Sample records for microscope information limit

  1. Adaptive optical microscope for brain imaging in vivo

    NASA Astrophysics Data System (ADS)

    Wang, Kai

    2017-04-01

    The optical heterogeneity of biological tissue imposes a major limitation to acquire detailed structural and functional information deep in the biological specimens using conventional microscopes. To restore optimal imaging performance, we developed an adaptive optical microscope based on direct wavefront sensing technique. This microscope can reliably measure and correct biological samples induced aberration. We demonstrated its performance and application in structural and functional brain imaging in various animal models, including fruit fly, zebrafish and mouse.

  2. Integrating Microscopic Analysis into Existing Quality Assurance Processes

    NASA Astrophysics Data System (ADS)

    Frühberger, Peter; Stephan, Thomas; Beyerer, Jürgen

    When technical goods, like mainboards and other electronic components, are produced, quality assurance (QA) is very important. To achieve this goal, different optical microscopes can be used to analyze a variety of specimen to gain comprehensive information by combining the acquired sensor data. In many industrial processes, cameras are used to examine these technical goods. Those cameras can analyze complete boards at once and offer a high level of accuracy when used for completeness checks. When small defects, e.g. soldered points, need to be examined in detail, those wide area cameras are limited. Microscopes with large magnification need to be used to analyze those critical areas. But microscopes alone cannot fulfill this task within a limited time schedule, because microscopic analysis of complete motherboards of a certain size is time demanding. Microscopes are limited concerning their depth of field and depth of focus, which is why additional components like XY moving tables need to be used to examine the complete surface. Yet today's industrial production quality standards require a 100 % control of the soldered components within a given time schedule. This level of quality, while keeping inspection time low, can only be achieved when combining multiple inspection devices in an optimized manner. This paper presents results and methods of combining industrial cameras with microscopy instrumenting a classificatory based approach intending to keep already deployed QA processes in place but extending them with the purpose of increasing the quality level of the produced technical goods while maintaining high throughput.

  3. Three dimensional time-gated tracking of non-blinking quantum dots in live cells

    DOE PAGES

    DeVore, Matthew S.; Werner, James H.; Goodwin, Peter M.; ...

    2015-03-12

    Single particle tracking has provided a wealth of information about biophysical processes such as motor protein transport and diffusion in cell membranes. However, motion out of the plane of the microscope or blinking of the fluorescent probe used as a label generally limits observation times to several seconds. Here, we overcome these limitations by using novel non-blinking quantum dots as probes and employing a custom 3D tracking microscope to actively follow motion in three dimensions (3D) in live cells. As a result, signal-to-noise is improved in the cellular milieu through the use of pulsed excitation and time-gated detection.

  4. Quantitative phase imaging by wide field lensless digital holographic microscope

    NASA Astrophysics Data System (ADS)

    Adinda-Ougba, A.; Koukourakis, N.; Essaidi, A.; Ger­hardt, N. C.; Hofmann, M. R.

    2015-05-01

    Wide field, lensless microscopes have been developed for telemedicine and for resource limited setting [1]. They are based on in-line digital holography which is capable to provide amplitude and phase information resulting from numerical reconstruction. The phase information enables achieving axial resolution in the nanometer range. Hence, such microscopes provide a powerful tool to determine three-dimensional topologies of microstructures. In this contribution, a compact, low-cost, wide field, lensless microscope is presented, which is capable of providing topological profiles of microstructures in transparent material. Our setup consist only of two main components: a CMOSsensor chip and a laser diode without any need of a pinhole. We use this very simple setup to record holograms of microobjects. A wide field of view of ~24 mm², and a lateral resolution of ~2 μm are achieved. Moreover, amplitude and phase information are obtained from the numerical reconstruction of the holograms using a phase retrieval algorithm together with the angular spectrum propagation method. Topographic information of highly transparent micro-objects is obtained from the phase data. We evaluate our system by recording holograms of lines with different depths written by a focused laser beam. A reliable characterization of laser written microstructures is crucial for their functionality. Our results show that this system is valuable for determination of topological profiles of microstructures in transparent material.

  5. Contour metrology using critical dimension atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Orji, Ndubuisi G.; Dixson, Ronald G.; Vladár, András E.; Ming, Bin; Postek, Michael T.

    2012-03-01

    The critical dimension atomic force microscope (CD-AFM), which is used as a reference instrument in lithography metrology, has been proposed as a complementary instrument for contour measurement and verification. Although data from CD-AFM is inherently three dimensional, the planar two-dimensional data required for contour metrology is not easily extracted from the top-down CD-AFM data. This is largely due to the limitations of the CD-AFM method for controlling the tip position and scanning. We describe scanning techniques and profile extraction methods to obtain contours from CD-AFM data. We also describe how we validated our technique, and explain some of its limitations. Potential sources of error for this approach are described, and a rigorous uncertainty model is presented. Our objective is to show which data acquisition and analysis methods could yield optimum contour information while preserving some of the strengths of CD-AFM metrology. We present comparison of contours extracted using our technique to those obtained from the scanning electron microscope (SEM), and the helium ion microscope (HIM).

  6. Experimental Rectification of Entropy Production by Maxwell's Demon in a Quantum System

    NASA Astrophysics Data System (ADS)

    Camati, Patrice A.; Peterson, John P. S.; Batalhão, Tiago B.; Micadei, Kaonan; Souza, Alexandre M.; Sarthour, Roberto S.; Oliveira, Ivan S.; Serra, Roberto M.

    2016-12-01

    Maxwell's demon explores the role of information in physical processes. Employing information about microscopic degrees of freedom, this "intelligent observer" is capable of compensating entropy production (or extracting work), apparently challenging the second law of thermodynamics. In a modern standpoint, it is regarded as a feedback control mechanism and the limits of thermodynamics are recast incorporating information-to-energy conversion. We derive a trade-off relation between information-theoretic quantities empowering the design of an efficient Maxwell's demon in a quantum system. The demon is experimentally implemented as a spin-1 /2 quantum memory that acquires information, and employs it to control the dynamics of another spin-1 /2 system, through a natural interaction. Noise and imperfections in this protocol are investigated by the assessment of its effectiveness. This realization provides experimental evidence that the irreversibility in a nonequilibrium dynamics can be mitigated by assessing microscopic information and applying a feed-forward strategy at the quantum scale.

  7. Experimental Rectification of Entropy Production by Maxwell's Demon in a Quantum System.

    PubMed

    Camati, Patrice A; Peterson, John P S; Batalhão, Tiago B; Micadei, Kaonan; Souza, Alexandre M; Sarthour, Roberto S; Oliveira, Ivan S; Serra, Roberto M

    2016-12-09

    Maxwell's demon explores the role of information in physical processes. Employing information about microscopic degrees of freedom, this "intelligent observer" is capable of compensating entropy production (or extracting work), apparently challenging the second law of thermodynamics. In a modern standpoint, it is regarded as a feedback control mechanism and the limits of thermodynamics are recast incorporating information-to-energy conversion. We derive a trade-off relation between information-theoretic quantities empowering the design of an efficient Maxwell's demon in a quantum system. The demon is experimentally implemented as a spin-1/2 quantum memory that acquires information, and employs it to control the dynamics of another spin-1/2 system, through a natural interaction. Noise and imperfections in this protocol are investigated by the assessment of its effectiveness. This realization provides experimental evidence that the irreversibility in a nonequilibrium dynamics can be mitigated by assessing microscopic information and applying a feed-forward strategy at the quantum scale.

  8. Optimal resolution in Fresnel incoherent correlation holographic fluorescence microscopy

    PubMed Central

    Brooker, Gary; Siegel, Nisan; Wang, Victor; Rosen, Joseph

    2011-01-01

    Fresnel Incoherent Correlation Holography (FINCH) enables holograms and 3D images to be created from incoherent light with just a camera and spatial light modulator (SLM). We previously described its application to microscopic incoherent fluorescence wherein one complex hologram contains all the 3D information in the microscope field, obviating the need for scanning or serial sectioning. We now report experiments which have led to the optimal optical, electro-optic, and computational conditions necessary to produce holograms which yield high quality 3D images from fluorescent microscopic specimens. An important improvement from our previous FINCH configurations capitalizes on the polarization sensitivity of the SLM so that the same SLM pixels which create the spherical wave simulating the microscope tube lens, also pass the plane waves from the infinity corrected microscope objective, so that interference between the two wave types at the camera creates a hologram. This advance dramatically improves the resolution of the FINCH system. Results from imaging a fluorescent USAF pattern and a pollen grain slide reveal resolution which approaches the Rayleigh limit by this simple method for 3D fluorescent microscopic imaging. PMID:21445140

  9. Fundamental Work Cost of Quantum Processes

    NASA Astrophysics Data System (ADS)

    Faist, Philippe; Renner, Renato

    2018-04-01

    Information-theoretic approaches provide a promising avenue for extending the laws of thermodynamics to the nanoscale. Here, we provide a general fundamental lower limit, valid for systems with an arbitrary Hamiltonian and in contact with any thermodynamic bath, on the work cost for the implementation of any logical process. This limit is given by a new information measure—the coherent relative entropy—which accounts for the Gibbs weight of each microstate. The coherent relative entropy enjoys a collection of natural properties justifying its interpretation as a measure of information and can be understood as a generalization of a quantum relative entropy difference. As an application, we show that the standard first and second laws of thermodynamics emerge from our microscopic picture in the macroscopic limit. Finally, our results have an impact on understanding the role of the observer in thermodynamics: Our approach may be applied at any level of knowledge—for instance, at the microscopic, mesoscopic, or macroscopic scales—thus providing a formulation of thermodynamics that is inherently relative to the observer. We obtain a precise criterion for when the laws of thermodynamics can be applied, thus making a step forward in determining the exact extent of the universality of thermodynamics and enabling a systematic treatment of Maxwell-demon-like situations.

  10. MTF measurements on real time for performance analysis of electro-optical systems

    NASA Astrophysics Data System (ADS)

    Stuchi, Jose Augusto; Signoreto Barbarini, Elisa; Vieira, Flavio Pascoal; dos Santos, Daniel, Jr.; Stefani, Mário Antonio; Yasuoka, Fatima Maria Mitsue; Castro Neto, Jarbas C.; Linhari Rodrigues, Evandro Luis

    2012-06-01

    The need of methods and tools that assist in determining the performance of optical systems is actually increasing. One of the most used methods to perform analysis of optical systems is to measure the Modulation Transfer Function (MTF). The MTF represents a direct and quantitative verification of the image quality. This paper presents the implementation of the software, in order to calculate the MTF of electro-optical systems. The software was used for calculating the MTF of Digital Fundus Camera, Thermal Imager and Ophthalmologic Surgery Microscope. The MTF information aids the analysis of alignment and measurement of optical quality, and also defines the limit resolution of optical systems. The results obtained with the Fundus Camera and Thermal Imager was compared with the theoretical values. For the Microscope, the results were compared with MTF measured of Microscope Zeiss model, which is the quality standard of ophthalmological microscope.

  11. Advanced atomic force microscopy: Development and application

    NASA Astrophysics Data System (ADS)

    Walters, Deron A.

    Over the decade since atomic force microscopy (AFM) was invented, development of new microscopes has been closely intertwined with application of AFM to problems of interest in physics, chemistry, biology, and engineering. New techniques such as tapping mode AFM move quickly in our lab from the designer's bench to the user's table-since this is often the same piece of furniture. In return, designers get ample feedback as to what problems are limiting current instruments, and thus need most urgent attention. Tip sharpness and characterization are such a problem. Chapter 1 describes an AFM designed to operate in a scanning electron microscope, whose electron beam is used to deposit sharp carbonaceous tips. These tips can be tested and used in situ. Another limitation is addressed in Chapter 2: the difficulty of extracting more than just topographic information from a sample. A combined AFM/confocal optical microscope was built to provide simultaneous, independent images of the topography and fluorescence of a sample. In combination with staining or antibody labelling, this could provide submicron information about the composition of a sample. Chapters 3 and 4 discuss two generations of small cantilevers developed for lower-noise, higher-speed AFM of biological samples. In Chapter 4, a 26 mum cantilever is used to image the process of calcite growth from solution at a rate of 1.6 sec/frame. Finally, Chapter 5 explores in detail a biophysics problem that motivates us to develop fast, quiet, and gentle microscopes; namely, the control of crystal growth in seashells by the action of soluble proteins on a growing calcite surface.

  12. In Vivo Near Infrared Virtual Intraoperative Surgical Photoacoustic Optical Coherence Tomography

    PubMed Central

    Lee, Donghyun; Lee, Changho; Kim, Sehui; Zhou, Qifa; Kim, Jeehyun; Kim, Chulhong

    2016-01-01

    Since its first implementation in otolaryngological surgery nearly a century ago, the surgical microscope has improved the accuracy and the safety of microsurgeries. However, the microscope shows only a magnified surface view of the surgical region. To overcome this limitation, either optical coherence tomography (OCT) or photoacoustic microscopy (PAM) has been independently combined with conventional surgical microscope. Herein, we present a near-infrared virtual intraoperative photoacoustic optical coherence tomography (NIR-VISPAOCT) system that combines both PAM and OCT with a conventional surgical microscope. Using optical scattering and absorption, the NIR-VISPAOCT system simultaneously provides surgeons with real-time comprehensive biological information such as tumor margins, tissue structure, and a magnified view of the region of interest. Moreover, by utilizing a miniaturized beam projector, it can back-project 2D cross-sectional PAM and OCT images onto the microscopic view plane. In this way, both microscopic and cross-sectional PAM and OCT images are concurrently displayed on the ocular lens of the microscope. To verify the usability of the NIR-VISPAOCT system, we demonstrate simulated surgeries, including in vivo image-guided melanoma resection surgery and in vivo needle injection of carbon particles into a mouse thigh. The proposed NIR-VISPAOCT system has potential applications in neurosurgery, ophthalmological surgery, and other microsurgeries. PMID:27731390

  13. Stimulated penetrating keratoplasty using real-time virtual intraoperative surgical optical coherence tomography

    PubMed Central

    Lee, Changho; Kim, Kyungun; Han, Seunghoon; Kim, Sehui; Lee, Jun Hoon; Kim, Hong kyun; Kim, Chulhong; Jung, Woonggyu; Kim, Jeehyun

    2014-01-01

    Abstract. An intraoperative surgical microscope is an essential tool in a neuro- or ophthalmological surgical environment. Yet, it has an inherent limitation to classify subsurface information because it only provides the surface images. To compensate for and assist in this problem, combining the surgical microscope with optical coherence tomography (OCT) has been adapted. We developed a real-time virtual intraoperative surgical OCT (VISOCT) system by adapting a spectral-domain OCT scanner with a commercial surgical microscope. Thanks to our custom-made beam splitting and image display subsystems, the OCT images and microscopic images are simultaneously visualized through an ocular lens or the eyepiece of the microscope. This improvement helps surgeons to focus on the operation without distraction to view OCT images on another separate display. Moreover, displaying the OCT live images on the eyepiece helps surgeon’s depth perception during the surgeries. Finally, we successfully processed stimulated penetrating keratoplasty in live rabbits. We believe that these technical achievements are crucial to enhance the usability of the VISOCT system in a real surgical operating condition. PMID:24604471

  14. Performance evaluation of a quasi-microscope for planetary landers

    NASA Technical Reports Server (NTRS)

    Burcher, E. E.; Huck, F. O.; Wall, S. D.; Woehrle, S. B.

    1977-01-01

    Spatial resolutions achieved with cameras on lunar and planetary landers have been limited to about 1 mm, whereas microscopes of the type proposed for such landers could have obtained resolutions of about 1 um but were never accepted because of their complexity and weight. The quasi-microscope evaluated in this paper could provide intermediate resolutions of about 10 um with relatively simple optics that would augment a camera, such as the Viking lander camera, without imposing special design requirements on the camera of limiting its field of view of the terrain. Images of natural particulate samples taken in black and white and in color show that grain size, shape, and texture are made visible for unconsolidated materials in a 50- to 500-um size range. Such information may provide broad outlines of planetary surface mineralogy and allow inferences to be made of grain origin and evolution. The mineralogical descriptions of single grains would be aided by the reflectance spectra that could, for example, be estimated from the six-channel multispectral data of the Viking lander camera.

  15. NONIDEAL TRANSPORT OF REACTIVE SOLUTES IN HETEROGENEOUS POROUS MEDIA 6. MICROSCOPIC AND MACROSCOPIC APPROACHES FOR INCORPORATING HETEROGENEOUS RATE-LIMITED MASS TRANSFER. (R825407)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  16. Superresolution Imaging with Standard Fluorescent Probes

    PubMed Central

    Burnette, Dylan T.; Lippincott-Schwartz, Jennifer; Kachar, Bechara

    2013-01-01

    For more than 100 years, the ultimate resolution of a light microscope (~200 nm) has been constrained by the fundamental physical phenomenon of diffraction, as described by Ernst Abbe in 1873. While this limitation is just as applicable to today’s light microscopes, it is the combination of high-end optics, clever methods of sample illumination, and computational techniques that has enabled researchers to access high-resolution information an order of magnitude greater than once thought possible. This combination, broadly termed superresolution microscopy, has been increasingly practical for many labs to implement from both a hardware and software standpoint, but as with many cutting-edge techniques, it also comes with limitations. One of the current drawbacks to superresolution microscopy is the limited number of probes and conditions that have been suitable for imaging. Here, a technique termed bleaching/blinking assisted localization microscopy (BaLM) makes use of almost all fluorophore’s inherent blinking and bleaching properties as a means to generate superresolution images. PMID:24510788

  17. Fabrication and characterization of novel microsphere-embedded optical devices for enhancing microscopy resolution

    NASA Astrophysics Data System (ADS)

    Darafsheh, Arash

    2018-02-01

    Microsphere-assisted imaging can be incorporated onto conventional light microscopes allowing wide-field and flourescence imaging with enhanced resolution. We demonstrated that imaging of specimens containing subdiffraction-limited features is achievable through high-index microspheres embedded in a transparent thin film placed over the specimen. We fabricated novel microsphere-embedded microscope slides composed of barium titanate glass microspheres (with diameter 10-100 μm and refractive index 1.9-2.2) embedded in a transparent polydimethylsiloxane (PDMS) elastomer layer with controllable thickness. We characterized the imaging performance of such microsphere-embedded devices in white-light microscopies, by measuring the imaging resolution, field-of-view, and magnification as a function of microsphere size. Our results inform on the design of novel optical devices, such as microsphere-embedded microscope slides for imaging applications.

  18. Computer synthesis of high resolution electron micrographs

    NASA Technical Reports Server (NTRS)

    Nathan, R.

    1976-01-01

    Specimen damage, spherical aberration, low contrast and noisy sensors combine to prevent direct atomic viewing in a conventional electron microscope. The paper describes two methods for obtaining ultra-high resolution in biological specimens under the electron microscope. The first method assumes the physical limits of the electron objective lens and uses a series of dark field images of biological crystals to obtain direct information on the phases of the Fourier diffraction maxima; this information is used in an appropriate computer to synthesize a large aperture lens for a 1-A resolution. The second method assumes there is sufficient amplitude scatter from images recorded in focus which can be utilized with a sensitive densitometer and computer contrast stretching to yield fine structure image details. Cancer virus characterization is discussed as an illustrative example. Numerous photographs supplement the text.

  19. Optical tracking of nanoscale particles in microscale environments

    NASA Astrophysics Data System (ADS)

    Mathai, P. P.; Liddle, J. A.; Stavis, S. M.

    2016-03-01

    The trajectories of nanoscale particles through microscale environments record useful information about both the particles and the environments. Optical microscopes provide efficient access to this information through measurements of light in the far field from nanoparticles. Such measurements necessarily involve trade-offs in tracking capabilities. This article presents a measurement framework, based on information theory, that facilitates a more systematic understanding of such trade-offs to rationally design tracking systems for diverse applications. This framework includes the degrees of freedom of optical microscopes, which determine the limitations of tracking measurements in theory. In the laboratory, tracking systems are assemblies of sources and sensors, optics and stages, and nanoparticle emitters. The combined characteristics of such systems determine the limitations of tracking measurements in practice. This article reviews this tracking hardware with a focus on the essential functions of nanoparticles as optical emitters and microenvironmental probes. Within these theoretical and practical limitations, experimentalists have implemented a variety of tracking systems with different capabilities. This article reviews a selection of apparatuses and techniques for tracking multiple and single particles by tuning illumination and detection, and by using feedback and confinement to improve the measurements. Prior information is also useful in many tracking systems and measurements, which apply across a broad spectrum of science and technology. In the context of the framework and review of apparatuses and techniques, this article reviews a selection of applications, with particle diffusion serving as a prelude to tracking measurements in biological, fluid, and material systems, fabrication and assembly processes, and engineered devices. In so doing, this review identifies trends and gaps in particle tracking that might influence future research.

  20. Correlative super-resolution fluorescence microscopy combined with optical coherence microscopy

    NASA Astrophysics Data System (ADS)

    Kim, Sungho; Kim, Gyeong Tae; Jang, Soohyun; Shim, Sang-Hee; Bae, Sung Chul

    2015-03-01

    Recent development of super-resolution fluorescence imaging technique such as stochastic optical reconstruction microscopy (STORM) and photoactived localization microscope (PALM) has brought us beyond the diffraction limits. It allows numerous opportunities in biology because vast amount of formerly obscured molecular structures, due to lack of spatial resolution, now can be directly observed. A drawback of fluorescence imaging, however, is that it lacks complete structural information. For this reason, we have developed a super-resolution multimodal imaging system based on STORM and full-field optical coherence microscopy (FF-OCM). FF-OCM is a type of interferometry systems based on a broadband light source and a bulk Michelson interferometer, which provides label-free and non-invasive visualization of biological samples. The integration between the two systems is simple because both systems use a wide-field illumination scheme and a conventional microscope. This combined imaging system gives us both functional information at a molecular level (~20nm) and structural information at the sub-cellular level (~1μm). For thick samples such as tissue slices, while FF-OCM is readily capable of imaging the 3D architecture, STORM suffer from aberrations and high background fluorescence that substantially degrade the resolution. In order to correct the aberrations in thick tissues, we employed an adaptive optics system in the detection path of the STORM microscope. We used our multimodal system to obtain images on brain tissue samples with structural and functional information.

  1. Photon theory hypothesis about photon tunneling microscope's subwavelength resolution

    NASA Astrophysics Data System (ADS)

    Zhu, Yanbin; Ma, Junfu

    1995-09-01

    The foundation for the invention of the photon scanning tunneling microscope (PSTM) are the near field scanning optical microscope, the optical fiber technique, the total internal reflection, high sensitive opto-electronic detecting technique and computer technique etc. Recent research results show the subwavelength resolution of 1 - 3 nm is obtained. How to explain the PSTM has got such high subwavelength resolution? What value is the PSTM's limiting of subwavelength resolution? For resolving these problems this paper presented a photon theory hypothesis about PSTM that is based on the following two basic laws: (1) Photon is not only a carrier bringing energy and optical information, but also is a particle occupied fixed space size. (2) When a photon happened reflection, refraction, scattering, etc., only changed its energy and optical information carried, its particle size doesn't change. g (DOT) pphoton equals constant. Using these two basic laws to PSTM, the `evanescent field' is practically a weak photon distribution field and the detecting fiber tip diameter is practically a `gate' which size controlled the photon numbers into fiber tip. Passing through some calculation and inference, the following three conclusions can be given: (1) Under the PSTM's detection system sensitivity is high enough, the diameter D of detecting fiber tip and the near field detecting distance Z are the two most important factors to decide the subwavelength resolution of PSTM. (2) The limiting of PSTM's resolution will be given upon the conditions of D equals pphoton and Z equals pphoton, where pphoton is one photon size. (2) The final resolution limit R of PSTM will be lim R equals pphoton, D yields pphoton, Z yields pphoton.

  2. A Study on Project Priority Evaluation Method on Road Slope Disaster Prevention Management

    NASA Astrophysics Data System (ADS)

    Sekiguchi, Nobuyasu; Ohtsu, Hiroyasu; Izu, Ryuutarou

    To improve the safety and security of driving while coping with today's stagnant economy and frequent natural disasters, road slopes should be appropriately managed. To achieve the goals, road managers should establish project priority evaluation methods for each stage of road slope management by clarifying social losses that would result by drops in service levels. It is important that road managers evaluate a project priority properly to manage the road slope effectively. From this viewpoint, this study proposed "project priority evaluation methods" in road slope disaster prevention, which use available slope information at each stage of road slope management under limited funds. In addition, this study investigated the effect of managing it from the high slope of the priority by evaluating a risk of slope failure. In terms of the amount of available information, staged information provision is needed ranging from macroscopic studies, which involves evaluation of the entire route at each stage of decision making, to semi- and microscopic investigations for evaluating slopes, and microscopic investigations for evaluating individual slopes. With limited funds, additional detailed surveys are difficult to perform. It is effective to use the slope risk assessment system, which was constructed to complement detailed data, to extract sites to perform precise investigations.

  3. Microscopic Investigation of Materials Limitations of Superconducting RF Cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anlage, Steven

    2017-08-04

    Our overall goal is to contribute to the understanding of defects that limit the high accelerating gradient performance of Nb SRF cavities. Our approach is to develop a microscopic connection between materials defects and SRF performance. We developed a near-field microwave microscope to establish this connection. The microscope is based on magnetic hard drive write heads, which are designed to create very strong rf magnetic fields in very small volumes on a surface.

  4. High-throughput automatic defect review for 300mm blank wafers with atomic force microscope

    NASA Astrophysics Data System (ADS)

    Zandiatashbar, Ardavan; Kim, Byong; Yoo, Young-kook; Lee, Keibock; Jo, Ahjin; Lee, Ju Suk; Cho, Sang-Joon; Park, Sang-il

    2015-03-01

    While feature size in lithography process continuously becomes smaller, defect sizes on blank wafers become more comparable to device sizes. Defects with nm-scale characteristic size could be misclassified by automated optical inspection (AOI) and require post-processing for proper classification. Atomic force microscope (AFM) is known to provide high lateral and the highest vertical resolution by mechanical probing among all techniques. However, its low throughput and tip life in addition to the laborious efforts for finding the defects have been the major limitations of this technique. In this paper we introduce automatic defect review (ADR) AFM as a post-inspection metrology tool for defect study and classification for 300 mm blank wafers and to overcome the limitations stated above. The ADR AFM provides high throughput, high resolution, and non-destructive means for obtaining 3D information for nm-scale defect review and classification.

  5. Theory of triplet-triplet annihilation in optically detected magnetic resonance

    NASA Astrophysics Data System (ADS)

    Keevers, T. L.; McCamey, D. R.

    2016-01-01

    Triplet-triplet annihilation allows two low-energy photons to be upconverted into a single high-energy photon. By essentially engineering the solar spectrum, this allows solar cells to be made more efficient and even exceed the Shockley-Quiesser limit. Unfortunately, optimizing the reaction pathway is difficult, especially with limited access to the microscopic time scales and states involved in the process. Optical measurements can provide detailed information: triplet-triplet annihilation is intrinsically spin dependent and exhibits substantial magnetoluminescence in the presence of a static magnetic field. Pulsed optically detected magnetic resonance is especially suitable, since it combines high spin sensitivity with coherent manipulation. In this paper, we develop a time-domain theory of triplet-triplet annihilation for complexes with arbitrary spin-spin coupling. We identify unique "Rabi fingerprints" for each coupling regime and show that this can be used to characterize the microscopic Hamiltonian.

  6. Optical tracking of nanoscale particles in microscale environments

    PubMed Central

    Mathai, P. P.; Liddle, J. A.; Stavis, S. M.

    2016-01-01

    The trajectories of nanoscale particles through microscale environments record useful information about both the particles and the environments. Optical microscopes provide efficient access to this information through measurements of light in the far field from nanoparticles. Such measurements necessarily involve trade-offs in tracking capabilities. This article presents a measurement framework, based on information theory, that facilitates a more systematic understanding of such trade-offs to rationally design tracking systems for diverse applications. This framework includes the degrees of freedom of optical microscopes, which determine the limitations of tracking measurements in theory. In the laboratory, tracking systems are assemblies of sources and sensors, optics and stages, and nanoparticle emitters. The combined characteristics of such systems determine the limitations of tracking measurements in practice. This article reviews this tracking hardware with a focus on the essential functions of nanoparticles as optical emitters and microenvironmental probes. Within these theoretical and practical limitations, experimentalists have implemented a variety of tracking systems with different capabilities. This article reviews a selection of apparatuses and techniques for tracking multiple and single particles by tuning illumination and detection, and by using feedback and confinement to improve the measurements. Prior information is also useful in many tracking systems and measurements, which apply across a broad spectrum of science and technology. In the context of the framework and review of apparatuses and techniques, this article reviews a selection of applications, with particle diffusion serving as a prelude to tracking measurements in biological, fluid, and material systems, fabrication and assembly processes, and engineered devices. In so doing, this review identifies trends and gaps in particle tracking that might influence future research. PMID:27213022

  7. Enhancing the performance of the light field microscope using wavefront coding.

    PubMed

    Cohen, Noy; Yang, Samuel; Andalman, Aaron; Broxton, Michael; Grosenick, Logan; Deisseroth, Karl; Horowitz, Mark; Levoy, Marc

    2014-10-06

    Light field microscopy has been proposed as a new high-speed volumetric computational imaging method that enables reconstruction of 3-D volumes from captured projections of the 4-D light field. Recently, a detailed physical optics model of the light field microscope has been derived, which led to the development of a deconvolution algorithm that reconstructs 3-D volumes with high spatial resolution. However, the spatial resolution of the reconstructions has been shown to be non-uniform across depth, with some z planes showing high resolution and others, particularly at the center of the imaged volume, showing very low resolution. In this paper, we enhance the performance of the light field microscope using wavefront coding techniques. By including phase masks in the optical path of the microscope we are able to address this non-uniform resolution limitation. We have also found that superior control over the performance of the light field microscope can be achieved by using two phase masks rather than one, placed at the objective's back focal plane and at the microscope's native image plane. We present an extended optical model for our wavefront coded light field microscope and develop a performance metric based on Fisher information, which we use to choose adequate phase masks parameters. We validate our approach using both simulated data and experimental resolution measurements of a USAF 1951 resolution target; and demonstrate the utility for biological applications with in vivo volumetric calcium imaging of larval zebrafish brain.

  8. Analysis of biological time-lapse microscopic experiment from the point of view of the information theory.

    PubMed

    Štys, Dalibor; Urban, Jan; Vaněk, Jan; Císař, Petr

    2011-06-01

    We report objective analysis of information in the microscopic image of the cell monolayer. The process of transfer of information about the cell by the microscope is analyzed in terms of the classical Shannon information transfer scheme. The information source is the biological object, the information transfer channel is the whole microscope including the camera chip. The destination is the model of biological system. The information contribution is analyzed as information carried by a point to overall information in the image. Subsequently we obtain information reflection of the biological object. This is transformed in the biological model which, in information terminology, is the destination. This, we propose, should be constructed as state transitions in individual cells modulated by information bonds between the cells. We show examples of detected cell states in multidimensional state space. This space is reflected as colour channel intensity phenomenological state space. We have also observed information bonds and show examples of them.

  9. Analysis of biological time-lapse microscopic experiment from the point of view of the information theory.

    PubMed

    Stys, Dalibor; Urban, Jan; Vanek, Jan; Císar, Petr

    2010-07-01

    We report objective analysis of information in the microscopic image of the cell monolayer. The process of transfer of information about the cell by the microscope is analyzed in terms of the classical Shannon information transfer scheme. The information source is the biological object, the information transfer channel is the whole microscope including the camera chip. The destination is the model of biological system. The information contribution is analyzed as information carried by a point to overall information in the image. Subsequently we obtain information reflection of the biological object. This is transformed in the biological model which, in information terminology, is the destination. This, we propose, should be constructed as state transitions in individual cells modulated by information bonds between the cells. We show examples of detected cell states in multidimensional state space reflected in space an colour channel intensity phenomenological state space. We have also observed information bonds and show examples of them. Copyright 2010 Elsevier Ltd. All rights reserved.

  10. The plant virus microscope image registration method based on mismatches removing.

    PubMed

    Wei, Lifang; Zhou, Shucheng; Dong, Heng; Mao, Qianzhuo; Lin, Jiaxiang; Chen, Riqing

    2016-01-01

    The electron microscopy is one of the major means to observe the virus. The view of virus microscope images is limited by making specimen and the size of the camera's view field. To solve this problem, the virus sample is produced into multi-slice for information fusion and image registration techniques are applied to obtain large field and whole sections. Image registration techniques have been developed in the past decades for increasing the camera's field of view. Nevertheless, these approaches typically work in batch mode and rely on motorized microscopes. Alternatively, the methods are conceived just to provide visually pleasant registration for high overlap ratio image sequence. This work presents a method for virus microscope image registration acquired with detailed visual information and subpixel accuracy, even when overlap ratio of image sequence is 10% or less. The method proposed focus on the correspondence set and interimage transformation. A mismatch removal strategy is proposed by the spatial consistency and the components of keypoint to enrich the correspondence set. And the translation model parameter as well as tonal inhomogeneities is corrected by the hierarchical estimation and model select. In the experiments performed, we tested different registration approaches and virus images, confirming that the translation model is not always stationary, despite the fact that the images of the sample come from the same sequence. The mismatch removal strategy makes building registration of virus microscope images at subpixel accuracy easier and optional parameters for building registration according to the hierarchical estimation and model select strategies make the proposed method high precision and reliable for low overlap ratio image sequence. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Angle-resolved photoemission spectroscopy with quantum gas microscopes

    NASA Astrophysics Data System (ADS)

    Bohrdt, A.; Greif, D.; Demler, E.; Knap, M.; Grusdt, F.

    2018-03-01

    Quantum gas microscopes are a promising tool to study interacting quantum many-body systems and bridge the gap between theoretical models and real materials. So far, they were limited to measurements of instantaneous correlation functions of the form 〈O ̂(t ) 〉 , even though extensions to frequency-resolved response functions 〈O ̂(t ) O ̂(0 ) 〉 would provide important information about the elementary excitations in a many-body system. For example, single-particle spectral functions, which are usually measured using photoemission experiments in electron systems, contain direct information about fractionalization and the quasiparticle excitation spectrum. Here, we propose a measurement scheme to experimentally access the momentum and energy-resolved spectral function in a quantum gas microscope with currently available techniques. As an example for possible applications, we numerically calculate the spectrum of a single hole excitation in one-dimensional t -J models with isotropic and anisotropic antiferromagnetic couplings. A sharp asymmetry in the distribution of spectral weight appears when a hole is created in an isotropic Heisenberg spin chain. This effect slowly vanishes for anisotropic spin interactions and disappears completely in the case of pure Ising interactions. The asymmetry strongly depends on the total magnetization of the spin chain, which can be tuned in experiments with quantum gas microscopes. An intuitive picture for the observed behavior is provided by a slave-fermion mean-field theory. The key properties of the spectra are visible at currently accessible temperatures.

  12. Building Practical Apertureless Scanning Near-Field Microscopy

    NASA Astrophysics Data System (ADS)

    Gungordu, M. Zeki

    The fundamental objective of this study is to establish a functional, practical apertureless type scanning near-field optical microscope, and to figure out the working mechanism behind it. Whereas a far-field microscope can measure the propagating field's components, this gives us little information about the features of the sample. The resolution is limited to about half of the wavelength of the illuminating light. On the other hand, the a-SNOM system enables achieving non-propagating components of the field, which provides more details about the sample's features. It is really difficult to measure because the amplitude of this field decays exponentially when the tip is moved away from the sample. The sharpness of the tip is the only limitation for resolution of the a-SNOM system. Consequently, the sharp tips are achieved by using electrochemical etching, and these tips are used to detect near-field signal. Separating the weak a-SNOM system signals from the undesired background signal, the higher demodulation background suppression is utilized by lock-in detection.

  13. MicroScope: a platform for microbial genome annotation and comparative genomics.

    PubMed

    Vallenet, D; Engelen, S; Mornico, D; Cruveiller, S; Fleury, L; Lajus, A; Rouy, Z; Roche, D; Salvignol, G; Scarpelli, C; Médigue, C

    2009-01-01

    The initial outcome of genome sequencing is the creation of long text strings written in a four letter alphabet. The role of in silico sequence analysis is to assist biologists in the act of associating biological knowledge with these sequences, allowing investigators to make inferences and predictions that can be tested experimentally. A wide variety of software is available to the scientific community, and can be used to identify genomic objects, before predicting their biological functions. However, only a limited number of biologically interesting features can be revealed from an isolated sequence. Comparative genomics tools, on the other hand, by bringing together the information contained in numerous genomes simultaneously, allow annotators to make inferences based on the idea that evolution and natural selection are central to the definition of all biological processes. We have developed the MicroScope platform in order to offer a web-based framework for the systematic and efficient revision of microbial genome annotation and comparative analysis (http://www.genoscope.cns.fr/agc/microscope). Starting with the description of the flow chart of the annotation processes implemented in the MicroScope pipeline, and the development of traditional and novel microbial annotation and comparative analysis tools, this article emphasizes the essential role of expert annotation as a complement of automatic annotation. Several examples illustrate the use of implemented tools for the review and curation of annotations of both new and publicly available microbial genomes within MicroScope's rich integrated genome framework. The platform is used as a viewer in order to browse updated annotation information of available microbial genomes (more than 440 organisms to date), and in the context of new annotation projects (117 bacterial genomes). The human expertise gathered in the MicroScope database (about 280,000 independent annotations) contributes to improve the quality of microbial genome annotation, especially for genomes initially analyzed by automatic procedures alone.Database URLs: http://www.genoscope.cns.fr/agc/mage and http://www.genoscope.cns.fr/agc/microcyc.

  14. Polarized light and scanning electron microscopic investigation of enamel hypoplasia in primary teeth.

    PubMed

    Sabel, Nina; Klingberg, Gunilla; Dietz, Wolfram; Nietzsche, Sandor; Norén, Jörgen G

    2010-01-01

    Enamel hypoplasia is a developmental disturbance during enamel formation, defined as a macroscopic defect in the enamel, with a reduction of the enamel thickness with rounded, smooth borders. Information on the microstructural level is still limited, therefore further studies are of importance to better understand the mechanisms behind enamel hypoplasia. To study enamel hypoplasia in primary teeth by means of polarized light microscopy and scanning electron microscopy. Nineteen primary teeth with enamel hypoplasia were examined in a polarized light microscope and in a scanning electron microscope. The cervical and incisal borders of the enamel hypoplasia had a rounded appearance, as the prisms in the rounded cervical area of the hypoplasia were bent. The rounded borders had a normal surface structure whereas the base of the defects appeared rough and porous. Morphological findings in this study indicate that the aetiological factor has a short duration and affects only certain ameloblasts. The bottom of the enamel hypoplasia is porous and constitutes possible pathways for bacteria into the dentin.

  15. Microscopic Observation of the Side Surface of Dynamically-Tensile-Fractured 6061-T6 and 2219-T87 Aluminum Alloys with Pre-Fatigue

    NASA Astrophysics Data System (ADS)

    Itabashi, Masaaki; Nakajima, Shigeru; Fukuda, Hiroshi

    After unexpected failure of metallic structure, microscopic investigation will be performed. Generally, such an investigation is limited to search striation pattern with a SEM (scanning electron microscope). But, when the cause of the failure was not severe repeated stress, this investigation is ineffective. In this paper, new microscopic observation technique is proposed to detect low cycle fatigue-impact tensile loading history. Al alloys, 6061-T6 and 2219-T87, were fractured in dynamic tension, after severe pre-fatigue. The side surface of the fractured specimens was observed with a SEM. Neighboring fractured surface, many opened cracks on the side surface have been generated. For each specimen, the number of the cracks was counted together with information of individual sizes and geometric features. For 6061-T6 alloy specimen with the pre-fatigue, the number of the cracks is greater than that for the specimen without the pre-fatigue. For 2219-T87 alloy, the same tendency can be found after a certain screening of the crack counting. Therefore, the crack counting technique may be useful to detect the existence of the pre-fatigue from the dynamically fractured specimen surface.

  16. Enhancing the performance of the light field microscope using wavefront coding

    PubMed Central

    Cohen, Noy; Yang, Samuel; Andalman, Aaron; Broxton, Michael; Grosenick, Logan; Deisseroth, Karl; Horowitz, Mark; Levoy, Marc

    2014-01-01

    Light field microscopy has been proposed as a new high-speed volumetric computational imaging method that enables reconstruction of 3-D volumes from captured projections of the 4-D light field. Recently, a detailed physical optics model of the light field microscope has been derived, which led to the development of a deconvolution algorithm that reconstructs 3-D volumes with high spatial resolution. However, the spatial resolution of the reconstructions has been shown to be non-uniform across depth, with some z planes showing high resolution and others, particularly at the center of the imaged volume, showing very low resolution. In this paper, we enhance the performance of the light field microscope using wavefront coding techniques. By including phase masks in the optical path of the microscope we are able to address this non-uniform resolution limitation. We have also found that superior control over the performance of the light field microscope can be achieved by using two phase masks rather than one, placed at the objective’s back focal plane and at the microscope’s native image plane. We present an extended optical model for our wavefront coded light field microscope and develop a performance metric based on Fisher information, which we use to choose adequate phase masks parameters. We validate our approach using both simulated data and experimental resolution measurements of a USAF 1951 resolution target; and demonstrate the utility for biological applications with in vivo volumetric calcium imaging of larval zebrafish brain. PMID:25322056

  17. Thermal magnetic field noise limits resolution in transmission electron microscopy.

    PubMed

    Uhlemann, Stephan; Müller, Heiko; Hartel, Peter; Zach, Joachim; Haider, Max

    2013-07-26

    The resolving power of an electron microscope is determined by the optics and the stability of the instrument. Recently, progress has been obtained towards subångström resolution at beam energies of 80 kV and below but a discrepancy between the expected and achieved instrumental information limit has been observed. Here we show that magnetic field noise from thermally driven currents in the conductive parts of the instrument is the root cause for this hitherto unexplained decoherence phenomenon. We demonstrate that the deleterious effect depends on temperature and at least weakly on the type of material.

  18. A novel method for preparing histology slides to integrate the teaching of gross and microscopic anatomy.

    PubMed

    Provo-Klimek, Judy A; Troyer, Deryl L

    2002-01-01

    The authors have previously reported the development of a novel technique for sampling and preparing tissue slides for routine microscopic examination, without the use of a microtome. Termed "RAMP" (Rapid Adhesive Mediated Procedure), this simple, albeit somewhat crude, technique holds promise as a method that can be used in the field by veterinary practitioners for rapid microscopic evaluations to obtain early preliminary estimates of the nature of a mass or lesion. We incorporated the use of this method into a gross anatomy course in an attempt to gauge its utility for novices in tissue sampling and histology slide preparation. By having each group of students take a tissue sample from their cadaver, the activity simulated an actual necropsy situation in which practitioners in the field might use the technique. Because students were able to follow their specimen from sampling to microscopic examination, the activity provided a valuable integration of their learning of gross and microscopic anatomy. We conducted an evaluation of the process and the resulting slides with two successive classes of students. We conclude that the RAMP method is reasonably successful in the hands of individuals not trained in tissue preparation; was well received by the students as a valuable learning tool; and could potentially yield useful histological information for practicing veterinarians. Limitations of the method are also discussed.

  19. Ultrastructural characterization of pulmonary neoplasms. II. The role of electron microscopy in characterization of uncommon epithelial pulmonary neoplasms, metastatic neoplasms to and from lung, and other tumors, including mesenchymal neoplasms.

    PubMed

    Herrera, G A; Alexander, C B; Jones, J M

    1985-01-01

    Ultrastructural analysis through better resolution adds significant information to the evaluation and classification of primary pulmonary neoplasms. Light microscopy is limited in the evaluation of lung neoplasms. In some cases the light microscopic appearance may be entirely misleading, whereas in others it is inconclusive. Immunocytochemistry provides information on cytoplasmic differentiation of various tumors and hence more data on their corresponding phenotypes. The data from immunocytochemistry without corresponding objective electron microscopic evaluation may be very difficult to interpret. Correlation of historical, gross, light, electron microscopic, and immunocytochemical data is essential for a final accurate diagnosis (fig. 20). Fine needle aspiration of pulmonary neoplasms is becoming very fashionable and a diagnosis, including type of neoplasm, is expected on the basis of examination of a limited number of cells which further emphasizes the importance of ultrastructural characterization in helping to establish an accurate diagnosis [63-69]. The current classification of pulmonary neoplasms may need to be modified in the near future to incorporate the newly created data [70-72]. At the present time, there appears to be, at least, a need for a 'double standard', as Sobin [73] has suggested, which would permit the evaluation of the biologic significance of the ultrastructural and immunocytochemical findings (as applied to classification of neoplasms) in an effort to derive meaningful clinicopathologic correlations. Figure 20 emphasizes the additive role which should be played by the various diagnostic modalities to enable a morphologic assessment which would be an accurate predictor of biologic behavior. With an accurate assessment of biologic behavior, a more appropriate and rational approach for therapy is possible. There is also an important role for ultrastructural analysis in metastatic pleural and pulmonary neoplasms, primarily adenocarcinomas, as well as in the differential diagnosis of pulmonary neoplasms versus other tumors that may be similar in histological appearance. The role of ultrastructure in mesenchymal neoplasms is also crucial in defining specific neoplastic cell populations and in some cases in the differentiation from other non-mesenchymal tumors. It seems that routine electron microscopic examination of pulmonary neoplasms provides additional information that may be of great value in the management of patients and in understanding the differentiation, and perhaps histogenesis, of pulmonary neoplasms.(ABSTRACT TRUNCATED AT 400 WORDS)

  20. Correlative Fluorescence and Electron Microscopy in 3D-Scanning Electron Microscope Perspective.

    PubMed

    Franks, Jonathan; Wallace, Callen T; Shibata, Masateru; Suga, Mitsuo; Erdman, Natasha; Stolz, Donna B; Watkins, Simon C

    2017-04-03

    The ability to correlate fluorescence microscopy (FM) and electron microscopy (EM) data obtained on biological (cell and tissue) specimens is essential to bridge the resolution gap between the data obtained by these different imaging techniques. In the past such correlations were limited to either EM navigation in two dimensions to the locations previously highlighted by fluorescence markers, or subsequent high-resolution acquisition of tomographic information using a TEM. We present a novel approach whereby a sample previously investigated by FM is embedded and subjected to sequential mechanical polishing and backscatter imaging by scanning electron microscope. The resulting three dimensional EM tomogram of the sample can be directly correlated to the FM data. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  1. Limits of agreement between the optical pachymeter and a noncontact specular microscope.

    PubMed

    Ogbuehi, Kelechi C; Almubrad, Turki M

    2005-07-01

    To determine the limits of agreement between central corneal thickness (CCT) measurements made with the slit lamp-attached optical pachymeter and the SP2000P noncontact specular microscope. Triplicate readings for CCT were obtained for each of 130 (right) eyes of 130 patients, using the slit lamp-attached optical pachymeter and then the SP2000P noncontact specular microscope. The average CCT measured by each method was compared. Subsequently, the mean difference between both sets of measurements was assessed, and the 95% confidence interval (limits of agreement) between both techniques was determined. The mean +/- SD CCT measured by the optical pachymeter was 543 +/- 34 microm and 532 +/- 34 microm for the specular microscope. We found a statistically significant (P < 0.001) mean bias of 10 mum between CCT values measured with both types of equipment, with the optical pachymeter returning the higher values. The coefficient of variation was 6.3% for the optical pachymeter and 6.4% for the specular microscope. The right eye CCT measurements made by the optical pachymeter are, on average, 10 mum thicker than those made with the SP2000P specular microscope, which suggests that both pieces of equipment cannot be used interchangeably to monitor CCT changes in patients. Excluding left eye measurements, the reliability of the optical pachymeter is identical to that of the noncontact specular microscope.

  2. The different ways to obtain digital images of urine microscopy findings: Their advantages and limitations.

    PubMed

    Fogazzi, G B; Garigali, G

    2017-03-01

    We describe three ways to take digital images of urine sediment findings. Way 1 encompasses a digital camera permanently mounted on the microscope and connected with a computer equipped with a proprietary software to acquire, process and store the images. Way 2 is based on the use of inexpensive compact digital cameras, held by hands - or mounted on a tripod - close to one eyepiece of the microscope. Way 3 is based on the use of smartphones, held by hands close to one eyepiece of the microscope or connected to the microscope by an adapter. The procedures, advantages and limitations of each way are reported. Copyright © 2017. Published by Elsevier B.V.

  3. Sub-micron materials characterization using near-field optics

    NASA Astrophysics Data System (ADS)

    Blodgett, David Wesley

    1998-12-01

    High-resolution sub-surface materials characterization and inspection are critical in the microelectronics and thin films industries. To this end, a technique is described that couples the bulk property measurement capabilities of high-frequency ultrasound with the high-resolution surface imaging capabilities of the near-field optical microscope. Sensing bulk microstructure variations in the material, such as grain boundaries, requires a detection footprint smaller than the variation itself. The near-field optical microscope, with the ability to exceed the diffraction limit in optical resolution, meets this requirement. Two apertureless near-field optical microscopes, on-axis and off-axis illumination, have been designed and built. Near-field and far-field approach curves for both microscopes are presented. The sensitivity of the near-field approach curve was 8.3 muV/nm. Resolution studies for the near-field microscope indicate optical resolutions on the order of 50 nm, which exceeds the diffraction limit. The near-field microscope has been adapted to detect both contact-transducer-generated and laser-generated ultrasound. The successful detection of high-frequency ultrasound with the near-field optical microscope demonstrates the potential of this technique.

  4. The optics of microscope image formation.

    PubMed

    Wolf, David E

    2013-01-01

    Although geometric optics gives a good understanding of how the microscope works, it fails in one critical area, which is explaining the origin of microscope resolution. To accomplish this, one must consider the microscope from the viewpoint of physical optics. This chapter describes the theory of the microscope-relating resolution to the highest spatial frequency that a microscope can collect. The chapter illustrates how Huygens' principle or construction can be used to explain the propagation of a plane wave. It is shown that this limit increases with increasing numerical aperture (NA). As a corollary to this, resolution increases with decreasing wavelength because of how NA depends on wavelength. The resolution is higher for blue light than red light. Resolution is dependent on contrast, and the higher the contrast, the higher the resolution. This last point relates to issues of signal-to-noise and dynamic range. The use of video and new digital cameras has necessitated redefining classical limits such as those of Rayleigh's criterion. Copyright © 2007 Elsevier Inc. All rights reserved.

  5. Spatially multiplexed interferometric microscopy with partially coherent illumination

    NASA Astrophysics Data System (ADS)

    Picazo-Bueno, José Ángel; Zalevsky, Zeev; García, Javier; Ferreira, Carlos; Micó, Vicente

    2016-10-01

    We have recently reported on a simple, low cost, and highly stable way to convert a standard microscope into a holographic one [Opt. Express 22, 14929 (2014)]. The method, named spatially multiplexed interferometric microscopy (SMIM), proposes an off-axis holographic architecture implemented onto a regular (nonholographic) microscope with minimum modifications: the use of coherent illumination and a properly placed and selected one-dimensional diffraction grating. In this contribution, we report on the implementation of partially (temporally reduced) coherent illumination in SMIM as a way to improve quantitative phase imaging. The use of low coherence sources forces the application of phase shifting algorithm instead of off-axis holographic recording to recover the sample's phase information but improves phase reconstruction due to coherence noise reduction. In addition, a less restrictive field of view limitation (1/2) is implemented in comparison with our previously reported scheme (1/3). The proposed modification is experimentally validated in a regular Olympus BX-60 upright microscope considering a wide range of samples (resolution test, microbeads, swine sperm cells, red blood cells, and prostate cancer cells).

  6. Determination of scattering structures from spatial coherence measurements.

    PubMed

    Zarubin, A M

    1996-03-01

    A new method of structure determination and microscopic imaging with short-wavelength radiations (charged particles, X-rays, neutrons), based on measurements of the modulus and the phase of the degree of spatial coherence of the scattered radiation, is developed. The underlying principle of the method--transfer of structural information about the scattering potential via spatial coherence of the secondary (scattering) source of radiation formed by this potential--is expressed by the generalization of the van Cittert-Zernike theorem to wave and particle scattering [A.M. Zarubin, Opt. Commun. 100 (1993) 491; Opt. Commun. 102 (1993) 543]. Shearing interferometric techniques are proposed for implementing the above measurements; the limits of spatial resolution attainable by reconstruction of the absolute square of a 3D scattering potential and its 2D projections from the measurements are analyzed. It is shown theoretically that 3D imaging with atomic resolution can be realized in a "synthetic aperture" electron or ion microscope and that a 3D resolution of about 6 nm can be obtained with a "synthetic aperture" X-ray microscope. A proof-of-principle optical experiment is presented.

  7. Design and analysis of a fast, two-mirror soft-x-ray microscope

    NASA Technical Reports Server (NTRS)

    Shealy, D. L.; Wang, C.; Jiang, W.; Jin, L.; Hoover, R. B.

    1992-01-01

    During the past several years, a number of investigators have addressed the design, analysis, fabrication, and testing of spherical Schwarzschild microscopes for soft-x-ray applications using multilayer coatings. Some of these systems have demonstrated diffraction limited resolution for small numerical apertures. Rigorously aplanatic, two-aspherical mirror Head microscopes can provide near diffraction limited resolution for very large numerical apertures. The relationships between the numerical aperture, mirror radii and diameters, magnifications, and total system length for Schwarzschild microscope configurations are summarized. Also, an analysis of the characteristics of the Head-Schwarzschild surfaces will be reported. The numerical surface data predicted by the Head equations were fit by a variety of functions and analyzed by conventional optical design codes. Efforts have been made to determine whether current optical substrate and multilayer coating technologies will permit construction of a very fast Head microscope which can provide resolution approaching that of the wavelength of the incident radiation.

  8. MicroScope: a platform for microbial genome annotation and comparative genomics

    PubMed Central

    Vallenet, D.; Engelen, S.; Mornico, D.; Cruveiller, S.; Fleury, L.; Lajus, A.; Rouy, Z.; Roche, D.; Salvignol, G.; Scarpelli, C.; Médigue, C.

    2009-01-01

    The initial outcome of genome sequencing is the creation of long text strings written in a four letter alphabet. The role of in silico sequence analysis is to assist biologists in the act of associating biological knowledge with these sequences, allowing investigators to make inferences and predictions that can be tested experimentally. A wide variety of software is available to the scientific community, and can be used to identify genomic objects, before predicting their biological functions. However, only a limited number of biologically interesting features can be revealed from an isolated sequence. Comparative genomics tools, on the other hand, by bringing together the information contained in numerous genomes simultaneously, allow annotators to make inferences based on the idea that evolution and natural selection are central to the definition of all biological processes. We have developed the MicroScope platform in order to offer a web-based framework for the systematic and efficient revision of microbial genome annotation and comparative analysis (http://www.genoscope.cns.fr/agc/microscope). Starting with the description of the flow chart of the annotation processes implemented in the MicroScope pipeline, and the development of traditional and novel microbial annotation and comparative analysis tools, this article emphasizes the essential role of expert annotation as a complement of automatic annotation. Several examples illustrate the use of implemented tools for the review and curation of annotations of both new and publicly available microbial genomes within MicroScope’s rich integrated genome framework. The platform is used as a viewer in order to browse updated annotation information of available microbial genomes (more than 440 organisms to date), and in the context of new annotation projects (117 bacterial genomes). The human expertise gathered in the MicroScope database (about 280,000 independent annotations) contributes to improve the quality of microbial genome annotation, especially for genomes initially analyzed by automatic procedures alone. Database URLs: http://www.genoscope.cns.fr/agc/mage and http://www.genoscope.cns.fr/agc/microcyc PMID:20157493

  9. Measurement of the Resolution of the Optical Microscope.

    ERIC Educational Resources Information Center

    Bowlt, C.

    1983-01-01

    Outlines procedures demonstrating that the aperture of a microscope objective limits resolving power and then, by using ancillary measurements made with a calibrated graticule in the microscope eyepiece, that the experimentally determined value for the maximum resolving power of a given objective is close to the value predicted by theory. (JN)

  10. SIL-STED microscopy technique enhancing super-resolution of fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Park, No-Cheol; Lim, Geon; Lee, Won-sup; Moon, Hyungbae; Choi, Guk-Jong; Park, Young-Pil

    2017-08-01

    We have characterized a new type STED microscope which combines a high numerical aperture (NA) optical head with a solid immersion lens (SIL), and we call it as SIL-STED microscope. The advantage of a SIL-STED microscope is that its high NA of the SIL makes it superior to a general STED microscope in lateral resolution, thus overcoming the optical diffraction limit at the macromolecular level and enabling advanced super-resolution imaging of cell surface or cell membrane structure and function Do. This study presents the first implementation of higher NA illumination in a STED microscope limiting the fluorescence lateral resolution to about 40 nm. The refractive index of the SIL which is made of material KTaO3 is about 2.23 and 2.20 at a wavelength of 633 nm and 780 nm which are used for excitation and depletion in STED imaging, respectively. Based on the vector diffraction theory, the electric field focused by the SILSTED microscope is numerically calculated so that the numerical results of the point dispersion function of the microscope and the expected resolution could be analyzed. For further investigation, fluorescence imaging of nano size fluorescent beads is fulfilled to show improved performance of the technique.

  11. Setup for functional cell ablation with lasers: coupling of a laser to a microscope.

    PubMed

    Sweeney, Sean T; Hidalgo, Alicia; de Belle, J Steven; Keshishian, Haig

    2012-06-01

    The selective removal of cells by ablation is a powerful tool in the study of eukaryotic developmental biology, providing much information about their origin, fate, or function in the developing organism. In Drosophila, three main methods have been used to ablate cells: chemical, genetic, and laser ablation. Each method has its own applicability with regard to developmental stage and the cells to be ablated, and its own limitations. The primary advantage of laser-based ablation is the flexibility provided by the method: The operations can be performed in any cell pattern and at any time in development. Laser-based techniques permit manipulation of structures within cells, even to the molecular level. They can also be used for gene activation. However, laser ablation can be expensive, labor-intensive, and time-consuming. Although live cells can be difficult to image in Drosophila embryos, the use of vital fluorescent imaging methods has made laser-mediated cell manipulation methods more appealing; the methods are relatively straightforward. This article provides the information necessary for setting up and using a laser microscope for lasesr ablation studies.

  12. Microscopic approaches to quantum nonequilibriumthermodynamics and information

    DTIC Science & Technology

    2018-02-09

    Microscopic approaches to quantum non- equilibrium thermodynamics and information The views, opinions and/or findings contained in this report are... information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering...and maintaining the data needed, and completing and reviewing the collection of information . Send comments regarding this burden estimate or any other

  13. Real-time quantum cascade laser-based infrared microspectroscopy in-vivo

    NASA Astrophysics Data System (ADS)

    Kröger-Lui, N.; Haase, K.; Pucci, A.; Schönhals, A.; Petrich, W.

    2016-03-01

    Infrared microscopy can be performed to observe dynamic processes on a microscopic scale. Fourier-transform infrared spectroscopy-based microscopes are bound to limitations regarding time resolution, which hampers their potential for imaging fast moving systems. In this manuscript we present a quantum cascade laser-based infrared microscope which overcomes these limitations and readily achieves standard video frame rates. The capabilities of our setup are demonstrated by observing dynamical processes at their specific time scales: fermentation, slow moving Amoeba Proteus and fast moving Caenorhabditis elegans. Mid-infrared sampling rates between 30 min and 20 ms are demonstrated.

  14. Tomographic imaging of transparent biological samples using the pyramid phase microscope

    PubMed Central

    Iglesias, Ignacio

    2016-01-01

    We show how a pyramid phase microscope can be used to obtain tomographic information of the spatial variation of refractive index in biological samples using the Radon transform. A method that uses the information provided by the phase microscope for axial and lateral repositioning of the sample when it rotates is also described. Its application to the reconstruction of mouse embryos in the blastocyst stage is demonstrated. PMID:27570696

  15. Implementing an Accurate and Rapid Sparse Sampling Approach for Low-Dose Atomic Resolution STEM Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovarik, Libor; Stevens, Andrew J.; Liyu, Andrey V.

    Aberration correction for scanning transmission electron microscopes (STEM) has dramatically increased spatial image resolution for beam-stable materials, but it is the sample stability rather than the microscope that often limits the practical resolution of STEM images. To extract physical information from images of beam sensitive materials it is becoming clear that there is a critical dose/dose-rate below which the images can be interpreted as representative of the pristine material, while above it the observation is dominated by beam effects. Here we describe an experimental approach for sparse sampling in the STEM and in-painting image reconstruction in order to reduce themore » electron dose/dose-rate to the sample during imaging. By characterizing the induction limited rise-time and hysteresis in scan coils, we show that sparse line-hopping approach to scan randomization can be implemented that optimizes both the speed of the scan and the amount of the sample that needs to be illuminated by the beam. The dose and acquisition time for the sparse sampling is shown to be effectively decreased by factor of 5x relative to conventional acquisition, permitting imaging of beam sensitive materials to be obtained without changing the microscope operating parameters. As a result, the use of sparse line-hopping scan to acquire STEM images is demonstrated with atomic resolution aberration corrected Z-contrast images of CaCO 3, a material that is traditionally difficult to image by TEM/STEM because of dose issues.« less

  16. Implementing an Accurate and Rapid Sparse Sampling Approach for Low-Dose Atomic Resolution STEM Imaging

    DOE PAGES

    Kovarik, Libor; Stevens, Andrew J.; Liyu, Andrey V.; ...

    2016-10-17

    Aberration correction for scanning transmission electron microscopes (STEM) has dramatically increased spatial image resolution for beam-stable materials, but it is the sample stability rather than the microscope that often limits the practical resolution of STEM images. To extract physical information from images of beam sensitive materials it is becoming clear that there is a critical dose/dose-rate below which the images can be interpreted as representative of the pristine material, while above it the observation is dominated by beam effects. Here we describe an experimental approach for sparse sampling in the STEM and in-painting image reconstruction in order to reduce themore » electron dose/dose-rate to the sample during imaging. By characterizing the induction limited rise-time and hysteresis in scan coils, we show that sparse line-hopping approach to scan randomization can be implemented that optimizes both the speed of the scan and the amount of the sample that needs to be illuminated by the beam. The dose and acquisition time for the sparse sampling is shown to be effectively decreased by factor of 5x relative to conventional acquisition, permitting imaging of beam sensitive materials to be obtained without changing the microscope operating parameters. The use of sparse line-hopping scan to acquire STEM images is demonstrated with atomic resolution aberration corrected Z-contrast images of CaCO3, a material that is traditionally difficult to image by TEM/STEM because of dose issues.« less

  17. Resolution and throughput optimized intraoperative spectrally encoded coherence tomography and reflectometry (iSECTR) for multimodal imaging during ophthalmic microsurgery

    NASA Astrophysics Data System (ADS)

    Malone, Joseph D.; El-Haddad, Mohamed T.; Leeburg, Kelsey C.; Terrones, Benjamin D.; Tao, Yuankai K.

    2018-02-01

    Limited visualization of semi-transparent structures in the eye remains a critical barrier to improving clinical outcomes and developing novel surgical techniques. While increases in imaging speed has enabled intraoperative optical coherence tomography (iOCT) imaging of surgical dynamics, several critical barriers to clinical adoption remain. Specifically, these include (1) static field-of-views (FOVs) requiring manual instrument-tracking; (2) high frame-rates require sparse sampling, which limits FOV; and (3) small iOCT FOV also limits the ability to co-register data with surgical microscopy. We previously addressed these limitations in image-guided ophthalmic microsurgery by developing microscope-integrated multimodal intraoperative swept-source spectrally encoded scanning laser ophthalmoscopy and optical coherence tomography. Complementary en face images enabled orientation and coregistration with the widefield surgical microscope view while OCT imaging enabled depth-resolved visualization of surgical instrument positions relative to anatomic structures-of-interest. In addition, we demonstrated novel integrated segmentation overlays for augmented-reality surgical guidance. Unfortunately, our previous system lacked the resolution and optical throughput for in vivo retinal imaging and necessitated removal of cornea and lens. These limitations were predominately a result of optical aberrations from imaging through a shared surgical microscope objective lens, which was modeled as a paraxial surface. Here, we present an optimized intraoperative spectrally encoded coherence tomography and reflectometry (iSECTR) system. We use a novel lens characterization method to develop an accurate model of surgical microscope objective performance and balance out inherent aberrations using iSECTR relay optics. Using this system, we demonstrate in vivo multimodal ophthalmic imaging through a surgical microscope

  18. Optical analysis of a compound quasi-microscope for planetary landers

    NASA Technical Reports Server (NTRS)

    Wall, S. D.; Burcher, E. E.; Huck, F. O.

    1974-01-01

    A quasi-microscope concept, consisting of facsimile camera augmented with an auxiliary lens as a magnifier, was introduced and analyzed. The performance achievable with this concept was primarily limited by a trade-off between resolution and object field; this approach leads to a limiting resolution of 20 microns when used with the Viking lander camera (which has an angular resolution of 0.04 deg). An optical system is analyzed which includes a field lens between camera and auxiliary lens to overcome this limitation. It is found that this system, referred to as a compound quasi-microscope, can provide improved resolution (to about 2 microns ) and a larger object field. However, this improvement is at the expense of increased complexity, special camera design requirements, and tighter tolerances on the distances between optical components.

  19. The Homemade Microscope.

    ERIC Educational Resources Information Center

    Baker, Roger C., Jr.

    1991-01-01

    Directions for the building of a pocket microscope that will make visible the details of insect structure and living bacteria are described. Background information on the history of microscopes and lenses is provided. The procedures for producing various types of lenses are included. (KR)

  20. Microscopic information processing and communication in crowd dynamics

    NASA Astrophysics Data System (ADS)

    Henein, Colin Marc; White, Tony

    2010-11-01

    Due, perhaps, to the historical division of crowd dynamics research into psychological and engineering approaches, microscopic crowd models have tended toward modelling simple interchangeable particles with an emphasis on the simulation of physical factors. Despite the fact that people have complex (non-panic) behaviours in crowd disasters, important human factors in crowd dynamics such as information discovery and processing, changing goals and communication have not yet been well integrated at the microscopic level. We use our Microscopic Human Factors methodology to fuse a microscopic simulation of these human factors with a popular microscopic crowd model. By tightly integrating human factors with the existing model we can study the effects on the physical domain (movement, force and crowd safety) when human behaviour (information processing and communication) is introduced. In a large-room egress scenario with ample exits, information discovery and processing yields a crowd of non-interchangeable individuals who, despite close proximity, have different goals due to their different beliefs. This crowd heterogeneity leads to complex inter-particle interactions such as jamming transitions in open space; at high crowd energies, we found a freezing by heating effect (reminiscent of the disaster at Central Lenin Stadium in 1982) in which a barrier formation of naïve individuals trying to reach blocked exits prevented knowledgeable ones from exiting. Communication, when introduced, reduced this barrier formation, increasing both exit rates and crowd safety.

  1. All-near-infrared multiphoton microscopy interrogates intact tissues at deeper imaging depths than conventional single- and two-photon near-infrared excitation microscopes

    PubMed Central

    Sarder, Pinaki; Yazdanfar, Siavash; Akers, Walter J.; Tang, Rui; Sudlow, Gail P.; Egbulefu, Christopher

    2013-01-01

    Abstract. The era of molecular medicine has ushered in the development of microscopic methods that can report molecular processes in thick tissues with high spatial resolution. A commonality in deep-tissue microscopy is the use of near-infrared (NIR) lasers with single- or multiphoton excitations. However, the relationship between different NIR excitation microscopic techniques and the imaging depths in tissue has not been established. We compared such depth limits for three NIR excitation techniques: NIR single-photon confocal microscopy (NIR SPCM), NIR multiphoton excitation with visible detection (NIR/VIS MPM), and all-NIR multiphoton excitation with NIR detection (NIR/NIR MPM). Homologous cyanine dyes provided the fluorescence. Intact kidneys were harvested after administration of kidney-clearing cyanine dyes in mice. NIR SPCM and NIR/VIS MPM achieved similar maximum imaging depth of ∼100  μm. The NIR/NIR MPM enabled greater than fivefold imaging depth (>500  μm) using the harvested kidneys. Although the NIR/NIR MPM used 1550-nm excitation where water absorption is relatively high, cell viability and histology studies demonstrate that the laser did not induce photothermal damage at the low laser powers used for the kidney imaging. This study provides guidance on the imaging depth capabilities of NIR excitation-based microscopic techniques and reveals the potential to multiplex information using these platforms. PMID:24150231

  2. Histopathological detection of entry and exit holes in human skin wounds caused by firearms.

    PubMed

    Baptista, Marcus Vinícius; d'Ávila, Solange C G P; d'Ávila, Antônio Miguel M P

    2014-07-01

    The judiciary needs forensic medicine to determine the difference between an entry hole and an exit hole in human skin caused by firearms for civilian use. This important information would be most useful if a practical and accurate method could be done with low-cost and minimal technological resources. Both macroscopic and microscopic analyses were performed on skin lesions caused by firearm projectiles, to establish histological features of 14 entry holes and 14 exit holes. Microscopically, in the abrasion area macroscopically observed, there were signs of burns (sub-epidermal cracks and keratinocyte necrosis) in the entrance holes in all cases. These signs were not found in three exit holes which showed an abrasion collar, nor in other exit holes. Some other microscopic features not found in every case were limited either to entry holes, such as cotton fibres, grease deposits, or tattooing in the dermis, or to exit holes, such as adipose tissue, bone or muscle tissue in the dermis. Coagulative necrosis of keratinocytes and sub-epidermal cracks are characteristic of entry holes. Despite the small sample size, it can be safely inferred that this is an important microscopic finding, among others less consistently found, to define an entry hole in questionable cases. Copyright © 2014 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  3. Common-path digital holographic microscopy based on a beam displacer unit

    NASA Astrophysics Data System (ADS)

    Di, Jianglei; Zhang, Jiwei; Song, Yu; Wang, Kaiqiang; Wei, Kun; Zhao, Jianlin

    2018-02-01

    Digital holographic microscopy (DHM) has become a novel tool with advantages of full field, non-destructive, high-resolution and 3D imaging, which captures the quantitative amplitude and phase information of microscopic specimens. It's a well-established method for digital recording and numerical reconstructing the full complex field of wavefront of the samples with a diffraction-limited lateral resolution down to 0.3 μm depending on the numerical aperture of microscope objective. Meanwhile, its axial resolution through axial direction is less than 10 nm due to the interferometric nature in phase imaging. Compared with the typical optical configurations such as Mach-Zehnder interferometer and Michelson interferometer, the common-path DHM has the advantages of simple and compact configuration, high stability, and so on. Here, a simple, compact, and low-cost common-path DHM based on a beam displacer unit is proposed for quantitative phase imaging of biological cells. The beam displacer unit is completely compatible with commercial microscope and can be easily set up in the output port of the microscope as a compact independent device. This technique can be used to achieve the quantitative phase measurement of biological cells with an excellent temporal stability of 0.51 nm, which makes it having a good prospect in the fields of biological and medical science. Living mouse osteoblastic cells are quantitatively measured with the system to demonstrate its capability and applicability.

