Sample records for microreactor temperature-programmed desorption

  1. Performance characterization of CNTs and γ-Al2O3 supported cobalt catalysts in Fischer-Tropsch reaction

    NASA Astrophysics Data System (ADS)

    Ali, Sardar; Zabidi, Noor Asmawati Mohd; Subbarao, Duvvuri

    2014-10-01

    Catalysts were prepared via a wet impregnation method. Different physicochemical properties of the samples were revealed by transmission electron microscope (TEM), temperature programmed reduction (H2-TPR) and carbon dioxide desorption (CO2-desorption). Fischer-Tropsch reaction (FTS) was carried out in a fixed-bed microreactor at 220°C and 1 atm, with H2/ CO = 2v / v and space velocity, SV of 12L/g.h for 5 h. Various characterization techniques revealed that there was a stronger interaction between Co and Al2O3 support compared to that of CNTs support. CNTs support increased the reducibility and decreased Co particle size. A significant increase in % CO conversion and FTS reaction rate was observed over CNTs support compared to that of Co / Al2O3. Co/CNTs resulted in higher C5+ hydrocarbons selectivity compared to that of Co / Al2O3 catalyst. CNTs are a better support for Co compared to Al2O3.

  2. Performance characterization of CNTs and γ-Al{sub 2}O{sub 3} supported cobalt catalysts in Fischer-Tropsch reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, Sardar, E-mail: alikhan-635@yahoo.com; Zabidi, Noor Asmawati Mohd, E-mail: noorasmawati-mzabidi@petronas.com.my; Subbarao, Duvvuri, E-mail: duvvuri-subbarao@petronas.com.my

    2014-10-24

    Catalysts were prepared via a wet impregnation method. Different physicochemical properties of the samples were revealed by transmission electron microscope (TEM), temperature programmed reduction (H{sub 2}-TPR) and carbon dioxide desorption (CO{sub 2}-desorption). Fischer-Tropsch reaction (FTS) was carried out in a fixed-bed microreactor at 220°C and 1 atm, with H{sub 2}/CO = 2v/v and space velocity, SV of 12L/g.h for 5 h. Various characterization techniques revealed that there was a stronger interaction between Co and Al{sub 2}O{sub 3} support compared to that of CNTs support. CNTs support increased the reducibility and decreased Co particle size. A significant increase in % CO conversion andmore » FTS reaction rate was observed over CNTs support compared to that of Co/Al{sub 2}O{sub 3}. Co/CNTs resulted in higher C{sub 5+} hydrocarbons selectivity compared to that of Co/Al{sub 2}O{sub 3} catalyst. CNTs are a better support for Co compared to Al{sub 2}O{sub 3}.« less

  3. Fine structuration of low-temperature co-fired ceramic (LTCC) microreactors.

    PubMed

    Jiang, Bo; Haber, Julien; Renken, Albert; Muralt, Paul; Kiwi-Minsker, Lioubov; Maeder, Thomas

    2015-01-21

    The development of microreactors that operate under harsh conditions is always of great interest for many applications. Here we present a microfabrication process based on low-temperature co-fired ceramic (LTCC) technology for producing microreactors which are able to perform chemical processes at elevated temperature (>400 °C) and against concentrated harsh chemicals such as sodium hydroxide, sulfuric acid and hydrochloric acid. Various micro-scale cavities and/or fluidic channels were successfully fabricated in these microreactors using a set of combined and optimized LTCC manufacturing processes. Among them, it has been found that laser micromachining and multi-step low-pressure lamination are particularly critical to the fabrication and quality of these microreactors. Demonstration of LTCC microreactors with various embedded fluidic structures is illustrated with a number of examples, including micro-mixers for studies of exothermic reactions, multiple-injection microreactors for ionone production, and high-temperature microreactors for portable hydrogen generation.

  4. The silicon-glass microreactor with embedded sensors—technology and results of preliminary qualitative tests, toward intelligent microreaction plant

    NASA Astrophysics Data System (ADS)

    Knapkiewicz, P.

    2013-03-01

    The technology and preliminary qualitative tests of silicon-glass microreactors with embedded pressure and temperature sensors are presented. The concept of microreactors for leading highly exothermic reactions, e.g. nitration of hydrocarbons, and design process-included computer-aided simulations are described in detail. The silicon-glass microreactor chip consisting of two micromixers (multistream micromixer), reaction channels, cooling/heating chambers has been proposed. The microreactor chip was equipped with a set of pressure and temperature sensors and packaged. Tests of mixing quality, pressure drops in channels, heat exchange efficiency and dynamic behavior of pressure and temperature sensors were documented. Finally, two applications were described.

  5. Generation and reactions of oxiranyllithiums by use of a flow microreactor system.

    PubMed

    Nagaki, Aiichiro; Takizawa, Eiji; Yoshida, Jun-ichi

    2010-12-17

    A flow microreactor system consisting of micromixers and microtubes provides an effective reactor for the generation and reactions of aryloxiranyllithiums without decomposition by virtue of short residence time and efficient temperature control. The deprotonation of styrene oxides with sBuLi can be conducted by using the flow microreactor system at -78 or -68 °C (whereas much lower temperatures (< -100 °C) are needed for the same reactions conducted under macrobatch conditions). The resulting α-aryloxiranyllithiums were allowed to react with electrophiles in the flow microreactor system at the same temperature. The sequential introduction of various electrophiles onto 2,3-diphenyloxiranes was also achieved by using an integrated flow microreactor, which serves as a powerful system for the stereoselective synthesis of tetrasubstituted epoxides.

  6. An optically accessible pyrolysis microreactor

    NASA Astrophysics Data System (ADS)

    Baraban, J. H.; David, D. E.; Ellison, G. Barney; Daily, J. W.

    2016-01-01

    We report an optically accessible pyrolysis micro-reactor suitable for in situ laser spectroscopic measurements. A radiative heating design allows for completely unobstructed views of the micro-reactor along two axes. The maximum temperature demonstrated here is only 1300 K (as opposed to 1700 K for the usual SiC micro-reactor) because of the melting point of fused silica, but alternative transparent materials will allow for higher temperatures. Laser induced fluorescence measurements on nitric oxide are presented as a proof of principle for spectroscopic characterization of pyrolysis conditions.

  7. An optically accessible pyrolysis microreactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baraban, J. H.; Ellison, G. Barney; David, D. E.

    2016-01-15

    We report an optically accessible pyrolysis micro-reactor suitable for in situ laser spectroscopic measurements. A radiative heating design allows for completely unobstructed views of the micro-reactor along two axes. The maximum temperature demonstrated here is only 1300 K (as opposed to 1700 K for the usual SiC micro-reactor) because of the melting point of fused silica, but alternative transparent materials will allow for higher temperatures. Laser induced fluorescence measurements on nitric oxide are presented as a proof of principle for spectroscopic characterization of pyrolysis conditions.

  8. An Optically Accessible Pyrolysis Microreactor

    NASA Astrophysics Data System (ADS)

    Baraban, Joshua H.; David, Donald E.; Ellison, Barney; Daily, John W.

    2016-06-01

    We report an optically accessible pyrolysis micro-reactor suitable for in situ laser spectroscopic measurements. A radiative heating design allows for completely unobstructed views of the micro-reactor along two axes. The maximum temperature demonstrated here is only 1300 K (as opposed to 1700 K for the usual SiC micro-reactor) because of the melting point of fused silica, but alternative transparent materials will allow for higher temperatures. Laser induced fluorescence measurements on nitric oxide are presented as a proof of principle for spectroscopic characterization of pyrolysis conditions. (This work has been published in J. H. Baraban, D. E. David, G. B. Ellison, and J. W. Daily. An Optically Accessible Pyrolysis Micro-Reactor. Review of Scientific Instruments, 87(1):014101, 2016.)

  9. A microfluidic microreactor for the synthesis of gold nanorods.

    PubMed

    Day, Daniel; Gu, Min

    2009-03-11

    A microfluidic microreactor for the synthesis of gold nanorods is fabricated using femtosecond pulse laser microfabrication techniques. Femtosecond pulse lasers are able to etch a wide range of materials that are required for a microreactor, from the photomasks to the microheaters. The heating of the fluid in the microreactor is achieved through the design and fabrication of a microscale heating element incorporated onto the bottom surface of the microreactor which is capable of reaching temperatures greater than 130 degrees C. Computational fluid dynamic simulations of the heating profile of an optimized microreactor show increased heating performance with respect to a serpentine microreactor. The synthesis of gold nanorods is demonstrated in the optimized microreactor, based on a flow rate of 0.5 microg min(-1).

  10. Contour temperature programmed desorption for monitoring multiple chemical reaction products

    NASA Astrophysics Data System (ADS)

    Chusuei, C. C.; de la Peña, J. V.; Schreifels, J. A.

    1999-09-01

    A simple method for obtaining a comprehensive overview of major compounds desorbing from the surface during temperature programmed desorption (TPD) experiments is outlined. Standard commercially available equipment is used to perform the experiment. The method is particularly valuable when high molecular mass compounds are being studied. The acquisition of contour temperature programmed desorption (CTPD) spectra, sampling 50-dalton mass ranges at a time in the thermal desorption experiments, is described and demonstrated for the interaction of benzotriazole adsorbed on a Ni(111) surface. Conventional two-dimensional TPD spectra can be extracted from the CTPD by taking vertical slices of the contour.

  11. Novel monolithic enzymatic microreactor based on single-enzyme nanoparticles for highly efficient proteolysis and its application in multidimensional liquid chromatography.

    PubMed

    Gao, Mingxia; Zhang, Peng; Hong, Guangfeng; Guan, Xia; Yan, Guoquan; Deng, Chunhui; Zhang, Xiangmin

    2009-10-30

    In this work, a novel and facile monolithic enzymatic microreactor was prepared in the fused-silica capillary via a two-step procedure including surface acryloylation and in situ aqueous polymerization/immobilization to encapsulate a single enzyme, and its application to fast protein digestion through a direct matrix-assisted laser desorption/ionization time-of-flight mass spectrometer (MALDI-TOF-MS) analysis was demonstrated. At first, vinyl groups on the protein surface were generated by a mild acryloylation with N-acryloxysuccinimide in alkali buffer. Then, acryloylated enzyme was encapsulated into polyacrylates by free-radical copolymerization with acrylamide as the monomer, N,N'-methylenebisacrylamide as the cross-linker, and N,N,N',N'-tetramethylethylenediamine/ammonium persulfate as the initiator. Finally, polymers were immobilized onto the activated inner wall of capillaries via the reaction of vinyl groups. Capability of the enzyme-immobilized monolithic microreactor was demonstrated by myoglobin and bovine serum albumin as model proteins. The digestion products were characterized using MALDI-TOF-MS with sequence coverage of 94% and 29% observed. This microreactor was also applied to the analysis of fractions through two-dimensional separation of weak anion exchange/reversed-phase liquid chromatography of human liver extract. After a database search, 16 unique peptides corresponding to 3 proteins were identified when two RPLC fractions of human liver extract were digested by the microreactor. This opens a route for its future application in top-down proteomic analysis.

  12. Lithographically fabricated silicon microreactor for operando QEXAFS studies in exhaust gas catalysis during simulation of a standard driving cycle

    NASA Astrophysics Data System (ADS)

    Doronkin, D. E.; Baier, S.; Sheppard, T.; Benzi, F.; Grunwaldt, J.-D.

    2016-05-01

    Selective catalytic reduction of NOx by ammonia over Cu-ZSM-5 was monitored by operando QEXAFS during simulation of the New European Driving Cycle. The required fast temperature transients were realized using a novel silicon microreactor, enabling simultaneous spectroscopic and kinetic analysis by X-ray absorption spectroscopy (XAS) and mass spectrometry (MS). Periods of high temperature were correlated to an increase in both N2 production and change of coordination of Cu sites. This operando approach using Si microreactors can be applied to other heterogeneous catalytic systems involving fast temperature transients.

  13. High quantum yield ZnO quantum dots synthesizing via an ultrasonication microreactor method.

    PubMed

    Yang, Weimin; Yang, Huafang; Ding, Wenhao; Zhang, Bing; Zhang, Le; Wang, Lixi; Yu, Mingxun; Zhang, Qitu

    2016-11-01

    Green emission ZnO quantum dots were synthesized by an ultrasonic microreactor. Ultrasonic radiation brought bubbles through ultrasonic cavitation. These bubbles built microreactor inside the microreactor. The photoluminescence properties of ZnO quantum dots synthesized with different flow rate, ultrasonic power and temperature were discussed. Flow rate, ultrasonic power and temperature would influence the type and quantity of defects in ZnO quantum dots. The sizes of ZnO quantum dots would be controlled by those conditions as well. Flow rate affected the reaction time. With the increasing of flow rate, the sizes of ZnO quantum dots decreased and the quantum yields first increased then decreased. Ultrasonic power changed the ultrasonic cavitation intensity, which affected the reaction energy and the separation of the solution. With the increasing of ultrasonic power, sizes of ZnO quantum dots first decreased then increased, while the quantum yields kept increasing. The effect of ultrasonic temperature on the photoluminescence properties of ZnO quantum dots was influenced by the flow rate. Different flow rate related to opposite changing trend. Moreover, the quantum yields of ZnO QDs synthesized by ultrasonic microreactor could reach 64.7%, which is higher than those synthesized only under ultrasonic radiation or only by microreactor. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Modeling of methanol decomposition on Pt/CeO2/ZrO2 catalyst in a packed bed microreactor

    NASA Astrophysics Data System (ADS)

    Pohar, Andrej; Belavič, Darko; Dolanc, Gregor; Hočevar, Stanko

    2014-06-01

    Methanol decomposition on Pt/CeO2/ZrO2 catalyst is studied inside a packed bed microreactor in the temperature range of 300-380 °C. The microreactor is fabricated using low-temperature co-fired ceramic (LTCC) technology, which is well suited for the production of relatively complex three-dimensional structures. It is packed with 2 wt% Pt-CeO2 catalyst, which is deposited onto ZrO2 spherical particles. A 1D mathematical model, which incorporates diffusion, convection and mass transfer through the boundary layer to the catalyst particles, as well as a 3D computational fluid dynamics model, are developed to describe the methanol decomposition process inside the packed bed. The microreactor exhibits reliable operation and no catalyst deactivation was observed during three months of experimentation. A comparison between the 1D mathematical model and the 3D model, considering the full 3D geometry of the microreactor is made and the differences between the models are identified and evaluated.

  15. Droplet-based microreactor for synthesis of water-soluble Ag₂S quantum dots.

    PubMed

    Shu, Yun; Jiang, Peng; Pang, Dai-Wen; Zhang, Zhi-Ling

    2015-07-10

    A droplet-based microreactor was used for synthesis of water-soluble Ag2S quantum dots (QDs). Monodispersed Ag2S nanoparticles with a surface of carboxylic acid-terminated were synthesized in the droplet microreactor. The x-ray powder diffraction results indicated products were monoclinic Ag2S nanocrystals. Furthermore, different-sized Ag2S QDs that were near-infrared-emitting or visible-emitting were continuously stably synthesized in droplet microreactors at different temperatures. We believe we offer a new method for obtaining different-sized Ag2S nanoparticles.

  16. Droplet-based microreactor for synthesis of water-soluble Ag2S quantum dots

    NASA Astrophysics Data System (ADS)

    Shu, Yun; Jiang, Peng; Pang, Dai-Wen; Zhang, Zhi-Ling

    2015-07-01

    A droplet-based microreactor was used for synthesis of water-soluble Ag2S quantum dots (QDs). Monodispersed Ag2S nanoparticles with a surface of carboxylic acid-terminated were synthesized in the droplet microreactor. The x-ray powder diffraction results indicated products were monoclinic Ag2S nanocrystals. Furthermore, different-sized Ag2S QDs that were near-infrared-emitting or visible-emitting were continuously stably synthesized in droplet microreactors at different temperatures. We believe we offer a new method for obtaining different-sized Ag2S nanoparticles.

  17. The development of flow-through bio-catalyst microreactors from silica micro structured fibers for lipid transformations.

    PubMed

    Anuar, Sabiqah Tuan; Villegas, Carla; Mugo, Samuel M; Curtis, Jonathan M

    2011-06-01

    This study demonstrates the utility of a flow-through enzyme immobilized silica microreactor for lipid transformations. A silica micro structured fiber (MSF) consisting of 168 channels of internal diameter 4-5 μm provided a large surface area for the covalent immobilization of Candida antartica lipase. The specific activity of the immobilized lipase was determined by hydrolysis of p-nitrophenyl butyrate and calculated to be 0.81 U/mg. The catalytic performance of the lipase microreactor was demonstrated by the efficient ethanolysis of canola oil. The parameters affecting the performance of the MSF microreactor, including temperature and reaction flow rate, were investigated. Characterization of the lipid products exiting the microreactor was performed by non-aqueous reversed-phased liquid chromatography (NARP-LC) with evaporative light scattering detector (ELSD) and by comprehensive two-dimensional gas chromatography (GC x GC). Under optimized conditions of 1 μL/min flow rate of 5 mg/mL trioleoylglycerol (TO) in ethanol and 50 °C reaction temperature, 2-monooleoylglycerol was the main product at > 90% reaction yield. The regioselectivity of the Candida antartica lipase immobilized MSF microreactor in the presence of ethanol was found to be comparable to that obtained under conventional conditions. The ability of these reusable flow-through microreactors to regioselectively form monoacylglycerides in high yield from triacylglycerides demonstrate their potential use in small-scale lipid transformations or analytical lipids profiling.

  18. Externally controlled pressure and temperature microreactor for in situ x-ray diffraction, visual and spectroscopic reaction investigations under supercritical and subcritical conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diefenbacher, Jason; McKelvy, Michael; Chizmeshya, Andrew V.G.

    2005-01-01

    A microreactor has been developed for in situ, spectroscopic investigations of materials and reaction processes with full external pressure and temperature control from ambient conditions to 400 deg. C and 310 bar. The sample chamber is in direct contact with an external manifold, whereby gases, liquids or fluids can be injected and their activities controlled prior to and under investigation conditions. The microreactor employs high strength, single crystal moissanite windows which allow direct probe beam interaction with a sample to investigate in situ reaction processes and other materials properties. The relatively large volume of the cell, along with full opticalmore » accessibility and external temperature and pressure control, make this reaction cell well suited for experimental investigations involving any combination of gas, fluid, and solid interactions. The microreactor's capabilities are demonstrated through an in situ x-ray diffraction study of the conversion of a meta-serpentine sample to magnesite under high pressure and temperature. Serpentine is one of the mineral candidates for the implementation of mineral carbonation, an intriguing carbon sequestration candidate technology.« less

  19. Externally controlled pressure and temperature microreactor for in situ x-ray diffraction, visual and spectroscopic reaction investigations under supercritical and subcritial conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diefenbacher, J.; McKelvy, M.; Chizemeshya, A.V.

    2010-07-13

    A microreactor has been developed for in situ, spectroscopic investigations of materials and reaction processes with full external pressure and temperature control from ambient conditions to 400 C and 310 bar. The sample chamber is in direct contact with an external manifold, whereby gases, liquids or fluids can be injected and their activities controlled prior to and under investigation conditions. The microreactor employs high strength, single crystal moissanite windows which allow direct probe beam interaction with a sample to investigate in situ reaction processes and other materials properties. The relatively large volume of the cell, along with full optical accessibilitymore » and external temperature and pressure control, make this reaction cell well suited for experimental investigations involving any combination of gas, fluid, and solid interactions. The microreactor's capabilities are demonstrated through an in situ x-ray diffraction study of the conversion of a meta-serpentine sample to magnesite under high pressure and temperature. Serpentine is one of the mineral candidates for the implementation of mineral carbonation, an intriguing carbon sequestration candidate technology.« less

  20. Microreactor of Pd nanoparticles immobilized hollow microspheres for catalytic hydrodechlorination of chlorophenols in water.

    PubMed

    Lan, Yang; Yang, Li; Zhang, Minchao; Zhang, Wangqing; Wang, Shengnan

    2010-01-01

    A microreactor of Pd nanoparticles immobilized shell-corona hollow microspheres of poly[styrene-co-2-(acetoacetoxy) ethyl methacrylate-co-acrylamide] has been designed for catalytic hydrodechlorination (HDC) of chlorophenols in the sole solvent of water. The strategy of the combined use of the shell-corona hollow microspheres as microcapsule and catalyst scaffold endues the microreactor several advantages. First, the microreactor can be dispersed in the sole solvent of water and acts as a quasi-homogeneous catalyst for catalytic HDC of chlorophenols. Second, the reactant of chlorophenols can be highly concentrated within the hollow microspheres of the microreactor in the sole solvent of water. Third, the resultant product of phenol can be favorably excreted off the microreactor into water because of the polar difference between the reactant of chlorophenols and the product of phenol. Ascribed to the combined advantages, catalytic HDC of chlorophenols can be performed efficiently within the microreactor in the sole solvent of water at room temperature under atmosphere pressure.

  1. Pauson-Khand reactions in a photochemical flow microreactor.

    PubMed

    Asano, Keisuke; Uesugi, Yuki; Yoshida, Jun-ichi

    2013-05-17

    Pauson-Khand reactions were achieved at ambient temperature without any additive using a photochemical flow microreactor. The efficiency of the reaction was better than that in a conventional batch reactor, and the reaction could be operated continuously for 1 h.

  2. Cell-free protein synthesis in PDMS-glass hybrid microreactor

    NASA Astrophysics Data System (ADS)

    Yamamoto, Takatoki; Fujii, Teruo; Nojima, Takahiko; Hong, Jong W.; Endo, Isao

    2000-08-01

    A living cell has numerous kinds of proteins while only thousands of that have been identified as of now. In order to discover and produce various proteins that are applicable to biotechnological, pharmaceutical and medical applications, cell-free protein synthesis is one of the most useful and promising techniques. In this study, we developed an inexpensive microreactor with temperature control capability for protein synthesis. The microreactor consists of a sandwich of glass-based chip and PDMS(polydimethylsiloxane) chip. The thermo control system, which is composed of a heater and a temperature sensor, is fabricated with an ITO (Indium Tin Oxide) resistive material on a glass substrate by ordinary microfabrication method based on photolithography and etching techniques. The reactor chamber and flow channels are fabricated by injection micromolding of PDMS. Since one can use thermo control system on a glass substrate repeatedly by replacing only the easily-fabricated and low-cost PDMS reactor chamber, this microreactor is quite cost effective. As a demonstration, a DNA template of a GFP (Green Fluorescent Protein) is transcribed and translated using cell-free extract prepared from Escherichia coli. As a result, GFP was successfully synthesized in the present microreactor.

  3. Ultrafast synthesis of LTA nanozeolite using a two-phase segmented fluidic microreactor.

    PubMed

    Zhou, Jianhai; Jiang, Hao; Xu, Jian; Hu, Jun; Liu, Honglai; Hu, Ying

    2013-08-01

    Fast synthesis of nanosized zeolite is desirable for many industrial applications. An ultrafast synthesis of LTA nanozeolite by the organic-additive-free method in a two-phase segmented fluidic microreactor has been realized. The results reveal that the obtained LTA nanozeolites through microreactor are much smaller and higher crystallinity than those under similar conditions through conventional macroscale batch reactor. By investing various test conditions, such as the crystallization temperature, the flow rate, the microchannel length, and the aging time of gel solution, this two-phase segmented fluidic microreactor system enables us to develop an ultrafast method for nanozeolite production. Particularly, when using a microreactor with the microchannel length of 20 m, it only takes 10 min for the crystallization and no aging process to successfully produce the crystalline LTA nanozeolites at 95 degrees C.

  4. Adsorption and Desorption of Hydrogen by Gas-Phase Palladium Clusters Revealed by In Situ Thermal Desorption Spectroscopy.

    PubMed

    Takenouchi, Masato; Kudoh, Satoshi; Miyajima, Ken; Mafuné, Fumitaka

    2015-07-02

    Adsorption and desorption of hydrogen by gas-phase Pd clusters, Pdn(+), were investigated by thermal desorption spectroscopy (TDS) experiments and density functional theory (DFT) calculations. The desorption processes were examined by heating the clusters that had adsorbed hydrogen at room temperature. The clusters remaining after heating were monitored by mass spectrometry as a function of temperature up to 1000 K, and the temperature-programmed desorption (TPD) curve was obtained for each Pdn(+). It was found that hydrogen molecules were released from the clusters into the gas phase with increasing temperature until bare Pdn(+) was formed. The threshold energy for desorption, estimated from the TPD curve, was compared to the desorption energy calculated by using DFT, indicating that smaller Pdn(+) clusters (n ≤ 6) tended to have weakly adsorbed hydrogen molecules, whereas larger Pdn(+) clusters (n ≥ 7) had dissociatively adsorbed hydrogen atoms on the surface. Highly likely, the nonmetallic nature of the small Pd clusters prevents hydrogen molecule from adsorbing dissociatively on the surface.

  5. Difluoro-and Trifluoromethylation of Electron-Deficient Alkenes in an Electrochemical Microreactor.

    PubMed

    Arai, Kenta; Watts, Kevin; Wirth, Thomas

    2014-02-01

    Electrochemical microreactors, which have electrodes integrated into the flow path, can afford rapid and efficient electrochemical reactions without redox reagents due to the intrinsic properties of short diffusion distances. Taking advantage of electrochemical microreactors, Kolbe electrolysis of di-and trifluoroacetic acid in the presence of various electron-deficient alkenes was performed under constant current at continuous flow at room temperature. As a result, di-and trifluoromethylated compounds were effectively produced in either equal or higher yields than identical reactions under batch conditions previously reported by Uneyamas group. The strategy of using electrochemical microreactor technology is useful for an effective fluoromethylation of alkenes based on Kolbe electrolysis in significantly shortened reaction times.

  6. Zeolite catalysis in the synthesis of isobutylene from hydrous ethanol

    NASA Astrophysics Data System (ADS)

    Phillips, Cory Bernard

    1999-11-01

    This work deals with the synthesis of isobutylene from a hydrous ethanol feedstock over zeolites. The synthesis is accomplished in three steps: (1) low-temperature direct ethanol conversion to ethylene on H-ZSM-5 zeolite, (2) ethylene conversion to butene products over metal-exchanged zeolites, and (3) butene skeletal rearrangement to isobutylene over FER zeolites. The key to understanding and optimizing each synthesis step lies in the ability to control and regulate the zeolite acidity (Bronsted and Lewis)---both strength and number. Therefore, the continuous temperature programmed amine desorption (CTPAD) technique was further developed to simultaneously count the Bronsted acid sites and quantitatively characterize their strength. The adsorption of ethanol, reaction products, amines, coke and ethanol-derived residue (EDR) were monitored gravimetrically using the highly sensitive, novel Tapered Element Oscillating Microreactor (TEOM) apparatus. The TEOM was also used also in conjunction with CTPAD to characterize Bronsted acidity which is a new application for the instrument. For the first synthesis step, a parallel reaction exists which simultaneously produces diethyl ether and ethylene directly over H-ZSM-5. The reaction rates for each pathway were measured directly using a differential reactor operating at low temperatures (<473 K). Water in the ethanol feed enhances the rate of ethylene formation. A mechanism and kinetic expression are proposed for this reaction over H-ZSM-5, with diethyl-ether desorption and ethylene formation as the rate limiting steps. Heat of adsorption values measured from the independent microcalorimetry work reported in the literature are incorporated into the kinetic analysis which reduces the number of regressed parameters. For the remaining synthesis steps, several zeolite structures (ZSM-5, Y, FER) partially exchanged with Pd, Ti, Ni and Au were prepared and tested. It was determined from this screening study that the zeolites containing Pd are the most efficient catalysts for the dimerization reaction. Characterization results from x-ray diffraction (XRD), electron paramagnetic resonance (EPR) spectroscopy, and CTPAD suggest a stable, Pd species with a low oxidation state as part of the active site in Pd-exchanged zeolites. Isobutylene was present in the C4 fraction at reasonable quantities for most of the catalyst candidates, especially those containing an alkali metal co-cation.

  7. Pyrolysis of Cyclopentadienone: Mechanistic Insights from a Direct Measurement of Product Branching Ratios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ormond, Thomas K.; Scheer, Adam M.; Nimlos, Mark R.

    2015-07-16

    The thermal decomposition of cyclopentadienone (C5H4-O) has been studied in a flash pyrolysis continuous flow microreactor. Passing dilute samples of o-phenylene sulfite (C6H4O2SO) in He through the microreactor at elevated temperatures yields a relatively clean source of C5H4-O. The pyrolysis of C5H4-O was investigated over the temperature range 1000-2000 K.

  8. Desorption Kinetics of Methanol, Ethanol, and Water from Graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, R. Scott; Matthiesen, Jesper; Kay, Bruce D.

    2014-09-18

    The desorption kinetics of methanol, ethanol, and water from graphene covered Pt(111) are investigated. The temperature programmed desorption (TPD) spectra for both methanol and ethanol have well-resolved first, second, third, and multilayer layer desorption peaks. The alignment of the leading edges is consistent with zero-order desorption kinetics from all layers. In contrast, for water the first and second layers are not resolved. At low water coverages (< 1 ML) the initial desorption leading edges are aligned but then fall out of alignment at higher temperatures. For thicker water layers (10 to 100 ML), the desorption leading edges are in alignmentmore » throughout the desorption of the film. The coverage dependence of the desorption behavoir suggests that at low water coverages the non-alignment of the desorption leading edges is due to water dewetting from the graphene substrate. Kinetic simulations reveal that the experimental results are consistent with zero-order desorption. The simulations also show that fractional order desorption kinetics would be readily apparent in the experimental TPD spectra.« less

  9. Desorption kinetics of methanol, ethanol, and water from graphene.

    PubMed

    Smith, R Scott; Matthiesen, Jesper; Kay, Bruce D

    2014-09-18

    The desorption kinetics of methanol, ethanol, and water from graphene covered Pt(111) are investigated. The temperature programmed desorption (TPD) spectra for both methanol and ethanol have well-resolved first, second, third, and multilayer layer desorption peaks. The alignment of the leading edges is consistent with zero-order desorption kinetics from all layers. In contrast, for water, the first and second layers are not resolved. At low water coverages (<1 monolayer (ML)) the initial desorption leading edges are aligned but then fall out of alignment at higher temperatures. For thicker water layers (10-100 ML), the desorption leading edges are in alignment throughout the desorption of the film. The coverage dependence of the desorption behavoir suggests that at low water coverages the nonalignment of the desorption leading edges is due to water dewetting from the graphene substrate. Kinetic simulations reveal that the experimental results are consistent with zero-order desorption. The simulations also show that fractional order desorption kinetics would be readily apparent in the experimental TPD spectra.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, R. Scott; Kay, Bruce D.

    The desorption kinetics for benzene and cyclohexane from a graphene covered Pt(111) surface were investigated using temperature programmed desorption (TPD). The benzene desorption spectra show well-resolved monolayer and multilayer desorption peaks. The benzene monolayer TPD spectra have the same desorption peak temperature and have line shapes which are consistent with first-order desorption kinetics. For benzene coverages greater than 1 ML, the TPD spectra align on a common leading edge which is consistent with zero-order desorption. An inversion analysis of the monolayer benzene TPD spectra yielded a desorption activation energy of 54 ± 3 kJ/mol with a prefactor of 1017 ±more » 1 s-1. The TPD spectra for cyclohexane also have well-resolved monolayer and multilayer desorption features. The desorption leading edges for the monolayer and the multilayer TPD spectra are aligned indicating zero-order desorption kinetics in both cases. An Arrhenius analysis of the monolayer cyclohexane TPD spectra yielded a desorption activation energy of 53.5 ± 2 kJ/mol with a prefactor of 1016 ± 1 ML s-1.« less

  11. Novel approach to investigation of semiconductor MOCVD by microreactor technology

    NASA Astrophysics Data System (ADS)

    Konakov, S. A.; Krzhizhanovskaya, V. V.

    2017-11-01

    Metal-Organic Chemical Vapour Deposition is a very complex technology that requires further investigation and optimization. We propose to apply microreactors to (1) replace multiple expensive time-consuming macroscale experiments by just one microreactor deposition with many points on one substrate; (2) to derive chemical reaction rates from individual deposition profiles using theoretical analytical solution. In this paper we also present the analytical solution of a simplified equation describing the deposition rate dependency on temperature. It allows to solve an inverse problem and to obtain detailed information about chemical reaction mechanism of MOCVD process.

  12. Ellipsometry-based combination of isothermal sorption-desorption measurement and temperature programmed desorption technique: A probe for interaction of thin polymer films with solvent vapor.

    PubMed

    Efremov, Mikhail Yu; Nealey, Paul F

    2018-05-01

    An environmental chamber equipped with an in situ spectroscopic ellipsometer, programmatic vapor pressure control, and variable temperature substrate holder has been designed for studying polymer coating behavior during an exposure to a solvent vapor and also for probing the residual solvent in the film afterwards. Both sorption-desorption cycle at a constant temperature and temperature programmed desorption (TPD) of the residual solvent manifest themselves as a change of the film thickness. Monitoring of ellipsometric angles of the coating allows us to determine the thickness as a function of the vapor pressure or sample temperature. The solvent vapor pressure is precisely regulated by a computer-controlled pneumatics. TPD spectra are recorded during heating of the film in an oil-free vacuum. The vapor pressure control system is described in detail. The system has been tested on 6-170 nm thick polystyrene, poly(methyl methacrylate), and poly(2-vinyl pyridine) films deposited on silicon substrates. Liquid toluene, water, ethanol, isopropanol, cyclohexane, 1,2-dichloroethane, and chlorobenzene were used to create a vapor atmosphere. Typical sorption-desorption and TPD curves are shown. The instrument achieves sub-monolayer sensitivity for adsorption studies on flat surfaces. Polymer-solvent vapor systems with strong interaction demonstrate characteristic absorption-desorption hysteresis spanning from vacuum to the glass transition pressure. Features on the TPD curves can be classified as either glass transition related film contraction or low temperature broad contraction peak. Typical absorption-desorption and TPD dependencies recorded for the 6 nm thick polystyrene film demonstrate the possibility to apply the presented technique for probing size effects in extremely thin coatings.

  13. Ellipsometry-based combination of isothermal sorption-desorption measurement and temperature programmed desorption technique: A probe for interaction of thin polymer films with solvent vapor

    NASA Astrophysics Data System (ADS)

    Efremov, Mikhail Yu.; Nealey, Paul F.

    2018-05-01

    An environmental chamber equipped with an in situ spectroscopic ellipsometer, programmatic vapor pressure control, and variable temperature substrate holder has been designed for studying polymer coating behavior during an exposure to a solvent vapor and also for probing the residual solvent in the film afterwards. Both sorption-desorption cycle at a constant temperature and temperature programmed desorption (TPD) of the residual solvent manifest themselves as a change of the film thickness. Monitoring of ellipsometric angles of the coating allows us to determine the thickness as a function of the vapor pressure or sample temperature. The solvent vapor pressure is precisely regulated by a computer-controlled pneumatics. TPD spectra are recorded during heating of the film in an oil-free vacuum. The vapor pressure control system is described in detail. The system has been tested on 6-170 nm thick polystyrene, poly(methyl methacrylate), and poly(2-vinyl pyridine) films deposited on silicon substrates. Liquid toluene, water, ethanol, isopropanol, cyclohexane, 1,2-dichloroethane, and chlorobenzene were used to create a vapor atmosphere. Typical sorption-desorption and TPD curves are shown. The instrument achieves sub-monolayer sensitivity for adsorption studies on flat surfaces. Polymer-solvent vapor systems with strong interaction demonstrate characteristic absorption-desorption hysteresis spanning from vacuum to the glass transition pressure. Features on the TPD curves can be classified as either glass transition related film contraction or low temperature broad contraction peak. Typical absorption-desorption and TPD dependencies recorded for the 6 nm thick polystyrene film demonstrate the possibility to apply the presented technique for probing size effects in extremely thin coatings.

  14. Modeling chemical vapor deposition of silicon dioxide in microreactors at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Konakov, S. A.; Krzhizhanovskaya, V. V.

    2015-01-01

    We developed a multiphysics mathematical model for simulation of silicon dioxide Chemical Vapor Deposition (CVD) from tetraethyl orthosilicate (TEOS) and oxygen mixture in a microreactor at atmospheric pressure. Microfluidics is a promising technology with numerous applications in chemical synthesis due to its high heat and mass transfer efficiency and well-controlled flow parameters. Experimental studies of CVD microreactor technology are slow and expensive. Analytical solution of the governing equations is impossible due to the complexity of intertwined non-linear physical and chemical processes. Computer simulation is the most effective tool for design and optimization of microreactors. Our computational fluid dynamics model employs mass, momentum and energy balance equations for a laminar transient flow of a chemically reacting gas mixture at low Reynolds number. Simulation results show the influence of microreactor configuration and process parameters on SiO2 deposition rate and uniformity. We simulated three microreactors with the central channel diameter of 5, 10, 20 micrometers, varying gas flow rate in the range of 5-100 microliters per hour and temperature in the range of 300-800 °C. For each microchannel diameter we found an optimal set of process parameters providing the best quality of deposited material. The model will be used for optimization of the microreactor configuration and technological parameters to facilitate the experimental stage of this research.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, Sean W., E-mail: sean.king@intel.com; Davis, Robert F.; Carter, Richard J.

    The desorption kinetics of molecular hydrogen (H{sub 2}) from silicon (001) surfaces exposed to aqueous hydrogen fluoride and remote hydrogen plasmas were examined using temperature programmed desorption. Multiple H{sub 2} desorption states were observed and attributed to surface monohydride (SiH), di/trihydride (SiH{sub 2/3}), and hydroxide (SiOH) species, subsurface hydrogen trapped at defects, and hydrogen evolved during the desorption of surface oxides. The observed surface hydride species were dependent on the surface temperature during hydrogen plasma exposure with mono, di, and trihydride species being observed after low temperature exposure (150 °C), while predominantly monohydride species were observed after higher temperature exposure (450 °C).more » The ratio of surface versus subsurface H{sub 2} desorption was also found to be dependent on the substrate temperature with 150 °C remote hydrogen plasma exposure generally leading to more H{sub 2} evolved from subsurface states and 450 °C exposure leading to more H{sub 2} desorption from surface SiH{sub x} species. Additional surface desorption states were observed, which were attributed to H{sub 2} desorption from Si (111) facets formed as a result of surface etching by the remote hydrogen plasma or aqueous hydrogen fluoride treatment. The kinetics of surface H{sub 2} desorption were found to be in excellent agreement with prior investigations of silicon surfaces exposed to thermally generated atomic hydrogen.« less

  16. Coadsorbed species explain the mechanism of methanol temperature-desorption on CeO 2(111)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutton, Jonathan E.; Steven H. Overbury; Beste, Ariana

    2016-03-24

    Here, we have used density functional theory calculations to investigate the temperature-programmed desorption (TPD) of methanol from CeO 2(111). For the first time, low-temperature water formation and high-temperature methanol desorption are explained by our calculations. High coverages of methanol, which correspond to experimental conditions, are required to properly describe these features of the TPD spectrum. We identify a mechanism for the low-temperature formation of water involving the dissociation of two methanol molecules on the same surface O atom and filling of the resulting surface vacancy with one of the methoxy products. After water desorption, methoxy groups are stabilized on themore » surface and react at higher temperatures to form methanol and formaldehyde by a disproportionation mechanism. Alternatively, the stabilized methoxy groups undergo sequential C–H scission reactions to produce formaldehyde. Calculated energy requirements and methanol/formaldehyde selectivity agree with the experimental data.« less

  17. Microfluidic radiolabeling of biomolecules with PET radiometals

    PubMed Central

    Zeng, Dexing; Desai, Amit V.; Ranganathan, David; Wheeler, Tobias D.; Kenis, Paul J. A.; Reichert, David E.

    2012-01-01

    Introduction A robust, versatile and compact microreactor has been designed, fabricated and tested for the labeling of bifunctional chelate conjugated biomolecules (BFC-BM) with PET radiometals. Methods The developed microreactor was used to radiolabel a chelate, either 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) or 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) that had been conjugated to cyclo(Arg-Gly-Asp-DPhe-Lys) peptide, with both 64Cu and 68Ga respectively. The microreactor radiolabeling conditions were optimized by varying temperature, concentration and residence time. Results Direct comparisons between the microreactor approach and conventional methods showed improved labeling yields and increased reproducibility with the microreactor under identical labeling conditions, due to enhanced mass and heat transfer at the microscale. More importantly, over 90% radiolabeling yields (incorporation of radiometal) were achieved with a 1:1 stoichiometry of bifunctional chelate biomolecule conjugate (BFC-BM) to radiometal in the microreactor, which potentially obviates extensive chromatographic purification that is typically required to remove the large excess of unlabeled biomolecule in radioligands prepared using conventional methods. Moreover, higher yields for radiolabeling of DOTA-functionalized BSA protein (Bovine Serum Albumin) were observed with 64Cu/68Ga using the microreactor, which demonstrates the ability to label both small and large molecules. Conclusions A robust, reliable, compact microreactor capable of chelating radiometals with common chelates has been developed and validated. Based on our radiolabeling results, the reported microfluidic approach overall outperforms conventional radiosynthetic methods, and is a promising technology for the radiometal labeling of commonly utilized BFC-BM in aqueous solutions. PMID:23078875

  18. Microfluidic radiolabeling of biomolecules with PET radiometals.

    PubMed

    Zeng, Dexing; Desai, Amit V; Ranganathan, David; Wheeler, Tobias D; Kenis, Paul J A; Reichert, David E

    2013-01-01

    A robust, versatile and compact microreactor has been designed, fabricated and tested for the labeling of bifunctional chelate conjugated biomolecules (BFC-BM) with PET radiometals. The developed microreactor was used to radiolabel a chelate, either 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) or 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) that had been conjugated to cyclo(Arg-Gly-Asp-DPhe-Lys) peptide, with both ⁶⁴Cu and ⁶⁸Ga respectively. The microreactor radiolabeling conditions were optimized by varying temperature, concentration and residence time. Direct comparisons between the microreactor approach and conventional methods showed improved labeling yields and increased reproducibility with the microreactor under identical labeling conditions, due to enhanced mass and heat transfer at the microscale. More importantly, over 90% radiolabeling yields (incorporation of radiometal) were achieved with a 1:1 stoichiometry of bifunctional chelate biomolecule conjugate (BFC-BM) to radiometal in the microreactor, which potentially obviates extensive chromatographic purification that is typically required to remove the large excess of unlabeled biomolecule in radioligands prepared using conventional methods. Moreover, higher yields for radiolabeling of DOTA-functionalized BSA protein (Bovine Serum Albumin) were observed with ⁶⁴Cu/⁶⁸Ga using the microreactor, which demonstrates the ability to label both small and large molecules. A robust, reliable, compact microreactor capable of chelating radiometals with common chelates has been developed and validated. Based on our radiolabeling results, the reported microfluidic approach overall outperforms conventional radiosynthetic methods, and is a promising technology for the radiometal labeling of commonly utilized BFC-BM in aqueous solutions. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Improving the performance of immobilized β-glucosidase using a microreactor.

    PubMed

    Wei, Ce; Zhou, Yan; Zhuang, Wei; Li, Ganlu; Jiang, Min; Zhang, Hongman

    2018-04-01

    Here, we have presented a technically simple and efficient method for preparing a continuous flow microreactor by employing immobilized β-glucosidase in a silica quartz capillary tube. Developing an immobilized enzyme layer on the inner wall of the capillary tube involved the modification of the inner wall using bifunctional crosslinking agents 3-aminopropyltriethoxysilane and glutaraldehyde before attaching β-glucosidase. The microreactor afforded unique reaction capacities compared with conventional batch operational configurations. These included enhanced pH and thermal stability during storage tests, increased conversion rates of cellobiose, and reduced product inhibition. The maximum conversion rate of soluble substrate cellobiose digestion in the microreactor was 76% at 50°C and pH 4.8 when the microreactor was operated continually over 10 h at a flow rate of 7 μL/min. This was markedly contrasting to the observed conversion rate of 56% when cellobiose was digested in a conventional batch mode under the same pH and temperature conditions. Reaction inhibition by glucose was significantly reduced in the microreactor. We postulate that the increased capacity of glucose to diffuse into the continual flowing media above the immobilized enzyme layer prevents glucose from reaching inhibitory concentrations at the substrate-enzyme interface. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. Decomposition of multilayer benzene and n-hexane films on vanadium.

    PubMed

    Souda, Ryutaro

    2015-09-21

    Reactions of multilayer hydrocarbon films with a polycrystalline V substrate have been investigated using temperature-programmed desorption and time-of-flight secondary ion mass spectrometry. Most of the benzene molecules were dissociated on V, as evidenced by the strong depression in the thermal desorption yields of physisorbed species at 150 K. The reaction products dehydrogenated gradually after the multilayer film disappeared from the surface. Large amount of oxygen was needed to passivate the benzene decomposition on V. These behaviors indicate that the subsurface sites of V play a role in multilayer benzene decomposition. Decomposition of the n-hexane multilayer films is manifested by the desorption of methane at 105 K and gradual hydrogen desorption starting at this temperature, indicating that C-C bond scission precedes C-H bond cleavage. The n-hexane dissociation temperature is considerably lower than the thermal desorption temperature of the physisorbed species (140 K). The n-hexane multilayer morphology changes at the decomposition temperature, suggesting that a liquid-like phase formed after crystallization plays a role in the low-temperature decomposition of n-hexane.

  1. Microfluidic Reactors for the Controlled Synthesis of Nanoparticles

    NASA Astrophysics Data System (ADS)

    Erdem, Emine Yegan

    Nanoparticles have attracted a lot of attention in the past few decades due to their unique, size-dependent properties. In order to use these nanoparticles in devices or sensors effectively, it is important to maintain uniform properties throughout the system; therefore nanoparticles need to have uniform sizes -- or monodisperse. In order to achieve monodispersity, an extreme control over the reaction conditions is required during their synthesis. These reaction conditions such as temperature, concentration of reagents, residence times, etc. affect the structure of nanoparticles dramatically; therefore when the conditions vary locally in the reaction vessel, different sized nanoparticles form, causing polydispersity. In widely-used batch wise synthesis techniques, large sized reaction vessels are used to mix and heat reagents. In these types of systems, it is very hard to avoid thermal gradients and to achieve rapid mixing times as well as to control residence times. Also it is not possible to make rapid changes in the reaction parameters during the synthesis. The other drawback of conventional methods is that it is not possible to separate the nucleation of nanoparticles from their growth; this leads to combined nucleation and growth and subsequently results in polydisperse size distributions. Microfluidics is an alternative method by which the limitations of conventional techniques can be addressed. Due to the small size, it is possible to control temperature and concentration of reagents precisely as well as to make rapid changes in mixing ratios of reagents or temperature of the reaction zones. There have been several microfluidic reactors -- (microreactors) in literature that were designed to improve the size distribution of nanoparticles. In this work, two novel microfluidic systems were developed for achieving controlled synthesis of nanoparticles. The first microreactor was made out of a chemically robust polymer, polyurethane, and it was used for low temperature nanoparticle synthesis. This microreactor was fabricated by using a CO 2-laser printer, which is an inexpensive method for fabricating microfluidic devices and it is a relatively fast way compared to other fabrication techniques. Iron oxide nanoparticle synthesis was demonstrated using this reactor and size distributions with a standard deviation of 10% was obtained. The second microreactor presented in this work was designed to produce monodisperse nanoparticles by utilizing thermally isolated heated and cooled regions for separating nucleation and growth processes. This microreactor was made out of silicon and it was used to demonstrate the synthesis of TiO 2 nanoparticles. Size distributions with less than 10% standard deviation were achieved. This microreactor also provides a platform for studying the effects of temperature and residence times which is very important to understand the reaction kinetics of nanoparticle synthesis. In this work, two microfluidic techniques for retrieving nanoparticles from the microreactors were also discussed. The first method was based on trapping the aqueous droplet phase inside the microchannel and the second method was utilizing a micropost array to direct droplets from the oil solution to the pure water. As a final step, a printing technique was used to print nanoparticles synthesized inside the microreactors for future applications. This ability is important for achieving smart surfaces that can utilize the properties of nanoparticles for sensing applications in the future.

  2. PTFE-based microreactor system for the continuous synthesis of full-visible-spectrum emitting cesium lead halide perovskite nanocrystals.

    PubMed

    Zhang, Chengxi; Luan, Weiling; Yin, Yuhang; Yang, Fuqian

    2017-01-01

    Colloidal perovskite nanocrystals comprised of all inorganic cesium lead halide (CsPbX 3 , X = Cl, Br, I or a mixture thereof) have potential as optical gain materials due to their high luminescence efficiency. In this work, cesium lead halide nanocrystals are continuously synthesized via a microreactor system consisting of poly(tetrafluoroethylene) (PTFE) capillaries. The synthesized nanocrystals possess excellent optical properties, including a full width at half maximum of 19-35 nm, high fluorescence quantum yield of 47.8-90.55%, and photoluminescence emission in the range of 450-700 nm. For the same precursor concentrations, the photoluminescence emission peak generally increases with increasing reaction temperature, revealing a controllable temperature effect on the photoluminescence characteristics of the synthesized nanocrystals. For quantum dots synthesized with a Br/I ratio of 1:3, a slight blue shift was observed for reaction temperatures greater than 100 °C. This PTFE-based microreactor system provides the unique capability of continuously synthesizing high-quality perovskite nanocrystals that emit over the full visible spectrum with applications ranging from displays and optoelectronic devices.

  3. PTFE-based microreactor system for the continuous synthesis of full-visible-spectrum emitting cesium lead halide perovskite nanocrystals

    PubMed Central

    Zhang, Chengxi; Yin, Yuhang

    2017-01-01

    Colloidal perovskite nanocrystals comprised of all inorganic cesium lead halide (CsPbX3, X = Cl, Br, I or a mixture thereof) have potential as optical gain materials due to their high luminescence efficiency. In this work, cesium lead halide nanocrystals are continuously synthesized via a microreactor system consisting of poly(tetrafluoroethylene) (PTFE) capillaries. The synthesized nanocrystals possess excellent optical properties, including a full width at half maximum of 19–35 nm, high fluorescence quantum yield of 47.8–90.55%, and photoluminescence emission in the range of 450–700 nm. For the same precursor concentrations, the photoluminescence emission peak generally increases with increasing reaction temperature, revealing a controllable temperature effect on the photoluminescence characteristics of the synthesized nanocrystals. For quantum dots synthesized with a Br/I ratio of 1:3, a slight blue shift was observed for reaction temperatures greater than 100 °C. This PTFE-based microreactor system provides the unique capability of continuously synthesizing high-quality perovskite nanocrystals that emit over the full visible spectrum with applications ranging from displays and optoelectronic devices. PMID:29259867

  4. Desorption Kinetics of Benzene and Cyclohexane from a Graphene Surface.

    PubMed

    Smith, R Scott; Kay, Bruce D

    2018-01-18

    The desorption kinetics for benzene and cyclohexane from a graphene covered Pt(111) surface were investigated using temperature-programmed desorption (TPD). The benzene desorption spectra show well-resolved monolayer and multilayer desorption peaks. The benzene monolayer and submonolayer TPD spectra for coverages greater than ∼0.1 ML have nearly the same desorption peak temperature and have line shapes which are consistent with first-order desorption kinetics. For benzene coverages greater than 1 ML, the TPD spectra align on a common leading edge which is consistent with zero-order desorption. An "inversion" procedure in which the prefactor is varied to find the value that best reproduces the entire set of experimental desorption spectra was used to analyze the benzene data. The inversion analysis of the benzene TPD spectra yielded a desorption activation energy of 54 ± 3 kJ/mol with a prefactor of 10 17±1 s -1 . The TPD spectra for cyclohexane also have well-resolved monolayer and multilayer desorption features. The desorption leading edges for the monolayer and the multilayer TPD spectra are aligned indicating zero-order desorption kinetics in both cases. An Arrhenius analysis of the monolayer cyclohexane TPD spectra yielded a desorption activation energy of 53.5 ± 2 kJ/mol with a prefactor of 10 16±1 ML s -1 .

  5. In situ characterization of catalysts and membranes in a microchannel under high-temperature water gas shift reaction conditions

    NASA Astrophysics Data System (ADS)

    Cavusoglu, G.; Dallmann, F.; Lichtenberg, H.; Goldbach, A.; Dittmeyer, R.; Grunwaldt, J.-D.

    2016-05-01

    Microreactor technology with high heat transfer in combination with stable catalysts is a very attractive approach for reactions involving major heat effects such as methane steam reforming and to some extent, also the high temperature water gas shift (WGS) reaction. For this study Rh/ceria catalysts and an ultrathin hydrogen selective membrane were characterized in situ in a microreactor specially designed for x-ray absorption spectroscopic measurements under WGS conditions. The results of these experiments can serve as a basis for further development of the catalysts and membranes.

  6. A monolithic and flexible fluoropolymer film microreactor for organic synthesis applications.

    PubMed

    Kim, Jin-Oh; Kim, Heejin; Ko, Dong-Hyeon; Min, Kyoung-Ik; Im, Do Jin; Park, Soo-Young; Kim, Dong-Pyo

    2014-11-07

    A photocurable and viscous fluoropolymer with chemical stability is a highly desirable material for fabrication of microchemical devices. Lack of a reliable fabrication method, however, limits actual applications for organic reactions. Herein, we report fabrication of a monolithic and flexible fluoropolymer film microreactor and its use as a new microfluidic platform. The fabrication involves facile soft lithography techniques that enable partial curing of thin laminates, which can be readily bonded by conformal contact without any external forces. We demonstrate fabrication of various functional channels (~300 μm thick) such as those embedded with either a herringbone micromixer pattern or a droplet generator. Organic reactions under strongly acidic and basic conditions can be carried out in this film microreactor even at elevated temperature with excellent reproducibility. In particular, the transparent film microreactor with good deformability could be wrapped around a light-emitting lamp for close contact with the light source for efficient photochemical reactions with visible light, which demonstrates easy integration with optical components for functional miniaturized systems.

  7. Microchannel Reactor System for Catalytic Hydrogenation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adeniyi Lawal; Woo Lee; Ron Besser

    2010-12-22

    We successfully demonstrated a novel process intensification concept enabled by the development of microchannel reactors, for energy efficient catalytic hydrogenation reactions at moderate temperature, and pressure, and low solvent levels. We designed, fabricated, evaluated, and optimized a laboratory-scale microchannel reactor system for hydrogenation of onitroanisole and a proprietary BMS molecule. In the second phase of the program, as a prelude to full-scale commercialization, we designed and developed a fully-automated skid-mounted multichannel microreactor pilot plant system for multiphase reactions. The system is capable of processing 1 – 10 kg/h of liquid substrate, and an industrially relevant immiscible liquid-liquid was successfully demonstratedmore » on the system. Our microreactor-based pilot plant is one-of-akind. We anticipate that this process intensification concept, if successfully demonstrated, will provide a paradigm-changing basis for replacing existing energy inefficient, cost ineffective, environmentally detrimental slurry semi-batch reactor-based manufacturing practiced in the pharmaceutical and fine chemicals industries.« less

  8. The Release of Trapped Gases from Amorphous Solid Water Films: II. “Bottom-Up” Induced Desorption Pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    May, Robert A.; Smith, R. Scott; Kay, Bruce D.

    2013-03-14

    In this (Paper II) and the preceding companion paper (Paper I) we investigate the mechanisms for the release of trapped gases from underneath of amorphous solid water (ASW) films. In Paper I, we focused on the low coverage (pressure) regime where the release mechanism is controlled by crystallization-induced cracks formed in the ASW overlayer. In that regime the results were largely independent of the particular gas underlayer. Here in Paper II, we focus on the high coverage (pressure) regime where new desorption pathways become accessible prior to ASW crystallization. In contrast to the results for the low coverage regime (Papermore » I), the release mechanism is a function of the multilayer thickness and composition, displaying dramatically different behavior between Ar, Kr, Xe, CH4, N2, O2, and CO. Two primary desorption pathways are observed. The first occurs between 100 and 150 K and manifests itself as sharp, extremely narrow desorption peaks. Temperature programmed desorption is utilized to show that abrupt desorption bursts are due to pressure induced structural failure of the ASW overlyaer. The second pathway occurs at low temperature (typically <100 K) where broad desorption peaks are observed. Desorption through this pathway is attributed to diffusion through pores and connected pathways formed during ASW deposition. The extent of desorption and the lineshape of the low temperature desorption peak are dependent on the substrate on which the gas underlayer is deposited. Angle dependent ballistic deposition of the ASW is used vary the porosity of overlayer and confirm that the low temperature desorption pathway is due to porosity that is inherent in the ASW overlayer during deposition.« less

  9. Temperature Programmed Desorption of Quench-condensed Krypton and Acetone in Air; Selective Concentration of Ultra-trace Gas Components.

    PubMed

    Suzuki, Taku T; Sakaguchi, Isao

    2016-01-01

    Selective concentration of ultra-trace components in air-like gases has an important application in analyzing volatile organic compounds in the gas. In the present study, we examined quench-condensation of the sample gas on a ZnO substrate below 50 K followed by temperature programmed desorption (TPD) (low temperature TPD) as a selective gas concentration technique. We studied two specific gases in the normal air; krypton as an inert gas and acetone as a reactive gas. We evaluated the relationship between the operating condition of low temperature TPD and the lowest detection limit. In the case of krypton, we observed the selective concentration by exposing at 6 K followed by thermal desorption at about 60 K. On the other hand, no selectivity appeared for acetone although trace acetone was successfully concentrated. This is likely due to the solvent effect by a major component in the air, which is suggested to be water. We suggest that pre-condensation to remove the water component may improve the selectivity in the trace acetone analysis by low temperature TPD.

  10. Effect of Temperature on the Desorption of Lithium from Molybdenum(110) Surfaces: Implications for Fusion Reactor First Wall Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Mohan; Roszell, John; Scoullos, Emanuel V.

    2016-03-30

    Determining the strength of Li binding to Mo is critical to assessing the survivability of Li as a potential first wall material in fusion reactors. Here, we present the results of a joint experimental and theoretical investigation into how Li desorbs from Mo(110) surfaces, based on what can be deduced from temperature-programmed desorption measurements and density functional theory (DFT). Li desorption peaks measured at temperatures ranging from 711 K (1 monolayer, ML) to 1030 K (0.04 ML), with corresponding desorption onsets from 489 to 878 K, follow a trend similar to predicted Gibbs free energies for Li adsorption. Bader chargemore » analysis of DFT densities reveals that repulsive forces between neighboring positively charged Li atoms increase with coverage and thus reduce the bond strength between Mo and Li, thereby lowering the desorption temperature as the coverage increases. In addition, DFT predicts that Li desorbs at higher temperatures from a surface with vacancies than from a perfect surface, offering an explanation for the anomalously high desorption temperatures for the last Li to desorb from Mo(110). Analysis of simulated local densities of states indicates that the stronger binding to the defective surface is correlated with enhanced interaction between Li and Mo, involving the Li 2s electrons and not only the Mo 4d electrons as in the case of the pristine surface, but also the Mo 5s electrons in the case with surface vacancies. We suggest that steps and kinks present on the Mo(110) surface behave similarly and contribute to the high desorption temperatures. These findings imply that roughened Mo surfaces may strengthen Li film adhesion at higher temperatures.« less

  11. CCl 4 chemistry on the magnetite selvedge of single-crystal hematite: competitive surface reactions

    NASA Astrophysics Data System (ADS)

    Adib, K.; Camillone, N., III; Fitts, J. P.; Rim, K. T.; Flynn, G. W.; Joyce, S. A.; Osgood, R. M., Jr.

    2002-01-01

    Temperature programmed reaction/desorption (TPR/D) studies were undertaken to characterize the surface chemistry which occurs between CCl 4 and the Fe 3O 4 (1 1 1) selvedge of single crystal α-Fe 2O 3 (0 0 0 1). Six separate desorption events are clearly observed and four desorbing species are identified: CCl 4, OCCl 2, C 2Cl 4 and FeCl 2. It is proposed that OCCl 2, CCl 4 and C 2Cl 4 are produced in reactions involving the same precursor, CCl 2. Three reaction paths compete for the CCl 2 precursor: oxygen atom abstraction (for OCCl 2), molecular recombinative desorption (for CCl 4) and associative desorption (for C 2Cl 4). During the TPR/D temperature ramp, the branching ratio is observed to depend upon temperature and the availability of reactive sites. The data are consistent with a rich site-dependent chemistry.

  12. Hydrogen desorption from hydrogen fluoride and remote hydrogen plasma cleaned silicon carbide (0001) surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, Sean W., E-mail: sean.king@intel.com; Tanaka, Satoru; Davis, Robert F.

    2015-09-15

    Due to the extreme chemical inertness of silicon carbide (SiC), in-situ thermal desorption is commonly utilized as a means to remove surface contamination prior to initiating critical semiconductor processing steps such as epitaxy, gate dielectric formation, and contact metallization. In-situ thermal desorption and silicon sublimation has also recently become a popular method for epitaxial growth of mono and few layer graphene. Accordingly, numerous thermal desorption experiments of various processed silicon carbide surfaces have been performed, but have ignored the presence of hydrogen, which is ubiquitous throughout semiconductor processing. In this regard, the authors have performed a combined temperature programmed desorptionmore » (TPD) and x-ray photoelectron spectroscopy (XPS) investigation of the desorption of molecular hydrogen (H{sub 2}) and various other oxygen, carbon, and fluorine related species from ex-situ aqueous hydrogen fluoride (HF) and in-situ remote hydrogen plasma cleaned 6H-SiC (0001) surfaces. Using XPS, the authors observed that temperatures on the order of 700–1000 °C are needed to fully desorb C-H, C-O and Si-O species from these surfaces. However, using TPD, the authors observed H{sub 2} desorption at both lower temperatures (200–550 °C) as well as higher temperatures (>700 °C). The low temperature H{sub 2} desorption was deconvoluted into multiple desorption states that, based on similarities to H{sub 2} desorption from Si (111), were attributed to silicon mono, di, and trihydride surface species as well as hydrogen trapped by subsurface defects, steps, or dopants. The higher temperature H{sub 2} desorption was similarly attributed to H{sub 2} evolved from surface O-H groups at ∼750 °C as well as the liberation of H{sub 2} during Si-O desorption at temperatures >800 °C. These results indicate that while ex-situ aqueous HF processed 6H-SiC (0001) surfaces annealed at <700 °C remain terminated by some surface C–O and Si–O bonding, they may still exhibit significant chemical reactivity due to the creation of surface dangling bonds resulting from H{sub 2} desorption from previously undetected silicon hydride and surface hydroxide species.« less

  13. Oxygen sorption and desorption properties of selected lanthanum manganites and lanthanum ferrite manganites.

    PubMed

    Nielsen, Jimmi; Skou, Eivind M; Jacobsen, Torben

    2015-06-08

    Temperature-programmed desorption (TPD) with a carrier gas was used to study the oxygen sorption and desorption properties of oxidation catalysts and solid-oxide fuel cell (SOFC) cathode materials (La(0.85) Sr(0.15)0.95 MnO(3+δ) (LSM) and La(0.60) Sr(0.40) Fe(0.80) Mn(0.20) O(3-δ) (LSFM). The powders were characterized by X-ray diffractometry, atomic force microscopy (AFM), and BET surface adsorption. Sorbed oxygen could be distinguished from oxygen originating from stoichiometry changes. The results indicated that there is one main site for oxygen sorption/desorption. The amount of sorbed oxygen was monitored over time at different temperatures. Furthermore, through data analysis it was shown that the desorption peak associated with oxygen sorption is described well by second-order desorption kinetics. This indicates that oxygen molecules dissociate upon adsorption and that the rate-determining step for the desorption reaction is a recombination of monatomic oxygen. Typical problems with re-adsorption in this kind of TPD setup were revealed to be insignificant by using simulations. Finally, different key parameters of sorption and desorption were determined, such as desorption activation energies, density of sorption sites, and adsorption and desorption reaction order. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Six-flow operations for catalyst development in Fischer-Tropsch synthesis: Bridging the gap between high-throughput experimentation and extensive product evaluation

    NASA Astrophysics Data System (ADS)

    Sartipi, Sina; Jansma, Harrie; Bosma, Duco; Boshuizen, Bart; Makkee, Michiel; Gascon, Jorge; Kapteijn, Freek

    2013-12-01

    Design and operation of a "six-flow fixed-bed microreactor" setup for Fischer-Tropsch synthesis (FTS) is described. The unit consists of feed and mixing, flow division, reaction, separation, and analysis sections. The reactor system is made of five heating blocks with individual temperature controllers, assuring an identical isothermal zone of at least 10 cm along six fixed-bed microreactor inserts (4 mm inner diameter). Such a lab-scale setup allows running six experiments in parallel, under equal feed composition, reaction temperature, and conditions of separation and analysis equipment. It permits separate collection of wax and liquid samples (from each flow line), allowing operation with high productivities of C5+ hydrocarbons. The latter is crucial for a complete understanding of FTS product compositions and will represent an advantage over high-throughput setups with more than ten flows where such instrumental considerations lead to elevated equipment volume, cost, and operation complexity. The identical performance (of the six flows) under similar reaction conditions was assured by testing a same catalyst batch, loaded in all microreactors.

  15. Chemical bath deposition of semiconductor thin films & nanostructures in novel microreactors

    NASA Astrophysics Data System (ADS)

    McPeak, Kevin M.

    Chemical bath deposition (CBD) offers a simple and inexpensive route to deposit semiconductor nanostructures and thin films, but lack of fundamental understanding and control of the underlying chemistry has limited its versatility. CBD is traditionally performed in a batch reactor, requiring only a substrate to be immersed in a supersaturated solution of aqueous precursors such as metal salts, complexing agents, and pH buffers. Highlights of CBD include low cost, operation at low temperature and atmospheric pressure, and scalability to large area substrates. In this dissertation, I explore CBD of semiconductor thin films and nanowire arrays in batch and continuous flow microreactors. Microreactors offer many advantages over traditional reactor designs including a reduction in mass transport limitations, precise temperature control and ease of production scale-up by "numbering up". Continuous flow micoreactors offer the unique advantage of providing reaction conditions that are time-invariant but change smoothly as a function of distance down the reaction channel. Growth from a bath whose composition changes along the reactor length results in deposited materials whose properties vary as a function of position on the substrate, essentially creating a combinatorial library. These substrates can be rapidly characterized to identify relationships between growth conditions and material properties or growth mechanisms. I have used CBD in a continuous flow microreactor to deposit ZnO nanowire arrays and CdZnS films whose optoelectronic properties vary as a function of position. The spatially-dependent optoelectronic properties of these materials have been correlated to changes in the composition, structure or growth mechanisms of the materials and ultimately their growth conditions by rigorous spatial characterization. CBD in a continuous flow microreactor, coupled with spatial characterization, provides a new route to understanding the connection between CBD growth conditions and the resulting optoelectronic properties of the film. The high surface-to-volume ratio of a microreactor also lends itself to in situ characterization studies. I demonstrated the first in situ x-ray absorption fine-structure spectroscopy (XAFS) study of CBD. The high sensitivity and ability to characterize liquid, amorphous and crystalline materials simultaneously make in situ XAFS spectroscopy an ideal tool to study the CBD of inorganic nanomaterials.

  16. Desorption Kinetics of Ar, Kr, Xe, N2, O2, CO, Methane, Ethane, and Propane from Graphene and Amorphous Solid Water Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, R. Scott; May, Robert A.; Kay, Bruce D.

    2016-03-03

    The desorption kinetics for Ar, Kr, Xe, N2, O2, CO, methane, ethane, and propane from grapheme covered Pt(111) and amorphous solid water (ASW) surfaces are investigated using temperature programmed desorption (TPD). The TPD spectra for all of the adsorbates from graphene have well-resolved first, second, third, and multi- layer desorption peaks. The alignment of the leading edges is consistent the zero-order desorption for all of the adsorbates. An Arrhenius analysis is used to obtain desorption energies and prefactors for desorption from graphene for all of the adsorbates. In contrast, the leading desorption edges for the adsorbates from ASW do notmore » align (for coverages < 2 ML). The non-alignment of TPD leading edges suggests that there are multiple desorption binding sites on the ASW surface. Inversion analysis is used to obtain the coverage dependent desorption energies and prefactors for desorption from ASW for all of the adsorbates.« less

  17. Desorption Kinetics of Ar, Kr, Xe, N2, O2, CO, Methane, Ethane, and Propane from Graphene and Amorphous Solid Water Surfaces.

    PubMed

    Smith, R Scott; May, R Alan; Kay, Bruce D

    2016-03-03

    The desorption kinetics for Ar, Kr, Xe, N2, O2, CO, methane, ethane, and propane from graphene-covered Pt(111) and amorphous solid water (ASW) surfaces are investigated using temperature-programmed desorption (TPD). The TPD spectra for all of the adsorbates from graphene have well-resolved first, second, third, and multilayer desorption peaks. The alignment of the leading edges is consistent the zero-order desorption for all of the adsorbates. An Arrhenius analysis is used to obtain desorption energies and prefactors for desorption from graphene for all of the adsorbates. In contrast, the leading desorption edges for the adsorbates from ASW do not align (for coverages < 2 ML). The nonalignment of TPD leading edges suggests that there are multiple desorption binding sites on the ASW surface. Inversion analysis is used to obtain the coverage dependent desorption energies and prefactors for desorption from ASW for all of the adsorbates.

  18. Formation of nanocarbon spheres by thermal treatment of woody char from fast pyrolysis process

    Treesearch

    Qiangu Yan; Hossein Toghiani; Zhiyong Cai; Jilei Zhang

    2014-01-01

    Influences of thermal treatment conditions of temperature, reaction cycle and time, and purge gas type on nanocarbon formation over bio-chars from fast pyrolysis and effects of thermal reaction cycle and purge gas type on bio-char surface functional groups were investigated by temperature-programmed desorption (TPD) and temperature programmed reduction methods....

  19. Synthesis and Manipulation of Semiconductor Nanocrystals inMicrofluidic Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Emory Ming-Yue

    2006-01-01

    Microfluidic reactors are investigated as a mechanism tocontrol the growth of semiconductor nanocrystals and characterize thestructural evolution of colloidal quantum dots. Due to their shortdiffusion lengths, low thermal masses, and predictable fluid dynamics,microfluidic devices can be used to quickly and reproducibly alterreaction conditions such as concentration, temperature, and reactiontime, while allowing for rapid reagent mixing and productcharacterization. These features are particularly useful for colloidalnanocrystal reactions, which scale poorly and are difficult to controland characterize in bulk fluids. To demonstrate the capabilities ofnanoparticle microreactors, a size series of spherical CdSe nanocrystalswas synthesized at high temperature in a continuous-flow, microfabricatedglass reactor. Nanocrystalmore » diameters are reproducibly controlled bysystematically altering reaction parameters such as the temperature,concentration, and reaction time. Microreactors with finer control overtemperature and reagent mixing were designed to synthesize nanoparticlesof different shapes, such as rods, tetrapods, and hollow shells. The twomajor challenges observed with continuous flow reactors are thedeposition of particles on channel walls and the broad distribution ofresidence times that result from laminar flow. To alleviate theseproblems, I designed and fabricated liquid-liquid segmented flowmicroreactors in which the reaction precursors are encapsulated inflowing droplets suspended in an immiscible carrier fluid. The synthesisof CdSe nanocrystals in such microreactors exhibited reduced depositionand residence time distributions while enabling the rapid screening aseries of samples isolated in nL droplets. Microfluidic reactors werealso designed to modify the composition of existing nanocrystals andcharacterize the kinetics of such reactions. The millisecond kinetics ofthe CdSe-to-Ag 2Se nanocrystal cation exchange reaction are measured insitu with micro-X-ray Absorption Spectroscopy in silicon microreactorsspecifically designed for rapid mixing and time-resolved X-rayspectroscopy. These results demonstrate that microreactors are valuablefor controlling and characterizing a wide range of reactions in nLvolumes even when nanoscale particles, high temperatures, causticreagents, and rapid time scales are involved. These experiments providethe foundation for future microfluidic investigations into the mechanismsof nanocrystal growth, crystal phase evolution, and heterostructureassembly.« less

  20. New method for the temperature-programmed desorption (TPD) of ammonia experiment for characterization of zeolite acidity: a review.

    PubMed

    Niwa, Miki; Katada, Naonobu

    2013-10-01

    In this review, a method for the temperature-programmed desorption (TPD) of ammonia experiment for the characterization of zeolite acidity and its improvement by simultaneous IR measurement and DFT calculation are described. First, various methods of ammonia TPD are explained, since the measurements have been conducted under the concepts of kinetics, equilibrium, or diffusion control. It is however emphasized that the ubiquitous TPD experiment is governed by the equilibrium between ammonia molecules in the gas phase and on the surface. Therefore, a method to measure quantitatively the strength of the acid site (∆H upon ammonia desorption) under equilibrium-controlled conditions is elucidated. Then, a quantitative relationship between ∆H and H0 function is proposed, based on which the acid strength ∆H can be converted into the H0 function. The identification of the desorption peaks and the quantitative measurement of the number of acid sites are then explained. In order to overcome a serious disadvantage of the method (i.e., no information is provided about the structure of acid sites), the simultaneous measurement of IR spectroscopy with ammonia TPD, named IRMS-TPD (infrared spectroscopy/mass spectrometry-temperature-programmed desorption), is proposed. Based on this improved measurement, Brønsted and Lewis acid sites were differentiated and the distribution of Brønsted OH was revealed. The acidity characterized by IRMS-TPD was further supported by the theoretical DFT calculation. Thus, the advanced study of zeolite acidity at the molecular level was made possible. Advantages and disadvantages of the ammonia TPD experiment are discussed, and understanding of the catalytic cracking activity based on the derived acidic profile is explained. Copyright © 2013 The Chemical Society of Japan and Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Temperature-programmed desorption study of NO reactions on rutile TiO2(110)-1×1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Boseong; Dohnálek, Zdenek; Szanyi, János

    2016-10-01

    Systematic temperature-programmed desorption (TPD) studies of NO adsorption and reactions on rutile TiO2(110)-1×1 surface reveal several distinct reaction channels in a temperature range of 50 – 500 K. NO readily reacts on TiO2(110) to form N2O which desorbs between 50 and 200 K (LT N2O channels), which leaves the TiO2 surface populated with adsorbed oxygen atoms (Oa) as a byproduct of N2O formation. In addition, we observe simultaneous desorption peaks of NO and N2O at 270 K (HT1 N2O) and 400 K (HT2 N2O), respectively, both of which are attributed to reaction-limited processes. No N-derived reaction product desorbs from TiO2(110)more » surface above 500 K or higher, while the surface may be populated with Oa’s and oxidized products such as NO2 and NO3. The adsorbate-free TiO2 surface with oxygen vacancies can be regenerated by prolonged annealing at 850 K or higher. Detailed analysis of the three N2O desorption yields reveals that the surface species for the HT channels are likely to be various forms of NO dimers.« less

  2. Temperature-programmed desorption study of NO reactions on rutile TiO 2(110)-1×1

    DOE PAGES

    Kim, Boseong; Dohnalek, Zdenek; Szanyi, Janos; ...

