; Lee, S-H; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Martin, P; Mazziotta, M N; McEnery, J E; Mehault, J; Michelson, P F; Mitthumsiri, W; Mizuno, T; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Naumann-Godo, M; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Okumura, A; Orlando, E; Ormes, J F; Ozaki, M; Paneque, D; Parent, D; Pesce-Rollins, M; Pierbattista, M; Piron, F; Pohl, M; Prokhorov, D; Rainò, S; Rando, R; Razzano, M; Reposeur, T; Ritz, S; Parkinson, P M Saz; Sgrò, C; Siskind, E J; Smith, P D; Spinelli, P; Strong, A W; Takahashi, H; Tanaka, T; Thayer, J G; Thayer, J B; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Troja, E; Uchiyama, Y; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Waite, A P; Wang, P; Winer, B L; Wood, K S; Yang, Z; Zimmer, S; Bontemps, S

    2011-11-25

    The origin of Galactic cosmic rays is a century-long puzzle. Indirect evidence points to their acceleration by supernova shockwaves, but we know little of their escape from the shock and their evolution through the turbulent medium surrounding massive stars. Gamma rays can probe their spreading through the ambient gas and radiation fields. The Fermi Large Area Telescope (LAT) has observed the star-forming region of Cygnus X. The 1- to 100-gigaelectronvolt images reveal a 50-parsec-wide cocoon of freshly accelerated cosmic rays that flood the cavities carved by the stellar winds and ionization fronts from young stellar clusters. It provides an example to study the youth of cosmic rays in a superbubble environment before they merge into the older Galactic population. PMID:22116880

  4. The broad-band X-ray spectrum of Cygnus X-2

    NASA Technical Reports Server (NTRS)

    Pravdo, S. H.

    1983-01-01

    Cygnus X-2 was observed with the broad-band X-ray spectroscopy experiment, HEAO 1 A-2, in the energy range 0.4-18 keV for four intervals of approximately 31 s over the course of 5 days in 1977. The spectra can be adequately represented by single-temperature thermal bremmstrahlung continua with temperatures ranging from 3.7 x 10 to the 7th K to 6.4 x 10 to the 7th K. An examination of the spectra and the spectra-luminosity relationship effectively rules out one degenerate dwarf model for the X-ray emission. The far-UV continuum emission could be dominated by this continuum component during X-ray high states, an effect which would be detected in optical UV line observations. A Comptonized X-ray cloud around a neutron star remains a viable model for the observed X-ray spectra.

  5. Can Charge Exchange Explain Anomalous Soft X-Ray Emission in the Cygnus Loop?

    NASA Astrophysics Data System (ADS)

    Cumbee, R. S.; Henley, D. B.; Stancil, P. C.; Shelton, R. L.; Nolte, J. L.; Wu, Y.; Schultz, D. R.

    2014-06-01

    Recent X-ray studies have shown that supernova shock models are unable to satisfactorily explain X-ray emission in the rim of the Cygnus Loop. In an attempt to account for this "anomalously" enhanced X-ray flux, we fit the region with a model including theoretical charge exchange (CX) data along with shock and background X-ray models. The model includes the CX collisions of O8 +, O7 +, N7 +, N6 +, C6 +, and C5 + with H with an energy of 1 keV u-1 (438 km s-1). The observations reveal a strong emission feature near 0.7 keV that cannot fully be accounted for by a shock model, nor the current CX data. Inclusion of CX, specifically O7 + + H, does provide for a statistically significant improvement over a pure shock model.

  6. BROADBAND EMISSION SPECTRA FROM THE CYGNUS X-3 JET IN THE SOFT SPECTRAL STATE

    SciTech Connect

    Zhang, Jian-Fu; Lu, Ju-Fu E-mail: lujf@xmu.edu.cn

    2015-02-01

    In order to understand the main observational characteristics of the Galactic X-ray binary Cygnus X-3, we propose a radiation model in which high-energy electrons accelerate in the dissipation zone of a jet and produce nonthermal broadband emissions. Broadband spectral energy distributions are computed to compare the AGILE and Fermi LAT data with the multi-band data during soft X-ray spectral states. By fitting observations at different locations of the jet, we find that the emission region is rather compact and should be located at a distance of about one orbital radius. Our results can explain the current multi-frequency observations and also predict the TeV band emission. The model could be tested by a polarization measurement at IR band, and/or by a correlation study between the GeV and TeV bands once very-high-energy observations are available.

  7. A cocoon of freshly accelerated cosmic rays detected by Fermi in the Cygnus superbubble.

    PubMed

    Ackermann, M; Ajello, M; Allafort, A; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Belfiore, A; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bottacini, E; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; de Angelis, A; de Palma, F; Dermer, C D; do Couto E Silva, E; Drell, P S; Dumora, D; Favuzzi, C; Fegan, S J; Focke, W B; Fortin, P; Fukazawa, Y; Fusco, P; Gargano, F; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Guillemot, L; Guiriec, S; Hadasch, D; Hanabata, Y; Harding, A K; Hayashida, M; Hayashi, K; Hays, E; Jóhannesson, G; Johnson, A S; Kamae, T; Katagiri, H; Kataoka, J; Kerr, M; Knödlseder, J; Kuss, M; Lande, J; Latronico, L; Lee, S-H; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Martin, P; Mazziotta, M N; McEnery, J E; Mehault, J; Michelson, P F; Mitthumsiri, W; Mizuno, T; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Naumann-Godo, M; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Okumura, A; Orlando, E; Ormes, J F; Ozaki, M; Paneque, D; Parent, D; Pesce-Rollins, M; Pierbattista, M; Piron, F; Pohl, M; Prokhorov, D; Rainò, S; Rando, R; Razzano, M; Reposeur, T; Ritz, S; Parkinson, P M Saz; Sgrò, C; Siskind, E J; Smith, P D; Spinelli, P; Strong, A W; Takahashi, H; Tanaka, T; Thayer, J G; Thayer, J B; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Troja, E; Uchiyama, Y; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Waite, A P; Wang, P; Winer, B L; Wood, K S; Yang, Z; Zimmer, S; Bontemps, S

    2011-11-25

    The origin of Galactic cosmic rays is a century-long puzzle. Indirect evidence points to their acceleration by supernova shockwaves, but we know little of their escape from the shock and their evolution through the turbulent medium surrounding massive stars. Gamma rays can probe their spreading through the ambient gas and radiation fields. The Fermi Large Area Telescope (LAT) has observed the star-forming region of Cygnus X. The 1- to 100-gigaelectronvolt images reveal a 50-parsec-wide cocoon of freshly accelerated cosmic rays that flood the cavities carved by the stellar winds and ionization fronts from young stellar clusters. It provides an example to study the youth of cosmic rays in a superbubble environment before they merge into the older Galactic population.

  8. Anatomy of a cosmic-ray neutrino source and the Cygnus X-3 system

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Harding, A. K.; Barnard, J. J.

    1985-01-01

    The effects of an intense beam of ultra-high energy cosmic rays from a compact object in the Cygnus X-3 binary system hitting the companion star, and of the subsequent production of secondary neutrinos, are examined. A maximum allowable beam luminosity of about 10 to the 42nd erg/s is found for a system containing a 1-10 solar mass main sequence target star. The proton beam must heat a relatively small area of the target star to satisfy observational constraints on the resulting stellar wind. With such a model, the neutrino to gamma-ray flux ratio of about 1000 can result from a combination of gamma-ray absorption and a large neutrino to gamma-ray duty cycle ratio. It is found that the high density of the atmosphere resulting from compression by the beam leads to pion cascading and a neutrino spectrum peaking at 1-10 GeV energies.

  9. Present and future gamma-ray probes of the Cygnus OB2 environment

    SciTech Connect

    Anchordoqui, Luis A.; Goldberg, Haim; Moore, Russell D.; Palomares-Ruiz, Sergio; Torres, Diego F.; Weiler, Thomas J.

    2009-11-15

    The MAGIC Collaboration has provided new observational data pertaining to the TeV J2032+4130 gamma-ray source (within the Cygnus OB2 region), for energies E{sub {gamma}}>400 GeV. It is then appropriate to update the impact of these data on gamma-ray production mechanisms in stellar associations. We consider two mechanisms of gamma-ray emission, pion production and decay (PION) and photoexcitation of high-energy nuclei followed by prompt photoemission from the daughter nuclei (A*). We find that while the data can be accommodated with either scenario, the A* features a spectral bump, corresponding to the threshold for exciting the giant dipole resonance, which can serve to discriminate between them. We comment on neutrino emission and detection from the region if the PION and/or A* processes are operative. We also touch on the implications for this analysis of future Fermi and Cerenkov Telescope array data.

  10. DISCOVERY OF A 7 mHz X-RAY QUASI-PERIODIC OSCILLATION FROM THE MOST MASSIVE STELLAR-MASS BLACK HOLE IC 10 X-1

    SciTech Connect

    Pasham, Dheeraj R.; Mushotzky, Richard F.; Strohmayer, Tod E. E-mail: richard@astro.umd.edu

    2013-07-10

    We report the discovery with XMM-Newton of an Almost-Equal-To 7 mHz X-ray (0.3-10.0 keV) quasi-periodic oscillation (QPO) from the eclipsing, high-inclination black hole binary IC 10 X-1. The QPO is significant at >4.33{sigma} confidence level and has a fractional amplitude (% rms) and a quality factor, Q {identical_to} {nu}/{Delta}{nu}, of Almost-Equal-To 11 and 4, respectively. The overall X-ray (0.3-10.0 keV) power spectrum in the frequency range 0.0001-0.1 Hz can be described by a power-law with an index of Almost-Equal-To - 2, and a QPO at 7 mHz. At frequencies {approx}>0.02 Hz there is no evidence for significant variability. The fractional amplitude (rms) of the QPO is roughly energy-independent in the energy range of 0.3-1.5 keV. Above 1.5 keV the low signal-to-noise ratio of the data does not allow us to detect the QPO. By directly comparing these properties with the wide range of QPOs currently known from accreting black hole and neutron stars, we suggest that the 7 mHz QPO of IC 10 X-1 may be linked to one of the following three categories of QPOs: (1) the 'heartbeat' mHz QPOs of the black hole sources GRS 1915+105 and IGR J17091-3624, or (2) the 0.6-2.4 Hz 'dipper QPOs' of high-inclination neutron star systems, or (3) the mHz QPOs of Cygnus X-3.

  11. Discovery of a 7 mHz X-Ray Quasi-Periodic Oscillation from the Most Massive Stellar-Mass Black Hole IC 10 X-1

    NASA Technical Reports Server (NTRS)

    Pasham, Dheeraj R.; Strohmayer, Tod E.; Mushotzky, Richard F.

    2013-01-01

    We report the discovery with XMM-Newton of an approx.. = 7 mHz X-ray (0.3-10.0 keV) quasi-periodic oscillation (QPO) from the eclipsing, high-inclination black hole binary IC 10 X-1. The QPO is significant at >4.33 sigma confidence level and has a fractional amplitude (% rms) and a quality factor, Q is identical with nu/delta nu, of approx. = 11 and 4, respectively. The overall X-ray (0.3-10.0 keV) power spectrum in the frequency range 0.0001-0.1 Hz can be described by a power-law with an index of approx. = -2, and a QPO at 7 mHz. At frequencies approx. > 0.02 Hz there is no evidence for significant variability. The fractional amplitude (rms) of the QPO is roughly energy-independent in the energy range of 0.3-1.5 keV. Above 1.5 keV the low signal-to-noise ratio of the data does not allow us to detect the QPO. By directly comparing these properties with the wide range of QPOs currently known from accreting black hole and neutron stars, we suggest that the 7 mHz QPO of IC 10 X-1 may be linked to one of the following three categories of QPOs: (1) the "heartbeat" mHz QPOs of the black hole sources GRS 1915+105 and IGR J17091-3624, or (2) the 0.6-2.4 Hz "dipper QPOs" of high-inclination neutron star systems, or (3) the mHz QPOs of Cygnus X-3.

  12. High Resolution Spectroscopy of the LMXB SCO X-1

    NASA Astrophysics Data System (ADS)

    Canizares, Claude

    2002-09-01

    Sco X-1 is by far the brightest persistent extrasolar X-ray source in the sky. Early observations showed a bright X-ray continuum and strong K (Fe XXV) line emission. The source has been well established as an LMXB Z-source spending most of its time on the so-called flaring branch. Low energy line emission has been detected in the EINSTEIN OGS, which most likely arises from a photoionized ADC. Through its variable radio emission it was established as a Galactic-jet radio source with strong similarities to luminous radio galaxies and quasars and we expect to observe P Cygni lines from a strong disk wind as observed in Cir X-1. We developed a specific observation strategy that allows to safely observe the source with the Chandra HETGS.

  13. High-Resolution Parallax Measurements of Scorpius X-1

    NASA Astrophysics Data System (ADS)

    Bradshaw, C. F.; Fomalont, E. B.; Geldzahler, B. J.

    1999-02-01

    The results of eight VLBA observations at 5 GHz, spanning 3 yr, have yielded a measured trigonometric parallax for Sco X-1 of 0.00036"+/-0.00004" hence, its distance is 2.8+/-0.3 kpc. This is the most precise parallax measured to date. Although our measured distance is 40% farther away than previous estimates based on X-ray luminosity, our Rossi X-Ray Timing Explorer observations, with a measured luminosity of 2.3×1038 ergs s-1, and determined distance continue to support the hypothesis that Z-source low-mass X-ray binary systems, like Sco X-1, radiate at the Eddington luminosity at a particular point in their X-ray color-color diagram.

  14. Optical and X-Ray Observations of the Western Edge of the Cygnus Loop

    NASA Astrophysics Data System (ADS)

    Levenson, N. A.; Graham, J. R.; Hester, J. J.; Petre, R.; Raymond, J. C.

    1994-12-01

    The western edge of the Cygnus Loop supernova remnant provides an important opportunity to study blast wave--interstellar cloud interactions. On the western edge of the Loop is an extensive coherent network of bright optical filaments from fast radiative shocks. This region is unique within the Cygnus Loop, because the remnant appears to be running into a large molecular cloud in this direction. To study this interaction we have obtained deep wide-field optical line images and X-ray observations with the ROSAT High Resolution Imager. The optical data show a variety of shocks, including non-radiative Balmer-line filaments, incomplete shocks, and shocks with complete cooling and recombination zones. The ROSAT-HRI data show bright, sharply limb-brightened X-rays confined behind the edge of the shock front delineated by the optical filaments. The Einstein-IPC data at this location has been interpreted as an enhancement due to thermal evaporation (Charles et al. 1985). Comparison of the optical and X-ray data sugests that the western limb geometry is simple. If there is evaporation, it must occur across a surface defined by a radiative shock, which contains very strong, highly ordered magnetic fields aligned in the plane of the shock. An alternative explanation for the coincidence of the bright X-rays and the radiative filaments is that compression of the post-blast wave gas by a reverse shock results in increased brightness. In either case, because of the simple geometry in this region, the X-ray emission behind the blast wave offers perhaps the clearest evidence of the structure of the post-blast wave medium in any middle-aged remnant. Charles, P. A., Kahn, S. M., and McKee, C. F. 1985 ApJ 295 456

  15. OPTICAL PHOTOMETRIC GTC/OSIRIS OBSERVATIONS OF THE YOUNG MASSIVE ASSOCIATION CYGNUS OB2

    SciTech Connect

    Guarcello, M. G.; Wright, N. J.; Drake, J. J.; Aldcroft, T.; Kashyap, V. L.; Garcia-Alvarez, D.; Drew, J. E.

    2012-10-15

    In order to fully understand the gravitational collapse of molecular clouds, the star formation process, and the evolution of circumstellar disks, these phenomena must be studied in different Galactic environments with a range of stellar contents and positions in the Galaxy. The young massive association Cygnus OB2, in the Cygnus-X region, is a unique target to study how star formation and the evolution of circumstellar disks proceed in the presence of a large number of massive stars. We present a catalog obtained with recent optical observations in the r, i, z filters with OSIRIS, mounted on the 10.4 m Gran Telescopio CANARIAS telescope, which is the deepest optical catalog of Cyg OB2 to date. The catalog consists of 64,157 sources down to M = 0.15 M{sub Sun} at the adopted distance and age of Cyg OB2. A total of 38,300 sources have good photometry in all three bands. We combined the optical catalog with existing X-ray data of this region, in order to define the cluster locus in the optical diagrams. The cluster locus in the r - i versus i - z diagram is compatible with an extinction of the optically selected cluster members in the 2.64{sup m} < A{sub V} < 5.57{sup m} range. We derive an extinction map of the region, finding a median value of A{sub V} = 4.33{sup m} in the center of the association, decreasing toward the northwest. In the color-magnitude diagrams, the shape of the distribution of main-sequence stars is compatible with the presence of an obscuring cloud in the foreground {approx}850 {+-} 25 pc from the Sun.

  16. Discovery of carbon radio recombination lines in absorption towards Cygnus A

    NASA Astrophysics Data System (ADS)

    Oonk, J. B. R.; van Weeren, R. J.; Salgado, F.; Morabito, L. K.; Tielens, A. G. G. M.; Rottgering, H. J. A.; Asgekar, A.; White, G. J.; Alexov, A.; Anderson, J.; Avruch, I. M.; Batejat, F.; Beck, R.; Bell, M. E.; van Bemmel, I.; Bentum, M. J.; Bernardi, G.; Best, P.; Bonafede, A.; Breitling, F.; Brentjens, M.; Broderick, J.; Brüggen, M.; Butcher, H. R.; Ciardi, B.; Conway, J. E.; Corstanje, A.; de Gasperin, F.; de Geus, E.; de Vos, M.; Duscha, S.; Eislöffel, J.; Engels, D.; van Enst, J.; Falcke, H.; Fallows, R. A.; Fender, R.; Ferrari, C.; Frieswijk, W.; Garrett, M. A.; Grießmeier, J.; Hamaker, J. P.; Hassall, T. E.; Heald, G.; Hessels, J. W. T.; Hoeft, M.; Horneffer, A.; van der Horst, A.; Iacobelli, M.; Jackson, N. J.; Juette, E.; Karastergiou, A.; Klijn, W.; Kohler, J.; Kondratiev, V. I.; Kramer, M.; Kuniyoshi, M.; Kuper, G.; van Leeuwen, J.; Maat, P.; Macario, G.; Mann, G.; Markoff, S.; McKean, J. P.; Mevius, M.; Miller-Jones, J. C. A.; Mol, J. D.; Mulcahy, D. D.; Munk, H.; Norden, M. J.; Orru, E.; Paas, H.; Pandey-Pommier, M.; Pandey, V. N.; Pizzo, R.; Polatidis, A. G.; Reich, W.; Scaife, A. M. M.; Schoenmakers, A.; Schwarz, D.; Shulevski, A.; Sluman, J.; Smirnov, O.; Sobey, C.; Stappers, B. W.; Steinmetz, M.; Swinbank, J.; Tagger, M.; Tang, Y.; Tasse, C.; Veen, S. ter; Thoudam, S.; Toribio, C.; van Nieuwpoort, R.; Vermeulen, R.; Vocks, C.; Vogt, C.; Wijers, R. A. M. J.; Wise, M. W.; Wucknitz, O.; Yatawatta, S.; Zarka, P.; Zensus, A.

    2014-02-01

    We present the first detection of carbon radio recombination line absorption along the line of sight to Cygnus A. The observations were carried out with the Low Frequency Array in the 33-57 MHz range. These low-frequency radio observations provide us with a new line of sight to study the diffuse, neutral gas in our Galaxy. To our knowledge this is the first time that foreground Milky Way recombination line absorption has been observed against a bright extragalactic background source. By stacking 48 carbon α lines in the observed frequency range we detect carbon absorption with a signal-to-noise ratio of about 5. The average carbon absorption has a peak optical depth of 2 × 10-4, a line width of 10 km s-1 and a velocity of +4 km s-1 with respect to the local standard of rest. The associated gas is found to have an electron temperature Te ˜ 110 K and density ne ˜ 0.06 cm-3. These properties imply that the observed carbon α absorption likely arises in the cold neutral medium of the Orion arm of the Milky Way. Hydrogen and helium lines were not detected to a 3σ peak optical depth limit of 1.5 × 10-4 for a 4 km s-1 channel width. Radio recombination lines associated with Cygnus A itself were also searched for, but are not detected. We set a 3σ upper limit of 1.5 × 10-4 for the peak optical depth of these lines for a 4 km s-1 channel width.

  17. Shocked and Scorched: Free-Floating Evaporating Gas Globules and Star Formation in Cygnus

    NASA Astrophysics Data System (ADS)

    Sahai, Raghvendra; Claussen, M. J.; Morris, M. R.

    2012-05-01

    We report molecular line observations of a new class of Free-floating Evaporating Gas Globules with tadpole shapes (i.e., FrEGGs), recently discovered in the Cygnus star-forming region. We serendipitously found two of these in an HST imaging survey, including one of the most prominent members of this class (IRAS20324+4057: the Tadpole). Our molecular-line observations, carried out with the Arizona Radio Observatory's mm-wave telescopes, include on-the-fly maps in the CO and 13CO J=2-1 lines as well as pointed observations in the J=3-2 line of the high-density tracers HCO+ and N2H+. These data show the presence of dense molecular cores with total masses of cold molecular gas exceeding one to a few Msun in almost all FrEGGs. Our radio continuum imaging of 3 FrEGGs, as well as Halpha images from the IPHAS survey reveal bright photo-ionized peripheries around these objects. We infer that FrEGGs are dense, star-forming molecular cores that originated in the Cygnus cloud and are now being photoevaporated by the ultraviolet radiation field of the Cyg OB2 cluster, and shaped by the ram pressure of strong wind sources. The extended tails in some of the largest objects show wiggles likely resulting from Kelvin-Helmoltz instabilities. We find evidence for non-thermal radio emission in the Tadpole, with the radio emission peaking strongly along the shock/ionization front at its head, possibly as a result of a compressed magnetic layer in this front that is interacting with cosmic rays associated with the Cyg OB2 association.

  18. P-23 Highlights 6/10/12: Cygnus Dual Beam Radiographic Facility Refurbishment completed at U1A tunnel in Nevada NNSS meeting Level 2 milestone

    SciTech Connect

    Deyoung, Anemarie; Smith, John R.

    2012-05-03

    A moratorium was placed on U.S. underground nuclear testing in 1992. In response, the Stockpile Stewardship Program was created to maintain readiness of the existing nuclear inventory through several efforts such as computer modeling, material analysis, and subcritical nuclear experiments (SCEs). As in the underground test era, the Nevada National Security Site (NNSS), formerly the Nevada Test Site, provides a safe and secure environment for SCEs by the nature of its isolated and secure facilities. A major tool for SCE diagnosis installed in the 05 drift laboratory is a high energy x-ray source used for time resolved imaging. This tool consists of two identical sources (Cygnus 1 and Cygnus 2) and is called the Cygnus Dual Beam Radiographic Facility (Figs. 2-6). Each Cygnus machine has 5 major elements: Marx Generator, Pulse Forming Line (PFL), Coaxial Transmission Line (CTL), 3-cell Inductive Voltage Adder (IVA), and Rod Pinch Diode. Each machine is independently triggered and may be fired in separate tests (staggered mode), or in a single test where there is submicrosecond separation between the pulses (dual mode). Cygnus must operate as a single shot machine since on each pulse the diode electrodes are destroyed. The diode is vented to atmosphere, cleaned, and new electrodes are inserted for each shot. There is normally two shots per day on each machine. Since its installation in 2003, Cygnus has participated in: 4 Subcritical Experiments (Armando, Bacchus, Barolo A, and Barolo B), a 12 shot plutonium physics series (Thermos), and 2 plutonium step wedge calibration series (2005, 2011), resulting in well over 1000 shots. Currently the Facility is in preparation for 2 SCEs scheduled for this calendar year - Castor and Pollux. Cygnus has performed well during 8 years of operations at NNSS. Many improvements in operations and performance have been implemented during this time. Throughout its service at U1a, major maintenance and replacement of many hardware items

  19. EVN detection of Aql X-1 in outburst

    NASA Astrophysics Data System (ADS)

    Tudose, V.; Paragi, Z.; Miller-Jones, J.; Garrett, M.; Fender, R.; Rushton, A.; Spencer, R.

    2009-11-01

    The X-ray binary Aql X-1 has been in outburst in the last few weeks (ATEL #2288, #2296, #2299, #2302, #2303). We observed the system on 2009 November 19 between 14:30-19:00 UT at 5 GHz with the European VLBI Network (EVN) using the e-VLBI technique. The participating radio telescopes were Effelsberg (1 Gbps), Medicina (896 Mbps), Onsala 25m (1 Gbps), Torun (1 Gbps), Westerbork (1 Gbps), Yebes (896 Mbps), and Cambridge (128 Mbps).

  20. Discovery of orbital decay in SMC X-1

    NASA Technical Reports Server (NTRS)

    Levine, A.; Rappaport, S.; Boynton, P.; Deeter, J.; Nagase, F.

    1992-01-01

    The results are reported of three observations of the binary X ray pulsar SMC X-1 with the Ginga satellite. Timing analyses of the 0.71 s X ray pulsations yield Doppler delay curves which, in turn, provide the most accurate determination of the SMC X-1 orbital parameters available to date. The orbital phase of the 3.9 day orbit is determined in May 1987, Aug. 1988, and Aug. 1988 with accuracies of 11, 1, and 3.5 s, respectively. These phases are combined with two previous determinations of the orbital phase to yield the rate of change in the orbital period: P sub orb/P sub orb = (-3.34 + or - 0.023) x 10(exp -6)/yr. An interpretation of this measurement and the known decay rate for the orbit of Cen X-3 is made in the context of tidal evolution. Finally, a discussion is presented of the relation among the stellar evolution, orbital decay, and neutron star spinup time scales for the SMC X-1 system.

  1. RXTE Observations of LMC X-1 and LMC X-3

    NASA Technical Reports Server (NTRS)

    Wilms, J.; Nowak, M. A.; Dove, J. B.; Pottschmidt, K.; Heindl, W. A.; Begelman, M. C.; Staubert, R.

    1999-01-01

    Of all known persistent stellar-mass black hole candidates, only LMC X-1 and LMC X-3 consistently show spectra that are dominated by a soft, thermal component. We present results from long (170 ksec) Rossi X-ray Timing Explorer (RXTE) observations of LMC X-1 and LMC X-3 made in 1996 December. The spectra can be described by a multicolor disk blackbody plus an additional high-energy power-law. Even though the spectra are very soft (Gamma approximately 2.5), RXTE detected a significant signal from LMC X-3 up to energies of 50 keV, the hardest energy at which the object was ever detected. Focusing on LMC X-3 , we present results from the first year of an ongoing monitoring campaign with RXTE which started in 1997 January. We show that the appearance of the object changes considerably over its approximately 200 d long cycle. This variability can either be explained by periodic changes in the mass transfer rate or by a precessing accretion disk analogous to Her X-1.

  2. RXTE Observations of LMC X-1 and LMC X-3

    NASA Technical Reports Server (NTRS)

    Wilms, J.; Nowak, M. A.; Dove, J. B.; Pottschmidt, K.; Heindl, W. A.; Begelman, M. C.; Staubert, R.

    1998-01-01

    Of all known persistent stellar-mass black hole candidates, only LMC X-1 and LMC X-3 consistently show spectra that are dominated by a soft, thermal component. We present results from long (170 ksec) Rossi X-ray Timing Explorer (RXTE) observations of LMC X-1 and LMC X-3 made in 1996 December. The spectra can be described by a multicolor disk blackbody plus an additional high-energy power-law. Even though the spectra are very soft (Gamma approximately 2.5), RXTE detected a significant signal from LMC X-3 up to energies of 50 keV, the hardest energy at which the object was ever detected. Focusing on LMC X-3, we present results from the first year of an ongoing monitoring campaign with RXTE which started in 1997 January. We show that the appearance of the object changes considerably over its approximately 200d long cycle. This variability can either be explained by periodic changes in the mass transfer rate or by a precessing accretion disk analogous to Her X-1.

  3. Pilot Joe Walker with the X-1E

    NASA Technical Reports Server (NTRS)

    1958-01-01

    A photo of the nose section of the X-1E with pilot Joe Walker suited for a flight at the NASA High-Speed Flight Station, Edwards, California. The dice and Little Joe are prominently displayed under the cockpit area. NASA employees and the crew chief of the plane worked long hours preparing a craft for flight. A break from the tedious task was a welcome reprieve at times; hence the private joke between a crew and their pilot evolved. If you know the craps game you've figured it out! (Little Joe is a dice player's slang term for two deuces.)

  4. Radio non-detection of Aql X-1

    NASA Astrophysics Data System (ADS)

    Tudose, V.; Paragi, Z.; Altamirano, D.; Miller-Jones, J. C. A.; Garrett, M.; Fender, R.; Rushton, A.; Spencer, R.; Maitra, D.

    2010-10-01

    The neutron star X-ray binary Aql X-1 is on the decaying phase of a major outburst that peaked at optical and X-ray bands in mid-September (ATEL #2850, #2871, #2891, #2902). We observed the object at 5 GHz with the European VLBI Network (EVN) in the e-VLBI mode on 2010 October 4th between 18:20-22:09 UT. The participating stations were Cambridge, Effelsberg, Jodrell Bank (MkII), Hartebeesthoek, Medicina, Onsala, Torun, Westerbork and Yebes.

  5. Circinus X-1 - X-ray observations with SAS 3

    NASA Technical Reports Server (NTRS)

    Dower, R. G.; Bradt, H. V.; Morgan, E. H.

    1982-01-01

    Eight observations of Cir X-1 with SAS 3, each lasting 1-6 days, have yielded a variety of new phenomena, viz., a luminous state of steady emission, rapid large-intensity dips, an extremely rapid X-ray transition, and bright flares. Through searches for periodic X-ray pulsations were carried out on data trains of duration up to 6 days; upper limits for pulsations with periods greater than 250 microsec range down to 0.3%. Aperiodic variability with characteristic times of 0.4-1.0 sec was observed but is not well characterized by a simple shot noise model. No millisecond bursts were observed during 40,000 sec in three separate observations. Spectral parameters derived before and after several X-ray transitions indicate that the transitions are not due to absorption of X-rays by intervening gas. Models previously proposed for the Cir X-1 system do not easily provide explanations for all the complex phenomena reported herein.

  6. The Origin of the EUV Emission in Her X-1

    NASA Technical Reports Server (NTRS)

    Leahy, D. A.; Marshall, H.