  4. Ultra-high sensitivity moment magnetometry of geological samples using magnetic microscopy

    NASA Astrophysics Data System (ADS)

    Lima, Eduardo A.; Weiss, Benjamin P.

    2016-09-01

    Useful paleomagnetic information is expected to be recorded by samples with moments up to three orders of magnitude below the detection limit of standard superconducting rock magnetometers. Such samples are now detectable using recently developed magnetic microscopes, which map the magnetic fields above room-temperature samples with unprecedented spatial resolutions and field sensitivities. However, realizing this potential requires the development of techniques for retrieving sample moments from magnetic microscopy data. With this goal, we developed a technique for uniquely obtaining the net magnetic moment of geological samples from magnetic microscopy maps of unresolved or nearly unresolved magnetization. This technique is particularly powerful for analyzing small, weakly magnetized samples such as meteoritic chondrules and terrestrial silicate crystals like zircons. We validated this technique by applying it to field maps generated from synthetic sources and also to field maps measured using a superconducting quantum interference device (SQUID) microscope above geological samples with moments down to 10-15 Am2. For the most magnetic rock samples, the net moments estimated from the SQUID microscope data are within error of independent moment measurements acquired using lower sensitivity standard rock magnetometers. In addition to its superior moment sensitivity, SQUID microscope net moment magnetometry also enables the identification and isolation of magnetic contamination and background sources, which is critical for improving accuracy in paleomagnetic studies of weakly magnetic samples.

  5. Influence of radiofrequency surgery on architecture of the palatine tonsils.

    PubMed

    Plzak, Jan; Macokova, Pavla; Zabrodsky, Michal; Kastner, Jan; Lastuvka, Petr; Astl, Jaromir

    2014-01-01

    Radiofrequency surgery is a widely used modern technique for submucosal volume reduction of the tonsils. So far there is very limited information on morphologic changes in the human tonsils after radiofrequency surgery. We performed histopathological study of tonsillectomy specimens after previous bipolar radiofrequency induced thermotherapy (RFITT). A total of 83 patients underwent bipolar RFITT for hypertrophy of palatine tonsils. Tonsil volume reduction was measured by 3D ultrasonography. Five patients subsequently underwent tonsillectomy. Profound histopathological examination was performed to determine the effect of RFITT on tonsillar architecture. All tonsillectomy specimens showed the intact epithelium, intact germinal centers, normal vascularization, and no evidence of increased fibrosis. No microscopic morphological changes in tonsillectomy specimens after bipolar RFITT were observed. RFITT is an effective submucosal volume reduction procedure for treatment of hypertrophic palatine tonsils with no destructive effect on microscopic tonsillar architecture and hence most probably no functional adverse effect.

  6. Tip-enhanced Raman mapping with top-illumination AFM.

    PubMed

    Chan, K L Andrew; Kazarian, Sergei G

    2011-04-29

    Tip-enhanced Raman mapping is a powerful, emerging technique that offers rich chemical information and high spatial resolution. Currently, most of the successes in tip-enhanced Raman scattering (TERS) measurements are based on the inverted configuration where tips and laser are approaching the sample from opposite sides. This results in the limitation of measurement for transparent samples only. Several approaches have been developed to obtain tip-enhanced Raman mapping in reflection mode, many of which involve certain customisations of the system. We have demonstrated in this work that it is also possible to obtain TERS nano-images using an upright microscope (top-illumination) with a gold-coated Si atomic force microscope (AFM) cantilever without significant modification to the existing integrated AFM/Raman system. A TERS image of a single-walled carbon nanotube has been achieved with a spatial resolution of ∼ 20-50 nm, demonstrating the potential of this technique for studying non-transparent nanoscale materials.

  7. Introduction to the virtual special issue on super-resolution imaging techniques

    NASA Astrophysics Data System (ADS)

    Cao, Liangcai; Liu, Zhengjun

    2017-12-01

    Until quite recently, the resolution of optical imaging instruments, including telescopes, cameras and microscopes, was considered to be limited by the diffraction of light and by image sensors. In the past few years, many exciting super-resolution approaches have emerged that demonstrate intriguing ways to bypass the classical limit in optics and detectors. More and more research groups are engaged in the study of advanced super-resolution schemes, devices, algorithms, systems, and applications [1-6]. Super-resolution techniques involve new methods in science and engineering of optics [7,8], measurements [9,10], chemistry [11,12] and information [13,14]. Promising applications, particularly in biomedical research and semiconductor industry, have been successfully demonstrated.

  8. Thermal-Wave Microscope

    NASA Technical Reports Server (NTRS)

    Jones, Robert E.; Kramarchuk, Ihor; Williams, Wallace D.; Pouch, John J.; Gilbert, Percy

    1989-01-01

    Computer-controlled thermal-wave microscope developed to investigate III-V compound semiconductor devices and materials. Is nondestructive technique providing information on subsurface thermal features of solid samples. Furthermore, because this is subsurface technique, three-dimensional imaging also possible. Microscope uses intensity-modulated electron beam of modified scanning electron microscope to generate thermal waves in sample. Acoustic waves generated by thermal waves received by transducer and processed in computer to form images displayed on video display of microscope or recorded on magnetic disk.

  9. Whole-cell imaging of the budding yeast Saccharomyces cerevisiae by high-voltage scanning transmission electron tomography.

    PubMed

    Murata, Kazuyoshi; Esaki, Masatoshi; Ogura, Teru; Arai, Shigeo; Yamamoto, Yuta; Tanaka, Nobuo

    2014-11-01

    Electron tomography using a high-voltage electron microscope (HVEM) provides three-dimensional information about cellular components in sections thicker than 1 μm, although in bright-field mode image degradation caused by multiple inelastic scattering of transmitted electrons limit the attainable resolution. Scanning transmission electron microscopy (STEM) is believed to give enhanced contrast and resolution compared to conventional transmission electron microscopy (CTEM). Samples up to 1 μm in thickness have been analyzed with an intermediate-voltage electron microscope because inelastic scattering is not a critical limitation, and probe broadening can be minimized. Here, we employed STEM at 1 MeV high-voltage to extend the useful specimen thickness for electron tomography, which we demonstrate by a seamless tomographic reconstruction of a whole, budding Saccharomyces cerevisiae yeast cell, which is ~3 μm in thickness. High-voltage STEM tomography, especially in the bright-field mode, demonstrated sufficiently enhanced contrast and intensity, compared to CTEM tomography, to permit segmentation of major organelles in the whole cell. STEM imaging also reduced specimen shrinkage during tilt-series acquisition. The fidelity of structural preservation was limited by cytoplasmic extraction, and the spatial resolution was limited by the relatively large convergence angle of the scanning probe. However, the new technique has potential to solve longstanding problems of image blurring in biological specimens beyond 1 μm in thickness, and may facilitate new research in cellular structural biology. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Scanning-electron-microscope used in real-time study of friction and wear

    NASA Technical Reports Server (NTRS)

    Brainard, W. A.; Buckley, D. H.

    1975-01-01

    Small friction and wear apparatus built directly into scanning-electron-microscope provides both dynamic observation and microscopic view of wear process. Friction and wear tests conducted using this system have indicated that considerable information can readily be gained.

  11. The PC9A Filter Screening Tool

    DTIC Science & Technology

    2016-02-01

    conjunction with an optical microscope for identification of other important debris such as glass beads. The FST has now been installed at RAAF East...conservative screening limits need to be sent for detailed laboratory analysis. Laboratory analysis has traditionally involved a manual microscopic ...Electron Microscope with Energy Dispersive Spectroscopy (SEM EDS) to determine the composition and likely source. The Engine Maintenance Manual

  12. Dose-rate-dependent damage of cerium dioxide in the scanning transmission electron microscope.

    PubMed

    Johnston-Peck, Aaron C; DuChene, Joseph S; Roberts, Alan D; Wei, Wei David; Herzing, Andrew A

    2016-11-01

    Beam damage caused by energetic electrons in the transmission electron microscope is a fundamental constraint limiting the collection of artifact-free information. Through understanding the influence of the electron beam, experimental routines may be adjusted to improve the data collection process. Investigations of CeO 2 indicate that there is not a critical dose required for the accumulation of electron beam damage. Instead, measurements using annular dark field scanning transmission electron microscopy and electron energy loss spectroscopy demonstrate that the onset of measurable damage occurs when a critical dose rate is exceeded. The mechanism behind this phenomenon is that oxygen vacancies created by exposure to a 300keV electron beam are actively annihilated as the sample re-oxidizes in the microscope environment. As a result, only when the rate of vacancy creation exceeds the recovery rate will beam damage begin to accumulate. This observation suggests that dose-intensive experiments can be accomplished without disrupting the native structure of the sample when executed using dose rates below the appropriate threshold. Furthermore, the presence of an encapsulating carbonaceous layer inhibits processes that cause beam damage, markedly increasing the dose rate threshold for the accumulation of damage. Published by Elsevier B.V.

  13. Dose-rate-dependent damage of cerium dioxide in the scanning transmission electron microscope

    PubMed Central

    Johnston-Peck, Aaron C.; DuChene, Joseph S.; Roberts, Alan D.; Wei, Wei David; Herzing, Andrew A.

    2016-01-01

    Beam damage caused by energetic electrons in the transmission electron microscope is a fundamental constraint limiting the collection of artifact-free information. Through understanding the influence of the electron beam, experimental routines may be adjusted to improve the data collection process. Investigations of CeO2 indicate that there is not a critical dose required for the accumulation of electron beam damage. Instead, measurements using annular dark field scanning transmission electron microscopy and electron energy loss spectroscopy demonstrate that the onset of measurable damage occurs when a critical dose rate is exceeded. The mechanism behind this phenomenon is that oxygen vacancies created by exposure to a 300 keV electron beam are actively annihilated as the sample re-oxidizes in the microscope environment. As a result, only when the rate of vacancy creation exceeds the recovery rate will beam damage begin to accumulate. This observation suggests that dose-intensive experiments can be accomplished without disrupting the native structure of the sample when executed using dose rates below the appropriate threshold. Furthermore, the presence of an encapsulating carbonaceous layer inhibits processes that cause beam damage, markedly increasing the dose rate threshold for the accumulation of damage. PMID:27469265

  14. Analysis of dental hard tissues exposed to high temperatures for forensic applications: An in vitro study

    PubMed Central

    Shekhawat, Kuldeep Singh; Chauhan, Arunima

    2016-01-01

    Aim: The aim of this study was to observe and record the macroscopic, radiographic, and microscopic findings obtained after subjecting the teeth to high temperatures. Materials and Methods: An in vitro study was conducted to observe macroscopic, radiographic, and microscopic changes in dental hard tissues in 60 unrestored non carious extracted human teeth. The teeth were grouped based on age: Below 30 years, 30–40 years, and above 40 years The teeth from each age group were further divided into five subgroups, and each subgroup was subjected to a particular temperature: 200°C, 400°C, 600°C, 800°C, and 1000°C. [C = Celsius]. Results: Various degrees of changes in relation to temperature were observed macroscopically, radiographically, and microscopically. The histological examination was limited for teeth exposed to 200°C. Conclusion: This investigation was carried out to study the gross changes, radiographic changes and histological changes in dental hard tissues exposed to high temperatures, which is an important part of forensic science. The aforementioned alterations caused by heat may provide useful information about temperature ranges and duration of exposure to high temperatures. PMID:27555725

  15. Modified Linnik microscopic interferometry for quantitative depth evaluation of diffraction-limited microgroove

    NASA Astrophysics Data System (ADS)

    Ye, Shiwei; Takahashi, Satoru; Michihata, Masaki; Takamasu, Kiyoshi

    2018-05-01

    The quality control of microgrooves is extremely crucial to ensure the performance and stability of microstructures and improve their fabrication efficiency. This paper introduces a novel optical inspection method and a modified Linnik microscopic interferometer measurement system to detect the depth of microgrooves with a width less than the diffraction limit. Using this optical method, the depth of diffraction-limited microgrooves can be related to the near-field optical phase difference, which cannot be practically observed but can be computed from practical far-field observations. Thus, a modified Linnik microscopic interferometer system based on three identical objective lenses and an optical path reversibility principle were developed. In addition, experiments for standard grating microgrooves on the silicon surface were carried out to demonstrate the feasibility and repeatability of the proposed method and developed measurement system.

  16. Ultrafast superresolution fluorescence imaging with spinning disk confocal microscope optics.

    PubMed

    Hayashi, Shinichi; Okada, Yasushi

    2015-05-01

    Most current superresolution (SR) microscope techniques surpass the diffraction limit at the expense of temporal resolution, compromising their applications to live-cell imaging. Here we describe a new SR fluorescence microscope based on confocal microscope optics, which we name the spinning disk superresolution microscope (SDSRM). Theoretically, the SDSRM is equivalent to a structured illumination microscope (SIM) and achieves a spatial resolution of 120 nm, double that of the diffraction limit of wide-field fluorescence microscopy. However, the SDSRM is 10 times faster than a conventional SIM because SR signals are recovered by optical demodulation through the stripe pattern of the disk. Therefore a single SR image requires only a single averaged image through the rotating disk. On the basis of this theory, we modified a commercial spinning disk confocal microscope. The improved resolution around 120 nm was confirmed with biological samples. The rapid dynamics of micro-tubules, mitochondria, lysosomes, and endosomes were observed with temporal resolutions of 30-100 frames/s. Because our method requires only small optical modifications, it will enable an easy upgrade from an existing spinning disk confocal to a SR microscope for live-cell imaging. © 2015 Hayashi and Okada. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  17. An investigation of nitride precipitates in archaeological iron artefacts from Poland.

    PubMed

    Kedzierski, Z; Stepiński, J; Zielińska-Lipiec, A

    2010-03-01

    The paper describes the investigations of nitride precipitates in a spearhead and a sword found in the territory of Poland, in cremation graveyards of the Przeworsk Culture, dated to the Roman Period. Three different techniques of the examination of nitride precipitates were employed: optical microscope, scanning electron microscope (scanning electron microscope with energy dispersive X-ray spectrometer) and transmission electron microscope. Two types of precipitates have been observed, and their plate-like shape was demonstrated. The large precipitate has been confirmed to be gamma'-Fe(4)N, whereas the small one has been identified as alpha''-Fe(16)N(2). The origin of nitride precipitates in archaeological iron artefacts from Poland is probably a result of the manufacturing process or cremation as part of burial rites. An examination of available iron artefacts indicates that nitride precipitates (have only limited effect on mechanical properties) influence the hardness of metal only to a very limited degree.

  18. General Mode Scanning Probe Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Somnath, Suhas; Jesse, Stephen

    A critical part of SPM measurements is the information transfer from the probe-sample junction to the measurement system. Current information transfer methods heavily compress the information-rich data stream by averaging the data over a time interval, or via heterodyne detection approaches such as lock-in amplifiers and phase-locked loops. As a consequence, highly valuable information at the sub-microsecond time scales or information from frequencies outside the measurement band is lost. We have developed a fundamentally new approach called General Mode (G-mode), where we can capture the complete information stream from the detectors in the microscope. The availability of the complete informationmore » allows the microscope operator to analyze the data via information-theory analysis or comprehensive physical models. Furthermore, the complete data stream enables advanced data-driven filtering algorithms, multi-resolution imaging, ultrafast spectroscropic imaging, spatial mapping of multidimensional variability in material properties, etc. Though we applied this approach to scanning probe microscopy, the general philosophy of G-mode can be applied to many other modes of microscopy. G-mode data is captured by completely custom software written in LabVIEW and Matlab. The software generates the waveforms to electrically, thermally, or mechanically excite the SPM probe. It handles real-time communications with the microscope software for operations such as moving the SPM probe position and also controls other instrumentation hardware. The software also controls multiple variants of high-speed data acquisition cards to excite the SPM probe with the excitation waveform and simultaneously measure multiple channels of information from the microscope detectors at sampling rates of 1-100 MHz. The software also saves the raw data to the computer and allows the microscope operator to visualize processed or filtered data during the experiment. The software performs all these features while offering a user-friendly interface.« less

  19. A simple water-immersion condenser for imaging living brain slices on an inverted microscope.

    PubMed

    Prusky, G T

    1997-09-05

    Due to some physical limitations of conventional condensers, inverted compound microscopes are not optimally suited for imaging living brain slices with transmitted light. Herein is described a simple device that converts an inverted microscope into an effective tool for this application by utilizing an objective as a condenser. The device is mounted on a microscope in place of the condenser, is threaded to accept a water immersion objective, and has a slot for a differential interference contrast (DIC) slider. When combined with infrared video techniques, this device allows an inverted microscope to effectively image living cells within thick brain slices in an open perfusion chamber.

  20. Improving confocal microscopy with solid-state semiconductor excitation sources

    NASA Astrophysics Data System (ADS)

    Sivers, Nelson L.

    To efficiently excite the fluorescent dyes used in imaging biological samples with a confocal microscope, the wavelengths of the exciting laser must be near the fluorochrome absorption peak. However, this causes imaging problems when the fluorochrome absorption and emission spectra overlap significantly, i.e. have small Stokes shifts, which is the case for most fluorochromes that emit in the red to infrared. As a result, the reflected laser excitation cannot be distinguished from the information-containing fluorescence signal. However, cryogenically cooling the exciting laser diode enabled the laser emission wavelengths to be tuned to shorter wavelengths, decreasing the interference between the laser and the fluorochrome's fluorescence. This reduced the amount of reflected laser light in the confocal image. However, the cooled laser diode's shorter wavelength signal resulted in slightly less efficient fluorochrome excitation. Spectrophotometric analysis showed that as the laser diodes were cooled, their output power increased, which more than compensated for the lower fluorochrome excitation and resulted in significantly more intense fluorescence. Thus, by tuning the laser diode emission wavelengths away from the fluorescence signal, less reflected laser light and more fluorescence information reached the detector, creating images with better signal to noise ratios. Additionally, new, high, luminous flux, light-emitting diodes (LEDs) are now powerful enough to create confocal fluorescence signals comparable to those produced by the traditional laser excitation sources in fluorescence confocal microscopes. The broader LED spectral response effectively excited the fluorochrome, yet was spectrally limited enough for standard filter sets to separate the LED excitation from the fluorochrome fluorescence signal. Spectrophotometric analysis of the excitation and fluorescence spectra of several fluorochromes showed that high-powered, LED-induced fluorescence contained the same spectral information and could be more intense than that produced by lasers. An alternative, LED-based, confocal microscope is proposed in this thesis that would be capable of exciting multiple fluorochromes in a single specimen, producing images of several distinct cellular components simultaneously. The inexpensive, LED-based, confocal microscope would require lower peak excitation intensities to produce fluorescence signals equal to those produced by laser excitation, reducing cellular damage and slowing fluorochrome photobleaching.

  1. Role of coherence in microsphere-assisted nanoscopy

    NASA Astrophysics Data System (ADS)

    Perrin, Stephane; Lecler, Sylvain; Leong-Hoi, Audrey; Montgomery, Paul C.

    2017-06-01

    The loss of the information, due to the diffraction and the evanescent waves, limits the resolving power of classical optical microscopy. In air, the lateral resolution of an optical microscope can approximated at half of the wavelength using a low-coherence illumination. Recently, several methods have been developed in order to overcome this limitation and, in 2011, a new far-field and full-field imaging technique was proposed where a sub-diffraction-limit resolution has been achieved using a transparent microsphere. In this article, the phenomenon of super-resolution using microsphere-assisted microscopy is analysed through rigorous electro-magnetic simulations. The performances of the imaging technique are estimated as function of optical and geometrical parameters. Furthermore, the role of coherence is introduced through the temporal coherence of the light source and the phase response of the object.

  2. Microscopic derivation of particle-based coarse-grained dynamics: Exact expression for memory function

    NASA Astrophysics Data System (ADS)

    Izvekov, Sergei

    2017-03-01

    We consider the generalized Langevin equations of motion describing exactly the particle-based coarse-grained dynamics in the classical microscopic ensemble that were derived recently within the Mori-Zwanzig formalism based on new projection operators [S. Izvekov, J. Chem. Phys. 138(13), 134106 (2013)]. The fundamental difference between the new family of projection operators and the standard Zwanzig projection operator used in the past to derive the coarse-grained equations of motion is that the new operators average out the explicit irrelevant trajectories leading to the possibility of solving the projected dynamics exactly. We clarify the definition of the projection operators and revisit the formalism to compute the projected dynamics exactly for the microscopic system in equilibrium. The resulting expression for the projected force is in the form of a "generalized additive fluctuating force" describing the departure of the generalized microscopic force associated with the coarse-grained coordinate from its projection. Starting with this key expression, we formulate a new exact formula for the memory function in terms of microscopic and coarse-grained conservative forces. We conclude by studying two independent limiting cases of practical importance: the Markov limit (vanishing correlations of projected force) and the limit of weak dependence of the memory function on the particle momenta. We present computationally affordable expressions which can be efficiently evaluated from standard molecular dynamics simulations.

  3. Design of an imaging microscope for soft X-ray applications

    NASA Astrophysics Data System (ADS)

    Hoover, Richard B.; Shealy, David L.; Gabardi, David R.; Walker, Arthur B. C., Jr.; Lindblom, Joakim F.

    1988-01-01

    An imaging soft X-ray microscope with a spatial resolution of 0.1 micron and normal incidence multilayer optics is discussed. The microscope has a Schwarzschild configuration, which consists of two concentric spherical mirrors with radii of curvature which minimize third-order spherical aberration, coma, and astigmatism. The performance of the Stanford/MSFC Cassegrain X-ray telescope and its relevance to the present microscope are addressed. A ray tracing analysis of the optical system indicates that diffraction-limited performance can be expected for an object height of 0.2 mm.

  4. Entropy inequality and hydrodynamic limits for the Boltzmann equation.

    PubMed

    Saint-Raymond, Laure

    2013-12-28

    Boltzmann brought a fundamental contribution to the understanding of the notion of entropy, by giving a microscopic formulation of the second principle of thermodynamics. His ingenious idea, motivated by the works of his contemporaries on the atomic nature of matter, consists of describing gases as huge systems of identical and indistinguishable elementary particles. The state of a gas can therefore be described in a statistical way. The evolution, which introduces couplings, loses part of the information, which is expressed by the decay of the so-called mathematical entropy (the opposite of physical entropy!).

  5. The evolution of structured illumination microscopy in studies of HIV.

    PubMed

    Marno, Kelly; Al'Zoubi, Lara; Pearson, Matthew; Posch, Markus; McKnight, Áine; Wheeler, Ann P

    2015-10-15

    The resolution limit of conventional light microscopy has proven to be limiting for many biological structures such as viruses including Human immunodeficiency virus (HIV). Individual HIV virions are impossible to study using confocal microscopy as they are well below the 200 nm resolution limit of conventional light microscopes. Structured illumination microscopy (SIM) allows a twofold enhancement in image resolution compared to standard widefield illumination and so provides an excellent tool for study of HIV. Viral capsids (CAs) vary between 110 and 146 nm so this study challenges the performance of SIM microscopes. SIM microscopy was first developed in 2000, commercialised in 2007 and rapidly developed. Here we present the changes in capabilities of the SIM microscopes for study of HIV localisation as the instrumentation for structured illumination microscopy has evolved over the past 8 years. Copyright © 2015. Published by Elsevier Inc.

  6. Analysis of disruptive events and precarious situations caused by interaction with neurosurgical microscope.

    PubMed

    Eivazi, Shahram; Afkari, Hoorieh; Bednarik, Roman; Leinonen, Ville; Tukiainen, Markku; Jääskeläinen, Juha E

    2015-07-01

    Developments in micro-neurosurgical microscopes have improved operating precision and ensured the quality of outcomes. Using the stereoscopic magnified view, however, necessitates frequent manual adjustments to the microscope during an operation. This article reports on an investigation of the interaction details concerning a state-of-the-art micro-neurosurgical microscope. The video data from detailed observations of neurosurgeons' interaction patterns with the microscope were analysed to examine disruptive events caused by adjusting the microscope. The primary findings show that interruptions caused by adjusting the microscope handgrips and mouth switch prolong the surgery time up to 10%. Surgeons, we observed, avoid interaction with the microscope's controls, settings, and configurations by working at the edge of the view, operating on a non-focused view, and assuming unergonomic body postures. The lack of an automatic method for adjusting the microscope is a major problem that causes interruptions during micro-neurosurgery. From this understanding of disruptive events, we discuss the opportunities and limitations of interactive technologies that aim to reduce the frequency or shorten the duration of interruptions caused by microscope adjustment.

  7. Broadband Impedance Microscopy for Research on Complex Quantum Materials

    DTIC Science & Technology

    2016-02-08

    function in various materials. Figure 2. Sensitivity limit of the broadband impedance microscope (BIM). Figure 3. Preliminary BIM data on YMnO3...2 Statement of the Problem The objective of this DURIP award is to construct a broadband impedance microscope (BIM) for frequency-dependent...platforms and specialized cantilever probes [1] in the PI’s lab, the BIM can now simultaneously obtain microscopic (10 – 100 nm) and quasi- spectroscopic

  8. A multi agent model for the limit order book dynamics

    NASA Astrophysics Data System (ADS)

    Bartolozzi, M.

    2010-11-01

    In the present work we introduce a novel multi-agent model with the aim to reproduce the dynamics of a double auction market at microscopic time scale through a faithful simulation of the matching mechanics in the limit order book. The agents follow a noise decision making process where their actions are related to a stochastic variable, the market sentiment, which we define as a mixture of public and private information. The model, despite making just few basic assumptions over the trading strategies of the agents, is able to reproduce several empirical features of the high-frequency dynamics of the market microstructure not only related to the price movements but also to the deposition of the orders in the book.

  9. Quantitative locomotion study of freely swimming micro-organisms using laser diffraction.

    PubMed

    Magnes, Jenny; Susman, Kathleen; Eells, Rebecca

    2012-10-25

    Soil and aquatic microscopic organisms live and behave in a complex three-dimensional environment. Most studies of microscopic organism behavior, in contrast, have been conducted using microscope-based approaches, which limit the movement and behavior to a narrow, nearly two-dimensional focal field.(1) We present a novel analytical approach that provides real-time analysis of freely swimming C. elegans in a cuvette without dependence on microscope-based equipment. This approach consists of tracking the temporal periodicity of diffraction patterns generated by directing laser light through the cuvette. We measure oscillation frequencies for freely swimming nematodes. Analysis of the far-field diffraction patterns reveals clues about the waveforms of the nematodes. Diffraction is the process of light bending around an object. In this case light is diffracted by the organisms. The light waves interfere and can form a diffraction pattern. A far-field, or Fraunhofer, diffraction pattern is formed if the screen-to-object distance is much larger than the diffracting object. In this case, the diffraction pattern can be calculated (modeled) using a Fourier transform.(2) C. elegans are free-living soil-dwelling nematodes that navigate in three dimensions. They move both on a solid matrix like soil or agar in a sinusoidal locomotory pattern called crawling and in liquid in a different pattern called swimming.(3) The roles played by sensory information provided by mechanosensory, chemosensory, and thermosensory cells that govern plastic changes in locomotory patterns and switches in patterns are only beginning to be elucidated.(4) We describe an optical approach to measuring nematode locomotion in three dimensions that does not require a microscope and will enable us to begin to explore the complexities of nematode locomotion under different conditions.

  10. Two level approach to safety planning incorporating the Highway Safety Manual (HSM) network screening : [summary].

    DOT National Transportation Integrated Search

    2014-04-01

    In this project, University of Central Florida researchers combined two types of safety analysis, microscopic and macroscopic, to overcome their limitations. Microscopic models focus on traffic flows and related parameters. Macroscopic models are bas...

  11. Evaluation of methods for detection of fluorescence labeled subcellular objects in microscope images.

    PubMed

    Ruusuvuori, Pekka; Aijö, Tarmo; Chowdhury, Sharif; Garmendia-Torres, Cecilia; Selinummi, Jyrki; Birbaumer, Mirko; Dudley, Aimée M; Pelkmans, Lucas; Yli-Harja, Olli

    2010-05-13

    Several algorithms have been proposed for detecting fluorescently labeled subcellular objects in microscope images. Many of these algorithms have been designed for specific tasks and validated with limited image data. But despite the potential of using extensive comparisons between algorithms to provide useful information to guide method selection and thus more accurate results, relatively few studies have been performed. To better understand algorithm performance under different conditions, we have carried out a comparative study including eleven spot detection or segmentation algorithms from various application fields. We used microscope images from well plate experiments with a human osteosarcoma cell line and frames from image stacks of yeast cells in different focal planes. These experimentally derived images permit a comparison of method performance in realistic situations where the number of objects varies within image set. We also used simulated microscope images in order to compare the methods and validate them against a ground truth reference result. Our study finds major differences in the performance of different algorithms, in terms of both object counts and segmentation accuracies. These results suggest that the selection of detection algorithms for image based screens should be done carefully and take into account different conditions, such as the possibility of acquiring empty images or images with very few spots. Our inclusion of methods that have not been used before in this context broadens the set of available detection methods and compares them against the current state-of-the-art methods for subcellular particle detection.

  12. Optical Coherence Tomography for Retinal Surgery: Perioperative Analysis to Real-Time Four-Dimensional Image-Guided Surgery.

    PubMed

    Carrasco-Zevallos, Oscar M; Keller, Brenton; Viehland, Christian; Shen, Liangbo; Seider, Michael I; Izatt, Joseph A; Toth, Cynthia A

    2016-07-01

    Magnification of the surgical field using the operating microscope facilitated profound innovations in retinal surgery in the 1970s, such as pars plana vitrectomy. Although surgical instrumentation and illumination techniques are continually developing, the operating microscope for vitreoretinal procedures has remained essentially unchanged and currently limits the surgeon's depth perception and assessment of subtle microanatomy. Optical coherence tomography (OCT) has revolutionized clinical management of retinal pathology, and its introduction into the operating suite may have a similar impact on surgical visualization and treatment. In this article, we review the evolution of OCT for retinal surgery, from perioperative analysis to live volumetric (four-dimensional, 4D) image-guided surgery. We begin by briefly addressing the benefits and limitations of the operating microscope, the progression of OCT technology, and OCT applications in clinical/perioperative retinal imaging. Next, we review intraoperative OCT (iOCT) applications using handheld probes during surgical pauses, two-dimensional (2D) microscope-integrated OCT (MIOCT) of live surgery, and volumetric MIOCT of live surgery. The iOCT discussion focuses on technological advancements, applications during human retinal surgery, translational difficulties and limitations, and future directions.

  13. Optical Coherence Tomography for Retinal Surgery: Perioperative Analysis to Real-Time Four-Dimensional Image-Guided Surgery

    PubMed Central

    Carrasco-Zevallos, Oscar M.; Keller, Brenton; Viehland, Christian; Shen, Liangbo; Seider, Michael I.; Izatt, Joseph A.; Toth, Cynthia A.

    2016-01-01

    Magnification of the surgical field using the operating microscope facilitated profound innovations in retinal surgery in the 1970s, such as pars plana vitrectomy. Although surgical instrumentation and illumination techniques are continually developing, the operating microscope for vitreoretinal procedures has remained essentially unchanged and currently limits the surgeon's depth perception and assessment of subtle microanatomy. Optical coherence tomography (OCT) has revolutionized clinical management of retinal pathology, and its introduction into the operating suite may have a similar impact on surgical visualization and treatment. In this article, we review the evolution of OCT for retinal surgery, from perioperative analysis to live volumetric (four-dimensional, 4D) image-guided surgery. We begin by briefly addressing the benefits and limitations of the operating microscope, the progression of OCT technology, and OCT applications in clinical/perioperative retinal imaging. Next, we review intraoperative OCT (iOCT) applications using handheld probes during surgical pauses, two-dimensional (2D) microscope-integrated OCT (MIOCT) of live surgery, and volumetric MIOCT of live surgery. The iOCT discussion focuses on technological advancements, applications during human retinal surgery, translational difficulties and limitations, and future directions. PMID:27409495

  14. Theory of a Quantum Scanning Microscope for Cold Atoms

    NASA Astrophysics Data System (ADS)

    Yang, D.; Laflamme, C.; Vasilyev, D. V.; Baranov, M. A.; Zoller, P.

    2018-03-01

    We propose and analyze a scanning microscope to monitor "live" the quantum dynamics of cold atoms in a cavity QED setup. The microscope measures the atomic density with subwavelength resolution via dispersive couplings to a cavity and homodyne detection within the framework of continuous measurement theory. We analyze two modes of operation. First, for a fixed focal point the microscope records the wave packet dynamics of atoms with time resolution set by the cavity lifetime. Second, a spatial scan of the microscope acts to map out the spatial density of stationary quantum states. Remarkably, in the latter case, for a good cavity limit, the microscope becomes an effective quantum nondemolition device, such that the spatial distribution of motional eigenstates can be measured backaction free in single scans, as an emergent quantum nondemolition measurement.

  15. Theory of a Quantum Scanning Microscope for Cold Atoms.

    PubMed

    Yang, D; Laflamme, C; Vasilyev, D V; Baranov, M A; Zoller, P

    2018-03-30

    We propose and analyze a scanning microscope to monitor "live" the quantum dynamics of cold atoms in a cavity QED setup. The microscope measures the atomic density with subwavelength resolution via dispersive couplings to a cavity and homodyne detection within the framework of continuous measurement theory. We analyze two modes of operation. First, for a fixed focal point the microscope records the wave packet dynamics of atoms with time resolution set by the cavity lifetime. Second, a spatial scan of the microscope acts to map out the spatial density of stationary quantum states. Remarkably, in the latter case, for a good cavity limit, the microscope becomes an effective quantum nondemolition device, such that the spatial distribution of motional eigenstates can be measured backaction free in single scans, as an emergent quantum nondemolition measurement.

  16. Microscope collision protection apparatus

    DOEpatents

    DeNure, Charles R.

    2001-10-23

    A microscope collision protection apparatus for a remote control microscope which protects the optical and associated components from damage in the event of an uncontrolled collision with a specimen, regardless of the specimen size or shape. In a preferred embodiment, the apparatus includes a counterbalanced slide for mounting the microscope's optical components. This slide replaces the rigid mounts on conventional upright microscopes with a precision ball bearing slide. As the specimen contacts an optical component, the contacting force will move the slide and the optical components mounted thereon. This movement will protect the optical and associated components from damage as the movement causes a limit switch to be actuated, thereby stopping all motors responsible for the collision.

  17. Quantum Information: an invitation for mathematicians

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perez-Garcia, David

    2009-05-06

    Quantum Information is the science that aims to use the unusual behavior of the microscopic world, governed by the laws of Quantum Mechanics, in order to improve the way in which we compute or communicate information. Though the first ideas in this direction come from the early 80's, it is in the last decade when Quantum Information has suffered an spectacular development. It is impossible to resume in a paper like this one the importance and complexity of the field. Therefore, I will limit to briefly explain some of the initial ideas (considered classical by now), and to briefly suggestmore » some of the modern lines of research. By the nature of this exposition, I have decided to avoid rigor and to concentrate more in ideas and intuitions. Anyhow, I have tried to provide with enough references, in such a way that an interested reader could find there proper theorems and proofs.« less

  18. High-resolution, high-throughput imaging with a multibeam scanning electron microscope.

    PubMed

    Eberle, A L; Mikula, S; Schalek, R; Lichtman, J; Knothe Tate, M L; Zeidler, D

    2015-08-01

    Electron-electron interactions and detector bandwidth limit the maximal imaging speed of single-beam scanning electron microscopes. We use multiple electron beams in a single column and detect secondary electrons in parallel to increase the imaging speed by close to two orders of magnitude and demonstrate imaging for a variety of samples ranging from biological brain tissue to semiconductor wafers. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  19. Open questions on nuclear collective motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frauendorf, S., E-mail: sfrauend@nd.edu

    The status of the macroscopic and microscopic description of the collective quadrupole modes is reviewed, where limits due to non-adiabaticity and decoherence are exposed. The microscopic description of the yrast states in vibrator-like nuclei in the framework of the rotating mean field is presented.

  20. Flame Stabilization on Microscopic Scale of Wet Biogas with Microflame

    NASA Astrophysics Data System (ADS)

    Ida, Tamio; Fuchihata, Manabu; Mizuno, Satoru

    Harvesting, transportation, energy conversion and the high-efficient utilization, cascade method and market formation besides become with the indispensable element in order to utilize the biomass resource. There are two type biogases; it is gasified gas from dried biomass by partially combustion and wet biogas from wet biomass by methane fermentation, especially from the livestock excrement resources. This paper discusses an experimental study for flame stabilization on microscopic scale with wet biogas (mainly 0.6CH4+0.4CO2). In this study, the microflame with the wet biogas fuels are formed by the diffusion flame on the coppered straight pipes of inner diameter 0.02mm ˜ 1.5mm. This study is obtained stability mapping on microscopic scale of formed microflame by wet biogas fuels. The flame stability limit conditions on microscopic scale of wet biogas is drawn with blow off and extinction flame double limit lines. It is suggested that minimum mixing spatial scale change by the each mixing ratio of the wet biogas.

  1. Acquisition parameters optimization of a transmission electron forward scatter diffraction system in a cold-field emission scanning electron microscope for nanomaterials characterization.

    PubMed

    Brodusch, Nicolas; Demers, Hendrix; Trudeau, Michel; Gauvin, Raynald

    2013-01-01

    Transmission electron forward scatter diffraction (t-EFSD) is a new technique providing crystallographic information with high resolution on thin specimens by using a conventional electron backscatter diffraction (EBSD) system in a scanning electron microscope. In this study, the impact of tilt angle, working distance, and detector distance on the Kikuchi pattern quality were investigated in a cold-field emission scanning electron microscope (CFE-SEM). We demonstrated that t-EFSD is applicable for tilt angles ranging from -20° to -40°. Working distance (WD) should be optimized for each material by choosing the WD for which the EBSD camera screen illumination is the highest, as the number of detected electrons on the screen is directly dependent on the scattering angle. To take advantage of the best performances of the CFE-SEM, the EBSD camera should be close to the sample and oriented towards the bottom to increase forward scattered electron collection efficiency. However, specimen chamber cluttering and beam/mechanical drift are important limitations in the CFE-SEM used in this work. Finally, the importance of t-EFSD in materials science characterization was illustrated through three examples of phase identification and orientation mapping. © Wiley Periodicals, Inc.

  2. Optical second harmonic images of 90 deg domain structure in BaTiO3 and periodically inverted antiparallel domains in LiTaO3

    NASA Astrophysics Data System (ADS)

    Uesu, Y.; Kurimura, S.; Yamamoto, Y.

    1995-04-01

    Applied is a microscope to observations of 90 deg ferroelectric domain structure in BaTiO3 and inverted periodically are ferroelectric domains in LiTaO3. It is founded that the second harmonic generation microscope gives information which cannot be obtained by ordinary optical microscopes. The developed nonlinear optical microscope builds two dimensional second harmonic image of a specimen with inhomogenous distribution of d(sub ijk) and applied the microscope to observations of inhomogeneity in some nonlinear-optical organic microcrystals.

  3. Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging

    NASA Astrophysics Data System (ADS)

    Wang, Feifei; Liu, Lianqing; Yu, Haibo; Wen, Yangdong; Yu, Peng; Liu, Zhu; Wang, Yuechao; Li, Wen Jung

    2016-12-01

    Nanoscale correlation of structural information acquisition with specific-molecule identification provides new insight for studying rare subcellular events. To achieve this correlation, scanning electron microscopy has been combined with super-resolution fluorescent microscopy, despite its destructivity when acquiring biological structure information. Here we propose time-efficient non-invasive microsphere-based scanning superlens microscopy that enables the large-area observation of live-cell morphology or sub-membrane structures with sub-diffraction-limited resolution and is demonstrated by observing biological and non-biological objects. This microscopy operates in both non-invasive and contact modes with ~200 times the acquisition efficiency of atomic force microscopy, which is achieved by replacing the point of an atomic force microscope tip with an imaging area of microspheres and stitching the areas recorded during scanning, enabling sub-diffraction-limited resolution. Our method marks a possible path to non-invasive cell imaging and simultaneous tracking of specific molecules with nanoscale resolution, facilitating the study of subcellular events over a total cell period.

  4. Conformal field theory as microscopic dynamics of incompressible Euler and Navier-Stokes equations.

    PubMed

    Fouxon, Itzhak; Oz, Yaron

    2008-12-31

    We consider the hydrodynamics of relativistic conformal field theories at finite temperature. We show that the limit of slow motions of the ideal hydrodynamics leads to the nonrelativistic incompressible Euler equation. For viscous hydrodynamics we show that the limit of slow motions leads to the nonrelativistic incompressible Navier-Stokes equation. We explain the physical reasons for the reduction and discuss the implications. We propose that conformal field theories provide a fundamental microscopic viewpoint of the equations and the dynamics governed by them.

  5. Toward the development of a low-cost laser Doppler module for ophthalmic microscopes

    NASA Astrophysics Data System (ADS)

    Cattini, Stefano; Rovati, Luigi

    2012-03-01

    A laser Doppler module easily integrated into a commercial ophthalmic microscope is proposed. Such setup adds flow measurement capability to standard visual inspection of the fundus. The proposed instrument may provide important clinical information such as the detection of vessel occlusion provided by surgical treatments (i.e. photocoagulation). The measuring system is based on a self-mixing laser diode Doppler flowmeter (SM-DF). Reduced costs, easy implementation and small size represent the main features of SM-DF. Moreover, this technique offers the advantage to have the excitation and measurement beams spatially overlapped, thus both overcoming the alignment difficulty of traditional laser Doppler flowmeter and, well fitting with to limited optical aperture of the pupil. Thanks to an on-board DSP-microcontroller, the optoelectronic module directly estimates the blood flow; USB connection and an ad-hoc developed user-friendly software interface allow displaying the result on a personal computer. Preliminary test demonstrates the applicability of the proposed measuring system.

  6. Accurate virus quantitation using a Scanning Transmission Electron Microscopy (STEM) detector in a scanning electron microscope.

    PubMed

    Blancett, Candace D; Fetterer, David P; Koistinen, Keith A; Morazzani, Elaine M; Monninger, Mitchell K; Piper, Ashley E; Kuehl, Kathleen A; Kearney, Brian J; Norris, Sarah L; Rossi, Cynthia A; Glass, Pamela J; Sun, Mei G

    2017-10-01

    A method for accurate quantitation of virus particles has long been sought, but a perfect method still eludes the scientific community. Electron Microscopy (EM) quantitation is a valuable technique because it provides direct morphology information and counts of all viral particles, whether or not they are infectious. In the past, EM negative stain quantitation methods have been cited as inaccurate, non-reproducible, and with detection limits that were too high to be useful. To improve accuracy and reproducibility, we have developed a method termed Scanning Transmission Electron Microscopy - Virus Quantitation (STEM-VQ), which simplifies sample preparation and uses a high throughput STEM detector in a Scanning Electron Microscope (SEM) coupled with commercially available software. In this paper, we demonstrate STEM-VQ with an alphavirus stock preparation to present the method's accuracy and reproducibility, including a comparison of STEM-VQ to viral plaque assay and the ViroCyt Virus Counter. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Computational-optical microscopy for 3D biological imaging beyond the diffraction limit

    NASA Astrophysics Data System (ADS)

    Grover, Ginni

    In recent years, super-resolution imaging has become an important fluorescent microscopy tool. It has enabled imaging of structures smaller than the optical diffraction limit with resolution less than 50 nm. Extension to high-resolution volume imaging has been achieved by integration with various optical techniques. In this thesis, development of a fluorescent microscope to enable high resolution, extended depth, three dimensional (3D) imaging is discussed; which is achieved by integration of computational methods with optical systems. In the first part of the thesis, point spread function (PSF) engineering for volume imaging is discussed. A class of PSFs, referred to as double-helix (DH) PSFs, is generated. The PSFs exhibit two focused spots in the image plane which rotate about the optical axis, encoding depth in rotation of the image. These PSFs extend the depth-of-field up to a factor of ˜5. Precision performance of the DH-PSFs, based on an information theoretical analysis, is compared with other 3D methods with conclusion that the DH-PSFs provide the best precision and the longest depth-of-field. Out of various possible DH-PSFs, a suitable PSF is obtained for super-resolution microscopy. The DH-PSFs are implemented in imaging systems, such as a microscope, with a special phase modulation at the pupil plane. Surface-relief elements which are polarization-insensitive and ˜90% light efficient are developed for phase modulation. The photon-efficient DH-PSF microscopes thus developed are used, along with optimal position estimation algorithms, for tracking and super-resolution imaging in 3D. Imaging at depths-of-field of up to 2.5 microm is achieved without focus scanning. Microtubules were imaged with 3D resolution of (6, 9, 39) nm, which is in close agreement with the theoretical limit. A quantitative study of co-localization of two proteins in volume was conducted in live bacteria. In the last part of the thesis practical aspects of the DH-PSF microscope are discussed. A method to stabilize it, for extended periods of time, with 3-4 nm precision in 3D is developed. 3D Super-resolution is demonstrated without drift. A PSF correction algorithm is demonstrated to improve characteristics of the DH-PSF in an experiment, where it is implemented with a polarization-insensitive liquid crystal spatial light modulator.

  8. The Tunneling Microscope: A New Look at the Atomic World.

    ERIC Educational Resources Information Center

    Golovchenko, J. A.

    1986-01-01

    A new instrument called the tunneling microscope has recently been developed that is capable of generating real-space images of surfaces showing atomic structure. Discusses current capabilities, limitations, and the physics involved in the technique. Includes results from a study of silicon crystal surfaces. (JN)

  9. Dual-labeling with 5-aminolevulinic acid and fluorescein for fluorescence-guided resection of high-grade gliomas: technical note.

    PubMed

    Suero Molina, Eric; Wölfer, Johannes; Ewelt, Christian; Ehrhardt, André; Brokinkel, Benjamin; Stummer, Walter

    2018-02-01

    OBJECTIVE Fluorescence guidance with 5-aminolevulinic acid (5-ALA) helps improve resections of malignant gliomas. However, one limitation is the low intensity of blue light for background illumination. Fluorescein has recently been reintroduced into neurosurgery, and novel microscope systems are available for visualizing this fluorochrome, which highlights all perfused tissues but has limited selectivity for tumor detection. Here, the authors investigate a combination of both fluorochromes: 5-ALA for distinguishing tumor and fluorescein for providing tissue fluorescence of adjacent brain tissue. METHODS The authors evaluated 6 patients who harbored cerebral lesions suggestive of high-grade glioma. Patients received 5-ALA (20 mg/kg) orally 4 hours before induction of anesthesia. Low-dose fluorescein (3 mg/kg intravenous) was injected immediately after anesthesia induction. Pentero microscopes (equipped either with Yellow 560 or Blue 400 filters) were used to visualize fluorescence. To simultaneously visualize both fluorochromes, the Yellow 560 module was combined with external blue light illumination (D-light C System). RESULTS Fluorescein-induced fluorescence created a useful background for protoporphyrin IX (PPIX) fluorescence, which appeared orange to red, surrounded by greenly fluorescent normal brain and edematous tissue. Green brain-tissue fluorescence was helpful in augmenting background. Levels of blue illumination that were too strong obscured PPIX fluorescence. Unspecific extravasation of fluorescein was noted at resection margins, which did not interfere with PPIX fluorescence detection. CONCLUSIONS Dual labeling with both PPIX and fluorescein fluorescence is feasible and gives superior background information during fluorescence-guided resections. The authors believe that this technique carries potential as a next step in fluorescence-guided resections if it is completely integrated into the surgical microscope.

  10. PtyNAMi: ptychographic nano-analytical microscope at PETRA III: interferometrically tracking positions for 3D x-ray scanning microscopy using a ball-lens retroreflector

    NASA Astrophysics Data System (ADS)

    Schroer, Christian G.; Seyrich, Martin; Kahnt, Maik; Botta, Stephan; Döhrmann, Ralph; Falkenberg, Gerald; Garrevoet, Jan; Lyubomirskiy, Mikhail; Scholz, Maria; Schropp, Andreas; Wittwer, Felix

    2017-09-01

    In recent years, ptychography has revolutionized x-ray microscopy in that it is able to overcome the diffraction limit of x-ray optics, pushing the spatial resolution limit down to a few nanometers. However, due to the weak interaction of x rays with matter, the detection of small features inside a sample requires a high coherent fluence on the sample, a high degree of mechanical stability, and a low background signal from the x-ray microscope. The x-ray scanning microscope PtyNAMi at PETRA III is designed for high-spatial-resolution 3D imaging with high sensitivity. The design concept is presented with a special focus on real-time metrology of the sample position during tomographic scanning microscopy.

  11. Simulating land surface energy fluxes using a microscopic root water uptake approach in a northern temperate forest

    NASA Astrophysics Data System (ADS)

    He, L.; Ivanov, V. Y.; Schneider, C.

    2012-12-01

    The predictive accuracy of current land surface models has been limited by uncertainties in modeling transpiration and its sensitivity to the plant-available water in the root zone. Models usually distribute vegetation transpiration demand as sink terms in one-dimensional soil-water accounting model, according to the vertical root density profile. During water-limited situations, the sink terms are constrained using a heuristic "Feddes-type" water stress function. This approach significantly simplifies the actual three-dimensional physical process of root water uptake and may predict an early onset of water-limited transpiration. Recently, a microscopic root water uptake approach was proposed to simulate the three-dimensional radial moisture fluxes from the soil to roots, and water flux transfer processes along the root systems. During dry conditions, this approach permits the compensation of decreased root water uptake in water-stressed regions by increasing uptake density in moister regions. This effect cannot be captured by the Feddes heuristic function. This study "loosely" incorporates the microscopic root water uptake approach based on aRoot model into an ecohydrological model tRIBS+VEGGIE. The ecohydrological model provides boundary conditions for the microscopic root water uptake model (e.g., potential transpiration, soil evaporation, and precipitation influx), and the latter computes the actual transpiration and profiles of sink terms. Based on the departure of the actual latent heat flux from the potential value, the other energy budget components are adjusted. The study is conducted for a northern temperate mixed forest near the University of Michigan Biological Station. Observational evidence for this site suggests little-to-no control of transpiration by soil moisture yet the commonly used Feddes-type approach implies severe water limitation on transpiration during dry episodes. The study addresses two species: oak and aspen. The effects of differences in root architecture on actual transpiration are explored. The energy components simulated with the microscopic modeling approach are tested against observational data. Through the improved spatiotemporal representation of small-scale root water uptake process, the microscopic modeling framework leads to a better agreement with the observational data than the Feddes-type approach. During dry periods, relatively high transpiration is sustained, as water uptake regions shift from densely to sparsely rooted layers, or from drier to moister soil areas. Implications and approaches for incorporating microscopic modeling methodologies within large-scale land-surface parameterizations are discussed.

  12. Symplectic no-core shell-model approach to intermediate-mass nuclei

    NASA Astrophysics Data System (ADS)

    Tobin, G. K.; Ferriss, M. C.; Launey, K. D.; Dytrych, T.; Draayer, J. P.; Dreyfuss, A. C.; Bahri, C.

    2014-03-01

    We present a microscopic description of nuclei in the intermediate-mass region, including the proximity to the proton drip line, based on a no-core shell model with a schematic many-nucleon long-range interaction with no parameter adjustments. The outcome confirms the essential role played by the symplectic symmetry to inform the interaction and the winnowing of shell-model spaces. We show that it is imperative that model spaces be expanded well beyond the current limits up through 15 major shells to accommodate particle excitations, which appear critical to highly deformed spatial structures and the convergence of associated observables.

  13. Fiber-based confocal microscope for cryogenic spectroscopy.

    PubMed

    Högele, Alexander; Seidl, Stefan; Kroner, Martin; Karrai, Khaled; Schulhauser, Christian; Sqalli, Omar; Scrimgeour, Jan; Warburton, Richard J

    2008-02-01

    We describe the design and performance of a fiber-based confocal microscope for cryogenic operation. The microscope combines positioning at low temperatures along three space coordinates of millimeter translation and nanometer precision with high stability and optical performance at the diffraction limit. It was successfully tested under ambient conditions as well as at liquid nitrogen (77 K) and liquid helium (4 K) temperatures. The compact nonmagnetic design provides for long term position stability against helium refilling transfers, temperature sweeps, as well as magnetic field variation between -9 and 9 T. As a demonstration of the microscope performance, applications in the spectroscopy of single semiconductor quantum dots are presented.

  14. Apertureless near-field/far-field CW two-photon microscope for biological and material imaging and spectroscopic applications.

    PubMed

    Nowak, Derek B; Lawrence, A J; Sánchez, Erik J

    2010-12-10

    We present the development of a versatile spectroscopic imaging tool to allow for imaging with single-molecule sensitivity and high spatial resolution. The microscope allows for near-field and subdiffraction-limited far-field imaging by integrating a shear-force microscope on top of a custom inverted microscope design. The instrument has the ability to image in ambient conditions with optical resolutions on the order of tens of nanometers in the near field. A single low-cost computer controls the microscope with a field programmable gate array data acquisition card. High spatial resolution imaging is achieved with an inexpensive CW multiphoton excitation source, using an apertureless probe and simplified optical pathways. The high-resolution, combined with high collection efficiency and single-molecule sensitive optical capabilities of the microscope, are demonstrated with a low-cost CW laser source as well as a mode-locked laser source.

  15. Any Way You Slice It—A Comparison of Confocal Microscopy Techniques

    PubMed Central

    Jonkman, James

    2015-01-01

    The confocal fluorescence microscope has become a popular tool for life sciences researchers, primarily because of its ability to remove blur from outside of the focal plane of the image. Several different kinds of confocal microscopes have been developed, each with advantages and disadvantages. This article will cover the grid confocal, classic confocal laser-scanning microscope (CLSM), the resonant scanning-CLSM, and the spinning-disk confocal microscope. The way each microscope technique works, the best applications the technique is suited for, the limitations of the technique, and new developments for each technology will be presented. Researchers who have access to a range of different confocal microscopes (e.g., through a local core facility) should find this paper helpful for choosing the best confocal technology for specific imaging applications. Others with funding to purchase an instrument should find the article helpful in deciding which technology is ideal for their area of research. PMID:25802490

  16. Virtual reality microscope versus conventional microscope regarding time to diagnosis: an experimental study.

    PubMed

    Randell, Rebecca; Ruddle, Roy A; Mello-Thoms, Claudia; Thomas, Rhys G; Quirke, Phil; Treanor, Darren

    2013-01-01

      To create and evaluate a virtual reality (VR) microscope that is as efficient as the conventional microscope, seeking to support the introduction of digital slides into routine practice.   A VR microscope was designed and implemented by combining ultra-high-resolution displays with VR technology, techniques for fast interaction, and high usability. It was evaluated using a mixed factorial experimental design with technology and task as within-participant variables and grade of histopathologist as a between-participant variable. Time to diagnosis was similar for the conventional and VR microscopes. However, there was a significant difference in the mean magnification used between the two technologies, with participants working at a higher level of magnification on the VR microscope.   The results suggest that, with the right technology, efficient use of digital pathology for routine practice is a realistic possibility. Further work is required to explore what magnification is required on the VR microscope for histopathologists to identify diagnostic features, and the effect on this of the digital slide production process. © 2012 Blackwell Publishing Limited.

  17. Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications.

    PubMed

    Mudanyali, Onur; Tseng, Derek; Oh, Chulwoo; Isikman, Serhan O; Sencan, Ikbal; Bishara, Waheb; Oztoprak, Cetin; Seo, Sungkyu; Khademhosseini, Bahar; Ozcan, Aydogan

    2010-06-07

    Despite the rapid progress in optical imaging, most of the advanced microscopy modalities still require complex and costly set-ups that unfortunately limit their use beyond well equipped laboratories. In the meantime, microscopy in resource-limited settings has requirements significantly different from those encountered in advanced laboratories, and such imaging devices should be cost-effective, compact, light-weight and appropriately accurate and simple to be usable by minimally trained personnel. Furthermore, these portable microscopes should ideally be digitally integrated as part of a telemedicine network that connects various mobile health-care providers to a central laboratory or hospital. Toward this end, here we demonstrate a lensless on-chip microscope weighing approximately 46 grams with dimensions smaller than 4.2 cm x 4.2 cm x 5.8 cm that achieves sub-cellular resolution over a large field of view of approximately 24 mm(2). This compact and light-weight microscope is based on digital in-line holography and does not need any lenses, bulky optical/mechanical components or coherent sources such as lasers. Instead, it utilizes a simple light-emitting-diode (LED) and a compact opto-electronic sensor-array to record lensless holograms of the objects, which then permits rapid digital reconstruction of regular transmission or differential interference contrast (DIC) images of the objects. Because this lensless incoherent holographic microscope has orders-of-magnitude improved light collection efficiency and is very robust to mechanical misalignments it may offer a cost-effective tool especially for telemedicine applications involving various global health problems in resource limited settings.

  18. Measurement of lengths and angles by means of a photoelectric direct reading-off microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Priver, L.S.

    1995-11-01

    We consider the measurement of lengths and angles over a broad range with error amounting to fractions of a micrometer or angular second using a newly designed mockup of a photoelectric direct reading-off microscope. The microscope implements a pulse-position method of transforming information through application of a scanner in the form of a rotating polyhedral mirror.

  19. Nuclear surface diffuseness revealed in nucleon-nucleus diffraction

    NASA Astrophysics Data System (ADS)

    Hatakeyama, S.; Horiuchi, W.; Kohama, A.

    2018-05-01

    The nuclear surface provides useful information on nuclear radius, nuclear structure, as well as properties of nuclear matter. We discuss the relationship between the nuclear surface diffuseness and elastic scattering differential cross section at the first diffraction peak of high-energy nucleon-nucleus scattering as an efficient tool in order to extract the nuclear surface information from limited experimental data involving short-lived unstable nuclei. The high-energy reaction is described by a reliable microscopic reaction theory, the Glauber model. Extending the idea of the black sphere model, we find one-to-one correspondence between the nuclear bulk structure information and proton-nucleus elastic scattering diffraction peak. This implies that we can extract both the nuclear radius and diffuseness simultaneously, using the position of the first diffraction peak and its magnitude of the elastic scattering differential cross section. We confirm the reliability of this approach by using realistic density distributions obtained by a mean-field model.

  20. Ultra-large field-of-view two-photon microscopy.

    PubMed

    Tsai, Philbert S; Mateo, Celine; Field, Jeffrey J; Schaffer, Chris B; Anderson, Matthew E; Kleinfeld, David

    2015-06-01

    We present a two-photon microscope that images the full extent of murine cortex with an objective-limited spatial resolution across an 8 mm by 10 mm field. The lateral resolution is approximately 1 µm and the maximum scan speed is 5 mm/ms. The scan pathway employs large diameter compound lenses to minimize aberrations and performs near theoretical limits. We demonstrate the special utility of the microscope by recording resting-state vasomotion across both hemispheres of the murine brain through a transcranial window and by imaging histological sections without the need to stitch.

  1. A Compact "Water Window" Microscope with 60 nm Spatial Resolution for Applications in Biology and Nanotechnology.

    PubMed

    Wachulak, Przemyslaw; Torrisi, Alfio; Nawaz, Muhammad F; Bartnik, Andrzej; Adjei, Daniel; Vondrová, Šárka; Turňová, Jana; Jančarek, Alexandr; Limpouch, Jiří; Vrbová, Miroslava; Fiedorowicz, Henryk

    2015-10-01

    Short illumination wavelength allows an extension of the diffraction limit toward nanometer scale; thus, improving spatial resolution in optical systems. Soft X-ray (SXR) radiation, from "water window" spectral range, λ=2.3-4.4 nm wavelength, which is particularly suitable for biological imaging due to natural optical contrast provides better spatial resolution than one obtained with visible light microscopes. The high contrast in the "water window" is obtained because of selective radiation absorption by carbon and water, which are constituents of the biological samples. The development of SXR microscopes permits the visualization of features on the nanometer scale, but often with a tradeoff, which can be seen between the exposure time and the size and complexity of the microscopes. Thus, herein, we present a desk-top system, which overcomes the already mentioned limitations and is capable of resolving 60 nm features with very short exposure time. Even though the system is in its initial stage of development, we present different applications of the system for biology and nanotechnology. Construction of the microscope with recently acquired images of various samples will be presented and discussed. Such a high resolution imaging system represents an interesting solution for biomedical, material science, and nanotechnology applications.

  2. Microscope basics.

    PubMed

    Sluder, Greenfield; Nordberg, Joshua J

    2013-01-01

    This chapter provides information on how microscopes work and discusses some of the microscope issues to be considered in using a video camera on the microscope. There are two types of microscopes in use today for research in cell biology-the older finite tube-length (typically 160mm mechanical tube length) microscopes and the infinity optics microscopes that are now produced. The objective lens forms a magnified, real image of the specimen at a specific distance from the objective known as the intermediate image plane. All objectives are designed to be used with the specimen at a defined distance from the front lens element of the objective (the working distance) so that the image formed is located at a specific location in the microscope. Infinity optics microscopes differ from the finite tube-length microscopes in that the objectives are designed to project the image of the specimen to infinity and do not, on their own, form a real image of the specimen. Three types of objectives are in common use today-plan achromats, plan apochromats, and plan fluorite lenses. The concept of mounting video cameras on the microscope is also presented in the chapter. Copyright © 2003 Elsevier Inc. All rights reserved.

  3. Reasoning about Magnetism at the Microscopic Level

    ERIC Educational Resources Information Center

    Cheng, Meng-Fei; Cheng, Yufang; Hung, Shuo-Hsien

    2014-01-01

    Based on our experience of teaching physics in middle and senior secondary school, we have found that students have difficulty in reasoning at the microscopic level. Their reasoning is limited to the observational level so they have problems in developing scientific models of magnetism. Here, we suggest several practical activities and the use of…

  4. Imaging System for Vaginal Surgery.

    PubMed

    Taylor, G Bernard; Myers, Erinn M

    2015-12-01

    The vaginal surgeon is challenged with performing complex procedures within a surgical field of limited light and exposure. The video telescopic operating microscope is an illumination and imaging system that provides visualization during open surgical procedures with a limited field of view. The imaging system is positioned within the surgical field and then secured to the operating room table with a maneuverable holding arm. A high-definition camera and Xenon light source allow transmission of the magnified image to a high-definition monitor in the operating room. The monitor screen is positioned above the patient for the surgeon and assistants to view real time throughout the operation. The video telescopic operating microscope system was used to provide surgical illumination and magnification during total vaginal hysterectomy and salpingectomy, midurethral sling, and release of vaginal scar procedures. All procedures were completed without complications. The video telescopic operating microscope provided illumination of the vaginal operative field and display of the magnified image onto high-definition monitors in the operating room for the surgeon and staff to simultaneously view the procedures. The video telescopic operating microscope provides high-definition display, magnification, and illumination during vaginal surgery.

  5. Color digital lensless holographic microscopy: laser versus LED illumination.

    PubMed

    Garcia-Sucerquia, Jorge

    2016-08-20

    A comparison of the performance of color digital lensless holographic microscopy (CDLHM) as utilized for illumination of RGB lasers or a super-bright white-light LED with a set of spectral filters is presented. As the use of lasers in CDLHM conceals the possibility of having a compact, lightweight, portable, and low cost microscope, and additionally the limited available laser radiation wavelengths limit a real multispectral imaging microscope, here we present the use of super-bright white-light LED and spectral filters for illuminating the sample. The performance of RGB laser-CDLHM and LED-CDLHM is evaluated on imaging a section of the head of a Drosophila melanogaster fly. This comparison shows that there is trade-off between the spatial resolution of the microscope and the light sources utilized, which can be understood with regard to the coherence properties of the illuminating light. Despite the smaller spatial coherence features of LED-CDLHM in comparison with laser-CDLHM, the former shows promise as a portable RGB digital lensless holographic microscope that could be extended to other wavelengths by the use of different spectral filters.

  6. Isometric multimodal photoacoustic microscopy based on optically transparent micro-ring ultrasonic detection.

    PubMed

    Dong, Biqin; Li, Hao; Zhang, Zhen; Zhang, Kevin; Chen, Siyu; Sun, Cheng; Zhang, Hao F

    2015-01-01

    Photoacoustic microscopy (PAM) is an attractive imaging tool complementary to established optical microscopic modalities by providing additional molecular specificities through imaging optical absorption contrast. While the development of optical resolution photoacoustic microscopy (ORPAM) offers high lateral resolution, the acoustically-determined axial resolution is limited due to the constraint in ultrasonic detection bandwidth. ORPAM with isometric spatial resolution along both axial and lateral direction is yet to be developed. Although recently developed sophisticated optical illumination and reconstruction methods offer improved axial resolution in ORPAM, the image acquisition procedures are rather complicated, limiting their capabilities for high-speed imaging and being easily integrated with established optical microscopic modalities. Here we report an isometric ORPAM based on an optically transparent micro-ring resonator ultrasonic detector and a commercial inverted microscope platform. Owing to the superior spatial resolution and the ease of integrating our ORPAM with established microscopic modalities, single cell imaging with extrinsic fluorescence staining, intrinsic autofluorescence, and optical absorption can be achieved simultaneously. This technique holds promise to greatly improve the accessibility of PAM to the broader biomedical researchers.

  7. A submersible digital in-line holographic microscope

    NASA Astrophysics Data System (ADS)

    Jericho, Manfred; Jericho, Stefan; Kreuzer, Hans Juergen; Garcia, Jeorge; Klages, Peter

    Few instruments exist that can image microscopic marine organisms in their natural environment so that their locomotion mechanisms, feeding habits and interactions with surfaces, such as bio-fouling, can be investigated in situ. In conventional optical microscopy under conditions of high magnification, only objects confined to the narrow focal plane can be imaged and processes that involve translation of the object perpendicular to this plane are not accessible. To overcome this severe limitation of optical microscopy, we developed digital in-line holographic microscopy (DIHM) as a high-resolution tool for the tracking of organisms in three dimensions. We describe here the design and performance of a very simple submersible digital in-line holographic microscope (SDIHM) that can image organisms and their motion with micron resolution and that can be deployed from small vessels. Holograms and reconstructed images of several microscopic marine organisms were successfully obtained down to a depth of 20 m. The maximum depth was limited by the length of data transmission cables available at the time and operating depth in excess of 100 m are easily possible for the instrument.

  8. Stochastic Processes in Physics: Deterministic Origins and Control

    NASA Astrophysics Data System (ADS)

    Demers, Jeffery

    Stochastic processes are ubiquitous in the physical sciences and engineering. While often used to model imperfections and experimental uncertainties in the macroscopic world, stochastic processes can attain deeper physical significance when used to model the seemingly random and chaotic nature of the underlying microscopic world. Nowhere more prevalent is this notion than in the field of stochastic thermodynamics - a modern systematic framework used describe mesoscale systems in strongly fluctuating thermal environments which has revolutionized our understanding of, for example, molecular motors, DNA replication, far-from equilibrium systems, and the laws of macroscopic thermodynamics as they apply to the mesoscopic world. With progress, however, come further challenges and deeper questions, most notably in the thermodynamics of information processing and feedback control. Here it is becoming increasingly apparent that, due to divergences and subtleties of interpretation, the deterministic foundations of the stochastic processes themselves must be explored and understood. This thesis presents a survey of stochastic processes in physical systems, the deterministic origins of their emergence, and the subtleties associated with controlling them. First, we study time-dependent billiards in the quivering limit - a limit where a billiard system is indistinguishable from a stochastic system, and where the simplified stochastic system allows us to view issues associated with deterministic time-dependent billiards in a new light and address some long-standing problems. Then, we embark on an exploration of the deterministic microscopic Hamiltonian foundations of non-equilibrium thermodynamics, and we find that important results from mesoscopic stochastic thermodynamics have simple microscopic origins which would not be apparent without the benefit of both the micro and meso perspectives. Finally, we study the problem of stabilizing a stochastic Brownian particle with feedback control, and we find that in order to avoid paradoxes involving the first law of thermodynamics, we need a model for the fine details of the thermal driving noise. The underlying theme of this thesis is the argument that the deterministic microscopic perspective and stochastic mesoscopic perspective are both important and useful, and when used together, we can more deeply and satisfyingly understand the physics occurring over either scale.

  9. Raman microspectroscopy, surface-enhanced Raman scattering microspectroscopy, and stable-isotope Raman microspectroscopy for biofilm characterization.