    2016-02-24

    In this study, systematic temperature-programmed desorption (TPD) studies of NO adsorption and reactions on rutile TiO 2(110)-1 × 1 surface reveal several distinct reaction channels in a temperature range of 50–500 K. NO readily reacts on TiO 2(110) to form N 2O, which desorbs between 50 and 200 K (LT N 2O channels), which leaves the TiO 2 surface populated with adsorbed oxygen atoms (O a) as a by-product of N 2O formation. In addition, we observe simultaneous desorption peaks of NO and N 2O at 270 K (HT1 N 2O) and 400 K (HT2 N 2O), respectively, both ofmore » which are attributed to reaction-limited processes. No N-derived reaction product desorbs from TiO 2(110) surface above 500 K or higher, while the surface may be populated with Oa's and oxidized products such as NO 2 and NO 3. The adsorbate-free TiO 2 surface with oxygen vacancies can be regenerated by prolonged annealing at 850 K or higher. Detailed analysis of the three N 2O desorption yields reveals that the surface species for the HT channels are likely to be various forms of NO dimers.« less

  3. Desorption of Benzene, 1,3,5-Trifluorobenzene, and Hexafluorobenzene from a Graphene Surface: The Effect of Lateral Interactions on the Desorption Kinetics.

    PubMed

    Smith, R Scott; Kay, Bruce D

    2018-05-17

    The desorption of benzene, 1,3,5-trifluorobenzene (TFB), and hexafluorobenzene (HFB) from a graphene covered Pt(111) substrate was investigated using temperature-programmed desorption (TPD). All three species have well-resolved monolayer and second-layer desorption peaks. The desorption spectra for submonolayer coverages of benzene and HFB are consistent with first-order desorption kinetics. In contrast, the submonolayer TPD spectra for TFB align on a common leading-edge, which is indicative of zero-order desorption kinetics. The desorption behavior of the three molecules can be correlated with the strength of the quadrupole moments. Calculations (second-order Møller-Plesset perturbation and density functional theory) show that the potential minimum for coplanar TFB dimers is more than a factor of 2 greater than that for either benzene or HFB dimers. The calculations support the interpretation that benzene and HFB are less likely to form the two-dimensional islands that are needed for submonolayer zero-order desorption kinetics.

  4. Interaction of D2 with H2O amorphous ice studied by temperature-programmed desorption experiments.

    PubMed

    Amiaud, L; Fillion, J H; Baouche, S; Dulieu, F; Momeni, A; Lemaire, J L

    2006-03-07

    The gas-surface interaction of molecular hydrogen D2 with a thin film of porous amorphous solid water (ASW) grown at 10 K by slow vapor deposition has been studied by temperature-programmed-desorption (TPD) experiments. Molecular hydrogen diffuses rapidly into the porous network of the ice. The D2 desorption occurring between 10 and 30 K is considered here as a good probe of the effective surface of ASW interacting with the gas. The desorption kinetics have been systematically measured at various coverages. A careful analysis based on the Arrhenius plot method has provided the D2 binding energies as a function of the coverage. Asymmetric and broad distributions of binding energies were found, with a maximum population peaking at low energy. We propose a model for the desorption kinetics that assumes a complete thermal equilibrium of the molecules with the ice film. The sample is characterized by a distribution of adsorption sites that are filled according to a Fermi-Dirac statistic law. The TPD curves can be simulated and fitted to provide the parameters describing the distribution of the molecules as a function of their binding energy. This approach contributes to a correct description of the interaction of molecular hydrogen with the surface of possibly porous grain mantles in the interstellar medium.

  5. (100) facets of γ-Al2O3: the active surfaces for alcohol dehydration reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwak, Ja Hun; Mei, Donghai; Peden, Charles HF

    2011-05-01

    Temperature programmed desorption (TPD) of ethanol, and methanol dehydration reaction were studied on γ-Al2O3 in order to identify the catalytic active sites for alcohol dehydration reactions. Two high temperature (> 473 K) desorption features were observed following ethanol adsorption. Samples calcined at T≤473 K displayed a desorption feature in the 523-533 K temperature range, while those calcined at T ≥ 673 K showed a single desorption feature at 498 K. The switch from the high to low temperature ethanol desorption correlated well with the dehydroxylation of the (100) facets of γ-Al2O3 that was predicted at 550 K DFT calculations. Theoreticalmore » DFT simulations of the mechanism of dehydration. on clean and hydroxylated γ-Al2O3(100) surfaces, find that a concerted elimination of ethylene from an ethanol molecule chemisorbed at an Al3+ pentacoordinated site is the rate limiting step for catalytic cycle on both surfaces. Furthermore, titration of the pentacoordinate Al3+ sites on the (100) facets of γ-Al2O3 by BaO completely turned off the methanol dehydration reaction activity. These results unambiguously demonstrate that only the (100) facets on γ-Al2O3 are the catalytic active surfaces for alcohol dehydration.« less

  6. CO Diffusion and Desorption Kinetics in CO2 Ices

    NASA Astrophysics Data System (ADS)

    Cooke, Ilsa R.; Öberg, Karin I.; Fayolle, Edith C.; Peeler, Zoe; Bergner, Jennifer B.

    2018-01-01

    The diffusion of species in icy dust grain mantles is a fundamental process that shapes the chemistry of interstellar regions; yet, measurements of diffusion in interstellar ice analogs are scarce. Here we present measurements of CO diffusion into CO2 ice at low temperatures (T = 11–23 K) using CO2 longitudinal optical phonon modes to monitor the level of mixing of initially layered ices. We model the diffusion kinetics using Fick’s second law and find that the temperature-dependent diffusion coefficients are well fit by an Arrhenius equation, giving a diffusion barrier of 300 ± 40 K. The low barrier along with the diffusion kinetics through isotopically labeled layers suggest that CO diffuses through CO2 along pore surfaces rather than through bulk diffusion. In complementary experiments, we measure the desorption energy of CO from CO2 ices deposited at 11–50 K by temperature programmed desorption and find that the desorption barrier ranges from 1240 ± 90 K to 1410 ± 70 K depending on the CO2 deposition temperature and resultant ice porosity. The measured CO–CO2 desorption barriers demonstrate that CO binds equally well to CO2 and H2O ices when both are compact. The CO–CO2 diffusion–desorption barrier ratio ranges from 0.21 to 0.24 dependent on the binding environment during diffusion. The diffusion–desorption ratio is consistent with the above hypothesis that the observed diffusion is a surface process and adds to previous experimental evidence on diffusion in water ice that suggests surface diffusion is important to the mobility of molecules within interstellar ices.

  7. Application of Microreactor to the Preparation of C-11-Labeled Compounds via O-[11C]Methylation with [11C]CH3I: Rapid Synthesis of [11C]Raclopride.

    PubMed

    Kawashima, Hidekazu; Kimura, Hiroyuki; Nakaya, Yuta; Tomatsu, Kenji; Arimitsu, Kenji; Nakanishi, Hiroaki; Ozeki, Eiichi; Kuge, Yuji; Saji, Hideo

    2015-01-01

    A new radiolabeling method using a microreactor was developed for the rapid synthesis of [(11)C]raclopride. A chip bearing a Y-shaped mixing junction with a 200 µm (width)×20 µm (depth)×250 mm (length) flow channel was designed, and the efficiency of O-[11C]methylation was evaluated. Dimethyl sulfoxide solutions containing the O-desmethyl precursor or [11C]CH3I were introduced into separate injection ports by infusion syringes, and the radiochemical yields were measured under various conditions. The decay-corrected radiochemical yield of microreactor-derived [11C]raclopride reached 12% in 20 s at 25 °C, which was observed to increase with increasing temperature. In contrast, batch synthesis at 25 °C produced a yield of 5%: this indicates that this device could effectively achieve O-[11C]methylation in a shorter period of time. The microreactor technique may facilitate simple and efficient routine production of 11C-labeled compounds via O-[11C]methylation with [11C]CH3I.

  8. Continuous-flow biosynthesis of Au-Ag bimetallic nanoparticles in a microreactor

    NASA Astrophysics Data System (ADS)

    Liu, Hongyu; Huang, Jiale; Sun, Daohua; Odoom-Wubah, Tareque; Li, Jun; Li, Qingbiao

    2014-11-01

    Herein, a microfluidic biosynthesis of Au-Ag bimetallic nanoparticle (NP) in a tubular microreactor, based on simultaneous reduction of HAuCl4 and AgNO3 precursors in the presence of Cacumen Platycladi ( C. Platycladi) extract was studied. The flow velocity profile was numerically analyzed with computational fluid dynamics. Au-Ag bimetallic NPs with Ag/Au molar ratios of 1:1 and 2:1 were synthesized, respectively. The alloy formation, morphology, structure, and size were investigated by UV-Vis spectra analysis, transmission electron microscopy (TEM), high resolution TEM, scanning TEM, and energy-dispersive X-ray analysis. In addition, the effects of volumetric flow rate, reaction temperature, and concentration of C. Platycladi extract and NaOH on the properties of the as-synthesized Au-Ag bimetallic NPs were investigated. The results indicated that these factors could not only affect the molar ratios of the two elements in the Au-Ag bimetallic NPs, but also affect particle size which can be adjusted from 3.3 to 5.6 nm. The process was very rapid and green, since a microreactor was employed with no additional synthetic reagents used. This work is anticipated to provide useful parameters for continuous-flow biosynthesis of bimetallic NPs in microreactors.

  9. Note: A versatile mass spectrometer chamber for molecular beam and temperature programmed desorption experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tonks, James P., E-mail: james.tonks@awe.co.uk; AWE Plc, Aldermaston, Reading, Berkshire RG7 4PR; Galloway, Ewan C., E-mail: ewan.galloway@awe.co.uk

    2016-08-15

    A dual purpose mass spectrometer chamber capable of performing molecular beam scattering (MBS) and temperature programmed desorption (TPD) is detailed. Two simple features of this design allow it to perform these techniques. First, the diameter of entrance aperture to the mass spectrometer can be varied to maximize signal for TPD or to maximize angular resolution for MBS. Second, the mass spectrometer chamber can be radially translated so that it can be positioned close to the sample to maximize signal or far from the sample to maximize angular resolution. The performance of this system is described and compares well with systemsmore » designed for only one of these techniques.« less

  10. Adsorption, desorption, and displacement kinetics of H2O and CO2 on TiO2(110).

    PubMed

    Smith, R Scott; Li, Zhenjun; Chen, Long; Dohnálek, Zdenek; Kay, Bruce D

    2014-07-17

    The adsorption, desorption, and displacement kinetics of H2O and CO2 on TiO2(110) are investigated using temperature programmed desorption (TPD) and molecular beam techniques. The TPD spectra for both H2O and CO2 have well-resolved peaks corresponding to desorption from bridge-bonded oxygen (Ob), Ti5c, and defect sites in order of increasing peak temperature. Analysis of the saturated surface spectrum for both species reveals that the corresponding adsorption energies on all sites are greater for H2O than for CO2. Sequential dosing of H2O and CO2 reveals that, independent of the dose order, H2O molecules will displace CO2 in order to occupy the highest energy binding sites available. Isothermal experiments show that the displacement of CO2 by H2O occurs between 75 and 80 K.

  11. Size-controlled synthesis of ZnO quantum dots in microreactors

    NASA Astrophysics Data System (ADS)

    Schejn, Aleksandra; Frégnaux, Mathieu; Commenge, Jean-Marc; Balan, Lavinia; Falk, Laurent; Schneider, Raphaël

    2014-04-01

    In this paper, we report on a continuous-flow microreactor process to prepare ZnO quantum dots (QDs) with widely tunable particle size and photoluminescence emission wavelengths. X-ray diffraction, electron diffraction, UV-vis, photoluminescence and transmission electron microscopy measurements were used to characterize the synthesized ZnO QDs. By varying operating conditions (temperature, flow rate) or the capping ligand, ZnO QDs with diameters ranging from 3.6 to 5.2 nm and fluorescence maxima from 500 to 560 nm were prepared. Results obtained show that low reaction temperatures (20 or 35 °C), high flow rates and the use of propionic acid as a stabilizing agent are favorable for the production of ZnO QDs with high photoluminescence quantum yields (up to 30%).

  12. Improved Livingness and Control over Branching in RAFT Polymerization of Acrylates: Could Microflow Synthesis Make the Difference?

    PubMed

    Derboven, Pieter; Van Steenberge, Paul H M; Vandenbergh, Joke; Reyniers, Marie-Francoise; Junkers, Thomas; D'hooge, Dagmar R; Marin, Guy B

    2015-12-01

    The superior capabilities of structured microreactors over batch reactors are demonstrated for reversible addition-fragmentation chain transfer (RAFT) solution polymerization of n-butyl acrylate with the aid of simulations, explicitly accounting for the chain length distribution of all macrospecies types. Since perfect isothermicity can be established in a microreactor, less side products due to backbiting and β-scission are formed compared to the batch operation in which ineffective heat removal leads to an undesirable temperature spike. For a given RAFT chain transfer agent (CTA), additional microstructural control results under microflow conditions by optimizing the reaction temperature, lowering the dilution degree, or decreasing the initial molar ratio of monomer to RAFT CTA. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Weak interactions between water and clathrate-forming gases at low pressures

    DOE PAGES

    Thürmer, Konrad; Yuan, Chunqing; Kimmel, Greg A.; ...

    2015-07-17

    Using scanning probe microscopy and temperature programed desorption we examined the interaction between water and two common clathrate-forming gases, methane and isobutane, at low temperature and low pressure. Water co-deposited with up to 10 –1 mbar methane or 10 –5 mbar isobutane at 140 K onto a Pt(111) substrate yielded pure crystalline ice, i.e., the exposure to up to ~ 10 7 gas molecules for each deposited water molecule did not have any detectable effect on the growing films. Exposing metastable, less than 2 molecular layers thick, water films to 10 –5 mbar methane does not alter their morphology, suggestingmore » that the presence of the Pt(111) surface is not a strong driver for hydrate formation. This weak water–gas interaction at low pressures is supported by our thermal desorption measurements from amorphous solid water and crystalline ice where 1 ML of methane desorbs near ~ 43 K and isobutane desorbs near ~ 100 K. As a result, similar desorption temperatures were observed for desorption from amorphous solid water.« less

  14. N2 and CO Desorption Energies from Water Ice

    NASA Astrophysics Data System (ADS)

    Fayolle, Edith C.; Balfe, Jodi; Loomis, Ryan; Bergner, Jennifer; Graninger, Dawn; Rajappan, Mahesh; Öberg, Karin I.

    2016-01-01

    The relative desorption energies of CO and N2 are key to interpretations of observed interstellar CO and N2 abundance patterns, including the well-documented CO and N2H+ anti-correlations in disks, protostars, and molecular cloud cores. Based on laboratory experiments on pure CO and N2 ice desorption, the difference between CO and N2 desorption energies is small; the N2-to-CO desorption energy ratio is 0.93 ± 0.03. Interstellar ices are not pure, however, and in this study we explore the effect of water ice on the desorption energy ratio of the two molecules. We present temperature programmed desorption experiments of different coverages of 13CO and 15N2 on porous and compact amorphous water ices and, for reference, of pure ices. In all experiments, 15N2 desorption begins a few degrees before the onset of 13CO desorption. The 15N2 and 13CO energy barriers are 770 and 866 K for the pure ices, 1034-1143 K and 1155-1298 K for different submonolayer coverages on compact water ice, and 1435 and 1575 K for ˜1 ML of ice on top of porous water ice. For all equivalent experiments, the N2-to-CO desorption energy ratio is consistently 0.9. Whenever CO and N2 ice reside in similar ice environments (e.g., experience a similar degree of interaction with water ice) their desorption temperatures should thus be within a few degrees of one another. A smaller N2-to-CO desorption energy ratio may be present in interstellar and circumstellar environments if the average CO ice molecules interacts more with water ice compared to the average N2 molecules.

  15. Infrared Spectra and Binding Energies of Chemical Warfare Nerve Agent Simulants on the Surface of Amorphous Silica

    DTIC Science & Technology

    2013-06-24

    Limited TPD of Water from Zeolite Linde 4A. Thermochim. Acta 1998, 319 (1), 177−184. (43) Palermo, A.; Löffler, D. G. Kinetics of Water Desorption...from Pelletized 4A and 5A Zeolites . Thermochim. Acta 1990, 159, 171−176. (44) Gorte, R. J. Design Parameters for Temperature Programmed Desorption from

  16. A high efficiency microfluidic-based photocatalytic microreactor using electrospun nanofibrous TiO2 as a photocatalyst

    NASA Astrophysics Data System (ADS)

    Meng, Zhaoxu; Zhang, Xu; Qin, Jianhua

    2013-05-01

    We present a novel microfluidic-based photocatalytic microreactor by using electrospun nanofibrous TiO2 as a photocatalyst for the first time. The microreactor exhibits not only a simple fabrication process, but also much higher photocatalytic activity than that achieved by a TiO2 film microreactor.We present a novel microfluidic-based photocatalytic microreactor by using electrospun nanofibrous TiO2 as a photocatalyst for the first time. The microreactor exhibits not only a simple fabrication process, but also much higher photocatalytic activity than that achieved by a TiO2 film microreactor. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr00775h

  17. Interaction of acetone with single wall carbon nanotubes at cryogenic temperatures: a combined temperature programmed desorption and theoretical study.

    PubMed

    Kazachkin, Dmitry; Nishimura, Yoshifumi; Irle, Stephan; Morokuma, Keiji; Vidic, Radisav D; Borguet, Eric

    2008-08-05

    The interaction of acetone with single wall carbon nanotubes (SWCNTs) at low temperatures was studied by a combination of temperature programmed desorption (TPD) and dispersion-augmented density-functional-based tight binding (DFTB-D) theoretical simulations. On the basis of the results of the TPD study and theoretical simulations, the desorption peaks of acetone can be assigned to the following adsorption sites: (i) sites with energy of approximately 75 kJ mol (-1) ( T des approximately 300 K)endohedral sites of small diameter nanotubes ( approximately 7.7 A); (ii) sites with energy 40-68 kJ mol (-1) ( T des approximately 240 K)acetone adsorption on accessible interstitial, groove sites, and endohedral sites of larger nanotubes ( approximately 14 A); (iii) sites with energy 25-42 kJ mol (-1) ( T des approximately 140 K)acetone adsorption on external walls of SWCNTs and multilayer adsorption. Oxidatively purified SWCNTs have limited access to endohedral sites due to the presence of oxygen functionalities. Oxygen functionalities can be removed by annealing to elevated temperature (900 K) opening access to endohedral sites of nanotubes. Nonpurified, as-received SWCNTs are characterized by limited access for acetone to endohedral sites even after annealing to elevated temperatures (900 K). Annealing of both purified and as-produced SWCNTs to high temperatures (1400 K) leads to reduction of access for acetone molecules to endohedral sites of small nanotubes, probably due to defect self-healing and cap formation at the ends of SWCNTs. No chemical interaction between acetone and SWCNTs was detected for low temperature adsorption experiments. Theoretical simulations of acetone adsorption on finite pristine SWCNTs of different diameters suggest a clear relationship of the adsorption energy with tube sidewall curvature. Adsorption of acetone is due to dispersion forces, with its C-O bond either parallel to the surface or O pointing away from it. No significant charge transfer or polarization was found. Carbon black was used to model amorphous carbonaceous impurities present in as-produced SWCNTs. Desorption of acetone from carbon black revealed two peaks at approximately 140 and approximately 180-230 K, similar to two acetone desorption peaks from SWCNTs. The characteristic feature of acetone desorption from SWCNTs was peak at approximately 300 K that was not observed for carbon black. Care should be taken when assigning TPD peaks for molecules desorbing from carbon nanotubes as amorphous carbon can interfere.

  18. Microfluidic reactors for visible-light photocatalytic water purification assisted with thermolysis

    PubMed Central

    Wang, Ning; Tan, Furui; Wan, Li; Wu, Mengchun

    2014-01-01

    Photocatalytic water purification using visible light is under intense research in the hope to use sunlight efficiently, but the conventional bulk reactors are slow and complicated. This paper presents an integrated microfluidic planar reactor for visible-light photocatalysis with the merits of fine flow control, short reaction time, small sample volume, and long photocatalyst durability. One additional feature is that it enables one to use both the light and the heat energy of the light source simultaneously. The reactor consists of a BiVO4-coated glass as the substrate, a blank glass slide as the cover, and a UV-curable adhesive layer as the spacer and sealant. A blue light emitting diode panel (footprint 10 mm × 10 mm) is mounted on the microreactor to provide uniform irradiation over the whole reactor chamber, ensuring optimal utilization of the photons and easy adjustments of the light intensity and the reaction temperature. This microreactor may provide a versatile platform for studying the photocatalysis under combined conditions such as different temperatures, different light intensities, and different flow rates. Moreover, the microreactor demonstrates significant photodegradation with a reaction time of about 10 s, much shorter than typically a few hours using the bulk reactors, showing its potential as a rapid kit for characterization of photocatalyst performance. PMID:25584117

  19. Acetylcholinesterase-Based Electrochemical Multiphase Microreactor for Detection of Organophosphorous Compounds (Preprint)

    DTIC Science & Technology

    2007-04-01

    target molecules, we are interested in incorporating the existing, liquid AChE sensor chemistry into a multiphase microreactor . The multiphase... microreactor will play a critical role in combining microsensor technology with analytical biochemistry and increase reaction time, sensitivity and... microreactor with a micro-scale gas- liquid interface, 2) to adapt AChE biochemistry into the microreactor in order to develop an electrochemical biosensor for

  20. Determination of residual solvents in pharmaceuticals by thermal desorption-GC/MS.

    PubMed

    Hashimoto, K; Urakami, K; Fujiwara, Y; Terada, S; Watanabe, C

    2001-05-01

    A novel method for the determination of residual solvents in pharmaceuticals by thermal desorption (TD)-GC/MS has been established. A programmed temperature pyrolyzer (double shot pyrolyzer) is applied for the TD. This method does not require any sample pretreatment and allows very small amounts of the sample. Directly desorbed solvents from intact pharmaceuticals (ca. 1 mg) in the desorption cup (5 mm x 3.8 mm i.d.) were cryofocused at the head of a capillary column prior to a GC/MS analysis. The desorption temperature was set at a point about 20 degrees C higher than the melting point of each sample individually, and held for 3 min. The analytical results using 7 different pharmaceuticals were in agreement with those obtained by direct injection (DI) of the solution, followed by USP XXIII. This proposed TD-GC/MS method was demonstrated to be very useful for the identification and quantification of residual solvents. Furthermore, this method was simple, allowed rapid analysis and gave good repeatability.

  1. Elucidation of Active Sites for the Reaction of Ethanol on TiO 2 /Au(111)

    DOE PAGES

    Boyle, David T.; Wilke, Jeremy A.; Palomino, Robert M.; ...

    2017-03-17

    Obtaining a molecular-level understanding of the reaction of alcohols with heterogeneous model catalysts is critical for improving industrial catalytic processes, such as the production of H 2 from alcohols. Gold has been shown to be an excellent oxidation catalyst once oxygen is added to it. The use of reducible oxides provides a source of oxygen on Au(111) for the reaction of ethanol, which is easily regenerated in the presence of an oxygen background. In this work, ethanol operates as a probe molecule to investigate the role of Au(111), TiO 2 nanoparticles, and TiO 2/Au interfacial surface sites on the catalyticmore » properties of TiO 2/Au(111). Ultrahigh vacuum temperature-programmed desorption (TPD) studies with ethanol/Au(111) elucidate previously unreported adsorption sites for ethanol. Ethanol molecularly adsorbs to Au terrace sites, step edges, and undercoordinated kink sites with adsorption energies of -51.7, -55.8, and -65.1 kJ/mol, respectively. In a TPD coverage study of ethanol on TiO 2/Au(111) indicates ethanol undergoes dissociative adsorption to form H*(a) and CH 3CH 2O*(a) on the inverse model catalyst surface. The desorption temperature of low coverages of ethanol from TiO2/Au(111) (Tdes ≈ 235 K) is at an intermediate temperature between the desorption temperatures from bulk Au(111) and TiO 2(110), indicating both Au and TiO 2 play a role in the adsorption of ethanol. Both low-temperature adsorption and high-temperature reactions are studied and indicate that ethanol-derived products such as acetaldehyde and ethylene desorb from TiO 2/Au(111) at ~500 K. Here, we report the identification of catalytically active sites on TiO 2/Au(111) as interfacial sites between the oxide and Au(111) surface through the use of temperature-programmed desorption and infrared reflection absorption spectroscopy.« less

  2. Elucidation of Active Sites for the Reaction of Ethanol on TiO 2 /Au(111)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyle, David T.; Wilke, Jeremy A.; Palomino, Robert M.

    Obtaining a molecular-level understanding of the reaction of alcohols with heterogeneous model catalysts is critical for improving industrial catalytic processes, such as the production of H 2 from alcohols. Gold has been shown to be an excellent oxidation catalyst once oxygen is added to it. The use of reducible oxides provides a source of oxygen on Au(111) for the reaction of ethanol, which is easily regenerated in the presence of an oxygen background. In this work, ethanol operates as a probe molecule to investigate the role of Au(111), TiO 2 nanoparticles, and TiO 2/Au interfacial surface sites on the catalyticmore » properties of TiO 2/Au(111). Ultrahigh vacuum temperature-programmed desorption (TPD) studies with ethanol/Au(111) elucidate previously unreported adsorption sites for ethanol. Ethanol molecularly adsorbs to Au terrace sites, step edges, and undercoordinated kink sites with adsorption energies of -51.7, -55.8, and -65.1 kJ/mol, respectively. In a TPD coverage study of ethanol on TiO 2/Au(111) indicates ethanol undergoes dissociative adsorption to form H*(a) and CH 3CH 2O*(a) on the inverse model catalyst surface. The desorption temperature of low coverages of ethanol from TiO2/Au(111) (Tdes ≈ 235 K) is at an intermediate temperature between the desorption temperatures from bulk Au(111) and TiO 2(110), indicating both Au and TiO 2 play a role in the adsorption of ethanol. Both low-temperature adsorption and high-temperature reactions are studied and indicate that ethanol-derived products such as acetaldehyde and ethylene desorb from TiO 2/Au(111) at ~500 K. Here, we report the identification of catalytically active sites on TiO 2/Au(111) as interfacial sites between the oxide and Au(111) surface through the use of temperature-programmed desorption and infrared reflection absorption spectroscopy.« less

  3. Solid-phase microextraction with temperature-programmed desorption for the analysis of iodination disinfection byproducts.

    PubMed

    Frazey, P A; Barkley, R M; Sievers, R E

    1998-02-01

    An analytical approach for the determination of chlorination and iodination disinfection byproducts based on solid-phase microextraction (SPME) was developed. Solid-phase microextraction presents a simple, rapid, sensitive, and solvent-free approach to sample preparation in which analytes in either air or water matrixes are extracted into the polymeric coating of an optical fiber. Analytes are subsequently thermally desorbed in the injection port of a gas chromatograph for separation, detection, and quantitation. Thermal degradation of iodoform was observed during desorption from a polyacrylate fiber in initial GC/MS and GC/ECD experiments. Experiments were designed to determine SPME conditions that would allow quantification without significant degradation of analytes. Isothermal and temperature-programmed thermal desorptions were evaluated for efficacy in transferring analytes with wide-ranging volatilities and thermal stabilities into chromatographic analysis columns. A temperature-programmed desorption (TPD) (120-200 degrees C at 5 degrees C/min with an on-column injection port or 150-200 degrees C at 25 degrees C/min with a split/splitless injection port) was able to efficiently remove analytes with wide-ranging volatilities without causing thermal degradation. The SPME-TPD method was linear over 2-3 orders of magnitude with an electron capture detector and detection limits were in the submicrogram per liter range. Precision and detection limits for selected trihalomethanes were comparable to those of EPA method 551. Extraction efficiencies were not affected by the presence of 10 mg/L soap, 15 mg/L sodium iodide, and 6000 mg/L sodium thiosulfate. The SPME-TPD technique was applied to the determination of iodination disinfection byproducts from individual precursor compounds using GC/MS and to the quantitation of iodoform at trace levels in a water recycle system using GC/ECD.

  4. Chip-based device for parallel sorting, amplification, detection, and identification of nucleic acid subsequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beer, Neil Reginald; Colston, Jr, Billy W.

    An apparatus for chip-based sorting, amplification, detection, and identification of a sample having a planar substrate. The planar substrate is divided into cells. The cells are arranged on the planar substrate in rows and columns. Electrodes are located in the cells. A micro-reactor maker produces micro-reactors containing the sample. The micro-reactor maker is positioned to deliver the micro-reactors to the planar substrate. A microprocessor is connected to the electrodes for manipulating the micro-reactors on the planar substrate. A detector is positioned to interrogate the sample contained in the micro-reactors.

  5. CO adsorption on W(100) during temperature-programmed desorption: A combined density functional theory and kinetic Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Albao, Marvin A.; Padama, Allan Abraham B.

    2017-02-01

    Using a combined density functional theory (DFT) and kinetic Monte Carlo (KMC) simulations, we study the adsorption at 800 K and subsequent desorption of CO on W(100) at higher temperatures. The resulting TPD profiles are known experimentally to exhibit three desorption peaks β1, β2, and β3 at 930 K, 1070 K, and 1375 K, respectively. Unlike more recent theoretical studies that propose that all three aforementioned peaks are molecularly rather than associatively desorbed, our KMC analyses are in support of the latter, since at 800 K dissociation is facile and that CO exists as dissociation fragments C and O. We show that these peaks arise from desorption from the same adsorption site but whose binding energy varies depending on local environment, that is, the presence of CO as well as dissociation fragments C and O nearby. Furthermore we show that several key parameters, such as desorption, dissociation and recombination barriers all play a key role in the TPD spectra-these parameter effectively controls not only the location of the TPD peaks but the shape and width of the desorption peaks as well. Moreover, our KMC simulations reveal that varying the heating rate shifts the peaks but leaves their shape intact.

  6. Effect of the Mn oxidation state and lattice oxygen in Mn-based TiO2 catalysts on the low-temperature selective catalytic reduction of NO by NH3.

    PubMed

    Lee, Sang Moon; Park, Kwang Hee; Kim, Sung Su; Kwon, Dong Wook; Hong, Sung Chang

    2012-09-01

    TiO2-supported manganese oxide catalysts formed using different calcination temperatures were prepared by using the wet-impregnation method and were investigated for their activity in the low-temperature selective catalytic reduction (SCR) of NO by NH3 with respect to the Mn valence and lattice oxygen behavior. The surface and bulk properties of these catalysts were examined using Brunauer-Emmett-Teller (BET) surface area, X-ray diffraction (XRD), temperature-programmed reduction (TPR), and temperature-programmed desorption (TPD). Catalysts prepared using lower calcination temperatures, which contained Mn4+ displayed high SCR activity at low temperatures and possessed several acid sites and active oxygen. The TPD analysis determined that the Brönsted and Lewis acid sites in the Mn/TiO2 catalysts were important for the low-temperature SCR at 80-160 and 200-350 degrees C, respectively. In addition, the available lattice oxygen was important for attaining high NO to NO2 oxidation at low temperatures. Recently, various Mn catalysts have been evaluated as SCR catalysts. However, there have been no studies on the relationship of adsorption and desorption properties and behavior of lattice oxygen according to the valence state for manganese oxides (MnO(x)). Therefore, in this study, the catalysts were prepared by the wet-impregnation method at different calcination temperatures in order to show the difference of manganese oxidation state. These catalysts were then characterized using various physicochemical techniques, including BET, XRD, TPR, and TPD, to understand the structure, oxidation state, redox properties, and adsorption and desorption properties of the Mn/TiO2 catalysts.

  7. Ultrapyrolytic upgrading of plastic wastes and plastics/heavy oil mixtures to valuable light gas products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lovett, S.; Berruti, F.; Behie, L.A.

    1997-11-01

    Viable operating conditions were identified experimentally for maximizing the production of high-value products such as ethylene, propylene, styrene, and benzene, from the ultrapyrolysis of waste plastics. Using both a batch microreactor and a pilot-plant-sized reactor, the key operating variables considered were pyrolysis temperature, product reaction time, and quench time. In the microreactor experiments, polystyrene (PS), a significant component of waste plastics, was pyrolyzed at temperatures ranging from 800 to 965 C, with total reaction times ranging from 500 to 1,000 ms. At a temperature of 965 C and 500 ms, the yields of styrene plus benzene were greater than 95more » wt %. In the pilot-plant experiments, the recently patented internally circulating fluidized bed (ICFB) reactor (Milne et al., US Patent Number 5,370,789, 1994b) was used to ultrapyrolyze low-density polyethylene (LDPE) in addition to LDPE (5% by weight)/heavy oil mixtures at a residence time of 600 ms. Both experiments produced light olefin yields greater than 55 wt % at temperatures above 830 C.« less

  8. The thermal decomposition of the benzyl radical in a heated micro-reactor. II. Pyrolysis of the tropyl radical

    NASA Astrophysics Data System (ADS)

    Buckingham, Grant T.; Porterfield, Jessica P.; Kostko, Oleg; Troy, Tyler P.; Ahmed, Musahid; Robichaud, David J.; Nimlos, Mark R.; Daily, John W.; Ellison, G. Barney

    2016-07-01

    Cycloheptatrienyl (tropyl) radical, C7H7, was cleanly produced in the gas-phase, entrained in He or Ne carrier gas, and subjected to a set of flash-pyrolysis micro-reactors. The pyrolysis products resulting from C7H7 were detected and identified by vacuum ultraviolet photoionization mass spectrometry. Complementary product identification was provided by infrared absorption spectroscopy. Pyrolysis pressures in the micro-reactor were roughly 200 Torr and residence times were approximately 100 μs. Thermal cracking of tropyl radical begins at 1100 K and the products from pyrolysis of C7H7 are only acetylene and cyclopentadienyl radicals. Tropyl radicals do not isomerize to benzyl radicals at reactor temperatures up to 1600 K. Heating samples of either cycloheptatriene or norbornadiene never produced tropyl (C7H7) radicals but rather only benzyl (C6H5CH2). The thermal decomposition of benzyl radicals has been reconsidered without participation of tropyl radicals. There are at least three distinct pathways for pyrolysis of benzyl radical: the Benson fragmentation, the methyl-phenyl radical, and the bridgehead norbornadienyl radical. These three pathways account for the majority of the products detected following pyrolysis of all of the isotopomers: C6H5CH2, C6H5CD2, C6D5CH2, and C6H513CH2. Analysis of the temperature dependence for the pyrolysis of the isotopic species (C6H5CD2, C6D5CH2, and C6H513CH2) suggests the Benson fragmentation and the norbornadienyl pathways open at reactor temperatures of 1300 K while the methyl-phenyl radical channel becomes active at slightly higher temperatures (1500 K).

  9. The thermal decomposition of the benzyl radical in a heated micro-reactor. II. Pyrolysis of the tropyl radical

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buckingham, Grant T.; Porterfield, Jessica P.; Kostko, Oleg

    2016-07-05

    Cycloheptatrienyl (tropyl) radical, C7H7, was cleanly produced in the gas-phase, entrained in He or Ne carrier gas, and subjected to a set of flash-pyrolysis micro-reactors. The pyrolysis products resulting from C7H7 were detected and identified by vacuum ultraviolet photoionization mass spectrometry. Complementary product identification was provided by infrared absorption spectroscopy. Pyrolysis pressures in the micro-reactor were roughly 200 Torr and residence times were approximately 100 us. Thermal cracking of tropyl radical begins at 1100 K and the products from pyrolysis of C7H7 are only acetylene and cyclopentadienyl radicals. Tropyl radicals do not isomerize to benzyl radicals at reactor temperatures upmore » to 1600 K. Heating samples of either cycloheptatriene or norbornadiene never produced tropyl (C7H7) radicals but rather only benzyl (C6H5CH2). The thermal decomposition of benzyl radicals has been reconsidered without participation of tropyl radicals. There are at least three distinct pathways for pyrolysis of benzyl radical: the Benson fragmentation, the methyl-phenyl radical, and the bridgehead norbornadienyl radical. These three pathways account for the majority of the products detected following pyrolysis of all of the isotopomers: C6H5CH2, C6H5CD2, C6D5CH2, and C6H5 13CH2. Analysis of the temperature dependence for the pyrolysis of the isotopic species (C6H5CD2, C6D5CH2, and C6H5 13CH2) suggests the Benson fragmentation and the norbornadienyl pathways open at reactor temperatures of 1300 K while the methyl-phenyl radical channel becomes active at slightly higher temperatures (1500 K).« less

  10. A ceramic microreactor for the synthesis of water soluble CdS and CdS/ZnS nanocrystals with on-line optical characterization

    NASA Astrophysics Data System (ADS)

    Pedro, Sara Gómez-De; Puyol, Mar; Izquierdo, David; Salinas, Iñigo; de La Fuente, J. M.; Alonso-Chamarro, Julián

    2012-02-01

    In this paper, a computer controlled microreactor to synthesize water soluble CdS and CdS/ZnS nanocrystals with in situ monitoring of the reaction progress is developed. It is based on ceramic tapes and the Low-Temperature Co-fired Ceramics technology (LTCC). As well the microsystem set-up, the microreactor fluidic design has also been thoroughly optimized. The final device is based on a hydrodynamic focusing of the reagents followed by a three-dimensional micromixer. This generates monodispersed and stable CdS and core-shell CdS/ZnS nanocrystals of 4.5 and 4.2 nm, respectively, with reproducible optical properties in terms of fluorescence emission wavelengths, bandwidth, and quantum yields, which is a key requirement for their future analytical applications. The synthetic process is also controlled in real time with the integration of an optical detection system for absorbance and fluorescence measurements based on commercial miniaturized optical components. This makes possible the efficient managing of the hydrodynamic variables to obtain the desired colloidal suspension. As a result, a simple, economic, robust and portable microsystem for the well controlled synthesis of CdS and CdS/ZnS nanocrystals is presented. Moreover, the reaction takes place in aqueous medium, thus allowing the direct modular integration of this microreactor in specific analytical microsystems, which require the use of such quantum dots as labels.

  11. Organic microchemical performance of solvent resistant polycarbosilane based microreactor.

    PubMed

    Yoon, Tae-Ho; Jung, Sang-Hee; Kim, Dong-Pyo

    2011-05-01

    We report the successful fabrication of preceramic polymer allylhydridopolycarbosilane (AHPCS) derived microchannels with excellent organic solvent resistance and optical transparency via economic imprinting process, followed by UV and post thermal curing process at 160 degrees C for 3 h. The microchemical performance of the fabricated microreactors was evaluated by choosing two model micro chemical reactions under organic solvent conditions; syntheses of 2-aminothiazole in DMF and dimethylpyrazole in THF, and compared with glass-based microreactor having identical dimensions and batch system with analogy. It is clear that AHPCS derived microreactor showed excellent solvent resistance and chemical stability compare with glass derived microreactor made by high cost of photolithography and thermal bonding process. The novel preceramic polymer derived microreactors showed reliable mechanical and chemical stability and conversion yields compare with that of glass derived microreactors, which is very promising for developing an integrated microfluidics by adopting available microstructuring techniques of the polymers.

  12. A high efficiency microfluidic-based photocatalytic microreactor using electrospun nanofibrous TiO2 as a photocatalyst.

    PubMed

    Meng, Zhaoxu; Zhang, Xu; Qin, Jianhua

    2013-06-07

    We present a novel microfluidic-based photocatalytic microreactor by using electrospun nanofibrous TiO2 as a photocatalyst for the first time. The microreactor exhibits not only a simple fabrication process, but also much higher photocatalytic activity than that achieved by a TiO2 film microreactor.

  13. Methanol Oxidation Using Ozone on Titania-Supported Vanadium Catalyst

    EPA Science Inventory

    Ozone-enhanced catalytic oxidation of methanol has been conducted at mild temperatures of 100 to 250NC using V2O5/TiO2 catalyst prepared by the sol-gel method. The catalyst was characterized using XRD, surface area measurements, and temperature-programmed desorption of methanol. ...

  14. In Situ Visualization of the Phase Behavior of Oil Samples Under Refinery Process Conditions.

    PubMed

    Laborde-Boutet, Cedric; McCaffrey, William C

    2017-02-21

    To help address production issues in refineries caused by the fouling of process units and lines, we have developed a setup as well as a method to visualize the behavior of petroleum samples under process conditions. The experimental setup relies on a custom-built micro-reactor fitted with a sapphire window at the bottom, which is placed over the objective of an inverted microscope equipped with a cross-polarizer module. Using reflection microscopy enables the visualization of opaque samples, such as petroleum vacuum residues, or asphaltenes. The combination of the sapphire window from the micro-reactor with the cross-polarizer module of the microscope on the light path allows high-contrast imaging of isotropic and anisotropic media. While observations are carried out, the micro-reactor can be heated to the temperature range of cracking reactions (up to 450 °C), can be subjected to H2 pressure relevant to hydroconversion reactions (up to 16 MPa), and can stir the sample by magnetic coupling. Observations are typically carried out by taking snapshots of the sample under cross-polarized light at regular time intervals. Image analyses may not only provide information on the temperature, pressure, and reactive conditions yielding phase separation, but may also give an estimate of the evolution of the chemical (absorption/reflection spectra) and physical (refractive index) properties of the sample before the onset of phase separation.

  15. Temperature-dependent Study of Isobutanol Decomposition

    DTIC Science & Technology

    2012-11-01

    dimensional Al2O3 alumina CO2 carbon dioxide FTIR Fourier transform infrared Pd palladium Rh rhodium TPD temperature-programmed desorption TPO...that increasing temperature promotes aldehyde formation on the surface of each catalyst. In addition, it is shown that palladium (Pd) activates the...formation of aldehydes and CO2 at a lower temperature than a rhodium (Rh) catalyst. 15. SUBJECT TERMS Isobutanol, FTIR, spectroscopy 16. SECURITY

  16. Theoretical and experimental studies of hydrogen adsorption and desorption on Ir surfaces

    DOE PAGES

    Kaghazchi, Payam; Jacob, Timo; Chen, Wenhua; ...

    2013-06-03

    Here, we report adsorption and desorption of hydrogen on planar Ir(210) and faceted Ir(210), consisting of nanoscale {311} and (110) facets, by means of temperature programmed desorption (TPD) and density functional theory (DFT) in combination with the ab initio atomistic thermodynamics approach. TPD spectra show that only one H 2 peak is seen from planar Ir(210) at all coverages whereas a single H 2 peak is observed at around 440 K (F1) at fractional monolayer (ML) coverage and an additional H 2 peak appears at around 360 K (F2) at 1 ML coverage on faceted Ir(210), implying structure sensitivity inmore » recombination and desorption of hydrogen on faceted Ir(210) versus planar Ir(210), but no evidence is found for size effects in recombination and desorption of hydrogen on faceted Ir(210) for average facet sizes of 5-14 nm. Calculations indicate that H prefers to bind at the two-fold short-bridge sites of the Ir surfaces. In addition, we studied the stability of the Ir surfaces in the presence of hydrogen at different H coverages through surface free energy plots as a function of the chemical potential, which is also converted to a temperature scale. Moreover, the calculations revealed the origin of the two TPD peaks of H 2 from faceted Ir(210): F1 from desorption of H 2 on {311} facets while F2 from desorption of H 2 on (110) facets.« less

  17. Hierarchically porous LaFeO3 perovskite prepared from the pomelo peel bio-template for catalytic oxidation of NO

    NASA Astrophysics Data System (ADS)

    Zhao, Shaojun; Wang, Li; Wang, Ying; Li, Xing

    2018-05-01

    In this paper, pomelo peel was used as biological template to obtain hierarchically porous LaFeO3 perovskite for the catalytic oxidation of NO to NO2. In addition, X-ray diffraction (XRD), scanning electron microscopy (SEM), N2 adsorption-desorption analyses, X-ray photoelectron spectra (XPS), NO temperature-programmed desorption (NO-TPD), oxygen temperature-programmed desorption (O2-TPD) and hydrogen temperature-programmed reduction (H2-TPR) were used to investigate the micro-structure and the redox properties of the hierarchically porous LaFeO3 perovskite prepared from pomelo peel biological template and the LaFeO3 perovskite without the biological template. The results indicated that the hierarchically porous LaFeO3 perovskite successfully replicated the porous structure of pomelo peel with high specific surface area. Compared to the LaFeO3 perovskite prepared without the pomelo peel template, the hierarchically porous LaFeO3 perovskite showed better catalytic oxidization of NO to NO2 under the same conditions. The maximum NO conversions for LaFeO3 prepared with and without template were 90% at 305 °C and 76% at 313 °C, respectively. This is mainly attributed to the higher ratio of Fe4+/Fe3+, the hierarchically porous structure with more adsorbed oxygen species and higher surface area for the hierarchically porous LaFeO3 perovskite compared with the sample prepared without the pomelo peel template.

  18. Immobilization of peroxidase enzyme onto the porous silicon structure for enhancing its activity and stability

    NASA Astrophysics Data System (ADS)

    Sahare, Padmavati; Ayala, Marcela; Vazquez-Duhalt, Rafael; Agrawal, Vivechana

    2014-08-01

    In this work, a commercial peroxidase was immobilized onto porous silicon (PS) support functionalized with 3-aminopropyldiethoxysilane (APDES) and the performance of the obtained catalytic microreactor was studied. The immobilization steps were monitored and the activity of the immobilized enzyme in the PS pores was spectrophotometrically determined. The enzyme immobilization in porous silicon has demonstrated its potential as highly efficient enzymatic reactor. The effect of a polar organic solvent (acetonitrile) and the temperature (up to 50°C) on the activity and stability of the biocatalytic microreactor were studied. After 2-h incubation in organic solvent, the microreactor retained 80% of its initial activity in contrast to the system with free soluble peroxidase that lost 95% of its activity in the same period of time. Peroxidase immobilized into the spaces of the porous silicon support would be perspective for applications in treatments for environmental security such as removal of leached dye in textile industry or in treatment of different industrial effluents. The system can be also applied in the field of biomedicine.

  19. High mass resolution time of flight mass spectrometer for measuring products in heterogeneous catalysis in highly sensitive microreactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersen, T.; Jensen, R.; Christensen, M. K.

    2012-07-15

    We demonstrate a combined microreactor and time of flight system for testing and characterization of heterogeneous catalysts with high resolution mass spectrometry and high sensitivity. Catalyst testing is performed in silicon-based microreactors which have high sensitivity and fast thermal response. Gas analysis is performed with a time of flight mass spectrometer with a modified nude Bayard-Alpert ionization gauge as gas ionization source. The mass resolution of the time of flight mass spectrometer using the ion gauge as ionization source is estimated to m/{Delta}m > 2500. The system design is superior to conventional batch and flow reactors with accompanying product detectionmore » by quadrupole mass spectrometry or gas chromatography not only due to the high sensitivity, fast temperature response, high mass resolution, and fast acquisition time of mass spectra but it also allows wide mass range (0-5000 amu in the current configuration). As a demonstration of the system performance we present data from ammonia oxidation on a Pt thin film showing resolved spectra of OH and NH{sub 3}.« less

  20. High mass resolution time of flight mass spectrometer for measuring products in heterogeneous catalysis in highly sensitive microreactors

    NASA Astrophysics Data System (ADS)

    Andersen, T.; Jensen, R.; Christensen, M. K.; Pedersen, T.; Hansen, O.; Chorkendorff, I.

    2012-07-01

    We demonstrate a combined microreactor and time of flight system for testing and characterization of heterogeneous catalysts with high resolution mass spectrometry and high sensitivity. Catalyst testing is performed in silicon-based microreactors which have high sensitivity and fast thermal response. Gas analysis is performed with a time of flight mass spectrometer with a modified nude Bayard-Alpert ionization gauge as gas ionization source. The mass resolution of the time of flight mass spectrometer using the ion gauge as ionization source is estimated to m/Δm > 2500. The system design is superior to conventional batch and flow reactors with accompanying product detection by quadrupole mass spectrometry or gas chromatography not only due to the high sensitivity, fast temperature response, high mass resolution, and fast acquisition time of mass spectra but it also allows wide mass range (0-5000 amu in the current configuration). As a demonstration of the system performance we present data from ammonia oxidation on a Pt thin film showing resolved spectra of OH and NH3.

  1. High mass resolution time of flight mass spectrometer for measuring products in heterogeneous catalysis in highly sensitive microreactors.

    PubMed

    Andersen, T; Jensen, R; Christensen, M K; Pedersen, T; Hansen, O; Chorkendorff, I

    2012-07-01

    We demonstrate a combined microreactor and time of flight system for testing and characterization of heterogeneous catalysts with high resolution mass spectrometry and high sensitivity. Catalyst testing is performed in silicon-based microreactors which have high sensitivity and fast thermal response. Gas analysis is performed with a time of flight mass spectrometer with a modified nude Bayard-Alpert ionization gauge as gas ionization source. The mass resolution of the time of flight mass spectrometer using the ion gauge as ionization source is estimated to m/Δm > 2500. The system design is superior to conventional batch and flow reactors with accompanying product detection by quadrupole mass spectrometry or gas chromatography not only due to the high sensitivity, fast temperature response, high mass resolution, and fast acquisition time of mass spectra but it also allows wide mass range (0-5000 amu in the current configuration). As a demonstration of the system performance we present data from ammonia oxidation on a Pt thin film showing resolved spectra of OH and NH(3).

  2. Analysis of the volatile organic matter of engine piston deposits by direct sample introduction thermal desorption gas chromatography/mass spectrometry.

    PubMed

    Diaby, M; Kinani, S; Genty, C; Bouchonnet, S; Sablier, M; Le Negrate, A; El Fassi, M

    2009-12-01

    This article establishes an alternative method for the characterization of volatiles organic matter (VOM) contained in deposits of the piston first ring grooves of diesel engines using a ChromatoProbe direct sample introduction (DSI) device coupled to gas chromatography/mass spectrometry (GC/MS) analysis. The addition of an organic solvent during thermal desorption leads to an efficient extraction and a good chromatographic separation of extracted products. The method was optimized investigating the effects of several solvents, the volume added to the solid sample, and temperature programming of the ChromatoProbe DSI device. The best results for thermal desorption were found using toluene as an extraction solvent and heating the programmable temperature injector from room temperature to 300 degrees C with a temperature step of 105 degrees C. With the use of the optimized thermal desorption conditions, several components have been positively identified in the volatile fraction of the deposits: aromatics, antioxidants, and antioxidant degradation products. Moreover, this work highlighted the presence of diesel fuel in the VOM of the piston deposits and gave new facts on the absence of the role of diesel fuel in the deposit formation process. Most importantly, it opens the possibility of quickly performing the analysis of deposits with small amounts of samples while having a good separation of the volatiles.

  3. Adsorption, Desorption, and Displacement Kinetics of H2O and CO2 on TiO2(110)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, R. Scott; Li, Zhenjun; Chen, Long

    The adsorption, desorption, and displacement kinetics of H2O and CO2 on TiO2(110) are investigated using temperature programmed desorption (TPD) and molecular beam techniques. The TPD spectra for both H2O and CO2 have well-resolved peaks corresponding to desorption from bridge-bonded oxygen (BBO), Ti, and oxygen vacancies (VO) sites in order of increasing peak temperature. Analysis of the saturated monolayer peak for both species reveals that the corresponding adsorption energies on all sites are greater for H2O and for CO2. Sequential dosing of H2O and CO2 reveals that, independent of the dose order, H2O molecules will displace CO2 in order to occupymore » the highest energy binding sites available. Isothermal experiments show that the displacement of CO2 by H2O occurs between 75 and 80 K. Further analysis shows that a ratio of 4 H2O to 3 CO2 molecules is needed to displace CO2 from the TiO2(110) surface.« less

  4. Change in desorption mechanism from pore blocking to cavitation with temperature for nitrogen in ordered silica with cagelike pores.

    PubMed

    Morishige, Kunimitsu; Tateishi, Masayoshi; Hirose, Fumi; Aramaki, Kenji

    2006-10-24

    To verify pore blocking controlled desorption in ink-bottle pores, we measured the temperature dependence of the adsorption-desorption isotherms of nitrogen on four kinds of KIT-5 samples with expanded cavities hydrothermally treated for different periods of time at 393 K. In the samples, almost spherical cavities are arranged in a face-centered cubic array and the cavities are connected through small channels. The pore size of the channels increased with an increase in the hydrothermal treatment time. At lower temperatures a steep desorption branch changed to a gradual one as the hydrothermal treatment was prolonged. For the sample hydrothermally treated only for 1 day, the rectangular hysteresis loop shrank gradually with increasing temperature while keeping its shape. The temperature dependence of the evaporation pressure observed was identical with that expected for cavitation-controlled desorption. On the other hand, for the samples hydrothermally treated for long times, the gradual desorption branch became a sharp one with increasing temperature. This strongly suggests that the desorption mechanism is altered from pore blocking to cavitation with temperature. Application of percolation theory to the pore blocking controlled desorption observed here is discussed.

  5. Advances in microreaction technology for portable fuel cell applications: Wall coating of thin catalytic films in microreactors

    NASA Astrophysics Data System (ADS)

    Bravo Bersano, Jaime Cristian

    This research has focused on the need to coat microreactor systems composed of channels in the micron size range of 100 to 1000 mum. The experimental procedures and learning are outlined in terms of slurry and surface preparation requirements which are detailed in the experimental section. This system is motivated and applied to micro methanol steam reformers. Thus, a detailed discussion on the driving motivation is given in the introduction. The low temperatures required for steam-reforming of methanol ˜ 493°K (220°C) make it possible to utilize the reformate as a feed to the fuel cell anode. The group of catalysts that shows the highest activity for methanol steam reforming (SR) at low temperature has composition of CuO/ZnO/Al 2O3, which is also the catalyst used for methanol synthesis. Steam reforming of methanol is a highly endothermic process. Conventional reactor configurations, such as a packed bed reactor, operate in a heat transfer limited mode for this reaction. Using catalyst in packed bed form for portable devices is also not convenient due to high pressure drop and possible channeling of gases in addition to poor heat transfer. A wall-coated catalyst represents a superior geometry since it provides lower pressure drop and ease of manufacturing. Due to their small size, microreactors are especially suited for endothermic reactions whose reactivity depends on the rate of heat input. A brief review on microreaction technology is given with a comprehensive survey for catalyst integration into microreactors for catalytic heterogeneous gas phase reactions. The strength of this research is the model that was developed to coat the interior of micron sized capillaries with coats of CuO/ZnO/Al2O 3 slurries as thick as 25 mum in the dry state. The details of the model are given in terms Taylor's theory and Rayleigh's theory. A model is presented that can predict the coat thickness based on experimental conditions The model combines Taylor's experimental work with Lord Rayleigh's instability theory for annular coatings. The model presented serves as a design tool for microreactor design. The model can also estimate the maximum coat thickness possible for a given system. The results are presented in graphical format in the Microchannel Coating Model chapter.

  6. Experimental study on desorption characteristics of SAPO-34 and ZSM-5 zeolite

    NASA Astrophysics Data System (ADS)

    Yuan, Z. X.; Zhang, X.; Wang, W. C.; Du, C. X.; Liu, Z. B.; Chen, Y. C.

    2018-03-01

    The dynamic characteristics of SAPO-34 and ZSM-5 zeolite in the desorption process have been experimentally studied with the gravimetric method. The weight change of the test sample was recorded continually for different conditions of temperature and pressure. The curve of the desorption degree with the temperature and the pressure was obtained and discussed. With the intrinsic different micro-structure, the two zeolites showed distinguished characteristics of the desorption. In contrast to an S-shaped desorption curve of the SAPO-34, the ZSM-5 showed an exponential desorption curve. In comparison, the desorption characteristics of the ZSM-5 were better than that of the SAPO-34 in the temperature range of 40 °C 90 °C. Nevertheless, the effect of the pressure on the desorption degree was stronger for the SAPO-34 than for the ZSM-5. Further analysis revealed that the desorption speed was affected more strongly by the temperature than by the pressure.

  7. On Study of Application of Micro-reactor in Chemistry and Chemical Field

    NASA Astrophysics Data System (ADS)

    Zhang, Yunshen

    2018-02-01

    Serving as a micro-scale chemical reaction system, micro-reactor is characterized by high heat transfer efficiency and mass transfer, strictly controlled reaction time and good safety performance; compared with the traditional mixing reactor, it can effectively shorten reaction time by virtue of these advantages and greatly enhance the chemical reaction conversion rate. However, problems still exist in the process where micro-reactor is used for production in chemistry and chemical field, and relevant researchers are required to optimize and perfect the performance of micro-reactor. This paper analyzes specific application of micro-reactor in chemistry and chemical field.

  8. Water desorption from a confined biopolymer.

    PubMed

    Pradipkanti, L; Satapathy, Dillip K

    2018-03-14

    We study desorption of water from a confined biopolymer (chitosan thin films) by employing temperature dependent specular X-ray reflectivity and spectroscopic ellipsometry. The water desorption is found to occur via three distinct stages with significantly different desorption rates. The distinct rates of water desorption are attributed to the presence of different kinds of water with disparate mobilities inside the biopolymer film. We identify two characteristic temperatures (T c1 and T c2 ) at which the water desorption rate changes abruptly. Interestingly, the characteristic temperatures decrease with decreasing the film thickness. The thickness dependence of the characteristic temperature is interpreted in the context of a higher mobility of polymer chains at the free surface for polymers under one-dimensional confinement.

  9. Reaction Rates Of Olivine Carbonation - An Experimental Study Using Synthetic Fluid Inclusions As Micro-Reactors

    NASA Astrophysics Data System (ADS)

    Sendula, E.; Lamadrid, H. M.; Bodnar, R. J.

    2017-12-01

    Ultramafic and mafic rocks (e.g. peridotites, serpentinites and basalts) are being considered as possible targets for CO2 sequestration via mineral carbonation. The determination of reaction kinetics and the factors that control mineralization are important in order to understand and predict fluid-rock reactions between the injected CO2 and the host rocks. Here we present results of experiments focused on determining the reaction rates of carbonation of olivine as a function of initial CO2 concentration (20 mol% and 11 mol%) in the aqueous solution and temperature (100°C and 50°C). We used a recently developed experimental method (Lamadrid et al., 2017) that uses synthetic fluid inclusions as micro-reactors. The micro-reactor technique coupled with non-destructive Raman spectroscopy allows us to monitor the reaction progress in situ and in real time, by quantifying the amount of CO2 consumed in the reaction as a function of time. Results show a measurable decrease of CO2 density in the fluid inclusions as a result of the reaction between the CO2-bearing aqueous phase and olivine. Magnesite formation begins within several hours at 100°C and most of the CO2 was consumed within two days. At 50°C, however, magnesite nucleation and precipitation required weeks to months to begin, and the reaction rates were about an order of magnitude slower than in the experiments at 100°C. No significant differences were observed in the reaction rates as a function of initial CO2 concentration. The application of the synthetic fluid inclusion technique as micro-reactors coupled with non-destructive analytical techniques is a promising tool to monitor rates of fluid-rock reactions in situ and in real time, allowing detailed micron-scale investigations. The technique can be applied to a wide variety of chemical systems, host minerals, reaction products, fluid densities, temperatures, and different starting fluid compositions.

  10. Rapid Catalyst Screening by a Continuous-Flow Microreactor Interfaced with Ultra High Pressure Liquid Chromatography

    PubMed Central

    Fang, Hui; Xiao, Qing; Wu, Fanghui; Floreancig, Paul E.; Weber, Stephen G.

    2010-01-01

    A high-throughput screening system for homogeneous catalyst discovery has been developed by integrating a continuous-flow capillary-based microreactor with ultra-high pressure liquid chromatography (UHPLC) for fast online analysis. Reactions are conducted in distinct and stable zones in a flow stream that allows for time and temperature regulation. UHPLC detection at high temperature allows high throughput online determination of substrate, product, and byproduct concentrations. We evaluated the efficacies of a series of soluble acid catalysts for an intramolecular Friedel-Crafts addition into an acyliminium ion intermediate within one day and with minimal material investment. The effects of catalyst loading, reaction time, and reaction temperature were also screened. This system exhibited high reproducibility for high-throughput catalyst screening and allowed several acid catalysts for the reaction to be identified. Major side products from the reactions were determined through off-line mass spectrometric detection. Er(OTf)3, the catalyst that showed optimal efficiency in the screening, was shown to be effective at promoting the cyclization reaction on a preparative scale. PMID:20666502

  11. Chemistry of CCl 4 on Fe 3O 4(1 1 1)-(2 × 2) surfaces in the presence of adsorbed D 2O studied by temperature programmed desorption

    NASA Astrophysics Data System (ADS)

    Adib, K.; Totir, G. G.; Fitts, J. P.; Rim, K. T.; Mueller, T.; Flynn, G. W.; Joyce, S. A.; Osgood, R. M.

    2003-07-01

    Temperature programmed desorption (TPD) was used to study surface reactions of Fe 3O 4(1 1 1)-(2 × 2) sequentially exposed, at ˜100 K, to vapor-phase D 2O and CCl 4. Previous TPD and XPS results have indicated that in the absence of D 2O, CCl 4 dissociatively adsorbs on Fe 3O 4(1 1 1) producing chemisorbed Cl and CCl 2. Subsequent heating of the surface results in abstraction of lattice iron and oxygen atoms and causes them to desorb as FeCl 2 and OCCl 2, respectively. This study shows that when this Fe 3O 4 surface is exposed only to D 2O, TPD measures a rich surface chemistry with multiple desorption events extending as high as ˜800 K, indicating dissociative adsorption of D 2O on the Fe 3O 4(1 1 1) surface. After sequential exposure to D 2O and then CCl 4, the production of FeCl 2 and OCCl 2 from adsorbed CCl 4 is suppressed, indicating that D 2O fragments block the surface reactive sites.

  12. A ceramic microreactor for the synthesis of water soluble CdS and CdS/ZnS nanocrystals with on-line optical characterization.

    PubMed

    Gómez-de Pedro, Sara; Puyol, Mar; Izquierdo, David; Salinas, Iñigo; de la Fuente, J M; Alonso-Chamarro, Julián

    2012-02-21

    In this paper, a computer controlled microreactor to synthesize water soluble CdS and CdS/ZnS nanocrystals with in situ monitoring of the reaction progress is developed. It is based on ceramic tapes and the Low-Temperature Co-fired Ceramics technology (LTCC). As well the microsystem set-up, the microreactor fluidic design has also been thoroughly optimized. The final device is based on a hydrodynamic focusing of the reagents followed by a three-dimensional micromixer. This generates monodispersed and stable CdS and core-shell CdS/ZnS nanocrystals of 4.5 and 4.2 nm, respectively, with reproducible optical properties in terms of fluorescence emission wavelengths, bandwidth, and quantum yields, which is a key requirement for their future analytical applications. The synthetic process is also controlled in real time with the integration of an optical detection system for absorbance and fluorescence measurements based on commercial miniaturized optical components. This makes possible the efficient managing of the hydrodynamic variables to obtain the desired colloidal suspension. As a result, a simple, economic, robust and portable microsystem for the well controlled synthesis of CdS and CdS/ZnS nanocrystals is presented. Moreover, the reaction takes place in aqueous medium, thus allowing the direct modular integration of this microreactor in specific analytical microsystems, which require the use of such quantum dots as labels. This journal is © The Royal Society of Chemistry 2012

  13. Micro-Fluidic Chemical Reactor Systems: Development, Scale-Up and Demonstration

    DTIC Science & Technology

    2002-11-01

    B) A ) Figure 1: Gas Phase Microreactor . ( A ) Photograph of device. (B) Top view schematic. (C) Side view across channel. ( D ) Side view along... Microreactor system showing controller, heater power, fluid mixing, and microreactor cards (as in Figure 14) in a PCI chassis... microreactor design used for gas-phase heterogeneous reactions is a microchannel device that can be integrated with a heat exchange layer for highly

  14. Room-temperature isolation of V(benzene)2 sandwich clusters via soft-landing into n-alkanethiol self-assembled monolayers.

    PubMed

    Nagaoka, Shuhei; Matsumoto, Takeshi; Okada, Eiji; Mitsui, Masaaki; Nakajima, Atsushi

    2006-08-17

    The adsorption state and thermal stability of V(benzene)2 sandwich clusters soft-landed onto a self-assembled monolayer of different chain-length n-alkanethiols (Cn-SAM, n = 8, 12, 16, 18, and 22) were studied by means of infrared reflection absorption spectroscopy (IRAS) and temperature-programmed desorption (TPD). The IRAS measurement confirmed that V(benzene)2 clusters are molecularly adsorbed and maintain a sandwich structure on all of the SAM substrates. In addition, the clusters supported on the SAM substrates are oriented with their molecular axes tilted 70-80 degrees off the surface normal. An Arrhenius analysis of the TPD spectra reveals that the activation energy for the desorption of the supported clusters increases linearly with the chain length of the SAMs. For the longest chain C22-SAM, the activation energy reaches approximately 150 kJ/mol, and the thermal desorption of the supported clusters can be considerably suppressed near room temperature. The clear chain-length-dependent thermal stability of the supported clusters observed here can be explained well in terms of the cluster penetration into the SAM matrixes.

  15. Spreading of lithium on a stainless steel surface at room temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skinner, C. H.; Capece, A. M.; Roszell, J. P.

    Lithium conditioned plasma facing surfaces have lowered recycling and enhanced plasma performance on many fusion devices and liquid lithium plasma facing components are under consideration for future machines. A key factor in the performance of liquid lithium components is the wetting by lithium of its container. We have observed the surface spreading of lithium from a mm-scale particle to adjacent stainless steel surfaces using a scanning Auger microprobe that has elemental discrimination. Here, the spreading of lithium occurred at room temperature (when lithium is a solid) from one location at a speed of 0.62 μm/day under ultrahigh vacuum conditions. Separatemore » experiments using temperature programmed desorption (TPD) investigated bonding energetics between monolayer-scale films of lithium and stainless steel. While multilayer lithium desorption from stainless steel begins to occur just above 500 K (E des = 1.54 eV), sub-monolayer Li desorption occurred in a TPD peak at 942 K (E des = 2.52 eV) indicating more energetically favorable lithium-stainless steel bonding (in the absence of an oxidation layer) than lithium lithium bonding.« less

  16. Spreading of lithium on a stainless steel surface at room temperature

    DOE PAGES

    Skinner, C. H.; Capece, A. M.; Roszell, J. P.; ...

    2015-11-10

    Lithium conditioned plasma facing surfaces have lowered recycling and enhanced plasma performance on many fusion devices and liquid lithium plasma facing components are under consideration for future machines. A key factor in the performance of liquid lithium components is the wetting by lithium of its container. We have observed the surface spreading of lithium from a mm-scale particle to adjacent stainless steel surfaces using a scanning Auger microprobe that has elemental discrimination. Here, the spreading of lithium occurred at room temperature (when lithium is a solid) from one location at a speed of 0.62 μm/day under ultrahigh vacuum conditions. Separatemore » experiments using temperature programmed desorption (TPD) investigated bonding energetics between monolayer-scale films of lithium and stainless steel. While multilayer lithium desorption from stainless steel begins to occur just above 500 K (E des = 1.54 eV), sub-monolayer Li desorption occurred in a TPD peak at 942 K (E des = 2.52 eV) indicating more energetically favorable lithium-stainless steel bonding (in the absence of an oxidation layer) than lithium lithium bonding.« less

  17. Spreading of lithium on a stainless steel surface at room temperature

    NASA Astrophysics Data System (ADS)

    Skinner, C. H.; Capece, A. M.; Roszell, J. P.; Koel, B. E.

    2016-01-01

    Lithium conditioned plasma facing surfaces have lowered recycling and enhanced plasma performance on many fusion devices and liquid lithium plasma facing components are under consideration for future machines. A key factor in the performance of liquid lithium components is the wetting by lithium of its container. We have observed the surface spreading of lithium from a mm-scale particle to adjacent stainless steel surfaces using a scanning Auger microprobe that has elemental discrimination. The spreading of lithium occurred at room temperature (when lithium is a solid) from one location at a speed of 0.62 μm/day under ultrahigh vacuum conditions. Separate experiments using temperature programmed desorption (TPD) investigated bonding energetics between monolayer-scale films of lithium and stainless steel. While multilayer lithium desorption from stainless steel begins to occur just above 500 K (Edes = 1.54 eV), sub-monolayer Li desorption occurred in a TPD peak at 942 K (Edes = 2.52 eV) indicating more energetically favorable lithium-stainless steel bonding (in the absence of an oxidation layer) than lithium-lithium bonding.

  18. Adsorption, Desorption, and Displacement Kinetics of H2O and CO2 on Forsterite, Mg2SiO4(011)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, R. Scott; Li, Zhenjun; Dohnalek, Zdenek

    We have examined the adsorbate-substrate interaction kinetics of CO2 and H2O on a natural forsterite crystal surface, Mg2SiO4(011), with 10-15% of substitutional Fe2+. We use temperature programmed desorption (TPD) and molecular beam techniques to determine the adsorption, desorption, and displacement kinetics for H2O and CO2. Neither CO2 nor H2O has distinct sub-monolayer desorption peaks but instead both have a broad continuous desorption feature that evolve smoothly into multilayer desorption. Inversion of the monolayer coverage spectra for both molecules reveals that the corresponding binding energies for H2O are greater than that for CO2 on all sites. The relative strength of thesemore » interactions is the dominant factor in the competitive adsorption/displacement kinetics. In experiments where the two adsorbates are co-dosed, H2O always binds to the highest energy binding sites available and displaces CO2. The onset of CO2 displacement by H2O occurs between 65 and 75 K.« less

  19. Fluorogenic DNA Sequencing in PDMS Microreactors

    PubMed Central

    Sims, Peter A.; Greenleaf, William J.; Duan, Haifeng; Xie, X. Sunney

    2012-01-01

    We have developed a multiplex sequencing-by-synthesis method combining terminal-phosphate labeled fluorogenic nucleotides (TPLFNs) and resealable microreactors. In the presence of phosphatase, the incorporation of a non-fluorescent TPLFN into a DNA primer by DNA polymerase results in a fluorophore. We immobilize DNA templates within polydimethylsiloxane (PDMS) microreactors, sequentially introduce one of the four identically labeled TPLFNs, seal the microreactors, allow template-directed TPLFN incorporation, and measure the signal from the fluorophores trapped in the microreactors. This workflow allows sequencing in a manner akin to pyrosequencing but without constant monitoring of each microreactor. With cycle times of <10 minutes, we demonstrate 30 base reads with ∼99% raw accuracy. “Fluorogenic pyrosequencing” combines benefits of pyrosequencing, such as rapid turn-around, native DNA generation, and single-color detection, with benefits of fluorescence-based approaches, such as highly sensitive detection and simple parallelization. PMID:21666670

  20. A high efficiency microreactor with Pt/ZnO nanorod arrays on the inner wall for photodegradation of phenol.

    PubMed

    Zhang, Quan; Zhang, Qinghong; Wang, Hongzhi; Li, Yaogang

    2013-06-15

    A high efficiency microreactor with Pt coated ZnO (Pt/ZnO) nanorod arrays on the inner wall was successfully fabricated by pumping a Pt sol into the microchannel containing preformed ZnO nanorod arrays. Phenol was selected as a persistent organic pollutant to evaluate the photocatalytic performance of the microreactors. The microreactor which was coated by Pt sol for 5 min showed the best photocatalytic performance compared with other Pt/ZnO nanorod array-modified microreactors. The presence of Pt nanoparticles on the surfaces of ZnO nanorods promoted the separation of photoinduced electron-hole pairs and thus enhanced the photocatalytic activity. In addition, the recyclable property of the microcreator was investigated. It was found that the microreactor displayed higher durability during the continuous photocatalytic process. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Low-temperature thermal reduction of graphene oxide: In situ correlative structural, thermal desorption, and electrical transport measurements

    NASA Astrophysics Data System (ADS)

    Lipatov, Alexey; Guinel, Maxime J.-F.; Muratov, Dmitry S.; Vanyushin, Vladislav O.; Wilson, Peter M.; Kolmakov, Andrei; Sinitskii, Alexander

    2018-01-01

    Elucidation of the structural transformations in graphene oxide (GO) upon reduction remains an active and important area of research. We report the results of in situ heating experiments, during which electrical, mass spectrometry, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and transmission electron microscopy (TEM) measurements were carried out correlatively. The simultaneous electrical and temperature programmed desorption measurements allowed us to correlate the onset of the increase in the electrical conductivity of GO by five orders of magnitude at about 150 °C with the maxima of the rates of desorption of H2O, CO, and CO2. Interestingly, this large conductivity change happens at an intermediate level of the reduction of GO, which likely corresponds to the point when the graphitic domains become large enough to enable percolative electronic transport. We demonstrate that the gas desorption is intimately related to (i) the changes in the chemical structure of GO detected by XPS and Raman spectroscopy and (ii) the formation of nanoscopic holes in GO sheets revealed by TEM. These in situ observations provide a better understanding of the mechanism of the GO thermal reduction.

  2. The thermal decomposition of the benzyl radical in a heated micro-reactor. II. Pyrolysis of the tropyl radical

    DOE PAGES

    Buckingham, Grant T.; Porterfield, Jessica P.; Kostko, Oleg; ...

    2016-07-05

    Cycloheptatrienyl (tropyl) radical, C 7H 7, was cleanly produced in the gas-phase, entrained in He or Ne carrier gas, and subjected to a set of flash-pyrolysis micro-reactors. In this study, the pyrolysis products resulting from C 7H 7 were detected and identified by vacuum ultraviolet photoionization mass spectrometry. Complementary product identification was provided by infrared absorption spectroscopy. Pyrolysis pressures in the micro-reactor were roughly 200 Torr and residence times were approximately 100 μs. Thermal cracking of tropyl radical begins at 1100 K and the products from pyrolysis of C 7H 7 are only acetylene and cyclopentadienyl radicals. Tropyl radicals domore » not isomerize to benzyl radicals at reactor temperatures up to 1600 K. Heating samples of either cycloheptatriene or norbornadiene never produced tropyl (C 7H 7) radicals but rather only benzyl (C 6H 5CH 2). The thermal decomposition of benzyl radicals has been reconsidered without participation of tropyl radicals. There are at least three distinct pathways for pyrolysis of benzyl radical: the Benson fragmentation, the methyl-phenyl radical, and the bridgehead norbornadienyl radical. These three pathways account for the majority of the products detected following pyrolysis of all of the isotopomers: C 6H 5CH 2, C 6H 5CD 2, C 6D 5CH 2, and C 6H 5 13CH 2. Finally, analysis of the temperature dependence for the pyrolysis of the isotopic species (C 6H 5CD 2, C 6D 5CH 2, and C 6H 5 13CH 2) suggests the Benson fragmentation and the norbornadienyl pathways open at reactor temperatures of 1300 K while the methyl-phenyl radical channel becomes active at slightly higher temperatures (1500 K).« less

  3. The thermal decomposition of the benzyl radical in a heated micro-reactor. II. Pyrolysis of the tropyl radical

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buckingham, Grant T.; National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden Colorado 80401; Porterfield, Jessica P.