    1999-01-01

    Her X-1 exhibits a strong orbital modulation of its EUV flux with a large decrease around time of eclipse of the neutron star, and a significant dip which appears at different orbital phases at different 35-day phases. We consider observations of Her X-1 in the EUVE by the Extreme Ultraviolet Explorer (EUVE), which includes data from 1995 near the end of the Short High state, and date from 1997 at the start of the Short High state. The observed EUV lightcurve has bright and faint phases. The bright phase can be explained as the low energy tail of the soft x-ray pulse. The faint phase emission has been modeled to understand its origin. We find: the x-ray heated surface of HZ Her is too cool to produce enough emission; the accretion disk does not explain the orbital modulation; however, reflection of x-rays off of HZ Her can produce the observed lightcurve with orbital eclipses. The dip can be explained by shadowing of the companion by the accretion disk. We discuss the constraints on the accretion disk geometry derived from the observed shadowing.

  7. Mass transfer and magnetic braking in Sco X-1

    NASA Astrophysics Data System (ADS)

    Pavlovskii, K.; Ivanova, N.

    2016-02-01

    Sco X-1 is a low-mass X-ray binary (LMXB) that has one of the most precisely determined set of binary parameters such as the mass accretion rate, companions mass ratio and the orbital period. For this system, as well as for a large fraction of other well-studied LMXBs, the observationally-inferred mass accretion rate is known to strongly exceed the theoretically expected mass transfer (MT) rate. We suggest that this discrepancy can be solved by applying a modified magnetic braking prescription, which accounts for increased wind mass-loss in evolved stars compared to main sequence stars. Using our MT framework based on MESA, we explore a large range of binaries at the onset of the MT. We identify the subset of binaries for which the MT tracks cross the Sco X-1 values for the mass ratio and the orbital period. We confirm that no solution can be found for which the standard magnetic braking can provide the observed accretion rates, while wind-boosted magnetic braking can provide the observed accretion rates for many progenitor binaries that evolve to the observed orbital period and mass ratio.

  8. The Origin of the EUV Emission in Her X-1

    NASA Technical Reports Server (NTRS)

    Leahy, D. A.; Marshall, H.

    1999-01-01

    Her X-1 exhibits a strong orbital modulation of its EUV (Extreme Ultraviolet Radiation) flux with a large decrease around time of eclipse of the neutron star, and a significant dip which appears at different orbital phases at different 35-day phases. We consider observations of Her X-1 in the EUVE by the Extreme Ultraviolet Explorer (EUVE), which includes data from 1995 near the end of the Short High state, and date from 1997 at the start of the Short High state. The observed EUV lightcurve has bright and faint phases. The bright phase can be explained as the low energy tail of the soft x-ray pulse. The faint phase emission has been modeled to understand its origin. We find: the x-ray heated surface of HZ Her is too cool to produce enough emission; the accretion disk does not explain the orbital modulation; however, reflection of x-rays off of HZ Her can produce the observed lightcurve with orbital eclipses. The dip can be explained by shadowing of the companion by the accretion disk. We discuss the constraints on the accretion disk geometry derived from the observed shadowing.

  9. Broad-Band Spectroscopy of Hercules X-1 with Suzaku

    NASA Technical Reports Server (NTRS)

    Asami, Fumi; Enoto, Teruaki; Iwakiri, Wataru; Yamada, Shin'ya; Tamagawa, Toru; Mihara, Tatehiro; Nagase, Fumiaki

    2014-01-01

    Hercules X-1 was observed with Suzaku in the main-on state from 2005 to 2010. The 0.4- 100 keV wide-band spectra obtained in four observations showed a broad hump around 4-9 keV in addition to narrow Fe lines at 6.4 and 6.7 keV. The hump was seen in all the four observations regardless of the selection of the continuum models. Thus it is considered a stable and intrinsic spectral feature in Her X-1. The broad hump lacked a sharp structure like an absorption edge. Thus it was represented by two different spectral models: an ionized partial covering or an additional broad line at 6.5 keV. The former required a persistently existing ionized absorber, whose origin was unclear. In the latter case, the Gaussian fitting of the 6.5-keV line needs a large width of sigma = 1.0-1.5 keV and a large equivalent width of 400-900 eV. If the broad line originates from Fe fluorescence of accreting matter, its large width may be explained by the Doppler broadening in the accretion flow. However, the large equivalent width may be inconsistent with a simple accretion geometry.

  10. THE OPTICAL COUNTERPART OF NGC 1313 X-1

    SciTech Connect

    Yang Lin; Feng Hua; Kaaret, Philip

    2011-06-01

    We identify the optical counterpart of the ultraluminous X-ray source (ULX) NGC 1313 X-1 and discuss constraints on its physical nature from multiband optical spectra. There is a single object on Hubble Space Telescope images within the aspect-corrected Chandra X-ray error circle; a fainter, possibly extended, feature lies near the edge of the error circle. The brighter object showed prominent variation in the F555W band, but was constant in the F814W band. The spectrum was consistent with a single power law on 2003 November 17, but deviated from this on 2004 July 17, suggestive of more than one emission component. Based on the location, magnitudes, spectral shape, and variability of the bright object, it is likely the ULX counterpart. The red wing of the spectrum around F814W may be due to emission from the companion star, and the blue wing is likely from disk emission. The stellar population around X-1 has an age older than 30 Myr, without very blue stars or young clusters. This places a constraint on the companion mass of the ULX as no more than 10 M{sub sun}.

  11. Atmospheric chemistry of n-C(x)F(2)(x)(+1)CHO (x = 1, 2, 3, 4): fate of n-C(x)F(2)(x)(+1)C(O) radicals.

    PubMed

    Hurley, M D; Ball, J C; Wallington, T J; Sulbaek Andersen, M P; Nielsen, O J; Ellis, D A; Martin, J W; Mabury, S A

    2006-11-16

    Smog chamber/FTIR techniques were used to study the atmospheric fate of n-C(x)F(2)(x)(+1)C(O) (x = 1, 2, 3, 4) radicals in 700 Torr O(2)/N(2) diluent at 298 +/- 3 K. A competition is observed between reaction with O(2) to form n-C(x)()F(2)(x)()(+1)C(O)O(2) radicals and decomposition to form n-C(x)F(2)(x)(+1) radicals and CO. In 700 Torr O(2)/N(2) diluent at 298 +/- 3 K, the rate constant ratio, k(n-C(x)F(2)(x)(+1)C(O) + O(2) --> n-C(x)F(2)(x)(+1)C(O)O(2))/k(n-C(x)F(2)(x)(+1)C(O) --> n-C(x)F(2)(x)(+1) + CO) = (1.30 +/- 0.05) x 10(-17), (1.90 +/- 0.17) x 10(-19), (5.04 +/- 0.40) x 10(-20), and (2.67 +/- 0.42) x 10(-20) cm(3) molecule(-1) for x = 1, 2, 3, 4, respectively. In one atmosphere of air at 298 K, reaction with O(2) accounts for 99%, 50%, 21%, and 12% of the loss of n-C(x)F(2)(x)(+1)C(O) radicals for x = 1, 2, 3, 4, respectively. Results are discussed with respect to the atmospheric chemistry of n-C(x)F(2)(x)(+1)C(O) radicals and their possible role in contributing to the formation of perfluorocarboxylic acids in the environment.

  12. A fluorescent approach for identifying P2X1 ligands

    PubMed Central

    Ruepp, Marc-David; Brozik, James A.; de Esch, Iwan J.P.; Farndale, Richard W.; Murrell-Lagnado, Ruth D.; Thompson, Andrew J.

    2015-01-01

    There are no commercially available, small, receptor-specific P2X1 ligands. There are several synthetic derivatives of the natural agonist ATP and some structurally-complex antagonists including compounds such as PPADS, NTP-ATP, suramin and its derivatives (e.g. NF279, NF449). NF449 is the most potent and selective ligand, but potencies of many others are not particularly high and they can also act at other P2X, P2Y and non-purinergic receptors. While there is clearly scope for further work on P2X1 receptor pharmacology, screening can be difficult owing to rapid receptor desensitisation. To reduce desensitisation substitutions can be made within the N-terminus of the P2X1 receptor, but these could also affect ligand properties. An alternative is the use of fluorescent voltage-sensitive dyes that respond to membrane potential changes resulting from channel opening. Here we utilised this approach in conjunction with fragment-based drug-discovery. Using a single concentration (300 μM) we identified 46 novel leads from a library of 1443 fragments (hit rate = 3.2%). These hits were independently validated by measuring concentration-dependence with the same voltage-sensitive dye, and by visualising the competition of hits with an Alexa-647-ATP fluorophore using confocal microscopy; confocal yielded kon (1.142 × 106 M−1 s−1) and koff (0.136 s−1) for Alexa-647-ATP (Kd = 119 nM). The identified hit fragments had promising structural diversity. In summary, the measurement of functional responses using voltage-sensitive dyes was flexible and cost-effective because labelled competitors were not needed, effects were independent of a specific binding site, and both agonist and antagonist actions were probed in a single assay. The method is widely applicable and could be applied to all P2X family members, as well as other voltage-gated and ligand-gated ion channels. This article is part of the Special Issue entitled ‘Fluorescent Tools in Neuropharmacology

  13. TIMESCALE-RESOLVED SPECTROSCOPY OF Cyg X-1

    SciTech Connect

    Wu, Y. X.; Li, T. P.; Belloni, T. M.; Wang, T. S.; Liu, H.

    2009-04-20

    We propose the timescale-resolved spectroscopy (TRS) as a new method to combine the timing and spectral study. The TRS is based on the time domain power spectrum and reflects the variable amplitudes of spectral components on different timescales. We produce the TRS with the RXTE PCA data for Cyg X-1 and study the spectral parameters (the power-law photon index and the equivalent width of the iron fluorescent line) as a function of timescale. The results of TRS and frequency-resolved spectra have been compared, and similarities have been found for the two methods with the identical motivations. We also discover the correspondences between the evolution of photon index with timescale and the evolution of the equivalent width with timescale. The observations can be divided into three types according to the correspondences and different type is connected with different spectral state.

  14. The Wind and Warp of SMC X-1

    NASA Astrophysics Data System (ADS)

    Canizares, Claude

    2011-09-01

    We propose multiple HETG observations of the X-ray pulsar, SMC X-1. We will search for spectral signatures associated with radiatively driven winds, which may be responsible for driving a precessing warp, and hence the long term variability. We will study the X-ray heating of the accretion disk atmosphere. We expect the observations to be carried out over several different orbital and super-orbital phases, allowing us to search for spectral differences among these phases. These observations will be enhanced by our contemporaneous Suzaku observation, which will have one CCD run in timing mode to study the pulsar pulse profile. This will be the first, high resolution spectroscopic observations of this important system that will extend beyond 2 keV.

  15. Energy dependence of normal branch oscillations in Scorpius X-1

    NASA Astrophysics Data System (ADS)

    Wang, J.; Chang, H.-K.; Liu, C.-Y.

    2012-11-01

    We report the energy dependence of normal branch oscillations (NBOs) in Scorpius X-1, a low-mass X-ray binary Z-source. Three characteristic quantities (centroid frequency, quality factor, and fractional root-mean-squared (rms) amplitude) of a quasi-periodic oscillation signal as functions of photon energy are investigated. We found that, although it is not yet statistically well established, there is a signature indicating that the NBO centroid frequency decreases with increasing photon energy when it is below 6-8 keV, which turns out to be positively correlated with the photon energy at the higher energy side. In addition, the rms amplitude increases significantly with the photon energy below 13 keV and then decreases in the energy band of 13-20 keV. There is no clear dependence on photon energy for the quality factor. Based on these results, we suggest that the NBO originates mainly in the transition layer.

  16. Joe Walker in pressure suit with X-1E

    NASA Technical Reports Server (NTRS)

    1958-01-01

    Joe Walker in a pressure suit beside the X-1E at the NASA High-Speed Flight Station, Edwards,California. The dice and 'Little Joe' are prominently displayed under the cockpit area. (Little Joe is a dice players slang term for two deuces.) Walker is shown in the photo wearing an early Air Force partial pressure suit. This protected the pilot if cockpit pressure was lost above 50,000 feet. Similar suits were used in such aircraft as B-47s, B-52s, F-104s, U-2s, and the X-2 and D-558-II research aircraft. Five years later, Walker reached 354,200 feet in the X-15. Similar artwork - reading 'Little Joe the II' - was applied for the record flight. These cases are two of the few times that research aircraft carried such nose art.

  17. Superorbital Phase-resolved Analysis of SMC X-1

    NASA Astrophysics Data System (ADS)

    Hu, Chin-Ping; Chou, Yi; Yang, Ting-Chang; Su, Yi-Hao

    2013-08-01

    The high-mass X-ray binary SMC X-1 is an eclipsing binary with an orbital period of 3.89 days. This system exhibits a superorbital modulation with a period varying between ~40 days and ~65 days. The instantaneous frequency and the corresponding phase of the superorbital modulation can be obtained by a recently developed time-frequency analysis technique, the Hilbert-Huang transform (HHT). We present a phase-resolved analysis of both the spectra and the orbital profiles with the superorbital phase derived from the HHT. The X-ray spectra observed by the Proportional Counter Array on board the Rossi X-ray Timing Explorer are fitted well by a blackbody plus a Comptonized component. The plasma optical depth, which is a good indicator of the distribution of material along the line of sight, is significantly anti-correlated with the flux detected at 2.5-25 keV. However, the relationship between the plasma optical depth and the equivalent width of the iron line is not monotonic. There is no significant correlation for fluxes higher than ~35 mCrab but clear positive correlation when the intensity is lower than ~20 mCrab. This indicates that the iron line production is dominated by different regions of this binary system in different superorbital phases. To study the dependence of the orbital profile on the superorbital phase, we obtained the eclipse profiles by folding the All Sky Monitor light curve with the orbital period for different superorbital states. A dip feature, similar to the pre-eclipse dip in Her X-1, lying at orbital phase ~0.6-0.85, was discovered during the superorbital transition state. This indicates that the accretion disk has a bulge that absorbs considerable X-ray emission in the stream-disk interaction region. The dip width is anti-correlated with the flux, and this relation can be interpreted by the precessing tilted accretion disk scenario.

  18. Aerogel Cherenkov detector for characterizing the intense flash x-ray source, Cygnus, spectrum

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Herrmann, H. W.; McEvoy, A. M.; Young, C. S.; Hamilton, C.; Schwellenbach, D. D.; Malone, R. M.; Kaufman, M. I.; Smith, A. S.

    2016-11-01

    An aerogel Cherenkov detector is proposed to measure the X-ray energy spectrum from the Cygnus—intense flash X-ray source operated at the Nevada National Security Site. An array of aerogels set at a variety of thresholds between 1 and 3 MeV will be adequate to map out the bremsstrahlung X-ray production of the Cygnus, where the maximum energy of the spectrum is normally around 2.5 MeV. In addition to the Cherenkov radiation from aerogels, one possible competing light-production mechanism is optical transition radiation (OTR), which may be significant in aerogels due to the large number of transitions from SiO2 clusters to vacuum voids. To examine whether OTR is a problem, four aerogel samples were tested using a mono-energetic electron beam (varied in the range of 1-3 MeV) at NSTec Los Alamos Operations. It was demonstrated that aerogels can be used as a Cherenkov medium, where the rate of the light production is about two orders magnitude higher when the electron beam energy is above threshold.

  19. Soft X-Ray Spectroscopy of the Cygnus Loop Supernova Remnant

    NASA Astrophysics Data System (ADS)

    Oakley, Phil; McEntaffer, Randall; Cash, Webster

    2013-03-01

    We present the results of a suborbital rocket flight whose scientific target was the Cygnus Loop Supernova Remnant. The payload consists of wire grid collimators, off-plane grating arrays, and gaseous electron multiplier (GEM) detectors. The system is designed for spectral measurements in the 17-107 Å bandpass with a resolution up to ~60 (λ/Δλ). The Extended X-ray Off-plane Spectrometer (EXOS) was launched on a Terrier-Black Brant rocket on 2009 November 13 from White Sands Missile Range and obtained 340 s of useable scientific data. The X-ray emission is dominated by O VII and O VIII, including the He-like O VII triplet at ~22 Å. Another emission feature at ~45 Å is composed primarily of Si XI and Si XII. The best-fit model to this spectrum is an equilibrium plasma model at a temperature of log(T) = 6.4 (0.23 keV).

  20. Acute toxicity and sublethal effects of white phosphorus in mute swans, Cygnus olor

    USGS Publications Warehouse

    Sparling, D.W.; Day, D.; Klein, P.

    1999-01-01

    Among the waterfowl affected by white phosphorus (P4) at a military base in Alaska are tundra (Cygnus columbianus) and trumpeter (C. buccinator) swans. To estimate the toxicity of P4 to swans and compare the toxic effects to those of mallards (Anas platyrhynchos), we dosed 30 juvenile mute swans (C. olor) with 0 to 5.28 mg P4 /kg body weight. The estimated LD50 was 3.65 mg/kg (95% CI: 1.40 to 4.68 mg/kg). However, many of the swans still had P4 in their gizzards after dying, as determined by 'smoking gizzards', and a lower LD50 might be calculated if all of the P4 had passed into the small intestines. We attribute the retention of P4 in swans to the presence of coarse sandlike particles of grit which were of similar size as the P4 pellets. Most swans took 1 to 4.5 days to die in contrast to the few hours normally required in mallards and death appeared to related more to liver dysfunction than to hemolysis. White phosphorus affected several plasma constituents, most notably elevated aspartate amiontransferase, blood urea nitrogen, lactate dehydrogenase, and alanine aminotransferase.

  1. Complete mitochondrial genome of Tundra swan Cygnus columbianus jankowskii (Anseriformes: Anatidae).

    PubMed

    Wang, Jinghua; Liu, Gang; Zhou, Lizhi; Qing, Hui; Li, Lunyue; Li, Bo; Zhang, Lili

    2016-01-01

    Cygnus columbianus jankowskii is a subspecies of Tundra swan, which breeds in eastern Russia and northeast China, wintering in the middle and lower reaches of the Yangtze River. In this study, we used PCR-based method to obtain the complete mtDNA of this subspecies. The arrangement pattern of the complete mtDNA is identical with typical bird species, which is the shortest (16,723 bp) in three subspecies. The length of the PCGs is same except ND2, ND3 and ND6, and the initiation/termination codons are all same with other subspecies. The length of 12S rRNA and 16S rRNA is same with C. c. columbianus, but different from C. c. bewickii. The length and structure of all tRNAs are the same with other subspecies except for tRNA(Ile), tRNA(leu(CUN)) and tRNA(ser(AGY)). The control region is located between tRNA(Phe) and tRNA(Glu), but the length is different with others.

  2. Cygnus X-2: The Descendant of an Intermediate-Mass X-Ray Binary

    NASA Astrophysics Data System (ADS)

    Podsiadlowski, Ph.; Rappaport, S.

    2000-02-01

    The X-ray binary Cygnus X-2 (Cyg X-2) has recently been shown to contain a secondary that is much more luminous and hotter than is appropriate for a low-mass subgiant. We present detailed binary-evolution calculations which demonstrate that the present evolutionary state of Cyg X-2 can be understood if the secondary had an initial mass of around 3.5 Msolar and started to transfer mass near the end of its main-sequence phase (or, somewhat less likely, just after leaving the main sequence, as recently suggested independently by A. R. King & H. Ritter). Most of the mass of the secondary must have been ejected from the system during an earlier rapid mass transfer phase. In the present phase, the secondary has a mass of around 0.5 Msolar with a nondegenerate helium core. It is burning hydrogen in a shell, and mass transfer is driven by the advancement of the burning shell. Cyg X-2 therefore is related to a previously little studied class of intermediate-mass X-ray binaries (IMXBs). We suggest that perhaps a significant fraction of X-ray binaries presently classified as low-mass X-ray binaries may be descendants of IMXBs and discuss some of the implications.

  3. A cocoon of freshly accelerated cosmic rays detected by Fermi in the Cygnus superbubble

    NASA Astrophysics Data System (ADS)

    Grenier, Isabelle A.; Tibaldo, Luigi; Fermi-LAT Collaboration

    2013-02-01

    Conspicuous stellar clusters, with high densities of massive stars, powerful stellar winds, and intense UV flux, have formed over the past few million years in the large molecular clouds of the Cygnus X region, 1.4 kpc away from the Sun. By capturing the gamma-ray signal of young cosmic rays spreading in the interstellar medium surrounding the clusters, the Fermi Large Area Telescope (LAT) has confirmed the long-standing hypothesis that massive-star forming regions host cosmic-ray factories. The 50-pc wide cocoon of energetic particles appears to fill the interstellar cavities carved by the stellar activity. The cocoon provides a first test case to study the impact of wind-powered turbulence on the early phases of cosmic-ray diffusion (between the sources and the Galaxy at large) and to study the acceleration potential of this type of superbubble environment for in-situ cosmic-ray production or to energize Galactic cosmic rays passing by.

  4. Periodic Near-infrared Variability in the Star Formation Region Cygnus OB7

    NASA Astrophysics Data System (ADS)

    Wolk, Scott J.; Rice, T. S.; Aspin, C.

    2013-01-01

    We present an analysis of mid and near-infrared time-series photometry in J, H, and K bands for about 100 epochs of a 1 degree region of the Lynds 1003/1004 dark cloud in the Cygnus OB7 region. Combined with WISE infrared colors we identify or confirm 93 disk bearing young stellar Objects (YSOs). Of these, more than 25 are Class I or earlier. Using the Wide-Field imaging CAMera (WFCAM) on the United Kingdom InfraRed Telescope (UKIRT), we were able to obtain photometry over three observing seasons, with photometric uncertainty better than 0.05 mag down to J=17. We study the light curves and color trajectories of the sources in the monitored field in detail. We investigate the variability and periodicity of the YSOs and find that they divide into four observational classes: 1) stochastic variables, 2) variables which exhibit short-lived periodicity, 3) long-term eruptive variables, and 4) stars with periodic variability stable over long timescales. Some YSO variability defies simple classification. We have uncovered a population of young stars whose K-band infrared excesses vary significantly over our 2-year observation window. We describe this variability due to both dynamic and rotational changes in inner disk hole size and accretion rate.

  5. Interferometric observation of Cygnus-A discrete radiosource scintillations at Irkutsk Incoherent Scatter radar

    NASA Astrophysics Data System (ADS)

    Globa, Mariya; Vasilev, Roman; Kushnaryov, Dmitriy; Medvedev, Andrey

    2016-03-01

    We propose a new method for analysis of data from Irkutsk Incoherent Scatter Radar. The method allows us to accomplish interferometric observation of discrete cosmic radio source characteristics. In this study, we analyzed ionospheric scintillations of the radio source Cygnus-A. Observations were made in 2013 during regular radar sessions within 5-15 days for different seasons, and the effective time of observation was 15-30 minutes per day. For interferometric analysis, the properties of correlation (coherence) coefficient of two independent recording channels were used. The statistical analysis of data from independent channels allows us to construct two-dimensional histograms of radio source brightness distribution with period of 18 s and to determine parameters (the maximum position and the histogram width) representing position and angular size of radio source for each histogram. It is shown that the change of statistical characteristics does not correlate with fluctuations in power (scintillations) of the signal caused by radio wave propagation through ionospheric irregularities.

  6. On the nature of high reddening of Cygnus OB2 #12 hypergiant

    NASA Astrophysics Data System (ADS)

    Maryeva, O. V.; Chentsov, E. L.; Goranskij, V. P.; Dyachenko, V. V.; Karpov, S. V.; Malogolovets, E. V.; Rastegaev, D. A.

    2016-05-01

    To explain the nature of the high reddening (AV ≃ 10 mag) towards one of the most luminous stars in the Galaxy - Cyg OB2 #12 (B5 Ia-0), also known as MT304, we carried out spectrophotometric observations of 24 stars located in its vicinity. We included five new B-stars among the members of Cygnus OB2, and for five more photometrically selected stars we spectroscopically confirmed their membership. We constructed the map of interstellar extinction within 2.5 arcmin radius and found that interstellar extinction increases towards MT304. According to our results the most reddened OB-stars in the association after MT304 are J203240.35+411420.1 and J203239.90+411436.2, located about 15 arcsec away from it. Interstellar extinction towards these stars is about 9 mag. The increase of reddening towards MT304 suggests that the reddening excess may be caused by the circumstellar shell ejected by the star during its evolution. This shell absorbs 1 mag, but its chemical composition and temperature are unclear. We also report the detection of a second component of MT304, and discovery of an even fainter third component, based on data of speckle interferometric observations taken with the Russian 6-m telescope.

  7. Electron Energy Distributions at Relativistic Shock Sites: Observational Constraints from the Cygnus A Hotspots

    SciTech Connect

    Cheung, C.C.Teddy; Stawarz, L.; Harris, D.E.; Ostrowski, M.

    2007-10-15

    We report new detections of the hotspots in Cygnus A at 4.5 and 8.0 microns with the Spitzer Space Telescope. Together with detailed published radio observations and synchrotron self-Compton modeling of previous X-ray detections, we reconstruct the underlying electron energy spectra of the two brightest hotspots (A and D). The low-energy portion of the electron distributions have flat power-law slopes (s {approx} 1.5) up to the break energy which corresponds almost exactly to the mass ratio between protons and electrons; we argue that these features are most likely intrinsic rather than due to absorption effects. Beyond the break, the electron spectra continue to higher energies with very steep slopes s>3. Thus, there is no evidence for the 'canonical' s=2 slope expected in 1st order Fermi-type shocks within the whole observable electron energy range. We discuss the significance of these observations and the insight offered into high-energy particle acceleration processes in mildly relativistic shocks.

  8. Period change of massive binaries from combined photometric and spectroscopic data in Cygnus OB2

    NASA Astrophysics Data System (ADS)

    Laur, Jaan; Tempel, Elmo; Tuvikene, Taavi; Eenmäe, Tõnis; Kolka, Indrek

    2015-09-01

    Context. Mass loss is an important property in evolution models of massive stars. As up to 90% of the massive stars have a visual or spectroscopic companion and many of them exhibit mass exchange, mass-loss rates can be acquired through studying the period of massive binaries. Aims: Using our own photometric observations as well as archival data, we searched for variations in orbital periods of seven massive eclipsing binary systems in the Cygnus OB2 association and estimated their mass-loss rates and stellar parameters. Methods: We used a Bayesian parameter estimation method to simultaneously fit the period and period change to all available data and a stellar modelling tool to model the binary parameters from photometric and radial-velocity data. Results: Four out of the seven selected binaries show non-zero period change values at two-sigma confidence level. We also report the eclipsing nature of the star MT059 for the first time. Appendix A is available in electronic form at http://www.aanda.org

  9. Chemical abundances in the secondary star of the X-ray binary Cygnus X-2

    NASA Astrophysics Data System (ADS)

    Suárez-Andrés, l.; González Hernández, J. I.; Israelian, G.; Rebolo, R.

    2015-05-01

    Spectroscopic data of low-mass X-ray binaries (LMXB) can provide valuable information on supernova properties. In these systems the companion star is probably close enough to be polluted by some of the matter ejected during the supernova (SN) event of the progenitor of the compact object. We present high-resolution spectra, acquired with UES@WHT, of the LMXB Cygnus X-2. We derive the stellar parameters of the companion, taking into account any possible veiling from the accretion disk surrounding the NS. We have studied the chemical abundances, including α-elements and some Fe-peak elements to search for signatures of chemical anomalies that could have been imprinted on the secondary star in the SN event. We find a super-solar Fe content in the companion star, and an abundance enhancement in most of the studied elements. Our results suggest that the secondary star may have captured a significant amount of the ejected matter during the SN explosion. We explore different explosion models to explain these abundance anomalies.

  10. SOFT X-RAY SPECTROSCOPY OF THE CYGNUS LOOP SUPERNOVA REMNANT

    SciTech Connect

    Oakley, Phil; McEntaffer, Randall; Cash, Webster

    2013-03-20

    We present the results of a suborbital rocket flight whose scientific target was the Cygnus Loop Supernova Remnant. The payload consists of wire grid collimators, off-plane grating arrays, and gaseous electron multiplier (GEM) detectors. The system is designed for spectral measurements in the 17-107 A bandpass with a resolution up to {approx}60 ({lambda}/{Delta}{lambda}). The Extended X-ray Off-plane Spectrometer (EXOS) was launched on a Terrier-Black Brant rocket on 2009 November 13 from White Sands Missile Range and obtained 340 s of useable scientific data. The X-ray emission is dominated by O VII and O VIII, including the He-like O VII triplet at {approx}22 A. Another emission feature at {approx}45 A is composed primarily of Si XI and Si XII. The best-fit model to this spectrum is an equilibrium plasma model at a temperature of log(T) = 6.4 (0.23 keV).

  11. CAN CHARGE EXCHANGE EXPLAIN ANOMALOUS SOFT X-RAY EMISSION IN THE CYGNUS LOOP?

    SciTech Connect

    Cumbee, R. S.; Henley, D. B.; Stancil, P. C.; Shelton, R. L.; Nolte, J. L.; Wu, Y.; Schultz, D. R.

    2014-06-01

    Recent X-ray studies have shown that supernova shock models are unable to satisfactorily explain X-ray emission in the rim of the Cygnus Loop. In an attempt to account for this ''anomalously'' enhanced X-ray flux, we fit the region with a model including theoretical charge exchange (CX) data along with shock and background X-ray models. The model includes the CX collisions of O{sup 8} {sup +}, O{sup 7} {sup +}, N{sup 7} {sup +}, N{sup 6} {sup +}, C{sup 6} {sup +}, and C{sup 5} {sup +} with H with an energy of 1 keV u{sup –1} (438 km s{sup –1}). The observations reveal a strong emission feature near 0.7 keV that cannot fully be accounted for by a shock model, nor the current CX data. Inclusion of CX, specifically O{sup 7} {sup +} + H, does provide for a statistically significant improvement over a pure shock model.

  12. Fermi Large Area Telescope Observations of the Cygnus Loop Supernova Remnant

    SciTech Connect

    Katagiri, H.; Tibaldo, L.; Ballet, J.; Giordano, F.; Grenier, I.A.; Porter, T.A.; Roth, M.; Tibolla, O.; Uchiyama, Y.; Yamazaki, R.; /Sagamihara, Aoyama Gakuin U.

    2011-11-08

    We present an analysis of the gamma-ray measurements by the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope in the region of the supernova remnant (SNR) Cygnus Loop (G74.0-8.5). We detect significant gamma-ray emission associated with the SNR in the energy band 0.2-100 GeV. The gamma-ray spectrum shows a break in the range 2-3 GeV. The gamma-ray luminosity is {approx} 1 x 10{sup 33} erg s{sup -1} between 1-100 GeV, much lower than those of other GeV-emitting SNRs. The morphology is best represented by a ring shape, with inner/outer radii 0{sup o}.7 {+-} 0{sup o}.1 and 1{sup o}.6 {+-} 0{sup o}.1. Given the association among X-ray rims, H{alpha} filaments and gamma-ray emission, we argue that gamma rays originate in interactions between particles accelerated in the SNR and interstellar gas or radiation fields adjacent to the shock regions. The decay of neutral pions produced in nucleon-nucleon interactions between accelerated hadrons and interstellar gas provides a reasonable explanation for the gamma-ray spectrum.