    PubMed

    Ivleva, Natalia P; Kubryk, Patrick; Niessner, Reinhard

    2017-07-01

    Biofilms represent the predominant form of microbial life on our planet. These aggregates of microorganisms, which are embedded in a matrix formed by extracellular polymeric substances, may colonize nearly all interfaces. Detailed knowledge of microorganisms enclosed in biofilms as well as of the chemical composition, structure, and functions of the complex biofilm matrix and their changes at different stages of the biofilm formation and under various physical and chemical conditions is relevant in different fields. Important research topics include the development and improvement of antibiotics and medical devices and the optimization of biocides, antifouling strategies, and biological wastewater treatment. Raman microspectroscopy is a capable and nondestructive tool that can provide detailed two-dimensional and three-dimensional chemical information about biofilm constituents with the spatial resolution of an optical microscope and without interference from water. However, the sensitivity of Raman microspectroscopy is rather limited, which hampers the applicability of Raman microspectroscopy especially at low biomass concentrations. Fortunately, the resonance Raman effect as well as surface-enhanced Raman scattering can help to overcome this drawback. Furthermore, the combination of Raman microspectroscopy with other microscopic techniques, mass spectrometry techniques, or particularly with stable-isotope techniques can provide comprehensive information on monospecies and multispecies biofilms. Here, an overview of different Raman microspectroscopic techniques, including resonance Raman microspectroscopy and surface-enhanced Raman scattering microspectroscopy, for in situ detection, visualization, identification, and chemical characterization of biofilms is given, and the main feasibilities and limitations of these techniques in biofilm research are presented. Future possibilities of and challenges for Raman microspectroscopy alone and in combination with other analytical techniques for characterization of complex biofilm matrices are discussed in a critical review. Graphical Abstract Applicability of Raman microspectroscopy for biofilm analysis.

  10. High-resolution electron microscope

    NASA Technical Reports Server (NTRS)

    Nathan, R.

    1977-01-01

    Employing scanning transmission electron microscope as interferometer, relative phases of diffraction maximums can be determined by analysis of dark field images. Synthetic aperture technique and Fourier-transform computer processing of amplitude and phase information provide high resolution images at approximately one angstrom.

  11. High-resolution, high-throughput imaging with a multibeam scanning electron microscope

    PubMed Central

    EBERLE, AL; MIKULA, S; SCHALEK, R; LICHTMAN, J; TATE, ML KNOTHE; ZEIDLER, D

    2015-01-01

    Electron–electron interactions and detector bandwidth limit the maximal imaging speed of single-beam scanning electron microscopes. We use multiple electron beams in a single column and detect secondary electrons in parallel to increase the imaging speed by close to two orders of magnitude and demonstrate imaging for a variety of samples ranging from biological brain tissue to semiconductor wafers. Lay Description The composition of our world and our bodies on the very small scale has always fascinated people, making them search for ways to make this visible to the human eye. Where light microscopes reach their resolution limit at a certain magnification, electron microscopes can go beyond. But their capability of visualizing extremely small features comes at the cost of a very small field of view. Some of the questions researchers seek to answer today deal with the ultrafine structure of brains, bones or computer chips. Capturing these objects with electron microscopes takes a lot of time – maybe even exceeding the time span of a human being – or new tools that do the job much faster. A new type of scanning electron microscope scans with 61 electron beams in parallel, acquiring 61 adjacent images of the sample at the same time a conventional scanning electron microscope captures one of these images. In principle, the multibeam scanning electron microscope’s field of view is 61 times larger and therefore coverage of the sample surface can be accomplished in less time. This enables researchers to think about large-scale projects, for example in the rather new field of connectomics. A very good introduction to imaging a brain at nanometre resolution can be found within course material from Harvard University on http://www.mcb80x.org/# as featured media entitled ‘connectomics’. PMID:25627873

  12. Influence of mechanical noise inside a scanning electron microscope.

    PubMed

    de Faria, Marcelo Gaudenzi; Haddab, Yassine; Le Gorrec, Yann; Lutz, Philippe

    2015-04-01

    The scanning electron microscope is becoming a popular tool to perform tasks that require positioning, manipulation, characterization, and assembly of micro-components. However, some of these applications require a higher level of performance with respect to dynamics and precision of positioning. One limiting factor is the presence of unidentified noises and disturbances. This work aims to study the influence of mechanical disturbances generated by the environment and by the microscope, identifying how these can affect elements in the vacuum chamber. To achieve this objective, a dedicated setup, including a high-resolution vibrometer, was built inside the microscope. This work led to the identification and quantification of main disturbances and noise sources acting on a scanning electron microscope. Furthermore, the effects of external acoustic excitations were analysed. Potential applications of these results include noise compensation and real-time control for high accuracy tasks.

  13. Dark-field imaging based on post-processed electron backscatter diffraction patterns of bulk crystalline materials in a scanning electron microscope.

    PubMed

    Brodusch, Nicolas; Demers, Hendrix; Gauvin, Raynald

    2015-01-01

    Dark-field (DF) images were acquired in the scanning electron microscope with an offline procedure based on electron backscatter diffraction (EBSD) patterns (EBSPs). These EBSD-DF images were generated by selecting a particular reflection on the electron backscatter diffraction pattern and by reporting the intensity of one or several pixels around this point at each pixel of the EBSD-DF image. Unlike previous studies, the diffraction information of the sample is the basis of the final image contrast with a pixel scale resolution at the EBSP providing DF imaging in the scanning electron microscope. The offline facility of this technique permits the selection of any diffraction condition available in the diffraction pattern and displaying the corresponding image. The high number of diffraction-based images available allows a better monitoring of deformation structures compared to electron channeling contrast imaging (ECCI) which is generally limited to a few images of the same area. This technique was applied to steel and iron specimens and showed its high capability in describing more rigorously the deformation structures around micro-hardness indents. Due to the offline relation between the reference EBSP and the EBSD-DF images, this new technique will undoubtedly greatly improve our knowledge of deformation mechanism and help to improve our understanding of the ECCI contrast mechanisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Intrinsic instability of aberration-corrected electron microscopes.

    PubMed

    Schramm, S M; van der Molen, S J; Tromp, R M

    2012-10-19

    Aberration-corrected microscopes with subatomic resolution will impact broad areas of science and technology. However, the experimentally observed lifetime of the corrected state is just a few minutes. Here we show that the corrected state is intrinsically unstable; the higher its quality, the more unstable it is. Analyzing the contrast transfer function near optimum correction, we define an "instability budget" which allows a rational trade-off between resolution and stability. Unless control systems are developed to overcome these challenges, intrinsic instability poses a fundamental limit to the resolution practically achievable in the electron microscope.

  15. Variable Magnification With Kirkpatrick-Baez Optics for Synchrotron X-Ray Microscopy

    PubMed Central

    Jach, Terrence; Bakulin, Alex S.; Durbin, Stephen M.; Pedulla, Joseph; Macrander, Albert

    2006-01-01

    We describe the distinction between the operation of a short focal length x-ray microscope forming a real image with a laboratory source (convergent illumination) and with a highly collimated intense beam from a synchrotron light source (Köhler illumination). We demonstrate the distinction with a Kirkpatrick-Baez microscope consisting of short focal length multilayer mirrors operating at an energy of 8 keV. In addition to realizing improvements in the resolution of the optics, the synchrotron radiation microscope is not limited to the usual single magnification at a fixed image plane. Higher magnification images are produced by projection in the limit of geometrical optics with a collimated beam. However, in distinction to the common method of placing the sample behind the optical source of a diverging beam, we describe the situation in which the sample is located in the collimated beam before the optical element. The ultimate limits of this magnification result from diffraction by the specimen and are determined by the sample position relative to the focal point of the optic. We present criteria by which the diffraction is minimized. PMID:27274930

  16. Mirror-based broadband scanner with minimized aberration

    NASA Astrophysics Data System (ADS)

    Yu, Jiun-Yann; Tzeng, Yu-Yi; Huang, Chen-Han; Chui, Hsiang-Chen; Chu, Shi-Wei

    2009-02-01

    To obtain specific biochemical information in optical scanning microscopy, labeling technique is routinely required. Instead of the complex and invasive sample preparation procedures, incorporating spectral acquisition, which commonly requires a broadband light source, provides another mechanism to enhance molecular contrast. But most current optical scanning system is lens-based and thus the spectral bandwidth is limited to several hundred nanometers due to anti-reflection coating and chromatic aberration. The spectral range of interest in biological research covers ultraviolet to infrared. For example, the absorption peak of water falls around 3 μm, while most proteins exhibit absorption in the UV-visible regime. For imaging purpose, the transmission window of skin and cerebral tissues fall around 1300 and 1800 nm, respectively. Therefore, to extend the spectral bandwidth of an optical scanning system from visible to mid-infrared, we propose a system composed of metallic coated mirrors. A common issue in such a mirror-based system is aberrations induced by oblique incidence. We propose to compensate astigmatism by exchanging the sagittal and tangential planes of the converging spherical mirrors in the scanning system. With the aid of an optical design software, we build a diffraction-limited broadband scanning system with wavefront flatness better than λ/4 at focal plane. Combined with a mirror-based objective this microscopic system will exhibit full spectral capability and will be useful in microscopic imaging and therapeutic applications.

  17. A Computer-Controlled Classroom Model of an Atomic Force Microscope

    ERIC Educational Resources Information Center

    Engstrom, Tyler A.; Johnson, Matthew M.; Eklund, Peter C.; Russin, Timothy J.

    2015-01-01

    The concept of "seeing by feeling" as a way to circumvent limitations on sight is universal on the macroscopic scale--reading Braille, feeling one's way around a dark room, etc. The development of the atomic force microscope (AFM) in 1986 extended this concept to imaging in the nanoscale. While there are classroom demonstrations that use…

  18. Evaluation of a Mobile Phone-Based Microscope for Screening of Schistosoma haematobium Infection in Rural Ghana.

    PubMed

    Bogoch, Isaac I; Koydemir, Hatice C; Tseng, Derek; Ephraim, Richard K D; Duah, Evans; Tee, Joseph; Andrews, Jason R; Ozcan, Aydogan

    2017-06-01

    AbstractSchistosomiasis affects over 170 million people in Africa. Here we compare a novel, low-cost mobile phone microscope to a conventional light microscope for the label-free diagnosis of Schistosoma haematobium infections in a rural Ghanaian school setting. We tested the performance of our handheld microscope using 60 slides that were randomly chosen from an ongoing epidemiologic study in school-aged children. The mobile phone microscope had a sensitivity of 72.1% (95% confidence interval [CI]: 56.1-84.2), specificity of 100% (95% CI: 75.9-100), positive predictive value of 100% (95% CI: 86.3-100), and a negative predictive value of 57.1% (95% CI: 37.4-75.0). With its modest sensitivity and high specificity, this handheld and cost-effective mobile phone-based microscope is a stepping-stone toward developing a powerful tool in clinical and public health settings where there is limited access to conventional laboratory diagnostic support.

  19. Comparison of Confocal and Super-Resolution Reflectance Imaging of Metal Oxide Nanoparticles

    PubMed Central

    Guggenheim, Emily J.; Khan, Abdullah; Pike, Jeremy; Chang, Lynne; Lynch, Iseult; Rappoport, Joshua Z.

    2016-01-01

    The potential for human exposure to manufactured nanoparticles (NPs) has increased in recent years, in part through the incorporation of engineered particles into a wide range of commercial goods and medical applications. NP are ideal candidates for use as therapeutic and diagnostic tools within biomedicine, however concern exists regarding their efficacy and safety. Thus, developing techniques for the investigation of NP uptake into cells is critically important. Current intracellular NP investigations rely on the use of either Transmission Electron Microscopy (TEM), which provides ultrahigh resolution, but involves cumbersome sample preparation rendering the technique incompatible with live cell imaging, or fluorescent labelling, which suffers from photobleaching, poor bioconjugation and, often, alteration of NP surface properties. Reflected light imaging provides an alternative non-destructive label free technique well suited, but not limited to, the visualisation of NP uptake within model systems, such as cells. Confocal reflectance microscopy provides optical sectioning and live imaging capabilities, with little sample preparation. However confocal microscopy is diffraction limited, thus the X-Y resolution is restricted to ~250 nm, substantially larger than the <100 nm size of NPs. Techniques such as super-resolution light microscopy overcome this fundamental limitation, providing increased X-Y resolution. The use of Reflectance SIM (R-SIM) for NP imaging has previously only been demonstrated on custom built microscopes, restricting the widespread use and limiting NP investigations. This paper demonstrates the use of a commercial SIM microscope for the acquisition of super-resolution reflectance data with X-Y resolution of 115 nm, a greater than two-fold increase compared to that attainable with RCM. This increase in resolution is advantageous for visualising small closely spaced structures, such as NP clusters, previously unresolvable by RCM. This is advantageous when investigating the subcellular trafficking of NP within fluorescently labelled cellular compartments. NP signal can be observed using RCM, R-SIM and TEM and a direct comparison is presented. Each of these techniques has its own benefits and limitations; RCM and R-SIM provide novel complementary information while the combination of modalities provides a unique opportunity to gain additional information regarding NP uptake. The use of multiple imaging methods therefore greatly enhances the range of NPs that can be studied under label-free conditions. PMID:27695038

  20. A review of cellphone microscopy for disease detection.

    PubMed

    Dendere, R; Myburg, N; Douglas, T S

    2015-12-01

    The expansion in global cellphone network coverage coupled with advances in cellphone imaging capabilities present an opportunity for the advancement of cellphone microscopy as a low-cost alternative to conventional microscopy for disease detection in resource-limited regions. The development of cellphone microscopy has also benefitted from the availability of low-cost miniature microscope components such as low-power light-emitting diodes and ball lenses. As a result, researchers are developing hardware and software techniques that would enable such microscopes to produce high-resolution, diagnostic-quality images. This approach may lead to more widespread delivery of diagnostic services in resource-limited areas where there is a shortage of the skilled labour required for conventional microscopy and where prevalence of infectious and other diseases is still high. In this paper, we review current techniques, clinical applications and challenges faced in the field of cellphone microscopy. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  1. Laws of Large Numbers and Langevin Approximations for Stochastic Neural Field Equations

    PubMed Central

    2013-01-01

    In this study, we consider limit theorems for microscopic stochastic models of neural fields. We show that the Wilson–Cowan equation can be obtained as the limit in uniform convergence on compacts in probability for a sequence of microscopic models when the number of neuron populations distributed in space and the number of neurons per population tend to infinity. This result also allows to obtain limits for qualitatively different stochastic convergence concepts, e.g., convergence in the mean. Further, we present a central limit theorem for the martingale part of the microscopic models which, suitably re-scaled, converges to a centred Gaussian process with independent increments. These two results provide the basis for presenting the neural field Langevin equation, a stochastic differential equation taking values in a Hilbert space, which is the infinite-dimensional analogue of the chemical Langevin equation in the present setting. On a technical level, we apply recently developed law of large numbers and central limit theorems for piecewise deterministic processes taking values in Hilbert spaces to a master equation formulation of stochastic neuronal network models. These theorems are valid for processes taking values in Hilbert spaces, and by this are able to incorporate spatial structures of the underlying model. Mathematics Subject Classification (2000): 60F05, 60J25, 60J75, 92C20. PMID:23343328

  2. Ultra-large field-of-view two-photon microscopy

    PubMed Central

    Tsai, Philbert S.; Mateo, Celine; Field, Jeffrey J.; Schaffer, Chris B.; Anderson, Matthew E.; Kleinfeld, David

    2015-01-01

    We present a two-photon microscope that images the full extent of murine cortex with an objective-limited spatial resolution across an 8 mm by 10 mm field. The lateral resolution is approximately 1 µm and the maximum scan speed is 5 mm/ms. The scan pathway employs large diameter compound lenses to minimize aberrations and performs near theoretical limits. We demonstrate the special utility of the microscope by recording resting-state vasomotion across both hemispheres of the murine brain through a transcranial window and by imaging histological sections without the need to stitch. PMID:26072755

  3. PREFACE: Time-resolved scanning tunnelling microscopy Time-resolved scanning tunnelling microscopy

    NASA Astrophysics Data System (ADS)

    Zandvliet, Harold J. W.; Lin, Nian

    2010-07-01

    Scanning tunnelling microscopy has revolutionized our ability to image, manipulate, and investigate solid surfaces on the length scale of individual atoms and molecules. The strength of this technique lies in its imaging capabilities, since for many scientists 'seeing is believing'. However, scanning tunnelling microscopy also suffers from a severe limitation, namely its poor time resolution. Recording a scanning tunnelling microscopy image typically requires a few tens of seconds for a conventional scanning tunnelling microscope to a fraction of a second for a specially designed fast scanning tunnelling microscope. Designing and building such a fast scanning tunnelling microscope is a formidable task in itself and therefore, only a limited number of these microscopes have been built [1]. There is, however, another alternative route to significantly enhance the time resolution of a scanning tunnelling microscope. In this alternative method, the tunnelling current is measured as a function of time with the feedback loop switched off. The time resolution is determined by the bandwidth of the IV converter rather than the cut-off frequency of the feedback electronics. Such an approach requires a stable microscope and goes, of course, at the expense of spatial information. In this issue, we have collected a set of papers that gives an impression of the current status of this rapidly emerging field [2]. One of the very first attempts to extract information from tunnel current fluctuations was reported by Tringides' group in the mid-1990s [3]. They showed that the collective diffusion coefficient can be extracted from the autocorrelation of the time-dependent tunnelling current fluctuations produced by atom motion in and out of the tunnelling junction. In general, current-time traces provide direct information on switching/conformation rates and distributions of residence times. In the case where these processes are thermally induced it is rather straightforward to map out the potential landscape of the system (often a molecule or an atom) under study [4, 5]. However, the dynamical processes might also be induced by the tunnelling process itself [6, 7]. In the field of molecular science, excited single molecule experiments have been especially performed [8]. As a nice example, we refer to the work of Sykes' group [9] on thioether molecular rotors. In addition, several groups explore the possibility of combining time-resolved scanning tunnelling microscopy with optical techniques [10, 11]. Although the majority of studies that have been performed so far focus on rather simple systems under nearly ideal and well-defined conditions, we anticipate that time-resolved scanning tunnelling microscopy can also be applied in other research areas, such as biology and soft condensed matter, where the experimental conditions are often less ideal. We hope that readers will enjoy this collection of papers and that it will trigger them to further explore the possibilities of this simple, but powerful technique. References [1] Besenbacher F, Laegsgaard E and Stengaard I 2005 Mater. Today 8 26 [2] van Houselt A and Zandvliet H J W 2010 Rev. Mod. Phys. 82 1593 [3] Tringides M C and Hupalo M 2010 J. Phys.: Condens. Matter 22 264002 [4] Ronci F, Colonna S, Cricenti A and Le Lay G 2010 J. Phys.: Condens. Matter 22 264003 [5] van Houselt A, Poelsema B and Zandvliet H J W 2010 J. Phys.: Condens. Matter 22 264004 [6] Sprodowski C, Mehlhorn M and Morgenstern K 2010 J. Phys.: Condens. Matter 22 264005 [7] Saedi A, Poelsema B and Zandvliet H J W 2010 J. Phys.: Condens. Matter 22 264007 [8] Sloan P A 2010 J. Phys.: Condens. Matter 22 264001 [9] Jewell A D, Tierney H L, Baber A E, Iski E V, Laha M M and Sykes E C H 2010 J. Phys.: Condens. Matter 22 264006 [10] Riedel D 2010 J. Phys.: Condens. Matter 22 264009 [11] Terada Y, Yoshida S, Takeuchi O and Shigekawa H 2010 J. Phys.: Condens. Matter 22 264008

  4. A light field microscope imaging spectrometer based on the microlens array

    NASA Astrophysics Data System (ADS)

    Yao, Yu-jia; Xu, Feng; Xia, Yin-xiang

    2017-10-01

    A new light field spectrometry microscope imaging system, which was composed by microscope objective, microlens array and spectrometry system was designed in this paper. 5-D information (4-D light field and 1-D spectrometer) of the sample could be captured by the snapshot system in only one exposure, avoiding the motion blur and aberration caused by the scanning imaging process of the traditional imaging spectrometry. Microscope objective had been used as the former group while microlens array used as the posterior group. The optical design of the system was simulated by Zemax, the parameter matching condition between microscope objective and microlens array was discussed significantly during the simulation process. The result simulated in the image plane was analyzed and discussed.

  5. The importance of metadata to assess information content in digital reconstructions of neuronal morphology.

    PubMed

    Parekh, Ruchi; Armañanzas, Rubén; Ascoli, Giorgio A

    2015-04-01

    Digital reconstructions of axonal and dendritic arbors provide a powerful representation of neuronal morphology in formats amenable to quantitative analysis, computational modeling, and data mining. Reconstructed files, however, require adequate metadata to identify the appropriate animal species, developmental stage, brain region, and neuron type. Moreover, experimental details about tissue processing, neurite visualization and microscopic imaging are essential to assess the information content of digital morphologies. Typical morphological reconstructions only partially capture the underlying biological reality. Tracings are often limited to certain domains (e.g., dendrites and not axons), may be incomplete due to tissue sectioning, imperfect staining, and limited imaging resolution, or can disregard aspects irrelevant to their specific scientific focus (such as branch thickness or depth). Gauging these factors is critical in subsequent data reuse and comparison. NeuroMorpho.Org is a central repository of reconstructions from many laboratories and experimental conditions. Here, we introduce substantial additions to the existing metadata annotation aimed to describe the completeness of the reconstructed neurons in NeuroMorpho.Org. These expanded metadata form a suitable basis for effective description of neuromorphological data.

  6. Progress and opportunities in EELS and EDS tomography.

    PubMed

    Collins, Sean M; Midgley, Paul A

    2017-09-01

    Electron tomography using energy loss and X-ray spectroscopy in the electron microscope continues to develop in rapidly evolving and diverse directions, enabling new insight into the three-dimensional chemistry and physics of nanoscale volumes. Progress has been made recently in improving reconstructions from EELS and EDS signals in electron tomography by applying compressed sensing methods, characterizing new detector technologies in detail, deriving improved models of signal generation, and exploring machine learning approaches to signal processing. These disparate threads can be brought together in a cohesive framework in terms of a model-based approach to analytical electron tomography. Models incorporate information on signal generation and detection as well as prior knowledge of structures in the spectrum image data. Many recent examples illustrate the flexibility of this approach and its feasibility for addressing challenges in non-linear or limited signals in EELS and EDS tomography. Further work in combining multiple imaging and spectroscopy modalities, developing synergistic data acquisition, processing, and reconstruction approaches, and improving the precision of quantitative spectroscopic tomography will expand the frontiers of spatial resolution, dose limits, and maximal information recovery. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Large volume serial section tomography by Xe Plasma FIB dual beam microscopy.

    PubMed

    Burnett, T L; Kelley, R; Winiarski, B; Contreras, L; Daly, M; Gholinia, A; Burke, M G; Withers, P J

    2016-02-01

    Ga(+) Focused Ion Beam-Scanning Electron Microscopes (FIB-SEM) have revolutionised the level of microstructural information that can be recovered in 3D by block face serial section tomography (SST), as well as enabling the site-specific removal of smaller regions for subsequent transmission electron microscope (TEM) examination. However, Ga(+) FIB material removal rates limit the volumes and depths that can be probed to dimensions in the tens of microns range. Emerging Xe(+) Plasma Focused Ion Beam-Scanning Electron Microscope (PFIB-SEM) systems promise faster removal rates. Here we examine the potential of the method for large volume serial section tomography as applied to bainitic steel and WC-Co hard metals. Our studies demonstrate that with careful control of milling parameters precise automated serial sectioning can be achieved with low levels of milling artefacts at removal rates some 60× faster. Volumes that are hundreds of microns in dimension have been collected using fully automated SST routines in feasible timescales (<24h) showing good grain orientation contrast and capturing microstructural features at the tens of nanometres to the tens of microns scale. Accompanying electron back scattered diffraction (EBSD) maps show high indexing rates suggesting low levels of surface damage. Further, under high current Ga(+) FIB milling WC-Co is prone to amorphisation of WC surface layers and phase transformation of the Co phase, neither of which have been observed at PFIB currents as high as 60nA at 30kV. Xe(+) PFIB dual beam microscopes promise to radically extend our capability for 3D tomography, 3D EDX, 3D EBSD as well as correlative tomography. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  8. An improved approach for the segmentation of starch granules in microscopic images

    PubMed Central

    2010-01-01

    Background Starches are the main storage polysaccharides in plants and are distributed widely throughout plants including seeds, roots, tubers, leaves, stems and so on. Currently, microscopic observation is one of the most important ways to investigate and analyze the structure of starches. The position, shape, and size of the starch granules are the main measurements for quantitative analysis. In order to obtain these measurements, segmentation of starch granules from the background is very important. However, automatic segmentation of starch granules is still a challenging task because of the limitation of imaging condition and the complex scenarios of overlapping granules. Results We propose a novel method to segment starch granules in microscopic images. In the proposed method, we first separate starch granules from background using automatic thresholding and then roughly segment the image using watershed algorithm. In order to reduce the oversegmentation in watershed algorithm, we use the roundness of each segment, and analyze the gradient vector field to find the critical points so as to identify oversegments. After oversegments are found, we extract the features, such as the position and intensity of the oversegments, and use fuzzy c-means clustering to merge the oversegments to the objects with similar features. Experimental results demonstrate that the proposed method can alleviate oversegmentation of watershed segmentation algorithm successfully. Conclusions We present a new scheme for starch granules segmentation. The proposed scheme aims to alleviate the oversegmentation in watershed algorithm. We use the shape information and critical points of gradient vector flow (GVF) of starch granules to identify oversegments, and use fuzzy c-mean clustering based on prior knowledge to merge these oversegments to the objects. Experimental results on twenty microscopic starch images demonstrate the effectiveness of the proposed scheme. PMID:21047380

  9. Upgrade of a Scanning Confocal Microscope to a Single-Beam Path STED Microscope

    PubMed Central

    Klauss, André; König, Marcelle; Hille, Carsten

    2015-01-01

    By overcoming the diffraction limit in light microscopy, super-resolution techniques, such as stimulated emission depletion (STED) microscopy, are experiencing an increasing impact on life sciences. High costs and technically demanding setups, however, may still hinder a wider distribution of this innovation in biomedical research laboratories. As far-field microscopy is the most widely employed microscopy modality in the life sciences, upgrading already existing systems seems to be an attractive option for achieving diffraction-unlimited fluorescence microscopy in a cost-effective manner. Here, we demonstrate the successful upgrade of a commercial time-resolved confocal fluorescence microscope to an easy-to-align STED microscope in the single-beam path layout, previously proposed as “easy-STED”, achieving lateral resolution < λ/10 corresponding to a five-fold improvement over a confocal modality. For this purpose, both the excitation and depletion laser beams pass through a commercially available segmented phase plate that creates the STED-doughnut light distribution in the focal plane, while leaving the excitation beam unaltered when implemented into the joint beam path. Diffraction-unlimited imaging of 20 nm-sized fluorescent beads as reference were achieved with the wavelength combination of 635 nm excitation and 766 nm depletion. To evaluate the STED performance in biological systems, we compared the popular phalloidin-coupled fluorescent dyes Atto647N and Abberior STAR635 by labeling F-actin filaments in vitro as well as through immunofluorescence recordings of microtubules in a complex epithelial tissue. Here, we applied a recently proposed deconvolution approach and showed that images obtained from time-gated pulsed STED microscopy may benefit concerning the signal-to-background ratio, from the joint deconvolution of sub-images with different spatial information which were extracted from offline time gating. PMID:26091552

  10. Electron energy loss spectroscopy on semiconductor heterostructures for optoelectronics and photonics applications.

    PubMed

    Eljarrat, A; López-Conesa, L; Estradé, S; Peiró, F

    2016-05-01

    In this work, we present characterization methods for the analysis of nanometer-sized devices, based on silicon and III-V nitride semiconductor materials. These methods are devised in order to take advantage of the aberration corrected scanning transmission electron microscope, equipped with a monochromator. This set-up ensures the necessary high spatial and energy resolution for the characterization of the smallest structures. As with these experiments, we aim to obtain chemical and structural information, we use electron energy loss spectroscopy (EELS). The low-loss region of EELS is exploited, which features fundamental electronic properties of semiconductor materials and facilitates a high data throughput. We show how the detailed analysis of these spectra, using theoretical models and computational tools, can enhance the analytical power of EELS. In this sense, initially, results from the model-based fit of the plasmon peak are presented. Moreover, the application of multivariate analysis algorithms to low-loss EELS is explored. Finally, some physical limitations of the technique, such as spatial delocalization, are mentioned. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  11. Serial sectioning methods for 3D investigations in materials science.

    PubMed

    Zankel, Armin; Wagner, Julian; Poelt, Peter

    2014-07-01

    A variety of methods for the investigation and 3D representation of the inner structure of materials has been developed. In this paper, techniques based on slice and view using scanning microscopy for imaging are presented and compared. Three different methods of serial sectioning combined with either scanning electron or scanning ion microscopy or atomic force microscopy (AFM) were placed under scrutiny: serial block-face scanning electron microscopy, which facilitates an ultramicrotome built into the chamber of a variable pressure scanning electron microscope; three-dimensional (3D) AFM, which combines an (cryo-) ultramicrotome with an atomic force microscope, and 3D FIB, which delivers results by slicing with a focused ion beam. These three methods complement one another in many respects, e.g., in the type of materials that can be investigated, the resolution that can be obtained and the information that can be extracted from 3D reconstructions. A detailed review is given about preparation, the slice and view process itself, and the limitations of the methods and possible artifacts. Applications for each technique are also provided. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Microscopic Evolution of Laboratory Volcanic Hybrid Earthquakes

    PubMed Central

    Ghaffari, H. O.; Griffith, W. A.; Benson, P. M.

    2017-01-01

    Characterizing the interaction between fluids and microscopic defects is one of the long-standing challenges in understanding a broad range of cracking processes, in part because they are so difficult to study experimentally. We address this issue by reexamining records of emitted acoustic phonon events during rock mechanics experiments under wet and dry conditions. The frequency spectrum of these events provides direct information regarding the state of the system. Such events are typically subdivided into high frequency (HF) and low frequency (LF) events, whereas intermediate “Hybrid” events, have HF onsets followed by LF ringing. At a larger scale in volcanic terranes, hybrid events are used empirically to predict eruptions, but their ambiguous physical origin limits their diagnostic use. By studying acoustic phonon emissions from individual microcracking events we show that the onset of a secondary instability–related to the transition from HF to LF–occurs during the fast equilibration phase of the system, leading to sudden increase of fluid pressure in the process zone. As a result of this squeezing process, a secondary instability akin to the LF event occurs. This mechanism is consistent with observations of hybrid earthquakes. PMID:28074878

  13. Image Montaging for Creating a Virtual Pathology Slide: An Innovative and Economical Tool to Obtain a Whole Slide Image

    PubMed Central

    Pandurangappa, Rohit; Annavajjula, Saileela; Rajashekaraiah, Premalatha Bidadi

    2016-01-01

    Background. Microscopes are omnipresent throughout the field of biological research. With microscopes one can see in detail what is going on at the cellular level in tissues. Though it is a ubiquitous tool, the limitation is that with high magnification there is a small field of view. It is often advantageous to see an entire sample at high magnification. Over the years technological advancements in optics have helped to provide solutions to this limitation of microscopes by creating the so-called dedicated “slide scanners” which can provide a “whole slide digital image.” These scanners can provide seamless, large-field-of-view, high resolution image of entire tissue section. The only disadvantage of such complete slide imaging system is its outrageous cost, thereby hindering their practical use by most laboratories, especially in developing and low resource countries. Methods. In a quest for their substitute, we tried commonly used image editing software Adobe Photoshop along with a basic image capturing device attached to a trinocular microscope to create a digital pathology slide. Results. The seamless image created using Adobe Photoshop maintained its diagnostic quality. Conclusion. With time and effort photomicrographs obtained from a basic camera-microscope set up can be combined and merged in Adobe Photoshop to create a whole slide digital image of practically usable quality at a negligible cost. PMID:27747147

  14. Image Montaging for Creating a Virtual Pathology Slide: An Innovative and Economical Tool to Obtain a Whole Slide Image.

    PubMed

    Banavar, Spoorthi Ravi; Chippagiri, Prashanthi; Pandurangappa, Rohit; Annavajjula, Saileela; Rajashekaraiah, Premalatha Bidadi

    2016-01-01

    Background . Microscopes are omnipresent throughout the field of biological research. With microscopes one can see in detail what is going on at the cellular level in tissues. Though it is a ubiquitous tool, the limitation is that with high magnification there is a small field of view. It is often advantageous to see an entire sample at high magnification. Over the years technological advancements in optics have helped to provide solutions to this limitation of microscopes by creating the so-called dedicated "slide scanners" which can provide a "whole slide digital image." These scanners can provide seamless, large-field-of-view, high resolution image of entire tissue section. The only disadvantage of such complete slide imaging system is its outrageous cost, thereby hindering their practical use by most laboratories, especially in developing and low resource countries. Methods . In a quest for their substitute, we tried commonly used image editing software Adobe Photoshop along with a basic image capturing device attached to a trinocular microscope to create a digital pathology slide. Results . The seamless image created using Adobe Photoshop maintained its diagnostic quality. Conclusion . With time and effort photomicrographs obtained from a basic camera-microscope set up can be combined and merged in Adobe Photoshop to create a whole slide digital image of practically usable quality at a negligible cost.

  15. Super-resolution imaging of ciliary microdomains in isolated olfactory sensory neurons using a custom two-color stimulated emission depletion microscope

    NASA Astrophysics Data System (ADS)

    Meyer, Stephanie A.; Ozbay, Baris N.; Potcoava, Mariana; Salcedo, Ernesto; Restrepo, Diego; Gibson, Emily A.

    2016-06-01

    We performed stimulated emission depletion (STED) imaging of isolated olfactory sensory neurons (OSNs) using a custom-built microscope. The STED microscope uses a single pulsed laser to excite two separate fluorophores, Atto 590 and Atto 647N. A gated timing circuit combined with temporal interleaving of the different color excitation/STED laser pulses filters the two channel detection and greatly minimizes crosstalk. We quantified the instrument resolution to be ˜81 and ˜44 nm, for the Atto 590 and Atto 647N channels. The spatial separation between the two channels was measured to be under 10 nm, well below the resolution limit. The custom-STED microscope is incorporated onto a commercial research microscope allowing brightfield, differential interference contrast, and epifluorescence imaging on the same field of view. We performed immunolabeling of OSNs in mice to image localization of ciliary membrane proteins involved in olfactory transduction. We imaged Ca2+-permeable cyclic nucleotide gated (CNG) channel (Atto 594) and adenylyl cyclase type III (ACIII) (Atto 647N) in distinct cilia. STED imaging resolved well-separated subdiffraction limited clusters for each protein. We quantified the size of each cluster to have a mean value of 88±48 nm and 124±43 nm, for CNG and ACIII, respectively. STED imaging showed separated clusters that were not resolvable in confocal images.

  16. CHAMP (Camera, Handlens, and Microscope Probe)

    NASA Technical Reports Server (NTRS)

    Mungas, Greg S.; Boynton, John E.; Balzer, Mark A.; Beegle, Luther; Sobel, Harold R.; Fisher, Ted; Klein, Dan; Deans, Matthew; Lee, Pascal; Sepulveda, Cesar A.

    2005-01-01

    CHAMP (Camera, Handlens And Microscope Probe)is a novel field microscope capable of color imaging with continuously variable spatial resolution from infinity imaging down to diffraction-limited microscopy (3 micron/pixel). As a robotic arm-mounted imager, CHAMP supports stereo imaging with variable baselines, can continuously image targets at an increasing magnification during an arm approach, can provide precision rangefinding estimates to targets, and can accommodate microscopic imaging of rough surfaces through a image filtering process called z-stacking. CHAMP was originally developed through the Mars Instrument Development Program (MIDP) in support of robotic field investigations, but may also find application in new areas such as robotic in-orbit servicing and maintenance operations associated with spacecraft and human operations. We overview CHAMP'S instrument performance and basic design considerations below.

  17. Modular Scanning Confocal Microscope with Digital Image Processing.

    PubMed

    Ye, Xianjun; McCluskey, Matthew D

    2016-01-01

    In conventional confocal microscopy, a physical pinhole is placed at the image plane prior to the detector to limit the observation volume. In this work, we present a modular design of a scanning confocal microscope which uses a CCD camera to replace the physical pinhole for materials science applications. Experimental scans were performed on a microscope resolution target, a semiconductor chip carrier, and a piece of etched silicon wafer. The data collected by the CCD were processed to yield images of the specimen. By selecting effective pixels in the recorded CCD images, a virtual pinhole is created. By analyzing the image moments of the imaging data, a lateral resolution enhancement is achieved by using a 20 × / NA = 0.4 microscope objective at 532 nm laser wavelength.

  18. Comprehensive study of unexpected microscope condensers formed in sample arrangements commonly used in optical microscopy.

    PubMed

    Desai, Darshan B; Aldawsari, Mabkhoot Mudith S; Alharbi, Bandar Mohammed H; Sen, Sanchari; Grave de Peralta, Luis

    2015-09-01

    We show that various setups for optical microscopy which are commonly used in biomedical laboratories behave like efficient microscope condensers that are responsible for observed subwavelength resolution. We present a series of experiments and simulations that reveal how inclined illumination from such unexpected condensers occurs when the sample is perpendicularly illuminated by a microscope's built-in white-light source. In addition, we demonstrate an inexpensive add-on optical module that serves as an efficient and lightweight microscope condenser. Using such add-on optical module in combination with a low-numerical-aperture objective lens and Fourier plane imaging microscopy technique, we demonstrate detection of photonic crystals with a period nearly eight times smaller than the Rayleigh resolution limit.

  19. Frameless Stereotactic Insertion of Viewsite Brain Access System with Microscope-Mounted Tracking Device for Resection of Deep Brain Lesions: Technical Report

    PubMed Central

    Chakraborty, Shamik; Lall, Rohan; Fanous, Andrew A; Boockvar, John; Langer, David J

    2017-01-01

    The surgical management of deep brain tumors is often challenging due to the limitations of stereotactic needle biopsies and the morbidity associated with transcortical approaches. We present a novel microscopic navigational technique utilizing the Viewsite Brain Access System (VBAS) (Vycor Medical, Boca Raton, FL, USA) for resection of a deep parietal periventricular high-grade glioma as well as another glioma and a cavernoma with no related morbidity. The approach utilized a navigational tracker mounted on a microscope, which was set to the desired trajectory and depth. It allowed gentle continuous insertion of the VBAS directly to a deep lesion under continuous microscopic visualization, increasing safety by obviating the need to look up from the microscope and thus avoiding loss of trajectory. This technique has broad value for the resection of a variety of deep brain lesions. PMID:28331774

  20. Frameless Stereotactic Insertion of Viewsite Brain Access System with Microscope-Mounted Tracking Device for Resection of Deep Brain Lesions: Technical Report.

    PubMed

    White, Tim; Chakraborty, Shamik; Lall, Rohan; Fanous, Andrew A; Boockvar, John; Langer, David J

    2017-02-04

    The surgical management of deep brain tumors is often challenging due to the limitations of stereotactic needle biopsies and the morbidity associated with transcortical approaches. We present a novel microscopic navigational technique utilizing the Viewsite Brain Access System (VBAS) (Vycor Medical, Boca Raton, FL, USA) for resection of a deep parietal periventricular high-grade glioma as well as another glioma and a cavernoma with no related morbidity. The approach utilized a navigational tracker mounted on a microscope, which was set to the desired trajectory and depth. It allowed gentle continuous insertion of the VBAS directly to a deep lesion under continuous microscopic visualization, increasing safety by obviating the need to look up from the microscope and thus avoiding loss of trajectory. This technique has broad value for the resection of a variety of deep brain lesions.

  1. Influence of mechanical noise inside a scanning electron microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaudenzi de Faria, Marcelo; Haddab, Yassine, E-mail: yassine.haddab@femto-st.fr; Le Gorrec, Yann

    The scanning electron microscope is becoming a popular tool to perform tasks that require positioning, manipulation, characterization, and assembly of micro-components. However, some of these applications require a higher level of performance with respect to dynamics and precision of positioning. One limiting factor is the presence of unidentified noises and disturbances. This work aims to study the influence of mechanical disturbances generated by the environment and by the microscope, identifying how these can affect elements in the vacuum chamber. To achieve this objective, a dedicated setup, including a high-resolution vibrometer, was built inside the microscope. This work led to themore » identification and quantification of main disturbances and noise sources acting on a scanning electron microscope. Furthermore, the effects of external acoustic excitations were analysed. Potential applications of these results include noise compensation and real-time control for high accuracy tasks.« less

  2. Asbestos Testing: Is the EPA Misleading You?

    ERIC Educational Resources Information Center

    Levins, Hoag

    1983-01-01

    Experts warn that only electron microscopes can see the smaller fibers of asbestos that are known to cause the most cancers, though the Environmental Protection Agency still endorses optical microscopes for asbestos removal verification. Asbestos testing methods are explained and sources of information are provided. (MLF)

  3. Teaching Biology to Visually Handicapped Students. Resource Manual.

    ERIC Educational Resources Information Center

    Ricker, Kenneth S.

    This resource manual presents numerous techniques for adapting science activities to the visually handicapped student, applicable to introductory biology courses in which microscopes are used extensively in the laboratory. Chapters include information on the following: alternative microscopic viewing techniques, physical models, tactile diagrams,…

  4. Antony van Leeuwenhoek's microscopes and other scientific instruments: new information from the Delft archives.

    PubMed

    Zuidervaart, Huib J; Anderson, Douglas

    2016-07-01

    This paper discusses the scientific instruments made and used by the microscopist Antony van Leeuwenhoek (1632-1723). The immediate cause of our study was the discovery of an overlooked document from the Delft archive: an inventory of the possessions that were left in 1745 after the death of Leeuwenhoek's daughter Maria. This list sums up which tools and scientific instruments Leeuwenhoek possessed at the end of his life, including his famous microscopes. This information, combined with the results of earlier historical research, gives us new insights about the way Leeuwenhoek began his lens grinding and how eventually he made his best lenses. It also teaches us more about Leeuwenhoek's work as a surveyor and a wine gauger. A further investigation of the 1747 sale of Leeuwenhoek's 531 single lens microscopes has not only led us to the identification of nearly all buyers, but also has provided us with some explanation about why only a dozen of this large number of microscopes has survived.

  5. Image Alignment for Multiple Camera High Dynamic Range Microscopy.

    PubMed

    Eastwood, Brian S; Childs, Elisabeth C

    2012-01-09

    This paper investigates the problem of image alignment for multiple camera high dynamic range (HDR) imaging. HDR imaging combines information from images taken with different exposure settings. Combining information from multiple cameras requires an alignment process that is robust to the intensity differences in the images. HDR applications that use a limited number of component images require an alignment technique that is robust to large exposure differences. We evaluate the suitability for HDR alignment of three exposure-robust techniques. We conclude that image alignment based on matching feature descriptors extracted from radiant power images from calibrated cameras yields the most accurate and robust solution. We demonstrate the use of this alignment technique in a high dynamic range video microscope that enables live specimen imaging with a greater level of detail than can be captured with a single camera.

  6. Image Alignment for Multiple Camera High Dynamic Range Microscopy

    PubMed Central

    Eastwood, Brian S.; Childs, Elisabeth C.

    2012-01-01

    This paper investigates the problem of image alignment for multiple camera high dynamic range (HDR) imaging. HDR imaging combines information from images taken with different exposure settings. Combining information from multiple cameras requires an alignment process that is robust to the intensity differences in the images. HDR applications that use a limited number of component images require an alignment technique that is robust to large exposure differences. We evaluate the suitability for HDR alignment of three exposure-robust techniques. We conclude that image alignment based on matching feature descriptors extracted from radiant power images from calibrated cameras yields the most accurate and robust solution. We demonstrate the use of this alignment technique in a high dynamic range video microscope that enables live specimen imaging with a greater level of detail than can be captured with a single camera. PMID:22545028

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Hyeonggon; Attota, Ravikiran, E-mail: ravikiran.attota@nist.gov; Tondare, Vipin

    We present a method that uses conventional optical microscopes to determine the number of nanoparticles in a cluster, which is typically not possible using traditional image-based optical methods due to the diffraction limit. The method, called through-focus scanning optical microscopy (TSOM), uses a series of optical images taken at varying focus levels to achieve this. The optical images cannot directly resolve the individual nanoparticles, but contain information related to the number of particles. The TSOM method makes use of this information to determine the number of nanoparticles in a cluster. Initial good agreement between the simulations and the measurements ismore » also presented. The TSOM method can be applied to fluorescent and non-fluorescent as well as metallic and non-metallic nano-scale materials, including soft materials, making it attractive for tag-less, high-speed, optical analysis of nanoparticles down to 45 nm diameter.« less

  8. Thrombus segmentation by texture dynamics from microscopic image sequences

    NASA Astrophysics Data System (ADS)

    Brieu, Nicolas; Serbanovic-Canic, Jovana; Cvejic, Ana; Stemple, Derek; Ouwehand, Willem; Navab, Nassir; Groher, Martin

    2010-03-01

    The genetic factors of thrombosis are commonly explored by microscopically imaging the coagulation of blood cells induced by injuring a vessel of mice or of zebrafish mutants. The latter species is particularly interesting since skin transparency permits to non-invasively acquire microscopic images of the scene with a CCD camera and to estimate the parameters characterizing the thrombus development. These parameters are currently determined by manual outlining, which is both error prone and extremely time consuming. Even though a technique for automatic thrombus extraction would be highly valuable for gene analysts, little work can be found, which is mainly due to very low image contrast and spurious structures. In this work, we propose to semi-automatically segment the thrombus over time from microscopic image sequences of wild-type zebrafish larvae. To compensate the lack of valuable spatial information, our main idea consists of exploiting the temporal information by modeling the variations of the pixel intensities over successive temporal windows with a linear Markov-based dynamic texture formalization. We then derive an image from the estimated model parameters, which represents the probability of a pixel to belong to the thrombus. We employ this probability image to accurately estimate the thrombus position via an active contour segmentation incorporating also prior and spatial information of the underlying intensity images. The performance of our approach is tested on three microscopic image sequences. We show that the thrombus is accurately tracked over time in each sequence if the respective parameters controlling prior influence and contour stiffness are correctly chosen.

  9. Coarse-grained stochastic processes and kinetic Monte Carlo simulators for the diffusion of interacting particles

    NASA Astrophysics Data System (ADS)

    Katsoulakis, Markos A.; Vlachos, Dionisios G.

    2003-11-01

    We derive a hierarchy of successively coarse-grained stochastic processes and associated coarse-grained Monte Carlo (CGMC) algorithms directly from the microscopic processes as approximations in larger length scales for the case of diffusion of interacting particles on a lattice. This hierarchy of models spans length scales between microscopic and mesoscopic, satisfies a detailed balance, and gives self-consistent fluctuation mechanisms whose noise is asymptotically identical to the microscopic MC. Rigorous, detailed asymptotics justify and clarify these connections. Gradient continuous time microscopic MC and CGMC simulations are compared under far from equilibrium conditions to illustrate the validity of our theory and delineate the errors obtained by rigorous asymptotics. Information theory estimates are employed for the first time to provide rigorous error estimates between the solutions of microscopic MC and CGMC, describing the loss of information during the coarse-graining process. Simulations under periodic boundary conditions are used to verify the information theory error estimates. It is shown that coarse-graining in space leads also to coarse-graining in time by q2, where q is the level of coarse-graining, and overcomes in part the hydrodynamic slowdown. Operation counting and CGMC simulations demonstrate significant CPU savings in continuous time MC simulations that vary from q3 for short potentials to q4 for long potentials. Finally, connections of the new coarse-grained stochastic processes to stochastic mesoscopic and Cahn-Hilliard-Cook models are made.

  10. Pre-microscope tunnelling — Inspiration or constraint?

    NASA Astrophysics Data System (ADS)

    Walmsley, D. G.

    1987-03-01

    Before the microscope burst upon the scene, tunnelling had established for itself a substantial niche in the repertoire of the solid state physicist. Over a period of 20 years it has contributed importantly to our understanding of many systems. It elucidated the superconducting state, first by a direct display of the energy gap then by providing detailed information on the phonon spectra and electron-phonon coupling strength in junction electrodes. Its use as a phonon spectrometer was subsequently extended to semiconductors and to the oxides of insulating barriers. Eventually the vibrational spectra of monolayer organic and inorganic adsorbates became amenable with rich scientific rewards. In a few cases electronic transitions have been observed. Plasmon excitation by tunnelling electrons led to insights on the electron loss function in metals at visible frequencies and provided along the way an intriguing light emitting device. With the advent of the microscope it is now appropriate to enquire how much of this experience can profitably be carried over to the new environment. Are we constrained just to repeat the experiments in a new configuration? Happily no. The microscope offers us topographical and spectroscopic information of a new order. One might next ask how great is the contact between the two disciplines? We explore this question and seek to establish where the pre-microscope experience can be helpful in inspiring our use of this marvellous new facility that we know as the scanning tunnelling microscope.

  11. Images from Phoenix's MECA Instruments

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The image on the upper left is from NASA's Phoenix Mars Lander's Optical Microscope after a sample informally called 'Sorceress' was delivered to its silicon substrate on the 38th Martian day, or sol, of the mission (July 2, 2008).

    A 3D representation of the same sample is on the right, as seen by Phoenix's Atomic Force Microscope. This is 100 times greater magnification than the view from the Optical Microscope, and the most highly magnified image ever seen from another world.

    The Optical Microscope and the Atomic Force Microscope are part of Phoenix's Microscopy, Electrochemistry and Conductivity Analyzer instrument.

    The Atomic Force Microscope was developed by a Swiss-led consortium in collaboration with Imperial College London.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  12. Use of Budesonide in the Treatment of Microscopic Colitis

    PubMed Central

    Tangri, Vikram; Chande, Nilesh

    2010-01-01

    Collagenous colitis and lymphocytic colitis, the two types of microscopic colitis, cause watery diarrhea. Budesonide, a glucocorticoid medication with limited systemic availability, is commonly used to treat these illnesses. Budesonide has proven efficacy in the induction of clinical remission in both collagenous colitis and lymphocytic colitis. Budesonide is effective as a maintenance drug for patients with collagenous colitis, but has not been studied for this indication in patients with lymphocytic colitis. This drug improves quality of life in patients while causing few mild adverse events. Budesonide is an effective treatment of microscopic colitis that is safe and well tolerated. PMID:20616427

  13. Single particle tracking through highly scattering media with multiplexed two-photon excitation

    NASA Astrophysics Data System (ADS)

    Perillo, Evan; Liu, Yen-Liang; Liu, Cong; Yeh, Hsin-Chih; Dunn, Andrew K.

    2015-03-01

    3D single-particle tracking (SPT) has been a pivotal tool to furthering our understanding of dynamic cellular processes in complex biological systems, with a molecular localization accuracy (10-100 nm) often better than the diffraction limit of light. However, current SPT techniques utilize either CCDs or a confocal detection scheme which not only suffer from poor temporal resolution but also limit tracking to a depth less than one scattering mean free path in the sample (typically <15μm). In this report we highlight our novel design for a spatiotemporally multiplexed two-photon microscope which is able to reach sub-diffraction-limit tracking accuracy and sub-millisecond temporal resolution, but with a dramatically extended SPT range of up to 200 μm through dense cell samples. We have validated our microscope by tracking (1) fluorescent nanoparticles in a prescribed motion inside gelatin gel (with 1% intralipid) and (2) labeled single EGFR complexes inside skin cancer spheroids (at least 8 layers of cells thick) for ~10 minutes. Furthermore we discuss future capabilities of our multiplexed two-photon microscope design, specifically to the extension of (1) simultaneous multicolor tracking (i.e. spatiotemporal co-localization analysis) and (2) FRET studies (i.e. lifetime analysis). The high resolution, high depth penetration, and multicolor features of this microscope make it well poised to study a variety of molecular scale dynamics in the cell, especially related to cellular trafficking studies with in vitro tumor models and in vivo.

  14. Cluster secondary ion mass spectrometry microscope mode mass spectrometry imaging.

    PubMed

    Kiss, András; Smith, Donald F; Jungmann, Julia H; Heeren, Ron M A

    2013-12-30

    Microscope mode imaging for secondary ion mass spectrometry is a technique with the promise of simultaneous high spatial resolution and high-speed imaging of biomolecules from complex surfaces. Technological developments such as new position-sensitive detectors, in combination with polyatomic primary ion sources, are required to exploit the full potential of microscope mode mass spectrometry imaging, i.e. to efficiently push the limits of ultra-high spatial resolution, sample throughput and sensitivity. In this work, a C60 primary source was combined with a commercial mass microscope for microscope mode secondary ion mass spectrometry imaging. The detector setup is a pixelated detector from the Medipix/Timepix family with high-voltage post-acceleration capabilities. The system's mass spectral and imaging performance is tested with various benchmark samples and thin tissue sections. The high secondary ion yield (with respect to 'traditional' monatomic primary ion sources) of the C60 primary ion source and the increased sensitivity of the high voltage detector setup improve microscope mode secondary ion mass spectrometry imaging. The analysis time and the signal-to-noise ratio are improved compared with other microscope mode imaging systems, all at high spatial resolution. We have demonstrated the unique capabilities of a C60 ion microscope with a Timepix detector for high spatial resolution microscope mode secondary ion mass spectrometry imaging. Copyright © 2013 John Wiley & Sons, Ltd.

  15. Surface imaging microscope

    NASA Astrophysics Data System (ADS)

    Rogala, Eric W.; Bankman, Isaac N.

    2008-04-01

    The three-dimensional shapes of microscopic objects are becoming increasingly important for battlespace CBRNE sensing. Potential applications of microscopic 3D shape observations include characterization of biological weapon particles and manufacturing of micromechanical components. Aerosol signatures of stand-off lidar systems, using elastic backscatter or polarization, are dictated by the aerosol particle shapes and sizes that must be well characterized in the lab. A low-cost, fast instrument for 3D surface shape microscopy will be a valuable point sensor for biological particle sensing applications. Both the cost and imaging durations of traditional techniques such as confocal microscopes, atomic force microscopes, and electron scanning microscopes are too high. We investigated the feasibility of a low-cost, fast interferometric technique for imaging the 3D surface shape of microscopic objects at frame rates limited only by the camera in the system. The system operates at two laser wavelengths producing two fringe images collected simultaneously by a digital camera, and a specialized algorithm we developed reconstructs the surface map of the microscopic object. The current implementation assembled to test the concept and develop the new 3D reconstruction algorithm has 0.25 micron resolution in the x and y directions, and about 0.1 micron accuracy in the z direction, as tested on a microscopic glass test object manufactured with etching techniques. We describe the interferometric instrument, present the reconstruction algorithm, and discuss further development.

  16. Classification of gram-positive and gram-negative foodborne pathogenic bacteria with hyperspectral microscope imaging

    USDA-ARS?s Scientific Manuscript database

    Optical method with hyperspectral microscope imaging (HMI) has potential for identification of foodborne pathogenic bacteria from microcolonies rapidly with a cell level. A HMI system that provides both spatial and spectral information could be an effective tool for analyzing spectral characteristic...

  17. Microscope use in clinical veterinary practice and potential implications for veterinary school curricula.

    PubMed

    Stewart, Sherry M; Dowers, Kristy L; Cerda, Jacey R; Schoenfeld-Tacher, Regina M; Kogan, Lori R

    2014-01-01

    Microscopy (skill of using a microscope) and the concepts of cytology (study of cells) and histology (study of tissues) are most often taught in professional veterinary medicine programs through the traditional method of glass slides and light microscopes. Several limiting factors in veterinary training programs are encouraging educators to explore innovative options for teaching microscopy skills and the concepts of cytology and histology. An anonymous online survey was administered through the Colorado Veterinary Medical Association to Colorado veterinarians working in private practice. It was designed to assess their current usage of microscopes for cytological and histological evaluation of specimens and their perceptions of microscope use in their veterinary education. The first part of the survey was answered by 183 veterinarians, with 104 indicating they had an onsite diagnostic lab. Analysis pertaining to the use of the microscope in practice and in veterinary programs was conducted on this subset. Most respondents felt the amount of time spent in the curriculum using a microscope was just right for basic microscope use and using the microscope for viewing and learning about normal and abnormal histological sections and clinical cytology. Participants felt more emphasis could be placed on clinical and diagnostic cytology. Study results suggest that practicing veterinarians frequently use microscopes for a wide variety of cytological diagnostics. However, only two respondents indicated they prepared samples for histological evaluation. Veterinary schools should consider these results against the backdrop of pressure to implement innovative teaching techniques to meet the changing needs of the profession.

  18. Microsphere-aided optical microscopy and its applications for super-resolution imaging

    NASA Astrophysics Data System (ADS)

    Upputuri, Paul Kumar; Pramanik, Manojit

    2017-12-01

    The spatial resolution of a standard optical microscope (SOM) is limited by diffraction. In visible spectrum, SOM can provide ∼ 200 nm resolution. To break the diffraction limit several approaches were developed including scanning near field microscopy, metamaterial super-lenses, nanoscale solid immersion lenses, super-oscillatory lenses, confocal fluorescence microscopy, techniques that exploit non-linear response of fluorophores like stimulated emission depletion microscopy, stochastic optical reconstruction microscopy, etc. Recently, photonic nanojet generated by a dielectric microsphere was used to break the diffraction limit. The microsphere-approach is simple, cost-effective and can be implemented under a standard microscope, hence it has gained enormous attention for super-resolution imaging. In this article, we briefly review the microsphere approach and its applications for super-resolution imaging in various optical imaging modalities.

  19. Femtosecond pulse laser-oriented recording on dental prostheses: a trial introduction.

    PubMed

    Ichikawa, Tetsuo; Hayasaki, Yoshio; Fujita, Keiji; Nagao, Kan; Murata, Masayo; Kawano, Takanori; Chen, JianRong

    2006-12-01

    The purpose of this study was to evaluate the feasibility of using a femtosecond pulse laser processing technique to store information on a dental prosthesis. Commercially pure titanium plates were processed by a femtosecond pulse laser system. The processed surface structure was observed with a reflective illumination microscope, scanning electron microscope, and atomic force microscope. Processed area was an almost conical pit with a clear boundary. When laser pulse energy was 2 microJ, the diameter and depth were approximately 10microm and 0.2 microm respectively--whereby both increased with laser pulse energy. Further, depth of pit increased with laser pulse number without any thermal effect. This study showed that the femtosecond pulse processing system was capable of recording personal identification and optional additional information on a dental prosthesis.

  20. Band Excitation for Scanning Probe Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jesse, Stephen

    2017-01-02

    The Band Excitation (BE) technique for scanning probe microscopy uses a precisely determined waveform that contains specific frequencies to excite the cantilever or sample in an atomic force microscope to extract more information, and more reliable information from a sample. There are a myriad of details and complexities associated with implementing the BE technique. There is therefore a need to have a user friendly interface that allows typical microscopists access to this methodology. This software enables users of atomic force microscopes to easily: build complex band-excitation waveforms, set-up the microscope scanning conditions, configure the input and output electronics for generatemore » the waveform as a voltage signal and capture the response of the system, perform analysis on the captured response, and display the results of the measurement.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timmermans, F. J.; Otto, C.

    New developments in the field of microscopy enable to acquire increasing amounts of information from large sample areas and at an increased resolution. Depending on the nature of the technique, the information may reveal morphological, structural, chemical, and still other sample characteristics. In research fields, such as cell biology and materials science, there is an increasing demand to correlate these individual levels of information and in this way to obtain a better understanding of sample preparation and specific sample properties. To address this need, integrated systems were developed that combine nanometer resolution electron microscopes with optical microscopes, which produce chemicallymore » or label specific information through spectroscopy. The complementary information from electron microscopy and light microscopy presents an opportunity to investigate a broad range of sample properties in a correlated fashion. An important part of correlating the differences in information lies in bridging the different resolution and image contrast features. The trend to analyse samples using multiple correlated microscopes has resulted in a new research field. Current research is focused, for instance, on (a) the investigation of samples with nanometer scale distribution of inorganic and organic materials, (b) live cell analysis combined with electron microscopy, and (c) in situ spectroscopic and electron microscopy analysis of catalytic materials, but more areas will benefit from integrated correlative microscopy.« less

  2. Contributed review: Review of integrated correlative light and electron microscopy.

    PubMed

    Timmermans, F J; Otto, C

    2015-01-01

    New developments in the field of microscopy enable to acquire increasing amounts of information from large sample areas and at an increased resolution. Depending on the nature of the technique, the information may reveal morphological, structural, chemical, and still other sample characteristics. In research fields, such as cell biology and materials science, there is an increasing demand to correlate these individual levels of information and in this way to obtain a better understanding of sample preparation and specific sample properties. To address this need, integrated systems were developed that combine nanometer resolution electron microscopes with optical microscopes, which produce chemically or label specific information through spectroscopy. The complementary information from electron microscopy and light microscopy presents an opportunity to investigate a broad range of sample properties in a correlated fashion. An important part of correlating the differences in information lies in bridging the different resolution and image contrast features. The trend to analyse samples using multiple correlated microscopes has resulted in a new research field. Current research is focused, for instance, on (a) the investigation of samples with nanometer scale distribution of inorganic and organic materials, (b) live cell analysis combined with electron microscopy, and (c) in situ spectroscopic and electron microscopy analysis of catalytic materials, but more areas will benefit from integrated correlative microscopy.

  3. Tracking of Cells with a Compact Microscope Imaging System with Intelligent Controls

    NASA Technical Reports Server (NTRS)

    McDowell, Mark (Inventor)

    2007-01-01

    A Microscope Imaging System (CMIS) with intelligent controls is disclosed that provides techniques for scanning, identifying, detecting and tracking microscopic changes in selected characteristics or features of various surfaces including, but not limited to, cells, spheres, and manufactured products subject to difficult-to-see imperfections. The practice of the present invention provides applications that include colloidal hard spheres experiments, biological cell detection for patch clamping, cell movement and tracking, as well as defect identification in products, such as semiconductor devices, where surface damage can be significant, but difficult to detect. The CMIS system is a machine vision system, which combines intelligent image processing with remote control capabilities and provides the ability to autofocus on a microscope sample, automatically scan an image, and perform machine vision analysis on multiple samples simultaneously

  4. Tracking of cells with a compact microscope imaging system with intelligent controls

    NASA Technical Reports Server (NTRS)

    McDowell, Mark (Inventor)

    2007-01-01

    A Microscope Imaging System (CMIS) with intelligent controls is disclosed that provides techniques for scanning, identifying, detecting and tracking microscopic changes in selected characteristics or features of various surfaces including, but not limited to, cells, spheres, and manufactured products subject to difficult-to-see imperfections. The practice of the present invention provides applications that include colloidal hard spheres experiments, biological cell detection for patch clamping, cell movement and tracking, as well as defect identification in products, such as semiconductor devices, where surface damage can be significant, but difficult to detect. The CMIS system is a machine vision system, which combines intelligent image processing with remote control capabilities and provides the ability to auto-focus on a microscope sample, automatically scan an image, and perform machine vision analysis on multiple samples simultaneously.

  5. Operation of a Cartesian Robotic System in a Compact Microscope with Intelligent Controls

    NASA Technical Reports Server (NTRS)

    McDowell, Mark (Inventor)

    2006-01-01

    A Microscope Imaging System (CMIS) with intelligent controls is disclosed that provides techniques for scanning, identifying, detecting and tracking microscopic changes in selected characteristics or features of various surfaces including, but not limited to, cells, spheres, and manufactured products subject to difficult-to-see imperfections. The practice of the present invention provides applications that include colloidal hard spheres experiments, biological cell detection for patch clamping, cell movement and tracking, as well as defect identification in products, such as semiconductor devices, where surface damage can be significant, but difficult to detect. The CMIS system is a machine vision system, which combines intelligent image processing with remote control capabilities and provides the ability to autofocus on a microscope sample, automatically scan an image, and perform machine vision analysis on multiple samples simultaneously.

  6. Modular Scanning Confocal Microscope with Digital Image Processing

    PubMed Central

    McCluskey, Matthew D.

    2016-01-01

    In conventional confocal microscopy, a physical pinhole is placed at the image plane prior to the detector to limit the observation volume. In this work, we present a modular design of a scanning confocal microscope which uses a CCD camera to replace the physical pinhole for materials science applications. Experimental scans were performed on a microscope resolution target, a semiconductor chip carrier, and a piece of etched silicon wafer. The data collected by the CCD were processed to yield images of the specimen. By selecting effective pixels in the recorded CCD images, a virtual pinhole is created. By analyzing the image moments of the imaging data, a lateral resolution enhancement is achieved by using a 20 × / NA = 0.4 microscope objective at 532 nm laser wavelength. PMID:27829052

  7. 75 FR 23272 - Government-Owned Inventions; Availability for Licensing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-03

    ...) Protection in Sunscreen Products Description of Invention: There are different types of ultraviolet (UV) rays..., PhD at 301-435-3131 or [email protected] for more information. Laser Scanning Microscopy for Three... data from a high-speed laser-scanning microscope and compute motion of the sample under the microscope...

  8. Laser-induced fluorescence microscopic system using an optical parametric oscillator for tunable detection in microchip analysis.

    PubMed

    Kumemura, Momoko; Odake, Tamao; Korenaga, Takashi

    2005-06-01

    A laser-induced fluorescence microscopic system based on optical parametric oscillation has been constructed as a tunable detector for microchip analysis. The detection limit of sulforhodamine B (Ex. 520 nm, Em. 570 nm) was 0.2 mumol, which was approximately eight orders of magnitude better than with a conventional fluorophotometer. The system was applied to the determination of fluorescence-labeled DNA (Ex. 494 nm, Em. 519 nm) in a microchannel and the detection limit reached a single molecule. These results showed the feasibility of this system as a highly sensitive and tunable fluorescence detector for microchip analysis.

  9. Orientation and phase mapping in the transmission electron microscope using precession-assisted diffraction spot recognition: state-of-the-art results.

    PubMed

    Viladot, D; Véron, M; Gemmi, M; Peiró, F; Portillo, J; Estradé, S; Mendoza, J; Llorca-Isern, N; Nicolopoulos, S

    2013-10-01

    A recently developed technique based on the transmission electron microscope, which makes use of electron beam precession together with spot diffraction pattern recognition now offers the possibility to acquire reliable orientation/phase maps with a spatial resolution down to 2 nm on a field emission gun transmission electron microscope. The technique may be described as precession-assisted crystal orientation mapping in the transmission electron microscope, precession-assisted crystal orientation mapping technique-transmission electron microscope, also known by its product name, ASTAR, and consists in scanning the precessed electron beam in nanoprobe mode over the specimen area, thus producing a collection of precession electron diffraction spot patterns, to be thereafter indexed automatically through template matching. We present a review on several application examples relative to the characterization of microstructure/microtexture of nanocrystalline metals, ceramics, nanoparticles, minerals and organics. The strengths and limitations of the technique are also discussed using several application examples. ©2013 The Authors. Journal of Microscopy published by John Wiley & Sons Ltd on behalf of Royal Microscopical Society.

  10. Fundamental limits to frequency estimation: a comprehensive microscopic perspective

    NASA Astrophysics Data System (ADS)

    Haase, J. F.; Smirne, A.; Kołodyński, J.; Demkowicz-Dobrzański, R.; Huelga, S. F.

    2018-05-01

    We consider a metrology scenario in which qubit-like probes are used to sense an external field that affects their energy splitting in a linear fashion. Following the frequency estimation approach in which one optimizes the state and sensing time of the probes to maximize the sensitivity, we provide a systematic study of the attainable precision under the impact of noise originating from independent bosonic baths. Specifically, we invoke an explicit microscopic derivation of the probe dynamics using the spin-boson model with weak coupling of arbitrary geometry. We clarify how the secular approximation leads to a phase-covariant (PC) dynamics, where the noise terms commute with the field Hamiltonian, while the inclusion of non-secular contributions breaks the PC. Moreover, unless one restricts to a particular (i.e., Ohmic) spectral density of the bath modes, the noise terms may contain relevant information about the frequency to be estimated. Thus, by considering general evolutions of a single probe, we study regimes in which these two effects have a non-negligible impact on the achievable precision. We then consider baths of Ohmic spectral density yet fully accounting for the lack of PC, in order to characterize the ultimate attainable scaling of precision when N probes are used in parallel. Crucially, we show that beyond the semigroup (Lindbladian) regime the Zeno limit imposing the 1/N 3/2 scaling of the mean squared error, recently derived assuming PC, generalises to any dynamics of the probes, unless the latter are coupled to the baths in the direction perfectly transversal to the frequency encoding—when a novel scaling of 1/N 7/4 arises. As our microscopic approach covers all classes of dissipative dynamics, from semigroup to non-Markovian ones (each of them potentially non-phase-covariant), it provides an exhaustive picture, in which all the different asymptotic scalings of precision naturally emerge.

  11. Molecular Quantification of the Florida Red Tide Dinoflagellate and the Development of Low Cost, Volunteer-attended Handheld Sensor Networks

    NASA Astrophysics Data System (ADS)

    Nieuwkerk, D.; Ulrich, R. M.; Paul, J. H.; Hubbard, K.; Kirkpatrick, B. A.; Fanara, T. A.; Bruzek, S.; Hoeglund, A.