    2016-07-07

    Cycloheptatrienyl (tropyl) radical, C{sub 7}H{sub 7}, was cleanly produced in the gas-phase, entrained in He or Ne carrier gas, and subjected to a set of flash-pyrolysis micro-reactors. The pyrolysis products resulting from C{sub 7}H{sub 7} were detected and identified by vacuum ultraviolet photoionization mass spectrometry. Complementary product identification was provided by infrared absorption spectroscopy. Pyrolysis pressures in the micro-reactor were roughly 200 Torr and residence times were approximately 100 μs. Thermal cracking of tropyl radical begins at 1100 K and the products from pyrolysis of C{sub 7}H{sub 7} are only acetylene and cyclopentadienyl radicals. Tropyl radicals do not isomerize tomore » benzyl radicals at reactor temperatures up to 1600 K. Heating samples of either cycloheptatriene or norbornadiene never produced tropyl (C{sub 7}H{sub 7}) radicals but rather only benzyl (C{sub 6}H{sub 5}CH{sub 2}). The thermal decomposition of benzyl radicals has been reconsidered without participation of tropyl radicals. There are at least three distinct pathways for pyrolysis of benzyl radical: the Benson fragmentation, the methyl-phenyl radical, and the bridgehead norbornadienyl radical. These three pathways account for the majority of the products detected following pyrolysis of all of the isotopomers: C{sub 6}H{sub 5}CH{sub 2}, C{sub 6}H{sub 5}CD{sub 2}, C{sub 6}D{sub 5}CH{sub 2}, and C{sub 6}H{sub 5}{sup 13}CH{sub 2}. Analysis of the temperature dependence for the pyrolysis of the isotopic species (C{sub 6}H{sub 5}CD{sub 2}, C{sub 6}D{sub 5}CH{sub 2}, and C{sub 6}H{sub 5}{sup 13}CH{sub 2}) suggests the Benson fragmentation and the norbornadienyl pathways open at reactor temperatures of 1300 K while the methyl-phenyl radical channel becomes active at slightly higher temperatures (1500 K).« less

  4. Rotational state modification and fast ortho-para conversion of H2 trapped within the highly anisotropic potential of Pd(210)

    NASA Astrophysics Data System (ADS)

    Ohno, S.; Ivanov, D.; Ogura, S.; Wilde, M.; Arguelles, E. F.; Diño, W. A.; Kasai, H.; Fukutani, K.

    2018-02-01

    The rotational state and ortho-para conversion of H2 on a Pd(210) surface is investigated with rotational-state-selective temperature-programmed desorption (RS-TPD) and theoretical calculations. The isotope dependence of TPD shows a higher desorption energy for D2 than that for H2, which is ascribed to the rotational and zero-point vibrational energies. The RS-TPD data show that the desorption energy of H2(J =1 ) (J : rotational quantum number) is higher than that of H2(J =0 ). This is due to the orientationally anisotropic potential confining the adsorbed H2, which is in agreement with theoretical calculations. Furthermore, the H2 desorption intensity ratio in J =1 and J =0 indicates fast ortho-para conversion in the adsorption state, which we estimate to be of the order of 1 s.

  5. Rapid screening of pharmaceutical drugs using thermal desorption - SALDI mass spectrometry

    NASA Astrophysics Data System (ADS)

    Grechnikov, A. A.; Kubasov, A. E.; Georgieva, V. B.; Borodkov, A. S.; Nikiforov, S. M.; Simanovsky, Ya O.; Alimpiev, S. S.

    2012-12-01

    A novel approach to the rapid screening of pharmaceutical drugs by surface assisted laser desorption-ionization (SALDI) mass spectrometry with the rotating ball interface coupled with temperature programmed thermal desorption has been developed. Analytes were thermally desorbed and deposited onto the surface of amorphous silicon substrate attached to the rotating ball. The ball was rotated and the deposited analytes were analyzed using SALDI. The effectiveness of coupling SALDI mass spectrometry with thermal desorption was evaluated by the direct and rapid analysis of tablets containing lidocaine, diphenhydramine and propranolol without any sample pretreatment. The overall duration of the screening procedure was 30÷40 sec. Real urine samples were studied for drug analysis. It is shown that with simple preparation steps, urine samples can be quantitatively analyzed using the proposed technique with the detection limits in the range of 0.2÷0.5 ng/ml.

  6. Hydrogen production through aqueous-phase reforming of ethylene glycol in a washcoated microchannel.

    PubMed

    D'Angelo, M Fernanda Neira; Ordomsky, Vitaly; Paunovic, Violeta; van der Schaaf, John; Schouten, Jaap C; Nijhuis, T Alexander

    2013-09-01

    Aqueous-phase reforming (APR) of biocarbohydrates is conducted in a catalytically stable washcoated microreactor where multiphase hydrogen removal enhances hydrogen efficiency. Single microchannel experiments are conducted following a simplified model based on the microreactor concept. A coating method to deposit a Pt-based catalyst on the microchannel walls is selected and optimized. APR reactivity tests are performed by using ethylene glycol as the model compound. Optimum results are achieved with a static washcoating technique; a highly uniform and well adhered 5 μm layer is deposited on the walls of a 320 μm internal diameter (ID) microchannel in one single step. During APR of ethylene glycol, the catalyst layer exhibits high stability over 10 days after limited initial deactivation. The microchannel presents higher conversion and selectivity to hydrogen than a fixed-bed reactor. The benefits of using a microreactor for APR can be further enhanced by utilizing increased Pt loadings, higher reaction temperatures, and larger carbohydrates (e.g., glucose). The use of microtechnology for aqueous-phase reforming will allow for a great reduction in the reformer size, thus rendering it promising for distributed hydrogen production. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Triple-channel microreactor for biphasic gas-liquid reactions: Photosensitized oxygenations.

    PubMed

    Maurya, Ram Awatar; Park, Chan Pil; Kim, Dong-Pyo

    2011-01-01

    A triple-channel microreactor fabricated by means of a soft-lithography technique was devised for efficient biphasic gas-liquid reactions. The excellent performance of the microreactor was demonstrated by carrying out photosensitized oxygenations of α-terpinene, citronellol, and allyl alcohols.

  8. Dual-channel microreactor for gas-liquid syntheses.

    PubMed

    Park, Chan Pil; Kim, Dong-Pyo

    2010-07-28

    A microreactor consisting of two microfluidic channels that are separated by a thin membrane is devised for intimate contact between gas and liquid phases. Gas flowing in one microchannel can diffuse into the liquid flowing in the other microchannel through the thin membrane. An oxidative Heck reaction carried out in the dual-channel (DC) microreactor, in which gaseous oxygen plays a key role in the catalytic reaction, shows the significant improvement that can be made over the traditional batch reactor and the conventional segmental microreactor in terms of yield, selectivity, and reaction time. It also allows independent control of the flow of the gaseous reagent. The proposed DC microreactor should prove to be a powerful tool for fully exploring gas-liquid microchemistry.

  9. Triple-channel microreactor for biphasic gas–liquid reactions: Photosensitized oxygenations

    PubMed Central

    Maurya, Ram Awatar; Park, Chan Pil

    2011-01-01

    Summary A triple-channel microreactor fabricated by means of a soft-lithography technique was devised for efficient biphasic gas–liquid reactions. The excellent performance of the microreactor was demonstrated by carrying out photosensitized oxygenations of α-terpinene, citronellol, and allyl alcohols. PMID:21915221

  10. Hydrogenation and hydrogen intercalation of hexagonal boron nitride on Ni(1 1 1): reactivity and electronic structure

    NASA Astrophysics Data System (ADS)

    Späth, F.; Gebhardt, J.; Düll, F.; Bauer, U.; Bachmann, P.; Gleichweit, C.; Görling, A.; Steinrück, H.-P.; Papp, C.

    2017-09-01

    We investigate the reactivity of hexagonal boron nitride (h-BN) on a Ni(1 1 1) single crystal towards atomic hydrogen over a wide exposure range. Near edge x-ray absorption fine structure and x-ray photoelectron spectroscopy (XPS) show that for low hydrogen exposures hydrogenation of the h-BN sheet is found. In contrast, intercalation of hydrogen between h-BN and the Ni(1 1 1) substrate occurs for high exposures. For intermediate regimes, a mixture of intercalation and hydrogenation is observed. From temperature-programmed desorption and temperature-programmed XPS experiments, we conclude that the hydrogen covalently bound to h-BN is rather stable with a desorption temperature of 600 K, while intercalated hydrogen is desorbing already at 390 K. Further insight into the structural arrangements and the thermodynamics of the system is obtained by comparing our experimental results with extensive density-functional theory calculations. Together with ultraviolet photoelectron spectroscopy measurements, the calculations provide detailed insight into the influence of hydrogenation on the electronic structure of h-BN.

  11. Thermal desorption of formamide and methylamine from graphite and amorphous water ice surfaces

    NASA Astrophysics Data System (ADS)

    Chaabouni, H.; Diana, S.; Nguyen, T.; Dulieu, F.

    2018-04-01

    Context. Formamide (NH2CHO) and methylamine (CH3NH2) are known to be the most abundant amine-containing molecules in many astrophysical environments. The presence of these molecules in the gas phase may result from thermal desorption of interstellar ices. Aims: The aim of this work is to determine the values of the desorption energies of formamide and methylamine from analogues of interstellar dust grain surfaces and to understand their interaction with water ice. Methods: Temperature programmed desorption (TPD) experiments of formamide and methylamine ices were performed in the sub-monolayer and monolayer regimes on graphite (HOPG) and non-porous amorphous solid water (np-ASW) ice surfaces at temperatures 40-240 K. The desorption energy distributions of these two molecules were calculated from TPD measurements using a set of independent Polanyi-Wigner equations. Results: The maximum of the desorption of formamide from both graphite and ASW ice surfaces occurs at 176 K after the desorption of H2O molecules, whereas the desorption profile of methylamine depends strongly on the substrate. Solid methylamine starts to desorb below 100 K from the graphite surface. Its desorption from the water ice surface occurs after 120 K and stops during the water ice sublimation around 150 K. It continues to desorb from the graphite surface at temperatures higher than160 K. Conclusions: More than 95% of solid NH2CHO diffuses through the np-ASW ice surface towards the graphitic substrate and is released into the gas phase with a desorption energy distribution Edes = 7460-9380 K, which is measured with the best-fit pre-exponential factor A = 1018 s-1. However, the desorption energy distribution of methylamine from the np-ASW ice surface (Edes = 3850-8420 K) is measured with the best-fit pre-exponential factor A = 1012 s-1. A fraction of solid methylamine monolayer of roughly 0.15 diffuses through the water ice surface towards the HOPG substrate. This small amount of methylamine desorbs later with higher binding energies (5050-8420 K) that exceed that of the crystalline water ice (Edes = 4930 K), which is calculated with the same pre-exponential factor A = 1012 s-1. The best wetting ability of methylamine compared to H2O molecules makes CH3NH2 molecules a refractory species for low coverage. Other binding energies of astrophysical relevant molecules are gathered and compared, but we could not link the chemical functional groups (amino, methyl, hydroxyl, and carbonyl) with the binding energy properties. Implications of these high binding energies are discussed.

  12. Sorption-desorption of fipronil in some soils, as influenced by ionic strength, pH and temperature.

    PubMed

    Singh, Anand; Srivastava, Anjana; Srivastava, Prakash C

    2016-08-01

    The sorption-desorpion of fipronil insecticide is influenced by soil properties and variables such as pH, ionic strength, temperature, etc. A better understanding of soil properties and these variables in sorption-desorption processes by quantification of fipronil using liquid chromatography may help to optimise suitable soil management to reduce contamination of surface and groundwaters. In the present investigation, the sorption-desorption of fipronil was studied in some soils at varying concentrations, ionic strengths, temperatures and pH values, and IR specta of fipronil sorbed onto soils were studied. The sorption of fipronil onto soils conformed to the Freundlich isotherm model. The sorption-desorption of fipronil varied with ionic strength in each of the soils. Sorption decreased but desorption increased with temperature. Sorption did not change with increasing pH, but for desorption there was no correlation. The cumulative desorption of fipronil from soil was significantly and inversely related to soil organic carbon content. IR spectra of sorbed fipronil showed the involvement of amino, nitrile, sulfone, chloro and fluoro groups and the pyrazole nucleus of the fipronil molecule. The sorption of fipronil onto soils appeared to be a physical process with the involvement of hydrogen bonding. An increase in soil organic carbon may help to reduce desorption of fipronil. High-temperature regimes are more conducive to the desorption. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  13. Synthesis of copper nanocolloids using a continuous flow based microreactor

    NASA Astrophysics Data System (ADS)

    Xu, Lei; Peng, Jinhui; Srinivasakannan, C.; Chen, Guo; Shen, Amy Q.

    2015-11-01

    The copper (Cu) nanocolloids were prepared by sodium borohydride (NaBH4) reduction of metal salt solutions in a T-shaped microreactor at room temperature. The influence of NaBH4 molar concentrations on copper particle's diameter, morphology, size distribution, and elemental compositions has been investigated by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The ultraviolet-visible spectroscopy (UV-vis) was used to verify the chemical compounds of nanocolloids and estimate the average size of copper nanocolloids. The synthesized copper nanocolloids were uniform in size and non-oxidized. A decrease in the mean diameter of copper nanocolloids was observed with increasing NaBH4 molar concentrations. The maximum mean diameter (4.25 nm) occurred at the CuSO4/NaBH4 molar concentration ratio of 1:2.

  14. Design of a Metal Oxide-Organic Framework (MoOF) Foam Microreactor: Solar-Induced Direct Pollutant Degradation and Hydrogen Generation.

    PubMed

    Zhu, Liangliang; Fu Tan, Chuan; Gao, Minmin; Ho, Ghim Wei

    2015-12-16

    A macroporous carbon network combined with mesoporous catalyst immobilization by a template method gives a metal-oxide-organic framework (MoOF) foam microreactor that readily soaks up pollutants and localizes solar energy in itself, leading to effective degradation of water pollutants (e.g., methyl orange (MO) and also hydrogen generation. The cleaned-up water can be removed from the microreactor simply by compression, and the microreactor used repeatedly. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Vinyl functionalized silica hybrid monolith-based trypsin microreactor for on line digestion and separation via thiol-ene "click" strategy.

    PubMed

    Chen, Yingzhuang; Wu, Minghuo; Wang, Keyi; Chen, Bo; Yao, Shouzhuo; Zou, Hanfa; Nie, Lihua

    2011-11-04

    A novel thiol-ene "click" strategy for the preparation of monolithic trypsin microreactor was proposed. The hybrid organic-inorganic monolithic capillary column with ene-functionality was fabricated by sol-gel process using tetramethoxysilane (TMOS) and γ-methacryloxypropyltrimethoxysilane (γ-MAPS) as precursors. The disulfide bonds of trypsin were reduced to form free thiol groups. Then the trypsin containing free thiol groups was attached on the γ-MAPS hybrid monolithic column with ene-functionality via thiol-ene click chemistry to form a trypsin microreactor. The activity of the trypsin microreactor was characterized by detecting the substrate (Nα-p-tosyl-L-arginine methyl ester hydrochloride, TAME) and the product (Nα-p-tosyl-L-arginine, TA) with on-line capillary zone electrophoresis. After investigating various synthesizing conditions, it was found that the microreactor with poly(N,N'-methylenebisacrylamide) as spacer can deliver the highest activity, yielding a rapid reaction rate. After repeatedly sampling and analyzing for 100 times, the monolithic trypsin microreactor still remained 87.5% of its initial activity. It was demonstrated that thiol-ene "click" strategy for the construction of enzyme microreactor is a promising method for the highly selective immobilization of proteins under mild conditions, especially enzymes with free thiol radicals. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Gas bubble formation and its pressure signature in T-junction of a microreactor

    NASA Astrophysics Data System (ADS)

    Pouya, Shahram; Koochesfahani, Manoochehr

    2013-11-01

    The segmented gas-liquid flow is of particular interest in microreactors used for high throughput material synthesis with enhanced mixing and more efficient reaction. A typical geometry to introduce gas plugs into the reactor is a T-junction where the dispersed liquid is squeezed and pinched by the continuous fluid in the main branch of the junction. We present experimental data of time resolved pressure along with synchronous imaging of the drop formation at the junction to show the transient behavior of the process. The stability of the slug regime and the regularity of the slug/plug pattern are investigated in this study. This work was supported by the CRC Program of the National Science Foundation, Grant Number CHE-0714028.

  17. Sorption of hydrogen by silica aerogel at low-temperatures

    NASA Astrophysics Data System (ADS)

    Dolbin, A. V.; Khlistyuck, M. V.; Esel'son, V. B.; Gavrilko, V. G.; Vinnikov, N. A.; Basnukaeva, R. M.; Martsenuk, V. E.; Veselova, N. V.; Kaliuzhnyi, I. A.; Storozhko, A. V.

    2018-02-01

    The programmed thermal desorption method is used at temperatures of 7-95 K to study the sorption and subsequent desorption of hydrogen by a sample of silica aerogel. Physical sorption of hydrogen owing to the weak van-der-Waals interaction of hydrogen molecules with the silicon dioxide walls of the pores of the sample was observed over the entire temperature range. The total capacity of the aerogel sample for hydrogen was ˜1.5 mass %. It was found that when the sample temperature was lowered from 95 to 60 K, the characteristic sorption times for hydrogen by the silica aerogel increase; this is typical of thermally activated diffusion (Ea ≈ 408 K). For temperatures of 15-45 K the characteristic H2 sorption times depended weakly on temperature, presumably because of the predominance of a tunnel mechanism for diffusion over thermally activated diffusion. Below 15 K the characteristic sorption times increase somewhat as the temperature is lowered; this may be explained by the formation of a monolayer of H2 molecules on the surface of the aerogel grains.

  18. Catalytically Enhanced Hydrogen Sorption in Mg-MgH2 by Coupling Vanadium-Based Catalyst and Carbon Nanotubes

    PubMed Central

    Kadri, Atikah; Jia, Yi; Chen, Zhigang; Yao, Xiangdong

    2015-01-01

    Mg (MgH2)-based composites, using carbon nanotubes (CNTs) and pre-synthesized vanadium-based complex (VCat) as the catalysts, were prepared by high-energy ball milling technique. The synergistic effect of coupling CNTs and VCat in MgH2 was observed for an ultra-fast absorption rate of 6.50 wt. % of hydrogen per minute and 6.50 wt. % of hydrogen release in 10 min at 200 °C and 300 °C, respectively. The temperature programmed desorption (TPD) results reveal that coupling VCat and CNTs reduces both peak and onset temperatures by more than 60 °C and 114 °C, respectively. In addition, the presence of both VCat and CNTs reduces the enthalpy and entropy of desorption of about 7 kJ/mol H2 and 11 J/mol H2·K, respectively, as compared to those of the commercial MgH2, which ascribe to the decrease of desorption temperature. From the study of the effect of CNTs milling time, it is shown that partially destroyed CNTs (shorter milling time) are better to enhance the hydrogen sorption performance.

  19. Sulfation of ceria-zirconia model automotive emissions control catalysts

    NASA Astrophysics Data System (ADS)

    Nelson, Alan Edwin

    Cerium-zirconium mixed metal oxides are used in automotive emissions control catalysts to regulate the partial pressure of oxygen near the catalyst surface. The near surface oxygen partial pressure is regulated through transfer of atomic oxygen from the ceria-zirconia solid matrix to the platinum group metals to form metal oxides capable of oxidizing carbon monoxide and unburned hydrocarbons. Although the addition of zirconium in the cubic lattice of ceria increases the oxygen storage capacity and thermal stability of the ceria matrix, the cerium-zirconium oxide system remains particularly susceptible to deactivation from sulfur compounds. While the overall effect of sulfur on these systems is understood (partially irreversible deactivation), the fundamental and molecular interaction of sulfur with ceria-zirconia remains a challenging problem. Ceria-zirconia metal oxide solid solutions have been prepared through co-precipitation with nitrate precursors. The prepared powders were calcined and subsequently formed into planer wafers and characterized for chemical and physical attributes. The prepared samples were subsequently exposed to a sulfur dioxide based environment and characterized with spectroscopic techniques to characterize the extent of sulfation and the nature of surface sulfur species. The extent of sulfation of the model ceria-zirconia systems was characterized with Auger electron spectroscopy (AES) prior to and after treatment in a microreactor. Strong dependencies were observed between the atomic ratio of ceria to zirconia and the extent of sulfation. In addition, the partial pressure of sulfur dioxide during treatments also correlated to the extent of sulfation, while temperature only slightly effected the extent of sulfation. The AES data suggests the gas phase sulfur dioxide preferentially chemisorbs on surface ceria atoms and the extent of sulfation is heavily dependent on sulfur dioxide concentrations and only slightly dependent on catalyst temperatures, as confirmed by thermal programmed desorption (TPD). While hydrogen exposure indicated slight sulfur removal, exposure to a redox environment or atmosphere nearly eliminated the quantity of chemisorbed surface sulfur. The nature of sulfur removal is attributed to the inherent redox properties of ceria-zirconia systems. The complete analysis provides mechanistic insight into sulfation dependencies and fundamental information regarding sulfur adsorption on ceria-zirconia model automotive emissions control systems.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Podlivaev, A. I., E-mail: AIPodlivayev@mephi.ru; Openov, L. A.

    The initial stage of hydrogen desorption from fully hydrogenated carbon nanotubes (3.0) and (2.2) is numerically studied by the molecular dynamics method. The temperature dependence of the desorption rate is directly determined at T = 1800–2500 K. The characteristic desorption times are determined at temperatures outside this range by extrapolation. It is shown that hydrogen desorption leads to the appearance of electronic states in the band gap.

  1. 40 CFR 63.3167 - How do I establish the add-on control device operating limits during the performance test?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... record the desorption gas inlet temperature at least once every 15 minutes during each of the three runs... and record the average desorption gas inlet temperature. The minimum operating limit for the concentrator is 8 degrees Celsius (15 degrees Fahrenheit) below the average desorption gas inlet temperature...

  2. 40 CFR 63.3167 - How do I establish the add-on control device operating limits during the performance test?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... record the desorption gas inlet temperature at least once every 15 minutes during each of the three runs... and record the average desorption gas inlet temperature. The minimum operating limit for the concentrator is 8 degrees Celsius (15 degrees Fahrenheit) below the average desorption gas inlet temperature...

  3. 40 CFR 63.3167 - How do I establish the add-on control device operating limits during the performance test?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... record the desorption gas inlet temperature at least once every 15 minutes during each of the three runs... and record the average desorption gas inlet temperature. The minimum operating limit for the concentrator is 8 degrees Celsius (15 degrees Fahrenheit) below the average desorption gas inlet temperature...

  4. 40 CFR 63.3167 - How do I establish the add-on control device operating limits during the performance test?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... record the desorption gas inlet temperature at least once every 15 minutes during each of the three runs... and record the average desorption gas inlet temperature. The minimum operating limit for the concentrator is 8 degrees Celsius (15 degrees Fahrenheit) below the average desorption gas inlet temperature...

  5. The Molecular Volcano Revisited: Determination of Crack Propagation and Distribution During the Crystallization of Nanoscale Amorphous Solid Water Films.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    May, Robert A.; Smith, R. Scott; Kay, Bruce D.

    2012-02-02

    Temperature programmed desorption (TPD) is utilized to determine the length distribution of cracks formed through amorphous solid water (ASW) during crystallization. This distribution is determined by monitoring how the thickness of an ASW overlayer alters desorption of an underlayer of O2. As deposited the ASW overlayer prevents desorption of O2. During crystallization, cracks form through the ASW overlayer and open a path to vacuum which allows O2 to escape in a rapid episodic release known as the 'molecular volcano'. Sufficiently thick ASW overlayers further trap O2 resulting in a second O2 desorption peak commensurate with desorption of the last ofmore » the ASW overlayer. The evolution of this trapping peak with overlayer thickness is the basis for determining the distribution of crystallization induced cracks through the ASW. Reflection adsorption infrared spectroscopy (RAIRS) and TPD of multicomponent parfait structures of ASW, O2 and Kr indicate that a preponderance of these cracks propagate down from the outer surface of the ASW.« less

  6. Tunneling effects in the kinetics of helium and hydrogen isotopes desorption from single-walled carbon nanotube bundles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danilchenko, B. A., E-mail: danil@iop.kiev.ua; Yaskovets, I. I.; Uvarova, I. Y.

    2014-04-28

    The kinetics of desorption both helium isotopes and molecules of hydrogen and deuterium from open-ended or γ-irradiated single-walled carbon nanotube bundles was investigated in temperature range of 10–300 K. The gases desorption rates obey the Arrhenius law at high temperatures, deviate from it with temperature reduction and become constant at low temperatures. These results indicate the quantum nature of gas outflow from carbon nanotube bundles. We had deduced the crossover temperature below which the quantum corrections to the effective activation energy of desorption become significant. This temperature follows linear dependence against the inverse mass of gas molecule and is consistent withmore » theoretical prediction.« less

  7. Thermal transformation of bioactive caffeic acid on fumed silica seen by UV-Vis spectroscopy, thermogravimetric analysis, temperature programmed desorption mass spectrometry and quantum chemical methods.

    PubMed

    Kulik, Tetiana V; Lipkovska, Natalia O; Barvinchenko, Valentyna M; Palyanytsya, Borys B; Kazakova, Olga A; Dudik, Olesia O; Menyhárd, Alfréd; László, Krisztina

    2016-05-15

    Thermochemical studies of hydroxycinnamic acid derivatives and their surface complexes are important for the pharmaceutical industry, medicine and for the development of technologies of heterogeneous biomass pyrolysis. In this study, structural and thermal transformations of caffeic acid complexes on silica surfaces were studied by UV-Vis spectroscopy, thermogravimetric analysis, temperature programmed desorption mass spectrometry (TPD MS) and quantum chemical methods. Two types of caffeic acid surface complexes are found to form through phenolic or carboxyl groups. The kinetic parameters of the chemical reactions of caffeic acid on silica surface are calculated. The mechanisms of thermal transformations of the caffeic chemisorbed surface complexes are proposed. Thermal decomposition of caffeic acid complex chemisorbed through grafted ester group proceeds via three parallel reactions, producing ketene, vinyl and acetylene derivatives of 1,2-dihydroxybenzene. Immobilization of phenolic acids on the silica surface improves greatly their thermal stability. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. A convenient enantioselective CBS-reduction of arylketones in flow-microreactor systems.

    PubMed

    De Angelis, Sonia; De Renzo, Maddalena; Carlucci, Claudia; Degennaro, Leonardo; Luisi, Renzo

    2016-05-04

    A convenient, versatile, and green CBS-asymmetric reduction of aryl and heteroaryl ketones has been developed by using the microreactor technology. The study demonstrates that it is possible to handle borane solution safely within microreactors and that the reaction performs well using 2-MeTHF as a greener solvent.

  9. Membrane microreactors: gas-liquid reactions made easy.

    PubMed

    Noël, Timothy; Hessel, Volker

    2013-03-01

    Getting phases together: Membrane microreactors provide new opportunities for gas-liquid reactions. The advantages of this microreactor concept are a large interfacial area, a greater flexibility with regard to flow rates, and the opportunity to immobilize a catalyst on the membrane. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Desorption and sublimation kinetics for fluorinated aluminum nitride surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, Sean W., E-mail: sean.king@intel.com; Davis, Robert F.; Nemanich, Robert J.

    2014-09-01

    The adsorption and desorption of halogen and other gaseous species from surfaces is a key fundamental process for both wet chemical and dry plasma etch and clean processes utilized in nanoelectronic fabrication processes. Therefore, to increase the fundamental understanding of these processes with regard to aluminum nitride (AlN) surfaces, temperature programmed desorption (TPD) and x-ray photoelectron spectroscopy (XPS) have been utilized to investigate the desorption kinetics of water (H{sub 2}O), fluorine (F{sub 2}), hydrogen (H{sub 2}), hydrogen fluoride (HF), and other related species from aluminum nitride thin film surfaces treated with an aqueous solution of buffered hydrogen fluoride (BHF) dilutedmore » in methanol (CH{sub 3}OH). Pre-TPD XPS measurements of the CH{sub 3}OH:BHF treated AlN surfaces showed the presence of a variety of Al-F, N-F, Al-O, Al-OH, C-H, and C-O surfaces species in addition to Al-N bonding from the AlN thin film. The primary species observed desorbing from these same surfaces during TPD measurements included H{sub 2}, H{sub 2}O, HF, F{sub 2}, and CH{sub 3}OH with some evidence for nitrogen (N{sub 2}) and ammonia (NH{sub 3}) desorption as well. For H{sub 2}O, two desorption peaks with second order kinetics were observed at 195 and 460 °C with activation energies (E{sub d}) of 51 ± 3 and 87 ± 5 kJ/mol, respectively. Desorption of HF similarly exhibited second order kinetics with a peak temperature of 475 °C and E{sub d} of 110 ± 5 kJ/mol. The TPD spectra for F{sub 2} exhibited two peaks at 485 and 585 °C with second order kinetics and E{sub d} of 62 ± 3 and 270 ± 10 kJ/mol, respectively. These values are in excellent agreement with previous E{sub d} measurements for desorption of H{sub 2}O from SiO{sub 2} and AlF{sub x} from AlN surfaces, respectively. The F{sub 2} desorption is therefore attributed to fragmentation of AlF{sub x} species in the mass spectrometer ionizer. H{sub 2} desorption exhibited an additional high temperature peak at 910 °C with E{sub d} = 370 ± 10 kJ/mol that is consistent with both the dehydrogenation of surface AlOH species and H{sub 2} assisted sublimation of AlN. Similarly, N{sub 2} exhibited a similar higher temperature desorption peak with E{sub d} = 535 ± 40 kJ/mol that is consistent with the activation energy for direct sublimation of AlN.« less

  11. Process intensification for the production of hydroxyapatite nanoparticles

    NASA Astrophysics Data System (ADS)

    Castro, Filipa Juliana Fernandes

    Precipitation processes are widely used in chemical industry for the production of particulate solids. In these processes, the chemical and physical nature of synthesized particles is of key importance. The traditional stirred tank batch reactors are affected by non-uniform mixing of reactants, often resulting in broad particle size distribution. The main objective of this thesis was to apply meso and microreactors for the synthesis of hydroxyapatite (HAp) nanoparticles under near-physiological conditions of pH and temperature, in order to overcome the limitations associated with stirred tank batch reactors. Meso and microreactors offer unique features in comparison with conventional chemical reactors. Their high surface-to-volume ratio enables enhanced heat and mass transfer, as well as rapid and efficient mixing. In addition to low consumption of reagents, meso and microreactors are usually operated in continuous flow, making them attractive tools for high throughput experimentation. Precipitation of HAp was first studied in a stirred tank batch reactor, mixing being assured by a novel metal stirrer. HAp was synthetized by mixing diluted aqueous solutions of calcium hydroxide and orthophosphoric acid at 37 °C. After process optimization, a suspension of HAp nanoparticles with pH close to 7 was obtained for a mixing molar ratio Ca/P=1.33. The precipitation process was characterized by three stages: precipitation of amorphous calcium phosphate, transformation of amorphous calcium phosphate into HAp and growth of HAp crystals. The reaction system was further characterized based on equilibrium equations. The resolution of the system, which was possible with the knowledge of three process variables (temperature, pH and calcium concentration), allowed identifying and quantifying all the chemical species present in solution. The proposed model was validated by comparing the experimental and theoretical conductivity. Precipitation of HAp was then investigated in a meso oscillatory flow reactor (meso-OFR). The mesoreactor was first operated batchwise in a vertical tube and experiments were performed under the same conditions of temperature, reactants concentration and power density applied in the stirred tank batch reactor. Despite hydrodynamic conditions being not directly comparable, it was possible to assess the effectiveness of both reactors in terms of mixing and quality of the precipitated particles. The experimental results show the advantages of the meso-OFR over the stirred tank due to the production, about four times faster, of smaller and more uniform HAp nanoparticles. Afterwards, continuous-flow precipitation of HAp was carried out in one meso-OFR and in a series of eight meso-OFRs. Experiments were carried out using fixed frequency (f) and amplitude (x0), varying only the residence time. HAp nanoparticles were successfully obtained in both systems, mean particle size and aggregation degree of the prepared HAp particles decreasing with decreasing residence time. In the present work continuous-flow precipitation of HAp was also investigated in two ultrasonic microreactors. Initially, the process was carried out in a tubular microreactor immersed in an ultrasonic bath, where single-phase (laminar) and gas-liquid flow experiments were both performed. Continuous-flow precipitation of HAp in single-phase flow was then done in a Teflon microreactor with integrated piezoelectric actuator. Rod-like shape HAp nanoparticles were yielded in both reactors under near-physiological conditions of pH and temperature. Further, particles showed improved characteristics, namely in terms of size, shape, particle aggregation and crystallinity. In summary, scale-down of the HAp precipitation process has resulted in the formation of HAp nanoparticles with improved characteristics when compared with HAp particles prepared in a stirred tank batch reactor. Therefore, we believe that the work developed can be a useful contribution to the development of a platform for the continuous production of high quality HAp nanoparticles.

  12. Flow-through polymerase chain reaction inside a seamless 3D helical microreactor fabricated utilizing a silicone tube and a paraffin mold.

    PubMed

    Wu, Wenming; Trinh, Kieu The Loan; Lee, Nae Yoon

    2015-03-07

    We introduce a new strategy for fabricating a seamless three-dimensional (3D) helical microreactor utilizing a silicone tube and a paraffin mold. With this method, various shapes and sizes of 3D helical microreactors were fabricated, and a complicated and laborious photolithographic process, or 3D printing, was eliminated. With dramatically enhanced portability at a significantly reduced fabrication cost, such a device can be considered to be the simplest microreactor, developed to date, for performing the flow-through polymerase chain reaction (PCR).

  13. TPD IR studies of CO desorption from zeolites CuY and CuX

    NASA Astrophysics Data System (ADS)

    Datka, Jerzy; Kozyra, Paweł

    2005-06-01

    The desorption of CO from zeolites CuY and CuX was followed by TPD-IR method. This is a combination of temperature programmed desorption and IR spectroscopy. In this method, the status of activated zeolite (before adsorption), the process of adsorption, and the status of adsorbed molecules can be followed by IR spectroscopy, and the process of desorption (with linear temperature increase) can be followed both by IR spectroscopy and by mass spectrometry. IR spectra have shown two kinds of Cu + sites in both CuY and CuX. Low frequency (l.f.) band (2140 cm -1 in CuY and 2130 cm -1 in CuX) of adsorbed CO represents Cu + sites for which π back donation is stronger and σ donation is weaker whereas high frequency h.f. band (2160 cm -1 in CuY and 2155 cm -1 in CuX) represent Cu + sites for which π back donation is weaker and σ donation is stronger. The TPD-IR experiments evidenced that the Cu + sites represented by l.f. band bond CO more weakly than those represented by h.f. one, indicating that σ donation has more important impact to the strength of Cu +-CO bonding. On the contrary, π back donation has bigger contribution to the activation of adsorbed molecules.

  14. Expanding the capability of reaction-diffusion codes using pseudo traps and temperature partitioning: Applied to hydrogen uptake and release from tungsten

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simmonds, M. J.; Yu, J. H.; Wang, Y. Q.

    Simulating the implantation and thermal desorption evolution in a reaction-diffusion model requires solving a set of coupled differential equations that describe the trapping and release of atomic species in Plasma Facing Materials (PFMs). These fundamental equations are well outlined by the Tritium Migration Analysis Program (TMAP) which can model systems with no more than three active traps per atomic species. To overcome this limitation, we have developed a Pseudo Trap and Temperature Partition (PTTP) scheme allowing us to lump multiple inactive traps into one pseudo trap, simplifying the system of equations to be solved. For all temperatures, we show themore » trapping of atoms from solute is exactly accounted for when using a pseudo trap. However, a single effective pseudo trap energy can not well replicate the release from multiple traps, each with its own detrapping energy. However, atoms held in a high energy trap will remain trapped at relatively low temperatures, and thus there is a temperature range in which release from high energy traps is effectively inactive. By partitioning the temperature range into segments, a pseudo trap can be defined for each segment to account for multiple high energy traps that are actively trapping but are effectively not releasing atoms. With increasing temperature, as in controlled thermal desorption, the lowest energy trap is nearly emptied and can be removed from the set of coupled equations, while the next higher energy trap becomes an actively releasing trap. Each segment is thus calculated sequentially, with the last time step of a given segment solution being used as an initial input for the next segment as only the pseudo and actively releasing traps are modeled. This PTTP scheme is then applied to experimental thermal desorption data for tungsten (W) samples damaged with heavy ions, which display six distinct release peaks during thermal desorption. Without modifying the TMAP7 source code the PTTP scheme is shown to successfully model the D retention in all six traps. In conclusion, we demonstrate the full reconstruction from the plasma implantation phase through the controlled thermal desorption phase with detrapping energies near 0.9, 1.1, 1.4, 1.7, 1.9 and 2.1 eV for a W sample damaged at room temperature.« less

  15. Expanding the capability of reaction-diffusion codes using pseudo traps and temperature partitioning: Applied to hydrogen uptake and release from tungsten

    DOE PAGES

    Simmonds, M. J.; Yu, J. H.; Wang, Y. Q.; ...

    2018-06-04

    Simulating the implantation and thermal desorption evolution in a reaction-diffusion model requires solving a set of coupled differential equations that describe the trapping and release of atomic species in Plasma Facing Materials (PFMs). These fundamental equations are well outlined by the Tritium Migration Analysis Program (TMAP) which can model systems with no more than three active traps per atomic species. To overcome this limitation, we have developed a Pseudo Trap and Temperature Partition (PTTP) scheme allowing us to lump multiple inactive traps into one pseudo trap, simplifying the system of equations to be solved. For all temperatures, we show themore » trapping of atoms from solute is exactly accounted for when using a pseudo trap. However, a single effective pseudo trap energy can not well replicate the release from multiple traps, each with its own detrapping energy. However, atoms held in a high energy trap will remain trapped at relatively low temperatures, and thus there is a temperature range in which release from high energy traps is effectively inactive. By partitioning the temperature range into segments, a pseudo trap can be defined for each segment to account for multiple high energy traps that are actively trapping but are effectively not releasing atoms. With increasing temperature, as in controlled thermal desorption, the lowest energy trap is nearly emptied and can be removed from the set of coupled equations, while the next higher energy trap becomes an actively releasing trap. Each segment is thus calculated sequentially, with the last time step of a given segment solution being used as an initial input for the next segment as only the pseudo and actively releasing traps are modeled. This PTTP scheme is then applied to experimental thermal desorption data for tungsten (W) samples damaged with heavy ions, which display six distinct release peaks during thermal desorption. Without modifying the TMAP7 source code the PTTP scheme is shown to successfully model the D retention in all six traps. In conclusion, we demonstrate the full reconstruction from the plasma implantation phase through the controlled thermal desorption phase with detrapping energies near 0.9, 1.1, 1.4, 1.7, 1.9 and 2.1 eV for a W sample damaged at room temperature.« less

  16. An infrared measurement of chemical desorption from interstellar ice analogues

    NASA Astrophysics Data System (ADS)

    Oba, Y.; Tomaru, T.; Lamberts, T.; Kouchi, A.; Watanabe, N.

    2018-03-01

    In molecular clouds at temperatures as low as 10 K, all species except hydrogen and helium should be locked in the heterogeneous ice on dust grain surfaces. Nevertheless, astronomical observations have detected over 150 different species in the gas phase in these clouds. The mechanism by which molecules are released from the dust surface below thermal desorption temperatures to be detectable in the gas phase is crucial for understanding the chemical evolution in such cold clouds. Chemical desorption, caused by the excess energy of an exothermic reaction, was first proposed as a key molecular release mechanism almost 50 years ago1. Chemical desorption can, in principle, take place at any temperature, even below the thermal desorption temperature. Therefore, astrochemical network models commonly include this process2,3. Although there have been a few previous experimental efforts4-6, no infrared measurement of the surface (which has a strong advantage to quantify chemical desorption) has been performed. Here, we report the first infrared in situ measurement of chemical desorption during the reactions H + H2S → HS + H2 (reaction 1) and HS + H → H2S (reaction 2), which are key to interstellar sulphur chemistry2,3. The present study clearly demonstrates that chemical desorption is a more efficient process for releasing H2S into the gas phase than was previously believed. The obtained effective cross-section for chemical desorption indicates that the chemical desorption rate exceeds the photodesorption rate in typical interstellar environments.

  17. VizieR Online Data Catalog: IR absorbance spectra of CH4, C2H6, C3H8 & C4H10 (Turner+, 2018)

    NASA Astrophysics Data System (ADS)

    Turner, A. M.; Abplanalp, M. J.; Blair, T. J.; Dayuha, R.; Kaiser, R. I.

    2018-03-01

    In situ infrared data were collected by a Nicolet 6700 Fourier Transform Infrared Spectrometer at 4cm-1 resolution throughout the irradiation and temperature programmed desorption (TPD). (2 data files).

  18. The in situ generation and reactive quench of diazonium compounds in the synthesis of azo compounds in microreactors.

    PubMed

    Akwi, Faith M; Watts, Paul

    2016-01-01

    In this paper, a micro-fluidic optimized process for the continuous flow synthesis of azo compounds is presented. The continuous flow synthesis of Sudan II azo dye was used as a model reaction for the study. At found optimal azo coupling reaction temperature and pH an investigation of the optimum flow rates of the reactants for the diazotization and azo coupling reactions in Little Things Factory-MS microreactors was performed. A conversion of 98% was achieved in approximately 2.4 minutes and a small library of azo compounds was thus generated under these reaction conditions from couplers with aminated or hydroxylated aromatic systems. The scaled up synthesis of these compounds in PTFE tubing (i.d. 1.5 mm) was also investigated, where good reaction conversions ranging between 66-91% were attained.

  19. Adsorption, Desorption, and Diffusion of Nitrogen in a Model Nanoporous Material: II. Diffusion Limited Kinetics in Amorphous Solid Water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zubkov, Tykhon; Smith, R. Scott; Engstrom, Todd R.

    2007-11-14

    Tykhon Zubkov, R. Scott Smith, Todd R. Engstrom, and Bruce D. Kay The adsorption, desorption, and diffusion kinetics of N2 on thick (up to ~9 mm) porous films of amorphous solid water (ASW) films were studied using molecular beam techniques and temperature programmed desorption (TPD). Porous ASW films were grown on Pt(111) at low temperature (<30 K) from a collimated H2O beam at glancing incident angles. In thin films (<1 mm), the desorption kinetics are well described by a model that assumes rapid and uniform N2 distribution throughout the film. In thicker films, (>1 mm), N2 adsorption at 27 Kmore » results in a non-uniform distribution where most of N2 is trapped in the outer region of the film. Redistribution of N2 can be induced by thermal annealing. The apparent activation energy for this process is ~7 kJ/mol, which is approximately half of the desorption activation energy at the corresponding coverage. Blocking adsorption sites near the film surface facilitates transport into the film. Despite the onset of limited diffusion, the adsorption kinetics are efficient, precursor-mediated and independent of film thickness. An adsorption mechanism is proposed, in which a high-coverage N2 front propagates into a pore by the rapid transport of physisorbed 2nd layer N2 species on top of the 1st layer chemisorbed layer.« less

  20. Quantitative determination of enzyme activity in single cells by scanning microelectrode coupled with a nitrocellulose film-covered microreactor by means of a scanning electrochemical microscope.

    PubMed

    Zhang, Xiaoli; Sun, Fuchan; Peng, Xuewei; Jin, Wenrui

    2007-02-01

    An electrochemical method for quantitative determination of enzyme activity in single cells was developed by scanning a microelectrode (ME) over a nitrocellulose film-covered microreactor with micropores by means of a scanning electrochemical microscope (SECM). Peroxidase (PO) in neutrophils was chosen as the model system. The microreactor consisted of a microwell with a solution and a nitrocellulose film with micropores. A single cell perforated by digitonin was injected into the microwell. After the perforated cell was lysed and allowed to dry, physiological buffer saline (PBS) containing hydroquinone (H2Q) and H2O2 as substrates of the enzyme-catalyzed reaction was added in the microwell. The microwell containing the extract of the lysed cell and the enzyme substrates was covered with Parafilm to prevent evaporation. The solution in the microwell was incubated for 20 min. In this case, the released PO from the cell converted H2Q into benzoquinone (BQ). Then, the Parafilm was replaced by a nitrocellulose film with micropores to fabricate the microreactor. The microreactor was placed in an electrochemical cell containing PBS, H2Q, and H2O2. After a 10-microm-radius Au ME was inserted into the electrochemical cell and approached down to the microreactor, the ME was scanned along the central line across the microreactor by means of a SECM. The scan curve with a peak was obtained by detecting BQ that diffused out from the microreactor through the micropores on the nitrocellulose film. PO activity could be quantified on the basis of the peak current on the scan curve using a calibration curve. This method had two obvious advantages: no electrode fouling and no oxygen interference.

  1. Segregation of O2 and CO on the surface of dust grains determines the desorption energy of O2

    NASA Astrophysics Data System (ADS)

    Noble, J. A.; Diana, S.; Dulieu, F.

    2015-12-01

    Selective depletion towards pre-stellar cores is still not understood. The exchange between the solid and gas phases is central to this mystery. The aim of this paper is to show that the thermal desorption of O2 and CO from a submonolayer mixture is greatly affected by the composition of the initial surface population. We have performed thermally programmed desorption (TPD) experiments on various submonolayer mixtures of O2 and CO. Pure O2 and CO exhibit almost the same desorption behaviour, but their desorption differs strongly when mixed. Pure O2 is slightly less volatile than CO, while in mixtures, O2 desorbs earlier than CO. We analyse our data using a desorption law linking competition for binding sites with desorption, based on the assumption that the binding energy distribution of both molecules is the same. We apply Fermi-Dirac statistics in order to calculate the adsorption site population distribution, and derive the desorbing fluxes. Despite its simplicity, the model reproduces the observed desorption profiles, indicating that competition for adsorption sites is the reason for lower temperature O2 desorption. CO molecules push-out or `dislodge' O2 molecules from the most favourable binding sites, ultimately forcing their early desorption. It is crucial to consider the surface coverage of dust grains in any description of desorption. Competition for access to binding sites results in some important discrepancies between similar kinds of molecules, such as CO and O2. This is an important phenomenon to be investigated in order to develop a better understanding of the apparently selective depletion observed in dark molecular clouds.

  2. Microchannel Reactor System Design & Demonstration For On-Site H2O2 Production by Controlled H2/O2 Reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adeniyi Lawal

    We successfully demonstrated an innovative hydrogen peroxide (H2O2) production concept which involved the development of flame- and explosion-resistant microchannel reactor system for energy efficient, cost-saving, on-site H2O2 production. We designed, fabricated, evaluated, and optimized a laboratory-scale microchannel reactor system for controlled direct combination of H2 and O2 in all proportions including explosive regime, at a low pressure and a low temperature to produce about 1.5 wt% H2O2 as proposed. In the second phase of the program, as a prelude to full-scale commercialization, we demonstrated our H2O2 production approach by ‘numbering up’ the channels in a multi-channel microreactor-based pilot plant tomore » produce 1 kg/h of H2O2 at 1.5 wt% as demanded by end-users of the developed technology. To our knowledge, we are the first group to accomplish this significant milestone. We identified the reaction pathways that comprise the process, and implemented rigorous mechanistic kinetic studies to obtain the kinetics of the three main dominant reactions. We are not aware of any such comprehensive kinetic studies for the direct combination process, either in a microreactor or any other reactor system. We showed that the mass transfer parameter in our microreactor system is several orders of magnitude higher than what obtains in the macroreactor, attesting to the superior performance of microreactor. A one-dimensional reactor model incorporating the kinetics information enabled us to clarify certain important aspects of the chemistry of the direct combination process as detailed in section 5 of this report. Also, through mathematical modeling and simulation using sophisticated and robust commercial software packages, we were able to elucidate the hydrodynamics of the complex multiphase flows that take place in the microchannel. In conjunction with the kinetics information, we were able to validate the experimental data. If fully implemented across the whole industry as a result of our technology demonstration, our production concept is expected to save >5 trillion Btu/year of steam usage and >3 trillion Btu/year in electric power consumption. Our analysis also indicates >50 % reduction in waste disposal cost and ~10% reduction in feedstock energy. These savings translate to ~30% reduction in overall production and transportation costs for the $1B annual H2O2 market.« less

  3. Bio-inspired immobilization of metal oxides on monolithic microreactor for continuous Knoevenagel reaction.

    PubMed

    Song, Wentong; Shi, Da; Tao, Shengyang; Li, Zhaoliang; Wang, Yuchao; Yu, Yongxian; Qiu, Jieshan; Ji, Min; Wang, Xinkui

    2016-11-01

    A facile method is reported to construct monolithic microreactor with high catalytic performance for Knoevenagel reaction. The microreactor is based on hierarchically porous silica (HPS) which has interconnected macro- and mesopores. Then the HPS is surface modified by pyrogallol (PG) polymer. Al(NO3)3 and Mg(NO3)2 are loaded on the surface of HPS through coordination with -OH groups of PG. After thermal treatment, Al(NO3)3 and Mg(NO3)2 are converted Al2O3 and MgO. The as-synthesized catalytic microreactor shows a high and stable performance in Knoevenagel reaction. The microreactor possess large surface area and interconnected pore structures which are beneficial for reactions. Moreover, this economic, facile and eco-friendly surface modification method can be used in loading more metal oxides for more reactions. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Product selectivity control induced by using liquid-liquid parallel laminar flow in a microreactor.

    PubMed

    Amemiya, Fumihiro; Matsumoto, Hideyuki; Fuse, Keishi; Kashiwagi, Tsuneo; Kuroda, Chiaki; Fuchigami, Toshio; Atobe, Mahito

    2011-06-07

    Product selectivity control based on a liquid-liquid parallel laminar flow has been successfully demonstrated by using a microreactor. Our electrochemical microreactor system enables regioselective cross-coupling reaction of aldehyde with allylic chloride via chemoselective cathodic reduction of substrate by the combined use of suitable flow mode and corresponding cathode material. The formation of liquid-liquid parallel laminar flow in the microreactor was supported by the estimation of benzaldehyde diffusion coefficient and computational fluid dynamics simulation. The diffusion coefficient for benzaldehyde in Bu(4)NClO(4)-HMPA medium was determined to be 1.32 × 10(-7) cm(2) s(-1) by electrochemical measurements, and the flow simulation using this value revealed the formation of clear concentration gradient of benzaldehyde in the microreactor channel over a specific channel length. In addition, the necessity of the liquid-liquid parallel laminar flow was confirmed by flow mode experiments.

  5. Polyamidoamine dendrimer as a spacer for the immobilization of glucose oxidase in capillary enzyme microreactor.

    PubMed

    Wang, Siming; Su, Ping; Hongjun, E; Yang, Yi

    2010-10-15

    Polyamidoamine dendrimer (PAMAM) is one of a number of dendritic polymers with precise molecular structure, highly geometric symmetry, and a large number of terminal groups. In this study, different generations of PAMAM (G0-G4) were introduced onto the inner wall of fused-silica capillaries by microwave irradiation and a new type of glucose oxidase (GOx) capillary enzyme microreactor was developed based on enzyme immobilization in the prepared PAMAM-grafted fused-silica capillaries. The optimal enzymolysis conditions for beta-d-glucose in the microreactor were evaluated by capillary zone electrophoresis. In addition, the enzymolysis efficiencies of different generations of PAMAM-GOx capillary enzyme microreactor were compared. The results indicate that enzymolysis efficiency increased with increasing generations of PAMAM. The experimental results provide the possibility for the development and application of an online immobilized capillary enzyme microreactor. Crown Copyright 2010. Published by Elsevier Inc. All rights reserved.

  6. A high-power ultrasonic microreactor and its application in gas-liquid mass transfer intensification.

    PubMed

    Dong, Zhengya; Yao, Chaoqun; Zhang, Xiaoli; Xu, Jie; Chen, Guangwen; Zhao, Yuchao; Yuan, Quan

    2015-02-21

    The combination of ultrasound and microreactor is an emerging and promising area, but the report of designing high-power ultrasonic microreactor (USMR) is still limited. This work presents a robust, high-power and highly efficient USMR by directly coupling a microreactor plate with a Langevin-type transducer. The USMR is designed as a longitudinal half wavelength resonator, for which the antinode plane of the highest sound intensity is located at the microreactor. According to one dimension design theory, numerical simulation and impedance analysis, a USMR with a maximum power of 100 W and a resonance frequency of 20 kHz was built. The strong and uniform sound field in the USMR was then applied to intensify gas-liquid mass transfer of slug flow in a microfluidic channel. Non-inertial cavitation with multiple surface wave oscillation was excited on the slug bubbles, enhancing the overall mass transfer coefficient by 3.3-5.7 times.

  7. Thermal desorption of dimethyl methylphosphonate from MoO 3

    DOE PAGES

    Head, Ashley R.; Tang, Xin; Hicks, Zachary; ...

    2017-03-03

    Organophosphonates are used as chemical warfare agents, pesticides, and corrosion inhibitors. New materials for the sorption, detection, and decomposition of these compounds are urgently needed. To facilitate materials and application innovation, a better understanding of the interactions between organophosphonates and surfaces is required. To this end, we have used diffuse reflectance infrared Fourier transform spectroscopy to investigate the adsorption geometry of dimethyl methylphosphonate (DMMP) on MoO 3, a material used in chemical warfare agent filtration devices. We further applied ambient pressure X-ray photoelectron spectroscopy and temperature programmed desorption to study the adsorption and desorption of DMMP. While DMMP adsorbs intactmore » on MoO 3, desorption depends on coverage and partial pressure. At low coverages under UHV conditions, the intact adsorption is reversible. Decomposition occurs with higher coverages, as evidenced by PCH x and PO x decomposition products on the MoO 3 surface. Heating under mTorr partial pressures of DMMP results in product accumulation.« less

  8. Scalable microreactors and methods for using same

    DOEpatents

    Lawal, Adeniyi; Qian, Dongying

    2010-03-02

    The present invention provides a scalable microreactor comprising a multilayered reaction block having alternating reaction plates and heat exchanger plates that have a plurality of microchannels; a multilaminated reactor input manifold, a collecting reactor output manifold, a heat exchange input manifold and a heat exchange output manifold. The present invention also provides methods of using the microreactor for multiphase chemical reactions.

  9. Plasma microreactor in supercritical xenon and its application to diamondoid synthesis

    NASA Astrophysics Data System (ADS)

    Oshima, F.; Stauss, S.; Ishii, C.; Pai, D. Z.; Terashima, K.

    2012-10-01

    The generation of plasmas in a microreactor is demonstrated in xenon from atmospheric pressure up to supercritical conditions. Ac high voltage at a frequency of 15 kHz was applied across a 25-µm discharge gap between a tungsten wire and a fused silica micro-capillary tube in a coaxial configuration. Using this continuous flow supercritical fluid microreactor, it was possible to synthesize diamantane and other diamondoids up to nonamantane, using adamantane as a precursor and seed. It is anticipated that plasmas generated in supercritical fluid microreactors may not only allow faster fabrication of diamondoids, but also offer opportunities for the fabrication of other nanomaterials.

  10. DNA-directed trypsin immobilization on a polyamidoamine dendrimer-modified capillary to form a renewable immobilized enzyme microreactor.

    PubMed

    Wu, Nan; Wang, Siming; Yang, Ye; Song, Jiayi; Su, Ping; Yang, Yi

    2018-07-01

    A novel type of trypsin capillary microreactor was developed based on a DNA-directed immobilization (DDI) technique applied to a fused-silica capillary modified with polyamidoamine (PAMAM) dendrimers. Trypsin binding to the inner wall of the capillary was confirmed by confocal laser scanning microscopy. The properties of the trypsin-DNA conjugated, PAMAM-modified capillary microreactor were investigated by monitoring hydrolysis of Nα-benzoyl- L -arginine ethyl ester. Through the hybridization and dehybridization of the DNA, the inner wall of the capillary functionalized with trypsin can be regenerated, thus indicating the renewability of this enzyme microreactor. In addition, these results demonstrated that introduction of PAMAM enabled higher amounts of trypsin to be immobilized, markedly improving the enzymolysis efficiency, compared with traditional modified capillaries. The digestion performance of the trypsin capillary microreactor was further evaluated by digesting cytochrome C, and a peptide numbers of 8, and a sequence coverage of 59% were obtained. This renewable and efficient immobilized trypsin capillary microreactor combines advantages of both DDI technology and PAMAM, and is potentially adaptable to high-throughput enzyme assays in biochemical and clinical research. Copyright © 2018. Published by Elsevier B.V.

  11. Flash chemistry: flow microreactor synthesis based on high-resolution reaction time control.

    PubMed

    Yoshida, Jun-ichi

    2010-10-01

    This article addresses a fascinating aspect of flash chemistry, high-resolution reaction-time control by virtue of a flow microreactor system, and its applications. The length of time that the solution remains inside the reactor is called the residence time. The residence time between the addition of a reagent and that of a quenching agent or the next reagent in a flow microreactor is the reaction time, and the reaction time can be greatly reduced by adjusting the length of a reaction channel in a flow microreactor. This feature is quite effective for conducting reactions involving short-lived reactive intermediates. A reactive species can be generated and transferred to another location to be used in the next reaction before it decomposes by adjusting the residence time in the millisecond to second timescale. The principle of such high-resolution reaction-time control, which can be achieved only by flow microreactors, and its applications to synthetic reactions including Swern-Moffatt-type oxidation, as well as the generation and reactions of aryllithium compounds bearing electrophilic substituents, such as alkoxycarbonyl groups, are presented. Integration of such reactions using integrated flow microreactor systems is also demonstrated. © 2010 The Japan Chemical Journal Forum and Wiley Periodicals, Inc.

  12. Mechanisms of deep benzene oxidation on the Pt(1 1 1) surface using temperature-programmed reaction methods

    NASA Astrophysics Data System (ADS)

    Marsh, Anderson L.; Gland, John L.

    2003-06-01

    The catalytic oxidation of benzene on the Pt(1 1 1) surface has been characterized using temperature-programmed reaction spectroscopy (TPRS) over a wide range of benzene and oxygen coverages. Coadsorbed atomic oxygen and benzene are the primary reactants on the surface during the initial oxidation step. Benzene is oxidized over the 300-500 K range to produce carbon dioxide and water. Carbon-hydrogen and carbon-carbon bond activation are clearly rate-limiting steps for these reactions. Preferential oxidation causes depletion of bridge-bonded benzene, suggesting enhanced reactivity in this bonding configuration. When oxygen is in excess on the surface, all of the surface carbon and hydrogen is oxidized. When benzene is in excess on the surface, hydrogen produced by dehydrogenation is desorbed after all of the surface oxygen has been consumed. Repulsive interactions between benzene and molecular oxygen dominate at low temperatures. Preadsorption of oxygen inhibits adsorption of less reactive benzene in threefold hollow sites. The desorption temperature of this non-reactive chemisorbed benzene decreases and overlaps with the multilayer desorption peak with increasing oxygen exposure. The results presented here provide a clear picture of rate-limiting steps during deep oxidation of benzene on the Pt(1 1 1) surface.

  13. Thermochemical Properties of the Lattice Oxygen in W,Mn-Containing Mixed Oxide Catalysts for the Oxidative Coupling of Methane

    NASA Astrophysics Data System (ADS)

    Lomonosov, V. I.; Gordienko, Yu. A.; Sinev, M. Yu.; Rogov, V. A.; Sadykov, V. A.

    2018-03-01

    Mixed NaWMn/SiO2 oxide, samples containing individual components (Na, W, Mn) and their double combinations (Na-W, Na-Mn, W-Mn) supported on silica were studied by temperature programmed reduction (TPR) and desorption (TPD), and heat flow calorimetry during their reoxidation with molecular oxygen in pulse mode. The NaWMn/SiO2 mixed oxide was shown to contain two different types of reactive lattice oxygen. The weakly-bonded oxygen can be reversibly released from the oxide in a flow of inert gas in the temperature range of 575‒900°C, while the strongly-bonded oxygen can be removed during the reduction of the sample with hydrogen at 700-900°C. The measured thermal effect of oxygen consumption for these two oxygen forms are 185 and 350 kJ/mol, respectively. The amount of oxygen removed at reduction ( 443 μmol/g) considerably exceeded the amount desorbed in an inert gas flow ( 56 μmol/g). The obtained results suggest that the reversible oxygen desorption is due to the redox process in which manganese ions are involved, while during the temperature programmed reduction, mainly oxygen bonded with tungsten is removed.

  14. Development of ultralow energy (1–10 eV) ion scattering spectrometry coupled with reflection absorption infrared spectroscopy and temperature programmed desorption for the investigation of molecular solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bag, Soumabha; Bhuin, Radha Gobinda; Methikkalam, Rabin Rajan J.

    2014-01-15

    Extremely surface specific information, limited to the first atomic layer of molecular surfaces, is essential to understand the chemistry and physics in upper atmospheric and interstellar environments. Ultra low energy ion scattering in the 1–10 eV window with mass selected ions can reveal extremely surface specific information which when coupled with reflection absorption infrared (RAIR) and temperature programmed desorption (TPD) spectroscopies, diverse chemical and physical properties of molecular species at surfaces could be derived. These experiments have to be performed at cryogenic temperatures and at ultra high vacuum conditions without the possibility of collisions of neutrals and background deposition inmore » view of the poor ion intensities and consequent need for longer exposure times. Here we combine a highly optimized low energy ion optical system designed for such studies coupled with RAIR and TPD and its initial characterization. Despite the ultralow collision energies and long ion path lengths employed, the ion intensities at 1 eV have been significant to collect a scattered ion spectrum of 1000 counts/s for mass selected CH{sub 2}{sup +}.« less

  15. Preparation of calcium hydroxyapatite nanoparticles using microreactor and their characteristics of protein adsorption.

    PubMed

    Kandori, Kazuhiko; Kuroda, Tomohiko; Togashi, Shigenori; Katayama, Erika

    2011-02-03

    The calcium hydroxyapatite Ca(10)(PO(4))(6)(OH)(2) (Hap) nanoparticles were prepared by using microreactor and employed these Hap nanoparticles to clarify the adsorption behavior of proteins. The size of Hap particles produced by the microreactor reduced in the order of a hardness of the reaction conditions for mixing Ca(OH)(2) and H(3)PO(4) aqueous solutions, such as flow rates of both solutions and temperature. Finally, the size of the smallest Hap nanoparticle became 2 × 15 nm(2), similar to that of BSA molecule (4 × 14 nm(2)). It is noteworthy that the smallest Hap nanoparticles still possesses rodlike shape, suggesting that particles are grown along c-axis even though the reactants mixed very rapidly in narrow channels of the microreactors. The X-ray diffraction patterns of the Hap nanoparticles revealed that the crystallinity of the materials produced by the microreactor is low. The FTIR measurement indicated that the Hap nanoparticles produced by microreactor were carbonate-substituted type B Hap, where the carbonate ions replace the phosphate ions in the crystal lattice. All the adsorption isotherms of acidic bovine serum albumin (BSA), neutral myoglobin (MGB), and basic lysozyme (LSZ) onto Hap nanoparticles from 1 × 10(-4) mol/dm(3) KCl solution were the Langmuirian type. The saturated amounts of adsorbed BSA (n(S)(BSA)) for the Hap nanoparticles produced by microreactor were decreased with decrease in the mean particle length, and finally it reduced to zero for the smallest Hap nanoparticles. Similar results were observed for the adsorption of LSZ; the saturated amounts of adsorbed LSZ (n(S)(LSZ)) also reduced to zero for the smallest Hap nanoparticles. However, in the case of MGB, the saturated mounts of adsorbed MGB (n(S)(MGB)) are also depressed with decreased in their particle size, but about half of MGB molecules still adsorbed onto the smallest Hap nanoparticles. This difference in the protein adsorption behavior was explained by the difference in the size and flexibility of three kinds of proteins. The reduction of n(S)(BSA) is due to the decrease in the fraction of C sites on the side face of each Hap nanoparticle; i.e., there is not enough area left on the nanoparticle surface to adsorb large BSA molecules even though the BSA molecules are soft and their conformations are alterable. The reduction of n(S)(LSZ) was explained by the reduction of P sites. Further, rigidity of the LSZ molecules was given another possibility of the depression of n(S)(LSZ) for the Hap nanoparticles. However, MGB molecules with small and soft structure were adsorbed on the Hap nanoparticle surface by changing their conformation. We could control the amounts of adsorbed proteins by changing the particle size of Hap in the nanometer range and kinds of proteins. These obtained results may be useful for developing biomimetic materials for bone grafts and successful surgical devices in the biochemical field.

  16. High field 27Al MAS NMR and TPD studies of active sites in ethanol dehydration using thermally treated transitional aluminas as catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Jian Zhi; Xu, Suochang; Kwak, Ja Hun

    High field quantitative 27Al MAS NMR and temperature programmed desorption (TPD) of ethanol are used to study the surface and phase transformation of gamma-Al2O3 during calcination in the temperature range of 500 to 1300 degrees C. Following ethanol adsorption, ethylene is generated during TPD with a desorption temperature > 200 degrees C. With increasing calcination temperature prior to TPD, the amount of ethylene produced decreases monotonically. Significantly, 27Al MAS NMR reveals that the amount of penta-coordinate Al3+ ions (Lewis acid sites) also decreases with increasing calcination temperature. In fact, a strong correlation between the amount of penta-coordinate Al3+ ions andmore » the amount of strongly adsorbed ethanol molecules (i.e., the ones that convert to ethylene during TPD) is obtained. This result indicates that the penta-coordinate aluminum sites are the catalytic active sites on alumina surfaces during ethanol dehydration reaction across the entire course of gamma- to alpha-Al2O3 phase transformations.« less

  17. Time and temperature dependent adsorption-desorption behaviour of pretilachlor in soil.

    PubMed

    Kaur, Paawan; Kaur, Pervinder

    2018-06-04

    Understanding and quantifying the adsorption-desorption behaviour of herbicide in soil is imperative for predicting their fate and transport in the environment. In the present study, the effect of time and temperature on the adsorption-desorption behaviour of pretilachlor in soils was investigated using batch equilibration technique. The adsorption-desorption kinetics of pretilachlor in soils was two step process and was well described by pseudo-second-order kinetic model. Freundlich model accurately predicted the sorption behaviour of pretilachlor. The adsorption-desorption of pretilachlor varied significantly with the concentration, temperature and properties of soil viz. organic matter and clay content. All the studied soils had non-linear slopes (n < 1) and degree of nonlinearity increased with increase in clay, organic matter content and temperature (p < 0.05). Desorption of pretilachlor was hysteretic in studied soils and hysteresis coefficient varied from 0.023 to 0.275. Thermodynamic analysis showed that pretilachlor adsorption onto soils was a feasible, spontaneous and endothermic process which becomes more favourable at high temperature. It could be inferred that the adsorption of pretilachlor on soils was physical in nature. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Rapid Multistep Synthesis of 1,2,4-Oxadiazoles in a Single Continuous Microreactor Sequence

    PubMed Central

    Grant, Daniel; Dahl, Russell; Cosford, Nicholas D. P.

    2009-01-01

    A general method for the synthesis of bis-substituted 1,2,4-oxadiazoles from readily available arylnitriles and activated carbonyls in a single continuous microreactor sequence is described. The synthesis incorporates three sequential microreactors to produce 1,2,4-oxadiazoles in ~30 min in quantities (40–80 mg) sufficient for full characterization and rapid library supply. PMID:18687005

  19. Fischer-Tropsch synthesis from a low H/sub 2/:CO gas in a dry fluidized-bed system. Volume 2. Development of microreactor systems for unsteady-state Fischer-Tropsch synthesis. Final technical report. [408 references

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whiting, G.K.; Liu, Y.A.; Squires, A.M.

    1986-10-01

    Vibrofluidized microreactor systems have been developed for studies of unsteady-state Fischer-Tropsch synthesis. This development is aimed at preventing carbon deposition on a fused-iron catalyst in a novel reactor called the ''heat tray.'' This reactor involves a supernatant gas flowing over a shallow fluidized bed of catalyst particles. Three systems were built: (1) a vibrofluidized-bed microreactor system for obtaining baseline carbon deposition information under industrially important reaction conditions; (2) a sliding-plug vibrofluidized-bed microreactor system for rapid switching of feed gases in the F-T synthesis; and (3) a cold-flow microreactor model for studying the gas mixing characteristics of the sliding-plug vibrofluidized-bed microreactor.more » The results show that catalyst defluidization occurred under steady-state synthesis conditions below 395 C using a feed gas of H/sub 2//CO ratio of 2:1 or less. Above 395 C, the probability of hydrocarbon chain growth (..cap alpha.. < 0.50 to prevent accumulation of high-molecular-weight species that cause defluidization. Carbon deposition was rapid above 395 C when a feed gas of H/sub 2//CO ratio of 2:1 or less was used. Cold-flow microreactor model studies show that rapid (on the order of seconds), quantitative switching of feed gases over a vibrofluidized bed of catalyst could be achieved. Vibrofluidization of the catalyst bed induced little backmixing of feed gas over the investigated flow-rate range of 417 to 1650 actual mm/sup 3//s. Further, cold-flow microreactor model studies showed intense solid mixing when a bed of fused-iron catalyst (150 to 300 microns) was vibrofluidized at 24 cycles per second with a peak-to-peak amplitude of 4 mm. The development of the microreactor systems provided an easy way of accurately determining integral fluid-bed kinetics in a laboratory reactor. 408 refs., 156 figs., 27 tabs.« less

  20. Study on Desorption Process of n-Heptane and Methyl Cyclohexane Using UiO-66 with Hierarchical Pores.

    PubMed

    Chen, Sijia; Zhang, Lin; Zhang, Zhao; Qian, Gang; Liu, Zongjian; Cui, Qun; Wang, Haiyan

    2018-06-06

    UiO-66 (UiO for University of Oslo), is a zirconium-based MOF with reverse shape selectivity, gives an alternative way to produce high purity n-heptane used for the manufacture of high-purity pharmaceuticals. Couple of studies have shown that UiO-66 gives a high selectivity on the separation of n-/iso-alkanes. However, the microporous structure of UiO-66 causes poor mass transport during the desorption process. In this work, hierarchical-pore UiO-66 (H-UiO-66) was synthesized and utilized as an adsorbent of n-heptane (nHEP) and methyl cyclohexane (MCH) for systematically studying the desorption process of n/iso-alkanes. A suite of physical methods, including XRD patterns verified the UiO-66 structures and HRTEM showed the existence of hierarchical pores. N2 adsorption-desorption isotherms further confirmed the size distribution of hierarchical pores in H-UiO-66. Of particular note, the MCH/nHEP selectivity of H-UiO-66 is similar with UiO-66 in the same adsorption conditions, the desorption process of nHEP/MCH from H-UiO-66 is dramatically enhanced, viz, the desorption rates for nHEP/MCH from H-UiO-66 is enhanced by 30%/23% as comparing to UiO-66 at most. Moreover, desorption activation energy (Ed) derived from temperature-programmed desorption (TPD) experiments indicate that the Ed for nHEP/MCH is lower on H-UiO-66, i.e., the Ed of MCH on H-UiO-66 is ~37% lower than that on UiO-66 at most, leading to a milder condition for the desorption process. The introduction of hierarchical structures will be applicable for the optimization of desorption process during separation on porous materials.

  1. Coaxial microreactor for particle synthesis

    DOEpatents

    Bartsch, Michael; Kanouff, Michael P; Ferko, Scott M; Crocker, Robert W; Wally, Karl

    2013-10-22

    A coaxial fluid flow microreactor system disposed on a microfluidic chip utilizing laminar flow for synthesizing particles from solution. Flow geometries produced by the mixing system make use of hydrodynamic focusing to confine a core flow to a small axially-symmetric, centrally positioned and spatially well-defined portion of a flow channel cross-section to provide highly uniform diffusional mixing between a reactant core and sheath flow streams. The microreactor is fabricated in such a way that a substantially planar two-dimensional arrangement of microfluidic channels will produce a three-dimensional core/sheath flow geometry. The microreactor system can comprise one or more coaxial mixing stages that can be arranged singly, in series, in parallel or nested concentrically in parallel.

  2. Drastic reduction of adsorption of CO and H2 on (111)-type Pd layers

    NASA Technical Reports Server (NTRS)

    Poppa, H.; Soria, F.

    1983-01-01

    Clean surfaces of (111)-type Pd layers, grown from the vapor phase on Mo(110) at room temperature, were used to study the adsorption of CO and H2 by temperature-programmed desorption, Auger electron spectroscopy, and low-energy electron diffraction. Mild annealing of the as-grown layers during a single desorption cycle (to about 600 K) drastically reduces the adsorption for both adsorbates. Low-dose argon-ion bombardment introduces surface imperfections which restore a high adsorption probability. The results are interpreted in terms of particular (111)-type surface structures that persist tp layer thicknesses of about four monolayers; the results raise questions with respect to the surface structure of supported thin epitaxial islands and particles of Pd and possibly also with respect to conventional methods of preparing bulk surfaces of Pd for adsorption studies.

  3. Application of magnetohydrodynamic actuation to continuous flow chemistry.

    PubMed

    West, Jonathan; Karamata, Boris; Lillis, Brian; Gleeson, James P; Alderman, John; Collins, John K; Lane, William; Mathewson, Alan; Berney, Helen

    2002-11-01

    Continuous flow microreactors with an annular microchannel for cyclical chemical reactions were fabricated by either bulk micromachining in silicon or by rapid prototyping using EPON SU-8. Fluid propulsion in these unusual microchannels was achieved using AC magnetohydrodynamic (MHD) actuation. This integrated micropumping mechanism obviates the use of moving parts by acting locally on the electrolyte, exploiting its inherent conductive nature. Both silicon and SU-8 microreactors were capable of MHD actuation, attaining fluid velocities of the order of 300 microm s(-1) when using a 500 mM KCl electrolyte. The polymerase chain reaction (PCR), a thermocycling process, was chosen as an illustrative example of a cyclical chemistry. Accordingly, temperature zones were provided to enable a thermal cycle during each revolution. With this approach, fluid velocity determines cycle duration. Here, we report device fabrication and performance, a model to accurately describe fluid circulation by MHD actuation, and compatibility issues relating to this approach to chemistry.