  13. THE YOUNG STELLAR POPULATION OF THE CYGNUS-X DR15 REGION

    SciTech Connect

    Rivera-Gálvez, S.; Román-Zúñiga, C. G.; Jiménez-Bailón, E.; Ybarra, J. E.; Alves, J. F.

    2015-12-15

    We present a multi-wavelength study of the young stellar population in the Cygnus-X DR15 region. We studied young stars that were forming or recently formed at and around the tip of a prominent molecular pillar and an infrared dark cloud. Using a combination of ground-based near-infrared, space-based infrared, and X-ray data, we constructed a point source catalog from which we identified 226 young stellar sources, which we classified into evolutionary classes. We studied their spatial distributions across the molecular gas structures and identified several groups that possibly belong to distinct young star clusters. We obtained samples of these groups and constructed K-band luminosity functions that we compared with those of artificial clusters, allowing us to make first order estimates of the mean ages and age spreads of the groups. We used a {sup 13}CO(1-0) map to investigate the gas kinematics at the prominent gaseous envelope of the central cluster in DR15, and we inferred that the removal of this envelope is relatively slow compared to other cluster regions, in which the gas dispersal timescale could be similar or shorter than the circumstellar disk dissipation timescale. The presence of other groups with slightly older ages, associated with much less prominent gaseous structures, may imply that the evolution of young clusters in this part of the complex proceeds in periods that last 3–5 Myr, perhaps after a slow dissipation of their dense molecular cloud birthplaces.

  14. The velocity dependence of X-ray emission due to Charge Exchange in the Cygnus Loop

    NASA Astrophysics Data System (ADS)

    Cumbee, Renata; Lyons, David; Mullen, Patrick Dean; Shelton, Robin L.; Stancil, Phillip C.; Schultz, David R.

    2016-01-01

    The fundamental collisional process of charge exchange (CX) has been been established as a primary source of X-ray emission from the heliosphere [1], planetary exospheres [2], and supernova remnants [3,4]. In this process, X-ray emission results from the capture of an electron by a highly charged ion from a neutral atom or molecule, to form a highly-excited, high charge state ion. As the captured electron cascades down to the lowest energy level, photons are emitted, including X-rays.To provide reliable CX-induced X-ray spectral models to realistically simulate these environments, line ratios and spectra are computed using theoretical CX cross-sections obtained with the multi-channel Landau-Zener, atomic-orbital close-coupling, and classical-trajectory Monte Carlo methods for various collisional velocities relevant to astrophysics for collisions of bare and H-like C to Al ions with H, He, and H2. Using these line ratios, XSPEC models of CX emission in the northeast rim of the Cygnus Loop supernova remnant will be shown as an example with ion velocity dependence.[1] Henley, D. B. & Shelton, R. L. 2010, ApJSS, 187, 388[2] Dennerl, K. et al. 2002, A&A 386, 319[3] Katsuda, S. et al. 2011, ApJ 730 24[4] Cumbee, R. S. et al. 2014, ApJ 787 L31This work was partially supported by NASA grant NNX09AC46G.

  15. Simulation of the cygnus rod-pinch diode using the radiographic chain model

    SciTech Connect

    Kwan, Thomas Jt; Wang, Tai - Sen F; Berninger, Michael; Snell, Charles M; Lin, Yin

    2008-01-01

    The Cygnus radiographic machine is a relatively compact low-energy (<3 MV) x-ray source with some extremely desirable features for radiographic applications. These features include small spot size critical for high-spatial resolution and high dose in a low energy range. The x-ray source is based on bremsstrahlung production in a small diameter ({approx}0.75 mm) tungsten rod by a high-current ({approx}60 kA) electron beam converging at the tip of the rod. For quantitative analysis of radiographic data, it is essential to determine the bremsstrahlung spectrum accurately. We have used the radiographic chain model that self-consistently models the diode with a two-dimensional particle-in-cell code (Merlin) which links to an electron-photon Monte Carlo code to obtain the spectrum under three different situations. These are: steady state spectrum using a voltage puise of 2.5 MV, time-integrated spectrum using a time-dependent experimental voltage pulse, and inclusion of reflexing electrons at the anode in our particle-in-cell simulation. Detailed electron dynamics have been obtained in our study. Our investigations conclude that the time integrated bremsstrahlung spectrum is significantly softer than that of the steady state. In our latest simulations, we have included the effects of reflexing electrons around the anode rod and found the spectrum to be in better agreement with experimental data.

  16. Acute toxicity and sublethal effects of white phosphorus in mute swans, Cygnus olor.

    PubMed

    Sparling, D W; Day, D; Klein, P

    1999-04-01

    Among the waterfowl affected by white phosphorus (P4) at a military base in Alaska are tundra (Cygnus columbianus) and trumpeter (C. buccinator) swans. To estimate the toxicity of P4 to swans and compare the toxic effects to those of mallards (Anas platyrhynchos), we dosed 30 juvenile mute swans (C. olor) with 0 to 5.28 mg P4/kg body weight. The calculated LD50 was 3.65 mg/kg (95% CI: 1.40 to 4. 68 mg/kg). However, many of the swans still had P4 in their gizzards after dying, as determined by "smoking gizzards" and characteristic odor, and a lower LD50 might be calculated if all of the P4 had passed into the small intestines. We attribute the retention of P4 in swans to the possibility that P4 pellets were mistaken for the similarly sized grit in their gizzards. Most swans took 1 to 4.5 days to die in contrast to the few hours normally required in mallards and death appeared to be related more to liver dysfunction than to hemolysis. White phosphorus affected several plasma constituents, most notably elevated aspartate aminotransferase, blood urea nitrogen, lactate dehydrogenase, and alanine aminotransferase.

  17. Observation of muons from Cygnus X-3 in the NUSEX experiment

    NASA Technical Reports Server (NTRS)

    Piazzoli, B. D.

    1986-01-01

    Ground based observations by means of Cerenkov light detectors and air shower arrays have established that Cyngus X-3 is a powerful source of high energy particles. The detection of a 10 to the 15th power eV signal was first reported by the Kiel experiment. Air showers with large age parameter were accepted in order to select those generated by primary gamma rays. At variance with the expectation, the muon density associated with these events was found to be surprisingly high. This puzzling result stimulated a temporal analysis of the muons recorded in Nucleon Stability Experiment (NUSEX) coming from the region around the source. A positive signal was found suggesting the presentation of this result. The analysis of the data recorded during the 2.4 years of effective working time is presented with a fine tuning of the period and the energy spectrum of the muons from the Cygnus X-3 direction derived assuming consistency between NUSEX and SOUDAN results.

  18. Zinc toxicosis in a free-flying trumpeter swan (Cygnus buccinator)

    USGS Publications Warehouse

    Carpenter, J.W.; Andrews, G.A.; Beyer, W.N.

    2004-01-01

    A trumpeter swan (Cygnus buccinator) was observed near it mill pond in Picher, Oklahoma. USA. It became weakened and emaciated after about 1 mo, was captured with little resistance, and taken into captivity for medical care. Serum chemistry results were consistent with hepatic, renal, and muscular damage. Serum zinc concentration was elevated at 11.2 parts per million (ppm). The swan was treated for suspected heavy-metal poisoning, but died overnight. Gross postmortem findings were emaciation and pectoral muscle atrophy. Histopathologic lesions in the pancreas included mild diffuse disruption of acinar architecture, severe diffuse depletion or absence of zymogen granules, occasional apoptotic bodies ics in acinar epithelial cells, and mild interstitial and capsular fibrosis. Zinc concentration in pancreas was 3,200 ppm wet weight, and was similar to that reported in the pancreases of waterfowl known to be killed by zinc toxicity. Zinc concentrations in liver (154 ppm) and kidneys (145 ppm) also were elevated. Acute tubular necrosis of the collecting tubules of the kidneys was also possibly due to zinc toxicity. To the authors' knowledge, this is the first confirmed case of zinc poisoning in a trumpeter swan associated with mining wastes..

  19. DUST DESTRUCTION IN A NON-RADIATIVE SHOCK IN THE CYGNUS LOOP SUPERNOVA REMNANT

    SciTech Connect

    Sankrit, Ravi; Gaetz, Terrance J.; Raymond, John C.; Blair, William P.; Ghavamian, Parviz; Long, Knox S.

    2010-04-01

    We present 24 {mu}m and 70 {mu}m images of a non-radiative shock in the Cygnus Loop supernova remnant, obtained with the Multiband Imaging Photometer for Spitzer on board the Spitzer Space Telescope. The post-shock region is resolved in these images. The ratio of the 70 {mu}m to the 24 {mu}m flux rises from about 14 at a distance 0.'1 behind the shock front to about 22 in a zone 0.'75 further downstream, as grains are destroyed in the hot plasma. Models of dust emission and destruction using post-shock electron temperatures between 0.15 keV and 0.30 keV and post-shock densities, n{sub H}{approx} 2.0 cm{sup -3}, predict flux ratios that match the observations. Non-thermal sputtering (i.e., sputtering due to bulk motion of the grains relative to the gas) contributes significantly to the dust destruction under these shock conditions. From the model calculations, we infer that about 35% by mass of the grains are destroyed over a 0.14 pc region behind the shock front.

  20. Possible Charge Exchange X-Ray Emission from the Cygnus Loop detected with Suzaku

    NASA Astrophysics Data System (ADS)

    Katsuda, Satoru; Tsunemi, Hiroshi; Mori, Koji; Uchida, Hiroyuki; Kosugi, Hiroko; Kimura, Masashi; Petre, Robert; Hwang, Una; Hewitt, John

    We present results of a spatially-resolved X-ray spectral analysis of nearly the entire rim of the Cygnus Loop using Suzaku (21 pointings) and XMM-Newton (1 pointing). We find that some of the spectra show a bump at ˜0.7 keV as a "shoulder" of the lines at ˜0.66 keV which is a combination of O H Lyα and O Heβ. The regions showing the "shoulder" is confined within narrow (< a few arcmin) regions behind the shock at position angles of 0-40, 110-160, and 270-330 degrees measured from north over east. Around the rim, the position angles where the X-ray excess is present correspond to relatively weak radio emission as well as optical emission from non-radiative Hα filaments. While other possibilities (e.g., Fe L emission) cannot be fully excluded, these correlations lead us to consider that the "shoulder" may be O Heγ + δ + etc lines produced by charge exchange between H-like O ions and neutral H. Whatever its origin, the "shoulder" significantly affects the spectral analysis; the best-fit parameters strongly depend on whether or not we include the "shoulder" in the spectral fitting. We will discuss this issue in terms of our previous results of our spectral analysis for the rim regions.

  1. AN R- AND I-BAND PHOTOMETRIC VARIABILITY SURVEY OF THE CYGNUS OB2 ASSOCIATION

    SciTech Connect

    Henderson, C. B.; Stanek, K. Z.; Pejcha, O.; Prieto, J. L.

    2011-06-01

    We present a catalog of photometrically variable stars discovered within two 21.'3 x 21.'3 fields centered on the Cygnus OB2 association (Cyg OB2). There have hitherto been no deep optical variability studies of Cyg OB2, despite it being replete with early-type massive stars, likely due to the high and variable extinction (up to A{sub V} {approx} 20) that permeates much of the region. Here, we provide results of the first variability study with this combination of spatial coverage ({approx}0.5 deg) and photometric depth (R {approx} 21 mag). We find 121 stars to be variable in both R and I bands, 115 of them newly discovered. Of the 121 variables, we identify 27 eclipsing binaries and eclipsing-binary candidates, 52 pulsating variables, and 20 potential Herbig Ae/Be stars. Confirming both the status and the cluster membership of the Herbig Ae/Be stars would address the uncertainty regarding the age and star formation history of Cyg OB2. We match our catalog to known variables and binaries in the region, Two Micron All Sky Survey near-IR data, and Chandra X-ray observations to find counterparts to new variables in other wavelengths.

  2. Detection ratios on winter surveys of Rocky Mountain Trumpeter Swans Cygnus buccinator

    USGS Publications Warehouse

    Bart, J.; Mitchell, C.D.; Fisher, M.N.; Dubovsky, J.A.

    2007-01-01

    We estimated the detection ratio for Rocky Mountain Trumpeter Swans Cygnus buccinator that were counted during aerial surveys made in winter. The standard survey involved counting white or grey birds on snow and ice and thus might be expected to have had low detection ratios. On the other hand, observers were permitted to circle areas where the birds were concentrated multiple times to obtain accurate counts. Actual numbers present were estimated by conducting additional intensive aerial counts either immediately before or immediately after the standard count. Surveyors continued the intensive surveys at each area until consecutive counts were identical. The surveys were made at 10 locations in 2006 and at 19 locations in 2007. A total of 2,452 swans were counted on the intensive surveys. Detection ratios did not vary detectably with year, observer, which survey was conducted first, age of the swans, or the number of swans present. The overall detection ratio was 0.93 (90% confidence interval 0.82-1.04), indicating that the counts were quite accurate. Results are used to depict changes in population size for Rocky Mountain Trumpeter Swans from 1974-2007. ?? Wildfowl & Wetlands Trust.

  3. X-ray emission from charge exchange in the Cygnus Loop SNR

    NASA Astrophysics Data System (ADS)

    Roberts, Shawn R.; Wang, Q. Daniel

    2015-05-01

    The Cygnus Loop has been the focus of substantial debate concerning the contribution of charge exchange (CX) to supernova remnant (SNR) X-ray emission. We take advantage of a distinct feature of CX, enhanced Kα forbidden line emission, and employ the energy centroid of the O VII Kα triplet as a diagnostic. Based on X-ray spectra extracted from an extensive set of Suzaku observations, we measure the energy centroid shifts of the triplet on and off the shock rim of the remnant. We find that enhanced forbidden to resonance line emission exists throughout much of the rim and this enhancement azimuthally correlates with non-radiative Hα filaments, a tracer of strong neutral-plasma interaction in the optical. We also show that alternative mechanisms cannot explain the observed enhancement. These results demonstrate the need to model the CX contribution to the X-ray emission of SNRs, particularly for shocks propagating in a partially neutral medium. Such modelling may be critically important to the correct measurements of the ionization, thermal, and chemical properties of SNRs.

  4. Accretion and outflow in the proplyd-like objects near Cygnus OB2

    SciTech Connect

    Guarcello, M. G.; Drake, J. J.; Wright, N. J.; García-Alvarez, D.; Kraemer, K. E.

    2014-09-20

    Cygnus OB2 is the most massive association within 2 kpc from the Sun, hosting hundreds of massive stars, thousands of young low mass members, and some sights of active star formation in the surrounding cloud. Recently, 10 photoevaporating proplyd-like objects with tadpole-shaped morphology were discovered in the outskirts of the OB association, approximately 6-14 pc away from its center. The classification of these objects is ambiguous, being either evaporating residuals of the parental cloud that are hosting a protostar inside or disk-bearing stars with an evaporating disk, such as the evaporating proplyds observed in the Trapezium Cluster in Orion. In this paper, we present a study based on low-resolution optical spectroscopic observations made with the Optical System for Imaging and low Resolution Integrated Spectroscopy, mounted on the 10.4 m Gran Telescopio CANARIAS, of two of these protostars. The spectrum of one of the objects shows evidence of accretion but not of outflows. In the latter object, the spectra show several emission lines indicating the presence of an actively accreting disk with outflow. We present estimates of the mass loss rate and the accretion rate from the disk, showing that the former exceeds the latter as observed in other known objects with evaporating disks. We also show evidence of a strong variability in the integrated flux observed in these objects as well as in the accretion and outflow diagnostics.

  5. The Cygnus loop - A detailed comparison of X-ray and optical emission

    NASA Technical Reports Server (NTRS)

    Cox, D. P.; Hester, J. J.

    1986-01-01

    A comparison at a resolution of 17 arcsec is presented between optical emission from forbidden O III and forbidden S II and the thermal X-ray emission for a field on the southeast edge of the Cygnus Loop SNR. The relationship between optical and X-ray emission in the field is described, generalizing to the Loop as a whole when possible. Several possible explanations for the presence of bright X-ray emission in the vicinity of optical emission are presented and evaluated based on the data. These mechanisms involve evaporation, gradual variations and gradients in the density of the preshock intercloud medium, and additional compression of material which has already been heated to X-ray temperatures by the adiabatic blast wave. The additional compression could result from rapid deceleration of the blast wave itself or from reshocking by reflected or bow shocks around dense clouds. Implications of the observations for models of SNR evolution and the interstellar medium are discussed.

  6. SUPERORBITAL PHASE-RESOLVED ANALYSIS OF SMC X-1

    SciTech Connect

    Hu, Chin-Ping; Chou, Yi; Yang, Ting-Chang; Su, Yi-Hao E-mail: yichou@astro.ncu.edu.tw

    2013-08-10

    The high-mass X-ray binary SMC X-1 is an eclipsing binary with an orbital period of 3.89 days. This system exhibits a superorbital modulation with a period varying between {approx}40 days and {approx}65 days. The instantaneous frequency and the corresponding phase of the superorbital modulation can be obtained by a recently developed time-frequency analysis technique, the Hilbert-Huang transform (HHT). We present a phase-resolved analysis of both the spectra and the orbital profiles with the superorbital phase derived from the HHT. The X-ray spectra observed by the Proportional Counter Array on board the Rossi X-ray Timing Explorer are fitted well by a blackbody plus a Comptonized component. The plasma optical depth, which is a good indicator of the distribution of material along the line of sight, is significantly anti-correlated with the flux detected at 2.5-25 keV. However, the relationship between the plasma optical depth and the equivalent width of the iron line is not monotonic. There is no significant correlation for fluxes higher than {approx}35 mCrab but clear positive correlation when the intensity is lower than {approx}20 mCrab. This indicates that the iron line production is dominated by different regions of this binary system in different superorbital phases. To study the dependence of the orbital profile on the superorbital phase, we obtained the eclipse profiles by folding the All Sky Monitor light curve with the orbital period for different superorbital states. A dip feature, similar to the pre-eclipse dip in Her X-1, lying at orbital phase {approx}0.6-0.85, was discovered during the superorbital transition state. This indicates that the accretion disk has a bulge that absorbs considerable X-ray emission in the stream-disk interaction region. The dip width is anti-correlated with the flux, and this relation can be interpreted by the precessing tilted accretion disk scenario.

  7. Quasi-Periodic Variability in NGC 5408 X-1

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod E.; Mushotzky, Richard F.; Winter, Lisa; Soria, Roberto; Uttley, Phil; Cropper, Mark

    2007-01-01

    We report the discovery with XMM-Newton of quasiperiodic variability in the 0.2 - 10 keV X-ray flux from the ultraluminous X-ray source NGC 5408 X-1. The average power spectrum of all EPIC-pn data reveals a strong 20 mHz QPO with an average amplitude (rms) of 9%, and a coherence, Q identical with nu(sub 0)/sigma approximately equal to 6. In a 33 ksec time interval when the 20 mHz QPO is strongest we also find evidence for a 2nd QPO peak at 15 mHz, the first indication for a close pair of QPOs in a ULX source. Interestingly, the frequency ratio of this QPO pair is inconsistent with 3:2 at the 3 sigma level, but is consistent with a 4:3 ratio. A powerlaw noise component with slope near 1.5 is also present below 0.1 Hz with evidence for a break to a flatter slope at about 3 mHz. The source shows substantial broadband variability, with a total amplitude (rms) of about 30% in the 0.1 - 100 mHz frequency band, and there is strong energy dependence to the variability. The power spectrum of hard X-ray photons (greater than 2 keV) shows a "classic" flat-topped continuum breaking to a power law with index 1.5 - 2. Both the break and 20 mHz QPO are detected in the hard band, and the 20 mHz QPO is essentially at the break. The QPO is both strong and narrow in this band, having an amplitude (rms) of 15%, and Q approx. equal to 25. The energy spectrum is well fit by three components, a "cool" disk with kT = 0.15 keV, a steep power law with index 2.56, and a thermal plasma at kT = 0.87 keV. The disk, power law, and thermal plasma components contribute 35, 60, and 5% of the 0.3 - 10 keV flux, respectively. Both the timing and spectral properties of NGC 5408 X-1 are strikingly reminiscent of Galactic black hole systems at high inferred accretion rates, but with its characteristic frequencies (QPO and break frequencies) scaled down by a factor of 10 - 100. We discuss the implications of these findings in the context of models for ULXs, and their implications for the object's mass.

  8. G141.2+5.0, A NEW PULSAR WIND NEBULA DISCOVERED IN THE CYGNUS ARM OF THE MILKY WAY

    SciTech Connect

    Kothes, R.; Foster, T. J.; Sun, X. H.; Reich, W.

    2014-04-01

    We report the discovery of the new pulsar wind nebula (PWN) G141.2+5.0 in data observed with the Dominion Radio Astrophysical Observatory's Synthesis Telescope at 1420 MHz. The new PWN has a diameter of about 3.'5, which translates to a spatial extent of about 4 pc at a distance of 4.0 kpc. It displays a radio spectral index of α ≈ –0.7, similar to the PWN G76.9+1.1. G141.2+5.0 is highly polarized up to 40% with an average of 15% in the 1420 MHz data. It is located in the center of a small spherical H I bubble, which is expanding at a velocity of 6 km s{sup –1} at a systemic velocity of v {sub LSR} = –53 km s{sup –1}. The bubble could be the result of the progenitor star's mass loss or the shell-type supernova remnant (SNR) created by the same supernova explosion in a highly advanced stage. The systemic LSR velocity of the bubble shares the velocity of H I associated with the Cygnus spiral arm, which is seen across the second and third quadrants and an active star-forming arm immediately beyond the Perseus arm. A kinematical distance of 4 ± 0.5 kpc is found for G141.2+5.0, similar to the optical distance of the Cygnus arm (3.8 ± 1.1 kpc). G141.2+5.0 represents the first radio PWN discovered in 17 years and the first SNR discovered in the Cygnus spiral arm, which is in stark contrast with the Perseus arm's overwhelming population of shell-type remnants.

  9. First Dynamic Computations of Synchrotron Emission from the Cygnus A Radio Cavity: Evidence for Electron Pair Plasma in Cavity

    NASA Astrophysics Data System (ADS)

    Mathews, William G.

    2014-03-01

    Cosmic rays, thermal gas and magnetic fields in FRII radio cavities are assumed to come entirely from winds flowing from just behind the jet shocks. Combining analytic and computational methods, it is shown that the computed radio-electron energy distribution and synchrotron emissivity spectra everywhere in the Cygnus A radio cavity agree with radio observations of the Cygnus A lobes. The magnetic field energy density is small everywhere and evolves passively in the post-shock wind. Most synchrotron emission arises in recent post-shock material as it flows back along the radio cavity wall. Because it experienced less adiabatic expansion, the magnetic field in this young backflow is larger than elsewhere in the radio lobe, explaining the observed radio synchrotron limb-brightening. The boundary backflow decelerates due to small cavity pressure gradients, causing large-scale fields perpendicular to the backflow (and synchrotron emission) to grow exponentially unlike observations. However, if the field is random on subgrid (sub-kpc) scales, the computed field reproduces both the magnitude and slowly decreasing radio synchrotron emissivity observed along the backflow. The radio synchrotron spectrum and image computed with a small-scale random field agree with Very Large Array observations. The total relativistic energy density in the post-jet shock region required in computations to inflate the radio cavity matches the energy density of relativistic electrons observed in the post-shock region of Cygnus A. This indicates that the component in the jet and cavity that dominates the dynamical evolution is a relativistic pair plasma.

  10. First dynamic computations of synchrotron emission from the cygnus a radio cavity: Evidence for electron pair plasma in cavity

    SciTech Connect

    Mathews, William G.

    2014-03-01

    Cosmic rays, thermal gas and magnetic fields in FRII radio cavities are assumed to come entirely from winds flowing from just behind the jet shocks. Combining analytic and computational methods, it is shown that the computed radio-electron energy distribution and synchrotron emissivity spectra everywhere in the Cygnus A radio cavity agree with radio observations of the Cygnus A lobes. The magnetic field energy density is small everywhere and evolves passively in the post-shock wind. Most synchrotron emission arises in recent post-shock material as it flows back along the radio cavity wall. Because it experienced less adiabatic expansion, the magnetic field in this young backflow is larger than elsewhere in the radio lobe, explaining the observed radio synchrotron limb-brightening. The boundary backflow decelerates due to small cavity pressure gradients, causing large-scale fields perpendicular to the backflow (and synchrotron emission) to grow exponentially unlike observations. However, if the field is random on subgrid (sub-kpc) scales, the computed field reproduces both the magnitude and slowly decreasing radio synchrotron emissivity observed along the backflow. The radio synchrotron spectrum and image computed with a small-scale random field agree with Very Large Array observations. The total relativistic energy density in the post-jet shock region required in computations to inflate the radio cavity matches the energy density of relativistic electrons observed in the post-shock region of Cygnus A. This indicates that the component in the jet and cavity that dominates the dynamical evolution is a relativistic pair plasma.

  11. VLBI OBSERVATION OF MICROQUASAR CYG X-3 DURING AN X-RAY STATE TRANSITION FROM SOFT TO HARD IN THE 2007 MAY-JUNE FLARE

    SciTech Connect

    Kim, Jeong-Sook; Kim, Sang Joon; Kim, Soon-Wook; Kurayama, Tomoharu; Honma, Mareki; Sasao, Tetsuo E-mail: skim@kasi.re.kr

    2013-07-20

    We present a radio observation of microquasar Cyg X-3 during an X-ray state transition from ultrasoft to hard state in the 2007 May-June flare using the VLBI Exploration of Radio Astrometry at 22 GHz. During the transition, a short-lived mini-flare of {approx}< 3 hr was detected prior to the major flare. In such a transition, a jet ejection is believed to occur, but there have been no direct observations to support it. An analysis of Gaussian fits to the observed visibility amplitudes shows a time variation of the source axis, or a structural change, during the mini-flare. Our model fits, together with other multiwavelength observations in the radio, soft, and hard X-rays, and the shock-in-jet models for other flaring activities at GHz wavebands, suggest a high possibility of synchrotron flares during the mini-flare, indicative of a predominant contribution from jet activity. Therefore, the mini-flare with an associated structural change is indicative of a jet ejection event in the state transition from ultrasoft to hard state.

  12. FUSE observations of a full orbit of Scorpius X-1

    SciTech Connect

    Boroson, Bram; Vrtilek, Saeqa Dil; Raymond, John E-mail: svrtilek@cfa.harvard.edu

    2014-09-20

    We obtained UV spectra of X-ray binary Scorpius X-1 in the 900-1200 Å range with the Far Ultraviolet Spectroscopic Explorer over the full 0.79 day binary orbit. The strongest emission lines are the doublet of O VI at 1032,1038 Å and the C III complex at 1175 Å. The spectrum is affected by a multitude of narrow interstellar absorption lines, both atomic and molecular. Examination of line variability and Doppler tomograms suggests emission from both the neighborhood of the donor star and the accretion disk. Models of turbulence and Doppler broadened Keplerian disk lines Doppler shifted with the orbit of the neutron star added to narrow Gaussian emission lines with undetermined Doppler shift fit the data with consistent values of disk radius, inclination, and radial line brightness profile. The Doppler shift of the narrow component with the orbit suggests an association with the donor star. We test our line models with previously analyzed near UV spectra obtained with the Hubble Space Telescope (HST) Goddard High Resolution Spectrograph and archival spectra obtained with the HST Cosmic Origins Spectrograph.

  13. CO outflows from high-mass Class 0 protostars in Cygnus-X

    NASA Astrophysics Data System (ADS)

    Duarte-Cabral, A.; Bontemps, S.; Motte, F.; Hennemann, M.; Schneider, N.; André, Ph.

    2013-10-01

    Context. The earliest phases of the formation of high-mass stars are not well known. It is unclear whether high-mass cores in monolithic collapse exist or not, and what the accretion process and origin of the material feeding the precursors of high-mass stars are. As outflows are natural consequences of the accretion process, they represent one of the few (indirect) tracers of accretion. Aims: We aim to search for individual outflows from high-mass cores in Cygnus X and to study the characteristics of the detected ejections. We compare these to what has been found for the low-mass protostars, to understand how ejection and accretion change and behave with final stellar mass. Methods: We used CO (2-1) PdBI observations towards six massive dense clumps, containing a total of 9 high-mass cores. We estimated the bolometric luminosities and masses of the 9 high-mass cores and measured the energetics of outflows. We compared our sample to low-mass objects studied in the literature and developed simple evolutionary models to reproduce the observables. Results: We find that 8 out of 9 high-mass cores are driving clear individual outflows. They are therefore true equivalents of Class 0 protostars in the high-mass regime. The remaining core, CygX-N53 MM2, has only a tentative outflow detection. It could be one of the first examples of a true individual high-mass prestellar core. We also find that the momentum flux of high-mass objects has a linear relation to the reservoir of mass in the envelope, as a scale up of the relations previously found for low-mass protostars. This suggests a fundamental proportionality between accretion rates and envelope masses. The linear dependency implies that the timescale for accretion is similar for high- and low-mass stars. Conclusions: The existence of strong outflows driven by high-mass cores in Cygnus X clearly indicates that high-mass Class 0 protostars exist. The collapsing envelopes of these Class 0 objects have similar sizes and a

  14. THE PHOTOIONIZED ACCRETION DISK IN HER X-1

    SciTech Connect

    Ji, L.; Schulz, N.; Nowak, M.; Marshall, H. L.; Kallman, T.

    2009-08-01

    We present an analysis of several high-resolution Chandra grating observations of the X-ray binary pulsar Her X-1. With a total exposure of 170 ks, the observations are separated by years and cover three combinations of orbital and superorbital phases. Our goal is to determine distinct properties of the photoionized emission and its dependence on phase-dependent variations of the continuum. We find that the continua can be described by a partial covering model which above 2 keV is consistent with recent results from Rossi X-Ray Timing Explorer studies and at low energies is consistent with recent XMM-Newton and BeppoSAX studies. Besides a power law with fixed index, an additional thermal blackbody of 114 eV is required to fit wavelengths above 12 A ({approx}1 keV). We find that likely all the variability is caused by highly variable absorption columns in the range (1-3) x 10{sup 23} cm{sup -2}. Strong Fe K line fluorescence in almost all observations reveals that dense, cool material is present not only in the outer regions of the disk but interspersed throughout the disk. Most spectra show strong line emission stemming from a photoionized accretion disk corona (ADC). We model the line emission with generic thermal plasma models as well as with the photoionization code XSTAR and investigate changes of the ionization balance with orbital and superorbital phases. Most accretion disk coronal properties such as disk radii, temperatures, and plasma densities are consistent with previous findings for the low state. We find that these properties change negligibly with respect to orbital and superorbital phases. A couple of the higher energy lines exhibit emissivities that are significantly in excess of expectations from a static ADC.