    2016-02-01

    Harmful algal blooms of the dinoflagellate Karenia brevis can cause massive fish-kills and marine mammal mortalities, as well as impact human health via the consumption of brevetoxin-contaminated shellfish and the inhalation of aerosolized toxins. There is a strong effort to predict human health impacts by monitoring the bloom stages of K. brevis, and to prevent health impacts by closing shellfish beds when K. brevis cell concentrations reach toxic levels. The current standard method for quantifying K. brevis is by microscopic enumeration, which requires taxonomic expertise to discern K. brevis cells from other Karenia species as well as a long turnover time to generate data, which limits the number of water samples that can be processed. This EPA-funded study compared a variety of technologies against the current standard (microscopic counts) to quantify the number of K. brevis cells per liter in the water column. Results of this study showed a strong correlation between Real Time Nucleic Acid Sequence-Based Amplification (RT-NASBA) and enumeration by microscopy performed by members of the Florida Fish and Wildlife Research Institute, who are responsible for such monitoring. We are adapting the bench-top RT-NASBA assay to the AmpliFire platform (a handheld sensor that can be used in the field), for point of need K. brevis detection. These handheld sensors will be used by a trained volunteer network and government agencies (FWC, NOAA, and Mote Marine Lab.) to quantify K. brevis cells in the water column of core Gulf of Mexico sites; the results from these sensors will be reported back to the GCOOS observation systems to provide real-time monitoring of K. brevis counts. The real-time information will allow agencies to better monitor fishery closures and predict human health impacts of harmful algal blooms, because a larger number of samples can be processed each week, as the NASBA process removes the rate-limiting step of microscope time.

  12. Nano Goes to School: A Teaching Model of the Atomic Force Microscope

    ERIC Educational Resources Information Center

    Planinsic, Gorazd; Kovac, Janez

    2008-01-01

    The paper describes a teaching model of the atomic force microscope (AFM), which proved to be successful in the role of an introduction to nanoscience in high school. The model can demonstrate the two modes of operation of the AFM (contact mode and oscillating mode) as well as some basic principles that limit the resolution of the method. It can…

  13. Electronic Maxwell demon in the coherent strong-coupling regime

    NASA Astrophysics Data System (ADS)

    Schaller, Gernot; Cerrillo, Javier; Engelhardt, Georg; Strasberg, Philipp

    2018-05-01

    We consider an external feedback control loop implementing the action of a Maxwell demon. Applying control actions that are conditioned on measurement outcomes, the demon may transport electrons against a bias voltage and thereby effectively converts information into electric power. While the underlying model—a feedback-controlled quantum dot that is coupled to two electronic leads—is well explored in the limit of small tunnel couplings, we can address the strong-coupling regime with a fermionic reaction-coordinate mapping. This exact mapping transforms the setup into a serial triple quantum dot coupled to two leads. We find that a continuous projective measurement of the central dot occupation would lead to a complete suppression of electronic transport due to the quantum Zeno effect. In contrast, by using a microscopic detector model we can implement a weak measurement, which allows for closure of the control loop without transport blockade. Then, in the weak-coupling regime, the energy flows associated with the feedback loop are negligible, and dominantly the information gained in the measurement induces a bound for the generated electric power. In the strong coupling limit, the protocol may require more energy for operating the control loop than electric power produced, such that the whole device is no longer information dominated and can thus not be interpreted as a Maxwell demon.

  14. Zero-phonon-line emission of single molecules for applications in quantum information processing

    NASA Astrophysics Data System (ADS)

    Kiraz, Alper; Ehrl, M.; Mustecaplioglu, O. E.; Hellerer, T.; Brauchle, C.; Zumbusch, A.

    2005-07-01

    A single photon source which generates transform limited single photons is highly desirable for applications in quantum optics. Transform limited emission guarantees the indistinguishability of the emitted single photons. This, in turn brings groundbreaking applications in linear optics quantum information processing within an experimental reach. Recently, self-assembled InAs quantum dots and trapped atoms have successfully been demonstrated as such sources for highly indistinguishable single photons. Here, we demonstrate that nearly transform limited zero-phonon-line (ZPL) emission from single molecules can be obtained by using vibronic excitation. Furthermore we report the results of coincidence detection experiments at the output of a Michelson-type interferometer. These experiments reveal Hong-Ou-Mandel correlations as a proof of the indistinguishability of the single photons emitted consecutively from a single molecule. Therefore, single molecules constitute an attractive alternative to single InAs quantum dots and trapped atoms for applications in linear optics quantum information processing. Experiments were performed with a home-built confocal microscope keeping the sample in a superfluid liquid Helium bath at 1.4K. We investigated terrylenediimide (TDI) molecules highly diluted in hexadecane (Shpol'skii matrix). A continuous wave single mode dye laser was used for excitation of vibronic transitions of individual molecules. From the integral fluorescence, the ZPL of single molecules was selected with a spectrally narrow interference filter. The ZPL emission was then sent to a scanning Fabry-Perot interferometer for linewidth measurements or a Michelson-type interferometer for coincidence detection.

  15. MPGD for breast cancer prevention: a high resolution and low dose radiation medical imaging

    NASA Astrophysics Data System (ADS)

    Gutierrez, R. M.; Cerquera, E. A.; Mañana, G.

    2012-07-01

    Early detection of small calcifications in mammograms is considered the best preventive tool of breast cancer. However, existing digital mammography with relatively low radiation skin exposure has limited accessibility and insufficient spatial resolution for small calcification detection. Micro Pattern Gaseous Detectors (MPGD) and associated technologies, increasingly provide new information useful to generate images of microscopic structures and make more accessible cutting edge technology for medical imaging and many other applications. In this work we foresee and develop an application for the new information provided by a MPGD camera in the form of highly controlled images with high dynamical resolution. We present a new Super Detail Image (S-DI) that efficiently profits of this new information provided by the MPGD camera to obtain very high spatial resolution images. Therefore, the method presented in this work shows that the MPGD camera with SD-I, can produce mammograms with the necessary spatial resolution to detect microcalcifications. It would substantially increase efficiency and accessibility of screening mammography to highly improve breast cancer prevention.

  16. Reconstruction of the absorption spectrum of an object spot from the colour values of the corresponding pixel(s) in its digital image: the challenge of algal colours.

    PubMed

    Coltelli, Primo; Barsanti, Laura; Evangelista, Valter; Frassanito, Anna Maria; Gualtieri, Paolo

    2016-12-01

    A novel procedure for deriving the absorption spectrum of an object spot from the colour values of the corresponding pixel(s) in its image is presented. Any digital image acquired by a microscope can be used; typical applications are the analysis of cellular/subcellular metabolic processes under physiological conditions and in response to environmental stressors (e.g. heavy metals), and the measurement of chromophore composition, distribution and concentration in cells. In this paper, we challenged the procedure with images of algae, acquired by means of a CCD camera mounted onto a microscope. The many colours algae display result from the combinations of chromophores whose spectroscopic information is limited to organic solvents extracts that suffers from displacements, amplifications, and contraction/dilatation respect to spectra recorded inside the cell. Hence, preliminary processing is necessary, which consists of in vivo measurement of the absorption spectra of photosynthetic compartments of algal cells and determination of spectra of the single chromophores inside the cell. The final step of the procedure consists in the reconstruction of the absorption spectrum of the cell spot from the colour values of the corresponding pixel(s) in its digital image by minimization of a system of transcendental equations based on the absorption spectra of the chromophores under physiological conditions. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  17. Endoscopic endonasal trans-sphenoid surgery of pituitary adenoma

    PubMed Central

    Yadav, YR; Sachdev, S; Parihar, V; Namdev, H; Bhatele, PR

    2012-01-01

    Endoscopic endonasal trans-sphenoid surgery (EETS) is increasingly used for pituitary lesions. Pre-operative CT and MRI scans and peroperative endoscopic visualization can provide useful anatomical information. EETS is indicated in sellar, suprasellar, intraventricular, retro-infundibular, and invasive tumors. Recurrent and residual lesions, pituitary apoplexy and empty sella syndrome can be managed by EETS. Modern neuronavigation techniques, ultrasonic aspirators, ultrasonic bone curette can add to the safety. The binostril approach provides a wider working area. High definition camera is much superior to three-chip camera. Most of the recent reports favor EETS in terms of safety, quality of life and tumor resection, hospital stay, better endocrinological, and visual outcome as compared to the microscopic technique. Nasal symptoms, blood loss, operating time are less in EETS. Various naso-septal flaps and other techniques of CSF leak repair could help reduce complications. Complications can be further reduced after achieving the learning curve, good understanding of limitations with proper patient selection. Use of neuronavigation, proper post-operative care of endocrine function, establishing pituitary center of excellence and more focused residency and endoscopic fellowship training could improve results. The faster and safe transition from microscopic to EETS can be done by the team concept of neurosurgeon/otolaryngologist, attending hands on cadaveric dissection, practice on models, and observation of live surgeries. Conversion to a microscopic or endoscopic-assisted approach may be required in selected patients. Multi-modality treatment could be required in giant and invasive tumors. EETS appears to be a better surgical option in most pituitary adenoma. PMID:23188987

  18. Wide field of view common-path lateral-shearing digital holographic interference microscope

    NASA Astrophysics Data System (ADS)

    Vora, Priyanka; Trivedi, Vismay; Mahajan, Swapnil; Patel, Nimit; Joglekar, Mugdha; Chhaniwal, Vani; Moradi, Ali-Reza; Javidi, Bahram; Anand, Arun

    2017-12-01

    Quantitative three-dimensional (3-D) imaging of living cells provides important information about the cell morphology and its time variation. Off-axis, digital holographic interference microscopy is an ideal tool for 3-D imaging, parameter extraction, and classification of living cells. Two-beam digital holographic microscopes, which are usually employed, provide high-quality 3-D images of micro-objects, albeit with lower temporal stability. Common-path digital holographic geometries, in which the reference beam is derived from the object beam, provide higher temporal stability along with high-quality 3-D images. Self-referencing geometry is the simplest of the common-path techniques, in which a portion of the object beam itself acts as the reference, leading to compact setups using fewer optical elements. However, it has reduced field of view, and the reference may contain object information. Here, we describe the development of a common-path digital holographic microscope, employing a shearing plate and converting one of the beams into a separate reference by employing a pin-hole. The setup is as compact as self-referencing geometry, while providing field of view as wide as that of a two-beam microscope. The microscope is tested by imaging and quantifying the morphology and dynamics of human erythrocytes.

  19. Wide field of view common-path lateral-shearing digital holographic interference microscope.

    PubMed

    Vora, Priyanka; Trivedi, Vismay; Mahajan, Swapnil; Patel, Nimit; Joglekar, Mugdha; Chhaniwal, Vani; Moradi, Ali-Reza; Javidi, Bahram; Anand, Arun

    2017-12-01

    Quantitative three-dimensional (3-D) imaging of living cells provides important information about the cell morphology and its time variation. Off-axis, digital holographic interference microscopy is an ideal tool for 3-D imaging, parameter extraction, and classification of living cells. Two-beam digital holographic microscopes, which are usually employed, provide high-quality 3-D images of micro-objects, albeit with lower temporal stability. Common-path digital holographic geometries, in which the reference beam is derived from the object beam, provide higher temporal stability along with high-quality 3-D images. Self-referencing geometry is the simplest of the common-path techniques, in which a portion of the object beam itself acts as the reference, leading to compact setups using fewer optical elements. However, it has reduced field of view, and the reference may contain object information. Here, we describe the development of a common-path digital holographic microscope, employing a shearing plate and converting one of the beams into a separate reference by employing a pin-hole. The setup is as compact as self-referencing geometry, while providing field of view as wide as that of a two-beam microscope. The microscope is tested by imaging and quantifying the morphology and dynamics of human erythrocytes. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  20. Relative merits and limiting factors for x-ray and electron microscopy of thick, hydrated organic materials

    DOE PAGES

    Du, Ming; Jacobsen, Chris

    2017-10-07

    Electron and x-ray microscopes allow one to image the entire, unlabeled structure of hydrated materials at a resolution well beyond what visible light microscopes can achieve. However, both approaches involve ionizing radiation, so that radiation damage must be considered as one of the limits to imaging. Drawing upon earlier work, we describe here a unified approach to estimating the image contrast (and thus the required exposure and corresponding radiation dose) in both x-ray and electron microscopy. This approach accounts for factors such as plural and inelastic scattering, and (in electron microscopy) the use of energy filters to obtain so-called "zeromore » loss" images. As expected, it shows that electron microscopy offers lower dose for specimens thinner than about 1 mu m (such as for studies of macromolecules, viruses, bacteria and archaebacteria, and thin sectioned material), while x-ray microscopy offers superior characteristics for imaging thicker specimen such as whole eukaryotic cells, thick-sectioned tissues, and organs. The required radiation dose scales strongly as a function of the desired spatial resolution, allowing one to understand the limits of live and frozen hydrated specimen imaging. Lastly, we consider the factors limiting x-ray microscopy of thicker materials, suggesting that specimens as thick as a whole mouse brain can be imaged with x-ray microscopes without significant image degradation should appropriate image reconstruction methods be identified.« less

  1. Relative merits and limiting factors for x-ray and electron microscopy of thick, hydrated organic materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Ming; Jacobsen, Chris

    Electron and x-ray microscopes allow one to image the entire, unlabeled structure of hydrated materials at a resolution well beyond what visible light microscopes can achieve. However, both approaches involve ionizing radiation, so that radiation damage must be considered as one of the limits to imaging. Drawing upon earlier work, we describe here a unified approach to estimating the image contrast (and thus the required exposure and corresponding radiation dose) in both x-ray and electron microscopy. This approach accounts for factors such as plural and inelastic scattering, and (in electron microscopy) the use of energy filters to obtain so-called "zeromore » loss" images. As expected, it shows that electron microscopy offers lower dose for specimens thinner than about 1 mu m (such as for studies of macromolecules, viruses, bacteria and archaebacteria, and thin sectioned material), while x-ray microscopy offers superior characteristics for imaging thicker specimen such as whole eukaryotic cells, thick-sectioned tissues, and organs. The required radiation dose scales strongly as a function of the desired spatial resolution, allowing one to understand the limits of live and frozen hydrated specimen imaging. Lastly, we consider the factors limiting x-ray microscopy of thicker materials, suggesting that specimens as thick as a whole mouse brain can be imaged with x-ray microscopes without significant image degradation should appropriate image reconstruction methods be identified.« less

  2. Bi-directional transmission of molecular information by photon or electron beams passing in the close vicinity of specific molecules, and its clinical and basic research applications: 1) Diagnosis of humans or animal patients without any direct contact; 2) Light microscopic and electron microscopic localization of neuro-transmitters, heavy metals, Oncogen C-fos (AB2), etc. of intracellular fine structures of normal and abnormal single cells using light or electro-microscopic indirect Bi-Digital O-Ring Test.

    PubMed

    Omura, Y; Losco, M; Omura, A K; Takeshige, C; Hisamitsu, T; Nakajima, H; Soejima, K; Yamamoto, S; Ishikawa, H; Kagoshima, T

    1992-01-01

    In 1985, Omura, Y. discovered that, when specific molecules were placed anywhere in the close vicinity of the path of a light beam (laser), their molecular information, as well as information on electrical & magnetic fields, is transmitted bi-directionally along the path of this light beam. Namely, this information is transmitted in the direction the light beam is projected and towards the direction from which the light beam is coming. This finding was applied to the following clinical and basic research: 1) In the past, using indirect Bi-Digital O-Ring Test, human or animal patients were diagnosed through an intermediate third person holding a good electrical conducting probe, the tip of which was touching the part of the patient to be examined. However, in order to diagnose the patient in isolation from a distance, or a dangerous or unmanagable unanesthesized animal, such as a lion or tiger, the author succeeded in making a diagnosis by replacing the metal conducting probe with a soft laser beam which is held by the one hand of the third person whose index finger is placed in close vicinity of the laser beam generated by a battery-powered penlight-type solid state laser generator. Thus, diagnosis within visible distance, without direct patient contact, became a reality. 2) Using a projection light microscope, by giving indirect Bi-Digital O-Ring Test while contacting with a fine electro-conductive probe on the magnified fine structure of normal and abnormal cells, various normal and abnormal intracellular substances were localized through a third person holding a pure reference control substance with the same hand that is holding the probe as an intermediary for the indirect Bi-Digital O-Ring Test. Instead of the photon beam in a light microscope, the author found that, using an electron beam passing through the close vicinity of specific molecules of specimens in an electron microscope, the molecular information is transmitted to the magnified fluorescent screen, and an indirect Bi-Digital O-Ring Test could be performed through a projected penlight-type solid state soft laser beam on the magnified intracellular structure through an observation glass window. Using the magnified fine structure of the cells, by either a light projection microscopic field or electron microscope, in various cancer cells of both humans and animals, Oncogen C-fos (AB2) and mercury were found inside of the nucleus. Integrin alpha 5 beta 1 was found on cell membranes and nuclear cell membranes of cancer cells. Acetylcholine was not found anywhere within cancer cells.(ABSTRACT TRUNCATED AT 400 WORDS)

  3. Spherical aberration correction in a scanning transmission electron microscope using a sculpted thin film.

    PubMed

    Shiloh, Roy; Remez, Roei; Lu, Peng-Han; Jin, Lei; Lereah, Yossi; Tavabi, Amir H; Dunin-Borkowski, Rafal E; Arie, Ady

    2018-06-01

    Nearly eighty years ago, Scherzer showed that rotationally symmetric, charge-free, static electron lenses are limited by an unavoidable, positive spherical aberration. Following a long struggle, a major breakthrough in the spatial resolution of electron microscopes was reached two decades ago by abandoning the first of these conditions, with the successful development of multipole aberration correctors. Here, we use a refractive silicon nitride thin film to tackle the second of Scherzer's constraints and demonstrate an alternative method for correcting spherical aberration in a scanning transmission electron microscope. We reveal features in Si and Cu samples that cannot be resolved in an uncorrected microscope. Our thin film corrector can be implemented as an immediate low cost upgrade to existing electron microscopes without re-engineering of the electron column or complicated operation protocols and can be extended to the correction of additional aberrations. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Design and construction of a modular low-cost epifluorescence upright microscope for neuron visualized recording and fluorescence detection.

    PubMed

    Beltran-Parrazal, Luis; Morgado-Valle, Consuelo; Serrano, Raul E; Manzo, Jorge; Vergara, Julio L

    2014-03-30

    One of the limitations when establishing an electrophysiology setup, particularly in low resource settings, is the high cost of microscopes. The average cost for a microscope equipped with the optics for infrared (IR) contrast or microfluorometry is $40,000. We hypothesized that optical elements and features included in commercial microscopes are not necessary to IR video-visualize neurons or for microfluorometry. We present instructions for building a low-cost epifluorescence upright microscope suitable for visualized patch-clamp recording and fluorescence detection using mostly catalog-available parts. This microscope supports applications such as visualized whole-cell recording using IR oblique illumination (IR-OI), or more complex applications such as microfluorometry using a photodiode. In both IR-OI and fluorescence, actual resolution measured with 2-μm latex beads is close to theoretical resolution. The lack of movable parts to switch configurations ensures stability when doing intracellular recording. The low cost is a significant advantage of this microscope compared to existent custom-built microscopes. The cost of the simplest configuration with IR-OI is ∼$2000, whereas the cost of the configuration with epifluorescence is ∼$5000. Since this design does not use pieces discarded from commercial microscopes, it is completely reproducible. We suggest that this microscope is a viable alternative for doing in vitro electrophysiology and microfluorometry in low-resource settings. Characteristics such as an open box design, easy assembly, and low-cost make this microscope a useful instrument for science education and teaching for topics such as optics, biology, neuroscience, and for scientific "hands-on" workshops. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Hyperlens-array-implemented optical microscopy

    NASA Astrophysics Data System (ADS)

    Iwanaga, Masanobu

    2014-08-01

    Limit of resolution of conventional optical microscopes has never reached below 100 nm under visible light illumination. We show that numerically designed high-transmittance hyperlens array (HLA) is implemented in an optical microscope and works in practice for achieving one-shot-recording optical images of in-situ placed objects with sub 50 nm resolution in lateral direction. Direct resolution test employing well-defined nanopatterns proves that the HLA-implemented imaging is super-resolution optical microscopy, which works even under nW/mm2 visible illumination for objects. The HLA implementation makes the resolution of conventional microscopes one-scale higher, leading to the 1/10 illumination wavelength range, that is, mesoscopic range.

  6. Fluorescence-guided tumor visualization using a custom designed NIR attachment to a surgical microscope for high sensitivity imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kittle, David S.; Patil, Chirag G.; Mamelak, Adam; Hansen, Stacey; Perry, Jeff; Ishak, Laura; Black, Keith L.; Butte, Pramod V.

    2016-03-01

    Current surgical microscopes are limited in sensitivity for NIR fluorescence. Recent developments in tumor markers attached with NIR dyes require newer, more sensitive imaging systems with high resolution to guide surgical resection. We report on a small, single camera solution enabling advanced image processing opportunities previously unavailable for ultra-high sensitivity imaging of these agents. The system captures both visible reflectance and NIR fluorescence at 300 fps while displaying full HD resolution video at 60 fps. The camera head has been designed to easily mount onto the Zeiss Pentero microscope head for seamless integration into surgical procedures.

  7. A wide field-of-view microscope based on holographic focus grid

    NASA Astrophysics Data System (ADS)

    Wu, Jigang; Cui, Xiquan; Zheng, Guoan; Lee, Lap Man; Yang, Changhuei

    2010-02-01

    We have developed a novel microscope technique that can achieve wide field-of-view (FOV) imaging and yet possess resolution that is comparable to conventional microscope. The principle of wide FOV microscope system breaks the link between resolution and FOV magnitude of traditional microscopes. Furthermore, by eliminating bulky optical elements from its design and utilizing holographic optical elements, the wide FOV microscope system is more cost-effective. In our system, a hologram was made to focus incoming collimated beam into a focus grid. The sample is put in the focal plane and the transmissions of the focuses are detected by an imaging sensor. By scanning the incident angle of the incoming beam, the focus grid will scan across the sample and the time-varying transmission can be detected. We can then reconstruct the transmission image of the sample. The resolution of microscopic image is limited by the size of the focus formed by the hologram. The scanning area of each focus spot is determined by the separation of the focus spots and can be made small for fast imaging speed. We have fabricated a prototype system with a 2.4-mm FOV and 1-μm resolution. The prototype system was used to image onion skin cells for a demonstration. The preliminary experiments prove the feasibility of the wide FOV microscope technique, and the possibility of a wider FOV system with better resolution.

  8. Real-time spectral imaging in three spatial dimensions

    NASA Astrophysics Data System (ADS)

    Liu, Wenhai; Psaltis, Demetri; Barbastathis, George

    2002-05-01

    We report what is to our knowledge the first volume-holographic optical imaging instrument with the capability to return three-dimensional spatial as well as spectral information about semitranslucent microscopic objects in a single measurement. The four-dimensional volume-holographic microscope is characterized theoretically and experimentally by use of fluorescent microspheres as objects.

  9. Chemical imaging of cotton fibers using an infrared microscope and a focal-plane array detector

    USDA-ARS?s Scientific Manuscript database

    In this presentation, the chemical imaging of cotton fibers with an infrared microscope and a Focal-Plane Array (FPA) detector will be discussed. Infrared spectroscopy can provide us with information on the structure and quality of cotton fibers. In addition, FPA detectors allow for simultaneous spe...

  10. Examination of cotton fibers and common contaminants using an infrared microscope and a focal-plane array detector

    USDA-ARS?s Scientific Manuscript database

    The chemical imaging of cotton fibers and common contaminants in fibers is presented. Chemical imaging was performed with an infrared microscope equipped with a Focal-Plane Array (FPA) detector. Infrared spectroscopy can provide us with information on the structure and quality of cotton fibers. In a...

  11. 4D blood flow mapping using SPIM-microPIV in the developing zebrafish heart

    NASA Astrophysics Data System (ADS)

    Zickus, Vytautas; Taylor, Jonathan M.

    2018-02-01

    Fluid-structure interaction in the developing heart is an active area of research in developmental biology. However, investigation of heart dynamics is mostly limited to computational uid dynamics simulations using heart wall structure information only, or single plane blood ow information - so there is a need for 3D + time resolved data to fully understand cardiac function. We present an imaging platform combining selective plane illumination microscopy (SPIM) with micro particle image velocimetry (μPIV) to enable 3D-resolved flow mapping in a microscopic environment, free from many of the sources of error and bias present in traditional epi uorescence-based μPIV systems. By using our new system in conjunction with optical heart beat synchronization, we demonstrate the ability obtain non-invasive 3D + time resolved blood flow measurements in the heart of a living zebrafish embryo.

  12. Visibility Graph Based Time Series Analysis.

    PubMed

    Stephen, Mutua; Gu, Changgui; Yang, Huijie

    2015-01-01

    Network based time series analysis has made considerable achievements in the recent years. By mapping mono/multivariate time series into networks, one can investigate both it's microscopic and macroscopic behaviors. However, most proposed approaches lead to the construction of static networks consequently providing limited information on evolutionary behaviors. In the present paper we propose a method called visibility graph based time series analysis, in which series segments are mapped to visibility graphs as being descriptions of the corresponding states and the successively occurring states are linked. This procedure converts a time series to a temporal network and at the same time a network of networks. Findings from empirical records for stock markets in USA (S&P500 and Nasdaq) and artificial series generated by means of fractional Gaussian motions show that the method can provide us rich information benefiting short-term and long-term predictions. Theoretically, we propose a method to investigate time series from the viewpoint of network of networks.

  13. Grayscale inhomogeneity correction method for multiple mosaicked electron microscope images

    NASA Astrophysics Data System (ADS)

    Zhou, Fangxu; Chen, Xi; Sun, Rong; Han, Hua

    2018-04-01

    Electron microscope image stitching is highly desired to acquire microscopic resolution images of large target scenes in neuroscience. However, the result of multiple Mosaicked electron microscope images may exist severe gray scale inhomogeneity due to the instability of the electron microscope system and registration errors, which degrade the visual effect of the mosaicked EM images and aggravate the difficulty of follow-up treatment, such as automatic object recognition. Consequently, the grayscale correction method for multiple mosaicked electron microscope images is indispensable in these areas. Different from most previous grayscale correction methods, this paper designs a grayscale correction process for multiple EM images which tackles the difficulty of the multiple images monochrome correction and achieves the consistency of grayscale in the overlap regions. We adjust overall grayscale of the mosaicked images with the location and grayscale information of manual selected seed images, and then fuse local overlap regions between adjacent images using Poisson image editing. Experimental result demonstrates the effectiveness of our proposed method.

  14. Infrared Pyrometry From Room Temperature To 700 Degrees C

    NASA Technical Reports Server (NTRS)

    Wheeler, Donald R.; Jones, William R., Jr.; Pepper, Stephen V.

    1989-01-01

    Consistent readings obtained when specimens prepared appropriately. New method largely overcomes limitations. Transmission of infrared increased by replacing customary metal-coated glass viewing port with quartz viewing port covered with tantalum mesh. Commercially available infrared microscope with focal distance of 53 cm focuses on spot only 1 mm wide on specimen. Microscope operated as radiometer. Output of detector varies by several orders of magnitude, processed by logarithmic amplifier before reading.

  15. Wide-field imaging of birefringent synovial fluid crystals using lens-free polarized microscopy for gout diagnosis

    NASA Astrophysics Data System (ADS)

    Zhang, Yibo; Lee, Seung Yoon Celine; Zhang, Yun; Furst, Daniel; Fitzgerald, John; Ozcan, Aydogan

    2016-06-01

    Gout is a form of crystal arthropathy where monosodium urate (MSU) crystals deposit and elicit inflammation in a joint. Diagnosis of gout relies on identification of MSU crystals under a compensated polarized light microscope (CPLM) in synovial fluid aspirated from the patient’s joint. The detection of MSU crystals by optical microscopy is enhanced by their birefringent properties. However, CPLM partially suffers from the high-cost and bulkiness of conventional lens-based microscopy, and its relatively small field-of-view (FOV) limits the efficiency and accuracy of gout diagnosis. Here we present a lens-free polarized microscope which adopts a novel differential and angle-mismatched polarizing optical design achieving wide-field and high-resolution holographic imaging of birefringent objects with a color contrast similar to that of a standard CPLM. The performance of this computational polarization microscope is validated by imaging MSU crystals made from a gout patient’s tophus and steroid crystals used as negative control. This lens-free polarized microscope, with its wide FOV (>20 mm2), cost-effectiveness and field-portability, can significantly improve the efficiency and accuracy of gout diagnosis, reduce costs, and can be deployed even at the point-of-care and in resource-limited clinical settings.

  16. Wide-field imaging of birefringent synovial fluid crystals using lens-free polarized microscopy for gout diagnosis

    PubMed Central

    Zhang, Yibo; Lee, Seung Yoon Celine; Zhang, Yun; Furst, Daniel; Fitzgerald, John; Ozcan, Aydogan

    2016-01-01

    Gout is a form of crystal arthropathy where monosodium urate (MSU) crystals deposit and elicit inflammation in a joint. Diagnosis of gout relies on identification of MSU crystals under a compensated polarized light microscope (CPLM) in synovial fluid aspirated from the patient’s joint. The detection of MSU crystals by optical microscopy is enhanced by their birefringent properties. However, CPLM partially suffers from the high-cost and bulkiness of conventional lens-based microscopy, and its relatively small field-of-view (FOV) limits the efficiency and accuracy of gout diagnosis. Here we present a lens-free polarized microscope which adopts a novel differential and angle-mismatched polarizing optical design achieving wide-field and high-resolution holographic imaging of birefringent objects with a color contrast similar to that of a standard CPLM. The performance of this computational polarization microscope is validated by imaging MSU crystals made from a gout patient’s tophus and steroid crystals used as negative control. This lens-free polarized microscope, with its wide FOV (>20 mm2), cost-effectiveness and field-portability, can significantly improve the efficiency and accuracy of gout diagnosis, reduce costs, and can be deployed even at the point-of-care and in resource-limited clinical settings. PMID:27356625

  17. Examining the Real Merits of the Virtual Microscope

    NASA Astrophysics Data System (ADS)

    Hennessy, Ronan; Meere, Pat; Ho, Timsie; Menuge, Julian; Tyrrell, Shane; Kamber, Balz; Higgs, Bettie; Kelley, Simon

    2017-04-01

    The Geoscience e-Laboratory (GeoLAB) project is a cooperative digital petrological microscopy technology enhanced learning (TEL) resource development project involving the four main university geoscience teaching centres in Ireland. Collaborating with the Open University (UK), a new digital library of petrographic thin sections has been added to the Virtual Microscope for Earth Sciences (VMfES) online repository. The collection was compiled with a view to introducing high-quality samples to teaching programmes in a manner that hitherto was limited by sample and microscope availability and cost and the temporal limits of laboratory access. The project has proceeded to explore the pedagogical implications of using the Virtual Microscope in teaching programmes. Online assessments and self-guided exercises developed using applications such as Google Forms have been introduced into programmes at each centre, and complimented by tutorial and interactive videos designed to support self-guided learning. The GeoLab project is reporting on the pedagogical implications of providing students with unimpeded access to high-quality petrographic learning resources during the term of semester and in advance of student assessments. Additionally, the project is collating data on the perceptions of both teachers and learners to using online learning media in mineralogy and petrology programmes, and if there are benefits therein to the more traditional styles of petrology and microscopy teaching and learning.

  18. Automated adaptive inference of phenomenological dynamical models

    NASA Astrophysics Data System (ADS)

    Daniels, Bryan

    Understanding the dynamics of biochemical systems can seem impossibly complicated at the microscopic level: detailed properties of every molecular species, including those that have not yet been discovered, could be important for producing macroscopic behavior. The profusion of data in this area has raised the hope that microscopic dynamics might be recovered in an automated search over possible models, yet the combinatorial growth of this space has limited these techniques to systems that contain only a few interacting species. We take a different approach inspired by coarse-grained, phenomenological models in physics. Akin to a Taylor series producing Hooke's Law, forgoing microscopic accuracy allows us to constrain the search over dynamical models to a single dimension. This makes it feasible to infer dynamics with very limited data, including cases in which important dynamical variables are unobserved. We name our method Sir Isaac after its ability to infer the dynamical structure of the law of gravitation given simulated planetary motion data. Applying the method to output from a microscopically complicated but macroscopically simple biological signaling model, it is able to adapt the level of detail to the amount of available data. Finally, using nematode behavioral time series data, the method discovers an effective switch between behavioral attractors after the application of a painful stimulus.

  19. AOTF microscope for imaging with increased speed and spectral versatility.

    PubMed Central

    Wachman, E S; Niu, W; Farkas, D L

    1997-01-01

    We have developed a new fluorescence microscope that addresses the spectral and speed limitations of current light microscopy instrumentation. In the present device, interference and neutral density filters normally used for fluorescence excitation and detection are replaced by acousto-optic tunable filters (AOTFs). Improvements are described, including the use of a dispersing prism in conjunction with the imaging AOTF and an oblique-illumination excitation scheme, which together enable the AOTF microscope to produce images comparable to those obtained with conventional fluorescence instruments. The superior speed and spectral versatility of the AOTF microscope are demonstrated by a ratio image pair acquired in 3.5 ms and a micro-spectral absorbance measurement of hemoglobin through a cranial window in a living mouse. Images FIGURE 1 FIGURE 2 FIGURE 4 FIGURE 5 FIGURE 6 FIGURE 7 PMID:9284289

  20. 3D real-time visualization of blood flow in cerebral aneurysms by light field particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Carlsohn, Matthias F.; Kemmling, André; Petersen, Arne; Wietzke, Lennart

    2016-04-01

    Cerebral aneurysms require endovascular treatment to eliminate potentially lethal hemorrhagic rupture by hemostasis of blood flow within the aneurysm. Devices (e.g. coils and flow diverters) promote homeostasis, however, measurement of blood flow within an aneurysm or cerebral vessel before and after device placement on a microscopic level has not been possible so far. This would allow better individualized treatment planning and improve manufacture design of devices. For experimental analysis, direct measurement of real-time microscopic cerebrovascular flow in micro-structures may be an alternative to computed flow simulations. An application of microscopic aneurysm flow measurement on a regular basis to empirically assess a high number of different anatomic shapes and the corresponding effect of different devices would require a fast and reliable method at low cost with high throughout assessment. Transparent three dimensional 3D models of brain vessels and aneurysms may be used for microscopic flow measurements by particle image velocimetry (PIV), however, up to now the size of structures has set the limits for conventional 3D-imaging camera set-ups. On line flow assessment requires additional computational power to cope with the processing large amounts of data generated by sequences of multi-view stereo images, e.g. generated by a light field camera capturing the 3D information by plenoptic imaging of complex flow processes. Recently, a fast and low cost workflow for producing patient specific three dimensional models of cerebral arteries has been established by stereo-lithographic (SLA) 3D printing. These 3D arterial models are transparent an exhibit a replication precision within a submillimeter range required for accurate flow measurements under physiological conditions. We therefore test the feasibility of microscopic flow measurements by PIV analysis using a plenoptic camera system capturing light field image sequences. Averaging across a sequence of single double or triple shots of flashed images enables reconstruction of the real-time corpuscular flow through the vessel system before and after device placement. This approach could enable 3D-insight of microscopic flow within blood vessels and aneurysms at submillimeter resolution. We present an approach that allows real-time assessment of 3D particle flow by high-speed light field image analysis including a solution that addresses high computational load by image processing. The imaging set-up accomplishes fast and reliable PIV analysis in transparent 3D models of brain aneurysms at low cost. High throughput microscopic flow assessment of different shapes of brain aneurysms may therefore be possibly required for patient specific device designs.

  1. Design of a normal incidence multilayer imaging x-ray microscope.

    PubMed

    Shealy, D L; Gabardi, D R; Hoover, R B; Walker, A B; Lindblom, J F; Barbee, T W

    1989-01-01

    Normal incidence multilayer Cassegrain x-ray telescopes were flown on the Stanford/MSFC Rocket X-Ray Spectroheliograph. These instruments produced high spatial resolution images of the Sun and conclusively demonstrated that doubly reflecting multilayer x-ray optical systems are feasible. The images indicated that aplanatic imaging soft x-ray /EUV microscopes should be achievable using multilayer optics technology. We have designed a doubly reflecting normal incidence multilayer imaging x-ray microscope based on the Schwarzschild configuration. The Schwarzschild microscope utilizes two spherical mirrors with concentric radii of curvature which are chosen such that the third-order spherical aberration and coma are minimized. We discuss the design of the microscope and the results of the optical system ray trace analysis which indicates that diffraction-limited performance with 600 Å spatial resolution should be obtainable over a 1 mm field of view at a wavelength of 100 Å. Fabrication of several imaging soft x-ray microscopes based upon these designs, for use in conjunction with x-ray telescopes and laser fusion research, is now in progress. High resolution aplanatic imaging x-ray microscopes using normal incidence multilayer x-ray mirrors should have many important applications in advanced x-ray astronomical instrumentation, x-ray lithography, biological, biomedical, metallurgical, and laser fusion research.

  2. The Athena Pancam and Color Microscopic Imager (CMI)

    NASA Technical Reports Server (NTRS)

    Bell, J. F., III; Herkenhoff, K. E.; Schwochert, M.; Morris, R. V.; Sullivan, R.

    2000-01-01

    The Athena Mars rover payload includes two primary science-grade imagers: Pancam, a multispectral, stereo, panoramic camera system, and the Color Microscopic Imager (CMI), a multispectral and variable depth-of-field microscope. Both of these instruments will help to achieve the primary Athena science goals by providing information on the geology, mineralogy, and climate history of the landing site. In addition, Pancam provides important support for rover navigation and target selection for Athena in situ investigations. Here we describe the science goals, instrument designs, and instrument performance of the Pancam and CMI investigations.

  3. A Cost-Effective Fluorescence Mini-Microscope with Adjustable Magnifications for Biomedical Applications

    PubMed Central

    Zhang, Yu Shrike; Ribas, João; Nadhman, Akhtar; Aleman, Julio; Selimović, Šeila; Lesher-Perez, Sasha Cai; Wang, Ting; Manoharan, Vijayan; Shin, Su-Ryon; Damilano, Alessia; Annabi, Nasim; Dokmeci, Mehmet Remzi; Takayama, Shuichi; Khademhosseini, Ali

    2015-01-01

    We have designed and fabricated a miniature microscope from off-the-shelf components and webcam, with built-in fluorescence capability for biomedical applications. The mini-microscope was able to detect both biochemical parameters such as cell/tissue viability (e.g. Live/Dead assay), and biophysical properties of the microenvironment such as oxygen levels in microfabricated tissues based on an oxygen-sensitive fluorescent dye. This mini-microscope has adjustable magnifications from 8-60X, achieves a resolution as high as <2 μm, and possesses a long working distance of 4.5 mm (at a magnification of 8X). The mini-microscope was able to chronologically monitor cell migration and analyze beating of microfluidic liver and cardiac bioreactors in real time, respectively. The mini-microscope system is cheap, and its modularity allows convenient integration with a wide variety of pre-existing platforms including but not limited to, cell culture plates, microfluidic devices, and organs-on-a-chip systems. Therefore, we envision its widespread applications in cell biology, tissue engineering, biosensing, microfluidics, and organs-on-chips, which can potentially replace conventional bench-top microscopy where long-term in situ and large-scale imaging/analysis is required. PMID:26282117

  4. A cost-effective fluorescence mini-microscope for biomedical applications.

    PubMed

    Zhang, Yu Shrike; Ribas, João; Nadhman, Akhtar; Aleman, Julio; Selimović, Šeila; Lesher-Perez, Sasha Cai; Wang, Ting; Manoharan, Vijayan; Shin, Su-Ryon; Damilano, Alessia; Annabi, Nasim; Dokmeci, Mehmet Remzi; Takayama, Shuichi; Khademhosseini, Ali

    2015-01-01

    We have designed and fabricated a miniature microscope from off-the-shelf components and a webcam, with built-in fluorescence capability for biomedical applications. The mini-microscope was able to detect both biochemical parameters, such as cell/tissue viability (e.g. live/dead assay), and biophysical properties of the microenvironment such as oxygen levels in microfabricated tissues based on an oxygen-sensitive fluorescent dye. This mini-microscope has adjustable magnifications from 8-60×, achieves a resolution as high as <2 μm, and possesses a long working distance of 4.5 mm (at a magnification of 8×). The mini-microscope was able to chronologically monitor cell migration and analyze beating of microfluidic liver and cardiac bioreactors in real time, respectively. The mini-microscope system is cheap, and its modularity allows convenient integration with a wide variety of pre-existing platforms including, but not limited to, cell culture plates, microfluidic devices, and organs-on-a-chip systems. Therefore, we envision its widespread application in cell biology, tissue engineering, biosensing, microfluidics, and organs-on-chips, which can potentially replace conventional bench-top microscopy where long-term in situ and large-scale imaging/analysis is required.

  5. Advances in two photon scanning and scanless microscopy technologies for functional neural circuit imaging.

    PubMed

    Schultz, Simon R; Copeland, Caroline S; Foust, Amanda J; Quicke, Peter; Schuck, Renaud

    2017-01-01

    Recent years have seen substantial developments in technology for imaging neural circuits, raising the prospect of large scale imaging studies of neural populations involved in information processing, with the potential to lead to step changes in our understanding of brain function and dysfunction. In this article we will review some key recent advances: improved fluorophores for single cell resolution functional neuroimaging using a two photon microscope; improved approaches to the problem of scanning active circuits; and the prospect of scanless microscopes which overcome some of the bandwidth limitations of current imaging techniques. These advances in technology for experimental neuroscience have in themselves led to technical challenges, such as the need for the development of novel signal processing and data analysis tools in order to make the most of the new experimental tools. We review recent work in some active topics, such as region of interest segmentation algorithms capable of demixing overlapping signals, and new highly accurate algorithms for calcium transient detection. These advances motivate the development of new data analysis tools capable of dealing with spatial or spatiotemporal patterns of neural activity, that scale well with pattern size.

  6. Advances in two photon scanning and scanless microscopy technologies for functional neural circuit imaging

    PubMed Central

    Schultz, Simon R.; Copeland, Caroline S.; Foust, Amanda J.; Quicke, Peter; Schuck, Renaud

    2017-01-01

    Recent years have seen substantial developments in technology for imaging neural circuits, raising the prospect of large scale imaging studies of neural populations involved in information processing, with the potential to lead to step changes in our understanding of brain function and dysfunction. In this article we will review some key recent advances: improved fluorophores for single cell resolution functional neuroimaging using a two photon microscope; improved approaches to the problem of scanning active circuits; and the prospect of scanless microscopes which overcome some of the bandwidth limitations of current imaging techniques. These advances in technology for experimental neuroscience have in themselves led to technical challenges, such as the need for the development of novel signal processing and data analysis tools in order to make the most of the new experimental tools. We review recent work in some active topics, such as region of interest segmentation algorithms capable of demixing overlapping signals, and new highly accurate algorithms for calcium transient detection. These advances motivate the development of new data analysis tools capable of dealing with spatial or spatiotemporal patterns of neural activity, that scale well with pattern size. PMID:28757657

  7. Kidney lesions in Rocky Mountain spotted fever: a light-, immunofluorescence-, and electron-microscopic study.

    PubMed Central

    Bradford, W. D.; Croker, B. P.; Tisher, C. C.

    1979-01-01

    The essential pathologic lesion in Rocky Mountain spotted fever (RMSF) is a vasculitis that may involve the kidneys as well as the heart, brain, skin, and subcutaneous tissues. Histopathologic information concerning the response of the kidneys in RMSF is rather limited, however. In this study renal tissue from 17 children who died of RMSF was examined by light, electron, and immunofluorescence microscopy. A lymphocytic or mixed inflammation, or both, involving vessels and interstitium of the kidney was found in all patients. In addition, 10 patients had histologic evidence of acute tubular necrosis, and another 3 had glomerular lesions consisting of focal segmental tuft necrosis or increased cellularity secondary to neutophilic infiltration, or both. Immunofluorescence- and electron-microscopic studies failed to demonstrate immune-complex deposition within glomeruli, a finding that suggests that immunoglobulin and classic immune complexes were not involved in the pathogenesis of the renal lesions at the time of death. These findings suggest the possibility that the pathogenesis of the renal lesion in RMSF may be due to a direct action of the organism (Rickettsia rickettsii) on the vessel wall. Images Figure 2 Figure 1 PMID:525676

  8. Preservation of protein fluorescence in embedded human dendritic cells for targeted 3D light and electron microscopy.

    PubMed

    Höhn, K; Fuchs, J; Fröber, A; Kirmse, R; Glass, B; Anders-Össwein, M; Walther, P; Kräusslich, H-G; Dietrich, C

    2015-08-01

    In this study, we present a correlative microscopy workflow to combine detailed 3D fluorescence light microscopy data with ultrastructural information gained by 3D focused ion beam assisted scanning electron microscopy. The workflow is based on an optimized high pressure freezing/freeze substitution protocol that preserves good ultrastructural detail along with retaining the fluorescence signal in the resin embedded specimens. Consequently, cellular structures of interest can readily be identified and imaged by state of the art 3D confocal fluorescence microscopy and are precisely referenced with respect to an imprinted coordinate system on the surface of the resin block. This allows precise guidance of the focused ion beam assisted scanning electron microscopy and limits the volume to be imaged to the structure of interest. This, in turn, minimizes the total acquisition time necessary to conduct the time consuming ultrastructural scanning electron microscope imaging while eliminating the risk to miss parts of the target structure. We illustrate the value of this workflow for targeting virus compartments, which are formed in HIV-pulsed mature human dendritic cells. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  9. FRAP and Photoconversion in Multiple Arbitrary Regions of Interest Using a Programmable Array Microscope (PAM)

    PubMed Central

    Hagen, Guy M.; Caarls, Wouter; Lidke, Keith A.; de Vries, Anthony H. B.; Fritsch, Cornelia; Barisas, B. George; Arndt-Jovin, Donna J.; Jovin, Thomas M.

    2011-01-01

    Photomanipulation (photobleaching, photoactivation, or photoconversion) is an essential tool in fluorescence microscopy. Fluorescence recovery after photobleaching (FRAP) is commonly used for the determination of lateral diffusion constants of membrane proteins, and can be conveniently implemented in confocal laser scanning microscopy (CLSM). Such determinations provide important information on molecular dynamics in live cells. However, the CLSM platform is inherently limited for FRAP because of its inflexible raster (spot) scanning format. We have implemented FRAP and photoactivation protocols using structured illumination and detection in a programmable array microscope (PAM). The patterns are arbitrary in number and shape, dynamic and adjustable to and by the sample characteristics. We have used multi-spot PAM-FRAP to measure the lateral diffusion of the erbB3 (HER3) receptor tyrosine kinase labeled by fusion with mCitrine on untreated cells and after treatment with reagents that perturb the cytoskeleton or plasma membrane or activate co-expressed erbB1 (HER1, the EGF receptor EGFR). We also show the versatility of the PAM for photoactivation in arbitrary regions of interest, in cells expressing erbB3 fused with the photoconvertible fluorescent protein dronpa. PMID:19208387

  10. Scanning electron microscope fractography in failure analysis of steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wouters, R.; Froyen, L.

    1996-04-01

    For many failure cases, macroscopic examination of the fracture surface permits discrimination of fatigue fractures from overload fractures. For clarifying fatigue fractures, the practical significance of microfractography is limited to an investigation of the crack initiation areas. Scanning electron microscopy is successfully used in tracing local material abnormalities that act as fatigue crack initiators. The task for the scanning electron microscope, however, is much more substantial in failure analysis of overload fractures, especially for steels. By revealing specific fractographic characteristics, complemented by information about the material and the loading conditions, scanning electron microscopy provides a strong indication of the probablemore » cause of failure. A complete dimple fracture is indicative of acceptable bulk material properties; overloading, by subdimensioning or excessive external loading, has to be verified. The presence of cleavage fracture makes the material properties questionable if external conditions causing embrittlement are absent. Intergranular brittle fracture requires verification of grain-boundary weakening conditions--a sensitized structure, whether or not combined with a local stress state or a specific environment. The role of scanning electron microscopy in failure analysis is illustrated by case histories of the aforementioned fracture types.« less

  11. The Evaluation of a New Approach to Teaching Microscopic Anatomy. Final Report.

    ERIC Educational Resources Information Center

    Scranton, James R.

    This project was a partial evaluation of the new approach to teaching medical microscopic anatomy developed at the University of Iowa. The format of the course included specific objectives given to the students in advance, with the main sources of information coming from independent readings and laboratory exercises, demonstration of mastery of…

  12. Scanning tunneling microscope nanoetching method

    DOEpatents

    Li, Yun-Zhong; Reifenberger, Ronald G.; Andres, Ronald P.

    1990-01-01

    A method is described for forming uniform nanometer sized depressions on the surface of a conducting substrate. A tunneling tip is used to apply tunneling current density sufficient to vaporize a localized area of the substrate surface. The resulting depressions or craters in the substrate surface can be formed in information encoding patterns readable with a scanning tunneling microscope.

  13. Profiling with the electron microscope.

    NASA Technical Reports Server (NTRS)

    Vedder, J. F.; Lem, H. Y.

    1972-01-01

    Discussion of a profiling technique using a scanning electron microscope for obtaining depth information on a single micrograph of a small specimen. A stationary electron beam is used to form a series of contamination spots in a line across the specimen. Micrographs obtained by this technique are useful as a means of projection and display where stereo viewers are not practical.

  14. Coherence and diffraction limited resolution in microscopic OCT by a unified approach for the correction of dispersion and aberrations

    NASA Astrophysics Data System (ADS)

    Schulz-Hildebrandt, H.; Münter, Michael; Ahrens, M.; Spahr, H.; Hillmann, D.; König, P.; Hüttmann, G.

    2018-03-01

    Optical coherence tomography (OCT) images scattering tissues with 5 to 15 μm resolution. This is usually not sufficient for a distinction of cellular and subcellular structures. Increasing axial and lateral resolution and compensation of artifacts caused by dispersion and aberrations is required to achieve cellular and subcellular resolution. This includes defocus which limit the usable depth of field at high lateral resolution. OCT gives access the phase of the scattered light and hence correction of dispersion and aberrations is possible by numerical algorithms. Here we present a unified dispersion/aberration correction which is based on a polynomial parameterization of the phase error and an optimization of the image quality using Shannon's entropy. For validation, a supercontinuum light sources and a costume-made spectrometer with 400 nm bandwidth were combined with a high NA microscope objective in a setup for tissue and small animal imaging. Using this setup and computation corrections, volumetric imaging at 1.5 μm resolution is possible. Cellular and near cellular resolution is demonstrated in porcine cornea and the drosophila larva, when computational correction of dispersion and aberrations is used. Due to the excellent correction of the used microscope objective, defocus was the main contribution to the aberrations. In addition, higher aberrations caused by the sample itself were successfully corrected. Dispersion and aberrations are closely related artifacts in microscopic OCT imaging. Hence they can be corrected in the same way by optimization of the image quality. This way microscopic resolution is easily achieved in OCT imaging of static biological tissues.

  15. Multiscale Imaging of the Mouse Cortex Using Two-Photon Microscopy and Wide-Field Illumination

    NASA Astrophysics Data System (ADS)

    Bumstead, Jonathan R.

    The mouse brain can be studied over vast spatial scales ranging from microscopic imaging of single neurons to macroscopic measurements of hemodynamics acquired over the majority of the mouse cortex. However, most neuroimaging modalities are limited by a fundamental trade-off between the spatial resolution and the field-of-view (FOV) over which the brain can be imaged, making it difficult to fully understand the functional and structural architecture of the healthy mouse brain and its disruption in disease. My dissertation has focused on developing multiscale optical systems capable of imaging the mouse brain at both microscopic and mesoscopic spatial scales, specifically addressing the difference in spatial scales imaged with two-photon microscopy (TPM) and optical intrinsic signal imaging (OISI). Central to this work has been the formulation of a principled design strategy for extending the FOV of the two-photon microscope. Using this design approach, we constructed a TPM system with subcellular resolution and a FOV area 100 times greater than a conventional two-photon microscope. To image the ellipsoidal shape of the mouse cortex, we also developed the microscope to image arbitrary surfaces within a single frame using an electrically tunable lens. Finally, to address the speed limitations of the TPM systems developed during my dissertation, I also conducted research in large-scale neural phenomena occurring in the mouse brain imaged with high-speed OISI. The work conducted during my dissertation addresses some of the fundamental principles in designing and applying optical systems for multiscale imaging of the mouse brain.

  16. Three-Dimensional Localization of Single Molecules for Super-Resolution Imaging and Single-Particle Tracking

    PubMed Central

    von Diezmann, Alex; Shechtman, Yoav; Moerner, W. E.

    2017-01-01

    Single-molecule super-resolution fluorescence microscopy and single-particle tracking are two imaging modalities that illuminate the properties of cells and materials on spatial scales down to tens of nanometers, or with dynamical information about nanoscale particle motion in the millisecond range, respectively. These methods generally use wide-field microscopes and two-dimensional camera detectors to localize molecules to much higher precision than the diffraction limit. Given the limited total photons available from each single-molecule label, both modalities require careful mathematical analysis and image processing. Much more information can be obtained about the system under study by extending to three-dimensional (3D) single-molecule localization: without this capability, visualization of structures or motions extending in the axial direction can easily be missed or confused, compromising scientific understanding. A variety of methods for obtaining both 3D super-resolution images and 3D tracking information have been devised, each with their own strengths and weaknesses. These include imaging of multiple focal planes, point-spread-function engineering, and interferometric detection. These methods may be compared based on their ability to provide accurate and precise position information of single-molecule emitters with limited photons. To successfully apply and further develop these methods, it is essential to consider many practical concerns, including the effects of optical aberrations, field-dependence in the imaging system, fluorophore labeling density, and registration between different color channels. Selected examples of 3D super-resolution imaging and tracking are described for illustration from a variety of biological contexts and with a variety of methods, demonstrating the power of 3D localization for understanding complex systems. PMID:28151646

  17. Surface topography characterization using 3D stereoscopic reconstruction of SEM images

    NASA Astrophysics Data System (ADS)

    Vedantha Krishna, Amogh; Flys, Olena; Reddy, Vijeth V.; Rosén, B. G.

    2018-06-01

    A major drawback of the optical microscope is its limitation to resolve finer details. Many microscopes have been developed to overcome the limitations set by the diffraction of visible light. The scanning electron microscope (SEM) is one such alternative: it uses electrons for imaging, which have much smaller wavelength than photons. As a result high magnification with superior image resolution can be achieved. However, SEM generates 2D images which provide limited data for surface measurements and analysis. Often many research areas require the knowledge of 3D structures as they contribute to a comprehensive understanding of microstructure by allowing effective measurements and qualitative visualization of the samples under study. For this reason, stereo photogrammetry technique is employed to convert SEM images into 3D measurable data. This paper aims to utilize a stereoscopic reconstruction technique as a reliable method for characterization of surface topography. Reconstructed results from SEM images are compared with coherence scanning interferometer (CSI) results obtained by measuring a roughness reference standard sample. This paper presents a method to select the most robust/consistent surface texture parameters that are insensitive to the uncertainties involved in the reconstruction technique itself. Results from the two-stereoscopic reconstruction algorithms are also documented in this paper.

  18. On exponentially suppressed corrections to BMPV black hole entropy

    NASA Astrophysics Data System (ADS)

    Lal, Shailesh; Narayan, Prithvi

    2018-05-01

    The microscopic formula for the degeneracy of BMPV black hole microstates contains a series of exponentially suppressed corrections to the leading Bekenstein Hawking expression. We identify saddle points of the quantum entropy function for the BMPV black hole which are natural counterparts to these corrections and discuss the matching of leading and next-to-leading terms from the microscopic and macroscopic sides in a limit where the black hole charges are large.

  19. Low Voltage Electron Beam Lithography

    DTIC Science & Technology

    1994-01-01

    September 1970 (Societe Franaise do Microscopic Elecuouique, Plaris, 1970) Vol. 2, p. 55. [31 H . C. Pfeiffer, "Basic limitations of probefonning systems...USA (editors: 0. Jobari and I. Corvin). [4) T. Groves, D. L Hunmond, H . Kuo, ’Elecmnm-beam broadening effct caused by discreteness of space charge...Electron Microscope Gun". Br. J. Appi. Phys.. February 1952, pp. 40-46. M. E. Haine, P. A. Einstein, and P. H . Brocherd. "Resistance Bias

  20. Auricular burns associated with operating microscope use during otologic surgery.

    PubMed

    Latuska, Richard F; Carlson, Matthew L; Neff, Brian A; Driscoll, Colin L; Wanna, George B; Haynes, David S

    2014-02-01

    To raise awareness of the potential hazard of auricular burns associated with operating microscope use during otologic surgery. Retrospective case series and summary of the Food and Drug Administration's (FDA) Manufacturer and User Facility Device Experience (MAUDE) database of voluntary adverse event reports pertaining to microscope related auricular thermal injuries. All patients who sustained auricular burns while using the operating microscope during otologic surgery at 2 tertiary academic referral centers. Surgical procedure, microscope model, intensity of illumination, length of procedure, focal length, location and severity of burn, and patient outcome. A total of 4 microscope-related auricular thermal injuries were identified from the authors' institutions. Additionally, 82 unique cases of soft tissue burns associated with the use of an operative microscope have been voluntarily reported to the FDA since 2004. A disproportionately large percent (∼ 30%) of these occurred within the field of otology, the majority of which were during tympanoplasty or tympanomastoidectomy procedures at focal length distances of 300 mm or less with xenon light source microscopes. Simultaneous advancements in light delivery technologies and lens optics have continued to improve the efficiency of the operating microscope; however, these improvements also increase the potential for thermal injuries. Although rare, a review of the FDA MAUDE database suggests that microscope-related soft tissue burns occur more frequently in otology than any other surgical specialty. A variety of factors may help explain this finding, including the unique anatomy of the external ear with thin skin and limited underlying adipose tissue. Preventative measures should be taken to decrease the risk of thermal injuries including use of the lowest comfortable light intensity, adjusting the aperture width to match the operative field, frequent wound irrigation, and covering exposed portions of the pinna with a moist surgical sponge.

  1. Discriminative segmentation of microscopic cellular images.

    PubMed

    Cheng, Li; Ye, Ning; Yu, Weimiao; Cheah, Andre

    2011-01-01

    Microscopic cellular images segmentation has become an important routine procedure in modern biological research, due to the rapid advancement of fluorescence probes and robotic microscopes in recent years. In this paper we advocate a discriminative learning approach for cellular image segmentation. In particular, three new features are proposed to capture the appearance, shape and context information, respectively. Experiments are conducted on three different cellular image datasets. Despite the significant disparity among these datasets, the proposed approach is demonstrated to perform reasonably well. As expected, for a particular dataset, some features turn out to be more suitable than others. Interestingly, we observe that a further gain can often be obtained on top of using the "good" features, by also retaining those features that perform poorly. This might be due to the complementary nature of these features, as well as the capacity of our approach to better integrate and exploit different sources of information.

  2. Inexpensive Monocular Pico-Projector-based Augmented Reality Display for Surgical Microscope

    PubMed Central

    Shi, Chen; Becker, Brian C.; Riviere, Cameron N.

    2013-01-01

    This paper describes an inexpensive pico-projector-based augmented reality (AR) display for a surgical microscope. The system is designed for use with Micron, an active handheld surgical tool that cancels hand tremor of surgeons to improve microsurgical accuracy. Using the AR display, virtual cues can be injected into the microscope view to track the movement of the tip of Micron, show the desired position, and indicate the position error. Cues can be used to maintain high performance by helping the surgeon to avoid drifting out of the workspace of the instrument. Also, boundary information such as the view range of the cameras that record surgical procedures can be displayed to tell surgeons the operation area. Furthermore, numerical, textual, or graphical information can be displayed, showing such things as tool tip depth in the work space and on/off status of the canceling function of Micron. PMID:25264542

  3. Microscopic Description of Spontaneous Emission in Stark Chirped Rapid Adiabatic Passages

    NASA Astrophysics Data System (ADS)

    Shi, Xuan; Yuan, Hao; Zhao, Hong-Quan

    2018-01-01

    A microscopic approach describing the effect of spontaneous emission in the stark-chirped rapid adiabatic passages (SCRAPs) for quantum computation is presented. Apart from the phenomenological model, this microscopic one can investigate the dependence of the population dynamics both on the temperature of the environment and the decay rate γ. With flux-biased Josephson qubits as a specifical example, we study the efficiency of the SCRAP for realizing the basic Pauli-X and iSWAP gates. Our results show clearly that the behavior of the population transfer described by the microscopic model is similar with the phenomenological one at zero temperature. In the limit of very high temperature, the population probabilities of the qubit states exhibit strong stability properties. High efficiency for the quantum gate manipulations in SCRAPs is available against the weak decay rate γ ≪ 1 at low temperature.

  4. Comparisons between conventional optical imaging and parametric indirect microscopic imaging on human skin detection

    NASA Astrophysics Data System (ADS)

    Liu, Guoyan; Gao, Kun; Liu, Xuefeng; Ni, Guoqiang

    2016-10-01

    We report a new method, polarization parameters indirect microscopic imaging with a high transmission infrared light source, to detect the morphology and component of human skin. A conventional reflection microscopic system is used as the basic optical system, into which a polarization-modulation mechanics is inserted and a high transmission infrared light source is utilized. The near-field structural characteristics of human skin can be delivered by infrared waves and material coupling. According to coupling and conduction physics, changes of the optical wave parameters can be calculated and curves of the intensity of the image can be obtained. By analyzing the near-field polarization parameters in nanoscale, we can finally get the inversion images of human skin. Compared with the conventional direct optical microscope, this method can break diffraction limit and achieve a super resolution of sub-100nm. Besides, the method is more sensitive to the edges, wrinkles, boundaries and impurity particles.

  5. CHAMP - Camera, Handlens, and Microscope Probe

    NASA Technical Reports Server (NTRS)

    Mungas, G. S.; Beegle, L. W.; Boynton, J.; Sepulveda, C. A.; Balzer, M. A.; Sobel, H. R.; Fisher, T. A.; Deans, M.; Lee, P.

    2005-01-01

    CHAMP (Camera, Handlens And Microscope Probe) is a novel field microscope capable of color imaging with continuously variable spatial resolution from infinity imaging down to diffraction-limited microscopy (3 micron/pixel). As an arm-mounted imager, CHAMP supports stereo-imaging with variable baselines, can continuously image targets at an increasing magnification during an arm approach, can provide precision range-finding estimates to targets, and can accommodate microscopic imaging of rough surfaces through a image filtering process called z-stacking. Currently designed with a filter wheel with 4 different filters, so that color and black and white images can be obtained over the entire Field-of-View, future designs will increase the number of filter positions to include 8 different filters. Finally, CHAMP incorporates controlled white and UV illumination so that images can be obtained regardless of sun position, and any potential fluorescent species can be identified so the most astrobiologically interesting samples can be identified.

  6. Methyl green and nitrotetrazolium blue chloride co-expression in colon tissue: A hyperspectral microscopic imaging analysis

    NASA Astrophysics Data System (ADS)

    Li, Qingli; Liu, Hongying; Wang, Yiting; Sun, Zhen; Guo, Fangmin; Zhu, Jianzhong

    2014-12-01

    Histological observation of dual-stained colon sections is usually performed by visual observation under a light microscope, or by viewing on a computer screen with the assistance of image processing software in both research and clinical settings. These traditional methods are usually not sufficient to reliably differentiate spatially overlapping chromogens generated by different dyes. Hyperspectral microscopic imaging technology offers a solution for these constraints as the hyperspectral microscopic images contain information that allows differentiation between spatially co-located chromogens with similar but different spectra. In this paper, a hyperspectral microscopic imaging (HMI) system is used to identify methyl green and nitrotetrazolium blue chloride in dual-stained colon sections. Hyperspectral microscopic images are captured and the normalized score algorithm is proposed to identify the stains and generate the co-expression results. Experimental results show that the proposed normalized score algorithm can generate more accurate co-localization results than the spectral angle mapper algorithm. The hyperspectral microscopic imaging technology can enhance the visualization of dual-stained colon sections, improve the contrast and legibility of each stain using their spectral signatures, which is helpful for pathologist performing histological analyses.

  7. Dark-field imaging with the scanning transmission x-ray microscope

    NASA Astrophysics Data System (ADS)

    Morrison, G. R.; Browne, M. T.

    1992-01-01

    The King's College London scanning transmission x-ray microscope in use on beam line 5U2 at the SRS, SERC Daresbury Laboratory, has been modified to allow dark-field images to be formed using only the x rays scattered by the specimen. Experiments have been performed with a number of different detector geometries, and this has confirmed that the strongest scattering arises from edges or thickness gradients in the specimen. Although the dark-field signal is only a small fraction of the normal transmitted bright-field signal, features can be revealed with high contrast, and it has proved possible to detect the presence of features that are below the resolution limit of the microscope.

  8. Nematic elastomers: from a microscopic model to macroscopic elasticity theory.

    PubMed

    Xing, Xiangjun; Pfahl, Stephan; Mukhopadhyay, Swagatam; Goldbart, Paul M; Zippelius, Annette

    2008-05-01

    A Landau theory is constructed for the gelation transition in cross-linked polymer systems possessing spontaneous nematic ordering, based on symmetry principles and the concept of an order parameter for the amorphous solid state. This theory is substantiated with help of a simple microscopic model of cross-linked dimers. Minimization of the Landau free energy in the presence of nematic order yields the neoclassical theory of the elasticity of nematic elastomers and, in the isotropic limit, the classical theory of isotropic elasticity. These phenomenological theories of elasticity are thereby derived from a microscopic model, and it is furthermore demonstrated that they are universal mean-field descriptions of the elasticity for all chemical gels and vulcanized media.

  9. Indentation-Enabled In Situ Mechanical Characterization of Micro/Nanopillars in Electron Microscopes

    NASA Astrophysics Data System (ADS)

    Guo, Qiang; Fu, Xidan; Guo, Xiaolei; Liu, Zhiying; Shi, Yan; Zhang, Di

    2018-04-01

    Indentation-enabled micro/nanomechanical characterization of small-scale specimens provides powerful new tools for probing materials properties that were once unattainable by conventional experimental methods. Recent advancement in instrumentation further allows mechanical testing to be carried out in situ in electron microscopes, with high spatial and temporal resolution. This review discusses the recent development of nanoindentation-enabled in situ mechanical testing in electron microscopes, with an emphasis on the study of micro/nanopillars. Focus is given to novel applications beyond simple compressive and tensile testing that have been developed in the past few years, and limitations and possible future research directions in this field are proposed and discussed.

  10. Microdose fluorescence imaging of ABY-029 on an operating microscope adapted by custom illumination and imaging modules.

    PubMed

    Elliott, Jonathan T; Dsouza, Alisha V; Marra, Kayla; Pogue, Brian W; Roberts, David W; Paulsen, Keith D

    2016-09-01

    Fluorescence guided surgery has the potential to positively impact surgical oncology; current operating microscopes and stand-alone imaging systems are too insensitive or too cumbersome to maximally take advantage of new tumor-specific agents developed through the microdose pathway. To this end, a custom-built illumination and imaging module enabling picomolar-sensitive near-infrared fluorescence imaging on a commercial operating microscope is described. The limits of detection and system specifications are characterized, and in vivo efficacy of the system in detecting ABY-029 is evaluated in a rat orthotopic glioma model following microdose injections, showing the suitability of the device for microdose phase 0 clinical trials.

  11. Microdose fluorescence imaging of ABY-029 on an operating microscope adapted by custom illumination and imaging modules

    PubMed Central

    Dsouza, Alisha V.; Marra, Kayla; Pogue, Brian W.; Roberts, David W.; Paulsen, Keith D.

    2016-01-01

    Fluorescence guided surgery has the potential to positively impact surgical oncology; current operating microscopes and stand-alone imaging systems are too insensitive or too cumbersome to maximally take advantage of new tumor-specific agents developed through the microdose pathway. To this end, a custom-built illumination and imaging module enabling picomolar-sensitive near-infrared fluorescence imaging on a commercial operating microscope is described. The limits of detection and system specifications are characterized, and in vivo efficacy of the system in detecting ABY-029 is evaluated in a rat orthotopic glioma model following microdose injections, showing the suitability of the device for microdose phase 0 clinical trials. PMID:27699098

  12. Relative merits and limiting factors for x-ray and electron microscopy of thick, hydrated organic materials.

    PubMed

    Du, Ming; Jacobsen, Chris

    2018-01-01

    Electron and x-ray microscopes allow one to image the entire, unlabeled structure of hydrated materials at a resolution well beyond what visible light microscopes can achieve. However, both approaches involve ionizing radiation, so that radiation damage must be considered as one of the limits to imaging. Drawing upon earlier work, we describe here a unified approach to estimating the image contrast (and thus the required exposure and corresponding radiation dose) in both x-ray and electron microscopy. This approach accounts for factors such as plural and inelastic scattering, and (in electron microscopy) the use of energy filters to obtain so-called "zero loss" images. As expected, it shows that electron microscopy offers lower dose for specimens thinner than about 1 µm (such as for studies of macromolecules, viruses, bacteria and archaebacteria, and thin sectioned material), while x-ray microscopy offers superior characteristics for imaging thicker specimen such as whole eukaryotic cells, thick-sectioned tissues, and organs. The required radiation dose scales strongly as a function of the desired spatial resolution, allowing one to understand the limits of live and frozen hydrated specimen imaging. Finally, we consider the factors limiting x-ray microscopy of thicker materials, suggesting that specimens as thick as a whole mouse brain can be imaged with x-ray microscopes without significant image degradation should appropriate image reconstruction methods be identified. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Optical method for high magnification imaging and video recording of live cells at sub-micron resolution

    NASA Astrophysics Data System (ADS)

    Romo, Jaime E., Jr.