  4. The in situ generation and reactive quench of diazonium compounds in the synthesis of azo compounds in microreactors

    PubMed Central

    Akwi, Faith M

    2016-01-01

    Summary In this paper, a micro-fluidic optimized process for the continuous flow synthesis of azo compounds is presented. The continuous flow synthesis of Sudan II azo dye was used as a model reaction for the study. At found optimal azo coupling reaction temperature and pH an investigation of the optimum flow rates of the reactants for the diazotization and azo coupling reactions in Little Things Factory-MS microreactors was performed. A conversion of 98% was achieved in approximately 2.4 minutes and a small library of azo compounds was thus generated under these reaction conditions from couplers with aminated or hydroxylated aromatic systems. The scaled up synthesis of these compounds in PTFE tubing (i.d. 1.5 mm) was also investigated, where good reaction conversions ranging between 66–91% were attained. PMID:27829903

  5. Synthesis of Monodisperse Chitosan Nanoparticles and in Situ Drug Loading Using Active Microreactor.

    PubMed

    Kamat, Vivek; Marathe, Ila; Ghormade, Vandana; Bodas, Dhananjay; Paknikar, Kishore

    2015-10-21

    Chitosan nanoparticles are promising drug delivery vehicles. However, the conventional method of unregulated mixing during ionic gelation limits their application because of heterogeneity in size and physicochemical properties. Therefore, a detailed theoretical analysis of conventional and active microreactor models was simulated. This led to design and fabrication of a polydimethylsiloxane microreactor with magnetic micro needles for the synthesis of monodisperse chitosan nanoparticles. Chitosan nanoparticles synthesized conventionally, using 0.5 mg/mL chitosan, were 250 ± 27 nm with +29.8 ± 8 mV charge. Using similar parameters, the microreactor yielded small size particles (154 ± 20 nm) at optimized flow rate of 400 μL/min. Further optimization at 0.4 mg/mL chitosan concentration yielded particles (130 ± 9 nm) with higher charge (+39.8 ± 5 mV). The well-controlled microreactor-based mixing generated highly monodisperse particles with tunable properties including antifungal drug entrapment (80%), release rate, and effective activity (MIC, 1 μg/mL) against Candida.

  6. Microreactor-based mixing strategy suppresses product inhibition to enhance sugar yields in enzymatic hydrolysis for cellulosic biofuel production.

    PubMed

    Chakraborty, Saikat; Singh, Prasun Kumar; Paramashetti, Pawan

    2017-08-01

    A novel microreactor-based energy-efficient process of using complete convective mixing in a macroreactor till an optimal mixing time followed by no mixing in 200-400μl microreactors enhances glucose and reducing sugar yields by upto 35% and 29%, respectively, while saving 72-90% of the energy incurred on reactor mixing in the enzymatic hydrolysis of cellulose. Empirical exponential relations are provided for determining the optimal mixing time, during which convective mixing in the macroreactor promotes mass transport of the cellulase enzyme to the solid Avicel substrate, while the latter phase of no mixing in the microreactor suppresses product inhibition by preventing the inhibitors (glucose and cellobiose) from homogenizing across the reactor. Sugar yield increases linearly with liquid to solid height ratio (r h ), irrespective of substrate loading and microreactor size, since large r h allows the inhibitors to diffuse in the liquid away from the solids, thus reducing product inhibition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Photochemical transformations accelerated in continuous-flow reactors: basic concepts and applications.

    PubMed

    Su, Yuanhai; Straathof, Natan J W; Hessel, Volker; Noël, Timothy

    2014-08-18

    Continuous-flow photochemistry is used increasingly by researchers in academia and industry to facilitate photochemical processes and their subsequent scale-up. However, without detailed knowledge concerning the engineering aspects of photochemistry, it can be quite challenging to develop a suitable photochemical microreactor for a given reaction. In this review, we provide an up-to-date overview of both technological and chemical aspects associated with photochemical processes in microreactors. Important design considerations, such as light sources, material selection, and solvent constraints are discussed. In addition, a detailed description of photon and mass-transfer phenomena in microreactors is made and fundamental principles are deduced for making a judicious choice for a suitable photomicroreactor. The advantages of microreactor technology for photochemistry are described for UV and visible-light driven photochemical processes and are compared with their batch counterparts. In addition, different scale-up strategies and limitations of continuous-flow microreactors are discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Desorption Kinetics of H2O from Cab-O-Sil-M-7D and Hi-Sil-233 Silica Particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dinh, L.; Balooch, M.; LeMay, J.D.

    2000-01-26

    Temperature programmed desorption (TPD) was performed at temperatures up to 850K on Cab-O-Sil-M-7D and Hi-Sil-233 silica particles. Physisorbed water molecules on both types of silica had activation energies in the range of 9-14.5 kcal/mol. However, the activation energies of desorption for chemisorbed water varied from {approx} 19 kcal/mol to > 59 kcal/mol for Cab-O-Sil-M-7D, and {approx} 23-37 kcal/mol for Hi-Sil-233. Our results suggest that physisorbed water can be effectively pumped away at room temperature (or preferably at 320 K) in a matter of hours. Chemisorbed water with high activation energies of desorption (>30 kcal/mol) will not escape the silica surfacesmore » in 100 years even at 320 K, while a significant amount of the chemisorbed water with medium activation energies (19-26 kcal/mol) will leave the silica surfaces in that time span. Most of the chemisorbed water with activation energies < 30 kcal/mol can be pumped away in a matter of days in a good vacuum environment at 500 K. We had previously measured about 0.1-0.4 wt. % of water in M9787 polysiloxane formulations containing {approx} 21% Cab-O-Sil-M-7D and {approx} 4% Hi-Sil-233. Comparing present results with these formulations, we conclude that absorbed H{sub 2}O and Si-OH bonds on the silica surfaces are the major contributors to water outgassing from M97 series silicones.« less

  9. Biofluidic Intelligent Processors for Preparative Manipulations of Biological Warfare Agents at the Attomole Level

    DTIC Science & Technology

    2005-11-01

    micromixing and microreactor concept. OPA by itself is non- fluorescent, but it reacts with primary amine groups in the presence of β-mercaptoethanol to form...hybrid microchannel/nanopore-membrane devices can serve as efficient micromixers and microreactors, and (2) microscopic kinetics can be obtained from...single image measurements. An immediate application which extended from the micromixing and microreactor concept was microsensing. Calcium ions

  10. An accessible visible-light actinometer for the determination of photon flux and optical pathlength in flow photo microreactors.

    PubMed

    Roibu, Anca; Fransen, Senne; Leblebici, M Enis; Meir, Glen; Van Gerven, Tom; Kuhn, Simon

    2018-04-03

    Coupling photochemistry with flow microreactors enables novel synthesis strategies with higher efficiencies compared to batch systems. Improving the reproducibility and understanding of the photochemical reaction mechanisms requires quantitative tools such as chemical actinometry. However, the choice of actinometric systems which can be applied in microreactors is limited, due to their short optical pathlength in combination with a large received photon flux. Furthermore, actinometers for the characterization of reactions driven by visible light between 500 and 600 nm (e.g. photosensitized oxidations) are largely missing. In this paper, we propose a new visible-light actinometer which can be applied in flow microreactors between 480 and 620 nm. This actinometric system is based on the photoisomerization reaction of a diarylethene derivative from its closed to the open form. The experimental protocol for actinometric measurements is facile and characterized by excellent reproducibility and we also present an analytical estimation to calculate the photon flux. Furthermore, we propose an experimental methodology to determine the average pathlength in microreactors using actinometric measurements. In the context of a growing research interest on using flow microreactors for photochemical reactions, the proposed visible-light actinometer facilitates the determination of the received photon flux and average pathlength in confined geometries.

  11. Proteolytic Digestion and TiO2 Phosphopeptide Enrichment Microreactor for Fast MS Identification of Proteins.

    PubMed

    Deng, Jingren; Lazar, Iulia M

    2016-04-01

    The characterization of phosphorylation state(s) of a protein is best accomplished by using isolated or enriched phosphoprotein samples or their corresponding phosphopeptides. The process is typically time-consuming as, often, a combination of analytical approaches must be used. To facilitate throughput in the study of phosphoproteins, a microreactor that enables a novel strategy for performing fast proteolytic digestion and selective phosphopeptide enrichment was developed. The microreactor was fabricated using 100 μm i.d. fused-silica capillaries packed with 1-2 mm beds of C18 and/or TiO2 particles. Proteolytic digestion-only, phosphopeptide enrichment-only, and sequential proteolytic digestion/phosphopeptide enrichment microreactors were developed and tested with standard protein mixtures. The protein samples were adsorbed on the C18 particles, quickly digested with a proteolytic enzyme infused over the adsorbed proteins, and further eluted onto the TiO2 microreactor for enrichment in phosphopeptides. A number of parameters were optimized to speed up the digestion and enrichments processes, including microreactor dimensions, sample concentrations, digestion time, flow rates, buffer compositions, and pH. The effective time for the steps of proteolytic digestion and enrichment was less than 5 min. For simple samples, such as standard protein mixtures, this approach provided equivalent or better results than conventional bench-top methods, in terms of both enzymatic digestion and selectivity. Analysis times and reagent costs were reduced ~10- to 15-fold. Preliminary analysis of cell extracts and recombinant proteins indicated the feasibility of integration of these microreactors in more advanced workflows amenable for handling real-world biological samples. Graphical Abstract ᅟ.

  12. Proteolytic Digestion and TiO2 Phosphopeptide Enrichment Microreactor for Fast MS Identification of Proteins

    NASA Astrophysics Data System (ADS)

    Deng, Jingren; Lazar, Iulia M.

    2016-04-01

    The characterization of phosphorylation state(s) of a protein is best accomplished by using isolated or enriched phosphoprotein samples or their corresponding phosphopeptides. The process is typically time-consuming as, often, a combination of analytical approaches must be used. To facilitate throughput in the study of phosphoproteins, a microreactor that enables a novel strategy for performing fast proteolytic digestion and selective phosphopeptide enrichment was developed. The microreactor was fabricated using 100 μm i.d. fused-silica capillaries packed with 1-2 mm beds of C18 and/or TiO2 particles. Proteolytic digestion-only, phosphopeptide enrichment-only, and sequential proteolytic digestion/phosphopeptide enrichment microreactors were developed and tested with standard protein mixtures. The protein samples were adsorbed on the C18 particles, quickly digested with a proteolytic enzyme infused over the adsorbed proteins, and further eluted onto the TiO2 microreactor for enrichment in phosphopeptides. A number of parameters were optimized to speed up the digestion and enrichments processes, including microreactor dimensions, sample concentrations, digestion time, flow rates, buffer compositions, and pH. The effective time for the steps of proteolytic digestion and enrichment was less than 5 min. For simple samples, such as standard protein mixtures, this approach provided equivalent or better results than conventional bench-top methods, in terms of both enzymatic digestion and selectivity. Analysis times and reagent costs were reduced ~10- to 15-fold. Preliminary analysis of cell extracts and recombinant proteins indicated the feasibility of integration of these microreactors in more advanced workflows amenable for handling real-world biological samples.

  13. Adsorption of small hydrocarbons on rutile TiO2(110)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Long; Smith, R. Scott; Kay, Bruce D.

    2016-08-01

    Temperature programmed desorption and molecular beam scattering were used to study the adsorption and desorption of small hydrocarbons (n-alkanes, 1-alkenes and 1-alkynes with 1 - 4 carbon atoms of C1-C4) on rutile TiO2(110). We show that the sticking coefficients for all the hydrocarbons are close to unity (> 0.95) at an adsorption temperature of 60 K. The desorption energies for hydrocarbons of the same chain length increase from n-alkanes to 1-alkenes and to 1-alkynes. This trend is likely a consequence of an additional dative bonding of the alkene and alkyne π system to the coordinatively unsaturated Ti5c sites. Similar tomore » previous studies on the adsorption of n-alkanes on metal and metal oxide surfaces, we find the desorption energies within each group (n-alkanes vs. 1-alkenes vs. 1-alkynes) from Ti5c sites increase linearly with the chain length. The absolute saturation coverages of each hydrocarbon on Ti5c sites were also determined. The saturation coverage of CH4, is found to be ~ 2/3 monolayer (ML). The saturation coverages of C2-C4 hydrocarbons are found nearly independent of the chain length with values of ~1/2 ML for n-alkanes and 1-alkenes and 2/3 ML for 1-alkynes. This result is surprising considering their similar sizes.« less

  14. Adsorption of small hydrocarbons on rutile TiO 2(110)

    DOE PAGES

    Chen, Long; Smith, R. Scott; Kay, Bruce D.; ...

    2015-11-21

    Here, temperature programmed desorption and molecular beam scattering were used to study the adsorption and desorption of small hydrocarbons (n-alkanes, 1-alkenes and 1-alkynes of C 1–C 4) on rutile TiO 2(110). We show that the sticking coefficients for all the hydrocarbons are close to unity (> 0.95) at an adsorption temperature of 60 K. The desorption energies for hydrocarbons of the same chain length increase from n-alkanes to 1-alkenes and to 1-alkynes. This trend is likely a consequence of additional dative bonding of the alkene and alkyne π system to the coordinatively unsaturated Ti 5c sites. Similar to previous studiesmore » on the adsorption of n-alkanes on metal and metal oxide surfaces, we find that the desorption energies within each group (n-alkanes vs. 1-alkenes vs. 1-alkynes) from Ti 5c sites increase linearly with the chain length. The absolute saturation coverages of each hydrocarbon on Ti 5c sites were also determined. The saturation coverage of CH 4, is found to be ~ 2/3 monolayer (ML). The saturation coverages of C 2–C 4 hydrocarbons are found nearly independent of the chain length with values of ~ 1/2 ML for n-alkanes and 1-alkenes and 2/3 ML for 1-alkynes. This result is surprising considering their similar sizes.« less

  15. Development and Characterization of a Laser-Induced Acoustic Desorption Source.

    PubMed

    Huang, Zhipeng; Ossenbrüggen, Tim; Rubinsky, Igor; Schust, Matthias; Horke, Daniel A; Küpper, Jochen

    2018-03-20

    A laser-induced acoustic desorption source, developed for use at central facilities, such as free-electron lasers, is presented. It features prolonged measurement times and a fixed interaction point. A novel sample deposition method using aerosol spraying provides a uniform sample coverage and hence stable signal intensity. Utilizing strong-field ionization as a universal detection scheme, the produced molecular plume is characterized in terms of number density, spatial extend, fragmentation, temporal distribution, translational velocity, and translational temperature. The effect of desorption laser intensity on these plume properties is evaluated. While translational velocity is invariant for different desorption laser intensities, pointing to a nonthermal desorption mechanism, the translational temperature increases significantly and higher fragmentation is observed with increased desorption laser fluence.

  16. Reprint of: Effects of cold deformation, electron irradiation and extrusion on deuterium desorption behavior in Zr-1%Nb alloy

    NASA Astrophysics Data System (ADS)

    Morozov, O.; Mats, O.; Mats, V.; Zhurba, V.; Khaimovich, P.

    2018-01-01

    The present article introduces the data of analysis of ranges of ion-implanted deuterium desorption from Zr-1% Nb alloy. The samples studied underwent plastic deformation, low temperature extrusion and electron irradiation. Plastic rolling of the samples at temperature ∼300 K resulted in plastic deformation with the degree of ε = 3.9 and the formation of nanostructural state with the average grain size of d = 61 nm. The high degree of defectiveness is shown in thermodesorption spectrum as an additional area of the deuterium desorption in the temperature ranges 650-850 K. The further processing of the sample (that had undergone plastic deformation by plastic rolling) with electron irradiation resulted in the reduction of the average grain size (58 nm) and an increase in borders concentration. As a result the amount of deuterium desorpted increased in the temperature ranges 650-900 K. In case of Zr-1% Nb samples deformed by extrusion the extension of desorption area is observed towards the temperature reduction down to 420 K. The formation of the phase state of deuterium solid solution in zirconium was not observed. The structural state behavior is a control factor in the process of deuterium thermodesorption spectrum structure formation with a fixed implanted deuterium dose (hydrogen diagnostics). It appears as additional temperature ranges of deuterium desorption depending on the type, character and defect content.

  17. Nested potassium hydroxide etching and protective coatings for silicon-based microreactors

    NASA Astrophysics Data System (ADS)

    de Mas, Nuria; Schmidt, Martin A.; Jensen, Klavs F.

    2014-03-01

    We have developed a multilayer, multichannel silicon-based microreactor that uses elemental fluorine as a reagent and generates hydrogen fluoride as a byproduct. Nested potassium hydroxide etching (using silicon nitride and silicon oxide as masking materials) was developed to create a large number of channels (60 reaction channels connected to individual gas and liquid distributors) of significantly different depths (50-650 µm) with sloped walls (54.7° with respect to the (1 0 0) wafer surface) and precise control over their geometry. The wetted areas were coated with thermally grown silicon oxide and electron-beam evaporated nickel films to protect them from the corrosive fluorination environment. Up to four Pyrex layers were anodically bonded to three silicon layers in a total of six bonding steps to cap the microchannels and stack the reaction layers. The average pinhole density in as-evaporated films was 3 holes cm-2. Heating during anodic bonding (up to 350 °C for 4 min) did not significantly alter the film composition. Upon fluorine exposure, nickel films (160 nm thick) deposited on an adhesion layer of Cr (10 nm) over an oxidized silicon substrate (up to 500 nm thick SiO2) led to the formation of a nickel fluoride passivation layer. This microreactor was used to investigate direct fluorinations at room temperature over several hours without visible signs of film erosion.

  18. Microreactor Array Device

    NASA Astrophysics Data System (ADS)

    Wiktor, Peter; Brunner, Al; Kahn, Peter; Qiu, Ji; Magee, Mitch; Bian, Xiaofang; Karthikeyan, Kailash; Labaer, Joshua

    2015-03-01

    We report a device to fill an array of small chemical reaction chambers (microreactors) with reagent and then seal them using pressurized viscous liquid acting through a flexible membrane. The device enables multiple, independent chemical reactions involving free floating intermediate molecules without interference from neighboring reactions or external environments. The device is validated by protein expressed in situ directly from DNA in a microarray of ~10,000 spots with no diffusion during three hours incubation. Using the device to probe for an autoantibody cancer biomarker in blood serum sample gave five times higher signal to background ratio compared to standard protein microarray expressed on a flat microscope slide. Physical design principles to effectively fill the array of microreactors with reagent and experimental results of alternate methods for sealing the microreactors are presented.

  19. Energy Analysis of n-Dodecane Combustion in a Hetero/Homogeneous Heat-Recirculating Microreactor for Portable Power Applications

    NASA Astrophysics Data System (ADS)

    Waits, C. M.; Tolmachoff, E. D.; Allmon, W. R.; Zecher-Freeman, N. E.

    2016-11-01

    An energy analysis is presented for n-dodecane/air combustion in a heat recirculating Inconel microreactor under vacuum conditions. Microreactor channels are partially coated with platinum enabling operating with coupled heterogeneous and homogeneous reactions. The radiant efficiency, important for thermophotovoltaic energy conversion, was found to decrease from 57% to 52% over 5 different runs covering 377 min of operation. A similar decrease in combustion efficiency was observed with 6%-8% energy lost to incomplete combustion and 5%- 6% lost through sensible heat in the exhaust. The remaining thermal loss is from unusable radiation and conduction through inlet and outlet tubing. Changes in the Inconel microreactor geometry and emissivity properties were observed.

  20. Growth kinetics of indium metal atoms on Si(1 1 2) surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raj, Vidur; Chauhan, Amit Kumar Singh; Gupta, Govind, E-mail: govind@nplindia.org

    Graphical abstract: Controlled growth of indium atoms on Si(1 1 2) surface has been carried out systematically and the influence of substrate temperature on the kinetics is analysed under various growth conditions. Temperature induced anomalous layer-to-clusters transformation during thermal desorption has also been reported. - Highlights: • Controlled growth of indium atoms on Si(1 1 2) surface & their thermal stability. • Influence of substrate temperature on the kinetics under various growth conditions. • Temperature induced layer-to-clusters transformation during thermal desorption. - Abstract: The growth kinetics and desorption behavior of indium (In) atoms grown on high index Si(1 1 2)more » surface at different substrate temperatures has been studied. Auger electron spectroscopy analysis revealed that In growth at room temperature (RT) and high substrate temperature (HT) ∼250 °C follows Frank–van der Merve growth mode whereas at temperatures ≥450 °C, In growth evolves through Volmer–Weber growth mode. Thermal desorption studies of RT and 250 °C grown In/Si(1 1 2) systems show temperature induced rearrangement of In atoms over Si(1 1 2) surface leading to clusters to layer transformation. The monolayer and bilayer desorption energies for RT grown In/Si(1 1 2) system are calculated to be 2.5 eV and 1.52 eV, while for HT-250 °C the values are found to be 1.6 eV and 1.3 eV, respectively. This study demonstrates the effect of temperature on growth kinetics as well as on the multilayer/monolayer desorption pathway of In on Si(1 1 2) surface.« less

  1. A new theoretical approach to adsorption desorption behavior of Ga on GaAs surfaces

    NASA Astrophysics Data System (ADS)

    Kangawa, Y.; Ito, T.; Taguchi, A.; Shiraishi, K.; Ohachi, T.

    2001-11-01

    We propose a new theoretical approach for studying adsorption-desorption behavior of atoms on semiconductor surfaces. The new theoretical approach based on the ab initio calculations incorporates the free energy of gas phase; therefore we can calculate how adsorption and desorption depends on growth temperature and beam equivalent pressure (BEP). The versatility of the new theoretical approach was confirmed by the calculation of Ga adsorption-desorption transition temperatures and transition BEPs on the GaAs(0 0 1)-(4×2)β2 Ga-rich surface. This new approach is feasible to predict how adsorption and desorption depend on the growth conditions.

  2. C incorporation and segregation during Si 1- yC y/Si( 0 0 1 ) gas-source molecular beam epitaxy from Si 2H 6 and CH 3SiH 3

    NASA Astrophysics Data System (ADS)

    Foo, Y. L.; Bratland, K. A.; Cho, B.; Soares, J. A. N. T.; Desjardins, P.; Greene, J. E.

    2002-08-01

    We have used in situ D 2 temperature-programmed desorption (TPD) to probe C incorporation and surface segregation kinetics, as well as hydrogen desorption pathways, during Si 1- yC y(0 0 1) gas-source molecular beam epitaxy from Si 2H 6/CH 3SiH 3 mixtures at temperatures Ts between 500 and 650 °C. Parallel D 2 TPD results from C-adsorbed Si(0 0 1) wafers exposed to varying CH 3SiH 3 doses serve as reference data. Si 1- yC y(0 0 1) layer spectra consist of three peaks: first-order β 1 at 515 °C and second-order β 2 at 405 °C, due to D 2 desorption from Si monodeuteride and dideuteride phases, as well as a new second-order C-induced γ 1 peak at 480 °C. C-adsorbed Si(0 0 1) samples with very high CH 3SiH 3 exposures yielded a higher-temperature TPD feature, corresponding to D 2 desorption from surface C atoms, which was never observed in Si 1- yC y(0 0 1) layer spectra. The Si 1- yC y(0 0 1) γ 1 peak arises due to desorption from Si monodeuteride species with C backbonds. γ 1 occurs at a lower temperature than β 1 reflecting the lower D-Si * bond strength, where Si * represents surface Si atoms bonded to second-layer C atoms, as a result of charge transfer from dangling bonds. The total integrated monohydride (β 1+γ 1) intensity, and hence the dangling bond density, remains constant with y indicating that C does not deactivate surface dangling bonds as it segregates to the second-layer during Si 1- yC y(0 0 1) growth. Si * coverages increase with y at constant Ts and with Ts at constant y. The positive Ts-dependence shows that C segregation is kinetically limited at Ts⩽650 °C. D 2 desorption activation energies from β 1, γ 1 and β 2 sites are 2.52, 2.22 and 1.88 eV.

  3. Kinetic and geometric isotope effects originating from different adsorption potential energy surfaces: cyclohexane on Rh(111).

    PubMed

    Koitaya, Takanori; Shimizu, Sumera; Mukai, Kozo; Yoshimoto, Shinya; Yoshinobu, Jun

    2012-06-07

    Novel isotope effects were observed in desorption kinetics and adsorption geometry of cyclohexane on Rh(111) by the use of infrared reflection absorption spectroscopy, temperature programmed desorption, photoelectron spectroscopy, and spot-profile-analysis low energy electron diffraction. The desorption energy of deuterated cyclohexane (C(6)D(12)) is lower than that of C(6)H(12). In addition, the work function change by adsorbed C(6)D(12) is smaller than that by adsorbed C(6)H(12). These results indicate that C(6)D(12) has a shallower adsorption potential than C(6)H(12) (vertical geometric isotope effect). The lateral geometric isotope effect was also observed in the two-dimensional cyclohexane superstructures as a result of the different repulsive interaction between interfacial dipoles. The observed isotope effects should be ascribed to the quantum nature of hydrogen involved in the C-H···metal interaction.

  4. Isothermal-desorption-rate measurements in the vicinity of the Curie temperature for H2 chemisorbed on nickel films

    NASA Technical Reports Server (NTRS)

    Shanabarger, M. R.

    1979-01-01

    Measurements of the isothermal desorption rate of H2 chemisorbed onto polycrystalline nickel films made for temperatures spanning the Curie temperature of the nickel film are presented. Desorption kinetics were followed by measuring the decay of the change in resistance of the nickel film brought about by hydrogen chemisorption after gas-phase H2 had been rapidly evacuated. The desorption rate is found to undergo an anomalous decrease in the vicinity of the Curie temperature, accompanied by an increase in the desorption activation energy and the equilibrium constant for the chemisorbed hydrogen. The results are interpreted in terms of anomalous variations in rate constants for the formation of the precursor molecular adsorbed state and the chemisorbed atomic state due to the phase transition in the nickel. The changes in rate constants are also considered to be in qualitative agreement with theoretical predictions based on a spin coupling between the adatom and the magnetic substrate.

  5. Six-flow operations for catalyst development in Fischer-Tropsch synthesis: Bridging the gap between high-throughput experimentation and extensive product evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sartipi, Sina, E-mail: S.Sartipi@tudelft.nl, E-mail: J.Gascon@tudelft.nl; Jansma, Harrie; Bosma, Duco

    2013-12-15

    Design and operation of a “six-flow fixed-bed microreactor” setup for Fischer-Tropsch synthesis (FTS) is described. The unit consists of feed and mixing, flow division, reaction, separation, and analysis sections. The reactor system is made of five heating blocks with individual temperature controllers, assuring an identical isothermal zone of at least 10 cm along six fixed-bed microreactor inserts (4 mm inner diameter). Such a lab-scale setup allows running six experiments in parallel, under equal feed composition, reaction temperature, and conditions of separation and analysis equipment. It permits separate collection of wax and liquid samples (from each flow line), allowing operation with highmore » productivities of C5+ hydrocarbons. The latter is crucial for a complete understanding of FTS product compositions and will represent an advantage over high-throughput setups with more than ten flows where such instrumental considerations lead to elevated equipment volume, cost, and operation complexity. The identical performance (of the six flows) under similar reaction conditions was assured by testing a same catalyst batch, loaded in all microreactors.« less

  6. Quantitative analysis of desorption and decomposition kinetics of formic acid on Cu(111): The importance of hydrogen bonding between adsorbed species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiozawa, Yuichiro; Koitaya, Takanori; Mukai, Kozo

    2015-12-21

    Quantitative analysis of desorption and decomposition kinetics of formic acid (HCOOH) on Cu(111) was performed by temperature programmed desorption (TPD), X-ray photoelectron spectroscopy, and time-resolved infrared reflection absorption spectroscopy. The activation energy for desorption is estimated to be 53–75 kJ/mol by the threshold TPD method as a function of coverage. Vibrational spectra of the first layer HCOOH at 155.3 K show that adsorbed molecules form a polymeric structure via the hydrogen bonding network. Adsorbed HCOOH molecules are dissociated gradually into monodentate formate species. The activation energy for the dissociation into monodentate formate species is estimated to be 65.0 kJ/mol atmore » a submonolayer coverage (0.26 molecules/surface Cu atom). The hydrogen bonding between adsorbed HCOOH species plays an important role in the stabilization of HCOOH on Cu(111). The monodentate formate species are stabilized at higher coverages, because of the lack of vacant sites for the bidentate formation.« less

  7. USGS Coal Desorption Equipment and a Spreadsheet for Analysis of Lost and Total Gas from Canister Desorption Measurements

    USGS Publications Warehouse

    Barker, Charles E.; Dallegge, Todd A.; Clark, Arthur C.

    2002-01-01

    We have updated a simple polyvinyl chloride plastic canister design by adding internal headspace temperature measurement, and redesigned it so it is made with mostly off-the-shelf components for ease of construction. Using self-closing quick connects, this basic canister is mated to a zero-head manometer to make a simple coalbed methane desorption system that is easily transported in small aircraft to remote localities. This equipment is used to gather timed measurements of pressure, volume and temperature data that are corrected to standard pressure and temperature (STP) and graphically analyzed using an Excel(tm)-based spreadsheet. Used together these elements form an effective, practical canister desorption method.

  8. Photodesorption of Solid CO2 by Lyα

    NASA Astrophysics Data System (ADS)

    Bahr, D. A.; Baragiola, R. A.

    2012-12-01

    We measured desorption of atoms and molecules from films of solid carbon dioxide in an ultrahigh vacuum from 6 to 60 K under irradiation with Lyα (121.6 nm, 10.2 eV) photons, an important process in the balance between gas phase and condensed molecules in the interstellar medium. The measurements use microgravimetry and mass spectrometry during irradiation and temperature programmed desorption after irradiation. At low photon fluences, the desorption flux consists mainly of O atoms and, after ~1017 photons cm-2, it is dominated by CO with smaller amount of O2, C, and CO2, with the presence of O2 indicating solid-state chemical reactions. At high fluences (up to 1018 photons cm-2), the desorption yields saturate at values much higher than in previous studies. The yields (molecules/photon), derived assuming stoichiometric desorption, reach 0.014 at 6 K, growing to ~0.2 at 50 and 60 K. Warming the films during irradiation gives rise to pressure spikes that suggest desorption of trapped species in pores or at defects, possibly assisted by radical-induced reactions. Such an effect could be significant for radiation-processed CO2-coated interstellar grains that are heated by, i.e., cosmic ray impacts or grain-grain collisions. We discuss the experiments considering photochemical mechanisms and compare them to the results of ion irradiation.

  9. Determination of the Microscopic Structure of Surface and Overlayers, Adsorbate-Adsorbate Interaction Energies, and Rates of Surface Processes.

    DTIC Science & Technology

    1982-12-28

    molecular beam-surface scattering, high pressure microreactor , heterogeneous catalysis. :116. AmTRAC? ’CAuI1ae 4111, 8ee 1 111 It oesey -1lP d ify by...Crystallography.. . ..... ....................... 4 11. Design and Construction of a High Pressure Catalvtic Microreactor ... microreactor has been designed and constructed. This micro- reactor will be a useful adjunct to the molecular beam machine since in the former overall

  10. Interaction of dimethylamine with clean and partially oxidized copper surfaces

    NASA Astrophysics Data System (ADS)

    Kelber, J. A.; Rogers, J. W.; Banse, B. A.; Koel, B. E.

    1990-05-01

    The interaction of dimethylamine (DMA) with partially oxidized polycrystalline copper [Cu(poly)] and clean and partially oxidized Cu(110) between 110 and 500 K has been examined using electron stimulated desorption (ESD), high resolution electron energy loss spectroscopy (HREELS) and temperature programmed desorption (TPD). ESD mass spectra of the DMA adsorbed on O/Cu(poly) between 112 and 230 K consistently display peaks at 44 amu [(CH 3) 2N] + and 46 amu [(CH 3) 2NH-H] +, but no significant parent peak at 45 amu [(CH 3) 2NH] +, even though this last feature is prominent in the gas-phase mass spectrum. OH - is not observed at temperatures below 184 K and the yield at higher temperatures is much less than that of O +. HREELS of DMA on clean and oxygen covered Cu(110) obtained at temperatures between 100 and 320 K show characteristic vibrational spectra for molecular DMA and no OH(a) vibrational modes. TPD results show that the desorption profiles of all the major peaks in the DMA mass spectrum follow that of the parent peak with no evidence for production of H 2O. The ESD, HREELS and TPD results all indicate that DMA is molecularly and reversibly adsorbed, with no significant formation of surface hydroxyl species. The results indicate that preferential adsorption of amines from amine/epoxy mixtures onto metal oxide surfaces could passivate the surface and prevent subsequent bonding to the epoxy resin.

  11. Conscious coupling: The challenges and opportunities of cascading enzymatic microreactors.

    PubMed

    Gruber, Pia; Marques, Marco P C; O'Sullivan, Brian; Baganz, Frank; Wohlgemuth, Roland; Szita, Nicolas

    2017-07-01

    The continuous production of high value or difficult to synthesize products is of increasing interest to the pharmaceutical industry. Cascading reaction systems have already been employed for chemical synthesis with great success, allowing a quick change in reaction conditions and addition of new reactants as well as removal of side products. A cascading system can remove the need for isolating unstable intermediates, increasing the yield of a synthetic pathway. Based on the success for chemical synthesis, the question arises how cascading systems could be beneficial to chemo-enzymatic or biocatalytic synthesis. Microreactors, with their rapid mass and heat transfer, small reaction volumes and short diffusion pathways, are promising tools for the development of such processes. In this mini-review, the authors provide an overview of recent examples of cascaded microreactors. Special attention will be paid to how microreactors are combined and the challenges as well as opportunities that arise from such combinations. Selected chemical reaction cascades will be used to illustrate this concept, before the discussion is widened to include chemo-enzymatic and multi-enzyme cascades. The authors also present the state of the art of online and at-line monitoring for enzymatic microreactor cascades. Finally, the authors review work-up and purification steps and their integration with microreactor cascades, highlighting the potential and the challenges of integrated cascades. © 2017 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. A low perfusion rate microreactor for continuous monitoring of enzyme characteristics: application to glucose oxidase

    PubMed Central

    Venema, K.; van Berkel, W. J. H.; Korf, J.

    2007-01-01

    This report describes a versatile and robust microreactor for bioactive proteins physically immobilized on a polyether sulfone filter. The potential of the reactor is illustrated with glucose oxidase immobilized on a filter with a cut-off value of 30 kDa. A flow-injection system was used to deliver the reactants and the device was linked on-line to an electrochemical detector. The microreactor was used for on-line preparation of apoglucose oxidase in strong acid and its subsequent reactivation with flavin adenine dinucleotide. In addition we describe a miniaturized version of the microreactor used to assess several characteristics of femtomole to attomole amounts of glucose oxidase. A low negative potential over the electrodes was used when ferrocene was the mediator in combination with horseradish peroxidase, ensuring the absence of oxidation of electro-active compounds in biological fluids. A low backpressure at very low flow rates is an advantage, which increases the sensitivity. A variety of further applications of the microreactor are suggested. Figure Preparation of apoGOx and restoration of enzyme activity using a soluton of FAD PMID:17909761

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulberg, M.T.; Allendorf, M.D.; Outka, D.A.

    NH{sub 3} is an important component of many chemical vapor deposition (CVD) processes for TiN films, which are used for diffusion barriers and other applications in microelectronic circuits. In this study, the interaction of NH{sub 3} with TiN surfaces is examined with temperature programmed desorption (TPD) and Auger electron spectroscopy. NH{sub 3} has two adsorption states on TiN: a chemisorbed state and a multilayer state. A new method for analyzing TPD spectra in systems with slow pumping speeds yields activation energies for desorption for the two states of 24 kcal/mol and 7.3 kcal/mol, respectively. The sticking probability into the chemisorptionmore » state is {approximately}0.06. These results are discussed in the context of TiN CVD. In addition, the high temperature stability of TiN is investigated. TiN decomposes to its elements only after heating to 1300 K, showing that decomposition is unlikely to occur under CVD conditions.« less

  14. Changes induced on the surfaces of small Pd clusters by the thermal desorption of CO

    NASA Technical Reports Server (NTRS)

    Doering, D. L.; Poppa, H.; Dickinson, J. T.

    1980-01-01

    The stability and adsorption/desorption properties of supported Pd crystallites less than 5 nm in size were studied by Auger electron spectroscopy and repeated flash thermal desorption of CO. The Pd particles were grown epitaxially on heat-treated, UHV-cleaved mica at a substrate temperature of 300 C and a Pd impingement flux of 10 to the 13th atoms/sq cm s. Auger analysis allowed in situ measurement of relative particle dispersion and contamination, while FTD monitored the CO desorption properties. The results show that significant changes in the adsorption properties can be detected. Changes in the Pd Auger signal and the desorption spectrum during the first few thermal cycles are due to particle coalescence and facetting and the rate of this change is dependent on the temperature and duration of the desorption. Significant reductions in the amplitude of the desorptions peak occur during successive CO desorptions which are attributed to increases of surface carbon, induced by the desorption of CO. The contamination process could be reversed by heat treatment in oxygen or hydrogen

  15. Dosimeter-Type NOx Sensing Properties of KMnO4 and Its Electrical Conductivity during Temperature Programmed Desorption

    PubMed Central

    Groβ, Andrea; Kremling, Michael; Marr, Isabella; Kubinski, David J.; Visser, Jacobus H.; Tuller, Harry L.; Moos, Ralf

    2013-01-01

    An impedimetric NOx dosimeter based on the NOx sorption material KMnO4 is proposed. In addition to its application as a low level NOx dosimeter, KMnO4 shows potential as a precious metal free lean NOx trap material (LNT) for NOx storage catalysts (NSC) enabling electrical in-situ diagnostics. With this dosimeter, low levels of NO and NO2 exposure can be detected electrically as instantaneous values at 380 °C by progressive NOx accumulation in the KMnO4 based sensitive layer. The linear NOx sensing characteristics are recovered periodically by heating to 650 °C or switching to rich atmospheres. Further insight into the NOx sorption-dependent conductivity of the KMnO4-based material is obtained by the novel eTPD method that combines electrical characterization with classical temperature programmed desorption (TPD). The NOx loading amount increases proportionally to the NOx exposure time at sorption temperature. The cumulated NOx exposure, as well as the corresponding NOx loading state, can be detected linearly by electrical means in two modes: (1) time-continuously during the sorption interval including NOx concentration information from the signal derivative or (2) during the short-term thermal NOx release. PMID:23549366

  16. Defect annealing and thermal desorption of deuterium in low dose HFIR neutron-irradiated tungsten

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masashi Shimada; M. Hara; T. Otsuka

    2014-05-01

    Accurately estimating tritium retention in plasma facing components (PFCs) and minimizing its uncertainty are key safety issues for licensing future fusion power reactors. D-T fusion reactions produce 14.1 MeV neutrons that activate PFCs and create radiation defects throughout the bulk of the material of these components. Recent studies show that tritium migrates and is trapped in bulk (>> 10 µm) tungsten beyond the detection range of nuclear reaction analysis technique [1-2], and thermal desorption spectroscopy (TDS) technique becomes the only established diagnostic that can reveal hydrogen isotope behavior in in bulk (>> 10 µm) tungsten. Radiation damage and its recoverymore » mechanisms in neutron-irradiated tungsten are still poorly understood, and neutron-irradiation data of tungsten is very limited. In this paper, systematic investigations with repeated plasma exposures and thermal desorption are performed to study defect annealing and thermal desorption of deuterium in low dose neutron-irradiated tungsten. Three tungsten samples (99.99 at. % purity from A.L.M.T. Co., Japan) irradiated at High Flux Isotope Reactor at Oak Ridge National Laboratory were exposed to high flux (ion flux of (0.5-1.0)x1022 m-2s-1 and ion fluence of 1x1026 m-2) deuterium plasma at three different temperatures (100, 200, and 500 °C) in Tritium Plasma Experiment at Idaho National Laboratory. Subsequently, thermal desorption spectroscopy (TDS) was performed with a ramp rate of 10 °C/min up to 900 °C, and the samples were annealed at 900 °C for 0.5 hour. These procedures were repeated three (for 100 and 200 °C samples) and four (for 500 °C sample) times to uncover damage recovery mechanisms and its effects on deuterium behavior. The results show that deuterium retention decreases approximately 90, 75, and 66 % for 100, 200, and 500 °C, respectively after each annealing. When subjected to the same TDS recipe, the desorption temperature shifts from 800 °C to 600 °C after 1st annealing for the sample exposed to TPE at 500 °C. Tritium Migration Analysis Program (TMAP) analysis reveals that the detrapping energy decreases from 1.8 eV to 1.4 eV, indicating the changes in trapping mechanisms. This paper also summarizes deuterium behavior studies in HFIR neutron-irradiated tungsten under US-Japan TITAN program.« less

  17. Immobilized Pepsin Microreactor for Rapid Peptide Mapping with Nanoelectrospray Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Long, Ying; Wood, Troy D.

    2015-01-01

    Most enzymatic microreactors for protein digestion are based on trypsin, but proteins with hydrophobic segments may be difficult to digest because of the paucity of Arg and Lys residues. Microreactors based on pepsin, which is less specific than trypsin, can overcome this challenge. Here, an integrated immobilized pepsin microreactor (IPMR)/nanoelectrospray emitter is examined for its potential for peptide mapping. For myoglobin, equivalent sequence coverage is obtained in a thousandth the time of solution digestion with better sequence coverage. While sequence coverage of cytochrome c is lesser than solution in this short duration, more highly-charged peptic peptides are produced and a number of peaks are unidentified at low-resolution, suggesting that high-resolution mass spectrometry is needed to take full advantage of integrated IPMR/nanoelectrospray devices.

  18. Microreactor Array Device

    PubMed Central

    Wiktor, Peter; Brunner, Al; Kahn, Peter; Qiu, Ji; Magee, Mitch; Bian, Xiaofang; Karthikeyan, Kailash; LaBaer, Joshua

    2015-01-01

    We report a device to fill an array of small chemical reaction chambers (microreactors) with reagent and then seal them using pressurized viscous liquid acting through a flexible membrane. The device enables multiple, independent chemical reactions involving free floating intermediate molecules without interference from neighboring reactions or external environments. The device is validated by protein expressed in situ directly from DNA in a microarray of ~10,000 spots with no diffusion during three hours incubation. Using the device to probe for an autoantibody cancer biomarker in blood serum sample gave five times higher signal to background ratio compared to standard protein microarray expressed on a flat microscope slide. Physical design principles to effectively fill the array of microreactors with reagent and experimental results of alternate methods for sealing the microreactors are presented. PMID:25736721

  19. Gallium-containing polymer brush film as efficient supported Lewis acid catalyst in a glass microreactor.

    PubMed

    Munirathinam, Rajesh; Ricciardi, Roberto; Egberink, Richard J M; Huskens, Jurriaan; Holtkamp, Michael; Wormeester, Herbert; Karst, Uwe; Verboom, Willem

    2013-01-01

    Polystyrene sulfonate polymer brushes, grown on the interior of the microchannels in a microreactor, have been used for the anchoring of gallium as a Lewis acid catalyst. Initially, gallium-containing polymer brushes were grown on a flat silicon oxide surface and were characterized by FTIR, ellipsometry, and X-ray photoelectron spectroscopy (XPS). XPS revealed the presence of one gallium per 2-3 styrene sulfonate groups of the polymer brushes. The catalytic activity of the Lewis acid-functionalized brushes in a microreactor was demonstrated for the dehydration of oximes, using cinnamaldehyde oxime as a model substrate, and for the formation of oxazoles by ring closure of ortho-hydroxy oximes. The catalytic activity of the microreactor could be maintained by periodic reactivation by treatment with GaCl3.

  20. Desorption Product Yields Following Cl2 Adsorption on Si(111)7x7: Coverage and Temperature Dependence

    DTIC Science & Technology

    1991-04-12

    only desorption product at approximately 950 K. At higher chloride coverages of 8/6s5 )0.t, a small’ SICl4 TrD signal -’as als:; monitored at 950 K...SiCI2 desorption along with SiCl4 descrption (20). SiCI4 desorbed from a low temperature desorption state at 400 K, whereas SiCI4 and SiCI2 both desorbed...The ratio of the S "l3 an,’ SiC]4 TPD areas suggests that the SiC]3 and SiC]4 TPD signals are both derived froin the desorption of SiCl4 . The growth

  1. Stimuli-Responsive Reagent System for Enabling Microfluidic Immunoassays with Biomarker Purification and Enrichment

    PubMed Central

    2015-01-01

    Immunoassays have been translated into microfluidic device formats, but significant challenges relating to upstream sample processing still limit their applications. Here, stimuli-responsive polymer–antibody conjugates are utilized in a microfluidic immunoassay to enable rapid biomarker purification and enrichment as well as sensitive detection. The conjugates were constructed by covalently grafting poly(N-isopropylacrylamide) (PNIPAAm), a thermally responsive polymer, to the lysine residues of anti-prostate specific antigen (PSA) Immunoglobulin G (IgG) using carbodiimide chemistry via the polymer end-carboxylate. The antibody-PNIPAAm (capture) conjugates and antibody-alkaline phosphatase (detection) conjugates formed sandwich immunocomplexes via PSA binding in 50% human plasma. The complexes were loaded into a recirculating poly(dimethylsiloxane) microreactor, equipped with micropumps and transverse flow features, for subsequent separation, enrichment, and quantification. The immunocomplexes were captured by heating the solution to 39 °C, mixed over the transverse features for 2 min, and washed with warm buffer. In one approach, the assay utilized immunocomplex solution that was contained in an 80 nL microreactor, which was loaded with solution at room temperature and subsequently heated to 39 °C. The assay took 25 min and resulted in 37 pM PSA limit of detection (LOD), which is comparable to a plate ELISA employing the same antibody pair. In another approach, the microreactor was preheated to 39 °C, and immunocomplex solution was flowed through the reactor, mixed, and washed. When the specimen volume was increased to 7.5 μL by repeating the capture process three times, the higher specimen volume led to immunocomplex enrichment within the microreactor. The resulting assay LOD was 0.5 pM, which is 2 orders of magnitude lower than the plate ELISA. Both approaches generate antigen specific signal over a clinically significant range. The sample processing capabilities and subsequent utility in a biomarker assay demonstrate the opportunity for stimuli-responsive polymer–protein conjugates in novel diagnostic technologies. PMID:25405605

  2. The Adsorption and Desorption of Pb(2+) and Cd(2+) in Freeze-Thaw Treated Soils.

    PubMed

    Li, Linhui; Ma, Jincai; Xu, Meng; Li, Xu; Tao, Jiahui; Wang, Guanzhu; Yu, Jitong; Guo, Ping

    2016-01-01

    Adsorption and desorption are important processes that influence the potential toxicity and bioavailability of heavy metals in soils. However, information regarding adsorption and desorption behavior of heavy metals in soils subjected to freeze-thaw cycles is poorly understood. In the current study, the effect of freeze-thaw cycles with different freezing temperature (-15, -25, -35°C) on soil properties was investigated. Then the adsorption and desorption behavior of Pb(2+) and Cd(2+) in freeze-thaw treated soils was studied. The adsorption amounts of Pb(2+) and Cd(2+) in freeze-thaw treated soils were smaller than those in unfrozen soils (p < 0.05), due to the fact that pH, cation exchange capacity, organic matter content, free iron oxide content, and CaCO3 content in freeze-thaw treated soils were smaller than those in unfrozen soils. The adsorption amounts of Pb(2+) and Cd(2+) in soils treated with lower freezing temperatures were higher than those in soils treated with higher freezing temperatures. Desorption percentages of Pb(2+) and Cd(2+) in unfrozen soils were smaller than those in freeze-thaw treated soils (p < 0.05). The desorption percentages of Pb(2+) and Cd(2+) were smaller in soils treated with lower freezing temperatures than those in soils treated with higher freezing temperatures. The results obtained highlight the change of the adsorption and desorption behavior of typical heavy metals in freeze-thaw treated soils located in seasonal frozen soils zone in northeast China.

  3. Interactions on External MOF Surfaces: Desorption of Water and Ethanol from CuBDC Nanosheets.

    PubMed

    Elder, Alexander C; Aleksandrov, Alexandr B; Nair, Sankar; Orlando, Thomas M

    2017-10-03

    The external surfaces of metal-organic framework (MOF) materials are difficult to experimentally isolate due to the high porosities of these materials. MOF surface surrogates in the form of copper benzenedicarboxylate (CuBDC) nanosheets were synthesized using a bottom-up approach, and the surface interactions of water and ethanol were investigated by temperature-programmed desorption (TPD). A method of analysis of diffusion-influenced TPD was developed to measure the desorption properties of these porous materials. This approach also allows the extraction of diffusion coefficients from TPD data. The transmission Fourier transform infrared spectra, powder X-ray diffraction patterns, and TPD data indicate that water desorbs from CuBDC nanosheets with activation energies of 44 ± 2 kJ/mol at edge sites and 58 ± 1 kJ/mol at external surface and internal and pore sites. Ethanol desorbs with activation energies of 58 ± 1 kJ/mol at internal pore sites and 66 ± 0.4 kJ/mol at external surface sites. Co-adsorption of water and ethanol was also investigated. The presence of ethanol was found to inhibit the desorption of water, resulting in a water desorption process with an activation energy of 68 ± 0.7 kJ/mol.

  4. A soil-column gas chromatography (SCGC) approach to explore the thermal desorption behavior of hydrocarbons from soils.

    PubMed

    Yu, Ying; Liu, Liang; Shao, Ziying; Ju, Tianyu; Sun, Bing; Benadda, Belkacem

    2016-01-01

    A soil-column gas chromatography approach was developed to simulate the mass transfer process of hydrocarbons between gas and soil during thermally enhanced soil vapor extraction (T-SVE). Four kinds of hydrocarbons-methylbenzene, n-hexane, n-decane, and n-tetradecane-were flowed by nitrogen gas. The retention factor k' and the tailing factor T f were calculated to reflect the desorption velocities of fast and slow desorption fractions, respectively. The results clearly indicated two different mechanisms on the thermal desorption behaviors of fast and slow desorption fractions. The desorption velocity of fast desorption fraction was an exponential function of the reciprocal of soil absolute temperature and inversely correlated with hydrocarbon's boiling point, whereas the desorption velocity of slow desorption fraction was an inverse proportional function of soil absolute temperature, and inversely proportional to the log K OW value of the hydrocarbons. The higher activation energy of adsorption was found on loamy soil with higher organic content. The increase of carrier gas flow rate led to a reduction in the apparent activation energy of adsorption of slow desorption fraction, and thus desorption efficiency was significantly enhanced. The obtained results are of practical interest for the design of high-efficiency T-SVE system and may be used to predict the remediation time.

  5. Low-Temperature Desorption of N2O from NO on Rutile TiO2(110)-1x1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Boseong; Li, Zhenjun; Kay, Bruce D.

    2014-05-08

    We find that NO dosed on rutile TiO2(110)-1×1 at substrate temperatures as low as 50 K readily reacts to produce N2O which desorbs promptly from the surface leaving an oxygen adatom behind. The desorption rate of N2O reaches a maximum value after 1 – 2 sec at an NO flux of 1.2 ×1014 NO/cm2∙sec and then decreases rapidly as the initially clean, reduced TiO2(110) surface with ~5% oxygen vacancies (VO’s) becomes covered with oxygen adatoms and unreacted NO. The maximum desorption rate is also found to increase as the substrate temperature is raised up to about 100 K. Interestingly, themore » N2O desorption during the low-temperature (LT) NO dose is strongly suppressed when molecular oxygen is predosed, whereas it persists on the surface with VO’s passivated by surface hydroxyls. Our results show that the surface charge, not the VO sites, plays a dominant role in the LT N2O desorption induced by a facile NO reduction at such low temperatures.« less

  6. The feasibility of desorption on Zeolite-water pair using dry gas

    NASA Astrophysics Data System (ADS)

    Oktariani, E.; Nakashima, K.; Noda, A.; Xue, B.; Tahara, K.; Nakaso, K.; Fukai, J.

    2018-04-01

    The increase in temperature, reduction in partial pressure, reduction in concentration, purging with an inert fluid, and displacement with a more strongly adsorbing species are the basic things that occur in the practical method of desorption. In this study, dry gas at constant temperature and pressure was employed as the aid to reduce the partial pressure in the water desorption on the zeolite 13X. The objective of this study is to confirm the feasibility of desorption using dry gas experimentally and numerically. The implication of heat and mass transfers were numerically investigated to find the most influential. The results of numerical simulation agree with the experimental ones for the distribution of local temperature and average water adsorbed in the packed bed.

  7. Air separation with temperature and pressure swing

    DOEpatents

    Cassano, Anthony A.

    1986-01-01

    A chemical absorbent air separation process is set forth which uses a temperature swing absorption-desorption cycle in combination with a pressure swing wherein the pressure is elevated in the desorption stage of the process.

  8. Evaluation of GeO desorption behavior in the metalGeO(2)Ge structure and its improvement of the electrical characteristics.

    PubMed

    Oniki, Yusuke; Koumo, Hideo; Iwazaki, Yoshitaka; Ueno, Tomo

    2010-06-15

    The relation between germanium monoxide (GeO) desorption and either improvement or deterioration in electrical characteristics of metalGeO(2)Ge capacitors fabricated by thermal oxidation has been investigated. In the metalGeO(2)Ge stack, two processes of GeO desorption at different sites and at different temperatures were observed by thermal desorption spectroscopy measurements. The electrical characteristics of as-oxidized metalGeO(2)Ge capacitors shows a large flat-band voltage shift and minority carrier generation due to the GeO desorption from the GeO(2)Ge interface during oxidation of Ge substrates. On the other hand, the electrical properties were drastically improved by a postmetallization annealing at low temperature resulting in a metal catalyzed GeO desorption from the top interface.

  9. In situ hydrogenation and decarboxylation of oleic acid into heptadecane over a Cu–Ni alloy catalyst using methanol as a hydrogen carrier

    DOE PAGES

    Zhang, Zihao; Yang, Qiwei; Chen, Hao; ...

    2017-10-13

    In this paper, supported Cu–Ni bimetallic catalysts were synthesized and evaluated for the in situ hydrogenation and decarboxylation of oleic acid using methanol as a hydrogen donor. The supported Cu–Ni alloy exhibited a significant improvement in both activity and selectivity towards the production of heptadecane in comparison with monometallic Cu and Ni based catalysts. The formation of the Cu–Ni alloy is demonstrated by high-angle annular dark-field scanning transmission electron microscopy (HADDF-STEM), energy dispersive X-ray spectroscopy (EDS-mapping), X-ray diffraction (XRD) and temperature programmed reduction (TPR). A partially oxidized Cu in the Cu–Ni alloy is revealed by diffuse reflectance infrared Fourier transformmore » spectroscopy (DRIFTS) following CO adsorption and X-ray photoelectron spectroscopy (XPS). The temperature programmed desorption of ethylene and propane (ethylene/propane-TPD) suggested that the formation of the Cu–Ni alloy inhibited the cracking of C–C bonds compared to Ni, and remarkably increased the selectivity to heptadecane. The temperature programmed desorption of acetic acid (acetic acid-TPD) indicated that the bimetallic Cu–Ni alloy and Ni catalysts had a stronger adsorption of acetic acid than that of the Cu catalyst. Finally, the formation of the Cu–Ni alloy and a partially oxidized Cu facilitates the decarboxylation reaction and inhibits the cracking reaction of C–C bonds, leading to enhanced catalytic activity and selectivity.« less

  10. In situ hydrogenation and decarboxylation of oleic acid into heptadecane over a Cu–Ni alloy catalyst using methanol as a hydrogen carrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zihao; Yang, Qiwei; Chen, Hao

    In this paper, supported Cu–Ni bimetallic catalysts were synthesized and evaluated for the in situ hydrogenation and decarboxylation of oleic acid using methanol as a hydrogen donor. The supported Cu–Ni alloy exhibited a significant improvement in both activity and selectivity towards the production of heptadecane in comparison with monometallic Cu and Ni based catalysts. The formation of the Cu–Ni alloy is demonstrated by high-angle annular dark-field scanning transmission electron microscopy (HADDF-STEM), energy dispersive X-ray spectroscopy (EDS-mapping), X-ray diffraction (XRD) and temperature programmed reduction (TPR). A partially oxidized Cu in the Cu–Ni alloy is revealed by diffuse reflectance infrared Fourier transformmore » spectroscopy (DRIFTS) following CO adsorption and X-ray photoelectron spectroscopy (XPS). The temperature programmed desorption of ethylene and propane (ethylene/propane-TPD) suggested that the formation of the Cu–Ni alloy inhibited the cracking of C–C bonds compared to Ni, and remarkably increased the selectivity to heptadecane. The temperature programmed desorption of acetic acid (acetic acid-TPD) indicated that the bimetallic Cu–Ni alloy and Ni catalysts had a stronger adsorption of acetic acid than that of the Cu catalyst. Finally, the formation of the Cu–Ni alloy and a partially oxidized Cu facilitates the decarboxylation reaction and inhibits the cracking reaction of C–C bonds, leading to enhanced catalytic activity and selectivity.« less

  11. Gallium-containing polymer brush film as efficient supported Lewis acid catalyst in a glass microreactor

    PubMed Central

    Munirathinam, Rajesh; Ricciardi, Roberto; Egberink, Richard J M; Huskens, Jurriaan; Holtkamp, Michael; Wormeester, Herbert; Karst, Uwe

    2013-01-01

    Summary Polystyrene sulfonate polymer brushes, grown on the interior of the microchannels in a microreactor, have been used for the anchoring of gallium as a Lewis acid catalyst. Initially, gallium-containing polymer brushes were grown on a flat silicon oxide surface and were characterized by FTIR, ellipsometry, and X-ray photoelectron spectroscopy (XPS). XPS revealed the presence of one gallium per 2–3 styrene sulfonate groups of the polymer brushes. The catalytic activity of the Lewis acid-functionalized brushes in a microreactor was demonstrated for the dehydration of oximes, using cinnamaldehyde oxime as a model substrate, and for the formation of oxazoles by ring closure of ortho-hydroxy oximes. The catalytic activity of the microreactor could be maintained by periodic reactivation by treatment with GaCl3. PMID:24062830

  12. Adsorption and reaction of propene on Ni(100)

    NASA Astrophysics Data System (ADS)

    Kleyna, R.; Borgmann, D.; Wedler, G.

    1998-05-01

    Photoelectron spectroscopy (UPS, XPS) and thermal desorption techniques were used to study the chemisorption and decomposition reactions of propene on Ni(100). Propene is molecularly adsorbed at temperatures below 150 K. At saturation coverage the TD spectrum shows two propene desorption peaks at 155 and 225 K and three hydrogen desorption peaks at 300, 330 and 380 K with a shoulder at 420 K. No other desorbing species could be detected. The amount of desorption of propene was determined by XPS to be 20% of the saturation coverage. The electronic structure of adsorbed propene and the chemical nature of its decomposition products were deduced from UP and XP spectra taken at saturation coverage. Adsorption at low temperatures results in a π-bonded species which is stable up to 150 K. At temperatures above 150 K the UP spectra point to a σ-bonded species which decomposes further at temperatures above 260 K.

  13. A biofilm microreactor system for simultaneous electrochemical and nuclear magnetic resonance techniques.

    PubMed

    Renslow, R S; Babauta, J T; Majors, P D; Mehta, H S; Ewing, R J; Ewing, T W; Mueller, K T; Beyenal, H

    2014-01-01

    Nuclear magnetic resonance (NMR) techniques are ideally suited for the study of biofilms and for probing their microenvironments because these techniques allow for noninvasive interrogation and in situ monitoring with high resolution. By combining NMR with simultaneous electrochemical techniques, it is possible to sustain and study live biofilms respiring on electrodes. Here, we describe a biofilm microreactor system, including a reusable and a disposable reactor, that allows for simultaneous electrochemical and NMR techniques (EC-NMR) at the microscale. Microreactors were designed with custom radio frequency resonator coils, which allowed for NMR measurements of biofilms growing on polarized gold electrodes. For an example application of this system we grew Geobacter sulfurreducens biofilms on electrodes. EC-NMR was used to investigate growth medium flow velocities and depth-resolved acetate concentration inside the biofilm. As a novel contribution we used Monte Carlo error analysis to estimate the standard deviations of the acetate concentration measurements. Overall, we found that the disposable EC-NMR microreactor provided a 9.7 times better signal-to-noise ratio over the reusable reactor. The EC-NMR biofilm microreactor system can ultimately be used to correlate extracellular electron transfer rates with metabolic reactions and explore extracellular electron transfer mechanisms.

  14. Thermal Decomposition of Methyl Acetate (CH_3COOCH_3) in a Flash-Pyrolysis Micro-Reactor

    NASA Astrophysics Data System (ADS)

    Porterfield, Jessica P.; Bross, David H.; Ruscic, Branko; Thorpe, James H.; Nguyen, Thanh Lam; Baraban, Joshua H.; Stanton, John F.; Daily, John W.; Ellison, Barney

    2017-06-01

    The thermal decomposition of methyl acetate (CH_3COOCH_3) has been studied in a set of flash pyrolysis micro-reactors. Samples were diluted to (0.06 - 0.13%) in carrier gases (He, Ar) and subjected to temperatures of 300 - 1600 K at roughly 20 Torr. After residence times of approximately 25 - 150 μseconds, the unimolecular pyrolysis products were detected by vacuum ultraviolet photoionization mass spectrometry at 10.487 eV (118.2 nm). Complementary product identification was provided by matrix isolation infrared spectroscopy. Decomposition began at 1000 K with the observation of (CH_2=C=O, CH_3OH), products of a four centered rearrangement with a Δ_{rxn}H_{298} = 39.1 ± 0.2 kcal mol^{-1}. As the micro-reactor was heated to 1300 K, a mixture of (CH_2=C=O, CH_3OH, CH_3, CH_2=O, H, CO, CO_2) appeared. A new novel pathway is calculated in which both methyl groups leave behind CO_2 simultaneously, Δ_{rxn}H_{298} = 74.5 ± 0.4 kcal mol^{-1}. This pathway is in contrast to step-wise loss of methyl radical, which can go in two ways: Δ_{rxn}H_{298} (CH_3COOCH_3 → CH_3 + COOCH_3) = 95.4 ± 0.4 kcal mol^{-1}, Δ_{rxn}H_{298} (CH_3COOCH_3 → CH_3COO + CH_3) = 88.0 ± 0.3 kcal mol^{-1}.

  15. Microreactor-Assisted Nanomaterial Deposition for Photovoltaic Thin-Film Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2009-03-01

    This factsheet describes a research project whose goal is to develop and demonstrate a scalable microreactor-assisted nanomaterial deposition pilot platform for the production, purification, functionalization, and solution deposition of nanomaterials for PV applications.

  16. Evaluation of GeO desorption behavior in the metal∕GeO2∕Ge structure and its improvement of the electrical characteristics

    PubMed Central

    Oniki, Yusuke; Koumo, Hideo; Iwazaki, Yoshitaka; Ueno, Tomo

    2010-01-01

    The relation between germanium monoxide (GeO) desorption and either improvement or deterioration in electrical characteristics of metal∕GeO2∕Ge capacitors fabricated by thermal oxidation has been investigated. In the metal∕GeO2∕Ge stack, two processes of GeO desorption at different sites and at different temperatures were observed by thermal desorption spectroscopy measurements. The electrical characteristics of as-oxidized metal∕GeO2∕Ge capacitors shows a large flat-band voltage shift and minority carrier generation due to the GeO desorption from the GeO2∕Ge interface during oxidation of Ge substrates. On the other hand, the electrical properties were drastically improved by a postmetallization annealing at low temperature resulting in a metal catalyzed GeO desorption from the top interface. PMID:20644659

  17. Design of a prototype flow microreactor for synthetic biology in vitro.

    PubMed

    Boehm, Christian R; Freemont, Paul S; Ces, Oscar

    2013-09-07

    As a reference platform for in vitro synthetic biology, we have developed a prototype flow microreactor for enzymatic biosynthesis. We report the design, implementation, and computer-aided optimisation of a three-step model pathway within a microfluidic reactor. A packed bed format was shown to be optimal for enzyme compartmentalisation after experimental evaluation of several approaches. The specific substrate conversion efficiency could significantly be improved by an optimised parameter set obtained by computational modelling. Our microreactor design provides a platform to explore new in vitro synthetic biology solutions for industrial biosynthesis.

  18. Chemical microreactor and method thereof

    DOEpatents

    Morse, Jeffrey D [Martinez, CA; Jankowski, Alan [Livermore, CA

    2011-08-09

    A method for forming a chemical microreactor includes forming at least one capillary microchannel in a substrate having at least one inlet and at least one outlet, integrating at least one heater into the chemical microreactor, interfacing the capillary microchannel with a liquid chemical reservoir at the inlet of the capillary microchannel, and interfacing the capillary microchannel with a porous membrane near the outlet of the capillary microchannel, the porous membrane being positioned beyond the outlet of the capillary microchannel, wherein the porous membrane has at least one catalyst material imbedded therein.

  19. Desorption of Mercury(II) on Kaolinite in the Presence of Oxalate or Cysteine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senevirathna, W. U.; Zhang, Hong; Gu, Baohua

    2011-01-01

    Sorption and desorption of Hg(II) on clay minerals can impact the biogeochemical cycle and bio- uptake of Hg in aquatic systems. We studied the desorption of Hg(II) on kaolinite in the presence of oxalate or cysteine, representing the ligands with carboxylic and thiol groups of different affinities for Hg(II). The effects of pH (3, 5, 7), ligand concentration (0.25, 1.0 mM), and temperature (15, 25, 35 C) on the Hg(II) desorption were investigated through desorption kinetics. Our study showed that the Hg(II) desorption was pH-dependant. In the absence of any organic ligand, >90% of the previously adsorbed Hg(II) desorbed atmore » pH 3 within 2 h, compared to <10% at pH 7. Similar results were observed in the presence of oxalate, showing that it hardly affected the Hg(II) desorption. Cysteine inhibited the Hg(II) desorption significantly at all the pH tested, especially in the first 80 min with the desorption less than 20%, but it appeared to enhance the Hg(II) desorption afterwards. The effect of ligand concentration on the Hg(II) desorption was small, especially in the presence of oxalate. The effect of temperature on the desorption was nearly insignificant. The effect of the organic acids on the Hg(II) sorption and desorption is explained by the formation of the ternary surface complexes involving the mineral, ligand, and Hg(II). The competition for Hg(II) between the cysteine molecules adsorbed on the particles and in the solution probably can also affect the Hg(II) desorption.« less

  20. Diamondoid synthesis in atmospheric pressure adamantane-argon-methane-hydrogen mixtures using a continuous flow plasma microreactor

    NASA Astrophysics Data System (ADS)

    Stauss, Sven; Ishii, Chikako; Pai, David Z.; Urabe, Keiichiro; Terashima, Kazuo

    2014-06-01

    Due to their small size, low-power consumption and potential for integration with other devices, microplasmas have been used increasingly for the synthesis of nanomaterials. Here, we have investigated the possibility of using dielectric barrier discharges generated in continuous flow glass microreactors for the synthesis of diamondoids, at temperatures of 300 and 320 K, and applied voltages of 3.2-4.3 kVp-p, at a frequency of 10 kHz. The microplasmas were generated in gas mixtures containing argon, methane, hydrogen and adamantane, which was used as a precursor and seed. The plasmas were monitored by optical emission spectroscopy measurements and the synthesized products were characterized by gas chromatography—mass spectrometry (GC-MS). Depending on the gas composition, the optical emission spectra contained CH and C2 bands of varying intensities. The GC-MS measurements revealed that diamantane can be synthesized by microplasmas generated at atmospheric pressure, and that the yields highly depend on the gas composition and the presence of carbon sources.

  1. Continuous Microreactor-Assisted Solution Deposition for Scalable Production of CdS Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramprasad, Sudhir; Su, Yu-Wei; Chang, Chih-Hung

    2013-06-13

    Solution deposition offers an attractive, low temperature option in the cost effective production of thin film solar cells. Continuous microreactor-assisted solution deposition (MASD) was used to produce nanocrystalline cadmium sulfide (CdS) films on fluorine doped tin oxide (FTO) coated glass substrates with excellent uniformity. We report a novel liquid coating technique using a ceramic rod to efficiently and uniformly apply reactive solution to large substrates (152 mm × 152 mm). This technique represents an inexpensive approach to utilize the MASD on the substrate for uniform growth of CdS films. Nano-crystalline CdS films have been produced from liquid phase at ~90°C,more » with average thicknesses of 70 nm to 230 nm and with a 5 to 12% thickness variation. The CdS films produced were characterized by UV-Vis spectroscopy, transmission electron microscopy, and X-Ray diffraction to demonstrate their suitability to thin-film solar technology.« less

  2. Revisited reaction-diffusion model of thermal desorption spectroscopy experiments on hydrogen retention in material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guterl, Jerome, E-mail: jguterl@ucsd.edu; Smirnov, R. D.; Krasheninnikov, S. I.

    Desorption phase of thermal desorption spectroscopy (TDS) experiments performed on tungsten samples exposed to flux of hydrogen isotopes in fusion relevant conditions is analyzed using a reaction-diffusion model describing hydrogen retention in material bulk. Two regimes of hydrogen desorption are identified depending on whether hydrogen trapping rate is faster than hydrogen diffusion rate in material during TDS experiments. In both regimes, a majority of hydrogen released from material defects is immediately outgassed instead of diffusing deeply in material bulk when the evolution of hydrogen concentration in material is quasi-static, which is the case during TDS experiments performed with tungsten samplesmore » exposed to flux of hydrogen isotopes in fusion related conditions. In this context, analytical expressions of the hydrogen outgassing flux as a function of the material temperature are obtained with sufficient accuracy to describe main features of thermal desorption spectra (TDSP). These expressions are then used to highlight how characteristic temperatures of TDSP depend on hydrogen retention parameters, such as trap concentration or activation energy of detrapping processes. The use of Arrhenius plots to characterize retention processes is then revisited when hydrogen trapping takes place during TDS experiments. Retention processes are also characterized using the shape of desorption peaks in TDSP, and it is shown that diffusion of hydrogen in material during TDS experiment can induce long desorption tails visible aside desorption peaks at high temperature in TDSP. These desorption tails can be used to estimate activation energy of diffusion of hydrogen in material.« less

  3. Novel micro-reactor flow cell for investigation of model catalysts using in situ grazing-incidence X-ray scattering

    PubMed Central

    Kehres, Jan; Pedersen, Thomas; Masini, Federico; Andreasen, Jens Wenzel; Nielsen, Martin Meedom; Diaz, Ana; Nielsen, Jane Hvolbæk; Hansen, Ole

    2016-01-01

    The design, fabrication and performance of a novel and highly sensitive micro-reactor device for performing in situ grazing-incidence X-ray scattering experiments of model catalyst systems is presented. The design of the reaction chamber, etched in silicon on insulator (SIO), permits grazing-incidence small-angle X-ray scattering (GISAXS) in transmission through 10 µm-thick entrance and exit windows by using micro-focused beams. An additional thinning of the Pyrex glass reactor lid allows simultaneous acquisition of the grazing-incidence wide-angle X-ray scattering (GIWAXS). In situ experiments at synchrotron facilities are performed utilizing the micro-reactor and a designed transportable gas feed and analysis system. The feasibility of simultaneous in situ GISAXS/GIWAXS experiments in the novel micro-reactor flow cell was confirmed with CO oxidation over mass-selected Ru nanoparticles. PMID:26917133

  4. Silver nanocluster catalytic microreactors for water purification

    NASA Astrophysics Data System (ADS)

    Da Silva, B.; Habibi, M.; Ognier, S.; Schelcher, G.; Mostafavi-Amjad, J.; Khalesifard, H. R. M.; Tatoulian, M.; Bonn, D.

    2016-07-01

    A new method for the elaboration of a novel type of catalytic microsystem with a high specific area catalyst is developed. A silver nanocluster catalytic microreactor was elaborated by doping a soda-lime glass with a silver salt. By applying a high power laser beam to the glass, silver nanoclusters are obtained at one of the surfaces which were characterized by BET measurements and AFM. A microfluidic chip was obtained by sealing the silver coated glass with a NOA 81 microchannel. The catalytic activity of the silver nanoclusters was then tested for the efficiency of water purification by using catalytic ozonation to oxidize an organic pollutant. The silver nanoclusters were found to be very stable in the microreactor and efficiently oxidized the pollutant, in spite of the very short residence times in the microchannel. This opens the way to study catalytic reactions in microchannels without the need of introducing the catalyst as a powder or manufacturing complex packed bed microreactors.

  5. The use of a microreactor for rapid screening of the reaction conditions and investigation of the photoluminescence mechanism of carbon dots.

    PubMed

    Lu, Yue; Zhang, Ling; Lin, Hengwei

    2014-04-07

    A microreactor is applied and reported, for the first time, in the field of research of carbon dots (CDs), including rapid screening of the reaction conditions and investigation of the photoluminescence (PL) mechanism. Various carbonaceous precursors and solvents were selected and hundreds of reaction conditions were screened (ca. 15 min on average per condition). Through analyzing the screened conditions, tunable PL emission maxima, from about 330 to 550 nm with respectable PL quantum yields, were achieved. Moreover, the relationship between different developmental stages of the CDs and the PL properties was explored by using the microreactor. The PL emission was observed to be independent of the composition, carbonization extent, and morphology/size of the CDs. This study unambiguously presents that a microreactor could serve as a promising tool for the research of CDs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Improved method for producing catalytic carbon and the potential for increasing its use in commercial applications

    USGS Publications Warehouse

    Kruse, C.W.; Lizzio, A.A.; DeBarr, J.A.; Feizoulof, C.A.

    1997-01-01

    This paper describes an improved method for producing a catalytic carbon, which was first produced in the late 1960s. The new activated carbon (AC) removes and destroys organic pollutants in aqueous solutions. To determine the effects of altering the pore structure and surface chemistry of activated carbons, carbons differing in the amount of functional groups on their surfaces were prepared in three steps: (1) oxidizing AC with boiling nitric acid, (2) washing oxidized AC with water to remove the acid, and (3) heating oxidized AC to temperatures beteween 100 and 925 ??C. The surfaces of the products were characterized by determining the amount of CO2 and CO evolved during temperature-programmed desorption. Depending on the desorption temperature, these modified carbons showed enhanced adsorptive and/or catalytic properties that included (1) carbon molecular sieves for separating oxygen from nitrogen, (2) increased capacity for adsorbing sulfur dioxide, (3) stronger adsorption of p-nitrophenol from water, and (4) catalysis of dehydrochlorination reactions. A dehydrohalogenation catalyst produced by the oxidation/ desorption steps was found to be similar to one prepared in the 1960s by oxidizing AC with air at 500-700 ??C. The dehydrohalogenation catalyst produced by either the old method or the new method involves an oxidized surface that has been exposed to a 500-700 ??C temperature range. This carbon catalyst retains modified adsorptive properties of the AC from which it is produced. It can be used both to adsorb pollutants from liquid or gaseous streams and to convert them to recyclable products.