  15. Spitzer IRS observations of the XA region in the cygnus loop supernova remnant

    SciTech Connect

    Sankrit, Ravi; Bautista, Manuel; Williams, Brian J.; Blair, William P.; Borkowski, Kazimierz J.; Long, Knox S.

    2014-05-20

    We report on spectra of two positions in the XA region of the Cygnus Loop supernova remnant obtained with the InfraRed Spectrograph on the Spitzer Space Telescope. The spectra span the 10-35 μm wavelength range, which contains a number of collisionally excited forbidden lines. These data are supplemented by optical spectra obtained at the Whipple Observatory and an archival UV spectrum from the International Ultraviolet Explorer. Coverage from the UV through the IR provides tests of shock wave models and tight constraints on model parameters. Only lines from high ionization species are detected in the spectrum of a filament on the edge of the remnant. The filament traces a 180 km s{sup –1} shock that has just begun to cool, and the oxygen to neon abundance ratio lies in the normal range found for Galactic H II regions. Lines from both high and low ionization species are detected in the spectrum of the cusp of a shock-cloud interaction, which lies within the remnant boundary. The spectrum of the cusp region is matched by a shock of about 150 km s{sup –1} that has cooled and begun to recombine. The post-shock region has a swept-up column density of about 1.3 × 10{sup 18} cm{sup –2}, and the gas has reached a temperature of 7000-8000 K. The spectrum of the Cusp indicates that roughly half of the refractory silicon and iron atoms have been liberated from the grains. Dust emission is not detected at either position.

  16. Near-infrared Variability among Young Stellar Objects in the Star Formation Region Cygnus OB7

    NASA Astrophysics Data System (ADS)

    Wolk, Scott J.; Rice, Thomas S.; Aspin, Colin

    2013-08-01

    We present an analysis of near-infrared time-series photometry in J, H, and K bands for about 100 epochs of a 1° × 1° region of the Lynds 1003/1004 dark cloud in the Cygnus OB7 region. Augmented by data from the Wide-field Infrared Survey Explorer, we identify 96 candidate disk bearing young stellar objects (YSOs) in the region. Of these, 30 are clearly Class I or earlier. Using the Wide-Field Imaging Camera on the United Kingdom Infrared Telescope, we were able to obtain photometry over three observing seasons, with photometric uncertainty better than 0.05 mag down to J ≈ 17. We study detailed light curves and color trajectories of ~50 of the YSOs in the monitored field. We investigate the variability and periodicity of the YSOs and find the data are consistent with all YSOs being variable in these wavelengths on timescales of a few years. We divide the variability into four observational classes: (1) stars with periodic variability stable over long timescales, (2) variables which exhibit short-lived cyclic behavior, (3) long-duration variables, and (4) stochastic variables. Some YSO variability defies simple classification. We can explain much of the observed variability as being due to dynamic and rotational changes in the disk, including an asymmetric or changing blocking fraction, changes to the inner disk hole size, as well as changes to the accretion rate. Overall, we find that the Class I:Class II ratio of the cluster is consistent with an age of <1 Myr, with at least one individual, wildly varying source ~100, 000 yr old. We have also discovered a Class II eclipsing binary system with a period of 17.87 days.

  17. Near Infrared Diffuse Interstellar Bands Toward the Cygnus OB2 Association

    NASA Astrophysics Data System (ADS)

    Hamano, Satoshi; Kobayashi, Naoto; Kondo, Sohei; Sameshima, Hiroaki; Nakanishi, Kenshi; Ikeda, Yuji; Yasui, Chikako; Mizumoto, Misaki; Matsunaga, Noriyuki; Fukue, Kei; Yamamoto, Ryo; Izumi, Natsuko; Mito, Hiroyuki; Nakaoka, Tetsuya; Kawanishi, Takafumi; Kitano, Ayaka; Otsubo, Shogo; Kinoshita, Masaomi; Kawakita, Hideyo

    2016-04-01

    We obtained the near-infrared (NIR) high-resolution (R ≡ λ/Δλ ∼ 20,000) spectra of the seven brightest early-type stars in the Cygnus OB2 association for investigating the environmental dependence of diffuse interstellar bands (DIBs). The WINERED spectrograph mounted on the Araki 1.3 m telescope in Japan was used to collect data. All 20 of the known DIBs within the wavelength coverage of WINERED (0.91 < λ < 1.36 μm) were clearly detected along all lines of sight because of their high flux density in the NIR wavelength range and the large extinction. The equivalent widths (EWs) of DIBs were not correlated with the column densities of C2 molecules, which trace the patchy dense component, suggesting that the NIR DIB carriers are distributed mainly in the diffuse component. On the basis of the correlations among the NIR DIBs both for stars in Cyg OB2 and stars observed previously, λλ10780, 10792, 11797, 12623, and 13175 are found to constitute a “family,” in which the DIBs are correlated well over the wide EW range. In contrast, the EW of λ10504 is found to remain almost constant over the stars in Cyg OB2. The extinction estimated from the average EW of λ10504 (AV ∼ 3.6 mag) roughly corresponds to the lower limit of the extinction distribution of OB stars in Cyg OB2. This suggests that λ10504 is absorbed only by the foreground clouds, implying that the carrier of λ10504 is completely destroyed in Cyg OB2, probably by the strong UV radiation field. The different behaviors of the DIBs may be caused by different properties of the DIB carriers.

  18. Toxicity of Anacostia River, Washington, D.C., USA, sediment fed to mute swans (Cygnus olor)

    USGS Publications Warehouse

    Beyer, W.N.; Day, D.; Melancon, M.J.; Sileo, L.

    2000-01-01

    Sediment ingestion is sometimes the principal route by which waterfowl are exposed to environmental contaminants, and at severely contaminated sites waterfowl have been killed by ingesting sediment. Mute swans (Cygnus olor) were fed a diet for 6 weeks with a high but environmentally realistic concentration (24%) of sediment from the moderately polluted Anacostia River in the District of Columbia, USA, to estimate the sediment's toxicity. Control swans were fed the same diet without the sediment. Five organochlorine compounds were detected in the treated diets, but none of 22 organochlorine compounds included in the analyses was detected in livers of the treated swans. The concentrations of 24 polynuclear aromatic hydrocarbons measured in the treated diet were as high as 0.80 mg/kg, and they were thought to have been responsible for the observed induction of hepatic microsomal monooxygenase activity in livers. A concentration of 85 mg/kg of lead in the diet was enough to decrease red blood cell ALAD activity but was not high enough to cause more serious effects of lead poisoning. The dietary concentrations of Al, Fe, V, and Ba were high compared to the concentrations of these elements known to be toxic in laboratory feeding studies. However, the lack of accumulation in the livers of the treated swans suggested that these elements were not readily available from the ingested sediment. We did not study all potential toxic effects, but, on the basis of those that we did consider, we concluded that the treated swans were basically healthy after a chronic exposure to the sediment.

  19. NEAR-INFRARED VARIABILITY AMONG YOUNG STELLAR OBJECTS IN THE STAR FORMATION REGION CYGNUS OB7

    SciTech Connect

    Wolk, Scott J.; Rice, Thomas S.; Aspin, Colin

    2013-08-20

    We present an analysis of near-infrared time-series photometry in J, H, and K bands for about 100 epochs of a 1 Degree-Sign Multiplication-Sign 1 Degree-Sign region of the Lynds 1003/1004 dark cloud in the Cygnus OB7 region. Augmented by data from the Wide-field Infrared Survey Explorer, we identify 96 candidate disk bearing young stellar objects (YSOs) in the region. Of these, 30 are clearly Class I or earlier. Using the Wide-Field Imaging Camera on the United Kingdom Infrared Telescope, we were able to obtain photometry over three observing seasons, with photometric uncertainty better than 0.05 mag down to J Almost-Equal-To 17. We study detailed light curves and color trajectories of {approx}50 of the YSOs in the monitored field. We investigate the variability and periodicity of the YSOs and find the data are consistent with all YSOs being variable in these wavelengths on timescales of a few years. We divide the variability into four observational classes: (1) stars with periodic variability stable over long timescales, (2) variables which exhibit short-lived cyclic behavior, (3) long-duration variables, and (4) stochastic variables. Some YSO variability defies simple classification. We can explain much of the observed variability as being due to dynamic and rotational changes in the disk, including an asymmetric or changing blocking fraction, changes to the inner disk hole size, as well as changes to the accretion rate. Overall, we find that the Class I:Class II ratio of the cluster is consistent with an age of <1 Myr, with at least one individual, wildly varying source {approx}100, 000 yr old. We have also discovered a Class II eclipsing binary system with a period of 17.87 days.

  20. INTERSTELLAR ENVIRONMENTS AND DUST PROPERTIES TOWARD CYGNUS OB2 NO. 12: A REASSESSMENT

    SciTech Connect

    Whittet, D. C. B.

    2015-10-01

    The B-type hypergiant Cygnus OB2 no. 12 is a popular target for studies of interstellar phenomena at visible-infrared wavelengths because of its exceptional brightness for a star dimmed by some 10 mag of visual extinction. A lack of detectable ice absorption has led investigators to regard the line of sight as a standard for studies of the “diffuse” interstellar medium (ISM), an assumption challenged both by observations of molecular gas toward the star and by uncertainties concerning the degree to which such a luminous object may affect its local environment. This paper presents a reassessment of the nature of the material responsible for extinction toward Cyg OB2 no. 12. The excess relative to other cluster members appears to occur in translucent clumps within an extensive network of clouds in the region. Attenuation of the ambient radiation field is sufficient in the cores of the clumps to support the presence of gas-phase molecules, but not to sustain detectable ice formation. In general, the optical properties of dust in the clumps are closely similar to those observed in typical diffuse interstellar material, with the notable exception of an unusually low value for the wavelength of maximum polarization. The implied enhancement of polarization by small grains is attributed to increased alignment efficiency in an enhanced magnetic field. This caveat apart, the results of the current paper provide reassurance that Cyg OB2 no. 12 is, indeed, an appropriate choice for studies that target diffuse and translucent phases of the ISM.

  1. Interstellar Environments and Dust Properties toward Cygnus OB2 No. 12: A Reassessment

    NASA Astrophysics Data System (ADS)

    Whittet, D. C. B.

    2015-10-01

    The B-type hypergiant Cygnus OB2 no. 12 is a popular target for studies of interstellar phenomena at visible-infrared wavelengths because of its exceptional brightness for a star dimmed by some 10 mag of visual extinction. A lack of detectable ice absorption has led investigators to regard the line of sight as a standard for studies of the “diffuse” interstellar medium (ISM), an assumption challenged both by observations of molecular gas toward the star and by uncertainties concerning the degree to which such a luminous object may affect its local environment. This paper presents a reassessment of the nature of the material responsible for extinction toward Cyg OB2 no. 12. The excess relative to other cluster members appears to occur in translucent clumps within an extensive network of clouds in the region. Attenuation of the ambient radiation field is sufficient in the cores of the clumps to support the presence of gas-phase molecules, but not to sustain detectable ice formation. In general, the optical properties of dust in the clumps are closely similar to those observed in typical diffuse interstellar material, with the notable exception of an unusually low value for the wavelength of maximum polarization. The implied enhancement of polarization by small grains is attributed to increased alignment efficiency in an enhanced magnetic field. This caveat apart, the results of the current paper provide reassurance that Cyg OB2 no. 12 is, indeed, an appropriate choice for studies that target diffuse and translucent phases of the ISM.

  2. Impacts of mute swans (Cygnus olor) on submerged aquatic vegetation in Illinois River Valley backwaters

    USGS Publications Warehouse

    Stafford, Joshua D.; Michael W. Eichholz,; Adam C. Phillips,

    2012-01-01

    Wetland loss in North America has been considerable and well documented, and the establishment of exotic species in remaining wetlands can further reduce their ability to support native flora and fauna. In the Chesapeake Bay and Great Lakes ecosystems, exotic mute swans (Cygnus olor) have been found to negatively impact wetlands through degradation of submerged aquatic vegetation (SAV) communities. Mute swan populations have expanded into many areas of mid-continental North America outside the Great Lakes ecosystem, but the environmental impact of these populations is not well known. Mid-continental wetlands in North America differ in physical characteristics (e.g., size, depth, and permanency) and aquatic vegetation species composition compared to wetlands in other areas where mute swans have been studied and, thus, may be more or less susceptible to degradation from swan herbivory. To investigate the impact of mute swan herbivory on SAV communities in mid-continent wetlands, we used exclosures to prevent swans from foraging in 2 wetland complexes in central Illinois. Above-ground biomass of vegetation did not differ between exclosures and controls; however, mean below-ground biomass was greater in exclosures (52.0 g/m2, SE = 6.0) than in controls (34.4 g/m2 SE = 4.0). Thus, although swan densities were lower in our study region compared to that of previous studies, we observed potentially detrimental impacts of swan herbivory on below-ground biomass of SAV. Our results indicate that both above-ground and below-ground impacts of herbivory should be monitored, and below-ground biomass may be most sensitive to swan foraging.

  3. A Chandra X-ray Study of Cygnus A. 2; The Nucleus

    NASA Technical Reports Server (NTRS)

    Young, Andrew J.; Wilson, Andrew; Terashima, Yuichi; Arnaud, Keith A.; Smith, David A.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We report Chandra Advanced CCD Imaging Spectrometer and quasi-simultaneous Rossi X-Ray Timing Explorer (RXTE) observations of the nearby, powerful radio galaxy Cygnus A, with the present paper focusing on the properties of the active nucleus. In the Chandra observation, the hard (less than a few keV) X-ray emission is spatially unresolved with a size is approximately 1" (1.5 kpc, H(sub 0) = 50 km/s/Mpc) and coincides with the radio and near-infrared nuclei. In contrast, the soft (less than 2 keV) emission exhibits a bipolar nebulosity that aligns with the optical bipolar continuum and emission-line structures and approximately with the radio jet. In particular, the soft X-ray emission corresponds very well with the [O III] (lambda)5007 and H(alpha) + [N II] lambda(lambda)6548, 6583 nebulosity imaged with Hubble Space Telescope. At the location of the nucleus, there is only weak soft X-ray emission, an effect that may be intrinsic or result from a dust lane that crosses the nucleus perpendicular to the source axis. The spectra of the various X-ray components have been obtained by simultaneous fits to the six detectors. The compact nucleus is detected to 100 keV and is well described by a heavily absorbed power-law spectrum with Gamma(sub h) = 1.52(sup + 0.12, sub -0.12) (similar to other 0.12 narrow-line radio galaxies) and equivalent hydrogen column N(sub H)(nuc) = 2.0(sup +0.1, sub -0.1) x 10(exp 23)/sq cm. This 0.2 column is compatible with the dust obscuration to the near-infrared source for a normal gas-to-dust ratio. The soft (less than 2 keV) emission from the nucleus may be described by a power-law spectrum with the same index (i.e., Gamma(sub l) = Gamma(sub h), although direct fits suggest a slightly larger value for Gamma(sub l). Narrow emission lines from highly ionized neon and silicon, as well as a "neutral" Fe K(alpha) line, are detected in the nucleus and its vicinity (r approximately less than 2 kpc). The equivalent width (EW) of the Fe K(alpha) line

  4. Cygnus X-3 and other ultra-high-energy gamma-ray sources

    NASA Technical Reports Server (NTRS)

    Barnard, John J.

    1987-01-01

    Recently, several binary X-ray sources have been found to be sources of ultrahigh-energy gamma emission. Air-shower observations indicate photon energies above about 1 PeV. Observations from Cyg X-3 are reviewed and compared with data on the sources Her X-1, Vel X-1, and LMC X-4. Current theoretical models for the production of gamma rays and the acceleration of high-energy particles are discussed, and the consequences for the evolution of such systems are examined.

  5. OT1_sbontemp_1: Water emission from outflows and hot cores in the Cygnus X proto-stars

    NASA Astrophysics Data System (ADS)

    Bontemps, S.

    2010-07-01

    The impressive first results from the WISH GT key program by van Dishoeck et al. indicate that water emission is bright towards the embedded proto-stars of all masses. These emissions are tracing outflows and warm inner regions of the collapsing envelopes (radiatively heated hot cores) which are unique probes of the cooling of these regions and of the kinematics of the dense warm gas. But WISH is limited by the reduced number of targets, and by the unavoidable biases introduced by the stringent selection of sources. The intermediate to high mass range is critical to challenge protostellar evolution models, and we argue that water emission from a complete sample of proto-stars in this mass range will be an important piece of knowledge for outflows to trace indirectly accretion and for hot cores to follow their time of appearance. Only Cygnus X is nearby and rich enough to provide a large sample of such proto-stars. We propose here to dramatically change the level of significance of WISH results by observing as many as 92 proto-stars covering the (final stellar) mass range of 3 to 20 Msun in the single complex of Cygnus X.

  6. The mass of the neutron star in Vela X-1

    NASA Astrophysics Data System (ADS)

    Barziv, O.; Kaper, L.; Van Kerkwijk, M. H.; Telting, J. H.; Van Paradijs, J.

    2001-10-01

    We measured the radial-velocity curve of HD 77581, the B-supergiant companion of the X-ray pulsar Vela X-1, using 183 high-resolution optical spectra obtained in a nine-month campaign. We derive radial-velocity amplitudes for different lines and wavelength regions, and find all are consistent with each other, as well as with values found in previous analyses. We show that one apparent exception, an anomalously low value derived from ultra-violet spectra obtained with the International Ultraviolet Explorer, was due to an error in the analysis procedures. We re-analyse all IUE spectra, and combine the resulting velocities with the ones derived from the new optical spectra presented here, as well as those derived from optical spectra published earlier. As in previous analyses, the radial velocities show strong deviations from those expected for a pure Keplerian orbit, with root-mean-square amplitudes of ~ 7 $km s-1 for strong lines of ion {Si}{4} and ion {N}{3} near 4100 Å, and up to \\sim20 km s-1 for weaker lines of ion {N}{2} and ion {Al}{3} near 5700 Å. The deviations likely are related to the pronounced line-profile variations seen in our spectra. Our hope was that the deviations would average out when a sufficient number of spectra were added together. It turns out, however, that systematic deviations as a function of orbital phase are present as well, at the 3 km s-1 level, with the largest deviations occurring near inferior conjunction of the neutron star and near the phase of maxiμm approaching velocity. While the former might be due to a photo-ionisation wake, for which we observe direct evidence in the profiles of Hδ and Hα, the latter has no straightforward explanation. As a result, our best estimate of the radial-velocity amplitude, Kopt=21.7±1.6 km s-1, has an uncertainty not much reduced to that found in previous analyses, in which the influence of the systematic, phase-locked deviations had not been taken into account. Combining our velocity

  7. The Complete ``Z'' Track of Circinus X-1

    NASA Astrophysics Data System (ADS)

    Shirey, Robert E.; Bradt, Hale V.; Levine, Alan M.

    1999-05-01

    We carried out an extensive Rossi X-Ray Timing Explorer campaign, in 1997 June, to study Circinus X-1 during the active portion of its 16.55 day intensity cycle. The observations spanned 10 days, including 56% coverage for 7 days, and allowed us to find time segments that clearly demonstrate continuous evolution along the horizontal, normal, and flaring branches (HB/NB/FB) of a Z-source low-mass X-ray binary. These results confirm and extend the behavior we inferred from earlier observations. Here we study the continuous evolution of the Fourier power spectra and the energy spectra around the complete hardness-intensity track. A narrow quasi-periodic oscillation (QPO) peak, previously observed in the power spectra at 1.3-32 Hz, increases in frequency from 12 Hz to 25 Hz moving down a vertical extension of the horizontal branch in the hardness-intensity diagram. These horizontal branch QPOs (HBOs) occur near 30 Hz and fade in strength on the horizontal portion of the HB, while a broad peak in the power spectrum arises near 4 Hz. This peak becomes much more prominent along the normal branch and remains near 4 Hz (the normal branch QPOs, or NBOs). On the flaring branch, neither QPO is present and the power spectrum is dominated by very low frequency noise. We also found that each branch of the spectral track is associated with a specific type of evolution of the energy spectrum. We explored various models for the energy spectrum and parameterized the evolution of the spectrum in terms of a two-component model consisting of a multitemperature ``disk blackbody'' and a higher temperature (~2 keV) blackbody. We also show that an unusual line- or edgelike feature occurs at about 10 keV in energy spectra from the flaring branch and lower normal branch. This unusual feature is very similar to one seen on the FB and lower NB of the Z source GX 5-1.

  8. Radio observations of comet C/2012 X1 LINEAR

    NASA Astrophysics Data System (ADS)

    Lovell, A.; Howell, E.

    2014-07-01

    We obtained radio OH spectra of comet C/2012 X1 LINEAR between 03 November 2013 and 13 January 2014 with the 305-m Gordon Telescope at Arecibo Observatory. Spectra at 1667 and 1665 MHz (18-cm wavelength) were obtained with an on-sky beam size of 2.9' and spectral resolution of 0.1 km s^{-1}, on most occasions mapping 7 positions of the OH coma within 4' of the nucleus. The observation range spans heliocentric distances from 2.2 au down to 1.7 au pre-perihelion, and geocentric distances ranging from 2.8-2.2 au, yielding a resolution of 300-400,000 km at the comet. Radio OH spectra are seen via a λ-doublet, with the excitation of the lines depending on the heliocentric velocity of the comet, changing the relative velocity of the cometary gas with respect to the UV spectrum of the Sun. We interpret the spectra via a vectorial Monte Carlo model, taking into account the OH inversion predictions of Despois et al. [1] as well as Schleicher & A'Hearn [2]. In highly productive comets, larger coma densities thermalize the line excitation, reducing the observed line strength near the nucleus. We treat this collisional quenching following that outlined by Schloerb [3] and Gérard [4]. Mapping observations can directly constrain the radius within which quenching is active, and thus yield a more accurate estimate of the gas production rate. Radio observations at high spectral resolution place excellent constraints on the gas outflow velocity in cometary comae. Best-fit models for these observations, processed based on spectra binned to a resolution of 0.34 km s^{-1}, yield gas outflow velocity of 0.78 ± 0.03 km s^{-1}, typical for comets outside 1 au heliocentric distance, and consistent with those of Tseng et al. [5]. Gas production rates differ by 20-30 percent for the two inversion models, but range between 2 × 10^{28} and 4 × 10^{28} mol s^{-1}, also similar to other comets observed at these heliocentric distances. We will present spectral line maps for these

  9. The earliest phases of high-mass star formation: a 3 square degree millimeter continuum mapping of Cygnus X

    NASA Astrophysics Data System (ADS)

    Motte, F.; Bontemps, S.; Schilke, P.; Schneider, N.; Menten, K. M.; Broguière, D.

    2007-12-01

    Aims:Our current knowledge of high-mass star formation is mainly based on follow-up studies of bright sources found by IRAS, and is thus biased against its earliest phases, inconspicuous at infrared wavelengths. We therefore started searching, in an unbiased way and in the closest high-mass star-forming complexes, for the high-mass analogs of low-mass pre-stellar cores and class 0 protostars. Methods: We have made an extensive 1.2 mm continuum mosaicing study of the Cygnus X molecular cloud complex using the MAMBO cameras at the IRAM 30 m telescope. The ˜ 3°2 imaged areas cover all the high-column density (AV ≥ 15 mag) clouds of this nearby (~1.7 kpc) cloud complex actively forming OB stars. We then compared our millimeter maps with mid-infrared images, and have made SiO(2-1) follow-up observations of the best candidate progenitors of high-mass stars. Results: Our complete study of Cygnus X with ~0.09 pc resolution provides, for the first time, an unbiased census of massive young stellar objects. We discover 129 massive dense cores (FWHM size ~0.1 pc, M1.2~mm = 4-950 M_⊙, volume-averaged density ~105 cm-3), among which ~42 are probable precursors of high-mass stars. A large fraction of the Cygnus X dense cores (2/3 of the sample) remain undetected by the MSX satellite, regardless of the mass range considered. Among the most massive (≥40 M_⊙) cores, infrared-quiet objects are driving powerful outflows traced by SiO emission. Our study qualifies 17 cores as good candidates for hosting massive infrared-quiet protostars, while up to 25 cores potentially host high-luminosity infrared protostars. We fail to discover the high-mass analogs of pre-stellar dense cores (~0.1 pc, > 104 cm-3) in Cygnus X, but find several massive starless clumps (~ 0.8 pc, 7 × 103 cm-3) that might be gravitationally bound. Conclusions: Since our sample is derived from a single molecular complex and covers every embedded phase of high-mass star formation, it gives the first

  10. Temporal X-ray astronomy with a pinhole camera. [cygnus and scorpius constellation

    NASA Technical Reports Server (NTRS)

    Holt, S. S.

    1975-01-01

    Preliminary results from the Ariel-5 all-sky X-ray monitor are presented, along with sufficient experiment details to define the experiment sensitivity. Periodic modulation of the X-ray emission was investigated from three sources with which specific periods were associated, with the results that the 4.8 hour variation from Cyg X-3 was confirmed, a long-term average 5.6 day variation from Cyg X-1 was discovered, and no detectable 0.787 day modulation of Sco X-1 was observed. Consistency of the long-term Sco X-1 emission with a shot-noise model is discussed, wherein the source behavior is shown to be interpretable as approximately 100 flares per day, each with a duration of several hours. A sudden increase in the Cyg X-1 intensity by almost a factor of three on 22 April 1975 is reported, after 5 months of relative source constancy. The light curve of a bright nova-like transient source in Triangulum is presented, and compared with previously observed transient sources. Preliminary evidence for the existence of X-ray bursts with duration less than 1 hour is offered.

  11. AN UPDATED LOOK AT BINARY CHARACTERISTICS OF MASSIVE STARS IN THE CYGNUS OB2 ASSOCIATION

    SciTech Connect

    Kiminki, Daniel C.; Kobulnicky, Henry A.

    2012-05-20

    This work provides a statistical analysis of the massive star binary characteristics in the Cygnus OB2 association using radial velocity information of 114 B3-O5 primary stars and orbital properties for the 24 known binaries. We compare these data to a series of Monte Carlo simulations to infer the intrinsic binary fraction and distributions of mass ratios, periods, and eccentricities. We model the distribution of mass ratio, log-period, and eccentricity as power laws and find best-fitting indices of {alpha} = 0.1 {+-} 0.5, {beta} = 0.2 {+-} 0.4, and {gamma} = -0.6 {+-} 0.3, respectively. These distributions indicate a preference for massive companions, short periods, and low eccentricities. Our analysis indicates that the binary fraction of the cluster is 44% {+-} 8% if all binary systems are (artificially) assumed to have P < 1000 days; if the power-law period distribution is extrapolated to 10{sup 4} years, then a plausible upper limit for bound systems, the binary fraction is {approx}90% {+-} 10%. Of these binary (or higher order) systems, {approx}45% will have companions close enough to interact during pre- or post-main-sequence evolution (semi-major axis {approx}<4.7 AU). The period distribution for P < 26 days is not well reproduced by any single power law owing to an excess of systems with periods around 3-5 days (0.08-0.31 AU) and a relative shortage of systems with periods around 7-14 days (0.14-0.62 AU). We explore the idea that these longer-period systems evolved to produce the observed excess of short-period systems. The best-fitting binary parameters imply that secondaries generate, on average, {approx}16% of the V-band light in young massive populations. This means that photometrically based distance measurements for young massive clusters and associations will be systematically low by {approx}8% (0.16 mag in the distance modulus) if the luminous contributions of unresolved secondaries are not taken into account.

  12. Understanding star formation in molecular clouds. III. Probability distribution functions of molecular lines in Cygnus X

    NASA Astrophysics Data System (ADS)

    Schneider, N.; Bontemps, S.; Motte, F.; Ossenkopf, V.; Klessen, R. S.; Simon, R.; Fechtenbaum, S.; Herpin, F.; Tremblin, P.; Csengeri, T.; Myers, P. C.; Hill, T.; Cunningham, M.; Federrath, C.

    2016-03-01

    The probability distribution function of column density (N-PDF) serves as a powerful tool to characterise the various physical processes that influence the structure of molecular clouds. Studies that use extinction maps or H2 column-density maps (N) that are derived from dust show that star-forming clouds can best be characterised by lognormal PDFs for the lower N range and a power-law tail for higher N, which is commonly attributed to turbulence and self-gravity and/or pressure, respectively. While PDFs from dust cover a large dynamic range (typically N ~ 1020-24 cm-2 or Av~ 0.1-1000), PDFs obtained from molecular lines - converted into H2 column density - potentially trace more selectively different regimes of (column) densities and temperatures. They also enable us to distinguish different clouds along the line of sight through using the velocity information. We report here on PDFs that were obtained from observations of 12CO, 13CO, C18O, CS, and N2H+ in the Cygnus X North region, and make a comparison to a PDF that was derived from dust observations with the Herschel satellite. The PDF of 12CO is lognormal for Av ~ 1-30, but is cut for higher Av because of optical depth effects. The PDFs of C18O and 13CO are mostly lognormal up to Av ~ 1-15, followed by excess up to Av ~ 40. Above that value, all CO PDFs drop, which is most likely due to depletion. The high density tracers CS and N2H+ exhibit only a power law distribution between Av ~ 15 and 400, respectively. The PDF from dust is lognormal for Av ~ 3-15 and has a power-law tail up to Av ~ 500. Absolute values for the molecular line column densities are, however, rather uncertain because of abundance and excitation temperature variations. If we take the dust PDF at face value, we "calibrate" the molecular line PDF of CS to that of the dust and determine an abundance [CS]/[H2] of 10-9. The slopes of the power-law tails of the CS, N2H+, and dust PDFs are -1.6, -1.4, and -2.3, respectively, and are thus consistent

  13. Delineation of Tundra Swan Cygnus c. columbianus populations in North America: geographic boundaries and interchange

    USGS Publications Warehouse

    Ely, Craig R.; Sladen, William J. L.; Wilson, Heather M.; Savage, Susan E.; Sowl, Kristine M.; Henry, Bill; Schwitters, Mike; Snowden, James

    2014-01-01

    North American Tundra Swans Cygnus c. columbianus are composed of two wellrecognised populations: an Eastern Population (EP) that breeds across northern Canada and north of the Brooks Range in Alaska, which migrates to the eastern seaboard of the United States, and a Western Population (WP) that breeds in coastal regions of Alaska south of the Brooks Range and migrates to western North America. We present results of a recent major ringing effort from across the breeding range in Alaska to provide a better definition of the geographic extent of the migratory divide in Alaska. We also reassess the staging and winter distributions of these populations based on locations of birds tracked using satellite transmitters, and recent recoveries and sightings of neck-collared birds. Summer sympatry of EP and WP Tundra Swans is very limited, and largely confined to a small area in northwest Alaska. Autumn migration pathways of EP and WP Tundra swans abut in southwest Saskatchewan, a region where migrating WP birds turn west, and EP birds deviate abruptly eastward. Overall, from 1989 to 2013 inclusive, 2.6% of recoveries or resightings reported to the USGS Bird Banding Laboratory were of birds that moved from the domain of the population in which they were initially captured to within the range of the other population; a proportion roughly comparable to the results of Limpert et al. (1991) for years before 1990. Of the 70 cross-boundary movements reported since 1989, 39% were of birds marked on breeding areas and 61% were of birds marked on wintering areas. Dispersing swans (i.e. those that made crossboundary movements) did not differ with respect to age or sex from those that did not move between populations. The Brooks Range in northern Alaska effectively separates the two populations within Alaska, but climate-induced changes in tundra breeding habitats and losses of wetlands on staging areas may alter the distribution for both of these populations.