    Optical microscopy, the most common technique for viewing living microorganisms, is limited in resolution by Abbe's criterion. Recent microscopy techniques focus on circumnavigating the light diffraction limit by using different methods to obtain the topography of the sample. Systems like the AFM and SEM provide images with fields of view in the nanometer range with high resolvable detail, however these techniques are expensive, and limited in their ability to document live cells. The Dino-Lite digital microscope coupled with the Zeiss Axiovert 25 CFL microscope delivers a cost-effective method for recording live cells. Fields of view ranging from 8 microns to 300 microns with fair resolution provide a reliable method for discovering native cell structures at the nanoscale. In this report, cultured HeLa cells are recorded using different optical configurations resulting in documentation of cell dynamics at high magnification and resolution.

  14. Theoretical aspects of cellular decision-making and information-processing.

    PubMed

    Kobayashi, Tetsuya J; Kamimura, Atsushi

    2012-01-01

    Microscopic biological processes have extraordinary complexity and variety at the sub-cellular, intra-cellular, and multi-cellular levels. In dealing with such complex phenomena, conceptual and theoretical frameworks are crucial, which enable us to understand seemingly different intra- and inter-cellular phenomena from unified viewpoints. Decision-making is one such concept that has attracted much attention recently. Since a number of cellular behavior can be regarded as processes to make specific actions in response to external stimuli, decision-making can cover and has been used to explain a broad range of different cellular phenomena [Balázsi et al. (Cell 144(6):910, 2011), Zeng et al. (Cell 141(4):682, 2010)]. Decision-making is also closely related to cellular information-processing because appropriate decisions cannot be made without exploiting the information that the external stimuli contain. Efficiency of information transduction and processing by intra-cellular networks determines the amount of information obtained, which in turn limits the efficiency of subsequent decision-making. Furthermore, information-processing itself can serve as another concept that is crucial for understanding of other biological processes than decision-making. In this work, we review recent theoretical developments on cellular decision-making and information-processing by focusing on the relation between these two concepts.

  15. Astigmatism compensation in digital holographic microscopy using complex-amplitude correlation

    NASA Astrophysics Data System (ADS)

    Tamrin, Khairul Fikri; Rahmatullah, Bahbibi; Samuri, Suzani Mohamad

    2015-07-01

    Digital holographic microscopy (DHM) is a promising tool for a three-dimensional imaging of microscopic particles. It offers the possibility of wavefront processing by manipulating amplitude and phase of the recorded digital holograms. With a view to compensate for aberration in the reconstructed particle images, this paper discusses a new approach of aberration compensation based on complex amplitude correlation and the use of a priori information. The approach is applied to holograms of microscopic particles flowing inside a cylindrical micro-channel recorded using an off-axis digital holographic microscope. The approach results in improvements in the image and signal qualities.

  16. Non Destructive 3D X-Ray Imaging of Nano Structures & Composites at Sub-30 NM Resolution, With a Novel Lab Based X-Ray Microscope

    DTIC Science & Technology

    2006-11-01

    NON DESTRUCTIVE 3D X-RAY IMAGING OF NANO STRUCTURES & COMPOSITES AT SUB-30 NM RESOLUTION, WITH A NOVEL LAB BASED X- RAY MICROSCOPE S H Lau...article we describe a 3D x-ray microscope based on a laboratory x-ray source operating at 2.7, 5.4 or 8.0 keV hard x-ray energies. X-ray computed...tomography (XCT) is used to obtain detailed 3D structural information inside optically opaque materials with sub-30 nm resolution. Applications include

  17. A frameless stereotaxic operating microscope for neurosurgery.

    PubMed

    Friets, E M; Strohbehn, J W; Hatch, J F; Roberts, D W

    1989-06-01

    A new system, which we call the frameless stereotaxic operating microscope, is discussed. Its purpose is to display CT or other image data in the operating microscope in the correct scale, orientation, and position without the use of a stereotaxic frame. A nonimaging ultrasonic rangefinder allows the position of the operating microscope and the position of the patient to be determined. Discrete fiducial points on the patient's external anatomy are located in both image space and operating room space, linking the image data and the operating room. Physician-selected image information, e.g., tumor contours or guidance to predetermined targets, is projected through the optics of the operating microscope using a miniature cathode ray tube and a beam splitter. Projected images superpose the surgical field, reconstructed from image data to match the focal plane of the operating microscope. The algorithms on which the system is based are described, and the sources and effects of errors are discussed. The system's performance is simulated, providing an estimate of accuracy. Two phantoms are used to measure accuracy experimentally. Clinical results and observations are given.

  18. Visible-to-visible four-photon ultrahigh resolution microscopic imaging with 730-nm diode laser excited nanocrystals.

    PubMed

    Wang, Baoju; Zhan, Qiuqiang; Zhao, Yuxiang; Wu, Ruitao; Liu, Jing; He, Sailing

    2016-01-25

    Further development of multiphoton microscopic imaging is confronted with a number of limitations, including high-cost, high complexity and relatively low spatial resolution due to the long excitation wavelength. To overcome these problems, for the first time, we propose visible-to-visible four-photon ultrahigh resolution microscopic imaging by using a common cost-effective 730-nm laser diode to excite the prepared Nd(3+)-sensitized upconversion nanoparticles (Nd(3+)-UCNPs). An ordinary multiphoton scanning microscope system was built using a visible CW diode laser and the lateral imaging resolution as high as 161-nm was achieved via the four-photon upconversion process. The demonstrated large saturation excitation power for Nd(3+)-UCNPs would be more practical and facilitate the four-photon imaging in the application. A sample with fine structure was imaged to demonstrate the advantages of visible-to-visible four-photon ultrahigh resolution microscopic imaging with 730-nm diode laser excited nanocrystals. Combining the uniqueness of UCNPs, the proposed visible-to-visible four-photon imaging would be highly promising and attractive in the field of multiphoton imaging.

  19. Microscopic Comparison of Airfall Dust to Martian Soil

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This pair of images taken by the Optical Microscope on NASA's Phoenix Mars Lander offers a side-by-side comparison of an airfall dust sample collected on a substrate exposed during landing (left) and a soil sample scooped up from the surface of the ground beside the lander. In both cases the sample is collected on a silicone substrate, which provides a sticky surface holding sample particles for observation by the microscope.

    Similar fine particles at the resolution limit of the microscope are seen in both samples, indicating that the soil has formed from settling of dust.

    The microscope took the image on the left during Phoenix's Sol 9 (June 3, 2008), or the ninth Martian day after landing. It took the image on the right during Sol 17 (June 11, 2008).

    The scale bar is 1 millimeter (0.04 inch).

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  20. Understanding Imaging and Metrology with the Helium Ion Microscope

    NASA Astrophysics Data System (ADS)

    Postek, Michael T.; Vladár, András E.; Ming, Bin

    2009-09-01

    One barrier to innovation confronting all phases of nanotechnology is the lack of accurate metrology for the characterization of nanomaterials. Ultra-high resolution microscopy is a key technology needed to achieve this goal. But, current microscope technology is being pushed to its limits. The scanning and transmission electron microscopes have incrementally improved in performance and other scanned probe technologies such as atomic force microscopy, scanning tunneling microscopy and focused ion beam microscopes have all been applied to nanotechnology with various levels of success. A relatively new tool for nanotechnology is the scanning helium ion microscope (HIM). The HIM is a new complementary imaging and metrology technology for nanotechnology which may be able to push the current resolution barrier lower. But, successful imaging and metrology with this instrument entails new ion beam/specimen interaction physics which must be fully understood. As a new methodology, HIM is beginning to show promise and the abundance of potentially advantageous applications for nanotechnology have yet to be fully exploited. This presentation will discuss some of the progress made at NIST in understanding the science behind this new technique.

  1. Effect of Microscopic Damage Events on Static and Ballistic Impact Strength of Triaxial Braid Composites

    NASA Technical Reports Server (NTRS)

    Littell, Justin D.; Binienda, Wieslaw K.; Arnold, William A.; Roberts, Gary d.; Goldberg, Robert K.

    2008-01-01

    In previous work, the ballistic impact resistance of triaxial braided carbon/epoxy composites made with large flat tows (12k and 24k) was examined by impacting 2 X2 X0.125" composite panels with gelatin projectiles. Several high strength, intermediate modulus carbon fibers were used in combination with both untoughened and toughened matrix materials. A wide range of penetration thresholds were measured for the various fiber/matrix combinations. However, there was no clear relationship between the penetration threshold and the properties of the constituents. During some of these experiments high speed cameras were used to view the failure process, and full-field strain measurements were made to determine the strain at the onset of failure. However, these experiments provided only limited insight into the microscopic failure processes responsible for the wide range of impact resistance observed. In order to investigate potential microscopic failure processes in more detail, quasi-static tests were performed in tension, compression, and shear. Full-field strain measurement techniques were used to identify local regions of high strain resulting from microscopic failures. Microscopic failure events near the specimen surface, such as splitting of fiber bundles in surface plies, were easily identified. Subsurface damage, such as fiber fracture or fiber bundle splitting, could be identified by its effect on in-plane surface strains. Subsurface delamination could be detected as an out-of-plane deflection at the surface. Using this data, failure criteria could be established at the fiber tow level for use in analysis. An analytical formulation was developed to allow the microscopic failure criteria to be used in place of macroscopic properties as input to simulations performed using the commercial explicit finite element code, LS-DYNA. The test methods developed to investigate microscopic failure will be presented along with methods for determining local failure criteria that can be used in analysis. Results of simulations performed using LS-DYNA will be presented to illustrate the capabilities and limitations for simulating failure during quasi-static deformation and during ballistic impact of large unit cell size triaxial braid composites.

  2. High resolution microscopy of the lipid layer of the tear film.

    PubMed

    King-Smith, P Ewen; Nichols, Jason J; Braun, Richard J; Nichols, Kelly K

    2011-10-01

    Tear film evaporation is controlled by the lipid layer and is an important factor in dry eye conditions. Because the barrier to evaporation depends on the structure of the lipid layer, a high resolution microscope has been constructed to study the lipid layer in dry and in normal eyes. The microscope incorporates the following features. First, a long working distance microscope objective is used with a high numerical aperture and resolution. Second, because such a high resolution objective has limited depth of focus, 2000 images are recorded with a video camera over a 20-sec period, with the expectation that some images will be in focus. Third, illumination is from a stroboscopic light source having a brief flash duration, to avoid blurring from movement of the lipid layer. Fourth, the image is in focus when the edge of the image is sharp - this feature is used to select images in good focus. Fifth, an aid is included to help align the cornea at normal incidence to the axis of the objective so that the whole lipid image can be in focus. High resolution microscopy has the potential to elucidate several characteristics of the normal and abnormal lipid layer, including different objects and backgrounds, changes in the blink cycle, stability and fluidity, dewetting, gel-like properties and possible relation to lipid domains. It is expected that high resolution microscopy of the lipid layer will provide information about the mechanisms of dry eye disorders. Illustrative results are presented, derived from over 10,000 images from 375 subjects.

  3. An intraoperative spectroscopic imaging system for quantification of Protoporphyrin IX during glioma surgery (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Angulo-Rodríguez, Leticia M.; Laurence, Audrey; Jermyn, Michael; Sheehy, Guillaume; Sibai, Mira; Petrecca, Kevin; Roberts, David W.; Paulsen, Keith D.; Wilson, Brian C.; Leblond, Frédéric

    2016-03-01

    Cancer tissue often remains after brain tumor resection due to the inability to detect the full extent of cancer during surgery, particularly near tumor boundaries. Commercial systems are available for intra-operative real-time aminolevulenic acid (ALA)-induced protoporphyrin IX (PpIX) fluorescence imaging. These are standard white-light neurosurgical microscopes adapted with optical components for fluorescence excitation and detection. However, these instruments lack sensitivity and specificity, which limits the ability to detect low levels of PpIX and distinguish it from tissue auto-fluorescence. Current systems also cannot provide repeatable and un-biased quantitative fluorophore concentration values because of the unknown and highly variable light attenuation by tissue. We present a highly sensitive spectroscopic fluorescence imaging system that is seamlessly integrated onto a neurosurgical microscope. Hardware and software were developed to achieve through-microscope spatially-modulated illumination for 3D profilometry and to use this information to extract tissue optical properties to correct for the effects of tissue light attenuation. This gives pixel-by-pixel quantified fluorescence values and improves detection of low PpIX concentrations. This is achieved using a high-sensitivity Electron Multiplying Charge Coupled Device (EMCCD) with a Liquid Crystal Tunable Filter (LCTF) whereby spectral bands are acquired sequentially; and a snapshot camera system with simultaneous acquisition of all bands is used for profilometry and optical property recovery. Sensitivity and specificity to PpIX is demonstrated using brain tissue phantoms and intraoperative human data acquired in an on-going clinical study using PpIX fluorescence to guide glioma resection.

  4. Construction of a microscopic agent-based model for firms' dynamics

    NASA Astrophysics Data System (ADS)

    Iyetomi, Hiroshi; Aoyama, Hideaki; Fujiwara, Yoshi; Ikeda, Yuichi; Kaizoji, Taisei; Soma, Wataru

    2005-07-01

    A workable microscopic model for firms' dynamics has been constructed. The model consists of firm agents and a bank agent dynamics of which are described by balance sheets. The size distribution of firms and the temporal evolution of the bank show critical dependence on whether or not firms use perfect information on their financial conditions to draw up next production plans.

  5. U-10Mo Sample Preparation and Examination using Optical and Scanning Electron Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prabhakaran, Ramprashad; Joshi, Vineet V.; Rhodes, Mark A.

    2016-10-01

    The purpose of this document is to provide guidelines to prepare specimens of uranium alloyed with 10 weight percent molybdenum (U-10Mo) for optical metallography and scanning electron microscopy. This document also provides instructions to set up an optical microscope and a scanning electron microscope to analyze U-10Mo specimens and to obtain the required information.

  6. U-10Mo Sample Preparation and Examination using Optical and Scanning Electron Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prabhakaran, Ramprashad; Joshi, Vineet V.; Rhodes, Mark A.

    2016-03-30

    The purpose of this document is to provide guidelines to prepare specimens of uranium alloyed with 10 weight percent molybdenum (U-10Mo) for optical metallography and scanning electron microscopy. This document also provides instructions to set up an optical microscope and a scanning electron microscope to analyze U-10Mo specimens and to obtain the required information.

  7. Vision and the dimensions of nerve fibers.

    PubMed

    Wade, Nicholas J

    2005-12-01

    Vision provided the obvious source of determining the dimensions of nerve fibers when suitable achromatic microscopes were directed at neural tissue in the 1830s. The earlier microscopes of Hooke and Leeuwenhoek were unable to resolve such small structures adequately. However, it was not Hooke's microscope that led to an estimate of the dimensions of nerve fibers, but his experiments on the limits of visual resolution; he determined that a separation of one minute of arc was the minimum that could normally be seen. Descartes had earlier speculated that the retina consisted of the ends of fibers of the optic nerve, and that their size defined the limits of what could be seen. Estimates of the diameters of nerve fibers were made on the basis of human visual acuity by Porterfield in 1738; he calculated the diameters of nerve fibers in the retina as one 7,200th part of an inch (0.0035 mm), based on the resolution of one minute as the minimum visible. In the same year, Jurin questioned the reliability of such estimates because of variations in visual resolution with different stimuli.

  8. Another look through Heisenberg’s microscope

    NASA Astrophysics Data System (ADS)

    Boughn, Stephen; Reginatto, Marcel

    2018-05-01

    Heisenberg introduced his famous uncertainty relations in a seminal 1927 paper entitled The Physical Content of Quantum Kinematics and Mechanics. He motivated his arguments with a gedanken experiment, a gamma ray microscope to measure the position of a particle. A primary result was that, due to the quantum nature of light, there is an inherent uncertainty in the determinations of the particle’s position and momentum dictated by an indeterminacy relation, δ qδ p∼ h. Heisenberg offered this demonstration as ‘a direct physical interpretation of the [quantum mechanical] equation {{pq}}-{{qp}}=-{{i}}{\\hslash }’ but considered the indeterminacy relation to be much more than this. He also argued that it implies limitations on the very meanings of position and momentum and emphasised that these limitations are the source of the statistical character of quantum mechanics. In addition, Heisenberg hoped but was unable to demonstrate that the laws of quantum mechanics could be derived directly from the uncertainty relation. In this paper, we revisit Heisenberg’s microscope and argue that the Schrödinger equation for a free particle does indeed follow from the indeterminacy relation together with reasonable statistical assumptions.

  9. Quasi-microscope concept for planetary missions.

    PubMed

    Huck, F O; Arvidson, R E; Burcher, E E; Giat, O; Wall, S D

    1977-09-01

    Viking lander cameras have returned stereo and multispectral views of the Martian surface with a resolution that approaches 2 mm/lp in the near field. A two-orders-of-magnitude increase in resolution could be obtained for collected surface samples by augmenting these cameras with auxiliary optics that would neither impose special camera design requirements nor limit the cameras field of view of the terrain. Quasi-microscope images would provide valuable data on the physical and chemical characteristics of planetary regoliths.

  10. Scanning near-field optical microscopy.

    PubMed

    Vobornik, Dusan; Vobornik, Slavenka

    2008-02-01

    An average human eye can see details down to 0,07 mm in size. The ability to see smaller details of the matter is correlated with the development of the science and the comprehension of the nature. Today's science needs eyes for the nano-world. Examples are easily found in biology and medical sciences. There is a great need to determine shape, size, chemical composition, molecular structure and dynamic properties of nano-structures. To do this, microscopes with high spatial, spectral and temporal resolution are required. Scanning Near-field Optical Microscopy (SNOM) is a new step in the evolution of microscopy. The conventional, lens-based microscopes have their resolution limited by diffraction. SNOM is not subject to this limitation and can offer up to 70 times better resolution.

  11. Pushing the physical limits of spectroscopic imaging for new biology and better medicine (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Cheng, Ji-Xin

    2017-02-01

    In vivo molecular spectroscopic imaging is not a simple addition of a spectrometer to a microscope. Innovations are needed to break the physical limits in sensitivity, depth, speed and resolution perspectives. I will present our most recent advances in modality development, biological application, and clinical translation. My talk will focus on the development of mid-infrared photothermal microscope for depth-resolved vibrational imaging of living cells (Science Advances, in press), the discovery of a metabolic signature in cancer stem cells by hyperspectral stimulated Raman scattering imaging (Cell Stem Cell, in press), and the development of an intravascular vibrational photoacoustic catheter for label-free sensing of lipid laden plaques (Scientific Report 2016, 6:25236).

  12. Three-Body Forces and the Limit of Oxygen Isotopes

    NASA Astrophysics Data System (ADS)

    Otsuka, Takaharu; Suzuki, Toshio; Holt, Jason D.; Schwenk, Achim; Akaishi, Yoshinori

    2010-07-01

    The limit of neutron-rich nuclei, the neutron drip line, evolves regularly from light to medium-mass nuclei except for a striking anomaly in the oxygen isotopes. This anomaly is not reproduced in shell-model calculations derived from microscopic two-nucleon forces. Here, we present the first microscopic explanation of the oxygen anomaly based on three-nucleon forces that have been established in few-body systems. This leads to repulsive contributions to the interactions among excess neutrons that change the location of the neutron drip line from O28 to the experimentally observed O24. Since the mechanism is robust and general, our findings impact the prediction of the most neutron-rich nuclei and the synthesis of heavy elements in neutron-rich environments.

  13. Maximizing the Biochemical Resolving Power of Fluorescence Microscopy

    PubMed Central

    Esposito, Alessandro; Popleteeva, Marina; Venkitaraman, Ashok R.

    2013-01-01

    Most recent advances in fluorescence microscopy have focused on achieving spatial resolutions below the diffraction limit. However, the inherent capability of fluorescence microscopy to non-invasively resolve different biochemical or physical environments in biological samples has not yet been formally described, because an adequate and general theoretical framework is lacking. Here, we develop a mathematical characterization of the biochemical resolution in fluorescence detection with Fisher information analysis. To improve the precision and the resolution of quantitative imaging methods, we demonstrate strategies for the optimization of fluorescence lifetime, fluorescence anisotropy and hyperspectral detection, as well as different multi-dimensional techniques. We describe optimized imaging protocols, provide optimization algorithms and describe precision and resolving power in biochemical imaging thanks to the analysis of the general properties of Fisher information in fluorescence detection. These strategies enable the optimal use of the information content available within the limited photon-budget typically available in fluorescence microscopy. This theoretical foundation leads to a generalized strategy for the optimization of multi-dimensional optical detection, and demonstrates how the parallel detection of all properties of fluorescence can maximize the biochemical resolving power of fluorescence microscopy, an approach we term Hyper Dimensional Imaging Microscopy (HDIM). Our work provides a theoretical framework for the description of the biochemical resolution in fluorescence microscopy, irrespective of spatial resolution, and for the development of a new class of microscopes that exploit multi-parametric detection systems. PMID:24204821

  14. Laser speckle contrast imaging using light field microscope approach

    NASA Astrophysics Data System (ADS)

    Ma, Xiaohui; Wang, Anting; Ma, Fenghua; Wang, Zi; Ming, Hai

    2018-01-01

    In this paper, a laser speckle contrast imaging (LSCI) system using light field (LF) microscope approach is proposed. As far as we known, it is first time to combine LSCI with LF. To verify this idea, a prototype consists of a modified LF microscope imaging system and an experimental device was built. A commercially used Lytro camera was modified for microscope imaging. Hollow glass tubes with different depth fixed in glass dish were used to simulate the vessels in brain and test the performance of the system. Compared with conventional LSCI, three new functions can be realized by using our system, which include refocusing, extending the depth of field (DOF) and gathering 3D information. Experiments show that the principle is feasible and the proposed system works well.

  15. Super-resolved terahertz microscopy by knife-edge scan

    NASA Astrophysics Data System (ADS)

    Giliberti, V.; Flammini, M.; Ciano, C.; Pontecorvo, E.; Del Re, E.; Ortolani, M.

    2017-08-01

    We present a compact, all solid-state THz confocal microscope operating at 0.30 THz that achieves super-resolution by using the knife-edge scan approach. In the final reconstructed image, a lateral resolution of 60 μm ≍ λ/17 is demonstrated when the knife-edge is deep in the near-field of the sample surface. When the knife-edge is lifted up to λ/4 from the sample surface, a certain degree of super-resolution is maintained with a resolution of 0.4 mm, i.e. more than a factor 2 if compared to the diffraction-limited scheme. The present results open an interesting path towards super-resolved imaging with in-depth information that would be peculiar to THz microscopy systems.

  16. High-Tech Conservation: Information-Age Tools Have Revolutionized the Work of Ecologists.

    ERIC Educational Resources Information Center

    Chiles, James R.

    1992-01-01

    Describes a new direction for conservation efforts influenced by the advance of the information age and the introduction of many technologically sophisticated information collecting devices. Devices include microscopic computer chips, miniature electronic components, and Earth-observation satellite. (MCO)

  17. Smartphone adapters for digital photomicrography.

    PubMed

    Roy, Somak; Pantanowitz, Liron; Amin, Milon; Seethala, Raja R; Ishtiaque, Ahmed; Yousem, Samuel A; Parwani, Anil V; Cucoranu, Ioan; Hartman, Douglas J

    2014-01-01

    Photomicrographs in Anatomic Pathology provide a means of quickly sharing information from a glass slide for consultation, education, documentation and publication. While static image acquisition historically involved the use of a permanently mounted camera unit on a microscope, such cameras may be expensive, need to be connected to a computer, and often require proprietary software to acquire and process images. Another novel approach for capturing digital microscopic images is to use smartphones coupled with the eyepiece of a microscope. Recently, several smartphone adapters have emerged that allow users to attach mobile phones to the microscope. The aim of this study was to test the utility of these various smartphone adapters. We surveyed the market for adapters to attach smartphones to the ocular lens of a conventional light microscope. Three adapters (Magnifi, Skylight and Snapzoom) were tested. We assessed the designs of these adapters and their effectiveness at acquiring static microscopic digital images. All adapters facilitated the acquisition of digital microscopic images with a smartphone. The optimal adapter was dependent on the type of phone used. The Magnifi adapters for iPhone were incompatible when using a protective case. The Snapzoom adapter was easiest to use with iPhones and other smartphones even with protective cases. Smartphone adapters are inexpensive and easy to use for acquiring digital microscopic images. However, they require some adjustment by the user in order to optimize focus and obtain good quality images. Smartphone microscope adapters provide an economically feasible method of acquiring and sharing digital pathology photomicrographs.

  18. Increasing Student Understanding of Microscope Optics by Building and Testing the Limits of Simple, Hand-Made Model Microscopes†

    PubMed Central

    Drace, Kevin; Couch, Brett; Keeling, Patrick J.

    2012-01-01

    The ability to effectively use a microscope to observe microorganisms is a crucial skill required for many disciplines within biology, especially general microbiology and cell biology. A basic understanding of the optical properties of light microscopes is required for students to use microscopes effectively, but this subject can also be a challenge to make personally interesting to students. To explore basic optical principles of magnification and resolving power in a more engaging and hands-on fashion, students constructed handmade lenses and microscopes based on Antony van Leeuwenhoek’s design using simple materials—paper, staples, glass, and adhesive putty. Students determined the power of their lenses using a green laser pointer to magnify a copper grid of known size, which also allowed students to examine variables affecting the power and resolution of a lens such as diameter, working distance, and wavelength of light. To assess the effectiveness of the laboratory’s learning objectives, four sections of a general microbiology course were given a brief pre-activity assessment quiz to determine their background knowledge on the subject. One week after the laboratory activity, students were given the same quiz (unannounced) under similar conditions. Students showed significant gains in their understanding of microscope optics. PMID:23653781

  19. Very low risk of light-induced retinal damage during Boston keratoprosthesis surgery: a rabbit study.

    PubMed

    Salvador-Culla, Borja; Behlau, Irmgard; Sayegh, Rony R; Stacy, Rebecca C; Dohlman, Claes H; Delori, François

    2014-02-01

    The aim of this study was to assess the possibility of light damage to the retina by a surgical microscope during implantation of a Boston Keratoprosthesis (B-KPro) in rabbits. The retinal irradiance from a Zeiss OPMI Lumera S7 operating microscope was measured at the working distance (16.5 cm). Light transmittance through an isolated B-KPro was measured. A B-KPro was implanted into 1 eye of 12 rabbits with the optic covered during the procedure. The operated eyes were then continuously exposed to a fixed light intensity under the microscope for 1 hour. Fluorescein angiography was carried out on days 2 and 9 postsurgery, after which the animals were euthanized. Further, we compared the potential of these retinal exposures to well-accepted light safety guidelines applicable to humans. Light transmittance of B-KPro revealed a blockage of short wavelengths (<390 nm) and of long wavelengths (1660-1750 nm) of light. In addition, the surgical microscope filtered a part of the blue, ultraviolet, and infrared wavelengths. Neither fluorescein angiography nor a histological examination showed any morphological retinal changes in our rabbits. Moreover, the retinal exposures were well below the safety limits. Modern surgical microscopes have filters incorporated in them that block the most damaging wavelengths of light. The B-KPro is made of 100% poly(methyl methacrylate), which makes it in itself a blocker of short wavelengths of light. No damage could be demonstrated in the animal study, and the retinal exposures were well below the safety limits. Together, these results suggest that light exposures during B-KPro surgery present a low risk of photochemical damage to the retina.

  20. In vivo cellular imaging with microscopes enabled by MEMS scanners

    NASA Astrophysics Data System (ADS)

    Ra, Hyejun

    High-resolution optical imaging plays an important role in medical diagnosis and biomedical research. Confocal microscopy is a widely used imaging method for obtaining cellular and sub-cellular images of biological tissue in reflectance and fluorescence modes. Its characteristic optical sectioning capability also enables three-dimensional (3-D) image reconstruction. However, its use has mostly been limited to excised tissues due to the requirement of high numerical aperture (NA) lenses for cellular resolution. Microscope miniaturization can enable in vivo imaging to make possible early cancer diagnosis and biological studies in the innate environment. In this dissertation, microscope miniaturization for in vivo cellular imaging is presented. The dual-axes confocal (DAC) architecture overcomes limitations of the conventional single-axis confocal (SAC) architecture to allow for miniaturization with high resolution. A microelectromechanical systems (MEMS) scanner is the central imaging component that is key in miniaturization of the DAC architecture. The design, fabrication, and characterization of the two-dimensional (2-D) MEMS scanner are presented. The gimbaled MEMS scanner is fabricated on a double silicon-on-insulator (SOI) wafer and is actuated by self-aligned vertical electrostatic combdrives. The imaging performance of the MEMS scanner in a DAC configuration is shown in a breadboard microscope setup, where reflectance and fluorescence imaging is demonstrated. Then, the MEMS scanner is integrated into a miniature DAC microscope. The whole imaging system is integrated into a portable unit for research in small animal models of human biology and disease. In vivo 3-D imaging is demonstrated on mouse skin models showing gene transfer and siRNA silencing. The siRNA silencing process is sequentially imaged in one mouse over time.

  1. Long-term safety and efficacy of budesonide in the treatment of ulcerative colitis

    PubMed Central

    Iborra, Marisa; Álvarez-Sotomayor, Diego; Nos, Pilar

    2014-01-01

    Ulcerative colitis (UC) is a chronic, relapsing, and remitting inflammatory disease involving the large intestine (colon). Treatment seeks to break recurrent inflammation episodes by inducing and maintaining remission. Historically, oral systemic corticosteroids played an important role in inducing remission of this chronic disease; however, their long-term use is limited and can lead to adverse events. Budesonide is a synthetic steroid with potent local anti-inflammatory effects and low systemic bioavailability due to high first-pass hepatic metabolism. Several studies have demonstrated oral budesonide’s usefulness in treating active mild to moderate ileocecal Crohn’s disease and microscopic colitis and in an enema formulation for left sided UC. However, there is limited information regarding oral budesonide’s efficacy in UC. A novel oral budesonide formulation using a multimatrix system (budesonide-MMX) to extend drug release throughout the colon has been developed recently and seems to be an effective treatment in active left sided UC patients. This article summarizes budesonide’s long-term safety and efficacy in treating UC. PMID:24523594

  2. Experimental assessment and analysis of super-resolution in fluorescence microscopy based on multiple-point spread function fitting of spectrally demultiplexed images

    NASA Astrophysics Data System (ADS)

    Nishimura, Takahiro; Kimura, Hitoshi; Ogura, Yusuke; Tanida, Jun

    2018-06-01

    This paper presents an experimental assessment and analysis of super-resolution microscopy based on multiple-point spread function fitting of spectrally demultiplexed images using a designed DNA structure as a test target. For the purpose, a DNA structure was designed to have binding sites at a certain interval that is smaller than the diffraction limit. The structure was labeled with several types of quantum dots (QDs) to acquire their spatial information as spectrally encoded images. The obtained images are analyzed with a point spread function multifitting algorithm to determine the QD locations that indicate the binding site positions. The experimental results show that the labeled locations can be observed beyond the diffraction-limited resolution using three-colored fluorescence images that were obtained with a confocal fluorescence microscope. Numerical simulations show that labeling with eight types of QDs enables the positions aligned at 27.2-nm pitches on the DNA structure to be resolved with high accuracy.

  3. Two-photon microscope for multisite microphotolysis of caged neurotransmitters in acute brain slices

    PubMed Central

    Losavio, Bradley E.; Iyer, Vijay; Saggau, Peter

    2009-01-01

    We developed a two-photon microscope optimized for physiologically manipulating single neurons through their postsynaptic receptors. The optical layout fulfills the stringent design criteria required for high-speed, high-resolution imaging in scattering brain tissue with minimal photodamage. We detail the practical compensation of spectral and temporal dispersion inherent in fast laser beam scanning with acousto-optic deflectors, as well as a set of biological protocols for visualizing nearly diffraction-limited structures and delivering physiological synaptic stimuli. The microscope clearly resolves dendritic spines and evokes electrophysiological transients in single neurons that are similar to endogenous responses. This system enables the study of multisynaptic integration and will assist our understanding of single neuron function and dendritic computation. PMID:20059271

  4. The Development of a Scanning Soft X-Ray Microscope.

    NASA Astrophysics Data System (ADS)

    Rarback, Harvey Miles

    We have developed a scanning soft X-ray microscope, which can be used to image natural biological specimens at high resolution and with less damage than electron microscopy. The microscope focuses a monochromatic beam of synchrotron radiation to a nearly diffraction limited spot with the aid of a high resolution Fresnel zone plate, specially fabricated for us at the IBM Watson Research Center. The specimen at one atmosphere is mechanically scanned through the spot and the transmitted radiation is efficiently detected with a flow proportional counter. A computer forms a realtime transmission image of the specimen which is displayed on a color monitor. Our first generation optics have produced images of natural wet specimens at a resolution of 300 nm.

  5. Electron holography study of magnetization behavior in the writer pole of a perpendicular magnetic recording head by a 1 MV transmission electron microscope.

    PubMed

    Hirata, Kei; Ishida, Yoichi; Akashi, Tetsuya; Shindo, Daisuke; Tonomura, Akira

    2012-01-01

    The magnetic domain structure of the writer poles of perpendicular magnetic recording heads was studied using electron holography. Although the domain structure of a 100-nm-thick writer pole could be observed with a 300 kV transmission electron microscope, that of the 250-nm-thick writer pole could not be analyzed due to the limited transmission capability of the instrument. On the other hand, the detailed domain structure of the 250-nm-thick writer pole was successfully analyzed by a 1 MV electron microscope using its high transmission capability. The thickness and material dependency of the domain structure of a writer pole were discussed.

  6. Optimal indolence: a normative microscopic approach to work and leisure

    PubMed Central

    Niyogi, Ritwik K.; Breton, Yannick-Andre; Solomon, Rebecca B.; Conover, Kent; Shizgal, Peter; Dayan, Peter

    2014-01-01

    Dividing limited time between work and leisure when both have their attractions is a common everyday decision. We provide a normative control-theoretic treatment of this decision that bridges economic and psychological accounts. We show how our framework applies to free-operant behavioural experiments in which subjects are required to work (depressing a lever) for sufficient total time (called the price) to receive a reward. When the microscopic benefit-of-leisure increases nonlinearly with duration, the model generates behaviour that qualitatively matches various microfeatures of subjects’ choices, including the distribution of leisure bout durations as a function of the pay-off. We relate our model to traditional accounts by deriving macroscopic, molar, quantities from microscopic choices. PMID:24284898

  7. Quantitatively characterizing the microstructural features of breast ductal carcinoma tissues in different progression stages by Mueller matrix microscope.

    PubMed

    Dong, Yang; Qi, Ji; He, Honghui; He, Chao; Liu, Shaoxiong; Wu, Jian; Elson, Daniel S; Ma, Hui

    2017-08-01

    Polarization imaging has been recognized as a potentially powerful technique for probing the microstructural information and optical properties of complex biological specimens. Recently, we have reported a Mueller matrix microscope by adding the polarization state generator and analyzer (PSG and PSA) to a commercial transmission-light microscope, and applied it to differentiate human liver and cervical cancerous tissues with fibrosis. In this paper, we apply the Mueller matrix microscope for quantitative detection of human breast ductal carcinoma samples at different stages. The Mueller matrix polar decomposition and transformation parameters of the breast ductal tissues in different regions and at different stages are calculated and analyzed. For more quantitative comparisons, several widely-used image texture feature parameters are also calculated to characterize the difference in the polarimetric images. The experimental results indicate that the Mueller matrix microscope and the polarization parameters can facilitate the quantitative detection of breast ductal carcinoma tissues at different stages.

  8. Naval Research Laboratory Major Facilities 2008

    DTIC Science & Technology

    2008-10-01

    Development Laboratory • Secure Supercomputing Facility • CBD/Tilghman Island IR Field Evaluation Facility • Ultra-Short-Pulse Laser Effects Research...EMI Test Facility • Proximity Operations Testbed GENERAL INFORMATION • Maps EX EC U TI V E D IR EC TO RA TE Code 1100 – Institute for Nanoscience...facility: atomic force microscope (AFM); benchtop transmission electron microscope (TEM); cascade probe station; critical point dryer ; dual beam focused

  9. Automated system for characterization and classification of malaria-infected stages using light microscopic images of thin blood smears.

    PubMed

    Das, D K; Maiti, A K; Chakraborty, C

    2015-03-01

    In this paper, we propose a comprehensive image characterization cum classification framework for malaria-infected stage detection using microscopic images of thin blood smears. The methodology mainly includes microscopic imaging of Leishman stained blood slides, noise reduction and illumination correction, erythrocyte segmentation, feature selection followed by machine classification. Amongst three-image segmentation algorithms (namely, rule-based, Chan-Vese-based and marker-controlled watershed methods), marker-controlled watershed technique provides better boundary detection of erythrocytes specially in overlapping situations. Microscopic features at intensity, texture and morphology levels are extracted to discriminate infected and noninfected erythrocytes. In order to achieve subgroup of potential features, feature selection techniques, namely, F-statistic and information gain criteria are considered here for ranking. Finally, five different classifiers, namely, Naive Bayes, multilayer perceptron neural network, logistic regression, classification and regression tree (CART), RBF neural network have been trained and tested by 888 erythrocytes (infected and noninfected) for each features' subset. Performance evaluation of the proposed methodology shows that multilayer perceptron network provides higher accuracy for malaria-infected erythrocytes recognition and infected stage classification. Results show that top 90 features ranked by F-statistic (specificity: 98.64%, sensitivity: 100%, PPV: 99.73% and overall accuracy: 96.84%) and top 60 features ranked by information gain provides better results (specificity: 97.29%, sensitivity: 100%, PPV: 99.46% and overall accuracy: 96.73%) for malaria-infected stage classification. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  10. Local dynamic range compensation for scanning electron microscope imaging system.

    PubMed

    Sim, K S; Huang, Y H

    2015-01-01

    This is the extended project by introducing the modified dynamic range histogram modification (MDRHM) and is presented in this paper. This technique is used to enhance the scanning electron microscope (SEM) imaging system. By comparing with the conventional histogram modification compensators, this technique utilizes histogram profiling by extending the dynamic range of each tile of an image to the limit of 0-255 range while retains its histogram shape. The proposed technique yields better image compensation compared to conventional methods. © Wiley Periodicals, Inc.

  11. Acquisition of multiple image stacks with a confocal laser scanning microscope

    NASA Astrophysics Data System (ADS)

    Zuschratter, Werner; Steffen, Thomas; Braun, Katharina; Herzog, Andreas; Michaelis, Bernd; Scheich, Henning

    1998-06-01

    Image acquisition at high magnification is inevitably correlated with a limited view over the entire tissue section. To overcome this limitation we designed software for multiple image-stack acquisition (3D-MISA) in confocal laser scanning microscopy (CLSM). The system consists of a 4 channel Leica CLSM equipped with a high resolution z- scanning stage mounted on a xy-monitorized stage. The 3D- MISA software is implemented into the microscope scanning software and uses the microscope settings for the movements of the xy-stage. It allows storage and recall of 70 xyz- positions and the automatic 3D-scanning of image arrays between selected xyz-coordinates. The number of images within one array is limited only by the amount of disk space or memory available. Although for most applications the accuracy of the xy-scanning stage is sufficient for a precise alignment of tiled views, the software provides the possibility of an adjustable overlap between two image stacks by shifting the moving steps of the xy-scanning stage. After scanning a tiled image gallery of the extended focus-images of each channel will be displayed on a graphic monitor. In addition, a tiled image gallery of individual focal planes can be created. In summary, the 3D-MISA allows 3D-image acquisition of coherent regions in combination with high resolution of single images.

  12. Adaptive pixel-super-resolved lensfree in-line digital holography for wide-field on-chip microscopy.

    PubMed

    Zhang, Jialin; Sun, Jiasong; Chen, Qian; Li, Jiaji; Zuo, Chao

    2017-09-18

    High-resolution wide field-of-view (FOV) microscopic imaging plays an essential role in various fields of biomedicine, engineering, and physical sciences. As an alternative to conventional lens-based scanning techniques, lensfree holography provides a new way to effectively bypass the intrinsical trade-off between the spatial resolution and FOV of conventional microscopes. Unfortunately, due to the limited sensor pixel-size, unpredictable disturbance during image acquisition, and sub-optimum solution to the phase retrieval problem, typical lensfree microscopes only produce compromised imaging quality in terms of lateral resolution and signal-to-noise ratio (SNR). Here, we propose an adaptive pixel-super-resolved lensfree imaging (APLI) method which can solve, or at least partially alleviate these limitations. Our approach addresses the pixel aliasing problem by Z-scanning only, without resorting to subpixel shifting or beam-angle manipulation. Automatic positional error correction algorithm and adaptive relaxation strategy are introduced to enhance the robustness and SNR of reconstruction significantly. Based on APLI, we perform full-FOV reconstruction of a USAF resolution target (~29.85 mm 2 ) and achieve half-pitch lateral resolution of 770 nm, surpassing 2.17 times of the theoretical Nyquist-Shannon sampling resolution limit imposed by the sensor pixel-size (1.67µm). Full-FOV imaging result of a typical dicot root is also provided to demonstrate its promising potential applications in biologic imaging.

  13. Resolution enhancement in a double-helix phase engineered scanning microscope (RESCH microscope) (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Jesacher, Alexander; Ritsch-Marte, Monika; Piestun, Rafael

    2015-08-01

    Recently we introduced RESCH microscopy [1] - a scanning microscope that allows slightly refocusing the sample after the acquisition has been performed, solely by performing appropriate data post-processing. The microscope features a double-helix phase-engineered emission point spread function in combination with camera-based detection. Based on the principle of transverse resolution enhancement in Image Scanning Microscopy [2,3], we demonstrate similar resolution improvement in RESCH. Furthermore, we outline a pathway for how the collected 3D sample information can be used to construct sharper optical sections. [1] A. Jesacher, M. Ritsch-Marte and R. Piestun, accepted for Optica. [2] C.J.R. Sheppard, "Super-resolution in Confocal imaging," Optik, 80, 53-54 (1988). [3] C.B. Müller and J. Enderlein "Image Scanning Microscopy," Phys. Rev. Lett. 104, 198101 (2010).

  14. Spatial-spectral blood cell classification with microscopic hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Ran, Qiong; Chang, Lan; Li, Wei; Xu, Xiaofeng

    2017-10-01

    Microscopic hyperspectral images provide a new way for blood cell examination. The hyperspectral imagery can greatly facilitate the classification of different blood cells. In this paper, the microscopic hyperspectral images are acquired by connecting the microscope and the hyperspectral imager, and then tested for blood cell classification. For combined use of the spectral and spatial information provided by hyperspectral images, a spatial-spectral classification method is improved from the classical extreme learning machine (ELM) by integrating spatial context into the image classification task with Markov random field (MRF) model. Comparisons are done among ELM, ELM-MRF, support vector machines(SVM) and SVMMRF methods. Results show the spatial-spectral classification methods(ELM-MRF, SVM-MRF) perform better than pixel-based methods(ELM, SVM), and the proposed ELM-MRF has higher precision and show more accurate location of cells.

  15. Macroscopic model of scanning force microscope

    DOEpatents

    Guerra-Vela, Claudio; Zypman, Fredy R.

    2004-10-05

    A macroscopic version of the Scanning Force Microscope is described. It consists of a cantilever under the influence of external forces, which mimic the tip-sample interactions. The use of this piece of equipment is threefold. First, it serves as direct way to understand the parts and functions of the Scanning Force Microscope, and thus it is effectively used as an instructional tool. Second, due to its large size, it allows for simple measurements of applied forces and parameters that define the state of motion of the system. This information, in turn, serves to compare the interaction forces with the reconstructed ones, which cannot be done directly with the standard microscopic set up. Third, it provides a kinematics method to non-destructively measure elastic constants of materials, such as Young's and shear modules, with special application for brittle materials.

  16. Predicting the future trend of popularity by network diffusion.

    PubMed

    Zeng, An; Yeung, Chi Ho

    2016-06-01

    Conventional approaches to predict the future popularity of products are mainly based on extrapolation of their current popularity, which overlooks the hidden microscopic information under the macroscopic trend. Here, we study diffusion processes on consumer-product and citation networks to exploit the hidden microscopic information and connect consumers to their potential purchase, publications to their potential citers to obtain a prediction for future item popularity. By using the data obtained from the largest online retailers including Netflix and Amazon as well as the American Physical Society citation networks, we found that our method outperforms the accurate short-term extrapolation and identifies the potentially popular items long before they become prominent.

  17. Predicting the future trend of popularity by network diffusion

    NASA Astrophysics Data System (ADS)

    Zeng, An; Yeung, Chi Ho

    2016-06-01

    Conventional approaches to predict the future popularity of products are mainly based on extrapolation of their current popularity, which overlooks the hidden microscopic information under the macroscopic trend. Here, we study diffusion processes on consumer-product and citation networks to exploit the hidden microscopic information and connect consumers to their potential purchase, publications to their potential citers to obtain a prediction for future item popularity. By using the data obtained from the largest online retailers including Netflix and Amazon as well as the American Physical Society citation networks, we found that our method outperforms the accurate short-term extrapolation and identifies the potentially popular items long before they become prominent.

  18. Conventions and nomenclature for double diffusion encoding NMR and MRI.

    PubMed

    Shemesh, Noam; Jespersen, Sune N; Alexander, Daniel C; Cohen, Yoram; Drobnjak, Ivana; Dyrby, Tim B; Finsterbusch, Jurgen; Koch, Martin A; Kuder, Tristan; Laun, Fredrik; Lawrenz, Marco; Lundell, Henrik; Mitra, Partha P; Nilsson, Markus; Özarslan, Evren; Topgaard, Daniel; Westin, Carl-Fredrik

    2016-01-01

    Stejskal and Tanner's ingenious pulsed field gradient design from 1965 has made diffusion NMR and MRI the mainstay of most studies seeking to resolve microstructural information in porous systems in general and biological systems in particular. Methods extending beyond Stejskal and Tanner's design, such as double diffusion encoding (DDE) NMR and MRI, may provide novel quantifiable metrics that are less easily inferred from conventional diffusion acquisitions. Despite the growing interest on the topic, the terminology for the pulse sequences, their parameters, and the metrics that can be derived from them remains inconsistent and disparate among groups active in DDE. Here, we present a consensus of those groups on terminology for DDE sequences and associated concepts. Furthermore, the regimes in which DDE metrics appear to provide microstructural information that cannot be achieved using more conventional counterparts (in a model-free fashion) are elucidated. We highlight in particular DDE's potential for determining microscopic diffusion anisotropy and microscopic fractional anisotropy, which offer metrics of microscopic features independent of orientation dispersion and thus provide information complementary to the standard, macroscopic, fractional anisotropy conventionally obtained by diffusion MR. Finally, we discuss future vistas and perspectives for DDE. © 2015 Wiley Periodicals, Inc.

  19. SCANNING NEAR-FIELD OPTICAL MICROSCOPY

    PubMed Central

    Vobornik, Dušan; Vobornik, Slavenka

    2008-01-01

    An average human eye can see details down to 0,07 mm in size. The ability to see smaller details of the matter is correlated with the development of the science and the comprehension of the nature. Today’s science needs eyes for the nano-world. Examples are easily found in biology and medical sciences. There is a great need to determine shape, size, chemical composition, molecular structure and dynamic properties of nano-structures. To do this, microscopes with high spatial, spectral and temporal resolution are required. Scanning Near-field Optical Microscopy (SNOM) is a new step in the evolution of microscopy. The conventional, lens-based microscopes have their resolution limited by diffraction. SNOM is not subject to this limitation and can offer up to 70 times better resolution. PMID:18318675

  20. Information Resources: Knowledge and Power in the 21st Century.

    ERIC Educational Resources Information Center

    Oettinger, Anthony G.

    1980-01-01

    This article focuses on the mastery over the microscopic information processes embodied in devices such as integrated circuits and microcomputers and its effects on society and competition between the computer and telecommunications industries. (Author/SA)

  1. Visualization and measurement of CO2 flooding in an artificial porous structure using micromodels

    NASA Astrophysics Data System (ADS)

    Park, Bogyeong; Wang, Sookyun; Um, Jeong-Gi; Lee, Minhee; Kim, Seon-Ok

    2015-04-01

    Geological CO2 sequestration is one of the most important technologies to mitigate greenhouse gas emission into the atmosphere by isolating great volumes of CO2 in deep geological formations. This novel storage option for CO2 involves injecting supercritical CO2 into porous formations saturated with pore fluid such as brine and initiate CO2 flooding with immiscible displacement. Despite of significant effects on macroscopic migration and distribution of injected CO2, however, only a limited information is available on wettability in microscopic scCO2-brine-mineral systems. In this study, a micromodel had been developed to improve our understanding of how CO2 flooding and residual characteristics of pore water are affected by the wettability in scCO2-water-glass bead systems. The micromodel (a transparent pore structure made of 1 mm diameter glass beads between two glass plates) in a high-pressure cell provided the opportunity to visualize spread of supercritical CO2 and displacement of pore water in high pressure and high temperature conditions. CO2 flooding followed by fingering migration and dewatering followed by formation of residual water were observed through a imaging system with a microscope. Measurement of contact angles of droplets of residual water on and between glass beads in a micromodel were conducted to estimate differential pressure between wetting and nonwetting fluids in a scCO2-water-glass bead system. The experimental observation results could provide important fundamental informations on capillary characteristics of reservoirs and caprocks for geological CO2 sequestration.

  2. Visualization of CO2 flooding in an artificial porous structure using micromodels

    NASA Astrophysics Data System (ADS)

    Park, B.; Wang, S.; Lee, M.; Um, J. G.

    2014-12-01

    Geological CO2 sequestration is one of the most important technologies to mitigate greenhouse gas emission into the atmosphere by isolating great volumes of CO2 in deep geological formations. This novel storage option for CO2 involves injecting supercritical CO2 into porous formations saturated with pore fluid such as brine and initiate CO2 flooding with immiscible displacement. Despite of significant effects on macroscopic migration and distribution of injected CO2, however, only a limited information is available on wettability in microscopic scCO2-brine-mineral systems. In this study, a micromodel had been developed to improve our understanding of how CO2 flooding and residual characteristics of pore water are affected by the wettability in scCO2-water-glass bead systems. The micromodel (a transparent pore structure made of 0.5 mm diameter glass beads between two glass plates) in a high-pressure cell provided the opportunity to visualize spread of supercritical CO2 and displacement of pore water in high pressure and high temperature conditions. CO2 flooding followed by fingering migration and dewatering followed by formation of residual water were observed through a imaging system with a microscope. Measurement of contact angles of droplets of residual water on and between glass beads in a micromodel were conducted to estimate differential pressure between wetting and nonwetting fluids in a scCO2-water-glass bead system. The experimental observation results could provide important fundamental informations on capillary characteristics of reservoirs and caprocks for geological CO2 sequestration.

  3. Smartphone adapters for digital photomicrography

    PubMed Central

    Roy, Somak; Pantanowitz, Liron; Amin, Milon; Seethala, Raja R.; Ishtiaque, Ahmed; Yousem, Samuel A.; Parwani, Anil V.; Cucoranu, Ioan; Hartman, Douglas J.

    2014-01-01

    Background: Photomicrographs in Anatomic Pathology provide a means of quickly sharing information from a glass slide for consultation, education, documentation and publication. While static image acquisition historically involved the use of a permanently mounted camera unit on a microscope, such cameras may be expensive, need to be connected to a computer, and often require proprietary software to acquire and process images. Another novel approach for capturing digital microscopic images is to use smartphones coupled with the eyepiece of a microscope. Recently, several smartphone adapters have emerged that allow users to attach mobile phones to the microscope. The aim of this study was to test the utility of these various smartphone adapters. Materials and Methods: We surveyed the market for adapters to attach smartphones to the ocular lens of a conventional light microscope. Three adapters (Magnifi, Skylight and Snapzoom) were tested. We assessed the designs of these adapters and their effectiveness at acquiring static microscopic digital images. Results: All adapters facilitated the acquisition of digital microscopic images with a smartphone. The optimal adapter was dependent on the type of phone used. The Magnifi adapters for iPhone were incompatible when using a protective case. The Snapzoom adapter was easiest to use with iPhones and other smartphones even with protective cases. Conclusions: Smartphone adapters are inexpensive and easy to use for acquiring digital microscopic images. However, they require some adjustment by the user in order to optimize focus and obtain good quality images. Smartphone microscope adapters provide an economically feasible method of acquiring and sharing digital pathology photomicrographs. PMID:25191623

  4. Field-Portable Pixel Super-Resolution Colour Microscope

    PubMed Central

    Greenbaum, Alon; Akbari, Najva; Feizi, Alborz; Luo, Wei; Ozcan, Aydogan

    2013-01-01

    Based on partially-coherent digital in-line holography, we report a field-portable microscope that can render lensfree colour images over a wide field-of-view of e.g., >20 mm2. This computational holographic microscope weighs less than 145 grams with dimensions smaller than 17×6×5 cm, making it especially suitable for field settings and point-of-care use. In this lensfree imaging design, we merged a colorization algorithm with a source shifting based multi-height pixel super-resolution technique to mitigate ‘rainbow’ like colour artefacts that are typical in holographic imaging. This image processing scheme is based on transforming the colour components of an RGB image into YUV colour space, which separates colour information from brightness component of an image. The resolution of our super-resolution colour microscope was characterized using a USAF test chart to confirm sub-micron spatial resolution, even for reconstructions that employ multi-height phase recovery to handle dense and connected objects. To further demonstrate the performance of this colour microscope Papanicolaou (Pap) smears were also successfully imaged. This field-portable and wide-field computational colour microscope could be useful for tele-medicine applications in resource poor settings. PMID:24086742

  5. Field-portable pixel super-resolution colour microscope.

    PubMed

    Greenbaum, Alon; Akbari, Najva; Feizi, Alborz; Luo, Wei; Ozcan, Aydogan

    2013-01-01

    Based on partially-coherent digital in-line holography, we report a field-portable microscope that can render lensfree colour images over a wide field-of-view of e.g., >20 mm(2). This computational holographic microscope weighs less than 145 grams with dimensions smaller than 17×6×5 cm, making it especially suitable for field settings and point-of-care use. In this lensfree imaging design, we merged a colorization algorithm with a source shifting based multi-height pixel super-resolution technique to mitigate 'rainbow' like colour artefacts that are typical in holographic imaging. This image processing scheme is based on transforming the colour components of an RGB image into YUV colour space, which separates colour information from brightness component of an image. The resolution of our super-resolution colour microscope was characterized using a USAF test chart to confirm sub-micron spatial resolution, even for reconstructions that employ multi-height phase recovery to handle dense and connected objects. To further demonstrate the performance of this colour microscope Papanicolaou (Pap) smears were also successfully imaged. This field-portable and wide-field computational colour microscope could be useful for tele-medicine applications in resource poor settings.

  6. The HOME tutor: a new tool for training in microscope skills.

    PubMed

    Gray, E; Sowter, C

    1995-10-01

    AxioHOME is a new concept in microscope design. It is a microscope with a visual display unit mounted in the head permitting computer generated displays to be projected on to the real microscope image when viewed down the eyepieces. This allows the annotation of the microscope image with both text and graphics. The AxioHOME system was used for the construction of complex interactive tutorials for the training and assessment of students. The basis of a tutorial is that features of interest on a microscope slide are indicated to the student who is then provided with either information or questions about those features. In turn the student can also annotate the slide with comments for later discussion with the teacher. The system therefore allows a dialogue between teacher and student. The creation of tutorials is time consuming. It takes approximately 10 min of teacher time to create 1 min of student time. However since the same tutorial can be used by numerous students this releases the teacher from repetitive training. The student response to this teaching method has been very positive. The main criticism being that insufficient teaching material was available.

  7. Scanning Microscopes Using X Rays and Microchannels

    NASA Technical Reports Server (NTRS)

    Wang, Yu

    2003-01-01

    Scanning microscopes that would be based on microchannel filters and advanced electronic image sensors and that utilize x-ray illumination have been proposed. Because the finest resolution attainable in a microscope is determined by the wavelength of the illumination, the xray illumination in the proposed microscopes would make it possible, in principle, to achieve resolutions of the order of nanometers about a thousand times as fine as the resolution of a visible-light microscope. Heretofore, it has been necessary to use scanning electron microscopes to obtain such fine resolution. In comparison with scanning electron microscopes, the proposed microscopes would likely be smaller, less massive, and less expensive. Moreover, unlike in scanning electron microscopes, it would not be necessary to place specimens under vacuum. The proposed microscopes are closely related to the ones described in several prior NASA Tech Briefs articles; namely, Miniature Microscope Without Lenses (NPO-20218), NASA Tech Briefs, Vol. 22, No. 8 (August 1998), page 43; and Reflective Variants of Miniature Microscope Without Lenses (NPO-20610), NASA Tech Briefs, Vol. 26, No. 9 (September 2002) page 6a. In all of these microscopes, the basic principle of design and operation is the same: The focusing optics of a conventional visible-light microscope are replaced by a combination of a microchannel filter and a charge-coupled-device (CCD) image detector. A microchannel plate containing parallel, microscopic-cross-section holes much longer than they are wide is placed between a specimen and an image sensor, which is typically the CCD. The microchannel plate must be made of a material that absorbs the illuminating radiation reflected or scattered from the specimen. The microchannels must be positioned and dimensioned so that each one is registered with a pixel on the image sensor. Because most of the radiation incident on the microchannel walls becomes absorbed, the radiation that reaches the image sensor consists predominantly of radiation that was launched along the longitudinal direction of the microchannels. Therefore, most of the radiation arriving at each pixel on the sensor must have traveled along a straight line from a corresponding location on the specimen. Thus, there is a one-to-one mapping from a point on a specimen to a pixel in the image sensor, so that the output of the image sensor contains image information equivalent to that from a microscope.

  8. Volumetric Light-field Encryption at the Microscopic Scale

    PubMed Central

    Li, Haoyu; Guo, Changliang; Muniraj, Inbarasan; Schroeder, Bryce C.; Sheridan, John T.; Jia, Shu

    2017-01-01

    We report a light-field based method that allows the optical encryption of three-dimensional (3D) volumetric information at the microscopic scale in a single 2D light-field image. The system consists of a microlens array and an array of random phase/amplitude masks. The method utilizes a wave optics model to account for the dominant diffraction effect at this new scale, and the system point-spread function (PSF) serves as the key for encryption and decryption. We successfully developed and demonstrated a deconvolution algorithm to retrieve both spatially multiplexed discrete data and continuous volumetric data from 2D light-field images. Showing that the method is practical for data transmission and storage, we obtained a faithful reconstruction of the 3D volumetric information from a digital copy of the encrypted light-field image. The method represents a new level of optical encryption, paving the way for broad industrial and biomedical applications in processing and securing 3D data at the microscopic scale. PMID:28059149

  9. Microscopic esophagitis and Barrett's esophagus: the histology report.

    PubMed

    Fiocca, Roberto; Mastracci, Luca; Milione, Massimo; Parente, Paola; Savarino, Vincenzo

    2011-03-01

    Gastro-esophageal reflux disease (GERD) is the most common digestive disease in industrialized countries (Europe and North America) and is associated with microscopic changes in the squamous epithelium. However, biopsy is not presently included in the routine diagnostic flow chart of GERD. In contrast, esophageal biopsy is mandatory when diagnosing Barrett's esophagus. High quality histology reports are necessary to provide information on diagnosis and can also be important for research and epidemiological studies. It has been evident for decades that pathology reports vary between institutions and even within a single institution. Standardization of reporting is the best way to ensure that information necessary for patient management is included in pathology reports. This paper details the histological criteria for diagnosing GERD-associated microscopic esophagitis, other forms of esophagitis with specific features and columnar metaplasia in the lower esophagus (Barrett's esophagus). It provides a detailed description of appropriate sampling criteria, individual lesions and how they contribute to the histology report. Copyright © 2011 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd.. All rights reserved.

  10. Volumetric Light-field Encryption at the Microscopic Scale

    NASA Astrophysics Data System (ADS)

    Li, Haoyu; Guo, Changliang; Muniraj, Inbarasan; Schroeder, Bryce C.; Sheridan, John T.; Jia, Shu

    2017-01-01

    We report a light-field based method that allows the optical encryption of three-dimensional (3D) volumetric information at the microscopic scale in a single 2D light-field image. The system consists of a microlens array and an array of random phase/amplitude masks. The method utilizes a wave optics model to account for the dominant diffraction effect at this new scale, and the system point-spread function (PSF) serves as the key for encryption and decryption. We successfully developed and demonstrated a deconvolution algorithm to retrieve both spatially multiplexed discrete data and continuous volumetric data from 2D light-field images. Showing that the method is practical for data transmission and storage, we obtained a faithful reconstruction of the 3D volumetric information from a digital copy of the encrypted light-field image. The method represents a new level of optical encryption, paving the way for broad industrial and biomedical applications in processing and securing 3D data at the microscopic scale.

  11. Confocal laser scanning microscopic photoconversion: a new method to stabilize fluorescently labeled cellular elements for electron microscopic analysis.

    PubMed

    Colello, Raymond J; Tozer, Jordan; Henderson, Scott C

    2012-01-01

    Photoconversion, the method by which a fluorescent dye is transformed into a stable, osmiophilic product that can be visualized by electron microscopy, is the most widely used method to enable the ultrastructural analysis of fluorescently labeled cellular structures. Nevertheless, the conventional method of photoconversion using widefield fluorescence microscopy requires long reaction times and results in low-resolution cell targeting. Accordingly, we have developed a photoconversion method that ameliorates these limitations by adapting confocal laser scanning microscopy to the procedure. We have found that this method greatly reduces photoconversion times, as compared to conventional wide field microscopy. Moreover, region-of-interest scanning capabilities of a confocal microscope facilitate the targeting of the photoconversion process to individual cellular or subcellular elements within a fluorescent field. This reduces the area of the cell exposed to light energy, thereby reducing the ultrastructural damage common to this process when widefield microscopes are employed. © 2012 by John Wiley & Sons, Inc.

  12. Low vibration high numerical aperture automated variable temperature Raman microscope

    DOE PAGES

    Tian, Y.; Reijnders, A. A.; Osterhoudt, G. B.; ...

    2016-04-05

    Raman micro-spectroscopy is well suited for studying a variety of properties and has been applied to wide- ranging areas. Combined with tuneable temperature, Raman spectra can offer even more insights into the properties of materials. However, previous designs of variable temperature Raman microscopes have made it extremely challenging to measure samples with low signal levels due to thermal and positional instability as well as low collection efficiencies. Thus, contemporary Raman microscope has found limited applicability to probing the subtle physics involved in phase transitions and hysteresis. This paper describes a new design of a closed-cycle, Raman microscope with full polarizationmore » rotation. High collection efficiency, thermal and mechanical stability are ensured by both deliberate optical, cryogenic, and mechanical design. Measurements on two samples, Bi 2Se 3 and V 2O 3, which are known as challenging due to low thermal conductivities, low signal levels and/or hysteretic effects, are measured with previously undemonstrated temperature resolution.« less

  13. Analysis of improvement in performance and design parameters for enhancing resolution in an atmospheric scanning electron microscope.

    PubMed

    Yoon, Yeo Hun; Kim, Seung Jae; Kim, Dong Hwan

    2015-12-01

    The scanning electron microscope is used in various fields to go beyond diffraction limits of the optical microscope. However, the electron pathway should be conducted in a vacuum so as not to scatter electrons. The pretreatment of the sample is needed for use in the vacuum. To directly observe large and fully hydrophilic samples without pretreatment, the atmospheric scanning electron microscope (ASEM) is needed. We developed an electron filter unit and an electron detector unit for implementation of the ASEM. The key of the electron filter unit is that electrons are transmitted while air molecules remain untransmitted through the unit. The electron detector unit collected the backscattered electrons. We conducted experiments using the selected materials with Havar foil, carbon film and SiN film. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Optical forces, torques, and force densities calculated at a microscopic level using a self-consistent hydrodynamics method

    NASA Astrophysics Data System (ADS)

    Ding, Kun; Chan, C. T.

    2018-04-01

    The calculation of optical force density distribution inside a material is challenging at the nanoscale, where quantum and nonlocal effects emerge and macroscopic parameters such as permittivity become ill-defined. We demonstrate that the microscopic optical force density of nanoplasmonic systems can be defined and calculated using the microscopic fields generated using a self-consistent hydrodynamics model that includes quantum, nonlocal, and retardation effects. We demonstrate this technique by calculating the microscopic optical force density distributions and the optical binding force induced by external light on nanoplasmonic dimers. This approach works even in the limit when the nanoparticles are close enough to each other so that electron tunneling occurs, a regime in which classical electromagnetic approach fails completely. We discover that an uneven distribution of optical force density can lead to a light-induced spinning torque acting on individual particles. The hydrodynamics method offers us an accurate and efficient approach to study optomechanical behavior for plasmonic systems at the nanoscale.

  15. Towards native-state imaging in biological context in the electron microscope

    PubMed Central

    Weston, Anne E.; Armer, Hannah E. J.

    2009-01-01

    Modern cell biology is reliant on light and fluorescence microscopy for analysis of cells, tissues and protein localisation. However, these powerful techniques are ultimately limited in resolution by the wavelength of light. Electron microscopes offer much greater resolution due to the shorter effective wavelength of electrons, allowing direct imaging of sub-cellular architecture. The harsh environment of the electron microscope chamber and the properties of the electron beam have led to complex chemical and mechanical preparation techniques, which distance biological samples from their native state and complicate data interpretation. Here we describe recent advances in sample preparation and instrumentation, which push the boundaries of high-resolution imaging. Cryopreparation, cryoelectron microscopy and environmental scanning electron microscopy strive to image samples in near native state. Advances in correlative microscopy and markers enable high-resolution localisation of proteins. Innovation in microscope design has pushed the boundaries of resolution to atomic scale, whilst automatic acquisition of high-resolution electron microscopy data through large volumes is finally able to place ultrastructure in biological context. PMID:19916039

  16. Low vibration high numerical aperture automated variable temperature Raman microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Y.; Reijnders, A. A.; Osterhoudt, G. B.

    Raman micro-spectroscopy is well suited for studying a variety of properties and has been applied to wide- ranging areas. Combined with tuneable temperature, Raman spectra can offer even more insights into the properties of materials. However, previous designs of variable temperature Raman microscopes have made it extremely challenging to measure samples with low signal levels due to thermal and positional instability as well as low collection efficiencies. Thus, contemporary Raman microscope has found limited applicability to probing the subtle physics involved in phase transitions and hysteresis. This paper describes a new design of a closed-cycle, Raman microscope with full polarizationmore » rotation. High collection efficiency, thermal and mechanical stability are ensured by both deliberate optical, cryogenic, and mechanical design. Measurements on two samples, Bi 2Se 3 and V 2O 3, which are known as challenging due to low thermal conductivities, low signal levels and/or hysteretic effects, are measured with previously undemonstrated temperature resolution.« less

  17. Visibility Graph Based Time Series Analysis

    PubMed Central

    Stephen, Mutua; Gu, Changgui; Yang, Huijie

    2015-01-01

    Network based time series analysis has made considerable achievements in the recent years. By mapping mono/multivariate time series into networks, one can investigate both it’s microscopic and macroscopic behaviors. However, most proposed approaches lead to the construction of static networks consequently providing limited information on evolutionary behaviors. In the present paper we propose a method called visibility graph based time series analysis, in which series segments are mapped to visibility graphs as being descriptions of the corresponding states and the successively occurring states are linked. This procedure converts a time series to a temporal network and at the same time a network of networks. Findings from empirical records for stock markets in USA (S&P500 and Nasdaq) and artificial series generated by means of fractional Gaussian motions show that the method can provide us rich information benefiting short-term and long-term predictions. Theoretically, we propose a method to investigate time series from the viewpoint of network of networks. PMID:26571115

  18. Dental microwear textures: reconstructing diets of fossil mammals

    NASA Astrophysics Data System (ADS)

    DeSantis, Larisa R. G.

    2016-06-01

    Dietary information of fossil mammals can be revealed via the analysis of tooth morphology, tooth wear, tooth geochemistry, and the microscopic wear patterns on tooth surfaces resulting from food processing. Although dental microwear has long been used by anthropologists and paleontologists to clarify diets in a diversity of mammals, until recently these methods focused on the counting of wear features (e.g., pits and scratches) from two-dimensional surfaces (typically via scanning electron microscopes or low-magnification light microscopes). The analysis of dental microwear textures can instead reveal dietary information in a broad range of herbivorous, omnivorous, and carnivorous mammals by characterizing microscopic tooth surfaces in three-dimensions, without the counting of individual surface features. To date, dental microwear textures in ungulates, xenarthrans, marsupials, carnivorans, and primates (including humans and their ancestors) are correlated with known dietary behavior in extant taxa and reconstruct ancient diets in a diversity of prehistoric mammals. For example, tough versus hard object feeding can be characterized across disparate phylogenetic groups and can distinguish grazers, folivorous, and flesh consumers (tougher food consumers) from woody browsers, frugivores, and bone consumers (harder object feeders). This paper reviews how dental microwear textures can be useful to reconstructing diets in a broad array of living and extinct mammals, with commentary on areas of future research.

  19. Strain tolerance in technical Nb3Al superconductors

    NASA Astrophysics Data System (ADS)

    Banno, N.; Takeuchi, T.; Kitaguchi, H.; Tagawa, K.

    2006-10-01

    We observed crack formation in transformation-processed Nb3Al wires at room temperature, the wire being bent with a small clamp fixture with a curvature. The polished cross-section parallel to the longitudinal axis was observed, using a high power optical microscope or a field-emission scanning electron microscope. The bend strain limit for microcrack formation is found, changing the radius of the curvature of the clamp. The bend strain limit was found to be around 0.3% for standard Nb3Al wires. This corresponds to the irreversible tensile strain limit of the Ic characteristics determined with a 0.1 µV cm-1 criterion. Reduction of the barrier thickness should be avoided to keep to the bend strain limit. A new configuration of the Nb3Al wire is demonstrated to improve the bend strain limit. The filament is divided into segments in the transverse cross-section. The wire is fabricated by a double-stacking method. The bend strain limit is enhanced to about 0.85% for the wire surface; the equivalent strain of the outermost filament location is about 0.66%. A simple react and wind test for this wire was performed, where the wire experienced 0.86% bend strain. The degradation of Jc was found to be very small.