  7. The influence of calcination temperatures on the acid-based properties and catalytic activity for the 1,3-butadiene synthesis from ethanol/acetaldehyde mixture

    NASA Astrophysics Data System (ADS)

    Gao, Meixiang; Jiang, Haoxi; Zhang, Minhua

    2018-05-01

    The influences of the calcination temperature on the catalysts' acid-based properties and catalytic activity for the 1,3-butadiene synthesis from ethanol are investigated. The results show that the 2 wt% ZrO2/Nano-SiO2 calcined at 773 K shows the best performance with the selectivity of 93.18% and conversion of 58.52% when reacted at 593 K, a WHSV of 1.8 h-1 and 3.5:1 volume ratio ethanol-to-acetaldehyde in an atmospheric fixed-bed reactor. Prepared catalysts were characterized by N2 adsorption-desorption, XRD, temperature-programmed desorption of NH3 and CO2, FTIR spectroscopy of adsorbed pyridine and CO2. Based on the relationship between the catalyst activity and its properties, the fact can be presumed that the formation and strength of Zrsbnd Osbnd Si bond determines the acid-based properties of the catalyst. In addition, moderate-intensity weak acid-basic sites are more suitable for ethanol conversion to BD with the amount of acid and basic sites as close as possible.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Huogen; Chen, Liang

    Ti-Zr-Ni quasicrystals have been demonstrated to store a large number of hydrogen atoms, which implies strong potential application in hydrogen energy field for them. However, the desorption of hydrogen atoms in the quasicrystals is quite difficult, with the indication of high desorption temperature and slow desorption rate. The shortage limits their use in the field to a large extent. But this kind of quasicrystals might be used in nuclear fusion energy field, because tritium as a coral fuel for nuclear fusion needs tight storage. However, equilibrium pressure at room temperature of Ti-Zr-Ni quasicrystals, important for their application in fusion energymore » field, has not been clear yet. In this work, we designed a gas-solid reaction system with the pressure resolution of 10{sup −8}Pa and carried out hydrogen desorption investigation at different temperatures on Ti{sub 36}Zr{sub 40}Ni{sub 20}Pd{sub 4} icosahedral quasicrystal. Based on three Pressure-Composition-Temperature desorption curves, we speculate according to Van’t Hoff theory about hydrogen storage that its equilibrium pressure at room temperature could be at the magnitude of 10{sup −6}Pa, displaying good stability of hydrogen in the quasicrystal and also implying application prospects in fusion energy field for quasicrystals of this type.« less

  9. In situ photoelectrochemical/photocatalytic study of a dye discoloration in a microreactor system using TiO2 thin films.

    PubMed

    Montero-Ocampo, C; Gago, A; Abadias, G; Gombert, B; Alonso-Vante, N

    2012-11-01

    In this work, we report in situ studies of UV photoelectrocatalytic discoloration of a dye (indigo carmine) by a TiO(2) thin film in a microreactor to demonstrate the driving force of the applied electrode potential and the dye flow rate toward dye discoloration kinetics. TiO(2) 65-nm-thick thin films were deposited by PVD magnetron sputtering technique on a conducting glass substrate of fluorinated tin oxide. A microreactor to measure the discoloration rate, the electrode potential, and the photocurrent in situ, was developed. The dye solutions, before and after measurements in the microreactor, were analyzed by Raman spectroscopy. The annealed TiO(2) thin films had anatase structure with preferential orientation (101). The discoloration rate of the dye increased with the applied potential to TiO(2) electrode. Further, acceleration of the photocatalytic reaction was achieved by utilizing dye flow recirculation to the microreactor. In both cases the photoelectrochemical/photocatalytic discoloration kinetics of the dye follows the Langmuir-Hinshelwood model, with first-order kinetics. The feasibility of dye discoloration on TiO(2) thin film electrodes, prepared by magnetron sputtering using a flow microreactor system, has been clearly demonstrated. The discoloration rate is enhanced by applying a positive potential (E (AP)) and/or increasing the flow rate. The fastest discoloration and shortest irradiation time (50 min) produced 80% discoloration with an external anodic potential of 0.931 V and a flow rate of 12.2 mL min(-1).

  10. Design and fabrication of miniaturized PEM fuel cell combined microreactor with self-regulated hydrogen mechanism

    NASA Astrophysics Data System (ADS)

    Balakrishnan, A.; Frei, M.; Kerzenmacher, S.; Reinecke, H.; Mueller, C.

    2015-12-01

    In this work we present the design and fabrication of the miniaturized PEM fuel cell combined microreactor system with hydrogen regulation mechanism and testing of prototype microreactor. The system consists of two components (i) fuel cell component and (ii) microreactor component. The fuel cell component represents the miniaturized PEM fuel cell system (combination of screen printed fuel cell assembly and an on-board hydrogen storage medium). Hydrogen production based on catalytic hydrolysis of chemical hydride takes place in the microreactor component. The self-regulated hydrogen mechanism based on the gaseous hydrogen produced from the catalytic hydrolysis of sodium borohydride (NaBH4) gets accumulated as bubbles at the vicinity of the hydrophobic coated hydrogen exhaust holes. When the built up hydrogen bubbles pressure exceeds the burst pressure at the hydrogen exhaust holes the bubble collapses. This collapse causes a surge of fresh NaBH4 solution onto the catalyst surface leading to the removal of the reaction by-products formed at the active sites of the catalyst. The catalyst used in the system is platinum deposited on a base substrate. Nickel foam, carbon porous medium (CPM) and ceramic plate were selected as candidates for base substrate for developing a robust catalyst surface. For the first time the platinum layer fabricated by pulsed electrodeposition and dealloying (EPDD) technique is used for hydrolysis of NaBH4. The major advantages of such platinum catalyst layers are its high surface area and their mechanical stability. Prototype microreactor system with self-regulated hydrogen mechanism is demonstrated.

  11. Koch–Haaf reaction of adamantanols in an acid-tolerant hastelloy-made microreactor

    PubMed Central

    Mukai, Yu

    2011-01-01

    Summary The Koch–Haaf reaction of adamantanols was successfully carried out in a microflow system at room temperature. By combining an acid-tolerant hastelloy-made micromixer, a PTFE tube, and a hastelloy-made microextraction unit, a packaged reaction-to-workup system was developed. By means of the present system, the multigram scale synthesis of 1-adamantanecarboxylic acid was achieved in ca. one hour operation. PMID:21977213

  12. Computer-aided biochemical programming of synthetic microreactors as diagnostic devices.

    PubMed

    Courbet, Alexis; Amar, Patrick; Fages, François; Renard, Eric; Molina, Franck

    2018-04-26

    Biological systems have evolved efficient sensing and decision-making mechanisms to maximize fitness in changing molecular environments. Synthetic biologists have exploited these capabilities to engineer control on information and energy processing in living cells. While engineered organisms pose important technological and ethical challenges, de novo assembly of non-living biomolecular devices could offer promising avenues toward various real-world applications. However, assembling biochemical parts into functional information processing systems has remained challenging due to extensive multidimensional parameter spaces that must be sampled comprehensively in order to identify robust, specification compliant molecular implementations. We introduce a systematic methodology based on automated computational design and microfluidics enabling the programming of synthetic cell-like microreactors embedding biochemical logic circuits, or protosensors , to perform accurate biosensing and biocomputing operations in vitro according to temporal logic specifications. We show that proof-of-concept protosensors integrating diagnostic algorithms detect specific patterns of biomarkers in human clinical samples. Protosensors may enable novel approaches to medicine and represent a step toward autonomous micromachines capable of precise interfacing of human physiology or other complex biological environments, ecosystems, or industrial bioprocesses. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.

  13. Electron-stimulated reactions in nanoscale water films adsorbed on (alpha)-Al2O3(0001)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrik, Nikolay G.; Kimmel, Gregory A.

    2018-05-11

    The radiation-induced decomposition and desorption of nanoscale amorphous solid water (D2O) films adsorbed on -Al2O3(0001) surface was studied at low temperature in ultrahigh vacuum using temperature programmed desorption (TPD) and electron stimulated desorption (ESD) with a mono-energetic, low energy electron source. ESD yields of molecular products ( D2, O2 and D¬2O) and the total sputtering yield increased with increasing D2O coverage up to ~15 water monolayers (i.e. ~15 1015 cm-2) to a coverage-independent level for thicker water films. Experiments with isotopically-layered water films (D2O and H2O) demonstrated that the highest water decomposition yields occurred at the interfaces of the nanoscalemore » water films with the alumina substrate and vacuum. However, the increased reactivity of the water/alumina interface is relatively small compared to the enhancements in the non-thermal reactions previously observed at the water/Pt(111) and water/TiO2(110) interfaces. We propose that the relatively low activity of Al2O3(0001) for the radiation-induced production of molecular hydrogen is associated with lower reactivity of this surface with hydrogen atoms, which are likely precursors for the molecular hydrogen.« less

  14. Electron-stimulated reactions in nanoscale water films adsorbed on α-Al 2 O 3 (0001)

    DOE PAGES

    Petrik, Nikolay G.; Kimmel, Greg A.

    2018-04-11

    The radiation-induced decomposition and desorption of nanoscale amorphous solid water (D 2O) films adsorbed on an α-Al 2O 3(0001) surface was studied at low temperature in ultrahigh vacuum using temperature programmed desorption (TPD) and electron stimulated desorption (ESD) with a mono-energetic, low energy electron source. ESD yields of molecular products (D 2, O 2 and D 2O) and the total sputtering yield increased with increasing D 2O coverage up to ~15 water monolayers (i.e. ~15 x 10 15 cm -2) to a coverage-independent level for thicker water films. Experiments with isotopically-layered water films (D 2O and H 2O) demonstrated thatmore » the highest water decomposition yields occurred at the interfaces of the nanoscale water films with the alumina substrate and vacuum. However, the increased reactivity of the water/alumina interface is relatively small compared to the enhancements in the non-thermal reactions previously observed at the water/Pt(111) and water/TiO 2(110) interfaces. Here, we propose that the relatively low activity of Al 2O 3(0001) for the radiation-induced production of molecular hydrogen is associated with lower reactivity of this surface with hydrogen atoms, which are likely precursors for the formation of molecular hydrogen.« less

  15. Electron-stimulated reactions in nanoscale water films adsorbed on α-Al 2 O 3 (0001)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrik, Nikolay G.; Kimmel, Greg A.

    The radiation-induced decomposition and desorption of nanoscale amorphous solid water (D 2O) films adsorbed on an α-Al 2O 3(0001) surface was studied at low temperature in ultrahigh vacuum using temperature programmed desorption (TPD) and electron stimulated desorption (ESD) with a mono-energetic, low energy electron source. ESD yields of molecular products (D 2, O 2 and D 2O) and the total sputtering yield increased with increasing D 2O coverage up to ~15 water monolayers (i.e. ~15 x 10 15 cm -2) to a coverage-independent level for thicker water films. Experiments with isotopically-layered water films (D 2O and H 2O) demonstrated thatmore » the highest water decomposition yields occurred at the interfaces of the nanoscale water films with the alumina substrate and vacuum. However, the increased reactivity of the water/alumina interface is relatively small compared to the enhancements in the non-thermal reactions previously observed at the water/Pt(111) and water/TiO 2(110) interfaces. Here, we propose that the relatively low activity of Al 2O 3(0001) for the radiation-induced production of molecular hydrogen is associated with lower reactivity of this surface with hydrogen atoms, which are likely precursors for the formation of molecular hydrogen.« less

  16. Continuous and rapid synthesis of nanoclusters and nanocrystals using scalable microstructured reactors

    NASA Astrophysics Data System (ADS)

    Jin, Hyung Dae

    Recent advances in nanocrystalline materials production are expected to impact the development of next generation low-cost and/or high efficiency solar cells. For example, semiconductor nanocrystal inks are used to lower the fabrication cost of the absorber layers of the solar cells. In addition, some quantum confined nanocrystals display electron-hole pair generation phenomena with greater than 100% quantum yield, called multiple exciton generation (MEG). These quantum dots could potentially be used to fabricate solar cells that exceed the Schockley-Queisser limit. At present, continuous syntheses of nanoparticles using microreactors have been reported by several groups. Microreactors have several advantages over conventional batch synthesis. One advantage is their efficient heat transfer and mass transport. Another advantage is the drastic reduction in the reaction time, in many cases, down to minutes from hours. Shorter reaction time not only provides higher throughput but also provide better particle size control by avoiding aggregation and by reducing probability of oxidizing precursors. In this work, room temperature synthesis of Au11 nanoclusters and high temperature synthesis of chalcogenide nanocrystals were demonstrated using continuous flow microreactors with high throughputs. A high rate production of phosphine-stabilized Au11 nanoclusters was achieved using a layer-up strategy which involves the use of microlamination architectures; the patterning and bonding of thin layers of material (laminae) to create a multilayered micromixer in the range of 25-250 mum thick was used to step up the production of phosphine-stabilized Au11 nanoclusters. Continuous production of highly monodispersed phosphine-stabilized Au 11 nanoclusters at a rate of about 11.8 [mg/s] was achieved using a microreactor with a size of 1.687cm3. This result is about 30,000 times over conventional batch synthesis according to production rate/per reactor volume. We have elucidated the formation mechanism of CuInSe2 nanocrystals for the development of a continuous flow process for their synthesis. It was found that copper-rich CuInSe2 with a sphalerite structure was formed initially followed by the formation of more ordered CuInSe2 at longer reaction times, along with the formation of Cu2Se and In2Se3. It was found that Cu2Se was formed at a much faster rate than In2Se3 under the same reaction conditions. By adjusting the Cu/In precursor ratio, we were able to develop a very rapid and simple synthesis of CuInSe2 nanocrystals using a continuous flow microreactor with a high throughput per reactor volume. The microreactor has a simple design which uses readily available low cost components. It comprised an inner microtube to precisely control the injection of TOPSe into a larger diameter tube that preheated CuCl and InCl3 hot mixture was pumped through. Rapid injection plays an important role in dividing the nucleation and growth process which is crucial in getting narrow size distribution. The design of this microreactor also has the advantages of alleviating sticking of QDs on the growth channel wall since QDs were formed from the center of the reactor. Furthermore, size-controlled synthesis of CuInSe2 nanocrystals was achieved using this reactor simply by adjusting ratio between coordinating solvents. Semiconductors with a direct bandgap between 1 and 2eV including Cu(In,Ga)Se 2 (1.04--1.6eV) and CuIn(Se,S)2 (1.04--1.53eV) are ideal for single junction cells utilize the visible spectrum. However, half of the solar energy available to the Earth lies in the infrared region. Inorganic QD-based solar cells with a decent efficiency near 1.5 mum have been reported. Therefore, syntheses of narrow gap IV-VI (SnTe, PbS, PbSe, PbTe), II-IV (HgTe, CdXHg1-XTe), and III-V (InAs) QDs have attracted significant attention and these materials have potential uses for a variety of other optical, electronic, and optoelectronic applications. SnTe with an energy gap of 0.18eV at 300K can be used for IR photodetectors, laser diodes, and thermophotovoltaic energy converters. First continuous synthesis of shape-controlled SnTe nanocrystals were also accomplished in this work. SnCl2, and TOPTe were used as reactants successfully in coordinating OA and TOP solvents. Both rod shape and dot shape SnTe nanocrystals with uniform size distributions could be obtained. A blue shift was observed from these SnTe nanocrystals. Production rate at about 5mg/min (300mg/hr) was achieved using a microreactor at a size of 1.78cm3.

  17. The black rock series supported SCR catalyst for NO x removal.

    PubMed

    Xie, Bin; Luo, Hang; Tang, Qing; Du, Jun; Liu, Zuohua; Tao, Changyuan

    2017-09-01

    Black rock series (BRS) is of great potential for their plenty of valued oxides which include vanadium, iron, alumina and silica oxides, etc. BRS was used for directly preparing of selective catalytic reduction (SCR) catalyst by modifying its surface texture with SiO 2 -TiO 2 sols and regulating its catalytic active constituents with V 2 O 5 and MoO 3 . Consequently, 90% NO removal ratio was obtained within 300-400 °C over the BRS-based catalyst. The structure and properties of the BRS-based catalyst were characterized by the techniques of N 2 adsorption-desorption, X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), H 2 -temperature programmed reduction (H 2 -TPR), and NH 3 -temperature programmed desorption (NH 3 -TPD). The results revealed that the BRS-based catalyst possesses favorable properties for NO x removal, including highly dispersed active components, abundant surface-adsorbed oxygen O α , well redox property, and numerous Brønsted acid sites. Particularly, the BRS-based catalyst exhibited considerable anti-poisoning performance compared with commercial TiO 2 -based catalyst. The former catalyst shows a NO conversion surpassing 80% from 300 to 400 °C for potassium poisoning, and a durability of SO 2 and H 2 O exceeding 85% at temperatures from 300 to 450 °C.

  18. Modeling of HT and HTO release from irradiated lithium metazirconate

    NASA Astrophysics Data System (ADS)

    Beloglazov, S.; Nishikawa, M.; Glugla, M.; Kinjyo, T.

    2004-08-01

    Modeling studies of tritium release from irradiated Li 2ZrO 3 (MAPI) pebbles have been carried out in order to evaluate the effect of purge gas composition on tritium release behavior. The release characteristics were obtained by temperature programmed desorption (TPD) technique in the series of post-irradiation experiments in JRR-4 research reactor of JAERI. Nitrogen with hydrogen at various partial pressures (100 and 1000 Pa) was used as a purge gas. Two sets of ionization chambers and its dedicated electrometers allowed the tritium concentration to be monitored in the chemical form of HT and overall tritium concentration in the mixture HT and HTO simultaneously during desorption runs. The tritium release curves were numerically fitted in order to evaluate the mass transfer coefficients.

  19. Flow microreactor synthesis in organo-fluorine chemistry

    PubMed Central

    Nagaki, Aiichiro

    2013-01-01

    Summary Organo-fluorine compounds are the substances of considerable interest in various industrial fields due to their unique physical and chemical properties. Despite increased demand in wide fields of science, synthesis of fluoro-organic compounds is still often faced with problems such as the difficulties in handling of fluorinating reagents and in controlling of chemical reactions. Recently, flow microreactor synthesis has emerged as a new methodology for producing chemical substances with high efficiency. This review outlines the successful examples of synthesis and reactions of fluorine-containing molecules by the use of flow microreactor systems to overcome long-standing problems in fluorine chemistry. PMID:24367443

  20. Flow microreactor synthesis in organo-fluorine chemistry.

    PubMed

    Amii, Hideki; Nagaki, Aiichiro; Yoshida, Jun-Ichi

    2013-12-05

    Organo-fluorine compounds are the substances of considerable interest in various industrial fields due to their unique physical and chemical properties. Despite increased demand in wide fields of science, synthesis of fluoro-organic compounds is still often faced with problems such as the difficulties in handling of fluorinating reagents and in controlling of chemical reactions. Recently, flow microreactor synthesis has emerged as a new methodology for producing chemical substances with high efficiency. This review outlines the successful examples of synthesis and reactions of fluorine-containing molecules by the use of flow microreactor systems to overcome long-standing problems in fluorine chemistry.

  1. Chip-based sequencing nucleic acids

    DOEpatents

    Beer, Neil Reginald

    2014-08-26

    A system for fast DNA sequencing by amplification of genetic material within microreactors, denaturing, demulsifying, and then sequencing the material, while retaining it in a PCR/sequencing zone by a magnetic field. One embodiment includes sequencing nucleic acids on a microchip that includes a microchannel flow channel in the microchip. The nucleic acids are isolated and hybridized to magnetic nanoparticles or to magnetic polystyrene-coated beads. Microreactor droplets are formed in the microchannel flow channel. The microreactor droplets containing the nucleic acids and the magnetic nanoparticles are retained in a magnetic trap in the microchannel flow channel and sequenced.

  2. Bioinspired Design of Alcohol Dehydrogenase@nano TiO₂ Microreactors for Sustainable Cycling of NAD⁺/NADH Coenzyme.

    PubMed

    Lin, Sen; Sun, Shiyong; Wang, Ke; Shen, Kexuan; Ma, Biaobiao; Ren, Yuquan; Fan, Xiaoyu

    2018-02-24

    The bioinspired design and construction of enzyme@capsule microreactors with specific cell-like functionality has generated tremendous interest in recent years. Inspired by their fascinating complexity, scientists have endeavored to understand the essential aspects of a natural cell and create biomimicking microreactors so as to immobilize enzymes within the hierarchical structure of a microcapsule. In this study, simultaneous encapsulation of alcohol dehydrogenase (ADH) was achieved during the preparation of microcapsules by the Pickering emulsion method using amphiphilic modified TiO₂ nanoparticles (NPs) as building blocks for assembling the photocatalytic microcapsule membrane. The ADH@TiO₂ NP microreactors exhibited dual catalytic functions, i.e., spatially confined enzymatic catalysis and the membrane-associated photocatalytic oxidation under visible light. The sustainable cycling of nicotinamide adenine dinucleotide (NAD) coenzyme between NADH and NAD⁺ was realized by enzymatic regeneration of NADH from NAD⁺ reduction, and was provided in a form that enabled further photocatalytic oxidation to NAD⁺ under visible light. This bioinspired ADH@TiO₂ NP microreactor allowed the linking of a semiconductor mineral-based inorganic photosystem to enzymatic reactions. This is a first step toward the realization of sustainable biological cycling of NAD⁺/NADH coenzyme in synthetic functional microsystems operating under visible light irradiation.

  3. Cellulose Nanofibril Based-Aerogel Microreactors: A High Efficiency and Easy Recoverable W/O/W Membrane Separation System

    PubMed Central

    Zhang, Fang; Ren, Hao; Dou, Jing; Tong, Guolin; Deng, Yulin

    2017-01-01

    Hereby we report a novel cellulose nanofirbril aerogel-based W/O/W microreactor system that can be used for fast and high efficient molecule or ions extraction and separation. The ultra-light cellulose nanofibril based aerogel microspheres with high porous structure and water storage capacity were prepared. The aerogel microspheres that were saturated with stripping solution were dispersed in an oil phase to form a stable water-in-oil (W/O) suspension. This suspension was then dispersed in large amount of external waste water to form W/O/W microreactor system. Similar to a conventional emulsion liquid membrane (ELM), the molecules or ions in external water can quickly transport to the internal water phase. However, the microreactor is also significantly different from traditional ELM: the water saturated nanocellulose cellulose aerogel microspheres can be easily removed by filtration or centrifugation after extraction reaction. The condensed materials in the filtrated aerogel particles can be squeezed and washed out and aerogel microspheres can be reused. This novel process overcomes the key barrier step of demulsification in traditional ELM process. Our experimental indicates the novel microreactor was able to extract 93% phenol and 82% Cu2+ from external water phase in a few minutes, suggesting its great potential for industrial applications. PMID:28059153

  4. Screening of neuraminidase inhibitors from traditional Chinese medicines by integrating capillary electrophoresis with immobilized enzyme microreactor.

    PubMed

    Zhao, Haiyan; Chen, Zilin

    2014-05-02

    A simple and effective neuraminidase-immobilized capillary microreactor was fabricated by glutaraldehyde cross-linking technology for screening the neuraminidase inhibitors from traditional Chinese medicines. The substrate and product were separated by CE in short-end injection mode within 2 min. Dual-wavelength ultraviolet detection was employed to eliminate the interference from the screened compounds. The parameters relating to the separation efficiency and the activity of immobilized neuraminidase were systematically evaluated. The activity of the immobilized neuraminidase remained 90% after 30 days storage at 4°C. The immobilized NA microreactor could be continuously used for more than 200 runs. The Michaelis-Menten constant of neuraminidase was determined by the microreactor as 136.6 ± 10.8 μM. In addition, six in eighteen natural products were found as potent inhibitors and the inhibition potentials were ranked in the following order: bavachinin>bavachin>baicalein>baicalin>chrysin and vitexin. The half-maximal inhibitory concentrations were 59.52 ± 4.12, 65.28 ± 1.07, 44.79 ± 1.21 and 31.62 ± 2.04 for baicalein, baicalin, bavachin and bavachinin, respectively. The results demonstrated that the neuraminidase-immobilized capillary microreactor was a very effective tool for screening neuraminidase inhibitors from traditional Chinese medicines. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Microfluidic-based photocatalytic microreactor for environmental application: a review of fabrication substrates and techniques, and operating parameters.

    PubMed

    Das, Susmita; Srivastava, Vimal Chandra

    2016-06-08

    Photochemical technology with microfluidics is emerging as a new platform in environmental science. Microfluidic technology has various advantages, like better mixing and a shorter diffusion distance for the reactants and products; and uniform distribution of light on the photocatalyst. Depending on the material type and related applications, several fabrication techniques have been adopted by various researchers. Microreactors have been prepared by various techniques, such as lithography, etching, mechanical microcutting technology, etc. Lithography can be classified into photolithography, soft lithography and X-ray lithography techniques whereas the etching process is divided into wet etching (chemical etching) and dry etching (plasma etching) techniques. Several substrates, like polymers, such as polydimethyl-siloxane (PDMS), polymethyle-methacrylate (PMMA), hydrogel, etc.; metals, such as stainless steel, titanium foil, etc.; glass, such as silica capillary, glass slide, etc.; and ceramics have been used for microchannel fabrication. During degradation in a microreactor, the degradation efficiency is affected by few important parameters such as flow rate, initial concentration of the target compound, microreactor dimensions, light intensity, photocatalyst structure and catalyst support. The present paper discusses and critically reviews fabrication techniques and substrates used for microchannel fabrication and critical operating parameters for organics, especially dye degradation in the microreactor. The kinetics of degradation has also been discussed.

  6. Cellulose Nanofibril Based-Aerogel Microreactors: A High Efficiency and Easy Recoverable W/O/W Membrane Separation System

    NASA Astrophysics Data System (ADS)

    Zhang, Fang; Ren, Hao; Dou, Jing; Tong, Guolin; Deng, Yulin

    2017-01-01

    Hereby we report a novel cellulose nanofirbril aerogel-based W/O/W microreactor system that can be used for fast and high efficient molecule or ions extraction and separation. The ultra-light cellulose nanofibril based aerogel microspheres with high porous structure and water storage capacity were prepared. The aerogel microspheres that were saturated with stripping solution were dispersed in an oil phase to form a stable water-in-oil (W/O) suspension. This suspension was then dispersed in large amount of external waste water to form W/O/W microreactor system. Similar to a conventional emulsion liquid membrane (ELM), the molecules or ions in external water can quickly transport to the internal water phase. However, the microreactor is also significantly different from traditional ELM: the water saturated nanocellulose cellulose aerogel microspheres can be easily removed by filtration or centrifugation after extraction reaction. The condensed materials in the filtrated aerogel particles can be squeezed and washed out and aerogel microspheres can be reused. This novel process overcomes the key barrier step of demulsification in traditional ELM process. Our experimental indicates the novel microreactor was able to extract 93% phenol and 82% Cu2+ from external water phase in a few minutes, suggesting its great potential for industrial applications.

  7. MEASUREMENT OF VOCS DESORBED FROM BUILDING MATERIALS--A HIGH TEMPERATURE DYNAMIC CHAMBER METHOD

    EPA Science Inventory

    Mass balance is a commonly used approach for characterizing the source and sink behavior of building materials. Because the traditional sink test methods evaluate the adsorption and desorption of volatile organic compounds (VOC) at ambient temperatures, the desorption process is...

  8. Distribution and removal of organochlorine pesticides in waste clay bricks from an abandoned manufacturing plant using low-temperature thermal desorption technology.

    PubMed

    Cong, Xin; Li, Fasheng; Kelly, Ryan M; Xue, Nandong

    2018-04-01

    The distribution of pollutants in waste clay bricks from an organochlorine pesticide-contaminated site was investigated, and removal of the pollutants using a thermal desorption technology was studied. The results showed that the contents of HCHs in both the surface and the inner layer of the bricks were slightly higher than those of DDTs. The total pore volume of the bricks was 37.7 to 41.6% with an increase from external to internal surfaces. The removal efficiency by thermal treatment was within 62 to 83% for HCHs and DDTs in bricks when the temperature was raised from 200 to 250 °C after 1 h. HCHs were more easily removed than DDTs with a higher temperature. Either intraparticle or surface diffusion controls the desorption processes of pollutants in bricks. It was feasible to use the polluted bricks after removal of the pollutants by low-temperature thermal desorption technology.

  9. Flash crystallization kinetics of methane (sI) hydrate in a thermoelectrically-cooled microreactor.

    PubMed

    Chen, Weiqi; Pinho, Bruno; Hartman, Ryan L

    2017-09-12

    The crystallization kinetics of methane (sI) hydrate were investigated in a thermoelectrically-cooled microreactor with in situ Raman spectroscopy. Step-wise and precise control of the temperature allowed acquisition of reproducible data within minutes, while the nucleation of methane hydrates can take up to 24 h in traditional batch reactors. The propagation rates of methane hydrate (from 3.1-196.3 μm s -1 ) at the gas-liquid interface were measured for different Reynolds' numbers (0.7-68.9), pressures (30.0-80.9 bar), and sub-cooling temperatures (1.0-4.0 K). The precise measurement of the propagation rates and their subsequent analyses revealed a transition from mixed heat-transfer-crystallization-rate-limited to mixed heat-transfer-mass-transfer-crystallization-rate-limited kinetics. A theoretical model, based on heat transfer, mass transfer, and intrinsic crystallization kinetics, was derived for the first time to understand the non-linear relationship between the propagation rate and sub-cooling temperature. The molecular diffusivity of methane within a stagnant film (ahead of the propagation front) was discovered to follow Stokes-Einstein, while calculated Hatta (0.50-0.68), Lewis (128-207), and beta (0.79-116) numbers also confirmed that the diffusive flux influences crystal growth. Understanding methane hydrate crystal growth is important to the atmospheric, oceanic, and planetary sciences and to energy production, storage, and transportation. Our discoveries could someday advance the science of other multiphase, high-pressure, and sub-cooled crystallizations.

  10. Experimentally Determined Binding Energies of Astrophysically Relevant Hydrocarbons in Pure and H2O-Layered Ices

    NASA Astrophysics Data System (ADS)

    Behmard, Aida; Graninger, Dawn; Fayolle, Edith; Oberg, Karin I.

    2017-01-01

    Small hydrocarbons represent an important organic reservoir in a variety of interstellar environments. Constraints on desorption temperatures and binding energies of hydrocarbons are thus necessary for accurate predictions of where and in which phase these molecules exist. Through a series of temperature programmed desorption experiments, we determined binding energies of 1, 2, and 3-carbon interstellar hydrocarbons (CH4, C2H2, C2H4, C2H6, C3H4, C3H6, and C3H8) in pure ices and in relation to water ice, the dominant ice constituent during star and planet formation. These empirically determined values can be used to inform observations and models of the molecular spatial distribution in protoplanetary disks, thus providing insight into planetesimal composition. In addition, knowledge of hydrocarbon binding energies will refine simulations of grain surface chemistry, allowing for better predictions of the chemical conditions that lead to the production of complex organic molecules vital for life.

  11. A thermal desorption spectroscopy study of hydrogen trapping in polycrystalline α-uranium

    DOE PAGES

    Lillard, R. S.; Forsyth, R. T.

    2015-03-14

    The kinetics of hydrogen desorption from polycrystalline α-uranium (α-U) was examined using thermal desorption spectroscopy (TDS). The goal was to identify the major trap sites for hydrogen and their associated trap energies. In polycrystalline α-U six TDS adsorption peaks were observed at temperatures of 521 K, 556 K, 607 K, 681 K, 793 K and 905 K. In addition, the desorption was determined to be second order based on peak shape. The position of the first three peaks was consistent with desorption from UH3. To identify the trap site corresponding to the high temperature peaks the data were compared tomore » a plastically deformed sample and a high purity single crystal sample. The plastically deformed sample allowed the identification of trapping at dislocations while the single crystal sample allow for the identification of high angle boundaries and impurities. Thus, with respect to the desorption energy associated with each peak, values between 12.9 and 26.5 kJ/mole were measured.« less

  12. Microfluidic labeling of biomolecules with radiometals for use in nuclear medicine.

    PubMed

    Wheeler, Tobias D; Zeng, Dexing; Desai, Amit V; Önal, Birce; Reichert, David E; Kenis, Paul J A

    2010-12-21

    Radiometal-based radiopharmaceuticals, used as imaging and therapeutic agents in nuclear medicine, consist of a radiometal that is bound to a targeting biomolecule (BM) using a bifunctional chelator (BFC). Conventional, macroscale radiolabeling methods use an excess of the BFC-BM conjugate (ligand) to achieve high radiolabeling yields. Subsequently, to achieve maximal specific activity (minimal amount of unlabeled ligand), extensive chromatographic purification is required to remove unlabeled ligand, often resulting in longer synthesis times and loss of imaging sensitivity due to radioactive decay. Here we describe a microreactor that overcomes the above issues through integration of efficient mixing and heating strategies while working with small volumes of concentrated reagents. As a model reaction, we radiolabel 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) conjugated to the peptide cyclo(Arg-Gly-Asp-DPhe-Lys) with (64)Cu(2+). We show that the microreactor (made from polydimethylsiloxane and glass) can withstand 260 mCi of activity over 720 hours and retains only minimal amounts of (64)Cu(2+) (<5%) upon repeated use. A direct comparison between the radiolabeling yields obtained using the microreactor and conventional radiolabeling methods shows that improved mixing and heat transfer in the microreactor leads to higher yields for identical reaction conditions. Most importantly, by using small volumes (~10 µL) of concentrated solutions of reagents (>50 µM), yields of over 90% can be achieved in the microreactor when using a 1:1 stoichiometry of radiometal to BFC-BM. These high yields eliminate the need for use of excess amounts of often precious BM and obviate the need for a chromatographic purification process to remove unlabeled ligand. The results reported here demonstrate the potential of microreactor technology to improve the production of patient-tailored doses of radiometal-based radiopharmaceuticals in the clinic.

  13. Desorption of Hg(II) and Sb(V) on extracellular polymeric substances: effects of pH, EDTA, Ca(II) and temperature shocks.

    PubMed

    Zhang, Daoyong; Lee, Duu-Jong; Pan, Xiangliang

    2013-01-01

    Extracellular polymeric substances (EPS) existed ubiquitously in biological systems affect the mobility and availability of heavy metals in the environments. The adsorption-desorption behaviors of Hg(II) and Sb(V) on EPS were investigated. The sorption rates follow Sb(V) > Hg(II), and the desorption rates follow reverse order. Applications of ethylene diamine tetraacetic acid (EDTA), Ca(II) and pH shocks affect desorption rates and desorbed quantities of Hg(II) from EPS-Hg complex. Temperature shock minimally affects the desorption rate of Hg(II). Conversely, the EPS-Sb complex is stable subjected to EDTA, Ca(II), temperature or pH shocks. The excitation-emission matrix (EEM) fluorescence spectroscopy and fast-Fourier (FT-IR) analysis showed that Hg(II) and Sb(V) principally interacted with polysaccharides and protein-like compounds in the EPS, respectively. The EPS-Hg complex presents a time bomb that may release high levels of Hg(II) in short time period under environmental shocks. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. The Effect of Platinum-coatings on Hydrogen- and Water-absorption and Desorption Characteristics of Lithium Zirconate

    NASA Astrophysics Data System (ADS)

    Tsuchiya, B.; Bandow, S.; Nagata, S.; Saito, K.; Tokunaga, K.; Morita, K.

    Hydrogen (H)- and water (H2O)-storage and desorption characteristics of 25 nm thick Pt films onLi2ZrO3composite materials, exposed to normal air at room temperature, have been investigated by means of elastic recoil detection (ERD), Rutherford backscattering spectrometry (RBS), weight gain measurement (WGM), and thermal desorption spectroscopy (TDS) techniques. It was found by the ERD and TDS that H and H2O were absorbed into the Pt-coated Li2ZrO3 in air at room temperature and desorbed from it in vacuum at much low temperatures of approximately 317 and 309 K, respectively. In addition, the WGM and TDS spectra revealed that the absorption and desorption characters ofsome gases such as CH4, CO, and CO2including H as well as H2Ointo the Li2ZrO3 bulk were improved by Pt deposition.

  15. Study on the photocatalytic reaction kinetics in a TiO2 nanoparticles coated microreactor integrated microfluidics device.

    PubMed

    Liu, Ai-Lin; Li, Zhong-Qiu; Wu, Zeng-Qiang; Xia, Xing-Hua

    2018-05-15

    For study of the photocatalytic reaction kinetics in a confined microsystem, a photocatalysis microreactor integrated on a microfluidic device has been fabricated using an on-line UV/vis detector. The performance of the photocatalysis microreactor is evaluated by the photocatalytic degradation of Rhodamine B chosen as model target by using commercial titanium dioxide (Degussa P25, TiO 2 ) nanoparticles as a photocatalyst. Results show that the photocatalytic reaction occurs via the Langmuir-Hinshelwood mechanism and the photocatalysis kinetics in the confined microsystem (r = 0.359 min -1 ) is about 10 times larger than that in macrosystem (r = 0.033 min -1 ). In addition, the photocatalysis activity of the immobilized TiO 2 nanoparticles in the microreactor exhibits good stability under flowing conditions. The present microchip device offers an interesting platform for screening of photocatalysts and exploration of photocatalysis mechanisms and kinetics. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Streptavidin-functionalized capillary immune microreactor for highly efficient chemiluminescent immunoassay.

    PubMed

    Yang, Zhanjun; Zong, Chen; Ju, Huangxian; Yan, Feng

    2011-11-07

    A streptavidin functionalized capillary immune microreactor was designed for highly efficient flow-through chemiluminescent (CL) immunoassay. The functionalized capillary could be used as both a support for highly efficient immobilization of antibody and a flow cell for flow-through immunoassay. The functionalized inner wall and the capture process were characterized using scanning electron microscopy. Compared to conventional packed tube or thin-layer cell immunoreactor, the proposed microreactor showed remarkable properties such as lower cost, simpler fabrication, better practicality and wider dynamic range for fast CL immunoassay with good reproducibility and stability. Using α-fetoprotein as model analyte, the highly efficient CL flow-through immunoassay system showed a linear range of 3 orders of magnitude from 0.5 to 200 ng mL(-1) and a low detection limit of 0.1 ng mL(-1). The capillary immune microreactor could make up the shortcoming of conventional CL immunoreactors and provided a promising alternative for highly efficient flow-injection immunoassay. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Rapid synthesis of propyl caffeate in ionic liquid using a packed bed enzyme microreactor under continuous-flow conditions.

    PubMed

    Wang, Jun; Gu, Shuang-Shuang; Cui, Hong-Sheng; Yang, Liu-Qing; Wu, Xiang-Yang

    2013-12-01

    Propyl caffeate has the highest antioxidant activity among caffeic acid alkyl esters, but its industrial production via enzymatic transesterification in batch reactors is hindered by a long reaction time (24h). To develop a rapid process for the production of propyl caffeate in high yield, a continuous-flow microreactor composed of a two-piece PDMS in a sandwich-like microchannel structure was designed for the transesterification of methyl caffeate and 1-propanol catalyzed by Novozym 435 in [B mim][CF3SO3]. The maximum yield (99.5%) in the microreactor was achieved in a short period of time (2.5h) with a flow rate of 2 μL/min, which kinetic constant Km was 16 times lower than that of a batch reactor. The results indicated that the use of a continuous-flow packed bed enzyme microreactor is an efficient method of producing propyl caffeate with an overall yield of 84.0%. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Multiple reuses of Rhodococcus ruber TH3 free cells to produce acrylamide in a membrane dispersion microreactor.

    PubMed

    Li, Jiahui; Liu, Junqi; Chen, Jie; Wang, Yujun; Luo, Guangsheng; Yu, Huimin

    2015-01-01

    In this work, multiple reuses of Rhodococcus ruber TH3 free cells for the hydration of acrylonitrile to produce acrylamide in a membrane dispersion microreactor were carried out. Through using a centrifuge, the reactions reached 39.9, 39.5, 38.6 and 38.0wt% of the final acrylamide product concentration respectively within 35min in a four cycle reuse of free cells. In contrast, using a stirring tank, free cells could only be used once with the same addition speed of acrylonitrile with a microreactor. Through observing the dissolution behavior of acrylonitrile microdroplets in a free cell solution using a coaxial microfluidic device and microscope, it was found that the acrylonitrile microdroplets with a diameter of 75μm were rarely observed within a length of 2cm channel within 10s, which illustrated that the microreactor can intensify the reaction rate to reduce the inhibition of acrylonitrile and acrylamide. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Limited proteolysis in proteomics using protease-immobilized microreactors.

    PubMed

    Yamaguchi, Hiroshi; Miyazaki, Masaya; Maeda, Hideaki

    2012-01-01

    Proteolysis is the key step for proteomic studies integrated with MS analysis. Compared with the conventional method of in-solution digestion, proteolysis by a protease-immobilized microreactor has a number of advantages for proteomic analysis; i.e., rapid and efficient digestion, elimination of a purification step of the digests prior to MS, and high stability against a chemical or thermal denaturant. This chapter describes the preparation of the protease-immobilized microreactors and proteolysis performance of these microreactors. Immobilization of proteases by the formation of a polymeric membrane consisting solely of protease-proteins on the inner wall of the microchannel is performed. This was realized either by a cross-linking reaction in a laminar flow between lysine residues sufficiently present on the protein surfaces themselves or in the case of acidic proteins by mixing them with poly-lysine prior to the crosslink-reaction. The present procedure is simple and widely useful not only for proteases but also for several other enzymes.

  20. Physics of lithium bromide (LiBr) solution dewatering through vapor venting membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isfahani, RN; Fazeli, A; Bigham, S

    2014-01-01

    The physics of water desorption from a lithium bromide (LiBr) solution flow through an array of microchannels capped by a porous membrane is studied. The membrane allows the vapor to exit the flow and retains the liquid. Effects of different parameters such as wall temperature, solution and vapor pressures, and solution mass flux on the desorption rate were studied. Two different mechanisms of desorption are analyzed. These mechanisms consisted of: (1) direct diffusion of water molecules out of the solution and their subsequent flow through the membrane and (2) formation of water vapor bubbles within the solution and their ventingmore » through the membrane. Direct diffusion was the dominant desorption mode at low surface temperatures and its magnitude was directly related to the vapor pressure, the solution concentration, and the heated wall temperature. Desorption at the boiling regime was predominantly controlled by the solution flow pressure and mass flux. Microscale visualization studies suggested that at a critical mass flux, some bubbles are carried out of the desorber through the solution microchannels rather than being vented through the membrane. Overall, an order of magnitude higher desorption rate compare to a previous study on a membrane-based desorber was achieved. Published by Elsevier Ltd.« less

  1. Correlation between Fischer-Tropsch catalytic activity and composition of catalysts

    PubMed Central

    2011-01-01

    This paper presents the synthesis and characterization of monometallic and bimetallic cobalt and iron nanoparticles supported on alumina. The catalysts were prepared by a wet impregnation method. Samples were characterized using temperature-programmed reduction (TPR), temperature-programmed oxidation (TPO), CO-chemisorption, transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM-EDX) and N2-adsorption analysis. Fischer-Tropsch synthesis (FTS) was carried out in a fixed-bed microreactor at 543 K and 1 atm, with H2/CO = 2 v/v and space velocity, SV = 12L/g.h. The physicochemical properties and the FTS activity of the bimetallic catalysts were analyzed and compared with those of monometallic cobalt and iron catalysts at similar operating conditions. H2-TPR analysis of cobalt catalyst indicated three temperature regions at 506°C (low), 650°C (medium) and 731°C (high). The incorporation of iron up to 30% into cobalt catalysts increased the reduction, CO chemisorption and number of cobalt active sites of the catalyst while an opposite trend was observed for the iron-riched bimetallic catalysts. The CO conversion was 6.3% and 4.6%, over the monometallic cobalt and iron catalysts, respectively. Bimetallic catalysts enhanced the CO conversion. Amongst the catalysts studied, bimetallic catalyst with the composition of 70Co30Fe showed the highest CO conversion (8.1%) while exhibiting the same product selectivity as that of monometallic Co catalyst. Monometallic iron catalyst showed the lowest selectivity for C5+ hydrocarbons (1.6%). PMID:22047220

  2. CHARACTERISTICS OF MERCURY DESORPTION FROM SORBENTS AT ELEVATED TEMPERATURES. (R822721C697)

    EPA Science Inventory

    This study investigated the dynamic desorption characteristics of mercury during the thermal treatment of mercury-loaded sorbents at elevated temperatures under fixed-bed operations. Experiments were carried out in a 25.4 mm ID quartz bed enclosed in an electric furnace. ...

  3. CHARACTERISTICS OF MERCURY DESORPTION FROM SORBENTS AT ELEVATED TEMPERATURES. (R826694C697)

    EPA Science Inventory

    This study investigated the dynamic desorption characteristics of mercury during the thermal treatment of mercury-loaded sorbents at elevated temperatures under fixed-bed operations. Experiments were carried out in a 25.4 mm ID quartz bed enclosed in an electric furnace. ...

  4. Adsorption and Desorption of Nickel(II) Ions from Aqueous Solution by a Lignocellulose/Montmorillonite Nanocomposite

    PubMed Central

    Zhang, Xiaotao; Wang, Ximing

    2015-01-01

    A new and inexpensive lignocellulose/montmorillonite (LNC/MMT) nanocomposite was prepared by a chemical intercalation of LNC into MMT and was subsequently investigated as an adsorbent in batch systems for the adsorption-desorption of Ni(II) ions in an aqueous solution. The optimum conditions for the Ni(II) ion adsorption capacity of the LNC/MMT nanocomposite were studied in detail by varying parameters such as the initial Ni(II) concentration, the solution pH value, the adsorption temperature and time. The results indicated that the maximum adsorption capacity of Ni(II) reached 94.86 mg/g at an initial Ni(II) concentration of 0.0032 mol/L, a solution pH of 6.8, an adsorption temperature of 70°C, and adsorption time of 40 min. The represented adsorption kinetics model exhibited good agreement between the experimental data and the pseudo-second-order kinetic model. The Langmuir isotherm equation best fit the experimental data. The structure of the LNC/MMT nanocomposite was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM), whereas the adsorption mechanism was discussed in combination with the results obtained from scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and Fourier-transform infrared spectroscopy analyses (FTIR). The desorption capacity of the LNC/MMT nanocomposite depended on parameters such as HNO3 concentration, desorption temperature, and desorption time. The satisfactory desorption capacity of 81.34 mg/g was obtained at a HNO3 concentration, desorption temperature, and desorption time of 0.2 mol/L, 60 ºC, and 30 min, respectively. The regeneration studies showed that the adsorption capacity of the LNC/MMT nanocomposite was consistent for five cycles without any appreciable loss in the batch process and confirmed that the LNC/MMT nanocomposite was reusable. The overall study revealed that the LNC/MMT nanocomposite functioned as an effective adsorbent in the detoxification of Ni(II)-contaminated wastewater. PMID:25647398

  5. Modification of the acid/base properties of γ-Al2O3 by oxide additives: An ethanol TPD investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwak, Ja Hun; Lee, Jaekyoung; Szanyi, Janos

    2016-02-26

    The electronic properties of oxide-modified γ Al2O3 surfaces were investigated by using ethanol TPD. Ethanol TPD showed remarkable sensitivity toward the surface structures and electronic properties of the aluminas modified by various transition metal oxides. Maximum desorption rates for the primary product of ethanol adsorption, ethylene, were observed at 225 °C on non-modified γ-Al2O3. Desorption temperature of ethanol over a γ Al2O3 samples with different amounts of BaO linearly increased with increasing loading. On the contrary, ethanol desorption temperature on Pt modified γ-Al2O3 after calcined at 500 oC linearly decreased with increasing Pt loading. These results clearly suggested that themore » acid/base properties of the γ-Al2O3 surface can be strongly affected by ad-atoms. For confirming these arguments, we performed ethanol TPD experiments on various oxide modified γ-Al2O3 and normalized the maximum desorption temperatures based on the same number of oxide dopants. These normalized ethanol desorption temperatures linearly correlate with the electronegativity of the metal atom in the oxide. This linear relationship clearly demonstrates that the acidic properties of alumina surfaces can be systematically changed by ad-atoms.« less

  6. Parallelization of Catalytic Packed-Bed Microchannels with Pressure-Drop Microstructures for Gas-Liquid Multiphase Reactions

    NASA Astrophysics Data System (ADS)

    Murakami, Sunao; Ohtaki, Kenichiro; Matsumoto, Sohei; Inoue, Tomoya

    2012-06-01

    High-throughput and stable treatments are required to achieve the practical production of chemicals with microreactors. However, the flow maldistribution to the paralleled microchannels has been a critical problem in achieving the productive use of multichannel microreactors for multiphase flow conditions. In this study, we newly designed and fabricated a glass four-channel catalytic packed-bed microreactor for the scale-up of gas-liquid multiphase chemical reactions. We embedded microstructures generating high pressure losses at the upstream side of each packed bed, and experimentally confirmed the efficacy of the microstructures in decreasing the maldistribution of the gas-liquid flow to the parallel microchannels.

  7. Paper-based microreactor integrating cell culture and subsequent immunoassay for the investigation of cellular phosphorylation.

    PubMed

    Lei, Kin Fong; Huang, Chia-Hao

    2014-12-24

    Investigation of cellular phosphorylation and signaling pathway has recently gained much attention for the study of pathogenesis of cancer. Related conventional bioanalytical operations for this study including cell culture and Western blotting are time-consuming and labor-intensive. In this work, a paper-based microreactor has been developed to integrate cell culture and subsequent immunoassay on a single paper. The paper-based microreactor was a filter paper with an array of circular zones for running multiple cell cultures and subsequent immunoassays. Cancer cells were directly seeded in the circular zones without hydrogel encapsulation and cultured for 1 day. Subsequently, protein expressions including structural, functional, and phosphorylated proteins of the cells could be detected by their specific antibodies, respectively. Study of the activation level of phosphorylated Stat3 of liver cancer cells stimulated by IL-6 cytokine was demonstrated by the paper-based microreactor. This technique can highly reduce tedious bioanalytical operation and sample and reagent consumption. Also, the time required by the entire process can be shortened. This work provides a simple and rapid screening tool for the investigation of cellular phosphorylation and signaling pathway for understanding the pathogenesis of cancer. In addition, the operation of the paper-based microreactor is compatible to the molecular biological training, and therefore, it has the potential to be developed for routine protocol for various research areas in conventional bioanalytical laboratories.

  8. Conversion of kraft lignin over hierarchical MFI zeolite.

    PubMed

    Kim, Seong-Soo; Lee, Hyung Won; Ryoo, Ryong; Kim, Wookdong; Park, Sung Hoon; Jeon, Jong-Ki; Park, Young-Kwon

    2014-03-01

    Catalytic pyrolysis of kraft lignin was carried out using pyrolysis gas chromatography/mass spectrometry. Hierarchical mesoporous MFI was used as the catalyst and another mesoporous material Al-SBA-15 was also used for comparison. The characteristics of mesoporous MFI were analyzed by X-ray diffraction patterns, N2 adsorption-desorption isotherms, and temperature programmed desorption of NH3. Two catalyst/lignin mass ratios were tested: 5/1 and 10/1. Aromatics and alkyl phenolics were the main products of the catalytic pyrolysis of lignin over mesoporous MFI. In particular, the yields of mono-aromatics such as benzene, toluene, ethylbenzene, and xylene were increased substantially by catalytic upgrading. Increase in the catalyst dose enhanced the production of aromatics further, which is attributed to decarboxylation, decarbonlyation, and aromatization reactions occurring over the acid sites of mesoporous MFI.

  9. Anode-supported single-chamber solid oxide fuel cell based on cobalt-free composite cathode of Nd0.5Sr0.5Fe0.8Cu0.2O3-δ-Sm0.2Ce0.8O1.9 at intermediate temperatures

    NASA Astrophysics Data System (ADS)

    Yin, Jie-Wei; Zhang, Chunming; Yin, Yi-Mei; Shi, Huangang; Lin, Ye; Lu, Jun; Ma, Zi-Feng

    2015-07-01

    As a candidate of cathode material of single-chamber solid oxide fuel cell (SC-SOFC), cobalt-free mixed ionic electronic conductor (MIEC) Nd0.5Sr0.5Fe0.8Cu0.2O3-δ (NSFCu) is synthesized by sol-gel method with ethylene diamine tetraacetic acid and citric acid as co-complexing agents. The XRD shows NSFCu is stable after CO2 treatment and chemical compatible with SDC at high temperatures. CO2-TPD (CO2-temperature programmed desorption) demonstrates both CO2 adsorption and desorption phenomenon on NSFCu surface. However, the polarization resistances (Rp) of NSFCu and SDC (10:4 in weight) composite electrodes showed no decay in 5% CO2. Single cell using N2-O2-CH4 mixed gas (CH4 to O2 ratio = 1.5) as fuel shows maximum power density of 635 mW cm-2 at 700 °C. These results suggest that NSFCu-SDC is a promising composite cathode material for application in single-chamber solid oxide fuel cell.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryota Ochiai; M. Azhar Uddin; Eiji Sasaoka

    The effect of the presence of HCl and SO{sub 2} in the simulated coal combustion flue gas on the Hg{sup 0} removal by a commercial activated carbon (coconut shell AC) was investigated in a laboratory-scale fixed-bed reactor in a temperature range of 80-200{sup o}C. The characteristics (thermal stability) of the mercury species formed on the sorbents under various adsorption conditions were investigated by the temperature-programmed decomposition desorption (TPDD) technique. It was found that the presence of HCl and SO{sub 2} in the flue gas affected the mercury removal efficiency of the sorbents as well as the characteristics of the mercurymore » adsorption species. The mercury removal rate of AC increased with the HCl concentration in the flue gas. In the presence of HCl and the absence of SO{sub 2} during Hg{sup 0} adsorption by AC, a single Hg{sup 0} desorption peak at around 300{sup o}C was observed in the TPDD spectra and intensity of this peak increased with the HCl concentration during mercury adsorption. The peak at around 300{sup o}C may be derived from the decomposition and desorption of mercury chloride species. The presence of SO{sub 2} during mercury adsorption had an adverse effect on the mercury removal by AC in the presence of HCl. In the presence of both HCl and SO{sub 2} during Hg{sup 0} adsorption by AC, the major TPDD peak temperatures changed drastically depending upon the concentration of HCl and SO{sub 2} in flue gas during Hg{sup 0} adsorption. 16 refs., 7 figs.« less

  11. X-ray absorption spectroscopy and imaging of heterogeneous hydrothermal mixtures using a diamond microreactor cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fulton, John L.; Darab, John G.; Hoffmann, Markus M.

    2001-04-01

    Hydrothermal synthesis is an important route to novel materials. Hydrothermal chemistry is also an important aspect of geochemistry and a variety of waste remediation technologies. There is a significant lack of information about the speciation of inorganic compounds under hydrothermal conditions. For these reasons we describe a high-temperature, high-pressure cell that allows one to acquire both x-ray absorption fine structure (XAFS) spectra and x-ray transmission and absorption images of heterogeneous hydrothermal mixtures. We demonstrate the utility of the method by measuring the Cu(I) speciation in a solution containing both solid and dissolved Cu phases at temperatures up to 325{sup o}C.more » X-ray imaging of the various hydrothermal phases allows micro-XAFS to be collected from different phases within the heterogeneous mixture. The complete structural characterization of a soluble bichloro-cuprous species was determined. In situ XAFS measurements were used to define the oxidation state and the first-shell coordination structure. The Cu--Cl distance was determined to be 2.12 Aa for the CuCl{sub 2}{sup -} species and the complete loss of tightly bound waters of hydration in the first shell was observed. The microreactor cell described here can be used to test thermodynamic models of solubility and redox chemistry of a variety of different hydrothermal mixtures.« less

  12. A Rapid Pathway Toward a Superb Gene Delivery System: Programming Structural and Functional Diversity into a Supramolecular Nanoparticle Library

    PubMed Central

    Wang, Hao; Liu, Kan; Chen, Kuan-Ju; Lu, Yujie; Wang, Shutao; Lin, Wei-Yu; Guo, Feng; Kamei, Ken-ichiro; Chen, Yi-Chun; Ohashi, Minori; Wang, Mingwei; Garcia, Mitch André; Zhao, Xing-Zhong; Shen, Clifton K.-F.; Tseng, Hsian-Rong

    2010-01-01

    Nanoparticles are regarded as promising transfection reagents for effective and safe delivery of nucleic acids into specific type of cells or tissues providing an alternative manipulation/therapy strategy to viral gene delivery. However, the current process of searching novel delivery materials is limited due to conventional low-throughput and time-consuming multistep synthetic approaches. Additionally, conventional approaches are frequently accompanied with unpredictability and continual optimization refinements, impeding flexible generation of material diversity creating a major obstacle to achieving high transfection performance. Here we have demonstrated a rapid developmental pathway toward highly efficient gene delivery systems by leveraging the powers of a supramolecular synthetic approach and a custom-designed digital microreactor. Using the digital microreactor, broad structural/functional diversity can be programmed into a library of DNA-encapsulated supramolecular nanoparticles (DNA⊂SNPs) by systematically altering the mixing ratios of molecular building blocks and a DNA plasmid. In vitro transfection studies with DNA⊂SNPs library identified the DNA⊂SNPs with the highest gene transfection efficiency, which can be attributed to cooperative effects of structures and surface chemistry of DNA⊂SNPs. We envision such a rapid developmental pathway can be adopted for generating nanoparticle-based vectors for delivery of a variety of loads. PMID:20925389

  13. Lithographically fabricated silicon microreactor for in situ characterization of heterogeneous catalysts—Enabling correlative characterization techniques

    NASA Astrophysics Data System (ADS)

    Baier, S.; Rochet, A.; Hofmann, G.; Kraut, M.; Grunwaldt, J.-D.

    2015-06-01

    We report on a new modular setup on a silicon-based microreactor designed for correlative spectroscopic, scattering, and analytic on-line gas investigations for in situ studies of heterogeneous catalysts. The silicon microreactor allows a combination of synchrotron radiation based techniques (e.g., X-ray diffraction and X-ray absorption spectroscopy) as well as infrared thermography and Raman spectroscopy. Catalytic performance can be determined simultaneously by on-line product analysis using mass spectrometry. We present the design of the reactor, the experimental setup, and as a first example for an in situ study, the catalytic partial oxidation of methane showing the applicability of this reactor for in situ studies.

  14. Lithographically fabricated silicon microreactor for in situ characterization of heterogeneous catalysts—Enabling correlative characterization techniques.

    PubMed

    Baier, S; Rochet, A; Hofmann, G; Kraut, M; Grunwaldt, J-D

    2015-06-01

    We report on a new modular setup on a silicon-based microreactor designed for correlative spectroscopic, scattering, and analytic on-line gas investigations for in situ studies of heterogeneous catalysts. The silicon microreactor allows a combination of synchrotron radiation based techniques (e.g., X-ray diffraction and X-ray absorption spectroscopy) as well as infrared thermography and Raman spectroscopy. Catalytic performance can be determined simultaneously by on-line product analysis using mass spectrometry. We present the design of the reactor, the experimental setup, and as a first example for an in situ study, the catalytic partial oxidation of methane showing the applicability of this reactor for in situ studies.

  15. Chitosan-microreactor: a versatile approach for heterogeneous organic synthesis in microfluidics.

    PubMed

    Basavaraju, K C; Sharma, Siddharth; Singh, Ajay K; Im, Do Jin; Kim, Dong-Pyo

    2014-07-01

    Microreactors have been proven to be efficient tools for a variety of homogeneous organic transformations due to their mixing efficiency, which results in very fast reactions, better heat and mass transfer, and simple scale-up. However, in heterogeneous catalytic reactions each catalyst needs an individual substrate as support. Herein, a versatile approach to immobilize metal catalysts on chitosan as a common substrate is presented. Chitosan, accommodating many metal catalysts, is grafted onto the microchannel surface as nanobrush. The versatility, catalytic efficiency, and stability/durability of the microreactor are demonstrated for a number of organic transformations involving various metal compounds as catalysts. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A biphasic oxidation of alcohols to aldehydes and ketones using a simplified packed-bed microreactor

    PubMed Central

    Bogdan, Andrew

    2009-01-01

    Summary We demonstrate the preparation and characterization of a simplified packed-bed microreactor using an immobilized TEMPO catalyst shown to oxidize primary and secondary alcohols via the biphasic Anelli-Montanari protocol. Oxidations occurred in high yields with great stability over time. We observed that plugs of aqueous oxidant and organic alcohol entered the reactor as plugs but merged into an emulsion on the packed-bed. The emulsion coalesced into larger plugs upon exiting the reactor, leaving the organic product separate from the aqueous by-products. Furthermore, the microreactor oxidized a wide range of alcohols and remained active in excess of 100 trials without showing any loss of catalytic activity. PMID:19478910

  17. The effect of oxygen vacancies on the binding interactions of NH3 with rutile TiO2(110) -1×1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Boseong; Li, Zhenjun; Kay, Bruce D.

    2012-11-21

    A series of NH3 temperature-programmed desorption (TPD) spectra was taken after the NH3 dose at 70 K on rutile TiO2(110)-1×1 surfaces with the oxygen vacancy (VO) concentrations of ~0% (p-TiO2) and 5% (r-TiO2), respectively, to study the effect of VO’s on the desorption energy of NH3 as a function of the coverage, θ. Our results show that at zero coverage limit, the desorption energy of NH3 on r-TiO2 is 115 kJ/mol, which is 10 kJ/mol less than that on p-TiO2. The desorption energy from the Ti4+ sites decreases with increasing θ due to the repulsive NH3 - NH3 interactions andmore » approaches ~ 55 kJ/mol upon the saturation of Ti4+ sites (θ = 1 monolayer, ML) on both p- and r-TiO2. The absolute saturation coverage is determined to be about 10% smaller on r-TiO2 than that on p-TiO2. Further, the trailing edges of the NH3 TPD spectra on the hydroxylated TiO2(110) (h-TiO2) appear to be the same as that on r-TiO2 while those on oxidized TiO2(110) (o-TiO2) shift to higher temperatures. We present the detailed analysis of the results and reconcile the observed differences based on the repulsive adsorbate-adsorbate interactions between neighboring NH3 molecules and the surface charge associated with the presence of VO’s. Besides NH3, no other reaction products are observed in the TPD spectra.« less

  18. Real-time observation of the dehydrogenation processes of methanol on clean Ru(001) and Ru(001)-p(2×2) O surfaces by a temperature-programmed electron-stimulated desorption ion angular distribution/time-of-flight system

    NASA Astrophysics Data System (ADS)

    Sasaki, Takehiko; Itai, Yuichiro; Iwasawa, Yasuhiro

    1999-12-01

    Decomposition processes of methanol on clean and oxygen-precovered Ru(001) surfaces have been visualized in real time with a temperature-programmed (TP) electron-stimulated desorption ion angular distribution (ESDIAD)/time-of-flight (TOF) system. The mass of desorbed ions during temperature-programmed surface processes was identified by TOF measurements. In the case of methanol (CH 3OD) adsorption on Ru(001)-p(2×2)-O, a halo pattern of H + from the methyl group of methoxy species was observed at 100-200 K, followed by a broad pattern from the methyl group at 230-250 K and by a near-center pattern from O + ions originating from adsorbed CO above 300 K. The halo pattern is attributed to a perpendicular conformation of the CO bond axis of the methoxy species, leading to off-normal CH bond scission. On the other hand, methanol adsorbed on clean Ru(001) did not give any halo pattern but a broad pattern was observed along the surface normal, indicating that the conformation of the methoxy species is not ordered on the clean surface. Comparison between the ESDIAD images of the oxygen-precovered surface and the clean surface suggests that the precovered oxygen adatoms induce ordering of the methoxy species. Real-time ESDIAD measurements revealed that the oxygen atoms at the Ru(001)-p(2×2)-O surface have a positive effect on selective dehydrogenation of the methoxy species to CO+H 2 and a blocking effect on CO bond breaking of the methoxy species.

  19. Temperature and pH influence adsorption of cellobiohydrolase onto lignin by changing the protein properties.

    PubMed

    Lu, Xianqin; Wang, Can; Li, Xuezhi; Zhao, Jian

    2017-12-01

    Non-productive adsorption of cellulase onto lignin restricted the movement of cellulase and also hindered the cellulase recycling in bioconversion of lignocellulose. In this study, effect of temperature and pH on adsorption and desorption of cellobiohydrolase (CBH) on lignin and its possible mechanism were discussed. It found that pH value and temperature influenced the adsorption and desorption behaviors of CBH on lignin. Different thermodynamic models suggested that the action between lignin and CBH was physical action. More CBH was adsorbed onto lignin, but lower initial adsorption velocity was detected at 50°C comparing with 4°C. Elevating pH value could improve desorption of cellulase from lignin. The changes of hydrophobicity and electric potential on protein surface may partially explain the impact of environmental conditions on the adsorption and desorption behaviors of CBH on lignin, and comparing to electrical interaction, the hydrophobicity may be the dominating factor influencing the behaviors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. EFFECTS OF TEMPERATURE ON TRICHLOROETHYLENE DESORPTION FROM SILICA GEL AND NATURAL SEDIMENTS. 2. KINETICS. (R822626)

    EPA Science Inventory

    Isothermal desorption rates were measured at 15, 30, and 60 src="/ncer/pubs/images/deg.gif">C for trichloroethylene (TCE) on a silica gel,
    an aquifer sediment, a soil, a sand fraction, and a clay and silt fraction, all
    at 100% relative humidity. Temperature-st...

  1. Interaction of Ester-Functionalized Ionic Liquids with Atomically-Defined Cobalt Oxides Surfaces: Adsorption, Reaction and Thermal Stability.

    PubMed

    Xu, Tao; Waehler, Tobias; Vecchietti, Julia; Bonivardi, Adrian; Bauer, Tanja; Schwegler, Johannes; Schulz, Peter S; Wasserscheid, Peter; Libuda, Joerg

    2017-12-06

    Hybrid materials consisting of ionic liquid (ILs) films on supported oxides hold a great potential for applications in electronic and energy materials. In this work, we have performed surface science model studies scrutinizing the interaction of ester-functionalized ILs with atomically defined Co 3 O 4 (111) and CoO(100) surfaces. Both supports are prepared under ultra-high vacuum (UHV) conditions in form of thin films on Ir(100) single crystals. Subsequently, thin films of three ILs, 3-butyl-1-methyl imidazolium bis(trifluoromethyl-sulfonyl) imide ([BMIM][NTf 2 ]), 3-(4-methoxyl-4-oxobutyl)-1-methylimidazolium bis(trifluoromethyl-sulfonyl) imide ([MBMIM][NTf 2 ]), and 3-(4-isopropoxy-4-oxobutyl)-1-methylimidazolium bis(trifluoromethyl-sulfonyl) imide ([IPBMIM][NTf 2 ]), were deposited on these surfaces by physical vapor deposition (PVD). Time-resolved and temperature-programmed infrared reflection absorption spectroscopy (TR-IRAS, TP-IRAS) were applied to monitor in situ the adsorption, film growth, and thermally induced desorption. By TP-IRAS, we determined the multilayer desorption temperature of [BMIM][NTf 2 ] (360±5 K), [MBMIM][NTf 2 ] (380 K) and [IPBMIM][NTf 2 ] (380 K). Upon deposition below the multilayer desorption temperature, all three ILs physisorb on both cobalt oxide surfaces. However, strong orientation effects are observed in the first monolayer, where the [NTf 2 ] - ion interacts with the surface through the SO 2 groups and the CF 3 groups point towards the vacuum. For the two functionalized ILs, the [MBMIM] + and [IPBMIM] + interact with the surface Co 2+ ions of both surfaces via the CO group of their ester function. A very different behavior is found, if the ILs are deposited above the multilayer desorption temperature (400 K). While for [BMIM][NTf 2 ] and [MBMIM][NTf 2 ] a molecularly adsorbed monolayer film is formed, [IPBMIM][NTf 2 ] undergoes a chemical transformation on the CoO(100) surface. Here, the ester group is cleaved and the cation is chemically linked to the surface by formation of a surface carboxylate. The IL-derived species in the monolayer desorb at temperatures around 500 to 550 K. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Mesoporous Carbons With Self-Assembled High-Activity Surfaces (PREPRINT)

    DTIC Science & Technology

    2006-07-07

    temperature-programmed desorption, and potentiometric titrations . Journal of Colloid and Interface Science 2001; 240: 252–258. [40] Rotkin SV, Gogotsi Y...selected carbon samples were treated with nitric acid and the total acid site density determined by base titration [32-34 Boehm 1994; Boehm 2002; 32...washed thoroughly using distilled/deionized water, and dried in the oven. For the titration , 50 mg of HNO3-treated carbon powder was added to 20 ml

  3. Photodecomposition of Mo(CO)/sub 6/ adsorbed on Si(100)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Creighton, J.R.

    1985-01-01

    The photochemical decomposition of Mo(CO)/sub 6/ layers physisorbed on Si(100) was investigated to determine the feasibility of molybdenum deposition and also to examine the photochemical reaction mechanism and efficiency. Temperature programmed desorption (TPD) was used to investigate the interaction of Mo(CO)/sub 6/ with the silicon surface before and after irradiation. Auger spectroscopy was used to determine surface elemental composition before Mo(CO)/sub 6/ adsorption and after photodecomposition.

  4. Adsorption and photodecomposition of Mo(CO)[sub 6] on Si(111) 7[times]7: An infrared reflection absorption spectroscopy study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richter, L.J.; Buntin, S.A.; Chu, P.M.

    1994-02-15

    The adsorption and photodecomposition of Mo(CO)[sub 6] adsorbed on Si(111) 7[times]7 surfaces has been studied with Auger electron spectroscopy, temperature programmed desorption, low energy electron diffraction and infrared reflection absorption spectroscopy in a single external reflection configuration. The external-reflection technique is demonstrated to have adequate sensitivity to characterize submonolayer coverages of photogenerated Mo(CO)[sub [ital x

  5. GC-MS determination of parabens, triclosan and methyl triclosan in water by in situ derivatisation and stir-bar sorptive extraction.

    PubMed

    Casas Ferreira, Ana María; Möder, Monika; Fernández Laespada, María Esther

    2011-01-01

    Stir-bar sorptive extraction in combination with an in situ derivatisation reaction and thermal desorption-gas chromatography-mass spectrometry was successfully applied to determine parabens (methylparaben, isopropylparaben, n-propylparaben, butylparaben and benzylparaben), triclosan and methyltriclosan in water samples. This approach improves both the extraction efficiency and the sensitivity in the GC in a simple way since the derivatisation reaction occurs at the same time as the extraction procedure. The in situ derivatisation reaction was carried out with acetic anhydride under alkaline conditions. Thermal desorption parameters (cryofocusing temperature, desorption flow, desorption time, desorption temperature) were optimised using a Box-Behnken experimental design. All the analytes gave recoveries higher than 79%, except methylparaben (22%). The method afforded detection limits between 0.64 and 4.12 ng/L, with good reproducibility and accuracy values. The feasibility of the method for the determination of analytes in water samples was checked in tap water and untreated and treated wastewater.

  6. Bacterial desorption from food container and food processing surfaces.

    PubMed

    McEldowney, S; Fletcher, M

    1988-03-01

    The desorption ofStaphylococcus aureus, Acinetobacter calcoaceticus, and a coryneform from the surfaces of materials used for manufacturing food containers (glass, tin plate, and polypropylene) or postprocess canning factory conveyor belts (stainless steel and nylon) was investigated. The effect of time, pH, temperature, and adsorbed organic layers on desorption was studied.S. aureus did not detach from the substrata at any pH investigated (between pH 5 and 9).A. calcoaceticus and the coryneform in some cases detached, depending upon pH and substratum composition. The degree of bacterial detachment from the substrata was not related to bacterial respiration at experimental pH values. Bacterial desorption was not affected by temperature (4-30°C) nor by an adsorbed layer of peptone and yeast extract on the substrata. The results indicate that bacterial desorption, hence bacterial removal during cleaning or their transfer via liquids flowing over colonized surfaces, is likely to vary with the surface composition and the bacterial species colonizing the surfaces.

  7. Deuterium desorption from ion-irradiated tantalum and effects on surface morphology

    NASA Astrophysics Data System (ADS)

    Novakowski, T. J.; Sundaram, A.; Tripathi, J. K.; Gonderman, S.; Hassanein, A.

    2018-06-01

    Compared to tungsten (W), tantalum (Ta) has shown superior resistance to helium (He)-induced surface morphology changes under fusion-relevant irradiation conditions. However, Ta is also expected to have a stronger interaction with hydrogen isotopes, potentially limiting its use as a plasma-facing material. Despite these concerns, detailed investigations on hydrogen irradiation effects on Ta are scarce. In this study, pristine and fuzzy (He+ ion-irradiated) Ta samples are irradiated with 120 eV deuterium (D) ions at various temperatures and examined with a combination of thermal desorption spectroscopy (TDS), scanning electron microscopy (SEM), and optical reflectivity. TDS reveals discrete D desorption temperatures at 660 and 760 K, corresponding to trapping energies of 1.82 and 2.11 eV, respectively. Although D is retained in Ta both in higher quantities and at higher temperatures compared to W, extreme surface temperatures expected in tokamak divertors may exceed these desorption temperatures and counteract retention. Furthermore, this study indicates that Ta is relatively resistant to adverse surface structuring under D+ ion irradiation. In fact, D+ is shown to prevent and suppress Ta fuzz formation in sequential D+/He+ ion irradiation experiments. While further investigations are needed to elucidate this behavior, these initial investigations show a strong potential for the use of Ta as a PFC material.

  8. Current-Driven Hydrogen Desorption from Graphene: Experiment and Theory.

    PubMed

    Gao, Li; Pal, Partha Pratim; Seideman, Tamar; Guisinger, Nathan P; Guest, Jeffrey R

    2016-02-04

    Electron-stimulated desorption of hydrogen from the graphene/SiC(0001) surface at room temperature was investigated with ultrahigh vacuum scanning tunneling microscopy and ab initio calculations in order to elucidate the desorption mechanisms and pathways. Two different desorption processes were observed. In the high electron energy regime (4-8 eV), the desorption yield is independent of both voltage and current, which is attributed to the direct electronic excitation of the C-H bond. In the low electron energy regime (2-4 eV), however, the desorption yield exhibits a threshold dependence on voltage, which is explained by the vibrational excitation of the C-H bond via transient ionization induced by inelastic tunneling electrons. The observed current independence of the desorption yield suggests that the vibrational excitation is a single-electron process. We also observed that the curvature of graphene dramatically affects hydrogen desorption. Desorption from concave regions was measured to be much more probable than desorption from convex regions in the low electron energy regime (∼2 eV), as would be expected from the identified desorption mechanism.