  14. NEAR-INFRARED VARIABILITY IN YOUNG STARS IN CYGNUS OB7

    SciTech Connect

    Rice, Thomas S.; Wolk, Scott J.; Aspin, Colin

    2012-08-10

    We present the first results from a 124 night J, H, K near-infrared monitoring campaign of the dark cloud L 1003 in Cygnus OB7, an active star-forming region. Using three seasons of UKIRT observations spanning 1.5 years, we obtained high-quality photometry on 9200 stars down to J = 17 mag, with photometric uncertainty better than 0.04 mag. On the basis of near-infrared excesses from disks, we identify 30 pre-main-sequence stars, including 24 which are newly discovered. We analyze those stars and find that the NIR excesses are significantly variable. All 9200 stars were monitored for photometric variability; among the field star population, {approx}160 exhibited near-infrared variability (1.7% of the sample). Of the 30 young stellar objects (YSOs), 28 of them (93%) are variable at a significant level. Of the 30 YSOs, twenty-five have near-infrared excess consistent with simple disk-plus-star classical T Tauri models. Nine of these (36%) drift in color space over the course of these observations and/or since Two Micron All Sky Survey observations such that they cross the boundary defining the NIR excess criteria; effectively, they have a transient near-infrared excess. Thus, time-series JHK observations can be used to obtain a more complete sample of disk-bearing stars than single-epoch JHK observations. About half of the YSOs have color-space variations parallel to either the classical T Tauri star locus or a hybrid track which includes the dust reddening trajectory. This indicates that the NIR variability in YSOs that possess accretion disks arises from a combination of variable extinction and changes in the inner accretion disk: either in accretion rate, central hole size, and/or the inclination of the inner disk. While some variability may be due to stellar rotation, the level of variability on the individual stars can exceed a magnitude. This is a strong empirical suggestion that protoplanetary disks are quite dynamic and exhibit more complex activity on short

  15. Sco X-1 - A galactic radio source with an extragalactic radio morphology

    NASA Technical Reports Server (NTRS)

    Geldzahler, B. J.; Corey, B. E.; Fomalont, E. B.; Hilldrup, K.

    1981-01-01

    VLA observations of radio emissions at 1465 and 4885 MHz, of Sco X-1 confirm the existence of a colinear triple structure. Evidence that the three components of Sco X-1 are physically associated is presented, including the morphology, spectrum, variability, volume emissivity and magnetic field strength. The possibility of a physical phenomenon occurring in Sco X-1 similar to that occurring in extragalactic radio sources is discussed, and two galactic sources are found having extended emission similar to that in extragalactic objects. The extended structure of Sco X-1 is also observed to be similar to that of the hot spots in luminous extragalactic sources, and a radio source 20 arcmin from Sco X-1 is found to lie nearly along the radio axis formed by the components of Sco X-1.

  16. VizieR Online Data Catalog: Infrared photometry of YSOs in Cygnus-X DR15 (Rivera-Galvez+, 2015)

    NASA Astrophysics Data System (ADS)

    Rivera-Galvez, S.; Roman-Zuniga, C. G.; Jimenez-Bailon, E.; Ybarra, J. E.; Alves, J. F.; Lada, E. A.

    2016-06-01

    Near-infrared images of the Cygnus-X DR15 region were obtained with the OMEGA 2000 camera at the 3.5m telescope of the Calar Alto Observatory, atop Sierra de los Filabres in Almeria, Spain, during the nights of 2010, February 2nd and March 3rd. The data set consists of 900s co-added exposures in the J, H, and K bands (1.209, 1.648, and 2.208μm, respectively). The seeing values-measured directly from the average FWHM of stars in the final reduced mosaics-were 1.17, 1.13, and 0.98" in J, H, and K, respectively. The Spitzer Space Telescope has observed the DR15 cluster with the IRAC and MIPS detectors as part of the Spitzer Cygnus-X Legacy Survey (Hora et al. 2009 ASP Conf. Ser., Reionization to Exoplanets: Spitzer's Growing Legacy ed P. Ogle (San Francisco, CA: ASP) 26; hereafter CXLS). We obtained archival enhanced product mosaics from the Spitzer Heritage Archive as well as a photometric catalog coincident with our region of interest directly from the CXLS Data Release 1 (DR1). The catalog contains calibrated magnitudes for sources detected with IRAC in its four cryogenic mission channels (3.6, 4.5, 5.8, and 8.0μm), as well as in the 24μm channel of MIPS. The DR15 cluster was observed with the Imaging Array of the Chandra Advanced CCD Imaging Spectrometer (ACIS-I) on 2011 January 25 (ObsID12390, P.I. Wright). We made use of the Five College Radio Observatory (FCRAO) 13CO(1-0) molecular radio emission map of the south Cygnus-X region from the study of Schneider et al. (2011A&A...529A...1S). In Tables 2-4 we list YSO sources identified as Class I, Class II, and Class III in our region of study. (3 data files).

  17. Biological significance of PinX1 telomerase inhibitor in esophageal carcinoma treatment

    PubMed Central

    Fan, Xiang-Kui; Yan, Rui-Hua; Geng, Xiang-Qun; Li, Jing-Shan; Chen, Xiang-Ming; Li, Jian-Zhe

    2016-01-01

    In the present study, to investigate the expression of PinX1 gene and its functional effects in human esophageal carcinoma (Eca)-109 cell line, expression vectors of human PinX1 (pEGFP-C3-PinX1) and its small interfering RNA (PinX1-FAM-siRNA) were constructed and transfected into Eca-109 cells using Lipofectamine 2000. Firstly, the mRNA expression level of PinX1 was examined using reverse transcription-polymerase chain reaction (RT-PCR). Once successful transfection was achieved, the effects on the mRNA level of human telomerase reverse transcriptase (hTERT), telomerase activity, cell proliferation and apoptosis were examined by semi-quantitative RT-PCR, stretch PCR, MTT assay and flow cytometry, respectively. Analysis of restriction and sequencing demonstrated that the recombining plasmids were successfully constructed. The results also indicated that transfection with pEGFP-C3-PinX1 and PinX1-FAM-siRNA into Eca-109 cells significantly increased PinX1 mRNA, decreased hTERT mRNA by 29.9% (P<0.05), and significantly reduced telomerase activity (P<0.05), inhibited cell growth, and increased the cell apoptotic index from 19.27±0.76 to 49.73±2%. The transfected PinX1-FAM-SiRNA exhibited PinX1 mRNA expression levels that were significantly decreased by 70% (P<0.05), whereas the remaining characteristics of Eca-109 cells, including cell growth, mRNA level of hTERT, telomerase activity and cell apoptotic index were not altered. Exogenous PinX1 has been demonstrated to be highly expressed in human Eca. PinX1 can inhibit human telomerase activity and the expression of hTERT mRNA, reduce tumor cell growth and induce apoptosis. Notably, these inhibitory functions were inhibited by silencing PinX1 in Eca with PinX1-FAM-siRNA. PinX1 was successfully increased and decreased in the present study, demonstrating that it may be a potential telomerase activity inhibitor. As PinX1 is an endogenous telomerase inhibitor, it may be used as a novel tumor-targeted gene therapy. PMID

  18. Biological significance of PinX1 telomerase inhibitor in esophageal carcinoma treatment

    PubMed Central

    Fan, Xiang-Kui; Yan, Rui-Hua; Geng, Xiang-Qun; Li, Jing-Shan; Chen, Xiang-Ming; Li, Jian-Zhe

    2016-01-01

    In the present study, to investigate the expression of PinX1 gene and its functional effects in human esophageal carcinoma (Eca)-109 cell line, expression vectors of human PinX1 (pEGFP-C3-PinX1) and its small interfering RNA (PinX1-FAM-siRNA) were constructed and transfected into Eca-109 cells using Lipofectamine 2000. Firstly, the mRNA expression level of PinX1 was examined using reverse transcription-polymerase chain reaction (RT-PCR). Once successful transfection was achieved, the effects on the mRNA level of human telomerase reverse transcriptase (hTERT), telomerase activity, cell proliferation and apoptosis were examined by semi-quantitative RT-PCR, stretch PCR, MTT assay and flow cytometry, respectively. Analysis of restriction and sequencing demonstrated that the recombining plasmids were successfully constructed. The results also indicated that transfection with pEGFP-C3-PinX1 and PinX1-FAM-siRNA into Eca-109 cells significantly increased PinX1 mRNA, decreased hTERT mRNA by 29.9% (P<0.05), and significantly reduced telomerase activity (P<0.05), inhibited cell growth, and increased the cell apoptotic index from 19.27±0.76 to 49.73±2%. The transfected PinX1-FAM-SiRNA exhibited PinX1 mRNA expression levels that were significantly decreased by 70% (P<0.05), whereas the remaining characteristics of Eca-109 cells, including cell growth, mRNA level of hTERT, telomerase activity and cell apoptotic index were not altered. Exogenous PinX1 has been demonstrated to be highly expressed in human Eca. PinX1 can inhibit human telomerase activity and the expression of hTERT mRNA, reduce tumor cell growth and induce apoptosis. Notably, these inhibitory functions were inhibited by silencing PinX1 in Eca with PinX1-FAM-siRNA. PinX1 was successfully increased and decreased in the present study, demonstrating that it may be a potential telomerase activity inhibitor. As PinX1 is an endogenous telomerase inhibitor, it may be used as a novel tumor-targeted gene therapy.

  19. The Balmer-dominated northeast limb of the Cygnus loop supernova remnant

    NASA Astrophysics Data System (ADS)

    Hester, J. Jeff; Raymond, John C.; Blair, William P.

    1994-01-01

    We present a comprehensive investigation of the Balmar-dominated northeast limb of the Cygnus Loop supernova remnant. Data presented include H alpha (O III), and X-ray images, UV and visible spectrophotometry, and high-resolution spectroscopy. The two relatively bright Balmer-dominated filaments visible on the POSS prints are seen to be part of a very smooth and regular complex of filaments. These filaments mark the current location of the blast wave and are seen to bound the sharply limb-brightened X-ray emission, including the previously reported X-ray, 'halo.' The (O III)/h beta ratio throughout the region is approximately 0.1, except for regions in which the shock is undergoing a transition from nonradiative to incomplete radiative to incomplete radiative conditions. At these locations (O III) emission from the cooling region is quite strong, while collisionally excited Balmer-line emission can be weak because of photoionization of the preshock medium by UV from the nascent cooling region. As a result (O III)/H beta is greater than 100 in some locations. The nonradiative/radiative transition is best studied along the length of the northwestern of the two brightest filaments, where the shock velocity and swept-up column go from approximately 180 km/s and 1017/sq cm at one end to approximately 140 km/s and 8 x 1017/cm at the other. There are also a number of locations of such incomplete radiative emission where the shock has recently encountered denser regions with characteristic sizes of approximately 1018 cm. There is a considerable amount of evidence that the shock has decelerated from approximately 400 km/s to less than 200 km/s in the last 1000 yr. We interpret this as the result of the blast wave hitting the wall of a cavity which surround the supernova precursor and succeed in matching a wide range of data with a reflected shock model in which the density ofthe cavity wall is approximately 1.2/cu cm and the density in the interior of the cavity is about 0

  20. X-1-2 on ramp with pilots Robert Champine and Herb Hoover

    NASA Technical Reports Server (NTRS)

    1949-01-01

    The Bell Aircraft Corporation X-1-2 and two of the NACA pilots that flew the aircraft. The one on the viewer's left is Robert Champine with the other being Herbert Hoover. Champine made a total of 13 flights in the X-1, plus 9 in the D-558-1 and 12 in the D-558-2. Hoover made 14 flights in the X-1. On March 10, 1948, he reached Mach 1.065, becoming the first NACA pilot to fly faster than the speed of sound. There were five versions of the Bell X-1 rocket-powered research aircraft that flew at the NACA High-Speed Flight Research Station, Edwards, California. The bullet-shaped X-1 aircraft were built by Bell Aircraft Corporation, Buffalo, N.Y. for the U.S. Army Air Forces (after 1947, U.S. Air Force) and the National Advisory Committee for Aeronautics (NACA). The X-1 Program was originally designated the XS-1 for EXperimental Sonic. The X-1's mission was to investigate the transonic speed range (speeds from just below to just above the speed of sound) and, if possible, to break the 'sound barrier.' Three different X-1s were built and designated: X-1-1, X-1-2 (later modified to become the X-1E), and X-1-3. The basic X-1 aircraft were flown by a large number of different pilots from 1946 to 1951. The X-1 Program not only proved that humans could go beyond the speed of sound, it reinforced the understanding that technological barriers could be overcome. The X-1s pioneered many structural and aerodynamic advances including extremely thin, yet extremely strong wing sections; supersonic fuselage configurations; control system requirements; powerplant compatibility; and cockpit environments. The X-1 aircraft were the first transonic-capable aircraft to use an all-moving stabilizer. The flights of the X-1s opened up a new era in aviation. The first X-1 was air-launched unpowered from a Boeing B-29 Superfortress on Jan. 25, 1946. Powered flights began in December 1946. On Oct. 14, 1947, the X-1-1, piloted by Air Force Captain Charles 'Chuck' Yeager, became the first aircraft

  1. Long-Term X-Ray Variability of Circinus X-1

    NASA Technical Reports Server (NTRS)

    Saz Parkinson, P. M.; Tournear, D. M.; Bloom, E. D.; Focke, W. B.; Reilly, K. T.

    2003-01-01

    We present an analysis of long term X-ray monitoring observations of Circinus X-1 (Cir X-1) made with four different instruments: Vela 5B, Ariel V ASM, Ginga ASM, and RXTE ASM, over the course of more than 30 years. We use Lomb-Scargle periodograms to search for the approx. 16.5 day orbital period of Cir X-1 in each of these data sets and from this derive a new orbital ephemeris based solely on X-ray measurements, which we compare to the previous ephemerides obtained from radio observations. We also use the Phase Dispersion Minimization (PDM) technique, as well as FFT analysis, to verify the periods obtained from periodograms. We obtain dynamic periodograms (both Lomb-Scargle and PDM) of Cir X-1 during the RXTE era, showing the period evolution of Cir X-1, and also displaying some unexplained discrete jumps in the location of the peak power.

  2. Observation of an excess of cosmic ray muons of energies 2 TeV from the direction of Cygnus X-3

    NASA Technical Reports Server (NTRS)

    Battistoni, G.; Bellotti, E.; Bloise, C.; Bologna, G.; Campana, P.; Castagnoli, C.; Castellina, A.; Chiarella, V.; Ciocio, A.; Cundy, D.

    1985-01-01

    A high flux of muons from the Cygnus X-3 direction has been observed in NUSEX experiment at depths greater than 4600 hg/sq cm s.r. The excess muons show the 4.8 hour modulation in arrival time typical of this source. A study of this modulation was done in order to find the best value of the period and of the period derivative. The muon flux underground from NUSEX and SOUDAN (1800 hg/sq cm) experiments are used to determine the energy spectrum at sea level. The shape and the absolute intensities are found similar to those attributed to gamma rays responsible for production of air showers detected in direction of Cygnus X-3 in the energy range 10 to the 12th power to 10 to the 15th power eV.

  3. Long-term studies with the Ariel-5 asm. 1: Her X-1, Vela X-1 and Cen X-3. [periodic variations

    NASA Technical Reports Server (NTRS)

    Holt, S. S.; Kaluzienski, L. J.; Boldt, E. A.; Serlemitsos, P. J.

    1978-01-01

    Twelve hundred days of 3-6 keV X-ray data from Her X-1, Vela X-1 and Cen X-3 accumulated with the Ariel-5 all-sky monitor are interrogated. The binary periodicities of all three can be clearly observed, as can the approximately 35-d variation of Her X-1, for which we can refine the period to 34.875 plus or minus .030-d. No such longer-term periodicity less than 200-d is observed from Vela X-1. The 26.6-d low-state recurrence period for Cen X-3 previously suggested is not observed, but a 43.0-d candidate periodicity is found which may be consistent with the precession of an accretion disk in that system. The present results are illustrative of the long-term studies which can be performed on approximately 50 sources over a temporal base which will ultimately extend to at least 1800 days.

  4. Discovery of the binary nature of SMC X-1 from Uhuru.

    NASA Technical Reports Server (NTRS)

    Schreier, E.; Giacconi, R.; Gursky, H.; Kellogg, E.; Tananbaum, H.

    1972-01-01

    The X-ray source in the Small Magellanic Cloud SMC X-1 was observed by Uhuru on numerous occasions from December 1970 through April 1972. As previously reported by Leong et al. (1971), the source was seen to be variable. It was found that SMC X-1 occults with a period of 3.8927 days. The energy spectrum is cut off at low energies and flat. There is no large-amplitude periodic pulsation. The luminosity observed makes the binary source SMC X-1 comparable in strength to both the stronger galactic sources and the discrete sources in the Large Magellanic Cloud.

  5. Origin of the X1X1X2X2/X1X2Y sex chromosome system of Harttia punctata (Siluriformes, Loricariidae) inferred from chromosome painting and FISH with ribosomal DNA markers.

    PubMed

    Blanco, Daniel Rodrigues; Vicari, Marcelo Ricardo; Lui, Roberto Laridondo; Artoni, Roberto Ferreira; de Almeida, Mara Cristina; Traldi, Josiane Baccarin; Margarido, Vladimir Pavan; Moreira-Filho, Orlando

    2014-04-01

    Harttia is a genus in the subfamily Loricariinae that accommodates fishes popularly known as armored catfishes. They show extensive karyotypic diversity regarding interspecific numerical/structural variation of the karyotypes, with the presence of the XX/XY1Y2 multiple sex chromosome system, as found in H. carvalhoi. In this context, this study aimed to characterize Harttia punctata chromosomally, for the first time, and to infer the rearrangements that originated the X1X1X2X2/X1X2Y multiple sex chromosome system present in this species. The data obtained in this study, with classical (Giemsa, C-banding and AgNORs) and molecular methodologies (fluorescence in situ hybridization) and chromosome microdissection, indicated that a translocation between distinct acrocentric chromosomes bearing rRNA genes, accompanied by deletions in both chromosomes, might have originated the neo-Y chromosome in this species. The data also suggest that the multiple sex chromosome systems present in H. carvalhoi and H. punctata had an independent origin, evidencing the recurrence of chromosome alterations in species from this genus.

  6. Chromosomal distribution of two multigene families and the unusual occurrence of an X1X1X2X2/X1X2Y sex chromosome system in the dolphinfish (Coryphaenidae): an evolutionary perspective.

    PubMed

    Soares, R X; Bertollo, L A C; Cioffi, M B; Costa, G W W F; F Molina, W

    2014-01-01

    Dolphinfishes (Coryphaenidae) are pelagic predators distributed throughout all tropical and subtropical oceans and are very important for commercial, traditional, and sport fishing. This small family contains the Coryphaena hippurus and Coryphaena equiselis species whose chromosomal aspects remain unknown, despite recent advances in cytogenetic data assimilation for Perciformes. In this study, both species were cytogenetically analyzed using different staining techniques (C-, Ag-, and CMA3 banding) and fluorescence in situ hybridization, to detect 18S rDNA and 5S rDNA. C. hippurus females exhibit 2n = 48 chromosomes, with 2m+4sm+42a (NF = 54). In C. equiselis, where both sexes could be analyzed, females displayed 2n = 48 chromosomes (2m+6sm+40a) and males exhibited 2n = 47 chromosomes (3m+6sm+38a) (NF = 56), indicating the presence of X1X1X2X2/X1X2Y multiple sex chromosomes. Sex-chromosome systems are rare in Perciformes, with this study demonstrating the first occurrence in a marine pelagic species. It remains unknown as to whether this system extends to other populations; however, these data are important with respect to evolutionary, phylogenetic, and speciation issues, as well as for elucidating the genesis of this unique sex system. PMID:24782001

  7. The Cosmic-Ray and Gas Content of the Cygnus Region as Measured in Gamma Rays by the Fermi Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Belfiore, A.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bottacini, E.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Harding, A. K.; Hays, E.; Thompson, D. J.; Troja, E.

    2011-01-01

    Context. The Cygnus region hosts a giant molecular-cloud complex which actively forms massive stars. Interactions of cosmic rays with interstellar gas and radiation fields make it shine at y-ray energies. Several gamma-ray pulsars and other energetic sources are seen in this direction. Aims. In this paper we analyse the gamma-ray emission measured by the Fermi Large Area Telescope in the energy range from 100 Me V to 100 Ge V in order to probe the gas and cosmic-ray content over the scale of the whole Cygnus complex. The gamma-ray emission on the scale of the central massive stellar clusters and from individual sources is addressed elsewhere. Methods. The signal from bright pulsars is largely reduced by selecting photons in their off-pulse phase intervals. We compare the diffuse gamma-ray emission with interstellar gas maps derived from radio/mm-wave lines and visual extinction data. and a global model of the region, including other pulsars and gamma-ray sources, is sought. Results. The integral H I emissivity above 100 MeV averaged over the whole Cygnus complex amounts to 12.06 +/- 0.11 (stat.) (+0.15 -0.84) (syst.J] x 10(exp -26) photons /s / sr / H-atom, where the systematic error is dominated by the uncertainty on the H I opacity to calculate its column densities. The integral emissivity and its spectral energy distribution are both consistent within the systematics with LAT measurements in the interstellar space near the solar system. The average X(sub co) N(H2)/W(sub co) ratio is found to be [1.68 +/- 0.05 (stat.) (H I opacity)] x 1020 molecules cm-2 (K km/s /r, consistent with other LAT measurements in the Local Arm. We detect significant gamma-ray emission from dark neutral gas for a mass corresponding to approx 40% of that traced by CO. The total interstellar mass in the Cygnus complex inferred from its gamma-ray emission amounts to 8(+5 -1) x 10(exp 6) Solar M at a distance of 1.4 kpc. Conclusions. Despite the conspicuous star formation activity and large

  8. Feedback at the Working Surface: A Joint X-ray and Low-Frequency Radio Spectral Study of the Cocoon Shock in Cygnus A

    NASA Astrophysics Data System (ADS)

    Wise, Michael W.; Rafferty, D. A.; McKean, J. P.

    2013-04-01

    We report on preliminary results from a joint spectral analysis of the cocoon shock region in Cygnus A using deep archival Chandra data and new low-frequency radio data from LOFAR. Being both bright in X-rays and the most powerful radio source in the local universe, the FRII radio galaxy Cygnus A represents an ideal opportunity to study the interaction between the jets produced by the central AGN and the surrounding intracluster medium (ICM) in which that AGN is embedded. Using the entire 235 ksec archival Chandra exposure, we have performed a spatially resolved, X-ray spectral analysis of the ICM in Cygnus A. By combining the resulting X-ray images and temperature maps with spectral index maps between 30-80 MHz and 120-180 MHz calculated from a recent, deep LOFAR observation, we can resolve the X-ray and radio emitting plasmas in any given region on spatial scales of 3-4 kpc over the central 100 kpc. We clearly resolve the cocoon shock surrounding Cygnus A and determine the Mach number of the shock as a function of position angle. Temperature jumps associated with this shock are detected over a large fraction of the total shock circumference. Significant non-thermal emission is also detected in the regions surrounding the SE and NW leading edges of the shock near the hotspots. In this talk, we will present a detailed analysis of the energetics of this interface region between the radio plasma inside the cocoon shock and the X-ray emitting gas outside the shock. Inside the shock, we will present constraints on the emission mechanisms in the jet, counter-jet, and hotspots based on the combined radio and X-ray spectra. Using maps of the spectral age derived from the LOFAR data and independent age estimates based on various cavity features seen in the X-ray image, we will present a picture of the evolution of the shock region in Cygnus A over the past 50 Myr. Finally, we will discuss the implications these observations have for AGN feedback models as well as the

  9. X1.6 Class Solar Flare on Sept. 10, 2014

    NASA Video Gallery

    An X1.6 class solar flare flashes in the middle of the sun on Sept. 10, 2014. These images were captured by NASA's Solar Dynamics Observatory. It first shows the flare in the 171 Angstrom wavelengt...

  10. Multiple Views of X1.4 Solar Flare on July 12, 2012

    NASA Video Gallery

    This video shows the July 12, 2012 X1.4 class solar flare in a variety of wavelength; 131- Teal colored, 335 - blue colored, 171 - yellow colored and finally a combined wavelength view. All video w...

  11. Observation of the X-ray source Sco X-1 from Skylab. [radiant flux density

    NASA Technical Reports Server (NTRS)

    Wilson, R. M.

    1977-01-01

    An attempt to observe the discrete X-ray source Sco X-1 on 20 September 1973 between 0856 and 0920 UT is reported. Data obtained with the ATM/S-056 X-ray event analyzer, in particular the flux observed with the 1.71 to 4.96 KeV counter, is analyzed. No photographic image of the source was obtained because Sco X-1 was outside the field of view of the X-ray telescope.

  12. Lithium synthesis in microquasar accretion.

    PubMed

    Iocco, Fabio; Pato, Miguel

    2012-07-13

    We study the synthesis of lithium isotopes in the hot tori formed around stellar mass black holes by accretion of the companion star. We find that sizable amounts of both stable isotopes 6Li and 7Li can be produced, the exact figures varying with the characteristics of the torus and reaching as much as 10(-2) M⊙ for each isotope. This mass output is enough to contaminate the entire Galaxy at a level comparable with the original, pregalactic amount of lithium and to overcome other sources such as cosmic-ray spallation or stellar nucleosynthesis. PMID:23030150

  13. Lithium synthesis in microquasar accretion.

    PubMed

    Iocco, Fabio; Pato, Miguel

    2012-07-13

    We study the synthesis of lithium isotopes in the hot tori formed around stellar mass black holes by accretion of the companion star. We find that sizable amounts of both stable isotopes 6Li and 7Li can be produced, the exact figures varying with the characteristics of the torus and reaching as much as 10(-2) M⊙ for each isotope. This mass output is enough to contaminate the entire Galaxy at a level comparable with the original, pregalactic amount of lithium and to overcome other sources such as cosmic-ray spallation or stellar nucleosynthesis.

  14. Rotationally Resolved Spectroscopy of the B1Π← X1σ+ and C1σ+← X1σ+ Electronic Bands of CaO

    NASA Astrophysics Data System (ADS)

    Sullivan, Michael; Stewart, Jacob; Heaven, Michael

    2015-06-01

    The B1Π← X1σ+ and C1σ+← X1σ+ transitions of CaO, at energies below 30,000 cm-1, were previously investigated by Lagerqvist. The arc source used in that work yielded spectra at energies above 30,000 cm-1 that were too congested for analysis. In the present study we have used jet-cooling of CaO to extend the characterization of the B← X and C← X band systems up to 35,000 cm-1. Analyses of these data and spectroscopic constants will be reported. This work is being carried out in support of two-color photoionization studies of the cation, where the higher energy vibronic levels of the B and C states are used as the first excitation step. A. Lagerqvist, Arkiv För Fysik 8, 83, 1954

  15. X-1-3 being mated to EB-50A Superfortress

    NASA Technical Reports Server (NTRS)

    1951-01-01

    The third X-1 (46-064), known as 'Queenie,' is mated to the EB-50A (46-006) at Edwards AFB, California. Following a captive flight on 9 November 1951, both aircraft were destroyed by fire during defueling. This particular X-1 only flew twice, the first flight occurring on 20 July 1951. Bell pilot Joseph Cannon was the pilot on both flights, although the second flight was only a captive flight. Cannon was injured in the fire. The first of the rocket-powered research aircraft, the X-1 (originally designated the XS-1), was a bullet-shaped airplane that was built by the Bell Aircraft Company for the US Air Force and the NACA. The mission of the X-1 was to investigate the transonic speed range (speeds from just below to just above the speed of sound) and, if possible, to break the 'sound barrier.' The first of the three X-1's was glide-tested at Pinecastle Army Airfield, FL, in early 1946. The first powered flight of the X-1 was made on Dec. 9, 1946, at Edwards Air Force Base with Chalmers Goodlin, a Bell test pilot, at the controls. On Oct. 14, 1947, with USAF Captain Charles 'Chuck' Yeager as pilot, the aircraft flew faster than the speed of sound for the first time. Captain Yeager ignited the four-chambered XLR-11 rocket engines after the B-29 air-launched it from under the bomb bay of a B-29 at 21,000 feet. The 6,000-pound thrust ethyl alcohol/liquid oxygen burning rockets, built by Reaction Motors, Inc., pushed the aircraft up to a speed of 700 miles per hour in level flight. Captain Yeager was also the pilot when the X-1 reached its maximum speed, 957 miles per hour. Another USAF pilot. Lt. Col. Frank Everest, Jr., was credited with taking the X-1 to its maximum altitude of 71,902 feet. Eighteen pilots in all flew the X-1s. The number three plane was destroyed in a fire before ever making any powered flights. A single-place monoplane, the X-1 was 30 feet, 11 inches long; 10 feet, 10 inches high; and had a wingspan of 29 feet. It weighed 6,784 pounds and carried 6

  16. Re-scrutiny of a best intermediate mass black hole candidate M82 X-1

    NASA Astrophysics Data System (ADS)

    Liu, Jifeng; Xu, Xiaojie; Qiu, Yanli; Wang, Song

    2015-08-01

    While several recent works on ultraluminous X-ray sources show some of them to be stellar mass black holes or even neutron stars with special radiation mechanisms, M82 X-1 remains one of the best intermediate mass black hole candidates in the local universe. It exhibits amazing properties including quasi-periodic oscillations and extremely high X-ray luminosities suggesting an intermediate mass black hole, a 62-day orbital period from RXTE observations suggestive of a supergiant secondary, and possible radio flare emission that could result from relativistic beaming. Recently we have re-scrutinized this source with a wealth of data from Chandra, Swift/XRT and Hubble, and found three surprises about M82 X-1. Firstly, there is an X-ray transient that is only 1" away from M82 X-1, which has a peak luminosity only 1% of M82 X-1 and is usually hidden in the shadow of M82 X-1. This X-ray transient is associated with the previously reported radio flare. Secondly, two years' Swift/XRT observations, with much much better spatial resolution than RXTE observations, have shown that the 62-day period comes from another nearby less brighter ultra-luminous X-ray source, but definitely not from M82 X-1. Thirdly, we find an optical counterpart for M82 X-1 within the newly obtained 0.4" error circle on Hubble images, and its spectral energy distribution from Hubble photometry shows that it has excessive Halpha emission but no excessive SII emission. This lack of excessive SII emission suggests that the Halpha emission is not from the surrounding nebula but from an accretion disk. The monitoring of this Halpha emission line will allow us to determine the mass of the black hole via dynamical means.