  20. Lensless digital holographic microscopy and its applications in biomedicine and environmental monitoring.

    PubMed

    Wu, Yichen; Ozcan, Aydogan

    2018-03-01

    Optical compound microscope has been a major tool in biomedical imaging for centuries. Its performance relies on relatively complicated, bulky and expensive lenses and alignment mechanics. In contrast, the lensless microscope digitally reconstructs microscopic images of specimens without using any lenses, as a result of which it can be made much smaller, lighter and lower-cost. Furthermore, the limited space-bandwidth product of objective lenses in a conventional microscope can be significantly surpassed by a lensless microscope. Such lensless imaging designs have enabled high-resolution and high-throughput imaging of specimens using compact, portable and cost-effective devices to potentially address various point-of-care, global-health and telemedicine related challenges. In this review, we discuss the operation principles and the methods behind lensless digital holographic on-chip microscopy. We also go over various applications that are enabled by cost-effective and compact implementations of lensless microscopy, including some recent work on air quality monitoring, which utilized machine learning for high-throughput and accurate quantification of particulate matter in air. Finally, we conclude with a brief future outlook of this computational imaging technology. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Microscopy and microanalysis of complex nanosized strengthening precipitates in new generation commercial Al-Cu-Li alloys.

    PubMed

    Guinel, M J-F; Brodusch, N; Sha, G; Shandiz, M A; Demers, H; Trudeau, M; Ringer, S P; Gauvin, R

    2014-09-01

    Precipitates (ppts) in new generation aluminum-lithium alloys (AA2099 and AA2199) were characterised using scanning and transmission electron microscopy and atom probe tomography. Results obtained on the following ppts are reported: Guinier-Preston zones, T1 (Al2 CuLi), β' (Al3 Zr) and δ' (Al3 Li). The focus was placed on their composition and the presence of minor elements. X-ray energy-dispersive spectrometry in the electron microscopes and mass spectrometry in the atom probe microscope showed that T1 ppts were enriched in zinc (Zn) and magnesium up to about 1.9 and 3.5 at.%, respectively. A concentration of 2.5 at.% Zn in the δ' ppts was also measured. Unlike Li and copper, Zn in the T1 ppts could not be detected using electron energy-loss spectroscopy in the transmission electron microscope because of its too low concentration and the small sizes of these ppts. Indeed, Monte Carlo simulations of EEL spectra for the Zn L2,3 edge showed that the signal-to-noise ratio was not high enough and that the detection limit was at least 2.5 at.%, depending on the probe current. Also, the simulation of X-ray spectra confirmed that the detection limit was exceeded for the Zn Kα X-ray line because the signal-to-noise ratio was high enough in that case, which is in agreement with our observations. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  2. Determination of atomic-scale chemical composition at semiconductor heteroepitaxial interfaces by high-resolution transmission electron microscopy.

    PubMed

    Wen, C; Ma, Y J

    2018-03-01

    The determination of atomic structures and further quantitative information such as chemical compositions at atomic scale for semiconductor defects or heteroepitaxial interfaces can provide direct evidence to understand their formation, modification, and/or effects on the properties of semiconductor films. The commonly used method, high-resolution transmission electron microscopy (HRTEM), suffers from difficulty in acquiring images that correctly show the crystal structure at atomic resolution, because of the limitation in microscope resolution or deviation from the Scherzer-defocus conditions. In this study, an image processing method, image deconvolution, was used to achieve atomic-resolution (∼1.0 Å) structure images of small lattice-mismatch (∼1.0%) AlN/6H-SiC (0001) and large lattice-mismatch (∼8.5%) AlSb/GaAs (001) heteroepitaxial interfaces using simulated HRTEM images of a conventional 300-kV field-emission-gun transmission electron microscope under non-Scherzer-defocus conditions. Then, atomic-scale chemical compositions at the interface were determined for the atomic intermixing and Lomer dislocation with an atomic step by analyzing the deconvoluted image contrast. Furthermore, the effect of dynamical scattering on contrast analysis was also evaluated for differently weighted atomic columns in the compositions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Technological requirements of teleneuropathological systems.

    PubMed

    Szymaś, J

    2000-01-01

    Teleneuropathology is the practice of conducting remote neuropathological examinations with the use of telecommunication links. Because of a limited number of expert neuropathologists, some, especially smaller departments have the equipment to conduct the examination but do not have a specialist who would be able to evaluate material from the central nervous system. In case of teleneuropathology, a neuropathologist examines tissue fragments taken during an operation by means of a telemicroscope connected with the computer through a telecommunications network. It enables the neuropathologist to operate the microscope and camera remotely. Two basic systems exist for performing remote neuropathological examination: static and dynamic. Both have different needs in medical, computing and telecommunication aspect. Depending on the type of service the public telephone network, the integrated services digital network, or optical fibre should be used. Conditionally Internet can be used as a link for teleneuropathological system. However, for the newest developments in teleneuropathology such as teleconference and remote operation on robotized microscope only transmission over the integrated service digital network, which guarantees high speed of transmission gives a possibility to communicate. Because images are basic information element in teleneuropathological systems the high capacity of acquisition, processing, storing, transmission, and visualization equipment is necessary. The farther development of telecommunication as well as standardization of recording and transmission procedures of pictorial data is necessary.

  4. Investigating the impact of blood pressure increase to the brain using high resolution serial histology and image processing

    NASA Astrophysics Data System (ADS)

    Lesage, F.; Castonguay, A.; Tardif, P. L.; Lefebvre, J.; Li, B.

    2015-09-01

    A combined serial OCT/confocal scanner was designed to image large sections of biological tissues at microscopic resolution. Serial imaging of organs embedded in agarose blocks is performed by cutting through tissue using a vibratome which sequentially cuts slices in order to reveal new tissue to image, overcoming limited light penetration encountered in microscopy. Two linear stages allow moving the tissue with respect to the microscope objective, acquiring a 2D grid of volumes (1x1x0.3 mm) with OCT and a 2D grid of images (1x1mm) with the confocal arm. This process is repeated automatically, until the entire sample is imaged. Raw data is then post-processed to re-stitch each individual acquisition and obtain a reconstructed volume of the imaged tissue. This design is being used to investigate correlations between white matter and microvasculature changes with aging and with increase in pulse pressure following transaortic constriction in mice. The dual imaging capability of the system allowed to reveal different contrast information: OCT imaging reveals changes in refractive indices giving contrast between white and grey matter in the mouse brain, while transcardial perfusion of FITC or pre-sacrifice injection of Evans Blue shows microsvasculature properties in the brain with confocal imaging.

  5. Intraoperative indocyanine green videoangiography for spinal vascular lesions: case report.

    PubMed

    Murakami, Tomohiro; Koyanagi, Izumi; Kaneko, Takahisa; Iihoshi, Satoshi; Houkin, Kiyohiro

    2011-03-01

    In surgery of spinal vascular lesions such as spinal arteriovenous fistula or vascular tumors, assessment of feeding arteries and draining veins is important. Intraoperative digital subtraction angiography is useful but is invasive and sometimes technically demanding. Near-infrared indocyanine green (ICG) videoangiography is less invasive and has been reported as an intraoperative diagnosis of arterial patency during clipping surgery of cerebral aneurysms or bypass surgeries. We present our experience with intraoperative ICG videoangiography in 3 cases of spinal vascular lesions. Two patients had spinal arteriovenous fistula (perimedullary, n = 1; dural, n = 1), and 1 patient had spinal cord hemangioblastoma at the thoracic or thoracolumbar level. The surgical microscope was an OPMI Pentero (Carl Zeiss, Oberkochen, Germany). After laminectomy and opening of the dura, ICG (5 mg) was injected intravenously. The ICG angiography clearly demonstrated feeding and draining vessels. The ICG findings greatly helped successful interruption of arteriovenous fistula and total removal of the tumor. Intraoperative ICG videoangiography for spinal vascular lesions was useful by providing information on vascular dynamics directly. However, the diagnostic area is limited to the field of the surgical microscope. Although intraoperative digital subtraction angiography is still needed in cases of complex spinal vascular lesions, ICG videoangiography will be an important diagnostic modality in the field of spinal vascular surgeries.

  6. A quantitative and spatially resolved analysis of the performance-bottleneck in high efficiency, planar hybrid perovskite solar cells

    DOE PAGES

    Draguta, Sergiu; Christians, Jeffrey A.; Morozov, Yurii V.; ...

    2018-01-01

    Hybrid perovskites represent a potential paradigm shift for the creation of low-cost solar cells. Current power conversion efficiencies (PCEs) exceed 22%. However, despite this, record PCEs are still far from their theoretical Shockley–Queisser limit of 31%. To increase these PCE values, there is a pressing need to understand, quantify and microscopically model charge recombination processes in full working devices. Here, we present a complete microscopic account of charge recombination processes in high efficiency (18–19% PCE) hybrid perovskite (mixed cation and methylammonium lead iodide) solar cells. We employ diffraction-limited optical measurements along with relevant kinetic modeling to establish, for the firstmore » time, local photoluminescence quantum yields, trap densities, trapping efficiencies, charge extraction efficiencies, quasi-Fermi-level splitting, and effective PCE estimates. Correlations between these spatially resolved parameters, in turn, allow us to conclude that intrinsic electron traps in the perovskite active layers limit the performance of these state-of-the-art hybrid perovskite solar cells.« less

  7. A quantitative and spatially resolved analysis of the performance-bottleneck in high efficiency, planar hybrid perovskite solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Draguta, Sergiu; Christians, Jeffrey A.; Morozov, Yurii V.

    Hybrid perovskites represent a potential paradigm shift for the creation of low-cost solar cells. Current power conversion efficiencies (PCEs) exceed 22%. However, despite this, record PCEs are still far from their theoretical Shockley–Queisser limit of 31%. To increase these PCE values, there is a pressing need to understand, quantify and microscopically model charge recombination processes in full working devices. Here, we present a complete microscopic account of charge recombination processes in high efficiency (18–19% PCE) hybrid perovskite (mixed cation and methylammonium lead iodide) solar cells. We employ diffraction-limited optical measurements along with relevant kinetic modeling to establish, for the firstmore » time, local photoluminescence quantum yields, trap densities, trapping efficiencies, charge extraction efficiencies, quasi-Fermi-level splitting, and effective PCE estimates. Correlations between these spatially resolved parameters, in turn, allow us to conclude that intrinsic electron traps in the perovskite active layers limit the performance of these state-of-the-art hybrid perovskite solar cells.« less

  8. Automated mineralogy based on micro-energy-dispersive X-ray fluorescence microscopy (µ-EDXRF) applied to plutonic rock thin sections in comparison to a mineral liberation analyzer

    NASA Astrophysics Data System (ADS)

    Nikonow, Wilhelm; Rammlmair, Dieter

    2017-10-01

    Recent developments in the application of micro-energy-dispersive X-ray fluorescence spectrometry mapping (µ-EDXRF) have opened up new opportunities for fast geoscientific analyses. Acquiring spatially resolved spectral and chemical information non-destructively for large samples of up to 20 cm length provides valuable information for geoscientific interpretation. Using supervised classification of the spectral information, mineral distribution maps can be obtained. In this work, thin sections of plutonic rocks are analyzed by µ-EDXRF and classified using the supervised classification algorithm spectral angle mapper (SAM). Based on the mineral distribution maps, it is possible to obtain quantitative mineral information, i.e., to calculate the modal mineralogy, search and locate minerals of interest, and perform image analysis. The results are compared to automated mineralogy obtained from the mineral liberation analyzer (MLA) of a scanning electron microscope (SEM) and show good accordance, revealing variation resulting mostly from the limit of spatial resolution of the µ-EDXRF instrument. Taking into account the little time needed for sample preparation and measurement, this method seems suitable for fast sample overviews with valuable chemical, mineralogical and textural information. Additionally, it enables the researcher to make better and more targeted decisions for subsequent analyses.

  9. A versatile optical microscope for time-dependent single-molecule and single-particle spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Hao; Yang, Haw

    2018-03-01

    This work reports the design and implementation of a multi-function optical microscope for time-dependent spectroscopy on single molecules and single nanoparticles. It integrates the now-routine single-object measurements into one standalone platform so that no reconfiguration is needed when switching between different types of sample or spectroscopy modes. The illumination modes include evanescent field through total internal reflection, dark-field illumination, and epi-excitation onto a diffraction-limited spot suitable for confocal detection. The detection modes include spectrally resolved line imaging, wide-field imaging with dual-color capability, and two-color single-element photon-counting detection. The switch between different spectroscopy and data acquisition modes is fully automated and executed through computer programming. The capability of this microscope is demonstrated through selected proof-of-principle experiments.

  10. Identification Of Cells With A Compact Microscope Imaging System With Intelligent Controls

    NASA Technical Reports Server (NTRS)

    McDowell, Mark (Inventor)

    2006-01-01

    A Microscope Imaging System (CMIS) with intelligent controls is disclosed that provides techniques for scanning, identifying, detecting and tracking mic?oscopic changes in selected characteristics or features of various surfaces including, but not limited to, cells, spheres, and manufactured products subject to difficult-to-see imperfections. The practice of the present invention provides applications that include colloidal hard spheres experiments, biological cell detection for patch clamping, cell movement and tracking, as well as defect identification in products, such as semiconductor devices, where surface damage can be significant, but difficult to detect. The CMIS system is a machine vision system, which combines intelligent image processing with remote control capabilities and provides the ability to autofocus on a microscope sample, automatically scan an image, and perform machine vision analysis on multiple samples simultaneously.

  11. A versatile optical microscope for time-dependent single-molecule and single-particle spectroscopy.

    PubMed

    Li, Hao; Yang, Haw

    2018-03-28

    This work reports the design and implementation of a multi-function optical microscope for time-dependent spectroscopy on single molecules and single nanoparticles. It integrates the now-routine single-object measurements into one standalone platform so that no reconfiguration is needed when switching between different types of sample or spectroscopy modes. The illumination modes include evanescent field through total internal reflection, dark-field illumination, and epi-excitation onto a diffraction-limited spot suitable for confocal detection. The detection modes include spectrally resolved line imaging, wide-field imaging with dual-color capability, and two-color single-element photon-counting detection. The switch between different spectroscopy and data acquisition modes is fully automated and executed through computer programming. The capability of this microscope is demonstrated through selected proof-of-principle experiments.

  12. Bears in Eden, or, this is not the garden you're looking for: Margaret Cavendish, Robert Hooke and the limits of natural philosophy.

    PubMed

    Lawson, Ian

    2015-12-01

    This paper investigates Margaret Cavendish's characterization of experimental philosophers as hybrids of bears and men in her 1666 story The Description of a New World, Called the Blazing World. By associating experimental philosophers, in particular Robert Hooke and his microscope, with animals familiar to her readers from the sport of bear-baiting, Cavendish constructed an identity for the fellows of the Royal Society of London quite unlike that which they imagined for themselves. Recent scholarship has illustrated well how Cavendish's opposition to experimental philosophy is linked to her different natural-philosophical, political and anthropological ideas. My contribution to this literature is to examine the meanings both of bears in early modern England and of microscopes in experimental rhetoric, in order to illustrate the connection that Cavendish implies between the two. She parodied Hooke's idea that his microscope extended his limited human senses, and mocked his aim that by so doing he could produce useful knowledge. The bear-men reflect inhuman ambition and provide a caution against ignoring both the order of English society and the place of humans in nature.

  13. Brownian Carnot engine

    PubMed Central

    Dinis, L.; Petrov, D.; Parrondo, J. M. R.; Rica, R. A.

    2016-01-01

    The Carnot cycle imposes a fundamental upper limit to the efficiency of a macroscopic motor operating between two thermal baths1. However, this bound needs to be reinterpreted at microscopic scales, where molecular bio-motors2 and some artificial micro-engines3–5 operate. As described by stochastic thermodynamics6,7, energy transfers in microscopic systems are random and thermal fluctuations induce transient decreases of entropy, allowing for possible violations of the Carnot limit8. Here we report an experimental realization of a Carnot engine with a single optically trapped Brownian particle as the working substance. We present an exhaustive study of the energetics of the engine and analyse the fluctuations of the finite-time efficiency, showing that the Carnot bound can be surpassed for a small number of non-equilibrium cycles. As its macroscopic counterpart, the energetics of our Carnot device exhibits basic properties that one would expect to observe in any microscopic energy transducer operating with baths at different temperatures9–11. Our results characterize the sources of irreversibility in the engine and the statistical properties of the efficiency—an insight that could inspire new strategies in the design of efficient nano-motors. PMID:27330541

  14. High contrast imaging and flexible photomanipulation for quantitative in vivo multiphoton imaging with polygon scanning microscope.

    PubMed

    Li, Yongxiao; Montague, Samantha J; Brüstle, Anne; He, Xuefei; Gillespie, Cathy; Gaus, Katharina; Gardiner, Elizabeth E; Lee, Woei Ming

    2018-02-28

    In this study, we introduce two key improvements that overcome limitations of existing polygon scanning microscopes while maintaining high spatial and temporal imaging resolution over large field of view (FOV). First, we proposed a simple and straightforward means to control the scanning angle of the polygon mirror to carry out photomanipulation without resorting to high speed optical modulators. Second, we devised a flexible data sampling method directly leading to higher image contrast by over 2-fold and digital images with 100 megapixels (10 240 × 10 240) per frame at 0.25 Hz. This generates sub-diffraction limited pixels (60 nm per pixels over the FOV of 512 μm) which increases the degrees of freedom to extract signals computationally. The unique combined optical and digital control recorded fine fluorescence recovery after localized photobleaching (r ~10 μm) within fluorescent giant unilamellar vesicles and micro-vascular dynamics after laser-induced injury during thrombus formation in vivo. These new improvements expand the quantitative biological-imaging capacity of any polygon scanning microscope system. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Optical Analysis of an Ultra-High resolution Two-Mirror Soft X-Ray Microscope

    NASA Technical Reports Server (NTRS)

    Shealy, David L.; Wang, Cheng; Hoover, Richard B.

    1994-01-01

    This work has summarized for a Schwarzschild microscope some relationships between numerical aperture (NA), magnification, diameter of the primary mirror, radius of curvature of the secondary mirror, and the total length of the microscope. To achieve resolutions better than a spherical Schwarzschild microscope of 3.3 Lambda for a perfectly aligned and fabricated system. it is necessary to use aspherical surfaces to control higher-order aberrations. For an NA of 0.35, the aspherical Head microscope provides diffraction limited resolution of 1.4 Lambda where the aspherical surfaces differ from the best fit spherical surface by approximately 1 micrometer. However, the angle of incidence varies significantly over the primary and the secondary mirrors, which will require graded multilayer coatings to operate near peak reflectivities. For higher numerical apertures, the variation of the angle of incidence over the secondary mirror surface becomes a serious problem which must be solved before multilayer coatings can be used for this application. Tolerance analysis of the spherical Schwarzschild microscope has shown that water window operations will require 2-3 times tighter tolerances to achieve a similar performance for operations with 130 A radiation. Surface contour errors have been shown to have a significant impact on the MTF and must be controlled to a peak-to-valley variation of 50-100 A and a frequency of 8 periods over the surface of a mirror.

  16. Microscopic anthropogenic litter in terrestrial birds from Shanghai, China: Not only plastics but also natural fibers.

    PubMed

    Zhao, Shiye; Zhu, Lixin; Li, Daoji

    2016-04-15

    The level of contamination by microscopic anthropogenic litter (0.5-5mm) in terrestrial ecosystems is not well understood. After chemical digestion in 10% KOH, microscopic anthropogenic litter from the gastrointestinal tracts of 17 terrestrial birds was identified and categorized under a stereomicroscope based on its physical properties and melting tests. In total, 364 items from 16 birds were identified as microscopic anthropogenic litter, ranging in size from 0.5 to 8.5mm. No relationship between plastic load and body condition was found. Natural fibers, plastic fibers and fragmented plastics represented, respectively, 37.4% (136 items), 54.9% (200 items) and 7.7% (28 items) of total litter items. Small sample sizes limited our ability to draw strong conclusions about the metabolism of natural fibers, but the decline in the proportion of natural fibers from the esophagus to stomach to intestine suggested that they may be digestible. Particles smaller than 5mm represented more than 90% of the total number of pollutant items. Particles with colors in the mid-tones and fibrous shapes were overwhelmingly common particles. The results reflect pollution by microscopic anthropogenic litter in the terrestrial ecosystem of the study area. Microscopic natural fibers, which may disperse and adsorb chemical pollutants differently from microplastic and may pose an even greater risk, are in urgent need of further research. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. 3D imaging of optically cleared tissue using a simplified CLARITY method and on-chip microscopy

    PubMed Central

    Zhang, Yibo; Shin, Yoonjung; Sung, Kevin; Yang, Sam; Chen, Harrison; Wang, Hongda; Teng, Da; Rivenson, Yair; Kulkarni, Rajan P.; Ozcan, Aydogan

    2017-01-01

    High-throughput sectioning and optical imaging of tissue samples using traditional immunohistochemical techniques can be costly and inaccessible in resource-limited areas. We demonstrate three-dimensional (3D) imaging and phenotyping in optically transparent tissue using lens-free holographic on-chip microscopy as a low-cost, simple, and high-throughput alternative to conventional approaches. The tissue sample is passively cleared using a simplified CLARITY method and stained using 3,3′-diaminobenzidine to target cells of interest, enabling bright-field optical imaging and 3D sectioning of thick samples. The lens-free computational microscope uses pixel super-resolution and multi-height phase recovery algorithms to digitally refocus throughout the cleared tissue and obtain a 3D stack of complex-valued images of the sample, containing both phase and amplitude information. We optimized the tissue-clearing and imaging system by finding the optimal illumination wavelength, tissue thickness, sample preparation parameters, and the number of heights of the lens-free image acquisition and implemented a sparsity-based denoising algorithm to maximize the imaging volume and minimize the amount of the acquired data while also preserving the contrast-to-noise ratio of the reconstructed images. As a proof of concept, we achieved 3D imaging of neurons in a 200-μm-thick cleared mouse brain tissue over a wide field of view of 20.5 mm2. The lens-free microscope also achieved more than an order-of-magnitude reduction in raw data compared to a conventional scanning optical microscope imaging the same sample volume. Being low cost, simple, high-throughput, and data-efficient, we believe that this CLARITY-enabled computational tissue imaging technique could find numerous applications in biomedical diagnosis and research in low-resource settings. PMID:28819645

  18. eSIP: A Novel Solution-Based Sectioned Image Property Approach for Microscope Calibration

    PubMed Central

    Butzlaff, Malte; Weigel, Arwed; Ponimaskin, Evgeni; Zeug, Andre

    2015-01-01

    Fluorescence confocal microscopy represents one of the central tools in modern sciences. Correspondingly, a growing amount of research relies on the development of novel microscopic methods. During the last decade numerous microscopic approaches were developed for the investigation of various scientific questions. Thereby, the former qualitative imaging methods became replaced by advanced quantitative methods to gain more and more information from a given sample. However, modern microscope systems being as complex as they are, require very precise and appropriate calibration routines, in particular when quantitative measurements should be compared over longer time scales or between different setups. Multispectral beads with sub-resolution size are often used to describe the point spread function and thus the optical properties of the microscope. More recently, a fluorescent layer was utilized to describe the axial profile for each pixel, which allows a spatially resolved characterization. However, fabrication of a thin fluorescent layer with matching refractive index is technically not solved yet. Therefore, we propose a novel type of calibration concept for sectioned image property (SIP) measurements which is based on fluorescent solution and makes the calibration concept available for a broader number of users. Compared to the previous approach, additional information can be obtained by application of this extended SIP chart approach, including penetration depth, detected number of photons, and illumination profile shape. Furthermore, due to the fit of the complete profile, our method is less susceptible to noise. Generally, the extended SIP approach represents a simple and highly reproducible method, allowing setup independent calibration and alignment procedures, which is mandatory for advanced quantitative microscopy. PMID:26244982

  19. Aberration corrected 1.2-MV cold field-emission transmission electron microscope with a sub-50-pm resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akashi, Tetsuya; Takahashi, Yoshio; Tanigaki, Toshiaki, E-mail: toshiaki.tanigaki.mv@hitachi.com

    2015-02-16

    Atomic-resolution electromagnetic field observation is critical to the development of advanced materials and to the unveiling of their fundamental physics. For this purpose, a spherical-aberration corrected 1.2-MV cold field-emission transmission electron microscope has been developed. The microscope has the following superior properties: stabilized accelerating voltage, minimized electrical and mechanical fluctuation, and coherent electron emission. These properties have enabled to obtain 43-pm information transfer. On the bases of these performances, a 43-pm resolution has been obtained by correcting lens aberrations up to the third order. Observations of GaN [411] thin crystal showed a projected atomic locations with a separation of 44 pm.

  20. Building an endoscopic ear surgery program.

    PubMed

    Golub, Justin S

    2016-10-01

    This article discusses background, operative details, and outcomes of endoscopic ear surgery. This information will be helpful for those establishing a new program. Endoscopic ear surgery is growing in popularity. The ideal benefit is in totally transcanal access that would otherwise require a larger incision. The endoscope carries a number of advantages over the microscope, as well as some disadvantages. Several key maneuvers can minimize disadvantages. There is a paucity of studies directly comparing outcomes between endoscopic and microscopic approaches for the same procedure. The endoscope is gaining acceptance as a tool for treating otologic diseases. For interested surgeons, this article can help bridge the transition from microscopic to totally transcanal endoscopic ear surgery for appropriate disease.

  1. Dual-mode optical microscope based on single-pixel imaging

    NASA Astrophysics Data System (ADS)

    Rodríguez, A. D.; Clemente, P.; Tajahuerce, E.; Lancis, J.

    2016-07-01

    We demonstrate an inverted microscope that can image specimens in both reflection and transmission modes simultaneously with a single light source. The microscope utilizes a digital micromirror device (DMD) for patterned illumination altogether with two single-pixel photosensors for efficient light detection. The system, a scan-less device with no moving parts, works by sequential projection of a set of binary intensity patterns onto the sample that are codified onto a modified commercial DMD. Data to be displayed are geometrically transformed before written into a memory cell to cancel optical artifacts coming from the diamond-like shaped structure of the micromirror array. The 24-bit color depth of the display is fully exploited to increase the frame rate by a factor of 24, which makes the technique practicable for real samples. Our commercial DMD-based LED-illumination is cost effective and can be easily coupled as an add-on module for already existing inverted microscopes. The reflection and transmission information provided by our dual microscope complement each other and can be useful for imaging non-uniform samples and to prevent self-shadowing effects.

  2. Identification of malaria infected red blood samples by digital holographic quantitative phase microscope

    NASA Astrophysics Data System (ADS)

    Patel, Nimit R.; Chhaniwal, Vani K.; Javidi, Bahram; Anand, Arun

    2015-07-01

    Development of devices for automatic identification of diseases is desired especially in developing countries. In the case of malaria, even today the gold standard is the inspection of chemically treated blood smears through a microscope. This requires a trained technician/microscopist to identify the cells in the field of view, with which the labeling chemicals gets attached. Bright field microscopes provide only low contrast 2D images of red blood cells and cell thickness distribution cannot be obtained. Quantitative phase contrast microscopes can provide both intensity and phase profiles of the cells under study. The phase information can be used to determine thickness profile of the cell. Since cell morphology is available, many parameters pertaining to the 3D shape of the cell can be computed. These parameters in turn could be used to decide about the state of health of the cell leading to disease diagnosis. Here the investigations done on digital holographic microscope, which provides quantitative phase images, for comparison of parameters obtained from the 3D shape profile of objects leading to identification of diseased samples is described.

  3. Ultrawidefield microscope for high-speed fluorescence imaging and targeted optogenetic stimulation.

    PubMed

    Werley, Christopher A; Chien, Miao-Ping; Cohen, Adam E

    2017-12-01

    The rapid increase in the number and quality of fluorescent reporters and optogenetic actuators has yielded a powerful set of tools for recording and controlling cellular state and function. To achieve the full benefit of these tools requires improved optical systems with high light collection efficiency, high spatial and temporal resolution, and patterned optical stimulation, in a wide field of view (FOV). Here we describe our 'Firefly' microscope, which achieves these goals in a Ø6 mm FOV. The Firefly optical system is optimized for simultaneous photostimulation and fluorescence imaging in cultured cells. All but one of the optical elements are commercially available, yet the microscope achieves 10-fold higher light collection efficiency at its design magnification than the comparable commercially available microscope using the same objective. The Firefly microscope enables all-optical electrophysiology ('Optopatch') in cultured neurons with a throughput and information content unmatched by other neuronal phenotyping systems. This capability opens possibilities in disease modeling and phenotypic drug screening. We also demonstrate applications of the system to voltage and calcium recordings in human induced pluripotent stem cell derived cardiomyocytes.

  4. Ultrawidefield microscope for high-speed fluorescence imaging and targeted optogenetic stimulation

    PubMed Central

    Werley, Christopher A.; Chien, Miao-Ping; Cohen, Adam E.

    2017-01-01

    The rapid increase in the number and quality of fluorescent reporters and optogenetic actuators has yielded a powerful set of tools for recording and controlling cellular state and function. To achieve the full benefit of these tools requires improved optical systems with high light collection efficiency, high spatial and temporal resolution, and patterned optical stimulation, in a wide field of view (FOV). Here we describe our ‘Firefly’ microscope, which achieves these goals in a Ø6 mm FOV. The Firefly optical system is optimized for simultaneous photostimulation and fluorescence imaging in cultured cells. All but one of the optical elements are commercially available, yet the microscope achieves 10-fold higher light collection efficiency at its design magnification than the comparable commercially available microscope using the same objective. The Firefly microscope enables all-optical electrophysiology (‘Optopatch’) in cultured neurons with a throughput and information content unmatched by other neuronal phenotyping systems. This capability opens possibilities in disease modeling and phenotypic drug screening. We also demonstrate applications of the system to voltage and calcium recordings in human induced pluripotent stem cell derived cardiomyocytes. PMID:29296505

  5. Fluorescence microscopy.

    PubMed

    Sanderson, Michael J; Smith, Ian; Parker, Ian; Bootman, Martin D

    2014-10-01

    Fluorescence microscopy is a major tool with which to monitor cell physiology. Although the concepts of fluorescence and its optical separation using filters remain similar, microscope design varies with the aim of increasing image contrast and spatial resolution. The basics of wide-field microscopy are outlined to emphasize the selection, advantages, and correct use of laser scanning confocal microscopy, two-photon microscopy, scanning disk confocal microscopy, total internal reflection, and super-resolution microscopy. In addition, the principles of how these microscopes form images are reviewed to appreciate their capabilities, limitations, and constraints for operation. © 2014 Cold Spring Harbor Laboratory Press.

  6. Laboratory-size three-dimensional water-window x-ray microscope with Wolter type I mirror optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohsuka, Shinji; The Graduate School for the Creation of New Photonics Industries, 1955-1 Kurematsu-cho, Nishi-ku, Hamamatsu-City, 431-1202; Ohba, Akira

    2016-01-28

    We constructed a laboratory-size three-dimensional water-window x-ray microscope that combines wide-field transmission x-ray microscopy with tomographic reconstruction techniques. It consists of an electron-impact x-ray source emitting oxygen Kα x-rays, Wolter type I grazing incidence mirror optics, and a back-illuminated CCD for x-ray imaging. A spatial resolution limit better than 1.0 line pairs per micrometer was obtained for two-dimensional transmission images, and 1-μm-scale three-dimensional fine structures were resolved.

  7. Extension to linear dynamics for hybrid stress finite element formulation based on additional displacements

    NASA Astrophysics Data System (ADS)

    Sumihara, K.

    Based upon legitimate variational principles, one microscopic-macroscopic finite element formulation for linear dynamics is presented by Hybrid Stress Finite Element Method. The microscopic application of Geometric Perturbation introduced by Pian and the introduction of infinitesimal limit core element (Baby Element) have been consistently combined according to the flexible and inherent interpretation of the legitimate variational principles initially originated by Pian and Tong. The conceptual development based upon Hybrid Finite Element Method is extended to linear dynamics with the introduction of physically meaningful higher modes.

  8. Fluorescence Microscopy

    PubMed Central

    Sanderson, Michael J.; Smith, Ian; Parker, Ian; Bootman, Martin D.

    2016-01-01

    Fluorescence microscopy is a major tool with which to monitor cell physiology. Although the concepts of fluorescence and its optical separation using filters remain similar, microscope design varies with the aim of increasing image contrast and spatial resolution. The basics of wide-field microscopy are outlined to emphasize the selection, advantages, and correct use of laser scanning confocal microscopy, two-photon microscopy, scanning disk confocal microscopy, total internal reflection, and super-resolution microscopy. In addition, the principles of how these microscopes form images are reviewed to appreciate their capabilities, limitations, and constraints for operation. PMID:25275114

  9. Effect of CO2 laser on Class V cavities of human molar teeth under a scanning electron microscope.

    PubMed

    Watanabe, I; Lopes, R A; Brugnera, A; Katayama, A Y; Gardini, A E

    1996-01-01

    The purpose of this study was to evaluate the effects of CO2 laser on dentin of class V cavities of extracted human molar teeth using a scanning electron microscope. SEM showed a smooth area with concentric lines formed by melting with subsequent recrystallization of dentin, areas of granulation, vitrified surface, numerous cracks, and irregular areas of descamative dentin. These data indicate that CO2 laser (4 and 6 watts) produces dentin alterations and limit its clinical applications.

  10. Improved specimen reconstruction by Hilbert phase contrast tomography.

    PubMed

    Barton, Bastian; Joos, Friederike; Schröder, Rasmus R

    2008-11-01

    The low signal-to-noise ratio (SNR) in images of unstained specimens recorded with conventional defocus phase contrast makes it difficult to interpret 3D volumes obtained by electron tomography (ET). The high defocus applied for conventional tilt series generates some phase contrast but leads to an incomplete transfer of object information. For tomography of biological weak-phase objects, optimal image contrast and subsequently an optimized SNR are essential for the reconstruction of details such as macromolecular assemblies at molecular resolution. The problem of low contrast can be partially solved by applying a Hilbert phase plate positioned in the back focal plane (BFP) of the objective lens while recording images in Gaussian focus. Images recorded with the Hilbert phase plate provide optimized positive phase contrast at low spatial frequencies, and the contrast transfer in principle extends to the information limit of the microscope. The antisymmetric Hilbert phase contrast (HPC) can be numerically converted into isotropic contrast, which is equivalent to the contrast obtained by a Zernike phase plate. Thus, in-focus HPC provides optimal structure factor information without limiting effects of the transfer function. In this article, we present the first electron tomograms of biological specimens reconstructed from Hilbert phase plate image series. We outline the technical implementation of the phase plate and demonstrate that the technique is routinely applicable for tomography. A comparison between conventional defocus tomograms and in-focus HPC volumes shows an enhanced SNR and an improved specimen visibility for in-focus Hilbert tomography.

  11. Visual neuroscience before the neuron.

    PubMed

    Wade, Nicholas J

    2004-01-01

    Visual neuroscience is considered to be a contemporary concern, based in large part on relating characteristics of neural functioning to visual experience. It presupposes a detailed knowledge of neural activity for which the neuron doctrine is a fundamental tenet. However, long before either the neuron doctrine had been advanced or the nerve cell had been described, attempts were made to estimate the dimensions of nerve fibres from measures of visual resolution. In the seventeenth century, the microscopes of Hooke and van Leeuwenhoek were unable to resolve structures as small as nerves adequately. However, it was not Hooke's microscope that led to an estimate of the dimensions of nerve fibres but his experiments on the limits of visual resolution. Hooke determined that a separation of one minute of arc was the minimum that could normally be seen. Descartes had earlier speculated that the retina consisted of the terminations of fibres of the optic nerve, and that their size defined the limits of what could be seen. Estimates of the diameters of nerve fibres were made on the basis of human visual acuity by Porterfield in 1738; he calculated the diameters of nerve fibres in the retina as one 7200th part of an inch (0.0035 mm), based on the resolution of one minute of arc as the minimum visible. In the same year, Jurin questioned the reliability of such estimates because of variations in visual resolution with different stimuli. The measurement of visual acuity was refined by Mayer in 1755, with dots, gratings, and grids used as stimuli. In the 1830s, Treviranus fused the microscopic and acuity approaches to determine the dimensions of nerve fibres. His indirect estimates of the dimensions of retinal fibres were close to those derived from microscopic observation. However, the suggestion that the retina consisted of terminations of nerve fibres influenced his detailed illustrations of its microscopic structure. Contrary to the situation that obtained after the microscopic structure of the retina had been established, a function of vision (acuity) was used to determine the dimensions of the structures (retinal elements) that were thought to mediate it.

  12. Laser-induced surface deformation microscope for the study of the dynamic viscoelasticity of plasma membrane in a living cell.

    PubMed

    Morisaku, Toshinori; Yui, Hiroharu

    2018-05-15

    A laser-induced surface deformation (LISD) microscope is developed and applied to measurement of the dynamic relaxation responses of the plasma membrane in a living cell. A laser beam is tightly focused on an optional area of cell surface and the focused light induces microscopic deformation on the surface via radiation pressure. The LISD microscope not only allows non-contact and destruction-free measurement but provides power spectra of the surface responses depending on the frequency of the intensity of the laser beam. An optical system for the LISD is equipped via a microscope, allowing us to measure the relaxation responses in sub-cellular-sized regions of the plasma membrane. In addition, the forced oscillation caused by the radiation pressure for surface deformation extends the upper limit of the frequency range in the obtained power spectra to 106 Hz, which enables us to measure relaxation responses in local regions within the plasma membrane. From differences in power-law exponents at higher frequencies, it is realized that a cancerous cell obeys a weaker single power-law than a normal fibroblast cell. Furthermore, the power spectrum of a keratinocyte cell obeys a power-law with two exponents, indicating that alternative mechanical models to a conventional soft glassy rheology model (where single power-laws explain cells' responses below about 103 Hz) are needed for the understanding over a wider frequency range. The LISD microscope would contribute to investigation of microscopic cell rheology, which is important for clarifying the mechanisms of cell migration and tissue construction.

  13. Augmented microscopy with near-infrared fluorescence detection

    NASA Astrophysics Data System (ADS)

    Watson, Jeffrey R.; Martirosyan, Nikolay; Skoch, Jesse; Lemole, G. Michael; Anton, Rein; Romanowski, Marek

    2015-03-01

    Near-infrared (NIR) fluorescence has become a frequently used intraoperative technique for image-guided surgical interventions. In procedures such as cerebral angiography, surgeons use the optical surgical microscope for the color view of the surgical field, and then switch to an electronic display for the NIR fluorescence images. However, the lack of stereoscopic, real-time, and on-site coregistration adds time and uncertainty to image-guided surgical procedures. To address these limitations, we developed the augmented microscope, whereby the electronically processed NIR fluorescence image is overlaid with the anatomical optical image in real-time within the optical path of the microscope. In vitro, the augmented microscope can detect and display indocyanine green (ICG) concentrations down to 94.5 nM, overlaid with the anatomical color image. We prepared polyacrylamide tissue phantoms with embedded polystyrene beads, yielding scattering properties similar to brain matter. In this model, 194 μM solution of ICG was detectable up to depths of 5 mm. ICG angiography was then performed in anesthetized rats. A dynamic process of ICG distribution in the vascular system overlaid with anatomical color images was observed and recorded. In summary, the augmented microscope demonstrates NIR fluorescence detection with superior real-time coregistration displayed within the ocular of the stereomicroscope. In comparison to other techniques, the augmented microscope retains full stereoscopic vision and optical controls including magnification and focus, camera capture, and multiuser access. Augmented microscopy may find application in surgeries where the use of traditional microscopes can be enhanced by contrast agents and image guided delivery of therapeutics, including oncology, neurosurgery, and ophthalmology.

  14. 4D microscope-integrated OCT improves accuracy of ophthalmic surgical maneuvers

    NASA Astrophysics Data System (ADS)

    Carrasco-Zevallos, Oscar; Keller, Brenton; Viehland, Christian; Shen, Liangbo; Todorich, Bozho; Shieh, Christine; Kuo, Anthony; Toth, Cynthia; Izatt, Joseph A.

    2016-03-01

    Ophthalmic surgeons manipulate micron-scale tissues using stereopsis through an operating microscope and instrument shadowing for depth perception. While ophthalmic microsurgery has benefitted from rapid advances in instrumentation and techniques, the basic principles of the stereo operating microscope have not changed since the 1930's. Optical Coherence Tomography (OCT) has revolutionized ophthalmic imaging and is now the gold standard for preoperative and postoperative evaluation of most retinal and many corneal procedures. We and others have developed initial microscope-integrated OCT (MIOCT) systems for concurrent OCT and operating microscope imaging, but these are limited to 2D real-time imaging and require offline post-processing for 3D rendering and visualization. Our previously presented 4D MIOCT system can record and display the 3D surgical field stereoscopically through the microscope oculars using a dual-channel heads-up display (HUD) at up to 10 micron-scale volumes per second. In this work, we show that 4D MIOCT guidance improves the accuracy of depth-based microsurgical maneuvers (with statistical significance) in mock surgery trials in a wet lab environment. Additionally, 4D MIOCT was successfully performed in 38/45 (84%) posterior and 14/14 (100%) anterior eye human surgeries, and revealed previously unrecognized lesions that were invisible through the operating microscope. These lesions, such as residual and potentially damaging retinal deformation during pathologic membrane peeling, were visualized in real-time by the surgeon. Our integrated system provides an enhanced 4D surgical visualization platform that can improve current ophthalmic surgical practice and may help develop and refine future microsurgical techniques.

  15. Stochastic dynamics and logistic population growth

    NASA Astrophysics Data System (ADS)

    Méndez, Vicenç; Assaf, Michael; Campos, Daniel; Horsthemke, Werner

    2015-06-01

    The Verhulst model is probably the best known macroscopic rate equation in population ecology. It depends on two parameters, the intrinsic growth rate and the carrying capacity. These parameters can be estimated for different populations and are related to the reproductive fitness and the competition for limited resources, respectively. We investigate analytically and numerically the simplest possible microscopic scenarios that give rise to the logistic equation in the deterministic mean-field limit. We provide a definition of the two parameters of the Verhulst equation in terms of microscopic parameters. In addition, we derive the conditions for extinction or persistence of the population by employing either the momentum-space spectral theory or the real-space Wentzel-Kramers-Brillouin approximation to determine the probability distribution function and the mean time to extinction of the population. Our analytical results agree well with numerical simulations.

  16. Convergence of methods for coupling of microscopic and mesoscopic reaction-diffusion simulations

    NASA Astrophysics Data System (ADS)

    Flegg, Mark B.; Hellander, Stefan; Erban, Radek

    2015-05-01

    In this paper, three multiscale methods for coupling of mesoscopic (compartment-based) and microscopic (molecular-based) stochastic reaction-diffusion simulations are investigated. Two of the three methods that will be discussed in detail have been previously reported in the literature; the two-regime method (TRM) and the compartment-placement method (CPM). The third method that is introduced and analysed in this paper is called the ghost cell method (GCM), since it works by constructing a "ghost cell" in which molecules can disappear and jump into the compartment-based simulation. Presented is a comparison of sources of error. The convergent properties of this error are studied as the time step Δt (for updating the molecular-based part of the model) approaches zero. It is found that the error behaviour depends on another fundamental computational parameter h, the compartment size in the mesoscopic part of the model. Two important limiting cases, which appear in applications, are considered: Δt → 0 and h is fixed; Δt → 0 and h → 0 such that √{ Δt } / h is fixed. The error for previously developed approaches (the TRM and CPM) converges to zero only in the limiting case (ii), but not in case (i). It is shown that the error of the GCM converges in the limiting case (i). Thus the GCM is superior to previous coupling techniques if the mesoscopic description is much coarser than the microscopic part of the model.

  17. Advantages of intermediate X-ray energies in Zernike phase contrast X-ray microscopy.

    PubMed

    Wang, Zhili; Gao, Kun; Chen, Jian; Hong, Youli; Ge, Xin; Wang, Dajiang; Pan, Zhiyun; Zhu, Peiping; Yun, Wenbing; Jacobsen, Chris; Wu, Ziyu

    2013-01-01

    Understanding the hierarchical organizations of molecules and organelles within the interior of large eukaryotic cells is a challenge of fundamental interest in cell biology. Light microscopy is a powerful tool for observations of the dynamics of live cells, its resolution attainable is limited and insufficient. While electron microscopy can produce images with astonishing resolution and clarity of ultra-thin (<1 μm thick) sections of biological specimens, many questions involve the three-dimensional organization of a cell or the interconnectivity of cells. X-ray microscopy offers superior imaging resolution compared to light microscopy, and unique capability of nondestructive three-dimensional imaging of hydrated unstained biological cells, complementary to existing light and electron microscopy. Until now, X-ray microscopes operating in the "water window" energy range between carbon and oxygen k-shell absorption edges have produced outstanding 3D images of cryo-preserved cells. The relatively low X-ray energy (<540 eV) of the water window imposes two important limitations: limited penetration (<10 μm) not suitable for imaging larger cells or tissues, and small depth of focus (DoF) for high resolution 3D imaging (e.g., ~1 μm DoF for 20 nm resolution). An X-ray microscope operating at intermediate energy around 2.5 keV using Zernike phase contrast can overcome the above limitations and reduces radiation dose to the specimen. Using a hydrated model cell with an average chemical composition reported in literature, we calculated the image contrast and the radiation dose for absorption and Zernike phase contrast, respectively. The results show that an X-ray microscope operating at ~2.5 keV using Zernike phase contrast offers substantial advantages in terms of specimen size, radiation dose and depth-of-focus. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Measurement area and repeatability of semiautomated assessment of corneal endothelium in the Topcon specular microscope SP-2000P and IMAGEnet system.

    PubMed

    Ding, Xiaohu; Huang, Qunxiao; Zheng, Yingfeng; Jiang, Yuzhen; Huang, Shengsong; He, Mingguang

    2012-10-01

    To investigate the repeatability of the semiautomatic assessment of corneal endothelial cells and its association with the measurement area in the Topcon SP-2000P microscope and IMAGEnet system. Specular microscopic images of 86 healthy subjects were captured and analyzed using the Topcon SP-2000P microscope and IMAGEnet system. The same images were analyzed twice, on separate days, by the same examiner using the built-in measurement tool of the IMAGEnet system. The measurement areas were defined with a frame mounted on a computer screen. Four different-sized measurement areas were chosen for the semiautomatic measurements: box A (5.4 × 13.9 cm(2)), box B (4 × 10 cm(2)), box C (4 × 7 cm(2)), and box D (2 × 5 cm(2)). Average cell size (ACS), endothelial cell density (ECD), coefficient of variance, and hexagonality were measured. Repeatability was assessed based on the limit of agreement (LOA). The means of ACS, ECD, and hexagonality were not statistically different across 4 measurement areas (analysis of variance, P > 0.05). The mean differences (bias) were modest for ACS (range, -1.9∼3.9 μm(2)), ECD (range, -27.2∼14.6 cells per square millimeter), coefficient of variance (range, -0.14∼1.00), and hexagonality (range, -1.3%∼6.8%). Limits of agreement (mean difference ± 1.96× SD) were greater in the measurements with smaller areas: limit of agreement values for ECD were 14.6 ± 99.6, -3.8 ± 101.1, -27.2 ± 179, and -15.8 ± 488 cells per square millimeter for boxes A, B, C, and D, respectively. Similar trends were found in the repeatability of ACS and hexagonality. Repeatability is improved when larger measurement areas are chosen.

  19. Immunogold labeling reveals subcellular localisation of silica nanoparticles in a human blood-brain barrier model

    NASA Astrophysics Data System (ADS)

    Ye, Dong; Anguissola, Sergio; O'Neill, Tiina; Dawson, Kenneth A.

    2015-05-01

    Subcellular location of nanoparticles has been widely investigated with fluorescence microscopy, via fluorescently labeled antibodies to visualise target antigens in cells. However, fluorescence microscopy, such as confocal or live cell imaging, has generally limited 3D spatial resolution. Conventional electron microscopy can be useful in bridging resolution gap, but still not ideal in resolving subcellular organelle identities. Using the pre-embedding immunogold electron microscopic imaging, we performed accurate examination of the intracellular trafficking and gathered further evidence of transport mechanisms of silica nanoparticles across a human in vitro blood-brain barrier model. Our approach can effectively immunolocalise a variety of intracellular compartments and provide new insights into the uptake and subcellular transport of nanoparticles.Subcellular location of nanoparticles has been widely investigated with fluorescence microscopy, via fluorescently labeled antibodies to visualise target antigens in cells. However, fluorescence microscopy, such as confocal or live cell imaging, has generally limited 3D spatial resolution. Conventional electron microscopy can be useful in bridging resolution gap, but still not ideal in resolving subcellular organelle identities. Using the pre-embedding immunogold electron microscopic imaging, we performed accurate examination of the intracellular trafficking and gathered further evidence of transport mechanisms of silica nanoparticles across a human in vitro blood-brain barrier model. Our approach can effectively immunolocalise a variety of intracellular compartments and provide new insights into the uptake and subcellular transport of nanoparticles. Electronic supplementary information (ESI) available: Nanoparticle characterisation data, preservation of cellular structures, staining controls, optimisation of size amplification via the silver enhancement, and more imaging results from anti-clathrin and anti-caveolin 1 immunolabeling. See DOI: 10.1039/c5nr01539a

  20. Morphometric information to reduce the semantic gap in the characterization of microscopic images of thyroid nodules.

    PubMed

    Macedo, Alessandra A; Pessotti, Hugo C; Almansa, Luciana F; Felipe, Joaquim C; Kimura, Edna T

    2016-07-01

    The analyses of several systems for medical-imaging processing typically support the extraction of image attributes, but do not comprise some information that characterizes images. For example, morphometry can be applied to find new information about the visual content of an image. The extension of information may result in knowledge. Subsequently, results of mappings can be applied to recognize exam patterns, thus improving the accuracy of image retrieval and allowing a better interpretation of exam results. Although successfully applied in breast lesion images, the morphometric approach is still poorly explored in thyroid lesions due to the high subjectivity thyroid examinations. This paper presents a theoretical-practical study, considering Computer Aided Diagnosis (CAD) and Morphometry, to reduce the semantic discontinuity between medical image features and human interpretation of image content. The proposed method aggregates the content of microscopic images characterized by morphometric information and other image attributes extracted by traditional object extraction algorithms. This method carries out segmentation, feature extraction, image labeling and classification. Morphometric analysis was included as an object extraction method in order to verify the improvement of its accuracy for automatic classification of microscopic images. To validate this proposal and verify the utility of morphometric information to characterize thyroid images, a CAD system was created to classify real thyroid image-exams into Papillary Cancer, Goiter and Non-Cancer. Results showed that morphometric information can improve the accuracy and precision of image retrieval and the interpretation of results in computer-aided diagnosis. For example, in the scenario where all the extractors are combined with the morphometric information, the CAD system had its best performance (70% of precision in Papillary cases). Results signalized a positive use of morphometric information from images to reduce semantic discontinuity between human interpretation and image characterization. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Differentiating characteristic microstructural features of cancerous tissues using Mueller matrix microscope.

    PubMed

    Wang, Ye; He, Honghui; Chang, Jintao; Zeng, Nan; Liu, Shaoxiong; Li, Migao; Ma, Hui

    2015-12-01

    Polarized light imaging can provide rich microstructural information of samples, and has been applied to the detections of various abnormal tissues. In this paper, we report a polarized light microscope based on Mueller matrix imaging by adding the polarization state generator and analyzer (PSG and PSA) to a commercial transmission optical microscope. The maximum errors for the absolute values of Mueller matrix elements are reduced to 0.01 after calibration. This Mueller matrix microscope has been used to examine human cervical and liver cancerous tissues with fibrosis. Images of the transformed Mueller matrix parameters provide quantitative assessment on the characteristic features of the pathological tissues. Contrast mechanism of the experimental results are backed up by Monte Carlo simulations based on the sphere-cylinder birefringence model, which reveal the relationship between the pathological features in the cancerous tissues at the cellular level and the polarization parameters. Both the experimental and simulated data indicate that the microscopic transformed Mueller matrix parameters can distinguish the breaking down of birefringent normal tissues for cervical cancer, or the formation of birefringent surrounding structures accompanying the inflammatory reaction for liver cancer. With its simple structure, fast measurement and high precision, polarized light microscope based on Mueller matrix shows a good diagnosis application prospect. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Stereovision-based integrated system for point cloud reconstruction and simulated brain shift validation.

    PubMed

    Yang, Xiaochen; Clements, Logan W; Luo, Ma; Narasimhan, Saramati; Thompson, Reid C; Dawant, Benoit M; Miga, Michael I

    2017-07-01

    Intraoperative soft tissue deformation, referred to as brain shift, compromises the application of current image-guided surgery navigation systems in neurosurgery. A computational model driven by sparse data has been proposed as a cost-effective method to compensate for cortical surface and volumetric displacements. We present a mock environment developed to acquire stereoimages from a tracked operating microscope and to reconstruct three-dimensional point clouds from these images. A reconstruction error of 1 mm is estimated by using a phantom with a known geometry and independently measured deformation extent. The microscope is tracked via an attached tracking rigid body that facilitates the recording of the position of the microscope via a commercial optical tracking system as it moves during the procedure. Point clouds, reconstructed under different microscope positions, are registered into the same space to compute the feature displacements. Using our mock craniotomy device, realistic cortical deformations are generated. When comparing our tracked microscope stereo-pair measure of mock vessel displacements to that of the measurement determined by the independent optically tracked stylus marking, the displacement error was [Formula: see text] on average. These results demonstrate the practicality of using tracked stereoscopic microscope as an alternative to laser range scanners to collect sufficient intraoperative information for brain shift correction.

  3. Advantages of microscope-integrated intraoperative online optical coherence tomography: usage in Boston keratoprosthesis type I surgery

    NASA Astrophysics Data System (ADS)

    Siebelmann, Sebastian; Steven, Philipp; Hos, Deniz; Hüttmann, Gereon; Lankenau, Eva; Bachmann, Björn; Cursiefen, Claus

    2016-01-01

    Boston keratoprosthesis (KPro) type I is a technique to treat patients with corneal diseases that are not amenable to conventional keratoplasty. Correct assembly and central implantation of the prosthesis are crucial for postoperative visual recovery. This study investigates the potential benefit of intraoperative optical coherence tomography (OCT) to monitor KPro surgery. Retrospective case series are presented for two patients who underwent Boston KPro type I implantation. The surgery in both patients was monitored intraoperatively using a commercially available intraoperative OCT (iOCT) device mounted on a surgical microscope. Microscope-integrated intraoperative OCT was able to evaluate the correct assembly and implantation of the KPro. All parts of the prosthesis were visible, and interfaces between the corneal graft and titanium backplate or anterior optics were clearly depictable. Moreover, iOCT visualized a gap between the backplate and graft in one case, and in the other case, a gap between the anterior optic and graft. Neither gap was visible with a conventional surgical microscope. The gap between the anterior optic and the graft could easily be corrected. Microscope-integrated iOCT delivers enhanced information, adding to the normal surgical microscope view during KPro surgery. Correct assembly can be controlled as well as the correct placement of the Boston KPro into the anterior chamber.

  4. [The future of telepathology. An Internet "distributed system" with "open standards"].

    PubMed

    Brauchli, K; Helfrich, M; Christen, H; Jundt, G; Haroske, G; Mihatsch, M; Oberli, H; Oberholzer, M

    2002-05-01

    With the availability of Internet, the interest in the possibilities of telepathology has increased considerably. In the foreground is thereby the need of the non-expert to bring in the opinions of experts on morphological findings by means of a fast and simple procedure. The new telepathology system iPath is in compliance with these needs. The system is based on small, but when possible independently working modules. This concept allows a simple adaptation of the system to the individual environment of the user (e.g. for different cameras, frame-grabbers, microscope steering tables etc.) and for individual needs. iPath has been in use for 6 months with various working groups. In telepathology a distinction is made between "passive" and "active" consultations but for both forms a non-expert brings in the opinion of an expert. In an active consultation both are in direct connection with each other (orally or via a chat-function), this is however not the case with a passive consultation. An active consultation can include the interactive discussion of the expert with the non-expert on images in an image database or the direct interpretation of images from a microscope by the expert. Four software modules are available for a free and as fast as possible application: (1) the module "Microscope control", (2) the module "Connector" (insertion of images directly from the microscope without a motorized microscope), (3) the module "Client-application" via the web-browser and (4) the module "Server" with a database. The server is placed in the internet and not behind a firewall. The server permanently receives information from the periphery and returns the information to the periphery on request. The only thing which the expert, the non-expert and the microscope have to know is how contact can made with the server.

  5. Modelling multi-rotor UAVs swarm deployment using virtual pheromones

    PubMed Central

    Pujol, Mar; Rizo, Ramón; Rizo, Carlos

    2018-01-01

    In this work, a swarm behaviour for multi-rotor Unmanned Aerial Vehicles (UAVs) deployment will be presented. The main contribution of this behaviour is the use of a virtual device for quantitative sematectonic stigmergy providing more adaptable behaviours in complex environments. It is a fault tolerant highly robust behaviour that does not require prior information of the area to be covered, or to assume the existence of any kind of information signals (GPS, mobile communication networks …), taking into account the specific features of UAVs. This behaviour will be oriented towards emergency tasks. Their main goal will be to cover an area of the environment for later creating an ad-hoc communication network, that can be used to establish communications inside this zone. Although there are several papers on robotic deployment it is more difficult to find applications with UAV systems, mainly because of the existence of various problems that must be overcome including limitations in available sensory and on-board processing capabilities and low flight endurance. In addition, those behaviours designed for UAVs often have significant limitations on their ability to be used in real tasks, because they assume specific features, not easily applicable in a general way. Firstly, in this article the characteristics of the simulation environment will be presented. Secondly, a microscopic model for deployment and creation of ad-hoc networks, that implicitly includes stigmergy features, will be shown. Then, the overall swarm behaviour will be modeled, providing a macroscopic model of this behaviour. This model can accurately predict the number of agents needed to cover an area as well as the time required for the deployment process. An experimental analysis through simulation will be carried out in order to verify our models. In this analysis the influence of both the complexity of the environment and the stigmergy system will be discussed, given the data obtained in the simulation. In addition, the macroscopic and microscopic models will be compared verifying the number of predicted individuals for each state regarding the simulation. PMID:29370203

  6. A laboratory 8 keV transmission full-field x-ray microscope with a polycapillary as condenser for bright and dark field imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baumbach, S., E-mail: baumbach@rheinahrcampus.de; Wilhein, T.; Kanngießer, B.

    2015-08-15

    This article introduces a laboratory setup of a transmission full-field x-ray microscope at 8 keV photon energy. The microscope operates in bright and dark field imaging mode with a maximum field of view of 50 μm. Since the illumination geometry determines whether the sample is illuminated homogeneously and moreover, if different imaging methods can be applied, the condenser optic is one of the most significant parts. With a new type of x-ray condenser, a polycapillary optic, we realized bright field imaging and for the first time dark field imaging at 8 keV photon energy in a laboratory setup. A detectormore » limited spatial resolution of 210 nm is measured on x-ray images of Siemens star test patterns.« less

  7. Optomechanical design and tolerance of a microscope objective at 121.6 nm

    NASA Astrophysics Data System (ADS)

    Keyes, Derek S.; Jota, Thiago S.; Gao, Weichuan; Luepke, Dakota; Densmore, Victor; Kim, Young-Sik; Kim, Gun-Hee; Milster, Thomas D.

    2015-08-01

    By utilizing the Hydrogen-Lyman-α (HLA) source at 121.6 nm, we hope to achieve an intrinsic resolution of 247 nm at 0.3 numerical aperture (NA) and 92 nm at 0.8 NA. The motivation for 121.6 nm microscopy is the existence of a transparent window in the air absorption spectrum at that wavelength, which allows for the sample to be in air while the microscope is in an enclosed nitrogen environment. The microscope objective consists of two reflective optics and a LiF window, and it has been designed to demonstrate diffraction limited performance over a 160μm full field at 121.6 nm. The optomechanical design consists of mechanical subcells for each optical component, precision spacers and a barrel bore, which allow for submicron control of tolerance parameters.

  8. A laboratory 8 keV transmission full-field x-ray microscope with a polycapillary as condenser for bright and dark field imaging.

    PubMed

    Baumbach, S; Kanngießer, B; Malzer, W; Stiel, H; Wilhein, T

    2015-08-01

    This article introduces a laboratory setup of a transmission full-field x-ray microscope at 8 keV photon energy. The microscope operates in bright and dark field imaging mode with a maximum field of view of 50 μm. Since the illumination geometry determines whether the sample is illuminated homogeneously and moreover, if different imaging methods can be applied, the condenser optic is one of the most significant parts. With a new type of x-ray condenser, a polycapillary optic, we realized bright field imaging and for the first time dark field imaging at 8 keV photon energy in a laboratory setup. A detector limited spatial resolution of 210 nm is measured on x-ray images of Siemens star test patterns.

  9. Wide-field computational imaging of pathology slides using lens-free on-chip microscopy.

    PubMed

    Greenbaum, Alon; Zhang, Yibo; Feizi, Alborz; Chung, Ping-Luen; Luo, Wei; Kandukuri, Shivani R; Ozcan, Aydogan

    2014-12-17

    Optical examination of microscale features in pathology slides is one of the gold standards to diagnose disease. However, the use of conventional light microscopes is partially limited owing to their relatively high cost, bulkiness of lens-based optics, small field of view (FOV), and requirements for lateral scanning and three-dimensional (3D) focus adjustment. We illustrate the performance of a computational lens-free, holographic on-chip microscope that uses the transport-of-intensity equation, multi-height iterative phase retrieval, and rotational field transformations to perform wide-FOV imaging of pathology samples with comparable image quality to a traditional transmission lens-based microscope. The holographically reconstructed image can be digitally focused at any depth within the object FOV (after image capture) without the need for mechanical focus adjustment and is also digitally corrected for artifacts arising from uncontrolled tilting and height variations between the sample and sensor planes. Using this lens-free on-chip microscope, we successfully imaged invasive carcinoma cells within human breast sections, Papanicolaou smears revealing a high-grade squamous intraepithelial lesion, and sickle cell anemia blood smears over a FOV of 20.5 mm(2). The resulting wide-field lens-free images had sufficient image resolution and contrast for clinical evaluation, as demonstrated by a pathologist's blinded diagnosis of breast cancer tissue samples, achieving an overall accuracy of ~99%. By providing high-resolution images of large-area pathology samples with 3D digital focus adjustment, lens-free on-chip microscopy can be useful in resource-limited and point-of-care settings. Copyright © 2014, American Association for the Advancement of Science.

  10. Atomic Force Microscope for Imaging and Spectroscopy

    NASA Technical Reports Server (NTRS)

    Pike, W. T.; Hecht, M. H.; Anderson, M. S.; Akiyama, T.; Gautsch, S.; deRooij, N. F.; Staufer, U.; Niedermann, Ph.; Howald, L.; Mueller, D.

    2000-01-01

    We have developed, built, and tested an atomic force microscope (AFM) for extraterrestrial applications incorporating a micromachined tip array to allow for probe replacement. It is part of a microscopy station originally intended for NASA's 2001 Mars lander to identify the size, distribution, and shape of Martian dust and soil particles. As well as imaging topographically down to nanometer resolution, this instrument can be used to reveal chemical information and perform infrared and Raman spectroscopy at unprecedented resolution.

  11. Fire Protection Informational Exchange

    DTIC Science & Technology

    2016-07-01

    0.95 L/min concurrent spray & 274x521 mm pool (66°C) i. Persistent fuels; turbine fuel in spray/pool; lubricant, hydraulic fluid in spray ii...conjugate image plane La Vision sCMOS + Kl long- distance microscope with CF4 objective wire .. " " " " ... in-line hologram image plane La...distance microscope with CF4 objective wire I phase disrurbanc.e (f= 2000 nun) .. " " " " ... in-line hologram image plane La Vision sCNlOS

  12. Applications of the Analytical Electron Microscope to Materials Science

    NASA Technical Reports Server (NTRS)

    Goldstein, J. I.

    1992-01-01

    In the last 20 years, the analytical electron microscope (AEM) as allowed investigators to obtain chemical and structural information from less than 50 nanometer diameter regions in thin samples of materials and to explore problems where reactions occur at boundaries and interfaces or within small particles or phases in bulk samples. Examples of the application of the AEM to materials science problems are presented in this paper and demonstrate the usefulness and the future potential of this instrument.

  13. Microscopic Mechanism of Doping-Induced Kinetically Constrained Crystallization in Phase-Change Materials.

    PubMed

    Lee, Tae Hoon; Loke, Desmond; Elliott, Stephen R

    2015-10-07

    A comprehensive microscopic mechanism of doping-induced kinetically constrained crystallization in phase-change materials is provided by investigating structural and dynamical dopant characteristics via ab initio molecular dynamics simulations. The information gained from this study may provide a basis for a fast screening of dopant species for electronic memory devices, or for understanding the general physics involved in the crystallization of doped glasses. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Stage scoring of liver fibrosis using Mueller matrix microscope

    NASA Astrophysics Data System (ADS)

    Zhou, Jialing; He, Honghui; Wang, Ye; Ma, Hui

    2016-10-01

    Liver fibrosis is a common pathological process of varied chronic liver diseases including alcoholic hepatitis, virus hepatitis, and so on. Accurate evaluation of liver fibrosis is necessary for effective therapy and a five-stage grading system was developed. Currently, experienced pathologists use stained liver biopsies to assess the degree of liver fibrosis. But it is difficult to obtain highly reproducible results because of huge discrepancy among different observers. Polarization imaging technique has the potential of scoring liver fibrosis since it is capable of probing the structural and optical properties of samples. Considering that the Mueller matrix measurement can provide comprehensive microstructural information of the tissues, in this paper, we apply the Mueller matrix microscope to human liver fibrosis slices in different fibrosis stages. We extract the valid regions and adopt the Mueller matrix polar decomposition (MMPD) and Mueller matrix transformation (MMT) parameters for quantitative analysis. We also use the Monte Carlo simulation to analyze the relationship between the microscopic Mueller matrix parameters and the characteristic structural changes during the fibrosis process. The experimental and Monte Carlo simulated results show good consistency. We get a positive correlation between the parameters and the stage of liver fibrosis. The results presented in this paper indicate that the Mueller matrix microscope can provide additional information for the detections and fibrosis scorings of liver tissues and has great potential in liver fibrosis diagnosis.

  15. Imaging and three-dimensional reconstruction of chemical groups inside a protein complex using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Kim, Duckhoe; Sahin, Ozgur

    2015-03-01

    Scanning probe microscopes can be used to image and chemically characterize surfaces down to the atomic scale. However, the localized tip-sample interactions in scanning probe microscopes limit high-resolution images to the topmost atomic layer of surfaces, and characterizing the inner structures of materials and biomolecules is a challenge for such instruments. Here, we show that an atomic force microscope can be used to image and three-dimensionally reconstruct chemical groups inside a protein complex. We use short single-stranded DNAs as imaging labels that are linked to target regions inside a protein complex, and T-shaped atomic force microscope cantilevers functionalized with complementary probe DNAs allow the labels to be located with sequence specificity and subnanometre resolution. After measuring pairwise distances between labels, we reconstruct the three-dimensional structure formed by the target chemical groups within the protein complex using simple geometric calculations. Experiments with the biotin-streptavidin complex show that the predicted three-dimensional loci of the carboxylic acid groups of biotins are within 2 Å of their respective loci in the corresponding crystal structure, suggesting that scanning probe microscopes could complement existing structural biological techniques in solving structures that are difficult to study due to their size and complexity.

  16. Cell-phone-based platform for biomedical device development and education applications.

    PubMed

    Smith, Zachary J; Chu, Kaiqin; Espenson, Alyssa R; Rahimzadeh, Mehdi; Gryshuk, Amy; Molinaro, Marco; Dwyre, Denis M; Lane, Stephen; Matthews, Dennis; Wachsmann-Hogiu, Sebastian

    2011-03-02

    In this paper we report the development of two attachments to a commercial cell phone that transform the phone's integrated lens and image sensor into a 350x microscope and visible-light spectrometer. The microscope is capable of transmission and polarized microscopy modes and is shown to have 1.5 micron resolution and a usable field-of-view of 150 x 50 with no image processing, and approximately 350 x 350 when post-processing is applied. The spectrometer has a 300 nm bandwidth with a limiting spectral resolution of close to 5 nm. We show applications of the devices to medically relevant problems. In the case of the microscope, we image both stained and unstained blood-smears showing the ability to acquire images of similar quality to commercial microscope platforms, thus allowing diagnosis of clinical pathologies. With the spectrometer we demonstrate acquisition of a white-light transmission spectrum through diffuse tissue as well as the acquisition of a fluorescence spectrum. We also envision the devices to have immediate relevance in the educational field.