  9. Current-Driven Hydrogen Desorption from Graphene: Experiment and Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, L.; Pal, Partha P.; Seideman, Tamar

    2016-02-04

    Electron-stimulated desorption of hydrogen from the graphene/SiC(0001) surface at room temperature was investigated with ultrahigh vacuum scanning tunneling microscopy and ab initio calculations in order to elucidate the desorption mechanisms and pathways. Two different desorption processes were observed. In the high electron energy regime (4-8 eV), the desorption yield is independent of both voltage and current, which is attributed to the direct electronic excitation of the C-H bond. In the low electron energy regime (2-4 eV), however, the desorption yield exhibits a threshold dependence on voltage, which is explained by the vibrational excitation of the C-H bond via transient ionizationmore » induced by inelastic tunneling electrons. The observed current-independence of the desorption yield suggests that the vibrational excitation is a singleelectron process. We also observed that the curvature of graphene dramatically affects hydrogen desorption. Desorption from concave regions was measured to be much more probable than desorption from convex regions in the low electron energy regime (~ 2 eV), as would be expected from the identified desorption mechanism« less

  10. Diastereoselective chain-elongation reactions using microreactors for applications in complex molecule assembly.

    PubMed

    Carter, Catherine F; Lange, Heiko; Sakai, Daiki; Baxendale, Ian R; Ley, Steven V

    2011-03-14

    Diastereoselective chain-elongation reactions are important transformations for the assembly of complex molecular structures, such as those present in polyketide natural products. Here we report new methods for performing crotylation reactions and homopropargylation reactions by using newly developed low-temperature flow-chemistry technology. In-line purification protocols are described, as well as the application of the crotylation protocol in an automated multi-step sequence. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. An Organotypic Liver System for Tumor Progression

    DTIC Science & Technology

    2006-04-01

    a physiologically relevant microreactor that has proved suitable for organotypic liver culture to investigate metastatic seeding. The sub-millimeter...metastasis. Our objective is to utilize a physiologically relevant microreactor that has proved suitable for organotypic liver culture (3) to...C Yates, D B Stolz, L Griffith, A Wells (2004) Direct Visualization of Prostate Cancer Progression Utilizing a Bioreactor. American Association

  12. Lithographically fabricated silicon microreactor for in situ characterization of heterogeneous catalysts—Enabling correlative characterization techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baier, S.; Rochet, A.; Hofmann, G.

    2015-06-15

    We report on a new modular setup on a silicon-based microreactor designed for correlative spectroscopic, scattering, and analytic on-line gas investigations for in situ studies of heterogeneous catalysts. The silicon microreactor allows a combination of synchrotron radiation based techniques (e.g., X-ray diffraction and X-ray absorption spectroscopy) as well as infrared thermography and Raman spectroscopy. Catalytic performance can be determined simultaneously by on-line product analysis using mass spectrometry. We present the design of the reactor, the experimental setup, and as a first example for an in situ study, the catalytic partial oxidation of methane showing the applicability of this reactor formore » in situ studies.« less

  13. Chemical microreactor and method thereof

    DOEpatents

    Morse, Jeffrey D.; Jankowski, Alan

    2005-11-01

    A chemical microreactor suitable for generation of hydrogen fuel from liquid sources such as ammonia, methanol, and butane through steam reforming processes when mixed with an appropriate amount of water contains capillary microchannels with integrated resistive heaters to facilitate the occurrence of catalytic steam reforming reactions. One such microreactor employs a packed catalyst capillary microchannel and at least one porous membrane. Another employs a porous membrane with a large surface area or a porous membrane support structure containing a plurality of porous membranes having a large surface area in the aggregate, i.e., greater than about 1 m.sup.2 /cm.sup.3. The packed catalyst capillary microchannels, porous membranes and porous membrane support structures may be formed by a variety of methods.

  14. A study of ethanol reactions on O2-treated Au/TiO2. Effect of support and metal loading on reaction selectivity

    NASA Astrophysics Data System (ADS)

    Nadeem, M. A.; Waterhouse, G. I. N.; Idriss, H.

    2016-08-01

    The reactions of ethanol have been studied on bare and Au supported TiO2 polymorphs (anatase and rutile) in order to understand the effect of Au loading and prior O2 treatment on the reaction selectivity and conversion using temperature programmed desorption (TPD). Although O2 treatment has negligible effect on the reaction selectivity of ethanol on TiO2 alone it considerably affects the reaction on Au/TiO2. Au/TiO2 had three main effects on the reaction when compared to TiO2 alone. First, it switches the reaction selectivity of the dehydration (to ethylene) in favor of dehydrogenation (to acetaldehyde) on both polymorphs. Second, it decreases the desorption temperature of the main reaction products. Third, it increases secondary reaction products (mainly C4 (crotonaldehyde, butene, furan) reaching ca. 78% of the overall carbon selectivity for the 8 wt.% Au/TiO2 anatase. These effects are more pronounced on the anatase phase when compared to that on the rutile phase. Reasons for these are discussed.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allendorf, M.D.; Arsenlis, A.; Bastasz, R.

    Titanium nitride (TiN) films deposited by chemical vapor deposition (CVD) techniques are of interest for a wide range of commercial applications. In this report, the authors describe a mechanism that predicts Tin film growth rates from TiCl{sub 4}/NH{sub 3} mixtures as a function of process parameters, including inlet reactant concentrations, substrate temperatures, reactor pressures, and total gas flow rates. Model predictions were verified by comparison with the results of TiN deposition experiments in the literature and with measurements made in a new stagnation-flow reactor developed for the purpose of testing deposition mechanisms such as this. In addition, they describe abmore » initio calculations that predict thermodynamic properties for titanium-containing compounds. The results of calculations using Moeller-Plesset perturbation theory, density functional theory, and coupled cluster theory are encouraging and suggest that these methods can be used to estimate thermodynamic data that are essential for the development of CVD models involving transition-metal compounds. Finally, measurements of the adsorption and desorption kinetics of NH{sub 3} on TiN films using temperature-programmed desorption are described and their relevance to TiN CVD and mechanism development are discussed.« less

  16. Near-equilibrium desorption of helium films

    NASA Astrophysics Data System (ADS)

    Weimer, M.; Housley, R. M.; Goodstein, D. L.

    1987-10-01

    The thermal desorption of helium films in the presence of their equilibrium vapor is studied experimentally for small but rapid departures from ambient temperature. The results are analyzed within the framework of a quasithermodynamic phenomenological model based on detailed balance. Under the usual experimental conditions, isothermal desorption at the temperature of the substrate is a general prediction of the model which seems to be substantiated. For realistic adsorption isotherms the time evolution of the net desorption flux nevertheless appears to be governed by a highly nonlinear equation. In such circumstances, a number of characteristic relaxation times may be identified. These time scales are distinct from, and in general unrelated to, the coverage-dependent mean lifetime of an atom on the surface. To characterize the overall nonlinear evolution towards steady state, a global time scale, defined in terms of both initial- and steady-state properties, is introduced to summarize the experimental data. Internal evidence suggests a criterion for judging when collisions among desorbed atoms are unimportant. When this condition is satisfied, data for near-equilibrium desorption agree well with the predictions of the model. Combining our results with earlier data at higher substrate temperatures and different ambient conditions, the overall picture is consistent with scaling properties implied by the theory. We show that the values of the parameters deduced from a Frenkel-Arrhenius parametrization of the global relaxation times, as well as a variety of other aspects of desorption kinetics, are actually consequences of the shape of the equilibrium adsorption isotherm.

  17. Growth of an Ultrathin Zirconia Film on Pt3Zr Examined by High-Resolution X-ray Photoelectron Spectroscopy, Temperature-Programmed Desorption, Scanning Tunneling Microscopy, and Density Functional Theory.

    PubMed

    Li, Hao; Choi, Joong-Il Jake; Mayr-Schmölzer, Wernfried; Weilach, Christian; Rameshan, Christoph; Mittendorfer, Florian; Redinger, Josef; Schmid, Michael; Rupprechter, Günther

    2015-02-05

    Ultrathin (∼3 Å) zirconium oxide films were grown on a single-crystalline Pt 3 Zr(0001) substrate by oxidation in 1 × 10 -7 mbar of O 2 at 673 K, followed by annealing at temperatures up to 1023 K. The ZrO 2 films are intended to serve as model supports for reforming catalysts and fuel cell anodes. The atomic and electronic structure and composition of the ZrO 2 films were determined by synchrotron-based high-resolution X-ray photoelectron spectroscopy (HR-XPS) (including depth profiling), low-energy electron diffraction (LEED), scanning tunneling microscopy (STM), and density functional theory (DFT) calculations. Oxidation mainly leads to ultrathin trilayer (O-Zr-O) films on the alloy; only a small area fraction (10-15%) is covered by ZrO 2 clusters (thickness ∼0.5-10 nm). The amount of clusters decreases with increasing annealing temperature. Temperature-programmed desorption (TPD) of CO was utilized to confirm complete coverage of the Pt 3 Zr substrate by ZrO 2 , that is, formation of a closed oxide overlayer. Experiments and DFT calculations show that the core level shifts of Zr in the trilayer ZrO 2 films are between those of metallic Zr and thick (bulklike) ZrO 2 . Therefore, the assignment of such XPS core level shifts to substoichiometric ZrO x is not necessarily correct, because these XPS signals may equally well arise from ultrathin ZrO 2 films or metal/ZrO 2 interfaces. Furthermore, our results indicate that the common approach of calculating core level shifts by DFT including final-state effects should be taken with care for thicker insulating films, clusters, and bulk insulators.

  18. Thermal coupling potential of Solid Oxide Fuel Cells with metal hydride tanks: Thermodynamic and design considerations towards integrated systems

    NASA Astrophysics Data System (ADS)

    Yiotis, Andreas G.; Kainourgiakis, Michael E.; Kosmidis, Lefteris I.; Charalambopoulou, Georgia C.; Stubos, Athanassios K.

    2014-12-01

    We study the thermal coupling potential between a high temperature metal hydride (MH) tank and a Solid Oxide Fuel Cell (SOFC) aiming towards the design of an efficient integrated system, where the thermal power produced during normal SOFC operation is redirected towards the MH tank in order to maintain H2 desorption without the use of external heating sources. Based on principles of thermodynamics, we calculate the energy balance in the SOFC/MH system and derive analytical expressions for both the thermal power produced during SOFC operation and the corresponding thermal power required for H2 desorption, as a function of the operating temperature, efficiency and fuel utilization ratio in the SOFC, and the MH enthalpy of desorption in the tank. Based on these calculations, we propose an integrated SOFC/MH design where heat is transferred primarily by radiation to the tank in order to maintain steady-state desorption conditions. We develop a mathematical model for this particular design that accounts for heat/mass transfer and desorption kinetics in the tank, and solve for the dynamics of the system assuming MgH2 as a storage material. Our results focus primarily on tank operating conditions, such as pressure, temperature and H2 saturation profiles vs operation time.

  19. Methanol ice co-desorption as a mechanism to explain cold methanol in the gas-phase

    NASA Astrophysics Data System (ADS)

    Ligterink, N. F. W.; Walsh, C.; Bhuin, R. G.; Vissapragada, S.; van Scheltinga, J. Terwisscha; Linnartz, H.

    2018-05-01

    Context. Methanol is formed via surface reactions on icy dust grains. Methanol is also detected in the gas-phase at temperatures below its thermal desorption temperature and at levels higher than can be explained by pure gas-phase chemistry. The process that controls the transition from solid state to gas-phase methanol in cold environments is not understood. Aims: The goal of this work is to investigate whether thermal CO desorption provides an indirect pathway for methanol to co-desorb at low temperatures. Methods: Mixed CH3OH:CO/CH4 ices were heated under ultra-high vacuum conditions and ice contents are traced using RAIRS (reflection absorption IR spectroscopy), while desorbing species were detected mass spectrometrically. An updated gas-grain chemical network was used to test the impact of the results of these experiments. The physical model used is applicable for TW Hya, a protoplanetary disk in which cold gas-phase methanol has recently been detected. Results: Methanol release together with thermal CO desorption is found to be an ineffective process in the experiments, resulting in an upper limit of ≤ 7.3 × 10-7 CH3OH molecules per CO molecule over all ice mixtures considered. Chemical modelling based on the upper limits shows that co-desorption rates as low as 10-6 CH3OH molecules per CO molecule are high enough to release substantial amounts of methanol to the gas-phase at and around the location of the CO thermal desorption front in a protoplanetary disk. The impact of thermal co-desorption of CH3OH with CO as a grain-gas bridge mechanism is compared with that of UV induced photodesorption and chemisorption.

  20. Development of Carbotrap B-packed needle trap device for determination of volatile organic compounds in air.

    PubMed

    Poormohammadi, Ali; Bahrami, Abdulrahman; Farhadian, Maryam; Ghorbani Shahna, Farshid; Ghiasvand, Alireza

    2017-12-08

    Carbotrap B as a highly pure surface sorbent with excellent adsorption/desorption properties was packed into a stainless steel needle to develop a new needle trap device (NTD). The performance of the prepared NTD was investigated for sampling, pre-concentration and injection of benzene, toluene, ethyl benzene, o-xylene, and p-xylene (BTEX) into the column of gas chromatography-mass spectrometry (GC-MS) device. Response surface methodology (RSM) with central composite design (CCD) was also employed in two separate consecutive steps to optimize the sampling and device parameters. First, the sampling parameters such as sampling temperature and relative humidity were optimized. Afterwards, the RSM was used for optimizing the desorption parameters including desorption temperature and time. The results indicated that the peak area responses of the analytes of interest decreased with increasing sampling temperature and relative humidity. The optimum values of desorption temperature were in the range 265-273°C, and desorption time were in the range 3.4-3.8min. The limits of detection (LODs) and limits of quantitation (LOQs) of the studied analytes were found over the range of 0.03-0.04ng/mL, and 0.1-0.13ng/mL, respectively. These results demonstrated that the NTD packed with Carbotrap B offers a high sensitive procedure for sampling and analysis of BTEX in concentration range of 0.03-25ng/mL in air. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Biphasic microreactor for efficient membrane protein pretreatment with a combination of formic acid assisted solubilization, on-column pH adjustment, reduction, alkylation, and tryptic digestion.

    PubMed

    Zhao, Qun; Liang, Yu; Yuan, Huiming; Sui, Zhigang; Wu, Qi; Liang, Zhen; Zhang, Lihua; Zhang, Yukui

    2013-09-17

    Combining good dissolving ability of formic acid (FA) for membrane proteins and excellent complementary retention behavior of proteins on strong cation exchange (SCX) and strong anion exchange (SAX) materials, a biphasic microreactor was established to pretreat membrane proteins at microgram and even nanogram levels. With membrane proteins solubilized by FA, all of the proteomics sample processing procedures, including protein preconcentration, pH adjustment, reduction, and alkylation, as well as tryptic digestion, were integrated into an "SCX-SAX" biphasic capillary column. To evaluate the performance of the developed microreactor, a mixture of bovine serum albumin, myoglobin, and cytochrome c was pretreated. Compared with the results obtained by the traditional in-solution process, the peptide recovery (93% vs 83%) and analysis throughput (3.5 vs 14 h) were obviously improved. The microreactor was further applied for the pretreatment of 14 μg of membrane proteins extracted from rat cerebellums, and 416 integral membrane proteins (IMPs) (43% of total protein groups) and 103 transmembrane peptides were identified by two-dimensional nanoliquid chromatography-electrospray ionization tandem mass spectrometry (2D nano-LC-ESI-MS/MS) in triplicate analysis. With the starting sample preparation amount decreased to as low as 50 ng, 64 IMPs and 17 transmembrane peptides were identified confidently, while those obtained by the traditional in-solution method were 10 and 1, respectively. All these results demonstrated that such an "SCX-SAX" based biphasic microreactor could offer a promising tool for the pretreatment of trace membrane proteins with high efficiency and throughput.

  2. Design and characterization of a prototype enzyme microreactor: quantification of immobilized transketolase kinetics.

    PubMed

    Matosevic, S; Lye, G J; Baganz, F

    2010-01-01

    In this work, we describe the design of an immobilized enzyme microreactor (IEMR) for use in transketolase (TK) bioconversion process characterization. The prototype microreactor is based on a 200-microm ID fused silica capillary for quantitative kinetic analysis. The concept is based on the reversible immobilization of His(6)-tagged enzymes via Ni-NTA linkage to surface derivatized silica. For the initial microreactor design, the mode of operation is a stop-flow analysis which promotes higher degrees of conversion. Kinetics for the immobilized TK-catalysed synthesis of L-erythrulose from substrates glycolaldehyde (GA) and hydroxypyruvate (HPA) were evaluated based on a Michaelis-Menten model. Results show that the TK kinetic parameters in the IEMR (V(max(app)) = 0.1 +/- 0.02 mmol min(-1), K(m(app)) = 26 +/- 4 mM) are comparable with those measured in free solution. Furthermore, the k(cat) for the microreactor of 4.1 x 10(5) s(-1) was close to the value for the bioconversion in free solution. This is attributed to the controlled orientation and monolayer surface coverage of the His(6)-immobilized TK. Furthermore, we show quantitative elution of the immobilized TK and the regeneration and reuse of the derivatized capillary over five cycles. The ability to quantify kinetic parameters of engineered enzymes at this scale has benefits for the rapid and parallel evaluation of evolved enzyme libraries for synthetic biology applications and for the generation of kinetic models to aid bioconversion process design and bioreactor selection as a more efficient alternative to previously established microwell-based systems for TK bioprocess characterization.

  3. Surface science studies of ethene containing model interstellar ices

    NASA Astrophysics Data System (ADS)

    Puletti, F.; Whelan, M.; Brown, W. A.

    2011-05-01

    The formation of saturated hydrocarbons in the interstellar medium (ISM) is difficult to explain only by taking into account gas phase reactions. This is mostly due to the fact that carbonium ions only react with H_2 to make unsaturated hydrocarbons, and hence no viable route to saturated hydrocarbons has been postulated to date. It is therefore likely that saturation processes occur via surface reactions that take place on interstellar dust grains. One of the species of interest in this family of reactions is C_2H_4 (ethene) which is an intermediate in several molecular formation routes (e.g. C_2H_2 → C_2H_6). To help to understand some of the surface processes involving ethene, a study of ethene deposited on a dust grain analogue surface (highly oriented pyrolytic graphite) held under ultra-high vacuum at 20 K has been performed. The adsorption and desorption of ethene has been studied both in water-free and water-dominated model interstellar ices. A combination of temperature programmed desorption (TPD) and reflection absorption infrared spectroscopy (RAIRS) have been used to identify the adsorbed and trapped species and to determine the kinetics of the desorption processes. In all cases, ethene is found to physisorb on the carbonaceous surface. As expected water has a very strong influence on the desorption of ethene, as previously observed for other model interstellar ice systems.

  4. Cesium Sorption/Desorption Experiments with IONSIV(R) IE-911 in Radioactive Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, D.D.

    2001-02-13

    This report describes cesium desorption from IONSIV IE-911 during ambient temperature storage and following temperature increases to 35 and 55 degrees C. This report also describes cesium sorption following return to ambient temperature. The IONSIV IE-911 used in these tests was loaded with cesium from Tank 44F radioactive waste in an ion exchange column test in 1999. Cesium desorbed and resorbed in the presence of Tank 44F waste and simulated waste solutions.

  5. Adsorption and Photodesorption of CO from Charged Point Defects on TiO 2 (110)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mu, Rentao; Dahal, Arjun; Wang, Zhi-Tao

    Adsorption and photodesorption of weakly-bound carbon monoxide, CO, from reduced and hydroxylated rutile TiO2(110) (r- and h- TiO2(110)) at sub-monolayer coverages is studied with atomically-resolved scanning tunneling microscopy (STM) along with ensemble-averaged temperature-programmed desorption (TPD) and angle-resolved photon-stimulated desorption (PSD) at low temperatures ( 50 K). STM data weighted by the concentration of each kind of adsorption sites on r-TiO2(110) give an adsorption probability which is the highest for the bridging oxygen vacancies (VO) and very low for the Ti5c sites closest to VO. Occupancy of the remaining Ti5c sites with CO is significant, but smaller than for VO. Themore » probability distribution for the different adsorption sites corresponds to a very small difference in CO adsorption energies: < 0.02 eV. We also find that UV irradiation stimulates both diffusion and desorption of CO at low temperature. CO photodesorbs primarily from the vacancies with a bi-modal angular distribution. In addition to a major, normal to the surface component, there is a broader cosine component indicating scattering from the surface which likely also leads to photo-stimulated diffusion. Hydroxylation of VO’s does not significantly change the CO PSD yield and angular distribution, indicating that not atomic but rather electronic surface defects are involved in the site-specific PSD process. We suggest that photodesorption can be initiated by recombination of photo-generated holes with excess unpaired electrons localized near the surface point-defect (either VO or bridging hydroxyl), leading to the surface atoms rearrangement and ejection of the weakly-bound CO molecules.« less

  6. Utilization of a by-product produced from oxidative desulfurization process over Cs-mesoporous silica catalysts.

    PubMed

    Kim, Hyeonjoo; Jeong, Kwang-Eun; Jeong, Soon-Yong; Park, Young-Kwon; Kim, Do Heui; Jeon, Jong-Ki

    2011-02-01

    We investigated the use of Cs-mesoporous silica catalysts to upgrade a by-product of oxidative desulfurization (ODS). Cs-mesoporous silica catalysts were characterized through N2 adsorption, XRD, CO2-temperature-programmed desorption, and XRF. Cs-mesoporous silica prepared by the direct incorporation method showed higher catalytic performance than a Cs/MCM-41 catalyst by impregnation method for the catalytic decomposition of sulfone compounds produced from ODS process.

  7. Catalyst for microelectromechanical systems microreactors

    DOEpatents

    Morse, Jeffrey D [Martinez, CA; Sopchak, David A [Livermore, CA; Upadhye, Ravindra S [Pleasanton, CA; Reynolds, John G [San Ramon, CA; Satcher, Joseph H [Patterson, CA; Gash, Alex E [Brentwood, CA

    2010-06-29

    A microreactor comprising a silicon wafer, a multiplicity of microchannels in the silicon wafer, and a catalyst coating the microchannels. In one embodiment the catalyst coating the microchannels comprises a nanostructured material. In another embodiment the catalyst coating the microchannels comprises an aerogel. In another embodiment the catalyst coating the microchannels comprises a solgel. In another embodiment the catalyst coating the microchannels comprises carbon nanotubes.

  8. Catalyst for microelectromechanical systems microreactors

    DOEpatents

    Morse, Jeffrey D [Martinez, CA; Sopchak, David A [Livermore, CA; Upadhye, Ravindra S [Pleasanton, CA; Reynolds, John G [San Ramon, CA; Satcher, Joseph H [Patterson, CA; Gash, Alex E [Brentwood, CA

    2011-11-15

    A microreactor comprising a silicon wafer, a multiplicity of microchannels in the silicon wafer, and a catalyst coating the microchannels. In one embodiment the catalyst coating the microchannels comprises a nanostructured material. In another embodiment the catalyst coating the microchannels comprises an aerogel. In another embodiment the catalyst coating the microchannels comprises a solgel. In another embodiment the catalyst coating the microchannels comprises carbon nanotubes.

  9. Optical fiber-based on-line UV/Vis spectroscopic monitoring of chemical reaction kinetics under high pressure in a capillary microreactor.

    PubMed

    Benito-Lopez, Fernando; Verboom, Willem; Kakuta, Masaya; Gardeniers, J Han G E; Egberink, Richard J M; Oosterbroek, Edwin R; van den Berg, Albert; Reinhoudt, David N

    2005-06-14

    With a miniaturized (3 microL volume) fiber-optics based system for on-line measurement by UV/Vis spectroscopy, the reaction rate constants (at different pressures) and the activation volumes (deltaV(not =)) were determined for a nucleophilic aromatic substitution and an aza Diels-Alder reaction in a capillary microreactor.

  10. Real-time spectroscopic monitoring of photocatalytic activity promoted by graphene in a microfluidic reactor

    PubMed Central

    Li, Yifan; Lin, Beichen; Ge, Likai; Guo, Hongchen; Chen, Xinyi; Lu, Miao

    2016-01-01

    Photocatalytic microreactors have been utilized as rapid, versatile platforms for the characterization of photocatalysts. In this work, a photocatalytic microreactor integrated with absorption spectroscopy was proposed for the real-time monitoring of photocatalytic activity using different catalysts. The validity of this method was investigated by the rapid screening on the photocatalytic performance of a titanium oxide (TiO2)-decorated graphene oxide (GO) sheet for the degradation of methylene blue under monochromatic visible irradiation. The sampling interval time could be minimized to 10 s for achieving real-time detection. The best photocatalytic activity was observed for an optimized TiO2/GO weight mixing ratio of 7:11, with a reaction rate constant up to 0.067 min−1. The addition of GO into TiO2 enhances photocatalytic activity and adsorption of MB molecules. The synthetic reaction rate constant was up to approximately 0.11 min−1, which was also the highest among the catalysts. The microreactor exhibited good sensitivity and reproducibility without weakening the performance of the photocatalysts. Consequently, the photocatalytic microreactor is promising as a simple, portable, and rapid screening tool for new photocatalysts. PMID:27346555

  11. Continuous-Flow Synthesis of N-Succinimidyl 4-[18F]fluorobenzoate Using a Single Microfluidic Chip

    PubMed Central

    Kimura, Hiroyuki; Tomatsu, Kenji; Saiki, Hidekazu; Arimitsu, Kenji; Ono, Masahiro; Kawashima, Hidekazu; Iwata, Ren; Nakanishi, Hiroaki; Ozeki, Eiichi; Kuge, Yuji; Saji, Hideo

    2016-01-01

    In the field of positron emission tomography (PET) radiochemistry, compact microreactors provide reliable and reproducible synthesis methods that reduce the use of expensive precursors for radiolabeling and make effective use of the limited space in a hot cell. To develop more compact microreactors for radiosynthesis of 18F-labeled compounds required for the multistep procedure, we attempted radiosynthesis of N-succinimidyl 4-[18F]fluorobenzoate ([18F]SFB) via a three-step procedure using a microreactor. We examined individual steps for [18F]SFB using a batch reactor and microreactor and developed a new continuous-flow synthetic method with a single microfluidic chip to achieve rapid and efficient radiosynthesis of [18F]SFB. In the synthesis of [18F]SFB using this continuous-flow method, the three-step reaction was successfully completed within 6.5 min and the radiochemical yield was 64 ± 2% (n = 5). In addition, it was shown that the quality of [18F]SFB synthesized on this method was equal to that synthesized by conventional methods using a batch reactor in the radiolabeling of bovine serum albumin with [18F]SFB. PMID:27410684

  12. Synthesis of CuInSe2 nanocrystals using a continuous hot-injection microreactor

    NASA Astrophysics Data System (ADS)

    Jin, Hyung Dae; Chang, Chih-Hung

    2012-10-01

    A very rapid and simple synthesis of CuInSe2 nanocrystals (NCs) was successfully performed using a continuous hot-injection microreactor with a high throughput per reactor volume. It was found that copper-rich CuInSe2 with a sphalerite structure was formed initially followed by the formation of more ordered CuInSe2 at longer reaction times along with the formation of Cu2Se and In2Se3. Binary syntheses were performed and the results show a much faster formation rate of Cu2Se than In2Se3. The rate limiting step in the formation of CuInSe2 is forming the In2Se3 intermediate. Rapid synthesis of stoichiometric CuInSe2 NCs using a continuous-flow microreactor was accomplished by properly adjusting the Cu/In precursor ratio. Tuning the ratio of coordinating solvents can cause size differences from 2.6 to 4.1 nm, bandgaps from 1.1 to 1.3 eV, and different production yields of NCs. The highest production yield as determined by weight was achieved up to 660 mg/h using a microreactor with a small volume of 3.2 cm3.

  13. Real-time spectroscopic monitoring of photocatalytic activity promoted by graphene in a microfluidic reactor

    NASA Astrophysics Data System (ADS)

    Li, Yifan; Lin, Beichen; Ge, Likai; Guo, Hongchen; Chen, Xinyi; Lu, Miao

    2016-06-01

    Photocatalytic microreactors have been utilized as rapid, versatile platforms for the characterization of photocatalysts. In this work, a photocatalytic microreactor integrated with absorption spectroscopy was proposed for the real-time monitoring of photocatalytic activity using different catalysts. The validity of this method was investigated by the rapid screening on the photocatalytic performance of a titanium oxide (TiO2)-decorated graphene oxide (GO) sheet for the degradation of methylene blue under monochromatic visible irradiation. The sampling interval time could be minimized to 10 s for achieving real-time detection. The best photocatalytic activity was observed for an optimized TiO2/GO weight mixing ratio of 7:11, with a reaction rate constant up to 0.067 min-1. The addition of GO into TiO2 enhances photocatalytic activity and adsorption of MB molecules. The synthetic reaction rate constant was up to approximately 0.11 min-1, which was also the highest among the catalysts. The microreactor exhibited good sensitivity and reproducibility without weakening the performance of the photocatalysts. Consequently, the photocatalytic microreactor is promising as a simple, portable, and rapid screening tool for new photocatalysts.

  14. Development of an enzymatic microreactor based on microencapsulated laccase with off-line capillary electrophoresis for measurement of oxidation reactions.

    PubMed

    Roman-Gusetu, Georgiana; Waldron, Karen C; Rochefort, Dominic

    2009-11-20

    Microencapsulation is used here as a new technique to immobilize enzymes in a microreactor coupled off-line to capillary electrophoresis (CE), allowing the determination of enzymatic reaction products. The redox enzyme laccase was encapsulated using the method of interfacial cross-linking of poly(ethyleneimine) (PEI). The 50 microm diameter capsules were slurry packed from a suspension into a capillary-sized reactor made easily and quickly from a short length of 530 microm diameter fused-silica tubing. The volume of the bed of laccase microcapsules in the microreactor was in the order of 1.1 microL through which 50 microL of the substrate o-phenylenediamine (OPD) was flowed. The oxidation product 2,3-diaminophenazine (DAP) and the remaining OPD were quantified by CE in a pH 2.5 phosphate buffer. Peak migration time reproducibility was in the order of 0.4% RSD and peak area reproducibility was less than 1.7% RSD within the same day. Using the OPD peak area calibration curve, a conversion efficiency of 48% was achieved for a 2-min oxidation reaction in the microreactor.

  15. Hydrogen storage material and process using graphite additive with metal-doped complex hydrides

    DOEpatents

    Zidan, Ragaiy [Aiken, SC; Ritter, James A [Lexington, SC; Ebner, Armin D [Lexington, SC; Wang, Jun [Columbia, SC; Holland, Charles E [Cayce, SC

    2008-06-10

    A hydrogen storage material having improved hydrogen absorbtion and desorption kinetics is provided by adding graphite to a complex hydride such as a metal-doped alanate, i.e., NaAlH.sub.4. The incorporation of graphite into the complex hydride significantly enhances the rate of hydrogen absorbtion and desorption and lowers the desorption temperature needed to release stored hydrogen.

  16. Uniform integration of gold nanoparticles in PDMS microfluidics with 3D micromixing

    NASA Astrophysics Data System (ADS)

    SadAbadi, H.; Packirisamy, M.; Wuthrich, R.

    2015-09-01

    The integration of gold nanoparticles (AuNPs) on the surface of polydimethylsiloxane (PDMS) microfluidics for biosensing applications is a challenging task. In this paper we address this issue by integration of pre-synthesized AuNPs (in a microreactor) into a microfluidic system. This method explored the affinity of AuNPs toward the PDMS surface so that the pre-synthesized particles will be adsorbed onto the channel walls. AuNPs were synthesized inside a microreactor before integration. In order to improve the size uniformity of the synthesized AuNPs and also to provide full mixing of reactants, a 3D-micromixer was designed, fabricated and then integrated with the microreactor in a single platform. SEM and UV/Vis spectroscopy were used to characterize the AuNPs on the PDMS surface.

  17. Flow optimization study of a batch microfluidics PET tracer synthesizing device

    PubMed Central

    Elizarov, Arkadij M.; Meinhart, Carl; van Dam, R. Michael; Huang, Jiang; Daridon, Antoine; Heath, James R.; Kolb, Hartmuth C.

    2010-01-01

    We present numerical modeling and experimental studies of flow optimization inside a batch microfluidic micro-reactor used for synthesis of human-scale doses of Positron Emission Tomography (PET) tracers. Novel techniques are used for mixing within, and eluting liquid out of, the coin-shaped reaction chamber. Numerical solutions of the general incompressible Navier Stokes equations along with time-dependent elution scalar field equation for the three dimensional coin-shaped geometry were obtained and validated using fluorescence imaging analysis techniques. Utilizing the approach presented in this work, we were able to identify optimized geometrical and operational conditions for the micro-reactor in the absence of radioactive material commonly used in PET related tracer production platforms as well as evaluate the designed and fabricated micro-reactor using numerical and experimental validations. PMID:21072595

  18. Method for forming a chemical microreactor

    DOEpatents

    Morse, Jeffrey D [Martinez, CA; Jankowski, Alan [Livermore, CA

    2009-05-19

    Disclosed is a chemical microreactor that provides a means to generate hydrogen fuel from liquid sources such as ammonia, methanol, and butane through steam reforming processes when mixed with an appropriate amount of water. The microreactor contains capillary microchannels with integrated resistive heaters to facilitate the occurrence of catalytic steam reforming reactions. Two distinct embodiment styles are discussed. One embodiment style employs a packed catalyst capillary microchannel and at least one porous membrane. Another embodiment style employs a porous membrane with a large surface area or a porous membrane support structure containing a plurality of porous membranes having a large surface area in the aggregate, i.e., greater than about 1 m.sup.2/cm.sup.3. Various methods to form packed catalyst capillary microchannels, porous membranes and porous membrane support structures are also disclosed.

  19. Thermal desorption of metals from tungsten single crystal surfaces

    NASA Technical Reports Server (NTRS)

    Bauer, E.; Bonczek, F.; Poppa, H.; Todd, G.

    1975-01-01

    After a short review of experimental methods used to determine desorption energies and frequencies the assumptions underlying the theoretical analysis of experimental data are discussed. Recent experimental results on the flash desorption of Cu, Ag, and Au from clean, well characterized W (110) and (100) surfaces are presented and analyzed in detail with respect to the coverage dependence. The results obtained clearly reveal the limitations of previous analytical methods and of the experimental technique per se (such as structure and phase changes below and in the temperature region in which desorption occurs).

  20. Adsorption, polymerization and decomposition of acetaldehyde on clean and carbon-covered Rh(111) surfaces

    NASA Astrophysics Data System (ADS)

    Kovács, Imre; Farkas, Arnold Péter; Szitás, Ádám; Kónya, Zoltán; Kiss, János

    2017-10-01

    The adsorption and dissociation of acetaldehyde were investigated on clean and carbon-covered Rh(111) single crystal surfaces by electron energy loss spectroscopy (EELS), temperature programmed desorption (TPD), high-resolution electron energy loss spectroscopy (HREELS) and work function (Δφ) measurements. Acetaldehyde is a starting material for the catalytic production of many important chemicals and investigation of its reactions motivated by environmental purposes too. The adsorption of acetaldehyde on clean Rh(111) surface produced various types of adsorption forms. η1-(O)-CH3CHOa and η2-(O,C)-CH3CHOa are developing and characterized by HREELS. η1-CH3CHOa partly desorbed at Tp = 150 K, another part of these species are incorporated in trimer and linear 2D polimer species. The desorption of trimers (at amu 132) were observed in TPD with a peak maximum at Tp = 225 K. Above this temperature acetaldehyde either desorbed or bonded as a stable surface intermediate (η2-CH3CHOa) on the rhodium surface. The molecules decomposed to adsorbed products, and only hydrogen and carbon monoxide were analyzed in TPD. Surface carbon decreased the uptake of adsorbed acetaldehyde, inhibited the formation of polymers, nevertheless, it induced the Csbnd O bond scission and CO formation with 40-50 K lower temperature after higher acetaldehyde exposure.

  1. First-principles study of water desorption from montmorillonite surface.

    PubMed

    Zhang, Yao; Meng, Yingfeng; Liu, Houbin; Yang, Mingli

    2016-05-01

    Knowledge about water desorption is important to give a full picture of water diffusion in montmorillonites (MMT), which is a driving factor in MMT swelling. The desorption paths and energetics of water molecules from the surface of MMT with trapped Li(+), Na(+) or K(+) counterions were studied using periodic density functional theory calculations. Two paths--surface and vacuum desorption--were designed for water desorption starting from a stationary structure in which water bonds with both the counterion and the MMT surface. Surface desorption is energetically more favorable than vacuum desorption due to water-surface hydrogen bonds that help stabilize the intermediate structure of water released from the counterion. The energy barriers of water desorption are in the order of Li(+) > Na(+) > K(+), which can be attributed to the short ionic radius of Li(+), which favors strong binding with the water molecule. The temperature dependence of water adsorption and desorption rates were compared based on the computed activation energies. Our calculations reveal that the water desorption on the MMT surface has a different mechanism from water adsorption, which results from surface effects favoring stabilization of water conformers during the desorption process.

  2. EVALUATION OF SOLID PHASE MICROEXTRACTION FOR THE ANALYSIS OF HYDROPHILIC COMPOUNDS

    EPA Science Inventory

    Two commercially available solid phase microextractions (SPME) fibers, polyacrylate and carboxem/polydimethylsiloxane (PDMS), were evaluated for their ability to extract hydrophilic compounds from drinking water. Conditions, such as desorption time, desorption temperature, sample...

  3. Low-temperature CO oxidation on Ni(111) and on a Au/Ni(111) surface alloy.

    PubMed

    Knudsen, Jan; Merte, Lindsay R; Peng, Guowen; Vang, Ronnie T; Resta, Andrea; Laegsgaard, Erik; Andersen, Jesper N; Mavrikakis, Manos; Besenbacher, Flemming

    2010-08-24

    From an interplay between scanning tunneling microscopy, temperature programmed desorption, X-ray photoelectron spectroscopy, and density functional theory calculations we have studied low-temperature CO oxidation on Au/Ni(111) surface alloys and on Ni(111). We show that an oxide is formed on both the Ni(111) and the Au/Ni(111) surfaces when oxygen is dosed at 100 K, and that CO can be oxidized at 100 K on both of these surfaces in the presence of weakly bound oxygen. We suggest that low-temperature CO oxidation can be rationalized by CO oxidation on O(2)-saturated NiO(111) surfaces, and show that the main effect of Au in the Au/Ni(111) surface alloy is to block the formation of carbonate and thereby increase the low-temperature CO(2) production.

  4. Surface science approach to Pt/carbon model catalysts: XPS, STM and microreactor studies

    NASA Astrophysics Data System (ADS)

    Motin, Abdul Md.; Haunold, Thomas; Bukhtiyarov, Andrey V.; Bera, Abhijit; Rameshan, Christoph; Rupprechter, Günther

    2018-05-01

    Pt nanoparticles supported on carbon are an important technological catalyst. A corresponding model catalyst was prepared by physical vapor deposition (PVD) of Pt on sputtered HOPG (highly oriented pyrolytic graphite). The carbon substrate before and after sputtering as well as the Pt/HOPG system before and after Pt deposition and annealing were examined by XPS and STM. This yielded information on the surface density of defects, which serve as nucleation centres for Pt, and on the size distribution (mean size/height) of the Pt nanoparticles. Two different model catalysts were prepared with mean sizes of 2.0 and 3.6 nm, both turned out to be stable upon UHV-annealing to 300 °C. After transfer into a UHV-compatible flow microreactor and subsequent cleaning in UHV and under mbar pressure, the catalytic activity of the Pt/HOPG model system for ethylene hydrogenation was examined under atmospheric pressure flow conditions. This enabled to determine temperature-dependent conversion rates, turnover frequencies (TOFs) and activation energies. The catalytic results obtained are in line with the characteristics of technological Pt/C, demonstrating the validity of the current surface science based model catalyst approach.

  5. Ceramic microsystem incorporating a microreactor with immobilized biocatalyst for enzymatic spectrophotometric assays.

    PubMed

    Baeza, Mireia; López, Carmen; Alonso, Julián; López-Santín, Josep; Alvaro, Gregorio

    2010-02-01

    Low-temperature cofired ceramics (LTCC) technology is a versatile fabrication technique used to construct microflow systems. It permits the integration of several unitary operations (pretreatment, separation, (bio)chemical reaction, and detection stage) of an analytical process in a modular or monolithic way. Moreover, because of its compatibility with biological material, LTCC is adequate for analytical applications based on enzymatic reactions. Here we present the design, construction, and evaluation of a LTCC microfluidic system that integrates a microreactor (internal volume, 24.28 microL) with an immobilized beta-galactosidase from Escherichia coli (0.479 activity units) and an optical flow cell to measure the product of the enzymatic reaction. The enzyme was immobilized on a glyoxal-agarose support, maintaining its activity along the time of the study. As a proof of concept, the LTCC-beta-galactosidase system was tested by measuring the conversion of ortho-nitrophenyl beta-D-galactopyranoside, the substrate usually employed for activity determinations. Once packed in a monolithically integrated microcolumn, the miniaturized flow system was characterized, the operational conditions optimized (flow rate and injection volume), and its performance successfully evaluated by determining the beta-galactosidase substrate concentration at the millimolar level.

  6. A mass spectrometric system for analyzing thermal desorption spectra of ion-implanted argon and cesium in tungsten. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Wood, G. M., Jr.

    1974-01-01

    A mass spectrometric system for determining the characteristics of materials used in instrumental development and aerospace applications was developed. The desorption spectra of cesium that was ion-implanted into polycrystalline tungsten and the effects on the spectra of bombardment of the tungsten by low energy (70 eV) electrons were investigated. Work function changes were measured by the retarding potential diode method. Flash desorption characteristics were observed and gas-reaction mechanisms of the surface of heated metal filaments were studied. Desorption spectra were measured by linearly increasing the sample temperature at a selected rate, the temperature cycling being generated from a ramp-driven dc power supply, with the mass spectrometer tuned to a mass number of interest. Results of the study indicate an anomolous desorption mechanism following an electron bombardment of the sample surface. The enhanced spectra are a function of the post-bombardment time and energy and are suggestive of an increased concentration of cesium atoms, up to 10 or more angstroms below the surface.

  7. Contribution of microreactor technology and flow chemistry to the development of green and sustainable synthesis.

    PubMed

    Fanelli, Flavio; Parisi, Giovanna; Degennaro, Leonardo; Luisi, Renzo

    2017-01-01

    Microreactor technology and flow chemistry could play an important role in the development of green and sustainable synthetic processes. In this review, some recent relevant examples in the field of flash chemistry, catalysis, hazardous chemistry and continuous flow processing are described. Selected examples highlight the role that flow chemistry could play in the near future for a sustainable development.

  8. Theoretical description of spin-selective reactions of radical pairs diffusing in spherical 2D and 3D microreactors

    NASA Astrophysics Data System (ADS)

    Ivanov, Konstantin L.; Sadovsky, Vladimir M.; Lukzen, Nikita N.

    2015-08-01

    In this work, we treat spin-selective recombination of a geminate radical pair (RP) in a spherical "microreactor," i.e., of a RP confined in a micelle, vesicle, or liposome. We consider the microreactor model proposed earlier, in which one of the radicals is located at the center of the micelle and the other one undergoes three-dimensional diffusion inside the micelle. In addition, we suggest a two-dimensional model, in which one of the radicals is located at the "pole" of the sphere, while the other one diffuses on the spherical surface. For this model, we have obtained a general analytical expression for the RP recombination yield in terms of the free Green function of two-dimensional diffusion motion. In turn, this Green function is expressed via the Legendre functions and thus takes account of diffusion over a restricted spherical surface and its curvature. The obtained expression allows one to calculate the RP recombination efficiency at an arbitrary magnetic field strength. We performed a comparison of the two models taking the same geometric parameters (i.e., the microreactor radius and the closest approach distance of the radicals), chemical reactivity, magnetic interactions in the RP and diffusion coefficient. Significant difference between the predictions of the two models is found, which is thus originating solely from the dimensionality effect: for different dimensionality of space, the statistics of diffusional contacts of radicals becomes different altering the reaction yield. We have calculated the magnetic field dependence of the RP reaction yield and chemically induced dynamic nuclear polarization of the reaction products at different sizes of the microreactor, exchange interaction, and spin relaxation rates. Interestingly, due to the intricate interplay of diffusional contacts of reactants and spin dynamics, the dependence of the reaction yield on the microreactor radius is non-monotonous. Our results are of importance for (i) interpreting experimental data for magnetic field effects on RP recombination in confined space and (ii) for describing kinetics of chemical reactions, which occur predominantly on the surfaces of biomembranes, i.e., lipid peroxidation reactions.

  9. Theoretical description of spin-selective reactions of radical pairs diffusing in spherical 2D and 3D microreactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanov, Konstantin L., E-mail: ivanov@tomo.nsc.ru; Lukzen, Nikita N.; Novosibirsk State University, Pirogova St. 2, Novosibirsk 630090

    2015-08-28

    In this work, we treat spin-selective recombination of a geminate radical pair (RP) in a spherical “microreactor,” i.e., of a RP confined in a micelle, vesicle, or liposome. We consider the microreactor model proposed earlier, in which one of the radicals is located at the center of the micelle and the other one undergoes three-dimensional diffusion inside the micelle. In addition, we suggest a two-dimensional model, in which one of the radicals is located at the “pole” of the sphere, while the other one diffuses on the spherical surface. For this model, we have obtained a general analytical expression formore » the RP recombination yield in terms of the free Green function of two-dimensional diffusion motion. In turn, this Green function is expressed via the Legendre functions and thus takes account of diffusion over a restricted spherical surface and its curvature. The obtained expression allows one to calculate the RP recombination efficiency at an arbitrary magnetic field strength. We performed a comparison of the two models taking the same geometric parameters (i.e., the microreactor radius and the closest approach distance of the radicals), chemical reactivity, magnetic interactions in the RP and diffusion coefficient. Significant difference between the predictions of the two models is found, which is thus originating solely from the dimensionality effect: for different dimensionality of space, the statistics of diffusional contacts of radicals becomes different altering the reaction yield. We have calculated the magnetic field dependence of the RP reaction yield and chemically induced dynamic nuclear polarization of the reaction products at different sizes of the microreactor, exchange interaction, and spin relaxation rates. Interestingly, due to the intricate interplay of diffusional contacts of reactants and spin dynamics, the dependence of the reaction yield on the microreactor radius is non-monotonous. Our results are of importance for (i) interpreting experimental data for magnetic field effects on RP recombination in confined space and (ii) for describing kinetics of chemical reactions, which occur predominantly on the surfaces of biomembranes, i.e., lipid peroxidation reactions.« less

  10. I: Hydrodynamic-focusing microreactor II: Mechanically interlocked molecules for functional materials

    NASA Astrophysics Data System (ADS)

    Coti, Karla Karina

    I: Microreactors, a class of microfluidics, offer numerous benefits -- such as small sample requirement, short analysis times and automations -- and have been used to study reactions of chemical and biological reagents. In order to understand the relationship between fast mixing, product regioselectivity, as well as the ability to separate, in time and space, the nanoparticle (NP) formation stages, a microreactor capable of fast and controllable mixing was developed (Chapter 1) based on multi-lamination and hydrodynamic-focusing. By taking advantage of the fast and controllable mixing properties of this novel microreactor one can control the time when chemical reactions commence inside the microchannels. These properties of the microreactor can be exploited to improve the product regioselectivity of a diazo-coupling reaction to attain a product distribution of monoazo to diazo product of ˜1:99, a selectivity unprecedented in both conventional, macroscopic reactors and other microfluidic systems. Additionally, the ability to separate different stages during the NP formation process inside the microreactor, allowed us to study the aggregation of polypyrrole NPs. II: Supramolecular actuators and molecular interlocked molecules, such as catenanes and rotaxanes, have attracted considerable attention because of their sophisticated topology and their application in functional molecular devices. The blending of supramolecular and mechanostereochemistry with mesoporous silica NPs has proven to be a powerful combination, leading to the development of a new class of materials -- mechanized silica nanoparticles ( Chapter 2). These new hybrid materials are designed to release their content in response to an external stimuli and their development is being driven by the need to improve current drug delivery technologies. In an effort to explore how the stimuli-controlled mechanical movement of switchable, bistable [2]rotaxanes -- based on a cyclobis(paraquat-p-phenylene) ring, tetrathiafulvalene and 1,5-dioxynapthalene as the recognition units -- can be exploited to develop new electro-optical liquid crystalline (LC) materials, a novel cholesteric LC bistable [2]rotaxane has been designed (Chapter 3) and its synthesis is underway. Furthermore, the electrochromic behavior of Smectic A LC bistable Rlrotaxanes has been accomplished (Chapter 4) in the condensed LC state as well as within a PMMA polymer matrix.

  11. Kinetic and isothermal adsorption-desorption of PAEs on biochars: effect of biomass feedstock, pyrolysis temperature, and mechanism implication of desorption hysteresis.

    PubMed

    Jing, Fanqi; Pan, Minjun; Chen, Jiawei

    2018-04-01

    Biochar has the potential to sequester biomass carbon efficiently into land, simultaneously while improving soil fertility and crop production. Biochar has also attracted attention as a potential sorbent for good performance on adsorption and immobilization of many organic pollutants such as phthalic acid esters (PAEs), a typical plasticizer in plastic and presenting a current environmental issue. Due to lack of investigation on the kinetic and thermodynamic adsorption-desorption of PAEs on biochar, we systematically assessed adsorption-desorption for two typical PAEs, dimethyl phthalate (DMP) and diethyl phthalate (DEP), using biochar derived from peanut hull and wheat straw at different pyrolysis temperatures (450, 550, and 650 °C). The aromaticity and specific surface area of biochars increased with the pyrolysis temperature, whereas the total amount of surface functional groups decreased. The quasi-second-order kinetic model could better describe the adsorption of DMP/DEP, and the adsorption capacity of wheat straw biochars was higher than that of peanut hull biochars, owing to the O-bearing functional groups of organic matter on exposed minerals within the biochars. The thermodynamic analysis showed that DMP/DEP adsorption on biochar is physically spontaneous and endothermic. The isothermal desorption and thermodynamic index of irreversibility indicated that DMP/DEP is stably adsorbed. Sorption of PAEs on biochar and the mechanism of desorption hysteresis provide insights relevant not only to the mitigation of plasticizer mobility but also to inform on the effect of biochar amendment on geochemical behavior of organic pollutants in the water and soil.

  12. Functionalized MIL-101 with imidazolium-based ionic liquids for the cycloaddition of CO2 and epoxides under mild condition

    NASA Astrophysics Data System (ADS)

    Liu, Dan; Li, Gang; Liu, Haiou

    2018-01-01

    A kind of multi-functional sites metal-organic framework (MOF) composite (MIL-101-IMBr) was successfully prepared by post-synthesis modification of MIL-101 with imidazolium-based ionic liquids. The ionic liquids not only functionalize as basic sites but also provide halide anions, which serve as a nucleophile in cycloaddition reaction. The prepared functional MOF materials were characterized by X-ray diffraction, fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive spectroscopy, N2 adsorption-desorption and CO2 temperature programmed desorption. The results of fourier transform infrared spectroscopy and energy dispersive spectroscopy show that the MIL-101-IMBr composite was successfully synthesized. The N2 adsorption-desorption results clearly demonstrated that the modified composites still preserve high BET surface area and total pore volume. The composite exhibits high catalytic activity for the cycloaddition of CO2 with epoxides under mild and co-catalyst free conditions. The conversion of propylene oxide was 95.8% and the selectivity of cyclic carbonate was 97.6% under 0.8 MPa at 80 °C for 4 h. Moreover, the catalyst can be used for at least five times.

  13. Acidity, oxophilicity and hydrogen sticking probability of supported metal catalysts for hydrodeoxygenation process

    NASA Astrophysics Data System (ADS)

    Lup, A. Ng K.; Abnisa, F.; Daud, W. M. A. W.; Aroua, M. K.

    2018-03-01

    Hydrodeoxygenation is an oxygen removal process that occurs in the presence of hydrogen and catalysts. This study has shown the importance of acidity, oxophilicity and hydrogen sticking probability of supported metal catalysts in having high hydrodeoxygenation activity and selectivity. These properties are required to ensure the catalyst has high affinity for C-O or C=O bonds and the capability for the adsorption and activation of H2 and O-containing compounds. A theoretical framework of temperature programmed desorption technique was also discussed for the quantitative understanding of these properties. By using NH3-TPD, the nature and abundance of acid sites of catalyst can be determined. By using H2-TPD, the nature and abundance of metallic sites can also be determined. The desorption activation energy could also be determined based on the Redhead analysis of TPD spectra with different heating rates.

  14. Hydrodeoxygenation of Guaiacol Over Pt/Al-SBA-15 Catalysts.

    PubMed

    Yu, Mi Jin; Park, Sung Hoon; Jeon, Jong-Ki; Ryu, Changkook; Sohn, Jung Min; Kim, Sang Chai; Park, Young-Kwon

    2015-01-01

    Upgrading of bio-oil through catalytic hydrodeoxygenation (HDO) reaction was investigated for guaiacol as a model compound. A batch reactor was used for the reaction condition of 40 bar and 250 degrees C. The target product was cyclohexane. Pt/Al-SBA-15 with the Si/Al ratios of 20, 40, and 80 and Pt/HZSM-5 were used as the catalyst. The SBA-15 catalysts were characterized by N2 adsorption-desorption, X-ray diffraction analysis, and temperature programmed desorption of ammonia. The order of cyclohexane yield was Pt/Al-SBA-15 (Si/Al = 20) > Pt/Al-SBA-15(40) > Pt/Al-SBA-15 (80), indicating that the quantity of acid sites plays an important role in the HDO reaction. On the other hand, Pt/HZSM-5 led to a very low cyclohexane yield, in spite of its abundant strong acid sites, due to its small pore size.

  15. Experimental study and modelling of deuterium thermal release from Be-D co-deposited layers

    NASA Astrophysics Data System (ADS)

    Baldwin, M. J.; Schwarz-Selinger, T.; Doerner, R. P.

    2014-07-01

    A study of the thermal desorption of deuterium from 1 µm thick co-deposited Be-(0.1)D layers formed at 330 K by a magnetron sputtering technique is reported. A range of thermal desorption rates 0 ⩽ β ⩽ 1.0 K s-1 are explored with a view to studying the effectiveness of the proposed ITER wall and divertor bake procedure (β = 0 K s-1) to be carried out at 513 and 623 K. Fixed temperature bake durations up to 24 h are examined. The experimental thermal release data are used to validate a model input into the Tritium Migration and Analysis Program (TMAP-7). Good agreement with experiment is observed for a TMAP-7 model incorporating trap populations of activation energies for D release of 0.80 and 0.98 eV, and a dynamically computed surface D atomic to molecular recombination rate.

  16. 40 CFR 65.145 - Nonflare control devices used to control emissions from storage vessels or low-throughput...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... inlet stream and, if applicable, the desorption schedule, the regeneration stream pressure or temperature, and the flow rate of the regeneration stream. For vacuum desorption, pressure drop shall be...

  17. 40 CFR 65.145 - Nonflare control devices used to control emissions from storage vessels or low-throughput...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... inlet stream and, if applicable, the desorption schedule, the regeneration stream pressure or temperature, and the flow rate of the regeneration stream. For vacuum desorption, pressure drop shall be...

  18. 40 CFR 63.985 - Nonflare control devices used to control emissions from storage vessels and low throughput...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... inlet stream and, if applicable, the desorption schedule, the regeneration stream pressure or temperature, and the flow rate of the regeneration stream. For vacuum desorption, pressure drop shall be...

  19. 40 CFR 63.985 - Nonflare control devices used to control emissions from storage vessels and low throughput...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... inlet stream and, if applicable, the desorption schedule, the regeneration stream pressure or temperature, and the flow rate of the regeneration stream. For vacuum desorption, pressure drop shall be...

  20. 40 CFR 63.985 - Nonflare control devices used to control emissions from storage vessels and low throughput...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... inlet stream and, if applicable, the desorption schedule, the regeneration stream pressure or temperature, and the flow rate of the regeneration stream. For vacuum desorption, pressure drop shall be...

  1. 40 CFR 65.145 - Nonflare control devices used to control emissions from storage vessels or low-throughput...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... inlet stream and, if applicable, the desorption schedule, the regeneration stream pressure or temperature, and the flow rate of the regeneration stream. For vacuum desorption, pressure drop shall be...

  2. 40 CFR 63.985 - Nonflare control devices used to control emissions from storage vessels and low throughput...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... inlet stream and, if applicable, the desorption schedule, the regeneration stream pressure or temperature, and the flow rate of the regeneration stream. For vacuum desorption, pressure drop shall be...

  3. 40 CFR 65.145 - Nonflare control devices used to control emissions from storage vessels or low-throughput...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... inlet stream and, if applicable, the desorption schedule, the regeneration stream pressure or temperature, and the flow rate of the regeneration stream. For vacuum desorption, pressure drop shall be...

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanyu, Yuichiro, E-mail: y-hanyu@lucid.msl.titech.ac.jp; Domen, Kay; Nomura, Kenji

    We report an experimental evidence that some hydrogens passivate electron traps in an amorphous oxide semiconductor, a-In-Ga-Zn-O (a-IGZO). The a-IGZO thin-film transistors (TFTs) annealed at 300 °C exhibit good operation characteristics; while those annealed at ≥400 °C show deteriorated ones. Thermal desorption spectra (TDS) of H{sub 2}O indicate that this threshold annealing temperature corresponds to depletion of H{sub 2}O desorption from the a-IGZO layer. Hydrogen re-doping by wet oxygen annealing recovers the good TFT characteristic. The hydrogens responsible for this passivation have specific binding energies corresponding to the desorption temperatures of 300–430 °C. A plausible structural model is suggested.

  5. Desorption isotherms of heavy (AZOBE, EBONY) and light heavyweight tropical woods (IROKO, SAPELLI) of Cameroon

    NASA Astrophysics Data System (ADS)

    Nsouandélé, J. L.; Tamba, J. G.; Bonoma, B.

    2018-04-01

    This work is centered on the study of the desorption isotherms of heavy (Azobe, Ebony) and heavyweight (Iroko, Sapelli) tropical woods, which contribute in the determination of drying and storage of tropical plank woods. Desorption isotherms of tropical woods were experimentally determined under different temperatures in this study using the gravimetric method. The determination of Henderson's model isotherms parameters of desorption were obtained for temperatures of 20 °C, 30 °C, 40 °C, and 50 °C. The mean relative deviation between theoretical and experimental moisture contents was calculated and fitted well with the desorption models of tropical woods. We noticed that Henderson models fitted much better with experimental ones for 95% of relative humidity. The sigmoid shapes of results are satisfactory. Hysteresis phenomenon was observed for desorption isotherms of heavy (Azobe, Ebony) and heavyweight (Iroko, Sapelli) tropical woods. Results showed the difference between the stability and use of heavy and heavyweight tropical wood. These results help in the estimation of water content at equilibrium of tropical woods in relative humidity from experimented ones. Hygroscopic equilibrium humidity of heavy tropical woods varied between 0% and 50% while those of heavyweight varied between 0% and 25%. Therefore, these woods can be used in an opened environment; woodwork and decoration.

  6. Fundamental data on the desorption of pure interstellar ices

    NASA Astrophysics Data System (ADS)

    Brown, Wendy A.; Bolina, Amandeep S.

    2007-01-01

    The desorption of molecular ices from grain surfaces is important in a number of astrophysical environments including dense molecular clouds, cometary nuclei and the surfaces and atmospheres of some planets. With this in mind, we have performed a detailed investigation of the desorption of pure water, pure methanol and pure ammonia ices from a model dust-grain surface. We have used these results to determine the desorption energy, order of desorption and the pre-exponential factor for the desorption of these molecular ices from our model surface. We find good agreement between our desorption energies and those determined previously; however, our values for the desorption orders, and hence also the pre-exponential factors, are different to those reported previously. The kinetic parameters derived from our data have been used to model desorption on time-scales relevant to astrophysical processes and to calculate molecular residence times, given in terms of population half-life as a function of temperature. These results show the importance of laboratory data for the understanding of astronomical situations whereby icy mantles are warmed by nearby stars and by other dynamical events.

  7. Role of deuterium desorption kinetics on the thermionic emission properties of polycrystalline diamond films with respect to kinetic isotope effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paxton, W. F., E-mail: william.f.paxton@vanderbilt.edu; Howell, M.; Kang, W. P.

    2014-06-21

    The desorption kinetics of deuterium from polycrystalline chemical vapor deposited diamond films were characterized by monitoring the isothermal thermionic emission current behavior. The reaction was observed to follow a first-order trend as evidenced by the decay rate of the thermionic emission current over time which is in agreement with previously reported studies. However, an Arrhenius plot of the reaction rates at each tested temperature did not exhibit the typical linear behavior which appears to contradict past observations of the hydrogen (or deuterium) desorption reaction from diamond. This observed deviation from linearity, specifically at lower temperatures, has been attributed to non-classicalmore » processes. Though no known previous studies reported similar deviations, a reanalysis of the data obtained in the present study was performed to account for tunneling which appeared to add merit to this hypothesis. Additional investigations were performed by reevaluating previously reported data involving the desorption of hydrogen (as opposed to deuterium) from diamond which further indicated this reaction to be dominated by tunneling at the temperatures tested in this study (<775 °C). An activation energy of 3.19 eV and a pre-exponential constant of 2.3 × 10{sup 12} s{sup −1} were determined for the desorption reaction of deuterium from diamond which is in agreement with previously reported studies.« less

  8. Enhanced desorption of cesium from collapsed interlayer regions in vermiculite by hydrothermal treatment with divalent cations.

    PubMed

    Yin, Xiangbiao; Wang, Xinpeng; Wu, Hao; Ohnuki, Toshihiko; Takeshita, Kenji

    2017-03-15

    Adsorption of cesium (Cs) on phyllosilicates has been intensively investigated because natural soils have strong ability of immobilizing Cs within clay minerals resulting in difficulty of decontamination. The objectives of present study are to clarify how Cs fixation on vermiculite is influenced by structure change caused by Cs sorption at different loading levels and how Cs desorption is affected by various replacing cations induced at different treating temperature. As a result, more than 80% of Cs was readily desorbed from vermiculite with loading amount of 2% saturated Cs (5.49×10 -3 mmolg -1 ) after four cycles of treatment of 0.01M Mg 2+ /Ca 2+ at room temperature, but less than 20% of Cs was desorbed from saturated vermiculite. These distinct desorption patterns were attributed to inhibition of Cs desorption by interlayer collapse of vermiculite, especially at high Cs loadings. In contrast, elevated temperature significantly facilitated divalent cations to efficiently desorb Cs from collapsed regions. After five cycles of treatment at 250°C with 0.01M Mg 2+ , ∼100% removal of saturated Cs was achieved. X-ray diffraction analysis results suggested that Cs desorption was completed through enhanced diffusion of Mg 2+ cations into collapsed interlayer space under hydrothermal condition resulting in subsequent interlayer decollapse and readily release of Cs + . Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Detection of Nonvolatile Inorganic Oxidizer-Based Explosives from Wipe Collections by Infrared Thermal Desorption-Direct Analysis in Real Time Mass Spectrometry.

    PubMed

    Forbes, Thomas P; Sisco, Edward; Staymates, Matthew

    2018-05-07

    Infrared thermal desorption (IRTD) was coupled with direct analysis in real time mass spectrometry (DART-MS) for the detection of both inorganic and organic explosives from wipe collected samples. This platform generated discrete and rapid heating rates that allowed volatile and semivolatile organic explosives to thermally desorb at relatively lower temperatures, while still achieving elevated temperatures required to desorb nonvolatile inorganic oxidizer-based explosives. IRTD-DART-MS demonstrated the thermal desorption and detection of refractory potassium chlorate and potassium perchlorate oxidizers, compounds difficult to desorb with traditional moderate-temperature resistance-based thermal desorbers. Nanogram to sub-nanogram sensitivities were established for analysis of a range of organic and inorganic oxidizer-based explosive compounds, with further enhancement limited by the thermal properties of the most common commercial wipe materials. Detailed investigations and high-speed visualization revealed conduction from the heated glass-mica base plate as the dominant process for heating of the wipe and analyte materials, resulting in thermal desorption through boiling, aerosolization, and vaporization of samples. The thermal desorption and ionization characteristics of the IRTD-DART technique resulted in optimal sensitivity for the formation of nitrate adducts with both organic and inorganic species. The IRTD-DART-MS coupling and IRTD in general offer promising explosive detection capabilities to the defense, security, and law enforcement arenas.

  10. Construction of graphene oxide magnetic nanocomposites-based on-chip enzymatic microreactor for ultrasensitive pesticide detection.

    PubMed

    Liang, Ru-Ping; Wang, Xiao-Ni; Liu, Chun-Ming; Meng, Xiang-Ying; Qiu, Jian-Ding

    2013-11-08

    A new strategy for facile construction of graphene oxide magnetic nanocomposites (GO/Fe3O4 MNCs)-based on-chip enzymatic microreactor and ultrasensitive pesticide detection has been proposed. GO/Fe3O4 MNCs were first prepared through an in situ chemical deposition strategy. Then, acetylcholinesterase (AChE) was adsorbed onto the GO/Fe3O4 surface to form GO/Fe3O4/AChE MNCs which was locally packed into PDMS microchannel simply with the help of external magnetic field to form an on-chip enzymatic microreactor. The constructed GO/Fe3O4/AChE MNCs-based enzymatic microreactor not only have the magnetism of Fe3O4 NPs that make them conveniently manipulated by an external magnetic field, but also have the larger surface and excellent biocompatibility of graphene which can incorporate much more AChE molecules and well maintain their biological activity. On the basis of the AChE inhibition principle, a novel on-chip enzymatic microreactor was constructed for analyzing dimethoate which is usually used as a model of organophosphorus pesticides. Under optimal conditions, a linear relationship between the inhibition rates of AChE and the concentration of dimethoate from 1 to 20 μgL(-1) with a detection limit of 0.18 μgL(-1) (S/N=3) was obtained. The developed electrophoretic and magnetic-based chip exhibited excellent reproducibility and stability with no decrease in the activity of enzyme for more than 20 repeated measurements over one week period, which provided a new and promising tool for the analysis of enzyme inhibitors with low cost and excellent performance. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. A Novel Nanocomposite as an Efficient Adsorbent for the Rapid Adsorption of Ni(II) from Aqueous Solution

    PubMed Central

    Wang, Ximing; Chen, Zhangjing

    2017-01-01

    A sulfhydryl-lignocellulose/montmorillonite (SLT) nanocomposite was prepared using a chemical intercalation reaction. The SLT nanocomposite was characterized by Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), and Transmission Electron Microscopy (TEM), the results demonstrated that an intercalated-exfoliated nanostructure was formed in the SLT nanocomposite. Batch experiments were conducted to optimize parameters such as SLT nanocomposite dosage, the initial concentration of Ni(II), solution pH, temperature, and time. The results indicated that the attractive adsorption capacity reached 1134.08 mg/g with 0.05 g of SLT at an initial concentration of Ni(II) of 700 mg/L, solution pH of 5.5, adsorption temperature of 50 °C, and adsorption time of 40 min, meanwhile, the Ni(II) adsorption capacity significantly decreased with the increase in ionic strength. The pseudo-second order kinetic model could describe the whole adsorption process well, and the isotherm adsorption equilibrium conformed to the Freundlich model. The adsorption mechanism of SLT was also discussed by means of FTIR and Energy-Dispersive X-Ray (EDX). Dramatically, the introduction of sulfhydryl achieves the increased activated functional groups content of SLT nanocomposite, leading to remarkably higher adsorption amount on Ni(II). The desorption capacity of SLT was dependent on parameters such as HNO3 concentration, desorption temperature, and ultrasonic desorption time. The satisfactory desorption capacity and desorption efficiency of 458.21 mg/g and 40.40% were obtained at an HNO3 concentration, desorption temperature, and ultrasonic desorption time of 0.4 mol/L, 40 °C, and 30 min, respectively. The regeneration studies showed that the adsorption capacity of SLT was consistent for four cycles without any appreciable loss and confirmed that the SLT was reusable. Owing to such outstanding features, the novel SLT nanocomposite proved the great potential in adsorption for Ni(II) removal from aqueous solution, and exhibited an extremely significant amount of Ni(II), compared to pristine lignocellulose/montmorillonite and the conventional spent adsorbents. PMID:28937606

  12. NH3-SCR denitration catalyst performance over vanadium-titanium with the addition of Ce and Sb.

    PubMed

    Xu, Chi; Liu, Jian; Zhao, Zhen; Yu, Fei; Cheng, Kai; Wei, Yuechang; Duan, Aijun; Jiang, Guiyuan

    2015-05-01

    Selective catalytic reduction technology using NH3 as a reducing agent (NH3-SCR) is an effective control method to remove nitrogen oxides. TiO2-supported vanadium oxide catalysts with different levels of Ce and Sb modification were prepared by an impregnation method and were characterized by X-ray diffractometer (XRD), Brunauer-Emmett-Teller (BET), Transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS), Raman and Hydrogen temperature-programmed reduction (H2-TPR). The catalytic activities of V5CexSby/TiO2 catalysts for denitration were investigated in a fixed bed flow microreactor. The results showed that cerium, vanadium and antimony oxide as the active components were well dispersed on TiO2, and the catalysts exhibited a large number of d-d electronic transitions, which were helpful to strengthen SCR reactivity. The V5CexSby/TiO2 catalysts exhibited a good low temperature NH3-SCR catalytic activity. In the temperature range of 210 to 400°C, the V5CexSby/TiO2 catalysts gave NO conversion rates above 90%. For the best V5Ce35Sb2/TiO2 catalyst, at a reaction temperature of 210°C, the NO conversion rate had already reached 90%. The catalysts had different catalytic activity with different Ce loadings. With the increase of Ce loading, the NO conversion rate also increased. Copyright © 2015. Published by Elsevier B.V.

  13. Cementation of colloidal particles on electrodes in a galvanic microreactor.

    PubMed

    Jan, Linda; Punckt, Christian; Aksay, Ilhan A

    2013-07-10

    We have studied the processes leading to the cementation of colloidal particles during their autonomous assembly on corroding copper electrodes within a Cu-Au galvanic microreactor. We determined the onset of particle immobilization through particle tracking, monitored the dissolution of copper as well as the deposition of insoluble products of the corrosion reactions in situ, and showed that particle immobilization initiated after reaction products (RPs) began to deposit on the electrode substrate. We further demonstrated that the time and the extent of RP precipitation and thus the strength of the particle-substrate bond could be tuned by varying the amount of copper in the system and the microreactor pH. The ability to cement colloidal particles at locations undergoing corrosion illustrates that the studied colloidal assembly approach holds potential for applications in dynamic material property adaptation.

  14. The nature of chlorine-inhibition of photocatalytic degradation of dichloroacetic acid in a TiO2-based microreactor.

    PubMed

    Krivec, M; Dillert, R; Bahnemann, D W; Mehle, A; Štrancar, J; Dražić, G

    2014-07-28

    Photocatalytic degradation of dichloroacetic acid (DCA) was studied in a continuous-flow set-up using a titanium microreactor with an immobilized double-layered TiO2 nanoparticle/nanotube film. Chloride ions, formed during the degradation process, negatively affect the photocatalytic efficiency and at a certain concentration (approximately 0.5 mM) completely stop the reaction in the microreactor. Two proposed mechanisms of inhibition with chloride ions, competitive adsorption and photogenerated-hole scavenging, have been proposed and investigated by adsorption isotherms and electron paramagnetic resonance (EPR) measurements. The results show that chloride ions block the DCA adsorption sites on the titania surface and reduce the amount of adsorbed DCA molecules. The scavenging effect of chloride ions during photocatalysis through the formation of chlorine radicals was not detected.

  15. Bioproduction of food additives hexanal and hexanoic acid in a microreactor.

    PubMed

    Šalić, Anita; Pindrić, Katarina; Zelić, Bruno

    2013-12-01

    Hexanal and hexanoic acid have number of applications in food and cosmetic industry because of their organoleptic characteristics. Problems like low yields, formation of unwanted by-products, and large quantities of waste in their traditional production processes are the reasons for developing new production methods. Biotransformation in a microreactor, as an alternative to classical synthesis processes, is being investigated. Because conditions in microreactors can be precisely controlled, the quality of the product and its purity can also be improved. Biocatalytic oxidation of hexanol to hexanal and hexanoic acid using suspended and immobilized permeabilized whole baker's yeast cells and suspended and immobilized purified alcohol dehydrogenase (ADH) was investigated in this study. Three different methods for covalent immobilization of biocatalyst were analyzed, and the best method for biocatalyst attachment on microchannel wall was used in the production of hexanal and hexanoic acid.

  16. The use of selective adsorbents in capillary electrophoresis-mass spectrometry for analyte preconcentration and microreactions: a powerful three-dimensional tool for multiple chemical and biological applications.

    PubMed

    Guzman, N A; Stubbs, R J

    2001-10-01

    Much attention has recently been directed to the development and application of online sample preconcentration and microreactions in capillary electrophoresis using selective adsorbents based on chemical or biological specificity. The basic principle involves two interacting chemical or biological systems with high selectivity and affinity for each other. These molecular interactions in nature usually involve noncovalent and reversible chemical processes. Properly bound to a solid support, an "affinity ligand" can selectively adsorb a "target analyte" found in a simple or complex mixture at a wide range of concentrations. As a result, the isolated analyte is enriched and highly purified. When this affinity technique, allowing noncovalent chemical interactions and biochemical reactions to occur, is coupled on-line to high-resolution capillary electrophoresis and mass spectrometry, a powerful tool of chemical and biological information is created. This paper describes the concept of biological recognition and affinity interaction on-line with high-resolution separation, the fabrication of an "analyte concentrator-microreactor", optimization conditions of adsorption and desorption, the coupling to mass spectrometry, and various applications of clinical and pharmaceutical interest.

  17. Thermal desorption of PCB-contaminated soil with sodium hydroxide.

    PubMed

    Liu, Jie; Qi, Zhifu; Zhao, Zhonghua; Li, Xiaodong; Buekens, Alfons; Yan, Jianhua; Ni, Mingjiang

    2015-12-01

    The thermal desorption was combined with sodium hydroxide to remediate polychlorinated biphenyl (PCB)-contaminated soil. The experiments were conducted at different temperatures ranging from 300 to 600 °C with three NaOH contents of 0.1, 0.5, and 1 %. The results showed that thermal desorption was effective for PCB removal, destruction, and detoxication, and the presence of NaOH enhanced the process by significant dechlorination. After treatment with 0.1 % NaOH, the removal efficiency (RE) increased from 84.8 % at 300 °C to 98.0 % at 600 °C, corresponding to 72.7 and 91.7 % of destruction efficiency (DE). With 1 % NaOH content treated at 600 °C, the RE and DE were 99.0 and 93.6 %, respectively. The effect of NaOH content on PCB removal was significant, especially at lower temperature, yet it weakened under higher temperature. The interaction between NaOH content and temperature influenced the PCB composition. The higher temperature with the help of NaOH effectively increased the RE and DE of 12 dioxin-like PCBs (based on WHO-TEQ).

  18. Isotope effects on desorption kinetics of hydrogen isotopes implanted into stainless steel by glow discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsuyama, M.; Kondo, M.; Noda, N.