  17. Chemical abundances of the secondary star in the neutron star X-ray binary Cygnus X-2

    NASA Astrophysics Data System (ADS)

    Suárez-Andrés, L.; González Hernández, J. I.; Israelian, G.; Casares, J.; Rebolo, R.

    2015-03-01

    We present Utrecht Echelle Spectrograph@William Herschel Telescope high-resolution spectra of the low-mass X-ray binary (LMXB) Cygnus X-2. We have derived the stellar parameters of the secondary star using χ2 minimization procedure, and taking into account any possible veiling from the accretion disc. We determine a metallicity higher than solar ([Fe/H] = 0.27 ± 0.19), as seen also in the neutron star X-ray binary Centaurus X-4. The high quality of the secondary's spectrum allow us to determine the chemical abundances of O, Mg, Si, Ca, S, Ti, Fe, and Ni. We found that some α-elements (Mg, Si, S, Ti) are enhanced, consistent with a scenario of contamination of the secondary star during the supernova event. Surprisingly oxygen appears to be underabundant, whereas enhanced abundances of Fe and Ni are measured. Assuming that these abundances come from matter that has been processed in the SN and then captured by the secondary star, we explore different SN explosion scenarios with diverse geometries. A non-spherically symmetric SN explosion, with a low mass cut, seems to reproduce better the observed abundance pattern of the secondary star compared to the spherical case.

  18. First 3 mm-VLBI imaging of the two-sided jet in Cygnus A. Zooming into the launching region

    NASA Astrophysics Data System (ADS)

    Boccardi, B.; Krichbaum, T. P.; Bach, U.; Bremer, M.; Zensus, J. A.

    2016-04-01

    Aims: We present for the first time Very Long Baseline Interferometry images of the radio galaxy Cygnus A at the frequency of 86 GHz. Thanks to the high spatial resolution of only ~200 Schwarzschild radii (RS), such observations provide an extremely detailed view of the nuclear regions in this archetypal object and allow us to derive important constraints for theoretical models describing the launching of relativistic jets. Methods: A pixel-based analysis of the jet outflow, which still appears two-sided on the scales probed, was performed. By fitting Gaussian functions to the transverse intensity profiles, we could determine the jet width in the nuclear region. Results: The base of the jets appears wide. The minimum measured transverse width of ~(227 ± 98) RS is significantly larger than the radius of the innermost stable circular orbit, suggesting that the outer accretion disk is contributing to the jet launching. The existence of a faster and Doppler de-boosted inner section, powered either from the rotation of the inner regions of the accretion disk or by the spinning black hole, is suggested by the kinematic properties and by the observed limb brightening of the flow.

  19. A WIDE-FIELD NARROWBAND OPTICAL SURVEY OF THE BRAID NEBULA STAR FORMATION REGION IN CYGNUS OB7

    SciTech Connect

    Magakian, Tigran Yu.; Nikogossian, Elena H.; Movsessian, Tigran; Aspin, Colin; Pyo, Tae-Soo; Khanzadyan, Tigran; Smith, Michael D.; Mitchison, Sharon; Davis, Chris J.; Beck, Tracy L.; Moriarty-Schieven, Gerald H. E-mail: elena@bao.sci.am E-mail: pyo@subaru.naoj.org E-mail: smm23@kent.ac.uk E-mail: c.davis@jach.hawaii.edu E-mail: gerald.schieven@nrc-cnrc.gc.ca

    2010-03-15

    We study the population of Herbig-Haro (HH) flows and jets in an area of Cygnus OB7 designated the Braid Nebula star formation region. This complex forms part of the L 1003 dark cloud, and hosts two FU Orionis (FUor)-like objects as well as several other active young stars. To trace outflow activity and to relate both known and newly discovered flows to young star hosts we intercompare new, deep, narrowband H{alpha} and [S II] optical images taken on the Subaru 8 m Telescope on Mauna Kea, Hawaii. Our images show that there is considerable outflow and jet activity in this region suggesting the presence of an extensive young star population. We confirm that both of the FUor-like objects drive extensive HH flows and document further members of the flows in both objects. The L 1003 star formation complex is a highly kinematically active region with young stars in several different stages of evolution. We trace collimated outflows from numerous young stars although the origin of some HH objects remains elusive.

  20. Behaviour of wintering Tundra Swans Cygnus columbianus columbianus at the Eel River delta and Humboldt Bay, California, USA

    USGS Publications Warehouse

    Black, Jeffrey M.; Gress, Carol; Byers, Jacob W.; Jennings, Emily; Ely, Craig

    2010-01-01

    Tundra Swan Cygnus columbianus columbinanus phenology and behaviour at the Eel River delta and southern Humboldt Bay in northern California, USA, is described. Counts made each January from 1963 onwards peaked at 1,502 swans in 1988. Monthly counts recorded during the 2006/07 and 2008/09 winters peaked in February, at 1,033 and 772 swans respectively. Swans roosted on ephemeral ponds at the Humboldt Bay National Wildlife Refuge, on ephemeral ponds within grassland pastures in the vicinity of the Refuge, and perhaps also used the Eel River as a roost. Flights between Refuge roosts and the pastures and ponds occurred in the two hours after sunrise and before dark. In winters 2008/09 and 2009/10, the percentage of cygnets in the flocks was 10.6% and 21.4% respectively, and increased to =31% cygnets each year after most swans had departed from the area in March. Average brood size in 2009/10 was 2.1 cygnets. Daily activities consisted of foraging (44.9% of activities recorded), comfort behaviour (22.1%), locomotion (16.2%) and vigilance (15.5%). Eight neck-collared swans identified in the wintering flock were marked at four locations in different parts of Alaska, up to 1,300 km apart.

  1. Detection of a novel circovirus in mute swans (Cygnus olor) by using nested broad-spectrum PCR.

    PubMed

    Halami, M Y; Nieper, H; Müller, H; Johne, R

    2008-03-01

    Circoviruses are the causative agents of acute and chronic diseases in several animal species. Clinical symptoms of circovirus infections range from depression and diarrhoea to immunosuppression and feather disorders in birds. Eleven different members of the genus Circovirus are known so far, which infect pigs and birds in a species-specific manner. Here, a nested PCR was developed for the detection of a broad range of different circoviruses in clinical samples. Using this assay, a novel circovirus was detected in mute swans (Cygnus olor) found dead in Germany in 2006. Sequence analysis of the swan circovirus (SwCV) genome, amplified by multiply primed rolling-circle amplification and PCR, indicates that SwCV is a distinct virus most closely related to the goose circovirus (73.2% genome sequence similarity). Sequence variations between SwCV genomes derived from two different individuals were high (15.5% divergence) and mainly confined to the capsid protein-encoding region. By PCR testing of 32 samples derived from swans found dead in two different regions of Germany, detection rates of 20.0 and 77.3% were determined, thus indicating a high incidence of SwCV infection. The clinical significance of SwCV infection, however, needs to be investigated further. PMID:18082907

  2. The complete mitochondrial genomes of the whistling duck (Dendrocygna javanica) and black swan (Cygnus atratus): dating evolutionary divergence in Galloanserae.

    PubMed

    Jiang, Feng; Miao, Yongwang; Liang, Wei; Ye, Haiyan; Liu, Hailin; Liu, Bin

    2010-07-01

    Galloanserae is an ancient and diverse avian group, for which comprehensive molecular evidence relevant to phylogenetic analysis in the context of molecular chronology is lacking. In this study, we present two additional mitochondrial genome sequences of Galloanserae (the whistling duck, Dendrocygna javanica, and the black swan, Cygnus atratus) to broaden the scope of molecular phylogenetic reconstruction. The lengths of the whistling duck's and black swan's mitochondrial genomes are 16,753 and 16,748 bases, respectively. Phylogenetic analyses suggest that Dendrocygna is more likely to be in a basal position of the branch consisting of Anatinae and Anserinae, an affiliation that does not conform to its traditional classification. Bayesian approaches were employed to provide a rough timescale for Galloanserae evolution. In general, a narrow range of 95% confidence intervals gave younger estimates than those based on limited genes and estimated that at least two lineages originated before the Coniacian epoch around 90 MYA, well before the Cretaceous-Tertiary boundary. In addition, these results, which were compatible with estimates from fossil evidence, also imply that the origin of numerous genera in Anseriformes took place in the late Oligocene to early Miocene. Taken together, the results presented here provide a working framework for future research on Galloanserae evolution, and they underline the utility of whole mitochondrial genome sequences for the resolution of deep divergence. PMID:19823953

  3. The velocity dependence of X-ray emission due to Charge Exchange: Applications in the Cygnus Loop

    NASA Astrophysics Data System (ADS)

    Cumbee, Renata; Lyons, David; Mullen, Patrick; Shelton, Robin L.; Stancil, Phillip C.; Schultz, David R.

    2016-04-01

    The fundamental collisional process of charge exchange (CX) has been been established as a primary source of X-ray emission from the heliosphere [1], planetary exospheres [2], and supernova remnants [3,4]. In this process, X-ray emission results from the capture of an electron by a highly charged ion from a neutral atom or molecule, to form a highly-excited, high charge state ion. As the captured electron cascades down to the lowest energy level, photons are emitted, including X-rays.To provide reliable CX-induced X-ray spectral models to realistically simulate high-energy astrophysical environments, line ratios and spectra are computed using theoretical CX cross-sections obtained with the multi-channel Landau-Zener, atomic-orbital close-coupling, and classical-trajectory Monte Carlo methods for various collisional velocities. Collisions of bare and H-like C to Al ions with H, He, and H2 are considered. Using these line ratios, XSPEC models of CX emission in the northeast rim of the Cygnus Loop supernova remnant will be shown as an example with ion velocity dependence.[1] Henley, D. B. & Shelton, R. L. 2010, ApJSS, 187, 388[2] Dennerl, K. et al. 2002, A&A 386, 319[3] Katsuda, S. et al. 2011, ApJ 730 24[4] Cumbee, R. S. et al. 2014, ApJ 787 L31

  4. OBSERVATION OF TeV GAMMA RAYS FROM THE CYGNUS REGION WITH THE ARGO-YBJ EXPERIMENT

    SciTech Connect

    Bartoli, B.; Catalanotti, S.; Bernardini, P.; Bleve, C.; Bi, X. J.; Cao, Z.; Chen, S. Z.; Chen, Y.; Bolognino, I.; Branchini, P.; Budano, A.; Calabrese Melcarne, A. K.; Cardarelli, R.; Cattaneo, C.; Chen, T. L.; Creti, P.; Cui, S. W.; Dai, B. Z.; D'Ali Staiti, G.; Collaboration: ARGO-YBJ Collaboration; and others

    2012-02-15

    We report the observation of TeV {gamma}-rays from the Cygnus region using the ARGO-YBJ data collected from 2007 November to 2011 August. Several TeV sources are located in this region including the two bright extended MGRO J2019+37 and MGRO J2031+41. According to the Milagro data set, at 20 TeV MGRO J2019+37 is the most significant source apart from the Crab Nebula. No signal from MGRO J2019+37 is detected by the ARGO-YBJ experiment, and the derived flux upper limits at the 90% confidence level for all the events above 600 GeV with medium energy of 3 TeV are lower than the Milagro flux, implying that the source might be variable and hard to be identified as a pulsar wind nebula. The only statistically significant (6.4 standard deviations) {gamma}-ray signal is found from MGRO J2031+41, with a flux consistent with the measurement by Milagro.

  5. VERY LARGE ARRAY H I ZEEMAN OBSERVATIONS OF THE CYGNUS X REGION: DR 22 AND ON 2

    SciTech Connect

    Mayo, E. A.; Troland, T. H. E-mail: troland@pa.uky.edu

    2012-02-15

    We have used the Very Large Array to study the Zeeman effect in 21 cm H I absorption lines from two star-forming regions in the Cygnus X complex, DR 22 and ON 2. We measure the line-of-sight magnetic field toward these regions, finding B{sub los} = -84 {+-} 11 {mu}G toward the DR 22 H II region and B{sub los} < 50 {mu}G toward each of the two H II regions in ON 2. We interpret these results in terms of two different models. In one model, we assume that the H I Zeeman effect is a measure of magnetic fields in the associated molecular clouds. If so, then the DR 22 molecular cloud is magnetically subcritical, that is, magnetically dominated. The ON 2 molecular clouds are magnetically supercritical. In a second model, we assume that the H I Zeeman effect is a measure of magnetic fields in photon-dominated regions where the gas has been compressed (and the field amplified) by absorption of stellar radiation. We find that this second model, where the measured field strength has been affected by star formation, accounts well for the DR 22 H I Zeeman effect. This same model, however, overpredicts the magnetic field in ON 2. ON 2 may be a region where the magnetic field is energetically insignificant or where the field happens to lie nearly in the plane of the sky.

  6. Theoretical interpretation of the HEAO-3 observations of Cygnus X-3 under the HEAO-3 Guest Investigator Program

    NASA Technical Reports Server (NTRS)

    Marscher, Alan P.

    1987-01-01

    A model of the galactic X-ray source Cygnus X-3 (Cyg X-3) is presented which deviates from previous models by positing that the X-rays originate in a jet rather than a binary system consiting of an ordinary star and a collapsed object. In the new model, the 4.8 hour period of Cyg X-3 is caused by variable absorption which occurs as the jet precesses. The primary role of the accretion disk corona (ADC) in modulating Cyg X-3 radiation is to make the observed intensity of a blob of material in a jet appear dimmer by absorption. The needed derivation of the positional dependence of the density of the ADC is freed of some complications by assuming that only the inner regions of the disk are precessing, with a period shorter than 4.8 hours. This model permits the secondary star to be a supergiant, as indicated by the luminosity of the system. The model is especially helpful in interpreting production of radio outbursts and very high energy gamma rays.

  7. EXTREME ULTRAVIOLET EXPLORER OBSERVATIONS OF HERCULES X-1 OVER A 35 DAY CYCLE

    SciTech Connect

    Leahy, D. A.; Dupuis, Jean

    2010-06-01

    Observations of Hercules X-1 by the Extreme Ultraviolet Explorer covering most of the 35 day cycle are reported here. This is the only long extreme ultraviolet (EUV) observation of Her X-1. Simultaneous X-ray observations with the Rossi X-ray Timing Explorer All-Sky Monitor (RXTE/ASM) X-ray show that Her X-1 is in an X-ray anomalous low state. The first 4 days are also observed with the RXTE proportional counter array (PCA), which shows that the X-ray properties are nearly the same as for normal low states in Her X-1 with flux reduced by a factor of 2. In contrast, the EUV emission from Her X-1 is reduced by a factor of {approx}4 compared to normal low states. The twisted-tilted accretion disk responsible for the normal 35 day X-ray cycle can be modified to explain this behavior. An increased disk twist reduces the X-ray illumination of HZ Her by a factor of {approx}2 and of the disk surface by a somewhat larger factor, leading to a larger reduction in EUV flux compared to X-ray flux.

  8. Correlations between X-ray Spectra and kHz QPOS in Sco X-1

    NASA Astrophysics Data System (ADS)

    Bradshaw, Charles F.; Titarchuk, Lev; Kuznetsov, Sergey

    2008-05-01

    Recent analysis of the RXTE X-ray spectra of Sco X-1 discovered that Sco X-1 can be adequately modeled by a simple two-component model of Compton up-scattering with a soft photon electron temperature of about 0.4 keV, plus an Iron K-line. The results show a strong correlation between spectral power law index and kHz QPOs. Sco X-1 is the prototypical Z-source low-mass X-ray binary (LMXB) system radiating near the Eddington limit. This radiation produces a high radiation pressure in its Compton cloud. We infer that the radiation pressure produces a geometrical configuration of the cloud that is quasi-spherical. We conclude that the high Thomson optical depth of the Compton cloud, in the range of 5-6 from the best-fit model parameters, is consistent with the neutron star's surface being obscured by material, which would likely suppress a spin frequency of Sco X-1 due to photon scattering off cloud electrons. We also demonstrate the evolution of its power spectrum when Sco X-1 transitions from the horizontal branch to the normal branch.

  9. Correlations between X-Ray Spectral Characteristics and Quasi-Periodic Oscillations in Scorpius X-1

    NASA Astrophysics Data System (ADS)

    Bradshaw, Charles F.; Titarchuk, Lev; Kuznetsov, Sergey

    2007-07-01

    Correlations between 1-10 Hz quasi-periodic oscillations (QPOs) and spectral power-law index have been reported for black hole (BH) candidate sources and one neutron star source, 4U 1728-34. An examination of QPO frequency and index relationships in Sco X-1 is reported here. We discover that Sco X-1, representing Z-source groups, can be adequately modeled by a simple two-component model of Compton up-scattering with a soft photon electron temperature of about 0.4 keV, plus an Iron K line. The results show a strong correlation between spectral power-law index and kHz QPOs. Because Sco X-1 radiates near the Eddington limit, one can infer that the geometrical configuration of the Compton cloud (CC) is quasi-spherical from high radiation pressure in the CC. Thus, we conclude that the high Thomson optical depth of the Compton cloud, in the range of ~5-6 from the best-fit model parameters, is consistent with the neutron star's surface being obscured by material. Moreover, a spin frequency of Sco X-1 is likely suppressed due to photon scattering off CC electrons. In addition, we demonstrate how the power spectrum evolves when Sco X-1 transitions from the horizontal branch to the normal branch.

  10. X-ray variability of Scorpius X-1 during a multiwavelength campaign

    NASA Technical Reports Server (NTRS)

    Hertz, P.; Vaughan, B.; Wood, K. S.; Norris, J. P.; Mitsuda, K.; Michelson, P. F.; Dotani, T.

    1992-01-01

    Consideration is given to the X-ray variability of Scorpius X-1, which was observed with Ginga on March 9-11, 1989 as part of a multiwavelength campaign. The temporal characteristics observed, including quasi-periodic oscillations, HF noise, and VLF noise, are consistent with previous observations of Sco X-1. Quasi-periodic oscillations are observed on both the normal branch and the lower flaring branch, but not on the upper flaring branch. Limits are placed on the fractional rms variation of quasi-period oscillations on the upper flaring branch of less than or approximately equal to 2 percent of the total intensity. The characteristics of the observed red noise components are found to vary along the flaring branch. The fractional rms variation of VLF noise increases from less than 2 to greater than 6 percent as Sco X-1 moves from the flaring branch-normal branch vertex to the upper end of the flaring branch.

  11. Evolution of the Correlated Spectral and Timing Properties of Circinus X-1

    NASA Astrophysics Data System (ADS)

    Shirey, Robert

    Circinus X-1 has maintained a bright 1-Crab baseline during the entire RXTE mission to date, and shows absorption dips and flares near phase zero of its 16.55-d orbital cycle. Our recent RXTE PCA results demonstrate that Cir X-1 currently exhibits Z-source behavior, i.e., 1.3-35 Hz QPOs on the horizontal branch, a 4-Hz QPO on the normal branch, and only VLFN on the flaring branch. However, EXOSAT observations at lower intensity showed behavior that resembled that of atoll sources. In order to search for such an unprecedented switch in behavior, we propose TOO observations of Cir X-1 if the baseline intensity level returns to the previously observed low levels. We also propose observations if radio flares (which are now faint), return to the high intensities of the 1970s and early 1980s.

  12. Long-Term Evolution of the Correlated Spectral and Timing Properties of CIR X-1

    NASA Astrophysics Data System (ADS)

    Shirey, Robert

    Our previous RXTE results demonstrate that at the baseline intensity level of 1.0 Crab, Cir X-1 exhibits Z-source behavior, but with QPOs which shift to lower than usual frequencies. In contrast, EXOSAT observations at lower baseline intensity showed behavior that resembled that of atoll sources. Recent RXTE ASM observations show that the baseline intensity of Cir X-1 has decreased to below 750 mCrab in the most recent few 16.55-d cycles. In order to monitor the evolution of the timing and spectral properties of Cir X-1 and to search for type-1 bursts as its baseline intensity evolves, we propose observations at several intensity trigger levels. We also propose observations if radio flares (which are now faint) return to the high intensities of the 1970's and early 1980's.

  13. Systems analysis and engineering of the X-1 Advanced Radiation Source

    SciTech Connect

    Rochau, G.E.; Hands, J.A.; Raglin, P.S.; Ramirez, J.J.

    1998-10-01

    The X-1 Advanced Radiation Source, which will produce {approximately} 16 MJ in x-rays, represents the next step in providing US Department of Energy`s Stockpile Stewardship program with the high-energy, large volume, laboratory x-ray sources needed for the Radiation Effects Science and Simulation (RES), Inertial Confinement Fusion (ICF), and Weapon Physics (WP) Programs. Advances in fast pulsed power technology and in z-pinch hohlraums on Sandia National Laboratories` Z Accelerator in 1997 provide sufficient basis for pursuing the development of X-1. This paper will introduce the X-1 Advanced Radiation Source Facility Project, describe the systems analysis and engineering approach being used, and identify critical technology areas being researched.

  14. Scaling of the F_2 structure function in nuclei and quark distributions at x>1

    SciTech Connect

    Fomin, N; Arrington, J; Gaskell, D; Daniel, A; Seely, J; Asaturyan, R; Benmokhtar, F; Boeglin, W; Boillat, B; Bosted, P; Bruell, A; Bukhari, M.H.S.; Christy, M E; Chudakov, E; Clasie, B; Connell, S H; Dalton, M M; Dutta, D; Ent, R; El Fassi, L; Fenker, H; Filippone, B W; Garrow, K; Hill, C; Holt, R J; Horn, T; Jones, M K; Jourdan, J; Kalantarians, N; Keppel, C E; Kiselev, D; Kotulla, M; Lindgren, R; Lung, A F; Malace, S; Markowitz, P; McKee, P; Meekins, D G; Miyoshi, T; Mkrtchyan, H; Navasardyan, T; Niculescu, G; Okayasu, Y; Opper, A K; Perdrisat, C; Potterveld, D H; Punjabi, V; Qian, X; Reimer, P E; Roche, J; Rodriguez, V M; Rondon, O; Schulte, E; Segbefia, E; Slifer, K; Smith, G R; Solvignon, P; Tadevosyan, V; Tajima, S; Tang, L; Testa, G; Tvaskis, V; Vulcan, W F; Wasko, C; Wesselmann, F R; Wood, S A; Wright, J; Zheng, X

    2010-11-01

    We present new data on electron scattering from a range of nuclei taken in Hall C at Jefferson Lab. For heavy nuclei, we observe a rapid falloff in the cross section for $x>1$, which is sensitive to short range contributions to the nuclear wave-function, and in deep inelastic scattering corresponds to probing extremely high momentum quarks. This result agrees with higher energy muon scattering measurements, but is in sharp contrast to neutrino scattering measurements which suggested a dramatic enhancement in the distribution of the `super-fast' quarks probed at x>1. The falloff at x>1 is noticeably stronger in ^2H and ^3He, but nearly identical for all heavier nuclei.

  15. Cloning and functional analysis of P2X1b, a new variant in rat optic nerve that regulates the P2X1 receptor in a use-dependent manner.

    PubMed

    Rangel-Yescas, Gisela E; Vazquez-Cuevas, Francisco G; Garay, Edith; Arellano, Rogelio O

    2012-01-01

    P2X receptors are trimeric, ATP-gated cation channels. In mammals seven P2X subtypes have been reported (P2X1-P2X7), as well as several variants generated by alternative splicing. Variants confer to the homomeric or heteromeric channels distinct functional and/or pharmacological properties. Molecular biology, biochemical, and functional analysis by electrophysiological methods were used to identify and study a new variant of the P2X1 receptor named P2X1b. This new variant, identified in rat optic nerve, was also expressed in other tissues. P2X1b receptors lack amino acids 182 to 208 of native P2X1, a region that includes residues that are highly conserved among distinct P2X receptors. When expressed in Xenopus oocytes, P2X1b was not functional as a homomer; however, when co-expressed with P2X1, it downregulated the electrical response generated by ATP compared with that of oocytes expressing P2X1 alone, and it seemed to form heteromeric channels with a modestly enhanced ATP potency. A decrease in responses to ATP in oocytes co-expressing different ratios of P2X1b to P2X1 was completely eliminated by overnight pretreatment with apyrase. Thus, it is suggested that P2X1b regulates, through a use-dependent mechanism, the availability, in the plasma membrane, of receptor channels that can be operated by ATP. PMID:22508081

  16. Purinergic control of inflammation and thrombosis: Role of P2X1 receptors

    PubMed Central

    Oury, Cécile; Lecut, Christelle; Hego, Alexandre; Wéra, Odile; Delierneux, Céline

    2014-01-01

    Inflammation shifts the hemostatic mechanisms in favor of thrombosis. Upon tissue damage or infection, a sudden increase of extracellular ATP occurs, that might contribute to the crosstalk between inflammation and thrombosis. On platelets, P2X1 receptors act to amplify platelet activation and aggregation induced by other platelet agonists. These receptors critically contribute to thrombus stability in small arteries. Besides platelets, studies by our group indicate that these receptors are expressed by neutrophils. They promote neutrophil chemotaxis, both in vitro and in vivo. In a laser-induced injury mouse model of thrombosis, it appears that neutrophils are required to initiate thrombus formation and coagulation activation on inflamed arteriolar endothelia. In this model, by using P2X1−/ − mice, we recently showed that P2X1 receptors, expressed on platelets and neutrophils, play a key role in thrombus growth and fibrin generation. Intriguingly, in a model of endotoxemia, P2X1−/ − mice exhibited aggravated oxidative tissue damage, along with exacerbated thrombocytopenia and increased activation of coagulation, which translated into higher susceptibility to septic shock. Thus, besides its ability to recruit neutrophils and platelets on inflamed endothelia, the P2X1 receptor also contributes to limit the activation of circulating neutrophils under systemic inflammatory conditions. Taken together, these data suggest that P2X1 receptors are involved in the interplay between platelets, neutrophils and thrombosis. We propose that activation of these receptors by ATP on neutrophils and platelets represents a new mechanism that regulates thrombo-inflammation. PMID:25709760

  17. P2X1 receptor blockade inhibits whole kidney autoregulation of renal blood flow in vivo

    PubMed Central

    Osmond, David A.

    2010-01-01

    In vitro experiments demonstrate that P2X1 receptor activation is important for normal afferent arteriolar autoregulatory behavior, but direct in vivo evidence for this relationship occurring in the whole kidney is unavailable. Experiments were performed to test the hypothesis that P2X1 receptors are important for autoregulation of whole kidney blood flow. Renal blood flow (RBF) was measured in anesthetized male Sprague-Dawley rats before and during P2 receptor blockade with PPADS, P2X1 receptor blockade with IP5I, or A1 receptor blockade with DPCPX. Both P2X1 and A1 receptor stimulation with α,β-methylene ATP and CPA, respectively, caused dose-dependent decreases in RBF. Administration of either PPADS or IP5I significantly blocked P2X1 receptor stimulation. Likewise, administration of DPCPX significantly blocked A1 receptor activation to CPA. Autoregulatory behavior was assessed by measuring RBF responses to reductions in renal perfusion pressure. In vehicle-infused rats, as pressure was decreased from 120 to 100 mmHg, there was no decrease in RBF. However, in either PPADS- or IP5I-infused rats, each decrease in pressure resulted in a significant decrease in RBF, demonstrating loss of autoregulatory ability. In DPCPX-infused rats, reductions in pressure did not cause significant reductions in RBF over the pressure range of 100–120 mmHg, but the autoregulatory curve tended to be steeper than vehicle-infused rats over the range of 80–100 mmHg, suggesting that A1 receptors may influence RBF at lower pressures. These findings are consistent with in vitro data from afferent arterioles and support the hypothesis that P2X1 receptor activation is important for whole kidney autoregulation in vivo. PMID:20335318

  18. NGC 1068, 3C 273, and Scorpius X-1 - Circular polarization disputed.

    NASA Technical Reports Server (NTRS)

    Kemp, J. C.; Wolstencroft, R. D.; Swedlund, J. B.

    1972-01-01

    Discussion of data for the Seyfert galaxy NGC 1068, the quasar 3C 273, and the X-ray source Sco X-1, for all of which it has been claimed or strongly suggested that they have large circular polarization of the order of 1% (Severny et al., 1971). In contrast the present authors obtained unambiguously null results with upper limits about 0.05% for NGC 1068 and 3C 273. For Sco X-1 no statistically significant polarization was found on three nights, and only some marginal evidence for a fluctuation or transient polarization on one night.

  19. Long-term X-ray studies of Sco X-1. [emission spectra of constellations

    NASA Technical Reports Server (NTRS)

    Holt, S. S.; Boldt, E. A.; Serlemitsos, P. J.; Kaluzienski, L. J.

    1975-01-01

    No modulation of the 3-6 keV X-ray intensity of Sco X-1 at a level of excess of 1% was observed at the optical period of .787313d. Evidence is found for shot-noise character in a large fraction of the X-ray emission. Almost all of the Sco X-1 emission can be synthesized in terms of approximately 200 shots per day, each with a duration of approximately 1/3 day. A pinhole camera was used to obtain data and the data were statistically analyzed.

  20. Evidence for a Broad Relativistic Iron Line from the Neutron Star LMXB Ser X-1

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, Sudip; Strohmayer, Tod E.

    2007-01-01

    We report on an analysis of XMM-Newton data from the neutron star low mass X-ray binary (LMXB) Serpens X-1 (Ser X-1). Spectral analysis of EPIC PN data indicates that the previously known broad iron Ka emission line in this source has a significantly skewed structure with a moderately extended red wing. The asymmetric shape of the line is well described with the laor and diskline models in XSPEC, which strongly supports an inner accretion disk origin of the line. To our knowledge this is the first strong evidence for a relativistic line in a neutron star LMXB. This finding suggests that the broad lines seen in other neutron star LMXBs likely originate from the inner disk as well. Detailed study of such lines opens up a new way to probe neutron star parameters and their strong gravitational fields. The laor model describes the line from Ser X-1 somewhat better than diskline, and suggests that the inner accretion disk radius is less than 6GM/c(exp 2). This is consistent with the weak magnetic fields of LMXBs, and may point towards a high compactness and rapid spin of the neutron star. Finally, the inferred source inclination angle in the approximate range 50-60 deg is consistent with the lack of dipping from Ser X-1.