  17. Cell-Phone-Based Platform for Biomedical Device Development and Education Applications

    PubMed Central

    Smith, Zachary J.; Chu, Kaiqin; Espenson, Alyssa R.; Rahimzadeh, Mehdi; Gryshuk, Amy; Molinaro, Marco; Dwyre, Denis M.; Lane, Stephen; Matthews, Dennis; Wachsmann-Hogiu, Sebastian

    2011-01-01

    In this paper we report the development of two attachments to a commercial cell phone that transform the phone's integrated lens and image sensor into a 350× microscope and visible-light spectrometer. The microscope is capable of transmission and polarized microscopy modes and is shown to have 1.5 micron resolution and a usable field-of-view of 150×150 with no image processing, and approximately 350×350 when post-processing is applied. The spectrometer has a 300 nm bandwidth with a limiting spectral resolution of close to 5 nm. We show applications of the devices to medically relevant problems. In the case of the microscope, we image both stained and unstained blood-smears showing the ability to acquire images of similar quality to commercial microscope platforms, thus allowing diagnosis of clinical pathologies. With the spectrometer we demonstrate acquisition of a white-light transmission spectrum through diffuse tissue as well as the acquisition of a fluorescence spectrum. We also envision the devices to have immediate relevance in the educational field. PMID:21399693

  18. Multidirectional Image Sensing for Microscopy Based on a Rotatable Robot.

    PubMed

    Shen, Yajing; Wan, Wenfeng; Zhang, Lijun; Yong, Li; Lu, Haojian; Ding, Weili

    2015-12-15

    Image sensing at a small scale is essentially important in many fields, including microsample observation, defect inspection, material characterization and so on. However, nowadays, multi-directional micro object imaging is still very challenging due to the limited field of view (FOV) of microscopes. This paper reports a novel approach for multi-directional image sensing in microscopes by developing a rotatable robot. First, a robot with endless rotation ability is designed and integrated with the microscope. Then, the micro object is aligned to the rotation axis of the robot automatically based on the proposed forward-backward alignment strategy. After that, multi-directional images of the sample can be obtained by rotating the robot within one revolution under the microscope. To demonstrate the versatility of this approach, we view various types of micro samples from multiple directions in both optical microscopy and scanning electron microscopy, and panoramic images of the samples are processed as well. The proposed method paves a new way for the microscopy image sensing, and we believe it could have significant impact in many fields, especially for sample detection, manipulation and characterization at a small scale.

  19. Visualizing 3-D microscopic specimens

    NASA Astrophysics Data System (ADS)

    Forsgren, Per-Ola; Majlof, Lars L.

    1992-06-01

    The confocal microscope can be used in a vast number of fields and applications to gather more information than is possible with a regular light microscope, in particular about depth. Compared to other three-dimensional imaging devices such as CAT, NMR, and PET, the variations of the objects studied are larger and not known from macroscopic dissections. It is therefore important to have several complementary ways of displaying the gathered information. We present a system where the user can choose display techniques such as extended focus, depth coding, solid surface modeling, maximum intensity and other techniques, some of which may be combined. A graphical user interface provides easy and direct control of all input parameters. Motion and stereo are available options. Many three- dimensional imaging devices give recordings where one dimension has different resolution and sampling than the other two which requires interpolation to obtain correct geometry. We have evaluated algorithms with interpolation in object space and in projection space. There are many ways to simplify the geometrical transformations to gain performance. We present results of some ways to simplify the calculations.

  20. Fourier transform infrared spectroscopy microscopic imaging classification based on spatial-spectral features

    NASA Astrophysics Data System (ADS)

    Liu, Lian; Yang, Xiukun; Zhong, Mingliang; Liu, Yao; Jing, Xiaojun; Yang, Qin

    2018-04-01

    The discrete fractional Brownian incremental random (DFBIR) field is used to describe the irregular, random, and highly complex shapes of natural objects such as coastlines and biological tissues, for which traditional Euclidean geometry cannot be used. In this paper, an anisotropic variable window (AVW) directional operator based on the DFBIR field model is proposed for extracting spatial characteristics of Fourier transform infrared spectroscopy (FTIR) microscopic imaging. Probabilistic principal component analysis first extracts spectral features, and then the spatial features of the proposed AVW directional operator are combined with the former to construct a spatial-spectral structure, which increases feature-related information and helps a support vector machine classifier to obtain more efficient distribution-related information. Compared to Haralick’s grey-level co-occurrence matrix, Gabor filters, and local binary patterns (e.g. uniform LBPs, rotation-invariant LBPs, uniform rotation-invariant LBPs), experiments on three FTIR spectroscopy microscopic imaging datasets show that the proposed AVW directional operator is more advantageous in terms of classification accuracy, particularly for low-dimensional spaces of spatial characteristics.

  1. CHRONIS: an animal chromosome image database.

    PubMed

    Toyabe, Shin-Ichi; Akazawa, Kouhei; Fukushi, Daisuke; Fukui, Kiichi; Ushiki, Tatsuo

    2005-01-01

    We have constructed a database system named CHRONIS (CHROmosome and Nano-Information System) to collect images of animal chromosomes and related nanotechnological information. CHRONIS enables rapid sharing of information on chromosome research among cell biologists and researchers in other fields via the Internet. CHRONIS is also intended to serve as a liaison tool for researchers who work in different centers. The image database contains more than 3,000 color microscopic images, including karyotypic images obtained from more than 1,000 species of animals. Researchers can browse the contents of the database using a usual World Wide Web interface in the following URL: http://chromosome.med.niigata-u.ac.jp/chronis/servlet/chronisservlet. The system enables users to input new images into the database, to locate images of interest by keyword searches, and to display the images with detailed information. CHRONIS has a wide range of applications, such as searching for appropriate probes for fluorescent in situ hybridization, comparing various kinds of microscopic images of a single species, and finding researchers working in the same field of interest.

  2. Phase transition to a two-peak phase in an information-cascade voting experiment

    NASA Astrophysics Data System (ADS)

    Mori, Shintaro; Hisakado, Masato; Takahashi, Taiki

    2012-08-01

    Observational learning is an important information aggregation mechanism. However, it occasionally leads to a state in which an entire population chooses a suboptimal option. When this occurs and whether it is a phase transition remain unanswered. To address these questions we perform a voting experiment in which subjects answer a two-choice quiz sequentially with and without information about the prior subjects’ choices. The subjects who could copy others are called herders. We obtain a microscopic rule regarding how herders copy others. Varying the ratio of herders leads to qualitative changes in the macroscopic behavior of about 50 subjects in the experiment. If the ratio is small, the sequence of choices rapidly converges to the correct one. As the ratio approaches 100%, convergence becomes extremely slow and information aggregation almost terminates. A simulation study of a stochastic model for 106 subjects based on the herder’s microscopic rule shows a phase transition to the two-peak phase, where the convergence completely terminates as the ratio exceeds some critical value.

  3. Integrated system for point cloud reconstruction and simulated brain shift validation using tracked surgical microscope

    NASA Astrophysics Data System (ADS)

    Yang, Xiaochen; Clements, Logan W.; Luo, Ma; Narasimhan, Saramati; Thompson, Reid C.; Dawant, Benoit M.; Miga, Michael I.

    2017-03-01

    Intra-operative soft tissue deformation, referred to as brain shift, compromises the application of current imageguided surgery (IGS) navigation systems in neurosurgery. A computational model driven by sparse data has been used as a cost effective method to compensate for cortical surface and volumetric displacements. Stereoscopic microscopes and laser range scanners (LRS) are the two most investigated sparse intra-operative imaging modalities for driving these systems. However, integrating these devices in the clinical workflow to facilitate development and evaluation requires developing systems that easily permit data acquisition and processing. In this work we present a mock environment developed to acquire stereo images from a tracked operating microscope and to reconstruct 3D point clouds from these images. A reconstruction error of 1 mm is estimated by using a phantom with a known geometry and independently measured deformation extent. The microscope is tracked via an attached tracking rigid body that facilitates the recording of the position of the microscope via a commercial optical tracking system as it moves during the procedure. Point clouds, reconstructed under different microscope positions, are registered into the same space in order to compute the feature displacements. Using our mock craniotomy device, realistic cortical deformations are generated. Our experimental results report approximately 2mm average displacement error compared with the optical tracking system. These results demonstrate the practicality of using tracked stereoscopic microscope as an alternative to LRS to collect sufficient intraoperative information for brain shift correction.

  4. Atomic force microscopic imaging of Acanthamoeba castellanii and Balamuthia mandrillaris trophozoites and cysts.

    PubMed

    Aqeel, Yousuf; Siddiqui, Ruqaiyyah; Ateeq, Muhammad; Raza Shah, Muhammad; Kulsoom, Huma; Khan, Naveed Ahmed

    2015-01-01

    Light microscopy and electron microscopy have been successfully used in the study of microbes, as well as free-living protists. Unlike light microscopy, which enables us to observe living organisms or the electron microscope which provides a two-dimensional image, atomic force microscopy provides a three-dimensional surface profile. Here, we observed two free-living amoebae, Acanthamoeba castellanii and Balamuthia mandrillaris under the phase contrast inverted microscope, transmission electron microscope and atomic force microscope. Although light microscopy was of lower magnification, it revealed functional biology of live amoebae such as motility and osmoregulation using contractile vacuoles of the trophozoite stage, but it is of limited value in defining the cyst stage. In contrast, transmission electron microscopy showed significantly greater magnification and resolution to reveal the ultra-structural features of trophozoites and cysts including intracellular organelles and cyst wall characteristics but it only produced a snapshot in time of a dead amoeba cell. Atomic force microscopy produced three-dimensional images providing detailed topographic description of shape and surface, phase imaging measuring boundary stiffness, and amplitude measurements including width, height and length of A. castellanii and B. mandrillaris trophozoites and cysts. These results demonstrate the importance of the application of various microscopic methods in the biological and structural characterization of the whole cell, ultra-structural features, as well as surface components and cytoskeleton of protist pathogens. © 2014 The Author(s) Journal of Eukaryotic Microbiology © 2014 International Society of Protistologists.

  5. The Compact Microimaging Spectrometer (CMIS): A New Tool for In-Situ Planetary Science

    NASA Technical Reports Server (NTRS)

    Armstrong, J. C.; Sellar, R. G.

    2004-01-01

    In-situ identification of trace minerals, ices, or organics in planetary samples may be difficult with panchromatic microscopic imagery and spot spectroscopy. The panchromatic imagery acquired by a microscopic imager provides morphological information and albedo, but these are generally insufficient for unambiguous identification. The spatially-averaged spectra acquired by a nonimaging ( point- or spot- ) spectrometer may enable identification of the major components but identification of unknown trace components is difficult at best. With our Compact Micro-Imaging Spectrometer (CMIS), however, we acquire spectroscopic data in an imaging format at microscopic scales. The distinct spectra of individual grains, provided by our approach, make detection and identification possible even for trace components in regolith or heterogeneous samples.

  6. Enhanced EDX images by fusion of multimodal SEM images using pansharpening techniques.

    PubMed

    Franchi, G; Angulo, J; Moreaud, M; Sorbier, L

    2018-01-01

    The goal of this paper is to explore the potential interest of image fusion in the context of multimodal scanning electron microscope (SEM) imaging. In particular, we aim at merging the backscattered electron images that usually have a high spatial resolution but do not provide enough discriminative information to physically classify the nature of the sample, with energy-dispersive X-ray spectroscopy (EDX) images that have discriminative information but a lower spatial resolution. The produced images are named enhanced EDX. To achieve this goal, we have compared the results obtained with classical pansharpening techniques for image fusion with an original approach tailored for multimodal SEM fusion of information. Quantitative assessment is obtained by means of two SEM images and a simulated dataset produced by a software based on PENELOPE. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  7. Decision Accuracy and the Role of Spatial Interaction in Opinion Dynamics

    NASA Astrophysics Data System (ADS)

    Torney, Colin J.; Levin, Simon A.; Couzin, Iain D.

    2013-04-01

    The opinions and actions of individuals within interacting groups are frequently determined by both social and personal information. When sociality (or the pressure to conform) is strong and individual preferences are weak, groups will remain cohesive until a consensus decision is reached. When group decisions are subject to a bias, representing for example private information known by some members of the population or imperfect information known by all, then the accuracy achieved for a fixed level of bias will increase with population size. In this work we determine how the scaling between accuracy and group size can be related to the microscopic properties of the decision-making process. By simulating a spatial model of opinion dynamics we show that the relationship between the instantaneous fraction of leaders in the population ( L), system size ( N), and accuracy depends on the frequency of individual opinion switches and the level of population viscosity. When social mixing is slow, and individual opinion changes are frequent, accuracy is determined by the absolute number of informed individuals. As mixing rates increase, or the rate of opinion updates decrease, a transition occurs to a regime where accuracy is determined by the value of L√{ N}. We investigate the transition between different scaling regimes analytically by examining a well-mixed limit.

  8. Quantitative optical imaging and sensing by joint design of point spread functions and estimation algorithms

    NASA Astrophysics Data System (ADS)

    Quirin, Sean Albert

    The joint application of tailored optical Point Spread Functions (PSF) and estimation methods is an important tool for designing quantitative imaging and sensing solutions. By enhancing the information transfer encoded by the optical waves into an image, matched post-processing algorithms are able to complete tasks with improved performance relative to conventional designs. In this thesis, new engineered PSF solutions with image processing algorithms are introduced and demonstrated for quantitative imaging using information-efficient signal processing tools and/or optical-efficient experimental implementations. The use of a 3D engineered PSF, the Double-Helix (DH-PSF), is applied as one solution for three-dimensional, super-resolution fluorescence microscopy. The DH-PSF is a tailored PSF which was engineered to have enhanced information transfer for the task of localizing point sources in three dimensions. Both an information- and optical-efficient implementation of the DH-PSF microscope are demonstrated here for the first time. This microscope is applied to image single-molecules and micro-tubules located within a biological sample. A joint imaging/axial-ranging modality is demonstrated for application to quantifying sources of extended transverse and axial extent. The proposed implementation has improved optical-efficiency relative to prior designs due to the use of serialized cycling through select engineered PSFs. This system is demonstrated for passive-ranging, extended Depth-of-Field imaging and digital refocusing of random objects under broadband illumination. Although the serialized engineered PSF solution is an improvement over prior designs for the joint imaging/passive-ranging modality, it requires the use of multiple PSFs---a potentially significant constraint. Therefore an alternative design is proposed, the Single-Helix PSF, where only one engineered PSF is necessary and the chromatic behavior of objects under broadband illumination provides the necessary information transfer. The matched estimation algorithms are introduced along with an optically-efficient experimental system to image and passively estimate the distance to a test object. An engineered PSF solution is proposed for improving the sensitivity of optical wave-front sensing using a Shack-Hartmann Wave-front Sensor (SHWFS). The performance limits of the classical SHWFS design are evaluated and the engineered PSF system design is demonstrated to enhance performance. This system is fabricated and the mechanism for additional information transfer is identified.

  9. Dark field imaging system for size characterization of magnetic micromarkers

    NASA Astrophysics Data System (ADS)

    Malec, A.; Haiden, C.; Kokkinis, G.; Keplinger, F.; Giouroudi, I.

    2017-05-01

    In this paper we demonstrate a dark field video imaging system for the detection and size characterization of individual magnetic micromarkers suspended in liquid and the detection of pathogens utilizing magnetically labelled E.coli. The system follows dynamic processes and interactions of moving micro/nano objects close to or below the optical resolution limit, and is especially suitable for small sample volumes ( 10 μl). The developed detection method can be used to obtain clinical information about liquid contents when an additional biological protocol is provided, i.e., binding of microorganisms (e.g. E.coli) to specific magnetic markers. Some of the major advantages of our method are the increased sizing precision in the micro- and nano-range as well as the setup's simplicity making it a perfect candidate for miniaturized devices. Measurements can thus be carried out in a quick, inexpensive, and compact manner. A minor limitation is that the concentration range of micromarkers in a liquid sample needs to be adjusted in such a manner that the number of individual particles in the microscope's field of view is sufficient.

  10. A Modular and Affordable Time-Lapse Imaging and Incubation System Based on 3D-Printed Parts, a Smartphone, and Off-The-Shelf Electronics

    PubMed Central

    Schwan, Emil; Fatsis-Kavalopoulos, Nikos; Kreuger, Johan

    2016-01-01

    Time-lapse imaging is a powerful tool for studying cellular dynamics and cell behavior over long periods of time to acquire detailed functional information. However, commercially available time-lapse imaging systems are expensive and this has limited a broader implementation of this technique in low-resource environments. Further, the availability of time-lapse imaging systems often present workflow bottlenecks in well-funded institutions. To address these limitations we have designed a modular and affordable time-lapse imaging and incubation system (ATLIS). The ATLIS enables the transformation of simple inverted microscopes into live cell imaging systems using custom-designed 3D-printed parts, a smartphone, and off-the-shelf electronic components. We demonstrate that the ATLIS provides stable environmental conditions to support normal cell behavior during live imaging experiments in both traditional and evaporation-sensitive microfluidic cell culture systems. Thus, the system presented here has the potential to increase the accessibility of time-lapse microscopy of living cells for the wider research community. PMID:28002463

  11. A Modular and Affordable Time-Lapse Imaging and Incubation System Based on 3D-Printed Parts, a Smartphone, and Off-The-Shelf Electronics.

    PubMed

    Hernández Vera, Rodrigo; Schwan, Emil; Fatsis-Kavalopoulos, Nikos; Kreuger, Johan

    2016-01-01

    Time-lapse imaging is a powerful tool for studying cellular dynamics and cell behavior over long periods of time to acquire detailed functional information. However, commercially available time-lapse imaging systems are expensive and this has limited a broader implementation of this technique in low-resource environments. Further, the availability of time-lapse imaging systems often present workflow bottlenecks in well-funded institutions. To address these limitations we have designed a modular and affordable time-lapse imaging and incubation system (ATLIS). The ATLIS enables the transformation of simple inverted microscopes into live cell imaging systems using custom-designed 3D-printed parts, a smartphone, and off-the-shelf electronic components. We demonstrate that the ATLIS provides stable environmental conditions to support normal cell behavior during live imaging experiments in both traditional and evaporation-sensitive microfluidic cell culture systems. Thus, the system presented here has the potential to increase the accessibility of time-lapse microscopy of living cells for the wider research community.

  12. Improving Secondary Ion Mass Spectrometry Image Quality with Image Fusion

    NASA Astrophysics Data System (ADS)

    Tarolli, Jay G.; Jackson, Lauren M.; Winograd, Nicholas

    2014-12-01

    The spatial resolution of chemical images acquired with cluster secondary ion mass spectrometry (SIMS) is limited not only by the size of the probe utilized to create the images but also by detection sensitivity. As the probe size is reduced to below 1 μm, for example, a low signal in each pixel limits lateral resolution because of counting statistics considerations. Although it can be useful to implement numerical methods to mitigate this problem, here we investigate the use of image fusion to combine information from scanning electron microscope (SEM) data with chemically resolved SIMS images. The advantage of this approach is that the higher intensity and, hence, spatial resolution of the electron images can help to improve the quality of the SIMS images without sacrificing chemical specificity. Using a pan-sharpening algorithm, the method is illustrated using synthetic data, experimental data acquired from a metallic grid sample, and experimental data acquired from a lawn of algae cells. The results show that up to an order of magnitude increase in spatial resolution is possible to achieve. A cross-correlation metric is utilized for evaluating the reliability of the procedure.

  13. Extended Area Exit Pupil Viewer.

    DTIC Science & Technology

    1985-08-01

    viewing to normal Zoom-500 stereomicroscope viewing. Previous EAEP viewers typically have incorporated a spinning lenticular screen and associated...is uncorrected spherical aberration and astigmatism that limit image resolution. The complex optical path in the microscope also makes it inefficient

  14. Electron microscope study of the vitelline body of some spider oocytes.

    PubMed

    SOTELO, J R; TRUJILLO-CENOZ, O

    1957-03-25

    THE STRUCTURE OF THE VITELLINE NUCLEI OF LYCOSIDAE AND THOMISIDAE WAS DESCRIBED AS FOLLOWS: Vitelline nuclei are constituted of two parts: (a) a peripheral layer (vitelline body cortex), and (b) a central core. The vitelline body cortex is demonstrated to be formed by many cisternae of the endoplasmic reticulum among which mitochondria and Golgi elements are intermingled. The central core is made up mainly of a special type of body described under the name of "capsulated body." Capsulated bodies comprise a capsular layer, limited by a membrane, and two central masses called "geminated masses," each one limited by a double membrane. Irregular masses of closely packed vesicles are found in some cases among the capsulated bodies and free vesicles are present in large numbers. The optical properties of the vitelline body cortex compared with the electron microscope findings lead us to the concept that this layer is a "composite body" according to Weiner's theory.

  15. The long range voice coil atomic force microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnard, H.; Randall, C.; Bridges, D.

    2012-02-15

    Most current atomic force microscopes (AFMs) use piezoelectric ceramics for scan actuation. Piezoelectric ceramics provide precision motion with fast response to applied voltage potential. A drawback to piezoelectric ceramics is their inherently limited ranges. For many samples this is a nonissue, as imaging the nanoscale details is the goal. However, a key advantage of AFM over other microscopy techniques is its ability to image biological samples in aqueous buffer. Many biological specimens have topography for which the range of piezoactuated stages is limiting, a notable example of which is bone. In this article, we present the use of voice coilsmore » in scan actuation for an actuation range in the Z-axis an order of magnitude larger than any AFM commercially available today. The increased scan size will allow for imaging an important new variety of samples, including bone fractures.« less

  16. Research on Microstructure and Properties of Welded Joint of High Strength Steel

    NASA Astrophysics Data System (ADS)

    Zhu, Pengxiao; Li, Yi; Chen, Bo; Ma, Xuejiao; Zhang, Dongya; Tang, Cai

    2018-01-01

    BS960 steel plates were welded by Laser-MAG and MAG. The microstructure and properties of the welded joints were investigated by optical microscope, micro-hardness tester, universal tensile testing machine, impact tester, scanning electron microscope (SEM) and fatigue tester. By a series of experiments, the following results were obtained: The grain size of the coarse grain zone with Laser-MAG welded joint is 20μm, and that with MAG welded joint is about 32μm, both of the fine grain region are composed of fine lath martensite and granular bainite; the width of the heat affected region with Laser-MAG is lower than that with MAG. The strength and impact energy of welded joints with Laser-MAG is higher than that with MAG. The conditioned fatigue limit of welded joint with Laser-MAG is 280MPa; however, the conditioned fatigue limit of welded joint with MAG is 250MPa.

  17. Search for microscopic black holes in pp collisions at $$ \\sqrt{s}=8 $$ TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.

    2013-07-01

    A search for microscopic black holes and string balls is presented, based on a data sample of pp collisions at sqrt(s) = 8 TeV recorded by the CMS experiment at the Large Hadron Collider and corresponding to an integrated luminosity of 12 inverse femtobarns. No excess of events with energetic multiparticle final states, typical of black hole production or of similar new physics processes, is observed. Given the agreement of the observations with the expected standard model background, which is dominated by QCD multijet production, 95% confidence limits are set on the production of semiclassical or quantum black holes, ormore » of string balls, corresponding to the exclusions of masses below 4.3 to 6.2 TeV, depending on model assumptions. In addition, model-independent limits are set on new physics processes resulting in energetic multiparticle final states.« less

  18. Connections between the dynamical symmetries in the microscopic shell model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Georgieva, A. I., E-mail: anageorg@issp.bas.bg; Drumev, K. P.

    2016-03-25

    The dynamical symmetries of the microscopic shell model appear as the limiting cases of a symmetry adapted Pairing-Plus-Quadrupole Model /PQM/, with a Hamiltonian containing isoscalar and isovector pairing and quadrupole interactions. We establish a correspondence between each of the three types of pairing bases and Elliott’s SU(3) basis, that describes collective rotation of nuclear systems with quadrupole deformation. It is derived from their complementarity to the same LS coupling chain of the shell model number conserving algebra. The probability distribution of the S U(3) basis states within the pairing eigenstates is also obtained through a numerical diagonalization of the PQMmore » Hamiltonian in each limit. We introduce control parameters, which define the phase diagram of the model and determine the role of each term of the Hamiltonian in the correct reproduction of the experimental data for the considered nuclei.« less

  19. Cellular automaton model for molecular traffic jams

    NASA Astrophysics Data System (ADS)

    Belitsky, V.; Schütz, G. M.

    2011-07-01

    We consider the time evolution of an exactly solvable cellular automaton with random initial conditions both in the large-scale hydrodynamic limit and on the microscopic level. This model is a version of the totally asymmetric simple exclusion process with sublattice parallel update and thus may serve as a model for studying traffic jams in systems of self-driven particles. We study the emergence of shocks from the microscopic dynamics of the model. In particular, we introduce shock measures whose time evolution we can compute explicitly, both in the thermodynamic limit and for open boundaries where a boundary-induced phase transition driven by the motion of a shock occurs. The motion of the shock, which results from the collective dynamics of the exclusion particles, is a random walk with an internal degree of freedom that determines the jump direction. This type of hopping dynamics is reminiscent of some transport phenomena in biological systems.

  20. Microscopic Simulation and Macroscopic Modeling for Thermal and Chemical Non-Equilibrium

    NASA Technical Reports Server (NTRS)

    Liu, Yen; Panesi, Marco; Vinokur, Marcel; Clarke, Peter

    2013-01-01

    This paper deals with the accurate microscopic simulation and macroscopic modeling of extreme non-equilibrium phenomena, such as encountered during hypersonic entry into a planetary atmosphere. The state-to-state microscopic equations involving internal excitation, de-excitation, dissociation, and recombination of nitrogen molecules due to collisions with nitrogen atoms are solved time-accurately. Strategies to increase the numerical efficiency are discussed. The problem is then modeled using a few macroscopic variables. The model is based on reconstructions of the state distribution function using the maximum entropy principle. The internal energy space is subdivided into multiple groups in order to better describe the non-equilibrium gases. The method of weighted residuals is applied to the microscopic equations to obtain macroscopic moment equations and rate coefficients. The modeling is completely physics-based, and its accuracy depends only on the assumed expression of the state distribution function and the number of groups used. The model makes no assumption at the microscopic level, and all possible collisional and radiative processes are allowed. The model is applicable to both atoms and molecules and their ions. Several limiting cases are presented to show that the model recovers the classical twotemperature models if all states are in one group and the model reduces to the microscopic equations if each group contains only one state. Numerical examples and model validations are carried out for both the uniform and linear distributions. Results show that the original over nine thousand microscopic equations can be reduced to 2 macroscopic equations using 1 to 5 groups with excellent agreement. The computer time is decreased from 18 hours to less than 1 second.

  1. Observing secretory granules with a multiangle evanescent wave microscope.

    PubMed Central

    Rohrbach, A

    2000-01-01

    In total internal reflection fluorescence microscopy (TIRFM), fluorophores near a surface can be excited with evanescent waves, which decay exponentially with distance from the interface. Penetration depths of evanescent waves from 60 nm to 300 nm were generated by varying the angle of incidence of a laser beam. With a novel telecentric multiangle evanescent wave microscope, we monitored and investigated both single secretory granules and pools of granules in bovine chromaffin cells. By measuring the fluorescence intensity as a function of penetration depth, it is possible through a Laplace transform to obtain the fluorophore distribution as a function of axial position. We discuss the extent to which it is possible to determine distances and diameters of granules with this microscopy technique by modeling the fluorescent volumes of spheres in evanescent fields. The anisotropic near-field detection of fluorophores and the influence of the detection point-spread function are considered. The diameters of isolated granules between 70 nm and 300 nm have been reconstructed, which is clearly beyond the resolution limit of a confocal microscope. Furthermore, the paper demonstrates how evanescent waves propagate along surfaces and scatter at objects with a higher refractive index. TIRFM will have a limited applicability for quantitative measurements when the parameters used to define evanescent waves are not optimally selected. PMID:10777760

  2. Excitation-scanning hyperspectral imaging microscope

    PubMed Central

    Favreau, Peter F.; Hernandez, Clarissa; Heaster, Tiffany; Alvarez, Diego F.; Rich, Thomas C.; Prabhat, Prashant; Leavesley, Silas J.

    2014-01-01

    Abstract. Hyperspectral imaging is a versatile tool that has recently been applied to a variety of biomedical applications, notably live-cell and whole-tissue signaling. Traditional hyperspectral imaging approaches filter the fluorescence emission over a broad wavelength range while exciting at a single band. However, these emission-scanning approaches have shown reduced sensitivity due to light attenuation from spectral filtering. Consequently, emission scanning has limited applicability for time-sensitive studies and photosensitive applications. In this work, we have developed an excitation-scanning hyperspectral imaging microscope that overcomes these limitations by providing high transmission with short acquisition times. This is achieved by filtering the fluorescence excitation rather than the emission. We tested the efficacy of the excitation-scanning microscope in a side-by-side comparison with emission scanning for detection of green fluorescent protein (GFP)-expressing endothelial cells in highly autofluorescent lung tissue. Excitation scanning provided higher signal-to-noise characteristics, as well as shorter acquisition times (300  ms/wavelength band with excitation scanning versus 3  s/wavelength band with emission scanning). Excitation scanning also provided higher delineation of nuclear and cell borders, and increased identification of GFP regions in highly autofluorescent tissue. These results demonstrate excitation scanning has utility in a wide range of time-dependent and photosensitive applications. PMID:24727909

  3. Excitation-scanning hyperspectral imaging microscope.

    PubMed

    Favreau, Peter F; Hernandez, Clarissa; Heaster, Tiffany; Alvarez, Diego F; Rich, Thomas C; Prabhat, Prashant; Leavesley, Silas J

    2014-04-01

    Hyperspectral imaging is a versatile tool that has recently been applied to a variety of biomedical applications, notably live-cell and whole-tissue signaling. Traditional hyperspectral imaging approaches filter the fluorescence emission over a broad wavelength range while exciting at a single band. However, these emission-scanning approaches have shown reduced sensitivity due to light attenuation from spectral filtering. Consequently, emission scanning has limited applicability for time-sensitive studies and photosensitive applications. In this work, we have developed an excitation-scanning hyperspectral imaging microscope that overcomes these limitations by providing high transmission with short acquisition times. This is achieved by filtering the fluorescence excitation rather than the emission. We tested the efficacy of the excitation-scanning microscope in a side-by-side comparison with emission scanning for detection of green fluorescent protein (GFP)-expressing endothelial cells in highly autofluorescent lung tissue. Excitation scanning provided higher signal-to-noise characteristics, as well as shorter acquisition times (300  ms/wavelength band with excitation scanning versus 3  s/wavelength band with emission scanning). Excitation scanning also provided higher delineation of nuclear and cell borders, and increased identification of GFP regions in highly autofluorescent tissue. These results demonstrate excitation scanning has utility in a wide range of time-dependent and photosensitive applications.

  4. Microscopic Sources of Paramagnetic Noise on α-Al2O3 Substrates for Superconducting Qubits

    NASA Astrophysics Data System (ADS)

    Dubois, Jonathan; Lee, Donghwa; Lordi, Vince

    2014-03-01

    Superconducting qubits (SQs) represent a promising route to achieving a scalable quantum computer. However, the coupling between electro-dynamic qubits and (as yet largely unidentified) ambient parasitic noise sources has so far limited the functionality of current SQs by limiting coherence times of the quantum states below a practical threshold for measurement and manipulation. Further improvement can be enabled by a detailed understanding of the various noise sources afflicting SQs. In this work, first principles density functional theory (DFT) calculations are employed to identify the microscopic origins of magnetic noise sources in SQs on an α-Al2O3 substrate. The results indicate that it is unlikely that the existence of intrinsic point defects and defect complexes in the substrate are responsible for low frequency noise in these systems. Rather, a comprehensive analysis of extrinsic defects shows that surface aluminum ions interacting with ambient molecules will form a bath of magnetic moments that can couple to the SQ paramagnetically. The microscopic origin of this magnetic noise source is discussed and strategies for ameliorating the effects of these magnetic defects are proposed. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  5. Solvent-Induced Shift of Spectral Lines in Polar–Polarizable Solvents

    DOE PAGES

    Matyushov, Dmitry V.; Newton, Marshall D.

    2017-03-09

    Solvent-induced shift of optical transition lines is traditionally described by the Lippert- McRae equation given in terms of the Onsager theory for dipole solvation. It splits the overall shift into the equilibrium solvation by induced dipoles and the reaction field by the permanent dipoles in equilibrium with the chromophore in the ground state. Here we have reconsidered this classical problem from the perspective of microscopic solvation theories. A microscopic solvation functional is derived and continuum solvation is consistently introduced by taking the limit of zero wavevector in the reciprocal-space solvation susceptibility functions. We show that the phenomenological expression for themore » reaction field of permanent dipoles in the Lippert-McRae equation is not consistent with the microscopic theory. The main deficiency of the Lippert- McRae equation equation is the use of additivity of the response by permanent and induced dipoles of the liquid. An alternative closed-form equation for the spectral shift is derived. Its continuum limit allows a new, non-additive functionality for the solvent-induced shift in terms of the high-frequency and static dielectric constants. Finally, the main qualitative outcome of the theory is a significantly weaker dependence of the spectral shift on the polarizability of the solvent than predicted by the Lippert-McRae formula.« less

  6. Solvent-Induced Shift of Spectral Lines in Polar-Polarizable Solvents.

    PubMed

    Matyushov, Dmitry V; Newton, Marshall D

    2017-03-23

    Solvent-induced shift of optical transition lines is traditionally described by the Lippert-McRae equation given in terms of the Onsager theory for dipole solvation. It splits the overall shift into the equilibrium solvation by induced dipoles and the reaction field by the permanent dipoles in equilibrium with the chromophore in the ground state. We have reconsidered this classical problem from the perspective of microscopic solvation theories. A microscopic solvation functional is derived, and continuum solvation is consistently introduced by taking the limit of zero wavevector in the reciprocal-space solvation susceptibility functions. We show that the phenomenological expression for the reaction field of permanent dipoles in the Lippert-McRae equation is not consistent with the microscopic theory. The main deficiency of the Lippert-McRae equation is the use of additivity of the response by permanent and induced dipoles of the liquid. An alternative closed-form equation for the spectral shift is derived. Its continuum limit allows a new, nonadditive functionality for the solvent-induced shift in terms of the high-frequency and static dielectric constants. The main qualitative outcome of the theory is a significantly weaker dependence of the spectral shift on the polarizability of the solvent than predicted by the Lippert-McRae formula.

  7. What is the diffraction limit? From Airy to Abbe using direct numerical integration

    NASA Astrophysics Data System (ADS)

    Calm, Y. M.; Merlo, J. M.; Burns, M. J.; Kempa, K.; Naughton, M. J.

    The resolution of a conventional optical microscope is sometimes taken from Airy's point spread function (PSF), 0 . 61 λ / NA , and sometimes from Abbe, λ / 2 NA , where NA is the numerical aperture, however modern fluorescence and near-field optical microscopies achieve spatial resolution far better than either of these limits. There is a new category of 2D metamaterials called planar optical elements (POEs), which have a microscopic thickness (< λ), macroscopic transverse dimensions (> 100 λ), and are composed of an array of nanostructured light scatterers. POEs are found in a range of micro- and nano-photonic technologies, and will influence the future optical nanoscopy. With this pretext, we shed some light on the 'diffraction limit' by numerically evaluating Kirchhoff's scalar formulae (in their exact form) and identifying the features of highly non-paraxial, 3D PSFs. We show that the Airy and Abbe criteria are connected, and we comment on the design rules for a particular type of POE: the flat lens. This work is supported by the W. M. Keck Foundation.

  8. Diffusion length measurement using the scanning electron microscope. [for silicon solar cell

    NASA Technical Reports Server (NTRS)

    Weizer, V. G.

    1975-01-01

    The present work describes a measuring technique employing the scanning electron microscope in which values of the true bulk diffusion length are obtained. It is shown that surface recombination effects can be eliminated through application of highly doped surface field layers. The effects of high injection level and low-high junction current generation are investigated. Results obtained with this technique are compared to those obtained by a penetrating radiation (X-ray) method, and a close agreement is found. The SEM technique is limited to cells that contain a back surface field layer.

  9. Sketched oxide single-electron transistor

    NASA Astrophysics Data System (ADS)

    Cheng, Guanglei; Siles, Pablo F.; Bi, Feng; Cen, Cheng; Bogorin, Daniela F.; Bark, Chung Wung; Folkman, Chad M.; Park, Jae-Wan; Eom, Chang-Beom; Medeiros-Ribeiro, Gilberto; Levy, Jeremy

    2011-06-01

    Devices that confine and process single electrons represent an important scaling limit of electronics. Such devices have been realized in a variety of materials and exhibit remarkable electronic, optical and spintronic properties. Here, we use an atomic force microscope tip to reversibly `sketch' single-electron transistors by controlling a metal-insulator transition at the interface of two oxides. In these devices, single electrons tunnel resonantly between source and drain electrodes through a conducting oxide island with a diameter of ~1.5 nm. We demonstrate control over the number of electrons on the island using bottom- and side-gate electrodes, and observe hysteresis in electron occupation that is attributed to ferroelectricity within the oxide heterostructure. These single-electron devices may find use as ultradense non-volatile memories, nanoscale hybrid piezoelectric and charge sensors, as well as building blocks in quantum information processing and simulation platforms.

  10. Parametrization and Optimization of Gaussian Non-Markovian Unravelings for Open Quantum Dynamics

    NASA Astrophysics Data System (ADS)

    Megier, Nina; Strunz, Walter T.; Viviescas, Carlos; Luoma, Kimmo

    2018-04-01

    We derive a family of Gaussian non-Markovian stochastic Schrödinger equations for the dynamics of open quantum systems. The different unravelings correspond to different choices of squeezed coherent states, reflecting different measurement schemes on the environment. Consequently, we are able to give a single shot measurement interpretation for the stochastic states and microscopic expressions for the noise correlations of the Gaussian process. By construction, the reduced dynamics of the open system does not depend on the squeezing parameters. They determine the non-Hermitian Gaussian correlation, a wide range of which are compatible with the Markov limit. We demonstrate the versatility of our results for quantum information tasks in the non-Markovian regime. In particular, by optimizing the squeezing parameters, we can tailor unravelings for improving entanglement bounds or for environment-assisted entanglement protection.

  11. Open-loop measurement of data sampling point for SPM

    NASA Astrophysics Data System (ADS)

    Wang, Yueyu; Zhao, Xuezeng

    2006-03-01

    SPM (Scanning Probe Microscope) provides "three-dimensional images" with nanometer level resolution, and some of them can be used as metrology tools. However, SPM's images are commonly distorted by non-ideal properties of SPM's piezoelectric scanner, which reduces metrological accuracy and data repeatability. In order to eliminate this limit, an "open-loop sampling" method is presented. In this method, the positional values of sampling points in all three directions on the surface of the sample are measured by the position sensor and recorded in SPM's image file, which is used to replace the image file from a conventional SPM. Because the positions in X and Y directions are measured at the same time of sampling height information in Z direction, the image distortion caused by scanner locating error can be reduced by proper image processing algorithm.

  12. Investigations in space-related molecular biology. [cryo-electron microscopic and diffraction studies on terrestrial and extraterrestrial specimens

    NASA Technical Reports Server (NTRS)

    Fernandez-Moran, H.; Pritzker, A. N.

    1974-01-01

    Improved instrumentation and preparation techniques for high resolution, high voltage cryo-electron microscopic and diffraction studies on terrestrial and extraterrestrial specimens are reported. Computer correlated ultrastructural and biochemical work on hydrated and dried cell membranes and related biological systems provided information on membrane organization, ice crystal formation and ordered water, RNA virus linked to cancer, lunar rock samples, and organometallic superconducting compounds. Apollo 11, 12, 14, and 15 specimens were analyzed

  13. Collaborative Research and Development (CR&D). Delivery Order 0051: Atomic Scale Transmission Electron Microscope Image Modeling and Application to Semiconductor Heterointerface Characterization

    DTIC Science & Technology

    2008-01-01

    information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD...microscopy ( AEM ), to characterize a variety of III-V semiconductor thin films. The materials investigated include superlattices based on the InAs- GaSb...technique. TEM observations were performed using a Philips-CM 200 FEG transmission electron microscope equipped with a field emission gun, operated at an

  14. [The segmentation of urinary cells--a first step in the automated processing in urine cytology (author's transl)].

    PubMed

    Liedtke, C E; Aeikens, B

    1980-01-01

    By segmentation of cell images we understand the automated decomposition of microscopic cell scenes into nucleus, plasma and background. A segmentation is achieved by using information from the microscope image and prior knowledge about the content of the scene. Different algorithms have been investigated and applied to samples of urothelial cells. A particular algorithm based on a histogram approach which can be easily implemented in hardware is discussed in more detail.

  15. Quantitative Phase Imaging in a Volume Holographic Microscope

    NASA Astrophysics Data System (ADS)

    Waller, Laura; Luo, Yuan; Barbastathis, George

    2010-04-01

    We demonstrate a method for quantitative phase imaging in a Volume Holographic Microscope (VHM) from a single exposure, describe the properties of the system and show experimental results. The VHM system uses a multiplexed volume hologram (VH) to laterally separate images from different focal planes. This 3D intensity information is then used to solve the transport of intensity (TIE) equation and recover phase quantitatively. We discuss the modifications to the technique that were made in order to give accurate results.

  16. Mark of the Moessbauer

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image, taken by an instrument called the microscopic imager on the Mars Exploration Rover Spirit, reveals an imprint left by another instrument, the Moessbauer spectrometer. The imprint is at a location within the rover wheel track named 'Middle of Road.' Both instruments are located on the rover's instrument deployment device, or 'arm.'

    Not only was the Moessbauer spectrometer able to gain important mineralogical information about this site, it also aided in the placement of the microscopic imager. On hard rocks, the microscopic imager uses its tiny metal sensor to determine proper placement for best possible focus. However, on the soft martian soil this guide would sink, prohibiting proper placement of the microscopic imager. After the Moessbauer spectrometer's much larger, donut-shaped plate touches the surface, Spirit can correctly calculate where to position the microscopic imager.

    Scientists find this image particularly interesting because of the compacted nature of the soil that was underneath the Moessbauer spectrometer plate. Also of interest are the embedded, round grains and the fractured appearance of the material disturbed within the hole. The material appears to be slightly cohesive. The field of view in this image, taken on Sol 43 (February 16, 2004), measures approximately 3 centimeters (1.2 inches) across.

  17. Comparison of Middle Ear Visualization With Endoscopy and Microscopy.

    PubMed

    Bennett, Marc L; Zhang, Dongqing; Labadie, Robert F; Noble, Jack H

    2016-04-01

    The primary goal of chronic ear surgery is the creation of a safe, clean dry ear. For cholesteatomas, complete removal of disease is dependent on visualization. Conventional microscopy is adequate for most dissection, but various subregions of the middle ear are better visualized with endoscopy. The purpose of the present study was to quantitatively assess the improved visualization that endoscopes afford as compared with operating microscopes. Microscopic and endoscopic views were simulated using a three-dimensional model developed from temporal bone scans. Surface renderings of the ear canal and middle ear subsegments were defined and the percentage of visualization of each middle ear subsegment, both with and without ossicles, was then determined for the microscope as well as for 0-, 30-, and 45-degree endoscopes. Using this information, we analyzed which mode of visualization is best suited for dissection within a particular anatomical region. Using a 0-degree scope provides significantly more visualization of every subregion, except the antrum, compared with a microscope. In addition, angled scopes permit visualizing significantly more surface area of every subregion of the middle ear than straight scopes or microscopes. Endoscopes offer advantages for cholesteatoma dissection in difficult-to-visualize areas including the sinus tympani and epitympanum.

  18. Comparison of a virtual microscope laboratory to a regular microscope laboratory for teaching histology.

    PubMed

    Harris, T; Leaven, T; Heidger, P; Kreiter, C; Duncan, J; Dick, F

    2001-02-01

    Emerging technology now exists to digitize a gigabyte of information from a glass slide, save it in a highly compressed file format, and deliver it over the web. By accessing these images with a standard web browser and viewer plug-in, a computer can emulate a real microscope and glass slide. Using this new technology, the immediate aims of our project were to digitize the glass slides from urinary tract, male genital, and endocrine units and implement them in the Spring 2000 Histology course at the University of Iowa, and to carry out a formative evaluation of the virtual slides of these three units in a side-by-side comparison with the regular microscope laboratory. The methods and results of this paper will describe the technology employed to create the virtual slides, and the formative evaluation carried out in the course. Anat Rec (New Anat) 265:10-14, 2001. Copyright 2001 Wiley-Liss, Inc.

  19. Measuring Strong Nanostructures

    ScienceCinema

    Andy Minor

    2017-12-09

    Andy Minor of Berkeley Lab's National Center for Electron Microscopy explains measuring stress and strain on nanostructures with the In Situ Microscope. More information: http://newscenter.lbl.gov/press-relea...

  20. Thin-section ratiometric Ca2+ images obtained by optical sectioning of fura-2 loaded mast cells

    PubMed Central

    1992-01-01

    The availability of the ratiometric Ca2+ indicator dyes, fura-2, and indo-1, and advances in digital imaging and computer technology have made it possible to detect Ca2+ changes in single cells with high temporal and spatial resolution. However, the optical properties of the conventional epifluorescence microscope do not produce a perfect image of the specimen. Instead, the observed image is a spatial low pass filtered version of the object and is contaminated with out of focus information. As a result, the image has reduced contrast and an increased depth of field. This problem is especially important for measurements of localized Ca2+ concentrations. One solution to this problem is to use a scanning confocal microscope which only detects in focus information, but this approach has several disadvantages for low light fluorescence measurements in living cells. An alternative approach is to use digital image processing and a deblurring algorithm to remove the out of focus information by using a knowledge of the point spread function of the microscope. All of these algorithms require a stack of two-dimensional images taken at different focal planes, although the "nearest neighbor deblurring" algorithm only requires one image above and below the image plane. We have used a modification of this scheme to construct a simple inverse filter, which extracts optical sections comparable to those of the nearest neighbors scheme, but without the need for adjacent image sections. We have used this "no neighbors" processing scheme to deblur images of fura-2-loaded mast cells from beige mice and generate high resolution ratiometric Ca2+ images of thin sections through the cell. The shallow depth of field of these images is demonstrated by taking pairs of images at different focal planes, 0.5-microns apart. The secretory granules, which exclude the fura-2, appear in focus in all sections and distinct changes in their size and shape can be seen in adjacent sections. In addition, we show, with the aid of model objects, how the combination of inverse filtering and ratiometric imaging corrects for some of the inherent limitations of using an inverse filter and can be used for quantitative measurements of localized Ca2+ gradients. With this technique, we can observe Ca2+ transients in narrow regions of cytosol between the secretory granules and plasma membrane that can be less than 0.5-microns wide. Moreover, these Ca2+ increases can be seen to coincide with the swelling of the secretory granules that follows exocytotic fusion. PMID:1730775

  1. Microscopic and histochemical manifestations of hyaline cartilage dynamics.

    PubMed

    Malinin, G I; Malinin, T I

    1999-01-01

    Structure and function of hyaline cartilages has been the focus of many correlative studies for over a hundred years. Much of what is known regarding dynamics and function of cartilage constituents has been derived or inferred from biochemical and electron microscopic investigations. Here we show that in conjunction with ultrastructural, and high-magnification transmission light and polarization microscopy, the well-developed histochemical methods are indispensable for the analysis of cartilage dynamics. Microscopically demonstrable aspects of cartilage dynamics include, but are not limited to, formation of the intracellular liquid crystals, phase transitions of the extracellular matrix and tubular connections between chondrocytes. The role of the interchondrocytic liquid crystals is considered in terms of the tensegrity hypothesis and non-apoptotic cell death. Phase transitions of the extracellular matrix are discussed in terms of self-alignment of chondrons, matrix guidance pathways and cartilage growth in the absence of mitosis. The possible role of nonenzymatic glycation reactions in cartilage dynamics is also reviewed.

  2. Fiber laser-microscope system for femtosecond photodisruption of biological samples

    PubMed Central

    Yavaş, Seydi; Erdogan, Mutlu; Gürel, Kutan; Ilday, F. Ömer; Eldeniz, Y. Burak; Tazebay, Uygar H.

    2012-01-01

    We report on the development of a ultrafast fiber laser-microscope system for femtosecond photodisruption of biological targets. A mode-locked Yb-fiber laser oscillator generates few-nJ pulses at 32.7 MHz repetition rate, amplified up to ∼125 nJ at 1030 nm. Following dechirping in a grating compressor, ∼240 fs-long pulses are delivered to the sample through a diffraction-limited microscope, which allows real-time imaging and control. The laser can generate arbitrary pulse patterns, formed by two acousto-optic modulators (AOM) controlled by a custom-developed field-programmable gate array (FPGA) controller. This capability opens the route to fine optimization of the ablation processes and management of thermal effects. Sample position, exposure time and imaging are all computerized. The capability of the system to perform femtosecond photodisruption is demonstrated through experiments on tissue and individual cells. PMID:22435105

  3. Microscopic properties of ionic liquid/organic semiconductor interfaces revealed by molecular dynamics simulations.

    PubMed

    Yokota, Yasuyuki; Miyamoto, Hiroo; Imanishi, Akihito; Takeya, Jun; Inagaki, Kouji; Morikawa, Yoshitada; Fukui, Ken-Ichi

    2018-05-09

    Electric double-layer transistors based on ionic liquid/organic semiconductor interfaces have been extensively studied during the past decade because of their high carrier densities at low operation voltages. Microscopic structures and the dynamics of ionic liquids likely determine the device performance; however, knowledge of these is limited by a lack of appropriate experimental tools. In this study, we investigated ionic liquid/organic semiconductor interfaces using molecular dynamics to reveal the microscopic properties of ionic liquids. The organic semiconductors include pentacene, rubrene, fullerene, and 7,7,8,8-tetracyanoquinodimethane (TCNQ). While ionic liquids close to the substrate always form the specific layered structures, the surface properties of organic semiconductors drastically alter the ionic dynamics. Ionic liquids at the fullerene interface behave as a two-dimensional ionic crystal because of the energy gain derived from the favorable electrostatic interaction on the corrugated periodic substrate.

  4. Holographic photolysis of caged neurotransmitters

    PubMed Central

    Lutz, Christoph; Otis, Thomas S.; DeSars, Vincent; Charpak, Serge; DiGregorio, David A.; Emiliani, Valentina

    2009-01-01

    Stimulation of light-sensitive chemical probes has become a powerful tool for the study of dynamic signaling processes in living tissue. Classically, this approach has been constrained by limitations of lens–based and point-scanning illumination systems. Here we describe a novel microscope configuration that incorporates a nematic liquid crystal spatial light modulator (LC-SLM) to generate holographic patterns of illumination. This microscope can produce illumination spots of variable size and number and patterns shaped to precisely match user-defined elements in a specimen. Using holographic illumination to photolyse caged glutamate in brain slices, we demonstrate that shaped excitation on segments of neuronal dendrites and simultaneous, multi-spot excitation of different dendrites enables precise spatial and rapid temporal control of glutamate receptor activation. By allowing the excitation volume shape to be tailored precisely, the holographic microscope provides an extremely flexible method for activation of various photosensitive proteins and small molecules. PMID:19160517

  5. A Simple low-cost device enables four epi-illumination techniques on standard light microscopes.

    PubMed

    Ishmukhametov, Robert R; Russell, Aidan N; Wheeler, Richard J; Nord, Ashley L; Berry, Richard M

    2016-02-08

    Back-scattering darkfield (BSDF), epi-fluorescence (EF), interference reflection contrast (IRC), and darkfield surface reflection (DFSR) are advanced but expensive light microscopy techniques with limited availability. Here we show a simple optical design that combines these four techniques in a simple low-cost miniature epi-illuminator, which inserts into the differential interference-contrast (DIC) slider bay of a commercial microscope, without further additions required. We demonstrate with this device: 1) BSDF-based detection of Malarial parasites inside unstained human erythrocytes; 2) EF imaging with and without dichroic components, including detection of DAPI-stained Leishmania parasite without using excitation or emission filters; 3) RIC of black lipid membranes and other thin films, and 4) DFSR of patterned opaque and transparent surfaces. We believe that our design can expand the functionality of commercial bright field microscopes, provide easy field detection of parasites and be of interest to many users of light microscopy.

  6. Microscopic cascading of second-order molecular nonlinearity: New design principles for enhancing third-order nonlinearity.

    PubMed

    Baev, Alexander; Autschbach, Jochen; Boyd, Robert W; Prasad, Paras N

    2010-04-12

    Herein, we develop a phenomenological model for microscopic cascading and substantiate it with ab initio calculations. It is shown that the concept of local microscopic cascading of a second-order nonlinearity can lead to a third-order nonlinearity, without introducing any new loss mechanisms that could limit the usefulness of our approach. This approach provides a new molecular design protocol, in which the current great successes achieved in producing molecules with extremely large second-order nonlinearity can be used in a supra molecular organization in a preferred orientation to generate very large third-order response magnitudes. The results of density functional calculations for a well-known second-order molecule, (para)nitroaniline, show that a head-to-tail dimer configuration exhibits enhanced third-order nonlinearity, in agreement with the phenomenological model which suggests that such an arrangement will produce cascading due to local field effects.

  7. A Simple low-cost device enables four epi-illumination techniques on standard light microscopes

    NASA Astrophysics Data System (ADS)

    Ishmukhametov, Robert R.; Russell, Aidan N.; Wheeler, Richard J.; Nord, Ashley L.; Berry, Richard M.

    2016-02-01

    Back-scattering darkfield (BSDF), epi-fluorescence (EF), interference reflection contrast (IRC), and darkfield surface reflection (DFSR) are advanced but expensive light microscopy techniques with limited availability. Here we show a simple optical design that combines these four techniques in a simple low-cost miniature epi-illuminator, which inserts into the differential interference-contrast (DIC) slider bay of a commercial microscope, without further additions required. We demonstrate with this device: 1) BSDF-based detection of Malarial parasites inside unstained human erythrocytes; 2) EF imaging with and without dichroic components, including detection of DAPI-stained Leishmania parasite without using excitation or emission filters; 3) RIC of black lipid membranes and other thin films, and 4) DFSR of patterned opaque and transparent surfaces. We believe that our design can expand the functionality of commercial bright field microscopes, provide easy field detection of parasites and be of interest to many users of light microscopy.

  8. Elastically driven intermittent microscopic dynamics in soft solids

    NASA Astrophysics Data System (ADS)

    Bouzid, Mehdi; Colombo, Jader; Barbosa, Lucas Vieira; Del Gado, Emanuela

    2017-06-01

    Soft solids with tunable mechanical response are at the core of new material technologies, but a crucial limit for applications is their progressive aging over time, which dramatically affects their functionalities. The generally accepted paradigm is that such aging is gradual and its origin is in slower than exponential microscopic dynamics, akin to the ones in supercooled liquids or glasses. Nevertheless, time- and space-resolved measurements have provided contrasting evidence: dynamics faster than exponential, intermittency and abrupt structural changes. Here we use 3D computer simulations of a microscopic model to reveal that the timescales governing stress relaxation, respectively, through thermal fluctuations and elastic recovery are key for the aging dynamics. When thermal fluctuations are too weak, stress heterogeneities frozen-in upon solidification can still partially relax through elastically driven fluctuations. Such fluctuations are intermittent, because of strong correlations that persist over the timescale of experiments or simulations, leading to faster than exponential dynamics.

  9. Fast parallel 3D profilometer with DMD technology

    NASA Astrophysics Data System (ADS)

    Hou, Wenmei; Zhang, Yunbo

    2011-12-01

    Confocal microscope has been a powerful tool for three-dimensional profile analysis. Single mode confocal microscope is limited by scanning speed. This paper presents a 3D profilometer prototype of parallel confocal microscope based on DMD (Digital Micromirror Device). In this system the DMD takes the place of Nipkow Disk which is a classical parallel scanning scheme to realize parallel lateral scanning technique. Operated with certain pattern, the DMD generates a virtual pinholes array which separates the light into multi-beams. The key parameters that affect the measurement (pinhole size and the lateral scanning distance) can be configured conveniently by different patterns sent to DMD chip. To avoid disturbance between two virtual pinholes working at the same time, a scanning strategy is adopted. Depth response curve both axial and abaxial were extract. Measurement experiments have been carried out on silicon structured sample, and axial resolution of 55nm is achieved.

  10. Generation-3 programmable array microscope (PAM) with digital micro-mirror device (DMD)

    NASA Astrophysics Data System (ADS)

    De Beule, Pieter A. A.; de Vries, Anthony H. B.; Arndt-Jovin, Donna J.; Jovin, Thomas M.

    2011-03-01

    We report progress on the construction of an optical sectioning programmable array microscope (PAM) implemented with a digital micro-mirror device (DMD) spatial light modulator (SLM) utilized for both fluorescence illumination and detection. The introduction of binary intensity modulation at the focal plane of a microscope objective in a computer controlled pixilated mode allows the recovery of an optically sectioned image. Illumination patterns can be changed very quickly, in contrast to static Nipkow disk or aperture correlation implementations, thereby creating an optical system that can be optimized to the optical specimen in a convenient manner, e.g. for patterned photobleaching, photobleaching reduction, or spatial superresolution. We present a third generation (Gen-3) dual path PAM module incorporating the 25 kHz binary frame rate TI 1080p DMD and a newly developed optical system that offers diffraction limited imaging with compensation of tilt angle distortion.

  11. Recording stereoscopic 3D neurosurgery with a head-mounted 3D camera system.

    PubMed

    Lee, Brian; Chen, Brian R; Chen, Beverly B; Lu, James Y; Giannotta, Steven L

    2015-06-01

    Stereoscopic three-dimensional (3D) imaging can present more information to the viewer and further enhance the learning experience over traditional two-dimensional (2D) video. Most 3D surgical videos are recorded from the operating microscope and only feature the crux, or the most important part of the surgery, leaving out other crucial parts of surgery including the opening, approach, and closing of the surgical site. In addition, many other surgeries including complex spine, trauma, and intensive care unit procedures are also rarely recorded. We describe and share our experience with a commercially available head-mounted stereoscopic 3D camera system to obtain stereoscopic 3D recordings of these seldom recorded aspects of neurosurgery. The strengths and limitations of using the GoPro(®) 3D system as a head-mounted stereoscopic 3D camera system in the operating room are reviewed in detail. Over the past several years, we have recorded in stereoscopic 3D over 50 cranial and spinal surgeries and created a library for education purposes. We have found the head-mounted stereoscopic 3D camera system to be a valuable asset to supplement 3D footage from a 3D microscope. We expect that these comprehensive 3D surgical videos will become an important facet of resident education and ultimately lead to improved patient care.

  12. Electron Microscopic Recording of the Power and Recovery Strokes of Individual Myosin Heads Coupled with ATP Hydrolysis: Facts and Implications.

    PubMed

    Sugi, Haruo; Chaen, Shigeru; Akimoto, Tsuyoshi

    2018-05-04

    The most straightforward way to get information on the performance of individual myosin heads producing muscle contraction may be to record their movement, coupled with ATP hydrolysis, electron-microscopically using the gas environmental chamber (EC). The EC enables us to visualize and record ATP-induced myosin head movement in hydrated skeletal muscle myosin filaments. When actin filaments are absent, myosin heads fluctuate around a definite neutral position, so that their time-averaged mean position remains unchanged. On application of ATP, myosin heads are found to move away from, but not towards, the bare region, indicating that myosin heads perform a recovery stroke (average amplitude, 6 nm). After exhaustion of ATP, myosin heads return to their neutral position. In the actin⁻myosin filament mixture, myosin heads form rigor actin myosin linkages, and on application of ATP, they perform a power stroke by stretching adjacent elastic structures because of a limited amount of applied ATP ≤ 10 µM. The average amplitude of the power stroke is 3.3 nm and 2.5 nm at the distal and the proximal regions of the myosin head catalytic domain (CAD), respectively. The power stroke amplitude increases appreciably at low ionic strength, which is known to enhance Ca 2+ -activated force in muscle. In both the power and recovery strokes, myosin heads return to their neutral position after exhaustion of ATP.

  13. Estimating oxygen distribution from vasculature in three-dimensional tumour tissue

    PubMed Central

    Kannan, Pavitra; Warren, Daniel R.; Markelc, Bostjan; Bates, Russell; Muschel, Ruth; Partridge, Mike

    2016-01-01

    Regions of tissue which are well oxygenated respond better to radiotherapy than hypoxic regions by up to a factor of three. If these volumes could be accurately estimated, then it might be possible to selectively boost dose to radio-resistant regions, a concept known as dose-painting. While imaging modalities such as 18F-fluoromisonidazole positron emission tomography (PET) allow identification of hypoxic regions, they are intrinsically limited by the physics of such systems to the millimetre domain, whereas tumour oxygenation is known to vary over a micrometre scale. Mathematical modelling of microscopic tumour oxygen distribution therefore has the potential to complement and enhance macroscopic information derived from PET. In this work, we develop a general method of estimating oxygen distribution in three dimensions from a source vessel map. The method is applied analytically to line sources and quasi-linear idealized line source maps, and also applied to full three-dimensional vessel distributions through a kernel method and compared with oxygen distribution in tumour sections. The model outlined is flexible and stable, and can readily be applied to estimating likely microscopic oxygen distribution from any source geometry. We also investigate the problem of reconstructing three-dimensional oxygen maps from histological and confocal two-dimensional sections, concluding that two-dimensional histological sections are generally inadequate representations of the three-dimensional oxygen distribution. PMID:26935806

  14. Coupled tomography and distinct-element-method approach to exploring the granular media microstructure in a jamming hourglass

    NASA Astrophysics Data System (ADS)

    Tsukahara, M.; Mitrovic, S.; Gajdosik, V.; Margaritondo, G.; Pournin, L.; Ramaioli, M.; Sage, D.; Hwu, Y.; Unser, M.; Liebling, Th. M.

    2008-06-01

    We describe an approach for exploring microscopic properties of granular media that couples x-ray microtomography and distinct-element-method (DEM) simulations through image analysis. We illustrate it via the study of the intriguing phenomenon of instant arching in an hourglass (in our case a cylinder filled with a polydisperse mixture of glass beads that has a small circular shutter in the bottom). X-ray tomography provides three-dimensional snapshots of the microscopic conditions of the system both prior to opening the shutter, and thereafter, once jamming is completed. The process time in between is bridged using DEM simulation, which settles to positions in remarkably good agreement with the x-ray images. Specifically designed image analysis procedures accurately extract the geometrical information, i.e., the positions and sizes of the beads, from the raw x-ray tomographs, and compress the data representation from initially 5 gigabytes to a few tens of kilobytes per tomograph. The scope of the approach is explored through a sensitivity analysis to input data perturbations in both bead sizes and positions. We establish that accuracy of size—much more than position—estimates is critical, thus explaining the difficulty in considering a mixture of beads of different sizes. We further point to limits in the replication ability of granular flows away from equilibrium; i.e., the difficulty of numerically reproducing chaotic motion.

  15. Estimating oxygen distribution from vasculature in three-dimensional tumour tissue.

    PubMed

    Grimes, David Robert; Kannan, Pavitra; Warren, Daniel R; Markelc, Bostjan; Bates, Russell; Muschel, Ruth; Partridge, Mike

    2016-03-01

    Regions of tissue which are well oxygenated respond better to radiotherapy than hypoxic regions by up to a factor of three. If these volumes could be accurately estimated, then it might be possible to selectively boost dose to radio-resistant regions, a concept known as dose-painting. While imaging modalities such as 18F-fluoromisonidazole positron emission tomography (PET) allow identification of hypoxic regions, they are intrinsically limited by the physics of such systems to the millimetre domain, whereas tumour oxygenation is known to vary over a micrometre scale. Mathematical modelling of microscopic tumour oxygen distribution therefore has the potential to complement and enhance macroscopic information derived from PET. In this work, we develop a general method of estimating oxygen distribution in three dimensions from a source vessel map. The method is applied analytically to line sources and quasi-linear idealized line source maps, and also applied to full three-dimensional vessel distributions through a kernel method and compared with oxygen distribution in tumour sections. The model outlined is flexible and stable, and can readily be applied to estimating likely microscopic oxygen distribution from any source geometry. We also investigate the problem of reconstructing three-dimensional oxygen maps from histological and confocal two-dimensional sections, concluding that two-dimensional histological sections are generally inadequate representations of the three-dimensional oxygen distribution. © 2016 The Authors.

  16. Focused ion beam (FIB)/scanning electron microscopy (SEM) in tissue structural research.

    PubMed

    Leser, Vladka; Milani, Marziale; Tatti, Francesco; Tkalec, Ziva Pipan; Strus, Jasna; Drobne, Damjana

    2010-10-01

    The focused ion beam (FIB) and scanning electron microscope (SEM) are commonly used in material sciences for imaging and analysis of materials. Over the last decade, the combined FIB/SEM system has proven to be also applicable in the life sciences. We have examined the potential of the focused ion beam/scanning electron microscope system for the investigation of biological tissues of the model organism Porcellio scaber (Crustacea: Isopoda). Tissue from digestive glands was prepared as for conventional SEM or as for transmission electron microscopy (TEM). The samples were transferred into FIB/SEM for FIB milling and an imaging operation. FIB-milled regions were secondary electron imaged, back-scattered electron imaged, or energy dispersive X-ray (EDX) analyzed. Our results demonstrated that FIB/SEM enables simultaneous investigation of sample gross morphology, cell surface characteristics, and subsurface structures. The same FIB-exposed regions were analyzed by EDX to provide basic compositional data. When samples were prepared as for TEM, the information obtained with FIB/SEM is comparable, though at limited magnification, to that obtained from TEM. A combination of imaging, micro-manipulation, and compositional analysis appears of particular interest in the investigation of epithelial tissues, which are subjected to various endogenous and exogenous conditions affecting their structure and function. The FIB/SEM is a promising tool for an overall examination of epithelial tissue under normal, stressed, or pathological conditions.

  17. Two level approach to safety planning incorporating the Highway Safety Manual (HSM) network screening.

    DOT National Transportation Integrated Search

    2014-04-01

    Compared to microscopic safety studies, macroscopic-focused research is more efficient at integrating zonal-level features into crash prediction models and identifying hot zones. However, macroscopic screening has accuracy limitations. Thus, this stu...

  18. Near-Field Scanning Optical Microscopy and Raman Microscopy.

    NASA Astrophysics Data System (ADS)

    Harootunian, Alec Tate

    1987-09-01

    Both a one dimensional near-field scanning optical microscope and Raman microprobe were constructed. In near -field scanning optical microscopy (NSOM) a subwavelength aperture is scanned in the near-field of the object. Radiation transmitted through the aperture is collected to form an image as the aperture scans over the object. The resolution of an NSOM system is essentially wavelength independent and is limited by the diameter of the aperture used to scan the object. NSOM was developed in an effort to provide a nondestructive in situ high spatial resolution probe while still utilizing photons at optical wavelengths. The Raman microprobe constructed provided vibrational Raman information with spatial resolution equivalent that of a conventional diffraction limited microscope. Both transmission studies and near-field diffration studies of subwavelength apertures were performed. Diffraction theories for a small aperture in an infinitely thin conducting screen, a slit in a thick conducting screen, and an aperture in a black screen were examined. All three theories indicate collimation of radiation to the size to the size of the subwavelength aperture or slit in the near-field. Theoretical calculations and experimental results indicate that light transmitted through subwavelength apertures is readily detectable. Light of wavelength 4579 (ANGSTROM) was transmitted through apertures with diameters as small as 300 (ANGSTROM). These studies indicate the feasibility of constructing an NSOM system. One dimensional transmission and fluorescence NSOM systems were constructed. Apertures in the tips of metallized glass pipettes width inner diameters of less than 1000 (ANGSTROM) were used as a light source in the NSOM system. A tunneling current was used to maintain the aperture position in the near-field. Fluorescence NSOM was demonstrated for the first time. Microspectroscopic and Raman microscopic studies of turtle cone oil droplets were performed. Both the Raman vibrational frequencies and the Raman excitation data indicate that the carotenoids are unaggregated. The carotenoid astaxanthin was identified in the orange and red droplets by Raman microscopy. Future applications for both Raman microscopy and near-field microscopy were proposed. Four methods of near-field distance regulation were also examined. Finally, theoretical exposure curves for near-field lithography were calculated. Both the near-field lithographic results and the near field diffraction studies indicate essentially wavelength independent resolution. (Abstract shortened with permission of author.).

  19. Correlative nanoscale imaging of actin filaments and their complexes

    NASA Astrophysics Data System (ADS)

    Sharma, Shivani; Zhu, Huanqi; Grintsevich, Elena E.; Reisler, Emil; Gimzewski, James K.

    2013-06-01

    Actin remodeling is an area of interest in biology in which correlative microscopy can bring a new way to analyze protein complexes at the nanoscale. Advances in EM, X-ray diffraction, fluorescence, and single molecule techniques have provided a wealth of information about the modulation of the F-actin structure and its regulation by actin binding proteins (ABPs). Yet, there are technological limitations of these approaches to achieving quantitative molecular level information on the structural and biophysical changes resulting from ABPs interaction with F-actin. Fundamental questions about the actin structure and dynamics and how these determine the function of ABPs remain unanswered. Specifically, how local and long-range structural and conformational changes result in ABPs induced remodeling of F-actin needs to be addressed at the single filament level. Advanced, sensitive and accurate experimental tools for detailed understanding of ABP-actin interactions are much needed. This article discusses the current understanding of nanoscale structural and mechanical modulation of F-actin by ABPs at the single filament level using several correlative microscopic techniques, focusing mainly on results obtained by Atomic Force Microscopy (AFM) analysis of ABP-actin complexes.