    2015-03-15

    In a fusion device the control of fuel particles implies to know the desorption rate of hydrogen isotopes by the plasma-facing materials. In this paper desorption kinetics of hydrogen isotopes implanted into type 316L stainless steel by glow discharge have been studied by experiment and numerical calculation. The temperature of a maximum desorption rate depends on glow discharge time and heating rate. Desorption spectra observed under various experimental conditions have been successfully reproduced by numerical simulations that are based on a diffusion-limited process. It is suggested, therefore, that desorption rate of a hydrogen isotope implanted into the stainless steel ismore » limited by a diffusion process of hydrogen isotope atoms in bulk. Furthermore, small isotope effects were observed for the diffusion process of hydrogen isotope atoms. (authors)« less

  19. A study of the kinetics of isothermal nicotine desorption from silicon dioxide

    NASA Astrophysics Data System (ADS)

    Adnadjevic, Borivoj; Lazarevic, Natasa; Jovanovic, Jelena

    2010-12-01

    The isothermal kinetics of nicotine desorption from silicon dioxide (SiO 2) was investigated. The isothermal thermogravimetric curves of nicotine at temperatures of 115 °C, 130 °C and 152 °C were recorded. The kinetic parameters ( Ea, ln A) of desorption of nicotine were calculated using various methods (stationary point, model constants and differential isoconversion method). By applying the "model-fitting" method, it was found that the kinetic model of nicotine desorption from silicon dioxide was a phase boundary controlled reaction (contracting volume). The values of the kinetic parameters, Ea,α and ln Aα, complexly change with changing degree of desorption and a compensation effect exists. A new mechanism of activation for the desorption of the absorbed molecules of nicotine was suggested in agreement with model of selective energy transfer.

  20. Desorption dynamics of deuterium in CuCrZr alloy

    NASA Astrophysics Data System (ADS)

    Thi Nguyen, Lan Anh; Lee, Sanghwa; Noh, S. J.; Lee, S. K.; Park, M. C.; Shu, Wataru; Pitcher, Spencer; Torcy, David; Guillermain, David; Kim, Jaeyong

    2017-12-01

    Desorption behavior of deuterium (D2) in CuCrZr alloy was investigated considering sample thickness, loading and baking temperature of deuterium followed by the ITER scopes. Cylindrical specimens of 1, 3, 5 mm thick with 4 mm diameter were exposed to deuterium at a pressure of 25 bar at 120, 240 and 350 °C for 24 h, then baked at 800 °C in a vacuum chamber maintained at a pressure lower than 10-7 Torr. Deuterium desorption characteristics such as desorption rate and amount of deuterium in the sample were estimated by analyzing the desorption peaks monitored with a residual gas analyzer (RGA), and the trapping energy of deuterium was calculated using thermal desorption spectroscopy (TDS). Secondary ion mass spectroscopy (SIMS) results showed that deuterium atoms embedded in the sample at a depth of less than 15 μm and desorbed as low as 400 °C. All absorbed deuterium atoms in the specimen were completely retrieved by dynamic pumping at 800 °C in 15 min. The desorption rate of deuterium per unit area was inversely proportional to the increment of the thickness of the sample, and was proportional to the loading temperature. Based on the assumption that a uniform distribution of interstitial sites for deuterium follows the Femi-Dirac statistics, the result of TDS demonstrated that the CuCrZr alloy has two types of trapping energies, which were estimated to be 62 and 79 kJ/mol.

  1. Contribution of microreactor technology and flow chemistry to the development of green and sustainable synthesis

    PubMed Central

    Fanelli, Flavio; Parisi, Giovanna

    2017-01-01

    Microreactor technology and flow chemistry could play an important role in the development of green and sustainable synthetic processes. In this review, some recent relevant examples in the field of flash chemistry, catalysis, hazardous chemistry and continuous flow processing are described. Selected examples highlight the role that flow chemistry could play in the near future for a sustainable development. PMID:28405232

  2. Pharmacy on Demand Feasibility Assessment

    DTIC Science & Technology

    2008-07-19

    We have successfully carried out the first two steps of the ibuprofen synthesis in our microreactor using homogeneous reactions in a continuous...Average of two trials. c Average of three trials. d Using a 0.25 M stock solution of isobutylbenzene. e Using a 0.5 M stock solution of...the creation of a packed-bed microreactor is the preparation of the solid-supported reagent. We have previously demonstrated that the performance

  3. Novel Catalyst for the Chirality Selective Synthesis of Single Walled Carbon Nanotubes

    DTIC Science & Technology

    2015-05-12

    hierarchical structures comprising nitrogen- doped reduced GO (rGO) and acid- oxidized SWCNTs was produced using a linear hydrothermal microreactor. Fiber...structures comprising nitrogen- doped reduced GO (rGO) and acidoxidized SWCNTs was produced using a linear hydrothermal microreactor. Fiber micro... doped into Co/SiO2 catalysts to change their chirality selectivity. Further, enrichment of (9,8) nanotubes was carried out by extraction using fluorene

  4. Glycerin Reformation in High Temperature and Pressure Water

    DTIC Science & Technology

    2012-01-01

    73 3.2.5. Process Sampling………………………………..…….……..75 3.3. PROCESS SAFETY………………………………………..…..........76 3.4. ANALYTICAL EQUIPMENT...compared to micro-reactors. This is important for new process development as well as scale-up of the process system. These two insights, the most...important parameters and the feasibility of scale-up, offer opportunities to maximize the process and scale-up further to industrial applications 1.2

  5. A replaceable dual-enzyme capillary microreactor using magnetic beads and its application for simultaneous detection of acetaldehyde and pyruvate.

    PubMed

    Shi, Jing; Zhao, Wenwen; Chen, Yuanfang; Guo, Liping; Yang, Li

    2012-07-01

    A novel replaceable dual-enzyme capillary microreactor was developed and evaluated using magnetic fields to immobilize the alcohol dehydrogenase (ADH)- and lactate dehydrogenase (LDH)-coated magnetic beads at desired positions in the capillary. The dual-enzyme assay was achieved by measuring the two consumption peaks of the coenzyme β-nicotinamide adenine dinucleotide (NADH), which were related to the ADH reaction and LDH reaction. The dual-enzyme capillary microreactor was constructed using magnetic beads without any modification of the inner surface of the capillary, and showed great stability and reproducibility. The electrophoretic resolution for different analytes can be easily controlled by altering the relative distance of different enzyme-coated magnetic beads. The apparent K(m) values for acetaldehyde with ADH-catalyzed reaction and for pyruvate with LDH-catalyzed reaction were determined. The detection limits for acetaldehyde and pyruvate determination are 0.01 and 0.016 mM (S/N = 3), respectively. The proposed method was successfully applied to simultaneously determine the acetaldehyde and pyruvate contents in beer samples. The results indicated that combing magnetic beads with CE is of great value to perform replaceable and controllable multienzyme capillary microreactor for investigation of a series of enzyme reactions and determination of multisubstrates. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. In situ IR and X-ray high spatial-resolution microspectroscopy measurements of multistep organic transformation in flow microreactor catalyzed by Au nanoclusters.

    PubMed

    Gross, Elad; Shu, Xing-Zhong; Alayoglu, Selim; Bechtel, Hans A; Martin, Michael C; Toste, F Dean; Somorjai, Gabor A

    2014-03-05

    Analysis of catalytic organic transformations in flow reactors and detection of short-lived intermediates are essential for optimization of these complex reactions. In this study, spectral mapping of a multistep catalytic reaction in a flow microreactor was performed with a spatial resolution of 15 μm, employing micrometer-sized synchrotron-based IR and X-ray beams. Two nanometer sized Au nanoclusters were supported on mesoporous SiO2, packed in a flow microreactor, and activated toward the cascade reaction of pyran formation. High catalytic conversion and tunable products selectivity were achieved under continuous flow conditions. In situ synchrotron-sourced IR microspectroscopy detected the evolution of the reactant, vinyl ether, into the primary product, allenic aldehyde, which then catalytically transformed into acetal, the secondary product. By tuning the residence time of the reactants in a flow microreactor a detailed analysis of the reaction kinetics was performed. An in situ micrometer X-ray absorption spectroscopy scan along the flow reactor correlated locally enhanced catalytic conversion, as detected by IR microspectroscopy, to areas with high concentration of Au(III), the catalytically active species. These results demonstrate the fundamental understanding of the mechanism of catalytic reactions which can be achieved by the detailed mapping of organic transformations in flow reactors.

  7. An RF-Powered Micro-Reactor for Efficient Extraction and Hydrolysis

    NASA Astrophysics Data System (ADS)

    Scott, V.

    2014-12-01

    An RF sample-processing micro-reactor that was developed as part of potential in situ Exploration Missions to inner- and outer-planetary bodies was designed to utilize aqueous solutions subjected to 60 GHz radiation at 730 mW of input power to extract target organic compounds and molecular and inorganic ions as well as to hydrolyze complex polymeric materials. Successful identification and characterization of these molecules relies on the sample-processing techniques utilized alongside state-of-the-art detection and analysis. For mass and power restrictions put on space exploration missions, smaller and more efficient instruments are highly desirable. The RF micro-reactor potentially offers a simplified alternative to the typical gold-standard extractions that often use solvents, chemicals, and conditions that can vary wildly and depend on the targeted molecules. Instead, this instrument uses a single solvent ­— water — that can be "tuned" under the different experimental conditions, leveraging the operating principles of the Sub-Critical Water Extractor. Proof-of-concept experiments examining the hydrolysis of glycosidic and peptide bonds were successful in demonstrating the RF micro-reactor's capabilities. Progress toward coupling the reactor with a micro-scale sample-handling system enabling slurry delivery has been made and preliminary results on heterogeneous reactions and extractions will be presented.

  8. Phosphorus sorption-desorption and effects of temperature, pH and salinity on phosphorus sorption in marsh soils from coastal wetlands with different flooding conditions.

    PubMed

    Bai, Junhong; Ye, Xiaofei; Jia, Jia; Zhang, Guangliang; Zhao, Qingqing; Cui, Baoshan; Liu, Xinhui

    2017-12-01

    Wetland soils act as a sink or source of phosphorus (P) to the overlaying water due to phosphorus sorption-desorption processes. Litter information is available on sorption and desorption behaviors of phosphorus in coastal wetlands with different flooding conditions. Laboratory experiments were conducted to investigate phosphorus sorption-desorption processes, fractions of adsorbed phosphorus, and the effects of salinity, pH and temperature on phosphorus sorption on soils in tidal-flooding wetlands (TW), freshwater-flooding wetlands (FW) and seasonal-flooding wetlands (SW) in the Yellow River Delta. Our results showed that the freshly adsorbed phosphorus dominantly exists in Occluded-P and Fe/AlP and their percentages increased with increasing phosphorus adsorbed. Phosphorus sorption isotherms could be better described by the modified Langmuir model than by the modified Freundlich model. A binomial equation could be properly used to describe the effects of salinity, pH, and temperature on phosphorus sorption. Phosphorus sorption generally increased with increasing salinity, pH, and temperature at lower ranges, while decreased in excess of some threshold values. The maximum phosphorus sorption capacity (Q max ) was larger for FW soils (256 mg/kg) compared with TW (218 mg/kg) and SW soils (235 mg/kg) (p < 0.05). The percentage of phosphorus desorption (P des ) in the FW soils (7.5-63.5%) was much lower than those in TW (27.7-124.9%) and SW soils (19.2-108.5%). The initial soil organic matter, pH and the exchangeable Al, Fe and Cd contents were important factors influencing P sorption and desorption. The findings of this study indicate that freshwater restoration can contribute to controlling the eutrophication status of water bodies through increasing P sorption. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Fast hydrogen sorption from MgH2-VO2(B) composite materials

    NASA Astrophysics Data System (ADS)

    Milošević, Sanja; Kurko, Sandra; Pasquini, Luca; Matović, Ljiljana; Vujasin, Radojka; Novaković, Nikola; Novaković, Jasmina Grbović

    2016-03-01

    The hydrogen sorption kinetics of MgH2‒VO2(B) composites synthesised by mechanical milling have been studied. The microstructural properties of composites were characterized by means of X-ray diffraction (XRD), Raman spectroscopy, Scanning electron microscopy (SEM), Particle size analysis (PSD), while sorption behaviour was followed by differential scanning calorimetry (DSC) and Sievert measurements. Results have shown that although desorption temperature reduction is moderate; there is a substantial improvement in hydrogen sorption kinetics. The complete desorption of pure MgH2 at elevated temperature takes place in more than 30 min while the composite fully desorbs in less than 2 min even at lower temperatures. It has been shown that the metastable γ-MgH2 phase and the point defects have a decisive role in desorption process only in the first sorption cycle, while the second and the subsequent sorption cycles are affected by microstructural and morphological characteristics of the composite.

  10. Reaction of hydrogen with Ag(111): binding states, minimum energy paths, and kinetics.

    PubMed

    Montoya, Alejandro; Schlunke, Anna; Haynes, Brian S

    2006-08-31

    The interaction of atomic and molecular hydrogen with the Ag(111) surface is studied using periodic density functional total-energy calculations. This paper focuses on the site preference for adsorption, ordered structures, and energy barriers for H diffusion and H recombination. Chemisorbed H atoms are unstable with respect to the H(2) molecule in all adsorption sites below monolayer coverage. The three-hollow sites are energetically the most favorable for H chemisorption. The binding energy of H to the surface decreases slightly up to one monolayer, suggesting a small repulsive H-H interaction on nonadjacent sites. Subsurface and vacancy sites are energetically less favorable for H adsorption than on-top sites. Recombination of chemisorbed H atoms leads to the formation of gas-phase H(2) with no molecular chemisorbed state. Recombination is an exothermic process and occurs on the bridge site with a pronounced energy barrier. This energy barrier is significantly higher than that inferred from experimental temperature-programmed desorption (TPD) studies. However, there is significant permeability of H atoms through the recombination energy barrier at low temperatures, thus increasing the rate constant for H(2) desorption due to quantum tunneling effects, and improving the agreement between experiment and theory.

  11. Hydrogen retention in lithium and lithium oxide films

    NASA Astrophysics Data System (ADS)

    Buzi, L.; Yang, Y.; Domínguez-Gutiérrez, F. J.; Nelson, A. O.; Hofman, M.; Krstić, P. S.; Kaita, R.; Koel, B. E.

    2018-04-01

    Pure lithium (Li) surfaces are difficult to maintain in fusion devices due to rapid oxide formation, therefore, parameterizing and understanding the mechanisms of hydrogen (H, D) retention in lithium oxide (Li2O) in addition to pure Li is crucial for Li plasma-facing material applications. To compare H retention in Li and Li2O films, measurements were made as a function of surface temperature (90-520 K) under ultrahigh vacuum (UHV) conditions using temperature programmed desorption (TPD). In both cases, the total retention dropped with surface temperature, from 95% at 90 K to 35% at 520 K Li2O films retained H in similar amounts as pure Li. Molecular Dynamics (MD) modeling was used to elucidate the mechanisms of H retention, and results were consistent with experiments in terms of both retention fraction and the drop of retention with temperature.

  12. Analysis of waterborne paints by gas chromatography-mass spectrometry with a temperature-programmable pyrolyzer.

    PubMed

    Nakamura, S; Takino, M; Daishima, S

    2001-04-06

    Gas chromatography-mass spectrometry (GC-MS) with a temperature-programmable pyrolyzer was used for the analysis of waterborne paints. Evolved gas analysis (EGA) profiles of the waterborne paints were obtained by this temperature-programmed pyrolysis directly coupled with MS via a deactivated metal capillary tube. The EGA profile suggested the optimal thermal desorption conditions for solvents and additives and the subsequent optimal pyrolysis temperature for the remaining polymeric material. Polymers were identified from pyrograms with the assistance of a new polymer library. The solvents were identified from the electron ionization mass spectra with the corresponding chemical ionization mass spectra. The additive was identified as zinc pyrithione by comparison with authentic standard. Zinc pyrithione cannot be analyzed by GC-MS as it is. However, the thermal decomposition products of zinc pyrithione could be detected. The information on the decomposition temperature and products was useful for the identification of the original compound.

  13. Spontaneous desorption and phase transitions of self-assembled alkanethiol and alicyclic thiol monolayers chemisorbed on Au(111) in ultrahigh vacuum at room temperature.

    PubMed

    Ito, Eisuke; Kang, Hungu; Lee, Dongjin; Park, Joon B; Hara, Masahiko; Noh, Jaegeun

    2013-03-15

    Scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS) were used to examine the surface structure and adsorption conditions of hexanethiol (HT) and cyclohexanethiol (CHT) self-assembled monolayers (SAMs) on Au(111) as a function of storage period in ultrahigh vacuum (UHV) conditions of 3×10(-7) Pa at room temperature (RT). STM imaging revealed that after storage for 7 days, HT SAMs underwent phase transitions from c(4×2) phase to low coverage 4×√3 phase. This transition is due to a structural rearrangement of hexanethiolates that results from the spontaneous desorption of chemisorbed HT molecules on Au(111) surface. XPS measurements showed approximately 28% reduction in sulfur coverage, which indicates desorption of hexanethiolates from the surfaces. Contrary to HT SAMs, the structural order of CHT SAMs with (5×2√3)R35° phase completely disappeared after storage for 3 or 7 days. XPS results show desorption of more than 80% of the cyclohexanethiolates, even after storage for 3 days. We found that spontaneous desorption of CHT molecules on Au(111) in UHV at RT occurred quickly, whereas spontaneous desorption of HT molecules was much slower. Thermal desorption spectroscopy (TDS) results suggest CHT SAMs in UHV at RT can desorb more efficiently than HT SAMs due to formation of thiol desorption fragments that result from chemical reactions between surface hydrogen atoms and thiolates on Au(111) surfaces. This study clearly demonstrated that organic thiols chemisorbed on gold surfaces are desorbed spontaneously in UHV at RT and van der Waals interactions play an important role in determining the structural stability of thiolate SAMs in UHV. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Laboratory Studies of Alkali Components in Tenuous Planetary Atmospheres

    NASA Astrophysics Data System (ADS)

    Yakshinskiy, B. V.

    2004-05-01

    We report on studies performed at the Laboratory for Surface Modification of Rutgers University and focused on the origin of alkali vapors (Na, K) in the tenuous atmospheres of the planet Mercury, the Moon, and Jupiter's icy satellite Europa [1, 2]; we also address the question why alkaline-earth metals (Mg, Ca) are less abundant in the atmospheres. A variety of ultrahigh-vacuum surface science techniques are used, including X-ray Photoelectron Spectroscopy (XPS), Low-Energy Ion Scattering (LEIS), Thermal Programmed Desorption (TPD), Electron- and Photon-Stimulated Desorption (ESD and PSD), Surface Ionization (SI). Measurements have been made on different samples, including the model mineral binary oxide SiO2 that simulates lunar silicates, and a lunar sample obtained from NASA. Desorption induced by electronic excitations (mainly PSD) rather than by thermal processes is found to be the dominant source process on the lunar surface. The flux at the lunar surface of ultraviolet photons from the Sun is adequate to insure that PSD of sodium contributes substantially to the Moon's atmosphere. A model based on irradiation-induced charge-transfer is proposed to explain the desorption process. There is a strong temperature-dependence of Na ESD and PSD signals from a lunar sample, under conditions where the Na surface coverage is constant and thermal desorption is negligible [3]. On Mercury solar heating of the surface is high enough that thermal desorption will also be a potential source of atmospheric sodium. Ion bombardment of the lunar sample causes both the sputtering of alkali atoms into vacuum and implantation into the sample bulk. In the future we outline the use a novel method, Nuclear Resonance Profiling (NRP) to study the diffusion of alkalis through model minerals, ices, and lunar samples; these measurements would provide additional information to understand the replenishment of Na at the surface of the Moon, Mercury and Europa. We also describe a new detector that we will use to search for desorption of alkaline-earth atoms. [1] T.E. Madey, R.E. Johnson, T.M. Orlando, Surf. Sci. 500 (2002) 838. [2] B.V. Yakshinskiy, T.E. Madey, Surf. Sci. 528 (2003) 54. [3] B.V. Yakshinskiy, T.E. Madey, Icarus 168 (2004) 53.

  15. Interactions between glycine and amorphous solid water nanoscale films

    NASA Astrophysics Data System (ADS)

    Tzvetkov, George; Koller, Georg; Netzer, Falko P.

    2012-12-01

    The interactions of glycine (Gly) with amorphous solid water (ASW) nanolayers (≤ 100 ML), vapor-deposited on single crystalline AlOx surfaces at 100 K, have been investigated by near-edge X-ray absorption fine structure spectroscopy (NEXAFS) at the oxygen K-edge, temperature-programmed thermal desorption (TPD), X-ray photoelectron spectroscopy (XPS), and temperature-dependent work function measurements. Gly-on-ASW, ASW-on-Gly, and Gly on top of ASW-on-Gly ultrathin films have been fabricated. In contrast to the uniform ASW films grown directly on the hydrophilic AlOx, water molecules adsorb on the hydrophobic Gly films in the form of 3D ASW clusters. This leads to significant differences in the NEXAFS and work function data obtained from ASW-on-AlOx and ASW-on-Gly films, respectively. Furthermore, these structural differences influence the chemical state of Gly molecules (neutral vs. zwitterionic) adsorbed on top of ASW films. N1s XPS measurements revealed an increased amount of neutral Gly molecules in the film top-deposited on the ASW-on-Gly structure in comparison to the neutral Gly in the films directly condensed on AlOx or grown on the ASW substrate. H2O TPD spectra demonstrate that the crystallization and desorption processes of ASW are affected in a different way by the Gly layers, top-deposited on to ASW-on-AlOx and ASW-on-Gly films. At the same time, Gly adlayers sink into the ASW film during crystallization/desorption of the latter and land softly on the alumina surface in the form of zwitterionic clusters.

  16. Electron-stimulated reactions in nanoscale water films adsorbed on α-Al 2O 3 (0001)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrik, Nikolay G.; Kimmel, Gregory A.

    The radiation-induced decomposition and desorption of nanoscale amorphous solid water (D2O) films adsorbed on -Al2O3(0001) surface was studied at low temperature in ultrahigh vacuum using temperature programmed desorption (TPD) and electron stimulated desorption (ESD) with a mono-energetic, low energy electron source. ESD yields of molecular products ( D2, O2 and D¬2O) and the total sputtering yield increased with increasing D2O coverage up to ~15 water monolayers (i.e. ~15 1015 cm-2) to a coverage-independent level for thicker water films. Experiments with isotopically-layered water films (D2O and H2O) demonstrated that the highest water decomposition yields occurred at the interfaces of the nanoscalemore » water films with the alumina substrate and vacuum. However, the increased reactivity of the water/alumina interface is relatively small compared to the enhancements in the non-thermal reactions previously observed at the water/Pt(111) and water/TiO2(110) interfaces. We propose that the relatively low activity of Al2O3(0001) for the radiation-induced production of molecular hydrogen is associated with lower reactivity of this surface with hydrogen atoms, which are likely precursors for the molecular hydrogen.100 eV electrons are stopped in the H 2O portion of the isotopically-layered nanoscale film on α-Al 2O 3(0001) but D 2is produced at the D 2O/alumina interface by mobile electronic excitations and/or hydronium ions.« less

  17. Versatile hydrogel-based nanocrystal microreactors towards uniform fluorescent photonic crystal supraballs

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Tian, Yu; Ling, Lu-Ting; Yin, Su-Na; Wang, Cai-Feng; Chen, Su

    2014-12-01

    Versatile hydrogel-based nanocrystal (NC) microreactors were designed in this work for the construction of uniform fluorescence colloidal photonic crystal (CPC) supraballs. The hydrogel-based microspheres with sizes ranging from 150 to 300 nm were prepared by seeded copolymerization of acrylic acid and 2-hydroxyethyl methacrylate with micrometer-sized PS seed particles. As an independent NC microreactor, the as-synthesized hydrogel microsphere can effectively capture the guest cadmium ions due to the abundant carboxyl groups inside. Followed by the introduction of chalcogenides, in situ generation of higher-uptake NCs with sizes less than 5 nm was finally realized. Additionally, with the aid of the microfluidic device, the as-obtained NC-latex hybrids can be further self-assembled to bi-functional CPC supraballs bearing brilliant structural colors and uniform fluorescence. This research offers an alternative way to finely bind CPCs with NCs, which will facilitate progress in fields of self-assembled functional colloids and photonic materials.

  18. CE-microreactor-CE-MS/MS for protein analysis

    PubMed Central

    Schoenherr, Regine M.; Ye, Mingliang; Vannatta, Michael

    2008-01-01

    We present a proof-of-principle for a fully automated bottom-up approach to protein characterization. Proteins are first separated by capillary electrophoresis. A pepsin microreactor is incorporated into the distal end of this capillary. Peptides formed in the reactor are transferred to a second capillary, where they are separated by capillary electrophoresis and characterized by mass spectrometry. While peptides generated from one digestion are being separated in the second capillary, the next protein fraction undergoes digestion in the microreactor. The migration time in the first dimension capillary is characteristic of the protein while migration time in the second dimension is characteristic of the peptide. Spot capacity for the two-dimensional separation is 590. A MS/MS analysis of a mixture of cytochrome C and myoglobin generated Mascot MOWSE scores of 107 for cytochrome C and 58 for myoglobin. The sequence coverages were 48% and 22%, respectively. PMID:17295444

  19. Continuous flow synthesis of VO2 nanoparticles or nanorods by using a microreactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jie; Sun, Yugang; Muehleisen, Ralph T.

    The invention provides a method for producing composite nanoparticles, the method using a first compound capable of transitioning from a monoclinic to a tetragonal rutile crystal state upon heating, and having the steps of subjecting the first compound to a hydrothermal synthesis to create anisotropic crystals of the compound; encapsulating the first compound with a second compound to create a core-shell construct; and annealing the construct as needed. Also provided is a device for continuously synthesizing composite nanoparticles, the device having a first precursor supply and a second precursor supply; a mixer to homogeneously combine the first precursor and secondmore » precursor to create a liquor; a first microreactor to subject the liquor to hydrothermic conditions to create an\\isotropic particles in a continuous operation mode; and a second microreactor for coating the particles with a third precursor to create a core-shell construct.« less

  20. Paper microfluidic-based enzyme catalyzed double microreactor.

    PubMed

    Ferrer, Ivonne M; Valadez, Hector; Estala, Lissette; Gomez, Frank A

    2014-08-01

    We describe a paper microfluidic-based enzyme catalyzed double microreactor assay using fluorescent detection. Here, solutions of lactate dehydrogenase (LDH) and diaphorase (DI) were directly spotted onto the microfluidic paper-based analytical device (μPAD). Samples containing lactic acid, resazurin, and nicotinamide adenine dinucleotide oxidized form (NAD(+) ), potassium chloride (KCl), and BSA, in MES buffer were separately spotted onto the μPAD and MES buffer flowed through the device. A cascade reaction occurs upon the sample spot overlapping with LDH to form pyruvate and nicotinamide adenine dinucleotide reduced form (NADH). Subsequently, NADH is used in the conversion of resazurin to fluorescent resorufin by DI. The μPAD avoids the need of surface functionalization or enzyme immobilization steps. These microreactor devices are low cost and easy to fabricate and effect reaction based solely on buffer capillary action. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Accelerated gas-liquid visible light photoredox catalysis with continuous-flow photochemical microreactors.

    PubMed

    Straathof, Natan J W; Su, Yuanhai; Hessel, Volker; Noël, Timothy

    2016-01-01

    In this protocol, we describe the construction and use of an operationally simple photochemical microreactor for gas-liquid photoredox catalysis using visible light. The general procedure includes details on how to set up the microreactor appropriately with inlets for gaseous reagents and organic starting materials, and it includes examples of how to use it to achieve continuous-flow preparation of disulfides or trifluoromethylated heterocycles and thiols. The reported photomicroreactors are modular, inexpensive and can be prepared rapidly from commercially available parts within 1 h even by nonspecialists. Interestingly, typical reaction times of gas-liquid visible light photocatalytic reactions performed in microflow are lower (in the minute range) than comparable reactions performed as a batch process (in the hour range). This can be attributed to the improved irradiation efficiency of the reaction mixture and the enhanced gas-liquid mass transfer in the segmented gas-liquid flow regime.

  2. Physicochemical and thermodynamic investigation of hydrogen absorption and desorption in LaNi3.8Al1.0Mn0.2 using the statistical physics modeling

    NASA Astrophysics Data System (ADS)

    Bouaziz, Nadia; Ben Manaa, Marwa; Ben Lamine, Abdelmottaleb

    2018-06-01

    In the present work, experimental absorption and desorption isotherms of hydrogen in LaNi3.8Al1.0Mn0.2 metal at two temperatures (T = 433 K, 453 K) have been fitted using a monolayer model with two energies treated by statistical physics formalism by means of the grand canonical ensemble. Six parameters of the model are adjusted, namely the numbers of hydrogen atoms per site nα and nβ, the receptor site densities Nmα and Nmβ, and the energetic parameters Pα and Pβ. The behaviors of these parameters are discussed in relationship with temperature of absorption/desorption process. Then, a dynamic investigation of the simultaneous evolution with pressure of the two α and β phases in the absorption and desorption phenomena using the adjustment parameters. Thanks to the energetic parameters, we calculated the sorption energies which are typically ranged between 276.107 and 310.711 kJ/mol for absorption process and between 277.01 and 310.9 kJ/mol for desorption process comparable to usual chemical bond energies. The calculated thermodynamic parameters such as entropy, Gibbs free energy and internal energy from experimental data showed that the absorption/desorption of hydrogen in LaNi3.8Al1.0Mn0.2 alloy was feasible, spontaneous and exothermic in nature.

  3. Measurements of Polyatomic Molecule Formation on an Icy Grain Analog Using Fast Atoms

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Madsunkov, S.; Shortt, B. J.; MacAskill, J. A.; Darrach, M. R.

    2006-01-01

    Carbon dioxide has been produced from the impact of a monoenergetic O(P-3) beam upon a surface cooled to 4.8 K and covered with a CO ice. Using temperature-programmed desorption and mass spectrometer detection, we have detected increasing amounts of CO2 formation with O(P-3) energies of 2, 5, 10, and 14 eV. This is the first measurement of polyatomic molecule formation on a surface with superthermal atoms. The goal of this work is to detect other polyatomic species, such as CH3OH, which can be formed under conditions that simulate the grain temperature, surface coverage, and superthermal atoms present in shock-heated circumstellar and interstellar regions.

  4. Analyte separation utilizing temperature programmed desorption of a preconcentrator mesh

    DOEpatents

    Linker, Kevin L.; Bouchier, Frank A.; Theisen, Lisa; Arakaki, Lester H.

    2007-11-27

    A method and system for controllably releasing contaminants from a contaminated porous metallic mesh by thermally desorbing and releasing a selected subset of contaminants from a contaminated mesh by rapidly raising the mesh to a pre-determined temperature step or plateau that has been chosen beforehand to preferentially desorb a particular chemical specie of interest, but not others. By providing a sufficiently long delay or dwell period in-between heating pulses, and by selecting the optimum plateau temperatures, then different contaminant species can be controllably released in well-defined batches at different times to a chemical detector in gaseous communication with the mesh. For some detectors, such as an Ion Mobility Spectrometer (IMS), separating different species in time before they enter the IMS allows the detector to have an enhanced selectivity.

  5. MOF-74 as an Efficient Catalyst for the Low-Temperature Selective Catalytic Reduction of NOx with NH3.

    PubMed

    Jiang, Haoxi; Wang, Qianyun; Wang, Huiqin; Chen, Yifei; Zhang, Minhua

    2016-10-12

    In this work, Mn-MOF-74 with hollow spherical structure and Co-MOF-74 with petal-like shape have been prepared successfully via the hydrothermal method. The catalysts were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetry-mass spectrum analysis (TG-MS), N 2 adsorption/desorption, scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). It is found that MOF-74(Mn, Co) exhibits the capability for selective catalytic reduction (SCR) of NO x at low temperatures. Both experimental (temperature-programmed desorption, TPD) and computational methods have shown that Co-MOF-74 and Mn-MOF-74 owned high adsorption and activation abilities for NO and NH 3 . The catalytic activities of Mn-MOF-74 and Co-MOF-74 for low-temperature denitrification (deNO x ) in the presence of NH 3 were 99% at 220 °C and 70% at 210 °C, respectively. It is found that the coordinatively unsaturated metal sites (CUSs) in M-MOF-74 (M = Mn and Co) played important roles in SCR reaction. M-MOF-74 (M = Mn and Co), especially Mn-MOF-74, showed excellent catalytic performance for low-temperature SCR. In addition, in the reaction process, NO conversion on Mn-MOF-74 decreased with the introduction of H 2 O and SO 2 and almost recovered when gas was cut off. However, for Co-MOF-74, SO 2 almost has no effect on the catalytic activity. This work showed that MOF-74 could be used prospectively as deNO x catalyst.

  6. Synthesis of tin monosulfide (SnS) nanoparticles using surfactant free microemulsion (SFME) with the single microemulsion scheme

    NASA Astrophysics Data System (ADS)

    Tarkas, Hemant S.; Marathe, Deepak M.; Mahajan, Mrunal S.; Muntaser, Faisal; Patil, Mahendra B.; Tak, Swapnil R.; Sali, Jaydeep V.

    2017-02-01

    Synthesis of monomorphic, SnS nanoparticles without using a capping agent is a difficult task with chemical route of synthesis. This paper reports on synthesis of tin monosulfide (SnS) nanopartilces with dimension in the quantum-dot regime using surfactant free microemulsion with single microemulsion scheme. This has been achieved by reaction in microreactors in the CME (C: chlorobenzene, M: methanol and E: ethylene glycol) microemulsion system. This is an easy and controllable chemical route for synthesis of SnS nanoparticles. Nanoparticle diameter showed prominent dependence on microemulsion concentration and marginal dependence on microemulsion temperature in the temperature range studied. The SnS nanoparticles formed with this method form stable dispersion in Tolune.

  7. Desorption of CO{sub 2} from MDEA and activated MDEA solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, G.W.; Zhang, C.F.; Qin, S.J.

    1995-03-01

    A packed column was used for investigating the desorption rate of CO{sub 2} from aqueous methyldiethanolamine (MDEA) and activated MDEA solutions. Experiments were conducted within the temperature range 30--70 C, the concentration of MDEA was 4.28 kmol/m{sup 3}, and the concentration of piperazine (PZ) was 0.10 kmol/m{sup 3} for aqueous activated MDEA solutions. Experimental data confirmed that the kinetics model of absorption CO{sub 2} into aqueous MDEA and activated MDEA solutions can be applicable to the situations in which desorption occurs, and the desorption rate of model predictions agree well with that of experimental determination.

  8. Impact of styrenic polymer one-step hyper-cross-linking on volatile organic compound adsorption and desorption performance.

    PubMed

    Ghafari, Mohsen; Atkinson, John D

    2018-06-05

    A novel one-step hyper-cross-linking method, using 1,2-dichloroethane (DCE) and 1,6-dichlorohexane (DCH) cross-linkers, expands the micropore volume of commercial styrenic polymers. Performance of virgin and modified polymers was evaluated by measuring hexane, toluene, and methyl-ethyl-ketone (MEK) adsorption capacity, adsorption/desorption kinetics, and desorption efficiency. Hyper-cross-linked polymers have up to 128% higher adsorption capacity than virgin polymers at P/P 0  = 0.05 due to micropore volume increases up to 330%. Improvements are most pronounced with the DCE cross-linker. Hyper-cross-linking has minimal impact on hexane adsorption kinetics, but adsorption rates for toluene and MEK decrease by 6-41%. Desorption rates decreased (3-36%) for all materials after hyper-cross-linking, with larger decreases for DCE hyper-cross-linked polymers due to smaller average pore widths. For room temperature desorption, 20-220% more adsorbate remains in hyper-cross-linked polymers after regeneration compared to virgin materials. DCE hyper-cross-linked polymers have 13-92% more residual adsorbate than DCH counterparts. Higher temperatures were required for DCE hyper-cross-linked polymers to completely desorb VOCs compared to the DCH hyper-cross-linked and virgin counterparts. Results show that the one-step hyper-cross-linking method for modifying styrenic polymers improves adsorption capacity because of added micropores, but decreases adsorption/desorption kinetics and desorption efficiency for large VOCs due to a decrease in average pore width. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Theoretical evidence of the observed kinetic order dependence on temperature during the N(2)O decomposition over Fe-ZSM-5.

    PubMed

    Guesmi, Hazar; Berthomieu, Dorothee; Bromley, Bryan; Coq, Bernard; Kiwi-Minsker, Lioubov

    2010-03-28

    The characterization of Fe/ZSM5 zeolite materials, the nature of Fe-sites active in N(2)O direct decomposition, as well as the rate limiting step are still a matter of debate. The mechanism of N(2)O decomposition on the binuclear oxo-hydroxo bridged extraframework iron core site [Fe(II)(mu-O)(mu-OH)Fe(II)](+) inside the ZSM-5 zeolite has been studied by combining theoretical and experimental approaches. The overall calculated path of N(2)O decomposition involves the oxidation of binuclear Fe(II) core sites by N(2)O (atomic alpha-oxygen formation) and the recombination of two surface alpha-oxygen atoms leading to the formation of molecular oxygen. Rate parameters computed using standard statistical mechanics and transition state theory reveal that elementary catalytic steps involved into N(2)O decomposition are strongly dependent on the temperature. This theoretical result was compared to the experimentally observed steady state kinetics of the N(2)O decomposition and temperature-programmed desorption (TPD) experiments. A switch of the reaction order with respect to N(2)O pressure from zero to one occurs at around 800 K suggesting a change of the rate determining step from the alpha-oxygen recombination to alpha-oxygen formation. The TPD results on the molecular oxygen desorption confirmed the mechanism proposed.

  10. Glyphosate sorption/desorption on biochars – Interactions of physical and chemical processes

    USDA-ARS?s Scientific Manuscript database

    BACKGROUND: Biochar, a carbon-rich product of biomass pyrolysis, could limit glyphosate transport in soil and remediate contaminated water. The present study investigates the sorption/desorption behavior of glyphosate on biochars prepared from different hardwoods at temperatures ranging from 350°C t...

  11. Reactivity of young chars via energetic distribution measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calo, J.M.; Lilly, W.D.

    1991-01-01

    The current project is directed at developing related techniques for the characterization and prediction/correlation of the reactivity of young'' chars to steam and oxygen. Of particular interest is mapping of the reactivity behavior of the resultant chars, as revealed by the energetic heterogeneity of the complexes with char preparation conditions; i.e., heating rate and ultimate temperature. In this first quarterly technical progress report we present the background of the project and the research program for the proposed investigations. The following work was accomplished on the experimental apparatus: a new set of electronics for the UTi quadrupole mass spectrometer head wasmore » purchased and delivered. The Temperature Programmed Desorption (TPD) System was moved to another laboratory and interfaced with the mass spectrometer system. A Polycold{trademark} freon refrigeration system was repaired and interfaced with the vacuum system for the TPD apparatus. It will be used to cool the diffusion pump trap. 60 refs.« less

  12. A new desorption method for removing organic solvents from activated carbon using surfactant.

    PubMed

    Hinoue, Mitsuo; Ishimatsu, Sumiyo; Fueta, Yukiko; Hori, Hajime

    2017-03-28

    A new desorption method was investigated, which does not require toxic organic solvents. Efficient desorption of organic solvents from activated carbon was achieved with an ananionic surfactant solution, focusing on its washing and emulsion action. Isopropyl alcohol (IPA) and methyl ethyl ketone (MEK) were used as test solvents. Lauryl benzene sulfonic acid sodium salt (LAS) and sodium dodecyl sulfate (SDS) were used as the surfactant. Activated carbon (100 mg) was placed in a vial and a predetermined amount of organic solvent was added. After leaving for about 24 h, a predetermined amount of the surfactant solution was added. After leaving for another 72 h, the vial was heated in an incubator at 60°C for a predetermined time. The organic vapor concentration was then determined with a frame ionization detector (FID)-gas chromatograph and the desorption efficiency was calculated. A high desorption efficiency was obtained with a 10% surfactant solution (LAS 8%, SDS 2%), 5 ml desorption solution, 60°C desorption temperature, and desorption time of over 24 h, and the desorption efficiency was 72% for IPA and 9% for MEK. Under identical conditions, the desorption efficiencies for another five organic solvents were investigated, which were 36%, 3%, 32%, 2%, and 3% for acetone, ethyl acetate, dichloromethane, toluene, and m-xylene, respectively. A combination of two anionic surfactants exhibited a relatively high desorption efficiency for IPA. For toluene, the desorption efficiency was low due to poor detergency and emulsification power.

  13. A new desorption method for removing organic solvents from activated carbon using surfactant

    PubMed Central

    Hinoue, Mitsuo; Ishimatsu, Sumiyo; Fueta, Yukiko; Hori, Hajime

    2017-01-01

    Objectives: A new desorption method was investigated, which does not require toxic organic solvents. Efficient desorption of organic solvents from activated carbon was achieved with an ananionic surfactant solution, focusing on its washing and emulsion action. Methods: Isopropyl alcohol (IPA) and methyl ethyl ketone (MEK) were used as test solvents. Lauryl benzene sulfonic acid sodium salt (LAS) and sodium dodecyl sulfate (SDS) were used as the surfactant. Activated carbon (100 mg) was placed in a vial and a predetermined amount of organic solvent was added. After leaving for about 24 h, a predetermined amount of the surfactant solution was added. After leaving for another 72 h, the vial was heated in an incubator at 60°C for a predetermined time. The organic vapor concentration was then determined with a frame ionization detector (FID)-gas chromatograph and the desorption efficiency was calculated. Results: A high desorption efficiency was obtained with a 10% surfactant solution (LAS 8%, SDS 2%), 5 ml desorption solution, 60°C desorption temperature, and desorption time of over 24 h, and the desorption efficiency was 72% for IPA and 9% for MEK. Under identical conditions, the desorption efficiencies for another five organic solvents were investigated, which were 36%, 3%, 32%, 2%, and 3% for acetone, ethyl acetate, dichloromethane, toluene, and m-xylene, respectively. Conclusions: A combination of two anionic surfactants exhibited a relatively high desorption efficiency for IPA. For toluene, the desorption efficiency was low due to poor detergency and emulsification power. PMID:28132972

  14. Strong Temperature Dependence in the Reactivity of H 2 on RuO 2 (110)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henderson, Michael A.; Dahal, Arjun; Dohnálek, Zdenek

    2016-08-04

    The ability of hydrogen to facilitate many types of heterogeneous catalysis starts with its adsorption. As such, understanding the temperature-dependence sticking of H2 is critical toward controlling and optimizing catalytic conditions in those cases where adsorption is rate-limiting. In this work, we examine the temperature-dependent sticking of H2/D2 to the clean RuO2(110) surface using the King & Wells molecular beam approach, temperature programmed desorption (TPD) and scanning tunneling microscopy (STM). We show that the sticking probability (molecular or dissociative) of H2/D2 on this surface is highly temperature-dependent, decreasing from ~0.4-0.5 below 25 K to effectively zero above 200 K. Bothmore » STM and TPD reveal that OH/OD formation is severely limited for adsorption temperatures above ~150 K. Previous literature reports of extensive surface hydroxylation from H2/D2 exposures at room temperature were most likely the result of inadvertent contamination brought about from dosing by chamber backfilling.« less

  15. Effects of temperature and surface contamination on D retention in ultrathin Li films on TZM

    DOE PAGES

    Capece, A. M.; Roszell, J. P.; Skinner, C. H.; ...

    2014-10-29

    Here in this work, we investigate deuterium retention at the Mo-Li interface by studying thin Li films three monolayers thick on a TZM Mo alloy. Li films at temperatures between 315 and 460 K were exposed to a deuterium ion beam and D retention was measured using temperature programmed desorption. In the absence of oxygen, D is retained as LiD, and the relative amount of retained D decreases with increasing substrate temperature. In three-monolayer thick lithium oxide films, the amount of D retained was 2.5 times higher than the amount retained as LiD in the metallic Li film. However, oxygenmore » reduces the thermal stability of D in the film, causing D 2O and D 2 to be released from the surface at temperatures 150-200 K below the LiD decomposition temperature. These results highlight the importance of maintaining a metallic Li layer for high D retention in Li films on TZM at elevated temperatures.« less

  16. Effects of temperature and surface contamination on D retention in ultrathin Li films on TZM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capece, A. M.; Roszell, J. P.; Skinner, C. H.

    Here in this work, we investigate deuterium retention at the Mo-Li interface by studying thin Li films three monolayers thick on a TZM Mo alloy. Li films at temperatures between 315 and 460 K were exposed to a deuterium ion beam and D retention was measured using temperature programmed desorption. In the absence of oxygen, D is retained as LiD, and the relative amount of retained D decreases with increasing substrate temperature. In three-monolayer thick lithium oxide films, the amount of D retained was 2.5 times higher than the amount retained as LiD in the metallic Li film. However, oxygenmore » reduces the thermal stability of D in the film, causing D 2O and D 2 to be released from the surface at temperatures 150-200 K below the LiD decomposition temperature. These results highlight the importance of maintaining a metallic Li layer for high D retention in Li films on TZM at elevated temperatures.« less

  17. 1,6-Conjugate addition of zinc alkyls to para-quinone methides in a continuous-flow microreactor.

    PubMed

    Jadhav, Abhijeet S; Anand, Ramasamy Vijaya

    2016-12-20

    An efficient method for the synthesis of alkyl diarylmethanes through the 1,6-conjugate addition of dialkylzinc reagents to para-quinone methides (p-QMs) has been developed under continuous flow conditions using a microreactor. This protocol allows to access unsymmetrical alkyl diarylmethanes in moderate to excellent yields using a wide range of p-QMs and dialkylzinc reagents. Interestingly, this transformation worked well without the requirement of a catalyst.

  18. Sorption Properties of Iron-Magnesium and Nickel-Magnesium Mg2FeH6 and Mg2NiH4 Hydrides

    NASA Astrophysics Data System (ADS)

    Matysina, Z. A.; Zaginaichenko, S. Yu.; Shchur, D. V.; Gabdullin, M. T.

    2016-06-01

    Based on molecular-kinetic representations, theory of hydrogen absorption-desorption processes in binary Mg-Fe and Mg-Ni alloys is developed. Free energies of hydrides of these alloys are calculated. Equations of their thermodynamically equilibrium state determining the P-T-c diagrams are derived. A temperature dependence of the desorbed hydrogen concentration is established. A maximal desorption temperature is estimated. The state diagrams determining the concentration dependence of the maximal desorption temperature are constructed. Isopleths and isotherms of hydrogen solubility in the alloys are calculated. The possibility of manifestation of the hysteresis effect in hydrogen solubility isotherms is revealed and the decrease of the width and length of a hysteresis loop with increasing temperature is demonstrated together with the influence of the magnesium hydrate MgH2 in Mg2FeH6 samples and running of chemical reactions on the behavior of the isotherms and the occurrence of bends and jumps in them. All established functional dependences of the sorption properties of the examined alloys are compared with experimental data available from the literature.

  19. Coverage-dependent adsorption and desorption of oxygen on Pd(100)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunnen, Angela den; Jacobse, Leon; Wiegman, Sandra

    2016-06-28

    We have studied the adsorption and desorption of O{sub 2} on Pd(100) by supersonic molecular beam techniques and thermal desorption spectroscopy. Adsorption measurements on the bare surface confirm that O{sub 2} initially dissociates for all kinetic energies between 56 and 380 meV and surface temperatures between 100 and 600 K via a direct mechanism. At and below 150 K, continued adsorption leads to a combined O/O{sub 2} overlayer. Dissociation of molecularly bound O{sub 2} during a subsequent temperature ramp leads to unexpected high atomic oxygen coverages, which are also obtained at high incident energy and high surface temperature. At intermediatemore » temperatures and energies, these high final coverages are not obtained. Our results show that kinetic energy of the gas phase reactant and reaction energy dissipated during O{sub 2} dissociation on the cold surface both enable activated nucleation of high-coverage surface structures. We suggest that excitation of local substrate phonons may play a crucial role in oxygen dissociation at any coverage.« less

  20. PMMA microreactor for chemiluminescence detection of Cu (II) based on 1,10-Phenanthroline-hydrogen peroxide reaction.

    PubMed

    Chen, Xueye; Shen, Jienan; Li, Tiechuan

    2016-01-01

    A microreactor for the chemiluminescence detection of copper (II) in water samples, based on the measurement of light emitted from the copper (II) catalysed oxidation of 1,10-phenanthroline by hydrogen peroxide in basic aqueous solution, is presented. Polymethyl methacrylate (PMMA) was chose as material for fabricating the microreactor with mill and hot bonding method. Optimized reagents conditions were found to be 6.3 × 10(-5)mol/L 1,10-phenanthroline, 1.5 × 10(-3)mol/L hydrogen peroxide, 7.0 × 10(-2)mol/L sodium hydroxide and 2.4 × 10(-5)mol/L Hexadecyl trimethyl ammonium Bromide (CTMAB). In the continuous flow injection mode the system can perform fully automated detection with a reagent consumption of only 3.5 μL each time. The linear range of the Cu (II) ions concentration was 1.5 × 10(-8) mol/L to 1.0 × 10(-4) mol/L, and the detection limit was 9.4 × 10(-9)mol/L with the S/N ratio of 4. The relative standard deviation was 3.0 % for 2.0 × 10(-6) mol/L Cu (II) ions (n = 10). The most obvious features of the detection method are simplicity, rapidity and easy fabrication of the microreactor.

  1. Efficient synthesis of highly fluorescent carbon dots by microreactor method and their application in Fe3+ ion detection.

    PubMed

    Rao, Longshi; Tang, Yong; Li, Zongtao; Ding, Xinrui; Liang, Guanwei; Lu, Hanguang; Yan, Caiman; Tang, Kairui; Yu, Binhai

    2017-12-01

    Rapidly obtaining strong photoluminescence (PL) of carbon dots with high stability is crucial in all practical applications of carbon dots, such as cell imaging and biological detection. In this study, we proposed a rapid, continuous carbon dots synthesis technique by using a microreactor method. By taking advantage of the microreactor, we were able to rapidly synthesized CDs at a large scale in less than 5min, and a high quantum yield of 60.1% was achieved. This method is faster and more efficient than most of the previously reported methods. To explore the relationship between the microreactor structure and CDs PL properties, Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) were carried out. The results show the surface functional groups and element contents influence the PL emission. Subsequent ion detection experiments indicated that CDs are very suitable for use as nanoprobes for Fe 3+ ion detection, and the lowest detection limit for Fe 3+ is 0.239μM, which is superior to many other research studies. This rapid and simple synthesis method will not only aid the development of the quantum dots industrialization but also provide a powerful and portable tool for the rapid and continuous online synthesis of quantum dots supporting their application in cell imaging and safety detection. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Competition between ionic adsorption and desorption on electrochemical double layer capacitor electrodes in acetonitrile solutions at different currents and temperatures

    NASA Astrophysics Data System (ADS)

    Park, Sieun; Kang, Seok-Won; Kim, Ketack

    2017-12-01

    The operation of electrochemical double layer capacitors at high currents and viscosities and at low temperatures is difficult. Under these conditions, ion transport is limited, and some of the electrode area is unavailable for adsorption, which results in a low capacitance. Increasing the temperature helps to increase the ionic movement, leading to enhanced adsorption and increased capacitance. In contrast, ion desorption (self-discharge) surpasses the capacitance improvement when ions gain a high amount of energy with increasing temperature. For example, temperatures as high as 70 °C cause a very high rate of ionic desorption in acetonitrile solutions in which the individual properties of the two electrolytes-tetraethylammonium tetrafluoroborate (TEA BF4) and ethylmethylimidazolium tetrafluoroborate (EMI BF4)-are not distinguishable. The capacitance improvement and self-discharge are balanced, resulting in a capacitance peak at mid-range temperatures, i.e., 35-45 °C, in the more viscous electrolyte, i.e., TEA BF4. The less viscous electrolyte, i.e., EMI BF4 has a wider capacitance peak from 25 to 45 °C and higher capacitance than that of TEA BF4. Because the maximum power is obtained in the mid-temperature range (35-45 °C), it is necessary to control the viscosity and temperature to obtain the maximum power in a given device.

  3. Synthesis and characterization of non-noble nanocatalysts for hydrogen production in microreactors

    NASA Astrophysics Data System (ADS)

    Shetty, Krithi; Zhao, Shihuai; Cao, Wei; Siriwardane, Upali; Seetala, Naidu V.; Kuila, Debasish

    Nanoscale Co and Ni catalysts in silica were synthesized using sol-gel method for hydrogen production from steam reforming of methanol (SRM) in silicon microreactors with 50 μm channels. Silica sol-gel support with porous structure gives specific surface area of 452.35 m 2 g -1 for Ni/SiO 2 and 337.72 m 2 g -1 for Co/SiO 2. TEM images show the particles size of Ni and Co catalysts to be <10 nm. The EDX results indicate Co and Ni loadings of 5-6 wt.% in silica which is lower than the intended loading of 12 wt.%. The DTA and XRD data suggest that 450 °C is an optimum temperature for catalyst calcination when most of the metal hydroxides are converted to metal oxides without significant particle aggregation to form larger crystallites. SRM reactions show 53% methanol conversion with 74% hydrogen selectivity at 5 μL min -1 and 200 °C for Ni/SiO 2 catalyst, which is higher than that for Co/SiO 2. The activity of the metal catalysts decrease significantly after SRM reactions over 10 h, and it is consistent with the magnetization (VSM) results indicating that ∼90% of Co and ∼85% of Ni become non-ferromagnetic after 10 h.

  4. DEMONSTRATION BULLETIN: X*TRAX MODEL 200 THERMAL DESORPTION SYSTEMS - CHEMICAL WASTE MANAGEMENT, INC.

    EPA Science Inventory

    The X*TRAX™ Mode! 200 Thermal Desorption System developed by Chemical Waste Management, Inc. (CWM), is a low-temperature process designed to separate organic contaminants from soils, sludges, and other solid media. The X*TRAX™ Model 200 is fully transportable and consists of thre...

  5. Distribution law of temperature changes during methane adsorption and desorption in coal using infrared thermography technology

    NASA Astrophysics Data System (ADS)

    Zhao, Dong; Chen, Hao; An, Jiangfei; Zhou, Dong; Feng, Zengchao

    2018-05-01

    Gas adsorption and desorption is a thermodynamic process that takes place within coal as temperature changes and that is related to methane (CH4) storage. As infrared thermographic technology has been applied in this context to measure surface temperature changes, the aim of this research was to further elucidate the distribution law underlying this process as well as the thermal effects induced by heat adsorption and desorption in coal. Specimens of two different coal ranks were used in this study, and the surface temperature changes seen in the latter were detected. A contour line map was then drawn on the basis of initial results enabling a distribution law of temperature changes for samples. The results show that different regions of coal sample surfaces exhibit different heating rates during the adsorption process, but they all depends on gas storage capacity to a certain extent. It proposes a correlation coefficient that expresses the relationship between temperature change and gas adsorption capacity that could also be used to evaluate the feasibility of coalbed CH4 extraction in the field. And finally, this study is deduced a method to reveal the actual adsorption capacity of coal or CH4 reservoirs in in situ coal seams.

  6. Measurement of hydrogen solubility and desorption rate in V-4Cr-4Ti and liquid lithium-calcium alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, J.H.; Erck, R.; Park, E.T.

    1997-04-01

    Hydrogen solubility in V-4Cr-4Ti and liquid lithium-calcium was measured at a hydrogen pressure of 9.09 x 10{sup {minus}4} torr at temperatures between 250 and 700{degrees}C. Hydrogen solubility in V-4Cr-4Ti and liquid lithium decreased with temperature. The measured desorption rate of hydrogen in V-4Cr-4Ti is a thermally activated process; the activation energy is 0.067 eV. Oxygen-charged V-4Cr-4Ti specimens were also investigated to determine the effect of oxygen impurity on hydrogen solubility and desorption in the alloy. Oxygen in V-4Cr-4Ti increases hydrogen solubility and desorption kinetics. To determine the effect of a calcium oxide insulator coating on V-4Cr-4Ti, hydrogen solubility in lithium-calciummore » alloys that contained 0-8.0 percent calcium was also measured. The distribution ratio R of hydrogen between liquid lithium or lithium-calcium and V-4Cr-4Ti increased as temperature decreased (R {approx} 10 and 100 at 700 and 250{degrees}C, respectively). However at <267{degrees}C, solubility data could not be obtained by this method because of the slow kinetics of hydrogen permeation through the vanadium alloy.« less

  7. Nitrogen vacancy complexes in nitrogen irradiated metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veen, A. van; Westerduin, K.T.; Schut, H.

    1996-12-31

    Gas desorption and positron annihilation techniques have been employed to study the evolution of nitrogen associated defects in nitrogen irradiated metals: Fe, Ni, Mo and W. Nitrogen in these metals has a rather high affinity to vacancy type defects. The results obtained for low irradiation dose show that substitutional nitrogen (NV; with V = vacancy) is formed. The nitrogen vacancy complex dissociates at temperatures ranging from 350 K for Ni to 900 K for Mo and 1,100 K for W. At high doses defects are formed which can be characterized as nitrogen saturated vacancy clusters. These defect, as observed bymore » helium probing, disappear during annealing for nickel at 800 K, and for Mo at 1,100 K. The direct observation of the desorbing nitrogen for nickel and molybdenum reveals a very fast desorption transient at the dissociation temperature of the clusters. This is the characteristic desorption transient of a small nitride cluster, e.g., by shrinkage with constant rate. For iron the nitrogen desorption is more complicated because of a general background that continuously rises with temperature. With the positron beam technique depth information was obtained for defects in iron and the defect character could be established with the help of the information provided on annihilation with conduction and core electrons of the defect trapped positrons.« less

  8. Model-Based Design of Biochemical Microreactors

    PubMed Central

    Elbinger, Tobias; Gahn, Markus; Neuss-Radu, Maria; Hante, Falk M.; Voll, Lars M.; Leugering, Günter; Knabner, Peter

    2016-01-01

    Mathematical modeling of biochemical pathways is an important resource in Synthetic Biology, as the predictive power of simulating synthetic pathways represents an important step in the design of synthetic metabolons. In this paper, we are concerned with the mathematical modeling, simulation, and optimization of metabolic processes in biochemical microreactors able to carry out enzymatic reactions and to exchange metabolites with their surrounding medium. The results of the reported modeling approach are incorporated in the design of the first microreactor prototypes that are under construction. These microreactors consist of compartments separated by membranes carrying specific transporters for the input of substrates and export of products. Inside the compartments of the reactor multienzyme complexes assembled on nano-beads by peptide adapters are used to carry out metabolic reactions. The spatially resolved mathematical model describing the ongoing processes consists of a system of diffusion equations together with boundary and initial conditions. The boundary conditions model the exchange of metabolites with the neighboring compartments and the reactions at the surface of the nano-beads carrying the multienzyme complexes. Efficient and accurate approaches for numerical simulation of the mathematical model and for optimal design of the microreactor are developed. As a proof-of-concept scenario, a synthetic pathway for the conversion of sucrose to glucose-6-phosphate (G6P) was chosen. In this context, the mathematical model is employed to compute the spatio-temporal distributions of the metabolite concentrations, as well as application relevant quantities like the outflow rate of G6P. These computations are performed for different scenarios, where the number of beads as well as their loading capacity are varied. The computed metabolite distributions show spatial patterns, which differ for different experimental arrangements. Furthermore, the total output of G6P increases for scenarios where microcompartimentation of enzymes occurs. These results show that spatially resolved models are needed in the description of the conversion processes. Finally, the enzyme stoichiometry on the nano-beads is determined, which maximizes the production of glucose-6-phosphate. PMID:26913283

  9. Alcohol Dehydration on Monooxo W=O and Dioxo O=W=O Species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhenjun; Smid, Bretislav; Kim, Yu Kwon

    2012-08-16

    The dehydration of 1-propanol on nanoporous WO3 films prepared via ballistic deposition at ~20 K has been investigated using temperature programmed desorption, infrared reflection absorption spectroscopy and density functional theory. The as deposited films are extremely efficient in 1-propanol dehydration to propene. This activity is correlated with the presence of dioxo O=W=O groups while monooxo W=O species are shown to be inactive. Annealing of the film induces densification that results in the loss of catalytic activity due to annihilation O=W=O species.

  10. Sorption/Desorption Behavior and Mechanism of NH4(+) by Biochar as a Nitrogen Fertilizer Sustained-Release Material.

    PubMed

    Cai, Yanxue; Qi, Hejinyan; Liu, Yujia; He, Xiaowei

    2016-06-22

    Biochar, the pyrolysis product of biomass material with limited oxygen, has the potential to increase crop production and sustained-release fertilizer, but the understanding of the reason for improving soil fertility is insufficient, especially the behavior and mechanism of ammonium sulfate. In this study, the sorption/desorption effect of NH4(+) by biochar deriving from common agricultural wastes under different preparation temperatures from 200 to 500 °C was studied and its mechanism was discussed. The results showed that biochar displayed excellent retention ability in holding NH4(+) above 90% after 21 days under 200 °C preparation temperature, and it can be deduced that the oxygen functional groups, such as carboxyl and keto group, played the primary role in adsorbing NH4(+) due to hydrogen bonding and electrostatic interaction. The sorption/desorption effect and mechanism were studied for providing an optional way to dispose of agricultural residues into biochar as a nitrogen fertilizer sustained-release material under suitable preparation temperature.

  11. Hydrogen retention in lithium and lithium oxide films

    DOE PAGES

    Buzi, L.; Yang, Y.; Dominguez-Gutierrez, F. J.; ...

    2018-02-09

    Pure lithium (Li) surfaces are difficult to maintain in fusion devices due to rapid oxide formation, therefore, parameterizing and understanding the mechanisms of hydrogen (H, D) retention in lithium oxide (Li 2O) in addition to pure Li is crucial for Li plasma-facing material applications. To compare H retention in Li and Li 2O films, measurements were made as a function of surface temperature (90–520 K) under ultrahigh vacuum (UHV) conditions using temperature programmed desorption (TPD). In both cases, the total retention dropped with surface temperature, from 95% at 90 K to 35% at 520 K Li 2O films retained Hmore » in similar amounts as pure Li. Finally, Molecular Dynamics (MD) modeling was used to elucidate the mechanisms of H retention, and results were consistent with experiments in terms of both retention fraction and the drop of retention with temperature.« less

  12. Hydrogen retention in lithium and lithium oxide films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buzi, L.; Yang, Y.; Dominguez-Gutierrez, F. J.

    Pure lithium (Li) surfaces are difficult to maintain in fusion devices due to rapid oxide formation, therefore, parameterizing and understanding the mechanisms of hydrogen (H, D) retention in lithium oxide (Li 2O) in addition to pure Li is crucial for Li plasma-facing material applications. To compare H retention in Li and Li 2O films, measurements were made as a function of surface temperature (90–520 K) under ultrahigh vacuum (UHV) conditions using temperature programmed desorption (TPD). In both cases, the total retention dropped with surface temperature, from 95% at 90 K to 35% at 520 K Li 2O films retained Hmore » in similar amounts as pure Li. Finally, Molecular Dynamics (MD) modeling was used to elucidate the mechanisms of H retention, and results were consistent with experiments in terms of both retention fraction and the drop of retention with temperature.« less

  13. Desorption of isopropyl alcohol from adsorbent with non-thermal plasma.

    PubMed

    Shiau, Chen Han; Pan, Kuan Lun; Yu, Sheng Jen; Yan, Shaw Yi; Chang, Moo Been

    2017-09-01

    Effective desorption of isopropyl alcohol (IPA) from adsorbents with non-thermal plasma is developed. In this system, IPA is effectively adsorbed with activated carbon while dielectric barrier discharge is applied to replace the conventional thermal desorption process to achieve good desorption efficiency, making the treatment equipment smaller in size. Various adsorbents including molecular sieves and activated carbon are evaluated for IPA adsorption capacity. The results indicate that BAC has the highest IPA adsorption capacity (280.31 mg IPA/g) under the operating conditions of room temperature, IPA of 400 ppm, and residence time of 0.283 s among 5 adsorbents tested. For the plasma desorption process, the IPA selectivity of 89% is achieved with BAC as N 2 is used as desorbing gas. In addition, as air or O 2 is used as desorbing gas, the IPA desorption concentration is reduced, because air and O 2 plasmas generate active species to oxidize IPA to form acetone, CO 2 , and even CO. Furthermore, the results of the durability test indicate that the amount of IPA desorbed increases with increasing desorption times and plasma desorption process has a higher energy efficiency if compared with thermal desorption. Overall, this study indicates that non-thermal plasma is a viable process for removing VOCs to regenerate adsorbent.

  14. Oxidation of CO by NO on planar and faceted Ir(210)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Wenhua; Bartynski, Robert A.; Kaghazchi, Payam

    2012-06-11

    Oxidation of CO by pre-adsorbed NO has been studied on planar Ir(210) and nanofaceted Ir(210) with average facet sizes of 5 nm and 14 nm by temperature programmed desorption (TPD). Both surfaces favor oxidation of CO to CO 2, which is accompanied by simultaneous reduction of NO with high selectivity to N 2. At low NO pre-coverage, the temperature (T i) for the onset of CO 2 desorption as well as CO 2 desorption peak temperature (T p) decreases with increasing CO exposure, and NO dissociation is affected by co-adsorbed CO. At high NO pre-coverage, T i and T pmore » are independent of CO exposure, and co-adsorbed CO has no influence on dissociation of NO. Moreover, at low NO pre-coverage, planar Ir(210) is more active than faceted Ir(210) for oxidation of CO to CO 2: T i and T p are much lower on planar Ir(210) than that on faceted Ir(210). In addition, faceted Ir(210) with an average facet size of 5 nm is more active for oxidation of CO to CO 2 than faceted Ir(210) with an average facet size of 14 nm, i.e., oxidation of CO by pre-adsorbed NO on faceted Ir(210) exhibits size effects on the nanometer scale. In comparison, at low O pre-coverage planar Ir(210) is more active than faceted Ir(210) for oxidation of CO to CO 2 but no evidence has been found for size effects in oxidation of CO by pre-adsorbed oxygen on faceted Ir(210) for average facet sizes of 5 nm and 14 nm. The TPD data indicate the same reaction pathway for CO 2 formation from CO + NO and CO + O reactions on planar Ir(210). Lastly, the adsorption sites of CO, NO, O, CO + O, and CO + NO on Ir are characterized by density functional theory.« less

  15. Photon-stimulated desorption as a substantial source of sodium in the lunar atmosphere.

    PubMed

    Yakshinskiy, B V; Madey, T E

    1999-08-12

    Mercury and the Moon both have tenuous atmospheres that contain atomic sodium and potassium. These chemicals must be continuously resupplied, as neither body can retain the atoms for more than a few hours. The mechanisms proposed to explain the resupply include sputtering of the surface by the solar wind, micrometeorite impacts, thermal desorption and photon-stimulated desorption. But there are few data and no general agreement about which processes dominate. Here we report laboratory studies of photon-stimulated desorption of sodium from surfaces that simulate lunar silicates. We find that bombardment of such surfaces at temperatures of approximately 250 K by ultraviolet photons (wavelength lambda < 300 nm) causes very efficient desorption of sodium atoms, induced by electronic excitations rather than by thermal processes or momentum transfer. The flux at the lunar surface of ultraviolet photons from the Sun is sufficient to ensure that photon-stimulated desorption of sodium contributes substantially to the Moon's atmosphere. On Mercury, solar heating of the surface implies that thermal desorption will also be an important source of atmospheric sodium.

  16. The Study and Development of Metal Oxide Reactive Adsorbents for the Destruction of Toxic Organic Compounds

    DTIC Science & Technology

    2008-04-15

    been achieved, but our microreactor studies showed a slight loss in product flow from the reactor, indicating a loss of decomposition capacity for...examination by infrared spectroscopy. A second sample of the same solid was placed in the microreactor as before and treated in the same fashion... a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. a

  17. Dimethyl Methylphosphonate Adsorption Capacities and Desorption Energies on Ordered Mesoporous Carbons.

    PubMed

    Huynh, Kim; Holdren, Scott; Hu, Junkai; Wang, Luning; Zachariah, Michael R; Eichhorn, Bryan W

    2017-11-22

    In this study, we determine effective adsorption capacities and desorption energies for DMMP with highly ordered mesoporous carbons (OMCs), 1D cylindrical FDU-15, 3D hexagonal CMK-3, 3D bicontinuous CMK-8, and as a reference, microporous BPL carbon. After exposure to DMMP vapor at room temperature for approximately 70 and 800 h, the adsorption capacity of DMMP for each OMC was generally proportional to the total surface area and pore volume, respectively. Desorption energies of DMMP were determined using a model-free isoconversional method applied to thermogravimetric analysis (TGA) data. Our experiments determined that DMMP saturated carbon will desorb any weakly bound DMMP from pores >2.4 nm at room temperature, and no DMMP will adsorb into pores smaller than 0.5 nm. The calculated desorption energies for high surface coverages, 25% DMMP desorbed from pores ≤2.4 nm, are 68-74 kJ mol -1 , which is similar to the DMMP heat of vaporization (52 kJ mol -1 ). At lower surface coverages, 80% DMMP desorbed, the DMMP desorption energies from the OMCs are 95-103 kJ mol -1 . This is overall 20-30 kJ mol -1 higher in comparison to that of BPL carbon, due to the pore size and diffusion through different porous networks.

  18. Trapping and desorption of complex organic molecules in water at 20 K

    NASA Astrophysics Data System (ADS)

    Burke, Daren J.; Puletti, Fabrizio; Woods, Paul M.; Viti, Serena; Slater, Ben; Brown, Wendy A.

    2015-10-01

    The formation, chemical, and thermal processing of complex organic molecules (COMs) is currently a topic of much interest in interstellar chemistry. The isomers glycolaldehyde, methyl formate, and acetic acid are particularly important because of their role as pre-biotic species. It is becoming increasingly clear that many COMs are formed within interstellar ices which are dominated by water. Hence, the interaction of these species with water ice is crucially important in dictating their behaviour. Here, we present the first detailed comparative study of the adsorption and thermal processing of glycolaldehyde, methyl formate, and acetic acid adsorbed on and in water ices at astrophysically relevant temperatures (20 K). We show that the functional group of the isomer dictates the strength of interaction with water ice, and hence the resulting desorption and trapping behaviour. Furthermore, the strength of this interaction directly affects the crystallization of water, which in turn affects the desorption behaviour. Our detailed coverage and composition dependent data allow us to categorize the desorption behaviour of the three isomers on the basis of the strength of intermolecular and intramolecular interactions, as well as the natural sublimation temperature of the molecule. This categorization is extended to other C, H, and O containing molecules in order to predict and describe the desorption behaviour of COMs from interstellar ices.

  19. Measurement of volatile plant compounds in field ambient air by thermal desorption-gas chromatography-mass spectrometry.

    PubMed

    Cai, Xiao-Ming; Xu, Xiu-Xiu; Bian, Lei; Luo, Zong-Xiu; Chen, Zong-Mao

    2015-12-01

    Determination of volatile plant compounds in field ambient air is important to understand chemical communication between plants and insects and will aid the development of semiochemicals from plants for pest control. In this study, a thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) method was developed to measure ultra-trace levels of volatile plant compounds in field ambient air. The desorption parameters of TD, including sorbent tube material, tube desorption temperature, desorption time, and cold trap temperature, were selected and optimized. In GC-MS analysis, the selected ion monitoring mode was used for enhanced sensitivity and selectivity. This method was sufficiently sensitive to detect part-per-trillion levels of volatile plant compounds in field ambient air. Laboratory and field evaluation revealed that the method presented high precision and accuracy. Field studies indicated that the background odor of tea plantations contained some common volatile plant compounds, such as (Z)-3-hexenol, methyl salicylate, and (E)-ocimene, at concentrations ranging from 1 to 3400 ng m(-3). In addition, the background odor in summer was more abundant in quality and quantity than in autumn. Relative to previous methods, the TD-GC-MS method is more sensitive, permitting accurate qualitative and quantitative measurements of volatile plant compounds in field ambient air.

  20. Effect of delivery condition on desorption rate of ZrCo metal hydride bed for fusion fuel cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, H.G.; Yun, S.H.; Chung, D.

    2015-03-15

    For the safety of fusion fuel cycle, hydrogen isotope gases including tritium are stored as metal hydride form. To satisfy fueling requirement of fusion machine, rapid delivery from metal hydride bed is one of major factors for the development of tritium storage and delivery system. Desorption from metal hydride depends on the operation scenario by pressure and temperature control of the bed. The effect of operation scenario and pump performance on desorption rate of metal hydride bed was experimentally investigated using ZrCo bed. The results showed that the condition of pre-heating scenario before actual delivery of gas affected the deliverymore » performance. Different pumps were connected to desorption line from bed and the effect of pump capacity on desorption rate were also found to be significant. (authors)« less

  1. CO Depletion: A Microscopic Perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cazaux, S.; Martín-Doménech, R.; Caro, G. M. Muñoz

    In regions where stars form, variations in density and temperature can cause gas to freeze out onto dust grains forming ice mantles, which influences the chemical composition of a cloud. The aim of this paper is to understand in detail the depletion (and desorption) of CO on (from) interstellar dust grains. Experimental simulations were performed under two different (astrophysically relevant) conditions. In parallel, Kinetic Monte Carlo simulations were used to mimic the experimental conditions. In our experiments, CO molecules accrete onto water ice at temperatures below 27 K, with a deposition rate that does not depend on the substrate temperature.more » During the warm-up phase, the desorption processes do exhibit subtle differences, indicating the presence of weakly bound CO molecules, therefore highlighting a low diffusion efficiency. IR measurements following the ice thickness during the TPD confirm that diffusion occurs at temperatures close to the desorption. Applied to astrophysical conditions, in a pre-stellar core, the binding energies of CO molecules, ranging between 300 and 850 K, depend on the conditions at which CO has been deposited. Because of this wide range of binding energies, the depletion of CO as a function of A{sub V} is much less important than initially thought. The weakly bound molecules, easily released into the gas phase through evaporation, change the balance between accretion and desorption, which result in a larger abundance of CO at high extinctions. In addition, weakly bound CO molecules are also more mobile, and this could increase the reactivity within interstellar ices.« less

  2. Desorption corona beam ionization source for mass spectrometry.

    PubMed

    Wang, Hua; Sun, Wenjian; Zhang, Junsheng; Yang, Xiaohui; Lin, Tao; Ding, Li

    2010-04-01

    A novel Desorption Corona Beam Ionization (DCBI) source for direct analysis of samples from surface in mass spectrometry is reported. The DCBI source can work under ambient conditions without time-consuming sample pretreatments. The source shares some common features with another ionization source - Direct Analysis in Real Time (DART), developed earlier. For example, helium was used as the discharge gas (although only corona discharge is involved in the present source), and heating of the discharge gas is required for sample desorption. However, the difference between the two sources is substantial. In the present source, a visible thin corona beam extending out around 1 cm can be formed by using a hollow needle/ring electrode structure. This feature would greatly facilitate localizing sampling areas and performing imaging/profiling experiments. The DCBI source is also capable of performing progressive temperature scans between room temperature and 450 degrees C in order to sequentially desorb samples from the surface and, therefore, to achieve a rough separation of the individual components in a complex mixture, resulting in less congestion in the mass spectrum acquired. Mass spectra for a broad range of compounds (pesticides, veterinary additives, OTC drugs, explosive materials) have been acquired using the DCBI source. For most of the compounds tested, the heater temperature required for efficient desorption is at least 150 degrees C. The molecular weight of the sample that can be desorbed/ionized is normally below 600 dalton even at the highest heater temperature, which is mainly limited by the volatility of the sample.