  1. Swift/XRT confirms the new outburst of Aql X-1

    NASA Astrophysics Data System (ADS)

    Sanna, A.; Riggio, A.; Pintore, F.; Altamirano, D.; Burderi, L.; Di Salvo, T.

    2016-08-01

    Triggered by the X-ray enhancement observed by Swift/BAT on 2016 July 29 at a position compatible with the low mass X-ray binary Aql X-1 (Atel #9287), a 500 s observation with Swift/XRT was promptly carried out. Swift/XRT operating in Photon Counting mode detected a single bright X-ray source.

  2. SWIFT/BAT possible detection of a new outburst from Aql X-1

    NASA Astrophysics Data System (ADS)

    Sanna, A.; Riggio, A.; Pintore, F.; Altamirano, D.; Burderi, L.; Di Salvo, T.

    2016-07-01

    The Swift/BAT X-ray monitor observed significant X-ray activity from the direction of the accreting millisecond X-ray pulsar Aql X-1 starting on 2016 July 29 (MJD 57598), with a count rate of 0.0011 +/- 0.003 counts/s/cm^2.

  3. THE RETURN OF THE BURSTS: THERMONUCLEAR FLASHES FROM CIRCINUS X-1

    SciTech Connect

    Linares, M.; Homan, J.; Chakrabarty, D.; Watts, A.; Altamirano, D.; Degenaar, N.; Yang, Y.; Wijnands, R.; Armas-Padilla, M.; Cavecchi, Y.; Kalamkar, M.; Kaur, R.; Patruno, A.; Van der Klis, M.; Soleri, P.; Casella, P.; Rea, N.

    2010-08-10

    We report the detection of 15 X-ray bursts with RXTE and Swift observations of the peculiar X-ray binary Circinus X-1 (Cir X-1) during its 2010 May X-ray re-brightening. These are the first X-ray bursts observed from the source after the initial discovery by Tennant and collaborators, 25 years ago. By studying their spectral evolution, we firmly identify nine of the bursts as type I (thermonuclear) X-ray bursts. We obtain an arcsecond location of the bursts that confirms once and for all the identification of Cir X-1 as a type I X-ray burst source, and therefore as a low magnetic field accreting neutron star. The first five bursts observed by RXTE are weak and show approximately symmetric light curves, without detectable signs of cooling along the burst decay. We discuss their possible nature. Finally, we explore a scenario to explain why Cir X-1 shows thermonuclear bursts now but not in the past, when it was extensively observed and accreting at a similar rate.

  4. A Note on the Visibility in the [1, N ] x [1, N ] Integer Domain

    ERIC Educational Resources Information Center

    Kim, G. D.; Engelhardt, J.

    2007-01-01

    A k-dimensional integer point is called visible if the line segment joining the point and the origin contains no proper integer points. This note proposes an explicit formula that represents the number of visible points on the two-dimensional [1,N]x[1,N] integer domain. Simulations and theoretical work are presented. (Contains 5 figures and 2…

  5. Is Cir X-1 associated with SNR G321.9- 0.3?

    NASA Astrophysics Data System (ADS)

    Mignani, Roberto

    2000-07-01

    Cir X-1 is one of the most intriguing galactic X-ray sources. It is a ~ 16.6 d variable X/radio source, a type I X-ray burster and a QPO emitter, which, in spite of an ambiguous optical counterpart classification, identify it as an LMXB. The source is embedded in a radio nebula, with finer structures protruding towards the centre of the nearby SNR G321.9-0.3. This prompted the speculation about a connection between the two, with Cir X-1 being a runaway binary originated from the supernova explosion. In this case, a a significant proper motion would be expected for Cir X-1. Since this source has been already imaged by HST in 1992, one more WFPC2 image could allow to measure its proper motion in the expected direction. This, together with securing the association with the SNR, will constrain the age of the neutron star in Cir X-1, crucial to trace its magnetic field evolution in an accretion regime and to provide observational inputs to theoretical models. , bf This is a case where a single, very simple, and short observation can greatly contribute to solve an important astrophysical issue.

  6. Circinus X-1 revisited: Fast-timing properties in relation to spectral state

    NASA Technical Reports Server (NTRS)

    Oosterbroek, T.; Van Der Klis, M.; Kuulkers, E.; Van Paradijs, J.; Lewin, W. H. G.

    1995-01-01

    We have studied the X-ray spectral and fast-timing variations of Cir X-1 by performing a homogenous analysis of all EXOSAT ME data on this source using X-ray hardness-intensity diagrams (HIDs), color-color diagrams (CDs), and power spectra. Cir X-1 exhibits a wide range of power spectral shapes and a large variety in X-ray spectral shapes. At different epochs the power spectra variously resemble those of an atoll source, a Z source, a black-hole candidate, or are unlike any of these. At some epochs one-dimensional connected-branch patterns are seen in HID and CD, and at other times more complex structures are found. We interpret the complex behavior of Cir X-1 in terms of a model where accretion rate, orbital phase and epoch are the main determinants of the source behavior, and where the unique properties of the source are due to two special circumstances: (1) the source is the only known atoll source (accreting neutron star with a very low magnetic field) that can reach the Eddington critical accretion rate, and (2) it has a unique, highly eccentric and probably precessing orbit. Property (1) makes Cir X-1 a very important source for our understanding of the similarities in the observable properties of neutron stars and black holes as it allows to separate out black hole signatures from properties that are merely due to the presence of accretion compact with a low magnetic field.

  7. The Hard X-ray Emission from Scorpius X-1 as Seen by INTEGRAL

    NASA Technical Reports Server (NTRS)

    Sturner, S. J.; Shrader, C. R.; Weidenspointner, G.

    2008-01-01

    We present the results of our hard X-ray and gamma-ray study of the LMXB Sco X-1 utilizing INTEGRAL data as well as contemporaneous RXTE PCA data. We have concentrated on investigating the hard X-ray spectral properties of Sco X-1 including the nature of the high-energy, nonthermal component of the spectrum and its possible correlations with the location of the source on the X-ray color-color diagram. We find that Sco X-1 has two distinct spectral when the 20-40 keV count rate is greater than 140 counts/second. One state is a hard state which exhibits a significant high-energy, powerlaw tail to the lower energy thermal spectrum. The other state shows no evidence for a powerlaw tail whatsoever. We found suggestive evidence for a correlation of these hard and soft high-energy states with the position of Sco X-1 on the low-energy X-ray color-color diagram.

  8. The Hard X-Ray Emission from Scorpius X-1 Seen by INTEGRAL

    NASA Technical Reports Server (NTRS)

    Sturner, Steve; Shrader, C. R.

    2008-01-01

    We present the results of our hard X-ray and gamma-ray study of the LMXB Sco X-1 utilizing INTEGRAL data as well as contemporaneous RXTE PCA data. We have investigated the hard X-ray spectral properties of Sco X-1 including the nature of the high-energy, nonthermal component and its possible correlations with the location of the source on the soft X-ray color-color diagram. We find that Sco X-1 follows two distinct spectral tracks when the 20-40 keV count rate is greater than 130 counts/second. One state is a hard state which exhibits a significant high-energy, powerlaw tail to the lower energy thermal spectrum. The other state shows a much less significant high-energy component. We found suggestive evidence for a correlation of these hard and soft high-energy states with the position of Sco X-1 on the low-energy X-ray color-color diagram. We have searched for similar behavior in 2 other Z sources: GX 17+2 and GX 5-1 with negative results.

  9. Development of a 1K x 1K GaAs QWIP Far IR Imaging Array

    NASA Technical Reports Server (NTRS)

    Jhabvala, M.; Choi, K.; Goldberg, A.; La, A.; Gunapala, S.

    2003-01-01

    In the on-going evolution of GaAs Quantum Well Infrared Photodetectors (QWIPs) we have developed a 1,024 x 1,024 (1K x1K), 8.4-9 microns infrared focal plane array (FPA). This 1 megapixel detector array is a hybrid using the Rockwell TCM 8050 silicon readout integrated circuit (ROIC) bump bonded to a GaAs QWIP array fabricated jointly by engineers at the Goddard Space Flight Center (GSFC) and the Army Research Laboratory (ARL). The finished hybrid is thinned at the Jet Propulsion Lab. Prior to this development the largest format array was a 512 x 640 FPA. We have integrated the 1K x 1K array into an imaging camera system and performed tests over the 40K-90K temperature range achieving BLIP performance at an operating temperature of 76K (f/2 camera system). The GaAs array is relatively easy to fabricate once the superlattice structure of the quantum wells has been defined and grown. The overall arrays costs are currently dominated by the costs associated with the silicon readout since the GaAs array fabrication is based on high yield, well-established GaAs processing capabilities. In this paper we will present the first results of our 1K x 1K QWIP array development including fabrication methodology, test data and our imaging results.

  10. SDO Captures X1.4 Solar Flare on July 12, 2012

    NASA Video Gallery

    This movie shows the sun July 11-12, ending with the X1.4 class flare on July 12, 2012. It was captured by NASA’s Solar Dynamics Observatory in the 304 Angstrom wavelength - a wavelength coloriz...

  11. Toward Complete Statistics of Massive Binary Stars: Penultimate Results from the Cygnus OB2 Radial Velocity Survey

    NASA Astrophysics Data System (ADS)

    Kobulnicky, Henry A.; Kiminki, Daniel C.; Lundquist, Michael J.; Burke, Jamison; Chapman, James; Keller, Erica; Lester, Kathryn; Rolen, Emily K.; Topel, Eric; Bhattacharjee, Anirban; Smullen, Rachel A.; Vargas Álvarez, Carlos A.; Runnoe, Jessie C.; Dale, Daniel A.; Brotherton, Michael M.

    2014-08-01

    We analyze orbital solutions for 48 massive multiple-star systems in the Cygnus OB2 association, 23 of which are newly presented here, to find that the observed distribution of orbital periods is approximately uniform in log P for P < 45 days, but it is not scale-free. Inflections in the cumulative distribution near 6 days, 14 days, and 45 days suggest key physical scales of sime0.2, sime0.4, and sime1 A.U. where yet-to-be-identified phenomena create distinct features. No single power law provides a statistically compelling prescription, but if features are ignored, a power law with exponent β ~= -0.22 provides a crude approximation over P = 1.4-2000 days, as does a piece-wise linear function with a break near 45 days. The cumulative period distribution flattens at P > 45 days, even after correction for completeness, indicating either a lower binary fraction or a shift toward low-mass companions. A high degree of similarity (91% likelihood) between the Cyg OB2 period distribution and that of other surveys suggests that the binary properties at P <~ 25 days are determined by local physics of disk/clump fragmentation and are relatively insensitive to environmental and evolutionary factors. Fully 30% of the unbiased parent sample is a binary with period P < 45 days. Completeness corrections imply a binary fraction near 55% for P < 5000 days. The observed distribution of mass ratios 0.2 < q < 1 is consistent with uniform, while the observed distribution of eccentricities 0.1 < e < 0.6 is consistent with uniform plus an excess of e ~= 0 systems. We identify six stars, all supergiants, that exhibit aperiodic velocity variations of ~30 km s-1 attributed to atmospheric fluctuations.

  12. Migration of Tundra Swans (Cygnus columbianus) Wintering in Japan Using Satellite Tracking: Identification of the Eastern Palearctic Flyway.

    PubMed

    Chen, Wenbo; Doko, Tomoko; Fujita, Go; Hijikata, Naoya; Tokita, Ken-Ichi; Uchida, Kiyoshi; Konishi, Kan; Hiraoka, Emiko; Higuchi, Hiroyoshi

    2016-02-01

    Migration through the Eastern Palearctic (EP) flyway by tundra swans (Cygnus columbianus) has not been thoroughly documented. We satellite-tracked the migration of 16 tundra swans that winter in Japan. The objectives of this study were 1) to show the migration pattern of the EP flyway of tundra swans; 2) to compare this pattern with the migration pattern of whooper swans; and 3) to identify stopover sites that are important for these swans' conservation. Tundra swans were captured at Kutcharo Lake, Hokkaido, in 2009-2012 and satellite-tracked. A new method called the "MATCHED (Migratory Analytical Time Change Easy Detection) method" was developed. Based on median, the spring migration began on 18 April and ended on 27 May. Autumn migration began on 9 September and ended on 2 November. The median duration of the spring and autumn migrations were 48 and 50 days, respectively. The mean duration at one stopover site was 5.5 days and 6.8 days for the spring and autumn migrations, respectively. The number of stopover sites was 3.0 and 2.5 for the spring and autumn migrations, respectively. The mean travel distances for the spring and autumn migrations were 6471 and 6331 km, respectively. Seven migration routes passing Sakhalin, the Amur River, and/or Kamchatka were identified. There were 15, 32, and eight wintering, stopover, and breeding sites, respectively. The migration routes and staging areas of tundra swans partially overlap with those of whooper swans, whose migration patterns have been previously documented. The migration patterns of these two swan species that winter in Japan confirm the importance of the Amur River, Udyl' Lake, Shchastya Bay, Aniva Bay, zaliv Chayvo Lake, zal Piltun Lake, zaliv Baykal Lake, Kolyma River, Buyunda River, Sen-kyuyel' Lake, and northern coastal areas of the Sea of Okhotsk.

  13. Migration of Tundra Swans (Cygnus columbianus) Wintering in Japan Using Satellite Tracking: Identification of the Eastern Palearctic Flyway.

    PubMed

    Chen, Wenbo; Doko, Tomoko; Fujita, Go; Hijikata, Naoya; Tokita, Ken-Ichi; Uchida, Kiyoshi; Konishi, Kan; Hiraoka, Emiko; Higuchi, Hiroyoshi

    2016-02-01

    Migration through the Eastern Palearctic (EP) flyway by tundra swans (Cygnus columbianus) has not been thoroughly documented. We satellite-tracked the migration of 16 tundra swans that winter in Japan. The objectives of this study were 1) to show the migration pattern of the EP flyway of tundra swans; 2) to compare this pattern with the migration pattern of whooper swans; and 3) to identify stopover sites that are important for these swans' conservation. Tundra swans were captured at Kutcharo Lake, Hokkaido, in 2009-2012 and satellite-tracked. A new method called the "MATCHED (Migratory Analytical Time Change Easy Detection) method" was developed. Based on median, the spring migration began on 18 April and ended on 27 May. Autumn migration began on 9 September and ended on 2 November. The median duration of the spring and autumn migrations were 48 and 50 days, respectively. The mean duration at one stopover site was 5.5 days and 6.8 days for the spring and autumn migrations, respectively. The number of stopover sites was 3.0 and 2.5 for the spring and autumn migrations, respectively. The mean travel distances for the spring and autumn migrations were 6471 and 6331 km, respectively. Seven migration routes passing Sakhalin, the Amur River, and/or Kamchatka were identified. There were 15, 32, and eight wintering, stopover, and breeding sites, respectively. The migration routes and staging areas of tundra swans partially overlap with those of whooper swans, whose migration patterns have been previously documented. The migration patterns of these two swan species that winter in Japan confirm the importance of the Amur River, Udyl' Lake, Shchastya Bay, Aniva Bay, zaliv Chayvo Lake, zal Piltun Lake, zaliv Baykal Lake, Kolyma River, Buyunda River, Sen-kyuyel' Lake, and northern coastal areas of the Sea of Okhotsk. PMID:26853870

  14. Avian paramyxovirus serotype 1 (Newcastle disease virus), avian influenza virus and salmonella spp. in mute swans (Cygnus olor) in the great lakes region and atlantic coast of the United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since their introduction to the United States in the late 19th century, mute swans (Cygnus olor) have become a nuisance species by causing damage to aquatic habitats, acting aggressive towards humans, competing with native waterfowl, and by potentially serving as a reservoir of infectious diseases t...

  15. BLACK HOLE POWERED NEBULAE AND A CASE STUDY OF THE ULTRALUMINOUS X-RAY SOURCE IC 342 X-1

    SciTech Connect

    Cseh, David; Corbel, Stephane; Paragi, Zsolt; Tzioumis, Anastasios; Tudose, Valeriu; Feng Hua

    2012-04-10

    We present new radio, optical, and X-ray observations of three ultraluminous X-ray sources (ULXs) that are associated with large-scale nebulae. We report the discovery of a radio nebula associated with the ULX IC 342 X-1 using the Very Large Array (VLA). Complementary VLA observations of the nebula around Holmberg II X-1, and high-frequency Australia Telescope Compact Array and Very Large Telescope spectroscopic observations of NGC 5408 X-1 are also presented. We study the morphology, ionization processes, and the energetics of the optical/radio nebulae of IC 342 X-1, Holmberg II X-1, and NGC 5408 X-1. The energetics of the optical nebula of IC 342 X-1 is discussed in the framework of standard bubble theory. The total energy content of the optical nebula is 6 Multiplication-Sign 10{sup 52} erg. The minimum energy needed to supply the associated radio nebula is 9.2 Multiplication-Sign 10{sup 50} erg. In addition, we detected an unresolved radio source at the location of IC 342 X-1 at the VLA scales. However, our Very Long Baseline Interferometry (VLBI) observations using the European VLBI Network likely rule out the presence of any compact radio source at milliarcsecond (mas) scales. Using a simultaneous Swift X-ray Telescope measurement, we estimate an upper limit on the mass of the black hole in IC 342 X-1 using the 'fundamental plane' of accreting black holes and obtain M{sub BH} {<=} (1.0 {+-} 0.3) Multiplication-Sign 10{sup 3} M{sub Sun }. Arguing that the nebula of IC 342 X-1 is possibly inflated by a jet, we estimate accretion rates and efficiencies for the jet of IC 342 X-1 and compare with sources like S26, SS433, and IC 10 X-1.

  16. A Performance Evaluation of the Cray X1 for Scientific Applications

    NASA Technical Reports Server (NTRS)

    Oliker, Leonid; Biswas, Rupak; Borrill, Julian; Canning, Andrew; Carter, Jonathan; Djomehri, M. Jahed; Shan, Hongzhang; Skinner, David

    2004-01-01

    The last decade has witnessed a rapid proliferation of superscalar cache-based microprocessors to build high-end capability and cost effectiveness. However, the recent development of massively parallel vector systems is having a significant effect on the supercomputing landscape. In this paper, we compare the performance of the recently released Cray X1 vector system with that of the cacheless NEC SX-6 vector machine, and the superscalar cache-based IBM Power3 and Power4 architectures for scientific applications. Overall results demonstrate that the X1 is quite promising, but performance improvements are expected as the hardware, systems software, and numerical libraries mature. Code reengineering to effectively utilize the complex architecture may also lead to significant efficiency enhancements.

  17. A Performance Evaluation of the Cray X1 for Scientific Applications

    NASA Technical Reports Server (NTRS)

    Oliker, Leonid; Biswas, Rupak; Borrill, Julian; Canning, Andrew; Carter, Jonathan; Djomehri, M. Jahed; Shan, Hongzhang; Skinner, David

    2003-01-01

    The last decade has witnessed a rapid proliferation of superscalar cache-based microprocessors to build high-end capability and capacity computers because of their generality, scalability, and cost effectiveness. However, the recent development of massively parallel vector systems is having a significant effect on the supercomputing landscape. In this paper, we compare the performance of the recently-released Cray X1 vector system with that of the cacheless NEC SX-6 vector machine, and the superscalar cache-based IBM Power3 and Power4 architectures for scientific applications. Overall results demonstrate that the X1 is quite promising, but performance improvements are expected as the hardware, systems software, and numerical libraries mature. Code reengineering to effectively utilize the complex architecture may also lead to significant efficiency enhancements.

  18. THE HARD X-RAY BEHAVIOR OF AQL X-1 DURING TYPE-I BURSTS

    SciTech Connect

    Chen, Yu-Peng; Zhang, Shu; Zhang, Shuang-Nan; Ji, Long; Li, Jian; Wang, Jian-Min; Torres, Diego F.; Kretschmar, Peter E-mail: szhang@ihep.ac.cn

    2013-11-01

    We report the discovery of an anti-correlation between the soft and hard X-ray light curves of the X-ray binary Aql X-1 when bursting. This behavior may indicate that the corona is cooled by the soft X-ray shower fed by the type-I X-ray bursts, and that this process happens within a few seconds. Stacking the Aql X-1 light curves of type-I bursts, we find a shortage in the 40-50 keV band, delayed by 4.5 ± 1.4 s with respect to the soft X-rays. The photospheric radius expansion bursts are different in that neither a shortage nor an excess shows up in the hard X-ray light curve.

  19. Swift-XRT detected a new outburst of Cir X-1

    NASA Astrophysics Data System (ADS)

    Sanna, A.; Motta, S. E.

    2016-09-01

    Based on the MAXI transient alert on 2016-09-16 16:56:22 UT, we requested a Swift-XRT observation. Swift performed a pointed ~1ks observation on 2016-09-18T13:50:57 in the direction of the neutron star binary system Cir X-1, detecting X-ray activity at a source position RA=230.1695 deg, DEC=-57.16703 deg (Enhanced position with 2.2'' radius uncertainty at 90% confidence level) compatible within errors with Cir X-1.The unabsorbed X-ray flux in the range 0.3-10 keV of (3+/-1)E-11 erg/cm2/s revealed week activity of the source.

  20. The study of the light curve of X-ray binary Cyg X-1

    NASA Astrophysics Data System (ADS)

    Dong, A. J.; Wang, J. C.; Xue, L.

    2006-07-01

    We examine the data of Cyg X-1 from January 1996 to May 2005 observed by Rossi X-Ray Timing Explore (RXTE) satellite. Using a new method (Derivative method), we find out two interesting periods (e.g., T~1.0±0.2day and T~18.0±3.0day). In hard state, two periods appear together, while in soft state only T~ 1.0±0.2day's period exists. For testing the reliability of new method, we also analysis the data with two commonly used methods (e.g., Fast Fourier Transform and Period Folding), and obtain the same results. In the paper, we also search the orbital period of Cyg X-1 using new method and find that T = 5.6day's orbital period exists both in hard state and in soft state, though the orbital period appears more evident in hard state than in soft state.

  1. Co-metabolic degradation of dimethoate by Raoultella sp. X1.

    PubMed

    Liang, Yili; Zeng, Fuhua; Qiu, Guanzhou; Lu, Xiangyang; Liu, Xueduan; Gao, Haichun

    2009-06-01

    A bacterium Raoultella sp. X1, based on its 16S rRNA gene sequence, was isolated. Characteristics regarding the bacterial morphology, physiology, and genetics were investigated with an electron microscopy and conventional microbiological techniques. Although the isolate grew and degraded dimethoate poorly when the chemical was used as a sole carbon and energy source, it was able to remove up to 75% of dimethoate via co-metabolism. With a response surface methodology, we optimized carbon, nitrogen and phosphorus concentrations of the media for dimethoate degradation. Raoultella sp. X1 has a potential to be a useful organism for dimethoate degradation and a model strain for studying this biological process at the molecular level.

  2. A Decade in the Life of the Massive Black-Hole Binary IC10 X-1

    NASA Astrophysics Data System (ADS)

    Laycock, Silas

    2014-11-01

    Chandra thanks to its angular resolution, sensitivity and endurance has been able to monitor individual X-ray binaries in the starburst galaxy IC 10. The WR+BH binary known as IC10 X-1 is regarded as one of the most massive stellar black holes; a class of objects representing the pinnacle of the stellar mass function. BH binaries occupy key roles in seeding SMBHs, producing long GRBs at birth, and gravitational waves at death. We report our use of Chandra to refine the orbital ephemeris of X1 and match-up the radial velocity curve of the optical spectral lines with the X-ray eclipse. The resulting phase offset has fascinating implications for our understanding of the interactions between the WR star, its wind, and the radiation field of the BH.

  3. X-ray spectra of Hercules X-1. 1: Iron line fluorescence from a subrelativistic shell

    NASA Technical Reports Server (NTRS)

    Pravdo, S. H.; Becker, R. H.; Boldt, E. A.; Holt, S. S.; Serlemitsos, P. J.; Swank, J. H.

    1977-01-01

    The X-ray spectrum of Hercules X-1 was observed in the energy range 2-24 keV from August 29 to September 3, 1975. A broad iron line feature is observed in the normal high state spectrum. The line equivalent width is given along with its full-width-half-maximum energy. Iron line fluorescence from an opaque, cool shell of material at the Alfven surface provides the necessary luminosity in this feature. The line energy width can be due to Doppler broadening if the shell is forced to corotate with the pulsar at a radius 800 million cm. Implications of this model regarding physical conditions near Her X-1 are discussed.

  4. TWO CANDIDATE OPTICAL COUNTERPARTS OF M82 X-1 FROM HST OBSERVATIONS

    SciTech Connect

    Wang, Song; Liu, Jifeng; Bai, Yu; Guo, Jincheng E-mail: songw@bao.ac.cn

    2015-10-20

    Optical counterparts can provide significant constraints on the physical nature of ultraluminous X-ray sources (ULXs). In this Letter, we identify six point sources in the error circle of a ULX in M82, namely M82 X-1, by registering Chandra positions onto Hubble Space Telescope images. Two objects are considered as optical counterpart candidates of M82 X-1, which show F658N flux excess compared to the optical continuum that may suggest the existence of an accretion disk. The spectral energy distributions of the two candidates match well with the spectra for supergiants, with stellar types as F5-G0 and B5-G0, respectively. Deep spatially resolved spectroscopic follow-up and detailed studies are needed to identify the true companion and confirm the properties of this BH system.

  5. A performance evaluation of the Cray X1 for scientific applications

    SciTech Connect

    Oliker, Leonid; Biswas, Rupak; Borrill, Julian; Canning, Andrew; Carter, Jonathan; Djomehri, Jahed; Shan, Hongzhang; Skinner, David

    2004-05-02

    The last decade has witnessed a rapid proliferation of superscalar cache-based microprocessors to build high-end capability and capacity computers primarily because of their generality, scalability, and cost effectiveness. However, the recent development of massively parallel vector systems is having a significant effect on the supercomputing landscape. In this paper, we compare the performance of the recently-released Cray X1 vector system with that of the cacheless NEC SX-6 vector machine, and the superscalar cache-based IBM Power3 and Power4 architectures for scientific applications. Overall results demonstrate that the X1 is quite promising, but performance improvements are expected as the hardware, systems software, and numerical libraries mature. Code reengineering to effectively utilize the complex architecture may also lead to significant efficiency enhancements.

  6. High resolution measurements of the low state of Cyg X-1

    NASA Technical Reports Server (NTRS)

    Rothschild, R. E.; Boldt, E. A.; Holt, S. S.; Serlemitsos, P. J.

    1976-01-01

    Cyg X-1 was observed on two occasions separated by a year by the same X-ray rocket payload. High resolution temporal and spectral data reveal that Cyg X-1 was essentially unchanged in these two observations a year apart, with bursts of millisecond duration observed in the earlier flight and also, observed in the second. Analysis of these bursts has failed to reveal any internal temporal structure, either luminous or spectral. The shot noise character of temporal fluctuations on timescales approximately 1 second can be explained by the presence of exponential pulses with a fraction of a second time constant and a rate near 8 sec/1. The possible connection of these pulses with the bursts is examined.

  7. Molecularly Severe roX1 Mutations Contribute to Dosage Compensation in Drosophila

    PubMed Central

    Deng, Xinxian; Meller, Victoria H.

    2013-01-01

    Summary Drosophila melanogaster males maintain a constant ratio of X-linked to autosomal gene products by increasing expression from their single X chromosome. This is achieved through the action of a complex composed of protein and roX RNA. This complex binds in the body of genes and increases expression through chromatin modification. The X-linked roX genes produce RNAs that are essential but redundant for recognition and modification of the male X chromosome. We report that some molecularly severe roX1 mutations with no detectable transcript accumulation contribute dramatically to male rescue by autosomal roX1 transgenes. We propose that this represents genetic complementation between a source of roX RNA (the autosomal transgene) and the severely mutated X-linked allele. PMID:19101984

  8. Continued Long-Term Evolution of the Correlated Spectral and Timing Properties of CIR X-1

    NASA Astrophysics Data System (ADS)

    Shirey, Robert

    Our previous RXTE results demonstrate that at the baseline intensity level of 1.0 Crab, Cir X-1 exhibits Z-source behavior, but with QPOs which shift to lower than usual frequencies. In contrast, EXOSAT observations at lower intensity (as low as <0.1 Crab) showed behavior that resembled that of atoll sources. We recently carried out a set of RXTE TOO observations across a cycle during which the source intensity gradually decreased from 1.5 Crab to <0.5 Crab. In order to study the continued evolution of the timing and spectral properties of Cir X-1 and to search for type-1 bursts as its baseline intensity decreases, we propose observations at additional faint intensity levels. We also propose observations if radio flares (which are now faint) return to previously high intensities.

  9. Distance Measurements and the X-Ray Luminosity of SCO X-1

    NASA Astrophysics Data System (ADS)

    Bradshaw, C. F.; Geldzahler, B. J.; Fomalont, E. B.

    1999-04-01

    We have measured the trigonometric parallax of Sco X-1 as 0.00036'' +/- 0.00004'' which corresponds to a distance of 2.8 +/- 0.3 kpc. This distance is 40% farther away than previous estimates based on X-ray luminosity. We have observed this z-source with the RXTE in the horizontal, normal, and flaring branches and at the normal-flaring branch vertex. Our measured luminosity of 2.3 x 10(38) : ergs : s(-1) at the normal-flaring branch vertex and determined distance supports the hypothesis that Sco X-1 radiates at the Eddington luminosity at this point in its X-ray color-color diagram.

  10. An Iron K Component to the Ultrafast Outflow in NGC 1313 X-1

    NASA Astrophysics Data System (ADS)

    Walton, D. J.; Middleton, M. J.; Pinto, C.; Fabian, A. C.; Bachetti, M.; Barret, D.; Brightman, M.; Fuerst, F.; Harrison, F. A.; Miller, J. M.; Stern, D.

    2016-08-01

    We present the detection of an absorption feature at E={8.77}-0.06+0.05 keV in the combined X-ray spectrum of the ultraluminous X-ray source NGC 1313 X-1 observed with XMM-Newton and NuSTAR, significant at the 3σ level. If associated with blueshifted ionized iron, the implied outflow velocity is ˜0.2c for Fe xxvi, or ˜0.25c for Fe xxv. These velocities are similar to the ultrafast outflow seen in absorption recently discovered in this source at lower energies by XMM-Newton, and we therefore conclude that this is an iron component to the same outflow. Photoionization modeling marginally prefers the Fe xxv solution, but in either case the outflow properties appear to be extreme, potentially supporting a super-Eddington hypothesis for NGC 1313 X-1.