  20. Improvement to the scanning electron microscope image adaptive Canny optimization colorization by pseudo-mapping.

    PubMed

    Lo, T Y; Sim, K S; Tso, C P; Nia, M E

    2014-01-01

    An improvement to the previously proposed adaptive Canny optimization technique for scanning electron microscope image colorization is reported. The additional feature, called pseudo-mapping technique, is that the grayscale markings are temporarily mapped to a set of pre-defined pseudo-color map as a mean to instill color information for grayscale colors in chrominance channels. This allows the presence of grayscale markings to be identified; hence optimization colorization of grayscale colors is made possible. This additional feature enhances the flexibility of scanning electron microscope image colorization by providing wider range of possible color enhancement. Furthermore, the nature of this technique also allows users to adjust the luminance intensities of selected region from the original image within certain extent. © 2014 Wiley Periodicals, Inc.

  1. Quantitative Imaging with a Mobile Phone Microscope

    PubMed Central

    Skandarajah, Arunan; Reber, Clay D.; Switz, Neil A.; Fletcher, Daniel A.

    2014-01-01

    Use of optical imaging for medical and scientific applications requires accurate quantification of features such as object size, color, and brightness. High pixel density cameras available on modern mobile phones have made photography simple and convenient for consumer applications; however, the camera hardware and software that enables this simplicity can present a barrier to accurate quantification of image data. This issue is exacerbated by automated settings, proprietary image processing algorithms, rapid phone evolution, and the diversity of manufacturers. If mobile phone cameras are to live up to their potential to increase access to healthcare in low-resource settings, limitations of mobile phone–based imaging must be fully understood and addressed with procedures that minimize their effects on image quantification. Here we focus on microscopic optical imaging using a custom mobile phone microscope that is compatible with phones from multiple manufacturers. We demonstrate that quantitative microscopy with micron-scale spatial resolution can be carried out with multiple phones and that image linearity, distortion, and color can be corrected as needed. Using all versions of the iPhone and a selection of Android phones released between 2007 and 2012, we show that phones with greater than 5 MP are capable of nearly diffraction-limited resolution over a broad range of magnifications, including those relevant for single cell imaging. We find that automatic focus, exposure, and color gain standard on mobile phones can degrade image resolution and reduce accuracy of color capture if uncorrected, and we devise procedures to avoid these barriers to quantitative imaging. By accommodating the differences between mobile phone cameras and the scientific cameras, mobile phone microscopes can be reliably used to increase access to quantitative imaging for a variety of medical and scientific applications. PMID:24824072

  2. Assessment of a liquid lens enabled in vivo optical coherence microscope.

    PubMed

    Murali, Supraja; Meemon, Panomsak; Lee, Kye-Sung; Kuhn, William P; Thompson, Kevin P; Rolland, Jannick P

    2010-06-01

    The optical aberrations induced by imaging through skin can be predicted using formulas for Seidel aberrations of a plane-parallel plate. Knowledge of these aberrations helps to guide the choice of numerical aperture (NA) of the optics we can use in an implementation of Gabor domain optical coherence microscopy (GD-OCM), where the focus is the only aberration adjustment made through depth. On this basis, a custom-designed, liquid-lens enabled dynamic focusing optical coherence microscope operating at 0.2 NA is analyzed and validated experimentally. As part of the analysis, we show that the full width at half-maximum metric, as a characteristic descriptor for the point spread function, while commonly used, is not a useful metric for quantifying resolution in non-diffraction-limited systems. Modulation transfer function (MTF) measurements quantify that the liquid lens performance is as predicted by design, even when accounting for the effect of gravity. MTF measurements in a skinlike scattering medium also quantify the performance of the microscope in its potential applications. To guide the fusion of images across the various focus positions of the microscope, as required in GD-OCM, we present depth of focus measurements that can be used to determine the effective number of focusing zones required for a given goal resolution. Subcellular resolution in an onion sample, and high-definition in vivo imaging in human skin are demonstrated with the custom-designed and built microscope.

  3. Combined reflection and transmission microscope for telemedicine applications in field settings.

    PubMed

    Biener, Gabriel; Greenbaum, Alon; Isikman, Serhan O; Lee, Kelvin; Tseng, Derek; Ozcan, Aydogan

    2011-08-21

    We demonstrate a field-portable upright and inverted microscope that can image specimens in both reflection and transmission modes. This compact and cost-effective dual-mode microscope weighs only ∼135 grams (<4.8 ounces) and utilizes a simple light emitting diode (LED) to illuminate the sample of interest using a beam-splitter cube that is positioned above the object plane. This LED illumination is then partially reflected from the sample to be collected by two lenses, creating a reflection image of the specimen onto an opto-electronic sensor-array that is positioned above the beam-splitter cube. In addition to this, the illumination beam is also partially transmitted through the same specimen, which then casts lensfree in-line holograms of the same objects onto a second opto-electronic sensor-array that is positioned underneath the beam-splitter cube. By rapid digital reconstruction of the acquired lensfree holograms, transmission images (both phase and amplitude) of the same specimen are also created. We tested the performance of this field-portable microscope by imaging various micro-particles, blood smears as well as a histopathology slide corresponding to skin tissue. Being compact, light-weight and cost-effective, this combined reflection and transmission microscope might especially be useful for telemedicine applications in resource limited settings. This journal is © The Royal Society of Chemistry 2011

  4. A modular, open-source, slide-scanning microscope for diagnostic applications in resource-constrained settings

    PubMed Central

    Lu, Qiang; Liu, Guanghui; Xiao, Chuanli; Hu, Chuanzhen; Zhang, Shiwu; Xu, Ronald X.; Chu, Kaiqin; Xu, Qianming

    2018-01-01

    In this paper we report the development of a cost-effective, modular, open source, and fully automated slide-scanning microscope, composed entirely of easily available off-the-shelf parts, and capable of bright field and fluorescence modes. The automated X-Y stage is composed of two low-cost micrometer stages coupled to stepper motors operated in open-loop mode. The microscope is composed of a low-cost CMOS sensor and low-cost board lenses placed in a 4f configuration. The system has approximately 1 micron resolution, limited by the f/# of available board lenses. The microscope is compact, measuring just 25×25×30 cm, and has an absolute positioning accuracy of ±1 μm in the X and Y directions. A Z-stage enables autofocusing and imaging over large fields of view even on non-planar samples, and custom software enables automatic determination of sample boundaries and image mosaicking. We demonstrate the utility of our device through imaging of fluorescent- and transmission-dye stained blood and fecal smears containing human and animal parasites, as well as several prepared tissue samples. These results demonstrate image quality comparable to high-end commercial microscopes at a cost of less than US$400 for a bright-field system, with an extra US$100 needed for the fluorescence module. PMID:29543835

  5. Laser apparatus and method for microscopic and spectroscopic analysis and processing of biological cells

    DOEpatents

    Gourley, Paul L.; Gourley, Mark F.

    1997-01-01

    An apparatus and method for microscopic and spectroscopic analysis and processing of biological cells. The apparatus comprises a laser having an analysis region within the laser cavity for containing one or more biological cells to be analyzed. The presence of a cell within the analysis region in superposition with an activated portion of a gain medium of the laser acts to encode information about the cell upon the laser beam, the cell information being recoverable by an analysis means that preferably includes an array photodetector such as a CCD camera and a spectrometer. The apparatus and method may be used to analyze biomedical cells including blood cells and the like, and may include processing means for manipulating, sorting, or eradicating cells after analysis thereof.

  6. Laser apparatus and method for microscopic and spectroscopic analysis and processing of biological cells

    DOEpatents

    Gourley, P.L.; Gourley, M.F.

    1997-03-04

    An apparatus and method are disclosed for microscopic and spectroscopic analysis and processing of biological cells. The apparatus comprises a laser having an analysis region within the laser cavity for containing one or more biological cells to be analyzed. The presence of a cell within the analysis region in superposition with an activated portion of a gain medium of the laser acts to encode information about the cell upon the laser beam, the cell information being recoverable by an analysis means that preferably includes an array photodetector such as a CCD camera and a spectrometer. The apparatus and method may be used to analyze biomedical cells including blood cells and the like, and may include processing means for manipulating, sorting, or eradicating cells after analysis. 20 figs.

  7. The Development of Instructional Materials for Vocational Personnel Serving Students Who Are Speakers of Other Languages and Have Limited English Proficiency. Final Report.

    ERIC Educational Resources Information Center

    Adamsky, Richard A.; And Others

    The first part of this document provides a brief account of a project to develop learning modules on the microcomputer and the microscope for use with limited English-proficient speakers of other languages who are enrolled in vocational education courses. The bulk of the document consists of appendixes presenting the modules themselves. The…

  8. Intensity-based segmentation and visualization of cells in 3D microscopic images using the GPU

    NASA Astrophysics Data System (ADS)

    Kang, Mi-Sun; Lee, Jeong-Eom; Jeon, Woong-ki; Choi, Heung-Kook; Kim, Myoung-Hee

    2013-02-01

    3D microscopy images contain abundant astronomical data, rendering 3D microscopy image processing time-consuming and laborious on a central processing unit (CPU). To solve these problems, many people crop a region of interest (ROI) of the input image to a small size. Although this reduces cost and time, there are drawbacks at the image processing level, e.g., the selected ROI strongly depends on the user and there is a loss in original image information. To mitigate these problems, we developed a 3D microscopy image processing tool on a graphics processing unit (GPU). Our tool provides efficient and various automatic thresholding methods to achieve intensity-based segmentation of 3D microscopy images. Users can select the algorithm to be applied. Further, the image processing tool provides visualization of segmented volume data and can set the scale, transportation, etc. using a keyboard and mouse. However, the 3D objects visualized fast still need to be analyzed to obtain information for biologists. To analyze 3D microscopic images, we need quantitative data of the images. Therefore, we label the segmented 3D objects within all 3D microscopic images and obtain quantitative information on each labeled object. This information can use the classification feature. A user can select the object to be analyzed. Our tool allows the selected object to be displayed on a new window, and hence, more details of the object can be observed. Finally, we validate the effectiveness of our tool by comparing the CPU and GPU processing times by matching the specification and configuration.

  9. Reaction rates for mesoscopic reaction-diffusion kinetics

    DOE PAGES

    Hellander, Stefan; Hellander, Andreas; Petzold, Linda

    2015-02-23

    The mesoscopic reaction-diffusion master equation (RDME) is a popular modeling framework frequently applied to stochastic reaction-diffusion kinetics in systems biology. The RDME is derived from assumptions about the underlying physical properties of the system, and it may produce unphysical results for models where those assumptions fail. In that case, other more comprehensive models are better suited, such as hard-sphere Brownian dynamics (BD). Although the RDME is a model in its own right, and not inferred from any specific microscale model, it proves useful to attempt to approximate a microscale model by a specific choice of mesoscopic reaction rates. In thismore » paper we derive mesoscopic scale-dependent reaction rates by matching certain statistics of the RDME solution to statistics of the solution of a widely used microscopic BD model: the Smoluchowski model with a Robin boundary condition at the reaction radius of two molecules. We also establish fundamental limits on the range of mesh resolutions for which this approach yields accurate results and show both theoretically and in numerical examples that as we approach the lower fundamental limit, the mesoscopic dynamics approach the microscopic dynamics. Finally, we show that for mesh sizes below the fundamental lower limit, results are less accurate. Thus, the lower limit determines the mesh size for which we obtain the most accurate results.« less

  10. Reaction rates for mesoscopic reaction-diffusion kinetics

    PubMed Central

    Hellander, Stefan; Hellander, Andreas; Petzold, Linda

    2016-01-01

    The mesoscopic reaction-diffusion master equation (RDME) is a popular modeling framework frequently applied to stochastic reaction-diffusion kinetics in systems biology. The RDME is derived from assumptions about the underlying physical properties of the system, and it may produce unphysical results for models where those assumptions fail. In that case, other more comprehensive models are better suited, such as hard-sphere Brownian dynamics (BD). Although the RDME is a model in its own right, and not inferred from any specific microscale model, it proves useful to attempt to approximate a microscale model by a specific choice of mesoscopic reaction rates. In this paper we derive mesoscopic scale-dependent reaction rates by matching certain statistics of the RDME solution to statistics of the solution of a widely used microscopic BD model: the Smoluchowski model with a Robin boundary condition at the reaction radius of two molecules. We also establish fundamental limits on the range of mesh resolutions for which this approach yields accurate results and show both theoretically and in numerical examples that as we approach the lower fundamental limit, the mesoscopic dynamics approach the microscopic dynamics. We show that for mesh sizes below the fundamental lower limit, results are less accurate. Thus, the lower limit determines the mesh size for which we obtain the most accurate results. PMID:25768640

  11. Single-channel stereoscopic ophthalmology microscope based on TRD

    NASA Astrophysics Data System (ADS)

    Radfar, Edalat; Park, Jihoon; Lee, Sangyeob; Ha, Myungjin; Yu, Sungkon; Jang, Seulki; Jung, Byungjo

    2016-03-01

    A stereoscopic imaging modality was developed for the application of ophthalmology surgical microscopes. A previous study has already introduced a single-channel stereoscopic video imaging modality based on a transparent rotating deflector (SSVIM-TRD), in which two different view angles, image disparity, are generated by imaging through a transparent rotating deflector (TRD) mounted on a stepping motor and is placed in a lens system. In this case, the image disparity is a function of the refractive index and the rotation angle of TRD. Real-time single-channel stereoscopic ophthalmology microscope (SSOM) based on the TRD is improved by real-time controlling and programming, imaging speed, and illumination method. Image quality assessments were performed to investigate images quality and stability during the TRD operation. Results presented little significant difference in image quality in terms of stability of structural similarity (SSIM). A subjective analysis was performed with 15 blinded observers to evaluate the depth perception improvement and presented significant improvement in the depth perception capability. Along with all evaluation results, preliminary results of rabbit eye imaging presented that the SSOM could be utilized as an ophthalmic operating microscopes to overcome some of the limitations of conventional ones.

  12. An Assemblable, Multi-Angle Fluorescence and Ellipsometric Microscope

    PubMed Central

    Nguyen, Victoria; Rizzo, John

    2016-01-01

    We introduce a multi-functional microscope for research laboratories that have significant cost and space limitations. The microscope pivots around the sample, operating in upright, inverted, side-on and oblique geometries. At these geometries it is able to perform bright-field, fluorescence and qualitative ellipsometric imaging. It is the first single instrument in the literature to be able to perform all of these functionalities. The system can be assembled by two undergraduate students from a provided manual in less than a day, from off-the-shelf and 3D printed components, which together cost approximately $16k at 2016 market prices. We include a highly specified assembly manual, a summary of design methodologies, and all associated 3D-printing files in hopes that the utility of the design outlives the current component market. This open design approach prepares readers to customize the instrument to specific needs and applications. We also discuss how to select household LEDs as low-cost light sources for fluorescence microscopy. We demonstrate the utility of the microscope in varied geometries and functionalities, with particular emphasis on studying hydrated, solid-supported lipid films and wet biological samples. PMID:27907008

  13. Volumetric HiLo microscopy employing an electrically tunable lens.

    PubMed

    Philipp, Katrin; Smolarski, André; Koukourakis, Nektarios; Fischer, Andreas; Stürmer, Moritz; Wallrabe, Ulrike; Czarske, Jürgen W

    2016-06-27

    Electrically tunable lenses exhibit strong potential for fast motion-free axial scanning in a variety of microscopes. However, they also lead to a degradation of the achievable resolution because of aberrations and misalignment between illumination and detection optics that are induced by the scan itself. Additionally, the typically nonlinear relation between actuation voltage and axial displacement leads to over- or under-sampled frame acquisition in most microscopic techniques because of their static depth-of-field. To overcome these limitations, we present an Adaptive-Lens-High-and-Low-frequency (AL-HiLo) microscope that enables volumetric measurements employing an electrically tunable lens. By using speckle-patterned illumination, we ensure stability against aberrations of the electrically tunable lens. Its depth-of-field can be adjusted a-posteriori and hence enables to create flexible scans, which compensates for irregular axial measurement positions. The adaptive HiLo microscope provides an axial scanning range of 1 mm with an axial resolution of about 4 μm and sub-micron lateral resolution over the full scanning range. Proof of concept measurements at home-built specimens as well as zebrafish embryos with reporter gene-driven fluorescence in the thyroid gland are shown.

  14. A high-resolution, confocal laser-scanning microscope and flash photolysis system for physiological studies.

    PubMed

    Parker, I; Callamaras, N; Wier, W G

    1997-06-01

    We describe the construction of a high-resolution confocal laser-scanning microscope, and illustrate its use for studying elementary Ca2+ signalling events in cells. An avalanche photodiode module and simple optical path provide a high efficiency system for detection of fluorescence signals, allowing use of a small confocal aperture giving near diffraction-limited spatial resolution (< 300 nm lateral and < 400 nm axial). When operated in line-scan mode, the maximum temporal resolution is 1 ms, and the associated computer software allows complete flexibility to record line-scans continuously for long (minutes) periods or to obtain any desired pixel resolution in x-y scans. An independent UV irradiation system permits simultaneous photolysis of caged compounds over either a uniform, wide field (arc lamp source) or at a tightly focussed spot (frequency-tripled Nd:YAG laser). The microscope thus provides a versatile tool for optical studies of dynamic cellular processes, as well as excellent resolution for morphological studies. The confocal scanner can be added to virtually any inverted microscope for a component cost that is only a small fraction of that of comparable commercial instruments, yet offers better performance and greater versatility.

  15. A compact "water-window" microscope with 60-nm spatial resolution based on a double stream gas-puff target and Fresnel zone plate optics

    NASA Astrophysics Data System (ADS)

    Wachulak, Przemyslaw; Torrisi, Alfio; Nawaz, Muhammad F.; Adjei, Daniel; Bartnik, Andrzej; Kostecki, Jerzy; Wegrzynski, Łukasz; Vondrová, Šárka; Turňová, Jana; Fok, Tomasz; Jančarek, Alexandr; Fiedorowicz, Henryk

    2015-05-01

    Radiation with shorter illumination wavelength allows for extension of the diffraction limit towards nanometer scale, which is a straightforward way to significantly improve a spatial resolution in photon based microscopes. Soft X-ray (SXR) radiation, from the so called "water window" spectral range, λ=2.3-4.4 nm, which is particularly suitable for biological imaging due to natural optical contrast, providing much better spatial resolution than one obtained with visible light microscopes. The high contrast is obtained because of selective absorption of radiation by carbon and water, being constituents of the biological samples. We present a desk-top system, capable of resolving 60 nm features in few seconds exposure time. We exploit the advantages of a compact, laser-plasma SXR source, based on a double stream nitrogen gas puff target, developed at the Institute of Optoelectronics, Military University of Technology. The source, emitting quasi-monochromatic, incoherent radiation, in the "water widow" spectral range at λ = 2.88 nm, is coupled with ellipsoidal, grazing incidence condenser and Fresnel zone plate objective. The construction of the microscope with some recent images of test and real samples will be presented and discussed.

  16. Histologic comparison of microscopic treatment zones induced by fractional lasers and radiofrequency.

    PubMed

    Shin, Min-Kyung; Choi, Jeong Hwee; Ahn, Soo Beom; Lee, Mu Hyoung

    2014-12-01

    Fractional photothermolysis induces microscopic, localized thermal injury in the skin surrounded by undamaged viable tissue in order to promote wound healing. This study evaluated acute histologic changes following each single pass of various fractional lasers and radiofrequency (RF). Three male domestic swine were used. We used fractional Erbium:glass (Er:glass), Erbium:yttrium-aluminum-garnet (Er:YAG), CO2 lasers, and fractional ablative microplasma RF. We analyzed features and average values of the diameter, depth, and vertical sectional areas treated with each kind of laser and RF. The microscopic treatment zone (MTZ) of fractional Er:glass resulted in separation of dermoepidermal junction with no ablative zone. Fractional Er:YAG provided the most superficial and broad MTZ with little thermal collateral damage. Fractional CO2 resulted in a narrow and deep "cone"-like MTZ. Fractional RF resulted in a superficial and broad "crater"-like MTZ. This study provides the first comparison of MTZs induced by various fractional lasers and RF. These data provide basic information on proper laser and RF options. We think that these findings could be a good reference for information about fractional laser-assisted drug delivery.

  17. DeepFocus Acoustic Microscope Transducer

    ScienceCinema

    Taylor, Steven; Kraft, Nancy

    2018-02-13

    A new nondestructive testing device being used to analyse nuclear fuel could reduce costs for manufacturing and other industry. For more information about INL research projects, visit http://www.facebook.com/idahonationallaboratory.

  18. Excellent electrical conductivity of the exfoliated and fluorinated hexagonal boron nitride nanosheets.

    PubMed

    Xue, Yafang; Liu, Qian; He, Guanjie; Xu, Kaibing; Jiang, Lin; Hu, Xianghua; Hu, Junqing

    2013-01-24

    The insulator characteristic of hexagonal boron nitride limits its applications in microelectronics. In this paper, the fluorinated hexagonal boron nitride nanosheets were prepared by doping fluorine into the boron nitride nanosheets exfoliated from the bulk boron nitride in isopropanol via a facile chemical solution method with fluoboric acid; interestingly, these boron nitride nanosheets demonstrate a typical semiconductor characteristic which were studied on a new scanning tunneling microscope-transmission electron microscope holder. Since this property changes from an insulator to a semiconductor of the boron nitride, these nanosheets will be able to extend their applications in designing and fabricating electronic nanodevices.

  19. High-resolution interferometic microscope for traceable dimensional nanometrology in Brazil

    NASA Astrophysics Data System (ADS)

    Malinovski, I.; França, R. S.; Lima, M. S.; Bessa, M. S.; Silva, C. R.; Couceiro, I. B.

    2016-07-01

    The double color interferometric microscope is developed for step height standards nanometrology traceable to meter definition via primary wavelength laser standards. The setup is based on two stabilized lasers to provide traceable measurements of highest possible resolution down to the physical limits of the optical instruments in sub-nanometer to micrometer range of the heights. The wavelength reference is He-Ne 633 nm stabilized laser, the secondary source is Blue-Green 488 nm grating laser diode. Accurate fringe portion is measured by modulated phase-shift technique combined with imaging interferometry and Fourier processing. Self calibrating methods are developed to correct systematic interferometric errors.

  20. The future of electron microscopy

    DOE PAGES

    Zhu, Yimei; Durr, Hermann

    2015-04-01

    Seeing is believing. So goes the old adage and seen evidence is undoubtedly satisfying because it can be interpreted easily, though not always correctly. For centuries, humans have developed such instruments as telescopes that observe the heavens and microscopes that reveal bacteria and viruses. The 2014 Nobel Prize in Chemistry was awarded to Eric Betzig, Stefan Hell, and William Moerner for their foundational work on superresolution fluorescence microscopy in which they overcame the Abbe diffraction limit for the resolving power of conventional light microscopes. (See Physics Today, December 2014, page 18.) That breakthrough enabled discoveries in biological research and testifiesmore » to the importance of modern microscopy.« less

  1. New Technologies: Real-time Telepathology Systems-Novel Cost-effective Tools for Real-time Consultation and Data Sharing.

    PubMed

    Siegel, Gabriel; Regelman, Dan; Maronpot, Robert; Rosenstock, Moti; Nyska, Abraham

    2017-12-01

    Real-time telepathology for use in investigative and regulated preclinical toxicology studies is now feasible. Newly developed microscope-integrated telepathology systems enable geographically remote stakeholders to view the live histopathology slide as seen by the study pathologist within the microscope. Simultaneous online viewing and dialog between study pathologist and remote colleagues is an efficient and cost-effective means for consultation, pathology working groups, and peer review, facilitating good science and economic benefits by enabling more timely and informed clinical decisions.

  2. Atomic Force Microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Day, R.D.; Russell, P.E.

    The Atomic Force Microscope (AFM) is a recently developed instrument that has achieved atomic resolution imaging of both conducting and non- conducting surfaces. Because the AFM is in the early stages of development, and because of the difficulty of building the instrument, it is currently in use in fewer than ten laboratories worldwide. It promises to be a valuable tool for obtaining information about engineering surfaces and aiding the .study of precision fabrication processes. This paper gives an overview of AFM technology and presents plans to build an instrument designed to look at engineering surfaces.

  3. Ballistic-Electron-Emission Microscope

    NASA Technical Reports Server (NTRS)

    Kaiser, William J.; Bell, L. Douglas

    1990-01-01

    Ballistic-electron-emission microscope (BEEM) employs scanning tunneling-microscopy (STM) methods for nondestructive, direct electrical investigation of buried interfaces, such as interface between semiconductor and thin metal film. In BEEM, there are at least three electrodes: emitting tip, biasing electrode, and collecting electrode, receiving current crossing interface under investigation. Signal-processing device amplifies electrode signals and converts them into form usable by computer. Produces spatial images of surface by scanning tip; in addition, provides high-resolution images of buried interface under investigation. Spectroscopic information extracted by measuring collecting-electrode current as function of one of interelectrode voltages.

  4. A Mach-Zender Holographic Microscope for Quantifying Bacterial Motility

    NASA Astrophysics Data System (ADS)

    Niraula, B.; Nadeau, J. L.; Serabyn, E.; Wallace, J. K.; Liewer, K.; Kuhn, J.; Graff, E.; Lindensmith, C.

    2014-12-01

    New microscopic techniques have revolutionized cell biology over the past two decades. However, there are still biological processes whose details elude us, especially those involving motility: e.g. feeding behavior of microorganisms in the ocean, or migration of cancer cells to form metastases. Imaging prokaryotes, which range in size from several hundred nm to a few microns, is especially challenging. An emerging technique to address these issues is Digital Holographic Microscopy (DHM). DHM is an imaging technique that uses the interference of light to record and reproduce three-dimensional magnified images of objects. This approach has several advantages over ordinary brightfield microscopy for fieldwork: a larger depth of field, hands-off operation, robustness regarding environmental conditions, and large sampling volumes with quantitative 3D records of motility behavior. Despite these promising features, real-time DHM was thought to be impractical for technological and computational reasons until recently, and there has so far been very limited application of DHM to biology. Most existing instruments are limited in performance by their particular (e.g. in-line, lens-less, phase-shifting) approach to holography. These limitations can be mitigated with an off-axis dual-path configuration. Here we describe the design and implementation of a design for a Mach-Zehnder-type holographic microscope with diffraction-limited lateral resolution, with intended applications in environmental microbiology. We have achieved sub-micron resolution and three-dimensional tracking of prokaryotic and eukaryotic test strains designed to represent different modes and speeds of microbial motility. Prokaryotes are Escherichia coli, Vibrio alginolyticus, and Bacillus subtilis. Each shows a characteristic motility pattern, as we illustrate in holographic videos in sample chambers 0.6 mm in depth. The ability to establish gradients of attractants with bacterial taxis towards the attractant is also established. The eukaryotic strains are Euglena gracilis, which demonstrates both phototaxis and geotaxis, and Paramecium micromultinucleatum. The challenges of optimizing resolution vs. field of view, and of handling the large volumes of data generated during holographic imaging, are discussed.

  5. Ultrafast Graphene Photonics and Optoelectronics

    DTIC Science & Technology

    2017-04-14

    SUBJECT TERMS Graphene, Ultrafast Optical Processin, Terahertz Electronics ; 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18...Rep, (2016)) Fig. 4. (a) Images of scanning electron microscope for 1D and 2D gratings. (b) Ratio of the real part of the transmitted field

  6. AOTF hyperspectral microscope imaging for foodborne bacteria detection

    USDA-ARS?s Scientific Manuscript database

    Food safety is an important public health issue worldwide. Researchers have developed many different methods for detecting foodborne pathogens; however, most technologies currently being used have limitations, in terms of speed, sensitivity and selectivity, for practical use in the food industry. Ac...

  7. High-resolution microscope for tip-enhanced optical processes in ultrahigh vacuum

    NASA Astrophysics Data System (ADS)

    Steidtner, Jens; Pettinger, Bruno

    2007-10-01

    An optical microscope based on tip-enhanced optical processes that can be used for studies on adsorbates as well as thin layers and nanostructures is presented. The microscope provides chemical and topographic informations with a resolution of a few nanometers and can be employed in ultrahigh vacuum as well as gas phase. The construction involves a number of improvements compared to conventional instruments. The central idea is to mount, within an UHV system, an optical platform with all necessary optical elements to a rigid frame that also carries the scanning tunneling microscope unit and to integrate a high numerical aperture parabolic mirror between the scanning probe microscope head and the sample. The parabolic mirror serves to focus the incident light and to collect a large fraction of the scattered light. The first experimental results of Raman measurements on silicon samples as well as brilliant cresyl blue layers on single crystalline gold and platinum surfaces in ultrahigh vacuum are presented. For dye adsorbates a Raman enhancement of ˜106 and a net signal gain of up to 4000 was observed. The focus diameter (˜λ/2) was measured by Raman imaging the focal region on a Si surface. The requirements of the parabolic mirror in terms of alignment accuracy were experimentally determined as well.

  8. Scanning Miniature Microscopes without Lenses

    NASA Technical Reports Server (NTRS)

    Wang, Yu

    2009-01-01

    The figure schematically depicts some alternative designs of proposed compact, lightweight optoelectronic microscopes that would contain no lenses and would generate magnified video images of specimens. Microscopes of this type were described previously in Miniature Microscope Without Lenses (NPO - 20218), NASA Tech Briefs, Vol. 22, No. 8 (August 1998), page 43 and Reflective Variants of Miniature Microscope Without Lenses (NPO 20610), NASA Tech Briefs, Vol. 26, No. 9 (September 1999), page 6a. To recapitulate: In the design and construction of a microscope of this type, the focusing optics of a conventional microscope are replaced by a combination of a microchannel filter and a charge-coupled-device (CCD) image detector. Elimination of focusing optics reduces the size and weight of the instrument and eliminates the need for the time-consuming focusing operation. The microscopes described in the cited prior articles contained two-dimensional CCDs registered with two-dimensional arrays of microchannels and, as such, were designed to produce full two-dimensional images, without need for scanning. The microscopes of the present proposal would contain one-dimensional (line image) CCDs registered with linear arrays of microchannels. In the operation of such a microscope, one would scan a specimen along a line perpendicular to the array axis (in other words, one would scan in pushbroom fashion). One could then synthesize a full two-dimensional image of the specimen from the line-image data acquired at one-pixel increments of position along the scan. In one of the proposed microscopes, a beam of unpolarized light for illuminating the specimen would enter from the side. This light would be reflected down onto the specimen by a nonpolarizing beam splitter attached to the microchannels at their lower ends. A portion of the light incident on the specimen would be reflected upward, through the beam splitter and along the microchannels, to form an image on the CCD. If the nonpolarizing beam splitter were replaced by a polarizing one, then the specimen would be illuminated by s-polarized light. Upon reflection from the specimen, some of the s-polarized light would become p-polarized. Only the p-polarized light would contribute to the image on the CCD; in other words, the image would contain information on the polarization rotating characteristic of the specimen.

  9. Quantifying distortions in two-photon remote focussing microscope images using a volumetric calibration specimen

    PubMed Central

    Corbett, Alexander D.; Burton, Rebecca A. B.; Bub, Gil; Salter, Patrick S.; Tuohy, Simon; Booth, Martin J.; Wilson, Tony

    2014-01-01

    Remote focussing microscopy allows sharp, in-focus images to be acquired at high speed from outside of the focal plane of an objective lens without any agitation of the specimen. However, without careful optical alignment, the advantages of remote focussing microscopy could be compromised by the introduction of depth-dependent scaling artifacts. To achieve an ideal alignment in a point-scanning remote focussing microscope, the lateral (XY) scan mirror pair must be imaged onto the back focal plane of both the reference and imaging objectives, in a telecentric arrangement. However, for many commercial objective lenses, it can be difficult to accurately locate the position of the back focal plane. This paper investigates the impact of this limitation on the fidelity of three-dimensional data sets of living cardiac tissue, specifically the introduction of distortions. These distortions limit the accuracy of sarcomere measurements taken directly from raw volumetric data. The origin of the distortion is first identified through simulation of a remote focussing microscope. Using a novel three-dimensional calibration specimen it was then possible to quantify experimentally the size of the distortion as a function of objective misalignment. Finally, by first approximating and then compensating the distortion in imaging data from whole heart rodent studies, the variance of sarcomere length (SL) measurements was reduced by almost 50%. PMID:25339910

  10. Co-registration of In-Vivo Human MRI Brain Images to Postmortem Histological Microscopic Images

    PubMed Central

    Singh, M.; Rajagopalan, A.; Kim, T.-S.; Hwang, D.; Chui, H.; Zhang, X.-L.; Lee, A.-Y.; Zarow, C.

    2009-01-01

    Certain features such as small vascular lesions seen in human MRI are detected reliably only in postmortem histological samples by microscopic imaging. Co-registration of these microscopically detected features to their corresponding locations in the in-vivo images would be of great benefit to understanding the MRI signatures of specific diseases. Using non-linear Polynomial transformation, we report a method to co-register in-vivo MRIs to microscopic images of histological samples drawn off the postmortem brain. The approach utilizes digital photographs of postmortem slices as an intermediate reference to co-register the MRIs to microscopy. The overall procedure is challenging due to gross structural deformations in the postmortem brain during extraction and subsequent distortions in the histological preparations. Hemispheres of the brain were co-registered separately to mitigate these effects. Approaches relying on matching single-slices, multiple-slices and entire volumes in conjunction with different similarity measures suggested that using four slices at a time in combination with two sequential measures, Pearson correlation coefficient followed by mutual information, produced the best MRI-postmortem co-registration according to a voxel mismatch count. The accuracy of the overall registration was evaluated by measuring the 3D Euclidean distance between the locations of microscopically identified lesions on postmortem slices and their MRI-postmortem co-registered locations. The results show a mean 3D displacement of 5.1 ± 2.0 mm between the in-vivo MRI and microscopically determined locations for 21 vascular lesions in 11 subjects. PMID:19169415

  11. Differences in the socio-economic distribution of inflammatory bowel disease and microscopic colitis.

    PubMed

    Sonnenberg, A; Turner, K O; Genta, R M

    2017-01-01

    Inflammatory bowel disease (IBD) and microscopic colitis are characterized by different geographical distributions across the USA. In this cross-sectional study we utilized demographic and socio-economic information associated with individual ZIP codes to further delineate the epidemiological characteristics of the two diseases. A total of 813 057 patients who underwent colonoscopy between 2008 and 2014 were extracted from an electronic database of histopathology reports. The prevalence of patients with IBD or microscopic colitis was expressed as percentage of the population associated with specific demographic (age, sex, ethnicity) and socio-economic characteristics (population size, housing value, annual income, tertiary education). Both diseases were more common among subjects from ZIP codes with predominantly White residents and less common among subjects from ZIP codes with predominantly non-White residents such as Black, Hispanic and Asian. These ethnic variations were more pronounced in microscopic colitis than IBD. Markers of affluence, such as average residential house value and annual income, were positively associated with IBD and negatively with microscopic colitis. The prevalence of both diseases was positively correlated with tertiary education. The occurrence of both IBD and microscopic colitis is influenced by environmental risk factors. The differences in the demographic, ethnic and socio-economic distributions of the two diseases suggest that different sets of risk factors affect the two diseases and that their aetiology is unrelated. Published [2016]. This article is a U.S. Government work and is in the public domain in the USA.

  12. Identification of powdered Chinese herbal medicines by fluorescence microscopy, Part 1: Fluorescent characteristics of mechanical tissues, conducting tissues, and ergastic substances.

    PubMed

    Wang, Ya-Qiong; Liang, Zhi-Tao; Li, Qin; Yang, Hua; Chen, Hu-Biao; Zhao, Zhong-Zhen; Li, Ping

    2011-03-01

    The light microscope has been successfully used in identification of Chinese herbal medicines (CHMs) for more than a century. However, positive identification is not always possible. Given the popularity of fluorescence microscopy in bioanalysis, researchers dedicated to finding new ways to identify CHMs more effectively are now turning to fluorescence microscopy for authentication purposes. Some studies on distinguishing confused species from the same genus and on exploring distributions of chemicals in tissues of CHMs by fluorescence microscopy have been reported; however, no systematic investigations on fluorescent characteristics of powdered CHMs have been reported. Here, 46 samples of 16 CHMs were investigated. Specifically, the mechanical tissues including stone cells and fibers, the conducting tissues including three types of vessels, and ergastic substances including crystals of calcium oxalate and secretions, in various powdered CHMs were investigated by both light microscope and fluorescence microscope. The results showed many microscopic features emit fluorescence that makes them easily observed, even against complex backgrounds. Under the fluorescence microscope, different microscopic features from the same powdered CHM or some same features from different powdered CHMs emitted the different fluorescence, making this information very helpful for the authentication of CHMs in powder form. Moreover, secretions with unique chemical profiles from different powdered CHMs showed different fluorescent characteristics. Hence, fluorescence microscopy could be a useful additional method for the authentication of powdered CHMs if the fluorescent characteristics of specific CHMs are known. Copyright © 2010 Wiley-Liss, Inc.

  13. Three-dimensional microstructural characterization of bulk plutonium and uranium metals using focused ion beam technique

    NASA Astrophysics Data System (ADS)

    Chung, Brandon W.; Erler, Robert G.; Teslich, Nick E.

    2016-05-01

    Nuclear forensics requires accurate quantification of discriminating microstructural characteristics of the bulk nuclear material to identify its process history and provenance. Conventional metallographic preparation techniques for bulk plutonium (Pu) and uranium (U) metals are limited to providing information in two-dimension (2D) and do not allow for obtaining depth profile of the material. In this contribution, use of dual-beam focused ion-beam/scanning electron microscopy (FIB-SEM) to investigate the internal microstructure of bulk Pu and U metals is demonstrated. Our results demonstrate that the dual-beam methodology optimally elucidate microstructural features without preparation artifacts, and the three-dimensional (3D) characterization of inner microstructures can reveal salient microstructural features that cannot be observed from conventional metallographic techniques. Examples are shown to demonstrate the benefit of FIB-SEM in improving microstructural characterization of microscopic inclusions, particularly with respect to nuclear forensics.

  14. Three-dimensional microstructural characterization of bulk plutonium and uranium metals using focused ion beam technique

    DOE PAGES

    Chung, Brandon W.; Erler, Robert G.; Teslich, Nick E.

    2016-03-03

    Nuclear forensics requires accurate quantification of discriminating microstructural characteristics of the bulk nuclear material to identify its process history and provenance. Conventional metallographic preparation techniques for bulk plutonium (Pu) and uranium (U) metals are limited to providing information in two-dimension (2D) and do not allow for obtaining depth profile of the material. In this contribution, use of dual-beam focused ion-beam/scanning electron microscopy (FIB-SEM) to investigate the internal microstructure of bulk Pu and U metals is demonstrated. Our results demonstrate that the dual-beam methodology optimally elucidate microstructural features without preparation artifacts, and the three-dimensional (3D) characterization of inner microstructures can revealmore » salient microstructural features that cannot be observed from conventional metallographic techniques. As a result, examples are shown to demonstrate the benefit of FIB-SEM in improving microstructural characterization of microscopic inclusions, particularly with respect to nuclear forensics.« less

  15. NIOSH testimony to DOL on the Occupational Safety and Health Administration's notice of proposed rulemaking on occupational exposure to asbestos, tremolite, anthophyllite, and actinolite by R. A. Lemen, May 9, 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-05-09

    The testimony summarized information pertinent to the proposed rulemaking to remove nonasbestiform tremolite, anthophyllite, and actinolite from the asbestos standard. NIOSH concludes that on the basis of current data that cleavage fragments of the appropriate aspect ratio and length from the nonasbestiform minerals should be considered as hazardous as fibers from the asbestiform minerals. No scientifically valid health evidence was found for removing from the asbestos standard cleavage fragments that become airborne when nonasbestiform tremolite, anthophyllite and actinolite are mined, milled and used, and that meet the microscopic definition of a fiber. The risk of cancer from such exposures warrantsmore » limiting exposures to these minerals to the lowest feasible concentration. A glossary of terms is provided in an appendix.« less

  16. Investigation of burn effect on skin using simultaneous Raman-Brillouin spectroscopy, and fluorescence microspectroscopy

    NASA Astrophysics Data System (ADS)

    Coker, Zachary; Meng, Zhaokai; Troyanova-Wood, Maria; Traverso, Andrew; Ballmann, Charles; Petrov, Georgi; Ibey, Bennett L.; Yakovlev, Vladislav

    2017-02-01

    Burns are thermal injuries that can completely damage or at least compromise the protective function of skin, and affect the ability of tissues to manage moisture. Burn-damaged tissues exhibit lower elasticity than healthy tissues, due to significantly reduced water concentrations and plasma retention. Current methods for determining burn intensity are limited to visual inspection, and potential hospital x-ray examination. We present a unique confocal microscope capable of measuring Raman and Brillouin spectra simultaneously, with concurrent fluorescence investigation from a single spatial location, and demonstrate application by investigating and characterizing the properties of burn-afflicted tissue on chicken skin model. Raman and Brillouin scattering offer complementary information about a material's chemical and mechanical structure, while fluorescence can serve as a useful diagnostic indicator and imaging tool. The developed instrument has the potential for very diverse analytical applications in basic biomedical science and biomedical diagnostics and imaging.

  17. Sketched Oxide Single-Electron Transistor

    NASA Astrophysics Data System (ADS)

    Cheng, Guanglei

    2012-02-01

    Devices that confine and process single electrons represent an important scaling limit of electronics. Such devices have been realized in a variety of materials and exhibit remarkable electronic, optical and spintronic properties. Here, we use an atomic force microscope tip to reversibly ``sketch'' single-electron transistors by controlling a metal-insulator transition at the interface of two oxides.ootnotetextCheng et al., Nature Nanotechnology 6, 343 (2011). In these devices, single electrons tunnel resonantly between source and drain electrodes through a conducting oxide island with a diameter of ˜1.5 nm. We demonstrate control over the number of electrons on the island using bottom- and side-gate electrodes, and observe hysteresis in electron occupation that is attributed to ferroelectricity within the oxide heterostructure. These single-electron devices may find use as ultradense non-volatile memories, nanoscale hybrid piezoelectric and charge sensors, as well as building blocks in quantum information processing and simulation platforms.

  18. Photo-induced ultrasound microscopy for photo-acoustic imaging of non-absorbing specimens

    NASA Astrophysics Data System (ADS)

    Tcarenkova, Elena; Koho, Sami V.; Hänninen, Pekka E.

    2017-08-01

    Photo-Acoustic Microscopy (PAM) has raised high interest in in-vivo imaging due to its ability to preserve the near-diffraction limited spatial resolution of optical microscopes, whilst extending the penetration depth to the mm-range. Another advantage of PAM is that it is a label-free technique - any substance that absorbs PAM excitation laser light can be viewed. However, not all sample structures desired to be observed absorb sufficiently to provide contrast for imaging. This work describes a novel imaging method that makes it possible to visualize optically transparent samples that lack intrinsic photo-acoustic contrast, without the addition of contrast agents. A thin, strongly light absorbing layer next to sample is used to generate a strong ultrasonic signal. This signal, when recorded from opposite side, contains ultrasonic transmission information of the sample and thus the method can be used to obtain an ultrasound transmission image on any PAM.

  19. Local tuning of the order parameter in superconducting weak links: A zero-inductance nanodevice

    NASA Astrophysics Data System (ADS)

    Winik, Roni; Holzman, Itamar; Dalla Torre, Emanuele G.; Buks, Eyal; Ivry, Yachin

    2018-03-01

    Controlling both the amplitude and the phase of the superconducting quantum order parameter (" separators="|ψ ) in nanostructures is important for next-generation information and communication technologies. The lack of electric resistance in superconductors, which may be advantageous for some technologies, hinders convenient voltage-bias tuning and hence limits the tunability of ψ at the microscopic scale. Here, we demonstrate the local tunability of the phase and amplitude of ψ, obtained by patterning with a single lithography step a Nb nano-superconducting quantum interference device (nano-SQUID) that is biased at its nanobridges. We accompany our experimental results by a semi-classical linearized model that is valid for generic nano-SQUIDs with multiple ports and helps simplify the modelling of non-linear couplings among the Josephson junctions. Our design helped us reveal unusual electric characteristics with effective zero inductance, which is promising for nanoscale magnetic sensing and quantum technologies.

  20. The application of scanning electron microscopy to fractography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brooks, C.R.; McGill, B.L.

    1994-10-01

    Many failures involve fracture, and determination of the fracture process is a key factor in understanding the failure. This is frequently accomplished by characterizing the topography of the fracture surface. Scanning electron microscopy has a prominent role in fractography due to three features of the scanning electron microscope (SEM): high resolution, great depth of field, and the ability to obtain chemical information via analysis of the X-rays generated by the electrons. A qualitative treatment is presented of the interaction of electrons with a sample and the effect of the SEM operating parameters on image formation, quality, and X-ray analysis. Fractographsmore » are presented to illustrate these features of scanning electron microscopy and to illustrate the limitations and precautions in obtaining fractographs and x-ray analyses. The review is concluded with examples of fracture surface features of metallic, ceramic, and polymeric materials.« less

  1. Monte Carlo simulations of nanoscale focused neon ion beam sputtering.

    PubMed

    Timilsina, Rajendra; Rack, Philip D

    2013-12-13

    A Monte Carlo simulation is developed to model the physical sputtering of aluminum and tungsten emulating nanoscale focused helium and neon ion beam etching from the gas field ion microscope. Neon beams with different beam energies (0.5-30 keV) and a constant beam diameter (Gaussian with full-width-at-half-maximum of 1 nm) were simulated to elucidate the nanostructure evolution during the physical sputtering of nanoscale high aspect ratio features. The aspect ratio and sputter yield vary with the ion species and beam energy for a constant beam diameter and are related to the distribution of the nuclear energy loss. Neon ions have a larger sputter yield than the helium ions due to their larger mass and consequently larger nuclear energy loss relative to helium. Quantitative information such as the sputtering yields, the energy-dependent aspect ratios and resolution-limiting effects are discussed.

  2. Abiotic and Biotic Factors Regulating Inter-Kingdom Engagement between Insects and Microbe Activity on Vertebrate Remains

    PubMed Central

    Jordan, Heather R.; Tomberlin, Jeffery K.

    2017-01-01

    A number of abiotic and biotic factors are known to regulate arthropod attraction, colonization, and utilization of decomposing vertebrate remains. Such information is critical when assessing arthropod evidence associated with said remains in terms of forensic relevance. Interactions are not limited to just between the resource and arthropods. There is another biotic factor that has been historically overlooked; however, with the advent of high-throughput sequencing, and other molecular techniques, the curtain has been pulled back to reveal a microscopic world that is playing a major role with regards to carrion decomposition patterns in association with arthropods. The objective of this publication is to review many of these factors and draw attention to their impact on microbial, specifically bacteria, activity associated with these remains as it is our contention that microbes serve as a primary mechanism regulating associated arthropod behavior. PMID:28538664

  3. Use of Molecular Dynamics for the Refinement of an Electrostatic Model for the In Silico Design of a Polymer Antidote for the Anticoagulant Fondaparinux

    PubMed Central

    Kwok, Ezra; Gopaluni, Bhushan; Kizhakkedathu, Jayachandran N.

    2013-01-01

    Molecular dynamics (MD) simulations results are herein incorporated into an electrostatic model used to determine the structure of an effective polymer-based antidote to the anticoagulant fondaparinux. In silico data for the polymer or its cationic binding groups has not, up to now, been available, and experimental data on the structure of the polymer-fondaparinux complex is extremely limited. Consequently, the task of optimizing the polymer structure is a daunting challenge. MD simulations provided a means to gain microscopic information on the interactions of the binding groups and fondaparinux that would have otherwise been inaccessible. This was used to refine the electrostatic model and improve the quantitative model predictions of binding affinity. Once refined, the model provided guidelines to improve electrostatic forces between candidate polymers and fondaparinux in order to increase association rate constants. PMID:27006916

  4. Chapter 14: Electron Microscopy on Thin Films for Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romero, Manuel; Abou-Ras, Daniel; Nichterwitz, Melanie

    2016-07-22

    This chapter overviews the various techniques applied in scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and highlights their possibilities and also limitations. It gives the various imaging and analysis techniques applied on a scanning electron microscope. The chapter shows that imaging is divided into that making use of secondary electrons (SEs) and of backscattered electrons (BSEs), resulting in different contrasts in the images and thus providing information on compositions, microstructures, and surface potentials. Whenever aiming for imaging and analyses at scales of down to the angstroms range, TEM and its related techniques are appropriate tools. In many cases,more » also SEM techniques provide the access to various material properties of the individual layers, not requiring specimen preparation as time consuming as TEM techniques. Finally, the chapter dedicates to cross-sectional specimen preparation for electron microscopy. The preparation decides indeed on the quality of imaging and analyses.« less

  5. rFRET: A comprehensive, Matlab-based program for analyzing intensity-based ratiometric microscopic FRET experiments.

    PubMed

    Nagy, Peter; Szabó, Ágnes; Váradi, Tímea; Kovács, Tamás; Batta, Gyula; Szöllősi, János

    2016-04-01

    Fluorescence or Förster resonance energy transfer (FRET) remains one of the most widely used methods for assessing protein clustering and conformation. Although it is a method with solid physical foundations, many applications of FRET fall short of providing quantitative results due to inappropriate calibration and controls. This shortcoming is especially valid for microscopy where currently available tools have limited or no capability at all to display parameter distributions or to perform gating. Since users of multiparameter flow cytometry usually apply these tools, the absence of these features in applications developed for microscopic FRET analysis is a significant limitation. Therefore, we developed a graphical user interface-controlled Matlab application for the evaluation of ratiometric, intensity-based microscopic FRET measurements. The program can calculate all the necessary overspill and spectroscopic correction factors and the FRET efficiency and it displays the results on histograms and dot plots. Gating on plots and mask images can be used to limit the calculation to certain parts of the image. It is an important feature of the program that the calculated parameters can be determined by regression methods, maximum likelihood estimation (MLE) and from summed intensities in addition to pixel-by-pixel evaluation. The confidence interval of calculated parameters can be estimated using parameter simulations if the approximate average number of detected photons is known. The program is not only user-friendly, but it provides rich output, it gives the user freedom to choose from different calculation modes and it gives insight into the reliability and distribution of the calculated parameters. © 2016 International Society for Advancement of Cytometry. © 2016 International Society for Advancement of Cytometry.

  6. Multimodal ophthalmic imaging using spectrally encoded scanning laser ophthalmoscopy and optical coherence tomography

    NASA Astrophysics Data System (ADS)

    El-Haddad, Mohamed T.; Malone, Joseph D.; Li, Jianwei D.; Bozic, Ivan; Arquitola, Amber M.; Joos, Karen M.; Patel, Shriji N.; Tao, Yuankai K.

    2017-08-01

    Ophthalmic surgery involves manipulation of delicate, layered tissue structures on milli- to micrometer scales. Traditional surgical microscopes provide an inherently two-dimensional view of the surgical field with limited depth perception which precludes accurate depth-resolved visualization of these tissue layers, and limits the development of novel surgical techniques. We demonstrate multimodal swept-source spectrally encoded scanning laser ophthalmoscopy and optical coherence tomography (SS-SESLO-OCT) to address current limitations of image-guided ophthalmic microsurgery. SS-SESLO-OCT provides inherently co-registered en face and cross-sectional field-of-views (FOVs) at a line rate of 400 kHz and >2 GPix/s throughput. We show in vivo imaging of the anterior segment and retinal fundus of a healthy volunteer, and preliminary results of multi-volumetric mosaicking for ultrawide-field retinal imaging with 90° FOV. Additionally, a scan-head was rapid-prototyped with a modular architecture which enabled integration of SS-SESLO-OCT with traditional surgical microscope and slit-lamp imaging optics. Ex vivo surgical maneuvers were simulated in cadaveric porcine eyes. The system throughput enabled volumetric acquisition at 10 volumes-per-second (vps) and allowed visualization of surgical dynamics in corneal sweeps, compressions, and dissections, and retinal sweeps, compressions, and elevations. SESLO en face images enabled simple real-time co-registration with the surgical microscope FOV, and OCT cross-sections provided depth-resolved visualization of instrument-tissue interactions. Finally, we demonstrate novel augmented-reality integration with the surgical view using segmentation overlays to aid surgical guidance. SS-SESLO-OCT may benefit clinical diagnostics by enabling aiming, registration, and mosaicking; and intraoperative imaging by allowing for real-time surgical feedback, instrument tracking, and overlays of computationally extracted biomarkers of disease.

  7. The effects of proficiency and bias on residents' interpretation of the microscopic urinalysis.

    PubMed

    Flach, Stephen D; Canaris, Gay J; Tape, Thomas G; Huntley, Kathryn M; Wigton, Robert S

    2002-01-01

    This study aims to determine whether residents are influenced by clinical information when interpreting microscopic urinalysis (UA) and estimating the probability of a urinary tract infection (UTI), and to determine the accuracy and reliability of UA readings. Residents estimated the UA white blood cell count and the probability of a UTI in vignettes using a fractional factorial design, varying symptoms, gender, and the white blood cell count on preprepared urine slides. Individual-level results indicated a clinical information bias and poor accuracy. Seventeen of 38 residents increased the white blood cell count in response to female gender; 14 increased the white blood cell count in response to UTI symptoms. Forty-nine percent of the readings were inaccurate; agreement ranged from 50% to 67% for white and red blood cells and bacteria. Many residents gave inaccurate UA readings, and many readings varied with clinical information. A significant portion of residents needs assistance in objectively and accurately interpreting the UA.

  8. Comparative study viruses with computer-aided phase microscope AIRYSCAN

    NASA Astrophysics Data System (ADS)

    Tychinsky, Vladimir P.; Koufal, Georgy E.; Perevedentseva, Elena V.; Vyshenskaia, Tatiana V.

    1996-12-01

    Traditionally viruses are studied with scanning electron microscopy (SEM) after complicated procedure of sample preparation without the possibility to study it under natural conditions. We obtained images of viruses (Vaccinia virus, Rotavirus) and rickettsias (Rickettsia provazekii, Coxiella burnetti) in native state with computer-aided phase microscope airyscan -- the interference microscope of Linnik layout with phase modulation of the reference wave with dissector image tube as coordinate-sensitive photodetector and computer processing of phase image. A light source was the He-Ne laser. The main result is coincidence of dimensions and shape of phase images with available information concerning their morphology obtained with SEM and other methods. The fine structure of surface and nuclei is observed. This method may be applied for virus recognition and express identification, investigation of virus structure and the analysis of cell-virus interaction.

  9. Development of x-ray laminography under an x-ray microscopic condition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoshino, Masato; Uesugi, Kentaro; Takeuchi, Akihisa

    2011-07-15

    An x-ray laminography system under an x-ray microscopic condition was developed to obtain a three-dimensional structure of laterally-extended planar objects which were difficult to observe by x-ray tomography. An x-ray laminography technique was introduced to an x-ray transmission microscope with zone plate optics. Three prototype sample holders were evaluated for x-ray imaging laminography. Layered copper grid sheets were imaged as a laminated sample. Diatomite powder on a silicon nitride membrane was measured to confirm the applicability of this method to non-planar micro-specimens placed on the membrane. The three-dimensional information of diatom shells on the membrane was obtained at a spatialmore » resolution of sub-micron. Images of biological cells on the membrane were also obtained by using a Zernike phase contrast technique.« less

  10. Interferometric scanning optical microscope for surface characterization.

    PubMed

    Offside, M J; Somekh, M G

    1992-11-01

    A phase-sensitive scanning optical microscope is described that can measure surface height changes down to 0.1 nm. This is achieved by using two heterodyne Michelson interferometers in parallel. One interferometer probes the sample with a tightly focused beam, and the second has a collimated beam that illuminates a large area of the surface, providing a large area on sample reference. This is facilitated by using a specially constructed objective lens that permits the relative areas illuminated by the two probe beams to be varied both arbitrarily and independently, thus ensuring an accurate absolute phase measurement. We subtracted the phase outputs from each interferometer to provide the sample phase information, canceling the phase noise resulting from microphonics in the process. Results from a prototype version of the microscope are presented that demonstrate the advantages of the system over existing techniques.

  11. Magnetic fingerprint of individual Fe4 molecular magnets under compression by a scanning tunnelling microscope

    NASA Astrophysics Data System (ADS)

    Burgess, Jacob A. J.; Malavolti, Luigi; Lanzilotto, Valeria; Mannini, Matteo; Yan, Shichao; Ninova, Silviya; Totti, Federico; Rolf-Pissarczyk, Steffen; Cornia, Andrea; Sessoli, Roberta; Loth, Sebastian

    2015-09-01

    Single-molecule magnets (SMMs) present a promising avenue to develop spintronic technologies. Addressing individual molecules with electrical leads in SMM-based spintronic devices remains a ubiquitous challenge: interactions with metallic electrodes can drastically modify the SMM's properties by charge transfer or through changes in the molecular structure. Here, we probe electrical transport through individual Fe4 SMMs using a scanning tunnelling microscope at 0.5 K. Correlation of topographic and spectroscopic information permits identification of the spin excitation fingerprint of intact Fe4 molecules. Building from this, we find that the exchange coupling strength within the molecule's magnetic core is significantly enhanced. First-principles calculations support the conclusion that this is the result of confinement of the molecule in the two-contact junction formed by the microscope tip and the sample surface.

  12. Mapping microscopic order in plant and mammalian cells and tissues: novel differential polarization attachment for new generation confocal microscopes (DP-LSM)

    NASA Astrophysics Data System (ADS)

    Steinbach, G.; Pawlak, K.; Pomozi, I.; Tóth, E. A.; Molnár, A.; Matkó, J.; Garab, G.

    2014-03-01

    Elucidation of the molecular architecture of complex, highly organized molecular macro-assemblies is an important, basic task for biology. Differential polarization (DP) measurements, such as linear (LD) and circular dichroism (CD) or the anisotropy of the fluorescence emission (r), which can be carried out in a dichrograph or spectrofluorimeter, respectively, carry unique, spatially averaged information about the molecular organization of the sample. For inhomogeneous samples—e.g. cells and tissues—measurements on macroscopic scale are not satisfactory, and in some cases not feasible, thus microscopic techniques must be applied. The microscopic DP-imaging technique, when based on confocal laser scanning microscope (LSM), allows the pixel by pixel mapping of anisotropy of a sample in 2D and 3D. The first DP-LSM configuration, which, in fluorescence mode, allowed confocal imaging of different DP quantities in real-time, without interfering with the ‘conventional’ imaging, was built on a Zeiss LSM410. It was demonstrated to be capable of determining non-confocally the linear birefringence (LB) or LD of a sample and, confocally, its FDLD (fluorescence detected LD), the degree of polarization (P) and the anisotropy of the fluorescence emission (r), following polarized and non-polarized excitation, respectively (Steinbach et al 2009 Acta Histochem.111 316-25). This DP-LSM configuration, however, cannot simply be adopted to new generation microscopes with considerably more compact structures. As shown here, for an Olympus FV500, we designed an easy-to-install DP attachment to determine LB, LD, FDLD and r, in new-generation confocal microscopes, which, in principle, can be complemented with a P-imaging unit, but specifically to the brand and type of LSM.

  13. Microscope-Integrated OCT Feasibility and Utility With the EnFocus System in the DISCOVER Study.

    PubMed

    Runkle, Anne; Srivastava, Sunil K; Ehlers, Justis P

    2017-03-01

    To evaluate the feasibility and utility of a novel microscope-integrated intraoperative optical coherence tomography (OCT) system. The DISCOVER study is an investigational device study evaluating microscope-integrated intraoperative OCT systems for ophthalmic surgery. This report focuses on subjects imaged with the EnFocus prototype system (Leica Microsystems/Bioptigen, Morrisville, NC). OCT was performed at surgeon-directed milestones. Surgeons completed a questionnaire after each case to evaluate the impact of OCT on intraoperative management. Fifty eyes underwent imaging with the EnFocus system. Successful imaging was obtained in 46 of 50 eyes (92%). In eight cases (16%), surgical management was changed based on intraoperative OCT findings. In membrane peeling procedures, intraoperative OCT findings were discordant from the surgeon's initial impression in seven of 20 cases (35%). This study demonstrates the feasibility of microscope-integrated intraoperative OCT using the Bioptigen EnFocus system. Intraoperative OCT may provide surgeons with additional information that may influence surgical decision-making. [Ophthalmic Surg Lasers Imaging Retina. 2017;48:216-222.]. Copyright 2017, SLACK Incorporated.

  14. Nanometres-resolution Kikuchi patterns from materials science specimens with transmission electron forward scatter diffraction in the scanning electron microscope.

    PubMed

    Brodusch, N; Demers, H; Gauvin, R

    2013-04-01

    A charge-coupled device camera of an electron backscattered diffraction system in a scanning electron microscope was positioned below a thin specimen and transmission Kikuchi patterns were collected. Contrary to electron backscattered diffraction, transmission electron forward scatter diffraction provides phase identification and orientation mapping at the nanoscale. The minimum Pd particle size for which a Kikuchi diffraction pattern was detected and indexed reliably was 5.6 nm. An orientation mapping resolution of 5 nm was measured at 30 kV. The resolution obtained with transmission electron forward scatter diffraction was of the same order of magnitude than that reported in electron nanodiffraction in the transmission electron microscope. An energy dispersive spectrometer X-ray map and a transmission electron forward scatter diffraction orientation map were acquired simultaneously. The high-resolution chemical, phase and orientation maps provided at once information on the chemical form, orientation and coherency of precipitates in an aluminium-lithium 2099 alloy. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  15. A study of weak anisotropy in electron pressure in the tail current sheet

    NASA Technical Reports Server (NTRS)

    Lee, D.-Y.; Voigt, G.-H.

    1995-01-01

    We adopt a magnetotail model with stretched field lines where ion motions are generally nonadiabatic and where it is assumed that the pressure anisotropy resides only in the electron pressure tensor. We show that the magnetic field lines with p(perpendicular) greater than p(parallel) are less stretched than the corresponding field lines in the isotropic model. For p(parallel) greater than p(perpendicular), the magnetic field lines become more and more stretched as the anisotropy approaches the marginal firehose limit, p(parallel) = p(perpendicular) + B(exp 2)/mu(sub 0). We also show that the tail current density is highly enhanced at the firehose limit, a situation that might be subject to a microscopic instability. However, we emphasize that the enhancement in the current density is notable only near the center of the tail current sheet (z = 0). Thus it remains unclear whether any microscopic instability can significantly alter the global magnetic field configuration of the tail. By comparing the radius of the field-line curvature at z = 0 with the particle's gyroradius, we suspect that even the conventional adiabatic description of electrons may become questionable very close to the marginal firehose limit.

  16. Histology-derived volumetric annotation of the human hippocampal subfields in postmortem MRI.

    PubMed

    Adler, Daniel H; Pluta, John; Kadivar, Salmon; Craige, Caryne; Gee, James C; Avants, Brian B; Yushkevich, Paul A

    2014-01-01

    Recently, there has been a growing effort to analyze the morphometry of hippocampal subfields using both in vivo and postmortem magnetic resonance imaging (MRI). However, given that boundaries between subregions of the hippocampal formation (HF) are conventionally defined on the basis of microscopic features that often lack discernible signature in MRI, subfield delineation in MRI literature has largely relied on heuristic geometric rules, the validity of which with respect to the underlying anatomy is largely unknown. The development and evaluation of such rules are challenged by the limited availability of data linking MRI appearance to microscopic hippocampal anatomy, particularly in three dimensions (3D). The present paper, for the first time, demonstrates the feasibility of labeling hippocampal subfields in a high resolution volumetric MRI dataset based directly on microscopic features extracted from histology. It uses a combination of computational techniques and manual post-processing to map subfield boundaries from a stack of histology images (obtained with 200μm spacing and 5μm slice thickness; stained using the Kluver-Barrera method) onto a postmortem 9.4Tesla MRI scan of the intact, whole hippocampal formation acquired with 160μm isotropic resolution. The histology reconstruction procedure consists of sequential application of a graph-theoretic slice stacking algorithm that mitigates the effects of distorted slices, followed by iterative affine and diffeomorphic co-registration to postmortem MRI scans of approximately 1cm-thick tissue sub-blocks acquired with 200μm isotropic resolution. These 1cm blocks are subsequently co-registered to the MRI of the whole HF. Reconstruction accuracy is evaluated as the average displacement error between boundaries manually delineated in both the histology and MRI following the sequential stages of reconstruction. The methods presented and evaluated in this single-subject study can potentially be applied to multiple hippocampal tissue samples in order to construct a histologically informed MRI atlas of the hippocampal formation. © 2013 Elsevier Inc. All rights reserved.

  17. Visualization and characterization of engineered nanoparticles in complex environmental and food matrices using atmospheric scanning electron microscopy.

    PubMed

    Luo, P; Morrison, I; Dudkiewicz, A; Tiede, K; Boyes, E; O'Toole, P; Park, S; Boxall, A B

    2013-04-01

    Imaging and characterization of engineered nanoparticles (ENPs) in water, soils, sediment and food matrices is very important for research into the risks of ENPs to consumers and the environment. However, these analyses pose a significant challenge as most existing techniques require some form of sample manipulation prior to imaging and characterization, which can result in changes in the ENPs in a sample and in the introduction of analytical artefacts. This study therefore explored the application of a newly designed instrument, the atmospheric scanning electron microscope (ASEM), which allows the direct characterization of ENPs in liquid matrices and which therefore overcomes some of the limitations associated with existing imaging methods. ASEM was used to characterize the size distribution of a range of ENPs in a selection of environmental and food matrices, including supernatant of natural sediment, test medium used in ecotoxicology studies, bovine serum albumin and tomato soup under atmospheric conditions. The obtained imaging results were compared to results obtained using conventional imaging by transmission electron microscope (TEM) and SEM as well as to size distribution data derived from nanoparticle tracking analysis (NTA). ASEM analysis was found to be a complementary technique to existing methods that is able to visualize ENPs in complex liquid matrices and to provide ENP size information without extensive sample preparation. ASEM images can detect ENPs in liquids down to 30 nm and to a level of 1 mg L(-1) (9×10(8) particles mL(-1) , 50 nm Au ENPs). The results indicate ASEM is a highly complementary method to existing approaches for analyzing ENPs in complex media and that its use will allow those studying to study ENP behavior in situ, something that is currently extremely challenging to do. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  18. Efficient coarse simulation of a growing avascular tumor

    PubMed Central

    Kavousanakis, Michail E.; Liu, Ping; Boudouvis, Andreas G.; Lowengrub, John; Kevrekidis, Ioannis G.

    2013-01-01

    The subject of this work is the development and implementation of algorithms which accelerate the simulation of early stage tumor growth models. Among the different computational approaches used for the simulation of tumor progression, discrete stochastic models (e.g., cellular automata) have been widely used to describe processes occurring at the cell and subcell scales (e.g., cell-cell interactions and signaling processes). To describe macroscopic characteristics (e.g., morphology) of growing tumors, large numbers of interacting cells must be simulated. However, the high computational demands of stochastic models make the simulation of large-scale systems impractical. Alternatively, continuum models, which can describe behavior at the tumor scale, often rely on phenomenological assumptions in place of rigorous upscaling of microscopic models. This limits their predictive power. In this work, we circumvent the derivation of closed macroscopic equations for the growing cancer cell populations; instead, we construct, based on the so-called “equation-free” framework, a computational superstructure, which wraps around the individual-based cell-level simulator and accelerates the computations required for the study of the long-time behavior of systems involving many interacting cells. The microscopic model, e.g., a cellular automaton, which simulates the evolution of cancer cell populations, is executed for relatively short time intervals, at the end of which coarse-scale information is obtained. These coarse variables evolve on slower time scales than each individual cell in the population, enabling the application of forward projection schemes, which extrapolate their values at later times. This technique is referred to as coarse projective integration. Increasing the ratio of projection times to microscopic simulator execution times enhances the computational savings. Crucial accuracy issues arising for growing tumors with radial symmetry are addressed by applying the coarse projective integration scheme in a cotraveling (cogrowing) frame. As a proof of principle, we demonstrate that the application of this scheme yields highly accurate solutions, while preserving the computational savings of coarse projective integration. PMID:22587128

  19. Diffraction-limited IR Microspectroscopy with IRENI

    Treesearch

    J. Sedlmair; B. Illman; M. Unger; C. Hirschmugl

    2012-01-01

    In a unique way, IRENI (Infrared environmental Imaging), operated at the Synchrotron Radiation Center in Madison, combines IR spectroscopy and IR imaging, revealing the chemical morphology of a sample. Most storage ring based IR confocal microscopes have to overcome a trade-off between spatial resolution versus...

  20. Novel device for male infertility screening with single-ball lens microscope and smartphone.

    PubMed

    Kobori, Yoshitomo; Pfanner, Peter; Prins, Gail S; Niederberger, Craig

    2016-09-01

    To investigate the usefulness of a novel semen analysis device consisting of a single-ball lens microscope paired with a state-of-the-art smartphone equipped with a camera. Laboratory investigation. University research laboratory. A total of 50 semen samples obtained from volunteers were analyzed for count, concentration, and motility with an 0.8-mm ball lens and three types of smartphone. Comparisons were made with results obtained with a laboratory-based computer-assisted sperm analysis (CASA) system. None. Sperm concentration; sperm motility. Sperm concentration counted with a ball lens and each smartphone showed a very strong correlation with the CASA results. Likewise, sperm motility calculated with our device showed significant correlations to CASA. If eight spermatozoa or fewer were found on the field of view of an iPhone 6s, the semen specimens were considered to be below the lower reference limit for sperm concentration of World Health Organization 2010 guidelines (15 × 10(6) spermatozoa/mL). The sensitivity was 87.5%, and specificity was 90.9%. Smartphones have great potential to analyze semen because they are portable, contain excellent digital cameras, and can be easily attached to a microscope. A single-ball lens microscope is inexpensive and easy to use for acquiring digital microscopic movies. Given its small size and weight, the device can support testing for male fertility at home or in the field, making it much more convenient and economical than current practice. This single-ball lens microscope provides an easy solution for global users to rapidly screen for male infertility. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

Top