  3. Experimental study of water desorption isotherms and thin-layer convective drying kinetics of bay laurel leaves

    NASA Astrophysics Data System (ADS)

    Ghnimi, Thouraya; Hassini, Lamine; Bagane, Mohamed

    2016-12-01

    The aim of this work is to determine the desorption isotherms and the drying kinetics of bay laurel leaves ( Laurus Nobilis L.). The desorption isotherms were performed at three temperature levels: 50, 60 and 70 °C and at water activity ranging from 0.057 to 0.88 using the statistic gravimetric method. Five sorption models were used to fit desorption experimental isotherm data. It was found that Kuhn model offers the best fitting of experimental moisture isotherms in the mentioned investigated ranges of temperature and water activity. The Net isosteric heat of water desorption was evaluated using The Clausius-Clapeyron equation and was then best correlated to equilibrium moisture content by the empirical Tsami's equation. Thin layer convective drying curves of bay laurel leaves were obtained for temperatures of 45, 50, 60 and 70 °C, relative humidity of 5, 15, 30 and 45 % and air velocities of 1, 1.5 and 2 m/s. A non linear regression procedure of Levenberg-Marquardt was used to fit drying curves with five semi empirical mathematical models available in the literature, The R2 and χ2 were used to evaluate the goodness of fit of models to data. Based on the experimental drying curves the drying characteristic curve (DCC) has been established and fitted with a third degree polynomial function. It was found that the Midilli Kucuk model was the best semi-empirical model describing thin layer drying kinetics of bay laurel leaves. The bay laurel leaves effective moisture diffusivity and activation energy were also identified.

  4. Hydrocracking of Jatropha Oil over non-sulfided PTA-NiMo/ZSM-5 Catalyst

    PubMed Central

    Yang, Xiaosong; Liu, Jing; Fan, Kai; Rong, Long

    2017-01-01

    The PTA-NiMo/ZSM-5 catalyst impregnated with phosphotungstic acid (PTA) was designed for the transformation of Jatropha oil into benzene, toluene, and xylenes (BTX) aromatics. The produced catalyst was characterized by N2 adsorption-desorption, powder X-ray diffraction (XRD), Fourier transform infrared (FT-IR), X-ray photoelectron spectroscopy (XPS), and the temperature-programmed desorption of ammonia (NH3-TPD). The catalytic performance was evaluated by gas chromatography (GC). The liquid products were 70 wt% of the feed oil, and the majority of the liquid products were BTX. The aromatization activity of the catalyst was improved by the addition of PTA and the hierarchical process. The favorable PTA amount was 20 wt% and the yield of BTX was 59 wt% at 380 °C, 3 MPa, H2/oil (v/v) = 1000 and LHSV = 1 h−1 over the PTA20-NiMo/HZ0.5 catalyst (PTA 20 wt%) without sulfurization. PMID:28134313

  5. Quantitative Detection of Trace Explosive Vapors by Programmed Temperature Desorption Gas Chromatography-Electron Capture Detector

    PubMed Central

    Field, Christopher R.; Lubrano, Adam; Woytowitz, Morgan; Giordano, Braden C.; Rose-Pehrsson, Susan L.

    2014-01-01

    The direct liquid deposition of solution standards onto sorbent-filled thermal desorption tubes is used for the quantitative analysis of trace explosive vapor samples. The direct liquid deposition method yields a higher fidelity between the analysis of vapor samples and the analysis of solution standards than using separate injection methods for vapors and solutions, i.e., samples collected on vapor collection tubes and standards prepared in solution vials. Additionally, the method can account for instrumentation losses, which makes it ideal for minimizing variability and quantitative trace chemical detection. Gas chromatography with an electron capture detector is an instrumentation configuration sensitive to nitro-energetics, such as TNT and RDX, due to their relatively high electron affinity. However, vapor quantitation of these compounds is difficult without viable vapor standards. Thus, we eliminate the requirement for vapor standards by combining the sensitivity of the instrumentation with a direct liquid deposition protocol to analyze trace explosive vapor samples. PMID:25145416

  6. Quantitative detection of trace explosive vapors by programmed temperature desorption gas chromatography-electron capture detector.

    PubMed

    Field, Christopher R; Lubrano, Adam; Woytowitz, Morgan; Giordano, Braden C; Rose-Pehrsson, Susan L

    2014-07-25

    The direct liquid deposition of solution standards onto sorbent-filled thermal desorption tubes is used for the quantitative analysis of trace explosive vapor samples. The direct liquid deposition method yields a higher fidelity between the analysis of vapor samples and the analysis of solution standards than using separate injection methods for vapors and solutions, i.e., samples collected on vapor collection tubes and standards prepared in solution vials. Additionally, the method can account for instrumentation losses, which makes it ideal for minimizing variability and quantitative trace chemical detection. Gas chromatography with an electron capture detector is an instrumentation configuration sensitive to nitro-energetics, such as TNT and RDX, due to their relatively high electron affinity. However, vapor quantitation of these compounds is difficult without viable vapor standards. Thus, we eliminate the requirement for vapor standards by combining the sensitivity of the instrumentation with a direct liquid deposition protocol to analyze trace explosive vapor samples.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei Chen; Kan, A.T.; Tomson, M.B.

    Both the adsorption and the desorption processes play important roles in the transport and fate of organic contaminants in water-sediments and groundwater systems. The adsorption-desorption processes are shown to be influenced by a number of factors, including sediments organic carbon content, contaminant aqueous solubility, aqueous-phase concentration as well as some natural environmental factors such as pH, pE, ionic strength and temperature. External mechanical forces, such as sediment perturbation, and repeated dredging will also have finite effect on the microscopic interparticle forces that control bonds between large and small grain particles. The objective of this research is to study the influencesmore » of various environmental effects on the equilibrium or non-equilibrium desorption behavior of nonpolar organic pollutants in historically contaminated natural sediments of Lake Charles, LA. Differences of desorption behavior between freshly and historically contaminated sediments will be compared in order to evaluated the desorption mechanism. The influences of particle size, mineral composition, organic matter concentration, and aqueous phase matrix composition on desorption behaviour will also be evaluated.« less

  8. A simple strategy for in situ fabrication of a smart hydrogel microvalve within microchannels for thermostatic control.

    PubMed

    Lin, Shuo; Wang, Wei; Ju, Xiao-Jie; Xie, Rui; Chu, Liang-Yin

    2014-08-07

    Self-regulation of temperature in microchip systems is crucial for their applications in biomedical fields such as cell culture and biomolecule synthesis as well as those cases that require constant temperature conditions. Here we report on a simple and versatile approach for in situ fabrication of a smart hydrogel microvalve within a microchip for thermostatic control. The thermo-responsive hydrogel microvalve enables the "on-off" switch by sensing temperature fluctuations to control the fluid flux as well as the fluid heat exchange for self-regulation of the temperature at a constant range. Such temperature self-regulation is demonstrated by integrating the microvalve-incorporated microchip into the flow circulation loop of a micro-heat-exchanging system for thermostatic control. Moreover, the microvalve-incorporated microchip is employed for culturing cells under temperature self-regulation. The smart microvalve shows great potential as a temperature controller for applications that require thermostatic conditions. This approach offers a facile and flexible strategy for in situ fabricating hydrogel microvalves within microchips as chemostats and microreactors for biomedical applications.

  9. Enhanced desorption of persistent organic pollutants from microplastics under simulated physiological conditions.

    PubMed

    Bakir, Adil; Rowland, Steven J; Thompson, Richard C

    2014-02-01

    Microplastics have the potential to uptake and release persistent organic pollutants (POPs); however, subsequent transfer to marine organisms is poorly understood. Some models estimating transfer of sorbed contaminants to organisms neglect the role of gut surfactants under differing physiological conditions in the gut (varying pH and temperature), examined here. We investigated the potential for polyvinylchloride (PVC) and polyethylene (PE) to sorb and desorb (14)C-DDT, (14)C-phenanthrene (Phe), (14)C-perfluorooctanoic acid (PFOA) and (14)C-di-2-ethylhexyl phthalate (DEHP). Desorption rates of POPs were quantified in seawater and under simulated gut conditions. Influence of pH and temperature was examined in order to represent cold and warm blooded organisms. Desorption rates were faster with gut surfactant, with a further substantial increase under conditions simulating warm blooded organisms. Desorption under gut conditions could be up to 30 times greater than in seawater alone. Of the POP/plastic combinations examined Phe with PE gave the highest potential for transport to organisms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Measurement of toxic volatile organic compounds in indoor air of semiconductor foundries using multisorbent adsorption/thermal desorption coupled with gas chromatography-mass spectrometry.

    PubMed

    Wu, Chien-Hou; Lin, Ming-Nan; Feng, Chien-Tai; Yang, Kuang-Ling; Lo, Yu-Shiu; Lo, Jiunn-Guang

    2003-05-09

    A method for the qualitative and quantitative analysis of volatile organic compounds (VOCs) in the air of class-100 clean rooms at semiconductor fabrication facilities was developed. Air samples from two semiconductor factories were collected each hour on multisorbent tubes (including Carbopack B, Carbopack C, and Carbosieve SIII) with a 24-h automatic active sampling system and analyzed using adsorption/thermal desorption coupled with gas chromatography-mass spectrometry. Experimental parameters, including thermal desorption temperature, desorption time, and cryofocusing temperature, were optimized. The average recoveries and the method detection limits for the target compounds were in the range 94-101% and 0.31-0.89 ppb, respectively, under the conditions of a 1 L sampling volume and 80% relative humidity. VOCs such as acetone, isopropyl alcohol, 2-heptanone, and toluene, which are commonly used in the semiconductor and electronics industries, were detected and accurately quantified with the established method. Temporal variations of the analyte concentrations observed were attributed to the improper use of organic solvents during operation.

  11. Waste Isolation Safety Assessment Program. Task 4. Third Contractor Information Meeting. [Adsorption-desorption on geological media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-06-01

    The study subject of this meeting was the adsorption and desorption of radionuclides on geologic media under repository conditions. This volume contans eight papers. Separate abstracts were prepared for all eight papers. (DLC)

  12. Thermodynamics and performance of the Mg-H-F system for thermochemical energy storage applications.

    PubMed

    Tortoza, Mariana S; Humphries, Terry D; Sheppard, Drew A; Paskevicius, Mark; Rowles, Matthew R; Sofianos, M Veronica; Aguey-Zinsou, Kondo-Francois; Buckley, Craig E

    2018-01-24

    Magnesium hydride (MgH 2 ) is a hydrogen storage material that operates at temperatures above 300 °C. Unfortunately, magnesium sintering occurs above 420 °C, inhibiting its application as a thermal energy storage material. In this study, the substitution of fluorine for hydrogen in MgH 2 to form a range of Mg(H x F 1-x ) 2 (x = 1, 0.95, 0.85, 0.70, 0.50, 0) composites has been utilised to thermodynamically stabilise the material, so it can be used as a thermochemical energy storage material that can replace molten salts in concentrating solar thermal plants. These materials have been studied by in situ synchrotron X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis, temperature-programmed-desorption mass spectrometry and Pressure-Composition-Isothermal (PCI) analysis. Thermal analysis has determined that the thermal stability of Mg-H-F solid solutions increases proportionally with fluorine content, with Mg(H 0.85 F 0.15 ) 2 having a maximum rate of H 2 desorption at 434 °C, with a practical hydrogen capacity of 4.6 ± 0.2 wt% H 2 (theoretical 5.4 wt% H 2 ). An extremely stable Mg(H 0.43 F 0.57 ) 2 phase is formed upon the decomposition of each Mg-H-F composition of which the remaining H 2 is not released until above 505 °C. PCI measurements of Mg(H 0.85 F 0.15 ) 2 have determined the enthalpy (ΔH des ) to be 73.6 ± 0.2 kJ mol -1 H 2 and entropy (ΔS des ) to be 131.2 ± 0.2 J K -1 mol -1 H 2 , which is slightly lower than MgH 2 with ΔH des of 74.06 kJ mol -1 H 2 and ΔS des = 133.4 J K -1 mol -1 H 2 . Cycling studies of Mg(H 0.85 F 0.15 ) 2 over six absorption/desorption cycles between 425 and 480 °C show an increased usable cycling temperature of ∼80 °C compared to bulk MgH 2 , increasing the thermal operating temperatures for technological applications.

  13. Deuterium sputtering of Li and Li-O films

    NASA Astrophysics Data System (ADS)

    Nelson, Andrew; Buzi, Luxherta; Kaita, Robert; Koel, Bruce

    2017-10-01

    Lithium wall coatings have been shown to enhance the operational plasma performance of many fusion devices, including NSTX and other tokamaks, by reducing the global wall recycling coefficient. However, pure lithium surfaces are extremely difficult to maintain in experimental fusion devices due to both inevitable oxidation and codeposition from sputtering of hot plasma facing components. Sputtering of thin lithium and lithium oxide films on a molybdenum target by energetic deuterium ion bombardment was studied in laboratory experiments conducted in a surface science apparatus. A Colutron ion source was used to produce a monoenergetic, mass-selected ion beam. Measurements were made under ultrahigh vacuum conditions as a function of surface temperature (90-520 K) using x-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and temperature programmed desorption (TPD). Results are compared with computer simulations conducted on a temperature-dependent data-calibrated (TRIM) model.

  14. Green Route for Silver Nanoparticles Synthesis by Raphanus Sativus Extract in a Continuous Flow Tubular Microreactor

    NASA Astrophysics Data System (ADS)

    Jolhe, P. D.; Bhanvase, B. A.; Patil, V. S.; Sonawane, S. H.

    The present work deals with the investigation of the greener route for the production of silver nanoparticles using Raphanus sativus (R. sativus) bioextract in a continuous flow tubular microreactor. The parameters affecting the particle size and distribution were investigated. From the results obtained it can be inferred that the ascorbic acid (reducing agent) present in the R. sativus bioextract is responsible for the reduction of silver ions. At optimum condition, the particle size distribution of nanoparticles is found between 18nm and 39nm. The absorbance value was found to be decreased with an increase in the diameter of the microreactor. It indicates that a number of nuclei are formed in the micrometer sized (diameter) reactor because of the better solute transfer rate leading to the formation of large number of silver nanoparticles. The study of antibacterial activity of green synthesized silver nanoparticles shows effective inhibitory activity against waterborne pathogens, Shegella and Listeria bacteria.

  15. Hydration of acrylonitrile to produce acrylamide using biocatalyst in a membrane dispersion microreactor.

    PubMed

    Li, Jiahui; Chen, Jie; Wang, Yujun; Luo, Guangsheng; Yu, Huimin

    2014-10-01

    In this work, a membrane dispersion microreactor was utilized for the hydration of acrylonitrile to produce acrylamide. Through observation using a microscopy, it was found that the acrylonitrile was dispersed into the continuous phase (the aqueous phase contains nitrile hydratase (NHase)) as droplets with a diameter ranged from 25 to 35 μm, hence the mass transfer specific surface area was significantly increased, and the concentration of acrylamide reached 52.5 wt% within 50 min. By contrast, in stirred tanks, the concentration of acrylamide only got 39.5 wt% within 245 min. Moreover, only a few amounts of acrylonitrile were accumulated in this microreactor system. Through optimizing the flow rate, the concentration of acrylamide reached 45.8 wt% within 35 min, the short reaction time greatly weakened the inhibition of acrylonitrile and acrylamide on the enzyme activity, which is suitable for prolonging the life of free cell. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Interaction of acetonitrile with the surfaces of amorphous and crystalline ice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaff, J.E.; Roberts, J.T.

    1999-10-12

    The adsorption of acetonitrile (CH{sub 3}CN) on ultrathin films of ice under ultrahigh vacuum was investigated with temperature-programmed desorption ass spectrometry (TPD) and Fourier transform infrared reflection absorption spectroscopy (FTIRAS). Two types of film were studied, amorphous and crystalline. On the amorphous films, two sates of adsorbed acetonitrile were observed by TPD and FTIRAS. One of the states is attributed to acetonitrile that is hydrogen bonded to agree OH group at the ice surface; the other state is assigned to acetonitrile that is purely physiorbed. Evidence for the hydrogen-bonded state is two-fold. First, there is a large kinetic isotope effectmore » for desorption from H{sub 2}O-and D{sub 2}O-ice: the desorption temperatures from ice-h{sub 2} and ice-d{sub 2} are {approximately}161 and {approximately}176 K, respectively. Second, the C{triple{underscore}bond}N stretching frequency (2,265 cm{sup {minus}1}) is 16 cm{sup {minus}1} is greater than that of physisorbed acetonitrile, and it is roughly equal to that of acetonitrile which is hydrogen bonded to an OH group at the air-liquid water interface. On the crystalline films, there is no evidence for a hydrogen-bonded state in the TPD spectra. The FTIRAS spectra do show that some hydrogen-bonded acetonitrile is present but at a maximum coverage that is roughly one-sixth of that on the amorphous surface. The difference between the amorphous and crystalline surfaces cannot be attributed to a difference n surface areas. Rather, this work provides additional evidence that the surface chemical properties of amorphous ice are different from those of crystalline ice.« less

  17. Infrared Spectra and Thermodynamic Properties of Co2/Methanol Ices

    NASA Astrophysics Data System (ADS)

    Maté, Belén; Gálvez, Óscar; Herrero, Víctor J.; Escribano, Rafael

    2009-01-01

    Ices of mixtures of carbon dioxide and methanol have been studied in a range of temperatures relevant for star-forming regions, comets, polar caps of planets and satellites, and other solar system bodies. We have performed temperature-programmed desorption measurements and recorded IR spectra of various types of samples. The presence of two slightly different structures of CO2 is manifest. A distorted CO2 structure is characterized by bandshifts between 5 cm-1 (ν3) and 10 cm-1 (ν2) with respect to normal CO2. If the samples are heated above 130 K, the distorted CO2 sublimates and only the normal structure remains. The latter can stay trapped until the sublimation of crystalline methanol (150 K). The desorption energy (E d ~ 20 kJ mol-1) of CO2 from methanol ice, and the specific adsorption surface area (6 m2 g-1) of amorphous CH3OH ice, have been determined. CO2 does not penetrate into crystalline ice. Whereas the desorption energy is similar to that of CO2/H2O samples, the specific surface of methanol is much smaller than that of amorphous solid water (ASW). The interaction of CO2 molecules with water and methanol is similar but ices of CH3OH are much less porous than ASW. The inclusion of CO2 into previously formed ices containing these two species would take place preferentially into ASW. However, in processes of simultaneous deposition, methanol ice can admit a larger amount of CO2 than water ice. CO2/CH3OH ices formed by simultaneous deposition admit two orders of magnitude more CO2 than sequentially deposited ices. These findings can have direct relevance to the interpretation of observations from protostellar environments (e.g., RAFGL7009S) and comet nuclei.

  18. Experimental study and modelling of water sorption/desorption isotherms on two agricultural products: Apple and carrot

    NASA Astrophysics Data System (ADS)

    Timoumi, S.; Zagrouba, F.; Mihoubi, D.; Tlili, M. M.

    2004-12-01

    This work is focused on some properties of dried apple (Red Chief) and carrot (Misky). Water sorption isotherms of carrot and apple were investigated at three temperatures: 30, 40 and 60°C, corresponding to drying temperatures, by the static method consisting of the use of different sulphuric acid solutions. Guggenheim-Anderson-de Boer (G.A.B) model is found to describe the experimental curves better than Henderson, Hasley and Oswin models with a correlation coefficient superior to 0.97 for both products. The hysteresis phenomenon was clearly observed in the case of apple isotherms. The experimental data were also used to determine the isosteric enthalpy of desorption of apple and carrot. The isosteric enthalpy of desorption decreased with increase in moisture content and the trend became asymptotic.

  19. Dynamic Moisture Sorption and Desorption in Fumed Silica-filled Silicone Foam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trautschold, Olivia Carol

    Characterizing dynamic moisture sorption and desorption in fumed silica-filled silicone foam is necessary for determining material compatibilities and life predictions, particularly in sealed environments that may be exposed to a range of environmental conditions. Thermogravimetric analysis (TGA) and near infrared spectroscopy (NIR) were performed on S5470 fumed silica-filled silicone foam to determine the weight percent of moisture at saturation. Additionally, TGA was used to determine the time, temperature, and relative humidity levels required for sorption and desorption of physisorbed moisture in S5470.

  20. Proceedings (1st) of the Topical Meeting on the Microphysics of Surfaces, Beams, and Adsorbates Held in Santa Fe, New Mexico on 4-6 February 1985.

    DTIC Science & Technology

    1985-12-18

    by other molecules within the area of irradiation were desorbed with methods. Therefore, the laser thermal desorption techrique a single pulse . This...of 30 ns irradiated on W surfaces covered with D face temperature raised by a laser pulse . The problem asso- atoms. D, desorption time-of-flight was...surface region which cm- I.2411a The desorption yield (Y) dependence on the laser was not irradiated by the laser pulses . The diffusion coeffi

  1. Corrigendum to "A study of steam methanol reforming in a microreactor" [J. Power Sources 173 (2007) 458-466

    NASA Astrophysics Data System (ADS)

    Suh, Jeong-Se; Lee, Ming-tsang; Greif, Ralph; Grigoropoulos, Costas P.

    A corrigendum has been requested by the authors of this paper due to the following errors: Thermal conductivity of the catalyst is changed from 20 W mK -1 to 0.3 W mK -1. In Table 1, the value of the thermal conductivity of the catalyst is changed from 20 W mK -1 (Touloukian [22]) to 0.3 W mK -1 (Karim [10]). As noted on p. 464 of the paper there was little variation of the gas temperature. Calculations have also been made at the value of the thermal conductivity of 0.3 W mK -1 and again yielded little variation of the gas temperature and thus a negligible change in the results.

  2. Pilot-Scale Silicone Process for Low-Cost Carbon Dioxide Capture. Final Scientific/Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hancu, Dan; Wood, Benjamin; Genovese, Sarah

    GE Global Research has developed, over the last 8 years, a platform of cost effective CO 2 capture technologies based on a non-aqueous aminosilicone solvent (GAP-1m). As demonstrated in a previous funded DOE project (DE-FE0007502), the GAP-1m solvent has increased CO 2 working capacity, lower volatility and corrosivity than the benchmark aqueous amine technology. The current report describes the cooperative program between GE Global Research (GE GRC), and the National Carbon Capture Center (NCCC) to design, construct, and operate a pilot-scale process using GAP-1m solvent to demonstrate its performance at 0.5 MWe. (i) Performance of the GAP-1m solvent was demonstratedmore » in a 0.5 MWe pilot with real flue gas for over 900 hrs. of operation using two alternative desorption designs: a Continuous Stirred Tank Reactor (CSTR), and a Steam Stripper Column (SSC). The CSTR is a one-stage separation unit with reduced space requirements, and capital cost. The alternative is a multi-stage separation column, with improved desorption efficiency. Testing the two desorber options allowed us to identify the most cost effective, and space efficient desorber solution. (ii) CSTR Campaign: The CSTR desorber unit was designed, fabricated and integrated with the pilot solvent test unit (PSTU), replacing the PSTU Steam Stripper Column at NCCC. Solvent management and waste water special procedures were implemented to accommodate operation of the non-aqueous solvent in the PSTU. Performance of the GAP-1m solvent with the CSTR was demonstrated for over 500 hrs. while varying temperature of the desorption (230 – 265 oF), solvent circulation rate (GAP-1m : CO 2 (molar) = 1.5 – 4), and flue gas flow rates (0.2 – 0.5 MWe). Solvent carry-over in the CO 2 product was minimized by maintaining water content below 5 wt.%, and desorption pressure at 7 psig. CO 2 capture efficiency achieved was 95% at 0.25 MWe (GAP-1m : CO 2 = 4 (molar), 230 oF desorption), and 65% at 0.5 MWe (GAP-1m : CO 2 (molar) = 1.5, 248 oF). Solvent loss was dominated by thermal degradation of the rich solvent. (iii) Steam Stripper Column Campaign: Higher expected cost of the solvent vs. aqueous amines makes solvent management a top priority to maintain the low cost for the process. During the testing of the GAP-1m solvent with the CSTR, thermal degradation of the rich solvent was found to be the main mechanism in solvent loss. Small amounts of water in the working solution were found to be an effective way to enable steam stripping, thereby lowering desorption temperature, and hence reducing thermal degradation. Steam stripping also increased working capacity by 30% due to a more efficient desorption. The concept was first tested in a glass stripping column (lab scale, GE GRC), optimized in a continuous bench scale system (2 kWe, GE GRC), and demonstrated in a 0.5 MWe PSTU at NCCC. No special system modifications were required to the PSTU to accommodate the testing of the non-aqueous GAP-1 solvent with the regenerator column. SSC was found to be more robust towards solvent entrainment (H 2O < 35 wt.%). 90 – 95% CO 2 capture efficiency was achieved under stoichiometric conditions at 0.5 MWe (235 oF desorption, 2 psig and 19 wt. % H 2O). Both CO 2 capture efficiency and specific duty reached optimum conditions at 18 wt.% H 2O. Low amine degradation (< 0.05 wt.%/day) was recorded over 350 hrs. of operation. Controlled water addition to GAP-1m solvent decreased the desorption temperature, thermal degradation, and improved the CO 2 working capacity due to more efficient absorption and desorption processes. Under these conditions, the GAP-1m solvent exhibited a 25% increased working capacity, and 10% reduction in specific steam duty vs. MEA, at 10 oF lower desorption temperature. (iv) Techno-economic Analysis: The pilot-scale PSTU engineering data were used to update the capture system process models, and the techno-economic analysis was performed for a 550 MW coal fired power plant. The 1st year CO 2 removal cost for the aminosilicone-based carbon-capture process was evaluated at $48/ton CO 2 using the steam stripper column. This is a 20% reduction compared to MEA, primarily due to lower overall capital cost. CO 2 cost using the CSTR desorber is dominated by the economics of the solvent make-up. The steam stripper desorber is the preferred unit operation due to a more efficient desorption, and reduced solvent make-up rate. Further reduction in CO 2 capture cost is expected by lowering the manufacturing cost of the solvent, implementing flowsheet optimization and/or implementing the next generation aminosilicone solvent with improved stability and increased CO 2 working capacity.« less

  3. Methylene migration and coupling on a non-reducible metal oxide: The reaction of dichloromethane on stoichiometric α-Cr 2O 3(0001)

    DOE PAGES

    Dong, Yujung; Brooks, John D.; Chen, Tsung-Liang; ...

    2014-09-17

    The reaction of CH 2Cl 2 over the nearly-stoichiometric α-Cr 2O 3(0001) surface produces gas phase ethylene, methane and surface chlorine adatoms. The reaction is initiated by the decomposition of CH 2Cl 2 into surface methylene and chlorine. Photoemission indicates that surface cations are the preferred binding sites for both methylene and chlorine adatoms. Two reaction channels are observed for methylene coupling to ethylene in temperature-programmed desorption (TPD). A desorption-limited, low-temperature route is attributed to two methylenes bound at a single site. The majority of ethylene is produced by a reaction-limited process involving surface migration (diffusion) of methylene as themore » rate-limiting step. DFT calculations indicate the surface diffusion mechanism is mediated by surface oxygen anions. The source of hydrogen for methane formation is adsorbed background water. Chlorine adatoms produced by the dissociation of CH 2Cl 2 deactivate the surface by simple site-blocking of surface Cr 3+ sites. Finally, a comparison of experiment and theory shows that DFT provides a better description of the surface chemistry of the carbene intermediate than DFT+U using reported parameters for a best representation of the bulk electronic properties of α-Cr 2O 3.« less

  4. Cryo-Milling and the Hydrogen Storage Properties of NaAlH4

    NASA Astrophysics Data System (ADS)

    Feller, Kevin; Dobbins, Tabbetha

    2013-03-01

    High energy ball milling of metal hydrides is a common way to both introduce catalysts (e.g. TiCl3) and to simultaneously increase the surface area. Both catalysis and increased surface area improve hydrogen storage capacity of the material. Nanostructuring of hydrides by depositing them into mesoporous templates (such as anodized alumina, MOFs, and SBA-15) has become a common way to increase surface area. However, the mesoporous template does not add hydrogen storage capacity--and thus, tends to decreased overall storage weight percent for the nanostructured hydride material. As with most materials, hydrides become brittle at low temperatures and will tend to fracture more readily. We will process Sodium Aluminum Hydride (NaAlH4) using cryogenic high energy ball milling using an in-house modified chamber SPEX Certiprep M8000 mixer/mill in order to gain a nanostructured hydride without mesoporous template material. Details of the modified mixer mill design will be presented. Ultimately, our planned future work is to study the resultant material using x-ray diffraction (Scherrer method for crystallite size), absorption/desorption temperature programmed desorption (TPD), and ultrasmall-angle x-ray scattering (USAXS) microstructural quantification to understand the role of cryomilling on enhancing the material's ability to store (and release) hydrogen.

  5. Methanol Adsorption and Reaction on Samaria Thin Films on Pt(111).

    PubMed

    Jhang, Jin-Hao; Schaefer, Andreas; Zielasek, Volkmar; Weaver, Jason F; Bäumer, Marcus

    2015-09-17

    We investigated the adsorption and reaction of methanol on continuous and discontinuous films of samarium oxide (SmO x ) grown on Pt(111) in ultrahigh vacuum. The methanol decomposition was studied by temperature programmed desorption (TPD) and infrared reflection absorption spectroscopy (IRRAS), while structural changes of the oxide surface were monitored by low-energy electron diffraction (LEED). Methanol dehydrogenates to adsorbed methoxy species on both the continuous and discontinuous SmO x films, eventually leading to the desorption of CO and H₂ which desorbs at temperatures in the range 400-600 K. Small quantities of CO₂ are also detected mainly on as-prepared Sm₂O₃ thin films, but the production of CO₂ is limited during repeated TPD runs. The discontinuous film exhibits the highest reactivity compared to the continuous film and the Pt(111) substrate. The reactivity of methanol on reduced and reoxidized films was also investigated, revealing how SmO x structures influence the chemical behavior. Over repeated TPD experiments, a SmO x structural/chemical equilibrium condition is found which can be approached either from oxidized or reduced films. We also observed hydrogen absence in TPD which indicates that hydrogen is stored either in SmO x films or as OH groups on the SmO x surfaces.

  6. Methanol Adsorption and Reaction on Samaria Thin Films on Pt(111)

    PubMed Central

    Jhang, Jin-Hao; Schaefer, Andreas; Zielasek, Volkmar; Weaver, Jason F.; Bäumer, Marcus

    2015-01-01

    We investigated the adsorption and reaction of methanol on continuous and discontinuous films of samarium oxide (SmOx) grown on Pt(111) in ultrahigh vacuum. The methanol decomposition was studied by temperature programmed desorption (TPD) and infrared reflection absorption spectroscopy (IRRAS), while structural changes of the oxide surface were monitored by low-energy electron diffraction (LEED). Methanol dehydrogenates to adsorbed methoxy species on both the continuous and discontinuous SmOx films, eventually leading to the desorption of CO and H2 which desorbs at temperatures in the range 400–600 K. Small quantities of CO2 are also detected mainly on as-prepared Sm2O3 thin films, but the production of CO2 is limited during repeated TPD runs. The discontinuous film exhibits the highest reactivity compared to the continuous film and the Pt(111) substrate. The reactivity of methanol on reduced and reoxidized films was also investigated, revealing how SmOx structures influence the chemical behavior. Over repeated TPD experiments, a SmOx structural/chemical equilibrium condition is found which can be approached either from oxidized or reduced films. We also observed hydrogen absence in TPD which indicates that hydrogen is stored either in SmOx films or as OH groups on the SmOx surfaces. PMID:28793562

  7. Turning things downside up: Adsorbate induced water flipping on Pt(111)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimmel, Gregory A.; Zubkov, Tykhon; Smith, R. Scott

    2014-11-14

    We have examined the adsorption of the weakly bound species N2, O2, CO and Kr on the water monolayer on Pt(111) using a combination of molecular beam dosing, infrared reflection absorption spectroscopy (IRAS), and temperature programmed desorption (TPD). In contrast to multilayer crystalline ice, the adsorbate-free water monolayer is characterized by a lack of dangling OH bonds protruding into the vacuum (H-up). Instead, the non-hydrogen-bonded OH groups are oriented downward (H-down) to maximize their interaction with the underlying Pt(111) substrate. Adsorption of Kr and O2 have little effect on the structure and vibrational spectrum of the “ ” water monolayermore » while adsorption of both N2, and CO are effective in “flipping” H-down water molecules into an H-up configuration. This “flipping” occurs readily upon adsorption at temperatures as low as 20 K and the water monolayer transforms back to the H-down, “ ” structure upon adsorbate desorption above 35 K, indicating small energy differences and barriers between the H-down and H-up configurations. The results suggest that converting water in the first layer from H-down to H-up is mediated by the electrostatic interactions between the water and the adsorbates.« less

  8. Promising SiC support for Pd catalyst in selective hydrogenation of acetylene to ethylene

    NASA Astrophysics Data System (ADS)

    Guo, Zhanglong; Liu, Yuefeng; Liu, Yan; Chu, Wei

    2018-06-01

    In this study, SiC supported Pd nanoparticles were found to be an efficient catalyst in acetylene selective hydrogenation reaction. The ethylene selectivity can be about 20% higher than that on Pd/TiO2 catalyst at the same acetylene conversion at 90%. Moreover, Pd/SiC catalyst showed a stable catalytic life at 65 °C with 80% ethylene selectivity. With the detailed characterization using temperature-programmed reduction (H2-TPR), powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), N2 adsorption/desorption analysis, CO-chemisorption and thermo-gravimetric analysis (TGA), it was found that SiC owns a lower surface area (22.9 m2/g) and a broad distribution of meso-/macro-porosity (from 5 to 65 nm), which enhanced the mass transfer during the chemical process at high reaction rate and decreased the residence time of ethylene on catalyst surface. Importantly, SiC support has the high thermal conductivity, which favored the rapid temperature homogenization through the catalyst bed and inhabited the over-hydrogenation of acetylene. The surface electronic density of Pd on Pd/SiC catalyst was higher than that on Pd/TiO2, which could promote desorption of ethylene from surface of the catalyst. TGA results confirmed a much less coke deposition on Pd/SiC catalyst.

  9. Enhanced room-temperature catalytic decomposition of formaldehyde on magnesium-aluminum hydrotalcite/boehmite supported platinum nanoparticles catalyst.

    PubMed

    Yan, Zhaoxiong; Yang, Zhihua; Xu, Zhihua; An, Liang; Xie, Fang; Liu, Jiyan

    2018-08-15

    Magnesium-aluminum hydrotalcite (Mg-Al HT)/boehmite (AlOOH) composite supported Pt catalysts were obtained via one-pot microemulsion synthesis of Mg-Al HT/AlOOH composite and NaBH 4 -reduction of Pt precursor processes. The catalytic performances of the catalysts were evaluated for formaldehyde (HCHO) removal at room temperature. The performance tests showed that the catalyst obtained by immobilizing Pt nanoparticles (NPs) on Mg-Al HT/AlOOH support with Al/Mg molar ratio equivalent to 9:1 (Pt/Al 9 Mg 1 ) displayed a superior catalytic activity and stability for HCHO removal. In order to find out the causes of its higher activity, X-ray diffraction, transmission electron microscopy, N 2 adsorption/desorption, X-ray photoelectron spectroscopy, temperature programmed desorption of CO 2 and reduction of H 2 were used to analyze the physicochemical properties of Pt/Al 9 Mg 1 and Pt/AlOOH. The remarkable catalytic performance of Pt/Al 9 Mg 1 is mainly attributed to the relatively larger amount of surface oxygen species, and more reactive oxygen species led by the interaction of Mg-Al HT and AlOOH/Pt, and relatively larger number of weak base sites caused by Mg-Al HT. The formate species are the main reaction intermediate over Pt/Al 9 Mg 1 during HCHO oxidation at room temperature, which could be further oxidized into CO 2 and H 2 O in the presence of O 2 . This study might shed some light on further improving the catalytic performance of the catalyst for indoor air purification at room temperature. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Some properties of solid helium and helium nanoclusters using the effective HFD-like interaction potential: Adsorption and desorption inside carbon nanotube

    NASA Astrophysics Data System (ADS)

    Abbaspour, M.; Akbarzadeh, H.; Banihashemi, S. Z.; Sotoudeh, A.

    2018-02-01

    We have calculated the zero equation of state of solid helium using a two-body Hartree-Fock dispersion (HFD)-like potential from molecular dynamics (MD) simulation. To take many-body forces into account, our simple and accurate empirical expression is used with the HFD-like potential without requiring an expensive three-body calculation. This potential model also includes the quantum effects for helium at low temperatures. The results indicate that our effective HFD-like potential improves the prediction of the classical two-body results to get better agreement with experiment than many other two-body and three-body potentials of helium reported in the literature. We have also simulated the adsorption and desorption processes of the (He)55, (He)147, (He)309, (He)561, and (He)923 icosahedral nanoclusters confined into the different armchair and zigzag CNTs from 0 to 50 K using our effective model. We have observed an interesting phenomenon at 0 K for helium. The nanoclusters adsorb to the inner CNT wall as a melting process. But, the heavier noble gas clusters (such as Ne and Xe) show the different behavior than the He clusters. They form a multilayered solid structure into the CNT at zero temperature and adsorb into the inner wall of the CNT at higher temperatures. Our results for He clusters show that the absolute value of the adsorption energy increases as the size of the nanocluster increases. The desorption process begins at a certain temperature and represents itself by a jump in the configurational energy values. We have also investigated the structural and dynamical properties of the confined helium nanoclusters during the adsorption and desorption processes at different temperatures.

  11. A model for the catalytic reduction of NO with CO and N desorption

    NASA Astrophysics Data System (ADS)

    Díaz, J. J.; Buendía, G. M.

    2018-02-01

    In this work we have investigated by Monte Carlo simulations the dynamical behavior of a modified Yaldram-Khan (YK) model for the catalytic reduction of NO on a surface. Our model is simulated on a square lattice and includes the individual desorption of CO molecules and N atoms, processes associated with temperature effects. When CO desorption is added, strong fluctuations appear, which are associated with the spreading of N checkerboard structures on the surface. These structures take a long time to coalesce, allowing the existence of a unsteady but long lasting reactive state. N desorption also favors the reactivity of the system, this time by diminishing the size of the N structures and impeding their coalescence. The combined desorption of CO and N produces a reactive state as well, where reactive zones among N structures can take place on the surface.

  12. Electron- and photon-stimulated desorption of atomic hydrogen from radiation-modified alkali halide surfaces

    NASA Astrophysics Data System (ADS)

    Hudson, L. T.; Tolk, N. H.; Bao, C.; Nordlander, P.; Russell, D. P.; Xu, J.

    2000-10-01

    The desorption yields of excited hydrogen atoms from the surfaces of KCl, KBr, NaCl, NaF, and LiF have been measured as a function of incident photon and electron energy and flux, time of irradiation, dosing pressure of H2 and sample temperature. As these surfaces are exposed to H2 gas during electron or photon bombardment, the fluorescence from excited hydrogen atoms ejected from the surface is monitored. The desorption yields are found to be contingent upon surface damage induced by the incident particle radiation, leading to dissociative adsorption at surface sites containing an excess of alkali metal. A desorption mechanism is presented in which incident electrons or photons induce a valence excitation to a neutral, antibonding state of the surface alkali hydride molecule complex, leading to the desorption of hydrogen atoms possessing several eV of kinetic energy.

  13. Silver-gold alloy nanoparticles as tunable substrates for systematic control of ion-desorption efficiency and heat transfer in surface-assisted laser desorption/ionization.

    PubMed

    Lai, Samuel Kin-Man; Cheng, Yu-Hong; Tang, Ho-Wai; Ng, Kwan-Ming

    2017-08-09

    Systematically controlling heat transfer in the surface-assisted laser desorption/ionization (SALDI) process and thus enhancing the analytical performance of SALDI-MS remains a challenging task. In the current study, by tuning the metal contents of Ag-Au alloy nanoparticle substrates (AgNPs, Ag55Au45NPs, Ag15Au85NPs and AuNPs, ∅: ∼2.0 nm), it was found that both SALDI ion-desorption efficiency and heat transfer can be controlled in a wide range of laser fluence (21.3 mJ cm -2 to 125.9 mJ cm -2 ). It was discovered that ion detection sensitivity can be enhanced at any laser fluence by tuning up the Ag content of the alloy nanoparticle, whereas the extent of ion fragmentation can be reduced by tuning up the Au content. The enhancement effect of Ag content on ion desorption was found to be attributable to the increase in laser absorption efficiency (at 355 nm) with Ag content. Tuning the laser absorption efficiency by changing the metal composition was also effective in controlling the heat transfer from the NPs to the analytes. The laser-induced heating of Ag-rich alloy NPs could be balanced or even overridden by increasing the Au content of NPs, resulting in the reduction of the fragmentation of analytes. In the correlation of experimental measurement with molecular dynamics simulation, the effect of metal composition on the dynamics of the ion desorption process was also elucidated. Upon increasing the Ag content, it was also found that phase transition temperatures, such as melting, vaporization and phase explosion temperature, of NPs could be reduced. This further enhanced the desorption of analyte ions via phase-transition-driven desorption processes. The significant cooling effect on the analyte ions observed at high laser fluence was also determined to be originated from the phase explosion of the NPs. This study revealed that the development of alloy nanoparticles as SALDI substrates can constitute an effective means for the systematic control of ion-desorption efficiency and the extent of heat transfer, which could potentially enhance the analytical performance of SALDI-MS.

  14. Thermal Programmed Desorption of C32 H 66

    NASA Astrophysics Data System (ADS)

    Cisternas, M.; Del Campo, V.; Cabrera, A. L.; Volkmann, U. G.; Hansen, F. Y.; Taub, H.

    2011-03-01

    Alkanes are of interest as prototypes for more complex molecules and membranes. In this work we study the desorption kinetics of dotriacontane C32 adsorbed on Si O2 /Si substrate. We combine in our instrument High Resolution Ellipsometry (HRE) and Thermal Programmed Desorption (TPD). C32 monolayers were deposited in high vacuum from a Knudsen cell on the substrate, monitorizing sample thickness in situ with HRE. Film thickness was in the range of up to 100 AA, forming a parallel bilayer and perpendicular C32 layer. The Mass Spectrometer (RGA) of the TPD section was detecting the shift of the desorption peaks at different heating rates applied to the sample. The mass registered with the RGA was AMU 57 for parallel and perpendicular layers, due to the abundance of this mass value in the disintegration process of C32 in the mass spectrometers ionizer. Moreover, the AMU 57 signal does not interfere with other signals coming from residual gases in the vacuum chamber. The desorption energies obtained were ΔEdes = 11,9 kJ/mol for the perpendicular bilayer and ΔEdes = 23 ,5 kJ/mol for the parallel bilayer.

  15. A Helical Flow, Circular Microreactor For Separating and Enriching “Smart” Polymer-Antibody Capture Reagents

    PubMed Central

    Hoffman, John M.; Ebara, Mitsuhiro; Lai, James J.; Hoffman, Allan S.; Folch, Albert

    2011-01-01

    We report a mechanistic study of how flow and recirculation in a microreactor can be used to optimize the capture and release of stimuli-responsive polymer-protein reagents on stimuli-responsive polymer-grafted channel surfaces. Poly(N-isopropylacrylamide) (PNIPAAm) was grafted to poly(dimethyl)siloxane (PDMS) channel walls, creating switchable surfaces where PNIPAAm-protein conjugates would adhere at temperatures above the lower critical solution temperature (LCST) and released below the LCST. A PNIPAAm-streptavidin conjugate that can capture biotinylated antibody-antigen targets was first characterized. The conjugate’s immobilization and release were limited by mass transport to and from the functionalized PNIPAAm surface. Transport and adsorption efficiencies were dependent on the aggregate size of the PNIPAAm-streptavidin conjugate above the LCST and also was dependent on whether the conjugates were heated in the presence of the stimuli-responsive surface or pre-aggregated and then flowed across the surface. As conjugate size increased, through the addition of non-conjugated PNIPAAm, recirculation and mixing were shown to markedly improve conjugate immobilization compared to diffusion alone. Under optimized conditions of flow and reagent concentrations, approximately 60% of a streptavidin conjugate bolus could be captured at the surface and subsequently successfully released. The kinetic release profile sharpness was also strongly improved with recirculation and helical mixing. Finally, the concentration of protein-polymer conjugates could be achieved by continuous conjugate flow into the heated recirculator, allowing nearly linear enrichment of the conjugate reagent from larger volumes. This capability was shown with anti-p24 HIV monoclonal antibody reagents that were enriched over 5-fold using this protocol. These studies provide insight into the mechanism of smart polymer-protein conjugate capture and release in grafted channels and show the potential of this purification and enrichment module for processing diagnostic samples. PMID:20882219

  16. Plume characteristics and dynamics of UV and IR laser-desorbed oligonucleotides.

    PubMed

    Merrigan, Tony L; Timson, David J; Hunniford, C Adam; Catney, Martin; McCullough, Robert W

    2012-05-01

    Laser desorption of dye-tagged oligonucleotides was studied using laser-induced fluorescence imaging. Desorption with ultra violet (UV) and infra-red (IR) lasers resulted in forward directed plumes of molecules. In the case of UV desorption, the initial shot desorbed approximately seven-fold more material than subsequent shots. In contrast, the initial shot in IR desorption resulted in the ejection of less material compared to subsequent shots and these plumes had a component directed along the path of the laser. Thermal equilibrium of the molecules in the plume was achieved after approximately 25 μs with a spread in molecular temperature which was described by a modified Maxwell-Boltzmann equation. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Adsorption and Reaction of Acetaldehyde on Shape-Controlled CeO2 Nanocrystals: Elucidation of Structure-function Relationships

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, Amanda K; Wu, Zili; Calaza, Florencia

    2014-01-01

    CeO2 cubes with {100} facets, octahedra with {111} facets, and wires with highly defective structures were utilized to probe the structure-dependent reactivity of acetaldehyde. Using temperature-programmed desorption (TPD), temperature-programmed surface reactions (TPSR), and in situ infrared spectroscopy it was found that acetaldehyde desorbs unreacted or undergoes reduction, coupling, or C-C bond scission reactions depending on the surface structure of CeO2. Room temperature FTIR indicates that acetaldehyde binds primarily as 1-acetaldehyde on the octahedra, in a variety of conformations on the cubes, including coupling products and acetate and enolate species, and primarily as coupling products on the wires. The percent consumptionmore » of acetaldehyde follows the order of wires > cubes > octahedra. All the nanoshapes produce the coupling product crotonaldehyde; however, the selectivity to produce ethanol follows the order wires cubes >> octahedra. The selectivity and other differences can be attributed to the variation in the basicity of the surfaces, defects densities, coordination numbers of surface atoms, and the reducibility of the nanoshapes.« less

  18. Finite-Temperature Hydrogen Adsorption/Desorption Thermodynamics Driven by Soft Vibration Modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woo, Sung-Jae; Lee, Eui-Sup; Yoon, Mina

    2013-01-01

    It is widely accepted that room-temperature hydrogen storage on nanostructured or porous materials requires enhanced dihydrogen adsorption. In this work we reveal that room-temperature hydrogen storage is possible not only by the enhanced adsorption, but also by making use of the vibrational free energy from soft vibration modes. These modes exist for example in the case of metallo-porphyrin-incorporated graphenes (M-PIGs) with out-of-plane ( buckled ) metal centers. There, the in-plane potential surfaces are flat because of multiple-orbital-coupling between hydrogen molecules and the buckled-metal centers. This study investigates the finite-temperature adsorption/desorption thermodynamics of hydrogen molecules adsorbed on M-PIGs by employing first-principlesmore » total energy and vibrational spectrum calculations. Our results suggest that the current design strategy for room-temperature hydrogen storage materials should be modified by explicitly taking finite-temperature vibration thermodynamics into account.« less

  19. Hydrogen desorption using honeycomb finned heat exchangers integrated in adsorbent storage systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corgnale, Claudio; Hardy, Bruce; Chahine, Richard

    One of the main technical hurdles associated with adsorbent based hydrogen storage systems is relative to their ability to discharge hydrogen effectively, as dictated by fuel cell requirements. In this study, a new honeycomb finned heat exchanger concept was examined to evaluate its potential as a heat transfer system for hydrogen desorption. A bench scale 0.5 L vessel was equipped with the proposed heat exchanger, filled with MOF-5® adsorbent material. The heating power, required to desorb hydrogen, was provided by a 100 W electric heater placed in the center of the honeycomb structure. Two desorption tests, at room temperature andmore » under cryogenic temperatures, were carried out to evaluate the hydrogen desorption performance of the proposed system under different operating conditions. The bench scale vessel performance was verified from both an experimental and a modeling point of view, demonstrating the ability to desorb about 45% of the adsorbed hydrogen in reduced time and applying low heating power. Further modeling analyses were also carried out showing the potential of the proposed system to reach high hydrogen discharging rates at cryogenic temperature conditions and operating pressures between 100 bar and 5 bar. The proposed adsorption system also demonstrated to be able to discharge all the available hydrogen in less than 500 s operating at cryogenic conditions and with a nominal heating power of 100 W.« less

  20. DART-MS analysis of inorganic explosives using high temperature thermal desorption†‡

    PubMed Central

    Sisco, Edward; Staymates, Matthew; Gillen, Greg

    2018-01-01

    An ambient mass spectrometry (MS) platform coupling resistive Joule heating thermal desorption (JHTD) and direct analysis in real time (DART) was implemented for the analysis of inorganic nitrite, nitrate, chlorate, and perchlorate salts. The resistive heating component generated discrete and rapid heating ramps and elevated temperatures, up to approximately 400 °C s−1 and 750 °C, by passing a few amperes of DC current through a nichrome wire. JHTD enhanced the utility and capabilities of traditional DART-MS for the trace detection of previously difficult to detect inorganic compounds. A partial factorial design of experiments (DOE) was implemented for the systematic evaluation of five system parameters. A base set of conditions for JHTD-DART-MS was derived from this evaluation, demonstrating sensitive detection of a range of inorganic oxidizer salts, down to single nanogram levels. DOE also identified JHTD filament current and in-source collision induced dissociation (CID) energy as inducing the greatest effect on system response. Tuning of JHTD current provided a method for controlling the relative degrees of thermal desorption and thermal decomposition. Furthermore, in-source CID provided manipulation of adduct and cluster fragmentation, optimizing the detection of molecular anion species. Finally, the differential thermal desorption nature of the JHTD-DART platform demonstrated efficient desorption and detection of organic and inorganic explosive mixtures, with each desorbing at its respective optimal temperature. PMID:29651308

  1. Hydrogen desorption using honeycomb finned heat exchangers integrated in adsorbent storage systems

    DOE PAGES

    Corgnale, Claudio; Hardy, Bruce; Chahine, Richard; ...

    2018-03-01

    One of the main technical hurdles associated with adsorbent based hydrogen storage systems is relative to their ability to discharge hydrogen effectively, as dictated by fuel cell requirements. In this study, a new honeycomb finned heat exchanger concept was examined to evaluate its potential as a heat transfer system for hydrogen desorption. A bench scale 0.5 L vessel was equipped with the proposed heat exchanger, filled with MOF-5® adsorbent material. The heating power, required to desorb hydrogen, was provided by a 100 W electric heater placed in the center of the honeycomb structure. Two desorption tests, at room temperature andmore » under cryogenic temperatures, were carried out to evaluate the hydrogen desorption performance of the proposed system under different operating conditions. The bench scale vessel performance was verified from both an experimental and a modeling point of view, demonstrating the ability to desorb about 45% of the adsorbed hydrogen in reduced time and applying low heating power. Further modeling analyses were also carried out showing the potential of the proposed system to reach high hydrogen discharging rates at cryogenic temperature conditions and operating pressures between 100 bar and 5 bar. The proposed adsorption system also demonstrated to be able to discharge all the available hydrogen in less than 500 s operating at cryogenic conditions and with a nominal heating power of 100 W.« less

  2. EFFECTS OF TEMPERATURE ON TRICHLOROETHYLENE DESORPTION FROM SILICA GEL AND NATURAL SEDIMENTS. 1. ISOTHERMS. (R822626)

    EPA Science Inventory

    Aqueous phase isotherms were calculated from vapor phase desorption isotherms
    measured at 15, 30, and 60 C for
    trichloroethylene on a silica gel, an aquifer sediment, a soil, a sand fraction,
    and a clay and silt fraction, all at...

  3. Sodium-promoted Pd/TiO2 for catalytic oxidation of formaldehyde at ambient temperature.

    PubMed

    Zhang, Changbin; Li, Yaobin; Wang, Yafei; He, Hong

    2014-05-20

    Catalytic oxidation of formaldehyde (HCHO) to CO2 at ambient conditions is of great interest for indoor HCHO purification. Here, we report that sodium-doped Pd/TiO2 is a highly effective catalyst for the catalytic oxidation of HCHO at room temperature. It was observed that Na doping has a dramatic promotion effect on the Pd/TiO2 catalyst and that nearly 100% HCHO conversion could be achieved over the 2Na-Pd/TiO2 catalyst at a GHSV of 95000 h(-1) and HCHO inlet concentration of 140 ppm at 25 °C. The mechanism of the Na-promotion effect was investigated by using Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), CO chemisorption, Temperature-programmed reduction by H2 (H2-TPR), X-ray photoelectron spectroscopy (XPS) and temperature-programmed desorption of O2 (O2-TPD) methods. The results showed that Na species addition can induce and further stabilize a negatively charged and well-dispersed Pd species, which then facilitates the activation of H2O and chemisorbed oxygen, therefore resulting in the high performance of the 2Na-Pd/TiO2 catalyst for the ambient HCHO destruction.

  4. Modified Ni-Cu catalysts for ethanol steam reforming

    NASA Astrophysics Data System (ADS)

    Dan, M.; Mihet, M.; Almasan, V.; Borodi, G.; Katona, G.; Muresan, L.; Lazar, M. D.

    2013-11-01

    Three Ni-Cu catalysts, having different Cu content, supported on γ-alumina were synthesized by wet co-impregnation method, characterized and tested in the ethanol steam reforming (ESR) reaction. The catalysts were characterized for determination of: total surface area and porosity (N2 adsorption - desorption using BET and Dollimer Heal methods), Ni surface area (hydrogen chemisorption), crystallinity and Ni crystallites size (X-Ray Diffraction), type of catalytic active centers (Hydrogen Temperature Programmed Reduction). Total surface area and Ni crystallites size are not significantly influenced by the addition of Cu, while Ni surface area is drastically diminished by increasing of Cu concentration. Steam reforming experiments were performed at atmospheric pressure, temperature range 150-350°C, and ethanol - water molar ration of 1 at 30, using Ar as carrier gas. Ethanol conversion and hydrogen production increase by the addition of Cu. At 350°C there is a direct connection between hydrogen production and Cu concentration. Catalysts deactivation in 24h time on stream was studied by Transmission Electron Microscopy (TEM) and temperature-programmed reduction (TPR) on used catalysts. Coke deposition was observed at all studied temperatures; at 150°C amorphous carbon was evidenced, while at 350°C crystalline, filamentous carbon is formed.

  5. Facile Dehydrogenation of Ethane on the IrO2(110) Surface.

    PubMed

    Bian, Yingxue; Kim, Minkyu; Li, Tao; Asthagiri, Aravind; Weaver, Jason F

    2018-02-21

    Realizing the efficient and selective conversion of ethane to ethylene is important for improving the utilization of hydrocarbon resources, yet remains a major challenge in catalysis. Herein, ethane dehydrogenation on the IrO 2 (110) surface is investigated using temperature-programmed reaction spectroscopy (TPRS) and density functional theory (DFT) calculations. The results show that ethane forms strongly bound σ-complexes on IrO 2 (110) and that a large fraction of the complexes undergo C-H bond cleavage during TPRS at temperatures below 200 K. Continued heating causes as much as 40% of the dissociated ethane to dehydrogenate and desorb as ethylene near 350 K, with the remainder oxidizing to CO x species. Both TPRS and DFT show that ethylene desorption is the rate-controlling step in the conversion of ethane to ethylene on IrO 2 (110) during TPRS. Partial hydrogenation of the IrO 2 (110) surface is found to enhance ethylene production from ethane while suppressing oxidation to CO x species. DFT predicts that hydrogenation of reactive oxygen atoms of the IrO 2 (110) surface effectively deactivates these sites as H atom acceptors, and causes ethylene desorption to become favored over further dehydrogenation and oxidation of ethane-derived species. The study reveals that IrO 2 (110) exhibits an exceptional ability to promote ethane dehydrogenation to ethylene near room temperature, and provides molecular-level insights for understanding how surface properties influence selectivity toward ethylene production.

  6. Variable Temperature Infrared Spectroscopy Investigations of Benzoic Acid Desorption from Sodium and Calcium Montmorillonite Clays.

    PubMed

    Nickels, Tara M; Ingram, Audrey L; Maraoulaite, Dalia K; White, Robert L

    2015-12-01

    Processes involved in thermal desorption of benzoic acid from sodium and calcium montmorillonite clays are investigated by using variable temperature diffuse reflection Fourier transform infrared spectroscopy (DRIFTS). By monitoring the temperature dependence of infrared absorbance bands while heating samples, subtle changes in molecular vibrations are detected and employed to characterize specific benzoic acid adsorption sites. Abrupt changes in benzoic acid adsorption site properties occur for both clay samples at about 125 °C. Difference spectra absorbance band frequency variations indicate that adsorbed benzoic acid interacts with interlayer cations through water bridges and that these interactions can be disrupted by the presence of organic anions, in particular, benzoate.

  7. Broad spectrum infrared thermal desorption of wipe-based explosive and narcotic samples for trace mass spectrometric detection.

    PubMed

    Forbes, Thomas P; Staymates, Matthew; Sisco, Edward

    2017-08-07

    Wipe collected analytes were thermally desorbed using broad spectrum near infrared heating for mass spectrometric detection. Employing a twin tube filament-based infrared emitter, rapid and efficiently powered thermal desorption and detection of nanogram levels of explosives and narcotics was demonstrated. The infrared thermal desorption (IRTD) platform developed here used multi-mode heating (direct radiation and secondary conduction from substrate and subsequent convection from air) and a temperature ramp to efficiently desorb analytes with vapor pressures across eight orders of magnitude. The wipe substrate experienced heating rates up to (85 ± 2) °C s -1 with a time constant of (3.9 ± 0.2) s for 100% power emission. The detection of trace analytes was also demonstrated from complex mixtures, including plastic-bonded explosives and exogenous narcotics, explosives, and metabolites from collected artificial latent fingerprints. Manipulation of the emission power and duration directly controlled the heating rate and maximum temperature, enabling differential thermal desorption and a level of upstream separation for enhanced specificity. Transitioning from 100% power and 5 s emission duration to 25% power and 30 s emission enabled an order of magnitude increase in the temporal separation (single seconds to tens of seconds) of the desorption of volatile and semi-volatile species within a collected fingerprint. This mode of operation reduced local gas-phase concentrations, reducing matrix effects experienced with high concentration mixtures. IRTD provides a unique platform for the desorption of trace analytes from wipe collections, an area of importance to the security sector, transportation agencies, and customs and border protection.

  8. Immobilized enzyme studies in a microscale bioreactor.

    PubMed

    Jones, Francis; Forrest, Scott; Palmer, Jim; Lu, Zonghuan; Elmore, John; Elmore, Bill B

    2004-01-01

    Novel microreactors with immobilized enzymes were fabricated using both silicon and polymer-based microfabrication techniques. The effectiveness of these reactors was examined along with their behavior over time. Urease enzyme was successfully incorporated into microchannels of a polymeric matrix of polydimethylsiloxane and through layer-bylayer self-assembly techniques onto silicon. The fabricated microchannels had cross-sectional dimensions ranging from tens to hundreds of micrometers in width and height. The experimental results for continuous-flow microreactors are reported for the conversion of urea to ammonia by urease enzyme. Urea conversions of >90% were observed.

  9. Hydrogen Storage Performances of REMg11Ni (RE = Sm, Y) Alloys Prepared by Mechanical Milling

    NASA Astrophysics Data System (ADS)

    Zhang, Yanghuan; Cui, Songsong; Yuan, Zeming; Gao, Jinliang; Dong, Xiaoping; Qi, Yan; Guo, Shihai

    2018-01-01

    This study adopted mechanical milling to prepare Mg-based REMg11Ni (RE = Sm, Y) hydrogen storage alloys. The alloy structures were examined by X-ray diffraction and transmission electron microscopy. The isothermal hydrogenation thermodynamics and kinetics were determined by an automatic Sievert apparatus. The non-isothermal dehydrogenation performance of the alloys was tested by differential scanning calorimetry and thermogravimetry at different heating rates. The results showed a nanocrystalline and amorphous tendency for the alloys. The YMg11Ni alloy exhibited a larger hydrogen absorption capacity, faster hydriding rate, and lower temperature of onset hydrogen desorption than the SmMg11Ni alloy. The hydrogen desorption temperatures of the REMg11Ni (RE = Sm, Y) alloys were 557.6 K and 549.8 K (284.6 °C and 276.8 °C), respectively. The hydrogen desorption property of the RE = Y alloy was found superior to the RE = Sm alloy based on the time required to absorb 3 wt pct H2, i.e., the time needed by the RE = Y alloy was reduced to 1106, 456, 363, and 180 s, respectively, corresponding to the hydrogen desorption temperatures of 593 K, 613 K, 633 K, and 653 K (320 °C, 340 °C, 360 °C, and 380 °C), compared to 1488, 574, 390, and 192 s for the RE = Sm alloy under identical conditions. The dehydrogenation activation energies were 100.31 and 98.01 kJ/mol for the REMg11Ni (RE = Sm, Y) alloys, respectively, which agreed with those of the RE = Y alloy showing a superior hydrogen desorption property.

  10. Desorption behavior of sorbed flavor compounds from packaging films with ethanol solution.

    PubMed

    Hwang, Y H; Matsui, T; Hanada, T; Shimoda, M; Matsumoto, K; Osajima, Y

    2000-09-01

    Desorption behavior of sorbed flavor compounds such as ethyl esters, n-aldehydes, and n-alcohols from LDPE and PET films was investigated in 0 to 100% (v/v) ethanol solutions at 20 degrees C, 50 degrees C, and 60 degrees C. In both films, the desorption apparently increased with increasing ethanol concentration and treatment temperature, depending on the compatibility of the flavor compound with the solvent. Namely, the partition coefficient of ethyl esters, n-aldehydes, and n-alcohols in the LDPE film turned out to be approximately zero at >/=60%, >/=80%, and >/=40% (v/v) ethanol, respectively (for PET film, >/=80%, >/=80%, and >/=40% (v/v) ethanol concentrations were required for complete desorption, respectively). As for physical properties (heat of fusion, melting point, and tensile strength and elongation at break) of LDPE and PET films, there were no significant differences between intact film and the treated film with 60% (v/v) ethanol for 30 min at 60 degrees C. These results suggest that it is possible to apply a desorption solvent such as ethanol solution for desorption of sorbed flavor compounds from packaging films with no physical change in the film properties by this desorption treatment.

  11. Acetone and Water on TiO₂(110): H/D Exchange

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henderson, Michael A.

    2005-04-12

    Isotopic H/D exchange between coadsorbed acetone and water on the TiO?(110) surface was examined using temperature programmed desorption (TPD) as a function of coverage and two surface pretreatments (oxidation and reduction). Coadsorbed acetone and water interact repulsively on reduced TiO?(110) based on results from the companion paper to this study, with water exerting a greater influence in destabilizing acetone and acetone having only a nominal influence on water. Despite the repulsive interaction between these coadsorbates, about 0.02 ML of a 1 ML d6-acetone on the reduced surface exhibits H/D exchange with coadsorbed water, with the exchange occurring exclusively in themore » high temperature region of the d?-acetone TPD spectrum at {approx}340 K. The effect was confirmed with combinations of d?-acetone and D?O. The extent of exchange decreased on the reduced surface with water coverages above {approx}0.3 ML due to the ability of water to displace coadsorbed acetone from first layer sites to the multilayer. In contrast, the extent of exchange increased by a factor of 3 when the surface was pre-oxidized prior to coadsorption. In this case, there was no evidence for the negative influence of high water coverages on the extent of H/D exchange. Comparison of the TPD spectra from the exchange products (either d?- or d?-acetone depending on the coadsorption pairing) suggests that, in addition to the 340 K exchange process seen on the reduced surface, a second exchange process was observed on the oxidized surface at {approx}390 K. In both cases (oxidized and reduced), desorption of the H/D exchange products appeared to be reaction limited and to involve the influence of OH/OD groups (or water formed during recombinative desorption of OH/OD groups) instead of molecularly adsorbed water. The 340 K exchange process is assigned to reaction at step sites and the 390 K exchange process is attributed to the influence of oxygen adatoms deposited during surface oxidation. The H/D exchange mechanism likely involves an enolate or propenol surface intermediate formed transiently during the desorption of oxygen-stabilized acetone molecules.« less

  12. Si1-yCy/Si(001) gas-source molecular beam epitaxy from Si2H6 and CH3SiH3: Surface reaction paths and growth kinetics

    NASA Astrophysics Data System (ADS)

    Foo, Y. L.; Bratland, K. A.; Cho, B.; Desjardins, P.; Greene, J. E.

    2003-04-01

    In situ surface probes and postdeposition analyses were used to follow surface reaction paths and growth kinetics of Si1-yCy alloys grown on Si(001) by gas-source molecular-beam epitaxy from Si2H6/CH3SiH3 mixtures as a function of C concentration y (0-2.6 at %) and temperature Ts (500-600 °C). High-resolution x-ray diffraction reciprocal lattice maps show that all layers are in tension and fully coherent with their substrates. Film growth rates R decrease with both y and Ts, and the rate of decrease in R as a function of y increases rapidly with Ts. In situ isotopically tagged D2 temperature-programmed desorption (TPD) measurements reveal that C segregation during steady-state Si1-yCy(001) growth results in charge transfer from Si surface dangling bonds to second-layer C atoms, which have a higher electronegativity than Si. From the TPD results, we obtain the coverage θSi*(y,Ts) of Si* surface sites with C backbonds as well as H2 desorption energies Ed from both Si and Si* surface sites. θSi* increases with increasing y and Ts in the kinetically limited segregation regime while Ed decreases from 2.52 eV for H2 desorption from Si surface sites with Si back bonds to 2.22 eV from Si* surface sites. This leads to an increase in the H2 desorption rate, and hence should yield higher film deposition rates, with increasing y and/or Ts during Si1-yCy(001) growth. The effect, however, is more than offset by the decrease in Si2H6 reactive sticking probabilities at Si* surface sites. Film growth rates R(Ts,JSi2H6,JCH3SiH3) calculated using a simple transition-state kinetic model, together with measured kinetic parameters, were found to be in excellent agreement with the experimental data.

  13. Nanofibrous membrane-based absorption refrigeration system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isfahani, RN; Sampath, K; Moghaddam, S

    2013-12-01

    This paper presents a study on the efficacy of highly porous nanofibrous membranes for application in membrane-based absorbers and desorbers. Permeability studies showed that membranes with a pore size greater than about one micron have a sufficient permeability for application in the absorber heat exchanger. Membranes with smaller pores were found to be adequate for the desorber heat exchanger. The membranes were implemented in experimental membrane-based absorber and desorber modules and successfully tested. Parametric studies were conducted on both absorber and desorber processes. Studies on the absorption process were focused on the effects of water vapor pressure, cooling water temperature,more » and the solution velocity on the absorption rate. Desorption studies were conducted on the effects of wall temperature, vapor and solution pressures, and the solution velocity on the desorption rate. Significantly higher absorption and desorption rates than in the falling film absorbers and desorbers were achieved. Published by Elsevier Ltd.« less

  14. Diffusion Analysis Of Hydrogen-Desorption Measurements

    NASA Technical Reports Server (NTRS)

    Danford, Merlin D.

    1988-01-01

    Distribution of hydrogen in metal explains observed desorption rate. Report describes application of diffusion theory to anaylsis of experimental data on uptake and elimination of hydrogen in high-strength alloys of 25 degree C. Study part of program aimed at understanding embrittlement of metals by hydrogen. Two nickel-base alloys, Rene 41 and Waspaloy, and one ferrous alloy, 4340 steel, studied. Desorption of hydrogen explained by distribution of hydrogen in metal. "Fast" hydrogen apparently not due to formation of hydrides on and below surface as proposed.

  15. Extreme UV induced dissociation of amorphous solid water and crystalline water bilayers on Ru(0001)

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Sturm, J. M.; Lee, Chris J.; Bijkerk, Fred

    2016-04-01

    The extreme ultraviolet (EUV, λ = 13.5 nm) induced dissociation of water layers on Ru(0001) was investigated. We irradiated amorphous and crystalline water layers on a Ru crystal with EUV light, and measured the surface coverage of remaining water and oxygen as a function of radiation dose by temperature programmed desorption (TPD). The main reaction products are OH and H with a fraction of oxygen from fully dissociated water. TPD spectra from a series of exposures reveal that EUV promotes formation of the partially dissociated water overlayer on Ru. Furthermore, loss of water due to desorption and dissociation is also observed. The water loss cross sections for amorphous and crystalline water are measured at 9 ± 2 × 10- 19 cm2 and 5 ± 1 × 10- 19 cm2, respectively. Comparison between the two cross sections suggests that crystalline water is more stable against EUV induced desorption/dissociation. The dissociation products can oxidize the Ru surface. For this early stage of oxidation, we measured a smaller (compared to water loss) cross section at 2 × 10- 20 cm2, which is 2 orders of magnitude smaller than the photon absorption cross section (at 92 eV) of gas phase water. The secondary electron (SE) contributions to the cross sections are also estimated. From our estimation, SE only forms a small part (20-25%) of the observed photon cross section.

  16. Thermal and FTIR spectroscopic analysis of the interactions of aniline adsorbed on to MCM-41 mesoporous material.

    PubMed

    Eimer, Griselda A; Gómez Costa, Marcos B; Pierella, Liliana B; Anunziata, Oscar A

    2003-07-15

    The adsorption of aniline on Na-AlMCM-41 synthesized by us has been characterized by infrared spectroscopy, temperature programmed desorption (TPD), and differential thermal analysis methods. Aniline would be mostly bound to the mesostructure through weak pi interactions. On the mesostructure containing adsorbed water, the co-adsorption of aniline could occur by weak hydrogen bonding through surface water molecules. For water, two possible modes of adsorption have been identified. Different associations between aniline and hydrated and nonhydrated mesostructures have been evaluated in order to favor the posterior in situ polymerization of adsorbed aniline.

  17. Influence of Alumina Binder Content on Catalytic Performance of Ni/HZSM-5 for Hydrodeoxygenation of Cyclohexanone

    PubMed Central

    Kong, Xiangjin; Liu, Junhai

    2014-01-01

    The influence of the amount of alumina binders on the catalytic performance of Ni/HZSM-5 for hydrodeoxygenation of cyclohexanone was investigated in a fixed-bed reactor. N2 sorption, X-ray diffraction, H2-chemisorption and temperature-programmed desorption of ammonia were used to characterize the catalysts. It can be observed that the Ni/HZSM-5 catalyst bound with 30 wt.% alumina binder exhibited the best catalytic performance. The high catalytic performance may be due to relatively good Ni metal dispersion, moderate mesoporosity, and proper acidity of the catalyst. PMID:25009974

  18. Influence of alumina binder content on catalytic performance of Ni/HZSM-5 for hydrodeoxygenation of cyclohexanone.

    PubMed

    Kong, Xiangjin; Liu, Junhai

    2014-01-01

    The influence of the amount of alumina binders on the catalytic performance of Ni/HZSM-5 for hydrodeoxygenation of cyclohexanone was investigated in a fixed-bed reactor. N2 sorption, X-ray diffraction, H2-chemisorption and temperature-programmed desorption of ammonia were used to characterize the catalysts. It can be observed that the Ni/HZSM-5 catalyst bound with 30 wt.% alumina binder exhibited the best catalytic performance. The high catalytic performance may be due to relatively good Ni metal dispersion, moderate mesoporosity, and proper acidity of the catalyst.

  19. Hydrogen storage development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, G.J.; Guthrie, S.E.

    1998-08-01

    A summary of the hydride development efforts for the current program year (FY98) are presented here. The Mg-Al-Zn alloy system was studied at low Zn levels (2--4 wt%) and midrange Al contents (40--60 wt%). Higher plateau pressures were found with Al and Zn alloying in Mg and, furthermore, it was found that the hydrogen desorption kinetics were significantly improved with small additions of Zn. Results are also shown here for a detailed study of the low temperature properties of Mg{sub 2}NiH{sub 4}, and a comparison made between conventional melt cast alloy and the vapor process material.

  20. Ultraviolet-Visible (UV-Vis) Microspectroscopic System Designed for the In Situ Characterization of the Dehydrogenation Reaction Over Platinum Supported Catalytic Microchannel Reactor.

    PubMed

    Suarnaba, Emee Grace Tabares; Lee, Yi Fuan; Yamada, Hiroshi; Tagawa, Tomohiko

    2016-11-01

    An ultraviolet visible (UV-Vis) microspectroscopic system was designed for the in situ characterization of the activity of the silica supported platinum (Pt) catalyst toward the dehydrogenation of 1-methyl-1,4-cyclohexadiene carried out in a custom-designed catalytic microreactor cell. The in situ catalytic microreactor cell (ICMC) with inlet/outlet ports was prepared using quartz cover as the optical window to facilitate UV-Vis observation. A fabricated thermometric stage was adapted to the UV-Vis microspectrophotometer to control the reaction temperature inside the ICMC. The spectra were collected by focusing the UV-Vis beam on a 30 × 30 µm area at the center of ICMC. At 393 K, the sequential measurement of the spectra recorded during the reaction exhibited a broad absorption peak with maximum absorbance at 260 nm that is characteristic for gaseous toluene. This result indicates that the silica supported Pt catalyst is active towards the dehydrogenation of 1-methyl-1,4-cyclohexadiene at the given experimental conditions. The onset of coke formation was also detected based on the appearance of absorption bands at 300 nm. The UV-Vis microspectroscopic system developed can be used further in studying the mechanism of the dehydrogenation reaction. © The Author(s) 2016.

Top