  11. Performance characteristics of the Cray X1 and their implicationsfor application performance tuning

    SciTech Connect

    Shan, Hogzhang; Strohmaier, Erich

    2004-05-11

    During the last decade the scientific computing community has optimized many applications for execution on superscalar computing platforms. The recent arrival of the Japanese Earth Simulator has revived interest in vector architectures especially in the US. It is important to examine how to port our current scientific applications to the new vector platforms and how to achieve high performance. The success of porting these applications will also influence the acceptance of new vector architectures. In this paper, we first investigate the memory performance characteristics of the Cray X1, a recently released vector platform, and determine the most influential performance factors. Then, we examine how to optimize applications tuned on superscalar platforms for the Cray X1 using its performance characteristics as guidelines. Finally, we evaluate the different types of optimizations used, the effort for their implementations, and whether they provide any performance benefits when ported back to superscalar platforms.

  12. e-EVN radio detection of Aql X-1 in outburst

    NASA Astrophysics Data System (ADS)

    Tudose, V.; Paragi, Z.; Yang, J.; Miller-Jones, J. C. A.; Fender, R.; Garrett, M.; Rushton, A.; Spencer, R.

    2013-06-01

    The neutron star X-ray binary Aql X-1 is currently in outburst (ATel #5114, #5117, #5129, #5136, #5148). Using the European VLBI Network (e-EVN) we observed Aql X-1 at 5 GHz in two time-slots: 2013 June 18 between 19:48 - 20:36 UT (MJD 56461.825 - 56461.858), and 2013 June 19 between 02:53 - 05:54 UT (MJD 56462.120 - 56462.246). The two datasets were combined together and then calibrated. The participating radio telescopes were: Effelsberg (Germany), Jodrell Bank Mk2 (UK), Medicina (Italy), Noto (Italy), Onsala 25m (Sweden), Torun (Poland), Yebes (Spain), Westerbork Synthesis Radio Telescope (Netherlands), Shanghai (China), Hartebeesthoek (South Africa).

  13. Laboratory Detection of IZnCH_{3} (X^{1}A_{1}) : Further Evidence for Zinc Insertion

    NASA Astrophysics Data System (ADS)

    Bucchino, Matthew P.; Young, Justin P.; Sheridan, Phil M.; Ziurys, Lucy M.

    2013-06-01

    Millimeter-wave direct absorption techniques were used to record the pure rotational spectrum of IZnCH_{3} (X^{1}A_{1}). This species was produced by the reaction of zinc vapor with ICH_{3} in the presence of a DC discharge. Rotational transitions ranging from J = 109 {→} 108 to J = 122 {→} 121 were recorded for I^{64}ZnCH_{3} and I^{66}ZnCH_{3} in the frequency range of 250{-290} GHz. The Ka = 0{-4} components were measured for each transition, with the K-ladder structure and nuclear spin statistics indicative of a symmetric top. As with HZnCH_{3} (X^{1}A_{1}), the detection of IZnCH_{3} provides further evidence for a zinc insertion process.

  14. Observations of Scorpius X-1 with IUE - Ultraviolet results from a multiwavelength campaign

    NASA Technical Reports Server (NTRS)

    Vrtilek, S. D.; Raymond, J. C.; Penninx, W.; Verbunt, F.; Hertz, P.

    1991-01-01

    IUE UV results are presented for the low-mass X-ray binary Sco X-1. Models that predict UV continuum emission from the X-ray-heated surface from the companion star and from an X-ray illuminated accretion disk are adjusted for parameters intrinsic to Sco X-1, and fitted to the data. X-ray heating is found to be the dominant source of UV emission; the mass-accretion rate increases monotonically along the 'Z-shaped' curve in an X-ray color-color diagram. UV emission lines from He, C, N, O, and Si were detected; they all increase in intensity from the HB to the FB state. A model in which emission lines are due to outer-disk photoionization by the X-ray source is noted to give good agreement with line fluxes observed in each state.

  15. Faulkes Telescope observations of the optical rise of a bright outburst of Aql X-1

    NASA Astrophysics Data System (ADS)

    Russell, David M.; Lewis, Fraser

    2016-08-01

    The neutron star X-ray binary transient, Aql X-1 has just entered a new outburst. Swift/BAT detected an increase in the hard X-ray flux starting on 2016 July 29 (MJD 57598; ATel #9287), followed by a confirmation from Swift/XRT that the source is detected and bright at 0.3-10 keV (ATel #9292) and by July 31 the optical flux had also brightened (ATel #9293).

  16. Arsenic-terminated Ge(111): An ideal 1 x 1 surface

    SciTech Connect

    Bringans, R.D.; Uhrberg, R.I.G.; Bachrach, R.Z.; Northrup, J.E.

    1985-07-29

    Arsenic interaction with the Ge(111) surface results in the replacement of the outer Ge layer with an As layer. This system has a 1 x 1 symmetry and the calculated positions of the As atoms are very close to the positions expected from bulk bond lengths. Ge(111):As is thus a model ideal surface and a comparison is made of an experimental and a theoretical determination of its fully occupied surface band.

  17. X-ray spectra of Hercules X-1. 2: Intrinsic beam

    NASA Technical Reports Server (NTRS)

    Pravdo, S. H.; Boldt, E. A.; Holt, S. S.; Serlemitsos, P. J.

    1977-01-01

    The X-ray spectrum of Hercules X-1 was observed in the energy range 2-24 keV with sufficient temporal resolution to allow detailed study of spectral correlations with the 1.24 sec pulse phase. A region of spectral hardening which extends over approximately the 1/10 pulse phase may be associated with the underlying beam. The pulse shape stability and its asymmetry relative to this intrinsic beam are discussed.

  18. X-Ray Emission from the Soft X-Ray Transient Aquila X-1

    NASA Technical Reports Server (NTRS)

    Tavani, Marco

    1998-01-01

    Aquila X-1 is the most prolific of soft X-ray transients. It is believed to contain a rapidly spinning neutron star sporadically accreting near the Eddington limit from a low-mass companion star. The interest in studying the repeated X-ray outbursts from Aquila X-1 is twofold: (1) studying the relation between optical, soft and hard X-ray emission during the outburst onset, development and decay; (2) relating the spectral component to thermal and non-thermal processes occurring near the magnetosphere and in the boundary layer of a time-variable accretion disk. Our investigation is based on the BATSE monitoring of Aquila X-1 performed by our group. We observed Aquila X-1 in 1997 and re-analyzed archival information obtained in April 1994 during a period of extraordinary outbursting activity of the source in the hard X-ray range. Our results allow, for the first time for this important source, to obtain simultaneous spectral information from 2 keV to 200 keV. A black body (T = 0.8 keV) plus a broken power-law spectrum describe accurately the 1994 spectrum. Substantial hard X-ray emission is evident in the data, confirming that the accretion phase during sub-Eddington limit episodes is capable of producing energetic hard emission near 5 x 10(exp 35) ergs(exp -1). A preliminary paper summarizes our results, and a more comprehensive account is being written. We performed a theoretical analysis of possible emission mechanisms, and confirmed that a non-thermal emission mechanism triggered in a highly sheared magnetosphere at the accretion disk inner boundary can explain the hard X-ray emission. An anticorrelation between soft and hard X-ray emission is indeed prominently observed as predicted by this model.

  19. The dynamics and magnetism of the X1 flare on 2014-03-29

    NASA Astrophysics Data System (ADS)

    Kleint, Lucia; Heinzel, Petr; Philip, Judge; Krucker, Sam

    2016-05-01

    The X1 flare on 2014-03-29 was observed with an unprecedented number of instruments including chromospheric polarimetry and spectroscopy from the UV to the IR. By combining data from these instruments, we can answer several open questions: Where is the observed continuum emission during flares formed and through which physical processes? How does the magnetic field structure in the photosphere and in the chromosphere change during a flare? We discuss the implications of our findings on standard flare models.

  20. New insights on the accretion disk corona of Her X-1 from Chandra LETGS data

    NASA Astrophysics Data System (ADS)

    Burwitz, Vadim; Dennerl, Konrad; Predehl, Peter; Stelzer, Beate

    2001-09-01

    The X-ray binary Her X-1 was observed using the Chandra low energy transmission grating spectrometer (LETGS) during its anomalous low state and 10 months later during the X-ray bright phase. These observations allow us for the first time to detect emission, in the form of the intercombination lines of density sensitive He-like OVII and NVI triplets as well as the Lya-like OVIII and NVII lines, from the corona above the accretion disc in Her X-1. The He-like emission lines seem to be present at all times. Both data sets cover nearly the same range in orbital phase which allows for good comparison of properties in the different states. Additionally the second data set shows clearly a series of pre-eclipse dips. The spin period was not detected in the anomalous low state but clearly in the X-ray 35-day period bright data where the period we obtain indicates that the spin-period is continuing to increase. A detailed analysis of these fascinating observations of Her X-1 will be presented here.

  1. X-Ray Variation Statistics and Wind Clumping in Vela X-1

    NASA Technical Reports Server (NTRS)

    Furst, Felix; Kreykenbohm, Ingo; Pottschmidt, Katja; Wilms, Joern; Hanke, Manfred; Rothschild, Richard E.; Kretschmar, Peter; Schulz, Norbert S.; Huenemoerder, David P.; Klochkov, Dmitry; Staubert, Rudiger

    2010-01-01

    We investigate the structure of the wind in the neutron star X-ray binary system Vela X-1 by analyzing its flaring behavior. Vela X-1 shows constant flaring, with some flares reaching fluxes of more than 3.0 Crab between 20-60 keV for several 100 seconds, while the average flux is around 250 mCrab. We analyzed all archival INTEGRAL data, calculating the brightness distribution in the 20-60 keV band, which, as we show, closely follows a log-normal distribution. Orbital resolved analysis shows that the structure is strongly variable, explainable by shocks and a fluctuating accretion wake. Analysis of RXTE ASM data suggests a strong orbital change of N. Accreted clump masses derived from the INTEGRAL data are on the order of 5 x 10(exp 19)-10(exp 21) g. We show that the lightcurve can be described with a model of multiplicative random numbers. In the course of the simulation we calculate the power spectral density of the system in the 20-100 keV energy band and show that it follows a red-noise power law. We suggest that a mixture of a clumpy wind, shocks, and turbulence can explain the measured mass distribution. As the recently discovered class of supergiant fast X-ray transients (SFXT) seems to show the same parameters for the wind, the link between persistent HMXB like Vela X-1 and SFXT is further strengthened.

  2. Optimizing performance of superscalar codes for a single Cray X1MSP processor

    SciTech Connect

    Shan, Hongzhang; Strohmaier, Erich; Oliker, Leonid

    2004-06-08

    The growing gap between sustained and peak performance for full-scale complex scientific applications on conventional supercomputers is a major concern in high performance computing. The recently-released vector-based Cray X1 offers to bridge this gap for many demanding scientific applications. However, this unique architecture contains both data caches and multi-streaming processing units, and the optimal programming methodology is still under investigation. In this paper we investigate Cray X1 code optimization for a suite of computational kernels originally designed for superscalar processors. For our study, we select four applications from the SPLASH2 application suite (1-D FFT,Radix, Ocean, and Nbody), two kernels from the NAS benchmark suite (3-DFFT and CG), and a matrix-matrix multiplication kernel. Results show that for many cases, the addition of vectorization compiler directives results faster runtimes. However, to achieve a significant performance improvement via increased vector length, it is often necessary to restructure the program at the source level sometimes leading to algorithmic level transformations. Additionally, memory bank conflicts may result in substantial performance losses. These conflicts can often be exacerbated when optimizing code for increased vector lengths, and must be explicitly minimized. Finally, we investigate the relationship of the X1 data caches on overall performance.

  3. SCO X-1: Origin of the radio and hard X-ray emissions

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Cheng, C. C.; Tsuruta, S.

    1973-01-01

    The consequences of models for the central radio source and the hard X-ray ( 30 keV) emitting region in Sco X-1 are examined. It was found that the radio emission could result from noncoherent synchrotron radiation and that the X-rays may be produced by bremsstrahlung. It is shown that both mechanisms require a mass outflow from Sco X-1. The radio source is located at r approximately 3x10 to the 12th power cm from the center of the star, and its linear dimensions do not exceed 3x10 to the 13th power cm. The magnetic field in the radio source is on the order of 1 gauss. If the hard X-rays are produced by thermal bremsstrahlung, their source is located at 10 to the 9th power approximately r approximately 5x10 to the 9th power cm, the temperature is 2x10 to the 9th power K, and the emission measure is 2x10 to the 56th power/cu cm. This hot plasma loses energy inward by conduction and outward by supersonic expansion. The rates of energy loss for both processes are about 10 to the 36th power erg/s, comparable to the total luminosity of Sco X-1.

  4. Kilohertz Quasi-Periodic Oscillation Peak Separation Is Not Constant in Scorpius X-1

    NASA Astrophysics Data System (ADS)

    van der Klis, Michiel; Wijnands, Rudy A. D.; Horne, Keith; Chen, Wan

    1997-06-01

    We report on a series of 20, ~105 counts s-1, 0.125 ms time-resolution Rossi X-Ray Timing Explorer observations of the Z-source and low-mass X-ray binary Scorpius X-1. Twin kilohertz quasi-periodic oscillation (QPO) peaks are obvious in nearly all observations. We find that the peak separation is not constant, as expected in some beat-frequency models, but instead varies from ~310 to ~230 Hz when the centroid frequency of the higher frequency peak varies from ~875 to ~1085 Hz. We detect none of the additional QPO peaks at higher frequencies predicted in the photon bubble model (PBM), with best-case upper limits on the peaks' power ratio of 0.025. We do detect, simultaneously with the kilohertz QPO, additional QPO peaks near 45 and 90 Hz whose frequency increases with mass accretion rate. We interpret these as first and second harmonics of the so-called horizontal-branch oscillations that are well known from other Z-sources and usually interpreted in terms of the magnetospheric beat-frequency model (BFM). We conclude that the magnetospheric BFM and the PBM are now unlikely to explain the kilohertz QPO in Sco X-1. In order to succeed in doing so, any BFM involving the neutron star spin (unseen in Sco X-1) will have to postulate at least one additional unseen frequency, beating with the spin to produce one of the kilohertz peaks.

  5. Long-term change in the cyclotron line energy in Her X-1

    NASA Astrophysics Data System (ADS)

    Staubert, Rüdiger

    2016-04-01

    We investigate the long-term evolution in the centroid energy of the Cyclotron Resonance Scattering Feature (CRSF) in the spectrum of the binary X-ray pulsar Her X-1. After the discovery in 1976 by the MPE/AIT balloon telescope HEXE, the line feature was confirmed by several other instruments, establishing the centroid energy at around 35 keV, thereby providing the first direct measure of the B-filed strength of a neutron star at a few 10^12 Gauss. Between 1991 and 1993 an upward jump by ~7 keV occurred, first noted by BATSE and soon confirmed by RXTE and Beppo/SAX. Since then a systematic effort to monitor the cyclotron line energy E_cyc with all available instruments has led to two further discoveries: 1) E_cyc correlates positively with the X-ray luminosity (this feature is now found in four more binary X-ray pulsars). 2) Over the last 20 years the (flux normalized) E_cyc in Her X-1 has decayed by ~5 keV, down to 36.5 keV in August 2015. Her X-1 is the first and so far the only source showing such a variation. We will discuss possible physical scenarios relevant for accretion mounds/columns on highly magnetized neutron stars.

  6. Timing and spectral properties of Vela X-1 with ASTROSAT-LAXPC

    NASA Astrophysics Data System (ADS)

    Pradhan, Pragati; Paul, Biswajit; Manchanda, R. K.; Jain, Chetana; Islam, Nazma; Maitra, Chandreyee; Pahari, Mayukh; Singh Yadav, Jagdish; Katoch, Tilak; Antia, H. M.; Beri, Aru; Madhwani, Pankaj; Raman, Gayathri; Bahal, Varun; Mate, Sujay; Agrawal, P. C.; Dedhia, Dhiraj K.; Chauhan, Jai V.; Shah, Parag

    2016-07-01

    Vela X-1 is an eclipsing and persistent yet highly variable HMXB. It's variability, which is often attributed to the presence of clumpy winds around it, places it as a link between classical HMXBs and supergiant fast X-ray transients. We present a detailed timing and spectral analysis of the persistent yet highly variable HMXB 'Vela X-1' from LAXPC observations onboard ASTROSAT over wide energy band of 3-80 keV. The X-ray spectrum of Vela X-1 hosts several interesting features like the evidence of a cyclotron line at 25 keV. It is for the first time that this object has been studied with a single instrument in such a wide energy range. We report significant variations in the spectral parameters with different pulse phases and discuss them in terms of the accretion mechanism and stellar wind properties of this accreting pulsar. In addition, for the first time, we also detect pulsations upto 80 keV for this source.

  7. Evidence for an Intermediate Mass Black Hole in NGC 5408 X-1

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod E.; Mushotzky, Richard F.

    2009-01-01

    We report the discovery with XMM-Newton of correlated spectral and timing behavior in the ultraluminous X-ray source (ULX) NGC 5408 X-1. An approx. 100 ksec pointing with XMM/Newton obtained in January, 2008 reveals a strong 10 mHz QPO in the > 1 keV flux, as well as flat-topped, band limited noise breaking to a power law. The energy spectrum is again dominated by two components, a 0.16 keV thermal disk and a power-law with an index of approx. 2.5. These new measurements, combined with results from our previous January 2006 pointing in which we first detected QPOs, show for the first time in a ULX a pattern of spectral and temporal correlations strongly analogous to that seen in Galactic black hole sources, but at much higher X-ray luminosity and longer characteristic time-scales. We find that the QPO frequency is proportional to the inferred disk flux, while the QPO and broad-band noise amplitude (root mean squared, rms) are inversely proportional to the disk flux. Assuming that QPO frequency scales inversely with black hole mass at a given power-law spectral index we derive mass estimates using the observed QPO frequency - spectral index relations from five stellar-mass black hole systems with dynamical mass constraints. The results from all sources are consistent with a mass range for NGC 5408 X-1 from 1000 - 9000 Stellar mass. We argue that these are conservative limits, and a more likely range is from 2000 - 5000 Stellar mass. Moreover, the recent relation from Gierlinski et al. that relates black hole mass to the strength of variability at high frequencies (above the break in the power spectrum), and the variability plane results of McHardy et al. and Koerding et al., are also suggestive of such a. high mass for NGC 5408 X-1. Importantly, none of the above estimates appears consistent with a black hole mass less than approx. 1000 Stellar mass for NGC 5408 X-1. We argue that these new findings strongly support the conclusion that NGC 5408 X-1 harbors an

  8. H{sub 2}D{sup +} IN THE HIGH-MASS STAR-FORMING REGION CYGNUS X

    SciTech Connect

    Pillai, T.; Lis, D. C.; Caselli, P.; Kauffmann, J.; Zhang, Q.; Thompson, M. A.

    2012-06-01

    H{sub 2}D{sup +} is a primary ion that dominates the gas-phase chemistry of cold dense gas. Therefore, it is hailed as a unique tool in probing the earliest, prestellar phase of star formation. Observationally, its abundance and distribution is, however, just beginning to be understood in low-mass prestellar and cluster-forming cores. In high-mass star-forming regions, H{sub 2}D{sup +} has been detected only in two cores, and its spatial distribution remains unknown. Here, we present the first map of the ortho-H{sub 2}D{sup +} J{sub k{sup +},k{sup -}} = 1{sub 1,0} {yields} 1{sub 1,1} and N{sub 2}H{sup +} 4-3 transition in the DR21 filament of Cygnus X with the James Clerk Maxwell Telescope, and N{sub 2}D{sup +} 3-2 and dust continuum with the Submillimeter Array. We have discovered five very extended ({<=}34, 000 AU diameter) weak structures in H{sub 2}D{sup +} in the vicinity of, but distinctly offset from, embedded protostars. More surprisingly, the H{sub 2}D{sup +} peak is not associated with either a dust continuum or N{sub 2}D{sup +} peak. We have therefore uncovered extended massive cold dense gas that was undetected with previous molecular line and dust continuum surveys of the region. This work also shows that our picture of the structure of cores is too simplistic for cluster-forming cores and needs to be refined: neither dust continuum with existing capabilities nor emission in tracers like N{sub 2}D{sup +} can provide a complete census of the total prestellar gas in such regions. Sensitive H{sub 2}D{sup +} mapping of the entire DR21 filament is likely to discover more of such cold quiescent gas reservoirs in an otherwise active high-mass star-forming region.

  9. 10 CFR Appendix X1 to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Dehumidifiers

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Uniform Test Method for Measuring the Energy Consumption of Dehumidifiers X1 Appendix X1 to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Test Procedures Pt. 430, Subpt. B, App....

  10. Direct imaging of InSb (110)-(1x1) surface grown by molecular beam epitaxy

    SciTech Connect

    Mishima, T. D.

    2011-10-01

    High-resolution transmission electron microscopy under a profile imaging condition (HR-profile TEM) was employed to determine the structural model for the InSb(110)-(1x1) relaxation surface grown by molecular beam epitaxy (MBE). HR-profile TEM analyses indicate that the chevron model, which is widely accepted for zinc-blende-type III-V(110)-(1x1) surfaces prepared by cleavage, is also applicable to the InSb(110)-(1x1) surface prepared under an Sb-rich MBE condition. The assignment of atomic species (In or Sb) of InSb(110)-(1x1) surfaces was confirmed based on a HR-profile TEM image that captures the connected facets of InSb(110)-(1x1) and InSb(111)B-(2x2). On the basis of the well-known atomic species of InSb(111)B-(2x2), the atomic species of the InSb(110)-(1x1) surface were deduced straightforwardly: the atoms shifted upward and downward at the topmost layer of the InSb(110)-(1x1) surface are Sb and In, respectively. The atomic arrangements of the InSb(110)-(1x1)-InSb(111)B-(2x2) facet determined by HR-profile TEM may represent the atomic arrangements of zinc-blende-type III-V(331)B surfaces.

  11. Language Learning Actions in Two 1x1 Secondary Schools in Catalonia: The Case of Online Language Resources

    ERIC Educational Resources Information Center

    Calvo, Boris Vázquez; Cassany, Daniel

    2016-01-01

    This paper identifies and describes current attitudes towards classroom digitization and digital language learning practices under the umbrella of EduCAT 1x1, the One-Laptop-Per-Child (OLPC or 1x1) initiative in place in Catalonia. We thoroughly analyze practices worked out by six language teachers and twelve Compulsory Secondary Education (CSE)…

  12. WAS COMET C/1945 X1 (DU TOIT) A DWARF, SOHO-LIKE KREUTZ SUNGRAZER?

    SciTech Connect

    Sekanina, Zdenek; Kracht, Rainer E-mail: R.Kracht@t-online.de

    2015-12-10

    The goal of this investigation is to reinterpret and upgrade the astrometric and other data on comet C/1945 X1, the least prominent among the Kreutz system sungrazers discovered from the ground in the twentieth century. The central issue is to appraise the pros and cons of a possibility that this object is—despite its brightness reported at discovery—a dwarf Kreutz sungrazer. We confirm Marsden’s conclusion that C/1945 X1 has a common parent with C/1882 R1 and C/1965 S1, in line with the Sekanina and Chodas scenario of their origin in the framework of the Kreutz system’s evolution. We integrate the orbit of C/1882 R1 back to the early twelfth century and then forward to around 1945 to determine the nominal direction of the line of apsides and perform a Fourier analysis to get insight into effects of the indirect planetary perturbations. To better understand the nature of C/1945 X1, its orbital motion, fate, and role in the hierarchy of the Kreutz system, as well as to attempt detecting the comet’s possible terminal outburst shortly after perihelion and answer the question in the title of this investigation, we closely examined the relevant Boyden Observatory logbooks and identified both the photographs with the comet’s known images and nearly 20 additional patrol plates, taken both before and after perihelion, on which the comet or traces of its debris will be searched for, once the process of their digitization, currently conducted as part of the Harvard College Observatory’s DASCH Project, has been completed and the scanned copies made available to the scientific community.

  13. Correlated optical observations with BATSE/CGRO on SCO X-1

    NASA Technical Reports Server (NTRS)

    Mcnamara, Bernard

    1992-01-01

    The Burst and Transient Source Experiment (BATSE) instrument on the Compton Gamma-Ray Observatory consists of two banks of eight instruments referred to as the Large Area Detectors (LADs) and the Spectroscopic Detectors (SDs). Each LAD crystal is 50.8 cm in diameter by 1.27 cm thick while for a SD these values are 12.7 cm in diameter by 7.62 cm in diameter. Both the LADs and SDs are NaI(TI) scintillation detectors. The LADs and SDs are situated on the CGRO spacecraft so as to provide all sky coverage for both sets of detectors. The SDs have the ability to measure energies in the 8-16 keV range whereas the minimum energy at which the LADs operate is near 20 keV. SCO X-1 is the brightest continuous x-ray source in the sky. It is believed to consist of a low mass star orbiting and transferring mass onto a neutron star. It is representative of a class of similar objects referred to as low mass x-ray binaries (LMXB). Because SCO X-1 serves as the prototype of this class of x-ray emitters and since its detectable emission is so large, it warrants extended study. One of the most fruitful techniques of studying a LMXB system is by simultaneously monitoring its emission at a variety of different wavelengths. These correlated datasets can be used to probe the source environment, investigate emission mechanisms, and examine the mass transfer process itself. In principle, the BATSE SDs have the capability of providing a nearly continuous 8-16 keV record of SCO X-1 activity. The aim of this study was to investigate the feasibility of using the BATSE SDs along with simultaneous optical measurements to study this source.

  14. Was Comet C/1945 X1 (DU Toit) a Dwarf, SOHO-like Kreutz Sungrazer?

    NASA Astrophysics Data System (ADS)

    Sekanina, Zdenek; Kracht, Rainer

    2015-12-01

    The goal of this investigation is to reinterpret and upgrade the astrometric and other data on comet C/1945 X1, the least prominent among the Kreutz system sungrazers discovered from the ground in the twentieth century. The central issue is to appraise the pros and cons of a possibility that this object is—despite its brightness reported at discovery—a dwarf Kreutz sungrazer. We confirm Marsden’s conclusion that C/1945 X1 has a common parent with C/1882 R1 and C/1965 S1, in line with the Sekanina & Chodas scenario of their origin in the framework of the Kreutz system’s evolution. We integrate the orbit of C/1882 R1 back to the early twelfth century and then forward to around 1945 to determine the nominal direction of the line of apsides and perform a Fourier analysis to get insight into effects of the indirect planetary perturbations. To better understand the nature of C/1945 X1, its orbital motion, fate, and role in the hierarchy of the Kreutz system, as well as to attempt detecting the comet’s possible terminal outburst shortly after perihelion and answer the question in the title of this investigation, we closely examined the relevant Boyden Observatory logbooks and identified both the photographs with the comet’s known images and nearly 20 additional patrol plates, taken both before and after perihelion, on which the comet or traces of its debris will be searched for, once the process of their digitization, currently conducted as part of the Harvard College Observatory’s DASCH Project, has been completed and the scanned copies made available to the scientific community.

  15. NuSTAR discovery of a luminosity dependent cyclotron line energy in Vela X-1

    SciTech Connect

    Fürst, Felix; Grefenstette, Brian W.; Harrison, Fiona; Madsen, Kristin K.; Walton, Dominic J.; Pottschmidt, Katja; Wilms, Jörn; Tomsick, John A.; Boggs, Steven E.; Craig, William W.; Bachetti, Matteo; Christensen, Finn E.; Hailey, Charles J.; Miller, Jon M.; Stern, Daniel; Zhang, William

    2014-01-10

    We present NuSTAR observations of Vela X-1, a persistent, yet highly variable, neutron star high-mass X-ray binary (HMXB). Two observations were taken at similar orbital phases but separated by nearly a year. They show very different 3-79 keV flux levels as well as strong variability during each observation, covering almost one order of magnitude in flux. These observations allow, for the first time ever, investigations on kilo-second time-scales of how the centroid energies of cyclotron resonant scattering features (CRSFs) depend on flux for a persistent HMXB. We find that the line energy of the harmonic CRSF is correlated with flux, as expected in the sub-critical accretion regime. We argue that Vela X-1 has a very narrow accretion column with a radius of around 0.4 km that sustains a Coulomb interaction dominated shock at the observed luminosities of L {sub x} ∼ 3 × 10{sup 36} erg s{sup –1}. Besides the prominent harmonic line at 55 keV the fundamental line around 25 keV is clearly detected. We find that the strengths of the two CRSFs are anti-correlated, which we explain by photon spawning. This anti-correlation is a possible explanation for the debate about the existence of the fundamental line. The ratio of the line energies is variable with time and deviates significantly from 2.0, also a possible consequence of photon spawning, which changes the shape of the line. During the second observation, Vela X-1 showed a short off-state in which the power-law softened and a cut-off was no longer measurable. It is likely that the source switched to a different accretion regime at these low mass accretion rates, explaining the drastic change in spectral shape.

  16. Competition and selectivity in the reaction of nitriles on ge(100)-2x1.

    PubMed

    Filler, Michael A; Mui, Collin; Musgrave, Charles B; Bent, Stacey F

    2003-04-23

    We have experimentally investigated bonding of the nitrile functional group (R-Ctbd1;N:) on the Ge(100)-2x1 surface with multiple internal reflection infrared spectroscopy. Density functional theory calculations are used to help explain trends in the data. Several probe molecules, including acetonitrile, 2-propenenitrile, 3-butenenitrile, and 4-pentenenitrile, were studied to elucidate the factors controlling selectivity and competition on this surface. It is found that acetonitrile does not react on the Ge(100)-2x1 surface at room temperature, a result that can be understood with thermodynamic and kinetic arguments. A [4+2] cycloaddition product through the conjugated pi system and a [2+2] C=C cycloaddition product through the alkene are found to be the dominant surface adducts for the multifunctional molecule 2-propenenitrile. These two surface products are evidenced, respectively, by an extremely intense nu(C=C=N), or ketenimine stretch, at 1954 cm(-)(1) and the nu(Ctbd1;N) stretch near 2210 cm(-)(1). While the non-conjugated molecules 3-butenenitrile and 4-pentenenitrile are not expected to form a [4+2] cycloaddition product, both show vibrational modes near 1954 cm(-)(1). Additional investigation suggests that 3-butenenitrile can isomerize to 2-butenenitrile, a conjugated nitrile, before introduction into the vacuum chamber, explaining the presence of the vibrational modes near 1954 cm(-)(1). Pathways directly involving only the nitrile functional group are thermodynamically